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EPIGRAPH

Different representation make different computation easier or harder,
by making certain information explicit

and others pushed into background.

David Marr
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ABSTRACT OF THE THESIS

Decoding Affect from Intracranial Neural Response to Acoustic Stimuli

by

Jingya Huang

Master of Science in Electrical Engineering
(Machine Learning and Data Science)

University of California San Diego, 2021

Professor Vikash Gilja, Chair

Brain-computer Interface(BCI) provides a direct communication pathway between tar-

geted brain region by recording its evoked neural signals and control systems that interact with

neural interfaces. Our work is aiming to find an alternative brain-computer interface (BCI)

control scheme to decode affective states, for assessing and interpreting changes in the user state

while evaluating goal-oriented control schemes, thus improving the efficiency, usability and

accuracy of the BCI. To build such a BCI system, successfully decoding the affective state is an

essential step to take. There are several neural studies with non-invasive recording techniques

that shed insight on the complex and subtle relationships between affective state and neural
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response. However, it is challenging to capture the high resolution spatio-temporal patterns in

the neural response with non-invasive recording techniques. The precise spatio-temporal pattern

in cortical depth structures is important to characterize complex affective state at different time

scales.

Addressing the complexity of neural representation, we bring an acoustic perception

experiment into the Epilepsy Monitoring Unit (EMU) and obtain intracranial neural recordings

from subjects listening to the natural acoustic stimuli that spans different dimensions of the affec-

tive states. In this work, we present several decoder models with different levels of regularization

(ordered by descending model complexity: quadratic discriminative analysis (QDA), regularized

QDA with class-specific Gaussian process factor analysis (GPFA), and regularized QDA with

class-invariant GPFA). Through an iterative process of feature selection and model simplification

we identify few models that emphasize the most informative feature for decoding effect.
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Chapter 1

Introduction and Background

Brain-computer Interface(BCI) provides a direct communication pathway between tar-

geted brain region by recording its evoked neural signals and control systems that interact with

neural interfaces. In contrast to BCI which are used for directed control, an alternative approach

allows us to assess and interpret changes in the user state while evaluating goal-oriented control

schemes. These approaches enable affective neural responses to provide more reward-analogous

complementary signals, like Pacman game studies which use input such as noisy input to in-

fluence subject’s valence, arousal (e.g. Pacman [6]). Such discovery sheds some insight on

the complex but subtle relationship between affective response and BCI system which related

to subject’s neural state control. To further explore this topic, this thesis work centers around

decoding affective states using naturalistic stimuli, which is part of the ongoing neural critic

project to provide an alternative brain-computer interface (BCI) control scheme to improve the

efficiency, usability and accuracy of the BCI.

There are three sections we want to clarify in this chapter for BCI application, we are

interested in extracting robust and informative neural features to decode affective state, thus

helping the design of high performance decoder. First, in Section 1.1, we talk about some

basic concepts of affective response. Recent literature reviews about existing neural features

and related decoding models are discussed here. In Section 1.2, one experiment is selected to

demonstrate the relationship between affective state and intracranial-EEG (iEEG) intracranial
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neuron recording. Based on the selected experiment, section 1.3 functions as a guide to our

development of feature extraction and neural decoding models. Note that the current model

design is specific to time varying acoustic stimuli, but variations of the same model may be

generalize to reflect affective response in more dynamic and naturalistic environments.

1.1 Affective Responses

Among many aspects of the neural responses due to affective state change, we are partic-

ularly interested in 1) extracting robust neural features for BCI systems (introduced above) 2)

decoding affective state accurately and continuously. Several studies were able to decode induced

affective (dimensional or categorical) from images, sounds, and video stimuli using selected

fMRI voxels [5][6][13][14] or band-limited power feature of EEG signals [20][22][25]. However,

the limited spatio-temporal resolution of those non-invasive recording techniques (e.g. fMRI,

EEG) constrains the performance of the decoder. The fMRI recording provides accessibility

to relevant physiological regions, notably limbic structures, but most trained decoders are only

applicable to static images or videos over hours [5]. On the other hand, the EEG studies were

able to record with richer temporal and spectral information, but can only target near cortical

surface where complex signals are aggregated across brain regions [20]. For our work, we are

privileged to record in the EMU with the intracranial-EEG (iEEG) which has more direct access

to the local field potential in the depth cortical regions with higher spatio-temporal resolution.

The above paragraph summarizes existing work in affective state decoding and our

motivation from the practical perspective. Moreover, our work may also provide some theoretical

insight to the neural representation of affective states. There is a persistent and controversial

debate between the two affective models: the categorical model (the basic emotion model

proposed by [9]) and the dimensional model (the circumplex model of affect proposed by Russell

[19], etc). One study shows that the categorical and dimensional representations develop along

different timescales in different cerebral regions, and urges studies with precise spatio-temporal
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dynamics of the cerebral networks to gain a comprehensive understanding [10]. Our modeling

and analysis work on high resolution spatio-temporal dynamics of those targeted regions shed

light on the neural representation of the dimensional model. Similar modeling framework and

analysis techniques may be adopted to establish the neural representation of the categorical

model in the future.

1.2 Acoustic Perception Experiment

Figure 1.1. Overview of the Acoustic Perception Experiment. Each session contain approxi-
mately 20 trials, where each trial begins with the acoustic stimuli presentation for 6 seconds and
then followed by the Sham Questionnaire for 3 seconds. (A) The waveform for an exemplar
acoustic stimuli named “rattle snake”. (B) The neural response recorded from one iEEG channel
of a corresponding trial during the 6 seconds stimuli presentation (blue) and during the 3 seconds
questionnaire and inter-trial interval (black). (C) The affective response for acoustic stimuli in
the IADS (2017) [21]. (i) The standard self-assessment manikin (SAM) questionnaire used to
collect the affective response. (ii) The distribution of average valence and arousal response for
each acoustic stimuli presented (black) and not-presented (grey).
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Several studies using non-invasive neural recording techniques have established the

neural correlates with the acoustic stimuli sampled from the IADS dataset [11][3][15]. Most of

those studies were only able to identify the importance of certain brain regions (e.g. cingulate

cortex) or neural correlates over seconds of recording. To gain an understanding of neural

signature under the affective response with higher resolution, we perform the acoustic perception

experiment in the EMU, where we are privileged to record intracranially within the limbic system

(e.g. insua, amygdala, cingulate cortex) and temporal lobe with higher spatiotemporal resolution.

The primary subject analyzed subsequently participates in 80 trials of acoustic perception.

The experiment consists of four sessions (20 trials in each session) and a resting period in

between. (Figure 1.1) shows an exemplar trial structure, the trial begins with acoustic stimuli

presentation for 6 seconds, followed by a 3 seconds sham questionnaire.

During the first 6 seconds of each trial, an acoustic stimuli sampled from the IADS

dataset is played. The IADS dataset provides a rich dataset for the sound segments of the natural

scenes, objects, and human voices, each spins 6 seconds. (Figure 1.1.A) shows an example

acoustic stimuli, the ’rattle snake’, which consist of two consecutive rattle snake hissing. The

corresponding neural response recorded from an example iEEG channel is shown in (Figure

1.1.B) as blue.

At the end of the stimuli presentation, the subject is prompted to answer a sham ques-

tionnaire. The questionnaire is designed to motivate the subject to attend to the task with simple

questions like ”whether a human could be identified as making the noise”. The corresponding

neural response recorded from the same iEEG channel (as above) is shown in (Figure 1.1.B)

as black. Such neural responses recorded during these 3 seconds are treated as the baseline

response.

On the behavioral side, we leverage the population affective response average (over 100

subjects) from the original IADS study[21]. The IADS experiment shares a similar trial structure

as our experiment described above. A notable difference, however, is that at the end of the

stimuli presentation, their subjects are asked to respond to the standard SAM questionnaire [4]
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(Figure 1.1.C.i) to rate the played stimuli on three principal dimensions: valence, arousal, and

dominance. (Figure 1.1.C.ii) shows the distribution of the average valence and arousal response

for each acoustic stimuli. The dominance dimension is omitted here because the valence and

dominance dimensions are correlated (p-value < 0.05).

We also understand that the affective response maybe highly personalized and influenced

by the subject’s personal experience. In the ongoing data collection, we are utilizing the SAM

questionnaire to collect the subject’s response at the end of stimuli presentation to reduce the

variance in affective response.

1.3 Conceptual Model for Emotion Modulation

Figure 1.2. Conceptual Model for Affects Modulation. (A) The identified random variable
involved in this study. Three observable variable, the affective label Â, the acoustic stimuli st , the
neural feature yt , collected during the experiment. Two hidden variable, the affective state (At)
and the internal state (xt). (B) A graphical representation of the proposed relationship among the
affective state, acoustic stimuli and neural response at a single time point. (C) An expansion of
the graphical representation in (A) across time to capture the evolution of the acoustic stimuli,
affective state and neural response over time.

In this section, we will define the random variables and provide a conceptual framework

for the modeling work in later chapters. Although several previous works help us gain some

understanding of the affective response [11][3][15], due to its complex nature, there are limited
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works that clearly explain the representation of the affective response and in particular, the

relationship among the affective response, acoustic stimuli and neural response. In addition to

those three observable variables, we introduce two hidden variables, the instantaneous internal

neural response and the affective response. Previous works indicate that there is a lack of a

one-to-one mapping between the affective response, acoustic stimuli and neural response [12].

Through the introduction of those hidden variables, we open up the opportunity to explicitly

model the summarization and transformation of the information from the acoustic stimuli to the

neural response that gives rise to the affective response. Here we define this particular structure

(Figure 1.2) for hypothesis testing to reveal the relationship between each of those components.

There are three observable variables involved in the acoustic perception experiment. The

independent variable acoustic stimuli st , the dependent variable neural feature yt and affective

label Â. Here we use the subscript t to denote the variable that is changing over time. The

previous section provides more details of the acoustic stimuli st , the neural feature yt and the

affective label Â within the context of the experiment.

To further specify the relationship among the observable variables, we define two hidden

variables, the internal state xt and the affective state At (Figure 1.2.A). At each time point, the

acoustic stimuli st modulates the internal state xt , which generates the noisy observed neural

feature yt . For the interest of this study, we follow a narrow definition of the internal state xt , as

the neural response that is informative of the affective state At . By specifying the time-varying

affective state At , we could take into account the integration of the affective response at different

timescales to arrive at the final affective label Â collected at the end of the stimuli presentation.

(Figure 1.2.B) illustrates the relationship among those random variables at each time point, which

is a simplification of the full dynamic model shown in (Figure 1.2.C).

Over time, the acoustic stimuli {st} influences the internal states {xt}, which generate

the neural features {yt} and the affective states {At}. While all these time-varying variables

carry their own dynamics, this study focuses on the dynamics of the internal states {xt} which

explains the variance in the neural features {yt} that is relevant for the affective states {At}.

6



In summary, we define five random variables important for this study (Figure 1.2.A) and

identify several important relationships for hypothesis testing. In particular, the influence of

the acoustic stimuli st on the internal state xt , the mapping between the internal state xt and the

neural feature yt , and between the internal state xt and the affective state At . We should also

note the different assumptions on temporal structure in the conceptual model (Figure 1.2.B and

1.2.C). In the later chapters when (Figure 1.2.B) is shown, we are assuming that each time point

is statistically independent, while when (Figure 1.2.C) is shown, we are making assumptions on

the dynamics of the internal state xt .
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Chapter 2

Conditioning and Pre-processing

2.1 Affective Label

Figure 2.1. Affective Label. (A) Valence and Arousal parameterization of the behavioral
affective response. H- labels the high-arousal negative valence states (e.g. tense, angry, frustrated).
L+ labels the low-arousal positive valence states (e.g. content, relaxed, calm) (B) Valence and
Arousal rating of the acoustic stimuli on the scale from 1 to 9, red dots for stimuli with affective
label H-, blue dots for stimuli with affective label L+. Two example stimuli (rattle snake, rain)
are annotated with text.

We simplify the circumplex model of affect [17], which is the most popular two-

dimensional model of affective experience, introduced in Chapter 1, to focus on the two diagonal

quadrants. There are two reasons why this particular simplification is adopted. From the data
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perspective, the acoustic stimuli in the IADS dataset do not disperse the full quadrants. Acoustic

stimuli that elicit low-arousal & negative-valence affective state (e.g. depressed, bored, tired) or

high-arousal & positive-valence affective state (excited, delighted, happy) are not salient enough

in the IADS dataset, a similar result also exist in the follow-up expanded IADS dataset [23].

From the machine learning perspective, the imbalanced data counts in the multi-class model

will introduce the variance too difficult to be captured. As an initial investigation of affective

decoding using iEEG recording, we define the binary affective class focusing on the diagonal

quadrants.

In our experiment, we mainly focused on label H- as the negative valence & high arousal

state, characterizing emotions such as tense, angry, frustrated; L+ as the positive valence &

low arousal state, characterizing emotions such as content, relaxed and calm (Figure 2.1.A).

From each affective class, we sampled 50 acoustic stimuli (Figure 2.1B). Take the sound of

rattlesnake (hissing) as an example of H- stimuli and rain (drizzling) as an example of L+ stimuli.

Rattlesnake hissing commonly drives people to high alert or even to be frustrated, while drizzling

sound sedates their temper and minds.

2.2 Neural Features

To extract the neural feature from the iEEG recording channels, we follow a standard

pre-processing pipeline (Figure 2.2.A). To de-noise, we use the mean as reference for each probe

(16 channels per probe). With the de-noised signal, we first bandpass-filter the time-series in

6 well-established frequency band: delta [2Hz, 3.5Hz], theta [4Hz, 7Hz], alpha [9Hz, 11Hz],

beta [15Hz, 30Hz], gamma [30Hz, 50Hz], high gamma [90Hz, 110Hz] (Figure 2.2.B). We

then extracted the instantaneous power for the band-limited neural recording using the Hilbert

transform. We use the 1/f fall of as the exclusion criteria and result in 91 channels in recording

sites: Medial Insula, Anterior Insula, Posterior Cingulate, Anterior Cingulate, Orbital Frontal,

and Hippocampal Tail. The electrodes that have significant broadband deviation from 1/f fall off

9



Figure 2.2. Neural Feature. (A) Neural feature extraction pipeline. This study uses the narrow-
banded instantaneous power as the neural feature. (B) The PSD for 91 iEEG channels on the
log-log scale. Each shaded region denotes an identified frequency band: delta [2Hz, 3.5Hz],
theta [4Hz, 7Hz], Alpha [9Hz, 11Hz], Beta [15Hz, 30Hz], Low Gamma [30Hz, 50Hz], High
Gamma [90Hz, 110Hz]

are considered noisy or artifact-prone and removed. We are particularly interested in the 1/f fall

off (Figure 2.2.B); several neuro-physiology studies [2][1][16][18][8] have shown that the 1/f

fall off in the power spectral density represents the local field potential, which is a mixture of

the local spiking activity and postsynaptic potential. As such, the extracted band-limited power

could be interpreted as the fluctuations in the local field potential at different timescales.
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Chapter 3

Decoding Affective State

Figure 3.1. Schematic figure of the Population Analysis. (A) The dynamic activity recorded
from a channel (alpha-band power feature) during the 6 seconds stimuli presentation. Neural
feature for two example trials are shown, red for H-: Rattle snake, blue for L+: Rain. (B) Two
equivalent representations of the trajectory of a population vector for two example trials in (A),
with recording in 3 iEEG channels and sampled at 122-time points. (i) In a 366D space (3
dimensions are shown), each dimension represents a iEEG channel at a single time point. A dot
represents an example trial, rattlesnake (red), rain (blue). (ii) In a 3D space, each dimension
represents a iEEG channel. The dots represent the response at each time point in the example
trial, rattlesnake (red), rain (blue), and the line indicate the elapse of time

In this chapter, we will discuss a sequence of modeling and hypothesis testing in the

improvement of the decoding performance under the population analyses framework. Three

attractive characteristics of the population analyses are taken into consideration. [7]

Firstly, compared to the widely used trial average technique, the population analysis

allows us to make a trade-off between the multiple trial single channel and the single-trial multiple

channels for statistical power. Noting two factors such that 1) the time course of the neural
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response across different trials are very different from each other because the acoustic stimuli

each have different dynamics; 2) the affective response, as a type of high-cognitive response,

may arrive at different time course. Considering both factors, trial-averaging is not proper in our

case. Further evaluation of real experimental scenarios also shows that the experiment time is

particularly precious with recording in the EMU, which makes it less meaningful to repetitively

present the same stimuli. Not even considering that the human subjects may be fatigued after

several times of repetition and introduces non-controllable variance for trial-averaging.

Secondly, the single-channel responses may bear no obvious moment-by-moment rela-

tionship with the affective response that can be externally measured. Heterogeneity in the neural

response do exist. In addition, the iEEG channel response is an aggregated response of the local

spiking activity from several nearby neurons, which adds another layer of complexity.

Lastly, using the population analysis as the exploratory analysis provides a comprehensive

initial assessment of the salient features of the data to guide subsequent analyses.

3.1 Quadratic Discriminate Classifier on neural response

In this section, we explore the performance of the quadratic discriminate classifier (QDA)

on the neural feature. As shown in the graphical model (Figure 3.2.A), in order to decode the

affective state At from the neural feature yt , there are three assumptions made.

1. The class conditional distribution of the neural feature is Gaussian

p(y|Â = k)∼ Gaussian for k = {H−,L+} (3.1)

2. Assume the affective state At at each time-point within the trial share the same affective

label Â as the stimuli presented in that trial.

A1 = A2 = · · ·= At = Â (3.2)
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Figure 3.2. Quadratic Discriminate Classifier (QDA) on Neural Feature. (A) Graphical repre-
sentation of the QDA decoder. The neural feature (yt) propagates through time, at each point
in time generating the affective state (At). (B) Schematic figure for the state view of the class
conditioned distribution, red for affective state H-, blue for L+. Assume the neural response
is Gaussian, fitting the mean vector (µH−,µL+) and the full covariance matrix (ΣH−,ΣL+). (C)
Classification accuracy with four fold cross validation, assuming every time-point (At) within
the trial share the same label as the trial label (Â).

3. Assume the neural feature at each time point is statistically independent.

p(yt1,yt2) = p(yt1)p(yt2) for t1, t2 = 1, · · · , t (3.3)

With those three assumptions above (Equation 3.1, 3.2, 3.3), we only treat the 91 iEEG channels

as feature dimension and consider the neural feature at each time point as separate data points

(Figure 3.2.B) that are equally informative of the affective label Â.

For each class Â = {H−,L+}, we specify the distribution of the 91-dimensional feature

across all class-specific trials and all-time points as a Gaussian distribution.

p(y|Â = k)∼ N(µk,Σk) where k = {H−,L+} (3.4)
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During the training time, we approximate the mean vector µH−,µL+ and the covariance

matrix ΣH−,ΣL+ using all time points within the training trials. Combining the prior class

distribution p(Â = H−) = p(Â = L+) = 0.5, we test the classifier on the hold-out trials.

Â = argmaxk=H−,L+[logp(Â = k|θ)+ logN(y; µk,Σk)] where k = {H−,L+} (3.5)

With four-fold cross-validation (Figure 3.2.C), the model achieves decent training accu-

racy across all frequency bands, but the testing accuracy sets around the theoretical chance level.

The gap between the training and testing accuracy seems to imply overfitting due to variance in

the model. In particular, estimating 8,372 parameters (91D Gaussian distribution) with 17,446

data points(143 trials each with 122 timepoints), we are data limited. Thus, proper regularization

is needed. In addition, the neural response at the time when acoustic stimuli are silent may

introduce unenchanted variance under the assumption that each time point within the trial is

equally informative of the affective label. In conclusion, there is a decodable difference in neural

feature yt across the affective states. To further improve the performance of the decoder we need

to properly regularize the decoder and explicitly model the temporal structure.

3.2 Gaussian Classifier on neural response with class-
specific GPFA Model

At the end of the last section, we proposed two directions for improving the performance

of the QDA decoder: to enforce the regularization and to model the temporal structure.

Explicit modeling of the temporal structure ensures the robustness of the data analysis

and thus improves subsequent decoding performance. We can imagine a scenario when all the

timepoint in the acoustic stimuli is randomly shuffled, listening to this constructed acoustic

stimuli must end up with a different affective response compared to the original one. This simple

mental experiment elucidates the importance of the evolution of the affective state and the internal

state across time. To model such temporal structure, we need to expand the feature dimension
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Figure 3.3. Schematic of the GPFA Model Assumption. (A) A graphical representation of the
manifold assumption: neural response (yt) lie on a low dimensional Population space. (B) The
factor analysis based observation model in GPFA leverages the assumption in (A) and uses
the mean vector d to capture the mean response across all trials, the loading matrix C for the
transformation from the high-dimensional channel space to the low-dimensional latent subspace,
the private variance R for the variance specific to each channel. (C) A graphical representation of
the continuity assumption: internal state (xt) close to each other in time are close by in the latent
subspace. (D) The Gaussian process based state model in GPFA leverages the assumption in (C)
and uses the GP covariance matrix K to capture the temporal structure of the inferred latent state
(xt).

by including each time point as a separate dimension, which results in 11,102 dimensions (91

sEEG channel, 122 time points). In this high-dimensional neural feature space, we are even more

scarce in the data, so enforcing proper regularization in the decoder is even more necessary.

To regularize the decoder, there are two important and popular assumptions, in the

population analysis framework, applicable to our decoding problem. The manifold assumption,

which specifies that the neural response yt lies on a low dimensional latent subspace (Figure
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3.3.A); and the continuity assumption, which specifies that the internal state xt close to each other

in time are close by in the latent subspace (Figure 3.3.C). Those two assumptions lead to the

method Gaussian process factor analysis (GPFA), which is a generative model that simultaneously

models the correlation among channels and temporal structure across time [24].

The factor analysis-based observation model and the Gaussian process-based state model

are two important components of the GPFA that leverage the two assumptions above to constraint

the covariance of the neural feature. The factor analysis based observation model in GPFA

leverages the manifold assumption (Figure 3.3.B) and uses the mean vector d to capture the mean

response across all trials, the loading matrix C for the transformation from the high-dimensional

channel space to the low-dimensional latent subspace, the private variance R for the variance

specific to each channel. Another important component of the GPFA is the Gaussian process-

based state model in GPFA, which leverages the continuity assumption (Figure 3.3.D) and uses

the GP covariance matrix K to capture the temporal structure of the inferred latent state (xt).

Taken together, the GPFA model specifies the following covariance structure for the neural

feature y.

Σy =CKCT +R (3.6)

With a class-specific GPFA model, the neural internal (xt) state propagates through time

by obeying the smooth property, at each point in time generating the observed neural feature (yt)

through the FA mapping. The combination of the observation model and the state model specifies

the structure of the spatiotemporal pattern of the neural feature (Figure 8.B.ii) with the class-

specific parameters Ck,Rk,dk,Kk where k = H−,L+. Those GPFA parameter parameterizes the

class conditional distribution in Equation (Figure 3.4.B.iii).

p(y|Â = k)∼ N(µk,Σk) where k = H−,L+,µk = dk,Σk =CkKkCT
k +Rk (3.7)
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Figure 3.4. Gaussian Classifier on Neural Feature with Class-specific GPFA Model. (a) Graph-
ical representation of the regularized QDA decoder. The neural internal (xt) state propagates
through time by obeying modeled dynamics, at each point in time generating the observed neural
feature (yt). The observed neural feature generates the affective response (At). (B) Schematic
figure for the state view of the class conditional distribution, red for affective state H-, blue for L+.
In (i) each dimension represent a channel at a time point, the neural feature scarcely populates this
high-dimensional space. (ii) The GPFA model leverages the manifold and continuity assumption
and specifies the neural response with few parameters. (iii) Parameterize the class conditional
distribution with the GPFA parameters d, C, K, R. (C) Classification accuracy with four fold
cross validation, assuming every time-point (At) within the trial shares the same label as the trial
label (Â).

During the training time, we approximate the GPFA parameters Ck,Rk,dk,Kk. Combining

the prior class distribution p(Â = H−) = p(Â = L+) = 0.5, we test the classifier (Equation
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3.5) on the hold-out trials.With four-fold cross-validation (Figure 3.4.C), we see marginal

improvements in the testing decoding accuracy especially with GPFA model at the dimension 1,

2 and 3. In order to further improve the performance, we look into the components of the neural

response that is most informative. In particular, the current formulation of the class conditional

distribution with GPFA (Equation 3.7) fits a joint distribution of two important components

of the neural response, the shared response and the private response, that are distinct in their

characteristics and each could be informative of the affective state. To further regularize the

decoder, it is important to simplify structure by de-emphasize less informative components

while emphasize more informative components of the neural response. As the first step, we

test the hypothesis: whether the latent state xH− and xL+ occupy the same latent subspace, i.e.

CH− ∼=CL+. To compare the latent subspace, we compute the angle between the latent subspace

as the measurement for similarity [26]. With CT
1 C1 =CT

2 C2 = 1

cosθ(C1,C2) = |CT
1 C2| where 0≤ θ(C1,C2)≤

π

2
(3.8)

As the dimensionality of the space increase, any two random subspace are increasingly

likely to be orthogonal of each other [7]. To establish the baseline for the latent subspace

alignment, we compute the within-class subspace alignment (Figure 3.5.A). If we can robustly

estimate the latent subspace, the latent subspace learned with two sets of trials sharing the same

affective label should be well aligned. The latent subspace captures the shared variance in the

neural response. To avoid distortion of alignment due to overlapping trials, we randomly split the

trials sharing the same affective label and learn the latent subspace for each corresponding set

of trials. When the latent dimension is 1, the learned subspace is well aligned (Figure 3.5.A.II).

As the latent dimensionality increases, the learned subspace soon becomes orthogonal of each

other. It is possible that there is not enough data to robustly estimate the latent subspace, but with

the angle between the principal subspace of the 5D latent subspace, the first two-dimensional

principal subspace is still well aligned. It provides us confidence that the estimation of the latent

18



Figure 3.5. Latent Subspace Alignment with Bootstrap Analysis. Hypothesis testing for the
subspace alignment with the bootstrap analysis, using the cosine angle between the subspace
as the test statistics. (A) Establishing the chancel level using the within class alignment. (i)
Randomly split the trials sharing the same affective label (H-, L+) and learn the latent subspace
C1,C2 for each corresponding set of trials. (ii) The distribution of the angle between subspace
in radius after 1000 bootstrap iterations. (iii) For each dimension of the latent subspace, align
the subspace using the principal axis. Increase the dimensionality of the principal subspace by
gradually include principal axis in the order of fraction of the variance explained from high to
low. (B) Test the across class alignment. Randomly pair the splits of trials obtained above for
each affective label (H-, L+). (ii) and (iii) are the result after 1000 bootstrap iterations

subspace is robust, but we also need to be aware that the measurement of alignment with cosine

angle is very sensitive to the dimensionality of the space. High dimensional alignment may be

missed due to this sensitivity.

After establishing the baseline for the latent subspace alignment, we test the across-class

alignment by randomly pair the splits of trials obtained above for each affective label (H-, L+).

Similar distribution in the angle between subspace (Figure 3.5.B.ii) and principal subspace

(Figure 9.B.ii) are observed compared to that for within-class alignment. Though more stringent

hypothesis testing is still needed to test this hypothesis, it opens up the opportunities to consider
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fitting a class-invariant GPFA and leverage the data across all affective classes to constrain the

learned GPFA model.

3.3 Gaussian Classifier on shared / private response with
class-invariant GPFA Model

Figure 3.6. Gaussian Classifier on Shared / Private Response with Class-invariant GPFA Model.
(A) A graphical representation of a proposed neural dynamical filter, modeling the dynamics
of the neural state (xt). The neural internal (xt) state propagates through time obeying modeled
dynamics, at each point in time generating both the affective response (At) and the observed
neural feature (yt). (B) A schematic example for fitting the latent subspace using all trials across
affective label. (C) Define two types of internal state. The internal state (xt) as the inferred
trajectory (zt) from the GPFA, that explains the shared variance in neural feature (yt). The
internal state (xt) as the residual response (xt = yt−Czt) from the GPFA, that explains the private
variance in neural feature (yt) specific for each channel. (D) The performance of the QDA
classifier on the two internal state (xt) defined in (C), corresponding to the component of neural
feature (yt) that explains the shared variance / private variance.

The shared subspace alignment analysis towards the end of last section seems to hinting a

shared latent subspace between the two affective states. In this section, we learn a class-invariant
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GPFA model using all trials across the affective state, and rethink the definition of the internal

state in consideration of the components of the neural response that explain the shared variance

or the private variance. To distinguish the internal state xt from the inferred neural trajectory in

GPFA from last section, we denote the inferred GPFA neural trajectory as z in this section.

As the first step, we fit a class-invariant GPFA model with all trials and learn the associated

GPFA parameters C,R,d,K (Figure 3.6.B). Then define the internal state x either by the inferred

trajectory z, which explains the shared variance, or the residual response y−Cz, which explains

the private variance (Figure 3.6.C). We train the QDA classifier with full covariance on each of

the defined internal state. The training performance for the shared response is low especially in

the lower dimension subspace may suggest that there is an affective-state independent neural

response that explains most of the variance across channels. In contrast, we did see a higher

decoding accuracy in training for the private response, but the gap between the training and

testing again seems to point to regularization for further improvements (Figure 3.6D.).

Considering the two affective states share the same latent subspace, we may further

refine our hypothesis for the structure in the shared / private response to two categories: the

hypothesis associate with the distribution and that associate with the dynamics (Figure 3.7). In

particularly, test whether the inferred internal state xH− differs from xL+ in its distribution in the

latent subspace (Figure 3.7.A) or the residual response xH− differs from xL+ in its probability

and intensity diverging the latent subspace (Figure 3.7.C). To decide on the salient feature for

the decoder. In addition, test whether the inferred internal state (or the residual response) xH−

differs from xL+ in its dynamics (e.g. smooth, oscillatory) to specify the corresponding forms

the GP covariance for the dynamic pattern (Figure 3.7B,D).
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Figure 3.7. Hypothesis Testing for Statistical Difference on Shared / Private Response. Assume
the the two affective class H- and L+ share the same GPFA latent subspace. Define the internal
state xt to explain the shared variance xt = zt . (A) Hypothesis: the inferred internal state XH−
differs from XL+ in its distribution in the latent subspace. (B) Hypothesis: the inferred internal
state XH− differs from XL+ in its dynamics (e.g. smooth, oscillatory). Define the internal state
xt = yt−Czt (C) Hypothesis: the residual response XH− differs from XL+ in its probability and
intensity diverging the latent subspace. (D) Hypothesis: the residual response XH− differs from
XL+ in its dynamics.
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Chapter 4

Conclusion and Future Work

4.1 Summary of the Results

In conclusion, we conceptualize the neural representation of the affective response with

three observable variables (neural feature yt , acoustic stimuli st , affective label Â) and two hidden

variables (internal state xt , affective state At) through the graphic model specified in (Figure 1.2).

We sequentially improve the decoder performance through feature selection driven by the result

of the statistical analysis.

We started with the QDA analysis on neural response, and found decodable differences

of neural features across all frequency bands. To further improve the performance of the decoder,

we introduce the generative model of GPFA to regularize the form of covariance matrix in QDA.

In addition, the GPFA model characterizes the temporal structure of the internal state previously

assumed to be discrete and independent. Marginal improvements in the decoding performance

are observed especially in low dimension latent subspaces. The additional shared subspace

alignment analysis suggests a simplified model to overcome the challenge of data limit.

Due to the similiarity in the latent subspace learned with class-specific GPFA, it is more

optimal to use data from all trials to constrain one class-invariant GPFA model and examine

the characteristic of the neural response through the lens of the class-invariant GPFA model.

With the shared latent subspace, it makes sense to provide two complementary definitions of the

internal state: the neural response of the shared variance (projection on the latent subspace) and
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that of the private variance (divergence away from the latent subspace). Here we generate four

working hypothesis for feature selection and decoder model improvement in the future.

4.2 Future work

Figure 4.1. Integrate the Acoustic Feature. (A) Graphical representation of the regularized QDA
decoder incorporate the acoustic feature. The acoustic stimuli (st) at each time influences the
neural internal state (xt) and neural feature (yt). The neural internal state (xt) propagates through
time by obeying modeled dynamics, at each point in time generating both the affective response
(At) and the observed neural feature (yt). (B) Schematic figure for the proposed analysis. The
existing analysis assume the model (i), where each time points is treated as equally informative
of the the affective label. Model (ii) hypothesizes a linear integration of the affective response
as a function of time. When approaching the end of the trial, the neural response become
more informative of the affective label. Model (iii) provides an alternative structure in contrast
to model (ii) by assuming that the affective response is transient, only informative in certain
segments of the trial where acoustic events happened. Model (iv) is a more expressive model
which explicitly model the instantaneous affective response (At) with the temporal structure of
the acoustic stimuli (st).

The discussion within this section centers around the temporal influence of the acoustic

stimuli on the neural representation of the affective response, motivated from two separate

perspectives.
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From the modeling and analysis standpoint, we see marginal improvements in the decoder

when incorporating the temporal structure compared to the decoder regarding each time point

as a discrete and independent data point. This marginal but noticeable improvement can be

explained by the oversimplification in using the time-invariant affective response as the class

label for decoder. We are only able to decode such nosiy affective state label from the 2D neural

subspaces. Considering that the estimated intrinsic dimensionality of the neural response (using

the GPFA method) is 10D, we see overfitting when including the remaining 8D neural response,

whose variability could be explaining the time characteristics of the affective responses.

From the theory standpoint, we are interested in designing a universal BCI control

system that dynamically interacts with a neural interface. Using the affective response as

conditional control, we need to decode the behavior and affective response from the neural

response changing over time. Such a system requires temporal characteristics to carry its own

meaning, a chronological logic, because it implies a natural evolution of the affective state which

could be generalizable to other tasks. By extracting the time characteristic from the task, which

interplay with the affective state, we no longer limit ourselves to the features specific to the task,

but rather focus on a more generalizable feature that can be incorporated into the model. For

example, the time characteristics we observe in our experiment while listening to the acoustic

stimuli may also apply to more interactive tasks such as gameplay.

Revisit the mental experiment introduce in Chapter 3. Imagining, if you will, by introduc-

ing the new sound ”I love you” in the experiment for the subjects. How could such sound lead to

his/her strong emotional response? Here we can assume “love” sound is a high valence, positive

arousal emotion state for most human beings. The acoustic stimuli “I love you” can be depicted

and analyzed from different perspectives. We mainly want to analyze the time configuration of

acoustic stimuli’s influence on the affective state. To be precise, we want to illustrate the above

perspectives using a high cognitive analogy while redefined the model through an engineering

angle of view.

In an ideal scenario, with the perfect decoder, we can estimate the ground-truth trajectory
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of the affective response, and leverage it to learn the one-on-one mapping with the neural

response. In reality, such ground-truth trajectory of the affective response doesn’t exist, so we

are trying to design a system that simultaneously approximates the affective response trajectory

and its mapping to the neural response, as an integration process. Such a Hypothesis-driven

model design with inspiration from the cognitive process assumes a certain time structure for

the integration process. Four different models will be examined here, each associate with the

different time integration configuration.

Listening to an acoustic stimulus and a new construction of this stimulus by shuffling

its time points could elicit a very different affective response. As an illustrative example, will

you be in the same affective state when hearing ‘I love you ’ or ‘love I you’ or even ‘I you

love’? The affective experience is different. Such differences imply the importance of time in the

meaningful affective response. For the model introduces in Chapter 3, the QDA model treats the

response at all time points as the same (Figure 4.1.B.i) and disregards the meaningful evolution

of the affective and neural state we highlight here. Considering the importance of the time factor

on the configuration of the integration process, we are inspired to think through the subsequent

model variation.

The neural response accumulates for the affective state as time elapses. Specifically, the

neural representation of the affective response at the beginning of the trial may contain more

uncertainty than that at the end of the trial. For example, from ’I ......’ to ’I lo......’, then to ’I love

you’, as we hearing more words, we have a more certain affective response to this sound. Its

implication to the decoder model is that we may need to consider weighting the importance of

the time point for decoding base on its distance away from the end of the trial (Figure 4.1.B.ii).

To test whether such a relationship exists in our neural feature, we will use the KL divergence to

examine the informativeness of the neural response as a function of time away from the end of

the trial.

Our affective state may only be driven by certain key elements of the sound. Those key

elements alone can trigger a strong affective response that dominates the affective response of

26



the entire sound. For example, the affective response (high valence positive arousal) to the sound

‘i love you’ may be directly driven by the ‘love’ sound. To incorporate such observation in our

model we may only need to consider a brief integration window for the neural representation.

Specifically, the neural response at time points around the identified salient elements of the

sound and treat the rest of the neural response as non-informative spontaneous response (Figure

4.1.B.iii). The limitation of this approach is that the annotation of the salient time points is based

on the human experience. There are two parts that might introduce the bias: the identification of

the salient point; the beginning and end of the integration window. In addition, there might be a

complex integration structure within the time window. One example is that the time points closer

to the salient point could be more informative of the affective response than those further away,

but there’re many more possible integrations to be explored.

Instead of testing all variations of the proposed design shown above (Figure 4.1.B.ii and

4.1.B.iii), we could consider adopting a more expressive model (Figure 4.1.B.iv) to estimate

such integration function through a data-driven approach. To explore the integration structure

and overcome the bias in the human labeling, we may use the acoustic features (tone, etc.) as

the noisy estimation of the ground-truth affective trajectory and learn mapping between this

estimated affective trajectory and the neural response. Such decoder takes time configuration

into account while maintaining enough flexibility in the structure of the integration process.

In addition to the acoustic stimuli, other physiology measurements may also be considered

as potential source of information to estimate this ground-truth affective trajectory (e.g. the

heart-rate).

Last but not least, we want to reanalyze a question: does the sound ‘i love you’ itself

alone incite a strong cognitive response? Or ‘I love you ’sound reminds subjects of the scene like

‘confess sb’ love’, ’proposal’, or even ’wedding’ that actually trigger a strong affective response.

Such questions seem too hard to answer for now. but it shed some insight for our future research

interest: Is there any principal element, beyond sound, image, or sense, that can be viewed as the

leading factor for trigger neuron response that driven the affective response?
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