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This doctoral dissertation is a comprehensive study on a novel method based on unitary 

synaptic weights to construct intrinsically stable neural systems. By eliminating the need to 

normalize neural activations, unitary neural networks deliver faster inference speeds and smaller 

model sizes while maintaining competitive accuracies for image recognition. In addition, unitary 

networks are drastically more robust against adversarial attacks in natural language processing 

systems because unitary weights are resilient to small input perturbations. The last portion 

focuses on a small demo that implements unitary neural nets in quantum computing. With the 

comprehensive performance evaluation in classical machine learning, the rigorous framework in 
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mathematics, and the exploration of quantum computing, this dissertation establishes a solid 

foundation for unitary neural networks in the future of deep learning.   
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Chapter 1 — Background 

The transition to quantum computing. 
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1.1. Motivation 

The twentieth century was full of hardware innovations: Vacuum tubes and bipolar-

junction transistors enabled digital computing. Metal-oxide-semiconductors field-effect 

transistors (MOSFET) paved the way for the very-large-scale integration (VLSI) of logic devices 

and led to the invention of microprocessors in 1971. Since then, computational speed and 

capacity have grown exponentially, adhering to Dennard’s law for feature size scaling [2], [3] 

and Moore’s law for economic scaling [4]. This massive computing power allowed computer 

scientists to build increasingly accurate and large machine learning models. The most remarkable 

example is the renaissance of neural networks a decade ago, driven by the adoption of graphics 

computing units (GPU) in parallelizing deep neural network computations, leading to the revival 

of artificial intelligence (AI) and machine learning (ML). 

Today, we stand at a pivotal point of the technology curve for semiconductors: As 

transistor scaling approaches its physical limit, improvements slow down. For any technology, 

there is a point of saturation, where all the possible improvements to the given technology have 

been made. It’s a place of incredible achievements because, at this point, we have discovered the 

most optimal way to engineer transistors. But this is also the point of stagnation, which can only 

be surpassed by an orthogonal technology that disrupts the field. The rise and fall of technology 

curves are quotidian in the computer industry [5]. We believe that transistors have reached the 

confines of physics, and this disruptive technology will be quantum.   

A quantum system’s computing power scales exponentially with the number of bits, 

unlike its classical counterparts that scale linearly. This property makes quantum computing an 

attractive alternative to transistor scaling, enabling the next-generation deep learning 
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architectures for big data. Quantum gates are unitary transforms because they conserve energy, 

but most neural networks today are non-unitary. To address this research gap, we thoroughly 

investigate the possibility of imposing unitarity on parts of the neural net and study the benefits 

of unitary weights in deep learning. As you will see in the following chapters, unitary neural nets 

not only improve the speed and robustness of modern machine learning systems but also 

establish a steppingstone for the quantum transition. 
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1.2. Mathematics of Unitarity 

In mathematics, a unitary matrix (U) is an n-by-n square matrix that satisfies this special 

relationship: 

 𝑼†𝑼 = 𝑼𝑼† = 𝑰, (1) 

where U can be real or complex, I is the identity matrix, and † represents the Hermitian adjoint. 

When U is real, it is called an orthogonal matrix, a subclass of the unitary matrix, and 𝑼† 

changes to 𝑼𝑇, the transposition of U. 

The unitary matrix has a special property that conserves the Euclidean norm of the input 

vector. To prove this conservation law, we take the Euclidean norm of the output and compare it 

to the norm of the input: 

 ‖𝑼�̅�‖2 = (𝑼�̅�)
†(𝑼�̅�) = �̅�†𝑼†𝑼�̅� = �̅�†�̅� = ‖�̅�‖2, (2) 

where ‖ ∙ ‖2  denotes the Euclidean norm. This conservation law is the main theme of this 

dissertation: In classical systems, it stabilizes the neural signals, making the network faster and 

more robust. In quantum systems, it conserves the energy of a quantum system [6], [7] and 

makes the network ready to be implemented on dissipation-less quantum computers. We will 

rigorously quantify the performance improvements in the following three chapters.  

For the rest of this dissertation, we assume U is real. This simplification is possible 

because we represent the weights and the activation values of neural networks using real 

numbers. In our case, the Hermitian adjoint in the previous two equations reduces to the matrix 

transpose hereafter. 
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1.3. Dissertation Outline 

Chapter 1 establishes the premise and motivations of our research. To provide a 

comprehensive perspective on unitary neural networks, we first identify their benefits and 

drawbacks in classical computing when parts of the neural weights are constrained to be unitary 

for various network architectures and applications. Chapter 2 shows that unitary neural nets are 

stable by design and thus do not require explicit normalization after each layer. The elimination 

of normalization speeds up deep neural nets significantly. The experiments are conducted with a 

state-of-the-art convolutional neural network (CNN) on image recognition datasets. Furthermore, 

Chapter 3 demonstrates that unitary neural nets are drastically more robust against adversarial 

attacks because unitary weights prevent small perturbations from growing larger as signals 

propagate across the layers in a deep neural net. We demonstrate this unique advantage by 

performing natural language processing using transformer-based neural architectures. Chapter 4 

studies a small demo using a hybrid quantum neural net (QNN). We observe a direct correlation 

between the intrinsic dimensionality of the input signals and the required number of quantum 

layers in a QNN. Lastly, Chapter 5 summarizes our findings and suggests a list of future work 

in this research direction. 
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Chapter 2 — Unitary Convolutional Neural 

Net for Faster Computer Vision  

Unitarity eliminates the need to normalize. 
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2.1. Introduction 

A. The Problem of Instability in Deep Neural Nets 

Recent advancements in semiconductor technology [8] have enabled neural networks to 

grow significantly deeper. This abundant computing power enabled computer scientists to 

drastically increase the depths of neural networks from the 7-layer LeNet network [9] to the 152-

layer contest-wining ResNet architecture [10]. More layers usually lead to higher recognition 

accuracy because neural networks make decisions by drawing decision boundaries in the high-

dimensional space [11]. A decision boundary is a demarcation in the feature space that separates 

the different output classes. The more layers the network has, the more precise these boundaries 

can be in the high-dimensional feature space; thus, they can achieve higher recognition rates [12]. 

However, deep networks often fail to train properly due to poor convergence as explained below.  

There are many reasons why a deep network fails to train [13], and the problem that 

unitary neural nets address is the instability of the forward pass, in which neural activations 

either saturate to infinity or diminish to zero and thus prevent the training algorithm from 

converging. To train a neural net, the error observed at the output is backpropagated to update 

each synaptic weight in the previous layers. In other words, the neural net is a composite 

function (𝑓) with the weights as internal parameters, mapping an input to an output. The goal of 

training is to find the best weights for producing the desired output, and we do so by taking the 

derivative of 𝑓 against the weight variables using the chain rule. During this process, the error 

signals travel backward through the network, multiplied by the activation at each neuron; hence, 

this training procedure is called backpropagation [12]. Depending on the eigenvalues of the 
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synaptic weight matrices [14], neural signals may grow or attenuate as they travel across neural 

layers in the forward pass when unbounded activation functions1 are used. If the activation is 

either extremely large or small; in this case, the weight update will scale proportionally during 

the backward pass, resulting in either a massive or a tiny step. Consequently, convergence is 

poor during training.  

In short, vanishing and exploding activations occur when the neural signals are not 

normalized, and the backpropagated gradients either saturate or die out during network training 

[16]. Although other schemes such as batch normalization [17], learning rate tuning [18], and 

gradient highways [10] can mitigate the issue, none of these methods eliminate the core 

problem—the weight matrices have eigenvalues that are larger or smaller than one. Furthermore, 

most normalization methods have inference time penalties because of the additional steps to 

compute and rescale the neural signals to the norm. In this section, we aim to devise a way to 

fundamentally fix the exploding and vanishing activation problem without slowing down the 

inference speed.  

B. Our Proposed Solution 

Our proposed solution (Fig. 1) is to eliminate the need to normalize the neural signals 

after each layer by constraining the weight matrices, W, to be unitary. Unitary matrices 2 

represent rotations in the n-dimensional space; hence, they preserve the norm (i.e., the amplitude) 

 

 
1Unbounded activation function is common in deep learning. For example, the rectified linear unit 

(ReLU) is a popular nonlinearity in many neural architectures due to its computational simplicity [15]. 

2 Unitary matrices can have complex values. When the matrices only contain real components, they are 

called orthogonal matrices, which is a subset of unitary matrices, and our proposal works in both cases. 

The eigenvalues of a unitary matrix have modulus 1.  
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of the input vector. With this unique property, unitary networks can maintain the neural signal 

strengths without explicit normalization. This technique allows the designers to eliminate the 

networks’ normalization blocks and make inference faster. 

We aim to engineer a way to constrain the weights to be unitary. To achieve this, we 

leverage the previously reported framework for constructing orthogonal matrices in recurrent 

neural networks using Lie algebra [19], which we will explain briefly in Sect. 2.2A below. 

Unlike other approximation methods, this framework guarantees strictly unitary matrices; 

however, it is currently limited to square matrices. Our main contribution is that we found a way 

(Sect. 2.2B) to extend the unitary framework based on Lie algebra to weight matrices of any 

shape. By doing so, we expand the applicability of this framework from recurrent neural 

networks with square weight matrices to any neural network structures, drastically increasing its 

usefulness in state-of-the-art network architectures.  

 

Fig. 1. A unitary neural network for mitigating exploding and vanishing 

activations. 3  Deep neural nets are unstable systems by default because non-unitary 

synaptic weights (non-unitary Wi) can arbitrarily scale the activations (i.e., neurons’ 

 

 
3 Figure from our published work [1]. 
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output signals); thus,  normalization is required to maintain signal stability in a regular 

neural net (top). We propose to use unitary constraints on the synaptic weights (unitary 

Wi) to regulate the activations with the norm preserving property of unitary matrices 

(bottom). By doing so, we can eliminate the computationally expensive normalization 

steps and improve the network’s inference speed. 

C. Literature Review 

Lie algebra is not the only way to construct unitary matrices. Researchers have explored 

many options to construct unitary weights for RNNs, including eigendecomposition [20], Cayley 

transform [21], square decomposition [22], Householder reflection [23], and optimization over 

Stiefel manifolds [24]. These methods decompose the unitary matrix into smaller parameter 

spaces with mathematical processes that guarantee unitarity; however, the weight matrices in 

these approaches must be square. For convolutional neural nets with rectangular weights, there 

are approximation techniques based on least square fitting [25], singular value decomposition 

[26], and soft regularization [27]. These techniques find the best approximates of the unitary 

weights, but they do not guarantee the weight matrices are strictly unitary. On the contrary, our 

approach combines the best of the two schools—it is both strictly unitary and applicable to non-

square matrices. Our published work [1] presented in this chapter is the first report on applying 

the unitary weights based on the Lie algebra framework for a deep convolutional neural network 

with a comprehensive performance study, aiming to make the unitary network an attractive 

alternative to conventional normalization methods in inference-time-critical applications. 
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2.2. Theory 

A. Matrix Representation of the Unitary Group 

In this section, we explain the mathematical framework [19] for representing the unitary 

group with unitary matrices, collectively known as the Lie group [28]. Linearization of the Lie 

group about its identity generates a new set of operators; these new operators form a Lie algebra. 

Lie algebra is parameterized by the Lie parameters, which we arrange as a traceless lower 

triangular matrix, L. We name it Lie parameters because it contains independent trainable 

parameters for the neural networks.4 For example, we draw L as a 12 x 12 matrix on the right 

side of Fig. 2 and highlight the tunable parameters in red. 12 is the dimensionality of the matrix 

representation, and in general, we denote it as n. The representable algebra through this 

parameterization is only a subspace of unitary groups. Regardless of the expressivity of the 

parameterization, the resulting unitary matrix will always preserve the norm; thus, it will 

guarantee signal stability in deep neural networks. The drawback of using a less expressive 

parameterization is that it may lead to a lower prediction accuracy for the network, which we 

will quantify empirically in the result section (Sect. 2.4). In the next few paragraphs, we will 

walk through the construction of unitary matrices from the Lie parameters (L); this process is 

illustrated in Fig. 2 from right to left. 

  

 

 
4 We assume all matrices are real because the weights and activations in deep learning models are real 

numbers. 
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Fig. 2. Unitary matrix construction. 5  There are many ways to construct unitary 

matrices. In this chapter, we utilize the fact that unitary matrices are matrix presentations 

of Lie groups, which can be obtained by exponentiating the Lie algebra. From the right, 

we first create the lower triangular Lie parameters matrix, L, for recording the tunable 

parameters. As shown in the figure, L has n (n – 1) / 2 trainable parameters. We first 

initialize L with random numbers and later train them during neural network training 

using backpropagation. Then, we construct the Lie algebra, A, by the equation 𝑳 − 𝑳𝑇 as 

illustrated in the middle of this figure, assuring A to be anti-symmetric by construction. 

Lastly, on the left, we exponentiate the Lie algebra (A) to obtain the unitary matrix (U), 

which is a matrix representation of the Lie group. Unitary matrices are square by 

definition. n is the dimensionality of the representation. In this example, n is 12.  

  

 

 
5 Figure modified from our published work [1]. 

Lie ParametersLie AlgebraUnitary Matrix

𝑳 = 𝑳 − 𝑳𝑇𝑼 =    ( )
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n
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The Lie parameters (L) are related to the Lie algebra (A) by the following equation: 

  = 𝑳 − 𝑳𝑇, (3) 

where superscript T corresponds to taking the matrix transpose. An essential feature of matrix A 

(Fig. 2, middle) is that it is an anti-symmetric matrix (i.e., AT = -A). Any compact metric-

preserving group, including the orthogonal group, has anti-symmetric Lie algebra [24]. 

Specifically, the following equation proves that the chosen representation for the Lie parameters 

will produce an anti-symmetric Lie algebra:  

  𝑇 +  = (𝑳 − 𝑳𝑇)𝑇 + 𝑳 − 𝑳𝑇 = 0. (4) 

Additionally, in the last step of our pipeline to construct unitary matrices, we 

exponentiate the Lie algebra, A, to obtain the group representation, which will be a unitary 

matrix, U, illustrated on the left side of Fig. 2:  

 𝑼 =    ( ) = ∑  𝑁/𝑁!∞
𝑁=0 . (5) 

We approximate this matrix exponentiation with an 18-term Taylor series in our implementation. 

Besides eliminating any term beyond the 18th order in Eqn. (5), we efficiently group the 

computation to avoid redundant multiplications, a standard approach used in many matrix 

computation software to save time [30], [31].  

We will assume the neural network has synaptic weights that are square for now. In this 

case, we can use the unitary matrices (U) to replace the original weights directly, forcing the 

neural signals to maintain their norms without explicit normalization. All the intermediate steps 

for constructing U are algebraic functions as shown in Eqns. (3)-(5), allowing us to train the Lie 

parameters (L) using backpropagation [12] and automatic differentiation [32] together with the 
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rest of the neural net in an end-to-end manner. As mentioned previously, researchers have only 

applied the unitary pipeline to a small recurrent neural network (RNN), which has a single 

square weight matrix for the feedback loop [19]. Nevertheless, the requirement for the weights to 

be square severely limits the usefulness of this prior framework. Using the Lie algebra formalism 

to construct unitary weights is an elegant method to regulate signals, and in the following section, 

we will expand it to non-square weights by using the Stiefel manifold.  

B. The Stiefel Manifold 

In the section above, the weight matrices must be square (n x n), forcing the number of 

neurons for both the input and output of a particular layer to be identical. This requirement 

cannot be satisfied in most convolutional neural nets (CNN) because the adjacent layers may 

have different numbers of neurons; hence, there are many non-square weights in state-of-the-art 

CNNs. To address this incompatibility between the square unitary matrices and the non-square 

synaptic weights, we utilize a concept called the Stiefel manifold [33], which is a subspace of the 

unitary group of degree n and have a rectangular matrix representation. Fig. 3 is an example 

process to construct a 12 x 4 matrix in the Stiefel manifold, showing the connection between 

unitary groups and Stiefel manifolds as follows: The matrix representation of the unitary group is 

a unitary matrix U with n orthogonal columns; U is a square n x n matrix. By taking the first k 

columns of U (Fig. 3, middle left), we create the matrix representation (V) for the Stiefel 

manifold: 

 𝑽 = [ �̅�1 �̅�2 … �̅�𝑘 ] ∈ ℝ𝑛×𝑘, (6)  

where �̅�1… �̅�𝑘 are the orthogonal columns vectors of n dimensions copied from U. With this 

construction, n ≥ k because we can take n columns from U  ∈ ℝ𝑛×𝑛 at most. The resulting V (Fig. 
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3, left) is a tall, rectangular matrix with orthogonal columns. For conciseness, we name V the 

Stiefel matrix because it is the matrix representation of an element in the Stiefel manifold; 

similarly, a unitary matrix is the matrix representation for the Lie group (or the unitary group).  

 

Fig. 3. Stiefel matrix construction.6 The first three steps to constructing a Stiefel matrix 

are almost identical to the construction of an n x n unitary matrix illustrated in Fig. 2. 

From right to left, we still construct a lower triangular Lie parameter matrix (L), compute 

the Lie algebra (A), and exponentiate A to get the unitary matrix (U). However, instead of 

using all n columns in L, we only need the first k columns and set the rest to zero. This 

reduction of parameters is possible because, in the last step, we only take the first k 

columns in U to construct the Stiefel matrix as shown on the left of this figure. Therefore, 

the Lie parameters L only contains n x k – k x (k + 1) / 2 tunable parameters (right most, 

shown with highlighted boxes). The Stiefel matrix V is a tall rectangular matrix ∈ℝn x k 

with orthogonal columns (left most). In this example, n is 12 and k is 4.  

 

 
6 Figure modified from our published work [1]. 
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Moreover, it requires fewer Lie parameters in L to define a Stiefel matrix than to specify 

a unitary matrix. By comparing the Lie parameters in Fig. 2 and Fig. 3, one can visualize their 

difference: In Fig. 3 (right), L only has k non-zero columns as opposed to the full n - 1 columns 

illustrated in Fig. 2 (right). Geometrically speaking, a unitary matrix represents a rotation in the 

n-dimensional space; its columns form a complete set of orthonormal basis vectors in the rotated 

coordinate system. We utilize the latter interpretation to paint a geometric relationship between 

unitary groups and Stiefel manifolds—the unitary matrix consists of all n basis. On the other 

hand, the Stiefel matrix selects k of the n orthonormal basis vectors in an n-dimensional space, 

forming a subspace of the unitary group. Hence, we only need k columns of Lie parameters (L) 

to fully specify the k basis vectors required for the Stiefel matrix. 

The unitary matrix (U) is square, but the Stiefel matrix (V) is rectangular. And since both 

have orthogonal columns, we would like to check whether V shares the same norm-preserving 

property described in Eqn. (2). The columns of V are orthogonal; thus, by construction, we have: 

  𝑽𝑇𝑽 = 𝑰 ∈ ℝ𝑘×𝑘. (7)  

This is trivial to prove because the dot product between different basis vectors is zero while 

between the same basis vector is one, and V is a collection of basis vectors. With this insight, we 

repeat the derivation of norm-preservation for Stiefel matrices: 

 ‖𝑽�̅�‖2 = (𝑽�̅�)
𝑇(𝑽�̅�) = �̅�𝑇𝑽𝑇𝑽�̅� = �̅�𝑇�̅� = ‖�̅�‖2, (8) 

where �̅� ∈ ℝ𝑘  is the input vector.  ‖ ∙ ‖2  denotes the Euclidean norm, a distance measure 

calculated by squaring all the coordinates, summing the results, and taking the square root. When 

we use V as the weight matrix for connecting two neural layers, we will have the following 

input-output relationship: 
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 �̅� = 𝑽�̅�, (9) 

where  �̅� ∈ ℝ𝑘  are the activations of k input neurons (a column vector), �̅� ∈ ℝ𝑛  are the 

activations of n output neurons (also a column vector), and 𝑽 ∈ ℝ𝑛×𝑘 is the Stiefel matrix with k 

orthogonal column vectors of dimension n. Putting the previous two equations together, we 

prove that the norm of the activation signal is preserved between two adjacent neural layers with 

different sizes: 

 ‖�̅�‖2 = ‖𝑽�̅�‖2 = ‖�̅�‖2. (10) 

To visualize this norm-preserving dimensionality expansion process, we picture a 

standard basis, I, as the coordinate system of an n-dimensional vector space, where I is the n x n 

identity matrix. U defines a rotated basis in the same vector space, and V selects k of these basis 

vectors to form a subspace. We can interpret the input vector (�̅�) as coordinates with respect to 

the basis set V (i.e., each of the k scalars in �̅� is a coefficient for a corresponding basis vector in 

V). When we compute 𝑽�̅� in Eqn. (9), we are mixing the set of k basis vectors according to the 

ratio prescribed by �̅�, resulting in an n-dimensional output vector �̅�. For geometric intuition, we 

explain Eqn. (9) as a change of basis from the k-dimensional subspace V to n dimensions. Since 

U is an orthogonal basis, we can expand �̅�  from the k-dimensional V subspace to the n-

dimensional U coordinate system by simply setting zeros for the extra n – k coordinates without 

modifying the vector norm. Finally, reading out the resulting coordinates in the standard basis (I) 

is the same as performing a unitary rotation (U), which preserves the vector norm. Thus, in 

addition to the mathematical proof in Eqns. (7)-(10), the norm-preserving property of the Stiefel 

matrix can be explained geometrically in the case of increasing numbers of neurons (i.e., n ≥ k).   
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A key limitation of the Stiefel matrix is that it does not work with decreasing numbers of 

neurons between two adjacent neural layers. Previously, we construct the Stiefel matrix (V) by 

taking k columns from a n x n unitary matrix in Eqn. (6), implicitly creating a constrain that k has 

to be less or equal to n. When V is used as the synaptic weight, k corresponds to the number of 

neurons in the previous layer and n is the number for the next layer as shown in Eqn. (9). By 

definition, V is a tall, rectangular matrix (i.e., n ≥ k), forcing the neural layers to expand. 

Furthermore, we cannot just transpose to V to resolve this limitation. 𝑽𝑇�̅� computes the dot 

products between �̅� and the basis vectors in V, measuring how much it aligns with each basis 

vector. According to the Pythagorean theorem, this projection results in a shorter vector 

compared to �̅� because we dispose of those vector components outside of the V subspace (we 

take only k basis from U to build V).  

In practice, there are multiple ways to solve this problem. The easiest solution is to 

normalize the output to recuperate the signals lost in missing dimensions (only for those layers 

with a shrinking number of neurons). We decide to use this approach in this dissertation because 

normalization is only required for a small portion of our network, and the normalization we use 

merely divides the output vector with its Euclidean norm without any statistical adjustments. 

Even though it is not ideal to add normalization back to portions of our network, the unitary 

weights offer other benefits over conventional normalization. Researchers have found orthogonal 

weights lead to more efficient filters with fewer redundancies [27]. Another solution is to 

concatenate multiple unitary matrices horizontally to build a wide weight matrix, which 

preserves the norm for segments of the input vector �̅�. Lastly, it is also possible to minimize 

situations requiring wide weight matrices by carefully designing the mapping between the weight 

matrices and the convolution filters. 
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C. From the Stiefel Matrix to Convolution Filters 

Convolutional layers have weight matrices commonly referred to as filters that convolve 

with the input image [12]. The input-output relationship for a convolution layer is purely 

algebraic:  

 𝒀(𝑖, 𝑗, 𝑘) = ∑ ∑ 𝑭(𝑚, 𝑙, 𝑘)𝑙𝑚 𝑿(𝑖 + 𝑚, 𝑗 + 𝑙), (11) 

where Y is the output activations, X is the input greyscale image, F is the convolution filters, m 

and l are dummy indices for convolution, i is the index for the horizontal direction, j is for the 

vertical direction, and k is the channel direction that corresponds with the filter dimension. In Fig. 

4 (bottom), we illustrate an example convolution layer with twelve 2 x 2 filters (F), an 5 x 5 

greyscale image (X), and an output tensor of size 4 x 4 x 12 (Y), assuming padding of zero and 

stride of one for the convolution. The last dimension of Y is the output channel; it always 

matches the number of convolution filters we have. In our notation, F concatenates all 12 

convolution filters in the last dimension; hence, its dimensionality is 2 x 2 x 12.  

Moreover, we can succinctly represent the convolution as a single matrix multiplication 

through the Toeplitz matrix arrangement [27], [34], [35]. Suppose we arrange the input image (X) 

as a Toeplitz matrix (Xtoeplitz) and reshape the convolution filters (F) to a 2-dimensional matrix (V) 

as illustrated in Fig. 4. In that case, the convolution simplifies to a matrix multiplication between 

V and Xtoeplitz as shown in Fig. 4 (top). V is the Stiefel matrix from Fig. 3, stabilizing the 

activations across a neural layer with its norm-preserving property as proven in Eqns. (7)-(10).7 

Effectively, we convert the convolution between high-dimensional tensors to a multiplication 

 

 
7 In which �̅� is a column of Xtoeplitz and �̅� is a column of Y2d in Fig. 4 (top). 
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between 2-dimensional matrices. The mapping between V and F requires careful consideration 

as it will affect along which dimension the neural signal is normalized. 

 

Fig. 4. The Stiefel matrix as convolution filters. We reshape the rows of the Stiefel 

matrix (V) into 2 x 2 convolution filters to ensure signal stability (left). The filters 

convolve with the input image (X), which has 5 x 5 greyscaled pixels (middle). X is 

rearranged as a Toeplitz matrix (Xtoeplitz) such that the convolution between F and X 

becomes matrix multiplication between V and Xtoeplitz [27]. We reshape the result of the 
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multiplication (Y2d) into a 4 x 4 x 12 output tensor (Y); 12 is the number of output 

channels (right). Matrix dimensions are for example only; each box represents a scalar. 



 

22 

2.3. Method 

A. Network Architecture 

The objective of our experiment is to show that the neural network becomes faster in 

making predictions during inference when we remove normalization from the network 

architecture; moreover, we want to demonstrate that unitarity is necessary to stabilize network 

training (i.e., removing normalization without adding unitary constraints will make the network 

fail to converge in training). Our framework for constructing orthogonal convolution filters from 

the Stiefel matrix (Sect. 2.2) applies to any neural nets, and we decide to test our idea on a 

particular network architecture named the residual neural network (ResNet), which is the state-

of-the-art for image recognition (Fig. 5, middle). ResNet uses residual connections to improve 

training; more specifically, the residual connection functions as a gradient highway for the error 

signal to access the earlier layers in the network during backpropagation training [10]. The 

residual connection is the long, vertical bypass path in Fig. 5. 

In addition to having residual connections, ResNet is also a type of convolutional neural 

network because it has many layers of convolution filters as shown in Fig. 5. Convolution is the 

best approach for image recognition due to the translational symmetry of the convolution 

function. This means that if we construct the network using convolution filters, shifting the 

objects in a picture will not change the prediction output as we will expect. We apply the Stiefel 

matrices (Sect. 2.2C) to the convolution filters and remove the normalization layers in ResNet 

(Fig. 5, right), and we name our architecture the unitary residual neural network (UniResNet). 

Our architecture is a narrower and shorter variant of the popular ResNet-50, which has 50 layers 

with weights (the number denotes the total layers with tunable synaptic weights). The number of 

layers is adjustable by simply appending more unit blocks to the network as shown in Fig. 5. A 
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deeper network results in a more complicated mathematical function (equivalent to a higher-

order polynomial) and is more susceptible to overfitting. Overfitting is a phenomenon in which 

the network fits the training data perfectly well but fails to generalize to new data. When a 

network overfits, its training accuracy is high, but its testing accuracy suffers greatly. We picked 

a smaller model to prevent overfitting because ResNet-50 was designed for the more complex 

ImageNet dataset that has 1000 object classes as opposed to the CIFAR-10 dataset we use in our 

experiments. CIFAR-10 has only ten classes (see Sect. 2.3B for details). Our UniResNet-44 

architecture convolutional layers with a fully connected layer at the end for projecting the high-

dimensional neural signals to ten output classes; we document the sizes and numbers of 

convolutional filters for each layer in Fig. 5 below (left & right) for data reproducibility. Also, 

we study the scalability in terms of depth with the 92 and 143-layer networks (i.e., UniResNet-92 

and UniResNet-143). Unless specified otherwise, we refer to UniResNet-44 as “UniResNet” in 

the following sections. See our source code for details.8 

An important implementation detail is that we cache the Stiefel matrix after training to 

save inference time (the time to predict the class label of a given input during inference). The 

steps to construct the Stiefel matrix are explained in Sect. 2.2 and depicted on the top-right 

corner in Fig. 5 with the label “activated for training.” During inference, the resulting Stiefel 

matrix is retrieved from the cache, so we do not spend time computing the unitary matrix (U) 

again as exponentiating the Lie algebra (A) can take significant computing resources. The 

translation between V and F (Fig. 5, middle-right) is a simple tensor reshaping operation detailed 

previously in Sect. 2.2C.  

 

 
8 https://github.com/h-chang/uResNet  
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Fig. 5. Our unitary residual neural network (UniResNet) architecture. 9  Our 

UniResNet (right) speeds up inference significantly by removing normalization in the 

state-of-the-art ResNet (middle). To maintain signal stability in our UniResNet, we use 

the Stiefel matrix (V) to ensure that the norm of the input vector is preserved (see Sect. 

2.2B). All neural layers in the network are listed on the left; we enlarge one of the unit 

blocks to illustrate its contents. Each unit block contains three convolution layers with 

different numbers of convolution filters. We label the number of filters with α, β, and γ in 

the figure. For instance, β Conv3x3 for a layer with β = 16 means that there are 16 

convolution filters of size 3 x 3 in that layer. The rectified linear unit (ReLU) is used as 

nonlinearity at locations indicated in the figure. 

 

 
9 Figure modified from our published work [1]. 
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B. Datasets Characteristics 

We use the CIFAR-10 image recognition dataset created by the Canadian Institute for 

Advanced Research; it contains 60,000 32 x 32 color images with ten labeled classes and is 

freely available for download [36]. The ten classes represent airplanes, cars, birds, cats, deer, 

dogs, frogs, horses, ships, and trucks with 6,000 pictures for each class, and the recognition task 

is to predict the class of a given image. We split the dataset into 50,000 training and 10,000 test 

images with the same data argumentation scheme as the original ResNet-50 paper [10]. 

Following the convention used in machine learning, we call the 50,000 training data the “training 

set” and the 10,000 testing data the “test set.” Additionally, we also study the unitary neural 

network’s susceptibility to overfitting with the CIFAR-100 dataset, which contains 100 different 

types of objects [36]. 

C. Training Details 

We modified the source code found in this reference [37] for comparison against 

conventional normalization techniques, sharing the same learning rate (0.1), learning schedule 

(that divides the learning rate by 10 at 100, 150, and 200 epochs), batch size (128), and training 

epochs (250). The only modification we made for the unitary neural net is that we added the 

unitary pipeline using the method described previously in Sect. 2.3A for the convolutional layers. 

We also removed all the normalization blocks in the unitary version. We trained the regular and 

the unitary networks with the stochastic gradient descent optimizer in PyTorch with a 

momentum setting of 0.9 and weight decay of 0.0002. We measured the neural networks’ speed 

and memory usage by simulating each neural architecture one at a time on a single NVIDIA 

RTX3090 graphics card with 24 GB of total video memory.  
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D. Caching the Unitary Weights 

During training, the entire neural pathway is enabled, including the block that contains 

the Lie parameters, Lie algebra, and Lie group (Fig. 5, top-right). Gradients are backpropagated 

from the output to update the Lie parameters. After training is complete, the best unitary weights 

are cached; thus, we do not need to recompute the unitary weights during inference.  
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2.4. Results & Discussion 

With our proposed unitary convolutional neural network from Sect. 2.3, we compare the 

performance of our proposal against popular normalization methods and summarize the main 

results of our experiment in Fig. 6 below. By removing the network’s unitary pipeline (the block 

with Lie parameters, Lie algebra, and Lie group in Fig. 5) during test time, we achieved a much 

faster inference speed than other normalization methods, including the batch norm [17], group 

norm [38], layer norm [39], and instance norm [40]. Each of these methods addresses a specific 

problem; therefore, the designer might favor one over the other depending on the application. 

With our unitary convolution, we offer the community another tool in the toolbox that is 

lightning fast—32% faster than the instance norm in inference. We compute the speedup by 

comparing the inference time between the unitary network and the instance norm in Fig. 6(e). 

Our method shares many characteristics with the instance norm; however, instead of normalizing 

based on the neural signals’ statistics, we devise a set of unitary weights to ensure signals 

maintain their norm per Toeplitz matrix row. Compared to the instance norm’s training time, our 

training time for the unitary network is also long due to the need to perform matrix 

exponentiation. Still, it is possible to further expedite it by limiting the frequency that we 

exponentiate (i.e., sharing the same unitary weights for several iterations) or utilize iterative 

methods to implement the unitary constraint. The result shown in Fig. 6 is measured without 

weight sharing during training. 
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Fig. 6. Performance of our UniResNet vs. other normalization methods.10  Other 

methods include the batch norm [17], group norm [38], layer norm [39], and instance 

norm [40]. We also included the case without any normalization for comparison (none). 

We used the residual network (ResNet) architecture with 43 convolutional layers to 

measure the accuracy, the time, and the memory benchmarks when the networks perform 

image recognition tasks on the CIFAR-10 dataset as described in Sect. 2.3A. CIFAR-10 

has ten unique classes of objects. (a, d). Training and inference accuracies, respectively. 

The accuracy reports the percentage of time the network determines the image class 

correctly with one try. (b, e). Training and inference time, respectively. The training time 

is the time to train the network with 12.5 million images, while the inference time reports 

the time to recognize 2.5 million images. (c, f). Training and inference memory, 

 

 
10 Figure from our published work [1]. 
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respectively. Because we trained these networks on graphics processors, memory 

benchmarks measure the maximum video memory a network consumed during each 

operation mode. All metrics are average measurements over four simulation runs. 

In our experiment, both unitary network and batch normalization do not calculate running 

statistics (i.e., means and variances) during inference while group, layer, and instance norms 

track running statistics in the test set. Batch normalization is the second fastest and can 

potentially match the speed of the unitary network if the batch normalization layer is absorbed 

into the previous convolutional filters. However, batch normalization will not perform well in 

applications that require small batch sizes or normalization per data sample such as making 

adjustments to the contrast of individual images [40]. Group, layer, and instance normalizations 

work on a per-image basis; the difference between them is the number of channels that they 

average over. In our experiment, we picked a group size of eight; hence, the group normalization 

needs to keep track of eight means and variances per image. Contrary to the layer norm that only 

requires one mean and one variance per image, the instance norm tracks as many means and 

variances as the number of channels, which is up to 256 in our architecture. Our UniResNet 

maintains the L2 norm of each column in the Toeplitz matrix Xtoeplitz (Fig. 5) representing the 

input activations, delivering similar effects as the instance norm but without the inference speed 

penalty. The mapping between the filters and the unitary matrix determines which dimension of 

the activation map the unitary network is effectively normalizing.  

The unitary network also uses less temporary memory (dynamic random-access memory 

or DRAM) required to backpropagate neural signals through the normalization layers during 

training; more specifically, 8% less than all other normalization methods. Despite our advantages 
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in inference speed and training memory, unitary networks’ accuracy is slightly lower in general. 

Unitary weights constrain the signals to be on the n-sphere (or k-sphere since we have k 

dimensions) by design and are less expressive than free weights. Nevertheless, our accuracy is 

comparable to other normalizations and even surpasses the inference accuracy of the layer norm. 

An additional advantage for the unitary network is apparent when we save the model parameters 

to hard disks: as we demonstrated in Fig. 3, the matrices encoding the Lie parameters have many 

zeros. This leads to better compression for the parameter files. An approximation for model size 

saving is roughly a 15% to 50% reduction in disk space when working with unitary 

convolutional architectures. We compute the 50% reduction by leveraging the fact that we only 

need to record half of the values in a triangular Lie parameter matrix, assuming that the weight 

matrix is square as shown in Fig. 2. 

We observe that the unitary neural networks are less susceptible to overfitting. Using the 

CIFAR-100 dataset and the same network structure (UniResNet-44), we discovered that unitary 

networks have a smaller difference between the training loss (1.44) and the testing loss (1.62). 

While the conventional ResNet has a larger difference between the training loss (0.07) and the 

testing loss (1.56). A smaller difference between training and testing loss means that the network 

generalizes to new data better; in other words, it has less overfitting. Furthermore, our unitary 

networks can be deepened to 100+ layers without the costly normalization blocks: the 92-layer 

version (UniResNet-92) achieves 99.6% and 90.4% in training and testing accuracies, 

respectively, on CIFAR-10. Similarly, the 143-layer version (UniResNet-143) delivers 99.7% 

and 90.7% in training and testing accuracies. 
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2.5. Conclusion 

We report here the first instance of using unitary matrices constructed according to the 

Lie algebra for rectangular convolutional filters, which eliminates the exploding and vanishing 

activations in deep convolutional neural networks. With clear geometrical interpretations, our 

theory is a breakthrough based on rigorous, exact construction of the unitary weights applicable 

to all types of neural networks including but not limited to convolution. The key innovation is 

that we found a way to ensure signal unitarity with unitary weight matrices of any shapes and 

dimensions such that the neural signals will propagate across the network without amplification 

or degradation. Moreover, unlike traditional normalization, our approach has the least impact on 

inference time, achieving a 32% speedup in recognizing color images when compared to instance 

normalization. The effective normalization dimension is adjustable in our framework through the 

mapping between the convolutional filters and the unitary matrices. Our proposal also reduces 

hard disk storage by up to 50% depending on the neural architectures. The presented framework 

establishes unitary matrices as a design principle for building fundamentally stable neural 

systems. 
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Chapter 3 — Unitary Neural Nets For 

Robust Natural Language Processing 

Unitarity improves the robustness under adversarial attacks. 



 

33 

3.1. Introduction 

A. Natural Language Processing  

The objective of natural language processing (NLP) is to automatically analyze human-

generated texts with machines, and the specific NLP task we study in this dissertation is text 

classification. That is, we aim to design robust machine learning models that can categorize the 

topic of a paragraph, understand the causal relationship between sentences, and infer the writer’s 

sentiment. To achieve this aim, we start by improving the state-of-the-art neural network in NLP: 

the Bidirectional Encoder Representations from Transformers (BERT)—a network structure 

designed specifically for understanding languages.  

The neural architecture of BERT [41] is shown in Fig. 7. [42]. Its first neural layer 

contains three look-up tables for encoding a sentence into a vector, and we call these tables 

embeddings (i.e., Word, Position, and Token shown in Fig. 7, top left). For instance, in Word 

embedding, each word in the dictionary is represented by a vector of 768 dimensions. The 

vectors are first initialized randomly and then trained to represent the relationship between words 

in the vector space geometrically. This also means that, with successful training, BERT will 

group similar words closer together in the vector space [43].  Likewise, the Position embedding 

represents the position of the word in a sentence, and the Token embedding records the token 

type.11 At the end of the embedding section (labeled as Embed in Fig. 7), the vectors are summed 

together and normalized before further processing.   

 

 
11 More specifically, the Token embedding is used in a next-sentence-prediction task, in which we mark 

whether a word belongs to the previous sentence or the next sentence. It is unimportant for our 

discussion.  
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After converting words to vectors, BERT analyzes the sentence embedding by using an 

attention mechanism similar to index cards in a library back in the day: The Query (Fig. 7, top-

right) is a linear transformation for devising a question to ask, the Key is the indexes for the 

relevant information, and the Value is the information itself. Each of these layers has a unique 

weight matrix for the linear transformation. For simplicity, we call the resulting neural 

activations query, key, and value, respectively. The query and key are multiplied together to 

compute an attention map, highlighting the location BERT should pay attention to in the value. 

The attention map multiplies with the value to retrieve the actual information. The resulting 

activations pass through multiple linear transformations (Dense, Expand, and Reduce in Fig. 7, 

middle-right) and normalizations. Bypass connections are provided as a gradient highway to 

improve training convergence like in the residual neural networks discussed earlier in Sect. 2.3A.  

The attention layer is repeated 12 times to transform the sentence embedding into a 

succinct neural representation for the classifier, a linear transform. Finally, we use a projection 

matrix for reducing the dimensionality of the number of classes for a classification problem (Fig. 

7, bottom-left). The final activation values (�̅�) are often referred to as “logits” in the literature.12 

During inference, we use the argmax function to identify the class that has the highest logit, 

resulting in an integer class label. Also, the argmax function takes in a vector and returns the 

index of the largest vector element. For training, the logits are normalized with softmax before 

passing to the cross-entropy loss (Fig. 7, bottom-right). We will explain softmax and cross-

entropy in the following paragraph.  

 

 
12 The name logits comes from logistic units in mathematics; they are the inputs to a partition function for 

computing propabilities in logistic regression, representing a unit change of probability in the log scale. 
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Fig. 7. Bidirectional Encoder Representations from Transformers (BERT) neural 

architecture. BERT [41] represents a sentence in digital computers by encoding its 

words using vector embeddings. For each word, we look up three vectors, representing its 

meaning, position, and type using the Word, Position, and Token embedding modules, 

respectively (top-left). The network then transforms the sentence vector using 12 

attention layers (middle-left). The details of an attention layer are illustrated on the right. 

After the series of transformations, the resulting encoding represents the meaning of the 
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sentence succinctly; then, we feed this final encoding to a classifier for categorizing the 

sentence into one of the predefined classes. As for notations, (   ,    ) indicates that 

the type of neural module is an embedding layer with weight matrix Ww; (      ,    ) 

denotes that the layer is a linear transform with weight matrix Wq. Tanh is the hyperbolic 

tangent; GELU is the Gaussian Error Linear Unit [44]. They are nonlinearities similar to 

the ReLU. 

The softmax is a partition function for renormalizing each logit into the probability of the 

data belonging to a particular class (pi). Amplifying the logit that has the highest value and 

suppresses the rest, it is named softmax because is a smooth, differentiable function in contrast to 

argmax, which simply picks the maximum element. The softmax is defined as: 

 𝑝𝑖 =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖
𝑛𝑐−1
𝑖=0

∀ 𝑖,  (12) 

Where nc is the number of classes in the classification problem and 𝑦𝑖 is a vector element of the 

logits �̅�. 𝑝𝑖 represents the probability of the datum belonging to class i. We then collect all 𝑝𝑖 in a 

vector and denote it as �̅� (i.e., �̅� ≜ [𝑝0, 𝑝1, … , 𝑝𝑖]
𝑇
). 

The cross-entropy loss is a distance measure for training the neural network. A neural 

network is a nonlinear function f(x) with tunable parameters W for mapping an input �̅� to an 

output �̅� (i.e., W is a high-dimensional tensor that records the weights for all neural layers in the 

network). When the softmax function in Eqn. (12) is used to renormalize �̅�, the final output of 

the network becomes �̅�. To backpropagate the error for training W, we not only need a set of 

data points to exemplify the desired input-output relationship but also a loss function that 

measures the distance between the current network output (�̅�) and the desired output (LABEL). 
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The pair (�̅�, LABEL) exemplifies a datum in the dataset, relating a feature (�̅�) with a class label 

annotated by humans. In our notation, �̅� and LABEL do not have the same dimensionality. More 

specifically, �̅� is a vector of dimension nc, and LABEL is an integer ranging from 0 to nc – 1. 

Often, the loss function is also called the error function or the objective function in the literature, 

and the most common loss function used for BERT is the cross-entropy loss. The cross-entropy 

loss is defined as the following for a datum: 

 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 ≜ −∑ 𝑙𝑜𝑔(𝑝𝑖)
𝑛𝑐−1
𝑖=0           
𝑖≠𝐿𝐴𝐵𝐸𝐿

, (13) 

where pi ∈ℝ is the probability of the sample being in class i as defined in Eqn. (12), nc is the total 

number of classes, and LABEL ∈ℤ∩{0, …,  nc – 1} is the correct class label created by humans. 

LABEL is an integer. All variables in (13) are scalers, and we average the cross-entropy loss 

across all data samples in a batch of training data. 

BERT has many advantages over its predecessors such as the convolutional neural 

networks (CNN) and the recurrent neural networks (RNN). Mainly, BERT learns from a massive, 

unlabeled corpus first and then focuses on a specific category using a small, labeled dataset with 

little additional training. In machine learning terminology, training for BERT is separated into 

two phrases: pretraining and finetuning. During the pretraining phase, the network is trained as a 

masked language model, in which words are randomly masked out and the network is asked to 

predict the missing words [45]. Pretraining teaches BERT the basic mechanics of the language 

such as grammar and semantics. Because the dataset does not have human-generated labels, the 

pretraining phase is considered unsupervised learning. On the other hand, finetuning trains 

BERT to perform a specific NLP task (e.g., identifying the sentiment of a message as labeled by 

humans). The finetuning phase is considered supervised learning because the network is trained 
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using a human-labeled data set, and finetuning is much shorter than pretraining. A well-

pretrained BERT can solve many downstream tasks with little finetuning.  

B. Adversarial Attacks 

We define adversarial attacks as follows: an algorithm maliciously injects small 

perturbations to a neural network to alter its output prediction. In computer vision, a small noise 

is added to an image to trick the network into believing that the image belongs to a different class 

[46]. Deep neural networks are sensitive to small noises because they make predictions by 

drawing polytope decision boundaries in high-dimensional space [11], and they often create 

extraneous decision regions where no training or test data resides [47]. The attackers aim to 

create enough perturbation without appearing suspicious to humans but shift the neural response 

across the decision boundary [48]. Decision boundaries are the demarcation of data distributions 

for different classes in the activation space.  

Unlike image processing, NLP works with discrete tokens instead of continuous signals. 

Therefore, adversarial attacks are contrived differently to attack NLP systems. Specifically for 

attacks on BERT, by swapping words with their synonyms in a sentence, we maintain the 

semantics of the sentence while introducing a small change in the vector embedding. Because 

BERT is a deep neural network with many layers, these small perturbations can be amplified to 

larger differences as neural signals propagate through the network if the weights are non-unitary. 

Swapping of words with their synonyms may lead to misclassification in BERT, and we refer to 

this type of attack as synonym-based attacks [49]–[51]. Another type of adversarial attack is by 

introducing typographical errors in the sentences [52], [53]. In this case, although the injected 

typos appear benevolent to the readers, they can manipulate BERT to produce the wrong results 
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because the small perturbations can amplify with non-unitary weights. Sect. 3.3E below lists the 

BERT NLP attacks we evaluate in this study. 

Traditional machine learning for NLP is less susceptible to adversarial attacks because 

they are often based on rules or statistics with only a handful of processing steps. Some example 

frameworks include grammar-based parsing (identifying the sentence semantics by the subject, 

verb, and object relationship), decision trees (a set of decision rules organized in a tree-like 

graph), term-frequency inverse-document-frequency analysis (statistically analyzing the 

frequencies of words to identify the topics of a document), support vector machines (making 

decisions with linear classifiers), and clustering (grouping similar concepts together). Because 

they use an explicit, small set of criteria for the machine to make a decision, a programmer can 

easily validate its decision rules. They are robust and simple but lack the intellectual capacity 

required to understand complex questions and passages. In contrast, the decision mechanism in 

deep learning is difficult to validate because we cannot interpret the internal neural signals in a 

neural network. Consequently, lacking formal verification, deep neural networks are more 

susceptible to adversarial attacks. 

C. The Problem with Current Defense Methods 

To date, the defense techniques against adversarial attacks on BERT can be grouped into 

two categories:  

1. Adversarial Training with Data Augmentation. The first technique is to train the model 

with additional adversarial and augmented data. The designer of the neural network needs to 

anticipate the attack recipes that the hacker will use, generate adversarial samples 

accordingly, and train the network with the generated samples to prevent a future attack. The 
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drawback of this technique is that it requires the designers to predict the attack methods used 

by the adversaries to create appropriate coverage in the sample space. Furthermore, training 

will take much longer if we desire full coverage for all types of adversarial attacks. Data 

augmentation is commonly used together with adversarial training, which generates 

additional training samples by swapping words with their synonyms or by interpolating the 

existing data points. One of the best is to combine adversarial training and data augmentation 

as seen in defense models such as AMDA [54] and MRAT [55] (see Sect. 3.4B for details). 

For brevity, we will use the term “adversarial training” to refer to defense models that use 

adversarial training and data augmentation together to achieve state-of-the-art robustness. 

2. Regularization. The second type of defense against adversarial attacks is by adding a 

regularization term in the loss function to reduce model complexity and therefore mitigate 

overfitting. Using polynomial regression as an analogy, we explain overfitting as an 

undesirable phenomenon in which a machine learning model has too many higher-order 

terms. The resulting polynomial function is very complex, capable of fitting the training data 

very well with high training accuracy. However, because of its higher-order terms, it may 

create curves that are not related to the underlying physics of the variables under study—a 

model with great capacity learns all the artifacts in the dataset, resulting in poor 

generalization when the model encounters new data points that it has not seen before. To an 

extent, neural networks (such as BERT) find the mathematical relationship between the input 

and the output similar to polynomial curve-fitting, and hence they are suspectable of 

overfitting the dataset if the network gets too deep. A way to alleviate overfitting is by 

adding additional constraints on BERT to make the model less expressive. For example, 

InfoBERT is a robust model that uses an information bottleneck as a regularizer to limit 
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model complexity [56]. Disadvantages of regularization-based defense include high 

computational costs and added complexity.  

We will demonstrate that our proposed model has superior robustness compared to the state-of-

the-art defense techniques based on adversarial training and regularization in Sect. 3.4. 

D. Our Proposed Solution 

Our unitary multi-margin BERT architecture (UniBERT) is a ubiquitous, simple defense 

mechanism, and we will outline our UniBERT architecture in Sect. 3.3 below. In the following 

sections, we will demonstrate that, unlike adversarial training, our model does not depend on the 

type of attacks used by the adversaries. Moreover, our UniBERT is much more straightforward 

to implement compared to the regularization methods.  

By switching the cross-entropy loss with the multi-margin loss (detailed later in Sect. 

3.2A) during finetuning, UniBERT forces the neural representation of different classes to be 

more distinct and hence increases the decision margin as to be explained next. In this dissertation, 

we define decision margin as the distance between the logits and the decision boundary and 

neural representation as the activation map used by a neural net to encode a concept. In detail, 

each neuron outputs a scalar value called the activation. Collecting all activations in a layer of 

neurons results in an activation map. A neural net often has similar activation maps for closely 

related concepts; hence, we refer to the particular activation map (i.e., neural firing patterns) as 

the neural representation of a concept. In our UniBERT, the multi-margin loss not only functions 

as a distance measure to quantify the error between the network output and the desired output but 

also provides a way to increase the margins (i.e., distances) between the neural representations 

for different concepts, making the network more robust. Additionally, our UniBERT uses unitary 
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matrices for the synaptic weights to confine small perturbations to achieve an extra boost in 

robustness by preventing small noise from amplifying across the network (see Sect. 3.2B below). 

Unitarity maintains the cosine distance between two vectors, hence, constraining the injected 

perturbations. This counteracts the attacks devised by the adversaries (often in a form of a small 

change in the input sentence) and stabilizes the final prediction. 

As a brief overview for this chapter with detailed explanations to be followed, our 

scientific discoveries and contributions to the machine learning literature include: 

1. The multi-margin loss penalizes different classes from having similar neural representations, 

providing a cushion to absorb small input perturbations without changing the final prediction.  

2. When used together with the multi-margin loss, the unitary weights further boost the 

adversarial robustness by constraining the injected perturbations across the network.  

3. Our UniBERT is attack-agnostic, simple, and unique. It achieves a significant improvement 

in post-attack accuracy compared to the state-of-the-art defense models. 

E. Literature Review 

The multi-margin loss is widely deployed in support vector machines (SVM) for 

traditional machine learning [57], and it has also been shown to make image recognition more 

robust [58]–[61]. However, it is uncertain whether the same conclusion can be drawn for NLP. In 

NLP, signals are discrete words instead of pixels (with continuous values ranging from 0 to 255) 

in a given picture. Likewise, orthogonal constraints have been shown to avert adversarial attacks 

in computer vision [27], [62]–[64], but orthogonality has not been studied in BERT. Our study is 

the first time when the multi-margin loss and unitarity are used together to improve the 
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adversarial robustness in NLP systems. The improvement is quite dramatic as shown in the 

following sections. 
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3.2. Theory 

A. Multi-margin Loss Increases Robustness 

As a review, the activation value of a neuron is defined as the sum of the products 

between the inputs and the weights. The collection of activation values in a layer is called an 

activation map or activations for short, and the activations of the last neural layer are called 

logits. Furthermore, a loss function is a distance measure that quantifies the deviation between 

the neural net’s output from the desired output, and a neural net’s output may or may not be 

normalized before feeding into the loss function (we will discuss our chosen implementation 

later). Unlike most loss functions that only quantify the distance, the multi-margin loss provides 

an additional margin of safety between the logits and the decision boundary to ensure the 

network can absorb any input perturbation without changing the prediction outcome. In detail, 

the extra margin safeguards against attackers from injecting small input perturbations to move 

the logits across the decision boundary and from sabotaging the network’s prediction. The multi-

margin loss is defined as:  

     𝑚𝑢𝑙𝑡𝑖 𝑚𝑎𝑟𝑔𝑖𝑛 𝑙𝑜𝑠𝑠 ≜
1

𝑛
∑ ∑ 𝑚𝑎𝑥(𝑦𝑖,𝑗 + 𝜀 − 𝑦𝑖,𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 0)

𝑛𝑐−1
𝑗=0

𝑛−1
𝑖=0 , (14) 

where n is the batch size, nc is the number of classes, yi,correct is the logit of the neuron 

corresponding to the correct answer, yi,j is the logit for other neurons; ε is the margin parameter, 

setting a gap between the logits for different classes as discussed below. All variables are scalars. 

To provide some intuition for the multi-margin loss, we illustrate how it works in UniBERT with 

a binary sentiment analysis example in Fig. 8 below. 
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Fig. 8. Multi-margin loss for binary sentiment analysis with UniBERT. On the left, 

UniBERT receives an input sentence �̅�, transforming it with the embedding and the 12 

attention layers (abbreviated as … in the figure) to latent neural representations, �̅�1… �̅�12. 

�̅�12 passes through the classifier and the projection layers to become logits �̅� , consisting 

of y1 and y0 (scalars) in the binary classification example shown here. If y1 > y0, the 

network will predict that the sentence has a positive sentiment (class 1); otherwise, it 

predicts a negative sentiment (class 0). The multi-margin loss compares �̅�  with the 

correct answer labeled by humans (denoted by the checkmark in the figure) and penalizes 

the network for any insufficient distinction between the two logits (i.e., y1 - y0). We name 

this difference “logit dissimilarity,” δ. Additionally, we define a margin parameter ε such 

that the multi-margin loss is proportional to the lack of the desired margin when δ < ε  as 

shown in the figure by the line with a slope of -1. If the network has sufficient margin, 

the loss is zero (i.e., the flat segment on the right). During training, our UniBERT adjusts 

its weights from all the layers to minimize loss; training progression is depicted by the 

square, triangular, and circular markers on the graph. With a larger ε, the multi-margin 

loss encourages our UniBERT to have highly distinctive logits, making it more difficult 

for the attackers to move them across the decision boundary with small perturbations and 

to sabotage the prediction results.  
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The multi-margin loss is illustrated in the right panel of Fig. 8. For each data sample 

(indexed by i) in Eqn. (14), the loss is the larger of the two terms between yi,j + ε – yi,correct and 

zero, which correspond to the two linear segments of the graph in Fig. 8. The margin parameter 

(ε) determines the intercept between the two segments. Our objective is to train the network such 

that the logit for the correct class (yi,correct) exceeds the logit of the incorrect class (yi,j) by the 

margin (ε) we specify (i.e., yi,correct > yi,j + ε). If yi,correct fails to meet the target value, yi,j + ε, we 

will penalize the network with a loss equivalent to the gap to target (i.e., yi,j + ε – yi,correct). This 

corresponds to the line segment with a slope of -1 (Fig. 8, right panel). On the other hand, if 

yi,correct already exceeds our target, we set the loss to zero in Eqn. (14), and this is represented by 

the flat portion in the same graph. As shown later in Sect. 3.4D, a large ε encourages our 

UniBERT to have distinctive logits for each class and hence increases the decision margin. The 

separation of neural representations for different classes is critical to prevent the attackers from 

tampering with the prediction outcome by injecting perturbations to intentionally move logits 

across the decision boundary. The name multi-margin comes from the fact that there are multiple 

margins, one for each class. 

As for the implementation details, we decide not to use softmax between the logits and 

the multi-margin loss. The reason is that it dampens the backpropagated gradients as the logits 

deviate from zero, which slows down learning. Also, in contrast with traditional machine 

learning, in which features are designed manually, deep learning models such as our UniBERT 

learn features automatically through backpropagation. This important distinction allows our 

UniBERT to modify the neural representations in earlier layers (i.e., �̅�1… �̅�12 in Fig. 8, left) to 

accommodate a higher margin (ε) and to achieve a lower loss (i.e., the circular marker in Fig. 8, 

right). Whereas in shallow models such as the support vector machines, training stops as soon as 



 

47 

the classifier layer converges without modifying the features (e.g. �̅�12), leading to a higher loss 

(i.e., the triangular marker in the same graph). Thus, setting a larger ε is less likely to produce 

distinctive logits in traditional, shallow models. 

B. Unitarity Confines Perturbation 

In an adversarial attack, the input perturbation needs to be subtle to avoid detection. A 

unitary matrix (U) maintains the distance between the original (�̅�) and the perturbed vector (�̅�′): 

‖𝑼(�̅� − �̅�′)‖2 = [𝑼(�̅� − �̅�
′)]𝑇[𝑼(�̅� − �̅�′)] = (�̅� − �̅�′)𝑇𝑼𝑇𝑼(�̅� − �̅�′) = ‖�̅� − �̅�′‖2. (15) 

This is a corollary of the conservation law for the Euclidean norm of the input vectors as shown 

in Eqn. (2) of Sect. 1.2. In Eqn. (15), the right-hand side is the norm of the input perturbation, 

which will need to be small to be discreet. The left-hand side measures the amount of change in 

the output after the unitary transform. Consequently, unitarity guarantees that small perturbations 

remain small after the transformation. In its non-unitary counterparts, the linear neural layers 

may accidentally amplify the perturbations, in which the logits can move across the decision 

boundary and result in a classification error. Non-unitary weights may suppress the perturbations 

as well; however, our goal is to eliminate any slight chance of perturbation amplification. 

We aim to improve BERT’s robustness against adversarial attacks with the unique 

property of unitary matrices shown in Eqn. (15). More specifically, unitary constraints are 

enforced in the selected layers in our UniBERT to stabilize the injected perturbations across the 

network as we will show next. Our UniBERT combines the multi-margin loss in Eqn. (14) and 

the unitarity in Eqn. (15) to guarantee that there is not only a wide margin to deter the logits from 

crossing the decision boundary but also a stabilization mechanism to limit the effect of 
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perturbations, delivering the state-of-the-art robustness as demonstrated later in Sect. 3.4 with 

experimental data. 
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3.3. Method 

A. Network Architecture 

Our UniBERT is an enhanced BERT that uses multi-margin loss and unitarity as 

described above to increase the neural network’s prediction accuracy under adversarial attacks. 

This subsection explains the implementation details for our UniBERT neural architecture, which 

is illustrated in Fig. 9 below. Compared to the original BERT in Fig. 7, our modifications are:  

1. During finetuning, we replace the softmax and cross-entropy loss with just the multi-margin 

loss on its own (see Fig. 9, bottom). We do not modify the softmax or the cross-entropy loss 

for pretraining. The reason for this is that multi-margin loss works best for classification 

tasks; thus, it is applied during finetuning and not during pretraining, which is a masked 

language modeling task.  

2. During both pretraining and finetuning, we force certain layers to have unitary weights, and 

the selected layers are circled with dash lines in Fig. 9, top-right. The selection of the unitary 

layers will be explained below. The exact procedure to ensure their weight matrices are 

unitary is described in the following subsection (Sect. 3.3B).  

Although our current implementation has the same number of parameters (110M) as the BERT 

base, researchers have shown that it is possible to further compress the number of trainable 

parameters by half [1].  
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Fig. 9. Our unitary multi-margin BERT (UniBERT) architecture. Like BERT, 

UniBERT classifies a sentence by first converting words in a sentence vector using the 

Word, Position, and Token embeddings (top-left). It then transforms this sentence vector 

using 12 attention layers with details shown on the right of this figure. Our UniBERT is a 

variant of BERT with the following differences: First, we use the multi-margin loss 

(bottom) instead of the cross-entropy loss during the finetuning portion of the training 

process. Second, we enforce unitary constraints on the weights circled with dashed lines 
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(top-right). These enhancements increase the decision margin and resilience to input 

perturbations for stabilizing the classification outcomes under adversarial attacks. 

�̅�1… �̅�12 denotes the activations after each of the 12 unit blocks, respectively (left). 

The unitary layers are selected as follows, and Table 1 below lists all the synaptic weights 

in UniBERT with their unitarity. Firstly, as mentioned in Chapter 2 previously, only square 

matrices can be unitary in terms of a strict mathematical definition (Sect. 2.2B); thus, not all 

layers can be converted to unitary. We decide to apply unitary constraints on all the square 

weights in UniBERT to maximize the effect of the total unitarity (with one exception to be 

explained next). Secondly, we keep Wc in the classifier layer non-unitary to increase pre-attack 

accuracy even though it is also square and thus available for the unitary conversion. Wc is shown 

near the bottom of Fig. 9 and listed in Table 1. With our unitary convolutional neural net shown 

before in Sect. 2.4, we learn that in general, unitarity reduces model complexity in exchange for 

higher neural signal stability. This is the reason why with unitary constraints, pre-attack 

accuracies decrease (usually by a small amount), and post-attack accuracies increase. As a 

consequence, we decide to leave the classifier layer non-unitary for a slightly higher pre-attack 

accuracy. 

Our UniBERT is only partially unitary. It has a total of 48 unitary weights and 29 non-

unitary weights (Table 1, last two columns). Our selection of unitary layers forces unitary 

constraints on 62.3% of all weight matrices; i.e., 48 / (48 + 29). Likewise, there are nonlinear 

activation functions in the network necessary to achieve the required model complexity. The 

nonlinearities are vital to avoid condensing the transfer function to one linear transformation 

between the input and the output. While it is impossible to have a purely unitary neural net, our 
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UniBERT’s partial unitarity is sufficient to deter adversarial attacks, and surprisingly, it 

outperforms many state-of-the-art defense models in post-attack accuracies as we will show later 

in Sect. 3.4.   

Section Name Symbol 
Neural 

Module 

Matrix 

Dimension 
 Unitarity Repeat 

Embed 

Word  Ww Embedding 30522 x 768 Non-unitary 1 

Position  Wp Embedding 512 x 768 Non-unitary 1 

Token  Wt Embedding 2 x 768 Non-unitary 1 

Transform 

Query  Wq Linear 768 x 768 Unitary 12 

Key  Wk Linear 768 x 768 Unitary 12 

Value  Wv Linear 768 x 768 Unitary 12 

Dense  Wd Linear 768 x 768 Unitary 12 

Expand  We Linear 768 x 3072 Non-unitary 12 

Reduce  Wr Linear 3072 x 768 Non-unitary 12 

Classify 
Classifier  Wc Linear 768 x 768 Non-unitary 1 

Projection  Wproj Linear 768 x nc Non-unitary 1 

Table 1.  The complete list of weights used in our UniBERT and their unitarity. 

Each row in the table is a neural layer with a corresponding weight matrix. In general, 

unitarity slightly sacrifices the pre-attack prediction accuracy for a large improvement in 

the post-attack prediction accuracy. We force unitary constraints on all the square 

weights except the classifier layer (i.e., Wc), which we leave unconstrained to achieve 

higher pre-attack accuracy. Also, non-square weights are difficult to make unitary and 

therefore left as is. In the projection layer, nc is the number of classes in the classification 

task. Italic rows are the unitary weights used in UniBERT; they are non-unitary in the 

original BERT.  
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B. Unitary Constraints 

The way we convert the non-unitary weights to their closest unitary projections is by QR 

factorization, a method to decompose any matrix into unitary and non-unitary parts as explained 

below [65]: 

  = 𝑸𝑹, (16) 

where W is a non-unitary square matrix, Q is a unitary matrix, and R is an upper triangular 

matrix. We extract the signs of the diagonal elements in R and construct S:  

 𝑺 = 𝑑𝑖𝑎𝑔(𝑠𝑖𝑔𝑛(𝑹))  (17) 

Therefore, S is a diagonal matrix with ±1 on its diagonal. Lastly, we obtain the unitary weights 

(U) by:  

 𝑼 = 𝑸𝑺  (18) 

U is proven to be unitary by: 

 𝑼𝑇𝑼 = 𝑺𝑇𝑸𝑇𝑸𝑺 = 𝑺𝑇𝑺 = 𝑰  (19) 

After each backpropagation step, we use the procedure detailed in Eqns. (16)-(18) to find the 

closest unitary projection for selected weights and overwrite them with U.   

C. Datasets Characteristics 

Before we show the training and inferences, we described the key features of the datasets 

used in pretraining and finetuning to benchmark the differences between BERT and UniBERT. 

First, we describe the dataset used for pretraining—the Book Corpus (bookcorpus), an unlabeled 

dataset containing 74 million sentences from eleven thousand books [66]. We separate this 
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dataset into two subsets, one for training (95%) and one for testing (5%). The ratio of data in 

each set is arbitrary. In general, we use the majority of the data for training the neural network 

but reserve a small portion for validating the accuracy of the trained network. This procedure 

ensures that the testing accuracy is measured on data that the network has not seen in training for 

a more accurate estimation of how the network will perform in the real world.  

Then for finetuning, we selected three different datasets for a comprehensive evaluation 

covering multilabel categorization, language inference, and sentiment analysis; respectively, they 

are listed as follows: 

1. AG’s News (ag_news) is a dataset for news classification, and the goal is to classify the 

articles into four categories including world news, business news, science & technology, and 

sports [67].  

2. Stanford Natural Language Inference Corpus (snli) aims to train machine learning systems 

that can identify the relationship between a pair of sentences [68]. There are three possible 

classification outcomes: entailment, contradiction, or neutral.  

3. Yelp Reviews Polarity (yelp) is a text sentiment analysis dataset constructed by collecting 

reviews from Yelp.com [67]. The label is either positive or negative.   

We highlight the key features of the dataset statistics in Table 2, including the number of 

classes for the human-generated labels, size of the training data set (training set), size of the 

testing dataset (test set), and average sample length. and all datasets used in our study follow a 

uniform distribution in the labels. Sentences are forced to all lower case if the dataset is cased, 

and all datasets are in English. The datasets are accessible for free from the Hugging Face 

repository [69]. 
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Dataset 
Number of 

Classes 

Training 

Sample Size 

Testing 

Sample Size  

Average Length 

(Words) 

bookcorpus N/A 70,000,000 4,000,000 13 

ag_news 4 120,000 7,600 39 

snli 3 550,000 10,000 20 

yelp 2 560,000 38,000 136 

Table 2.  Key features of the dataset statistics for bookcorpus, ag_news, snli, and 

yelp. bookcorpus is an unsupervised dataset used to train BERT and UniBERT as a mask 

language model during pretraining. ag_news is a news classification dataset with four 

classes (world news, business news, science & technology, and sports). snli is a natural 

language inferencing dataset that asks the model to predict the relationships between two 

sentences into three categories: entailment, contradiction, or neutral. yelp is a binary 

sentiment analysis dataset that categorizes user-generated paragraphs into positive 

reviews or negative reviews.  For bookcorpus, each sentence counts as a sample while the 

other three datasets can have multiple sentences per sample, and the average length 

column reports the average number of words in a sample. N/A means not applicable. 

D. Training Details 

Next, we document our training procedure for the proposed UniBERT. We mentioned 

earlier in the introduction (Sect. 3.1A) that training of BERT-based models has two phases: pre-

training and finetuning. For review, pre-training teaches our UniBERT the basic mechanics of 

the language while finetuning provides on-the-job training for performing a specific task. Each 

phase requires a slightly different set of hyperparameters because of the differences in the task 

objectives (masked language modeling vs. classification) and the training datasets. 
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1. Pre-training: We use a fixed language mask with a masking probability of 0.15 and pretrain 

the UniBERT model from scratch for five epochs with the Adam algorithm on a linear 

schedule, in which the learning rate will start with 0 at the beginning, linearly rise to 0.0001 

(at step 7000), then linearly decay to zero (at the end of the training). Adam is a training 

algorithm with adaptive moment estimation that alleviates the problem of local minimum by 

adjusting the momentum of the weight updates [70]. The weight decay reduces the 

magnitude of the synaptic weights to penalize against extravagant model complexity for 

better generalization performance. The batch size is 16; the sequence length is 512. These 

sizes are limited by the memory size of our graphics card, where we run our simulation. 

Overall, the pretraining procedure takes 5 epochs to converge or equivalently 700,000 steps 

given our batch size and dataset size. At each step, the unitary weights are first updated using 

regular gradient descent and then converted to the closet unitary weight using the QR 

factorization technique explained earlier in Sect. 3.3B.  

2. Finetuning: We finetune the pretrained models on the three classification datasets: ag_news, 

snli, and yelp. Similarly, we use QR factorization (Sect. 3.3B) to ensure unitarity on selected 

weights. Unlike pretraining, the multi-margin loss is used instead with the margin parameter 

(ε) set to 100 to balance the pre-attack and post-attack prediction accuracies. See Sect. 3.3F 

for details on how to select the value for the margin parameter (ε). We conduct four 

independent finetuning runs for scientific rigor; each has a new random initialization on the 

classifier layer. Finetuning takes five epochs with a learning rate of 0.00005. The batch size 

is 160 with a sequence length of 128; these settings are limited by the memory of the 

graphics card used in our simulation. 
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The training procedures for the other baseline and defense models are left unchanged as 

described in their original publication. They use neither the unitary weights nor the multi-margin 

loss during any portion of the training process. We summarize the hyperparameters used for 

UniBERT training in Table 3. 

Category Name Pretraining  Finetuning 

Model 

Parameters 

Type Mask Language Model Classification Model 

Loss Cross-entropy Multi-margin 

Margin Parameter N/A 100 

Masking Ratio 0.15 N/A 

Sequence Length 512 128 

Unitary Constraint Yes Yes 

Training Setup 

Dataset bookcorpus ag_news, snli, yelp 

Batch Size  16 128 

Epoch 5 5 

Backpropagation 

Algorithm 

Optimizer  Adam Adam 

Scheduler Linear  Linear 

Learning rate  0.0001 0.00005 

Beta 1  0.9 0.9 

Beta 2 0.999 0.999 

Warmup Steps 7000 500 

Weight Decay 0.01 0.01 

Table 3.  Training hyperparameter settings for our UniBERT. We first pretrain 

UniBERT and then finetune it with different datasets and loss functions shown in the 

table. These hyperparameters are the best-known methods reported in the literature 

except for the loss, margin, and unitary constraint, which are unique to UniBERT. In 

detail, the differences to train our UniBERT compared to a regular BERT are: First, 

UniBERT enforces unitary constraints on the selected layers listed in Table 1 for both 

pretraining and finetuning. Second, it uses the multi-margin loss with the margin 

parameter (ε) set to 100 for finetuning. The cross-entropy loss is used for pretraining. The 

learning rate starts with zero, linearly ramps up to the target learning rate at the 
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prescribed warmup steps, and linearly ramps down to zeros. The sequence length reports 

the maximum number of words for each input. N/A means not applicable. 

E. Adversarial Attacks 

We select three distinct types of attacks for a comprehensive adversarial robustness 

evaluation: 

1. Textbugger randomly introduces character insertion, deletion, swap, and substitution to 

modify BERT’s prediction [53]. It is considered a typographic attack. 

2. Textfooler finds candidate adversarial samples by swapping important words with their 

synonym; synonyms are found by searching through the neighborhood in the word 

embedding space using the counter-fitted word embedding [50], [71]. Similar to BERT’s 

word embedding described previously in Sect. 3.1A, the counter-fitted word embeddings are 

obtained by using a recurrent neural network for converting words to vectors in the 

embedding space, where semantics are represented geometrically. 

3. We add the Probability Weighted Word Saliency (or PWWS) attack to our evaluation 

portfolio [51]. It swaps words in a sentence with their synonyms defined in the human-

labeled WordNet [72] database. In contrast to Textfooler, which finds synonyms using a 

distance metric with the word embeddings learned automatically by a neural net, PWWS 

relies on a thesaurus constructed explicitly by human workers. 

Textbugger and Textfooler may not preserve a sentence’s meaning; therefore, to create a 

valid replacement sentence to commence the attack, it needs to check for its semantic similarity 

using the Universal Sentence Encoder [73], which measures the cosine distance between the 
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original and the perturbed sentences. We use the default threshold settings in the TextAttack [74] 

framework to reject any adversarial example that changes the meaning of the sentence. In 

contrast, because PWWS uses the human-labeled WordNet synonym database to generate high 

fidelity samples as described before; hence, we do not perform additional safeguarding on the 

generated samples.  

A neural network is a machine learning model, and we refer to it as a model for short. 

There are two ways to carry out adversarial attacks on a model: targeted attacks vs. static attacks 

[54]. Targeted attacks generate a new set of adversarial samples for each model while static 

attacks use the same set of adversarial samples to evaluate all neural network architectures (e.g., 

BERT, UniBERT, InfoBERT…etc.). We use the tougher targeted attacks to evaluate the models’ 

robustness. In detail, we randomly select 1000 data samples from the test set and allow the attack 

algorithm to make an unlimited number of attempts to the model until it can no longer generate 

new permutations that meet the similarity criteria or has exhausted all synonyms. The number of 

attempts the attacker is allowed to make is called the query budget. In this dissertation, the post-

attack accuracy is defined as the ratio of the samples (out of 1000) that survive the series of 

attacks with an unlimited query budget and still produce the correct classification results, 

measuring the classification accuracy of the neural net after the attack. Our evaluation 

methodology is the toughest in the literature, reporting the lowest possible post-attack accuracies. 

The pre-attack accuracy is measured by computing the ratio of the correctly classified sample 

out of the 1000 test samples without any attack. 

F. Selecting The Margin Parameter 

Furthermore, there is a new hyperparameter in UniBERT: the margin parameter (ε) for 

the multi-margin loss in Eqn. (14). We find the best margin parameter, ε, experimentally by 
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sweeping it over five decades between 0.01 and 1000 to simultaneously maximize both the pre-

attack and post-attack prediction accuracies of the neural net. We evaluate the tradeoff between 

pre-attack and post-attack accuracies for the yelp sentiment analysis in Fig. 10, in which our 

UniBERT is trained to classify the user text into positive or negative reviews. As the margin 

increases, the post-attack accuracy quickly improves (as shown by the dashed trendline in the 

figure) while the pre-attack accuracy reduced slightly with ε (as illustrated by the dotted 

trendline). The best post-attack accuracy happens when ε is 100; therefore, we use this setting for 

the rest of this dissertation. Depending on the user’s tolerance for pre-attack accuracy drop in 

their applications, they can select an appropriate margin accordingly.  

 

Fig. 10. Classification accuracy vs. margin parameter for the multi-margin loss in 

UniBERT. To find the most optimal setting for the margin parameter (ε), we use the yelp 

sentiment analysis dataset to evaluate the pre-attack accuracy of UniBERT in making a 

correct classification, contrasting it with the post-attack accuracy under various 

adversarial attacks (namely, Textfooler, Textbugger, and PWWS). As shown in the 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100 1000

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 f
o
r 

U
n
iB

E
R

T

Margin Parameter ( )

Pre-attack Accuracy Textbugger Post-attack Accuracy

Textfooler Post-attack Accuracy PWWS Post-attack Accuracy



 

61 

figure, a higher ε reduces the pre-attack accuracy (dotted line) while increasing the post-

attack accuracy (dashed line) for UniBERT. From this data, we select ε = 100 for the rest 

of the experiments in this treatise because, with this setting, the UniBERT delivers a large 

improvement in the post-attack accuracy with a negligible decline in the pre-attack 

accuracy. 
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3.4. Results & Discussion 

A. Our UniBERT vs. Baseline Models 

So far, we have only introduced BERT and UniBERT, but there are many versions of 

BERT that researchers have developed for various purposes. These neural network models are 

not specifically designed to defend against adversarial attacks; hence, we call them the baseline 

models. The goal is to validate the need for a novel defense technique because there would be no 

reason to modify the existing architectures if the baseline models were already resilient to attacks. 

We compare our proposed UniBERT against four other versions of BERT, which are listed here: 

1. Bidirectional Encoder Representations from Transformers (BERT) [41]—This is the 

original architecture that our work is based on.  

2. A Robustly Optimized BERT Pretraining Approach (RoBERTa) [75]—This is BERT with 

enhanced pretraining to improve its accuracy. We use this model to verify that a better 

pretraining procedure alone cannot deter adversarial attacks. 

3. A Lite BERT (ALBERT) [76]—This model reduces the number of parameters up to 18 

times by using factorized word embedding and parameter sharing. We select this model to 

show that model complexity reduction is not enough to prevent adversarial attacks. 

4. A distilled version of BERT (DistilBERT) [77]—This model reduces the number of 

parameters by 40% by using knowledge distillation. Same as with ALBERT, we want to 

show that reducing the model complexity via transfer learning to a smaller model will not 

improve robustness. 

To conduct a fair comparison for the classification accuracy, we download the pretrained 

weights for the four baseline models above from the Hugging Face repository [69] and finetune 
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them further using the procedure (see Sect. 3.3D, finetuning) for our selected datasets. Namely, 

the classification datasets include news categorization (ag_news), natural language inference 

(snli), and sentiment analysis (yelp), which we have documented their characteristics in Sect. 

3.3C above. After finetuning, we first evaluate their pre-attack classification accuracies and then 

measure their post-attack classification accuracies after performing adversarial attacks on the 

models. The three attack recipes are the PWWS, Textbugger, and Textfooler adversarial attacks 

on the textual input, which cover a wide range of typographical and synonym-based NLP attacks. 

Details of the attack recipes are discussed in Sect. 3.3E before. 

The results are given in Table 4, which compares the pre-attack and the post-attack 

classification accuracy of our proposed UniBERT with the baseline models (i.e., BERT, 

RoBERTa, ALBERT, and DistilBERT). UniBERT delivers double-digit improvements across all 

combinations of NLP tasks and attacks over the baseline models. In general, RoBERTa is 

slightly better than BERT in post-attack accuracy because the extensive pretraining procedure in 

RoBERTa creates a better language model. On the other hand, both parameter reduction models 

(ALBERT and DistilBERT) have worse robustness compared to BERT. We conjecture that the 

lack of model complexity prohibits them to generalize to out-of-distribution samples which 

happens due to their inferior language models.  
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Task  Model 
Original 

Accuracy 

Post-attack Accuracy 

PWWS Textbugger Textfooler 

ag_news 

BERT 94.6 32.4 35.8 13.4 

RoBERTa 95.1 40.8 48.3 16.7 

ALBERT 92.5 24.1 17.3 8.7 

DistilBERT 93.6 27.9 32.6 10.6 

UniBERT 92.3 85.4 83.1 82.3 

snli 

BERT 90.1 1.5 4.0 3.8 

RoBERTa 91.2 1.3 5.0 4.0 

ALBERT 87.6 0.2 1.5 1.8 

DistilBERT 88.2 0.8 2.5 2.9 

UniBERT 86.6 21.5 18.7 17.7 

yelp 

BERT 95.4 3.9 15.9 2.9 

RoBERTa 96.6 8.4 24.6 8.4 

ALBERT 94.7 1.3 5.9 1.4 

DistilBERT 95.9 4.9 17.4 2.6 

UniBERT 93.3 75.3 79.6 75.9 

Table 4.  Classification accuracies of our UniBERT vs. other baseline BERT models 

under attacks. We study the typographical (PWWS), typographical & synonym-based 

(Textbugger), and synonym-based (Textfooler) attacks on news categorization 

(ag_news), natural language inference (snli), and sentiment analysis (yelp) for a 

comprehensive evaluation on text classification robustness. In the table, we compare the 

post-attack accuracies of our UniBERT against four other BERT variants (namely, 

BERT, RoBERTa, ALBERT, and DistilBERT), showing that our UniBERT outperforms 

the baseline models by a large margin. Accuracy is reported as a percentage (out of 100) 

to measure the ratio of correct prediction. The best accuracies are bolded.  

The unitary constraint also reduces model complexity. As a review of Sect. 2.2A earlier, 

the number of parameters (i.e., the degree of freedom) is about half of a fully connected layer 

when we count a real, adjustable scalar number as one parameter. Specifically, the number of Lie 
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parameters is n (n – 1) / 2 for the orthogonal group of degree n, matching the number of Lie 

algebras that the group has (see Fig. 2). Consequently, we only need half as many real scalars to 

specify a neural layer under the unitary constraint. Because of the reduction in model complexity, 

UniBERT’s original accuracy is closer to the reduced-size models (e.g., ALBERT and 

DistilBERT) as supposed to the full-size models (e.g., BERT). UniBERT’s strong suit is at post-

attack accuracies, at which it surpasses all models with large margins.  

Neither the RoBERTa’s enhanced pretraining nor ALBERT’s or DistilBERT’s model 

reduction results in significant improvements in the post-attack accuracy. With the data listed in 

Table 5, we confirm that adversarial attacks cannot be prevented with the baseline models alone. 

To counter adversarial attacks, further interventions are needed. As an example of such 

intervention, in UniBERT, we combine a wide decision margin with confined perturbations by 

using the multi-margin loss with unitary weights to deliver superior adversarial robustness. 

B. Our UniBERT vs. Defense Models 

We compare UniBERT’s performance with the state-of-the-art defense techniques from 

the adversarial training and regularization categories outlined previously in Sect. 3.1C of the 

introduction. We call these neural networks designed with adversarial robustness in mind the 

“defense models.” Namely, they are: 

1. Adversarial and Mixup Data Augmentation (AMDA-Tmix & AMDA-Smix) [54]—In this 

technique, adversarial examples are generated by assuming a specific attack recipe. 

Furthermore, additional training data are created by linearly interpolating the neural 

representation and the label pairs. They designate their model with the “Tmix” and “Smix” 

postfixes to denote the location where the representation is taken from in BERT.  
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2. Mixup Regularized Adversarial Training (MRAT & MRAT+) [55]—This technique uses all 

the steps detailed in AMDA above. In addition, it adds a regularization term in the loss 

function (i.e., a penalty for any data point that is too different from the original), ensuring 

that the augmented data will follow the original data distribution. They claim that this term 

will prevent the augmented dataset from degrading the pre-attack accuracy. Like AMDA, the 

key ingredient for improving robustness still comes from adversarial training with data 

augmentation. The MRAT+ variant adds data augmentation to the original data. For example, 

it may swap some words in the sentence with their synonyms to generate new samples. 

3. Information Bottleneck on BERT (InfoBERT) [56]—This technique reduces model 

complexity by using an information bottleneck. The bottleneck is implemented as two 

regularization terms in the loss function: one is to maximize the prediction accuracy while 

minimizing the mutual information between the input and the internal representation. The 

general concept of a loss function is explained in Sect. 3.2A; please refer to the InfoBERT 

paper for the complete mathematical description as there are many intricate details [56]. 

Another is to identify word embeddings that are less affected by the input perturbation and 

force the neural net to utilize these words more in its decision process. InfoBERT is 

computationally expensive due to the need to calculate mutual information. It also requires 

more hyperparameters, which makes model optimization cumbersome.  

There are two ways to measure the post-attack classification accuracy: one is with 

targeted attacks; another is with static attacks as explained in Sect. 3.3E. Thus, we need to make 

sure that we use the same evaluation method to compare the adversarial robustness of different 

models. The authors of AMDA and MRAT have published the performance of their models 

using targeted attacks, and their data are reproduced in the table below for comparison. The 
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creator of InfoBERT uses static attacks in their paper; thus, we rerun their simulations with the 

targeted attacks for a fair comparison. The adversarial performance of our UniBERT is always 

evaluated with the targeted attacks. 

Task  Type Model 
Original 

Accuracy 

Post-attack Accuracy 

PWWS Textbugger Textfooler 

ag_news 

Adversarial 

Training [54] 

AMDA-Tmix 94.5 69.7 N/R 56.3 

AMDA-Smix 94.3 70.0 N/R 51.3 

Regularization InfoBERT 94.4 35.5 46.0 12.9 

Unitarity UniBERT 92.3 85.4 83.1 82.3 

snli 

Adversarial 

Training [55] 

MRAT 89.5 N/R 9.9 10.5 

MRAT+ 88.7 N/R 12.2 12.4 

Regularization InfoBERT 90.9 2.8 5.5 5.4 

Unitarity UniBERT 86.6 21.5 18.7 17.7 

yelp 
Regularization InfoBERT 97.4 3.9 21.0 2.1 

Unitarity UniBERT 93.3 75.3 79.6 75.9 

Table 5.  Classification accuracies of our UniBERT vs. state-of-the-art defense 

models. AMDA-Tmix, AMDA-Smix, MRAT, and MRAT+ use adversarial training with 

mix-up data augmentation to deliver the previous state-of-the-art performance, and their 

data are reproduced here from [47] and [67], respectively. InfoBERT uses information 

bottleneck as a regularizer to slightly improve the post-attack accuracies. Out of all the 

defense techniques, UniBERT gives much higher post-attack accuracies over all attack 

recipes (PWWS, Textbugger, Textfooler). Accuracy is reported as a percentage (out of 

100) to measure the ratio of correct prediction, and N/R indicates not reported in the 

original publication. The best accuracies are bolded. 

 Our UniBERT provides significant robustness enhancements compared to the other state-

of-the-art defense methods, boosting the post-attack accuracy by at least 15.4% across all 

datasets and attack recipes. Under the targeted attacks, regularization-based models such as 
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InfoBERT only deliver marginal improvements over the classic BERT model. InfoBERT’s 

robustness is slightly higher than RoBERTa’s in natural language inference (snli), but it’s worse 

in news categorization (ag_news) and sentiment analysis (yelp). On the other hand, AMDA, 

MRAT, and UniBERT deliver superior adversarial performance over InfoBERT. Furthermore, 

UniBERT is more robust than adversarial training, providing double-digit accuracy boosts (up to 

31%) compared to AMDA in news categorization and single-digit improvements (up to 8.8%) 

compared to MRAT in natural language inference. This is because there is a wide variety of 

perturbations an attack recipe can produce for a given sentence; although adversarial training 

captures a decent portion of these variations with augmented data, it is impossible to be 

comprehensive and cover the entire search space. In practice, the designer of the neural network 

will not know the exact sentence that the user will enter. This is the reason that we separate the 

data into two mutually exclusive portions: the training set and the test set. The training set is used 

for training the neural net, and the post-attack accuracies are measured on the attacked test set for 

a realistic performance evaluation.  

Our model has a slight degradation in the original accuracy but is still comparable to that 

of the adversarial training methods (AMDA-Smix and MRAT+). The key weakness of 

adversarial training is that the designers need to anticipate the types of attacks and create a 

representative adversarial training sample set. It is not always practical to obtain complete 

coverage of all attacks and may require significant training time. The advantage of UniBERT is 

that it does not assume which attack the hacker will use. Additionally, the robustness 

enhancement is generally consistent across various attack recipes (i.e., PWWS, Textbugger, and 

Textfooler) as shown in the post-attack accuracy columns in Table 5. Other defense models’ 

performances vary greatly with the attack recipes as shown in the table.  
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C. Ablation Study 

To show the contribution of the multi-margin loss and the unitary weights separately, we 

perform an ablation study for UniBERT on the yelp task. Table 6 reports the performance of the 

following four model trims:  

1. BERT is the baseline with no modification. 

2. BERT_unitarity is BERT with the unitary constraints alone. 

3. BERT_multi_margin is BERT with the multi-margin loss instead of the cross-entropy loss 

without any unitary constraint. 

4. UniBERT has both the unitary weights and the multi-margin loss replacement. 

We observe that BERT_unitarity’s post-attack accuracies are not significantly different 

from BERT (Table 6, first two rows), confirming our hypothesis that unitary weights must be 

used together with a large margin model. BERT_multi_margin delivers a significant 

improvement in the post-attack accuracy; however, it also reduces the original accuracy. By 

adding the unitary constraints on top of BERT_multi_margin, UniBERT raises both the pre-

attack and post-attack accuracies considerably (Table 6, last row).  

Task  Model 
Original 

Accuracy 

Post-attack Accuracy 

PWWS Textbugger Textfooler 

yelp 

BERT 95.4 3.9 15.9 2.9 

BERT_unitarity  95.9 3.1 14.1 1.8 

BERT_multi_margin 82.9 63.0 63.2 54.8 

UniBERT 93.3 75.3 79.6 75.9 

Table 6.  Ablation study to understand the contribution of each component. BERT is 

the baseline model. BERT_unitarity adds unitary constraints to BERT without the multi-

margin loss. BERT_multi_margin replaces the loss to multi-margin without placing any 
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unitary constraints. This data shows that we need to use the multi-margin loss together 

with unitarity to achieve the best post-attack accuracies in UniBERT. The multi-margin 

loss is used for increasing the decision margin while unitarity is for stabilizing 

perturbations. Accuracy is reported as a percentage (out of 100) to measure the ratio of 

correct prediction. The best accuracies are bolded. 

With this ablation study, we conclude that it is insufficient to have unitarity alone; the 

multi-margin loss and unitarity need to be used together to achieve the best result. The reason is 

the following: In the case of adversarial attacks with infinite query budgets, the attackers are free 

to try as many permutations as possible until they exhausted all combinations. A query budget is 

defined as the number of attempts the attacker is allowed to make before giving up. Because the 

post-attack accuracies reported in this dissertation are measured with attacks with infinite query 

budgets, the attacker has a large search space to find one adversarial example that changes the 

prediction outcome, and it only needs one example for the attack to count as successful. Besides, 

the embeddings for synonyms are more likely to be similar but their proximity in the vector 

space is not guaranteed since the model (such as UniBERT) learns the embeddings automatically 

through backpropagation during pretraining. Hence, because both synonym swaps and typos 

have a small chance of producing large perturbations in the sentence embedding, a large 

perturbation will occur with a high probability given enough samples.  

In short, attacks with unlimited budgets can create large perturbations that cross the 

decision boundary; hence, the networks must use the multi-margin loss to create sufficient 

decision margins to absorb such perturbations (as shown in Table 6, BERT_multi_margin). 

Albeit unitarity does not suppress the perturbations, it at least eliminates the possibility of 
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accidentally amplifying them. Its norm preserving property is proven earlier in Eqn. (15). With 

an unlimited query budget, large perturbations are bound to happen; therefore, unitarity alone 

will not prevent the logits to cross the decision boundary if the decision margin were too small. 

Unitarity is only helpful when used in conjunction with the large decision margin created by the 

multi-margin loss; thus, we set ε to 100 in our experiments. Contrarily, non-unitary networks 

may amplify perturbations, resulting in misclassification; thus, they have lower post-attack 

accuracies (see Table 6, BERT_multi_margin). 

D. Effect of the Multi-margin Loss 

To confirm that the multi-margin loss widens the decision margin, we study the logits in 

our UniBERT for 950 correctly labeled data samples with the yelp binary classification task, 

compared with the ones in BERT. Logits are the activations of the last neural layer in the neural 

net as defined earlier in Sect. 3.1A. More precisely, for each data sample, we measure the logits’ 

shortest distance to the decision boundary in the vector space. Samples with the wrong prediction 

outcome are ignored because the attack algorithms skip any misclassified sentences, so they will 

never be attacked.  

Model Unitary Loss Average Decision Margin (a.u.) 

BERT No Cross-entropy   6.1 ± 1.1 

UniBERT Yes Multi-margin 72.4 ± 2.1 

Table 7.  Average distance to the decision boundary for the logits. We define decision 

margin as the average distance between the logits to the decision boundary for correct 

samples. The number after the ± sign is the standard deviation. The UniBERT increases 

the decision margin by widening the gap between the neural representations of different 

classes while keeping intra-class spread (i.e., the standard deviation) small, encouraging 

distinct representations for each class. 
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We report the average distance measured in all 950 samples in Table 7, and we name the 

average distance to the decision boundary the decision margin. In comparing the decision 

margins between different models, it is important to evaluate not only the mean but also the 

standard deviation of the decision margin to consider the simple scaling of the logits. 

UniBERT’s logits are much further away from the decision boundary compared to BERT’s (71.5 

vs. 5.8) as shown in Table 7. This 12X increase is not the result of a simple scaling of the logits 

because the standard deviation stays roughly the same (2.4 vs. 1.4); thus, they are statistically 

well separated in UniBERT compared to BERT. With the yelp dataset, our model is asked to 

categorize the input text into a positive review or a negative review; hence, the dataset has two 

classes. Another way to interpret this data is that UniBERT increases the inter-class distance 

between the neural distributions for different classes while deterring the intra-class spread within 

the same class. 

E. Propagation of Perturbation 

The most important benefit of the unitary weights is that they regulate the magnitude of a 

perturbation throughout the network as proven mathematically in Eqn. (15); nevertheless, a 

completely unitary neural network is impossible because non-square weights and nonlinearities 

are needed for creating the required model complexity to solve complex problems as discussed in 

Sect. 3.3A previously. In our last experiment as follows, we demonstrate that, even with 

imperfect unitarity, our UniBERT can still stabilize the perturbations, preventing them from 

being scaled arbitrarily by the synaptic weights.  

To quantify the effect of a perturbation, we use a mathematical concept called cosine 

similarity. Cosine similarity measures the alignment of two vectors, which is defined as: 
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 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≜
�̅� • �̅�

‖�̅�‖2‖�̅�‖2
= cos 𝜃, (20) 

where �̅� and �̅� are two vectors in the same vector space, • is the vector dot product, and θ is the 

angle between �̅� and �̅�. Cosine similarity ranges from -1 to 1, inclusive. When the two vectors 

overlap completely, the cosine similarity is the highest, signaling that the two vectors are 

identical. If they point in opposite directions, the cosine similarity is -1. In the context of word 

embeddings, researchers often use it to measure how close two words are in meaning by using 

the cosine similarity between the two corresponding word vectors (i.e., the vectors that encode 

the words).  

 

Fig. 11. Cosine similarity between the original activations and the perturbed 

activations under attack. We measure the cosine similarity between the activations of 

the original sentence and the activations of the perturbed sentence in UniBERT at the 

output of each attention layer (i.e., �̅�1… �̅�12 in Fig. 9) indexed from 1 to 12 across the 

neural network (dotted line). The same is done for BERT (dashed line). As defined in 
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Eqn. (20), cosine similarity (∈ℝ∩[-1,1]) is a distance measure for quantifying how well 

two vectors align with each other in a vector space with one indicating that the two 

vectors are identical. For UniBERT, the representations become more alike in deeper 

layers; on the contrary, the similarity fluctuates in BERT. A higher cosine similarity 

score means that the network is capable of restraining perturbations closer to the original 

representation; consequently, higher post-attack accuracies (see the text added in the 

figure). We perform statistical analysis on 1000 randomly chosen sentences; the error 

bars denote standard deviation. 

Likewise, we use cosine similarity to quantify how much the activations deviate from 

their original values when the network is under attack. If the network is less susceptible to the 

input perturbations injected by the attacker, the attacked activations will be similar to its original, 

yielding a high cosine similarity. To visualize the neural network model’s susceptibility to 

injected perturbation, we measure the cosine similarity between the perturbed activations and the 

original activations across the neural net and plot the results in Fig. 11 above. In particular, we 

randomly select 1000 sentences from the ag_news dataset, produce perturbed sentences using the 

Textfooler attack recipe, and record the activations after each of the 12 unit blocks in UniBERT 

(see Fig. 9 for the network architecture). We perform the same steps for BERT and compare the 

two results.  

As shown by the dotted line in Fig. 11, BERT’s cosine similarity fluctuates wildly across 

the different layers of the networks. In particular, it dips to the lowest value at layer 11 with a 

mean (μ) of 0.77 and a standard deviation (σ) of 0.14. In a normal distribution, 16% of the 

samples reside below one standard deviation from the mean (i.e., μ – σ); likewise, 34% of the 
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samples fall between the mean (μ) and the first standard deviation (μ – σ). The activations at 

layer 11 deviate from their original values significantly when BERT is under attack, and the 

cosine similarity quantifies this deviation: 16% of the 1000 samples results in a cosine similarity 

score of less than 0.63 (i.e., μ – σ, or 0.77 – 0.14), and 34% of them are between 0.63 and 0.77. 

In short, when BERT is under attack, a significant portion of the sentences have activations that 

are a great deal different from their original values. On the other hand, our UniBERT fixes this 

problem by improving the similarity between the original and attacked activations (Fig. 11). 

This result is interesting because only 62.3% of the weights in UniBERT are unitary and 

there are many nonlinearities in the network (see Sect. 3.3A for architectural details). We argue 

that the success of UniBERT in stabilizing the perturbation comes from the unitarity added in the 

attention layers, which are repeated 12 times in the network. The attention mechanism is 

achieved primarily with the Key, Query, Value, and Dense modules in Fig. 9; the weights in 

these modules are all unitary in UniBERT as shown in Table 1. Although the decision processes 

in a neural net are generally non-interpretable, with the data in Fig. 11, we conclude that the 

novel unitary attention mechanism in our UniBERT encourages the network to make similar 

decisions even under adversarial attacks as shown with the rising cosine similarity of the 

activations shown in the figure for UniBERT (Fig. 11, solid line).  

It is difficult to exactly predict the post-attack accuracies from the cosine similarity 

between activations, but the two quantities are positively correlated. A higher cosine similarity 

means that the activations under attack are similar to the original ones; therefore, the network is 

more likely to achieve the pre-attack accuracies as if there is no attack because the logits are less 

likely to cross the decision boundary. For reference, we insert the pre-attack and post-attack 

accuracies in Fig. 11. UniBERT has higher cosine similarity compared to BERT in layers that 
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are immediately proceeding to the final classifier (i.e., layers 8-12 in Fig. 11). The resilience to 

perturbation is especially important later in the network where decisions are made by comparing 

the final activations (logits) to the decision boundary, and we observe that UniBERT can deliver 

a superior post-attack accuracy (82.3%) compared to BERT’s post-attack accuracy (13.4%) by 

keeping its activations closer to their original values before the attacks. 
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3.5. Conclusion 

In this chapter, we present an enhanced neural architecture named UniBERT for robust 

natural language processing. Our UniBERT defends against adversarial attacks, in which the 

adversaries attempt to slightly modify the input sentences to disrupt the prediction results in deep 

neural nets.  It is a variant of BERT with improvements including replacing the cross-entropy 

loss with the multi-margin loss during finetuning to increase the decision margin and forcing 

unitary constraints on the attention layer to restrain the perturbations injected during an attack. 

With UniBERT, unitary weights with multi-margin loss are shown to be an effective defense 

technique against both typographical and synonym-based adversarial attacks, boosting the post-

attack classification accuracy by more than 15.4% compared to the state-of-the-art defense 

mechanisms across all datasets and attack recipes (Sect. 3.4B).  

In addition, we study the contributions from multi-margin loss and unitarity in UniBERT 

individually, discovering that unitarity has to be used together with the multi-margin loss to be 

effective (Sect. 3.4C). Because we allow an unlimited number of attempts until the attacker has 

exhausted the search space, some perturbations will be large in our experiments. Thus,  the 

multi-margin loss needs to first create a large decision margin (Sect. 3.4D) capable of deterring 

most logits from crossing the decision boundary before the effect of unitarity in stopping 

accidental amplification of perturbations can be seen. Also, unitarity stabilizes perturbations by 

keeping the activations close to their original values across the network (Sect. 3.3E). Orthogonal 

to the state-of-the-art defense methods (e.g., adversarial training or regularization), our 

UniBERT is straightforward to implement and works well for a wide range of applications 

including categorization, natural language inferencing, and sentiment analysis. Our contribution 
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will empower practitioners to build efficient, robust, and safe NLP pipelines for critical 

applications.  
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Chapter 4 — Quantum Unitary Neural Nets 

A primer for the next technology curve. 
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4.1. Introduction 

A. The Quantum Transition 

Semiconductor innovations enabled our computational capability to scale exponentially 

for many decades [8]. Shrinking the physical dimensions of transistors and interconnects is vital 

for the technology industry because we can have cheaper, faster, and more powerful chips with 

smaller feature sizes. Scaling in the nanometer regime is an intricate dance choreographing 

lithography, leakage, reliability, and yield. Despite our past success, the introduction of newer 

technology nodes has slowed down in recent years due to the difficulties in manufacturing 

nanometer-sized transistors uniformly at scale [78]–[80]. Thus, our industry needs a disruptive 

hardware technology to establish further scaling beyond the complementary metal-oxide-

semiconductor (CMOS) devices.  

Quantum computing is a promising candidate because the amount of information that a 

quantum computer can compute at a given instance is exponential to the number of quantum bits 

(qubits) regardless of the devices’ physical sizes. There are many variants of quantum computers, 

and the one we will study here is the quantum circuit model [81]. It is a non-dissipative system 

that uses quantum gates to process a massive amount of information in parallel. A quantum 

computer is a linear system whose dynamics are governed by the time-dependent Schrödinger 

equation: 

 𝑖ℏ
𝑑

𝑑𝑡
|𝛹(𝑡)⟩ = �̂�|𝛹(𝑡)⟩, (21) 

where �̂� is the Hamiltonian operator. Here we assume �̂� to be time-independent in our system. 

The solution of the Schrödinger equation describes how the system propagates in time, given the 

initial state |𝛹(𝑡)⟩ at t = 0:  
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 |𝛹(𝑡)⟩ = 𝑒−𝑖�̂�𝑡/ℏ|𝛹(0)⟩ = �̂�|𝛹(0)⟩. (22)  

We name �̂� the time-evolution operator, which is a unitary matrix. 

A quantum neural network (QNN) is a neural net implemented in a quantum computer to 

leverage the benefit of the exponential number of states for a potential computational speedup 

via parallel computation.  In a QNN, we encode the neurons’ activations with the quantum states 

and implement synaptic weights with quantum gates. These quantum gates are unitary 

transforms that define the time-evolution operator �̂� in Eqn. (22); we design them intentionally 

to bring the system from an initial state to the desired final state. The quantum computer we 

study herein is a linear system because it follows the Schrödinger equation, which supports the 

superposition principle of wavefunctions. We will utilize this linear, non-dissipative, and unitary 

quantum computer as a subcomponent of a hybrid QNN. The state-of-the-art QNN is still very 

limited in its functionality because nonlinearity needs to be implemented using ancillary qubits 

or measurements. Applications for QNN today are limited to image recognition of greyscale 

images with small image resolutions. 

B. The Problem of Coherence Time 

Unlike classical transistors, qubits interact with one another. This interaction is called 

entanglement, and qubits need to stay coherent to achieve entanglement [82], [83]. There are two 

ways to quantify coherence [84]: the first one is called single qubit relaxation time (T1). It 

measures how long a qubit stays in the excited state before relaxes down to the ground state. The 

second is a multi-qubit phase coherence time (T2), which measures how long can two qubits stay 

in sync with each other. These metrics are critical because quantum information is often encoded 

in the entangled states, and losing coherency means that information will be lost. 
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Today, despite a tremendous amount of effort in developing quantum devices, we are still 

highly constrained by the coherence time. For illustration, IBM’s flagship quantum computer has 

a minimum T1 of 38 μs and a minimum T2 of 39 μs [85]. With the assumption that a single gate 

time is roughly 0.5 μs, the quantum computer will become decoherent after 76 gate operations. 

Consequently, coherence time is a sacred resource, and we must use it efficiently. A more 

complex neural network will require more quantum gates, and therefore, it needs a quantum 

computer with a longer coherence time to run. The designer will be interested to build a network 

that has the minimum complexity required to solve a particular problem. Nevertheless, there is 

currently no framework to estimate the required model complexity. 

C. Our Proposed Solution 

There is an intuitive relationship between the complexity of the problem and the required 

complexity of the machine learning model. If the problem is more complicated, it requires a 

fitting function to have higher degrees of freedom. In other words, complex problems need larger 

models with more tunable parameters. In this work, we discover a way to relate the two—By 

decomposing the dataset using the principal component analysis (PCA), we can calculate the 

intrinsic dimensionality of the input signals and use it to guide us in estimating the number of 

quantum layers needed to solve a classification problem.  

In machine learning, an input datum can be presented using a vector of n dimensions, and 

we can plot the entire dataset as points in an n-dimensional vector space. PCA identifies the 

important directions in this vector space along which the variance is maximized, providing a way 

for us to estimate the intrinsic dimensionality of the dataset. The exact mathematical formulation 

of PCA will be explained in Sect. 4.2C. We show in theory and by simulation that the image 

reconstruction accuracy vs. the number of eigenvectors used in PCA correlates with the 
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classification accuracy (ξ) of the quantum system with corresponding circuit depth (k). The 

classification accuracy (ξ) is defined as the percentage of samples correctly recognized by our 

machine learning system, which consists of both quantum and classical components with details 

to be followed. In addition to predicting the minimum required number of quantum gates, our 

framework offers a quick way to approximate the tradeoff between classification accuracy (ξ) 

and depth (k), which is invaluable to machine learning practitioners in architecting their QNN 

without requiring them to perform the lengthy hyperparameter tuning procedures. Our 

framework is a practical rule of thumb for designing QNN in the noisy intermediate-scale 

quantum (NISQ) era [86].  

D. Literature Review 

There is a quantum renaissance in recent years. In 2019, Havlicek et al. proposed using 

quantum computers as high-dimensional kernel functions for classical support vector machines 

[87]; this work uses a 5-qubit superconducting quantum computer consisting of Josephson 

junctions to classify a synthetically generated small dataset.  Even though this work mainly 

focuses on training the quantum features, it establishes an excellent network architecture for 

multiclass classification in quantum computing.  In 2021, Jiang, Xiong, and Shi devised a 

quantum neural network for image classification [88]. Their proposed architecture uses binary 

synaptic weights to perform binary classification on 4 x 4 pixels greyscale images, and they 

show that quantum supremacy is possible. The same authors also wrote a perspective paper on 

the idea of hybrid quantum machine learning that introduces classical computers as data 

coprocessors [89].   

Moreover, the Vapnik-Chervonenkis dimension (or the “VC dimension” as commonly 

referred to in the computer science literate) quantifies the intellectual capacity of a machine 
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learning model by the maximum number of data points it can perfectly separate in a binary 

classification task. For instance, if we say that a neural net has a VC dimension of 5, it means 

that its decision boundaries are complicated enough to perfectly separate 5 data points arranged 

in any configuration (i.e., these 5 points can be placed in any locations in the vector space with 

arbitrary binary class labels). Chen et al. published an academic study using fictional datasets for 

quantifying the model capacity of quantum circuits [90]. They offered theoretical derivations 

utilizing the Vapnik-Chervonenkis dimension to estimate the requirement on the circuit depth. 

Despite having profound academic merits, their theory only works in the case where the number 

of qubits is larger or equal to the dimensionality of the feature space; hence, it is unlikely to be 

practical in realistic settings. 
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4.2. Theory 

A. Hybrid Quantum Neural Net 

A hybrid QNN [89] leverages the power of both classical and quantum computing: The 

classical computer handles nonlinear feature extraction, and the quantum computer carries out 

linear fitting. Nonlinearity is essential in neural nets because it enables elaborate decision 

boundaries for complex analytics. On the contrary, if all layers of a neural net are linear, the 

entire network can be collapsed into one linear transformation similar to how matrix 

multiplications can be combined into one. In this case, model capacity is greatly diminished. At 

present, quantum computers are linear. Although it is possible to implement a square 

nonlinearity during measurement when the wavefunctions collapse, this prohibits further 

quantum processing and thus foregoes the benefit of the exponential number of states. The 

square nonlinearity arises from the fact that the probability for a qubit to be observed in a 

particular state is the square of its amplitude. We will discuss the possibility of a nonlinear 

quantum computer in Chapter 5 that enables end-to-end quantum computations for neural 

networks. But for now, we stick to the confines of the current quantum technology. Our hybrid 

QNN uses a classical computer to extract the nonlinear features and a quantum computer to 

linearly rotate the decision boundary to fit the data. Fig. 12 illustrates a hybrid QNN with three 

qubits.  
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Fig. 12. Our proposed hybrid quantum neural network. Data flow through multiple 

subsystems to arrive at a prediction. The feature extraction step on the left can be 

implemented as a classical neural network that incorporates nonlinear functions. The 

quantum step in the middle depicts an example quantum computer with three qubits, 

rotating the data with 𝑼 to fit the decision boundaries predetermined by the measurement 

setup and the decision rule. In each experiment, the act of measurement collapses the 

high-dimensional quantum data, 𝑼�̅� , to a classical vector, �̅�𝑠𝑖𝑛𝑔𝑙𝑒_𝑠ℎ𝑜𝑡  (not shown). 

Averaging �̅�𝑠𝑖𝑛𝑔𝑙𝑒_𝑠ℎ𝑜𝑡 over many identical experiements (i.e., shots) produces the logits, 

�̅�, whose values can be predicted by Eqn. (23) and as shown on the bottom-right of this 

figure. 

 As shown in Fig. 12, the proposed hybrid QNN has three components: a feature extractor 

in a classical computer, a quantum component that implements a unitary rotation (U) in the high-

dimensional space, and a classical post-processing portion to convert the quantum states into a 

prediction. The purpose of feature extraction is to sift through useful information in the data with 
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a nonlinear function. As mentioned, nonlinearity is essential in creating elaborate decision 

boundaries [11] because if there is no nonlinearity between the layers, the entire network can be 

condensed into a single linear transformation like combining many matrix multiplications into 

one. The nonlinear feature extractor complements the subsequent linear quantum computer, and 

extracted features are flattened into a vector and encoded as the quantum state amplitudes in the 

quantum computer. The goal of the quantum computer is to rotate the high-dimensional vector 

(�̅�) with U to fit the decision boundaries, where �̅� is encoded in the coefficients of the multi-

qubit computational basis states (Fig. 12, middle). After the rotation, the quantum states are 

measured using the Pauli-Z operator, which has eigenvalues of ±1 [91]. That is, the final output 

of a single quantum measurement yields a vector of ±1s, and the size of this classical vector is 

the same as the number of qubits, nc. We can compute the logits (�̅�) shown on the right of Fig. 

12 by averaging the measurement results from many identical quantum experiments, which are 

called shots in quantum computing. As a review of our discussion in Sect. 3.1A, the term logits 

refers to the activation values of the last layer in a neural network (i.e., they are a neural net’s 

output values arranged in a vector form). Since the quantum computer in Fig. 12 implements a 

quantum neural network, we refer to its average output (�̅�) as logits to connect with deep 

learning literature.  

The logits (�̅�) are related to the amplitudes of the initial quantum states (�̅�). �̅� is stored in 

a classical computer indicating the averaged experiment outcome while �̅� is the coefficients of 

the wavefunctions in a quantum computer. The transfer function for our quantum system 

including the measurement process (Fig. 12) can be described mathematically as: 

 �̅� =  𝑇(𝑼�̅�) 2, (23) 
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where    is the Hadamard power 13  that squares each element individually, �̅� ∈ ℝ𝑛𝑐  is the 

average measurement results,  𝑇 ∈ ℝ𝑛𝑐×𝑛𝑠 is the classical projection matrix for the measurement 

(with detailed descriptions to be followed), 𝑼 ∈ ℝ𝑛𝑠×𝑛𝑠  is the unitary rotation, �̅� ∈ ℝ𝑛𝑠  is a 

vector representing amplitude coefficients for the initial state, ns is the number of quantum states, 

and nc is the number of qubits (representing the number of classes). The number of quantum 

states is exponential to the number of qubits:  

 𝑛𝑠 =  
𝑛𝑐. (24) 

Although  𝑇is not a quantum mechanical operator,   𝑇 is constructed from the quantum 

states while considering the eigenvalues of the Pauli-Z operator. We call  𝑇  the projection 

matrix because it projects the probability of being in each quantum state, an ns-dimensional 

vector, down to an exponentially smaller nc-dimensional qubit subspace, succinctly capturing the 

effect of averaging a large number of measurement results. In this example with three qubits, we 

write  

  𝑇 = [
−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1   1

]. (25) 

We construct the columns of  𝑇 as follows: First, we list out all the multi-qubit basis states (i.e., 

|000>, |001>,…, |111>). The wavefunction collapses into one of the basis states (e.g., |000>) 

after we measure the quantum system. We read out the corresponding eigenvalues of the 

measurement operators  (e.g. [-1, -1, -1] for Pauli-Z). Each row signifies the direction of 

 

 
13 The Hadamard power performs element-wise exponentiation on each matrix or vector element. For 

instance, 𝑩 =   𝑛 means that bij = aij
n ∀ (i,j) where bij is an element of B; aij, an element of A. 
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projection in the ns-dimensional vector space. Depending on the measurement operator (e.g., 

Pauli-Z or others) used for reading out the quantum state,   𝑇  can take on different values; 

however, it will always be nc x ns. We will use the logits (�̅�) to predict the class label in a 

classification task as we will explain next. 

B. Decision Boundaries 

We use the logits (�̅�) to decide which class �̅� belongs to. In a classification task, each 

datum belongs to one of the nc classes, and the goal of our machine learning system is to predict 

the correct class label for a given input. We deliberately design our hybrid QNN to have the 

same number of qubits as the number of classes so that measuring the wavefunction will result in 

a vector of size nc. Finally, we simply use the argmax function to pick the index i that has the 

highest logit (𝑦𝑖) and predict that the data belongs to class i:  

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 = argmax
𝑖

𝑦𝑖,  (26) 

where 𝑦𝑖 is a vector element of �̅� and i takes on all integer values from 0 to nc – 1, inclusive. We 

refer to Eqn. (26) as the decision rule, which prescribes the way we predict the class label given 

the logits (�̅�). It creates multiple decision regions that separate the feature space. A decision 

region is an area in the activations vector space, where all the data belong to the same 

classification. We can derive the equations for the boundaries of the decision region (i.e., the 

decision boundaries), where there is an equal probability of predicting class i versus class j. 

When we use the argmax decision rule, the number of boundaries (nb) in the nc-dimensional 

logits space is governed by the n-choose-2 combinatorial formula, 𝐶𝑛𝑐
2 , because it is equivalent to 

comparing any two of the nc logits:  
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 𝑛𝑏 = 𝐶𝑛𝑐
2 =

𝑛𝑐(𝑛𝑐−1)

2
.  (27) 

In our three-qubit example, three boundaries separate the three decision regions. The first 

boundary separates class 2 and class 1. For clarity, we rewrite Eqn. (23) in the scalar form as 

follows: 

 𝑦0 = −𝑥0
′ 2 − 𝑥1

′ 2 − 𝑥2
′ 2 − 𝑥 

′ 2 + 𝑥 
′ 2 + 𝑥 

′ 2 + 𝑥 
′ 2 + 𝑥 

′ 2 (28) 

 𝑦1 = −𝑥0
′ 2 − 𝑥1

′ 2 + 𝑥2
′ 2 + 𝑥 

′ 2 − 𝑥 
′ 2 − 𝑥 

′ 2 + 𝑥 
′ 2 + 𝑥 

′ 2 (29) 

 𝑦2 = −𝑥0
′ 2 + 𝑥1

′ 2 − 𝑥2
′ 2 + 𝑥 

′ 2 − 𝑥 
′ 2 + 𝑥 

′ 2 − 𝑥 
′ 2 + 𝑥 

′ 2, (30) 

where 𝑥𝑖
′ is the amplitude of the ith quantum state after the unitary transformation (i.e., �̅� = 𝑼�̅� 

and 𝑥𝑖
′ is the ith element of �̅� ). By equating y0 in Eqn. (28) to y1 in Eqn. (29), we derive the 

formula for the decision boundary between class 0 and class 1, where on this boundary, there is 

an equal probability of being either of the two classes. We obtain, 

 𝑥 
′ 2 + 𝑥 

′ 2 = 𝑥2
′ 2 + 𝑥 

′ 2. (31) 

Similarly, for the boundary between class 1 and class 2, we equate y1 to y2 and show that: 

 𝑥2
′ 2 + 𝑥 

′ 2 = 𝑥1
′ 2 + 𝑥 

′ 2. (32) 

Lastly, the boundary between class 2 and class 0 is derived by equating y2 to y0: 

 𝑥 
′ 2 + 𝑥 

′ 2 = 𝑥1
′ 2 + 𝑥 

′ 2. (33) 

The decision boundaries in the three-qubit QNN have a cone-shape geometry in the high 

dimensional space as demonstrated by Eqns. (31)-(33).  
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The role of the unitary rotation (U) is to rotate the data to fit the boundaries since the 

boundaries are fixed with respect to the standard coordinate in �̅� . To visualize this rotation, we 

can imagine, for instance, that the input data are Gaussian distributions spread out in a high 

dimensional space, in which each object class has a different mean and variance. As we 

discussed in Sect. 2.2B, U can be understood as rotating the data points in a fixed coordinate 

system or rotating the coordinate system while keeping the data in place. Hence, U rotates and 

moves the data into the two decision boundaries, or equivalently, it rotates the two decision 

boundaries to fit the data into the region. During the training of our hybrid QNN, the learning 

algorithm is responsible for finding the most optimal U, resulting in a set of decision boundaries 

that best separate different classes of data to maximize the prediction accuracy. In the following, 

we will investigate how to implement U most efficiently in quantum computing. 

C. Minimal Degrees of Freedom 

This subsection aims to establish the minimal degrees of freedom that a QNN needs for 

solving a classification problem. The computational complexity of a quantum algorithm is 

proportional to the number of quantum gates that it requires, and each elementary quantum gate 

provides a rotational degree of freedom. We define the elementary quantum gate as any single-

qubit gate with an adjustable angle parameter. For example, the Ry gate is the elementary gate 

that we use in this study for quantum complexity:  

 𝑹𝑦(𝜃) = [
cos

𝜃

2
−sin

𝜃

2

sin
𝜃

2
cos

𝜃

2

], (34) 

where θ is the azimuthal angle in the Bloch sphere. The half-angle (
𝜃

2
) in Eqn. (34) has profound 

meaning in physics, and we will discuss it here briefly. The Bloch sphere is a 3D representation 
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of the state of a single qubit with the north pole representing the spin-up state of an electron and 

the south pole representing the spin-down state. Succinctly put, electron spins have SU(2) 

symmetry with a periodicity of 4π but the Bloch sphere has SO(3) symmetry with a periodicity 

of 2π; to match the two, we need to make the azimuthal angle (θ) in the Bloch sphere rotate at 

50% speed such that a rotation of 2π in the longitude of the Bloch sphere represents a 4π rotation 

in the spin space [92]. The number of thetas (θ) we need to specify U determines the degrees of 

freedom in our machine learning model. The QNN is free to adjust these angles to maximize the 

prediction accuracy during training, and these angles will be constant during inference. Since 

coherence time is a scarce resource today, it is ideal to limit the number of quantum gates in our 

model to the minimum required by the classification problem.  

To estimate the complexity of the problem, we use the principal component analysis 

(PCA) as described before to identify the intrinsic dimensionality of the dataset [93]. PCA 

decomposes the covariance matrix of a dataset using the singular value decomposition (SVD) 

[12]. In SVD, we decompose a rectangular matrix (X) into three components (V, S, and Q) as 

follows:  

 𝑿 = 𝑽𝑺𝑇𝑸𝑇, (35) 

where 𝑿 ∈ ℝ𝑛𝑠×𝑚 is a wide rectangular matrix where each column is a data sample (i.e., the �̅� 

from Eqn. (23)), 𝑽 ∈ ℝ𝑛𝑠×𝑛𝑠 is a unitary matrix representing the eigenvectors, and 𝑺𝑇 ∈ ℝ𝑛𝑠×𝑚 

is a diagonal matrix representing the singular values,  𝑸𝑇 ∈ ℝ𝑚×𝑚 is another unitary matrix, and 

m is the number of samples in the dataset. PCA relates to SVD via the eigenvectors (V) and 

singular values (S): 

 𝑿𝑿𝑇 = 𝑽𝑺𝑇𝑺𝑽𝑇 = 𝑽𝜦𝑽𝑇, (36) 
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where Λ is a diagonal matrix with elements being the eigenvalues of the covariance matrix, XXT. 

Like image compression based on Fourier analysis, we can compress our dataset by keeping the 

largest k eigenvalues and their corresponding eigenvectors, and the quality of this data 

compression technique based on PCA will depend on the distribution of the eigenvalues. We can 

use the reconstruction error as a quality metric described next. 

Next, we will show that for our proposed QNN, U only requires k x nc parameters for 

manipulating the top k PCA eigenvectors in a classification problem with nc classes. To 

understand this statement, we break the derivation into two parts—The first parameter reduction 

comes from the fact that the dataset is compressible, and the second parameter reduction is due 

to the wavefunction collapse during measurement. Firstly, the transfer function of our QNN can 

be written in the following matrix form concerning the entire dataset by substituting Eqn. (35) 

into Y so that: 

 𝒀 =  𝑇(𝑼𝑿) 2 =  𝑇(𝑼𝑽𝑺𝑇𝑸𝑇) 2, (37) 

where 𝒀 ∈ ℝ𝑛𝑐×𝑚 represents the average measurement results (i.e., each column in Y is the logits 

�̅� from Eqn. (23)). Now we define B as: 

 𝑩 = 𝑼𝑽, (38) 

where B, U, and V  are unitary matrices of size ns x ns. Only the top k rows in U have significant 

effects on the output because they correspond to the k first columns in B, which will eventually 

multiply the top k singular values. Additionally, the rows (and columns) of a unitary matrix such 

as U are orthogonal. The top k rows of U have k x ns matrix elements, and after transposition, 

they belong to the Stiefel manifold, which we discussed previously in Sect. 2.2B. Geometrically, 

a Stiefel manifold is a subspace of the manifold formed by the orthogonal group. An orthogonal 
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matrix specifies the complete ns basis vectors in an ns-dimensional space, and taking k of these 

vectors will form the Stiefel manifold. Because we use Ry gate exclusively in our network, U is a 

real matrix in our case, and our previous analysis on the number of tunable scalar parameters still 

holds: As shown in Fig. 3 previously for the construction of a Stiefel matrix, a Stiefel manifold 

of size ns x k can be represented by k x ns – k x (k + 1) / 2 tunable parameters (i.e., angles) [94]. 

When ns >> k, the first term dominates, and we simplify the expression to k x ns parameters. So 

far, we have shown that U requires k x ns parameters to program due to the compressibility of the 

dataset.  

Secondly, we will explain the effect of quantum measurement to further zero in on the 

required number of parameters. The act of measurement collapses the quantum states with the 

projection matrix, PT in Eqn. (25), which performs a linear transformation and projects the 

probability vectors from an ns-dimensional space to an nc-dimensional subspace: 

  𝑇 ∶ ℝ𝑛𝑠 → ℝ𝑛𝑐. (39) 

The target subspace is spanned by the columns of P as its basis, and any component 

perpendicular to the target subspace will be annihilated during measurement. In other words, 

while U can rotate the signal in ns dimensions, only the rotations in the nc-dimensional target 

subspace will affect the final output. Consequently, we can further reduce the parameter 

requirements from k x ns to k x nc with k being the minimum number of PCA components needed 

to represent a dataset, which we will quantify later experimentally. k x nc is the minimal degree 

of freedom (i.e., tunable parameters) that our quantum computer must provide to solve a 

classification task with nc classes. We will confirm our theory with quantum simulation in Sect. 

4.4 below. 



 

95 

4.3. Method 

A. Network Architecture 

To verify our theory regarding the number of parameters required to specify the unitary 

rotation (U) for the proposed hybrid QNN, we expand our framework in Fig. 12 to ten qubits and 

apply it to solve an image classification problem. We illustrate the complete network architecture 

in Fig. 13 below.  The classical feature extraction step pre-processes the input greyscale image 

(32 x 32 pixels) with a single convolutional layer, which has a 3 x 3 filter, 3 biases, and a 

padding of 1 and is labeled as Conv3x3 in Fig. 13 at the top. The resulting signal passes through 

the rectified linear unit (ReLU) to achieve a nonlinear transformation [15].  We flatten the signal 

to a vector of size 1024 (210) and initialize a 10-qubit quantum computer accordingly such that 

the quantum state amplitudes are equal to the vector. This process is labeled as the amplitude 

encoder in the figure. 

The most important part of our proposed hybrid QNN is U in Eqn. (23) described in 

Theory Section 4.2 and depicted in Fig. 13. U has l layers, and each layer consists of 10 Ry 

rotation gates and 10 CNOT gates. CNOT is the controlled-NOT gate [91], defined as follows 

for a two-qubit system with the convention that the state vector is arranged from the least 

significant bit (|00>) to the most significant bit (|11>) from top to bottom:  

 𝑪𝑵𝑶𝑻 = [

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]. (40) 

Also, we construct the matrix representing CNOT in Eqn. (40) with the assumption that bit 0 is 

the control bit and bit 1 is the target bit. As defined earlier in Eqn. (34), the Ry gate is responsible 
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for specifying the angle of rotation for each qubit, and we have 10 angle parameters per layer 

because we have 10 qubits. The qubits are then entangled through 10 CNOT gates to achieve the 

entangled states. We can repeat this process as long as the end-to-end quantum computation is 

within the coherence time limit of our quantum computer. Because the coherence time is 

extremely limited today, we want to minimize the number of layers, l, to the smallest possible. 
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Fig. 13. Our hybrid quantum neural network architecture. An input image is first 

preprocessed using a 3 x 3 convolutional filter and ReLU in a classical computer (top). 

The amplitude encoder encodes the activations (�̅�) into the coefficients for the multi-

qubit basis states of the quantum computer (middle). The unitary rotation (U) has k 
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layers, and each layer has a rotator (10 Ry gates) and an entangler (10 CNOT gates). 

Quantum signals are measured with the Pauli-Z operator. The average values of the 

measurements (�̅�) are used for further classical postprocessing (right). 

B. Quantum Simulations  

We do not use any existing quantum computing framework for our simulations. Because 

the expected values of our hybrid QNN over many trials can be described analytically by a 

transfer function, it is the most efficient from a simulation point of view to derive the end-to-end 

analytical expression. We program the transfer function in a tensor computation package called 

PyTorch. 14  In our custom simulator, the amplitude encoder is simply a normalization step 

guaranteeing the amplitude vector to have a unit Euclidean norm. U has l layers, in which l is a 

design parameter. To derive an expression for U, we break it down to multiple matrix 

multiplications and tensor products.  

Each rotator depicted in Fig. 13 can be represented by the tensor product of 10 Ry gates: 

 𝑹 = ⊗𝑖=0
 𝑹𝑦(𝜃𝑖), (41) 

where 𝑹𝑦(𝜃) is defined previously in Eqn. (34) and see the explanation below for our tensor 

notation.15 The entangler in each layer is made of a ring of 10 CNOT gates arranged in a close 

boundary condition. The transfer function of the entangler can be further broken down into the 

product of the individual CNOT gates: 

 

 
14 Open-source software available at https://pytorch.org/ 

15  We can write out the tensor product explicitly as: ⊗𝑖=0
  𝑦(𝜃i) =  𝑦(𝜃0) ⊗  𝑦(𝜃1) ⊗  𝑦(𝜃2) ⊗

 𝑦(𝜃 ) ⊗  𝑦(𝜃 ) ⊗  𝑦(𝜃 ) ⊗  𝑦(𝜃 ) ⊗  𝑦(𝜃 ) ⊗  𝑦(𝜃 ) ⊗  𝑦(𝜃 ) 
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  = ∏  𝑖
 
𝑖=0 , (42) 

where Ei defines the linear transform of a CNOT gate between bit i for the control bit and bit i+1 

(modulo 10) as the target bit. More specifically, Ei has the following form: 

  𝑖 = {

𝑰28−𝑖⊗𝑪𝑵𝑶𝑻⊗ 𝑰2𝑖 , 𝑖𝑓 𝑖 < 9

[
𝑰 12 0
0 𝑰2  ⊗𝑵𝑶𝑻

] , 𝑖𝑓 𝑖 = 9
 , (43) 

where In is the n x n identity matrix. CNOT is defined in Eqn. (40), and NOT is defined as:  

 𝑵𝑶𝑻 = [
0 1
1 0

]. (44) 

In addition, the transfer function for a single quantum layer (H) in Fig. 13 (bottom) is 

defined as: 

 𝑯(𝑗) = 𝑹(𝑗) , (45) 

where j is the layer index, R(j) is the programmable rotator for each layer j from Eqn. (41), and E 

is the entangler from Eqn. (42). Finally, we arrive at the complete analytical expression for the 

rotation matrix U by multiplying the transfer function of all k layers: 

 𝑼 = ∏ 𝑯(𝑗)
𝑙−1
𝑗=0 = ∏ 𝑹(𝑗) 

𝑙−1
𝑗=0 . (46) 

The physical meaning of U is the effective transfer function implemented with the programmable 

quantum gates shown in Fig. 13. E is identical for all layers, and it contains no trainable 

parameters. By design, the number of qubits (nc) in our system is equivalent to the number of 

class labels in the classification task.  
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C. Dataset Characteristics 

We use the Modified National Institute of Standards and Technology hand-written digits 

dataset (MNIST) as an example classification problem [95]. Each data point in MNIST is a 28 x 

28 pixels grayscale image of a single hand-written digit. It contains ten different classes, one for 

each of the numerical numbers 0 through 9. Overall, there are 60,000 training samples and 

10,000 test samples. We preprocess the images by upscaling them to 32 x 32 pixels with linear 

interpolations. The resulting number of total pixels in the image (1024) is a power of two; this is 

for the ease of programming them into qubits. 

D. Training Details  

To train the proposed hybrid QNN, we measure the deviation from the desired outcome 

by using the cross-entropy loss as defined in Eqn. (13) between the network’s output and the true 

label. The number of classes nc in Eqn. (13) is also the number of qubits. We use end-to-end 

backpropagation to train both the convolution filter and the unitary rotation. Our complete hybrid 

QNN has the following chosen trainable parameters: the 3 x 3 convolution filter has 9 scalar 

weight parameters with 3 biases. For the quantum neural network, we have l x nc (i.e., the 

number of layers x the number of classes) angles for the Ry gates in the quantum unitary rotation 

(U).  

We renormalize �̅�  through the softmax function defined in Eqn. (12) to obtain the 

probabilities of the data belonging to a particular class collectively represented by �̅� . 

Renormalizing �̅�  with softmax is optional in classification because the following argmax 

function picks the element with the highest value regardless of normalization. In other words, 

since softmax is a monotonic function, it does not change which vector element is the largest. 
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Nevertheless, it is nice to compute �̅�  because each of its vector elements represents the 

probability of being in a particular class. 

 We select a batch size of 64 and 20 training epochs. Our backpropagation uses the 

stochastic gradient descent algorithm with a learning rate (i.e. step size) of 0.003 and a 

momentum (i.e. effective mass) of 0.9, which adjust the weights toward the direction of the 

maximal gradient in the loss function with artificial momentum calculated to help the algorithm 

escape local minima. With the number of classes and qubits fixed (nc = 10),  we vary l (the 

number of layers) from 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, to 1024. For scientific rigor, we 

repeat each simulation four times with random initialization on the angles, namely, θi in Eqn. 

(41), by randomly sampling from a uniform distribution between -π and π. The training set is 

shuffled randomly before each simulation. 
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4.4. Results & Discussion 

A. The Intrinsic Dimensionality of a Dataset 

The PCA accuracy, a metric to quantify the quality of signal reconstruction, is computed 

as follows: We first record the neural activations before the amplitude encoder in Fig. 13 and 

compress the recorded signals by using only the top k most significant eigenvectors (ranked by 

their eigenvalues). Then, we measure the average reconstruction error (e) by measuring the 

Euclidean distance between the reconstructed signals and the original ones. With 1024 

eigenvectors, we can perfectly reconstruct the signals because that is the total dimensionality of 

the signal. With 1024 eigenvectors, the reconstruction error is zero, and the PCA accuracy is 1. 

In the case of reconstruction using a single eigenvector, the reconstruction error is a large value 

(emax), and we define its PCA accuracy to be 0. Additionally, we define the PCA accuracy (η) for 

any reconstruction error (e) between 0 and emax as: 

 𝜂 =  𝐶𝐴 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≜ 1 − 𝑒/𝑒𝑚𝑎𝑥 = 𝑓(𝑘). (47) 

η is a function of k, the number of PCA components we used for the signal reconstruction. It is 

not possible to derive an analytic equation for f as it depends on the specific dataset we use; 

however, the relationship between η and k can be measured experimentally as to be shown in the 

next subsection. 

Additionally, for linking η into our theory, we need to introduce the concept of intrinsic 

dimensionality for a dataset, denoted as dmin. For instance, when we take pictures of real-world 

objects to construct an image dataset, the camera we use to take these images can have an 

arbitrarily high resolution. Logically, the minimum amount of information we need to represent 

various objects in a computer should not depend on the size of the sensor; rather, there should be 
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a minimal set of basis vectors required to represent the objects canonically.  We define the size 

of this set as the intrinsic dimensionality of a dataset (dmin). There is no standard way to calculate 

the intrinsic dimensionality of the dataset dmin; the only criterion for the minimal set of basis 

vectors is that they must reconstruct the signals “well enough,”  which we define here as the 

PCA accuracy (η) exceeding 95%. Thus, dmin is the intrinsic dimensionality of the dataset defined 

as follows: 

 𝑑𝑚𝑖𝑛 ≜ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝐶𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝜂 𝑡𝑜 𝑏𝑒 0.95. (48) 

B. Predicting the Required Quantum Depth 

Intuitively, the classification accuracy (ξ) for our hybrid QNN should increase with more 

quantum layers because, as the number of programmable angles increases, the network can rotate 

the dataset in more directions to achieve a better fit between the data and the decision boundaries. 

However, increasing the number of quantum layers (l) beyond the intrinsic dimensionality of the 

dataset (dmin) would yield a marginal improvement in the classification accuracy (ξ). The reason 

is that if most of the information about the dataset can be represented using dmin basis vectors, 

providing the additional capacity to rotate the data in directions orthogonal to the space spanned 

by them is not necessary. The main theory that we would like to verify with quantum simulation 

is that the unitary rotation (U) requires at least dmin quantum layers to achieve a reasonable 

classification accuracy (ξ). This statement assumes that the number of classes in the 

classification problem, the number of qubits in the quantum computer, and the number of Ry 

rotation gates in a quantum layer are all the same (i.e., nc = 10 as shown in Fig. 13). We will 

show our experimental data next. 
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After training using the procedure described previously in Sect. 4.3D, we use our hybrid 

QNN to classify the images from MNIST handwritten digit dataset into 10 categories (i.e., 0-9). 

See Sect. 4.3C for details about this dataset. The vertical bars in Fig. 14 show the classification 

accuracy (ξ) of our hybrid QNN as we vary l, the number of quantum layers. The dashed curve 

on the top plots the PCA reconstruction accuracy (η) achieved with the corresponding number of 

principal components (k). We measure the accuracy using the test set, which is the portion of the 

dataset that we set aside for model evaluation. In Fig. 14, there is a clear correlation between the 

PCA reconstruction accuracy and the QNN classification accuracy (ξ) when we align l and k on 

the same x-axis. In the case of PCA reconstruction, k is the number of eigenvectors we use to 

reconstruct the signals. In the case of the QNN, l is the number of quantum layers in U. Our 

theory in Sect. 4.2C predicts that a QNN with l quantum layers can freely rotate k principal 

components, assuming each quantum layer has nc tunable parameters. To elaborate, the number 

of parameters in our QNN is l x nc, and it matches the degree of freedom k x nc we need to solve 

a classification problem with nc classes. Consequently, we see the two trends overlap in the 

figure.  
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Fig. 14. Relationship between the intrinsic dataset dimensionality and the required 

quantum depth. Using the MNIST hand-written digit dataset, we perform principal 

component analysis (PCA) on the activation map (�̅� ∈ ℝ102 ) after the convolution and 

ReLU layer in Fig. 13.  The weights for the convolution filters and the quantum rotation 

(U) are trained end-to-end with backpropagation using the cross-entropy loss on the 

MNIST dataset. As defined in Eqn. (47), the PCA accuracy (η) quantifies the quality of 

the reconstructed signal (left vertical axis) using k PCA components (horizontal axis). On 

the right vertical axis, the QNN accuracy (ξ) measures the percentage of correctly 

predicted samples in the test set using l quantum layers (horizontal axis) in the unitary 

rotation (U). As shown in the figure, η (dashed line) correlates with ξ (vertical bars). We 

define the intrinsic dimensionality of the dataset (dmin) as the number of PCA components 

needed for η to exceed 0.95, which is indicated with an arrow in the figure. The number 
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of quantum layers must match or exceed the dmin to achieve a reasonable classification 

accuracy (ξ = 0.75 in this example).  

With this definition, we find dmin to be 64 using the dashed curve in Fig. 14 with the 

simulation stated before. This critical point is determined by the covariance of the pixels in the 

dataset, and it will impact our network design a great deal. Both the PCA accuracy (η) and the 

classification accuracy (ξ) rise rapidly for 1 < k < 64, but the improvements slow down 

drastically afterward. The classification accuracy (ξ) increases by 75% with the first 64 quantum 

layers, but it only improves by 12% when l increases further from 64 to 1024 layers and plateaus 

at 87%. It takes a great deal of more eigenvectors to capture the last 5% of the variance because 

the PCA eigenvalues often have a long tail distribution. This is because the dimensionality of the 

sensor used to capture the image (i.e., the resolution of the camera, 32 x 32 for the example 

shown in Fig. 13) is often much higher than the space needed to represent the objects in the 

image; therefore, it becomes uneconomical for the number of quantum layers (l) to greatly 

exceeds dmin. This information is essential in the NISQ era because we often need to reduce the 

number of quantum layers to accommodate the highly constrained coherence time in today’s 

quantum computers. As a first pass, practitioners can use the PCA accuracy curve (η) to set a 

corresponding number of quantum layers (l) equal to the intrinsic dimensionality (dmin) that will 

capture 95% of the variance information (e.g., l = k = dmin = 64 in our example), ensuring a 

satisfactory classification accuracy (e.g., ξ = 0.75 in our case). Additionally, using the PCA 

accuracy (η) to approximate the return on investment with additional quantum layers is an 

excellent rule of thumb for practical applications in the NISQ era. 
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4.5. Conclusion 

In this study, we have proposed a novel hybrid QNN that can support multiclass 

classification problems. We use the hand-written number recognition as an example to show an 

accuracy of 87% on the MNIST dataset with full image resolution. In addition to demonstrating 

the possibility of using the unitary rotation to create a classification model in quantum computing, 

we study the decision boundaries drawn by our quantum system. As a crucial topic for 

classification models, decision boundaries specify the demarcation of data points in the input 

vector space for predicting their class labels. By deriving the equations for the decision 

boundaries of our hybrid QNN, we offer new insights into its decision process: the quantum 

gates rotate the data encoded in the multi-qubit basis states and move them into one of the cone-

shaped decision regions. This interpretation provides a foundation for understanding the decision 

processes in QNNs for classification. 

In addition, our key contribution is establishing a rule of thumb for determining the 

optimal (or minimal) number of quantum layers (dmin) to put in the network by performing the 

principal value analysis on the dataset. The unitary rotation requires a minimum number, dmin x 

nc, of Ry gates to implement, where dmin is also the number of PCA components needed to 

properly reconstruct the dataset to 95% accuracy. We also show that there is a diminishing return 

of investment when we increase the number of quantum layers (l) beyond dmin. Machine learning 

practitioners can use our framework to balance and optimize the classification accuracy, the 

number of quantum gates, and the coherence time required to solve a particular classification 

problem.   
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Chapter 5 — Closing Remarks 

Research never ends. 

 



 

109 

5.1. Summary 

As we have demonstrated in the previous chapters, unitary neural networks are faster, 

more robust, and ready for quantum. Their speed improvement comes from the fact that unitary 

rotations preserved the Euclidean metric norm, and thus, it maintains the neural signal strengths. 

Although nonlinear activation functions might weaken the neural activations across multiple 

layers, the unitary constraint alone is sufficient to mitigate the exploding and diminishing 

gradient problem for a 143-layer network without normalization as we have shown in Chapter 2. 

The elimination of normalization increases the inference speed by up to 32% in an example of 

image recognition with our UniResNet architecture (Sect. 2.4), which is a novel neural 

architecture that uses unitary weights to stabilize the activations in a convolutional neural 

network. By using the Stiefel manifold, we invent a new way to generalize the concept of 

unitarity to rectangular weight matrices that are prevalent in most convolution filters; 

furthermore, the tunable parameters can be reduced by up to 50% due to the unitary constraints 

(Sect. 2.2).  

Unitary neural nets are more robust because unitary transformation preserves the distance 

between two vectors. This unique property makes them resilient to adversarial attacks that are 

contrived with small perturbations on the input signals. By restraining the perturbations across 

the network via unitary constraints and by increasing the decision margin with the multi-margin 

loss, we can improve the prediction accuracy under adversarial attacks by up to an order of 

magnitude (Sect. 3.4). More specifically, in Chapter 3, we propose an enhanced neural 

architecture named UniBERT, which is a variant of the state-of-the-art Bidirectional Encoder 

Representations from Transformers architecture for natural language processing. Our UniBERT 

can deter adversarial attacks much better than the state-of-the-art defense methods based on data 
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argumentation and regularization, outperforming the state-of-the-art methods by at least 15% in 

post-attack classification accuracies across tasks and attack recipes under the toughest evaluation 

metrics. Chapter 2 and Chapter 3 demonstrate that unitary neural nets are efficient, robust, and 

fundamentally stable—an excellent architectural choice for all neural networks when 

implemented in classical computing. 

Unitary neural nets provide an effortless transition to quantum information processing. 

The gates in quantum computers perform unitary transformations; as a result, the weights in a 

unitary neural net can be decomposed into a cascade of rotation gates in the quantum domain 

(Sect. 4.3). The exponential number (2n) of quantum states generated by n qubits provides an 

opportunity for initiating a new technology curve, a quantum version of Moore’s law. We show 

in Sect. 4.4 that the required number of quantum gates depends on the principal value 

decomposition of the dataset; our framework and treatise provide a practical guide to estimating 

the number of qubits required, and this result gives the design requirement for a quantum 

computer’s coherence time to solve classification and other classically hard problems. 

Lastly, we would like to add a discussion on the overall view of this dissertation. We 

began with a comprehensive study of the performance gains in the classical domain to show that 

unitary neural networks outperform the state-of-the-art in inference speed and adversarial 

robustness. Our work here offers a practical methodology that makes neural computation more 

efficient and safer for a wide range of industrial applications, including mission-critical computer 

vision and natural language processing. Moreover, we champion unitary neural networks as a 

stepping stone to quantum computing because there is a direct translation between the classical 

unitary weights and quantum gates. This unique property shortens the design cycle of quantum 

neural nets via straightforward conversion between simulation and hardware deployment.  
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5.2. Outlook 

Many open questions remain in the treatment of unitary neural networks. In the classical 

domain, unitary constraints can be implemented in various ways, including matrix 

exponentiation (Sect. 2.2A) and QR decomposition (Sect. 3.3B). In this treatise, our experience 

shows that QR decomposition is faster than matrix exponentiation on graphics computing units. 

Nevertheless, there are also iterative methods such as calculating the weight matrices’ deviations 

from the unitary group and making small corrections at each training step, which may have 

negligible training time penalties and could be more computationally efficient than our current 

techniques for implementing the unitary constraints. 

In the quantum domain, it is essential to build a nonlinear quantum computer for machine 

learning. Deep learning relies on multiple layers of nonlinearity to create intricate decision 

boundaries in the feature space. The lack of nonlinear functions in quantum computing severely 

handicaps the usefulness of quantum neural nets. Any quantum system designed to obey the 

linear Schrödinger equation will not support the nonlinear transformation of the quantum state 

amplitudes. A common workaround in today’s literature is to use measurement as a source of 

nonlinearity or perform nonlinear processing in a classical computer. Either way, we lose the 

benefit of the exponential number of states generated by qubits once the wavefunctions collapse. 

We predict that the next quantum leap will come from the invention of nonlinear quantum gates.  

To implement nonlinear gates, researchers need to not only characterize nonlinear 

quantum devices but develop a mathematical framework to model them. One related field of 

research is nonlinear optics. For instance, the Kerr nonlinearity describes the nonlinear 

polarization for a dielectric material under an external electric field, resulting in a nonlinear 
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Schrödinger equation for the wavefunctions [96]. This nonlinear effect is used to build nonlinear 

components in optical quantum computers [97]. On the other hand, there is a wide research gap 

in building and modeling nonlinear gates for superconducting qubits.  

 

Fig. 15. Nonlinear quantum neural networks are realized by dissipative quantum 

computing. A key limitation of today’s quantum computers is that it is completely linear 

by design; as a result, quantum machine learning requires tedious workarounds for 

implementing the nonlinearities required to achieve the desired model capacity. We 

propose a paradigm shift in quantum research to incorporate dissipation as a source of 

nonlinearity for a machine learning model (such as the neural network depicted in the 

middle of this figure). The effect of dissipation can be quantified using the nonlinear 

Schrödinger equation and incorporated into neural network training. With the 

introduction of nonlinearity in the system, nonlinear quantum computers not only 
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alleviate the bottleneck in scaling the number of qubits but also open up a wide range of 

quantum algorithms to make quantum computing a step closer to general computing. 

Another interesting research direction for creating nonlinearity is to use decoherence as a 

source of nonlinearity [98]. If we can analytically express the environmental coupling and model 

the dissipation as an integral part of network training, we may be able to circumvent the problem 

of the coherence time while supporting nonlinear transforms, achieving exponential scaling at a 

discounted rate. Nonlinear quantum computers such as the one depicted in Fig. 15 kill two birds 

with one stone: Instead of fighting the quantum decoherence, express it as the nonlinearity for a 

machine learning model (e.g., a neural network) by studying the nonlinear Schrödinger equation 

associated with the dissipation phenomenon [99], [100]. Such a futuristic machine learning 

system will be a mixture of the linear, non-dissipative, unitary layers and the nonlinear, 

dissipative, non-unitary layers, providing a quantum leap toward a new paradigm for computing 

and information processing. 
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