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Abstract

Computational Modeling of Low Temperature Microplasmas and Applications

by

Abhishek Kumar Verma

Doctor of Philosophy in Mechanical Engineering

University of California, Merced

Professor Venkattraman Ayyaswamy, Chair

We report the development of a modular multiphysics computational framework for
performing continuum simulations of low-temperature plasmas. The primary goal
of this work is to discuss the features of this framework along with representative
results provided as examples for a range of operating conditions and geometries.
This includes plasma and plasma-dielectric systems operating in direct current, ra-
dio frequency, and microwave regimes from pressures as low as 100 mTorr to atmo-
spheric pressure. The code has several useful features including the ability to run
massively parallel simulations using arbitrary geometries, structured/unstructured
meshes, choice of various models such as drift-diffusion/full-momentum at runtime,
and species-dependent timesteps to name a few. The verification/validation stud-
ies presented include comparison with previously published continuum and kinetic
simulations with experiments. The performance of the code is also discussed with se-
rial and distributed memory parallel runs with scaling demonstrated up to 512 cores.
The design and implementation of the code can be expected to play an important role
in computational studies of low-temperature plasmas in academic and industry. As
part of the dissertation research, the framework was also used to study direct current
and microwave microplasmas with the goal of quantifying the accuracy of continuum
simulations in comparison with fundamental kinetic simulations. These results will
enable decision-making in the context of choice of simulation strategy while modeling
various microplasma devices.
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Chapter 1

Introduction

Nonequilibrium low temperature plasmas are of paramount importance for a variety
of technological applications ranging from chip manufacturing to the biomedicine and
agricultural applications. Plasmas are essentially collection of free charged particles
and excited species in addition to the neutrals (atoms, molecules, radicals). All
plasmas have several features in common. For instance, they are, on the average,
electrically neutral. The charged particles are arranged without any local ordering,
being free to move, hence plasmas are electrically conductive in nature. Fully ionized
plasma typically occurs at very high temperature, whereas at moderate and room
temperatures the plasma is partially ionized. The density of charged species, degree
of ionization, the operating mechanism, and the thermodynamic properties of charged
species can be used to characterize the plasmas in a broad sense. The thermodynamic
classification of plasmas is as following:

• Equilibrium, High Temperature - electrons, gas and ions are in thermal equilib-
rium and well above practical temperatures. (Telectron ∼ Tion ∼ Tgas ∼ 100 eV )

• Equilibrium, Moderate Temperature - electrons, gas and ions are in thermal
equilibrium and well above room temperature. (Telectron ∼ Tion ∼ Tgas ∼ 1 eV )

• Non-Equilibrium, Low Temperature - electron temperature much higher than
the temperature of the gas and ions and exhibits extreme thermodynamic
nonequilibrium. (Telectron ∼ 1 eV ; Tion ∼ Tgas ∼ 102 K)

The classification of plasmas based on density–energy parameter space, shown in
Fig. 1.1, includes innumerable distinctly different plasmas. An argon plasma con-
taining positive ions only is distinguishable from one containing both negative and
positive ions formed in Argon-carbon tetrafluoride plasma.
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Figure 1.1: A sketch of classification of plasma over density-energy parameter space

The thermonuclear fusion plasmas have very high densities and temperatures (elec-
tron temperature ∼ 100 − 10000 eV ). On contrary, interstellar plasmas (nearly all
the matter in the universe) are at low densities and temperature. Non-equilibrium
low temperature plasmas are primary focus of this dissertation. These discharges are
the most common types of plasmas used in industrial and technological applications.
For these discharges, the degree of ionization is small (10−6− 10−4), and the thermal
non-equilibrium (Telectron >> Tgas) exists between the electrons and heavy particles.

The laboratory or confined plasmas are always essentially in transient state. A
dynamic steady state is achieved using continuous or pulsed electrical discharges after
the plasma formation, by balance of production and loss of the electrons and ions by
various mechanisms. In the steady state, a supply of power is required for production
and the energy responsible for production is dynamically transported to the place of
loss. The energy from the power source is usually coupled to the electrons in the
plasma created by the electric and/or magnetic fields produced by the power source
such as direct current (dc), capacitively coupled (RIE, PECVD), inductively coupled
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(ICP, TCP, Helicon) and microwaves (ECR, Surfatron).
The origin of charged species in plasma follows various physical and chemical

mechanisms. Surface reactions forms major basis for utility of plasma in a range of
plasma sources, particularly in surface etching or deposition. Surface production of
electrons from a solid surface requires a minimum energy and is called work function.
This energy arrives in many forms in different plasma sources: Thermal (thermionic
emission including phonons/photons), secondary electrons (bombardment of particles
such as ions and excited states), field emission (very high electric field pulling electrons
out of surface through quantum tunneling). Surface production of positive ions can be
achieved by similar mechanism as secondary electron emission. The most influential
mechanism for production in bulk plasma is volume ionization which simultaneously
produces electrons and ions. The negative ions are mainly produced by electron
attachment with neutral atom or molecule. The volume and surface recombination
could also play important roles and works as a sink for charged species.

The fundamental time scale in plasma is defined by the electron plasma frequency:

ωpe =

√
e2nelectron

ε0melectron

(1.1)

and the characteristic length scale is defined as the Debye length, which is the
length of space charge regions where potential is equal to or larger than kTelectron/e:

l =

√
ε0kTelectron
nelectrone2

(1.2)

where nelectron, melectron, and Telectron are the electron density, mass and temper-
ature respectively, and e is the fundamental charge. Plasmas are electrically neutral
at length scales larger than the Debye length, and time scales larger than time period
of the plasma oscillations.

In general, the electrical neutrality of plasmas is valid over the bulk of the plasma
but not close to electrode and dielectric surfaces. The electric field generated by
potential gradient accelerates electrons to the walls with higher flux relative to positive
ions due to their larger mobilities and lower mass. The new potential structure formed
due to negative charge accumulation on surface through high flux of electrons. A thin
boundary layer of positive charge adjacent to this surface charge forms, with large
potential gradients, leading to the formation of a sheath region in the plasma. This
deposition of net positive space charge causes a restoring force to develop which
accelerates the positive ions into the walls but the electrons away from it. The sheath
is relatively thin region relative to plasma size and so ions can easily pass through it
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without collisions and it can be assumed that ions are in free fall from the plasma-
sheath interface. This forms the basis of Bohm criterion for minimum ion velocity at
the plasma-sheath interface.

cs ≥
√
kTelectron
melectron

(1.3)

This relation shows that positive ions must come out of the plasma into the
space-charge sheath with a minimum speed, therefore quantifies the ion particle flux
(nion,sheathcs) at a normal surface. As such, the sheath characteristics and dynamical
properties is critical to materials processing and surface modification because the ion
and neutral species fluxes are influenced by the sheath characteristics.

Typically, the electron temperatures are a few eV and the ion temperature is
taken same as the gas temperature. The assumption that gas temperature equals ion
temperature is valid over a range of pressure, particularly at high pressure where the
ion-neutral collision frequency is large, leading to a thermal equilibrium.

PSU
Sheath Fields

Bulk Electrons Ions/Electrons

Radicals

Excited States

Quenching

Gas Heating
Convection & 
Condensation

Radiation

Surface heating 
Bombardment

Surface Heating 
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Photons

Surface Heating

Surface Heating 
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Figure 1.2: Energy flow in low temperature plasmas

The paths by which the electrical energy flows through a laboratory discharge is
illustrated in Fig. 1.2.

A complete description of the various physical processes occurring in plasmas is
beyond the scope of this work and a comprehensive text on the physics of plasmas
can be found in [59].
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1.1 Microplasmas

There are two key parameters that need to be considered for low temperature plasma
based applications - plasma’s characteristic dimension and the gas pressure. For oper-
ation in high pressure regime, the characteristic dimensions of the plasma should be in
the submillimeter range. These plasmas are traditionally referred to as microplasmas
or microdischarges. These plasmas discharges have high charge density, the gas tem-
peratures of 1000−2000 K and operational at high pressures (100 Torr−1000 Torr).

While early microdischarges/microplasmas were the outcome of the quest to op-
erate stable discharges at or near atmospheric pressure, the advances in micro/nano
fabrication have led to rapid miniaturization of microplasma devices with a constant
push toward the 1 µm limit. Microplasma devices have been demonstrated to lead
to unique physical and chemical mechanisms with diverse applications including elec-
tronics [13, 96, 73, 72], nanomaterial synthesis [65], and metamaterials [76] to name
a few. The operating regime of these devices has expanded from direct current and
low-frequency alternating current to high frequency excitation in the microwave and
terahertz regimes thereby enabling low-power high-plasma density operating modes.

Microplasma can be generated by various methods such as direct current [94],
microhollow cathode [82], dielectric barrier [67], capacitively coupled [4] and induc-
tively coupled [42] sources. While the direct current [20, 68] and low-frequency [4]
excited versions of these microplasmas have contributed to various devices that have
revolutionized specific applications, interest has also shifted to igniting microplasmas
in microwaves [42, 34, 40] and, more recently, higher frequencies bordering the ter-
ahertz regime. The microwave microplasma devices showing enhanced electron con-
finement have become popular due to capable of demonstrating very long lifetimes
and lower power requirements. This enahanced lifetime can be directly attributed
to the reduced electrode erosion from particle bombardment. Also, the energy of
ions eroding material is very low due to low sheath potentials. The earliest config-
urations for microplasma ignition using microwaves involved the use of a microstrip
split-ring resonator [39]. Other configurations include the use of a transmission line
or a surface-wave propagating in a dielectric tube filled with gas [34]. While the ear-
liest microwave microplasmas still involved the use of frequencies less than 1 GHz,
recent advances in the field have led to the demonstration of microplasma ignition
at millimeter waves with a frequency of 43.44 GHz [74]. Despite the experimen-
tal demonstration of various microwave microplasmas and their applications, there
is a significant knowledge gap regarding the fundamental understanding of discharge
mechanism. Current plasma diagnostics including optical methods [99] face challenges
to provide information on fundamental plasma dynamics relevant to microplasmas [2].

In DC microdischarges, the secondary electron emission is the major mechanism
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to sustain the discharge [59]. The secondary electron emission is a material property
of the electrode over which one seldom has active control. The DC microdischarges
characteristics include weak background radiation and high electron temperatures.
In general, DC plasmas are operated at low pressures (1−30 Torr) but DC microdis-
charges are preferred due to simplicity of operation and obviate the use of a vacuum
pump at atmospheric pressure. A typical DC microdischarge is represented by mi-
cro hollow cathode discharges, which contains a hollow structure, and an arbitrarily
shaped anode. The minimum pd value for DC microdischarge is governed by mean
free path for electrons must not exceed the hole diameter. The maximum value for pd
is due to the inter-electrode distance must not exceed the lengths of the two cathode
fall regions [79].

1.2 Computational Modeling

Modeling of low-temperature plasmas involves the interplay of various physical and
chemical phenomena that span several time/length scales and is of immense impor-
tance to many scientific and technological applications [49]. Specifically, they in-
volve non-linear interactions between charged particles and radicals existing in non-
equilibrium conditions apart from being affected by externally applied or self-induced
electromagnetic fields. Scientific computing, in tandem with theory and experiment,
has an extremely high potential to assist/lead in the development of low-temperature
plasma systems. In this context, low-temperature plasma modeling techniques mainly
fall into two categories: particle and continuum methods. Continuum simulation
methods play a significant role in the large-scale modeling of engineering problems of
interest because of the relatively low computational cost (in comparison with kinetic
methods). The plasma fluid model is described by a set of conservation equations
constructed by taking velocity moments of the Boltzmann equation using a presumed
velocity/energy distribution function for each species. Furthermore, this model cou-
pled with the Maxwell’s equations fully describes the dynamics of a self-sustained
plasma. On the other hand, particle models deal with a Lagrangian formulation of
plasmas and are very useful in resolving kinetic behavior and multiscale dynamics
of low-temperature plasmas. However, as discussed earlier, they suffer from a high
computational cost when compared to continuum models and may even be infeasible
for certain real-world problems [45]. Over the years, fluid modeling has evolved to
a level where it can closely mimic the dynamics of various plasma processes and is
widely used for both fundamental and applied research.

In this context, there has been constant interest in the development of high-fidelity
computational methods for simulation of plasmas over the last few decades. In par-
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ticular, simulation methods have seen a sustained level of improvement, and in part-
nership with modern computational hardware, have facilitated a multifold increase
in the use of high performance computing (HPC) in the low-temperature plasma
community. However, it would not be an overstatement to say that plasma fluid
modeling has not been well-positioned in terms of adoption of novel techniques and
developments in numerical computing, development of new numerical methods, high
performance programming paradigm and utilization of advances in HPC (parallelism,
streaming architectures etc.). This is particularly true when we compare advances in
fluid modeling of plasmas to other areas of computational science such as computa-
tional fluid dynamics (CFD), and molecular dynamics (MD). Many self-consistent,
modular, multi-dimensional in-house and commercial plasma solvers are available for
the plasma research community, such as MOOSE(Shannon group, North Carolina
State University/Argonne National Lab) [61], HPEM (Kushner group, University of
Michigan) [49], PLASIMO (Eindhoven University of Technology) [18], and COMSOL
Multiphysics R©. However, there appears to be the lack of a modern, general-purpose
code that is extensible and includes key features that are required to capture both
physical and chemical phenomena that are unique to low-temperature plasmas and
this effort is an attempt to fill this void.

To summarize, having reviewed the literature and to address key fundamental
challenges in the field of low temperature plasma physics, a new tool for plasma
simulation, is necessary for many reasons discussed above. Low temperature plasma
physics is a rich area of physics and chemistry that involves complex mechanisms.
A versatile simulation framework for low temperature plasma simulations should be
massively parallel, utilizes efficient numerical schemes, highly flexible, highly exten-
sible and allows wrapping of external libraries.

1.3 Objectives

The role of computations is critical to obtain a complete understanding of the op-
eration of low temperature plasmas with the goal of design and optimization for a
given application. The available plasma simulation frameworks and previous stud-
ies are largely based on gross simplification of continuum plasma model and hence
do not provide adequate detail. To alleviate some of these issues, a self-consistent
model based on plasma fluid and Maxwell’s equations was implemented in a simu-
lation toolbox. The main goal of this work is to develop and design this toolbox
with a range of features, study the parallel efficiency, perform validation and verifica-
tion; a continuum plasma solver developed inside Eulerian finite volume framework
in foam-extend. Furthermore, the framework was used to study direct current and
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microwave microplasmas with the goal of quantifying the accuracy of continuum simu-
lations in comparison with fundamental kinetic simulations. These results will enable
decision-making in the context of choice of simulation strategy while various modeling
microplasma devices.

The primary objective of the framework design is to be able to perform plasma
simulations using a high-level interface, while maintaining appropriate level of ab-
straction for further extension such as coupled multiphysics, design optimization and
uncertainty quantification. In general, performing complex and multiphysics plasma
simulation is very tedious task while dealing with case setup and software at the source
code level. The user interface produces huge amount of overhead to set up physical
conditions, choosing appropriate model for specific problem, numerical parameters
etc. On the other hand, to maintain considerable flexibility of multiphysics frame-
work, one preferably chooses to write tools and couple established codes together,
where one has to deal with incompatible data structure, code practices, library in-
terface etc. To answer some of these issues, one of the major design choice for this
framework is to use OpenFOAM C++ code practices.

The developed plasma simulation framework is used to study the following prob-
lems.

• Simulation of GEC reference cell and one-dimensional radio frequency capaci-
tively coupled plasma. This work is intended at extensive validation from simu-
lation and experimental results available in literature. It also provides insights
into the features and capability of framework.

• Simulation of a confined microdischarge with curved dielectric surfaces and
Helium plasma needle. These simulations are aimed at exploring the nature of
the micro hollow cathode discharge and dielectric barrier discharge.

• Simulation of argon microplasmas operating in the direct current and microwave
regimes. This study aims at comparisons between continuum and kinetic sim-
ulations.

1.4 Dissertation Outline

The rest of this dissertation delves into the development of proposed framework and
demonstrates its utility through validation and verification cases and microplasma
simulations.

Chapter 2 outlines governing equations describing fundamental equations describ-
ing low temperature plasma systems. Chapter 3 describes the framework in detail,
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the need for which was outlined in section above. The performance of the framework
is demonstrated alongside simulations of various low temperature plasma configura-
tions.

Finally, the computational framework is applied to microplasma problems in chap-
ter 4. A detailed study of DC and microwave microplasma is presented. These results
are compared with results from particle-in-cell results. Accuracy and utility of fluid
model in the context of microplasma is presented and limitations are discussed.

Concluding remarks and future directions for research and improvements are pro-
vided in chapter 5.
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Chapter 2

Computational Model

In this chapter, the physical and computational model used in this study is described
in detail. The computational model mainly focuses on microplasma simulations but
could be applicable to all forms of low temperature plasmas.

2.1 Governing equations

A brief overview of the plasma governing equations is provided here. The code em-
ploys a plasma fluid model which is essentially derived by taking velocity moments
of the Boltzmann equation [8] and is coupled with the Poisson’s equation thereby
providing an electrostatic description of the plasma. It should be mentioned that the
formulation closely follows the description by Fitzpatrick [21] and is summarized here
for self-sufficiency.

A continuum model describes the plasma dynamics by a set of macroscopic param-
eters such as density, momentum, and mean energy for each species. The temporal
evolution of these variables is determined by solving the governing plasma fluid equa-
tions. At a microscopic level, the Boltzmann-Vlasov equation may be used to describe
the dynamics of charged particles and is given by

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∂f

∂v
= Q(f, f

′
)

where f is the velocity distribution function of a given species in phase space,
v is the particle velocity, E is the electric field, and B is the magnetic field . The
right-hand side of the above equation describes the collisions contributing to a rate
of change in the velocity distribution function.

In most plasma sources, frequency is sufficiently low such that the electric and
magnetic fields can be assumed to be quasi-static. Furthermore, in the Lorentz force



CHAPTER 2. COMPUTATIONAL MODEL 11

term (last term on the left hand side), electric field is the dominating term which
makes the contribution of magnetic field negligible in most cases [32]. With these
assumptions, the Maxwell’s equations in Couloumb gauge is reduced to

∇× E = 0, ∇ · E =
ρ

ε0

Also E = −∇φ, which transforms above equation to a standard Poisson equation,
here ρ is net charge density and φ is scalar potential associated with curl-less electric
field. The macroscopic quantities on which the fluid equations will be established are
either defined or derived using the first three velocity moments of the distribution
function f , namely particle density n(x, t), mean velocity u(x, t), energy flux Q(x, t),
temperature and pressure tensor.

We obtain equations relating these macroscopic quantities by taking the first ve-
locity moments of the Vlasov-Boltzmann equation, which reduces computational dif-
ficulty from 6 dimension in phase space to 3 dimension in Cartesian coordinates. In
the computation, we shall use that distribution function f vanishes at infinity and
that the plasma is periodic in space. Finally, the general form of fluid equations up
to two order velocity moments for one monoatomic specie present in plasma:

∂n

∂t
+∇ · (nu) = Q

m
∂(nu)

∂t
+m∇.(nu⊗ u) +∇(p) = qnE + Q

′

p

∂

∂t
(
3

2
p+

1

2
mn|u|2) +∇.(5

2
pu +

m

2
n|u|2u) +∇.(L) = E · (qnu) +Q

′

E

which corresponds, in three dimensions, to a system of 5 scalar equations with 5
scalar unknowns which are the density n, the three components of the mean velocity u
and the scalar pressure p (neglecting viscosity and anisotropic effects). L is defined as
heat flux, Q,Q

′

p and Q
′
E are conservative and non-conservative collisional contribution

to continuity, momentum and energy equation respectively.

2.2 Numerical formulation, input parameters &

closure

Here we discuss some important variations in numerical formulation and their closure,
along side relevant transport and numerical input parameters for LTP modeling. The
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framework has multiple formulation to resolve different level of details (multiscale,
multiphysics) to simulate broad range of applications. It provides the feature to
selectively include the different physical model at run time and follows formulation
available commonly in literature [16, 12].

Over years, improvements in continuum plasma models and closure approximation
has provided us capabilities to include many kinetic and particle interaction effects in
the scope of fluid modeling. For most practical problems, closure for scalar pressure
is derived by assuming thermodynamic equilibrium, hence can be computed by ideal
gas law. The higher order moments are truncated in the second order to provide
explicit algebraic expression for heat flux L, where it may be modelled based on
Fourier approximation with thermal conductivity

K =
5

2miνi
nik

2
bTi

The collisional terms can be approximated as:

Q =
∑

Ri,j

Q
′

p = (uQ+ Qp) = −
∑
j

mimj

mi +mj

νijni(ui − uj) +
∑

j|Rij<0

miuiRij +
∑

j|Rij>0

mjujRij

Q
′

E = (
1

2
|u|2Q+u.Qp+QE) = −

∑
j

mimj

mi +mj

νijni

[
(miui.ui−mjuj.uj+(mi−mj)ui.uj)

+3kb(Ti−Tj)]+
∑

j|Rij<0

1

2
(miui.ui+3kbTi)Rij+

∑
j|Rij>0

1

2
(mjuj.uj+3kbTj)Rij+

∑
j

εijSij

where i and j are indices such that ith specie solution will include interaction with
the jth specie present in plasma. R is gain/loss in inelastic reactions, S is gain/loss of
specie in inelastic collisions and ε is corresponding energy gain/loss. ν is momentum
transfer frequency in elastic collisions. m is mass and T is temperature of the specie.
kb and q are Boltzmann constant and specie charge respectively.

In many cases, the momentum conservation equation is replaced by a simplified
drift-diffusion (DD) model obtained by neglecting the inertial effect and some less
influential physical effects [37, 87]. The DD model’s primary advantages include ease
of implementation and reduced computational cost. The DD equation is given by

Γi = µiniE− ηi∇(nikbTi)
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where Γi = niui is specie flux. The mobility µi = qi/miνi and ηi = Di/miνi, with
D being the diffusion constant and νi =

∑
j νij is total collisional frequency. The

first term in the above equation models the effect of electric field on charged particles
(drift) and the second term accounts for the effect of diffusion in a nonuniform plasma.

The transport parameters and rate coefficients for plasma specie depend mainly
on velocity distribution function. Fluid model truncation closure scheme requires a
presumed velocity distribution function, commonly chosen to be Maxwell-Boltzmann
distribution function, and is used to compute unknown parameters. This way all
fluid model parameters and closures are divided between assumption of thermody-
namic equilibrium and non-equilibrium. To be able to perform self-sustainable plasma
modeling, one has to judiciously choose the model parameters based on availability of
accurate description, mathematical and computational demand. Most charged specie
transport parameters can be obtained by either solution of approximated Boltzmann
equation or Monte Carlo methods. Reaction coefficients are based on combining
empirical and first principle studies of plasma specie.

This section attempts to provide a brief overview of extensive theoretical develop-
ment of plasma continuum model applicable to LTP, which can be seen as archetype
example of multiscale, multiphysics and complex phenomenon. The work done here is
based on many extensions of this theory and the results include references to precise
formulation used to perform specific simulation.
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Chapter 3

Numerical Framework

In this work, we introduce a modern low-temperature plasma simulation software
called SOMAFOAM (an acronym for Simulations Of plasMA using Field Operation
And Manipulation) based on the multiphysics toolkit foam-extend, which is a pop-
ular variant of the OpenFOAM R© [93] finite volume framework. Incidentally, the
term Soma has also been used to refer to plasma in ancient Indian literature (Rig
Veda). It is important to discuss the reasons for the adoption of OpenFOAM as
the underlying foundation for our code. The OpenFOAM framework provides multi-
dimensional simulation capabilities on mixed-element polyhedral mesh with support
for complex geometry along with a vast resource of validated numerics (including but
not restricted to field algebra, boundary conditions, sparse matrices, and finite volume
space discretization). While a lot of the underlying numerical capabilities required for
the development of a code for continuum simulations of low-temperature plasmas are
already available in OpenFOAM, extensive code development was required to enable
the addition of the unique features specific to plasma modeling. Some of the features
of our code include the capability to simulate an arbitrary number of plasma species
apart from providing a high-level interface for the choice of species transport equa-
tions (drift-diffusion vs full-momentum). The plasma chemistry library builds on the
existing OpenFOAM chemistry library to include support for reactions depending on
electron as well as gas temperatures apart from the ability to utilize features such
as reduced chemistry. The electrostatic solver could be used for plasma only or any
configuration involving plasma and dielectric regions.

The OpenFOAM framework is highly influenced by the use of object orientation
and template meta-programming to provide modular C++ class structure and high
mathematical abstraction. These features combined with complex geometry sup-
port, automatic mixed meshing, massive parallelization, well established pre/post-
processing capabilities and a large set of supporting tools make OpenFOAM an op-
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timal choice as a master code for SOMAFOAM. Also, OpenFOAM can provide po-
tential interoperability between a range of multiphysics solvers (fluid mechanics and
heat transfer, reaction and physical kinetics, direct simulation Monte Carlo (DSMC),
Multiphase flows etc.) for a coupled description that could be important for cer-
tain plasma applications. While it does not exist as of date, the direct simulation
Monte Carlo code of OpenFOAM could be extended to create a particle-in-cell-Monte
Carlo collisions (PIC-MCC) code within OpenFOAM that could provide us with an
open-source hybrid plasma simulation tool in future.

In this regard, the primary purpose of this work is to describe representative
features of our code and back it with relevant verification/validation and parallel
efficiency studies.

3.1 Implementation, structure and models

The major component of the toolbox as part of this work has been developed using
the open source utility foam-extend which is a popular derivative of the OpenFOAM
solver suite. OpenFOAM is essentially a numerical environment to solve partial dif-
ferential equations that are commonly encountered in continuum mechanics. In ad-
dition to that, it provides suitable data structures for extensions to particle methods
(dsmcFoam, mdFoam are two examples available already). OpenFOAM is written in
C++ and uses object orientation and generic programming which makes it a suit-
able platform for library development as shown in the code structure below. It uses
the staggered grid formulation of the finite volume method for the discretization of
equations wherein flux quantities are stored at the faces while conservation variables
are stored at the cell centers. The solution variables in tensorial formulation are ab-
stracted as arbitrarily unstructured internal and boundary fields at discrete points in
the domain. A large number of numerical schemes are provided for associated math-
ematical operators such as divergence, laplacian etc., and could be easily modified by
the user. A more exhaustive introduction to OpenFOAM can be found elsewhere [93].

One of the goals of this framework is to develop a convenient user interface
with high performance and flexible structure. The main solver of SOMAFOAM it-
self performs only the role of coordinating the calling of various functions that are
implemented elsewhere. In this regard, the underlying element of our code is the
plasmaCookBook module that is designed for the numerical solution of the plasma
governing equations. All plasma species continuity and flux/momentum equation
models inherit a virtual base class multiSpeciePlasmaModels. The design inter-
face allows the user to create new physical models by using existing class imple-
mentations as a template and by inheriting the base class. The code design for the
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multiSpeciePlasmaModels class is depicted using the Universal Modeling Language
(UML) block diagram and shown in Figure 3.1 in order to provide an idea of the
software design.

multiSpeciesPlasmaModels

+ correct()
returns updated specie solution field

+ eEnergySource()
returns electron energy equation 

source term

Input references
Electric Field

Specie mass fraction
Chemistry data

+ semiImPoisson()
returns semi Implicit contribution of 

charge source term

driftDiffusion

+ correct()
returns updated specie solution field

# fluxCorrect()
returns specie flux using drift-

diffusion equation

Additional parameters
Specie temperature

Transport parameters

Member variables and references

Pure virtual function

Member function

Overloaded virtual function

- RR()
returns reaction source term

Plasma 
thermophysical 

library

plasma energy 
models

Drift-diffusion equation –

full implicit

momentum

+ correct()
returns updated specie solution field

# fluxCorrect
returns specie velocity using full 

momentum equation

Additional parameters
Specie temperature

Transport parameters

Full momentum equation –

full implicit/semi implicit

driftDiffusion-SS

+ correct()
returns updated specie solution field

# fluxCorrect
returns specie flux using drift-

diffusion equation

Additional parameters
Specie temperature

Transport parameters

Drift-diffusion equation – full 
implicit/operator splitting

zeroD

+ correct()
returns updated specie solution field

Additional parameters
ODE parameters

Global model/no transport 
solution – ODE solution

mixed

+ correct()
returns updated specie solution field

Additional parameters
Specie temperature

Transport parameters
ODE parameters

Arbitrary combination of 
all models for each specie

Electromagnetics 
library

1..n

1

Figure 3.1: The UML class diagram of the SOMAFOAM computational framework

The multiSpeciePlasmaModels class solves the continuity equation in conjunc-
tion with the drift-diffusion/full-momentum equation in a segregated manner using
a cell-centered finite-volume method. The driftDiffusion and momentum classes
implement the drift-diffusion and full-momentum equation respectively in full im-
plicit/explicit and ImEx (Implicit-Explicit) forms. Implicit solution of the continuity
equation is achieved by an implicit source term treatment [69] which facilitates ma-
trix diagonal dominance and hence better numerical stability. The full-momentum
equation solution is based on a semi-implicit implementation and largely follows
[15]. Operator splitting is a commonly deployed method to handle highly non-linear
advection-diffusion-reaction partial differential equations. The objective here is to
split advection-diffusion and reaction components in order to deal with the tightly
coupled nature of these mechanisms. driftDiffusion-SS implements the Strang
splitting method [85, 64] to achieve stable and accurate solution in time and the im-
plementation follows closely from section III.A of [95]. The stiff chemical source term
is integrated using OpenFOAM’s ODE library.
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The plasmaBoundaryConditions class implements domain-specific boundary con-
ditions for plasma governing equations and are largely based on descriptions in [60,
92]. plasmaEnergyModels class is designed to provide multi-temperature species en-
ergy equation of charged and neutral particles. The implementation supports ImEx
and explicit formulation of energy equation for electron, ions and neutral species.
Implementation of the neutral species energy equation is similar to the description
provided in [50]. electroMagnetics class provides a lot of flexibility in terms of
numerical solutions of Maxwell’s equations and coupling of plasma-dielectric regions.
A general-purpose solver for Poisson’s equation is available, with explicit inclusion
of charged species. A linearized and semi-implicit formulation is also available for
certain specie solution. All the governing equations are implemented in a segregated
manner. Traditionally, coupled formulation provides better convergence but at the
cost of high memory requirement and numerical complexity. To provide a general-
purpose plasma solver, segregated implementation is more suitable as the required
implicit/explicit formulation can be achieved with high flexibility, matrix size scaling
with variables and low memory overhead.

plasmaThermophysical library is concerned with reactions, thermal/physical prop-
erties of plasma and background gas. Plasma chemistry modeling and thermophysical
parameters have many unique requirements as compared to traditional thermophysi-
cal library for reacting flow modeling that is available by default in OpenFOAM. We
modified and extended the existing thermophysical library for efficient calculation
of plasma chemistry, thermophysical source term and transport parameters: a signifi-
cant development from the limited pressure-temperature system already implemented
in OpenFOAM. The library includes a range of possible combinations for plasma re-
actions, thermodynamic state and transport mechanism using C++ templates. The
library provides an abstraction layer beginning from the equation of state to reaction
dynamics while maintaining the original OpenFOAM chemistry interface. The trans-
port and reaction data can be imported from BOLSIG+ [29], a popular freeware for
solution of the zero-dimensional Boltzmann’s equation using a two-term approxima-
tion. Also, transport parameters can be described as constant or as a function of
local reduced electric field or local mean energy. A tabular interface is created inside
the library to facilitate efficient interpolation of transport and reaction data.

The framework provides an optimal interface to support multiphysics and multi-
scale simulation. Multiple time scales can be chosen at run time to facilitate simula-
tion with large time scale disparity. The library interface is such that the user could
choose to extend plasma solution to include neutral gas flow, lagrangian dynamics,
multiphase flow, heat transfer etc., by combining any established solver available in
OpenFOAM. The code infrastructure maintains extensive use of operator overload-
ing and template metaprogramming in OpenFOAM. This practice facilitates quick
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translation of scientific models into efficient finite volume code with auxillary numer-
ics. Also the performance centric implementation of C++ directives and distributed
memory parallelism allow this framework suitable to use from laptop to large high-
performance computers. The code snippet below shows the conversion of a given
partial differential equation - in this case the ion/neutral gas energy equation [1] - to
OpenFOAM code.

//Generic Equation:

∂(niCpTi)

∂t
+∇ · (−κi∇Ti) +∇ · (ΓiCV Ti) = −pi∇ · ~vi +Di + Pi (3.1)

where ni, Ti, Γi, vi and pi are number density, temperature, species flux, mean
velocity and scalar pressure of species i. D and L represent energy lost due to collision
drag and input power respectively.

//Openfoam code:

fvScalarMatrix TiEqn

(

fvm::ddt((Ni*Cp), Ti)

- fvm::laplacian(kappai, Ti)

+ fvm::div((gammai*Cv), Ti)

==

- pi*fvc::div(vi)

+ Di + Pi

);

TiEqn.solve();

In the template above, the energy equation is being solved in semi-implicit for-
mulation. Static function fvm produces implicit terms for the matrix solution and
fvc performs finite volume operations on rest of the terms for explicit treatment of
terms resulting in contributions to the right hand side of resulting matrix system
Ax = b. ddt, laplacian, div are differential operators implemented as static func-
tions for the discretization of solution and other field variables. fvScalarMatrix

class is discretized after inheriting the finite volume mesh and field variables classes
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and produces a sparse solution matrix. The solution of the equation is achieved by
user-provided parameters for space and time discretization, interpolation techniques
and matrix iterative solvers (Krylov subspace methods) at runtime.

3.2 Multi-region coupling

Most practical plasma applications have one or more dielectric materials used, ei-
ther for plasma confinement or for the formation of barrier discharges. Hence, a
plasma-dielectric coupled simulation is one of the common features expected from
a plasma modeling framework. The plasma-dielectric interface requires the inclu-
sion of the accumulated surface discharge into Gauss’ Law (Poisson’s equation) for
a consistent electrostatic solution, as detailed in [97]. A popular method to couple
multiple region/mesh such as plasma-dielectric medium is weak or explicit coupling
and is commonly available in solvers for low-temperature plasma simulation. Explicit
coupling involves multiple solvers operating in different regions of the mesh. Each
solver handles its own region and coupling is achieved through boundary condition
update. Convergence to a solution is usually achieved by iteration techniques such as
Picard’s method [44]. This method is trivial to implement and provides flexibility of
solver and numerical implementation choices. However, it suffers heavily from weak
or no convergence.

On the other hand, strong coupling or implicit coupling can provide a way to
achieve faster convergence coupled with efficient solution method for given systems
of equations. In this work, a solution matrix level coupling is implemented for the so-
lution of Poisson’s equation over the plasma and dielectric regions. A coupled matrix
system couples matrices for each mesh region. The surface discharge and accurate de-
scription of interface physics is enforced by manipulating the inner face values between
matrices. The coupling boundary condition is a critical component to achieve per-
formance. A general grid interface (GGI) algorithm for the boundary condition [11]
is used in order to handle partially overlapped, non-coincident mesh interfaces. The
linear coupled solver, based on biconjugate gradient stabilized method (BiCGSTAB),
utilizes internal solver sweeps for all coupled matrices. In this way every mesh region
has its own solver control and physics, while they can take advantage of the robust-
ness of the tightly coupled solution. The implementation in SOMAFOAM could be
extended as described in [48] for more optimized solution control.



CHAPTER 3. NUMERICAL FRAMEWORK 20

Code Performance

Single node performance

Single node/core performance is evaluated on a Dell machine with Intel R© Xeon Gold
6140 CPU @2.30GHz with Hyper-threading enabled. To conduct this evaluation, a
three dimensional GEC reference cell geometry is chosen which is briefly described in
subsection 3.3. The code was compiled using Intel R© Parallel Studio XE 2019 (Intel R©

C++ compiler with Intel R© MPI library) on a CentOS linux based machine and uses
Intel R© VTune

TM
profiler. To analyze the performance results, all software kernels are

grouped into these categories: plasma dynamics, plasma chemistry, coupled poisson
equation matrix and MPI.

The GEC reference cell mesh shown in figure 3.2, consists of plasma and dielectric
section, with 1990400 and 35840 block structured hexahedral mesh cells respectively.
Rest of the simulation parameters are same as described for case 1 in subsection 3.3.
A simulation case containing three species Ar,Ar+, e− and one ionization reaction
uses 60% of CPU time spend on plasma solution including 7.5% of CPU time
for plasma chemistry related solution. 30% of CPU time is involved in coupled
Poisson’s equation solution. Another case containing four species Ar,Ar+, Ar∗, e−

and six reactions shows plasma solution time as high as 70% including 24% plasma
chemistry solution time of total CPU time. The coupled Poisson’s equation solution
time is 20%.

The parallel profiling on a single node was done with varying number of cores
of the machine. Parallel configuration details are same as described in section be-
low. The Intel R© MPI library auto tuning was used along with process pinning on
physical cores. The VTune

TM
hpc-performance analysis shows efficient parallel im-

plementation. The MPI imbalance was less than 2% for all runs, showing efficient
communications operations and low overhead. The MPI busy wait time was shown
to be less than 0.01% of CPU time, showing balanced domain decomposition, effi-
cient linear solver and preconditioner operations. OpenFOAM’s parallel functions
responsible for communications MPI_Allreduce/MPI_Recv/MPI_Waitall tend to be
less than 2% of wall time, which makes this application suitable for massive parallel
simulation. Traditionally mesh based continuum methods’ performance tend to be
memory bandwidth bounded and this application is not an exception as the VTune

TM

hotspots analysis shows high memory bound parametric value.

Parallel Scalability

Parallel scaling analysis is done on 347 mixed nodes machine, Triton Shared Comput-
ing Cluster (TSCC) of San Diego Supercomputer Center using General Computing
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Figure 3.2: Three dimensional GEC reference cell geometry and computational mesh

Nodes which mostly consists of dual-socket, 8-core, 2.6 GHz Intel Xeon R© E5-2670
processor. For the purpose of scaling analysis, simulations of three dimensional ca-
pacitively coupled GEC reference cell has been performed. The simulation parameters
and geometry are same as used for single node performance analysis. An optimized
code was used for this study and is built on top of OpenFOAM-v1906. The code
was compiled with Intel R© Icc compiler 2016.3.210 with Intel MPI. The toolbox pro-
vides distributed memory parallelism based on domain decomposition: a typical for
OpenFOAM based solvers and can be used with any standard MPI implementation
to perform parallel simulations. In this study, the multi-region domain was decom-
posed using graph partitioning software METIS [43] using k-way/recursive multilevel
partitioning algorithm. The final choice between partitioning algorithm is made af-
ter performance testing. Partitioning is done in away that each partitioned region
corresponds to a unique MPI process. In this study, data structure optimization or
effect of parallel data I/O on parallel performance is not performed and can be a
topic for future study. No particular optimization flag or environment variables other
than default settings for compiler and any supporting library was used, in order to
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present a general result. The communication cost of MPI could be bottleneck for the
overall performance. The communication cost was minimized by using non-blocking
MPI communications, parallel consistent linear solver and preconditioner. We chose
to look performance of the code till 1024 cores/32 nodes which is acceptable count
for feasible computational resource and problem size/complexity in most capacity
computing runs.

Parallel scalability study is performed by classical test measures for time to solu-
tion, strong and weak scaling. Strong scaling keeps the total problem size fixed and
processors count (P ) varies, whereas weak scaling keeps the problem size per processor
(x) fixed for the same. Perfect scaling for strong scaling analysis would corresponds
to solution in 1/P time and for weak scaling, solution time should be same for Px
problem size. For cell-centered finite volume method, computational cost per cell for
up to second order schemes is relatively very low as compared to high order numeri-
cal methods. This puts a high lower bound for mesh cells per partition to be able to
outweigh computational cost to communication cost. The higher bound on number of
mesh cells per partition may comes from hardware related factors, such as processing
power, memory bandwidth etc. Beyond these bounds, parallel performance degrades
rapidly.

The geometry of GEC reference cell along with block structured mesh is shown in
figure 3.2. The capacitively coupled Argon plasma includes Ar+ ions and electrons.
For simplicity only ionization reaction is included. The plasma species solution is
achieved by solving continuity, momentum and energy equation for both specie. A
second order second order upwind euler time method for temporal discretization and
second order central differencing for spacial discretization is used along with Sweby
limiter [86] for convective terms. The Poisson’s equation solution is achieved in ex-
plicit formulation using geometric agglomerated algebraic multigrid method. The
boundary conditions for all solution variables are same as described in [92]. The
dielectrics are not include in this study for simplicity and an approximate dielectric
boundary condition is used, similar to described in [47].

A single node parallel scalability test was established first. The machine used
is two socket 18 core Intel R© Xeon Gold 6140 CPU @2.30GHz running with Hyper-
threading enabled, providing up to 72 logical cores. The results for strong scaling
efficiency is presented in figure 3.3. The fine and coarse mesh cases consists of 1990400
and 15923200 hex cells respectively. The lower cell count is chosen based on analysis
done on 2D axisymmetric solution, satisfying mesh requirement for stable solution
for both implicit and explicit solution. Although a rigorous grid refinement/order
of convergence analysis could be used to develop better understanding but excluded
from this study. The results can be analyzed based on dynamics of memory cache,
CPU sockets and Hyper Threading etc. It can be seen from results that scaling
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efficiency for both cases reduces as the cores count increases. The total memory
footprint of this simulation on single node is too large for any of the parallel runs.
In this case, increasing the core count can not provide more parallel performance as
the simulation is not CPU bound and performance deteriorates further by increasing
core count because of communications overhead. It can be seen that negative effect
of hyperthreading become apparent at higher thread counts for fine mesh simulation
case.
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Figure 3.3: Single node strong scaling efficiency

Some of these performance issues should not be present for multi node simula-
tions where MPI communication should be the major scaling bottleneck. The results
presented in figure 3.4 for multi node strong scaling performance, shows excellent
parallel strong scaling at high core count. Each cluster node for this study contains
16 cores and the baseline simulation uses 2 nodes i.e. 32 cores, rest of the simula-
tions cases use 128, 192, 304, 394, 512, 768, 1024 cores. The simulated case consists
of three dimensional GEC reference cell mesh containing 95539200 hexahedral block
structured cells. The ideal strong scaling corresponds to decrease in computational
time in proportion with increase in processing power. The strong scaling results show
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Figure 3.4: Strong scaling

perfect scaling to a very high processor count. Although we expect this behavior to
be present outside upper and lower bounds of mesh cells and at larger core count, we
have not performed any other study.

The weak scaling provides more general purpose metric for choice of parallel re-
sources for simulations. It presents an aspect of limits of parallel computing, usually
opposite to unavoidable limits of strong scaling. Figure 3.5 shows weak scaling over
multiple core count configuration. The weak scaling analysis was done on different set
of compute nodes and mesh cells count, in succession of multiple of 2, to preserve cell
count/core ratio. The case 1 & 2 are only different in mesh configuration, and consists
of 1224400 and 62200 cell pre CPU core respectively. Case 1 baseline run starts at
16 cores and goes till 256 cores, whereas Case 2 is from 32 to 512 cores. The analysis
show that up to 6 computational nodes, scaling is withing 15% limit of ideal scaling
but at higher node count it drops as much as 30%. The shortcoming of weak scaling
could be attributed to overhead of parallelization growing with problem size. Also
the TSCC cluster contains mixed node configuration, based on a range of hardware
with varying degree of performance. It is not always viable to make sure that our
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simulations run on nodes containing same hardware altogether, to provide better load
balancing and communication for optimal performance. The complexity of partition
graph at large problem size also affect contention in network communications.

The plasma solver’s performance assessment is hard due to inherent complexity
associated with nature of plasma governing equations and associated multiphysics.
As plasma specie, chemistry and electromagnetics may fall in different performance
regime due to their unique numerical behavior, the choice of optimized algorithm
and performance tools becomes critical for the scalable performance. This section
attempts to provide a rough sketch of performance criteria associated to problem size
and resources.

In summary, the current features of the toolbox can be summarized as follows:

• Support for transient, steady and pseudo-transient problems.

• Arbitrary 1D/2D/3D and axi-symmetric geometry with ability to handle com-
plex geometry.
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• Well-studied parallel processing and data I/O capabilities at all levels of code.

• Unstructured polyhedral mixed-mesh elements.

• A range of established plasma and electromagnetic boundary conditions avail-
able in literature.

• Arbitrary number of plasma and gas species and their mixture properties.

• A range of reaction types including elastic, inelastic, Arrhenius rate constant
based on species temperature and/or any other plasma variables etc..

• A suitable interface for I/O or coupled multiphysics with other solvers.

• A general-purpose implementation and support for electromagnetic simulations,
plasma or coupled plasma-dielectric multi-region.

3.3 Results and Discussion

To demonstrate some of the capabilities of the code, we verify and validate the results
obtained using the code by comparing with established benchmark results for low tem-
perature plasma problems. Later, we present representative simulations performed
using SOMAFOAM to demonstrate its features. The problems simulated here include
a wide range of operating conditions for pressure and excitation frequency thereby
demonstrating the versatility of the framework.

Low-pressure radio frequency plasma

The first validation case is for code-to-code validation where capacitively coupled
plasma simulation results are analyzed based on established fluid model and particle
methods results. GEC reference cell experimental data is then studied for experi-
mental validation of solver in order to illustrate solver’s capability to handle complex
simulation requirements of plasma applications design. For these tests, our results
have been compared for most relevant physical and numerical parameters. Further,
the validation problems are chosen to be ccp system operating at rf voltages. We
argue that these systems are less sensitive to the surface interaction, show linear be-
havior over large range and relatively well understood in terms of plasma chemistry
and power dynamics etc. to facilitate verification and validation of our framework.
Further in result section, we show more capabilities of framework which could be used
to simulate plasma sources other than ccp.
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In order to evaluate the implementation of plasma fluid equations in our code,
we use the benchmark simulation results proposed by Turner et. al [88]. It should
be mentioned that this benchmarking utilizes the experimental data of Godyak et
al. [25]. The benchmark problem simulates a one dimensional discharge between
two plane-parallel electrodes, excited by a sinusoidally varying voltage difference.
The benchmark conditions included are simulated by the particle-in-cell with Monte
Carlo collisions (PIC-MCC) method which is considered to provide the most accu-
rate description of the plasma at these operating conditions. The benchmark results
included in the work [88], were produced with a verification and validation frame-
work using independently developed PIC-MCC codes whose results were shown to
have bounded uncertainty for a range of conditions. Also a set of solutions for mo-
ment based models (fluid models) are provided in [88] for comparison. Our focus for
this validation is to evaluate the performance of our code by comparing with these
published benchmark results. While comparing fluid models with PIC-MCC simula-
tions, one should note that these two simulation methods will seldom lead to exact
agreement due to underlying differences in the building blocks of the two models that
are briefly discussed in [49]. However, PIC-MCC simulations provide an excellent
reference for comparing the results obtained using our code.

The benchmark case simulates a Helium plasma with electron and Helium monomer
ions being the only species included in the simulation (in order to match with the
PIC-MCC simulations). A wide range of gas pressures (30−1000mTorr) was consid-
ered with the gas temperature fixed at 300K. The voltage amplitude was chosen such
that the resulting current density amplitude was ∼ 10 Am−2 (since the PIC-MCC
simulations were performed in constant current mode). It should be noted that our
code has the capability to perform constant voltage and constant power simulations
and therefore we chose to vary the voltage amplitude until the desired current density
was obtained. The test physical conditions are described in Table 3.1.

Parameters/Case # 1 2 3 4

Electrode Gap (cm) 6.7
Gas Pressure (Torr) 0.03 0.1 0.3 1
Gas Temperature (K) 300
Frequency (MHz) 13.56
Voltage (V) 450 200 150 120

Table 3.1: Validation cases derived from CCP benchmark simulations in Turner et
al.[88]
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Figure 3.6: Comparison of ion number density profiles obtained using SOMAFOAM
simulations with kinetic and continuum simulations of Turner et al. [88]

The fluid simulation for the validation employs numerical parameters similar to
those utilized by Turner et al. [88], whenever possible. It should be mentioned that
fluid simulations require a large number of input parameters with most of them not
being explicitly provided in plasma literature. Thus, one has to make a number
of suitable choices when it comes to numerical implementation and parameters, to
account for the missing information. In our fluid model, we employed a traditional
drift-diffusion approximation for charged species continuity equation alongside the
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electron energy equation. The Poisson’s equation with a linearized source term [3]
was used to obtain the self-consistent electric field. The mobility data for electrons
and helium ions are assumed to depend on the local reduced electric field, and are
obtained from BOLSIG+ [29] and drift tube experiments [5] respectively. Diffusion
coefficients for both species are calculated using the Einstein’s relation.

Here, we compare results obtained using our code with PIC-MCC and fluid model
results from Turner et. al [88], for cycle-averaged plasma parameters once the sim-
ulation reaches a periodic steady state. Figure 3.6 shows the results for Argon ion
number density compared with benchmark results for case 2 from Table 3.1. It can
be seen that results obtained in this work agree well with the PIC-MCC simulations.
In fact our fluid model, seems to perform better than the fluid model results shown
by Turner et al. [88]. The differences in results obtained using the two fluid simula-
tions can be attributed to differences in some of the input parameters with our choice
leading to better agreement for the peak number density at the chosen conditions.
However, the same set of input parameters lead to significant differences at other oper-
ating conditions as seen in Figure 3.6. In particular, the intermediate pressures (Case
2 and Case 3) lead to good agreement between fluid and kinetic simulations whereas
discrepancies appear at both low and high pressures. In spite of these discrepancies,
these simulations certainly serve our current purpose which is to validate the fluid
code with kinetic simulations. The results obtained from SOMAFOAM simulations
are also comparable with the fluid simulations reported by Turner et al. [88] which
employed the plasma module in COMSOL to perform the simulations. It should be
noted that an exact match is hard to expect (even though both results utilize the
same modeling approach) due to potential differences in the physical parameters. In
this case, we attribute the small discrepancies to differences in the diffusion constant
(the values of which are not explicitly reported by Turner et al. [88]). This is also con-
sistent with the observation that the discrepancies between SOMAFOAM and Turner
et al [88] decrease with increasing pressure. We conclude this study by emphasizing
that the good overall agreement with kinetic simulations serves as a validation case
for the SOMAFOAM code. A more detailed study explaining the factors contribut-
ing to the observed discrepancy is beyond the scope of the work but is likely due to
fundamental differences in the electron energy distribution function.

Capacitively Coupled GEC Reference Cell

The Gaseous Electronics Conference (GEC) reference cell is a common standard for
plasma experiment and modeling among researchers around the world [30]. It is con-
ceived as a well defined plasma reactor that either operates in CCP or inductively
coupled plasma (ICP) mode that could be used for benchmarking of plasma simu-
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lations. Over years, numerous studies have been performed to validate and analyze
GEC reference cell fluid simulation results [63, 7, 53]. Considering the complex nature
of low temperature plasma and high sensitivity of reference parameters, both in ex-
periment and numerical modeling, a well characterized system such as GEC reference
cell, is still a classical benchmark problem.

In this validation, we focus on experimental measurements done by Overzet et
al. [71, 70]. The capacitively coupled GEC reference cell geometry is same as that
described in [63]. The simulations are performed for an axisymmetric configuration to
account for the cylindrical symmetry of the GEC reference cell. The plasma-dielectric
electrostatic solution was achieved by a coupled formulation of the Poisson’s equation
as implemented in the SOMAFOAM code. We consider argon plasma ignited in the
GEC reference cell at varying pressures between 0.1 − 1 Torr and at 300 K gas
temperature. The plasma consists of electron(e−), argon ion(Ar+) and excited argon
atoms (Ar∗) as active constituents with neutral Argon as background gas. The set of
reactions included in this study are listed in Table 3.2.

# Process Reaction Ref.

1 Elastic scattering e− + Ar → Ar + e− [29]
2 Ionization e− + Ar → Ar+ + 2e− [29]
3 Metastable excitation e− + Ar → Ar∗ + e− [29]
4 Multi-step ionization e− + Ar∗ → Ar+ + 2e− [29]
5 Multi-step ionization 2e− + Ar+ → Ar∗ + e− [28]
6 Multi-step ionization e− + Ar∗ → Ar + e− [28]
7 Inelastic metastable production e− + Ar+ → Ar∗ [28]
8 Metastable pooling Ar∗ + Ar∗ → Ar + Ar+ + e− [28]
9 Radiation decay Ar∗ → Ar [28]
10 Inelastic depletion Ar∗ + Ar → 2Ar [28]

Table 3.2: List of reactions considered for the GEC reference cell simulation of an
argon plasma at various pressures.

The plasma species solution is based on the drift-diffusion approximation with
coupling to Poisson’s equation. The temporal discretization for all equations was
done using the first order implicit Euler method. Second order central differenc-
ing was utilized for spatial discretization. Convective terms in plasma species and
electron energy equation were discretized using Sweby [86] and Vanleer [6] limiters
respectively. It should be reiterated that the SOMAFOAM code uses the underlying
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OpenFOAM framework to choose from a wide range of discretization schemes for spa-
tial discretization. The resultant matrix system was solved using a BICGStab solver
with simplified diagonal based incomplete LU preconditioner. The Poisson’s equation
solution matrix was solved in coupled formulation using the BICGStab method with
the Cholesky preconditioner. The axisymmetric mesh (not shown) contains between
19050 and 26580 block structured mesh cells for the plasma region. The transport
coefficients were obtained from same sources as described in Section 3.3. Argon
metastable diffusion coefficient was obtained from literature[7]. Both simulations re-
ported here were performed with a DC bias of -81 V and an excitation frequency of
13.56 MHz. The peak voltages for the two cases were different.

Figure 3.7: GEC reference cell operating at 100mTorr and 400V peak-to-peak volt-
age. Results shown correspond to end of the sinusoidal cycle. The potential (V ) is
shown on the left and Ar+ ion density (m−3) is shown on the right.

Figure 3.7 shows contours of potential and ion density for the GEC reference cell
operating at 100mTorr and 400V peak-to-peak voltage. The ion density reaches its
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Figure 3.8: GEC reference cell operating at 1Torr and 200V peak-to-peak voltage.
Rest of the details are same as figure 3.7.

maximum value of about 1016 1/m3 at the mid-point of the gap between the powered
and ground electrodes as would be expected for a low-pressure discharge where the
species diffusion coefficients are large. On the other hand, when the pressure is
increased by a factor of 10 (to 1 Torr) and the peak-to-peak voltage decreased to 200 V,
the peak ion (plasma) density of about 2.5×1016 1/m3 occurs closer to the ground
electrode thereby demonstrating that the number density profile is not completely
diffusion-limited and is asymmetric about the centerline. Figure 3.9 compares the
radial ion number density profiles, at the centerline, obtained from SOMAFOAM
simulations with those obtained from experiments for the GEC reference cell operating
at 100 mTorr and 250 mTorr respectively. The peak-to-peak voltage was fixed at 200
V for both cases in order to enable comparison with previously published experimental
data [70]. The overall agreement between experiments and SOMAFOAM simulations
is qualitatively good with the peak ion number density and its radial location being
predicted accurately. While the simulations do predict a more rapid decrease in
the ion number density than in experiments, we consider this acceptable and the
agreement could potentially be improved by fine-tuning various input parameters
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including mobility and diffusion coefficients.

Figure 3.9: Comparison of radial Ar+ ion density (m−3) profiles (at the centerline)
obtained from SOMAFOAM simulations and experiments.

Direct Current Plasma

SOMAFOAM was also used to simulate argon direct current (DC) plasmas for a
one-dimensional planar geometry as well as two-dimensional device with straight and
curved dielectric boundaries to demonstrate representative features of the computa-
tional framework.

Low pressure

In this section, we consider a one dimensional direct current low pressure glow dis-
charge that was also simulated by Deconinck et. al [17]. In their set-up, a glow
discharge is ignited by applying a constant voltage difference of 250 V between elec-
trodes that are 1 cm apart and filled with argon gas at 1 Torr. The simulations
were performed by including two active species (Ar+ ions and electrons). The species
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continuity equation for ions and electrons was solved in conjunction with the drift-
diffusion approximation. For simplicity, it is assumed that the plasma chemistry
comprises of only the electron impact ionization reaction. The reaction rate coef-
ficients and electron transport coefficients were tabulated as a function of electron
mean energy and reduced electric field (E/N) respectively. These parameters were
obtained using BOLSIG+ [29] with the standard set of reaction cross sections. Ion
transport coefficients were obtained from available experimental data [19]. The sec-
ondary electron emission coefficient was set to 0.05. The computational domain was
divided into 250 cells that were generated using the blockMesh utility.

Figure 3.10: One dimensional direct current plasma arrangement

Figure 3.11 compares the steady state results for the electron/ion densities, elec-
tron temperature and potential profiles obtained from SOMAFOAM with the results
presented by Deconinck et al. [17]. In spite of minor differences in the profiles, the
results are in good overall agreement. Once again, the discrepancies could be at-
tributed to potentially small differences in the physical/numerical parameters used.
The sheath represents about 20 % of the gap size in both simulations with a peak
number density of about 1.5×1016 1/m3. The maximum electron temperature of
about 28 eV occurs in the sheath with the quasi-neutral region electron temperature
computed as 5 eV which is consistent across both the simulations.

High pressure

After the verification of the low-pressure DC plasma simulation, we used SOMAFOAM
to simulate a two-dimensional high pressure direct current microdischarge bounded by
dielectric regions. In order to demonstrate the capabilities of SOMAFOAM, we report
simulations where the plasma-dielectric is curved. Figure 3.12 shows the mesh used
for the curved interface simulation along with an inset showing a zoomed in version
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Figure 3.11: Comparison of electron/ion number density, potential and electron tem-
perature profiles obtained using SOMAFOAM with the results presented by Decon-
inck et al. [17] for a low pressure argon direct current plasma.

of the mesh in a certain region close to the plasma-dielectric interface. The distance
between the electrodes was set as 200 µm and the width of the plasma cell varies from
200 µm at the electrodes to 240 µm at the centerline between the electrodes. The
gas pressure was fixed at 300 Torr thereby resulting in a relatively high pd value of 6
Torr− cm. The mesh was constructed using an open source three-dimensional finite
element mesh generation utility, Gmsh [24]. The plasma region was decomposed into
of 34, 896 hexahedral unstructured cells and the dielectric section consisted of 14, 602
structured hexahedral curved mesh elements. The cell size in the plasma region var-
ied between 0.8 µm to 1.4 µm. The plasma-dielectric curved interface contained
conforming mesh elements for efficient solution on the curved surface.

Even though the authors acknowledge the over-simplified chemistry considered for
the low-pressure plasma simulated earlier, we use the same chemistry here for simplic-
ity. This does not affect the objective of these simulations which is to demonstrate the
capability of the solver to deal with devices comprising of both plasma and dielectric
regions as well as the ability to deal with curved surfaces as part of the geometry.
The electron transport parameters (mobility, diffusion) were obtained as a function
of reduced electric field (E/N) using BOLSIG+ [29]. The reaction rate coefficient
for the ionization reaction was obtained by assuming that the electron energy dis-
tribution function (EEDF) was a Maxwellian distribution function. While this may
seem incorrect in a non-equilibrium low-temperature plasma, it was demonstrated
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by Verma et al. [91, 92] that the rate coefficients obtained from kinetic simulations
showed better agreement with reaction rate coefficients that were obtained using a
Maxwellian EEDF than those obtained using a non-Maxwellian EEDF provided by
the two-term approximation in BOLSIG+. The secondary electron coefficient was
set to 0.05. A potential of 250 V was applied to the bottom electrode while the top
electrode was grounded.

Figure 3.12: A schematic of the plasma with curved dielectric sidewalls. The hybrid
mesh used for the simulations is also shown

Figure 3.13 shows contours of the electron and argon ion number density at steady
state with a peak density of about 1.5 × 1020 m−3, that is typical for high pressure
microdischarges. The results indicate the presence of a sharp local maximum in
the density profiles which is typical of high-pressure microdischarges where the ions
and electrons do not diffuse significantly. The curved sidewalls allow some room for
the plasma to expand and can be confirmed by the small lobes in the ion number
density. Figure 3.14 shows contours of electron temperature and potential. While the
electron temperature is only relevant to the plasma region, the potential is shown for



CHAPTER 3. NUMERICAL FRAMEWORK 37

both plasma and dielectric regions. The electron temperature peaks at about 10 eV
at a location in the sheath (as was the case for the low-pressure plasma) with an
electron temperature between 3 and 4 eV in the quasi-neutral region. The contours
also show the presence of sheath regions (with higher electron temperature) near
the plasma-dielectric interface. Figure 3.15 shows contours of the the electric field
components (Ex and Ey) in the plasma and dielectric regions where the sheath-like
region shown by the electron temperature contours is characterized by high electric
fields pointing towards the surface (analogous to the sheath region near the cathode).
The plasma-dielectric interface near the anode encounters much smaller electric fields.
The plasma-dielectric interface also shows a discontinuity in the electric field due to
the surface charge that accumulates on the surface of the dielectric.

Figure 3.13: Contours of argon ion and electron number density obtained using SO-
MAFOAM for a high-pressure glow discharge containing a curved plasma-dielectric
interface. Only the plasma region is shown in the figure.

In order to compare and contrast the influence of the curved plasma-dielectric in-
terface, we also performed simulations where the plasma-dielectric interface is vertical.
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Figure 3.14: Contours of electron temperature and potential obtained using SO-
MAFOAM for a high-pressure glow discharge containing a curved plasma-dielectric
interface. While the electron temperature is only relevant to the plasma region, the
potential is shown in both plasma and dielectric regions. The contours in the dielec-
tric region include both lines and colors while the plasma region contours only have
color.

To reiterate, the plasma region in this case is a 200 µm square and is coupled with the
rectangular dielectric region on both sides. The width of the dielectric region on each
side is 100 µm. The plasma region is discretized using 60,000 structured cells and the
dielectric region has a total of 9,000 high apect ratio structured cells and is mapped
conformally with the plasma mesh. Other simulation parameters are same as for the
curved plasma-dielectric simulation reported above. Figure 3.16 shows contours of
electron number density and temperature for the vertical plasma-dielectric interface
for comparison with the curved plasma-dielectric interface case. Even though the
peak number density at about 1.1× 1020 m−3 is a little lower, the variation of the
electron number density is more gradual than the curved plasma-dielectric case.

It can be seen the curvature of plasma-dielectric interface has significant effect
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Figure 3.15: Contours of x and y components of the electric field obtained using
SOMAFOAM for a high-pressure glow discharge containing a curved plasma-dielectric
interface. The contours in the dielectric region include both lines and colors while
the plasma region contours only have color.

on the plasma dynamics. The constant potential contour lines are more stretched
backwards due to significant effect of dielectric surface. The electron dynamics shows
similar tendency where the density contour has more charge in the center region due
to higher secondary electron emission from dielectric surface.

For further clarity on the effect of dielectric shape on charge dynamics, one di-
mensional simulation was performed to establish role of dielectric. The infinitely
long, parallel electrodes are placed at a gap of 200µm is discretize with 300 cells.
All the simulation details and numerics are retained the same except no dielectric is
present. Figure 3.17 shows comparison between all three simulations results. The re-
sults shown for two dimensional simulations, correspond to probe at the axis vertical
to electrodes, placed at the center. The results shows clear indication that the curved
interface behave closer to one dimensional electrodes configuration, whereas straight
wall configuration has significant effect on the plasma. This shows a complex nature
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Figure 3.16: Contours of electron number density and electron temperature obtained
using SOMAFOAM for a high-pressure glow discharge containing a vertical plasma-
dielectric interface. The contours in the dielectric region include both lines and colors
while the plasma region contours only have color.

of plasma-dielectric interface topology and further study can exoand to a detailed
analysis of topological effects of confined low temperature plasma sources.

Microwave MicroPlasmas

With the presentation of direct current and radio frequency plasmas in the previous
sections, we expand our study to microwave microplasmas in this section. Specif-
ically, we present representative results for a microwave microplasma ignited in a
split ring resonator (SRR). SRRs have become established as an efficient plasma
source with several experimental studies dedicated to their operation [39, 35, 38, 80].
While computational studies have been reported for microwave microplasmas, they
have been restricted to one-dimensional simulations or have dealt only with the lower
frequencies (1 GHz) in the microwave spectrum. In this study, we have performed
two dimensional simulations of a microplasma ignited in an SRR operating at atmo-
spheric pressure with a resonant frequency of 8.7 GHz. The choice of the frequency
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Figure 3.17: Plasma specie number density (m−3) for high pressure glow discharge.
The 1D data for 2D simulations shown here, corresponds to probe at center axis
between electrodes.

is based on the availability of experimental data thereby enabling direct comparison
with experiments. Figure 3.18 shows a schematic of the simulation set-up and the
mesh used to discretize the computational domain. The gap between the powered
and ground electrodes was set as 100 µm with the thickness fixed at 35 µm. The
dielectric thickness was taken to be 2.54mm and was grounded at the bottom. The
simulations presented here were power-controlled and the depth of the geometry (in
the third dimension) was fixed at 65 µm and is required to compute the total power
deposited. It should be emphasized that the geometrical and plasma parameters were
derived from the experimental work done of Hoskinson et. al [35]. The unstructured
hexahedral dominated mesh contains 64,333 cells in the plasma region and 3,062 cells
in the dielectric region. As in the case of other two-dimensional simulations, the mesh
was generated using Gmsh [24] with a combination of hexahedral and pyramidal ele-
ments. The mesh was refined in the proximity of the electrode gap for both plasma
and dielectric regions in order to resolve the relevant physics in the gap. The size of
the plasma domain was chosen to be large enough (4 mm × 2 mm) so that the open
boundaries do not affect the plasma dynamics in the gap.

The microplasma simulation consists of three active species including electrons,
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Figure 3.18: A schematic of the simulation set-up used for the microwave microplasma
ignited in a split ring resonator. Also shown is the mesh used to discretize the
computational domain in the plasma and dielectric.

argon ions and argon metastables. The reaction set and transport coefficients for this
study is same as that used for the GEC reference cell simulations. The simulations
included the continuity equation solution for all species, full-momentum and energy
equation for both charged species and the gas temperature equation for argon which is
the background gas. The gas temperature equation’s source terms were calculated by
time-averaging the plasma parameters over an entire cycle and the gas temperature
solution was obtained once during each cycle. Poisson’s equation was solved for both
plasma and dielectric regions with suitable coupling. Sub-cycling was used for electron
continuity and momentum equation such that the time step for these equations is 100
times smaller than the rest of the system (another useful feature of SOMAFOAM).
The simulations were power-controlled where the voltage amplitude of the powered
electrode was modified until the specified power was achieved. The power input to the
plasma was computed by performing a volume integral of the j ·E term in the entire
computational domain. Figure 3.19 shows contours of electron number density and
gas temperature both of which can be compared with available experimental data.
The peak electron number density predicted from the simulations is about 4×1020 m−3

and agrees well with the peak electron number density reported by Hoskinson et
al. [35]. While gas temperature measurements were not reported for the 8.7 GHz
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case, Hoskinson et al. [36] measured gas temperatures for microwave microplasmas
at frequencies 2 GHz, 3 GHz and 12 GHz with reported peak values between 800 K
and 1000 K. The peak gas temperature of about 1200 K obtained from SOMAFOAM
simulations is a little more than the values reported by Hoskinson et al. [36]. To
the best of our knowledge, this is the first direct comparison between simulations
and experiments for microwave microplasmas ignited in split ring resonators. While
three-dimensional simulations are certainly more appropriate and may lead to better
agreement, this case represents a suitable validation for SOMAFOAM at microwave
frequencies.

Figure 3.19: Contours of time-averaged electron number density and gas temperature
for an atmospherice pressure microwave microplasma ignited using 20 mW of power
at 8.7 GHz. The figure does not show the entire computational domain. Only the
region close to the electrodes is shown for clarity.

Dielectric barrier discharge plasma

The final case considered to demonstrate the features and capabilities of SOMAFOAM
is a dielectric barrier discharge (DBD) plasma. While simulations with the presence
of the dielectric were considered earlier in the case of the GEC reference cell and the
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direct current plasma bounded by a dielectric, the dielectric region did not play an
active role in the plasma dynamics since it was not sandwiched between the pow-
ered electrode and the plasma. DBD plasmas are characterized by the presence of
a dielectric between the powered and ground electrode and therefore have unique
properties that are often of interest to a variety of applications including the rapidly
growing area of plasma medicine, plasma-surface modification, nanomaterial synthe-
sis, and greenhouse gas conversion to name a few. Dielectric barrier discharge plasma
is an important plasma source from the perspective of engineering applications. A
more detailed description of DBD plasmas and their characteristics can be found
elsewhere [9].

Figure 3.20: The axi-symmetric mixed-element computational mesh used for the
atmospheric-pressure needle DBD plasma. The dielectric block is only shown partially
in the figure. The wedge angle required for axi-symmetric simulations in OpenFOAM
is depicted in the inset

In order to use SOMAFOAM to simulate a DBD plasma, we consider a DBD
plasma ignited using a needle electrode. Such a set-up is of relevance to plasma
medicine and also has prior simulations for comparison, for example by Sakiyama et
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al. [77, 78]. The plasma needle is immensely successful in many scientific applications
related to surface treatment [84, 83, 81]. As pointed in [9], barrier discharges operating
at high frequency are functioning mostly in α mode (contrary to γ mode contributing
to self pulsating behavior present at low frequency) and work as a protection for
electrode material from plasma species or surface modification.

# Process Reaction Ref.

1 Elastic scattering e− +He→ He+ e− [29]
2 Ionization e− +He→ He+ + 2e− [29]
3 Metastable excitation e− +He→ He∗ + e− [29]
4 Multi-step ionization e− +He∗ → He+ + 2e− [29]
5 Dissociative recombination e− +He+2 → He∗ +He [10]
6 Dissociative recombination e− +N+

2 → N2 [10]
7 Dissociative recombination e− +N+

4 → 2N2 [66]
8 He+2 ion recharge He+2 +N2 → N+

2 +He∗2 [10]
9 N+

2 conversion N+
2 + 2N2 → N+

4 +N2 [66]
10 N+

2 conversion N+
2 +N2 +He→ N+

4 +He [66]
11 He+ conversion He+ + 2He→ He+2 +He [10]
12 N+

4 conversion N+
4 +N2 → N+

2 + 2N2 [66]
13 N+

4 conversion N+
4 +He→ N+

2 +N2 +He [66]
14 Conversion of metastables He∗ + 2He→ He∗2 +He [66]
15 Chemoionization 2He∗ → He+2 + e− [66]
16 Penning ionization He∗ +N2 → N+

2 +He+ e− [66]
17 Destruction of excimers He∗2 +M → 2He+M [66]
18 Chemoionization 2He∗2 → He+2 + e− + 2He [66]
19 Penning ionization He∗2 +N2 → N+

2 + 2He+ e− [66]

Table 3.3: List of reactions considered for atmospheric pressure needle barrier dis-
charge

A schematic of the simulation set-up and mesh (in the plasma region) are shown in
Figure 3.20. The plasma needle barrier discharge is operating at atmospheric pressure
and at a frequency of 13.56MHz thereby classifying it as a radio frequency (RF)
plasma. The plasma needle tip surface is approximated as a prolate spheroid and the
simulation was set-up as an axi-symmetric case in SOMAFOAM. The needle’s major
and minor axis radii are 500µm and 150µm respectively. The needle faces a dielectric
surface with a relative permittivity of 5. The distance between the dielectric surface
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and needle is 1mm. The mesh consists of 11, 118 hexahedral dominated unstructured
mixed-element cells generated using Gmsh [24]. The mesh elements are graded coarser
away from needle tip to provide enough mesh resolution at the curved section that
will encounter high electric fields. A self-bias voltage appears at the dielectric surface
and is induced due to the asymmetric electrode and barrier configuration. The other
side of the dielectric (not shown in figure) is grounded. The simulations are power-
controlled by modifying the voltage amplitude at the needle based on the difference
between the actual and desired power.

Figure 3.21: Contours of electron number density and electron temperature for a
radio frequency (13.56 MHz) needle dielectric barrier discharge plasma ignited at 20
mW

The gap between the needle and dielectric surface is filled with helium and con-
tains nitrogen as an impurity. The He:N2 mole fraction is fixed at 106 : 1. In this
study, seven charged and metastable species are used to describe the plasma includ-
ing e−, He+, He+2 , He

∗ , He∗2, N
+
2 , N

+
4 . Table 3.3 lists the chemical reactions that were

included in the simulation. As always, the transport coefficients for electron in the
He-N2 gas mixture were obtained from BOLSIG+ [29]. The Helium and Nitrogen
ion and metastables transport coefficients are obtained from various experimental
datasets available in literature [5, 77, 19].
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The RF plasma was ignited at 20mW at atmospheric pressure and a fixed gas
temperature of 300K. The set of governing equations were solved as in the case
of Sakiyama et al. [78] except that no ion energy equation was solved. Ions were
assumed to be in thermodynamic equilibrium with the background gas and hence their
temperature was assumed to be 300K. The boundary conditions for species equations
were based on expressions given by Lindsay et al. [61]. For the electron energy
equation, a constant electron temperature of 1 eV was used as boundary condition
on all solid surfaces. A constant secondary electron emission coefficient of 0.25 was
used for charged species of helium and a value of 0.1 was used for nitrogen.

Potential (V): 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Figure 3.22: Cycle averaged electric potential (V ) corresponding to atmospheric pres-
sure rf needle barrier discharge in glow mode.

A simplified plasma-dielectric coupling was used for the solution of the Poisson’s
equation. The dielectric is assumed to have a uniform electric field normal to the
surface, which is a valid assumption given the large size of the dielectric. To satisfy
the electric field discontinuity condition at the dielectric surface, an approximated
boundary condition expression for Poisson’s equation was used and is given by

ε0Ep − εdEd = σs (3.2)

where Ed is the uniform normal component of electric field inside dielectric, εd is
dielectric constant and Ep is surface normal electric field in plasma. The value of Ed
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Figure 3.23: Cycle averaged electron power deposition (Wm−3) (top) corresponding
to atmospheric pressure rf needle barrier discharge in glow mode. The scalar sign
value indicates power gain or loss. The electric field (V µm−1) (bottom) at quarter
cycle instances, probed at axis line between needle tip and dielectric.

was calculated from a simple one-dimensional approximation of the gradient expres-
sion and is given by (−∆Φ/∆x). The simulation results shown here correspond to
a power deposition of 20mW with the corresponding voltage amplitude of 240V at
converged periodic steady state. Figure 3.21 shows contours of time-averaged electron
number density and electron temperature obtained from SOMAFOAM simulations.
The electron density contours clearly show the sheath near the needle electrode with
the density peaking at about 100 µm from the tip of the needle. The peak electron
temperature is about 8 eV and is typical of RF plasmas operating in the α-mode.
Figure 3.24 shows the spatial evolution of number density of all the charged species
included in the simulation and could be qualitatively compared with the results pub-
lished by Sakiyama et al. [78]. Even though the plasma operates at 100 mW in the
simulations of Sakiyama et al. [78], the results are qualitatively similar. It can be
seen that the bulk of the positive charge in the plasma is contributed by the He+2
ions. The time-averaged self-bias potential appearing at the dielectric surface was
computed as 30 V (potential contours not shown here for brevity).
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Figure 3.24: Axial profiles of charged species density in an atmospheric pressure RF
needle dielectric barrier discharge plasma operating at 20 mW. The nitrogen species
profiles are shown on a logarithmic scale.
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Chapter 4

Modeling of Microplasmas

This study presents benchmark comparisons between continuum and kinetic simula-
tions of argon microplasmas operating in the direct current and microwave regimes.
Kinetic simulations using the particle-in-cell with Monte Carlo collisions (PIC-MCC)
method and continuum simulations using the full-momentum equation for both ions
and electrons are performed at various operating conditions in order to study the
influence of product of pressure and gap size, pd (for a given gap size), influence of
gap size (for a given value of pd) and operating frequency.

Historically, the computational techniques used for simulating low-temperature
plasmas belong to two categories - continuum/fluid and kinetic methods [52]. The
preferred/optimal simulation methodology is problem-specific and depends on the
relevant physical mechanisms as well as the computational resources available. One
common approach is to assume that the assumed distribution function is only a
function of ratio of electric field to gas number density (E/nb) and is obtained using
zero-dimensional solutions to the Boltzmann equation. The validity of the zero-
dimensional assumption may be questionable under certain operating conditions but
is widely used for fluid modeling of microplasmas.

With the obvious computational advantages of using a continuum model (in com-
parison with a particle-based method), one of the fundamental questions that remains
to be answered is regarding the accuracy of continuum models. While this topic has
garnered significant attention in the low-pressure regime (particularly in the con-
text of materials processing) [46], only few researchers [14, 33, 91] have studied this
problem in the microplasma regime with the lack of an extensive study. One of the
deficiencies of publications comparing continuum and kinetic simulations has been
the absence of controlled comparisons where one operating parameter is fixed in both
simulation techniques. Also, a majority of these comparisons were performed for a
narrow spectrum of operating parameters. For example, Choi et al. [14] compared
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PIC-MCC simulations with a drift-diffusion fluid model for a 200 µm helium mi-
croplasma operating at a current density of 104 A/m2 and concluded that significant
differences were observed between the two models. Hong et al. [33] compared PIC-
MCC simulations and fluid simulations for microplasmas operating at 13.56 MHz and
2.45 GHz respectively and concluded that good agreement was observed at the higher
frequency. Verma et al. [91] recently reported a comparative study of continuum and
kinetic simulations for a direct current argon microplasma integrated operating at
pd = 1. In this regard, the primary goal of the current work is to perform an ex-
haustive comparison of continuum and kinetic simulations for a range of operating
conditions (direct current/microwave as well as pd values) along with an emphasis
on the choice of simulation input parameters (for example transport parameters and
reaction rate coefficients).

4.1 Model Description

Kinetic Simulations

The kinetic method for simulating plasmas is the stochastic method referred to as
particle-in-cell with Monte Carlo collisions (PIC-MCC) where both electrons and ions
are modeled as computational particles with each computational particle represent-
ing a large number of real particles (the ratio of real to simulated particles is 1010).
While neutral species can also be modeled as computational particles, we restrict
this treatment to only ions and electrons in this work. A typical PIC-MCC simula-
tion begins with discretization of the domain into cells followed by initialization of
computational particles. The choice of cell size depends on the plasma parameters
and should be less than the electron Debye length. The initial number of compu-
tational particles in each cell is based on the initial plasma number density and the
ratio of real to simulated particles. The locations of computational particles within
each cell are randomly chosen with the initial velocities (three components) sampled
from a prescribed velocity distribution function (typically chosen to be a Maxwellian
distribution). The system is then allowed to evolve in time by updating the posi-
tions and velocities of all computational particles using the Newton’s laws of motion
in conjunction with a second-order leap-frog algorithm[25]. The leap-frog algorithm
utilizes a staggered temporal discretization where the velocities and positions are not
stored at the same temporal instants. For example, if the position is stored at t = 0,
∆t, 2∆t, . . ., the velocity is stored at t = −∆t/2, ∆t/2, 3∆t/2, . . . thereby allowing
the algorithm to achieve second-order accuracy. The timestep restriction purely from
considerations of integrating the Newton’s equations of motion is given by
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∆t ≤ 0.3ωpe (4.1)

where ωpe is the electron plasma frequency given by

ωpe =

√
nee2

meε0
(4.2)

with me being mass of electron. Our choice of timestep ensured that an average
electron did not cross several cells during one timestep. The ratio of real-to-simulated
particles for all PIC-MCC simulations was chosen in such a way that the total number
of electron/ion computational particles was ∼ 70, 000. This parameter was based
on a convergence study on the average number of computational particles per cell
during any given timestep. All results presented were ensemble-averaged over several
timesteps (typically ∼ 100,000) to produce results with limited statistical noise (as
can be seen in our results).

At the end of every timestep, the computational particles crossing the domain
boundaries will be removed from the simulation. Also, new computational particles
are introduced at the boundaries based on the specified emission mechanisms. For
example, secondary electron emission can be triggered by high energy species (ions,
electrons and neutrals) bombarding the electrodes, field emission can be observed
as a result of the high electric fields encountered at the electrodes, and thermionic
emission can be encountered as a result of high temperatures at the electrodes. In
this work, the only emission mechanism considered is secondary electron emission
due to ion bombardment and is characterized by a constant secondary electron emis-
sion coefficient (strictly speaking, the emission coefficient depends on the incident
ion energies but is not considered here for simplicity). With a specified constant sec-
ondary electron emission coefficient (γse), the flux of electrons emitted (Γe) from the
electrodes depend on the flux of incident ions (Γi) and is given by

Γi = γseΓe (4.3)

The algorithm discussed above is traditionally referred to as PIC since it does not
include collisions between different computational particles. With the inclusion of
collisions based on a Monte Carlo algorithm, the computational technique becomes
PIC-MCC.

We used the XPDP1 code originally developed at the University of California
Berkeley with suitable simulation parameters as discussed below. The computational
domain was divided into 1000 cells (a convergence study is presented for pd = 1 in
order to validate this choice). This also ensured that the cell size was less than the
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Debye length based on the electron number density in the quasi-neutral region. The
timestep was chosen between 10 fs and 100 fs and ensured that probability of missing
collisions is less than 0.01 [89].

Finally, it should be mentioned that PIC-MCC simulations can be performed in
the constant-current or constant-voltage mode with subtle differences in the imple-
mentation. The constant-voltage mode is the more intuitive approach wherein the
potential values at both electrodes are specified and used as boundary conditions while
solving the Poisson’s equations. However, constant-voltage simulations have inherent
stability issues without the use of an external circuit and could result in small per-
turbations either leading to numerical divergence or blow-off of plasma. Therefore,
constant-current simulations where current through the system is specified, was pre-
ferred in this work. For such simulations, the potential at one electrode is specified
(usually grounded) and the potential at the powered electrode is initially zero. Dur-
ing every timestep, the specified current in conjunction with the observed particle
current density is used to update the powered electrode potential using Eq.(4.15).

With the use of computational particles to model electrons and ions, we could
potentially include five different types of collisions including electron-neutral, ion-
neutral, electron-electron, ion-ion and electron-ion interactions. Depending on the
plasma operating conditions, several types of collisions may be considered important
in order to capture relevant physical mechanisms. The most fundamental input that
is required to perform Monte Carlo collisions in our simulations is the collision cross
section as a function of incident particle energy relative to the target particle (re-
ferred to as collision energy). For collisions between particles of significantly different
masses (electron-neutral and electron-ion), the relative velocity can be approximated
by the velocity of electrons and hence the collision energy is same as the electron
energy. However, for collisions between particles of similar masses (ion-neutral), it is
important to consider the collision in a frame of reference in which one of the particles
is at rest (usually a frame of reference in which the neutral species is at rest).

It is also worth mentioning that the reaction set considered here is not exhaustive.
For example, at the high pressures considered in this work, the formation of argon
dimer ions through a reaction between argon ion and argon neutral becomes impor-
tant. Also, this leads to another reaction pathway where the electrons and dimer ions
recombine to form neutral species. These reactions are not considered to ensure that
we are dealing with a simple system thereby allowing us to focus on the comparisons
between kinetic and continuum simulations. It is also worth mentioning that we do
not anticipate the additional reactions to lead to significant changes in the qualitative
behavior of the microplasmas considered.
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Continuum/Fluid Simulations

Governing Equations

For the continuum simulations, we employed a plasma fluid model (implemented in
an in-house code) which is essentially derived by taking velocity moments of the
Boltzmann equation coupled with the Poisson’s equation and closely follows the de-
scription by Fitzpatrick [21]. Our model also resembles several other fluid models
for low-temperature plasmas but is described in detail here for self-sufficiency. The
particle species density is governed by particle continuity equation described as

∂nk

∂t
+∇ · (nkuk) = Sk (4.4)

where k = e, i for electrons and ions, respectively, nk is number density of species
k and uk is average velocity of species k. Sk is source term for production of species
k as a result of plasma chemistry (for example, ionization in the current work). The
background gas density is assumed to be constant and is calculated based on ideal
gas law using the specified pressure and temperature. The particle species flux is
obtained using the moment equation corresponding to momentum of particles,

∂(mkuknk)

∂t
+∇.(mknkukuk)+∇(nkkbTk)+Zkenk∇φ+mknkukνk,b+mk(uk−uj)Sk = 0

(4.5)
where mk is mass of species k, and Tk is temperature of species k; φ is the electrostatic
potential; νk,b is momentum transfer frequency between species k and background gas
species (obtained using electron mobility data as described below); kb is Boltzmann’s
constant, e is electronic charge and value of Zk is 1 and -1 for argon ions and electrons
respectively. uj is average velocity of newly formed particles which is assumed to be
0 in this study. The energy conservation equation is used to evaluate the electron
temperature and is given by

∂

∂t

(
3

2
kbneTe

)
+∇.qe − eΓe · ∇φ+

∑
j

Re,j∆Hj + 3kbne
me

mb

νe,b = 0 (4.6)

where Re,j is the rate at which the jth inelastic collision occurs; ∆Hj energy lost per
electron in the jth inelastic collision event; mb is mass of background gas species;
Γe = neue is electron flux and qe is total electron energy flux evaluated as

qe = −Ke∇Te +
5

2
kbTeΓe (4.7)
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where the first term is modeled as heat flux based on Fourier approximation with
thermal conductivity

Ke =
5

2meνe,b
nek

2
bTe (4.8)

The ion temperature Ti is assumed to be same as the background gas temperature
Tb which is assumed to be constant for all simulations presented in the current work.
Finally, the Poisson’s equation is used to couple the conservation equations and is
given by

∇2φ = −∇.E =
−e
ε0

∑
k

Zknk (4.9)

In the context of this work, the above system of equations is referred to as the full-
momentum model. The above set of governing equations for plasma fluid model are
solved using a standard finite volume method (FVM) implementation on a structured
grid. The equations are solved in a semi-implicit form using Euler method for tem-
poral discretization and a higher order numerical scheme with Monotonic Upstream-
Centered Scheme for Conservation Laws (MUSCL) interpolation and flux limiter for
spatial discretization of convective terms. A second order central difference scheme
has been implemented for diffusion terms and second order least-squares method for
gradient reconstruction.

In many cases, the momentum conservation equation is replaced by a simplified
drift-diffusion (DD) model obtained by neglecting the inertial effect and acceleration.
The DD model’s primary advantages include ease of implementation and reduced
computational cost. The DD equation is given by

Γk = µknkE − ηk∇(nkkbTk) (4.10)

field on charged particles (drift) and the second term accounts for the effect of diffusion
in a non-uniform plasma. However, we do not utilize the DD model and hence do
away with the approximations involved by neglecting the inertial term.

Boundary Conditions

In order to solve the above system of equations, boundary conditions are required for
each dependent variable including ne, ni, ue, ui, and Te. The boundary condition for
finite volume schemes is provided at the face of the boundary cell which is then used
to compute the corresponding influx/outflux while solving the conservation equations
at the boundary cell. In the description provided below, the subscript bf refers to
the value at the boundary face and the subscript b refers to the cell-centered value
at the boundary cell. Also, the superscript indicates the time-level. Specifically, the
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superscript q+ 1 indicates the next timestep with q referring to the current timestep.
The boundary condition for electron velocity is given by

uq+1
e,bf =

1

4
vq+1
th,e,bn̂− aγse

(
Γi,b

ne,b

)q

+ buq
e,b (4.11)

The value of a is equal to 1 if Γi is directed towards the electrode and zero otherwise.
The value of b is equal to 1 if Γe is directed towards the electrode and zero otherwise.
Also, vth,e,b =

√
8kbTe,b/πme is the thermal velocity of electrons in the boundary cell;

n̂ is the normal vector pointing towards the electrode; ue,b is electron velocity at the
boundary cell. It should be noted that the boundary condition for the next timestep
is based on the values of various quantities at the current timestep with the following
physical interpretation. The boundary condition for electron velocity is computed
using contributions from the thermal velocity, secondary electron emission and mean
velocity of electrons. Also, while the thermal velocity is always included, contribu-
tion from secondary electrons is included only if the ion flux is directed towards the
boundary face. Similarly, the last term is non-zero only if electrons are drifting to-
wards the boundary face. It is worth mentioning that the last term is typically 0
since the mean velocity of electrons is directed away from the boundary in the case
of quasi-neutral plasmas with the electric field pointing toward the boundary. The
boundary condition for ion velocity is given by

uq+1
i,bf = uq

i,b (4.12)

where ui,b, is the ion velocity at the boundary cell. The boundary condition for
ion velocity is almost identical to that of electron velocity except that no secondary
emission is involved and the thermal velocity is neglected. The ions almost always
move towards the boundary in a quasi-neutral plasma with the electric field pointing
toward the boundary. In order to determine the ion number density at the boundary
face, we utilize the condition that the ion flux at the boundary is same as the ion flux
at the center of the boundary cell. In conjunction with the boundary condition for
ion velocity, this leads to ion number density boundary condition given by

nq+1
i,bf = nq

i,b (4.13)

For the electron number density boundary condition, the gradient of electron density
at the boundary face is assumed to be zero and is given by

∇ne,bf · n̂ = 0 (4.14)

This gradient condition in conjunction with the boundary cell value of electron num-
ber density at the current timestep is used to determine the boundary face value of
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the electron number density at the next timestep. While the cathode potential is
fixed at 0, the anode potential evolves self-consistently based on

ε0
∂(∇φ)bf

∂t
= ji,bf + je,bf − jtot (4.15)

where (∇φ)bf is the gradient of potential at the powered electrode (anode boundary
face), jtot is the prescribed total current density, ji,bf is the ion current current den-
sity at the powered electrode (anode boundary face) and je,bf is the electron current
density at the powered electrode (anode boundary face). For the electron energy equa-
tion, boundary conditions are enforced on the electron energy flux at the boundary
and is given by

qe,bf =
5

2
kbTe,b

[
1

4
nevth,e,bn̂+ bΓe,b

]
− a

(
5

2
kbTe,se

)
γseΓi,b (4.16)

with Tse being the temperature at which secondary electrons are emitted from the
electrode surface and is taken to be 300 K for all simulations presented in this work.
It should be mentioned that the secondary electrons in the PIC-MCC simulations are
also emitted at a temperature of 300 K. The above boundary condition assumes that
every electron lost to the boundary or introduced into the domain from the boundary
carries an energy of 5kbTe/2. The boundary condition for electron mean velocity and
the electon energy flux are consistent with each other.

The fluid description of microplasmas requires several input parameters including
reaction rate constants and momentum transfer collision frequency with both these
parameters depending on the velocity distribution function. With the lack of direct
information of velocity distribution functions of both electrons and ions, certain ap-
proximations are required for closure of the fluid model. While the ions are assumed to
be in equilibrium (Maxwellian distribution) with the neutral gas, a zero-dimensional
version of the Boltzmann’s equation is commonly used to solve for the electron en-
ergy distribution function (EEDF). BOLSIG+ is a popular freeware for the numerical
solution of the Boltzmann equation for electrons in weakly ionized gases in uniform
electric fields. It uses a two-term approximation [29] to solve for the EEDF (at a
given value of ratio of electric field to background gas number density, E/nb) to ob-
tain electron transport coefficients (including mobility and diffusion coefficient) and
rate constants from fundamental cross section data. Since the mean electron energy
(and hence electron temperature) is also obtained as a function of E/nb, the reaction
rate constants were obtained as a function of local mean electron energy (and hence
electron temperature) to be provided as input to the continuum simulations presented
here. While solving the zero-dimensional version of Boltzmann’s equation accounts
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for the potential non-Maxwellian behaviour of the EEDF, an even simpler approach
is to assume that the EEDF is a Maxwellian distribution function at a given electron
temperature. Once the EEDF is assumed to be Maxwellian, the reaction rate con-
stants are obtained using the corresponding cross section data by performing suitable
integration. However, it should be noted that the electron mobility still depends on
E/nb and the data obtained from BOLSIG+ (based on a non-Maxwellian EEDF)
was used to provide this information to the continuum simulation even when the rate
constants were based on a Maxwellian EEDF. Using the mobility data, the collision
frequencies νe,b and νi,b were obtained as

νk,b =
|e|
mµk

(4.17)

The ion mobility data was obtained from Ellis et al. [19] for E/N = 8 − 2000 Td
and from Phelps [22] for E/N = 2000− 100000 Td with extrapolation used to obtain
mobility for E/N values outside the data range.

Argon microplasma chemistry

It was ensured that the same reaction set was used for both continuum and kinetic
simulations in order to ensure meaningful comparison. We include three electron-
neutral collisions and two ion-neutral collisions as summarized below along with cor-
responding expressions for cross section as a function of incident energy. These cross
sections are the same as those summarized by Vahedi and Surendra [89], and rep-
resent the default cross sections used in the XPDP1 [90] code. It was shown [91]
that the expressions used in XPDP1 agree closely with the cross section described in
the Phelps database [23] and the BSR [98] cross sections (B-Spline R-matrix) based
on quantum mechanical calculations. For a detailed comparison of cross sections for
electron-argon collisions in various databases, the reader is referred to the work of
Pitchford et al. [75]. For ion-neutral collisions, we included both charge exchange
and elastic scattering collisions [89]. It should be noted that the excited argon atoms
were not tracked in the simulations presented here. It is also worth mentioning that
the reaction set considered here is not exhaustive. For example, at high pressures,
the formation of argon dimer ions through a reaction between argon ion and argon
neutral becomes important. Also, this leads to another reaction pathway where the
electrons and dimer ions recombine to form neutral species. These reactions are not
considered here in order to ensure that we are dealing with a simple system thereby
allowing us to focus on the comparisons between kinetic and continuum simulations.
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Table 4.1: Summary of electron-neutral and ion-neutral collisions included in this
work. The default cross sections in XPDP1 [89] was used to perform both kinetic
and continuum simulations.

Collision
e+ Ar → e+ Ar (elastic)

e+ Ar → e+ Ar∗ (excitation)
e+ Ar → e+ e+ Ar+ (ionization)

Ar+ + Ar → Ar + Ar+ (charge exchange)
Ar+ + Ar → Ar+ + Ar (elastic scattering)

4.2 Results and Discussion

The kinetic and continuum simulations using various physical models described above
were performed for a range of microplasma operating conditions with the results
compared and contrasted in detail below.

Effect of pd at constant gap size

In this section, we compare PIC-MCC and continuum simulations for various pd val-
ues at a fixed gap size. The simulations were performed for an argon gap of 100 µm
with the background gas temperature fixed at 300 K. For these simulations, the
pressure was varied from 100 Torr to 700 Torr thereby corresponding to pd values
ranging from 1 to 7. The secondary electron emission coefficient was fixed at 0.05.
The current-controlled PIC-MCC simulations were performed at 0.2 µA/µm2 with
the applied potential obtained self-consistently from the simulations. While the cross
section area was taken as 0.01 m2 for the purpose of performing the simulations, the
results (for example, for current) are presented per unit area and are not affected
by the choice of cross section area (as is the norm for one-dimensional simulations).
The results obtained from PIC-MCC simulations are known to depend primarily on
two simulation parameters including the cell size and the average number of com-
putational particles per cell. Therefore, we first performed a study to quantify the
dependence of results on both these parameters. To characterize the dependence on
cell size, we performed simulations with 250, 500, 1000 and 2000 cells with the num-
ber of computational particles per cell fixed by suitably choosing the ratio of real to
simulated particles. The ratio of real to simulated particles for the four cases was
chosen as 4× 1011, 2× 1011, 1× 1011, and 5× 1010 respectively. In order to determine
the dependence of the ratio of real to computational particles, we performed three
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different simulations with values of 2× 1011, 1× 1011 and 5× 1010 respectively. The
number of cells was fixed as 1000 for all these simulations.

Figures 4.1 and 4.2 show the time history of number of computational particles
for various cell size and ratio of real to computational particles. The time history
demonstrates that all simulations reached steady state when simulated for about
4 µs. Figures 4.3 and 4.4 show the electron number density profiles obtained for the
various cell sizes and various values for the ratio of real to simulated particles. Based
on these results, we chose to perform all PIC-MCC simulations reported in this work
using 1000 cells and around 50 computational particles per cell. It should be noted
that the choice was based on a trade-off between computational accuracy and cost.
Figure 4.5 shows a representative convergence study performed for the continuum
simulation with results shown for four different cell sizes. The production simulations
used to compare with PIC-MCC simulations were performed using 800 cells.

Figure 4.1: Comparison of time history showing the number of computational par-
ticles (electron) for various values of cell size. The ratio of real to computational
particles was suitably changed to ensure that the number of computational particles
per cell was fixed.

The PIC-MCC results are considered benchmark for comparison with results of
the continuum simulation using full-momentum equations for both ions and elec-
trons. Simulations were performed using rate constants based on both Maxwellian
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Figure 4.2: Comparison of time history showing the number of computational parti-
cles (electron) for various values of the ratio of real to computational particles. The
number of cells was fixed at 1000.

and non-Maxwellian (zero-dimensional BOLSIG+ solution) EEDFs. In order to en-
able meaningful comparisons, the continuum simulations were also performed at the
same prescribed current density (0.2 µA/µm2). Figures 4.6 compares the plasma
number density profiles obtained using the continuum model (with full-momentum
equations for both electrons and ions) with those obtained using kinetic simulations.
It can be seen that the plasma number density is under-predicted by both continuum
simulations with the PIC-MCC simulations predicting a peak number density that is
a factor of 3 higher than the continuum simulation based on the Maxwellian EEDF.
The continuum simulation based on the non-Maxwellian EEDF (from BOLSIG+)
leads to a peak number density that is an order of magnitude lower than that pre-
dicted by the continuum simulation using a Maxwellian EEDF. However, it is worth
pointing out that the ion number density in the sheath is consistent across all three
simulations. The electron number density in the sheath region, in spite of subtle dif-
ferences, is comparable across the three simulations with the continuum simulations
leading to extremely similar profiles as expected. As we move away from the cathode,
the PIC-MCC simulations demonstrate a more rapid increase of the electron number
density and hence a smaller sheath thickness. The continuum simulation using the
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Figure 4.3: Comparison of electron number density profiles obtained using PIC-MCC
simulations with various cell sizes.

Figure 4.4: Comparison of electron number density profiles obtained using PIC-MCC
simulations with various values for the ratio of real to computational particles.
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Figure 4.5: Comparison of electron number density and electron temperature profiles
obtained using continuum simulations with various cell sizes.

Maxwellian EEDF leads to good qualitative agreement with the number density pro-
file predicted by PIC-MCC. As a result of the higher plasma density, the PIC-MCC
simulation has the lowest sheath thickness followed by the Maxwellian continuum
simulation with the non-Maxwellian simulation predicting the largest sheath thick-
ness. The sheath thickness predicted by the three simulations are between 10 and
20 µm.

Figure 4.7 shows the potential profiles across the gap for the PIC-MCC and the
continuum simulations. While all three simulations were performed at a prescribed
total current density of 0.2 µA/µm2, the required applied potential to achieve this cur-
rent density is significantly different. Specifically, applied potential in the PIC-MCC
simulations is about 385 V in comparison to 605 V in the continuum simulation using
Maxwellian EEDF which further increases to 680 V for the continuum simulation
using non-Maxwellian EEDF.

Figure 4.8 compares the electron temperature profiles obtained from the three
simulations with the electron temperature predicted by PIC-MCC simulations being
significantly higher than the continuum simulations. Both continuum simulations
(with Maxwellian and non-Maxwellian EEDF) predict comparable electron tempera-
ture profiles with a peak value of 70 eV which is at least a factor of 2 lower than the
value of 160 eV predicted by the PIC-MCC simulations. The electric field profiles
(not shown here) including the peak electric field in the sheath are in good agreement
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Figure 4.6: Comparison of plasma number density profiles obtained using PIC-MCC
and continuum simulations for pd = 1. Results obtained using both Maxwellian
and non-Maxwellian EEDF obtained from BOLSIG+ are shown for the continuum
simulation.

with each other. Figure 4.9 shows the electron and ion velocities obtained from kinetic
and continuum simulations. While the overall trend is consistent across simulations,
both continuum simulations over-predict the electron velocities. The ion velocities
from all three simulations agree reasonably well with each other which is a direct
consequence of the good agreement for ion number density in the sheath and hence
the cathode electric field. The over-prediction of the electron velocities and under-
prediction of plasma number densities are related since the total current density is
fixed at 0.2 µA/µm2 for all three simulations.

The next set of simulations were performed at a pressure of 300 Torr thereby
corresponding to pd = 3. Figures 4.10 and 4.11 show comparisons of representa-
tive parameters obtained from kinetic and continuum simulations (with Maxwellian
EEDF) for pd = 3. The current density for both simulations was 0.2 µA/µm2. It
should be mentioned that a current density of 0.2 µA/µm2 produced a plasma with
positive charge in the entire gap (pre-breakdown regime with no quasi-neutral region)
when simulated with the non-Maxwellian EEDF and hence is not considered here.
This is likely due to the fact that the minimum current density for plasma ignition is
greater than 0.2 µA/µm2. In comparison to the pd = 1 simulations, the peak number
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Figure 4.7: Comparison of potential profiles obtained using PIC-MCC and continuum
simulations for pd = 1. Results obtained using both Maxwellian and non-Maxwellian
EEDF obtained from BOLSIG+ are shown for the continuum simulation.

density shifts towards the cathode in both kinetic and continuum simulations. Unlike
the pd = 1 simulations, the applied voltage required to obtain a current density of
0.2 µA/µm2 are comparable (approximately 250 V) for both kinetic and continuum
simulations. The sheath thickness predicted by both simulations are comparable at
about 10 µm even though the discrepancy in the peak number densities is signifi-
cant. The number density profile obtained from the continuum simulation also has
a sharper peak (in comparison to the PIC-MCC simulations followed by a region
of almost constant number density. The electron temperature (not shown here) in
the quasi-neutral region decreased when compared to the pd = 1 simulation. As in
the previous case, the continuum simulation performed using the Maxwellian EEDF
under-predicts the electron temperature in the quasi-neutral region. The peak electric
field magnitude at the cathode (not shown here) predicted by the continuum simu-
lation agrees extremely well with the PIC-MCC simulations which is a consequence
of the good agreement for ion number density and ion velocity in the sheath (refer
to Figure 4.11). However, the electron velocity profiles demonstrate differences by as
high as an order of magnitude and is one of the reasons for the under-prediction of
the plasma number density.

The final set of simulations presented here correspond to a pressure of 700 Torr
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Figure 4.8: Comparison of electron temperature profiles obtained using PIC-MCC
and continuum simulations for pd = 1. Results obtained using both Maxwellian
and non-Maxwellian EEDF obtained from BOLSIG+ are shown for the continuum
simulation.

and therefore pd = 7. Figures 4.12 and 4.13 present representative comparisons
of PIC-MCC and continuum simulations for pd = 7. It should be reiterated that
the non-Maxwellian EEDF could not be ignited at the prescribed current density of
0.2 µA/µm2 and hence is not considered here. Of all the cases considered in this work,
the pd = 7 case has the best agreement for plasma number density between kinetic
and continuum simulations. However, it should be pointed out that the continuum
simulation leads to a region with flat plasma number density which is not observed
in the PIC-MCC simulation. The electron temperature in the quasi-neutral region
predicted by the continuum simulation is lower than the corresponding value in PIC-
MCC simulations which has been a consistent trend for all pd values considered here.
The magnitude of peak electric field in the sheath is predicted accurately as a result
of consistent prediction of ion number density in the sheath by both simulations.

Figure 4.14 compares the ensemble-averaged (same as time-averaged for direct
current simulations) electron energy probability function (EEPF) obtained from PIC-
MCC simulations (at various spatial locations characterized by distance from cathode)
along with the Maxwellian EEPF at the corresponding electron temperature. It is
clear that the PIC-MCC EEPF has a high-energy tail region which cannot be ac-
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Figure 4.9: Comparison of electron and ion velocity profiles obtained using PIC-MCC
and continuum simulations for pd = 1. Results obtained using both Maxwellian
and non-Maxwellian EEDF obtained from BOLSIG+ are shown for the continuum
simulation.

Figure 4.10: Comparison of plasma number density and potential profiles obtained
using PIC-MCC and continuum simulations (using Maxwellian EEDF) for pd = 3.
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Figure 4.11: Comparison of electron and ion velocity profiles obtained using PIC-
MCC and continuum simulations (using Maxwellian EEDF) for pd = 3.

counted for in the continuum simulations using Maxwellian/non-Maxwellian EEPF.
Specifically, the non-Maxwellian EEPF predicted by BOLSIG+ has a depleted high-
energy tail which explains the observation that the non-Maxwellian continuum sim-
ulations required much higher potentials to ignite the plasma. While the Maxwellian
EEPF does not deplete the tail, it still does not capture the high-energy tail of the
EEPF accurately. The high energy tail region can be attributed to runaway [55,
57] secondary electrons that gain significant energy while traveling across the sheath
and these electrons extend well into the quasi-neutral region in the microplasmas
simulated in this work. Also, the PIC-MCC EEPFs could possibly be described by
a bi-Maxwellian distribution with two characteristic temperatures and formulating
multi-temperature models could be an important direction in improving the accuracy
of continuum simulations of DC microplasma devices that are expected to have signif-
icant secondary electron emission. Our results for microwave microplasmas presented
in a subsequent section agree with this explanation.

With the PIC-MCC simulations providing accurate non-Maxwellian EEDF infor-
mation including the presence of runaway electrons, performing continuum simula-
tions by using this information was considered as a possible option to enhance their
accuracy. However, this option was dismissed for the following reasons. Firstly, the
runaway electrons and hence the EEDF greatly depend on the operating conditions.
Therefore, the rate coefficient dependence on electron temperature is not expected
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to be unique even for microplasmas operating at different voltages, let alone differ-
ent pd values. Also, with the spatial variation of EEDF and electron temperature
particularly in the sheath, the rate coefficient for a given electron temperature is not
unique thereby leading to ambiguity. The use of PIC-MCC EEDFs in continuum sim-
ulations was therefore discounted in this work particularly for the lack of generality
and uniqueness. In other words, the best way to feed information to the continuum
simulations would be one-dimensional PIC-MCC simulations at the corresponding
conditions which would then defeat the purpose of a continuum simulation in the
first place.

Figure 4.12: Comparison of plasma number density and potential profiles obtained
using PIC-MCC and continuum simulations (using Maxwellian EEDF) for pd = 7.

In order to understand the influence of secondary electron emission coefficient on
the high-energy runaway electrons and hence on agreement between continuum and
kinetic simulations, we compared the results obtained for γse = 0.005 at pd = 7. The
current density was fixed at 0.2 µA/µm2 (same as for other simulations presented
earlier). Figure 4.15 shows the spatial profiles of plasma number density and poten-
tial obtained from both continuum (with Maxwellian EEDF) and kinetic simulations.
The plasma density predicted by the PIC-MCC simulations is about a factor of 8
higher than that predicted by the continuum simulation. In other words, the discrep-
ancy between the continuum and kinetic simulations is higher for the γse = 0.005 case
when compared to the γse = 0.05 case presented earlier. Also, the PIC-MCC simula-
tion predicted a significantly higher applied voltage (in comparison to the Maxwellian
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Figure 4.13: Comparison of electron and ion velocity profiles obtained using PIC-
MCC and continuum simulations (using Maxwellian EEDF) for pd = 7.

EEDF continuum simulation) to achieve the given current density. Specifically, the
PIC-MCC voltage of 520 V is about 180 V higher than the Maxwellian EEDF contin-
uum simulation voltage. These results point to a very interesting connection between
the secondary electron emission coefficient, the resulting applied voltage and the influ-
ence of runaway electrons. While one would anticipate that decreasing the influence
of boundary processes by decreasing secondary electron emission coefficient would
lead to a decrease in the fraction of high-energy electrons, the corresponding increase
in applied voltage actually leads to an effectively larger contribution of runaway elec-
trons. Specifically, the difference in voltage between the γse = 0.05 and γse = 0.005
PIC-MCC simulations is about 280 V. This difference in voltage leads to electrons be-
ing accelerated to much higher energies (as confirmed by the EEDF results presented
below). While Maxwellian EEDF continuum simulations predict the same (expected)
trend with higher voltage for the γse = 0.005 case, the predicted increase is only about
150 V. Therefore, apart from the value of the secondary electron emission coefficient,
the resulting operating voltage plays a significant role in the utility of continuum
simulations.
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Figure 4.14: Comparison of ensemble-averaged (same as time-averaged for direct
current simulations) EEPF obtained using PIC-MCC and corresponding Maxwellian
EEPF based on local electron temperature at various spatial locations for pd = 7.
The locations are characterized by distances from cathode.

Effect of gap size at constant pd

The next set of simulations were performed for two different gap sizes (20 µm and
1 cm) at constant pd = 1 in order to study the influence of gap size on the agreement
between continuum and kinetic simulations. It should be noted that results were
already presented and discussed for the pd = 1 case corresponding to a gap size of
100 µm. The pressures for the simulations at 1 cm and 20 µm were taken as 1 Torr
and 500 Torr respectively. As a result of pd scaling, we anticipate that decreasing
the gap size (for a given voltage) by a factor of 10 will lead to a factor of 100 increase
in the number density and hence current density. Therefore, we simulated the 1 cm
plasma at a current density of 20 A/m2, the 100 µm and the 20 µm plasma at
a current density of 5 µA/µm2. It is worth noting that the 100 µm microplasma
simulated earlier was operating at a current density of 0.2 µA/µm2. Figure 4.16
compares the number density profiles obtained for the 1 cm plasma using kinetic
and continuum simulations (including Maxwellian and Non-Maxwellian EEDF based
reaction rate coefficients) and the striking similarity with the results of the 100 µm
microplasma is immediately evident. The PIC-MCC simulation predicts a plasma
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Figure 4.15: Comparison of plasma number density and potential profiles obtained
using PIC-MCC and continuum simulations (using Maxwellian EEDF) for pd = 7.
The secondary electron emission coefficient was fixed at γse = 0.005

density that is about a factor of 4 higher than the Maxwellian EEDF continuum
simulation. The continuum simulation using the non-Maxwellian EEDF continues to
significantly underpredict (by close to an order of magnitude) the plasma densities.
Figure 4.17 shows the potential profiles obtained using the three simulations with
the applied potential to achieve a current density of 20 A/m2 being comparable to
the required potential to achieve a current density of 0.2 µA/µm2 in the 100 µm
microplasma. This demonstrates that all three simulations predict results that are
consistent with the pd scaling. Interestingly, the simulations (Figures 4.18 and 4.19)
for the 20 µm gap also predict pd scaling with almost identical applied potentials to
achieve a current of 5 µA/µm2. In summary, the conclusions regarding agreement of
continuum and kinetic simulations based on results presented earlier are expected to
show no dependence on the gap size.

Microplasma at microwave frequency

Finally, we also present one representative simulation of microplasmas operating at
microwave frequencies since ignition of microplasma devices using GHz to THz fre-
quencies is actively pursued by several researchers [58]. In this work, we present
results an argon microwave microplasma operating in a gap size of 200 µm at a pres-
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Figure 4.16: Comparison of number density profiles obtained using PIC-MCC and
continuum simulations (Maxwellian and non-Maxwellian EEDF) of an argon plasma
operating in a 1 cm gap at a current density of 20 A/m2.

sure of 760 Torr. These conditions are similar to the operating parameters of split-ring
resonator microplasma devices that have been extensively tested by Hopwood et al.
(for example [41, 40, 27, 34]). One-dimensional fluid simulations have also been re-
ported [36, 26] based on the drift-diffusion model (using an effective electric field
approach) for the electrons and the full-momentum equation for ions (that are more
or less stationary under these conditions). The secondary electron emission was set
to be equal at both electrodes for the PIC-MCC and continuum simulations reported
here. At the lower current density considered in this work, the microplasma is any-
way expected to operate in the α-mode with limited influence on boundary processes.
We confirm this by comparing the γse = 0.07 and γse = 0 and the results are shown
to be nearly identical. While operation at the higher current density is expected to
show some dependence on boundary processes, this work restricted itself to the case
of γse = 0 for these current densities to study current density and frequency effects
without the additional complexity of boundary processes. The gas temperature was
set to 800 K based on measurements [36] performed in a comparable microplasma
device. All time-averaged results presented here were obtained by averaging over half
the cycle. Continuum simulation parameters such as electron collision frequency were
same as for the DC simulations presented earlier. Also, it should be noted that the
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Figure 4.17: Comparison of potential profiles obtained using PIC-MCC and con-
tinuum simulations (Maxwellian and non-Maxwellian EEDF) of an argon plasma
operating in a 1 cm gap at a current density of 20 A/m2.

simulations assume that an electrostatic description obtained by solving the Poisson’s
equation is sufficiently accurate. This is supported by the fact that the gap size of
200 µm is significantly smaller than the wavelength corresponding to the excitation
frequency for frequencies up to 150 GHz. The wavelength of 2 mm would still be
a factor of 10 higher than the gap size at an excitation frequency of 150 GHz. At
higher frequencies, an electromagnetic description enabled by solving the Maxwell’s
equations would be more suitable.

We first performed a study to determine the dependence of the PIC-MCC results
on the ratio of real to computational particles. The simulation parameters included
a current density amplitude of 0.05 µA/µm2, γse = 0 and an excitation frequency of
0.5 GHz. Figure 4.20 compares the electron number density profiles obtained using
three different values for the ratio of real to computational particles. Based on the
results, it was determined that a value of 5×108 produced acceptable results and was
used to perform the simulations presented below. The total number of computational
particles for this simulation was about 70,000. The simulations at other frequencies
and current densities utilized a comparable number of computational particles by
suitably varying the ratio of real to computational particles.

Figure 4.21 shows the time-averaged electron and ion number density profiles ob-
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Figure 4.18: Comparison of number density profiles obtained using PIC-MCC and
continuum simulations (Maxwellian and non-Maxwellian EEDF) of an argon plasma
operating in a 20 µm gap at a current density of 5 µA/µm2.

tained from PIC-MCC and continuum simulations (Maxwellian and non-Maxwellian
EEPF) for a microplasma operating at a current density amplitude of 0.05 µA/µm2,
frequency of 0.5 GHz and γse = 0.07. The number densities obtained using rate con-
stants based on the non-Maxwellian EEPF agree extremely well with the PIC-MCC
simulations indicating that the EEPF in microwave microplasmas is comparable to
the non-Maxwellian EEPF predicted from BOLSIG+. However, we were not able
to make direct comparisons with the PIC-MCC EEPF since capturing the unsteady
behavior of EEDFs accurately would require an infeasible number of computational
particles. The sheath thicknesses corresponding to the three simulations correlate
well with the number density with the Maxwellian simulation leading to the thinnest
sheath. Unlike the direct current simulations presented earlier, the ion number density
profile in the sheath is predicted to be slightly higher by the Maxwellian simulation
in spite of the total current density being the same for all three cases. This can be
attributed to the interplay between the ion number density, electric field and hence
displacement current. Figure 4.22 compares the time history profiles of voltages ob-
tained using continuum (using non-Maxwellian EEDF) and PIC-MCC simulations.
The PIC-MCC simulation continues to predict a lower applied voltage to achieve a
given current density at 105 V amplitude in comparison to about 150 V predicted by
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Figure 4.19: Comparison of potential profiles obtained using PIC-MCC and con-
tinuum simulations (Maxwellian and non-Maxwellian EEDF) of an argon plasma
operating in a 20 µm gap at a current density of 5 µA/µm2.

the continuum simulations. Both simulations predict that current leads voltage by
about 0.4π radians with the PIC-MCC simulation predicting a slightly higher phase
difference than the continuum simulations. The magnitude of impedance |Z| (per unit
cross section area) is obtained as the ratio of voltage amplitude to current amplitude
as 0.003 Ω/m2 (PIC-MCC simulations) and 0.0021 Ω/m2 (continuum simulations)
respectively.

Figures 4.23 and 4.24 show the corresponding results for a microplasma operating
at γse = 0. Based on the results obtained for the γse = 0.07, continuum simulations
were performed only using the Non-Maxwellian EEDF. The results are are very similar
to that obtained for γse = 0.07. In spite of the similarities, there are differences
worth mentioning. For example, the continuum simulation predicts a slightly larger
number density than the PIC-MCC simulation. Also, the phase shift between current
and voltage predicted by the two simulation techniques are different by about 0.1π
radians with the continuum simulation predicting a smaller phase shift than the PIC-
MCC simulation. This difference was concluded to be small enough to confirm that
boundary processes do not have a significant effect on the operation of microwave
microplasmas at the low current density considered here.
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Figure 4.20: Comparison of electron number density profiles in an argon microplasma
(200 µm and 760 Torr) obtained using PIC-MCC simulations with various values for
the ratio of real to computational particles.

Figures 4.25 and 4.26 show the corresponding results for a microplasma operating
at 0.8 GHz. The current density amplitude was taken to be 0.05 µA/µm2 (same as
above) and γse was fixed at 0. The number density profiles obtained from the two tech-
niques were once again nearly identical with only subtle differences. The peak number
density was around 1.6×1019 1/m3 from the PIC-MCC simulation and 1.2×1019 1/m3

from the continuum simulation. This peak number density value is also comparable
to the peak number density obtained for the 0.5 GHz simulations presented earlier
indicating that fixing the current density is equivalent to fixing the peak number
density. The peak voltage predicted by the PIC-MCC simulation (55 V) continued
to be lower than the voltage predicted by the continuum simulation (90 V). Also, it
should be noted that the peak voltage to obtain a given current density (equivalent
to a given number density) decreased with the increase in frequency indicating that
the power requirement to achieve a given number density is lower for the 0.8 GHz
excitation.

Simulations were also performed at a higher peak current density of 0.4 µA/µm2

for a microplasma operating at 2 GHz. The value of γse was set to be 0. A higher
current density was chosen for the higher frequency partially because of experimental
evidence that fixing the power and operating a microplasma at higher frequency auto-
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Figure 4.21: Comparison of number density profiles obtained using PIC-MCC and
continuum simulations (Maxwellian and non-Maxwellian EEDF) of an argon mi-
croplasma operating in a 200 µm gap at a current density amplitude of 0.05 µA/µm2,
frequency of 0.5 GHz and γse = 0.07.

matically results in a higher current density. Figure 4.27 compares the number density
profiles obtained using both continuum (non-Maxwellian EEDF) and PIC-MCC sim-
ulations. Once again, there is good overall agreement between the two methods even
though the PIC-MCC simulation present a local minimum at the mid-point with
symmetrical off-center peaks which is not captured by the continuum simulation.
Figure 4.28 shows the time history of potential using both simulation techniques. As
with the previous cases, the PIC-MCC simulation predicts a lower voltage (90 V in
comparison to 120 V) for a given current density and the phase difference between
current and voltage waveforms are comparable (0.3π from continuum simulations and
0.4π from PIC-MCC simulations.

A second set of simulations were also performed at a peak current density of
0.4 µA/µm2 and a frequency of 4 GHz with results summarized in Figures 4.29 and
4.30. The results are consistent with other results presented in this work and demon-
strated good agreement between the non-Maxwellian EEDF continuum simulations
and PIC-MCC simulations. Once again, the increase in frequency leads to a decrease
in power requirements to achieve a given current density (or peak plasma density).
Also, the PIC-MCC simulations predict a lower peak voltage (45 V) than the contin-
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Figure 4.22: Comparison of history profiles of current density and applied potential
obtained using PIC-MCC and continuum simulations (non-Maxwellian EEDF) of an
argon microplasma operating in a 200 µm gap at a current density amplitude of
0.05 µA/µm2, frequency of 0.5 GHz and γse = 0.07.

uum simulations (80 V) with good agreement in the phase shift predictions.
The general trend in all microwave microplasma simulations considered in this

work was that the number density profiles predicted by continuum simulations were
in good agreement with corresponding results from PIC-MCC simulations. The lower
voltage (and hence lower power) predicted by the PIC-MCC simulations to achieve
a given current density (or given plasma density) could be attrbuted to the electron
heating modes that are captured in each of the techniques. Specifically, the contin-
uum simulations only account for ohmic heating whereas the PIC-MCC simulations
account for both ohmic and stochastic heating. The small discrepancy in voltages
could therefore be attributed to the contribution of stochastic heating which is not
included in the continuum simulations. However, other reasons are also possible and
require further studies. In spite of the results presented here, it is worth mentioning
that this work is non-exhaustive. Microwave microplasmas have several interesting
operating modes that have been considered by several researchers [51, 56, 54]. Com-
parisons at all of these conditions is beyond the scope of this work and future work
should focus on comparing and validating microwave microplasmas at some of these
other operating conditions.



CHAPTER 4. MODELING OF MICROPLASMAS 80

Figure 4.23: Comparison of number density profiles obtained using PIC-MCC and
continuum simulations (non-Maxwellian EEDF) of an argon microplasma operating
in a 200 µm gap at a current density amplitude of 0.05 µA/µm2, frequency of 0.5 GHz
and γse = 0.

While a more detailed analysis (at higher frequencies and/or higher current densi-
ties) comparing continuum and kinetic simulations is imperative as discussed above,
this comparison shows that continuum simulations using non-Maxwellian EEDFs pre-
dicted by BOLSIG+ are likely to be more accurate than continuum simulations using
a Maxwellian EEDF for microwave microplasmas. Also, the simulations presented
here have fewer input parameters when compared to the drift-diffusion model that
include an equation for effective electric field. Unlike the direct-current microplasmas
considered earlier, the microwave microplasmas that were considered here did not
have any contribution from secondary electron emission and hence did not have the
influence of runaway electrons. This is one of the reasons for excellent agreement
between kinetic and continuum simulations based on the non-Maxwellian EEDF. It
should be reiterated that the continuum model used here does not use the drift-
diffusion formulation and consequently does not require the effective electric field
approach even at high frequencies encountered here.
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Figure 4.24: Comparison of history profiles of current density and applied potential
obtained using PIC-MCC and continuum simulations (non-Maxwellian EEDF) of an
argon microplasma operating in a 200 µm gap at a current density amplitude of
0.05 µA/µm2, frequency of 0.5 GHz and γse = 0.
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Figure 4.25: Comparison of number density profiles obtained using PIC-MCC and
continuum simulations non-Maxwellian EEDF) of an argon microplasma operating in
a 200 µm gap at a current density amplitude of 0.05 µA/µm2, frequency of 0.8 GHz
and γse = 0.
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Figure 4.26: Comparison of history profiles of current density and applied potential
obtained using PIC-MCC and continuum simulations (non-Maxwellian EEDF) of an
argon microplasma operating in a 200 µm gap at a current density amplitude of
0.05 µA/µm2, frequency of 0.8 GHz and γse = 0.
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Figure 4.27: Comparison of number density profiles obtained using PIC-MCC and
continuum simulations non-Maxwellian EEDF) of an argon microplasma operating
in a 200 µm gap at a current density amplitude of 0.4 µA/µm2, frequency of 2 GHz
and γse = 0.
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Figure 4.28: Comparison of history profiles of current density and applied potential
obtained using PIC-MCC and continuum simulations (non-Maxwellian EEDF) of an
argon microplasma operating in a 200 µm gap at a current density amplitude of
0.4 µA/µm2, frequency of 2 GHz and γse = 0.
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Figure 4.29: Comparison of number density profiles obtained using PIC-MCC and
continuum simulations non-Maxwellian EEDF) of an argon microplasma operating
in a 200 µm gap at a current density amplitude of 0.4 µA/µm2, frequency of 4 GHz
and γse = 0.
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Figure 4.30: Comparison of history profiles of current density and applied potential
obtained using PIC-MCC and continuum simulations (non-Maxwellian EEDF) of an
argon microplasma operating in a 200 µm gap at a current density amplitude of
0.4 µA/µm2, frequency of 4 GHz and γse = 0.
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Chapter 5

Conclusions

This dissertation includes simulation framework development and simulation stud-
ies of low temperature microplasmas. The keystone of this research is the numer-
ical framework development included in chapter 3. Chapter 4 addresses a couple
of fundamental questions of the adequacy of continuum simulation for microplasma
simulations.

5.1 Summary

The development of a high-performance computational framework for the simulation
of low-temperature plasmas was described with emphasis on its general capabilities,
model formulation, and performance. SOMAFOAM is an open source code that
utilizes the finite volume method framework of OpenFOAM solver suite thereby re-
taining all of its features including the ability to handle arbitrary geometry/mesh,
chemical reactions, choice of a variety of numerical schemes for spatial/time dis-
cretization and parallel simulations to name a few. The governing equations solved
by SOMAFOAM were described in detail including boundary conditions with the un-
derstanding that the open source nature of the code allows for the implementation of
new models/boundary conditions as long as they could be described using mathemat-
ical equations. The presented code for simulating plasma includes descriptions of the
kernels used to create plasma governing equations, auxiliary kernels for computing
important system variables, libraries used to describe features of the plasma specie,
boundary conditions describing the interactions of our domains with the environ-
ment, and interfacial kernels for connecting the physics in the plasma and dielectric
domains.

The current version of the code is capable of solving the full-momentum equation
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for all species or a combination of drift-diffusion approximation and full-momentum
equation as specified by the user. Several classical benchmark problems were consid-
ered for simulation using SOMAFOAM in such a way that a wide range of operating
pressures (0.03 Torr - 760 Torr), excitation frequencies (direct current to microwave)
and complexity of geometry (simple one-dimensional to curved surfaces) were cov-
ered. The simulations reported here were verified (with prior numerical work) or
validated (using experimental data) whenever possible. Finally, we also considered
the parallel performance of the code by performing three-dimensional simulations of
the GEC reference cell and demonstrated good speedup and scaling efficiency for up
to 512 cores. While the code in its current form is quite general and can be expected
to be beneficial for several research groups, the highly modular implementation (that
is a feature of solvers built on OpenFOAM) also allows for significant extension.

A systematic comparative study of kinetic simulations using the particle-in-cell
with Monte Carlo collisions (PIC-MCC) method and continuum simulations using
the full-momentum two-fluid model was performed for one-dimensional argon mi-
croplasmas operating at a wide range of conditions. The continuum simulations were
performed by assuming a Maxwellian electron energy distribution at the local elec-
tron temperature as well as a non-Maxwellian electron energy distribution function
that was obtained using BOLSIG+. The first set of comparative simulations assessed
the influence of product of pressure and gap for a 100 µm direct current argon mi-
croplasma. It was demonstrated that the continuum simulations under-predicted the
plasma number densities with the non-Maxwellian continuum simulations predicting
a number density that was an order of magnitude lower (for pd = 1) than the PIC-
MCC simulations. The Maxwellian continuum simulations performed better with
the agreement with PIC-MCC simulations increasing with pd. The higher plasma
number densities predicted by the PIC-MCC simulations was attributed to the sec-
ondary electrons that were accelerated in the sheath thereby leading to a high-energy
tail that could not be accounted for in the continuum simulations. Two-temperature
continuum models that include two electron temperature are therefore likely to per-
form better and need to be formulated in order to enhance the predictive utility of
continuum models especially for device simulations where kinetic simulations may be
infeasible. The comparative simulations when repeated for an argon microwave mi-
croplasma operating at 0.5 GHz showed that the Maxwellian continuum simulations
lead to a significant over-prediction of plasma number densities. However, unlike the
direct current simulations, the non-Maxwellian continuum simulations and PIC-MCC
simulations predicted almost identical results for microplasmas operating at 0.5 GHz,
0.8 GHz, 2 GHz, and 4 GHz thereby providing a stronger proof that the discrepancy
in direct current simulations is due to secondary/boundary processes that were in-
significant in microwave microplasmas. Finally, the PIC-MCC simulations predicted
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a lower voltage (and power) for a given current density as a result of the inclusion of
both ohmic heating and stochastic heating unlike the continuum simulations where
ohmic heating is the only mechanism. While comparison with experiments was not
performed, PIC-MCC simulations can be expected to be more accurate as a result
of the fewer approximations involved and can be a valuable tool for benchmarking
continuum simulations. For researchers utilizing the traditional continuum methods,
this work serves as a documentation of the potential discrepancies of their results
when compared with PIC-MCC simulations. We anticipate that the information pre-
sented in this work will aid in the decision-making including design and optimization
of microplasma devices apart from triggering the interest for other similar studies at
various operating conditions.

5.2 Recommendation for future research

A natural extension of this work is to develop fully coupled plasma and electromag-
netics description. Studies in other areas of computational science have shown that
fully coupled methods achieves more robust convergence than segregated methods
[31]. In the long term, higher order discretization methods can be used to improve
the accuracy and efficiency of numerical solution of plasma and Maxwell’s equations
along with high order temporal schemes.

The development of matrix-free implicit Coupled LU-SGS solver [62] formulation
could be a topic of interest. The LU-SGS factorization is useful to accelerate the
convergence and reduce the memory requirements with good stability properties.

Adaptive mesh refinement can be useful for modeling low temperature plasmas
to significantly reduce the computational cost. During the transient simulation of
plasma, the requirement of mesh resolution varies significantly to resolve plasma
dynamics, hence adaptive mesh refinement could be used to minimize the number of
mesh cells.
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