
UCLA
UCLA Electronic Theses and Dissertations

Title
Unitary Neural Networks

Permalink
https://escholarship.org/uc/item/3vg5741f

Author
Chang, Hao-Yuan

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vg5741f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Unitary Neural Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical and Computer Engineering

by

Hao-Yuan Chang

2022

© Copyright by

Hao-Yuan Chang

2022

ii

ABSTRACT OF THE DISSERTATION

Unitary Neural Networks

by

Hao-Yuan Chang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Kang L. Wang, Chair

This doctoral dissertation is a comprehensive study on a novel method based on unitary

synaptic weights to construct intrinsically stable neural systems. By eliminating the need to

normalize neural activations, unitary neural networks deliver faster inference speeds and smaller

model sizes while maintaining competitive accuracies for image recognition. In addition, unitary

networks are drastically more robust against adversarial attacks in natural language processing

systems because unitary weights are resilient to small input perturbations. The last portion

focuses on a small demo that implements unitary neural nets in quantum computing. With the

comprehensive performance evaluation in classical machine learning, the rigorous framework in

iii

mathematics, and the exploration of quantum computing, this dissertation establishes a solid

foundation for unitary neural networks in the future of deep learning.

iv

The dissertation of Hao-Yuan Chang is approved.

Lieven Vandenberghe

Jonathan Chau-Yan Kao

Guido F. Montufar Cuartas

Kang L. Wang, Committee Chair

University of California, Los Angeles

2022

v

Table of Contents

TABLE OF FIGURES VII

LIST OF TABLES VIII

ACKNOWLEDGMENTS IX

VITA X

CHAPTER 1 — BACKGROUND 1

1.1. MOTIVATION 2
1.2. MATHEMATICS OF UNITARITY 4
1.3. DISSERTATION OUTLINE 5

CHAPTER 2 — UNITARY CONVOLUTIONAL NEURAL NET FOR FASTER COMPUTER VISION 6

2.1. INTRODUCTION 7
A. THE PROBLEM OF INSTABILITY IN DEEP NEURAL NETS 7
B. OUR PROPOSED SOLUTION 8
C. LITERATURE REVIEW 10

2.2. THEORY 11
A. MATRIX REPRESENTATION OF THE UNITARY GROUP 11
B. THE STIEFEL MANIFOLD 14
C. FROM THE STIEFEL MATRIX TO CONVOLUTION FILTERS 19

2.3. METHOD 22
A. NETWORK ARCHITECTURE 22
B. DATASETS CHARACTERISTICS 25
C. TRAINING DETAILS 25
D. CACHING THE UNITARY WEIGHTS 26

2.4. RESULTS & DISCUSSION 27
2.5. CONCLUSION 31

CHAPTER 3 — UNITARY NEURAL NETS FOR ROBUST NATURAL LANGUAGE PROCESSING 32

3.1. INTRODUCTION 33
A. NATURAL LANGUAGE PROCESSING 33
B. ADVERSARIAL ATTACKS 38
C. THE PROBLEM WITH CURRENT DEFENSE METHODS 39
D. OUR PROPOSED SOLUTION 41

vi

E. LITERATURE REVIEW 42
3.2. THEORY 44

A. MULTI-MARGIN LOSS INCREASES ROBUSTNESS 44
B. UNITARITY CONFINES PERTURBATION 47

3.3. METHOD 49
A. NETWORK ARCHITECTURE 49
B. UNITARY CONSTRAINTS 53
C. DATASETS CHARACTERISTICS 53
D. TRAINING DETAILS 55
E. ADVERSARIAL ATTACKS 58
F. SELECTING THE MARGIN PARAMETER 59

3.4. RESULTS & DISCUSSION 62
A. OUR UNIBERT VS. BASELINE MODELS 62
B. OUR UNIBERT VS. DEFENSE MODELS 65
C. ABLATION STUDY 69
D. EFFECT OF THE MULTI-MARGIN LOSS 71
E. PROPAGATION OF PERTURBATION 72

3.5. CONCLUSION 77

CHAPTER 4 — QUANTUM UNITARY NEURAL NETS 79

4.1. INTRODUCTION 80
A. THE QUANTUM TRANSITION 80
B. THE PROBLEM OF COHERENCE TIME 81
C. OUR PROPOSED SOLUTION 82
D. LITERATURE REVIEW 83

4.2. THEORY 85
A. HYBRID QUANTUM NEURAL NET 85
B. DECISION BOUNDARIES 89
C. MINIMAL DEGREES OF FREEDOM 91

4.3. METHOD 95
A. NETWORK ARCHITECTURE 95
B. QUANTUM SIMULATIONS 98
C. DATASET CHARACTERISTICS 100
D. TRAINING DETAILS 100

4.4. RESULTS & DISCUSSION 102
A. THE INTRINSIC DIMENSIONALITY OF A DATASET 102
B. PREDICTING THE REQUIRED QUANTUM DEPTH 103

4.5. CONCLUSION 107

CHAPTER 5 — CLOSING REMARKS 108

5.1. SUMMARY 109
5.2. OUTLOOK 111

REFERENCES 114

vii

Table of Figures

FIG. 1. A UNITARY NEURAL NETWORK FOR MITIGATING EXPLODING AND VANISHING ACTIVATIONS. 9

FIG. 2. UNITARY MATRIX CONSTRUCTION. THERE ARE MANY WAYS TO CONSTRUCT UNITARY MATRICES. 12

FIG. 3. STIEFEL MATRIX CONSTRUCTION. 15

FIG. 4. THE STIEFEL MATRIX AS CONVOLUTION FILTERS. 20

FIG. 5. OUR UNITARY RESIDUAL NEURAL NETWORK (UNIRESNET) ARCHITECTURE. 24

FIG. 6. PERFORMANCE OF OUR UNIRESNET VS. OTHER NORMALIZATION METHODS. 28

FIG. 7. BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS (BERT) NEURAL ARCHITECTURE. 35

FIG. 8. MULTI-MARGIN LOSS FOR BINARY SENTIMENT ANALYSIS WITH UNIBERT. 45

FIG. 9. OUR UNITARY MULTI-MARGIN BERT (UNIBERT) ARCHITECTURE. 50

FIG. 10. CLASSIFICATION ACCURACY VS. MARGIN PARAMETER FOR THE MULTI-MARGIN LOSS IN UNIBERT. 60

FIG. 11. COSINE SIMILARITY BETWEEN THE ORIGINAL ACTIVATIONS AND THE PERTURBED ACTIVATIONS UNDER ATTACK. 73

FIG. 12. OUR PROPOSED HYBRID QUANTUM NEURAL NETWORK. 86

FIG. 13. OUR HYBRID QUANTUM NEURAL NETWORK ARCHITECTURE. 97

FIG. 14. RELATIONSHIP BETWEEN THE INTRINSIC DATASET DIMENSIONALITY AND THE REQUIRED QUANTUM DEPTH. 105

FIG. 15. NONLINEAR QUANTUM NEURAL NETWORKS ARE REALIZED BY DISSIPATIVE QUANTUM COMPUTING. 112

viii

List of Tables

TABLE 1. THE COMPLETE LIST OF WEIGHTS USED IN OUR UNIBERT AND THEIR UNITARITY. 52

TABLE 2. KEY FEATURES OF THE DATASET STATISTICS FOR BOOKCORPUS, AG_NEWS, SNLI, AND YELP. 55

TABLE 3. TRAINING HYPERPARAMETER SETTINGS FOR OUR UNIBERT. 57

TABLE 4. CLASSIFICATION ACCURACIES OF OUR UNIBERT VS. OTHER BASELINE BERT MODELS UNDER ATTACKS. 64

TABLE 5. CLASSIFICATION ACCURACIES OF OUR UNIBERT VS. STATE-OF-THE-ART DEFENSE MODELS. 67

TABLE 6. ABLATION STUDY TO UNDERSTAND THE CONTRIBUTION OF EACH COMPONENT. 69

TABLE 7. AVERAGE DISTANCE TO THE DECISION BOUNDARY FOR THE LOGITS. 71

ix

Acknowledgments

The author would like to thank Professor Robert N. Schwartz for his valuable discussions

and the National Defense Science and Engineering Graduate Fellowship for their support.

Additionally, Chapter 2 is a version of our published work [1], in which Kang L. Wang is the

principal investigator (PI). The final authenticated publication is available online at

https://doi.org/10.1007/978-3-030-86340-1_14.

https://doi.org/10.1007/978-3-030-86340-1_14

x

Vita

Hao-Yuan Chang obtained his Bachelor of Science with summa cum laude and his

Master of Science both in Electrical Engineering from the University of California, Los Angeles

(UCLA). His research focuses on deep learning for natural language processing and computer

vision. He is the recipient of the National Defense Science and Engineering Graduate Fellowship

and the UCLA Dissertation Year Fellowship. Selected publications and patents include:

Hao-Yuan Chang and Kang L. Wang, “Deep Unitary Convolutional Neural Networks,” in

Artificial Neural Networks and Machine Learning – ICANN 2021, Cham, 2021, pp. 170–181. doi:

10.1007/978-3-030-86340-1_14.

Kang L. Wang and Hao-Yuan Chang, “Self-organized critical CMOS circuits and methods for

computation and information processing,” United States Patent US10147045B2, Dec. 04, 2018.

[Online]. Available: https://patents.google.com/patent/US10147045

https://link.springer.com/chapter/10.1007%2F978-3-030-86340-1_14
https://patents.google.com/patent/US10147045/en

1

Chapter 1 — Background

The transition to quantum computing.

2

1.1. Motivation

The twentieth century was full of hardware innovations: Vacuum tubes and bipolar-

junction transistors enabled digital computing. Metal-oxide-semiconductors field-effect

transistors (MOSFET) paved the way for the very-large-scale integration (VLSI) of logic devices

and led to the invention of microprocessors in 1971. Since then, computational speed and

capacity have grown exponentially, adhering to Dennard’s law for feature size scaling [2], [3]

and Moore’s law for economic scaling [4]. This massive computing power allowed computer

scientists to build increasingly accurate and large machine learning models. The most remarkable

example is the renaissance of neural networks a decade ago, driven by the adoption of graphics

computing units (GPU) in parallelizing deep neural network computations, leading to the revival

of artificial intelligence (AI) and machine learning (ML).

Today, we stand at a pivotal point of the technology curve for semiconductors: As

transistor scaling approaches its physical limit, improvements slow down. For any technology,

there is a point of saturation, where all the possible improvements to the given technology have

been made. It’s a place of incredible achievements because, at this point, we have discovered the

most optimal way to engineer transistors. But this is also the point of stagnation, which can only

be surpassed by an orthogonal technology that disrupts the field. The rise and fall of technology

curves are quotidian in the computer industry [5]. We believe that transistors have reached the

confines of physics, and this disruptive technology will be quantum.

A quantum system’s computing power scales exponentially with the number of bits,

unlike its classical counterparts that scale linearly. This property makes quantum computing an

attractive alternative to transistor scaling, enabling the next-generation deep learning

3

architectures for big data. Quantum gates are unitary transforms because they conserve energy,

but most neural networks today are non-unitary. To address this research gap, we thoroughly

investigate the possibility of imposing unitarity on parts of the neural net and study the benefits

of unitary weights in deep learning. As you will see in the following chapters, unitary neural nets

not only improve the speed and robustness of modern machine learning systems but also

establish a steppingstone for the quantum transition.

4

1.2. Mathematics of Unitarity

In mathematics, a unitary matrix (U) is an n-by-n square matrix that satisfies this special

relationship:

 𝑼†𝑼 = 𝑼𝑼† = 𝑰, (1)

where U can be real or complex, I is the identity matrix, and † represents the Hermitian adjoint.

When U is real, it is called an orthogonal matrix, a subclass of the unitary matrix, and 𝑼†

changes to 𝑼𝑇, the transposition of U.

The unitary matrix has a special property that conserves the Euclidean norm of the input

vector. To prove this conservation law, we take the Euclidean norm of the output and compare it

to the norm of the input:

 ‖𝑼𝑥̅‖2 = (𝑼𝑥̅)
†(𝑼𝑥̅) = 𝑥̅†𝑼†𝑼𝑥̅ = 𝑥̅†𝑥̅ = ‖𝑥̅‖2, (2)

where ‖ ∙ ‖2 denotes the Euclidean norm. This conservation law is the main theme of this

dissertation: In classical systems, it stabilizes the neural signals, making the network faster and

more robust. In quantum systems, it conserves the energy of a quantum system [6], [7] and

makes the network ready to be implemented on dissipation-less quantum computers. We will

rigorously quantify the performance improvements in the following three chapters.

For the rest of this dissertation, we assume U is real. This simplification is possible

because we represent the weights and the activation values of neural networks using real

numbers. In our case, the Hermitian adjoint in the previous two equations reduces to the matrix

transpose hereafter.

5

1.3. Dissertation Outline

Chapter 1 establishes the premise and motivations of our research. To provide a

comprehensive perspective on unitary neural networks, we first identify their benefits and

drawbacks in classical computing when parts of the neural weights are constrained to be unitary

for various network architectures and applications. Chapter 2 shows that unitary neural nets are

stable by design and thus do not require explicit normalization after each layer. The elimination

of normalization speeds up deep neural nets significantly. The experiments are conducted with a

state-of-the-art convolutional neural network (CNN) on image recognition datasets. Furthermore,

Chapter 3 demonstrates that unitary neural nets are drastically more robust against adversarial

attacks because unitary weights prevent small perturbations from growing larger as signals

propagate across the layers in a deep neural net. We demonstrate this unique advantage by

performing natural language processing using transformer-based neural architectures. Chapter 4

studies a small demo using a hybrid quantum neural net (QNN). We observe a direct correlation

between the intrinsic dimensionality of the input signals and the required number of quantum

layers in a QNN. Lastly, Chapter 5 summarizes our findings and suggests a list of future work

in this research direction.

6

Chapter 2 — Unitary Convolutional Neural

Net for Faster Computer Vision

Unitarity eliminates the need to normalize.

7

2.1. Introduction

A. The Problem of Instability in Deep Neural Nets

Recent advancements in semiconductor technology [8] have enabled neural networks to

grow significantly deeper. This abundant computing power enabled computer scientists to

drastically increase the depths of neural networks from the 7-layer LeNet network [9] to the 152-

layer contest-wining ResNet architecture [10]. More layers usually lead to higher recognition

accuracy because neural networks make decisions by drawing decision boundaries in the high-

dimensional space [11]. A decision boundary is a demarcation in the feature space that separates

the different output classes. The more layers the network has, the more precise these boundaries

can be in the high-dimensional feature space; thus, they can achieve higher recognition rates [12].

However, deep networks often fail to train properly due to poor convergence as explained below.

There are many reasons why a deep network fails to train [13], and the problem that

unitary neural nets address is the instability of the forward pass, in which neural activations

either saturate to infinity or diminish to zero and thus prevent the training algorithm from

converging. To train a neural net, the error observed at the output is backpropagated to update

each synaptic weight in the previous layers. In other words, the neural net is a composite

function (𝑓) with the weights as internal parameters, mapping an input to an output. The goal of

training is to find the best weights for producing the desired output, and we do so by taking the

derivative of 𝑓 against the weight variables using the chain rule. During this process, the error

signals travel backward through the network, multiplied by the activation at each neuron; hence,

this training procedure is called backpropagation [12]. Depending on the eigenvalues of the

8

synaptic weight matrices [14], neural signals may grow or attenuate as they travel across neural

layers in the forward pass when unbounded activation functions1 are used. If the activation is

either extremely large or small; in this case, the weight update will scale proportionally during

the backward pass, resulting in either a massive or a tiny step. Consequently, convergence is

poor during training.

In short, vanishing and exploding activations occur when the neural signals are not

normalized, and the backpropagated gradients either saturate or die out during network training

[16]. Although other schemes such as batch normalization [17], learning rate tuning [18], and

gradient highways [10] can mitigate the issue, none of these methods eliminate the core

problem—the weight matrices have eigenvalues that are larger or smaller than one. Furthermore,

most normalization methods have inference time penalties because of the additional steps to

compute and rescale the neural signals to the norm. In this section, we aim to devise a way to

fundamentally fix the exploding and vanishing activation problem without slowing down the

inference speed.

B. Our Proposed Solution

Our proposed solution (Fig. 1) is to eliminate the need to normalize the neural signals

after each layer by constraining the weight matrices, W, to be unitary. Unitary matrices 2

represent rotations in the n-dimensional space; hence, they preserve the norm (i.e., the amplitude)

1Unbounded activation function is common in deep learning. For example, the rectified linear unit

(ReLU) is a popular nonlinearity in many neural architectures due to its computational simplicity [15].

2 Unitary matrices can have complex values. When the matrices only contain real components, they are

called orthogonal matrices, which is a subset of unitary matrices, and our proposal works in both cases.

The eigenvalues of a unitary matrix have modulus 1.

9

of the input vector. With this unique property, unitary networks can maintain the neural signal

strengths without explicit normalization. This technique allows the designers to eliminate the

networks’ normalization blocks and make inference faster.

We aim to engineer a way to constrain the weights to be unitary. To achieve this, we

leverage the previously reported framework for constructing orthogonal matrices in recurrent

neural networks using Lie algebra [19], which we will explain briefly in Sect. 2.2A below.

Unlike other approximation methods, this framework guarantees strictly unitary matrices;

however, it is currently limited to square matrices. Our main contribution is that we found a way

(Sect. 2.2B) to extend the unitary framework based on Lie algebra to weight matrices of any

shape. By doing so, we expand the applicability of this framework from recurrent neural

networks with square weight matrices to any neural network structures, drastically increasing its

usefulness in state-of-the-art network architectures.

Fig. 1. A unitary neural network for mitigating exploding and vanishing

activations. 3 Deep neural nets are unstable systems by default because non-unitary

synaptic weights (non-unitary Wi) can arbitrarily scale the activations (i.e., neurons’

3 Figure from our published work [1].

R
e
g

u
la

r

W1 W2 W3 W4 W5 W6
Non-unitary

Wi

Unitary

Wi

U
n

it
a
ry

W1 W2 W3 W4 W5 W6
Proposed

Change

Legend:

Input Neuron

Hidden Neuron

Output Neuron

Computation

Synaptic Weight

Weight MatrixWi

N
o
rm

a
liz

a
ti
o
n

N
o
rm

a
liz

a
ti
o
n

N
o
rm

a
liz

a
ti
o
n

N
o
rm

a
liz

a
ti
o
n

N
o
rm

a
liz

a
ti
o
n

10

output signals); thus, normalization is required to maintain signal stability in a regular

neural net (top). We propose to use unitary constraints on the synaptic weights (unitary

Wi) to regulate the activations with the norm preserving property of unitary matrices

(bottom). By doing so, we can eliminate the computationally expensive normalization

steps and improve the network’s inference speed.

C. Literature Review

Lie algebra is not the only way to construct unitary matrices. Researchers have explored

many options to construct unitary weights for RNNs, including eigendecomposition [20], Cayley

transform [21], square decomposition [22], Householder reflection [23], and optimization over

Stiefel manifolds [24]. These methods decompose the unitary matrix into smaller parameter

spaces with mathematical processes that guarantee unitarity; however, the weight matrices in

these approaches must be square. For convolutional neural nets with rectangular weights, there

are approximation techniques based on least square fitting [25], singular value decomposition

[26], and soft regularization [27]. These techniques find the best approximates of the unitary

weights, but they do not guarantee the weight matrices are strictly unitary. On the contrary, our

approach combines the best of the two schools—it is both strictly unitary and applicable to non-

square matrices. Our published work [1] presented in this chapter is the first report on applying

the unitary weights based on the Lie algebra framework for a deep convolutional neural network

with a comprehensive performance study, aiming to make the unitary network an attractive

alternative to conventional normalization methods in inference-time-critical applications.

11

2.2. Theory

A. Matrix Representation of the Unitary Group

In this section, we explain the mathematical framework [19] for representing the unitary

group with unitary matrices, collectively known as the Lie group [28]. Linearization of the Lie

group about its identity generates a new set of operators; these new operators form a Lie algebra.

Lie algebra is parameterized by the Lie parameters, which we arrange as a traceless lower

triangular matrix, L. We name it Lie parameters because it contains independent trainable

parameters for the neural networks.4 For example, we draw L as a 12 x 12 matrix on the right

side of Fig. 2 and highlight the tunable parameters in red. 12 is the dimensionality of the matrix

representation, and in general, we denote it as n. The representable algebra through this

parameterization is only a subspace of unitary groups. Regardless of the expressivity of the

parameterization, the resulting unitary matrix will always preserve the norm; thus, it will

guarantee signal stability in deep neural networks. The drawback of using a less expressive

parameterization is that it may lead to a lower prediction accuracy for the network, which we

will quantify empirically in the result section (Sect. 2.4). In the next few paragraphs, we will

walk through the construction of unitary matrices from the Lie parameters (L); this process is

illustrated in Fig. 2 from right to left.

4 We assume all matrices are real because the weights and activations in deep learning models are real

numbers.

12

Fig. 2. Unitary matrix construction. 5 There are many ways to construct unitary

matrices. In this chapter, we utilize the fact that unitary matrices are matrix presentations

of Lie groups, which can be obtained by exponentiating the Lie algebra. From the right,

we first create the lower triangular Lie parameters matrix, L, for recording the tunable

parameters. As shown in the figure, L has n (n – 1) / 2 trainable parameters. We first

initialize L with random numbers and later train them during neural network training

using backpropagation. Then, we construct the Lie algebra, A, by the equation 𝑳 − 𝑳𝑇 as

illustrated in the middle of this figure, assuring A to be anti-symmetric by construction.

Lastly, on the left, we exponentiate the Lie algebra (A) to obtain the unitary matrix (U),

which is a matrix representation of the Lie group. Unitary matrices are square by

definition. n is the dimensionality of the representation. In this example, n is 12.

5 Figure modified from our published work [1].

Lie ParametersLie AlgebraUnitary Matrix

𝑳 = 𝑳 − 𝑳𝑇𝑼 = ()

n

n

Legend: scalar zero

13

The Lie parameters (L) are related to the Lie algebra (A) by the following equation:

 = 𝑳 − 𝑳𝑇, (3)

where superscript T corresponds to taking the matrix transpose. An essential feature of matrix A

(Fig. 2, middle) is that it is an anti-symmetric matrix (i.e., AT = -A). Any compact metric-

preserving group, including the orthogonal group, has anti-symmetric Lie algebra [24].

Specifically, the following equation proves that the chosen representation for the Lie parameters

will produce an anti-symmetric Lie algebra:

 𝑇 + = (𝑳 − 𝑳𝑇)𝑇 + 𝑳 − 𝑳𝑇 = 0. (4)

Additionally, in the last step of our pipeline to construct unitary matrices, we

exponentiate the Lie algebra, A, to obtain the group representation, which will be a unitary

matrix, U, illustrated on the left side of Fig. 2:

 𝑼 = () = ∑ 𝑁/𝑁!∞
𝑁=0 . (5)

We approximate this matrix exponentiation with an 18-term Taylor series in our implementation.

Besides eliminating any term beyond the 18th order in Eqn. (5), we efficiently group the

computation to avoid redundant multiplications, a standard approach used in many matrix

computation software to save time [30], [31].

We will assume the neural network has synaptic weights that are square for now. In this

case, we can use the unitary matrices (U) to replace the original weights directly, forcing the

neural signals to maintain their norms without explicit normalization. All the intermediate steps

for constructing U are algebraic functions as shown in Eqns. (3)-(5), allowing us to train the Lie

parameters (L) using backpropagation [12] and automatic differentiation [32] together with the

14

rest of the neural net in an end-to-end manner. As mentioned previously, researchers have only

applied the unitary pipeline to a small recurrent neural network (RNN), which has a single

square weight matrix for the feedback loop [19]. Nevertheless, the requirement for the weights to

be square severely limits the usefulness of this prior framework. Using the Lie algebra formalism

to construct unitary weights is an elegant method to regulate signals, and in the following section,

we will expand it to non-square weights by using the Stiefel manifold.

B. The Stiefel Manifold

In the section above, the weight matrices must be square (n x n), forcing the number of

neurons for both the input and output of a particular layer to be identical. This requirement

cannot be satisfied in most convolutional neural nets (CNN) because the adjacent layers may

have different numbers of neurons; hence, there are many non-square weights in state-of-the-art

CNNs. To address this incompatibility between the square unitary matrices and the non-square

synaptic weights, we utilize a concept called the Stiefel manifold [33], which is a subspace of the

unitary group of degree n and have a rectangular matrix representation. Fig. 3 is an example

process to construct a 12 x 4 matrix in the Stiefel manifold, showing the connection between

unitary groups and Stiefel manifolds as follows: The matrix representation of the unitary group is

a unitary matrix U with n orthogonal columns; U is a square n x n matrix. By taking the first k

columns of U (Fig. 3, middle left), we create the matrix representation (V) for the Stiefel

manifold:

 𝑽 = [𝑢̅1 𝑢̅2 … 𝑢̅𝑘] ∈ ℝ𝑛×𝑘, (6)

where 𝑢̅1… 𝑢̅𝑘 are the orthogonal columns vectors of n dimensions copied from U. With this

construction, n ≥ k because we can take n columns from U ∈ ℝ𝑛×𝑛 at most. The resulting V (Fig.

15

3, left) is a tall, rectangular matrix with orthogonal columns. For conciseness, we name V the

Stiefel matrix because it is the matrix representation of an element in the Stiefel manifold;

similarly, a unitary matrix is the matrix representation for the Lie group (or the unitary group).

Fig. 3. Stiefel matrix construction.6 The first three steps to constructing a Stiefel matrix

are almost identical to the construction of an n x n unitary matrix illustrated in Fig. 2.

From right to left, we still construct a lower triangular Lie parameter matrix (L), compute

the Lie algebra (A), and exponentiate A to get the unitary matrix (U). However, instead of

using all n columns in L, we only need the first k columns and set the rest to zero. This

reduction of parameters is possible because, in the last step, we only take the first k

columns in U to construct the Stiefel matrix as shown on the left of this figure. Therefore,

the Lie parameters L only contains n x k – k x (k + 1) / 2 tunable parameters (right most,

shown with highlighted boxes). The Stiefel matrix V is a tall rectangular matrix ∈ℝn x k

with orthogonal columns (left most). In this example, n is 12 and k is 4.

6 Figure modified from our published work [1].

Lie Parameters

𝑳

Lie Algebra

 = 𝑳 − 𝑳𝑇

Unitary Matrix

𝑼 = ()

n

n
Stiefel Matrix

𝑽

n

k

Legend: discardscalar zero

k

16

Moreover, it requires fewer Lie parameters in L to define a Stiefel matrix than to specify

a unitary matrix. By comparing the Lie parameters in Fig. 2 and Fig. 3, one can visualize their

difference: In Fig. 3 (right), L only has k non-zero columns as opposed to the full n - 1 columns

illustrated in Fig. 2 (right). Geometrically speaking, a unitary matrix represents a rotation in the

n-dimensional space; its columns form a complete set of orthonormal basis vectors in the rotated

coordinate system. We utilize the latter interpretation to paint a geometric relationship between

unitary groups and Stiefel manifolds—the unitary matrix consists of all n basis. On the other

hand, the Stiefel matrix selects k of the n orthonormal basis vectors in an n-dimensional space,

forming a subspace of the unitary group. Hence, we only need k columns of Lie parameters (L)

to fully specify the k basis vectors required for the Stiefel matrix.

The unitary matrix (U) is square, but the Stiefel matrix (V) is rectangular. And since both

have orthogonal columns, we would like to check whether V shares the same norm-preserving

property described in Eqn. (2). The columns of V are orthogonal; thus, by construction, we have:

 𝑽𝑇𝑽 = 𝑰 ∈ ℝ𝑘×𝑘. (7)

This is trivial to prove because the dot product between different basis vectors is zero while

between the same basis vector is one, and V is a collection of basis vectors. With this insight, we

repeat the derivation of norm-preservation for Stiefel matrices:

 ‖𝑽𝑥̅‖2 = (𝑽𝑥̅)
𝑇(𝑽𝑥̅) = 𝑥̅𝑇𝑽𝑇𝑽𝑥̅ = 𝑥̅𝑇𝑥̅ = ‖𝑥̅‖2, (8)

where 𝑥̅ ∈ ℝ𝑘 is the input vector. ‖ ∙ ‖2 denotes the Euclidean norm, a distance measure

calculated by squaring all the coordinates, summing the results, and taking the square root. When

we use V as the weight matrix for connecting two neural layers, we will have the following

input-output relationship:

17

 𝑦̅ = 𝑽𝑥̅, (9)

where 𝑥̅ ∈ ℝ𝑘 are the activations of k input neurons (a column vector), 𝑦̅ ∈ ℝ𝑛 are the

activations of n output neurons (also a column vector), and 𝑽 ∈ ℝ𝑛×𝑘 is the Stiefel matrix with k

orthogonal column vectors of dimension n. Putting the previous two equations together, we

prove that the norm of the activation signal is preserved between two adjacent neural layers with

different sizes:

 ‖𝑦̅‖2 = ‖𝑽𝑥̅‖2 = ‖𝑥̅‖2. (10)

To visualize this norm-preserving dimensionality expansion process, we picture a

standard basis, I, as the coordinate system of an n-dimensional vector space, where I is the n x n

identity matrix. U defines a rotated basis in the same vector space, and V selects k of these basis

vectors to form a subspace. We can interpret the input vector (𝑥̅) as coordinates with respect to

the basis set V (i.e., each of the k scalars in 𝑥̅ is a coefficient for a corresponding basis vector in

V). When we compute 𝑽𝑥̅ in Eqn. (9), we are mixing the set of k basis vectors according to the

ratio prescribed by 𝑥̅, resulting in an n-dimensional output vector 𝑦̅. For geometric intuition, we

explain Eqn. (9) as a change of basis from the k-dimensional subspace V to n dimensions. Since

U is an orthogonal basis, we can expand 𝑥̅ from the k-dimensional V subspace to the n-

dimensional U coordinate system by simply setting zeros for the extra n – k coordinates without

modifying the vector norm. Finally, reading out the resulting coordinates in the standard basis (I)

is the same as performing a unitary rotation (U), which preserves the vector norm. Thus, in

addition to the mathematical proof in Eqns. (7)-(10), the norm-preserving property of the Stiefel

matrix can be explained geometrically in the case of increasing numbers of neurons (i.e., n ≥ k).

18

A key limitation of the Stiefel matrix is that it does not work with decreasing numbers of

neurons between two adjacent neural layers. Previously, we construct the Stiefel matrix (V) by

taking k columns from a n x n unitary matrix in Eqn. (6), implicitly creating a constrain that k has

to be less or equal to n. When V is used as the synaptic weight, k corresponds to the number of

neurons in the previous layer and n is the number for the next layer as shown in Eqn. (9). By

definition, V is a tall, rectangular matrix (i.e., n ≥ k), forcing the neural layers to expand.

Furthermore, we cannot just transpose to V to resolve this limitation. 𝑽𝑇𝑥̅ computes the dot

products between 𝑥̅ and the basis vectors in V, measuring how much it aligns with each basis

vector. According to the Pythagorean theorem, this projection results in a shorter vector

compared to 𝑥̅ because we dispose of those vector components outside of the V subspace (we

take only k basis from U to build V).

In practice, there are multiple ways to solve this problem. The easiest solution is to

normalize the output to recuperate the signals lost in missing dimensions (only for those layers

with a shrinking number of neurons). We decide to use this approach in this dissertation because

normalization is only required for a small portion of our network, and the normalization we use

merely divides the output vector with its Euclidean norm without any statistical adjustments.

Even though it is not ideal to add normalization back to portions of our network, the unitary

weights offer other benefits over conventional normalization. Researchers have found orthogonal

weights lead to more efficient filters with fewer redundancies [27]. Another solution is to

concatenate multiple unitary matrices horizontally to build a wide weight matrix, which

preserves the norm for segments of the input vector 𝑥̅. Lastly, it is also possible to minimize

situations requiring wide weight matrices by carefully designing the mapping between the weight

matrices and the convolution filters.

19

C. From the Stiefel Matrix to Convolution Filters

Convolutional layers have weight matrices commonly referred to as filters that convolve

with the input image [12]. The input-output relationship for a convolution layer is purely

algebraic:

 𝒀(𝑖, 𝑗, 𝑘) = ∑ ∑ 𝑭(𝑚, 𝑙, 𝑘)𝑙𝑚 𝑿(𝑖 + 𝑚, 𝑗 + 𝑙), (11)

where Y is the output activations, X is the input greyscale image, F is the convolution filters, m

and l are dummy indices for convolution, i is the index for the horizontal direction, j is for the

vertical direction, and k is the channel direction that corresponds with the filter dimension. In Fig.

4 (bottom), we illustrate an example convolution layer with twelve 2 x 2 filters (F), an 5 x 5

greyscale image (X), and an output tensor of size 4 x 4 x 12 (Y), assuming padding of zero and

stride of one for the convolution. The last dimension of Y is the output channel; it always

matches the number of convolution filters we have. In our notation, F concatenates all 12

convolution filters in the last dimension; hence, its dimensionality is 2 x 2 x 12.

Moreover, we can succinctly represent the convolution as a single matrix multiplication

through the Toeplitz matrix arrangement [27], [34], [35]. Suppose we arrange the input image (X)

as a Toeplitz matrix (Xtoeplitz) and reshape the convolution filters (F) to a 2-dimensional matrix (V)

as illustrated in Fig. 4. In that case, the convolution simplifies to a matrix multiplication between

V and Xtoeplitz as shown in Fig. 4 (top). V is the Stiefel matrix from Fig. 3, stabilizing the

activations across a neural layer with its norm-preserving property as proven in Eqns. (7)-(10).7

Effectively, we convert the convolution between high-dimensional tensors to a multiplication

7 In which 𝑥̅ is a column of Xtoeplitz and 𝑦̅ is a column of Y2d in Fig. 4 (top).

20

between 2-dimensional matrices. The mapping between V and F requires careful consideration

as it will affect along which dimension the neural signal is normalized.

Fig. 4. The Stiefel matrix as convolution filters. We reshape the rows of the Stiefel

matrix (V) into 2 x 2 convolution filters to ensure signal stability (left). The filters

convolve with the input image (X), which has 5 x 5 greyscaled pixels (middle). X is

rearranged as a Toeplitz matrix (Xtoeplitz) such that the convolution between F and X

becomes matrix multiplication between V and Xtoeplitz [27]. We reshape the result of the

Stiefel Matrix

(𝑽)

12

4

=

multiply

4

16

2

2

12

5

5

4

4
12

16

12

Toeplitz Matrix

(𝑿)
Output

(𝒀)

Filters

(𝑭)
Image

(𝑿)
Output

(𝒀)

R
e
s
h

a
p

e

R
e
a
rr

a
n

g
e

R
e
s
h

a
p

e

1

21

multiplication (Y2d) into a 4 x 4 x 12 output tensor (Y); 12 is the number of output

channels (right). Matrix dimensions are for example only; each box represents a scalar.

22

2.3. Method

A. Network Architecture

The objective of our experiment is to show that the neural network becomes faster in

making predictions during inference when we remove normalization from the network

architecture; moreover, we want to demonstrate that unitarity is necessary to stabilize network

training (i.e., removing normalization without adding unitary constraints will make the network

fail to converge in training). Our framework for constructing orthogonal convolution filters from

the Stiefel matrix (Sect. 2.2) applies to any neural nets, and we decide to test our idea on a

particular network architecture named the residual neural network (ResNet), which is the state-

of-the-art for image recognition (Fig. 5, middle). ResNet uses residual connections to improve

training; more specifically, the residual connection functions as a gradient highway for the error

signal to access the earlier layers in the network during backpropagation training [10]. The

residual connection is the long, vertical bypass path in Fig. 5.

In addition to having residual connections, ResNet is also a type of convolutional neural

network because it has many layers of convolution filters as shown in Fig. 5. Convolution is the

best approach for image recognition due to the translational symmetry of the convolution

function. This means that if we construct the network using convolution filters, shifting the

objects in a picture will not change the prediction output as we will expect. We apply the Stiefel

matrices (Sect. 2.2C) to the convolution filters and remove the normalization layers in ResNet

(Fig. 5, right), and we name our architecture the unitary residual neural network (UniResNet).

Our architecture is a narrower and shorter variant of the popular ResNet-50, which has 50 layers

with weights (the number denotes the total layers with tunable synaptic weights). The number of

layers is adjustable by simply appending more unit blocks to the network as shown in Fig. 5. A

23

deeper network results in a more complicated mathematical function (equivalent to a higher-

order polynomial) and is more susceptible to overfitting. Overfitting is a phenomenon in which

the network fits the training data perfectly well but fails to generalize to new data. When a

network overfits, its training accuracy is high, but its testing accuracy suffers greatly. We picked

a smaller model to prevent overfitting because ResNet-50 was designed for the more complex

ImageNet dataset that has 1000 object classes as opposed to the CIFAR-10 dataset we use in our

experiments. CIFAR-10 has only ten classes (see Sect. 2.3B for details). Our UniResNet-44

architecture convolutional layers with a fully connected layer at the end for projecting the high-

dimensional neural signals to ten output classes; we document the sizes and numbers of

convolutional filters for each layer in Fig. 5 below (left & right) for data reproducibility. Also,

we study the scalability in terms of depth with the 92 and 143-layer networks (i.e., UniResNet-92

and UniResNet-143). Unless specified otherwise, we refer to UniResNet-44 as “UniResNet” in

the following sections. See our source code for details.8

An important implementation detail is that we cache the Stiefel matrix after training to

save inference time (the time to predict the class label of a given input during inference). The

steps to construct the Stiefel matrix are explained in Sect. 2.2 and depicted on the top-right

corner in Fig. 5 with the label “activated for training.” During inference, the resulting Stiefel

matrix is retrieved from the cache, so we do not spend time computing the unitary matrix (U)

again as exponentiating the Lie algebra (A) can take significant computing resources. The

translation between V and F (Fig. 5, middle-right) is a simple tensor reshaping operation detailed

previously in Sect. 2.2C.

8 https://github.com/h-chang/uResNet

24

Fig. 5. Our unitary residual neural network (UniResNet) architecture. 9 Our

UniResNet (right) speeds up inference significantly by removing normalization in the

state-of-the-art ResNet (middle). To maintain signal stability in our UniResNet, we use

the Stiefel matrix (V) to ensure that the norm of the input vector is preserved (see Sect.

2.2B). All neural layers in the network are listed on the left; we enlarge one of the unit

blocks to illustrate its contents. Each unit block contains three convolution layers with

different numbers of convolution filters. We label the number of filters with α, β, and γ in

the figure. For instance, β Conv3x3 for a layer with β = 16 means that there are 16

convolution filters of size 3 x 3 in that layer. The rectified linear unit (ReLU) is used as

nonlinearity at locations indicated in the figure.

9 Figure modified from our published work [1].

Unit Block α=16 β=16 γ=64

Unit Block α=16 β=16 γ=64

Unit Block α=16 β=16 γ=64

Unit Block α=32 β=32 γ=128

Unit Block α=32 β=32 γ=128

Unit Block α=32 β=32 γ=128

Unit Block α=32 β=32 γ=128

Unit Block α=64 β=64 γ=256

Unit Block α=64 β=64 γ=256

Unit Block α=64 β=64 γ=256

Unit Block α=64 β=64 γ=256

Unit Block α=64 β=64 γ=256

Unit Block α=64 β=64 γ=256

Normalization & ReLU

16 Conv3x3

Pooling & Flatten

Fully Connect Linear256x10

Image (𝑿) ∈ ℝ32x32x3

Class ∈ ℝ10

P
ro

p
o

s
e

d

 C

h
a

n
g

e
ResNet

+

Normalization

α Conv1x1

Normalization

β Conv3x3

Normalization

γ Conv1x1

ReLU

ReLU

ReLU

Our UniResNet

Stiefel Matrix

(𝑽)

Lie Algebra

()

Lie Parameters

(𝑳)

Unitary Matrix

(𝑼)

A
c

ti
v

a
te

d
 f

o
r

tr
a

in
in

g

Cached for inference

+

α Conv1x1

β Conv3x3

γ Conv1x1(𝑭)

ReLU

ReLU

ReLU

State-of-the-art Unitary Residual Network

25

B. Datasets Characteristics

We use the CIFAR-10 image recognition dataset created by the Canadian Institute for

Advanced Research; it contains 60,000 32 x 32 color images with ten labeled classes and is

freely available for download [36]. The ten classes represent airplanes, cars, birds, cats, deer,

dogs, frogs, horses, ships, and trucks with 6,000 pictures for each class, and the recognition task

is to predict the class of a given image. We split the dataset into 50,000 training and 10,000 test

images with the same data argumentation scheme as the original ResNet-50 paper [10].

Following the convention used in machine learning, we call the 50,000 training data the “training

set” and the 10,000 testing data the “test set.” Additionally, we also study the unitary neural

network’s susceptibility to overfitting with the CIFAR-100 dataset, which contains 100 different

types of objects [36].

C. Training Details

We modified the source code found in this reference [37] for comparison against

conventional normalization techniques, sharing the same learning rate (0.1), learning schedule

(that divides the learning rate by 10 at 100, 150, and 200 epochs), batch size (128), and training

epochs (250). The only modification we made for the unitary neural net is that we added the

unitary pipeline using the method described previously in Sect. 2.3A for the convolutional layers.

We also removed all the normalization blocks in the unitary version. We trained the regular and

the unitary networks with the stochastic gradient descent optimizer in PyTorch with a

momentum setting of 0.9 and weight decay of 0.0002. We measured the neural networks’ speed

and memory usage by simulating each neural architecture one at a time on a single NVIDIA

RTX3090 graphics card with 24 GB of total video memory.

26

D. Caching the Unitary Weights

During training, the entire neural pathway is enabled, including the block that contains

the Lie parameters, Lie algebra, and Lie group (Fig. 5, top-right). Gradients are backpropagated

from the output to update the Lie parameters. After training is complete, the best unitary weights

are cached; thus, we do not need to recompute the unitary weights during inference.

27

2.4. Results & Discussion

With our proposed unitary convolutional neural network from Sect. 2.3, we compare the

performance of our proposal against popular normalization methods and summarize the main

results of our experiment in Fig. 6 below. By removing the network’s unitary pipeline (the block

with Lie parameters, Lie algebra, and Lie group in Fig. 5) during test time, we achieved a much

faster inference speed than other normalization methods, including the batch norm [17], group

norm [38], layer norm [39], and instance norm [40]. Each of these methods addresses a specific

problem; therefore, the designer might favor one over the other depending on the application.

With our unitary convolution, we offer the community another tool in the toolbox that is

lightning fast—32% faster than the instance norm in inference. We compute the speedup by

comparing the inference time between the unitary network and the instance norm in Fig. 6(e).

Our method shares many characteristics with the instance norm; however, instead of normalizing

based on the neural signals’ statistics, we devise a set of unitary weights to ensure signals

maintain their norm per Toeplitz matrix row. Compared to the instance norm’s training time, our

training time for the unitary network is also long due to the need to perform matrix

exponentiation. Still, it is possible to further expedite it by limiting the frequency that we

exponentiate (i.e., sharing the same unitary weights for several iterations) or utilize iterative

methods to implement the unitary constraint. The result shown in Fig. 6 is measured without

weight sharing during training.

28

Fig. 6. Performance of our UniResNet vs. other normalization methods.10 Other

methods include the batch norm [17], group norm [38], layer norm [39], and instance

norm [40]. We also included the case without any normalization for comparison (none).

We used the residual network (ResNet) architecture with 43 convolutional layers to

measure the accuracy, the time, and the memory benchmarks when the networks perform

image recognition tasks on the CIFAR-10 dataset as described in Sect. 2.3A. CIFAR-10

has ten unique classes of objects. (a, d). Training and inference accuracies, respectively.

The accuracy reports the percentage of time the network determines the image class

correctly with one try. (b, e). Training and inference time, respectively. The training time

is the time to train the network with 12.5 million images, while the inference time reports

the time to recognize 2.5 million images. (c, f). Training and inference memory,

10 Figure from our published work [1].

29

respectively. Because we trained these networks on graphics processors, memory

benchmarks measure the maximum video memory a network consumed during each

operation mode. All metrics are average measurements over four simulation runs.

In our experiment, both unitary network and batch normalization do not calculate running

statistics (i.e., means and variances) during inference while group, layer, and instance norms

track running statistics in the test set. Batch normalization is the second fastest and can

potentially match the speed of the unitary network if the batch normalization layer is absorbed

into the previous convolutional filters. However, batch normalization will not perform well in

applications that require small batch sizes or normalization per data sample such as making

adjustments to the contrast of individual images [40]. Group, layer, and instance normalizations

work on a per-image basis; the difference between them is the number of channels that they

average over. In our experiment, we picked a group size of eight; hence, the group normalization

needs to keep track of eight means and variances per image. Contrary to the layer norm that only

requires one mean and one variance per image, the instance norm tracks as many means and

variances as the number of channels, which is up to 256 in our architecture. Our UniResNet

maintains the L2 norm of each column in the Toeplitz matrix Xtoeplitz (Fig. 5) representing the

input activations, delivering similar effects as the instance norm but without the inference speed

penalty. The mapping between the filters and the unitary matrix determines which dimension of

the activation map the unitary network is effectively normalizing.

The unitary network also uses less temporary memory (dynamic random-access memory

or DRAM) required to backpropagate neural signals through the normalization layers during

training; more specifically, 8% less than all other normalization methods. Despite our advantages

30

in inference speed and training memory, unitary networks’ accuracy is slightly lower in general.

Unitary weights constrain the signals to be on the n-sphere (or k-sphere since we have k

dimensions) by design and are less expressive than free weights. Nevertheless, our accuracy is

comparable to other normalizations and even surpasses the inference accuracy of the layer norm.

An additional advantage for the unitary network is apparent when we save the model parameters

to hard disks: as we demonstrated in Fig. 3, the matrices encoding the Lie parameters have many

zeros. This leads to better compression for the parameter files. An approximation for model size

saving is roughly a 15% to 50% reduction in disk space when working with unitary

convolutional architectures. We compute the 50% reduction by leveraging the fact that we only

need to record half of the values in a triangular Lie parameter matrix, assuming that the weight

matrix is square as shown in Fig. 2.

We observe that the unitary neural networks are less susceptible to overfitting. Using the

CIFAR-100 dataset and the same network structure (UniResNet-44), we discovered that unitary

networks have a smaller difference between the training loss (1.44) and the testing loss (1.62).

While the conventional ResNet has a larger difference between the training loss (0.07) and the

testing loss (1.56). A smaller difference between training and testing loss means that the network

generalizes to new data better; in other words, it has less overfitting. Furthermore, our unitary

networks can be deepened to 100+ layers without the costly normalization blocks: the 92-layer

version (UniResNet-92) achieves 99.6% and 90.4% in training and testing accuracies,

respectively, on CIFAR-10. Similarly, the 143-layer version (UniResNet-143) delivers 99.7%

and 90.7% in training and testing accuracies.

31

2.5. Conclusion

We report here the first instance of using unitary matrices constructed according to the

Lie algebra for rectangular convolutional filters, which eliminates the exploding and vanishing

activations in deep convolutional neural networks. With clear geometrical interpretations, our

theory is a breakthrough based on rigorous, exact construction of the unitary weights applicable

to all types of neural networks including but not limited to convolution. The key innovation is

that we found a way to ensure signal unitarity with unitary weight matrices of any shapes and

dimensions such that the neural signals will propagate across the network without amplification

or degradation. Moreover, unlike traditional normalization, our approach has the least impact on

inference time, achieving a 32% speedup in recognizing color images when compared to instance

normalization. The effective normalization dimension is adjustable in our framework through the

mapping between the convolutional filters and the unitary matrices. Our proposal also reduces

hard disk storage by up to 50% depending on the neural architectures. The presented framework

establishes unitary matrices as a design principle for building fundamentally stable neural

systems.

32

Chapter 3 — Unitary Neural Nets For

Robust Natural Language Processing

Unitarity improves the robustness under adversarial attacks.

33

3.1. Introduction

A. Natural Language Processing

The objective of natural language processing (NLP) is to automatically analyze human-

generated texts with machines, and the specific NLP task we study in this dissertation is text

classification. That is, we aim to design robust machine learning models that can categorize the

topic of a paragraph, understand the causal relationship between sentences, and infer the writer’s

sentiment. To achieve this aim, we start by improving the state-of-the-art neural network in NLP:

the Bidirectional Encoder Representations from Transformers (BERT)—a network structure

designed specifically for understanding languages.

The neural architecture of BERT [41] is shown in Fig. 7. [42]. Its first neural layer

contains three look-up tables for encoding a sentence into a vector, and we call these tables

embeddings (i.e., Word, Position, and Token shown in Fig. 7, top left). For instance, in Word

embedding, each word in the dictionary is represented by a vector of 768 dimensions. The

vectors are first initialized randomly and then trained to represent the relationship between words

in the vector space geometrically. This also means that, with successful training, BERT will

group similar words closer together in the vector space [43]. Likewise, the Position embedding

represents the position of the word in a sentence, and the Token embedding records the token

type.11 At the end of the embedding section (labeled as Embed in Fig. 7), the vectors are summed

together and normalized before further processing.

11 More specifically, the Token embedding is used in a next-sentence-prediction task, in which we mark

whether a word belongs to the previous sentence or the next sentence. It is unimportant for our

discussion.

34

After converting words to vectors, BERT analyzes the sentence embedding by using an

attention mechanism similar to index cards in a library back in the day: The Query (Fig. 7, top-

right) is a linear transformation for devising a question to ask, the Key is the indexes for the

relevant information, and the Value is the information itself. Each of these layers has a unique

weight matrix for the linear transformation. For simplicity, we call the resulting neural

activations query, key, and value, respectively. The query and key are multiplied together to

compute an attention map, highlighting the location BERT should pay attention to in the value.

The attention map multiplies with the value to retrieve the actual information. The resulting

activations pass through multiple linear transformations (Dense, Expand, and Reduce in Fig. 7,

middle-right) and normalizations. Bypass connections are provided as a gradient highway to

improve training convergence like in the residual neural networks discussed earlier in Sect. 2.3A.

The attention layer is repeated 12 times to transform the sentence embedding into a

succinct neural representation for the classifier, a linear transform. Finally, we use a projection

matrix for reducing the dimensionality of the number of classes for a classification problem (Fig.

7, bottom-left). The final activation values (𝑦̅) are often referred to as “logits” in the literature.12

During inference, we use the argmax function to identify the class that has the highest logit,

resulting in an integer class label. Also, the argmax function takes in a vector and returns the

index of the largest vector element. For training, the logits are normalized with softmax before

passing to the cross-entropy loss (Fig. 7, bottom-right). We will explain softmax and cross-

entropy in the following paragraph.

12 The name logits comes from logistic units in mathematics; they are the inputs to a partition function for

computing propabilities in logistic regression, representing a unit change of probability in the log scale.

35

Fig. 7. Bidirectional Encoder Representations from Transformers (BERT) neural

architecture. BERT [41] represents a sentence in digital computers by encoding its

words using vector embeddings. For each word, we look up three vectors, representing its

meaning, position, and type using the Word, Position, and Token embedding modules,

respectively (top-left). The network then transforms the sentence vector using 12

attention layers (middle-left). The details of an attention layer are illustrated on the right.

After the series of transformations, the resulting encoding represents the meaning of the

T
ra

n
s
fo

rm
E

m
b
e
d

C
la

s
s
if
y

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

+

Dropout

Classifier ,

Tanh & Dropout

Projection (,)

Sentence

Normalization

Word
 ,

Token
 ,

Position

 ,

Argmax

Class Label ∈ ℤ

Query
 ,

Scale & Softmax

●

●

Dense ,

+

Normalization

Expand ,

Reduce ,

Normalization

GELU

+

Dropout

Dropout

Dropout

Key
 ,

Value
 ,

Cross-entropy Loss

Loss ∈ ℝ

Activated for training

A
tt

e
n

ti
o

n
 L

a
y
e
r

Legends:

Tanh, GELU = nonlinear

activation function

Dropout = random

neuron omission

 = vector embedding

 = linear transform

Multiply

Multiply

Sum

Sum

Softmax

36

sentence succinctly; then, we feed this final encoding to a classifier for categorizing the

sentence into one of the predefined classes. As for notations, (,) indicates that

the type of neural module is an embedding layer with weight matrix Ww; (,)

denotes that the layer is a linear transform with weight matrix Wq. Tanh is the hyperbolic

tangent; GELU is the Gaussian Error Linear Unit [44]. They are nonlinearities similar to

the ReLU.

The softmax is a partition function for renormalizing each logit into the probability of the

data belonging to a particular class (pi). Amplifying the logit that has the highest value and

suppresses the rest, it is named softmax because is a smooth, differentiable function in contrast to

argmax, which simply picks the maximum element. The softmax is defined as:

 𝑝𝑖 =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖
𝑛𝑐−1
𝑖=0

∀ 𝑖, (12)

Where nc is the number of classes in the classification problem and 𝑦𝑖 is a vector element of the

logits 𝑦̅. 𝑝𝑖 represents the probability of the datum belonging to class i. We then collect all 𝑝𝑖 in a

vector and denote it as 𝑝̅ (i.e., 𝑝̅ ≜ [𝑝0, 𝑝1, … , 𝑝𝑖]
𝑇
).

The cross-entropy loss is a distance measure for training the neural network. A neural

network is a nonlinear function f(x) with tunable parameters W for mapping an input 𝑥̅ to an

output 𝑦̅ (i.e., W is a high-dimensional tensor that records the weights for all neural layers in the

network). When the softmax function in Eqn. (12) is used to renormalize 𝑦̅, the final output of

the network becomes 𝑝̅. To backpropagate the error for training W, we not only need a set of

data points to exemplify the desired input-output relationship but also a loss function that

measures the distance between the current network output (𝑝̅) and the desired output (LABEL).

37

The pair (𝑥̅, LABEL) exemplifies a datum in the dataset, relating a feature (𝑥̅) with a class label

annotated by humans. In our notation, 𝑝̅ and LABEL do not have the same dimensionality. More

specifically, 𝑝̅ is a vector of dimension nc, and LABEL is an integer ranging from 0 to nc – 1.

Often, the loss function is also called the error function or the objective function in the literature,

and the most common loss function used for BERT is the cross-entropy loss. The cross-entropy

loss is defined as the following for a datum:

 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 ≜ −∑ 𝑙𝑜𝑔(𝑝𝑖)
𝑛𝑐−1
𝑖=0
𝑖≠𝐿𝐴𝐵𝐸𝐿

, (13)

where pi ∈ℝ is the probability of the sample being in class i as defined in Eqn. (12), nc is the total

number of classes, and LABEL ∈ℤ∩{0, …, nc – 1} is the correct class label created by humans.

LABEL is an integer. All variables in (13) are scalers, and we average the cross-entropy loss

across all data samples in a batch of training data.

BERT has many advantages over its predecessors such as the convolutional neural

networks (CNN) and the recurrent neural networks (RNN). Mainly, BERT learns from a massive,

unlabeled corpus first and then focuses on a specific category using a small, labeled dataset with

little additional training. In machine learning terminology, training for BERT is separated into

two phrases: pretraining and finetuning. During the pretraining phase, the network is trained as a

masked language model, in which words are randomly masked out and the network is asked to

predict the missing words [45]. Pretraining teaches BERT the basic mechanics of the language

such as grammar and semantics. Because the dataset does not have human-generated labels, the

pretraining phase is considered unsupervised learning. On the other hand, finetuning trains

BERT to perform a specific NLP task (e.g., identifying the sentiment of a message as labeled by

humans). The finetuning phase is considered supervised learning because the network is trained

38

using a human-labeled data set, and finetuning is much shorter than pretraining. A well-

pretrained BERT can solve many downstream tasks with little finetuning.

B. Adversarial Attacks

We define adversarial attacks as follows: an algorithm maliciously injects small

perturbations to a neural network to alter its output prediction. In computer vision, a small noise

is added to an image to trick the network into believing that the image belongs to a different class

[46]. Deep neural networks are sensitive to small noises because they make predictions by

drawing polytope decision boundaries in high-dimensional space [11], and they often create

extraneous decision regions where no training or test data resides [47]. The attackers aim to

create enough perturbation without appearing suspicious to humans but shift the neural response

across the decision boundary [48]. Decision boundaries are the demarcation of data distributions

for different classes in the activation space.

Unlike image processing, NLP works with discrete tokens instead of continuous signals.

Therefore, adversarial attacks are contrived differently to attack NLP systems. Specifically for

attacks on BERT, by swapping words with their synonyms in a sentence, we maintain the

semantics of the sentence while introducing a small change in the vector embedding. Because

BERT is a deep neural network with many layers, these small perturbations can be amplified to

larger differences as neural signals propagate through the network if the weights are non-unitary.

Swapping of words with their synonyms may lead to misclassification in BERT, and we refer to

this type of attack as synonym-based attacks [49]–[51]. Another type of adversarial attack is by

introducing typographical errors in the sentences [52], [53]. In this case, although the injected

typos appear benevolent to the readers, they can manipulate BERT to produce the wrong results

39

because the small perturbations can amplify with non-unitary weights. Sect. 3.3E below lists the

BERT NLP attacks we evaluate in this study.

Traditional machine learning for NLP is less susceptible to adversarial attacks because

they are often based on rules or statistics with only a handful of processing steps. Some example

frameworks include grammar-based parsing (identifying the sentence semantics by the subject,

verb, and object relationship), decision trees (a set of decision rules organized in a tree-like

graph), term-frequency inverse-document-frequency analysis (statistically analyzing the

frequencies of words to identify the topics of a document), support vector machines (making

decisions with linear classifiers), and clustering (grouping similar concepts together). Because

they use an explicit, small set of criteria for the machine to make a decision, a programmer can

easily validate its decision rules. They are robust and simple but lack the intellectual capacity

required to understand complex questions and passages. In contrast, the decision mechanism in

deep learning is difficult to validate because we cannot interpret the internal neural signals in a

neural network. Consequently, lacking formal verification, deep neural networks are more

susceptible to adversarial attacks.

C. The Problem with Current Defense Methods

To date, the defense techniques against adversarial attacks on BERT can be grouped into

two categories:

1. Adversarial Training with Data Augmentation. The first technique is to train the model

with additional adversarial and augmented data. The designer of the neural network needs to

anticipate the attack recipes that the hacker will use, generate adversarial samples

accordingly, and train the network with the generated samples to prevent a future attack. The

40

drawback of this technique is that it requires the designers to predict the attack methods used

by the adversaries to create appropriate coverage in the sample space. Furthermore, training

will take much longer if we desire full coverage for all types of adversarial attacks. Data

augmentation is commonly used together with adversarial training, which generates

additional training samples by swapping words with their synonyms or by interpolating the

existing data points. One of the best is to combine adversarial training and data augmentation

as seen in defense models such as AMDA [54] and MRAT [55] (see Sect. 3.4B for details).

For brevity, we will use the term “adversarial training” to refer to defense models that use

adversarial training and data augmentation together to achieve state-of-the-art robustness.

2. Regularization. The second type of defense against adversarial attacks is by adding a

regularization term in the loss function to reduce model complexity and therefore mitigate

overfitting. Using polynomial regression as an analogy, we explain overfitting as an

undesirable phenomenon in which a machine learning model has too many higher-order

terms. The resulting polynomial function is very complex, capable of fitting the training data

very well with high training accuracy. However, because of its higher-order terms, it may

create curves that are not related to the underlying physics of the variables under study—a

model with great capacity learns all the artifacts in the dataset, resulting in poor

generalization when the model encounters new data points that it has not seen before. To an

extent, neural networks (such as BERT) find the mathematical relationship between the input

and the output similar to polynomial curve-fitting, and hence they are suspectable of

overfitting the dataset if the network gets too deep. A way to alleviate overfitting is by

adding additional constraints on BERT to make the model less expressive. For example,

InfoBERT is a robust model that uses an information bottleneck as a regularizer to limit

41

model complexity [56]. Disadvantages of regularization-based defense include high

computational costs and added complexity.

We will demonstrate that our proposed model has superior robustness compared to the state-of-

the-art defense techniques based on adversarial training and regularization in Sect. 3.4.

D. Our Proposed Solution

Our unitary multi-margin BERT architecture (UniBERT) is a ubiquitous, simple defense

mechanism, and we will outline our UniBERT architecture in Sect. 3.3 below. In the following

sections, we will demonstrate that, unlike adversarial training, our model does not depend on the

type of attacks used by the adversaries. Moreover, our UniBERT is much more straightforward

to implement compared to the regularization methods.

By switching the cross-entropy loss with the multi-margin loss (detailed later in Sect.

3.2A) during finetuning, UniBERT forces the neural representation of different classes to be

more distinct and hence increases the decision margin as to be explained next. In this dissertation,

we define decision margin as the distance between the logits and the decision boundary and

neural representation as the activation map used by a neural net to encode a concept. In detail,

each neuron outputs a scalar value called the activation. Collecting all activations in a layer of

neurons results in an activation map. A neural net often has similar activation maps for closely

related concepts; hence, we refer to the particular activation map (i.e., neural firing patterns) as

the neural representation of a concept. In our UniBERT, the multi-margin loss not only functions

as a distance measure to quantify the error between the network output and the desired output but

also provides a way to increase the margins (i.e., distances) between the neural representations

for different concepts, making the network more robust. Additionally, our UniBERT uses unitary

42

matrices for the synaptic weights to confine small perturbations to achieve an extra boost in

robustness by preventing small noise from amplifying across the network (see Sect. 3.2B below).

Unitarity maintains the cosine distance between two vectors, hence, constraining the injected

perturbations. This counteracts the attacks devised by the adversaries (often in a form of a small

change in the input sentence) and stabilizes the final prediction.

As a brief overview for this chapter with detailed explanations to be followed, our

scientific discoveries and contributions to the machine learning literature include:

1. The multi-margin loss penalizes different classes from having similar neural representations,

providing a cushion to absorb small input perturbations without changing the final prediction.

2. When used together with the multi-margin loss, the unitary weights further boost the

adversarial robustness by constraining the injected perturbations across the network.

3. Our UniBERT is attack-agnostic, simple, and unique. It achieves a significant improvement

in post-attack accuracy compared to the state-of-the-art defense models.

E. Literature Review

The multi-margin loss is widely deployed in support vector machines (SVM) for

traditional machine learning [57], and it has also been shown to make image recognition more

robust [58]–[61]. However, it is uncertain whether the same conclusion can be drawn for NLP. In

NLP, signals are discrete words instead of pixels (with continuous values ranging from 0 to 255)

in a given picture. Likewise, orthogonal constraints have been shown to avert adversarial attacks

in computer vision [27], [62]–[64], but orthogonality has not been studied in BERT. Our study is

the first time when the multi-margin loss and unitarity are used together to improve the

43

adversarial robustness in NLP systems. The improvement is quite dramatic as shown in the

following sections.

44

3.2. Theory

A. Multi-margin Loss Increases Robustness

As a review, the activation value of a neuron is defined as the sum of the products

between the inputs and the weights. The collection of activation values in a layer is called an

activation map or activations for short, and the activations of the last neural layer are called

logits. Furthermore, a loss function is a distance measure that quantifies the deviation between

the neural net’s output from the desired output, and a neural net’s output may or may not be

normalized before feeding into the loss function (we will discuss our chosen implementation

later). Unlike most loss functions that only quantify the distance, the multi-margin loss provides

an additional margin of safety between the logits and the decision boundary to ensure the

network can absorb any input perturbation without changing the prediction outcome. In detail,

the extra margin safeguards against attackers from injecting small input perturbations to move

the logits across the decision boundary and from sabotaging the network’s prediction. The multi-

margin loss is defined as:

 𝑚𝑢𝑙𝑡𝑖 𝑚𝑎𝑟𝑔𝑖𝑛 𝑙𝑜𝑠𝑠 ≜
1

𝑛
∑ ∑ 𝑚𝑎𝑥(𝑦𝑖,𝑗 + 𝜀 − 𝑦𝑖,𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 0)

𝑛𝑐−1
𝑗=0

𝑛−1
𝑖=0 , (14)

where n is the batch size, nc is the number of classes, yi,correct is the logit of the neuron

corresponding to the correct answer, yi,j is the logit for other neurons; ε is the margin parameter,

setting a gap between the logits for different classes as discussed below. All variables are scalars.

To provide some intuition for the multi-margin loss, we illustrate how it works in UniBERT with

a binary sentiment analysis example in Fig. 8 below.

45

Fig. 8. Multi-margin loss for binary sentiment analysis with UniBERT. On the left,

UniBERT receives an input sentence 𝑥̅, transforming it with the embedding and the 12

attention layers (abbreviated as … in the figure) to latent neural representations, 𝑥̅1… 𝑥̅12.

𝑥̅12 passes through the classifier and the projection layers to become logits 𝑦̅ , consisting

of y1 and y0 (scalars) in the binary classification example shown here. If y1 > y0, the

network will predict that the sentence has a positive sentiment (class 1); otherwise, it

predicts a negative sentiment (class 0). The multi-margin loss compares 𝑦̅ with the

correct answer labeled by humans (denoted by the checkmark in the figure) and penalizes

the network for any insufficient distinction between the two logits (i.e., y1 - y0). We name

this difference “logit dissimilarity,” δ. Additionally, we define a margin parameter ε such

that the multi-margin loss is proportional to the lack of the desired margin when δ < ε as

shown in the figure by the line with a slope of -1. If the network has sufficient margin,

the loss is zero (i.e., the flat segment on the right). During training, our UniBERT adjusts

its weights from all the layers to minimize loss; training progression is depicted by the

square, triangular, and circular markers on the graph. With a larger ε, the multi-margin

loss encourages our UniBERT to have highly distinctive logits, making it more difficult

for the attackers to move them across the decision boundary with small perturbations and

to sabotage the prediction results.

M
a

rg
in

Multi-margin loss

 ↑ ↑
“This is a

great

restaurant.”

U
n

iB
E

R
T

Projection

y0

y1

C
la

s
s

if
ie

r…

Class 0
negative

sentiment

Class 1
positive

sentiment
𝑥̅ 𝑥̅1… 𝑥̅12 Logits, 𝑦̅

Logit dissimilarity
(≜ 𝑦1 − 𝑦0)

Legend: start middle end

46

The multi-margin loss is illustrated in the right panel of Fig. 8. For each data sample

(indexed by i) in Eqn. (14), the loss is the larger of the two terms between yi,j + ε – yi,correct and

zero, which correspond to the two linear segments of the graph in Fig. 8. The margin parameter

(ε) determines the intercept between the two segments. Our objective is to train the network such

that the logit for the correct class (yi,correct) exceeds the logit of the incorrect class (yi,j) by the

margin (ε) we specify (i.e., yi,correct > yi,j + ε). If yi,correct fails to meet the target value, yi,j + ε, we

will penalize the network with a loss equivalent to the gap to target (i.e., yi,j + ε – yi,correct). This

corresponds to the line segment with a slope of -1 (Fig. 8, right panel). On the other hand, if

yi,correct already exceeds our target, we set the loss to zero in Eqn. (14), and this is represented by

the flat portion in the same graph. As shown later in Sect. 3.4D, a large ε encourages our

UniBERT to have distinctive logits for each class and hence increases the decision margin. The

separation of neural representations for different classes is critical to prevent the attackers from

tampering with the prediction outcome by injecting perturbations to intentionally move logits

across the decision boundary. The name multi-margin comes from the fact that there are multiple

margins, one for each class.

As for the implementation details, we decide not to use softmax between the logits and

the multi-margin loss. The reason is that it dampens the backpropagated gradients as the logits

deviate from zero, which slows down learning. Also, in contrast with traditional machine

learning, in which features are designed manually, deep learning models such as our UniBERT

learn features automatically through backpropagation. This important distinction allows our

UniBERT to modify the neural representations in earlier layers (i.e., 𝑥̅1… 𝑥̅12 in Fig. 8, left) to

accommodate a higher margin (ε) and to achieve a lower loss (i.e., the circular marker in Fig. 8,

right). Whereas in shallow models such as the support vector machines, training stops as soon as

47

the classifier layer converges without modifying the features (e.g. 𝑥̅12), leading to a higher loss

(i.e., the triangular marker in the same graph). Thus, setting a larger ε is less likely to produce

distinctive logits in traditional, shallow models.

B. Unitarity Confines Perturbation

In an adversarial attack, the input perturbation needs to be subtle to avoid detection. A

unitary matrix (U) maintains the distance between the original (𝑥̅) and the perturbed vector (𝑥̅′):

‖𝑼(𝑥̅ − 𝑥̅′)‖2 = [𝑼(𝑥̅ − 𝑥̅
′)]𝑇[𝑼(𝑥̅ − 𝑥̅′)] = (𝑥̅ − 𝑥̅′)𝑇𝑼𝑇𝑼(𝑥̅ − 𝑥̅′) = ‖𝑥̅ − 𝑥̅′‖2. (15)

This is a corollary of the conservation law for the Euclidean norm of the input vectors as shown

in Eqn. (2) of Sect. 1.2. In Eqn. (15), the right-hand side is the norm of the input perturbation,

which will need to be small to be discreet. The left-hand side measures the amount of change in

the output after the unitary transform. Consequently, unitarity guarantees that small perturbations

remain small after the transformation. In its non-unitary counterparts, the linear neural layers

may accidentally amplify the perturbations, in which the logits can move across the decision

boundary and result in a classification error. Non-unitary weights may suppress the perturbations

as well; however, our goal is to eliminate any slight chance of perturbation amplification.

We aim to improve BERT’s robustness against adversarial attacks with the unique

property of unitary matrices shown in Eqn. (15). More specifically, unitary constraints are

enforced in the selected layers in our UniBERT to stabilize the injected perturbations across the

network as we will show next. Our UniBERT combines the multi-margin loss in Eqn. (14) and

the unitarity in Eqn. (15) to guarantee that there is not only a wide margin to deter the logits from

crossing the decision boundary but also a stabilization mechanism to limit the effect of

48

perturbations, delivering the state-of-the-art robustness as demonstrated later in Sect. 3.4 with

experimental data.

49

3.3. Method

A. Network Architecture

Our UniBERT is an enhanced BERT that uses multi-margin loss and unitarity as

described above to increase the neural network’s prediction accuracy under adversarial attacks.

This subsection explains the implementation details for our UniBERT neural architecture, which

is illustrated in Fig. 9 below. Compared to the original BERT in Fig. 7, our modifications are:

1. During finetuning, we replace the softmax and cross-entropy loss with just the multi-margin

loss on its own (see Fig. 9, bottom). We do not modify the softmax or the cross-entropy loss

for pretraining. The reason for this is that multi-margin loss works best for classification

tasks; thus, it is applied during finetuning and not during pretraining, which is a masked

language modeling task.

2. During both pretraining and finetuning, we force certain layers to have unitary weights, and

the selected layers are circled with dash lines in Fig. 9, top-right. The selection of the unitary

layers will be explained below. The exact procedure to ensure their weight matrices are

unitary is described in the following subsection (Sect. 3.3B).

Although our current implementation has the same number of parameters (110M) as the BERT

base, researchers have shown that it is possible to further compress the number of trainable

parameters by half [1].

50

Fig. 9. Our unitary multi-margin BERT (UniBERT) architecture. Like BERT,

UniBERT classifies a sentence by first converting words in a sentence vector using the

Word, Position, and Token embeddings (top-left). It then transforms this sentence vector

using 12 attention layers with details shown on the right of this figure. Our UniBERT is a

variant of BERT with the following differences: First, we use the multi-margin loss

(bottom) instead of the cross-entropy loss during the finetuning portion of the training

process. Second, we enforce unitary constraints on the weights circled with dashed lines

T
ra

n
s
fo

rm
E

m
b
e
d

C
la

s
s
if
y

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

Unit Block

+

Dropout

Classifier ,

Tanh & Dropout

Projection (,)

Sentence

Normalization

Word
 ,

Token
 ,

Position

 ,

Argmax

Class Label ∈ ℤ

Query
 ,

Scale & Softmax

●

●

Dense ,

+

Normalization

Expand ,

Reduce ,

Normalization

GELU

+

Dropout

Dropout

Dropout

Key
 ,

Value
 ,

Multi-margin Loss*

Loss ∈ ℝ

Activated for finetuning

u
n

it
a

ry
 m

a
tr

ic
e
s
*

*Proposed Changes

A
tt

e
n

ti
o

n
 L

a
y
e
r

Multiply

Multiply

Sum

Sum

𝑥̅1

𝑥̅12

𝑥̅11

𝑥̅10

𝑥̅

𝑥̅

𝑥̅

𝑥̅

𝑥̅

𝑥̅

𝑥̅

𝑥̅2

51

(top-right). These enhancements increase the decision margin and resilience to input

perturbations for stabilizing the classification outcomes under adversarial attacks.

𝑥̅1… 𝑥̅12 denotes the activations after each of the 12 unit blocks, respectively (left).

The unitary layers are selected as follows, and Table 1 below lists all the synaptic weights

in UniBERT with their unitarity. Firstly, as mentioned in Chapter 2 previously, only square

matrices can be unitary in terms of a strict mathematical definition (Sect. 2.2B); thus, not all

layers can be converted to unitary. We decide to apply unitary constraints on all the square

weights in UniBERT to maximize the effect of the total unitarity (with one exception to be

explained next). Secondly, we keep Wc in the classifier layer non-unitary to increase pre-attack

accuracy even though it is also square and thus available for the unitary conversion. Wc is shown

near the bottom of Fig. 9 and listed in Table 1. With our unitary convolutional neural net shown

before in Sect. 2.4, we learn that in general, unitarity reduces model complexity in exchange for

higher neural signal stability. This is the reason why with unitary constraints, pre-attack

accuracies decrease (usually by a small amount), and post-attack accuracies increase. As a

consequence, we decide to leave the classifier layer non-unitary for a slightly higher pre-attack

accuracy.

Our UniBERT is only partially unitary. It has a total of 48 unitary weights and 29 non-

unitary weights (Table 1, last two columns). Our selection of unitary layers forces unitary

constraints on 62.3% of all weight matrices; i.e., 48 / (48 + 29). Likewise, there are nonlinear

activation functions in the network necessary to achieve the required model complexity. The

nonlinearities are vital to avoid condensing the transfer function to one linear transformation

between the input and the output. While it is impossible to have a purely unitary neural net, our

52

UniBERT’s partial unitarity is sufficient to deter adversarial attacks, and surprisingly, it

outperforms many state-of-the-art defense models in post-attack accuracies as we will show later

in Sect. 3.4.

Section Name Symbol
Neural

Module

Matrix

Dimension
 Unitarity Repeat

Embed

Word Ww Embedding 30522 x 768 Non-unitary 1

Position Wp Embedding 512 x 768 Non-unitary 1

Token Wt Embedding 2 x 768 Non-unitary 1

Transform

Query Wq Linear 768 x 768 Unitary 12

Key Wk Linear 768 x 768 Unitary 12

Value Wv Linear 768 x 768 Unitary 12

Dense Wd Linear 768 x 768 Unitary 12

Expand We Linear 768 x 3072 Non-unitary 12

Reduce Wr Linear 3072 x 768 Non-unitary 12

Classify
Classifier Wc Linear 768 x 768 Non-unitary 1

Projection Wproj Linear 768 x nc Non-unitary 1

Table 1. The complete list of weights used in our UniBERT and their unitarity.

Each row in the table is a neural layer with a corresponding weight matrix. In general,

unitarity slightly sacrifices the pre-attack prediction accuracy for a large improvement in

the post-attack prediction accuracy. We force unitary constraints on all the square

weights except the classifier layer (i.e., Wc), which we leave unconstrained to achieve

higher pre-attack accuracy. Also, non-square weights are difficult to make unitary and

therefore left as is. In the projection layer, nc is the number of classes in the classification

task. Italic rows are the unitary weights used in UniBERT; they are non-unitary in the

original BERT.

53

B. Unitary Constraints

The way we convert the non-unitary weights to their closest unitary projections is by QR

factorization, a method to decompose any matrix into unitary and non-unitary parts as explained

below [65]:

 = 𝑸𝑹, (16)

where W is a non-unitary square matrix, Q is a unitary matrix, and R is an upper triangular

matrix. We extract the signs of the diagonal elements in R and construct S:

 𝑺 = 𝑑𝑖𝑎𝑔(𝑠𝑖𝑔𝑛(𝑹)) (17)

Therefore, S is a diagonal matrix with ±1 on its diagonal. Lastly, we obtain the unitary weights

(U) by:

 𝑼 = 𝑸𝑺 (18)

U is proven to be unitary by:

 𝑼𝑇𝑼 = 𝑺𝑇𝑸𝑇𝑸𝑺 = 𝑺𝑇𝑺 = 𝑰 (19)

After each backpropagation step, we use the procedure detailed in Eqns. (16)-(18) to find the

closest unitary projection for selected weights and overwrite them with U.

C. Datasets Characteristics

Before we show the training and inferences, we described the key features of the datasets

used in pretraining and finetuning to benchmark the differences between BERT and UniBERT.

First, we describe the dataset used for pretraining—the Book Corpus (bookcorpus), an unlabeled

dataset containing 74 million sentences from eleven thousand books [66]. We separate this

54

dataset into two subsets, one for training (95%) and one for testing (5%). The ratio of data in

each set is arbitrary. In general, we use the majority of the data for training the neural network

but reserve a small portion for validating the accuracy of the trained network. This procedure

ensures that the testing accuracy is measured on data that the network has not seen in training for

a more accurate estimation of how the network will perform in the real world.

Then for finetuning, we selected three different datasets for a comprehensive evaluation

covering multilabel categorization, language inference, and sentiment analysis; respectively, they

are listed as follows:

1. AG’s News (ag_news) is a dataset for news classification, and the goal is to classify the

articles into four categories including world news, business news, science & technology, and

sports [67].

2. Stanford Natural Language Inference Corpus (snli) aims to train machine learning systems

that can identify the relationship between a pair of sentences [68]. There are three possible

classification outcomes: entailment, contradiction, or neutral.

3. Yelp Reviews Polarity (yelp) is a text sentiment analysis dataset constructed by collecting

reviews from Yelp.com [67]. The label is either positive or negative.

We highlight the key features of the dataset statistics in Table 2, including the number of

classes for the human-generated labels, size of the training data set (training set), size of the

testing dataset (test set), and average sample length. and all datasets used in our study follow a

uniform distribution in the labels. Sentences are forced to all lower case if the dataset is cased,

and all datasets are in English. The datasets are accessible for free from the Hugging Face

repository [69].

55

Dataset
Number of

Classes

Training

Sample Size

Testing

Sample Size

Average Length

(Words)

bookcorpus N/A 70,000,000 4,000,000 13

ag_news 4 120,000 7,600 39

snli 3 550,000 10,000 20

yelp 2 560,000 38,000 136

Table 2. Key features of the dataset statistics for bookcorpus, ag_news, snli, and

yelp. bookcorpus is an unsupervised dataset used to train BERT and UniBERT as a mask

language model during pretraining. ag_news is a news classification dataset with four

classes (world news, business news, science & technology, and sports). snli is a natural

language inferencing dataset that asks the model to predict the relationships between two

sentences into three categories: entailment, contradiction, or neutral. yelp is a binary

sentiment analysis dataset that categorizes user-generated paragraphs into positive

reviews or negative reviews. For bookcorpus, each sentence counts as a sample while the

other three datasets can have multiple sentences per sample, and the average length

column reports the average number of words in a sample. N/A means not applicable.

D. Training Details

Next, we document our training procedure for the proposed UniBERT. We mentioned

earlier in the introduction (Sect. 3.1A) that training of BERT-based models has two phases: pre-

training and finetuning. For review, pre-training teaches our UniBERT the basic mechanics of

the language while finetuning provides on-the-job training for performing a specific task. Each

phase requires a slightly different set of hyperparameters because of the differences in the task

objectives (masked language modeling vs. classification) and the training datasets.

56

1. Pre-training: We use a fixed language mask with a masking probability of 0.15 and pretrain

the UniBERT model from scratch for five epochs with the Adam algorithm on a linear

schedule, in which the learning rate will start with 0 at the beginning, linearly rise to 0.0001

(at step 7000), then linearly decay to zero (at the end of the training). Adam is a training

algorithm with adaptive moment estimation that alleviates the problem of local minimum by

adjusting the momentum of the weight updates [70]. The weight decay reduces the

magnitude of the synaptic weights to penalize against extravagant model complexity for

better generalization performance. The batch size is 16; the sequence length is 512. These

sizes are limited by the memory size of our graphics card, where we run our simulation.

Overall, the pretraining procedure takes 5 epochs to converge or equivalently 700,000 steps

given our batch size and dataset size. At each step, the unitary weights are first updated using

regular gradient descent and then converted to the closet unitary weight using the QR

factorization technique explained earlier in Sect. 3.3B.

2. Finetuning: We finetune the pretrained models on the three classification datasets: ag_news,

snli, and yelp. Similarly, we use QR factorization (Sect. 3.3B) to ensure unitarity on selected

weights. Unlike pretraining, the multi-margin loss is used instead with the margin parameter

(ε) set to 100 to balance the pre-attack and post-attack prediction accuracies. See Sect. 3.3F

for details on how to select the value for the margin parameter (ε). We conduct four

independent finetuning runs for scientific rigor; each has a new random initialization on the

classifier layer. Finetuning takes five epochs with a learning rate of 0.00005. The batch size

is 160 with a sequence length of 128; these settings are limited by the memory of the

graphics card used in our simulation.

57

The training procedures for the other baseline and defense models are left unchanged as

described in their original publication. They use neither the unitary weights nor the multi-margin

loss during any portion of the training process. We summarize the hyperparameters used for

UniBERT training in Table 3.

Category Name Pretraining Finetuning

Model

Parameters

Type Mask Language Model Classification Model

Loss Cross-entropy Multi-margin

Margin Parameter N/A 100

Masking Ratio 0.15 N/A

Sequence Length 512 128

Unitary Constraint Yes Yes

Training Setup

Dataset bookcorpus ag_news, snli, yelp

Batch Size 16 128

Epoch 5 5

Backpropagation

Algorithm

Optimizer Adam Adam

Scheduler Linear Linear

Learning rate 0.0001 0.00005

Beta 1 0.9 0.9

Beta 2 0.999 0.999

Warmup Steps 7000 500

Weight Decay 0.01 0.01

Table 3. Training hyperparameter settings for our UniBERT. We first pretrain

UniBERT and then finetune it with different datasets and loss functions shown in the

table. These hyperparameters are the best-known methods reported in the literature

except for the loss, margin, and unitary constraint, which are unique to UniBERT. In

detail, the differences to train our UniBERT compared to a regular BERT are: First,

UniBERT enforces unitary constraints on the selected layers listed in Table 1 for both

pretraining and finetuning. Second, it uses the multi-margin loss with the margin

parameter (ε) set to 100 for finetuning. The cross-entropy loss is used for pretraining. The

learning rate starts with zero, linearly ramps up to the target learning rate at the

58

prescribed warmup steps, and linearly ramps down to zeros. The sequence length reports

the maximum number of words for each input. N/A means not applicable.

E. Adversarial Attacks

We select three distinct types of attacks for a comprehensive adversarial robustness

evaluation:

1. Textbugger randomly introduces character insertion, deletion, swap, and substitution to

modify BERT’s prediction [53]. It is considered a typographic attack.

2. Textfooler finds candidate adversarial samples by swapping important words with their

synonym; synonyms are found by searching through the neighborhood in the word

embedding space using the counter-fitted word embedding [50], [71]. Similar to BERT’s

word embedding described previously in Sect. 3.1A, the counter-fitted word embeddings are

obtained by using a recurrent neural network for converting words to vectors in the

embedding space, where semantics are represented geometrically.

3. We add the Probability Weighted Word Saliency (or PWWS) attack to our evaluation

portfolio [51]. It swaps words in a sentence with their synonyms defined in the human-

labeled WordNet [72] database. In contrast to Textfooler, which finds synonyms using a

distance metric with the word embeddings learned automatically by a neural net, PWWS

relies on a thesaurus constructed explicitly by human workers.

Textbugger and Textfooler may not preserve a sentence’s meaning; therefore, to create a

valid replacement sentence to commence the attack, it needs to check for its semantic similarity

using the Universal Sentence Encoder [73], which measures the cosine distance between the

59

original and the perturbed sentences. We use the default threshold settings in the TextAttack [74]

framework to reject any adversarial example that changes the meaning of the sentence. In

contrast, because PWWS uses the human-labeled WordNet synonym database to generate high

fidelity samples as described before; hence, we do not perform additional safeguarding on the

generated samples.

A neural network is a machine learning model, and we refer to it as a model for short.

There are two ways to carry out adversarial attacks on a model: targeted attacks vs. static attacks

[54]. Targeted attacks generate a new set of adversarial samples for each model while static

attacks use the same set of adversarial samples to evaluate all neural network architectures (e.g.,

BERT, UniBERT, InfoBERT…etc.). We use the tougher targeted attacks to evaluate the models’

robustness. In detail, we randomly select 1000 data samples from the test set and allow the attack

algorithm to make an unlimited number of attempts to the model until it can no longer generate

new permutations that meet the similarity criteria or has exhausted all synonyms. The number of

attempts the attacker is allowed to make is called the query budget. In this dissertation, the post-

attack accuracy is defined as the ratio of the samples (out of 1000) that survive the series of

attacks with an unlimited query budget and still produce the correct classification results,

measuring the classification accuracy of the neural net after the attack. Our evaluation

methodology is the toughest in the literature, reporting the lowest possible post-attack accuracies.

The pre-attack accuracy is measured by computing the ratio of the correctly classified sample

out of the 1000 test samples without any attack.

F. Selecting The Margin Parameter

Furthermore, there is a new hyperparameter in UniBERT: the margin parameter (ε) for

the multi-margin loss in Eqn. (14). We find the best margin parameter, ε, experimentally by

60

sweeping it over five decades between 0.01 and 1000 to simultaneously maximize both the pre-

attack and post-attack prediction accuracies of the neural net. We evaluate the tradeoff between

pre-attack and post-attack accuracies for the yelp sentiment analysis in Fig. 10, in which our

UniBERT is trained to classify the user text into positive or negative reviews. As the margin

increases, the post-attack accuracy quickly improves (as shown by the dashed trendline in the

figure) while the pre-attack accuracy reduced slightly with ε (as illustrated by the dotted

trendline). The best post-attack accuracy happens when ε is 100; therefore, we use this setting for

the rest of this dissertation. Depending on the user’s tolerance for pre-attack accuracy drop in

their applications, they can select an appropriate margin accordingly.

Fig. 10. Classification accuracy vs. margin parameter for the multi-margin loss in

UniBERT. To find the most optimal setting for the margin parameter (ε), we use the yelp

sentiment analysis dataset to evaluate the pre-attack accuracy of UniBERT in making a

correct classification, contrasting it with the post-attack accuracy under various

adversarial attacks (namely, Textfooler, Textbugger, and PWWS). As shown in the

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100 1000

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 f
o
r

U
n
iB

E
R

T

Margin Parameter ()

Pre-attack Accuracy Textbugger Post-attack Accuracy

Textfooler Post-attack Accuracy PWWS Post-attack Accuracy

61

figure, a higher ε reduces the pre-attack accuracy (dotted line) while increasing the post-

attack accuracy (dashed line) for UniBERT. From this data, we select ε = 100 for the rest

of the experiments in this treatise because, with this setting, the UniBERT delivers a large

improvement in the post-attack accuracy with a negligible decline in the pre-attack

accuracy.

62

3.4. Results & Discussion

A. Our UniBERT vs. Baseline Models

So far, we have only introduced BERT and UniBERT, but there are many versions of

BERT that researchers have developed for various purposes. These neural network models are

not specifically designed to defend against adversarial attacks; hence, we call them the baseline

models. The goal is to validate the need for a novel defense technique because there would be no

reason to modify the existing architectures if the baseline models were already resilient to attacks.

We compare our proposed UniBERT against four other versions of BERT, which are listed here:

1. Bidirectional Encoder Representations from Transformers (BERT) [41]—This is the

original architecture that our work is based on.

2. A Robustly Optimized BERT Pretraining Approach (RoBERTa) [75]—This is BERT with

enhanced pretraining to improve its accuracy. We use this model to verify that a better

pretraining procedure alone cannot deter adversarial attacks.

3. A Lite BERT (ALBERT) [76]—This model reduces the number of parameters up to 18

times by using factorized word embedding and parameter sharing. We select this model to

show that model complexity reduction is not enough to prevent adversarial attacks.

4. A distilled version of BERT (DistilBERT) [77]—This model reduces the number of

parameters by 40% by using knowledge distillation. Same as with ALBERT, we want to

show that reducing the model complexity via transfer learning to a smaller model will not

improve robustness.

To conduct a fair comparison for the classification accuracy, we download the pretrained

weights for the four baseline models above from the Hugging Face repository [69] and finetune

63

them further using the procedure (see Sect. 3.3D, finetuning) for our selected datasets. Namely,

the classification datasets include news categorization (ag_news), natural language inference

(snli), and sentiment analysis (yelp), which we have documented their characteristics in Sect.

3.3C above. After finetuning, we first evaluate their pre-attack classification accuracies and then

measure their post-attack classification accuracies after performing adversarial attacks on the

models. The three attack recipes are the PWWS, Textbugger, and Textfooler adversarial attacks

on the textual input, which cover a wide range of typographical and synonym-based NLP attacks.

Details of the attack recipes are discussed in Sect. 3.3E before.

The results are given in Table 4, which compares the pre-attack and the post-attack

classification accuracy of our proposed UniBERT with the baseline models (i.e., BERT,

RoBERTa, ALBERT, and DistilBERT). UniBERT delivers double-digit improvements across all

combinations of NLP tasks and attacks over the baseline models. In general, RoBERTa is

slightly better than BERT in post-attack accuracy because the extensive pretraining procedure in

RoBERTa creates a better language model. On the other hand, both parameter reduction models

(ALBERT and DistilBERT) have worse robustness compared to BERT. We conjecture that the

lack of model complexity prohibits them to generalize to out-of-distribution samples which

happens due to their inferior language models.

64

Task Model
Original

Accuracy

Post-attack Accuracy

PWWS Textbugger Textfooler

ag_news

BERT 94.6 32.4 35.8 13.4

RoBERTa 95.1 40.8 48.3 16.7

ALBERT 92.5 24.1 17.3 8.7

DistilBERT 93.6 27.9 32.6 10.6

UniBERT 92.3 85.4 83.1 82.3

snli

BERT 90.1 1.5 4.0 3.8

RoBERTa 91.2 1.3 5.0 4.0

ALBERT 87.6 0.2 1.5 1.8

DistilBERT 88.2 0.8 2.5 2.9

UniBERT 86.6 21.5 18.7 17.7

yelp

BERT 95.4 3.9 15.9 2.9

RoBERTa 96.6 8.4 24.6 8.4

ALBERT 94.7 1.3 5.9 1.4

DistilBERT 95.9 4.9 17.4 2.6

UniBERT 93.3 75.3 79.6 75.9

Table 4. Classification accuracies of our UniBERT vs. other baseline BERT models

under attacks. We study the typographical (PWWS), typographical & synonym-based

(Textbugger), and synonym-based (Textfooler) attacks on news categorization

(ag_news), natural language inference (snli), and sentiment analysis (yelp) for a

comprehensive evaluation on text classification robustness. In the table, we compare the

post-attack accuracies of our UniBERT against four other BERT variants (namely,

BERT, RoBERTa, ALBERT, and DistilBERT), showing that our UniBERT outperforms

the baseline models by a large margin. Accuracy is reported as a percentage (out of 100)

to measure the ratio of correct prediction. The best accuracies are bolded.

The unitary constraint also reduces model complexity. As a review of Sect. 2.2A earlier,

the number of parameters (i.e., the degree of freedom) is about half of a fully connected layer

when we count a real, adjustable scalar number as one parameter. Specifically, the number of Lie

65

parameters is n (n – 1) / 2 for the orthogonal group of degree n, matching the number of Lie

algebras that the group has (see Fig. 2). Consequently, we only need half as many real scalars to

specify a neural layer under the unitary constraint. Because of the reduction in model complexity,

UniBERT’s original accuracy is closer to the reduced-size models (e.g., ALBERT and

DistilBERT) as supposed to the full-size models (e.g., BERT). UniBERT’s strong suit is at post-

attack accuracies, at which it surpasses all models with large margins.

Neither the RoBERTa’s enhanced pretraining nor ALBERT’s or DistilBERT’s model

reduction results in significant improvements in the post-attack accuracy. With the data listed in

Table 5, we confirm that adversarial attacks cannot be prevented with the baseline models alone.

To counter adversarial attacks, further interventions are needed. As an example of such

intervention, in UniBERT, we combine a wide decision margin with confined perturbations by

using the multi-margin loss with unitary weights to deliver superior adversarial robustness.

B. Our UniBERT vs. Defense Models

We compare UniBERT’s performance with the state-of-the-art defense techniques from

the adversarial training and regularization categories outlined previously in Sect. 3.1C of the

introduction. We call these neural networks designed with adversarial robustness in mind the

“defense models.” Namely, they are:

1. Adversarial and Mixup Data Augmentation (AMDA-Tmix & AMDA-Smix) [54]—In this

technique, adversarial examples are generated by assuming a specific attack recipe.

Furthermore, additional training data are created by linearly interpolating the neural

representation and the label pairs. They designate their model with the “Tmix” and “Smix”

postfixes to denote the location where the representation is taken from in BERT.

66

2. Mixup Regularized Adversarial Training (MRAT & MRAT+) [55]—This technique uses all

the steps detailed in AMDA above. In addition, it adds a regularization term in the loss

function (i.e., a penalty for any data point that is too different from the original), ensuring

that the augmented data will follow the original data distribution. They claim that this term

will prevent the augmented dataset from degrading the pre-attack accuracy. Like AMDA, the

key ingredient for improving robustness still comes from adversarial training with data

augmentation. The MRAT+ variant adds data augmentation to the original data. For example,

it may swap some words in the sentence with their synonyms to generate new samples.

3. Information Bottleneck on BERT (InfoBERT) [56]—This technique reduces model

complexity by using an information bottleneck. The bottleneck is implemented as two

regularization terms in the loss function: one is to maximize the prediction accuracy while

minimizing the mutual information between the input and the internal representation. The

general concept of a loss function is explained in Sect. 3.2A; please refer to the InfoBERT

paper for the complete mathematical description as there are many intricate details [56].

Another is to identify word embeddings that are less affected by the input perturbation and

force the neural net to utilize these words more in its decision process. InfoBERT is

computationally expensive due to the need to calculate mutual information. It also requires

more hyperparameters, which makes model optimization cumbersome.

There are two ways to measure the post-attack classification accuracy: one is with

targeted attacks; another is with static attacks as explained in Sect. 3.3E. Thus, we need to make

sure that we use the same evaluation method to compare the adversarial robustness of different

models. The authors of AMDA and MRAT have published the performance of their models

using targeted attacks, and their data are reproduced in the table below for comparison. The

67

creator of InfoBERT uses static attacks in their paper; thus, we rerun their simulations with the

targeted attacks for a fair comparison. The adversarial performance of our UniBERT is always

evaluated with the targeted attacks.

Task Type Model
Original

Accuracy

Post-attack Accuracy

PWWS Textbugger Textfooler

ag_news

Adversarial

Training [54]

AMDA-Tmix 94.5 69.7 N/R 56.3

AMDA-Smix 94.3 70.0 N/R 51.3

Regularization InfoBERT 94.4 35.5 46.0 12.9

Unitarity UniBERT 92.3 85.4 83.1 82.3

snli

Adversarial

Training [55]

MRAT 89.5 N/R 9.9 10.5

MRAT+ 88.7 N/R 12.2 12.4

Regularization InfoBERT 90.9 2.8 5.5 5.4

Unitarity UniBERT 86.6 21.5 18.7 17.7

yelp
Regularization InfoBERT 97.4 3.9 21.0 2.1

Unitarity UniBERT 93.3 75.3 79.6 75.9

Table 5. Classification accuracies of our UniBERT vs. state-of-the-art defense

models. AMDA-Tmix, AMDA-Smix, MRAT, and MRAT+ use adversarial training with

mix-up data augmentation to deliver the previous state-of-the-art performance, and their

data are reproduced here from [47] and [67], respectively. InfoBERT uses information

bottleneck as a regularizer to slightly improve the post-attack accuracies. Out of all the

defense techniques, UniBERT gives much higher post-attack accuracies over all attack

recipes (PWWS, Textbugger, Textfooler). Accuracy is reported as a percentage (out of

100) to measure the ratio of correct prediction, and N/R indicates not reported in the

original publication. The best accuracies are bolded.

 Our UniBERT provides significant robustness enhancements compared to the other state-

of-the-art defense methods, boosting the post-attack accuracy by at least 15.4% across all

datasets and attack recipes. Under the targeted attacks, regularization-based models such as

68

InfoBERT only deliver marginal improvements over the classic BERT model. InfoBERT’s

robustness is slightly higher than RoBERTa’s in natural language inference (snli), but it’s worse

in news categorization (ag_news) and sentiment analysis (yelp). On the other hand, AMDA,

MRAT, and UniBERT deliver superior adversarial performance over InfoBERT. Furthermore,

UniBERT is more robust than adversarial training, providing double-digit accuracy boosts (up to

31%) compared to AMDA in news categorization and single-digit improvements (up to 8.8%)

compared to MRAT in natural language inference. This is because there is a wide variety of

perturbations an attack recipe can produce for a given sentence; although adversarial training

captures a decent portion of these variations with augmented data, it is impossible to be

comprehensive and cover the entire search space. In practice, the designer of the neural network

will not know the exact sentence that the user will enter. This is the reason that we separate the

data into two mutually exclusive portions: the training set and the test set. The training set is used

for training the neural net, and the post-attack accuracies are measured on the attacked test set for

a realistic performance evaluation.

Our model has a slight degradation in the original accuracy but is still comparable to that

of the adversarial training methods (AMDA-Smix and MRAT+). The key weakness of

adversarial training is that the designers need to anticipate the types of attacks and create a

representative adversarial training sample set. It is not always practical to obtain complete

coverage of all attacks and may require significant training time. The advantage of UniBERT is

that it does not assume which attack the hacker will use. Additionally, the robustness

enhancement is generally consistent across various attack recipes (i.e., PWWS, Textbugger, and

Textfooler) as shown in the post-attack accuracy columns in Table 5. Other defense models’

performances vary greatly with the attack recipes as shown in the table.

69

C. Ablation Study

To show the contribution of the multi-margin loss and the unitary weights separately, we

perform an ablation study for UniBERT on the yelp task. Table 6 reports the performance of the

following four model trims:

1. BERT is the baseline with no modification.

2. BERT_unitarity is BERT with the unitary constraints alone.

3. BERT_multi_margin is BERT with the multi-margin loss instead of the cross-entropy loss

without any unitary constraint.

4. UniBERT has both the unitary weights and the multi-margin loss replacement.

We observe that BERT_unitarity’s post-attack accuracies are not significantly different

from BERT (Table 6, first two rows), confirming our hypothesis that unitary weights must be

used together with a large margin model. BERT_multi_margin delivers a significant

improvement in the post-attack accuracy; however, it also reduces the original accuracy. By

adding the unitary constraints on top of BERT_multi_margin, UniBERT raises both the pre-

attack and post-attack accuracies considerably (Table 6, last row).

Task Model
Original

Accuracy

Post-attack Accuracy

PWWS Textbugger Textfooler

yelp

BERT 95.4 3.9 15.9 2.9

BERT_unitarity 95.9 3.1 14.1 1.8

BERT_multi_margin 82.9 63.0 63.2 54.8

UniBERT 93.3 75.3 79.6 75.9

Table 6. Ablation study to understand the contribution of each component. BERT is

the baseline model. BERT_unitarity adds unitary constraints to BERT without the multi-

margin loss. BERT_multi_margin replaces the loss to multi-margin without placing any

70

unitary constraints. This data shows that we need to use the multi-margin loss together

with unitarity to achieve the best post-attack accuracies in UniBERT. The multi-margin

loss is used for increasing the decision margin while unitarity is for stabilizing

perturbations. Accuracy is reported as a percentage (out of 100) to measure the ratio of

correct prediction. The best accuracies are bolded.

With this ablation study, we conclude that it is insufficient to have unitarity alone; the

multi-margin loss and unitarity need to be used together to achieve the best result. The reason is

the following: In the case of adversarial attacks with infinite query budgets, the attackers are free

to try as many permutations as possible until they exhausted all combinations. A query budget is

defined as the number of attempts the attacker is allowed to make before giving up. Because the

post-attack accuracies reported in this dissertation are measured with attacks with infinite query

budgets, the attacker has a large search space to find one adversarial example that changes the

prediction outcome, and it only needs one example for the attack to count as successful. Besides,

the embeddings for synonyms are more likely to be similar but their proximity in the vector

space is not guaranteed since the model (such as UniBERT) learns the embeddings automatically

through backpropagation during pretraining. Hence, because both synonym swaps and typos

have a small chance of producing large perturbations in the sentence embedding, a large

perturbation will occur with a high probability given enough samples.

In short, attacks with unlimited budgets can create large perturbations that cross the

decision boundary; hence, the networks must use the multi-margin loss to create sufficient

decision margins to absorb such perturbations (as shown in Table 6, BERT_multi_margin).

Albeit unitarity does not suppress the perturbations, it at least eliminates the possibility of

71

accidentally amplifying them. Its norm preserving property is proven earlier in Eqn. (15). With

an unlimited query budget, large perturbations are bound to happen; therefore, unitarity alone

will not prevent the logits to cross the decision boundary if the decision margin were too small.

Unitarity is only helpful when used in conjunction with the large decision margin created by the

multi-margin loss; thus, we set ε to 100 in our experiments. Contrarily, non-unitary networks

may amplify perturbations, resulting in misclassification; thus, they have lower post-attack

accuracies (see Table 6, BERT_multi_margin).

D. Effect of the Multi-margin Loss

To confirm that the multi-margin loss widens the decision margin, we study the logits in

our UniBERT for 950 correctly labeled data samples with the yelp binary classification task,

compared with the ones in BERT. Logits are the activations of the last neural layer in the neural

net as defined earlier in Sect. 3.1A. More precisely, for each data sample, we measure the logits’

shortest distance to the decision boundary in the vector space. Samples with the wrong prediction

outcome are ignored because the attack algorithms skip any misclassified sentences, so they will

never be attacked.

Model Unitary Loss Average Decision Margin (a.u.)

BERT No Cross-entropy 6.1 ± 1.1

UniBERT Yes Multi-margin 72.4 ± 2.1

Table 7. Average distance to the decision boundary for the logits. We define decision

margin as the average distance between the logits to the decision boundary for correct

samples. The number after the ± sign is the standard deviation. The UniBERT increases

the decision margin by widening the gap between the neural representations of different

classes while keeping intra-class spread (i.e., the standard deviation) small, encouraging

distinct representations for each class.

72

We report the average distance measured in all 950 samples in Table 7, and we name the

average distance to the decision boundary the decision margin. In comparing the decision

margins between different models, it is important to evaluate not only the mean but also the

standard deviation of the decision margin to consider the simple scaling of the logits.

UniBERT’s logits are much further away from the decision boundary compared to BERT’s (71.5

vs. 5.8) as shown in Table 7. This 12X increase is not the result of a simple scaling of the logits

because the standard deviation stays roughly the same (2.4 vs. 1.4); thus, they are statistically

well separated in UniBERT compared to BERT. With the yelp dataset, our model is asked to

categorize the input text into a positive review or a negative review; hence, the dataset has two

classes. Another way to interpret this data is that UniBERT increases the inter-class distance

between the neural distributions for different classes while deterring the intra-class spread within

the same class.

E. Propagation of Perturbation

The most important benefit of the unitary weights is that they regulate the magnitude of a

perturbation throughout the network as proven mathematically in Eqn. (15); nevertheless, a

completely unitary neural network is impossible because non-square weights and nonlinearities

are needed for creating the required model complexity to solve complex problems as discussed in

Sect. 3.3A previously. In our last experiment as follows, we demonstrate that, even with

imperfect unitarity, our UniBERT can still stabilize the perturbations, preventing them from

being scaled arbitrarily by the synaptic weights.

To quantify the effect of a perturbation, we use a mathematical concept called cosine

similarity. Cosine similarity measures the alignment of two vectors, which is defined as:

73

 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≜
𝑎̅ • 𝑏̅

‖𝑎̅‖2‖𝑏̅‖2
= cos 𝜃, (20)

where 𝑎̅ and 𝑏̅ are two vectors in the same vector space, • is the vector dot product, and θ is the

angle between 𝑎̅ and 𝑏̅. Cosine similarity ranges from -1 to 1, inclusive. When the two vectors

overlap completely, the cosine similarity is the highest, signaling that the two vectors are

identical. If they point in opposite directions, the cosine similarity is -1. In the context of word

embeddings, researchers often use it to measure how close two words are in meaning by using

the cosine similarity between the two corresponding word vectors (i.e., the vectors that encode

the words).

Fig. 11. Cosine similarity between the original activations and the perturbed

activations under attack. We measure the cosine similarity between the activations of

the original sentence and the activations of the perturbed sentence in UniBERT at the

output of each attention layer (i.e., 𝑥̅1… 𝑥̅12 in Fig. 9) indexed from 1 to 12 across the

neural network (dotted line). The same is done for BERT (dashed line). As defined in

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12

C
o
s
in

e
 S

im
ila

ri
ty

 (
a
.u

.)

Layer Index

BERT Original vs. Perturbed Activations

UniBERT Orginal vs. Perturbed Activations

Pre-attack Accuracies: Post-attack Accuracies:

94.6% BERT 13.4% BERT

92.3% UniBERT 82.3% UniBERT

attack

74

Eqn. (20), cosine similarity (∈ℝ∩[-1,1]) is a distance measure for quantifying how well

two vectors align with each other in a vector space with one indicating that the two

vectors are identical. For UniBERT, the representations become more alike in deeper

layers; on the contrary, the similarity fluctuates in BERT. A higher cosine similarity

score means that the network is capable of restraining perturbations closer to the original

representation; consequently, higher post-attack accuracies (see the text added in the

figure). We perform statistical analysis on 1000 randomly chosen sentences; the error

bars denote standard deviation.

Likewise, we use cosine similarity to quantify how much the activations deviate from

their original values when the network is under attack. If the network is less susceptible to the

input perturbations injected by the attacker, the attacked activations will be similar to its original,

yielding a high cosine similarity. To visualize the neural network model’s susceptibility to

injected perturbation, we measure the cosine similarity between the perturbed activations and the

original activations across the neural net and plot the results in Fig. 11 above. In particular, we

randomly select 1000 sentences from the ag_news dataset, produce perturbed sentences using the

Textfooler attack recipe, and record the activations after each of the 12 unit blocks in UniBERT

(see Fig. 9 for the network architecture). We perform the same steps for BERT and compare the

two results.

As shown by the dotted line in Fig. 11, BERT’s cosine similarity fluctuates wildly across

the different layers of the networks. In particular, it dips to the lowest value at layer 11 with a

mean (μ) of 0.77 and a standard deviation (σ) of 0.14. In a normal distribution, 16% of the

samples reside below one standard deviation from the mean (i.e., μ – σ); likewise, 34% of the

75

samples fall between the mean (μ) and the first standard deviation (μ – σ). The activations at

layer 11 deviate from their original values significantly when BERT is under attack, and the

cosine similarity quantifies this deviation: 16% of the 1000 samples results in a cosine similarity

score of less than 0.63 (i.e., μ – σ, or 0.77 – 0.14), and 34% of them are between 0.63 and 0.77.

In short, when BERT is under attack, a significant portion of the sentences have activations that

are a great deal different from their original values. On the other hand, our UniBERT fixes this

problem by improving the similarity between the original and attacked activations (Fig. 11).

This result is interesting because only 62.3% of the weights in UniBERT are unitary and

there are many nonlinearities in the network (see Sect. 3.3A for architectural details). We argue

that the success of UniBERT in stabilizing the perturbation comes from the unitarity added in the

attention layers, which are repeated 12 times in the network. The attention mechanism is

achieved primarily with the Key, Query, Value, and Dense modules in Fig. 9; the weights in

these modules are all unitary in UniBERT as shown in Table 1. Although the decision processes

in a neural net are generally non-interpretable, with the data in Fig. 11, we conclude that the

novel unitary attention mechanism in our UniBERT encourages the network to make similar

decisions even under adversarial attacks as shown with the rising cosine similarity of the

activations shown in the figure for UniBERT (Fig. 11, solid line).

It is difficult to exactly predict the post-attack accuracies from the cosine similarity

between activations, but the two quantities are positively correlated. A higher cosine similarity

means that the activations under attack are similar to the original ones; therefore, the network is

more likely to achieve the pre-attack accuracies as if there is no attack because the logits are less

likely to cross the decision boundary. For reference, we insert the pre-attack and post-attack

accuracies in Fig. 11. UniBERT has higher cosine similarity compared to BERT in layers that

76

are immediately proceeding to the final classifier (i.e., layers 8-12 in Fig. 11). The resilience to

perturbation is especially important later in the network where decisions are made by comparing

the final activations (logits) to the decision boundary, and we observe that UniBERT can deliver

a superior post-attack accuracy (82.3%) compared to BERT’s post-attack accuracy (13.4%) by

keeping its activations closer to their original values before the attacks.

77

3.5. Conclusion

In this chapter, we present an enhanced neural architecture named UniBERT for robust

natural language processing. Our UniBERT defends against adversarial attacks, in which the

adversaries attempt to slightly modify the input sentences to disrupt the prediction results in deep

neural nets. It is a variant of BERT with improvements including replacing the cross-entropy

loss with the multi-margin loss during finetuning to increase the decision margin and forcing

unitary constraints on the attention layer to restrain the perturbations injected during an attack.

With UniBERT, unitary weights with multi-margin loss are shown to be an effective defense

technique against both typographical and synonym-based adversarial attacks, boosting the post-

attack classification accuracy by more than 15.4% compared to the state-of-the-art defense

mechanisms across all datasets and attack recipes (Sect. 3.4B).

In addition, we study the contributions from multi-margin loss and unitarity in UniBERT

individually, discovering that unitarity has to be used together with the multi-margin loss to be

effective (Sect. 3.4C). Because we allow an unlimited number of attempts until the attacker has

exhausted the search space, some perturbations will be large in our experiments. Thus, the

multi-margin loss needs to first create a large decision margin (Sect. 3.4D) capable of deterring

most logits from crossing the decision boundary before the effect of unitarity in stopping

accidental amplification of perturbations can be seen. Also, unitarity stabilizes perturbations by

keeping the activations close to their original values across the network (Sect. 3.3E). Orthogonal

to the state-of-the-art defense methods (e.g., adversarial training or regularization), our

UniBERT is straightforward to implement and works well for a wide range of applications

including categorization, natural language inferencing, and sentiment analysis. Our contribution

78

will empower practitioners to build efficient, robust, and safe NLP pipelines for critical

applications.

79

Chapter 4 — Quantum Unitary Neural Nets

A primer for the next technology curve.

80

4.1. Introduction

A. The Quantum Transition

Semiconductor innovations enabled our computational capability to scale exponentially

for many decades [8]. Shrinking the physical dimensions of transistors and interconnects is vital

for the technology industry because we can have cheaper, faster, and more powerful chips with

smaller feature sizes. Scaling in the nanometer regime is an intricate dance choreographing

lithography, leakage, reliability, and yield. Despite our past success, the introduction of newer

technology nodes has slowed down in recent years due to the difficulties in manufacturing

nanometer-sized transistors uniformly at scale [78]–[80]. Thus, our industry needs a disruptive

hardware technology to establish further scaling beyond the complementary metal-oxide-

semiconductor (CMOS) devices.

Quantum computing is a promising candidate because the amount of information that a

quantum computer can compute at a given instance is exponential to the number of quantum bits

(qubits) regardless of the devices’ physical sizes. There are many variants of quantum computers,

and the one we will study here is the quantum circuit model [81]. It is a non-dissipative system

that uses quantum gates to process a massive amount of information in parallel. A quantum

computer is a linear system whose dynamics are governed by the time-dependent Schrödinger

equation:

 𝑖ℏ
𝑑

𝑑𝑡
|𝛹(𝑡)⟩ = 𝑯̂|𝛹(𝑡)⟩, (21)

where 𝑯̂ is the Hamiltonian operator. Here we assume 𝑯̂ to be time-independent in our system.

The solution of the Schrödinger equation describes how the system propagates in time, given the

initial state |𝛹(𝑡)⟩ at t = 0:

81

 |𝛹(𝑡)⟩ = 𝑒−𝑖𝑯̂𝑡/ℏ|𝛹(0)⟩ = 𝑼̂|𝛹(0)⟩. (22)

We name 𝑼̂ the time-evolution operator, which is a unitary matrix.

A quantum neural network (QNN) is a neural net implemented in a quantum computer to

leverage the benefit of the exponential number of states for a potential computational speedup

via parallel computation. In a QNN, we encode the neurons’ activations with the quantum states

and implement synaptic weights with quantum gates. These quantum gates are unitary

transforms that define the time-evolution operator 𝑼̂ in Eqn. (22); we design them intentionally

to bring the system from an initial state to the desired final state. The quantum computer we

study herein is a linear system because it follows the Schrödinger equation, which supports the

superposition principle of wavefunctions. We will utilize this linear, non-dissipative, and unitary

quantum computer as a subcomponent of a hybrid QNN. The state-of-the-art QNN is still very

limited in its functionality because nonlinearity needs to be implemented using ancillary qubits

or measurements. Applications for QNN today are limited to image recognition of greyscale

images with small image resolutions.

B. The Problem of Coherence Time

Unlike classical transistors, qubits interact with one another. This interaction is called

entanglement, and qubits need to stay coherent to achieve entanglement [82], [83]. There are two

ways to quantify coherence [84]: the first one is called single qubit relaxation time (T1). It

measures how long a qubit stays in the excited state before relaxes down to the ground state. The

second is a multi-qubit phase coherence time (T2), which measures how long can two qubits stay

in sync with each other. These metrics are critical because quantum information is often encoded

in the entangled states, and losing coherency means that information will be lost.

82

Today, despite a tremendous amount of effort in developing quantum devices, we are still

highly constrained by the coherence time. For illustration, IBM’s flagship quantum computer has

a minimum T1 of 38 μs and a minimum T2 of 39 μs [85]. With the assumption that a single gate

time is roughly 0.5 μs, the quantum computer will become decoherent after 76 gate operations.

Consequently, coherence time is a sacred resource, and we must use it efficiently. A more

complex neural network will require more quantum gates, and therefore, it needs a quantum

computer with a longer coherence time to run. The designer will be interested to build a network

that has the minimum complexity required to solve a particular problem. Nevertheless, there is

currently no framework to estimate the required model complexity.

C. Our Proposed Solution

There is an intuitive relationship between the complexity of the problem and the required

complexity of the machine learning model. If the problem is more complicated, it requires a

fitting function to have higher degrees of freedom. In other words, complex problems need larger

models with more tunable parameters. In this work, we discover a way to relate the two—By

decomposing the dataset using the principal component analysis (PCA), we can calculate the

intrinsic dimensionality of the input signals and use it to guide us in estimating the number of

quantum layers needed to solve a classification problem.

In machine learning, an input datum can be presented using a vector of n dimensions, and

we can plot the entire dataset as points in an n-dimensional vector space. PCA identifies the

important directions in this vector space along which the variance is maximized, providing a way

for us to estimate the intrinsic dimensionality of the dataset. The exact mathematical formulation

of PCA will be explained in Sect. 4.2C. We show in theory and by simulation that the image

reconstruction accuracy vs. the number of eigenvectors used in PCA correlates with the

83

classification accuracy (ξ) of the quantum system with corresponding circuit depth (k). The

classification accuracy (ξ) is defined as the percentage of samples correctly recognized by our

machine learning system, which consists of both quantum and classical components with details

to be followed. In addition to predicting the minimum required number of quantum gates, our

framework offers a quick way to approximate the tradeoff between classification accuracy (ξ)

and depth (k), which is invaluable to machine learning practitioners in architecting their QNN

without requiring them to perform the lengthy hyperparameter tuning procedures. Our

framework is a practical rule of thumb for designing QNN in the noisy intermediate-scale

quantum (NISQ) era [86].

D. Literature Review

There is a quantum renaissance in recent years. In 2019, Havlicek et al. proposed using

quantum computers as high-dimensional kernel functions for classical support vector machines

[87]; this work uses a 5-qubit superconducting quantum computer consisting of Josephson

junctions to classify a synthetically generated small dataset. Even though this work mainly

focuses on training the quantum features, it establishes an excellent network architecture for

multiclass classification in quantum computing. In 2021, Jiang, Xiong, and Shi devised a

quantum neural network for image classification [88]. Their proposed architecture uses binary

synaptic weights to perform binary classification on 4 x 4 pixels greyscale images, and they

show that quantum supremacy is possible. The same authors also wrote a perspective paper on

the idea of hybrid quantum machine learning that introduces classical computers as data

coprocessors [89].

Moreover, the Vapnik-Chervonenkis dimension (or the “VC dimension” as commonly

referred to in the computer science literate) quantifies the intellectual capacity of a machine

84

learning model by the maximum number of data points it can perfectly separate in a binary

classification task. For instance, if we say that a neural net has a VC dimension of 5, it means

that its decision boundaries are complicated enough to perfectly separate 5 data points arranged

in any configuration (i.e., these 5 points can be placed in any locations in the vector space with

arbitrary binary class labels). Chen et al. published an academic study using fictional datasets for

quantifying the model capacity of quantum circuits [90]. They offered theoretical derivations

utilizing the Vapnik-Chervonenkis dimension to estimate the requirement on the circuit depth.

Despite having profound academic merits, their theory only works in the case where the number

of qubits is larger or equal to the dimensionality of the feature space; hence, it is unlikely to be

practical in realistic settings.

85

4.2. Theory

A. Hybrid Quantum Neural Net

A hybrid QNN [89] leverages the power of both classical and quantum computing: The

classical computer handles nonlinear feature extraction, and the quantum computer carries out

linear fitting. Nonlinearity is essential in neural nets because it enables elaborate decision

boundaries for complex analytics. On the contrary, if all layers of a neural net are linear, the

entire network can be collapsed into one linear transformation similar to how matrix

multiplications can be combined into one. In this case, model capacity is greatly diminished. At

present, quantum computers are linear. Although it is possible to implement a square

nonlinearity during measurement when the wavefunctions collapse, this prohibits further

quantum processing and thus foregoes the benefit of the exponential number of states. The

square nonlinearity arises from the fact that the probability for a qubit to be observed in a

particular state is the square of its amplitude. We will discuss the possibility of a nonlinear

quantum computer in Chapter 5 that enables end-to-end quantum computations for neural

networks. But for now, we stick to the confines of the current quantum technology. Our hybrid

QNN uses a classical computer to extract the nonlinear features and a quantum computer to

linearly rotate the decision boundary to fit the data. Fig. 12 illustrates a hybrid QNN with three

qubits.

86

Fig. 12. Our proposed hybrid quantum neural network. Data flow through multiple

subsystems to arrive at a prediction. The feature extraction step on the left can be

implemented as a classical neural network that incorporates nonlinear functions. The

quantum step in the middle depicts an example quantum computer with three qubits,

rotating the data with 𝑼 to fit the decision boundaries predetermined by the measurement

setup and the decision rule. In each experiment, the act of measurement collapses the

high-dimensional quantum data, 𝑼𝑥̅ , to a classical vector, 𝑦̅𝑠𝑖𝑛𝑔𝑙𝑒_𝑠ℎ𝑜𝑡 (not shown).

Averaging 𝑦̅𝑠𝑖𝑛𝑔𝑙𝑒_𝑠ℎ𝑜𝑡 over many identical experiements (i.e., shots) produces the logits,

𝑦̅, whose values can be predicted by Eqn. (23) and as shown on the bottom-right of this

figure.

 As shown in Fig. 12, the proposed hybrid QNN has three components: a feature extractor

in a classical computer, a quantum component that implements a unitary rotation (U) in the high-

dimensional space, and a classical post-processing portion to convert the quantum states into a

prediction. The purpose of feature extraction is to sift through useful information in the data with

D
a
ta

P
re

d
ic

ti
o

n

Measure

Feature

Extraction

Decision

Rule

Classical ClassicalQuantum

𝑦0

𝑦1

𝑦2

Unitary

Rotation

𝑼

 0

 1

 2

𝑥̅

𝑦̅ = 𝑇 𝑼𝑥̅

Averaged results

from many shots

logits

𝑥0|000⟩
𝑥1|001⟩
𝑥2|010⟩
𝑥 |011⟩

𝛹 0 = 𝑥 |100⟩
𝑥 |101⟩
𝑥 |110⟩
𝑥 |111⟩

Multi-qubit basis states: | 2 1 0⟩

𝑥̅
coefficients

𝑼𝑥̅ = 𝑥̅

𝑥̅ 𝑥̅

87

a nonlinear function. As mentioned, nonlinearity is essential in creating elaborate decision

boundaries [11] because if there is no nonlinearity between the layers, the entire network can be

condensed into a single linear transformation like combining many matrix multiplications into

one. The nonlinear feature extractor complements the subsequent linear quantum computer, and

extracted features are flattened into a vector and encoded as the quantum state amplitudes in the

quantum computer. The goal of the quantum computer is to rotate the high-dimensional vector

(𝑥̅) with U to fit the decision boundaries, where 𝑥̅ is encoded in the coefficients of the multi-

qubit computational basis states (Fig. 12, middle). After the rotation, the quantum states are

measured using the Pauli-Z operator, which has eigenvalues of ±1 [91]. That is, the final output

of a single quantum measurement yields a vector of ±1s, and the size of this classical vector is

the same as the number of qubits, nc. We can compute the logits (𝑦̅) shown on the right of Fig.

12 by averaging the measurement results from many identical quantum experiments, which are

called shots in quantum computing. As a review of our discussion in Sect. 3.1A, the term logits

refers to the activation values of the last layer in a neural network (i.e., they are a neural net’s

output values arranged in a vector form). Since the quantum computer in Fig. 12 implements a

quantum neural network, we refer to its average output (𝑦̅) as logits to connect with deep

learning literature.

The logits (𝑦̅) are related to the amplitudes of the initial quantum states (𝑥̅). 𝑦̅ is stored in

a classical computer indicating the averaged experiment outcome while 𝑥̅ is the coefficients of

the wavefunctions in a quantum computer. The transfer function for our quantum system

including the measurement process (Fig. 12) can be described mathematically as:

 𝑦̅ = 𝑇(𝑼𝑥̅) 2, (23)

88

where is the Hadamard power 13 that squares each element individually, 𝑦̅ ∈ ℝ𝑛𝑐 is the

average measurement results, 𝑇 ∈ ℝ𝑛𝑐×𝑛𝑠 is the classical projection matrix for the measurement

(with detailed descriptions to be followed), 𝑼 ∈ ℝ𝑛𝑠×𝑛𝑠 is the unitary rotation, 𝑥̅ ∈ ℝ𝑛𝑠 is a

vector representing amplitude coefficients for the initial state, ns is the number of quantum states,

and nc is the number of qubits (representing the number of classes). The number of quantum

states is exponential to the number of qubits:

 𝑛𝑠 =
𝑛𝑐. (24)

Although 𝑇is not a quantum mechanical operator, 𝑇 is constructed from the quantum

states while considering the eigenvalues of the Pauli-Z operator. We call 𝑇 the projection

matrix because it projects the probability of being in each quantum state, an ns-dimensional

vector, down to an exponentially smaller nc-dimensional qubit subspace, succinctly capturing the

effect of averaging a large number of measurement results. In this example with three qubits, we

write

 𝑇 = [
−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1

]. (25)

We construct the columns of 𝑇 as follows: First, we list out all the multi-qubit basis states (i.e.,

|000>, |001>,…, |111>). The wavefunction collapses into one of the basis states (e.g., |000>)

after we measure the quantum system. We read out the corresponding eigenvalues of the

measurement operators (e.g. [-1, -1, -1] for Pauli-Z). Each row signifies the direction of

13 The Hadamard power performs element-wise exponentiation on each matrix or vector element. For

instance, 𝑩 = 𝑛 means that bij = aij
n ∀ (i,j) where bij is an element of B; aij, an element of A.

89

projection in the ns-dimensional vector space. Depending on the measurement operator (e.g.,

Pauli-Z or others) used for reading out the quantum state, 𝑇 can take on different values;

however, it will always be nc x ns. We will use the logits (𝑦̅) to predict the class label in a

classification task as we will explain next.

B. Decision Boundaries

We use the logits (𝑦̅) to decide which class 𝑥̅ belongs to. In a classification task, each

datum belongs to one of the nc classes, and the goal of our machine learning system is to predict

the correct class label for a given input. We deliberately design our hybrid QNN to have the

same number of qubits as the number of classes so that measuring the wavefunction will result in

a vector of size nc. Finally, we simply use the argmax function to pick the index i that has the

highest logit (𝑦𝑖) and predict that the data belongs to class i:

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 = argmax
𝑖

𝑦𝑖, (26)

where 𝑦𝑖 is a vector element of 𝑦̅ and i takes on all integer values from 0 to nc – 1, inclusive. We

refer to Eqn. (26) as the decision rule, which prescribes the way we predict the class label given

the logits (𝑦̅). It creates multiple decision regions that separate the feature space. A decision

region is an area in the activations vector space, where all the data belong to the same

classification. We can derive the equations for the boundaries of the decision region (i.e., the

decision boundaries), where there is an equal probability of predicting class i versus class j.

When we use the argmax decision rule, the number of boundaries (nb) in the nc-dimensional

logits space is governed by the n-choose-2 combinatorial formula, 𝐶𝑛𝑐
2 , because it is equivalent to

comparing any two of the nc logits:

90

 𝑛𝑏 = 𝐶𝑛𝑐
2 =

𝑛𝑐(𝑛𝑐−1)

2
. (27)

In our three-qubit example, three boundaries separate the three decision regions. The first

boundary separates class 2 and class 1. For clarity, we rewrite Eqn. (23) in the scalar form as

follows:

 𝑦0 = −𝑥0
′ 2 − 𝑥1

′ 2 − 𝑥2
′ 2 − 𝑥

′ 2 + 𝑥
′ 2 + 𝑥

′ 2 + 𝑥
′ 2 + 𝑥

′ 2 (28)

 𝑦1 = −𝑥0
′ 2 − 𝑥1

′ 2 + 𝑥2
′ 2 + 𝑥

′ 2 − 𝑥
′ 2 − 𝑥

′ 2 + 𝑥
′ 2 + 𝑥

′ 2 (29)

 𝑦2 = −𝑥0
′ 2 + 𝑥1

′ 2 − 𝑥2
′ 2 + 𝑥

′ 2 − 𝑥
′ 2 + 𝑥

′ 2 − 𝑥
′ 2 + 𝑥

′ 2, (30)

where 𝑥𝑖
′ is the amplitude of the ith quantum state after the unitary transformation (i.e., 𝑥̅ = 𝑼𝑥̅

and 𝑥𝑖
′ is the ith element of 𝑥̅). By equating y0 in Eqn. (28) to y1 in Eqn. (29), we derive the

formula for the decision boundary between class 0 and class 1, where on this boundary, there is

an equal probability of being either of the two classes. We obtain,

 𝑥
′ 2 + 𝑥

′ 2 = 𝑥2
′ 2 + 𝑥

′ 2. (31)

Similarly, for the boundary between class 1 and class 2, we equate y1 to y2 and show that:

 𝑥2
′ 2 + 𝑥

′ 2 = 𝑥1
′ 2 + 𝑥

′ 2. (32)

Lastly, the boundary between class 2 and class 0 is derived by equating y2 to y0:

 𝑥
′ 2 + 𝑥

′ 2 = 𝑥1
′ 2 + 𝑥

′ 2. (33)

The decision boundaries in the three-qubit QNN have a cone-shape geometry in the high

dimensional space as demonstrated by Eqns. (31)-(33).

91

The role of the unitary rotation (U) is to rotate the data to fit the boundaries since the

boundaries are fixed with respect to the standard coordinate in 𝑥̅ . To visualize this rotation, we

can imagine, for instance, that the input data are Gaussian distributions spread out in a high

dimensional space, in which each object class has a different mean and variance. As we

discussed in Sect. 2.2B, U can be understood as rotating the data points in a fixed coordinate

system or rotating the coordinate system while keeping the data in place. Hence, U rotates and

moves the data into the two decision boundaries, or equivalently, it rotates the two decision

boundaries to fit the data into the region. During the training of our hybrid QNN, the learning

algorithm is responsible for finding the most optimal U, resulting in a set of decision boundaries

that best separate different classes of data to maximize the prediction accuracy. In the following,

we will investigate how to implement U most efficiently in quantum computing.

C. Minimal Degrees of Freedom

This subsection aims to establish the minimal degrees of freedom that a QNN needs for

solving a classification problem. The computational complexity of a quantum algorithm is

proportional to the number of quantum gates that it requires, and each elementary quantum gate

provides a rotational degree of freedom. We define the elementary quantum gate as any single-

qubit gate with an adjustable angle parameter. For example, the Ry gate is the elementary gate

that we use in this study for quantum complexity:

 𝑹𝑦(𝜃) = [
cos

𝜃

2
−sin

𝜃

2

sin
𝜃

2
cos

𝜃

2

], (34)

where θ is the azimuthal angle in the Bloch sphere. The half-angle (
𝜃

2
) in Eqn. (34) has profound

meaning in physics, and we will discuss it here briefly. The Bloch sphere is a 3D representation

92

of the state of a single qubit with the north pole representing the spin-up state of an electron and

the south pole representing the spin-down state. Succinctly put, electron spins have SU(2)

symmetry with a periodicity of 4π but the Bloch sphere has SO(3) symmetry with a periodicity

of 2π; to match the two, we need to make the azimuthal angle (θ) in the Bloch sphere rotate at

50% speed such that a rotation of 2π in the longitude of the Bloch sphere represents a 4π rotation

in the spin space [92]. The number of thetas (θ) we need to specify U determines the degrees of

freedom in our machine learning model. The QNN is free to adjust these angles to maximize the

prediction accuracy during training, and these angles will be constant during inference. Since

coherence time is a scarce resource today, it is ideal to limit the number of quantum gates in our

model to the minimum required by the classification problem.

To estimate the complexity of the problem, we use the principal component analysis

(PCA) as described before to identify the intrinsic dimensionality of the dataset [93]. PCA

decomposes the covariance matrix of a dataset using the singular value decomposition (SVD)

[12]. In SVD, we decompose a rectangular matrix (X) into three components (V, S, and Q) as

follows:

 𝑿 = 𝑽𝑺𝑇𝑸𝑇, (35)

where 𝑿 ∈ ℝ𝑛𝑠×𝑚 is a wide rectangular matrix where each column is a data sample (i.e., the 𝑥̅

from Eqn. (23)), 𝑽 ∈ ℝ𝑛𝑠×𝑛𝑠 is a unitary matrix representing the eigenvectors, and 𝑺𝑇 ∈ ℝ𝑛𝑠×𝑚

is a diagonal matrix representing the singular values, 𝑸𝑇 ∈ ℝ𝑚×𝑚 is another unitary matrix, and

m is the number of samples in the dataset. PCA relates to SVD via the eigenvectors (V) and

singular values (S):

 𝑿𝑿𝑇 = 𝑽𝑺𝑇𝑺𝑽𝑇 = 𝑽𝜦𝑽𝑇, (36)

93

where Λ is a diagonal matrix with elements being the eigenvalues of the covariance matrix, XXT.

Like image compression based on Fourier analysis, we can compress our dataset by keeping the

largest k eigenvalues and their corresponding eigenvectors, and the quality of this data

compression technique based on PCA will depend on the distribution of the eigenvalues. We can

use the reconstruction error as a quality metric described next.

Next, we will show that for our proposed QNN, U only requires k x nc parameters for

manipulating the top k PCA eigenvectors in a classification problem with nc classes. To

understand this statement, we break the derivation into two parts—The first parameter reduction

comes from the fact that the dataset is compressible, and the second parameter reduction is due

to the wavefunction collapse during measurement. Firstly, the transfer function of our QNN can

be written in the following matrix form concerning the entire dataset by substituting Eqn. (35)

into Y so that:

 𝒀 = 𝑇(𝑼𝑿) 2 = 𝑇(𝑼𝑽𝑺𝑇𝑸𝑇) 2, (37)

where 𝒀 ∈ ℝ𝑛𝑐×𝑚 represents the average measurement results (i.e., each column in Y is the logits

𝑦̅ from Eqn. (23)). Now we define B as:

 𝑩 = 𝑼𝑽, (38)

where B, U, and V are unitary matrices of size ns x ns. Only the top k rows in U have significant

effects on the output because they correspond to the k first columns in B, which will eventually

multiply the top k singular values. Additionally, the rows (and columns) of a unitary matrix such

as U are orthogonal. The top k rows of U have k x ns matrix elements, and after transposition,

they belong to the Stiefel manifold, which we discussed previously in Sect. 2.2B. Geometrically,

a Stiefel manifold is a subspace of the manifold formed by the orthogonal group. An orthogonal

94

matrix specifies the complete ns basis vectors in an ns-dimensional space, and taking k of these

vectors will form the Stiefel manifold. Because we use Ry gate exclusively in our network, U is a

real matrix in our case, and our previous analysis on the number of tunable scalar parameters still

holds: As shown in Fig. 3 previously for the construction of a Stiefel matrix, a Stiefel manifold

of size ns x k can be represented by k x ns – k x (k + 1) / 2 tunable parameters (i.e., angles) [94].

When ns >> k, the first term dominates, and we simplify the expression to k x ns parameters. So

far, we have shown that U requires k x ns parameters to program due to the compressibility of the

dataset.

Secondly, we will explain the effect of quantum measurement to further zero in on the

required number of parameters. The act of measurement collapses the quantum states with the

projection matrix, PT in Eqn. (25), which performs a linear transformation and projects the

probability vectors from an ns-dimensional space to an nc-dimensional subspace:

 𝑇 ∶ ℝ𝑛𝑠 → ℝ𝑛𝑐. (39)

The target subspace is spanned by the columns of P as its basis, and any component

perpendicular to the target subspace will be annihilated during measurement. In other words,

while U can rotate the signal in ns dimensions, only the rotations in the nc-dimensional target

subspace will affect the final output. Consequently, we can further reduce the parameter

requirements from k x ns to k x nc with k being the minimum number of PCA components needed

to represent a dataset, which we will quantify later experimentally. k x nc is the minimal degree

of freedom (i.e., tunable parameters) that our quantum computer must provide to solve a

classification task with nc classes. We will confirm our theory with quantum simulation in Sect.

4.4 below.

95

4.3. Method

A. Network Architecture

To verify our theory regarding the number of parameters required to specify the unitary

rotation (U) for the proposed hybrid QNN, we expand our framework in Fig. 12 to ten qubits and

apply it to solve an image classification problem. We illustrate the complete network architecture

in Fig. 13 below. The classical feature extraction step pre-processes the input greyscale image

(32 x 32 pixels) with a single convolutional layer, which has a 3 x 3 filter, 3 biases, and a

padding of 1 and is labeled as Conv3x3 in Fig. 13 at the top. The resulting signal passes through

the rectified linear unit (ReLU) to achieve a nonlinear transformation [15]. We flatten the signal

to a vector of size 1024 (210) and initialize a 10-qubit quantum computer accordingly such that

the quantum state amplitudes are equal to the vector. This process is labeled as the amplitude

encoder in the figure.

The most important part of our proposed hybrid QNN is U in Eqn. (23) described in

Theory Section 4.2 and depicted in Fig. 13. U has l layers, and each layer consists of 10 Ry

rotation gates and 10 CNOT gates. CNOT is the controlled-NOT gate [91], defined as follows

for a two-qubit system with the convention that the state vector is arranged from the least

significant bit (|00>) to the most significant bit (|11>) from top to bottom:

 𝑪𝑵𝑶𝑻 = [

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]. (40)

Also, we construct the matrix representing CNOT in Eqn. (40) with the assumption that bit 0 is

the control bit and bit 1 is the target bit. As defined earlier in Eqn. (34), the Ry gate is responsible

96

for specifying the angle of rotation for each qubit, and we have 10 angle parameters per layer

because we have 10 qubits. The qubits are then entangled through 10 CNOT gates to achieve the

entangled states. We can repeat this process as long as the end-to-end quantum computation is

within the coherence time limit of our quantum computer. Because the coherence time is

extremely limited today, we want to minimize the number of layers, l, to the smallest possible.

97

Fig. 13. Our hybrid quantum neural network architecture. An input image is first

preprocessed using a 3 x 3 convolutional filter and ReLU in a classical computer (top).

The amplitude encoder encodes the activations (𝑥̅) into the coefficients for the multi-

qubit basis states of the quantum computer (middle). The unitary rotation (U) has k

Image ∈ ℝ32x32

 Quantum Layer, 𝑯(−) Quantum Layer, 𝑯()

 0 𝑦(𝜃0,0)

 1 𝑦(𝜃1,0)

 2 𝑦(𝜃2,0)

 𝑦(𝜃 ,0)

 𝑦(𝜃 ,0)

 𝑦(𝜃 ,0)

 𝑦(𝜃 ,0)

 𝑦(𝜃 ,0)

 𝑦(𝜃 ,0)

 𝑦(𝜃 ,0)

𝑙 Quantum Layers Total

 𝑦(𝜃0,𝑙−1)

 𝑦(𝜃1,𝑙−1)

 𝑦(𝜃2,𝑙−1)

 𝑦(𝜃 ,𝑙−1)

 𝑦(𝜃 ,𝑙−1)

 𝑦(𝜃 ,𝑙−1)

 𝑦(𝜃 ,𝑙−1)

 𝑦(𝜃 ,𝑙−1)

 𝑦(𝜃 ,𝑙−1)

 𝑦(𝜃 ,𝑙−1)

Rotator (𝑹)Entangler ()

C
la

s
s

 L
a

b
e

l
∈
ℤ

A
rg

m
a

x

Quantum

Conv3x3

 0

 1

 2

A
m

p
lit

u
d

e
 E

n
c
o

d
e

r

U
n

it
a

ry
 R

o
ta

ti
o

n

U

𝑥̅ ∈ ℝ102

Pauli-Z

ReLU

A
v

e
ra

g
e

d
 M

e
a

s
u

re
m

e
n

ts𝑦0

𝑦1

𝑦2

𝑦

𝑦

𝑦

𝑦

𝑦

𝑦

𝑦

𝑦̅ ∈ ℝ10

98

layers, and each layer has a rotator (10 Ry gates) and an entangler (10 CNOT gates).

Quantum signals are measured with the Pauli-Z operator. The average values of the

measurements (𝑦̅) are used for further classical postprocessing (right).

B. Quantum Simulations

We do not use any existing quantum computing framework for our simulations. Because

the expected values of our hybrid QNN over many trials can be described analytically by a

transfer function, it is the most efficient from a simulation point of view to derive the end-to-end

analytical expression. We program the transfer function in a tensor computation package called

PyTorch. 14 In our custom simulator, the amplitude encoder is simply a normalization step

guaranteeing the amplitude vector to have a unit Euclidean norm. U has l layers, in which l is a

design parameter. To derive an expression for U, we break it down to multiple matrix

multiplications and tensor products.

Each rotator depicted in Fig. 13 can be represented by the tensor product of 10 Ry gates:

 𝑹 = ⊗𝑖=0
 𝑹𝑦(𝜃𝑖), (41)

where 𝑹𝑦(𝜃) is defined previously in Eqn. (34) and see the explanation below for our tensor

notation.15 The entangler in each layer is made of a ring of 10 CNOT gates arranged in a close

boundary condition. The transfer function of the entangler can be further broken down into the

product of the individual CNOT gates:

14 Open-source software available at https://pytorch.org/

15 We can write out the tensor product explicitly as: ⊗𝑖=0
 𝑦(𝜃i) = 𝑦(𝜃0) ⊗ 𝑦(𝜃1) ⊗ 𝑦(𝜃2) ⊗

 𝑦(𝜃) ⊗ 𝑦(𝜃) ⊗ 𝑦(𝜃) ⊗ 𝑦(𝜃) ⊗ 𝑦(𝜃) ⊗ 𝑦(𝜃) ⊗ 𝑦(𝜃)

99

 = ∏ 𝑖

𝑖=0 , (42)

where Ei defines the linear transform of a CNOT gate between bit i for the control bit and bit i+1

(modulo 10) as the target bit. More specifically, Ei has the following form:

 𝑖 = {

𝑰28−𝑖⊗𝑪𝑵𝑶𝑻⊗ 𝑰2𝑖 , 𝑖𝑓 𝑖 < 9

[
𝑰 12 0
0 𝑰2 ⊗𝑵𝑶𝑻

] , 𝑖𝑓 𝑖 = 9
 , (43)

where In is the n x n identity matrix. CNOT is defined in Eqn. (40), and NOT is defined as:

 𝑵𝑶𝑻 = [
0 1
1 0

]. (44)

In addition, the transfer function for a single quantum layer (H) in Fig. 13 (bottom) is

defined as:

 𝑯(𝑗) = 𝑹(𝑗) , (45)

where j is the layer index, R(j) is the programmable rotator for each layer j from Eqn. (41), and E

is the entangler from Eqn. (42). Finally, we arrive at the complete analytical expression for the

rotation matrix U by multiplying the transfer function of all k layers:

 𝑼 = ∏ 𝑯(𝑗)
𝑙−1
𝑗=0 = ∏ 𝑹(𝑗)

𝑙−1
𝑗=0 . (46)

The physical meaning of U is the effective transfer function implemented with the programmable

quantum gates shown in Fig. 13. E is identical for all layers, and it contains no trainable

parameters. By design, the number of qubits (nc) in our system is equivalent to the number of

class labels in the classification task.

100

C. Dataset Characteristics

We use the Modified National Institute of Standards and Technology hand-written digits

dataset (MNIST) as an example classification problem [95]. Each data point in MNIST is a 28 x

28 pixels grayscale image of a single hand-written digit. It contains ten different classes, one for

each of the numerical numbers 0 through 9. Overall, there are 60,000 training samples and

10,000 test samples. We preprocess the images by upscaling them to 32 x 32 pixels with linear

interpolations. The resulting number of total pixels in the image (1024) is a power of two; this is

for the ease of programming them into qubits.

D. Training Details

To train the proposed hybrid QNN, we measure the deviation from the desired outcome

by using the cross-entropy loss as defined in Eqn. (13) between the network’s output and the true

label. The number of classes nc in Eqn. (13) is also the number of qubits. We use end-to-end

backpropagation to train both the convolution filter and the unitary rotation. Our complete hybrid

QNN has the following chosen trainable parameters: the 3 x 3 convolution filter has 9 scalar

weight parameters with 3 biases. For the quantum neural network, we have l x nc (i.e., the

number of layers x the number of classes) angles for the Ry gates in the quantum unitary rotation

(U).

We renormalize 𝑦̅ through the softmax function defined in Eqn. (12) to obtain the

probabilities of the data belonging to a particular class collectively represented by 𝑝̅ .

Renormalizing 𝑦̅ with softmax is optional in classification because the following argmax

function picks the element with the highest value regardless of normalization. In other words,

since softmax is a monotonic function, it does not change which vector element is the largest.

101

Nevertheless, it is nice to compute 𝑝̅ because each of its vector elements represents the

probability of being in a particular class.

 We select a batch size of 64 and 20 training epochs. Our backpropagation uses the

stochastic gradient descent algorithm with a learning rate (i.e. step size) of 0.003 and a

momentum (i.e. effective mass) of 0.9, which adjust the weights toward the direction of the

maximal gradient in the loss function with artificial momentum calculated to help the algorithm

escape local minima. With the number of classes and qubits fixed (nc = 10), we vary l (the

number of layers) from 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, to 1024. For scientific rigor, we

repeat each simulation four times with random initialization on the angles, namely, θi in Eqn.

(41), by randomly sampling from a uniform distribution between -π and π. The training set is

shuffled randomly before each simulation.

102

4.4. Results & Discussion

A. The Intrinsic Dimensionality of a Dataset

The PCA accuracy, a metric to quantify the quality of signal reconstruction, is computed

as follows: We first record the neural activations before the amplitude encoder in Fig. 13 and

compress the recorded signals by using only the top k most significant eigenvectors (ranked by

their eigenvalues). Then, we measure the average reconstruction error (e) by measuring the

Euclidean distance between the reconstructed signals and the original ones. With 1024

eigenvectors, we can perfectly reconstruct the signals because that is the total dimensionality of

the signal. With 1024 eigenvectors, the reconstruction error is zero, and the PCA accuracy is 1.

In the case of reconstruction using a single eigenvector, the reconstruction error is a large value

(emax), and we define its PCA accuracy to be 0. Additionally, we define the PCA accuracy (η) for

any reconstruction error (e) between 0 and emax as:

 𝜂 = 𝐶𝐴 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≜ 1 − 𝑒/𝑒𝑚𝑎𝑥 = 𝑓(𝑘). (47)

η is a function of k, the number of PCA components we used for the signal reconstruction. It is

not possible to derive an analytic equation for f as it depends on the specific dataset we use;

however, the relationship between η and k can be measured experimentally as to be shown in the

next subsection.

Additionally, for linking η into our theory, we need to introduce the concept of intrinsic

dimensionality for a dataset, denoted as dmin. For instance, when we take pictures of real-world

objects to construct an image dataset, the camera we use to take these images can have an

arbitrarily high resolution. Logically, the minimum amount of information we need to represent

various objects in a computer should not depend on the size of the sensor; rather, there should be

103

a minimal set of basis vectors required to represent the objects canonically. We define the size

of this set as the intrinsic dimensionality of a dataset (dmin). There is no standard way to calculate

the intrinsic dimensionality of the dataset dmin; the only criterion for the minimal set of basis

vectors is that they must reconstruct the signals “well enough,” which we define here as the

PCA accuracy (η) exceeding 95%. Thus, dmin is the intrinsic dimensionality of the dataset defined

as follows:

 𝑑𝑚𝑖𝑛 ≜ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝜂 𝑡𝑜 𝑏𝑒 0.95. (48)

B. Predicting the Required Quantum Depth

Intuitively, the classification accuracy (ξ) for our hybrid QNN should increase with more

quantum layers because, as the number of programmable angles increases, the network can rotate

the dataset in more directions to achieve a better fit between the data and the decision boundaries.

However, increasing the number of quantum layers (l) beyond the intrinsic dimensionality of the

dataset (dmin) would yield a marginal improvement in the classification accuracy (ξ). The reason

is that if most of the information about the dataset can be represented using dmin basis vectors,

providing the additional capacity to rotate the data in directions orthogonal to the space spanned

by them is not necessary. The main theory that we would like to verify with quantum simulation

is that the unitary rotation (U) requires at least dmin quantum layers to achieve a reasonable

classification accuracy (ξ). This statement assumes that the number of classes in the

classification problem, the number of qubits in the quantum computer, and the number of Ry

rotation gates in a quantum layer are all the same (i.e., nc = 10 as shown in Fig. 13). We will

show our experimental data next.

104

After training using the procedure described previously in Sect. 4.3D, we use our hybrid

QNN to classify the images from MNIST handwritten digit dataset into 10 categories (i.e., 0-9).

See Sect. 4.3C for details about this dataset. The vertical bars in Fig. 14 show the classification

accuracy (ξ) of our hybrid QNN as we vary l, the number of quantum layers. The dashed curve

on the top plots the PCA reconstruction accuracy (η) achieved with the corresponding number of

principal components (k). We measure the accuracy using the test set, which is the portion of the

dataset that we set aside for model evaluation. In Fig. 14, there is a clear correlation between the

PCA reconstruction accuracy and the QNN classification accuracy (ξ) when we align l and k on

the same x-axis. In the case of PCA reconstruction, k is the number of eigenvectors we use to

reconstruct the signals. In the case of the QNN, l is the number of quantum layers in U. Our

theory in Sect. 4.2C predicts that a QNN with l quantum layers can freely rotate k principal

components, assuming each quantum layer has nc tunable parameters. To elaborate, the number

of parameters in our QNN is l x nc, and it matches the degree of freedom k x nc we need to solve

a classification problem with nc classes. Consequently, we see the two trends overlap in the

figure.

105

Fig. 14. Relationship between the intrinsic dataset dimensionality and the required

quantum depth. Using the MNIST hand-written digit dataset, we perform principal

component analysis (PCA) on the activation map (𝑥̅ ∈ ℝ102) after the convolution and

ReLU layer in Fig. 13. The weights for the convolution filters and the quantum rotation

(U) are trained end-to-end with backpropagation using the cross-entropy loss on the

MNIST dataset. As defined in Eqn. (47), the PCA accuracy (η) quantifies the quality of

the reconstructed signal (left vertical axis) using k PCA components (horizontal axis). On

the right vertical axis, the QNN accuracy (ξ) measures the percentage of correctly

predicted samples in the test set using l quantum layers (horizontal axis) in the unitary

rotation (U). As shown in the figure, η (dashed line) correlates with ξ (vertical bars). We

define the intrinsic dimensionality of the dataset (dmin) as the number of PCA components

needed for η to exceed 0.95, which is indicated with an arrow in the figure. The number

0
.3

8

0
.5

3

0
.6

3

0
.7

2

0
.7

5

0
.7

8

0
.8

2

0
.8

5

0
.8

7

0.12

0.32

0.56

0.77

0.91
0.98

0.99 1.00 1.00 1.00

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512 1024

Q
N

N
 A

c
c
u
ra

c
y
 (
ξ)

P
C

A
 A

c
c
u
ra

c
y
 (
η

)

Number of PCA Components (k) / Number of Quantum Layers (l)

Quantum Neural Network (QNN) Image Classification

Pincipal Component Analysis (PCA) Signal Reconstruction

𝑘 𝑜𝑟 𝑙

𝑑𝑚𝑖𝑛

106

of quantum layers must match or exceed the dmin to achieve a reasonable classification

accuracy (ξ = 0.75 in this example).

With this definition, we find dmin to be 64 using the dashed curve in Fig. 14 with the

simulation stated before. This critical point is determined by the covariance of the pixels in the

dataset, and it will impact our network design a great deal. Both the PCA accuracy (η) and the

classification accuracy (ξ) rise rapidly for 1 < k < 64, but the improvements slow down

drastically afterward. The classification accuracy (ξ) increases by 75% with the first 64 quantum

layers, but it only improves by 12% when l increases further from 64 to 1024 layers and plateaus

at 87%. It takes a great deal of more eigenvectors to capture the last 5% of the variance because

the PCA eigenvalues often have a long tail distribution. This is because the dimensionality of the

sensor used to capture the image (i.e., the resolution of the camera, 32 x 32 for the example

shown in Fig. 13) is often much higher than the space needed to represent the objects in the

image; therefore, it becomes uneconomical for the number of quantum layers (l) to greatly

exceeds dmin. This information is essential in the NISQ era because we often need to reduce the

number of quantum layers to accommodate the highly constrained coherence time in today’s

quantum computers. As a first pass, practitioners can use the PCA accuracy curve (η) to set a

corresponding number of quantum layers (l) equal to the intrinsic dimensionality (dmin) that will

capture 95% of the variance information (e.g., l = k = dmin = 64 in our example), ensuring a

satisfactory classification accuracy (e.g., ξ = 0.75 in our case). Additionally, using the PCA

accuracy (η) to approximate the return on investment with additional quantum layers is an

excellent rule of thumb for practical applications in the NISQ era.

107

4.5. Conclusion

In this study, we have proposed a novel hybrid QNN that can support multiclass

classification problems. We use the hand-written number recognition as an example to show an

accuracy of 87% on the MNIST dataset with full image resolution. In addition to demonstrating

the possibility of using the unitary rotation to create a classification model in quantum computing,

we study the decision boundaries drawn by our quantum system. As a crucial topic for

classification models, decision boundaries specify the demarcation of data points in the input

vector space for predicting their class labels. By deriving the equations for the decision

boundaries of our hybrid QNN, we offer new insights into its decision process: the quantum

gates rotate the data encoded in the multi-qubit basis states and move them into one of the cone-

shaped decision regions. This interpretation provides a foundation for understanding the decision

processes in QNNs for classification.

In addition, our key contribution is establishing a rule of thumb for determining the

optimal (or minimal) number of quantum layers (dmin) to put in the network by performing the

principal value analysis on the dataset. The unitary rotation requires a minimum number, dmin x

nc, of Ry gates to implement, where dmin is also the number of PCA components needed to

properly reconstruct the dataset to 95% accuracy. We also show that there is a diminishing return

of investment when we increase the number of quantum layers (l) beyond dmin. Machine learning

practitioners can use our framework to balance and optimize the classification accuracy, the

number of quantum gates, and the coherence time required to solve a particular classification

problem.

108

Chapter 5 — Closing Remarks

Research never ends.

109

5.1. Summary

As we have demonstrated in the previous chapters, unitary neural networks are faster,

more robust, and ready for quantum. Their speed improvement comes from the fact that unitary

rotations preserved the Euclidean metric norm, and thus, it maintains the neural signal strengths.

Although nonlinear activation functions might weaken the neural activations across multiple

layers, the unitary constraint alone is sufficient to mitigate the exploding and diminishing

gradient problem for a 143-layer network without normalization as we have shown in Chapter 2.

The elimination of normalization increases the inference speed by up to 32% in an example of

image recognition with our UniResNet architecture (Sect. 2.4), which is a novel neural

architecture that uses unitary weights to stabilize the activations in a convolutional neural

network. By using the Stiefel manifold, we invent a new way to generalize the concept of

unitarity to rectangular weight matrices that are prevalent in most convolution filters;

furthermore, the tunable parameters can be reduced by up to 50% due to the unitary constraints

(Sect. 2.2).

Unitary neural nets are more robust because unitary transformation preserves the distance

between two vectors. This unique property makes them resilient to adversarial attacks that are

contrived with small perturbations on the input signals. By restraining the perturbations across

the network via unitary constraints and by increasing the decision margin with the multi-margin

loss, we can improve the prediction accuracy under adversarial attacks by up to an order of

magnitude (Sect. 3.4). More specifically, in Chapter 3, we propose an enhanced neural

architecture named UniBERT, which is a variant of the state-of-the-art Bidirectional Encoder

Representations from Transformers architecture for natural language processing. Our UniBERT

can deter adversarial attacks much better than the state-of-the-art defense methods based on data

110

argumentation and regularization, outperforming the state-of-the-art methods by at least 15% in

post-attack classification accuracies across tasks and attack recipes under the toughest evaluation

metrics. Chapter 2 and Chapter 3 demonstrate that unitary neural nets are efficient, robust, and

fundamentally stable—an excellent architectural choice for all neural networks when

implemented in classical computing.

Unitary neural nets provide an effortless transition to quantum information processing.

The gates in quantum computers perform unitary transformations; as a result, the weights in a

unitary neural net can be decomposed into a cascade of rotation gates in the quantum domain

(Sect. 4.3). The exponential number (2n) of quantum states generated by n qubits provides an

opportunity for initiating a new technology curve, a quantum version of Moore’s law. We show

in Sect. 4.4 that the required number of quantum gates depends on the principal value

decomposition of the dataset; our framework and treatise provide a practical guide to estimating

the number of qubits required, and this result gives the design requirement for a quantum

computer’s coherence time to solve classification and other classically hard problems.

Lastly, we would like to add a discussion on the overall view of this dissertation. We

began with a comprehensive study of the performance gains in the classical domain to show that

unitary neural networks outperform the state-of-the-art in inference speed and adversarial

robustness. Our work here offers a practical methodology that makes neural computation more

efficient and safer for a wide range of industrial applications, including mission-critical computer

vision and natural language processing. Moreover, we champion unitary neural networks as a

stepping stone to quantum computing because there is a direct translation between the classical

unitary weights and quantum gates. This unique property shortens the design cycle of quantum

neural nets via straightforward conversion between simulation and hardware deployment.

111

5.2. Outlook

Many open questions remain in the treatment of unitary neural networks. In the classical

domain, unitary constraints can be implemented in various ways, including matrix

exponentiation (Sect. 2.2A) and QR decomposition (Sect. 3.3B). In this treatise, our experience

shows that QR decomposition is faster than matrix exponentiation on graphics computing units.

Nevertheless, there are also iterative methods such as calculating the weight matrices’ deviations

from the unitary group and making small corrections at each training step, which may have

negligible training time penalties and could be more computationally efficient than our current

techniques for implementing the unitary constraints.

In the quantum domain, it is essential to build a nonlinear quantum computer for machine

learning. Deep learning relies on multiple layers of nonlinearity to create intricate decision

boundaries in the feature space. The lack of nonlinear functions in quantum computing severely

handicaps the usefulness of quantum neural nets. Any quantum system designed to obey the

linear Schrödinger equation will not support the nonlinear transformation of the quantum state

amplitudes. A common workaround in today’s literature is to use measurement as a source of

nonlinearity or perform nonlinear processing in a classical computer. Either way, we lose the

benefit of the exponential number of states generated by qubits once the wavefunctions collapse.

We predict that the next quantum leap will come from the invention of nonlinear quantum gates.

To implement nonlinear gates, researchers need to not only characterize nonlinear

quantum devices but develop a mathematical framework to model them. One related field of

research is nonlinear optics. For instance, the Kerr nonlinearity describes the nonlinear

polarization for a dielectric material under an external electric field, resulting in a nonlinear

112

Schrödinger equation for the wavefunctions [96]. This nonlinear effect is used to build nonlinear

components in optical quantum computers [97]. On the other hand, there is a wide research gap

in building and modeling nonlinear gates for superconducting qubits.

Fig. 15. Nonlinear quantum neural networks are realized by dissipative quantum

computing. A key limitation of today’s quantum computers is that it is completely linear

by design; as a result, quantum machine learning requires tedious workarounds for

implementing the nonlinearities required to achieve the desired model capacity. We

propose a paradigm shift in quantum research to incorporate dissipation as a source of

nonlinearity for a machine learning model (such as the neural network depicted in the

middle of this figure). The effect of dissipation can be quantified using the nonlinear

Schrödinger equation and incorporated into neural network training. With the

introduction of nonlinearity in the system, nonlinear quantum computers not only

D
a

ta

Dissipation

Nonlinear

Quantum Computer

Energy Reservoir

P
re

d
ic

ti
o

n

An energy-conserved system

neural net(s)

113

alleviate the bottleneck in scaling the number of qubits but also open up a wide range of

quantum algorithms to make quantum computing a step closer to general computing.

Another interesting research direction for creating nonlinearity is to use decoherence as a

source of nonlinearity [98]. If we can analytically express the environmental coupling and model

the dissipation as an integral part of network training, we may be able to circumvent the problem

of the coherence time while supporting nonlinear transforms, achieving exponential scaling at a

discounted rate. Nonlinear quantum computers such as the one depicted in Fig. 15 kill two birds

with one stone: Instead of fighting the quantum decoherence, express it as the nonlinearity for a

machine learning model (e.g., a neural network) by studying the nonlinear Schrödinger equation

associated with the dissipation phenomenon [99], [100]. Such a futuristic machine learning

system will be a mixture of the linear, non-dissipative, unitary layers and the nonlinear,

dissipative, non-unitary layers, providing a quantum leap toward a new paradigm for computing

and information processing.

114

References

[1] H.-Y. Chang and K. L. Wang, “Deep Unitary Convolutional Neural Networks,” in

Artificial Neural Networks and Machine Learning – ICANN 2021, Cham, 2021, pp. 170–

181. doi: 10.1007/978-3-030-86340-1_14.

[2] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc,

“Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE Journal

of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, Oct. 1974, doi:

10.1109/JSSC.1974.1050511.

[3] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper,” IEEE Solid-

State Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13, 2007, doi: 10.1109/N-

SSC.2007.4785534.

[4] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted from

Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.,” IEEE Solid-State Circuits

Society Newsletter, vol. 11, no. 3, pp. 33–35, Sep. 2006, doi: 10.1109/N-

SSC.2006.4785860.

[5] C. M. Christensen, The innovator’s dilemma: when new technologies cause great firms to

fail. Boston, Massachusetts: Harvard Business Review Press, 2000.

[6] A. Messiah, Quantum Mechanics. Courier Corporation, 2014.

[7] V. B. Rojansky, Introductory Quantum Mechanics. Prentice-Hall, Incorporated, 1938.

[8] E. Mollick, “Establishing Moore’s Law,” IEEE Annals of the History of Computing, vol.

28, no. 3, pp. 62–75, Jul. 2006, doi: 10.1109/MAHC.2006.45.

[9] Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural

Computation, vol. 1, no. 4, pp. 541–551, Dec. 1989, doi: 10.1162/neco.1989.1.4.541.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, Dec.

2015, pp. 770–778. Accessed: Sep. 02, 2020. [Online]. Available:

http://arxiv.org/abs/1512.03385

[11] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the Number of Linear Regions of

Deep Neural Networks,” Advances in Neural Information Processing Systems, vol. 27,

2014, Accessed: Feb. 22, 2021. [Online]. Available:

https://papers.nips.cc/paper/2014/hash/109d2dd3608f669ca17920c511c2a41e-

Abstract.html

[12] I. Goodfellow, Deep Learning. MIT Press, 2016. [Online]. Available:

http://www.deeplearningbook.org

115

[13] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training Recurrent Neural

Networks,” arXiv:1211.5063 [cs], Feb. 2013, Accessed: Feb. 22, 2021. [Online]. Available:

http://arxiv.org/abs/1211.5063

[14] E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse

Problems, vol. 34, no. 1, p. 014004, Dec. 2017, doi: 10.1088/1361-6420/aa9a90.

[15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”

in Proceedings of the 27th International Conference on International Conference on

Machine Learning, Madison, WI, USA, Jun. 2010, pp. 807–814.

[16] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient

descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166,

Mar. 1994, doi: 10.1109/72.279181.

[17] Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift,” in Proceedings of the 32nd International

Conference on Machine Learning, Jun. 2015, vol. 37, pp. 448–456. [Online]. Available:

http://proceedings.mlr.press/v37/ioffe15.html

[18] J. Wei, “Forget the Learning Rate, Decay Loss,” IJMLC, vol. 9, no. 3, pp. 267–272, Jun.

2019, doi: 10.18178/ijmlc.2019.9.3.797.

[19] M. Lezcano-Casado and D. Martínez-Rubio, “Cheap Orthogonal Constraints in Neural

Networks: A Simple Parametrization of the Orthogonal and Unitary Group,” in

Proceedings of the 36th International Conference on Machine Learning, Jun. 2019, vol. 97,

pp. 3794–3803. [Online]. Available: http://proceedings.mlr.press/v97/lezcano-

casado19a.html

[20] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary Evolution Recurrent Neural Networks,” in

International Conference on Machine Learning, Jun. 2016, pp. 1120–1128. Accessed: Feb.

22, 2021. [Online]. Available: http://proceedings.mlr.press/v48/arjovsky16.html

[21] K. Helfrich, D. Willmott, and Q. Ye, “Orthogonal Recurrent Neural Networks with Scaled

Cayley Transform,” in International Conference on Machine Learning, Jul. 2018, pp.

1969–1978. Accessed: Feb. 22, 2021. [Online]. Available:

http://proceedings.mlr.press/v80/helfrich18a.html

[22] L. Jing et al., “Tunable Efficient Unitary Neural Networks (EUNN) and their application to

RNNs,” in International Conference on Machine Learning, Jul. 2017, pp. 1733–1741.

Accessed: Feb. 22, 2021. [Online]. Available:

http://proceedings.mlr.press/v70/jing17a.html

[23] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey, “Efficient Orthogonal

Parametrisation of Recurrent Neural Networks Using Householder Reflections,” in

International Conference on Machine Learning, Jul. 2017, pp. 2401–2409. Accessed: Feb.

22, 2021. [Online]. Available: http://proceedings.mlr.press/v70/mhammedi17a.html

116

[24] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L. Atlas, “Full-Capacity Unitary

Recurrent Neural Networks,” in Advances in Neural Information Processing Systems 29, D.

D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates,

Inc., 2016, pp. 4880–4888. Accessed: Aug. 21, 2020. [Online]. Available:

http://papers.nips.cc/paper/6327-full-capacity-unitary-recurrent-neural-networks.pdf

[25] L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang, and B. Li, “Orthogonal Weight

Normalization: Solution to Optimization over Multiple Dependent Stiefel Manifolds in

Deep Neural Networks,” presented at the Thirty-Second AAAI Conference on Artificial

Intelligence, 2017. Accessed: Aug. 21, 2020. [Online]. Available:

http://arxiv.org/abs/1709.06079

[26] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal, “On orthogonality and learning

recurrent networks with long term dependencies,” in International Conference on Machine

Learning, Jul. 2017, pp. 3570–3578. Accessed: Feb. 22, 2021. [Online]. Available:

http://proceedings.mlr.press/v70/vorontsov17a.html

[27] J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, “Orthogonal Convolutional Neural

Networks,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Seattle, WA, USA, Jun. 2020, pp. 11502–11512. doi:

10.1109/CVPR42600.2020.01152.

[28] R. Gilmore and R. Hermann, Lie Groups, Lie Algebras, and Some of Their Applications.

New York: John Wiley & Sons, 1974.

[29] R. Gilmore, Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers

and Chemists. New York: Cambridge University Press, 2008.

[30] P. Bader, S. Blanes, and F. Casas, “Computing the Matrix Exponential with an Optimized

Taylor Polynomial Approximation,” Mathematics, vol. 7, no. 12, Art. no. 12, Dec. 2019,

doi: 10.3390/math7121174.

[31] Torch Contributors, “torch.matrix_exp — PyTorch 1.7.0 documentation,” 2019.

https://pytorch.org/docs/stable/generated/torch.matrix_exp.html (accessed Nov. 24, 2020).

[32] A. Paszke et al., “Automatic differentiation in PyTorch,” NIPS 2017 Workshop Autodiff

Submission, Oct. 2017, doi: https://openreview.net/pdf?id=BJJsrmfCZ.

[33] A. Edelman, T. A. Arias, and S. T. Smith, “The Geometry of Algorithms with

Orthogonality Constraints,” SIAM J. Matrix Anal. & Appl., vol. 20, no. 2, pp. 303–353, Jan.

1998, doi: 10.1137/S0895479895290954.

[34] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A Survey of Accelerator Architectures

for Deep Neural Networks,” Engineering, vol. 6, no. 3, pp. 264–274, Mar. 2020, doi:

10.1016/j.eng.2020.01.007.

[35] A. Araujo, B. Negrevergne, Y. Chevaleyre, and J. Atif, “On Lipschitz Regularization of

Convolutional Layers using Toeplitz Matrix Theory,” Vancouver, Canada, Feb. 2021.

117

Accessed: Mar. 03, 2021. [Online]. Available: https://hal.archives-ouvertes.fr/hal-

03107420

[36] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” University of

Toronto, 2009. Accessed: Feb. 03, 2021. [Online]. Available:

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[37] V. Chiley et al., “Online Normalization for Training Neural Networks,” in Advances in

Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8433–8443.

Accessed: Nov. 03, 2020. [Online]. Available: http://papers.nips.cc/paper/9051-online-

normalization-for-training-neural-networks.pdf

[38] Y. Wu and K. He, “Group Normalization,” Int J Comput Vis, vol. 128, no. 3, pp. 742–755,

Mar. 2020, doi: 10.1007/s11263-019-01198-w.

[39] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv:1607.06450 [cs, stat],

Jul. 2016, Accessed: Jan. 13, 2021. [Online]. Available: http://arxiv.org/abs/1607.06450

[40] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance Normalization: The Missing

Ingredient for Fast Stylization,” arXiv:1607.08022 [cs], Nov. 2017, Accessed: Jan. 13,

2021. [Online]. Available: http://arxiv.org/abs/1607.08022

[41] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

Minneapolis, Minnesota, Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

[42] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative Study of CNN and RNN for

Natural Language Processing,” arXiv:1702.01923 [cs], Feb. 2017, Accessed: Nov. 14,

2021. [Online]. Available: http://arxiv.org/abs/1702.01923

[43] A. Miaschi and F. Dell’Orletta, “Contextual and Non-Contextual Word Embeddings: an

in-depth Linguistic Investigation,” in Proceedings of the 5th Workshop on Representation

Learning for NLP, Online, Jul. 2020, pp. 110–119. doi: 10.18653/v1/2020.repl4nlp-1.15.

[44] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units (GELUs),” arXiv,

arXiv:1606.08415, Jul. 2020. doi: 10.48550/arXiv.1606.08415.

[45] J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff, “Masked Language Model Scoring,”

in Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, Online, Jul. 2020, pp. 2699–2712. doi: 10.18653/v1/2020.acl-main.240.

[46] N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep Learning in Computer

Vision: A Survey,” IEEE Access, vol. 6, pp. 14410–14430, 2018, doi:

10.1109/ACCESS.2018.2807385.

118

[47] H. Karimi, T. Derr, and J. Tang, “Characterizing the Decision Boundary of Deep Neural

Networks,” arXiv:1912.11460 [cs, stat], Jun. 2020, Accessed: Nov. 14, 2021. [Online].

Available: http://arxiv.org/abs/1912.11460

[48] E. Wong and Z. Kolter, “Provable Defenses against Adversarial Examples via the Convex

Outer Adversarial Polytope,” in Proceedings of the 35th International Conference on

Machine Learning, Jul. 2018, pp. 5286–5295. Accessed: Oct. 22, 2021. [Online].

Available: https://proceedings.mlr.press/v80/wong18a.html

[49] B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi, “Deep Text Classification Can be

Fooled,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial

Intelligence, Stockholm, Sweden, Jul. 2018, pp. 4208–4215. doi: 10.24963/ijcai.2018/585.

[50] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is BERT Really Robust? A Strong Baseline

for Natural Language Attack on Text Classification and Entailment,” arXiv:1907.11932

[cs], Apr. 2020, Accessed: Aug. 11, 2021. [Online]. Available:

http://arxiv.org/abs/1907.11932

[51] S. Ren, Y. Deng, K. He, and W. Che, “Generating Natural Language Adversarial

Examples through Probability Weighted Word Saliency,” in Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, Florence, Italy, Jul.

2019, pp. 1085–1097. doi: 10.18653/v1/P19-1103.

[52] Y. Xie, Z. Gu, X. Fu, L. Wang, W. Han, and Y. Wang, “Misleading Sentiment Analysis:

Generating Adversarial Texts by the Ensemble Word Addition Algorithm,” in 2020

International Conferences on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics),

Nov. 2020, pp. 590–596. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-

Cybermatics50389.2020.00103.

[53] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “TextBugger: Generating Adversarial Text Against

Real-world Applications,” presented at the Network and Distributed System Security

Symposium, San Diego, CA, 2019. doi: 10.14722/ndss.2019.23138.

[54] C. Si et al., “Better Robustness by More Coverage: Adversarial and Mixup Data

Augmentation for Robust Finetuning,” in Findings of the Association for Computational

Linguistics: ACL-IJCNLP 2021, Online, Aug. 2021, pp. 1569–1576. doi:

10.18653/v1/2021.findings-acl.137.

[55] J. Zhao, P. Wei, and W. Mao, “Robust Neural Text Classification and Entailment via

Mixup Regularized Adversarial Training,” in Proceedings of the 44th International ACM

SIGIR Conference on Research and Development in Information Retrieval, New York, NY,

USA, Jul. 2021, pp. 1778–1782. doi: 10.1145/3404835.3463122.

[56] B. Wang et al., “InfoBERT: Improving Robustness of Language Models from An

Information Theoretic Perspective,” arXiv:2010.02329 [cs], Mar. 2021, Accessed: Sep. 27,

2021. [Online]. Available: http://arxiv.org/abs/2010.02329

119

[57] S. Rosset, J. Zhu, and T. Hastie, “Margin Maximizing Loss Functions,” in Advances in

Neural Information Processing Systems, 2004, vol. 16. Accessed: Nov. 14, 2021. [Online].

Available:

https://proceedings.neurips.cc/paper/2003/hash/0fe473396242072e84af286632d3f0ff-

Abstract.html

[58] G. Elsayed, D. Krishnan, H. Mobahi, K. Regan, and S. Bengio, “Large Margin Deep

Networks for Classification,” in Advances in Neural Information Processing Systems, 2018,

vol. 31. Accessed: Nov. 04, 2021. [Online]. Available:

https://proceedings.neurips.cc/paper/2018/hash/42998cf32d552343bc8e460416382dca-

Abstract.html

[59] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: Deep Hypersphere

Embedding for Face Recognition,” in 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI, Jul. 2017, pp. 6738–6746. doi:

10.1109/CVPR.2017.713.

[60] E. Romero, L. Marquez, and X. Carreras, “Margin maximization with feed-forward neural

networks: a comparative study with SVM and AdaBoost.” 2004.

[61] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive Margin Softmax for Face Verification,”

IEEE Signal Processing Letters, vol. 25, no. 7, pp. 926–930, Jul. 2018, doi:

10.1109/LSP.2018.2822810.

[62] N. Bansal, X. Chen, and Z. Wang, “Can We Gain More from Orthogonality

Regularizations in Training Deep CNNs?,” arXiv:1810.09102 [cs, stat], Oct. 2018,

Accessed: May 05, 2021. [Online]. Available: http://arxiv.org/abs/1810.09102

[63] C. Xu, X. Li, and M. Yang, “An Orthogonal Classifier for Improving the Adversarial

Robustness of Neural Networks,” arXiv:2105.09109 [cs], Sep. 2021, Accessed: Jan. 13,

2022. [Online]. Available: http://arxiv.org/abs/2105.09109

[64] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Neural Photo Editing with Introspective

Adversarial Networks,” arXiv:1609.07093 [cs, stat], Feb. 2017, Accessed: May 05, 2021.

[Online]. Available: http://arxiv.org/abs/1609.07093

[65] G. H. Golub and C. F. Van Loan, Matrix computations, Fourth edition. Baltimore: The

Johns Hopkins University Press, 2013.

[66] Y. Zhu et al., “Aligning Books and Movies: Towards Story-Like Visual Explanations by

Watching Movies and Reading Books,” in 2015 IEEE International Conference on

Computer Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 19–27. doi:

10.1109/ICCV.2015.11.

[67] X. Zhang, J. Zhao, and Y. LeCun, “Character-level Convolutional Networks for Text

Classification,” in Advances in Neural Information Processing Systems, 2015, vol. 28.

Accessed: Nov. 14, 2021. [Online]. Available:

120

https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-

Abstract.html

[68] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated corpus for

learning natural language inference,” in Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, Lisbon, Portugal, Sep. 2015, pp. 632–642. doi:

10.18653/v1/D15-1075.

[69] T. Wolf et al., “HuggingFace’s Transformers: State-of-the-art Natural Language

Processing,” arXiv:1910.03771 [cs], Jul. 2020, Accessed: Oct. 06, 2020. [Online].

Available: http://arxiv.org/abs/1910.03771

[70] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980

[cs], Jan. 2017, Accessed: May 09, 2021. [Online]. Available:

http://arxiv.org/abs/1412.6980

[71] N. Mrkšić et al., “Counter-fitting Word Vectors to Linguistic Constraints,” in Proceedings

of the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, San Diego, California, Jun.

2016, pp. 142–148. doi: 10.18653/v1/N16-1018.

[72] G. A. Miller, “WordNet: a lexical database for English,” Commun. ACM, vol. 38, no. 11,

pp. 39–41, Nov. 1995, doi: 10.1145/219717.219748.

[73] D. Cer et al., “Universal Sentence Encoder for English,” in Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, Brussels, Belgium, Nov. 2018, pp. 169–174. doi: 10.18653/v1/D18-2029.

[74] J. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi, “TextAttack: A Framework

for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP,” in

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, Online, Oct. 2020, pp. 119–126. doi:

10.18653/v1/2020.emnlp-demos.16.

[75] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,”

arXiv:1907.11692 [cs], Jul. 2019, Accessed: Jan. 01, 2022. [Online]. Available:

http://arxiv.org/abs/1907.11692

[76] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT: A Lite

BERT for Self-supervised Learning of Language Representations,” arXiv:1909.11942 [cs],

Feb. 2020, Accessed: Oct. 14, 2020. [Online]. Available: http://arxiv.org/abs/1909.11942

[77] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter,” arXiv:1910.01108 [cs], Feb. 2020, Accessed: Jan. 16,

2022. [Online]. Available: http://arxiv.org/abs/1910.01108

121

[78] P. A. Gargini, “How to successfully overcome inflection points, or long live Moore’s law,”

Computing in Science Engineering, vol. 19, no. 2, pp. 51–62, Mar. 2017, doi:

10.1109/MCSE.2017.32.

[79] M. T. Bohr and I. A. Young, “CMOS Scaling Trends and Beyond,” IEEE Micro, vol. 37,

no. 6, pp. 20–29, Nov. 2017, doi: 10.1109/MM.2017.4241347.

[80] S. K. Saha, “Modeling Process Variability in Scaled CMOS Technology,” IEEE Design

Test of Computers, vol. 27, no. 2, pp. 8–16, Mar. 2010, doi: 10.1109/MDT.2010.50.

[81] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 10th

anniversary ed. Cambridge ; New York: Cambridge University Press, 2010.

[82] S. Imre and F. Balázs, Quantum computing and communications : an engineering

approach. Chichester, West Sussex, England ; Wiley, 2005.

[83] A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a

resource,” Rev. Mod. Phys., vol. 89, no. 4, p. 041003, Oct. 2017, doi:

10.1103/RevModPhys.89.041003.

[84] R. Youssef, “Measuring and Simulating T₁ and T₂ for Qubits,” Fermi National Accelerator

Lab. (FNAL), Batavia, IL (United States), FERMILAB-POSTER-20-115-SCD, Aug. 2020.

doi: 10.2172/1656632.

[85] “Cramming More Power Into a Quantum Device,” IBM Research Blog, Mar. 04, 2019.

https://www.ibm.com/blogs/research/2019/03/power-quantum-device/ (accessed Apr. 19,

2022).

[86] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79,

Aug. 2018, doi: 10.22331/q-2018-08-06-79.

[87] V. Havlíček et al., “Supervised learning with quantum-enhanced feature spaces,” Nature,

vol. 567, no. 7747, pp. 209–212, Mar. 2019, doi: 10.1038/s41586-019-0980-2.

[88] W. Jiang, J. Xiong, and Y. Shi, “A co-design framework of neural networks and quantum

circuits towards quantum advantage,” Nat Commun, vol. 12, no. 1, Art. no. 1, Jan. 2021,

doi: 10.1038/s41467-020-20729-5.

[89] W. Jiang, J. Xiong, and Y. Shi, “When Machine Learning Meets Quantum Computers: A

Case Study,” in Proceedings of the 26th Asia and South Pacific Design Automation

Conference, New York, NY, USA, Jan. 2021, pp. 593–598. doi:

10.1145/3394885.3431629.

[90] C.-C. Chen, M. Watabe, K. Shiba, M. Sogabe, K. Sakamoto, and T. Sogabe, “On the

Expressibility and Overfitting of Quantum Circuit Learning,” ACM Transactions on

Quantum Computing, vol. 2, no. 2, pp. 1–24, Jul. 2021, doi: 10.1145/3466797.

[91] D. McMahon, Quantum computing explained. Hoboken, N.J: Wiley-Interscience, 2008.

122

[92] S. B. Sontz, “Spin and SU(2),” in An Introductory Path to Quantum Theory: Using

Mathematics to Understand the Ideas of Physics, S. B. Sontz, Ed. Cham: Springer

International Publishing, 2020, pp. 149–163. doi: 10.1007/978-3-030-40767-4_14.

[93] S. Gong, V. N. Boddeti, and A. K. Jain, “On the Intrinsic Dimensionality of Image

Representations,” 2019, pp. 3987–3996. Accessed: Apr. 19, 2022. [Online]. Available:

https://openaccess.thecvf.com/content_CVPR_2019/html/Gong_On_the_Intrinsic_Dimens

ionality_of_Image_Representations_CVPR_2019_paper.html

[94] R. Shepard, S. R. Brozell, and G. Gidofalvi, “The Representation and Parametrization of

Orthogonal Matrices,” J. Phys. Chem. A, vol. 119, no. 28, pp. 7924–7939, Jul. 2015, doi:

10.1021/acs.jpca.5b02015.

[95] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov.

1998, doi: 10.1109/5.726791.

[96] G. Fibich, The nonlinear Schrödinger equation : singular solutions and optical collapse.

Cham [Switzerland] ; Springer, 2015.

[97] R. Yanagimoto, T. Onodera, E. Ng, L. G. Wright, P. L. McMahon, and H. Mabuchi,

“Engineering a Kerr-based Deterministic Cubic Phase Gate via Gaussian Operations,”

Phys. Rev. Lett., vol. 124, no. 24, p. 240503, Jun. 2020, doi:

10.1103/PhysRevLett.124.240503.

[98] G. K. Sadiek, “Decoherence in nonlinear quantum systems,” Ph.D., Purdue University,

United States -- Indiana. Accessed: Apr. 26, 2022. [Online]. Available:

https://www.proquest.com/docview/305498863/abstract/174E41D2FA494DC3PQ/1

[99] H.-P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford ; New York:

Oxford University Press, 2002.

[100] G. Schaller, Open Quantum Systems Far from Equilibrium, vol. 881. Cham: Springer

International Publishing, 2014. doi: 10.1007/978-3-319-03877-3.

	Table of Contents
	Chapter 1 — Background
	1.1. Motivation
	1.2. Mathematics of Unitarity
	1.3. Dissertation Outline

	Chapter 2 — Unitary Convolutional Neural Net for Faster Computer Vision
	2.1. Introduction
	A. The Problem of Instability in Deep Neural Nets
	B. Our Proposed Solution
	C. Literature Review

	2.2. Theory
	A. Matrix Representation of the Unitary Group
	B. The Stiefel Manifold
	C. From the Stiefel Matrix to Convolution Filters

	2.3. Method
	A. Network Architecture
	B. Datasets Characteristics
	C. Training Details
	D. Caching the Unitary Weights

	2.4. Results & Discussion
	2.5. Conclusion

	Chapter 3 — Unitary Neural Nets For Robust Natural Language Processing
	3.1. Introduction
	A. Natural Language Processing
	B. Adversarial Attacks
	C. The Problem with Current Defense Methods
	D. Our Proposed Solution
	E. Literature Review

	3.2. Theory
	A. Multi-margin Loss Increases Robustness
	B. Unitarity Confines Perturbation

	3.3. Method
	A. Network Architecture
	B. Unitary Constraints
	C. Datasets Characteristics
	D. Training Details
	E. Adversarial Attacks
	F. Selecting The Margin Parameter

	3.4. Results & Discussion
	A. Our UniBERT vs. Baseline Models
	B. Our UniBERT vs. Defense Models
	C. Ablation Study
	D. Effect of the Multi-margin Loss
	E. Propagation of Perturbation

	3.5. Conclusion

	Chapter 4 — Quantum Unitary Neural Nets
	4.1. Introduction
	A. The Quantum Transition
	B. The Problem of Coherence Time
	C. Our Proposed Solution
	D. Literature Review

	4.2. Theory
	A. Hybrid Quantum Neural Net
	B. Decision Boundaries
	C. Minimal Degrees of Freedom

	4.3. Method
	A. Network Architecture
	B. Quantum Simulations
	C. Dataset Characteristics
	D. Training Details

	4.4. Results & Discussion
	A. The Intrinsic Dimensionality of a Dataset
	B. Predicting the Required Quantum Depth

	4.5. Conclusion

	Chapter 5 — Closing Remarks
	5.1. Summary
	5.2. Outlook
	References

