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Abstract

Isoperimetry and noise sensitivity in Gaussian space

by

Joseph Oliver Neeman

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Elchanan Mossel, Chair

We study two kinds of extremal subsets of Gaussian space: sets which minimize the surface
area, and sets which minimize the noise sensitivity. For both problems, affine half-spaces
are extremal: in the case of surface area, this is was discovered independently by Borell
and by Sudakov and Tsirelson in the 1970s; for noise sensitivity, it is due to Borell in the
1980s. We give a self-contained treatment of these two subjects, using semigroup methods.
For Gaussian surface area, these methods were developed by Bakry and Ledoux, but their
application to noise sensitivity is new.

Compared to other approaches to these two problems, the semigroup method has the
advantage of giving accurate characterizations of the extremal and near-extremal sets. We
review the Carlen-Kerce argument showing that (up to null sets) half-spaces are the unique
minimizers of Gaussian surface area. We then give an analogous argument for noise sensi-
tivity, proving that half-spaces are also the unique minimizers of noise sensitivity. Unlike
the case of Gaussian isoperimetry, not even a partial characterization of the minimizers of
noise sensitivity was previously known. After characterizing the extremal sets, we study
near-extremal sets. For both surface area and noise sensitivity, we show that near-extremal
sets must be close to half-spaces. Our bounds are dimension-independent, but they are not
sharp.

Finally, we discuss some applications of noise sensitivity: in economics, we characterize
the extremal voting methods in Kalai’s quantitative version of Arrow’s impossibility theo-
rem. In computer science, we characterize the optimal rounding methods in Goemans and
Williamson’s semidefinite relaxation of the Max-Cut problem.
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Table of notation

γn the standard Gaussian measure on Rn, with density (2π)−n/2e−∣x∣2/2
Ar the r-enlargement of the set A ⊂ Rn: Ar = {x ∈ Rn ∶ d(x,A) < r}
γ+n the Minkowski content associated to γn:

γ+n(A) = lim inf
r→0+

γn(Ar) − γn(A)
r

φ the density of γ1: φ(x) = 1
√

2π
e−x

2
/2

Φ the cumulative distribution function of φ: Φ(x) = ∫
x

−∞
φ(y) dy

I the isoperimetric profile of (Rn, γn): I(x) = φ(Φ−1(x))
Pt the Ornstein-Uhlenbeck semigroup:

(Ptf)(x) = ∫
Rn
f(e−tx +

√
1 − e−2ty) dγn(y)

L the infinitesmal generator of Pt:

Lf = ∆f − ⟨x,∇f⟩ = d

dt
∣
t=0

Ptf

Hα the normalized Hermite polynomial with multiindex α ∈ {0,1, . . . ,}n
Hess(f) the Hessian matrix of the function f
∥A∥F the Frobenius norm of the matrix A: ∥A∥2

F = tr(ATA)
Lt

e−t
√

1−e−2t
Prρ the probability distribution under which (X,Y ) ∈ Rn ×Rn is distributed as a mean-

zero Gaussian vector with covariance matrix In ρIn
ρIn In

Jρ the function [0,1]2 → [0,1] defined by Jρ(x, y) = Prρ(X1 ≤ Φ−1(x), Y1 ≤ Φ−1(y))
ft, gt Ptf,Ptg
vt,wt Φ−1 ○ ft, Φ−1 ○ gt (when the range of f and g lies in [0,1])
m(f) Ef(1 −Ef)
δ the deficit in a context-dependent inequality: in Chapter 3,

δ(f) = E
√
I(f) + ∣∇f ∣2 − I(Ef),

while in Chapter 4,

δ(f, g) = Jρ(Ef,Eg) −EρJρ(f(X), g(Y ))
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Chapter 1

Gaussian isoperimetry

An isoperimetric inequality is a lower bound on the size of a set’s boundary in terms of its
volume. The oldest and most famous isoperimetric inequality is the 2-dimensional Euclidean
isoperimetric inequality, which says that a bounded subset of R2 has a longer boundary than
the disk of the same volume [44]. Although not proven rigorously until the late 19th century,
this fact was known to the ancient Greeks, and possibly also to Queen Dido of Carthage
almost three thousand years ago; for the history of the isoperimetric inequality, see, for
example, section 2.2 of [44]).

Since the notions of volume and surface area are not confined to Euclidean space, one can
study isoperimetric problems in different spaces; perhaps the first example of this is Lévy’s
proof that spherical caps have minimal surface area among all subsets of the sphere [37] with
a given volume. Here, we will take a slightly different direction: back in Euclidean space,
we consider the isoperimetric problem under the Gaussian measure instead of the Lebesgue
measure.

The standard Gaussian measure on Rn is the probability measure on Rn whose density
is (2π)−n/2e−∣x∣2/2, where ∣ ⋅ ∣ denotes the Euclidean norm. We will denote this measure by
γn. It is a central object in probability and we will assume some familiarity with its basic
properties.

1.1 The Gaussian isoperimetric inequality

Gaussian surface area

For r > 0 and a set A ⊂ Rn, let Ar denote the enlargement {x ∈ Rn ∶ d(x,A) < r} where
d(x,A) = inf{∣x − y∣ ∶ y ∈ A}. We define the Gaussian surface area of A (denoted γ+n(A)) by
Minkowski’s formula [18]

γ+n(A) = lim inf
r→0+

γn(Ar) − γn(A)
r

.

The Gaussian isoperimetric inequality – the main object of study for this chapter – is a
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lower bound on γ+n(A) in terms of γn(A). In order to state it, define the functions

φ(x) = 1√
2π
e−x

2
/2

Φ(x) = ∫
x

−∞

φ(y) dy.

Recall that φ is the density of γ1 and so Φ(b) = γ1((−∞, b]). Note that Φ is a strictly
increasing function that maps R to (0,1) and so it has a well-defined inverse Φ−1 ∶ (0,1) → R.
For notational convenience, we will extend Φ−1 to [0,1] by declaring that Φ−1(0) = −∞ and
Φ−1(1) = ∞. Similarly, we set φ(±∞) = 0.

The Gaussian isoperimetric inequality is a sharp lower bound on the Gaussian surface
area of A in terms of its volume. It was proved independently, and with essentially the same
method, by Borell [10] and by Sudakov and Tsirelson [47]. Since then, several other proofs
have appeared, including a symmetrization proof by Ehrhard [16] and a proof, by Bobkov [6],
using a tensorized inequality on the discrete cube.

Theorem 1.1 (Gaussian isoperimetric inequality). For any measurable A ⊂ Rn,

γ+n(A) ≥ φ(Φ−1(γn(A))). (1.1)

Following the usual notation in the literature, we will define the function I(x) = φ(Φ−1(x))
so that (1.1) may be written as γ+n(A) ≥ I(γn(A)). The function I is known as the “isoperi-
metric profile” of γn. Note that we have so far defined I on the interval (0,1), but it may
be extended continuously to [0,1] by setting I(0) = I(1) = 0.

As with any other isoperimetric inequality, the inequality (1.1) is only half of the story;
the other half comes from the equality cases. In the Gaussian case, equality is attained for
half-spaces (i.e. sets of the form {x ∈ Rn ∶ ⟨a, x⟩ ≤ b}). This is quite straightforward to check:
first of all, the rotational invariance of γn implies that it suffices to consider only half-spaces of
the form A = {x ∈ Rn ∶ x1 ≤ b}. Since γn is a product measure, we have γn(A) = γ1((−∞, b]) =
Φ(b), and γ+n(A) = γ+1 ((−∞, b]) = φ(b). Hence γ+n(A) = φ(b) = φ(Φ−1(Φ(b))) = φ(Φ−1(γ1(A))
and so equality is attained in (1.1).

The isoperimetric inequality (1.1) may therefore be restated as follows: for any measur-
able A ⊂ Rn, the Gaussian surface area of A is at least as large as the Gaussian surface
area of a half-space with the same volume as A. This restatement can be compared to the
analogous – and perhaps more familiar – statement in Euclidean space: for all measurable
A ⊂ Rn, the (Lebesgue) surface area of A is at least as large as the (Lebesgue) surface area
of a Euclidean ball with the same (Lebesgue) volume as A.

While it was easy to check that half-spaces achieve equality in (1.1), checking that half-
spaces are the only sets that achieve equality is non-trivial. For sufficiently nice sets (namely,
those which are the closures of their interior), this was proved by Ehrhard [15]; the general
case was only solved in 2001 by Carlen and Kerce [11]:

Theorem 1.2. If A ⊂ Rn is a measurable set with γ+n(A) = I(γn(A)) then A is a half-space
(up to a set of measure zero).
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Let us also mention a non-infinitesmal version of Theorem 1.1.

Corollary 1.3. For any measurable A ⊂ Rn and any r > 0,

γn(Ar) ≥ Φ(Φ−1(γn(A)) + r).

Note that for the half-space A = {x ∶ x1 ≤ a} (which has measure Φ(a)), we have Ar = {x ∶
x1 ≤ a+r} (which has measure Φ(a+r)). Hence, half-spaces attain equality in Corollary 1.3.

Proof. Consider the function F (s) = Φ−1(γn(Ar)). Our goal is then to show that F (r) ≥
F (0) + r; applying Φ to both sides of this inequality will then prove the claim. Now, the

inverse function formula yields dΦ−1
(x)

dx = 1
φ(Φ−1(x)) =

1
I(x) . Hence (by the chain rule),

lim inf
h↓0

F (s + h) − F (s)
h

= 1

I(γn(As))
lim inf
h↓0

γn(Ar+h) − γn(Ar)
h

= γ+n(Ar)
I(γn(Ar))

.

By Theorem 1.1, the right hand side is at least 1. Then, by the Lebesgue differentiation
theorem,

F (r) − F (0) ≥ ∫
r

0
lim inf
h↓0

F (s + h) − F (s)
h

ds ≥ r.

We will prove Theorems 1.1 and 1.2 later in this chapter, but first we will give a simple
application. This application serves a dual purpose: on the one hand, it provides a proba-
bilistic view of Theorem 1.1 which is perhaps not obvious from (1.1) because it may not be
clear how to interpret γ+n probabilistically. On the other hand, our application is genuinely
useful consequence of isoperimetry, and it has been widely applied in probability theory.
Indeed, we will use it ourselves in Chapters 3 and 4.

Theorem 1.4. Let f ∶ Rn → R be an L-Lipschitz function and let M be its median with
respect to γn. Then for any t ≥ 0,

γn({x ∶ f(x) ≥M + t}) ≤ Φ(−t/L) ≤ e−
t2

2L2 .

In other words, every Lipschitz function on Rn is concentrated around its median. This
turns out be be a very useful feature of Gaussian measures (and some other measures too),
with applications in geometry and probability. A general discussion of concentration, with
applications to various areas in mathematics, can be found in the book by Ledoux [35].

Proof of Theorem 1.4. Let A = {x ∶ f(x) ≤ M}; by the definition of the median, γn(A) =
1/2. Since f is L-Lipschitz, ∣f(x) −M ∣ ≤ Ld(x,A) and so At/L ⊂ {x ∶ f(x) ≤ M + t}. By
Corollary 1.3, and since Φ−1(γn(A)) = Φ−1(1/2) = 0,

γn({x ∶ f(x) ≤M + t}) ≥ γn(At/L) ≥ Φ(t/L).

This proves the first claimed inequality; the second is the usual approximation of Gaussian
tails.



4

1.2 Bobkov’s inequality

Like many other inequalities about sets, the Gaussian isoperimetric inequality has an equiv-
alent functional version. Although the functional version was already known to Ehrhard in
the 1980s [16], it was brought to prominence more recently by Bobkov [7] who used it to
give a new proof of the Gaussian isoperimetric inequality.

For the sake of concision, we will switch to a more probabilistic notation: let X be a
random variable distributed according to γn and denote the expectation operator by E; that
is, Ef(X) = ∫Rn f(x) dγn(x). We will sometimes omit the X and just write Ef .

Theorem 1.5 (Bobkov’s inequality). For any smooth f ∶ Rn → [0,1],

I(Ef) ≤ E
√
I2(f(X)) + ∣∇f(X)∣2. (1.2)

Before proceeding further, let us show how Theorems 1.1 and 1.5 are equivalent. One
direction is easy to see intuitively: for any set A, define f(x) = 1A(x) (i.e., f(x) = 1 if
x ∈ A and 0 otherwise). Since I(0) = I(1) = 0, (1.2) reduces to I(Ef) ≤ E∣∇f ∣. Now,
I(Ef) = φ(Φ−1(γn(A))) and E∣∇f ∣ is intuitively the boundary measure of A because ∣∇f ∣ is
a δ-function on the boundary of A. Hence, we recover Theorem 1.1 from Theorem 1.5.

In order to make this argument rigorous, we need a better way of relating E∣∇f ∣ to
γ+n(A). To do this, we will replace 1A by a suitable smooth version of it. Fix some ε > 0
and let fε(x) be a smooth function such that fε(x) = 1 for x ∈ A, fε(x) = 0 for x /∈ Aε, and
∣∇fε∣ ≤ 1 + 1/ε. (Such a function may be constructed explicitly, essentially by convolving the
function x ↦ max{0,min{1, d(x,A)/ε}} with a smooth function of small support; for more
details, see Appendix C of [17].) Applying (1.2) to fε, we obtain

I(Efε) ≤ E
√
I2(fε) + ∣∇fε∣2 ≤ EI(fε) +E∣∇fε∣.

Now, I(fε) = 0 if fε ∈ {0,1} and so I(fε) is supported on Aε ∖A. Moreover, I(fε) is bounded
pointwise by (2π)−1/2 ≤ 1, and hence EI(fε) ≤ γn(Aε) − γn(A). Similarly, ∣∇fε∣ is bounded
pointwise by 1+1/ε and supported on Aε∖A; hence E∣∇fε∣ ≤ (1+1/ε)(γn(Aε)−γn(A)). Thus
we obtain

I(Efε) ≤ EI(fε) +E∣∇fε∣ ≤ (2 + 1

ε
) (γn(Aε) − γn(A)). (1.3)

Let us now compare I(Efε) to I(γn(A)). Recall that γn(A) ≤ Efε ≤ γn(Aε). We may assume
that γn(Aε) → γn(A) as ε → 0 (if not, then (1.1) is vacuous because γ+n(A) = ∞). Hence,
Efε → γn(A). Since I is continuous, I(Efε) → I(γn(A)). Then by taking the liminf as ε→ 0
on both sides of (1.3), we recover (1.1).

The other implication (i.e. that (1.1) implies (1.2)) is less obvious, but quite important
because it uses a dimension-raising trick that we will see again later. For a smooth function
f ∶ Rn → [0,1], define Af ⊂ Rn+1 by Af = {(x,xn+1) ∈ Rn+1 ∶ xn+1 ≤ Φ−1(f(x))}. By Fubini’s
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theorem,

γn+1(Af) = ∫
Rn
γ1({xn+1 ∶ (x,xn+1) ∈ Af}) dγn(x)

= ∫
Rn
γ1((−∞,Φ−1(f(x))]) dγn(x)

= ∫
Rn
f(x) dγn(x).

On the other hand, one can easily check that for a set A ⊂ Rn+1 with smooth boundary,
γ+n+1(A) is simply equal to the integral of the Gaussian density over ∂A. Let φn+1(y) =
(2π)−(n+1)/2e−∣y∣

2
/2 be the density of γn+1, and recall that if ∂A is the graph of a smooth

function g ∶ Rn → R then the volume element of ∂A at (x, g(x)) is
√

1 + ∣∇g(x)∣2dx. Applying
this to ∂Af (which is the graph of Φ−1 ○ f),

γ+n+1(Af) = ∫
Rn
φn+1(x,Φ−1(f(x)))

√
1 + ∣∇(Φ−1 ○ f)(x)∣2 dx.

Now, φn+1(x,xn+1) = φn(x)φ(xn+1). Also, ∇(Φ−1 ○ f) = ∇f/(I ○ f) by the chain rule. Hence,

γ+n+1(Af) = ∫
Rn
φ(Φ−1(f(x)))

√
1 + ∣∇f(x)∣2/I(f(x))2 dγn(x)

= ∫
Rn

√
I2(f(x)) + ∣∇f(x)∣2 dγn(x).

To summarize, we have shown that γn(Af) = Ef and γ+n+1(Af) = E
√
I2(f) + ∣∇f ∣2. Apply-

ing (1.1) to Af , we recover (1.2), and so we see that the Gaussian isoperimetric inequality
implies Bobkov’s inequality.

Using the same dimension-raising trick, we can apply Theorem 1.2 to find the equality
cases for Theorem 1.5: f attains equality in Theorem 1.5 if and only if A = {(x,xn+1) ∶ xn+1 ≤
Φ−1(f(x))} is a half-space. This is of course equivalent to asking that Φ−1 ○ f be a linear
function; hence we see that equality is attained in (1.2) exactly for functions of the form
f(x) = Φ(⟨a, x − b⟩). That such functions achieve equality can also be checked directly.

Theorem 1.6. If f ∶ Rn → [0,1] is a smooth function with I(Ef) = E
√
I2(f) + ∣∇f ∣2 then

there exist a, b ∈ Rn such that f(x) = Φ(⟨a, x − b⟩) for all x ∈ Rn.

1.3 The Ornstein-Uhlenbeck semigroup

Our study of the Gaussian isoperimetric inequality revolves around the proof due to Bakry
and Ledoux [3]. Although several other proofs are known, the Bakry-Ledoux proof is the
only one we know which gives detailed information on the equality and near-equality cases
of (1.1). Their proof also uses a particularly nice idea which we will apply in other ways
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later on. The main tool in this proof is the Ornstein-Uhlenbeck operator semigroup: for any
t ≥ 0, define the operator Pt by

(Ptf)(x) = ∫
Rn
f(e−tx +

√
1 − e−2ty) dγn(y). (1.4)

This definition makes sense for any f ∈ L1(γn), and one may easily check that for any t > 0,
the range of Pt consists of smooth functions.

Let us also note some trivial – but useful – properties of Pt:

1. {Pt ∶ t ≥ 0} is a semigroup; that is, Pt ○ Ps = Pt+s

2. Pt is positivity-preserving: if f ≥ 0 then Ptf ≥ 0

3. Pt1 = 1

4. if f ∈ Lp(γn) for 1 ≤ p < ∞ then Ptf → f in Lp(γn) as t→ 0

5. if f ∈ Lp(γn) for 1 ≤ p < ∞ then Ptf → Ef in Lp(γn) as t→∞

6. for any smooth f , ∇Ptf = e−tPt∇f

7. for any convex ψ ∶ R→ R, ψ(Ptf) ≤ Pt(ψ ○ f) pointwise

8. for any f, g ∈ L2(γn), Pt(fg) ≤
√
Pt(f 2)Pt(g2).

The last two properties follow from Jensen’s inequality and the Cauchy-Schwarz inequality,
because for any fixed x ∈ Rn, (Ptf)(x) is simply the integral of f against some probability
measure.

Define the operator L by

(Lf)(x) =
n

∑
i=1

(∂
2f

∂x2
i

(x) − xi
∂f

∂xi
(x)) = ∆f − ⟨x,∇f⟩.

Then L defined on C∞(Rn) and one can easily compute that for f ∈ C∞(Rn), d
dt
∣
t=0
Ptf = Lf .

By the semigroup property, we also have dPtf
dt = LPtf = PtLf for all t ≥ 0. This operator L is

known as the generator of Pt, which is often written as Pt = etL, meaning that Ptf = ∑k≥0
Lkf
k!

whenever the right hand side makes sense.
In probabilistic language, we say that Pt is the Markov operator of the Ornstein-Uhlenbeck

process and that L is its generator. We will not dwell on the general theory of such objects
except to mention that there is one, and that it is the subject of an excellent survey article
by Ledoux [36]. For our purposes, it suffices to note two properties of L. The first is an
integration by parts formula, which can be checked using Stokes’ formula:

∫
Rn
f(x)Lg(x) dγn(x) = −∫

Rn
⟨∇f(x),∇g(x)⟩ dγn(x). (1.5)
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The second property is a sort of chain rule that can be checked by differentiation: for any
smooth Ψ ∶ Rk → R and f1, . . . , fk mapping Rn into R,

LΨ(f1, . . . , fk) =
k

∑
i,j=1

∂2Ψ

∂xi∂xj
(f1, . . . , fk)⟨∇fi,∇fj⟩ +

k

∑
i=1

∂Ψ

∂xi
(f1, . . . , fk)Lfi. (1.6)

For the Ornstein-Uhlenbeck process, (1.6) can be checked directly. However, (1.6) is useful
more generally. In fact, for a general collection of operators {Pt ∶ t ≥ 0}, we say that Pt
is a Markov semigroup if it satisfies properties 1-4 above. Defining L = dPt

dt
∣
t=0

(on some
domain where the right hand side makes sense), and the quadratic form Γ by Γ(f, g) =
L(fg)−gLf −fLg, we then say that Pt is a diffusion semigroup if (1.6) holds with ⟨∇fi,∇fj⟩
replaced by Γ(fi, fj). Much of the material from this chapter extends to more general Markov
semigroups, although generalizing the results in Chapters 2 through 4 remains an open
problem. For the rest of this thesis, we will not mention more general Markov semigroups;
for more information on them, see the survey article by Ledoux [36].

From (1.6), the chain rule, and the definition of L, we derive the following useful formula:
abbreviating Pt−sf1, . . . , Pt−sfk by Pt−sf ,

d

ds
PsΨ(Pt−sf) = LPsΨ(Pt−sf) −

k

∑
i=1

Ps (
∂Ψ

∂xi
(Pt−sf)LPt−sfi)

= Ps (LΨ(Pt−sf) −
k

∑
i=1

∂Ψ

∂xi
(Pt−sf)LPt−sfi)

= Ps
k

∑
i,j=1

⟨∇Pt−sfi,∇Pt−sfj⟩
∂2Ψ

∂xi∂xj
(Pt−sf). (1.7)

This formula is useful because, in conjunction with the fundamental theorem of calculus,
it may be used to derive bounds on PtΨ(f1, . . . , fk) − Ψ(Ptf1, . . . , Ptfk). As we will see,
there are many important inequalities that may be written as bounds on PtΨ(f1, . . . , fk) −
Ψ(Ptf1, . . . , Ptfk) for an appropriate Ψ.

Poincaré’s inequality

Let us consider two simple examples to demonstrate the utility of (1.7). These examples serve
a dual purpose: besides giving a flavor of more complicated derivations to come, the classical
inequalities that we prove here will also be useful to us later. First, consider Ψ(x) = x2. In
this case, (1.7) reduces to

d

ds
Ps(Pt−sf)2 = 2Ps∣∇Pt−sf ∣2 = 2e2(s−t)Ps∣Pt−s∇f ∣2, (1.8)

where the second equality follows because ∇Pt−sf = es−tPt−s∇f , by property 6 above. Now
we will consider two different ways to obtain inequalities from (1.8). Since ∣ ⋅ ∣2 is convex, we
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may apply Jensen’s inequality (property 7 of Pt) in one of two directions: either by pushing
Ps into ∣ ⋅ ∣2 or by pulling Pt−s out of ∣ ⋅ ∣2. That is,

d

ds
Ps(Pt−sf)2 ≤ 2e2(s−t)PsPt−s∣∇f ∣2 = 2e2(s−t)Pt∣∇f ∣2

d

ds
Ps(Pt−sf)2 ≥ 2e2(s−t)∣PsPt−s∇f ∣2 = 2e2s∣∇Ptf ∣2.

If we integrate these two inequalities from zero up to t, we obtain

Ptf
2 − (Ptf)2 ≤ (1 − e−2t)Pt∣∇f ∣2 (1.9)

Ptf
2 − (Ptf)2 ≥ (e2t − 1)∣∇Ptf ∣2. (1.10)

Note that if we send t → ∞ in (1.9), then we obtain the classical Poincaré inequality for
Gaussian measures: Var(f) = Ef 2 − (Ef)2 ≤ E∣∇f ∣2. On the other hand, (1.10) becomes
Var(f) ≥ ∣E∇f ∣2 in the same limit. Note that both of these inequalities become equalities
for linear functions.

The log-Sobolev inequality

Next, we will consider (1.7) in the case that Ψ(x) = x logx and f is a strictly positive
function. Then (1.7) reduces to

d

ds
PsΨ(Pt−sf) = Ps

∣∇Pt−sf ∣2
Pt−sf

= e2(s−t)Ps
∣Pt−s∇f ∣2
Pt−sf

, (1.11)

where the second equality follows because ∇Pt−sf = es−tPt−s∇f . To bound the right hand

side, note that the Cauchy-Schwarz inequality implies that (Pτg)2 ≤ PτhPτ g
2

h for any positive
g and h, and any τ > 0. In particular, if we apply this with g = ∣∇f ∣, h = f , and τ = t− s then
we obtain

∣Pt−s∇f ∣2 ≤ (Pt−s∣∇f ∣)2 ≤ (Pt−sf)Pt−s
∣∇f ∣2
f

,

where the first inequality follows from the convexity of ∣ ⋅ ∣. Applying this to (1.11) yields

d

ds
PsΨ(Pt−sf) ≤ e2(s−t)PsPt−s

∣∇f ∣2
f

= e2(s−t)Pt
∣∇f ∣2
f

.

As we did for Poincaré’s inequality, we can integrate out s. This time, we obtain Pt(f log f)−
(Ptf) log(Ptf) ≤ 1−e−2t

2 Pt
∣∇f ∣2

f . Setting f = g2 and taking t→∞, we recover Gross’ logarithmic
Sobolev inequality [22]

E(g2 log g2) − (Eg2) log(Eg2) ≤ 2E∣∇g∣2.

As for Poincaré’s inequality, we can obtain a reversal of the log-Sobolev inequality by applying
the Cauchy-Schwarz inequality to Ps (instead of Pt−s) on the right hand side of (1.11).
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Specifically, the inequality (Pτg)2 ≤ PτhPτ g
2

h applied with g = ∣Pt−s∇f ∣, h = Pt−sf , and τ = s
yields

∣Pt∇f ∣2 ≤ (Ps∣Pt−s∇f ∣)2 ≤ (Ptf)Ps
∣Pt−s∇f ∣2
Pt−sf

;

and hence
∣Pt∇f ∣2
Ptf

≤ Ps
∣Pt−s∇f ∣2
Pt−sf

.

Applied to (1.11), this gives

d

ds
PsΨ(Pt−sf) ≥ e2s ∣∇Ptf ∣2

Ptf
.

Integrating out s, we have

(Ptf)(Ptf log f) − (Ptf)2 logPtf ≥ e
2t − 1

2
∣∇Ptf ∣2. (1.12)

This is a useful upper bound on ∣∇Ptf ∣, as we will see in Chapter 3. It is stronger than the
reverse-Poincaré inequality (1.10) because it gives a better bound when Ptf is close to zero.

A sharper bound on ∣∇Ptf ∣
Having demonstrated the utility of (1.7) with some simple derivations of classical inequalities,
we turn next to a more recent inequality of Bakry and Ledoux [3].

Theorem 1.7. For any measurable function f ∶ Rn → [0,1] and any t > 0,

∣∇Ptf ∣ ≤
e−t√

1 − e−2t
I(Ptf).

Equivalently,

∣∇(Φ−1 ○ Ptf)∣ ≤
e−t√

1 − e−2t
.

The two inequalities in Theorem 1.7 are equivalent by the chain rule. They are sharp (as
we will show in Section 1.5) and will be particularly useful to us when we discuss a robust

version of Theorem 1.1 in Chapter 3. We remark that since I(x) ∼
√

2 log(1/x) as x → 0,
the reverse log-Sobolev inequality (1.12) implies Theorem 1.7, but with a worse constant.
Indeed, if f ∶ Rn → [0,1] then Ptf log f < 0, and so (1.12) implies that

∣∇Ptf ∣ ≤ 2
e−t√
e−2t − 1

Ptf
√

logPtf ≤ C e−t√
e−2t − 1

I(Ptf)

for some universal constant C. This argument cannot, however, recover the sharp constant
C = 1.
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Proof of Theorem 1.7. Set Ψ(x) = I(x). Then Ψ′(x) = −Φ−1(x) and Ψ′′(x) = −1/I(x).
By (1.7),

PtI(f) − I(Ptf) = −∫
t

0
Ps

∣∇Pt−sf ∣2
I(Pt−sf)

ds. (1.13)

We apply the Cauchy-Schwarz inequality in the same way as we did for the log-Sobolev
inequality:

∣Ps∇g∣2
PsI(g)

≤ Ps
∣∇g∣2
I(g)

.

Applying this to (1.13) with g = Pt−sf ,

PtI(f) − I(Ptf) ≤ −∫
t

0

∣Ps∇Pt−sf ∣2
PsI(Pt−sf)

ds

= −∫
t

0

∣∇Ptf ∣2
PsI(Pt−sf)

e2s ds

≤ −∣∇Ptf ∣2
I(Ptf) ∫

t

0
e2s ds,

where the last inequality follows because I is concave and so PsI(Pt−sf) ≤ I(Ptf). Since
PtI(f) is non-negative, we can remove that term from the left hand side. Then because

∫
t

0 e
2s ds = e2t − 1, we obtain

(e2t − 1) ∣∇Ptf ∣
2

I(Ptf)
≤ I(Ptf),

which may be rearranged into the claimed inequality.

Hermite polynomials

Hermite polynomials are a useful tool in Gaussian analysis. In order to remain self-contained,
we will recall their definition and prove the properties that we will use. Most importantly,
we will show that the Hermite polynomials form an orthogonal basis of (Rn, γn) on which
the semigroup Pt acts diagonally. A more detailed treatment of Hermite polynomials may
be found in [48]. For k ≥ 0, define the degree-k polynomial Hk(x) by

Hk(x) =
(−1)k√
k!
ex

2
/2 d

k

dxk
e−x

2
/2.

Equivalently, Hk may be defined by the generating function

ext−t
2
/2 =

∞

∑
k=0

Hk(x)
tk√
k!
.

The equivalence of these two definitions may be seen by taking the Taylor expansion of the
function z ↦ e−z

2
/2 around the point x. Note that our normalization is non-standard; in
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some other sources, the kth Hermite polynomial is taken to be what we have called
√
k!Hk,

while in physics another convention altogether is used. We have chosen our convention so
that the set {Hk ∶ k ≥ 0} is an orthonormal basis of L2(γ1):

Proposition 1.8. For k, ` ≥ 0,

∫
R
Hk(x)H`(x) dγ1(x) = δk`.

Moreover, {Hk ∶ k ≥ 0} spans L2(γ1).

Proof. The first statement comes from calculating the integral ∫ ext−t
2
/2exs−s

2
/2dγ1(x) in two

ways: by completing the square and by expanding the generating function definition of Hk.
The second statement may be proven by applying the Stone-Weierstrass theorem to a large
interval [−R,R].

By tensorizing the basis {Hk} of L2(γ1), we construct an orthonormal basis of L2(γn).
Namely, for α = (α1, . . . , αn) ∈ {0,1, . . . ,}n, define the function Hα ∶ Rn → R by

Hα(x) =
n

∏
i=1

Hαi(xi).

From Proposition 1.8, we see immediately that {Hα} are an orthonormal basis of (Rn, γn).
One remarkable property of the Ornstein-Uhlenbeck semigroup is that it acts diagonally

on the Hermite basis. This can be easily seen from the generating function characterization
of the Hermite polynomials: indeed, for any fixed t > 0, if ft(x) = ext−t

2
/2 then

(Psft)(x) = exp(e−sxt − t2/2)∫
∞

−∞

exp(
√

1 − e−2syt) dγ1(y) = exp(xe−st − e−2st2/2) = fe−st(x).

Writing both ft and fe−st in terms of Hermite polynomials, we have

∑
k≥0

tk

k!
PsHk = Psft = fe−st = ∑

k≥0

tke−sk

k!
Hk,

and so we conclude that PsHk = e−skHk. This may be easily extended to the multi-
dimensional Hermite functions, where it yields

PsHα = e−s∣α∣Hα. (1.14)

Since {Hα ∶ α ∈ {0,1, . . .}n} span L2(γn), it follows that Pt is injective. Certain other
properties of Pt (which we will not need) also follow from (1.14), such as the fact that Pt is
trace-class.
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1.4 A semigroup proof of Bobkov’s inequality

The semigroup method that we explored in the previous section can be extended to prove
Bobkov’s inequality (1.2). The proof that we will give is due to Bakry and Ledoux [3], who
give it in a rather more general framework. Actually, we will prove a slight strengthening of
Bobkov’s inequality, namely that for all t ≥ 0 and all smooth f ∶ Rn → [0,1], the following
inequality holds pointwise:

√
I2(Ptf) + ∣∇Ptf ∣2 ≤ Pt

√
I2(f) + ∣∇f ∣2. (1.15)

Sending t→∞ in (1.15) recovers (1.2).
We intend to follow the same approach to (1.15) as we did for the Poincaré and log-

Sobolev inequalities. However, there is a minor obstacle: because ∇Psf ≠ Ps∇f , the quantity√
I2(Psf) + ∣∇Psf ∣2 cannot be written in the form Ψ(Psg1, . . . , Psgk), and so we cannot

apply (1.7) directly. This obstacle is only minor; we simply re-derive a modified version
of (1.7) involving ∇f . Since ∇Psf = e−sPs∇f , we have

d

ds
∇Psf = Le−sPs∇f − e−sPs∇f = L∇Psf −∇Psf.

Hence, for any smooth functions f ∶ Rn → R and Ψ ∶ Rn+1 → R (which we write as Ψ(x, y)
for x ∈ R and y ∈ Rn),

d

ds
PsΨ(Pt−sf,

∂Pt−sf

∂x1

, . . . ,
∂Pt−sf

∂xn
)

= Ps (LΨ − ∂Ψ

∂x
LPt−sf +

n

∑
i=1

∂Ψ

∂yi

d

ds

∂Pt−sf

∂xi
)

= Ps (LΨ − ∂Ψ

∂x
LPt−sf −

n

∑
i=1

∂Ψ

∂yi
L
∂Pt−sf

∂xi
+

n

∑
i=1

∂Ψ

∂yi

∂Pt−sf

∂xi
)

= Ps(
∂2Ψ

∂x2
∣∇Pt−sf ∣2 + 2

n

∑
i=1

∂2Ψ

∂x∂yi
⟨∇Pt−sf,∇

∂Pt−sf

∂xi
⟩

+
n

∑
i,j=1

∂2Ψ

∂yi∂yj
⟨∇∂Pt−sf

∂xi
,∇∂Pt−sf

∂xj
⟩ +

n

∑
i=1

∂Ψ

∂yi

∂Pt−sf

∂xi
)

(1.16)

(Everywhere that a derivative of Ψ appears, we mean for it to be evaluated at the point
(Pt−sf, ∂Pt−sf∂x1

, . . . , ∂Pt−sf∂xn
).) Besides the fact that we have named one of Ψ’s arguments x and

the rest y, (1.16) differs from (1.7) only by the addition of the last term, ∑ ∂Ψ
∂yi

∂Pt−sf
∂xi

, which
appeared when we differentiated the commutation relation ∇Ps = e−sPs∇.

Now let us apply (1.16) to prove (1.15): for x ∈ R and y ∈ Rn, let Ψ(x, y) =
√
I2(x) + ∣y∣2.
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Elementary calculus yields

∂Ψ

∂yi
= yi

Ψ

∂2Ψ

∂x2
= (I ′)2Ψ2 −Ψ2 − (II ′)2

Ψ3

∂2Ψ

∂x∂yi
= −yiII

′

Ψ3

∂2Ψ

∂yi∂yj
=
δijΨ2 − yiyj

Ψ3
.

If we set, for brevity, v = ∇Pt−sf and wi = ∇∂ft−s
∂xi

then (1.16) becomes

d

ds
PsΨ(Pt−sf,

∂Pt−sf

∂x1

, . . . ,
∂Pt−sf

∂xn
)

= Ps (∣v∣2
∂2Ψ

∂x2
+ 2

n

∑
i=1

∂2Ψ

∂x∂yi
⟨wi, v⟩ +

n

∑
i,j=1

∂2Ψ

∂yi∂yj
⟨wi,wj⟩ +

n

∑
i=1

∂Ψ

∂yi
vi) .

For our specific function Ψ, we arrive (after canceling some terms) at the expression

Ps
1

Ψ3
(∣v∣4(I ′)2 − 2II ′∑

i

vi⟨wi, v⟩ + (I2 + ∣v∣2)∑
i

∣wi∣2 −∑
i,j

⟨wi,wj⟩vivj)

= Ps
1

Ψ3
(∣v∣4(I ′)2 − 2II ′vTHfv + (I2 + ∣v∣2)∥Hf∥2

F − ∣Hfv∣2)

= Ps
1

Ψ3
(∥IHf − I ′vvT ∥2

F + ∣v∣2∥Hf∥2
F − ∣Hfv∣2) . (1.17)

where Hf denotes the Hessian matrix of Pt−sf and ∥ ⋅ ∥F is the Frobenius norm ∥A∥2
F =

tr(ATA). Since ∥Hf∥F ∣v∣ ≥ ∣Hfv∣, the last line of (1.17) is non-negative pointwise, thus
proving that d

dsPsΨ(Pt−sf, ∂Pt−sf∂x1
, . . . , ∂Pt−sf∂xn

) ≥ 0. Recalling the definition of Ψ, we have
proved (1.15) and hence also Bobkov’s inequality (1.2).

1.5 Deforming Ehrhard sets

In a few pages, we proved Bobkov’s inequality using only calculus and some linear algebra.
However, we would not blame the reader for being somewhat bewildered by the proof:
although the original inequality was motivated geometrically, the proof seems to be simply
a calculation. To give a geometric intuition to the proof, recall our discussion following
Theorem 1.5 where we showed that the Gaussian isoperimetric inequality in Rn+1 implies
Bobkov’s inequality in Rn. We did so by associating to each f ∶ Rn → [0,1] the set Af =
{(x,xn+1) ∈ Rn+1 ∶ xn+1 ≤ Φ−1(f(x))} and noting that E

√
I2(f) + ∣∇f ∣2 = γ+n+1(Af) and

Ef = γn+1(Af).



14

Figure 1.1: The deformation of an Ehrhard set under the semigroup Pt. From left to right,
top to bottom, t = 0,0.01,0.05,0.5, and 1

We will call A ⊂ Rn+1 an Ehrhard set if it can be written as the subgraph of some function
g ∶ Rn → R; that is, A = {(x,xn+1) ∈ Rn+1 ∶ xn+1 ≤ g(x)}. For an Ehrhard set A, define the
function fA ∶ Rn → R by fA(x) = Φ(sup{y ∈ R ∶ (x, y) ∈ A}). Note that the correspondence
A ↦ fA is the inverse of the correspondence f ↦ Af that we described in the previous

paragraph. In particular, this implies that E
√
I2(fA) + ∣∇fA∣2 = γ+n+1(A) and EfA = γn+1(A).

For any t ≥ 0, define A(t) = APtfA . Then A(0) = A and (since Ptf → Ef as t → ∞)
A(∞) = {(x,xn+1) ∈ Rn+1 ∶ xn+1 ≤ Φ−1(γn+1(A))}. Note also that because EPtf = Ef for
all functions f , γn+1(A(t)) = γn+1(A(0)) for all t. Since A(∞) is always a half-space, we
may view A(t) as a measure-preserving, continuous deformation from an arbitrary Ehrhard
set to a half-space (see Figure 1.1). Now, (1.15) implies that the Gaussian surface area
of A(t) is non-increasing in t. Thus we arrive at a geometric interpretation of the Bakry-
Ledoux semigroup proof: we have constructed a continuous deformation on Ehrhard sets
which decreases the surface area, preserves the measure, and ultimately turns everything
into a half-space. The page or so of calculus that was involved amounted to checking that
the surface area is non-increasing under this deformation.

We conclude this section with a short but confidence-inspiring calculation: if we believe
that half-spaces minimize Gaussian surface area and that γ+n+1(A(t)) is non-increasing in t,
then our deformation had better preserve half-spaces: if A is a half-space then A(t) should
be one also. We can check this with a direct calculation. If an Ehrhard set A is a half-space
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then there are two possibilities: A is subgraph of a linear function, or A = A′ × R where
A′ ⊂ Rn is a half-space. In the first case, fA(x) = Φ(⟨a, x − b⟩) for some a, b ∈ Rn; in the
second case, fA(x) = 1{⟨a,x⟩≥b}. To show that A(t) is a half-space, it suffices to find some
a′, b′ ∈ Rn such that PtfA = Φ(⟨a′, x − b′⟩).

Lemma 1.9. If f(x) = Φ(⟨a, x − b⟩) then

(Ptf)(x) = Φ
⎛
⎝

⟨a, e−tx − b⟩√
1 + ∣a∣2(1 − e−2t)

⎞
⎠
.

If f(x) = 1{⟨a,x−b⟩≥0} then

(Ptf)(x) = Φ(⟨a, e−tx − b⟩
∣a∣

√
1 − e−2t

) .

Note that besides showing that half-spaces are preserved under deformation by Pt,
Lemma 1.9 also provides the promised example that proves the sharpness of Theorem 1.7: if
f(x) = 1{⟨a,x−b⟩≥0} with ∣a∣ = 1 then by Lemma 1.9, (Φ−1 ○ Ptf)(x) = (1 − e−2t)−1/2⟨a, e−tx − b⟩,
and so ∣∇(Φ−1 ○ Ptf)∣ is equal to e−t/

√
1 − e−2t everywhere.

Proof of Lemma 1.9. Since γn is a product measure, it suffices to consider the case n = 1:
suppose that f(x) = Φ(a(x − b)). By the definition of Pt and Φ, we write out

(Ptf)(x) = ∫
∞

−∞

Φ(a(e−tx +
√

1 − e−2ty − b))φ(y) dy

= ∫
∞

−∞

∫
a(e−tx+

√

1−e−2ty−b)

−∞

φ(z)φ(y) dz dy.

Now, the function (z, y) ↦ φ(z)φ(y) is rotationally invariant, so we may introduce the
orthogonal change of variables

w = z − a
√

1 − e−2ty√
1 + a2(1 − e−2t)

v = y + a
√

1 − e−2tz√
1 + a2(1 − e−2t)

.

Under this change of variables,

{(y, z) ∈ R2 ∶ z ≤ a(e−tx +
√

1 − e−2ty) − b} =
⎧⎪⎪⎨⎪⎪⎩
(v,w) ∈ R2 ∶ w ≤ a(e−tx − b)√

1 + a2(1 − e−2t)

⎫⎪⎪⎬⎪⎪⎭
.

Hence,

(Ptf)(x) = ∫
∞

−∞

∫
a(e−tx−b)√
1+a2(1−e−2t)

−∞

φ(w)φ(v) dw dv = Φ
⎛
⎝

ae−tx − ab√
1 + a2(1 − e−2t)

⎞
⎠
.

This proves the first claim of the Lemma; the second follows from the first by taking the
limit ∣a∣ → ∞.
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1.6 The equality cases in Bobkov’s inequality

Carlen and Kerce [11] noticed that the semigroup proof of Bobkov’s inequality reveals the
equality cases with relatively little additional effort. Let g = Φ−1 ○ ft−s; by differentiating
twice, one checks that IHf − I ′vvT = I2Hg, where Hf is the Hessian of f , Hg is the Hessian
of g, and v = ∇ft−s. Recognizing this term in (1.17), we have

d

ds
PsΨ(Pt−sf,

∂Pt−sf

∂x1

, . . . ,
∂Pt−sf

∂xn
) ≥ Ps

I4∥Hg∥2
F

Ψ3

and hence

Pt
√
I2(f) + ∣∇f ∣2 −

√
I2(Ptf) + ∣∇Ptf ∣2 ≥ ∫

t

0
Pt−s

I4(Psf)∥Hess(Φ−1 ○ Psf)∥2
F

(I2(Psf) + ∣∇Psf ∣2)3/2
ds. (1.18)

Now, every term in the integral is strictly positive except for ∥Hess(Φ−1 ○ Psf)∥2
F . If the

left hand side is identically zero, we must then have Hess(Φ−1 ○ Psf) ≡ 0 for almost every
s. In particular, there is some s > 0 such that Hess(Φ−1 ○ Psf) ≡ 0. Since Psf is smooth,
it follows that Φ−1 ○ Psf is a linear function. That is, there exist a′, b′ ∈ Rn such that
(Psf)(x) = Φ(⟨a′, x − b′⟩). We would like to argue that f takes the same form.

Lemma 1.10. Suppose that (Psf)(x) = Φ(⟨a′, x − b′⟩) for some s ≥ 0, a′, b′ ∈ Rn, and
f ∈ L2(γn). Then there exist a, b ∈ Rn such that either ∣a′∣ < e−s

√

1−e−2s
and f(x) = Φ(⟨a, x − b⟩)

or ∣a′∣ = e−s
√

1−e−2s
and f(x) = 1{⟨a,x−b⟩≥0}.

Under the additional assumption that f is smooth, only the first case of Lemma 1.10 is
possible. Thus, Lemma 1.10 and the argument preceding it establish Theorem 1.6.

Proof of Lemma 1.10. Let Ls = e−s
√

1−e−2s
. Since ∇(Φ−1 ○ Psf) = a′, Theorem 1.7 implies that

∣a′∣ ≤ Ls. Suppose first that ∣a′∣ = Ls. By Lemma 1.9, as g ranges over the set {1{⟨a,x−b⟩≥0} ∶
a, b ∈ Rn}, Psg ranges over the set {Φ(⟨a′, x − b′⟩) ∶ a′, b′ ∈ Rn, ∣a′∣ = Ls}. Since Psf belongs,
by assumption, to this latter set, there must be some a, b ∈ Rn such that Ps1{⟨a,⋅−b⟩≥0} = Psf .
But Ps is injective (by (1.14)), and so f = 1{⟨a,⋅−b⟩}.

The case ∣a′∣ < Ls is similar. By Lemma 1.9, as g ranges over the set {Φ(⟨a, x − b⟩ ≥
0) ∶ a, b ∈ Rn}, Psg ranges over the set {Φ(⟨a′, x − b′⟩) ∶ a′, b′ ∈ Rn, ∣a′∣ < Ls}. In particular, if
∣a′∣ < Ls then there exists some a, b ∈ Rn such that Φ(⟨a′, ⋅ − b′⟩) = Psf . Since Ps is injective,
f = Φ(⟨a, ⋅ − b⟩).
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Chapter 2

Gaussian noise stability

2.1 Gaussian noise stability

Our next topic is a generalization of isoperimetry, although it may not appear that way
at first. Fix a parameter 0 < ρ < 1 and suppose that (X,Y ) ∈ Rn × Rn is a mean-zero
Gaussian random vector with covariance matrix ( In ρIn

ρIn In
). In other words, if Z is a standard

2n-dimensional Gaussian vector then

(X,Y ) d= ( In ρIn
ρIn In

)1/2
Z.

We will use the notation Prρ to refer to the distribution of (X,Y ).
For a set A ⊂ Rn, we define the noise stability of A to be Prρ(X ∈ A,Y ∈ A), while

the noise sensitivity of A is Prρ(X ∈ A,Y /∈ A). It is natural to ask for an upper bound
on the noise stability of A in terms of γn(A). Of course, there is always the trivial bound
Prρ(X ∈ A,Y ∈ A) ≤ Prρ(X ∈ A) = γn(A) but this is only sharp for ρ = 1 or γn(A) ∈ {0,1}.

Remarkably, Borell [9] gave an upper bound on noise stability which is sharp for any
0 < ρ < 1. In particular, he showed that among all sets with a given Gaussian measure,
half-spaces are the most noise stable. Since the set {x ∈ Rn ∶ x1 ≤ Φ−1(γn(A))} is a half-space
with the same measure as A, we may write Borell’s result as an inequality:

Prρ(X ∈ A,Y ∈ A) ≤ Prρ(X1 ≤ Φ−1(γn(A)), Y1 ≤ Φ−1(γn(A))). (2.1)

As we will show in the next section, (2.1) is closely linked with the Gaussian isoperimetric
inequality, and so it is no coincidence that half-spaces feature prominently in both inequalties.
Note that by subtracting both sides of (2.1) from γn(A), one obtains an inequality for noise
sensitivity:

Prρ(X ∈ A,Y /∈ A) ≥ Prρ(X1 ≤ Φ−1(γn(A)), Y1 ≥ Φ−1(γn(A))).

That is, among all sets with given Gaussian measure, half-spaces are the least noise sensitive.
Since noise stability and noise sensitivity can be related in this way, it is enough to study
one of them.
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The inequality (2.1) may be extended to a two-set version, which states that if we want
to maximize Prρ(X ∈ A,Y ∈ B) over all pairs of sets A,B ⊂ Rn with prescribed volumes, then
we should choose A and B to be parallel half-spaces of the required volumes. By “parallel
half-spaces,” we mean that there exist a, b, d ∈ Rn such that A = {x ∶ ⟨a, x − b⟩ ≤ 0} and
B = {x ∶ ⟨a, x − d⟩ ≤ 0}. By rotational invariance, we may choose the pair {x ∶ x1 ≤ a} and
{x ∶ x1 ≤ b} (for a, b ∈ R) as a canonical pair of parallel half-spaces. With this canonical pair
of half-spaces, the two-set version of (2.1) may be written in the same inequality form as the
one-set version:

Theorem 2.1. For any measurable A,B ⊂ Rn and all 0 < ρ < 1,

Prρ(X ∈ A,Y ∈ B) ≤ Prρ(X1 ≤ Φ−1(γn(A)), Y1 ≤ Φ−1(γn(B))). (2.2)

Subtracting both sides of (2.2) from γn(B) and replacing B with its complement, we also
have

Prρ(X ∈ A,Y ∈ B) ≥ Prρ(X1 ≤ Φ−1(γn(A)), Y1 ≥ Φ−1(γn(B))). (2.3)

That is, (2.2) and (2.3) say that parallel half-spaces maximize the noise stability and anti-
parallel half-spaces minimize the noise stability, where “anti-parallel half-spaces” means a
pair of the form {⟨a, x − b⟩ ≤ 0}, {⟨a, x − d⟩ ≥ 0}.

Given that we wrote the inequality (2.2) with certain equality cases in mind, it may not
be surprising that these are the only equality cases. That is, equality is attained in (2.2)
only when A and B are parallel half-spaces. What might be more surprising is that this
characterization of equality cases is new, having first appeared in a recent paper with Mos-
sel [41]. Indeed, it seems that the earlier proofs of Theorem 2.1 [9, 25, 30] are not as well
suited to the study of equality cases as the proof that we will present here.

Theorem 2.2. If A,B ⊂ Rn are measurable sets and there exists 0 < ρ < 1 such that

Prρ(X ∈ A,Y ∈ B) = Prρ(X1 ≤ Φ−1(γn(A)), Y1 ≤ Φ−1(γn(B))),

then there exist a, b, d ∈ Rn such that (up to sets of measure zero) A = {x ∶ ⟨a, x − b⟩ ≤ 0} and
B = {x ∶ ⟨a, x − d⟩ ≤ 0}.

We assumed above that 0 < ρ < 1, and we will mostly maintain that assumption through-
out. However, let us briefly mention some other possible values of ρ: if −1 < ρ < 0 then the
inequality in Theorem 2.1 is reversed: for any measurable A,B and all −1 < ρ < 0,

Prρ(X ∈ A,Y ∈ B) ≥ Prρ(X1 ≥ Φ−1(γn(A)), Y1 ≤ Φ−1(γn(B))). (2.4)

This follows by applying Theorem 2.1 to the pair (X,−Y ), which has correlation −ρ ∈ (0,1).
The same argument shows that the inequality in (2.3) also reverses when −1 < ρ < 0. Hence,
when −1 < ρ < 0, parallel half-spaces are the least noise stable pairs of sets, and anti-parallel
half-spaces are the most noise stable pairs of sets.
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Finally, we consider the cases ρ ∈ {−1,0,1}: these cases are degenerate and can be studied
by elementary considerations. When ρ = 0, all sets attain equality in Theorem 2.1 because
both sides of (2.2) are equal to γn(A)γn(B). When ρ = 1, X and Y are almost surely
equal, and so the left hand side of (2.2) equals γn(A ∩B) while the right hand side equals
min{γn(A), γn(B)}; hence, the inequality (2.2) still holds, with equality whenever A ⊂ B or
B ⊂ A. The case ρ = −1 is similar, but with B replaced by −B. Since the matrix ( In ρIn

ρIn In
) is

non-negative only for −1 ≤ ρ ≤ 1, these cases exhaust all possible values of ρ.

2.2 The connection to Gaussian isoperimetry

Ledoux [34] showed that by taking the limit as ρ→ 1, (2.1) recovers the Gaussian isoperimet-
ric inequality, thus motivating our earlier statement that noise stability is a generalization
of isoperimetry. We will reproduce Ledoux’s argument shortly, but first let us motivate why
one might expect it to be true. Since Prρ(X ∈ A,Y ∈ A) = γn(A) − Prρ(X ∈ A,Y /∈ A),
maximizing the noise stability is equivalent to minimizing the noise sensitivity. If ρ is very
close to 1, then X and Y are very near each other with high probability (to be precise, X −Y
is a Gaussian vector with covariance 2(1 − ρ)In). Thus, if the boundary of A is locally flat
and 1− ρ is small, then Prρ(Y /∈ A ∣X ∈ A) essentially depends only on the distance between
X and ∂A; moreover, Prρ(Y /∈ A ∣ X ∈ A) is negligible unless X is very close to ∂A. Hence,
minimizing the noise sensitivity is similar to minimizing Prρ(d(X,∂A) <

√
1 − ρ), which is

like minimizing the Gaussian surface area of A.
To prove rigorously the relationship between noise sensitivity and isoperimetry, we turn

to a functional inequality and its semigroup proof.

Theorem 2.3. For smooth functions f, g ∶ Rn → R with g ≥ 0,

EgPtf −Egf ≤ ∥g∥∞√
2π

arccos(e−t)E∣∇f ∣,

where ∥g∥∞ denotes sup{∣g(x)∣ ∶ x ∈ Rn}.

Proof. We will make use of the integration by parts formula EgLf = −E⟨∇g,∇f⟩, which may
be verified by direct computation. Writing out Ptf − f = ∫

t

0
d
dsPsf ds = ∫

t

0 LPsf ds, we have

EgPtf −Egf = ∫
t

0
EgLPsf ds

= −∫
t

0
E⟨∇g,∇Psf⟩ ds

= −∫
t

0
E⟨∇Psg,∇f⟩ ds, (2.5)
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where the last equality follows because Ps is a self-adjoint operator and ∇Ps = e−sPs∇.
Expanding the definition of Ps,

(∇Psg)(x) = e−s∫
Rn

(∇g)(e−sx +
√

1 − e−2sy) dγn(y)

= e−s√
1 − e−2s

∫
Rn
yg(e−sx +

√
1 − e−2sy) dγn(y),

where the second equality follows from integration by parts, because the gradiant of the
Gaussian density is −ydγn(y). Note that the last line above may be equivalently written
in probabilistic notation as e−s

√

1−e−2s
EZg(e−sx +

√
1 − e−2sZ). Plugging our formula for ∇Psg

back into (2.5),

EgPtf −Egf = −∫
t

0

e−s√
1 − e−2s

E (⟨Z2,∇f(Z1)⟩g(e−sZ1 +
√

1 − e−2sZ2)) ds, (2.6)

where the expectation is over independent Gaussian vectors Z1 and Z2. Consider the inner
term for a moment. Since g is non-negative,

E (⟨Z2,∇f(Z1)⟩g(e−sZ1 +
√

1 − e−2sZ2)) ≥ ∥g∥∞Emin{0, ⟨Z2,∇f(Z1)⟩. (2.7)

Now, for any a ∈ Rn, E⟨Z2, a⟩ = 0 and E∣⟨Z2, a⟩∣ = ∣a∣
√

2/π. Hence,

Emin{0, ⟨Z2, a⟩} = −
1

2
E∣⟨Z2, a⟩∣ = −

1√
2π

∣a∣.

Applying this conditionally on Z1, we have Emin{0, ⟨Z2,∇f(Z1)⟩} ≥ − 1
√

2π
E∣∇f ∣, which we

plug into (2.7) to obtain

EgPtf −Egf ≤ ∥g∥∞√
2π
∫

t

0

e−s√
1 − e−2s

E∣∇f ∣ ds,

and the conclusion follows by computing the integral via a trigonometric substitution.

As we did following the statement of Theorem 1.5, we may approximate the indicator
function of A ⊂ Rn by a smooth function f ∶ Rn → [0,1] such that E∣∇f ∣ is bounded by
γ+n(A). Setting g = f and e−t = ρ in Theorem 2.3, we obtain an inequality on sets.

Corollary 2.4. For every measurable A ⊂ Rn,

Prρ(X ∈ A,Y /∈ A) ≤ 1√
2π

arccos(ρ)γ+n(A).
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a/r
Ir

Ir − α

a/r

Ir

Ir − α

Figure 2.1: Two plots of sin(x) showing the intervals Ir and Ir −α for different values of a/r.
In the left image, a/r is small, and so Ir and Ir −α overlap. In the right image, a/r is large,
and so Ir and Ir −α are disjoint. The interval in bold is (Ir −α) ∖ Ir; its width is either α or
∣Ir∣.

We can check the sharpness of this inequality by testing it on a half-space of measure
1/2: let A = {x ∈ Rn ∶ x1 ≤ 0}. For this A, γ+n(A) = φ(0) = 1

√

2π
. On the other hand,

Prρ(X ∈ A,Y /∈ A) = Prρ(X1 ≤ 0, Y1 ≥ 0) which, after a change of variables, is the same
as Pr(Z1 ≤ 0, Z2 ≥ −ρZ1/

√
1 − ρ2) for independent Gaussian variables Z1 and Z2. This last

quantity is just the Gaussian area of a wedge in R2 which subtends an angle of arccos(ρ).
Since the Gaussian measure is rotationally invariant and has total mass 1, the Gaussian area
of the wedge is arccos(ρ)/(2π); hence Prρ(X ∈ A,Y /∈ A) = arccos(ρ)/(2π) and so equality is
attained in Corollary 2.4.

For a half-space A with a different measure and a fixed 0 < ρ < 1, equality is not attained
in Corollary 2.4. However, in the limit as ρ→ 1, Corollary 2.4 is sharp for any half-space; we
can check this by computing in polar coordinates: setting α = arccos(ρ), we have ρ sin(θ) +√

1 − ρ2 cos(θ) = cos(α) sin(θ) + sin(α) cos(θ) = cos(θ + α) and so

Prρ(X1 ≤ a, Y1 ≥ a) = ∫
R2

1{x≤a}1{ρx+
√

1−ρ2y≥a}φ(x)φ(y) dx dy

= 1

2π ∫
∞

0
re−r

2
/2∫

2π

0
1{r sin(θ)≤a}1{r sin(θ+α)≥a} dθ dr.

Some care needs to be taken with the inner integral because there are a few possible cases.
Suppose without loss of generality that a > 0. If a/r > 1 then the inner integral is zero
because the set {r sin(θ + α) ≥ a} is empty. If a/r < 1 then the set {θ ∈ [0,2π] ∶ r sin(θ) ≥ a}
is an interval, Ir say, and the inner integral above is exactly the length of (Ir −α)∖Ir. In the
case that (Ir − α) and Ir intersect, the length of (Ir − α) ∖ Ir is α; in the case that they do
not intersect, the length is simply the length of Ir, which is π−2 arcsin(a/r). (See Figure 2.1
for an illustration of these two cases.)
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Putting these cases together,

∫
2π

0
1{r sin(θ)≤a}1{r sin(θ+α)≥a} dθ = 1{a<r} min{α,π − 2 arcsin(a/r)}.

Integrating this over r (and noting that α = π − 2 arcsin(a/r) when a/r = sin((π − α)/2) =
cos(α/2)),

2πPrρ(X1 ≤ a, Y1 ≥ a) = ∫
∞

a
min{α,π − 2 arcsin(a/r)}re−r2/2 dr

= ∫
∞

a
αre−r

2
/2 dr − ∫

a/ cos(α/2)

a
re−r

2
/2(α − π + 2 arcsin(a/r)) dr

= αe−a2/2 − ∫
a/ cos(α/2)

a
re−r

2
/2(α − π + 2 arcsin(a/r)) dr.

When ρ → 1 then α = arccos(ρ) → 0. We observe that in the last line above, the second
term is dominated by the first as α → 0. Indeed, cos(α/2) ∼ 1 − α2/8 as α → 0 and so
a/ cos(α/2) ∼ a + aα2/8. In particular, the integral in the last equation above runs over an
interval whose length is of order α2. Since the integrand is bounded, it follows that the
integral term is of order at most α2, and so it is dominated by the first term when α → 0.

Recalling that α = arccos(ρ), we have shown that

lim
ρ→1

Prρ(X1 ≤ a, Y1 ≥ a)
arccos(ρ)

= 1

2π
e−a

2
/2 = φ(a)√

2π
. (2.8)

Since γ+n({x ∶ x1 ≤ a}) = φ(a), we see that Corollary 2.4 is asymptotically sharp for the set
A = {x ∶ x1 ≤ a} as ρ → 1. This observation allows us to show why Theorem 2.1 generalizes
Theorem 1.1: take a general set A ⊂ Rn and let B = {x ∈ Rn ∶ x1 ≤ Φ−1(γn(A))} so that B
is a half-space with the same volume as A. Since Corollary 2.4 holds for any 0 < ρ < 1, it
remains true in the limit:

lim sup
ρ→1

√
2πPrρ(X ∈ A,Y /∈ A)

arccos(ρ)
≤ γ+n(A).

By Theorem 2.1 and since γn(A) = γn(B), Prρ(X ∈ B,Y /∈ B) ≤ Prρ(X ∈ A,Y /∈ A) for every
0 < ρ < 1. Hence,

lim sup
ρ→1

√
2πPrρ(X ∈ B,Y /∈ B)

arccos(ρ)
≤ lim sup

ρ→1

√
2πPrρ(X ∈ A,Y /∈ A)

arccos(ρ)
≤ γ+n(A).

By (2.8), the left hand side is equal to φ(Φ−1(γn(B))) = I(γn(A)) and so we recover Theo-
rem 1.1.
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2.3 A functional version of Borell’s inequality

In Chapter 1, we saw that the Gaussian isoperimetric inequality can be equivalently written
in a functional way (Bobkov’s inequality); the crucial point was a correspondence between
functions f ∶ Rn → [0,1] and certain sets Af ⊂ Rn+1 given by Af = {(x,xn+1) ∈ Rn+1 ∶ xn+1 ≤
Φ−1(f(x))}. Under this correspondence, Bobkov’s functional of f is exactly the surface area
of Af . If we consider the noise stability of Af instead of the surface area, what functional
will this correspond to on f? By Fubini’s theorem,

Prρ((X,Xn+1) ∈ Af , (Y,Yn+1) ∈ Ag) = Eρ (Prρ(Xn+1 ≤ Φ−1(f(X)), Yn+1 ≤ Φ−1(g(Y )) ∣X,Y )) .

Let us give a name to the inner quantity: define Jρ(x, y) = Prρ(X1 ≤ Φ−1(x), Y1 ≤ Φ−1(y));
then

Prρ((X,Xn+1) ∈ Af , (Y,Yn+1) ∈ Af) = EρJρ(f(X), g(Y )).

On the other hand, Jρ(a, b) is by definition the noise stability of a pair of parallel half-spaces
with volumes a and b; since γn+1(Af) = Ef and γn+1(Ag) = Eg, Borell’s inequality implies
the following functional inequality:

Theorem 2.5. For any measurable functions f, g ∶ Rn → [0,1] and any 0 < ρ < 1,

EρJρ(f(X), g(Y )) ≥ Jρ(Ef,Eg), (2.9)

where Jρ(x, y) = Prρ(X1 ≤ Φ−1(x), Y1 ≤ Φ−1(y)).

In order to complete the connection between Theorem 2.5 and the set version (Theo-
rem 2.1), we need to show that Theorem 2.5 implies Theorem 2.1. This follows trivially,
because Jρ(0,0) = Jρ(0,1) = Jρ(1,0) = 0 and Jρ(1,1) = 1 and so when plugging in f = 1A
and g = 1B we have Jρ(1A(X),1B(Y )) = 1{X∈A,Y ∈B}. Hence EρJρ(1A(X),1B(Y )) = Prρ(X ∈
A,Y ∈ B) and so we recover Theorem 2.1. We should point out that this correspondence be-
tween Theorem 2.1 and Theorem 2.5 is actually simpler than the analogous correspondence
for the Gaussian isoperimetric inequality, because in that case gradients were involved and
so some approximation arguments were required. One technical attraction of Gaussian noise
stability over isoperimetry is that such smoothness issues no longer arise.

After moving from a set inequality to a functional inequality we need to reconsider the
equality cases. Recall that Af is a half-space if and only if either f is the indicator of a
half-space or f takes the form Φ(⟨a, x − b⟩). Hence the following statement is equivalent to
Theorem 2.2:

Theorem 2.6. For any measurable functions f, g ∶ Rn → [0,1], if there exists 0 < ρ < 1 such
that EρJρ(f(X), g(Y )) = Jρ(Ef,Eg) then there exist a, b, d ∈ Rn such that either

f(x) = Φ(⟨a, x − b⟩) a.s.

g(x) = Φ(⟨a, x − d⟩) a.s.
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or

f(x) = 1{⟨a,x−b⟩≥0} a.s.

g(x) = 1{⟨a,x−d⟩≥0} a.s.

2.4 A semigroup proof of Borell’s inequality

Recall the Ornstein-Uhlenbeck semigroup Pt that we introduced in Section 1.3. We used
it in Section 1.4 to Bobkov’s inequality by showing that Ps

√
I2(Pt−sf) + ∣∇Pt−sf ∣2 is non-

decreasing in s. One nice feature of the functional inequality (2.9) is that the same approach
works. In [40] we showed, with Mossel, that EρJρ(Ptf(X), Ptf(Y )) is non-decreasing in t; in
this section we will reproduce that argument. One advantage of the this new approach is that
it brings the equality and near-equality cases of (2.9) within range: in the next section, we
will characterize the equality cases (i.e., prove Theorem 2.6), and we will study the question
of almost-equality in Chapter 4.

Consider the quantity
Rt = EρJρ(Ptf(X), Ptg(Y )). (2.10)

Recall that Ptf → f as t → 0 and Ptf → Ef as t →∞. Hence, Rt converges to the left hand
side of (2.9) as t → 0; as t →∞, Rt converges to the right hand side of (2.9). We will prove
Theorem 2.5 by showing that dRt

dt ≤ 0 for all t > 0.
For brevity, define ft = Ptf , gt = Ptg, vt = Φ−1 ○ ft, and wt = Φ−1 ○ gt. Let Kρ(x, y) =

Prρ(X ≤ x,Y ≤ y) so that Jρ(ft(x), gt(y)) = Kρ(vt(x),wt(y)) (we will tend to drop the
explicit mention of ρ in J and K from now on unless we need to emphasize it).

Lemma 2.7.

∂K(x, y)
∂x

= φ(x)Φ
⎛
⎝
y − ρx√
1 − ρ2

⎞
⎠

∂K(x, y)
∂y

= φ(y)Φ
⎛
⎝
x − ρy√
1 − ρ2

⎞
⎠
.

Proof. Note that (X,Y ) d= (X,ρX +
√

1 − ρ2Z), where Z is a standard Gaussian vector that

is independent from X and Y . Then Prρ(X1 ≤ x,Y1 ≤ y) = Pr(X1 ≤ x,Z1 ≤ y−ρX1
√

1−ρ2
), and so

K(x, y) = ∫
x

−∞

∫
y−ρs√
1−ρ2

−∞

φ(s)φ(t) dt ds.

Differentiating in x,

∂K(x, y)
∂x

= ∫
y−ρx√
1−ρ2

−∞

φ(x)φ(t) dt = φ(x)Φ
⎛
⎝
y − ρx√
1 − ρ2

⎞
⎠
.

This proves the first claim. The second follows because K(x, y) is symmetric in x and y.
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With Lemma 2.7 in hand, differentiating Rt is not difficult.

Lemma 2.8.

dRt

dt
= ρ

2π
√

1 − ρ2
Eρ (exp(−v

2
t +w2

t − 2ρvtwt
2(1 − ρ2)

) ∣∇vt −∇wt∣2) .

Before we prove Lemma 2.8, note that it immediately implies Theorem 2.5 because the
right hand side in Lemma 2.8 is clearly non-negative.

Proof. By the chain rule,

dRt

dt
= Eρ(Kx(vt(X),wt(Y ))dvt(X)

dt
) +Eρ(Ky(vt(X),wt(Y ))dwt(X)

dt
). (2.11)

Now, the chain rule applied to vt = Φ−1 ○ ft implies that dvt
dt = Lft

φ(vt)
. Hence, the first term

of (2.11) is

Eρ(
Kx(vt(X),wt(Y ))

φ(vt(X))
Lft(X)) = EρΦ(wt(Y ) − ρvt(X)√

1 − ρ2
)Lft(X), (2.12)

where we have used Lemma 2.7. Now we will integrate by parts; we will do so carefully
because it is easy to misplace a factor of ρ: since X and Y have covariance ρIn, we may
write the expectation in integral form as

(2.12) =∬
Rn×Rn

Φ
⎛
⎝
wt(ρx +

√
1 − ρ2z) − ρvt(x)√

1 − ρ2

⎞
⎠
Lft(x) dγn(x) dγn(z)

= − ρ√
1 − ρ2

∬ φ
⎛
⎝
wt(ρx +

√
1 − ρ2z) − ρvt(x)√

1 − ρ2

⎞
⎠
⟨∇wt −∇vt,∇ft⟩ dγn(x) dγn(z)

= − ρ√
1 − ρ2

Eρφ(
wt − ρvt√

1 − ρ2
)⟨∇wt −∇vt,∇ft⟩

= ρ√
1 − ρ2

Eρφ(
wt − ρvt√

1 − ρ2
)φ(vt)⟨∇vt −∇wt,∇vt⟩, (2.13)

where we have written, for brevity, vt and wt instead of vt(X) and wt(Y ). (The purpose
of turning the expectation into an integral and back again was to be clear about why the
factor ρ appears in front of ∇wt when we integrated the inner integral by parts.) Since K is
symmetric in its arguments, there is a similar computation for the second term of (2.11):

E(Ky(vt(X),wt(Y ))dwt(X)
dt

) = − ρ√
1 − ρ2

Eρφ(
vt − ρwt√

1 − ρ2
)φ(wt)⟨∇vt −∇wt,∇wt⟩. (2.14)

Note that the terms involving φ in (2.13) and (2.14) are actually the same:

φ(wt − ρvt√
1 − ρ2

)φ(vt) = φ(
vt − ρwt√

1 − ρ2
)φ(wt) =

1

2π
exp ( − v

2
t +w2

t − 2ρvtwt
2(1 − ρ2)

);
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hence, we can plug (2.13) and (2.14) into (2.11) to obtain

dRt

dt
= ρ

2π
√

1 − ρ2
E(exp ( − v

2
t +w2

t − 2ρvtwt
2(1 − ρ2)

)∣∇vt −∇wt∣2) .

2.5 The equality cases in Borell’s inequality

Lemma 2.8 allows us to analyze the the equality case (Theorem 2.6), with very little addi-
tional effort. The method we will pursue here is analogous to that of Carlen and Kerce [11],
which we presented in Section 1.6 to analyze the equality case in the standard Gaussian
isoperimetric problem. Suppose equality is attained in (2.9). Since dRt

dt is non-negative,
it must be zero for almost every t > 0. In particular, we may fix some t > 0 such that
dRt
dt = 0. Note that everything in Lemma 2.8 is strictly positive, except for the term
∣∇vt(X) − ∇wt(Y )∣2, which can be zero. Therefore, dRt

dt = 0 implies that ∇vt(X) = ∇wt(Y )
almost surely. Since the conditional distribution of Y given X is fully supported, ∇vt and
∇wt must be almost surely equal to some constant a′ ∈ Rn. Moreover, vt and wt are smooth
functions (because ft, gt and Φ−1 are smooth); hence, vt(x) = ⟨a′, x−b′⟩ and wt(x) = ⟨a′, x−d′⟩
for some b′, d′ ∈ Rn, and so

ft(x) = Φ(⟨a′, x − b′⟩)
gt(x) = Φ(⟨a′, x − d′⟩).

Theorem 2.6 follows by applying Lemma 1.10 to f and g separately.

2.6 The exchangeable Gaussians inequality

In this section, we will develop a more general point of view regarding the computation we
carried out in the last section. As the main application of this generalization, we re-derive
the “exchangeable Gaussians theorem” of Isaksson and Mossel [25].

Theorem 2.9. Let (X(1), . . . ,X(k)) be a mean zero Gaussian vector in Rn × ⋯ ×Rn ≅ Rkn

with covariance matrix
⎛
⎜⎜⎜
⎝

1 ρ ⋯ ρ
ρ 1 ⋱ ⋮
⋮ ⋱ ⋱ ρ
ρ ⋯ ρ 1

⎞
⎟⎟⎟
⎠
⊗ In

for some 0 < ρ < 1. Then for any sets A1, . . . ,Ak,

Pr(X(i) ∈ Ai for all i) ≤ Pr(X(i)
1 ≤ Φ−1(γn(Ai)) for all i). (2.15)

Note that this generalizes Borell’s inequality, which is recovered in the case k = 2. One
advantage of our proof over the original [25] is that we obtain a characterization of the
equality cases:



27

Theorem 2.10. If the sets A1, . . . ,Ak ⊂ Rn achieve equality in (2.15) then there exist
a, b1, . . . , bk ∈ Rn such that for all i, Ai = {x ∈ Rn ∶ ⟨a, x− bi⟩ ≥ 0} up to a set of measure zero.

Our main tool in Chapter 1 was (1.7). Note that while (1.7) dealt with a standard
Gaussian vector, in this chapter we have been discussing correlated Gaussian vectors. This
is only a superficial difference, since any correlated Gaussian vector can be constructed from
a standard Gaussian vector by a linear transformation.

Proposition 2.11. Suppose f1, . . . , fk are measurable functions Rn → [0,1] and M = (mij) ≥
0 is a k × k matrix with mii = 1. If Ψ ∶ [0,1]k → R satisfies M ⊙Hess(Ψ) ≤ 0 then

EΨ(f1(X(1)), . . . , fk(X(k))) ≤ Ψ(Ef1(X(1)), . . . ,Efk(X(k))), (2.16)

where ⊙ denotes the element-wise (or Hadamard) product, and the expectation is with respect
to a kn-dimensional Gaussian vector (X(1), . . . ,X(k)) with mean zero and covariance M⊗In.

In order to write (1.7) for non-standard Gaussian vectors, we introduce some new nota-
tion: for any f ∶ Rn → R and any n ×m matrix M , denote the function f ○M ∶ Rm → R by
fM .

Proof. Let Q = (qij) be the positive definite square root of M , and for i = 1, . . . , k, let Qi be
the n × kn matrix (qi1In ⋯ qikIn). Let Z be a standard Gaussian vector in Rkn, and note
that QZ = (Q1Z, . . . ,QkZ) is a kn-dimensional Gaussian vector with mean 0 and covariance
M ⊗ In. We consider the quantity

F (s, t, z) = PsΨ(Pt−sfQ1

1 (z1), . . . , Pt−sfQkk (zk))

for z = (z1, . . . , zk) ∈ Rkn. Since mii = 1, we have QT
i Qi = In and so

(PtfQii )(x) = ∫
Rn
f i(e−tQix +

√
1 − e−2tQiy) dγkn(y)

= ∫
Rn
f i(e−tQix +

√
1 − e−2ty) dγn(y)

= (Ptfi)Qi(x).

Hence, ∇Pt−sfQii = ∇(Pt−sfi)Qi = QT
i (∇Pt−sfi)Qi and so

⟨∇Pt−sfQii ,∇Pt−sf
Qj
j ⟩ =mij⟨(∇Pt−sfi)Qi , (∇Pt−sfj)Qi⟩.

Thus, by (1.7),

∂F (s, t, z)
∂s

= Ps
k

∑
i,j=1

⟨(∇Pt−sfi)Qi , (∇Pt−sfj)Qj⟩mij
∂2Ψ

∂xi∂xj
(Pt−sfQ1

1 , . . . , Pt−sf
Qk
k ). (2.17)

If the matrix M ⊙Hess(Ψ) is non-positive definite, then ∂F (s,t,z)
∂s ≤ 0 for every s, t and z. In

particular, limt→∞F (t, t,Z) ≤ limt→∞F (0, t, Z). But since (Q1Z, . . . ,QkZ) are distributed
as (X(1), . . . ,X(k)), EF (t, t,Z) converges to the left hand side of (2.16) and EF (0, t, Z)
converges to the right hand side.
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On attraction of this proof is that we obtain an explicit expression for the deficit in (2.16).
As for the Gaussian isoperimetric inequality, where the explicit formula (1.17) allowed us to
analyze the equality cases of Bobkov’s inequality, the expression we obtain here will allow
us to analyze the equality cases in Theorem 2.5:

Corollary 2.12. Equality is attained in (2.16) if and only if for every s > 0 and every
x = (x1, . . . , xk) in the support of (X(1), . . . ,X(n)), (∇Psf1(x1), . . . ,∇Psfk(xk)) is in the
kernel of the matrix

(mij
∂2Ψ

∂xi∂xj
(Psf1(x1), . . . , Psfk(xk)))

k

i,j=1

⊗ In.

Proof. With F (s, t, x) defined as in the previous proof, we have

EΨ(f1(X(1)), . . . , fk(X(k))) −Ψ(Ef1, . . . ,Efk) = lim
t→∞
∫

t

0
E∂F (s, t,X)

∂s
ds.

Since (as we showed in the previous proof) ∂F (s,t,z)
∂s ≤ 0 for all s, t, and z, it follows that for

equality to be attained in (2.16), we must have E∂F (s,t,Z)

∂s = 0 for all s, t, and z. Now, the
right hand side of (2.17) may be written as

∂F (s, t, z)
∂s

= vT
⎛
⎝
(mij

∂2Ψ

∂xi∂xj
(Psf1(x1), . . . , Psfk(xk)))

k

i,j=1

⊗ In
⎞
⎠
v

where vT = ((∇Pt−sf1(x1))T⋯(∇Pt−sfk(xk))T ) and xi = Qizi. Since the quadratic form above

is non-negative definite, ∂F (s,t,z)
∂s = 0 only if v belongs to its kernel.

The Hessian of Jρ and Borell’s inequality

Like (1.7), Proposition 2.11 is interesting mainly because it has interesting consequences.
Here, we consider our simplest application of Proposition 2.11: the case M = ( 1 ρ

ρ 1 ) and
Ψ = Jρ which corresponds to Theorem 2.5. (We have already proved Theorem 2.5, but we
will give a slightly different view of the proof here.)

Using Lemma 2.7 and the formula dΦ−1
dx = 1

φ(Φ−1(x)) , we apply the chain rule to obtain the
first derivatives of J :

∂J(x, y)
∂x

= Φ
⎛
⎝

Φ−1(y) − ρΦ−1(x)√
1 − ρ2

⎞
⎠

∂J(x, y)
∂y

= Φ
⎛
⎝

Φ−1(x) − ρΦ−1(y)√
1 − ρ2

⎞
⎠



29

From there, the second derivatives follow by applying the chain rule again:

∂2J(x, y)
∂x2

= − ρ

I(x)
√

1 − ρ2
φ
⎛
⎝

Φ−1(y) − ρΦ−1(x)√
1 − ρ2

⎞
⎠
= − ρψ(x, y)

2πI2(x)
√

1 − ρ2

∂2J(x, y)
∂y2

= − ρ

I(y)
√

1 − ρ2
φ
⎛
⎝

Φ−1(x) − ρΦ−1(y)√
1 − ρ2

⎞
⎠
= − ρψ(x, y)

2πI2(y)
√

1 − ρ2

∂2J(x, y)
∂x∂y

= 1

I(y)
√

1 − ρ2
φ
⎛
⎝

Φ−1(y) − ρΦ−1(x)√
1 − ρ2

⎞
⎠
= ψ(x, y)

2πI(x)I(y)
√

1 − ρ2
,

where

ψ(x, y) = exp(−Φ−2(y) − 2ρΦ−1(x)Φ−1(y) +Φ−2(x)
2(1 − ρ2)

) (2.18)

and the second equality in each line follows by expanding out the definition of φ. In the end,
we obtain the expression

(1 ρ
ρ 1

) ⊙Hess(Jρ) =
ρψ(x, y)

2π
√

1 − ρ2
(1/I(x) 0

0 1/I(y))(−1 1
1 −1

)(1/I(x) 0
0 1/I(y)) . (2.19)

Since the right hand side is non-positive, this and Proposition 2.11 give another proof of
Theorem 2.5.

Proof of the exchangeable Gaussians inequality

The exchangeable Gaussians inequality may be proved with the same logic, but slightly
more complicated calculus, than the proof of Borell’s inequality that we gave in the previous
section. First, to state the functional version of Theorem 2.9, we define

Kk(x1, . . . , xk;ρ) = Prρ(X(i)
1 ≤ xi for all i = 1, . . . , k),

where Prρ means the probability with respect to an kn-dimensional mean zero Gaussian
vector (X(1), . . . ,X(k)) with covariance

⎛
⎜⎜⎜
⎝

1 ρ ⋯ ρ
ρ 1 ⋱ ⋮
⋮ ⋱ ⋱ ρ
ρ ⋯ ρ 1

⎞
⎟⎟⎟
⎠
⊗ In.

If we define Jρ,k(x1, . . . , xk) =Kk(Φ−1(x1), . . . ,Φ−1(xk);ρ), then we have a functional version
of Theorem 2.9:

Theorem 2.13. For any measurable functions f1, . . . , fk ∶ Rn → [0,1] and any 0 < ρ < 1,

EJρ,k(f1(X(1)), . . . , fk(X(k))) ≤ Jρ,k(Ef1, . . . ,Efk)
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With Proposition 2.11 in hand, the main work in establishing Theorem 2.13 is to compute
the Hessian of Jρ,k.

Lemma 2.14.

∂Kk(x1, . . . , xk;ρ)
∂xi

= φ(xi)Kk−1

⎛
⎝
x1 − ρxi√

1 − ρ2
, . . . , î, . . . ,

xk − ρxi√
1 − ρ2

;
ρ

1 + ρ
⎞
⎠
, (2.20)

where î denotes the absence of the ith term.

Since K1(x) = Pr(X1 ≤ x) = Φ(x), Lemma 2.14 is a straightforward generalization of
Lemma 2.7.

Proof. Let Mk,ρ be the k × k matrix with 1 on the diagonal and ρ off the diagonal. Let Z =
(Z1, . . . , Zk) be a mean-zero Gaussian vector with covariance Mk,ρ; then Kk(x1, . . . , xk;ρ) =
Pr(Zj ≤ zj for all j). The standard Schur complement formula for conditional distributions
of Gaussian vectors shows that the conditional distribution of (Z2, . . . , Zk) given Z1 = x1 has
mean (ρ . . . ρ)Tx1 and covariance

Mk−1,ρ − (ρ . . . ρ)
⎛
⎜
⎝

ρ
⋮
ρ

⎞
⎟
⎠
= (1 − ρ2)Mk−1,ρ/(1+ρ).

Decomposing the probability

Kk(x1, . . . , xk;ρ) = Pr(Z1 ≤ x1, . . . , Zk ≤ xk) = Pr(Z1 ≤ x1)Pr(Z2 ≤ x2, . . . , Zk ≤ xk ∣ Z1 ≤ x1),

we have

∂Kk(x1, . . . , xk;ρ)
∂x1

= φ(x1)Pr(Z2 ≤ x2, . . . , Zk ≤ xk ∣ Z1 = x1)

= φ(x1)Pr
⎛
⎝
Z2 − ρx1√

1 − ρ2
≤ x2 − ρx1√

1 − ρ2
, . . . ,

Zk − ρx1√
1 − ρ2

≤ xk − ρx1√
1 − ρ2

∣Z1 = x1

⎞
⎠
.

But from what we said above, the conditional distribution of (Z2−ρx1, . . . , Zk−ρx1)/
√

1 − ρ2

given Z1 = x1 has mean zero and covariance Mk−1,ρ/(1+ρ). Hence, the definition of K implies
that

∂Kk(x1, . . . , xk;ρ)
∂x1

= φ(x1)Kk−1

⎛
⎝
x2 − ρx1√

1 − ρ2
, . . . ,

xk − ρx1√
1 − ρ2

;
ρ

1 + ρ
⎞
⎠
.

This proves the claim for i = 1 which, by symmetry, is enough.

By Lemma 2.14 and the chain rule, we have the first derivatives of J :

∂Jρ,k
∂xi

=Kk−1

⎛
⎝

Φ−1(x1) − ρΦ−1(xi)√
1 − ρ2

, . . . , î, . . . ,
Φ−1(xk) − ρΦ−1(xi)√

1 − ρ2
;
ρ

1 + ρ
⎞
⎠
. (2.21)
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To calculate the second derivatives of J , we apply the chain rule to (2.21) and then use
Lemma 2.14 to compute the derivative of Kk−1:

∂2Jρ,k
∂xi∂xj

= 1

I(xj)
√

1 − ρ2
φ
⎛
⎝

Φ−1(xj) − ρΦ−1(xi)√
1 − ρ2

⎞
⎠

Kk−2

⎛
⎝

Φ−1(x1) − ρ
1+ρ(Φ−1(xi) +Φ−1(xj))

√
(1 − ρ2)(1 − (ρ/(1 + ρ))2)

, . . . , î, ĵ, . . . ,
Φ−1(xk) − ρ

1+ρ(Φ−1(xi) +Φ−1(xj))
√

(1 − ρ2)(1 − (ρ/(1 + ρ))2)
⎞
⎠
.

Let pij denote the Kk−2 term in the equation above; by expanding the definition of φ and
recalling the function ψ from (2.18), we have

∂2Jρ,k
∂xi∂xj

=
ψ(xi, xj)

2πI(xi)I(xj)
√

1 − ρ2
pij.

The repeated second derivatives
∂2Jρ,k
∂x2i

are similar. There are only two differences:
in (2.20), every argument to Kk−1 contains an xi term (whereas only the jth term contained
an xj term), and each xi term comes with a −ρ factor. Thus,

∂2Jρ,k
∂x2

i

= − ρ

2πI2(xi)
√

1 − ρ2
∑
j≠i

ψ(xi, xj)pij.

Therefore,

Mk,ρ ⊙Hess(Jρ,k) =
ρ

2π
√

1 − ρ2
I(x)

⎛
⎜⎜⎜
⎝

−∑j≠1 q1j q12 ⋯ q1k

q21 −∑j≠2 q2j ⋯ q2k

⋮ ⋮ ⋱ ⋮
qk1 qk2 ⋯ −∑j≠k qkj

⎞
⎟⎟⎟
⎠
I(x) (2.22)

where qij = ψ(xi, xj)pij and I(x) is the diagonal matrix with 1/I(xi) as the i, i entry. It is
now easy to see that Mkρ ⊙Hess(Jρ,k) is non-positive: for any v ∈ Rk,

vT
⎛
⎜⎜⎜
⎝

−∑j≠1 q1j q12 ⋯ q1k

q21 −∑j≠2 q2j ⋯ q2k

⋮ ⋮ ⋱ ⋮
qk1 qk2 ⋯ −∑j≠k qkj

⎞
⎟⎟⎟
⎠
v = −∑

i≠j

qij(vi − vj)2 ≤ 0.

Since I ≥ 0, it follows from (2.22) that Mk,ρ⊙Hess(Jρ,k) ≤ 0. By Proposition 2.11, this proves
Theorem 2.13.

From here, the equality cases of Theorem 2.13 may be easily obtained. By Corollary 2.12,
the quantity of interest is

((∇Ptf1)T⋯(∇Ptfk)T ) ((Mk,ρ ⊙Hess(Jρ,k)) ⊗ In)
⎛
⎜
⎝

∇Ptf1

⋮
∇Ptfk

⎞
⎟
⎠
, (2.23)
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which for all t > 0 must be equal to zero pointwise in order to have equality in Theorem 2.13.
Writing (v1

t , . . . , v
k
t ) = (Φ−1 ○ Ptf1, . . . ,Φ−1 ○ Ptfk), we have ∇vit = ∇(Ptfi)/I(Ptfi) and so

by (2.22),

(2.23) = ρ

2π
√

1 − ρ2
((∇v1

t )T⋯(∇vkt )T )(Q⊗ In)
⎛
⎜
⎝

∇v1
t

⋮
∇vkt

⎞
⎟
⎠
,

where Q is the k × k matrix with qij off the diagonal and −∑j≠i qij as the ith diagonal entry.
Thus

(2.23) = − ρ

2π
√

1 − ρ2
∑
i≠j

qij ∣∇vit −∇v
j
t ∣2.

Now, qij is strictly positive pointwise, because qij = ψ(Ptfi, Ptfj)pij where ψ is the exponential
of some quantity and pij is Kk−2 of some quantity. Since exp and Kk−2 are strictly positive
functions, qij is strictly positive and so (2.23) can only be zero if for all i ≠ j and all t > 0, ∇vit
and ∇vjt are equal to the same constant. We have seen this condition twice already – in the
equality cases for the Gaussian isoperimetric inequality and in the equality cases of Borell’s
inequality – and it implies that there are a, b1, . . . , bk ∈ Rn such that either fi(x) = Φ(⟨a, x−bi⟩)
for all i, or fi(x) = 1{⟨a,x−bi⟩≥0} for all i. In particular, we have characterized the equality
cases of Theorem 2.13:

Theorem 2.15. For any measurable functions f1, . . . , fk ∶ Rn → [0,1], if there exists 0 < ρ < 1
such that equality holds in Theorem 2.13 then there exist a, b1, . . . , bk ∈ Rn such that either

fi(x) = Φ(⟨a, x − bi⟩) a.s. for every i

or

fi(x) = 1{⟨a,x−bi⟩≥0} a.s. for every i.

Of course, this immediately implies Theorem 2.10.
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Chapter 3

Robust Gaussian isoperimetry

For this chapter, we return to the isoperimetric inequality of Chapter 1 or, more precisely,
to Bobkov’s inequality: for all smooth f ∶ Rn → [0,1],

E
√
I2(f) + ∣∇f ∣2 ≥ I(Ef). (3.1)

In Chapter 1, we proved this inequality and studied its equality cases: recall that equality
is attained for a smooth function f if and only if f takes the form f(x) = Φ(⟨a, x− b⟩) (if we
relax the smoothness condition then there is also the limiting case f(x) = 1{⟨a,x−b⟩≥0}).

After studying the equality cases of an inequality, the next level of refinement is to
consider the cases of almost equality. Specifically, suppose there is some small δ such that

E
√
I2(f) + ∣∇f ∣2 ≤ I(Ef) + δ.

Does this imply that f is close to one of the equality cases? If this is true (and it is) then
we say that the equality cases of (3.1) are robust.

The study of robust isoperimetric inequalities goes back to Bonnesen [8], who studied
a robust version of the Euclidean isoperimetric inequality in R2; thus, robust isoperimetric
inequalities in Euclidean space are sometimes known as Bonnesen-type inequalities. In the
Gaussian case, robust isoperimetric inequalities have appeared only recently: the first result
comes from Cianchi et al. [13] in 2011.

Theorem 3.1. If A ⊂ Rn satisfies I(γn(A)) ≥ γ+n(A) − δ then there is a half-space B such
that

γn(A∆B) ≤ C(n, γn(A))
√
δ,

where C(n, r) is some function of n and r and ∆ denotes the symmetric difference.

The dependence on δ in Theorem 3.1 is sharp, but the dependence on n is certainly not:
indeed, the existence of such a C(n, r) was shown using compactness arguments and so no
upper bounds on C(n, r) are even known. This is somewhat unsatisfying, since properties
of Gaussian space are often dimension-independent. The isoperimetric inequality itself is an
example of this phenomenon, as the Gaussian isoperimetric function I does not depend on
the dimension.
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Dimension-free robustness for the isoperimetric inequality

The main result of this chapter is a robust isoperimetric inequality that is stronger in one
sense, but weaker in another sense, than Theorem 3.1. In particular, the dependence on n
is optimal (i.e. there is none), but the dependence on δ is far from it. For a smooth function
f ∶ Rn → [0,1], define

δ(f) = E
√
I2(f) + ∣∇f ∣2 − I(Ef).

Theorem 3.2. There exists a universal constant C > 0 such that for all smooth f ∶ Rn →
[0,1], there exist a, b ∈ Rn such that

E(f(X) −Φ(⟨a,X − b⟩))2 ≤ C 1√
log(1/δ(f))

.

The most interesting special case of Theorem 3.2 is when f is the indicator function of
some set. Such an f is not smooth, of course, but the arguments of Section 1.2 show that
it can be approximated by smooth functions. Thus we obtain a robustness result for the
Gaussian isoperimetric inequality: for A ⊂ Rn, define

δ(A) = γ+n(A) − I(γn(A)).

Corollary 3.3. There exists an absolute constant C such that for any measurable set A ⊂ Rn

there exists an affine half-space B such that

γn(A∆B) ≤ C 1√
log(1/δ(A))

.

The proof outline

Our starting point for the proof Theorem 3.2 is (1.18). Taking t → ∞ and setting vt =
Φ−1 ○ Ptf , (1.18) becomes

δ(f) = E
√
I2(f) + ∣∇f ∣2 − I(Ef) ≥ ∫

∞

0
E
φ(vt)∥Hess(vt)∥2

F

(1 + ∣∇vt∣2)3/2
dt. (3.2)

From here, the proof proceeds in two main steps. In the first step, we argue that for
every t > 0, vt must be close to a linear function, and so ft must be close to a function of
the form Φ(⟨a, x − b⟩). This step makes use of tools from analysis, in particular the Hölder
and reverse-Hölder inequalities, and some smoothness properties of the semigroup Pt (most
importantly, Theorem 1.7).

The second step of the proof is to show that if ft is close to a function of the form
Φ(⟨a, x − b⟩) then f is also close to a function of the same form. This is unfortunately not
true for general functions f , because Pt does not have a bounded inverse. Using a spectral
argument, we show that Pt has a bounded inverse on functions that we care about.

One remark on notation: since this chapter will generally not be concerned with the
exact value of universal constants, we will often use C and c for generic universal constants
whose value may change from line to line.
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3.1 Approximation for large t

This section is devoted to the proof of Proposition 3.4, which accomplishes the first step of
the proof outline we gave above, showing that vt can be approximated by an affine function
for some t ∈ [1,2].

Proposition 3.4. There is a universal constant C > 0 such that for any measurable f ∶ Rn →
[0,1] there exist t ∈ [1,2] and a, b ∈ Rn such that ∣a∣ ≤ Lt and

E(vt(X) − ⟨a,X − b⟩)2 ≤ C δ
1/4(f)
m(f)C

,

where vt = Φ−1 ○ (Ptf) and m(f) = (Ef)(1 −Ef).

We remark that the restriction t ∈ [1,2] is not essential; the proof that we give for
Proposition 3.4 may be carried out in greater generality for any t > 0; however, the constants
in Proposition 3.4 will then depend on t.

A second-order Poincaré inequality

In proving the equality cases of Bobkov’s inequality, we observed that if ∥Hess(vt)∥2
F vanishes

then vt must be a linear function. The first step towards Proposition 3.4 is a quantitative
version of this observation. To that end, recall Poincaré’s inequality (of which we gave a
semigroup proof in Section 1.3)

Ef 2 − (Ef)2 ≤ E∣∇f ∣2. (3.3)

If we apply (3.3) to the partial derivatives of f ∶ Rn → R, we obtain

E( ∂f
∂xi

)
2

− (E ∂f
∂xi

)
2

≤ E( ∂f
∂xi

)
2

≤
n

∑
j=1

E( ∂2f

∂xi∂xj
)

2

.

Summing over i yields E∣∇f ∣2 − ∣∇Ef ∣2 ≤ E∥Hess(f)∥2
F , and this can be combined with (3.3)

to obtain a second-order version of Poincaré’s inequality:

E(f −Ef − ⟨X,E∇f⟩)2 = Ef 2 − (Ef)2 − ∣∇Ef ∣2 ≤ E∥Hess(f)∥2
F , (3.4)

where the first equality follows because integration by parts implies that EXf(X) = E∇f ;
hence the orthogonal projection of f onto the span of linear functions is ⟨X,E∇f⟩. In
particular, (3.4) implies that functions f with E∥Hess(f)∥2

F small are close to linear. This
puts us on our way towards the first step in the proof of Theorem 3.2. Indeed, if we could
remove the φ(vt)(1 + ∣∇vt∣2)−3/2 term from the right hand side of (3.2), we would be done
already. The removal of this nuisance term is the topic of the next section.
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The reverse-Hölder inequality

We are interested in a lower bound on Eφ(vt)∥Hess(vt)∥2
F (1 + ∣∇vt∣2)−3/2. Since Theo-

rem 1.7 gives a pointwise upper bound on ∣∇vs∣, it remains to find a lower bound on
Eφ(vt)∥Hess(vt)∥2

F .

Proposition 3.5. There is a universal constant C > 0 such that for every t > 0 and every
p < 1 satisfying p/(1 − p) < L−2

t /2,

E(φ(vt)∥Hess(vt)∥2
F ) ≥ C(p−1)/pe

p−1
p
N2
t (E∥Hess(vt)∥2p

F )1/p

where Nt is a median of vt.

The first step in the proof of Proposition 3.5 is the reverse-Hölder inequality, which is
classical but perhaps not widely known: for any p < 1 and any positive functions f and g,

Efg ≥ (Efp)1/p(Egp/(p−1))(p−1)/p
. (3.5)

The reverse-Hölder inequality actually follows from the usual Hölder inequality applied to
the functions (fg)1/p and g−1/p.

The other ingredient in the proof of Proposition 3.5 is an application of the isoperimetric
inequality itself: Theorem 1.4. Indeed, Theorem 1.4 implies the following bound for an
arbitrary Lipschitz function:

Lemma 3.6. If f ∶ Rn → R is L-Lipschitz with median M then for any λ < 1,

Ee
λ

2L2 f
2
(X) ≤ 2√

1 − λ
e

λ
2(1−λ)M

2

.

In particular, recall from Theorem 1.4 that vt is Lt-Lipschitz where Lt = (e2t − 1)−1/2.
Thus if Nt is a median of vt then for all β < L−2

t /2,

Ee
β
2
v2t ≤ 2

√
2eN

2
t . (3.6)

Proof of Lemma 3.6. By Theorem 1.4, (f−M)1{f≥M} is stochastically dominated by LX11{X1≥0}.
On the other hand, Theorem 1.4 applied to −f implies that (M − f)1{f≤M} is stochastically
dominated by L∣X1∣1{X1≤0}. Hence, ∣f −M ∣ is stochastically dominated by L∣X1∣. Since the
function x↦ eλ(x+∣M ∣)

2
/2 is increasing on [0,∞),

Eeλf2/(2L2
) ≤ Eeλ(∣f−M ∣+∣M ∣)

2
/(2L2

) ≤ Eeλ(∣X1∣+∣M ∣)
2
/2 ≤ 2Eeλ(X1+∣M ∣)

2
/2,

where the last inequality holds because the distribution of X1 is symmetric, and eλ(∣x∣+a)
2
/2 ≤

eλ(x+a)
2
/2 + eλ(−x+a)2/2. By completing the square in the integral, one checks that

Ee(λ(X1+M))
2
/2 = 1√

1 − λ
e

λ
2(1−λ)M

2

.
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Now we turn to the proof of Proposition 3.5:

Proof of Proposition 3.5. Applying (3.5) shows that for every p < 1,

Eφ(vt)∥Hess(vt)∥2
F ≥ (E∥Hess(vt)∥2p

F )1/p (Eφ(vt)p/(p−1))(p−1)/p
. (3.7)

Since the first term of (3.7) is already in the form we are looking for, we turn to the second:
expanding the definition of φ, we have

(Eφ(vt)p/(p−1))(p−1)/p = 1√
2π

(E exp( p

2(1 − p)
v2
t ))

(p−1)/p

.

If p/(1 − p) < L−2
t /2 then we can apply (3.6) to bound the expectation:

(E exp( p

2(1 − p)
v2
t ))

(p−1)/p

≤ CeN2
t .

Now raise both sides to the power (p − 1)/p; since p < 1, the inequality reverses and so

(Eφ(vt)p/(p−1))(p−1)/p ≥ C(p−1)/pe
p−1
p
N2
t .

Plugging this into (3.7) completes the proof.

The mean and median of Ptf

Note that the right hand side of Proposition 3.5 depends on the median Nt of vt = Φ−1 ○Ptf .
In this section, we will relate Nt to a known quantity, namely Ef . First, note that since Φ is
a monotone function, if Mt = Φ(Nt) is a median of Ptf . In particular, it is enough to relate
the mean and median of Ptf to one another.

It is generally true that for any L-Lipschitz function of a Gaussian random variable, the
mean and the median are within CL of each other. This relationship is not helpful here,
however, since we are concerned with functions f ∶ Rn → [0,1] for which the mean and
median are automatically between zero and one. In particular, a bound on the additive
distance between Mt and Ef is relatively uninformative when Mt is very small. To see what
sort of relationship is appropriate, consider the indicator of a half-space: f(x) = 1{x≥b} for
some b > 0. Since Pt preserves expectations, EPtf = Ef = Φ(−b) for all t > 0. Since Ptf
is monotone for every t, the median of Ptf is (Ptf)(0) = Φ(−b/

√
1 − e−2t) (by Lemma 1.9).

When b is large, Φ(−b) ≈ e−b2/2; under this approximation, we have Ef ≈M1/(1−e−2t)
t .

For general functions f , we prove something which is slightly weaker than what holds in
the example above. Recall that Lt = (e2t − 1)−1/2.

Lemma 3.7. If Mt is a median of Ptf , then

Ef ≤ 2M
( 1

1+Lt )
2

t .
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Proof of Lemma 3.7. Let ft = Ptf and gt =
√

log(1/ft); take Nt to be a median of gt and let
Mt = e−N

2
t , so that Mt is a median of ft. For any α < 1,

Pr(ft ≥Mα2

t ) = Pr(gt ≤ α
√

log(1/Mt)) = Pr(gt ≤ αNt).

Assume without loss of generality that f takes values strictly between 0 and 1 (if not, we
instead consider the function x ↦ max{ε,min{1 − ε, f(x)}} for arbitrarily small ε). Since
f ∈ (0,1) implies Ptf log f < 0, the reverse log-Sobolev inequality (1.12) implies that

∣∇ft∣2 ≤ 2L2
tf

2
t log

1

ft
.

Since ∇gt = −∇ft/(2ft
√

log(1/ft)), this is equivalent to the inequality ∣∇gt∣2 ≤ Lt/2. In other
words, gt is 1

√

2
Lt-Lipschitz. By Theorem 1.4,

Pr(ft ≥Mα2

t ) = Pr(gt ≤ αNt) ≤ exp ( − (1 − α)2N2
t

L2
t

) =M
(1−α)2
L2
t

t .

Setting α = 1
1+Lt

, we have (1−α)2

L2
t

= α2. Thus, Pr(ft ≥ Mα2

t ) ≤ Mα2

t . Since ft ≤ 1, Markov’s

inequality implies that Eft ≤ 2Mα2

t .

The example f(x) = 1{x≥b} shows that Lemma 3.7 is sharp up to the factor 2 and a
constant factor in the exponent. We remark that a sharper result may be obtained by
considering gt = Φ−1 ○ ft instead of gt =

√
log(1/ft) and applying Theorem 1.7 instead of the

reverse log-Sobolev inequality. In particular, one can show that

Ef ≤ 2Φ( Φ−1(Mt)√
1 − e−2t

) ,

which is sharp up to the factor 2. Since it is more convenient to work with exponentials than
with Φ and Φ−1, and since we are not so concerned with constant factors, we will continue
to work with Lemma 3.7.

We remark that the main idea in the proof of Lemma 3.7 is that the reverse log-Sobolev
inequality may be interpreted to say that

√
log(1/ft) is Lipschitz. This fact was previously

noted by Hino [24], and was also used recently by Ledoux [32].
Since medians commute with monotone functions, Lemma 3.7 may be used to relate Ef

to a median of vt. This is in fact the main form of Lemma 3.7 that we will use, since medians
of vt will arise several times in what follows.

Corollary 3.8. If Nt is a median of vt = Φ−1 ○ Ptf , then

∣Nt∣ ≤ 2(1 +Lt)
√

log(1/m(f)),

where m(f) = Ef(1 −Ef).
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Proof. Suppose first that Nt ≤ 0, and let Mt = Φ(Nt); then Mt is a median of ft = Ptf . Since

Φ(x) ≤ e−x2/2 for all x ≤ 0, we have Mt ≤ e−N
2
t /2, which implies that ∣Nt∣ ≤

√
2 log(1/Mt).

Now, taking the logarithm in Lemma 3.7 yields

log
1

Mt

≤ (1 +Lt)2 log
1

Ef
+ log 2 ≤ (1 +Lt)2 log

1

m(f)
+ log 2 ≤ 2(1 +Lt)2 log

1

m(f)
,

where the last inequality holds because m(f) = Ef(1 − Ef) ≤ 1
4 and so log(1/m(f)) ≥ log 2.

Comparing this to Nt, we have

∣Nt∣ ≤
√

2 log(1/Mt) ≤ 2(1 +Lt)
√

log(1/m(f)).

Although we have only proved the above for Nt ≤ 0, we see immediately that it holds
unconditionally because both sides are unchanged if we replace f by 1 − f (which changes
the sign of Nt).

Second-derivative estimates

There is one more ingredient in the proof of Proposition 3.4: in order to connect Propo-
sition 3.5 with the second-order Poincaré inequality (3.4), we require an upper bound
on ∥Hess(vt)∥F . With such a bound, we can apply Hölder’s inequality to lower bound
E∥Hess(vt)∥2p

F (with p < 1) in terms of E∥Hess(vt)∥2
F . We will obtain the needed bound on

∥Hess(vt)∥F by pushing the reverse log-Sobolev inequality (1.12) to the second order. We are
grateful to Michel Ledoux for suggesting this approach, since our original proof was rather
longer.

Lemma 3.9. There is a constant C > 0 such that for any q ≥ 2 and any t > 0,

(E∥Hess(vt)∥qF )
1/q ≤ C(L2

t +Lt)(
√

log(1/m(f)) +Lt
√
q),

where Lt = (e2t − 1)−1/2.

Lemma 3.9 arises from integrating out a pointwise bound on ∥Hess(ft)∥F . This pointwise
bound may be of independent interest, since it is essentially a second-order version of the
reverse log-Sobolev inequality (specialized to functions taking values in [0,1]). Although
second-order Sobolev inequalities on Rn with the Lebesgue measure have appeared in the
literature [23], we could not find any existing work on second-order log-Sobolev inequalities
(in either direction) for Gaussian space.

Proposition 3.10. For any smooth f ∶ Rn → [0,1] and any t > 0,

∥Hess(ft)∥2
F ≤ 8f 2

t L
4
t (2 log

1

ft
+ log2 1

ft
)

where ft = Ptf . In particular, if vt = Φ−1 ○ ft then there is a universal constant C > 0 such
that

∥Hess(vt)∥2
F ≤ CL2

t (L2
t +L2

tv
2
t + v2

t ) .
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Proof. We begin with (1.11):

d

ds
Psft−s log ft−s = Ps

∣∇ft−s∣2
ft−s

. (3.8)

Now rather than applying the Cauchy-Schwarz inequality to the right-hand side of (1.11),
we apply the semigroup technique again. Specifically, we apply (1.16) with Ψ(x, y) = ∣y∣2/x.
For this function, we have

∂2Ψ

∂x2
= 2∣y∣2

x3

∂2Ψ

∂x∂yi
= −2

yi
x

∂2Ψ

∂yi∂yj
= 2

x
δij

∂Ψ

∂yi
= 2yi
x
.

After applying (1.16) and rearranging, we obtain

d

ds
Ps

∣Pt−s∇f ∣2
Pt−sf

= Ps
2

ft−s

⎛
⎝
∥Hess(ft−s) −

(∇ft−s)(∇ft−s)T
ft−s

∥
2

F

+ ∣∇ft−s∣2
⎞
⎠
. (3.9)

Next, we apply the Cauchy-Schwarz inequality to the right hand side of (3.9). In particular,

we apply the inequality (PsX)2 ≤ PsXPs X
2

Y twice, with Y = ft−s and X equal to ∥Hess(ft−s)−
(∇ft−s)(∇ft−s)T )/ft−s∥F and ∣∇ft−s∣ respectively. Thus we obtain

(3.9) ≥ 2

ft

⎛
⎝
Ps (∥Hess(ft−s) −

(∇ft−s)(∇ft−s)T
ft−s

∥
F

)
2

+ (Ps∣∇ft−s∣)2
⎞
⎠

≥ 2

ft

⎛
⎝
∥Ps Hess(ft−s) − Ps

(∇ft−s)(∇ft−s)T
ft−s

∥
2

F

+ ∣Ps∇ft−s∣2
⎞
⎠

= 2

ft

⎛
⎝
e4s ∥Hess(ft) −

(∇ft)(∇ft)T
ft−s

∥
2

F

+ e2s∣∇ft∣2
⎞
⎠
.

Applying the triangle inequality to the Frobenius norm and removing the non-negative ∣∇ft∣2
term,

(3.9) ≥ e
4s

ft
(∥Hess(ft)∥2

F − 2
∣∇ft∣4
f 2
t

) .

To complete the second-order part of the proof, we integrate (3.9) from 0 to t:

Pt
∣∇f ∣2
f

≥ Pt
∣∇f ∣2
f

− ∣∇Ptf ∣2
Ptf

≥ ∫
t

0 e
4s dt

ft
(∥Hess(ft)∥2

F − 2
∣∇ft∣4
f 2
t

)

= e
4t − 1

4ft
(∥Hess(ft)∥2

F − 2
∣∇ft∣4
f 2
t

) . (3.10)
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Now we return to (3.8). Applying the second-order bound (3.10) with t replaced by s
and f replaced by ft−s,

d

ds
Psft−s log ft−s ≥

e4s − 1

4ft
(∥Hess(ft)∥2

F − 2
∣∇ft∣4
f 2
t

)

≥ e
4s − 1

4
(
∥Hess(ft)∥2

F

ft
− 8

(e2t − 1)2
ft log2 1

ft
) , (3.11)

where the second inequality follows from the reverse log-Sobolev inequality (1.12) which,
when ft ∈ (0,1), implies that ∣∇ft∣2 ≤ 2

e2t−1f
2
t log 1

ft
. Integrating (3.11) from 0 to t gives

ft log
1

ft
≥ Pt(f log f) − ft log ft

≥ e
4t − 4t − 1

16
(
∥Hess(ft)∥2

F

ft
− 8

(e2t − 1)2
ft log2 1

ft
)

≥ (e2t − 1)2

16ft
∥Hess(ft)∥2

F −
1

2
ft log2 1

ft
,

where the second inequality follows because e4t − 4t− 1− (e2t − 1)2 = 2(e2t − 2t− 1) ≥ 0 and so
(e2t−1)2 ≤ e4t−4t−1. This may then be rearranged to yield the first claim of the proposition.

For the second claim, recall that (by the chain rule)

Hess(vt) =
Hess(ft)
I(ft)

+ vt(∇vt)(∇vt)T . (3.12)

Recall also that I(x) ∼ x
√

2 log(1/x) as x→ 0, and hence there is a universal constant C such

that x
√

log(1/x) ≤ CI(x) for all x ∈ (0,1/2]. Hence, (3.12) implies that whenever ft ≤ 1/2,

∥Hess(vt)∥2
F ≤ 2

∥Hess(ft)∥2
F

I2(ft)
+ 2v2

t ∣∇vt∣2

≤ CL4
t (1 + log

1

ft
) + 2L2

tv
2
t

where the second inequality follows from applying the first claim of the proposition to the
term involving the Hessian, and Theorem 1.7 to the term involving ∣∇vt∣. Since Φ−1(x) ∼
−
√

2 log(1/x) as x → 0, there is a universal constant C such that log(1/ft) ≤ Cv2
t whenever

ft ≤ 1/2; hence,
∥Hess(vt)∥2

F ≤ CL4
t (1 + v2

t ) + 2L2
tv

2
t (3.13)

whenever ft ≤ 1/2. But by applying the preceding argument to 1 − ft instead of ft (which
changes vt only by a sign), we see that the formula (3.13) is valid at all points, and not just
those for which ft ≤ 1/2.
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Proof of Lemma 3.9. As we mentioned before, Lemma 3.9 follows by integrating out the
bound of Proposition 3.10. Indeed, take q ≥ 1; then the triangle inequality implies that

(E∥Hess(vt)∥2q
F )1/q ≤ CL2

t (L2
t + (L2

t + 1) (E∣vt∣2q)
1/q) . (3.14)

Now, Theorem 1.7 implies that vt is Lt-Lipschitz. Hence (by Theorem 1.4) if Nt is a median
of vt then ∣vt−Nt∣/Lt is stochastically dominated by the absolute value of a Gaussian variable.
In particular,

(E∣vt∣2q))
1/q ≤ 2N2

t + 2 (E∣vt −Nt∣2q))
1/q ≤ 2N2

t +CL2
t q.

Plugging this back into (3.14) and taking square roots,

(E∥Hess(vt)∥2q
F )1/(2q) ≤ CLt(Lt + (Lt + 1)Nt + (L2

t +Lt)
√
q)

≤ CLt(Lt + (Lt + 1)
√

log(1/m(f)) + (L2
t +Lt)

√
q)

≤ CLt(Lt + 1)(
√

log(1/m(f)) +Lt
√
q),

where the second inequality follows from Corollary 3.8 and the last inequality follows because√
log(1/m(f)) is bounded away from zero. The lemma follows after replacing 2q by q.

Proof of Proposition 3.4

With all of the ingredients laid out, the proof of Proposition 3.4 follows easily.

Proof of Proposition 3.4. Fix τ > 0 large enough so that L−2
τ > 2. By (3.2) and Theorem 1.7,

δ(f) ≥ ∫
∞

0
E
φ(vs)∥Hess(vs)∥2

F

(1 + ∣∇vs∣2)3/2
ds

≥ ∫
τ+1

τ
E
φ(vs)∥Hess(vs)∥2

F

(1 +L2
s)3/2

ds

≥ c∫
τ+1

τ
Eφ(vs)∥Hess(vs)∥2

F ds

In particular, there exists t ∈ [τ, τ + 1] such that

δ(f) ≥ cEφ(vt)∥Hess(vt)∥2
F

Take p = 1
2 in Proposition 3.5; since L−2

τ /2 > 1, p satisfies the condition of Proposition 3.4.
Hence,

δ(f) ≥ ce−N2
t E (∥Hess(vt)∥F )2 ≥ cm(f)2(1+Lt)2E (∥Hess(vt)∥F )2 ≥ cm(f)CE (∥Hess(vt)∥F )2

,



43

where the second inequality follows from Corollary 3.8. Now, the Cauchy-Schwarz inequality
implies that for any random variable X ≥ 0,

EX2 = EX1/2X3/2 ≤ (EX)1/2(EX3)1/2.

With X = ∥Hess(vt)∥F , this implies

δ(f) ≥ cm(f)C
(E∥Hess(vt)∥2

F )
4

(E∥Hess(vt)∥3
F )

2

≥ cm(f)C
(E∥Hess(vt)∥2

F )
4

(
√

log(1/m(f)))6

≥ cm(f)C′ (E∥Hess(vt)∥2
F )

4
.

where the second line follows from Lemma 3.9 with q = 3 and Lt bounded by a universal
constant. The final step is to invoke (3.4): taking a = Evt and b = E∇vt, we have

E(vt(X) − ⟨a,X − b⟩)2 ≤ E∥Hess(vt)∥2
F ≤ C δ

1/4

mC
.

Note that ∣vt∣ ≤ Lt pointwise, and hence ∣a∣ ≤ Lt.

3.2 Approximation for small t

Proposition 3.4 shows that if f achieves almost-equality in (1.2) then vt – for some t not too
large – can be well approximated by a linear function. Since Φ is a contraction, this implies
that Ptf may be well approximated by a function of the form Φ(⟨a, x− b⟩). The goal of this
section is to complete the proof of Theorem 3.2 by showing that f itself can be approximated
by a function of the same form. This will be accomplished mainly with spectral techniques,
by expanding f in the Hermite basis.

Let gt(x) = Φ(⟨a, x − b⟩), where a and b satisfy the conclusion of Proposition 3.4. In
particular, ∣a∣ ≤ Lt and so by Lemma 1.10, gt is in the range of Pt and P −1

t gt is either
the indicator of a half-space or Φ composed with a linear function. Let g = P −1

t gt. Then
Proposition 3.4 implies that

E(Pt(f − g))2 = E(ft − gt)2 ≤ C δ(f)2

m(f)C
,

and our task is to prove that E(f − g)2 is small. In other words, setting h = f − g, we want
to bound Eh2 in terms of E(Pth)2. For a general function h, this is an impossible task. To
see why, consider hk(x) = sgn(sin(kx)). Then Eh2

k = 1 for all k, but for any t > 0, Pthk → 0
as k →∞. Hence E(Pthk)2 → 0, and so Eh2

k cannot be bounded in terms of E(Pthk)2.
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The key to bounding E(f − g)2 in terms of E(Pt(f − g))2 is to exploit some extra in-
formation that we have on f − g. In particular, we have assumed that f almost minimizes
Bobkov’s functional E

√
I2(f) + ∣∇f ∣2. In particular,

E∣∇f ∣ ≤ E
√
I2(f) + ∣∇f ∣2 ≤ I(Ef) + δ(f).

If we assume that δ(f) ≤ 1 (if not, then Theorem 3.2 is meaningless anyway), then E∣∇f ∣ ≤ 2.
This will allow us to exploit Theorem 2.3 in order to obtain bounds on the Hermite expansion
of f . Since Pt acts diagonally on the Hermite basis, these bounds will allow us to bound
E(f − g)2 in terms of E(Pt(f − g))2.

We should remark that for non-negative functions h, reverse hypercontractive inequalities
can be used to bound Eh2 in terms of E(Pth)2. The restriction h ≥ 0 prevents the positive and
negative parts of h from canceling out under Pt, rendering examples like hk(x) = sgn sin(kx)
impossible. For our application, however, we must consider functions that take both positive
and negative values.

Smoothness and the Hermite expansion

Recall from Chapter 1 that the Hermite polynomials Hα form an orthonormal basis of
(Rn, γn). Recall moreover that Pt acts diagonally on this basis by

PtHα = e−∣α∣tHα (3.15)

By Theorem 2.3, we observe that if E∣∇h∣ is bounded, then its Hermite coefficients decay
quickly.

Lemma 3.11. For any smooth h ∶ Rn → [−1,1] is a smooth function and h = ∑α bαHα. Then

∑
∣α∣≥N

b2
α ≤ CN−1/2E∣∇h∣

for any N ∈ {1,2, . . .}, where C is a universal constant.

Proof. By (3.15), Pth = ∑α e−∣α∣tbαHα, and so EhPth = ∑α e−∣α∣tb2
α. Hence,

∑
α

(1 − e−∣α∣t)b2
α = Eh(h − Pth) ≤ C

√
tE∣∇h∣,

where the inequality follows from Theorem 2.3 and because arccos(e−t) ≤ C
√

1 − e−t ≤ C
√
t.

If ∣α∣ ≥ 1/t then e−∣α∣t ≤ 1/e; hence

(1 − 1/e) ∑
∣α∣≥1/t

b2
α ≤ ∑

α

(1 − e−∣α∣t)b2
α ≤ C

√
tE∣∇h∣.

Now set t = 1
N .
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Since we know how the semigroup Pt acts on the Hermite basis and we know how the
Hermite coefficients of nice functions are distributed, we are in a position to bound Eh2 in
terms of E(Pth)2. Essentially, Lemma 3.11 tells us that the high coefficients don’t contribute
much to Eh2, while (3.15) tells us that the low coefficients contributing to Eh2 also contribute
to E(Pth)2.

Lemma 3.12. For any smooth h ∶ Rn → [−1,1] and any t ≥ 1,

Eh2 ≤ C(1 +E∣∇h∣)
√

t

log(1/E(Pth)2)
.

Proof. Expand h = ∑α bαHα and let ε = E(Pth)2. Then (3.15) implies that

ε = E(Pth)2 = ∑
α

e−2t∣α∣b2
α.

On the other hand, Lemma 3.11 implies that

Eh2 = ∑
α

b2
α

≤ e2t(N−1) ∑
∣α∣≤N−1

b2
αe

−2t∣α∣ + ∑
∣α∣≥N

b2
α

≤ e2t(N−1)ε +CN−1/2K, (3.16)

where K = E∣∇h∣.
Now we choose N to optimize (3.16). Let β = 1

2t log 1
ε and set N = ⌈β − 1

4t logβ⌉. Since
β > logβ and t ≥ 1, N ≥ β/2 (and in particular, N is a positive integer). Moreover, N − 1 ≤
β − 1

4t logβ and so (since e2tβ = 1/ε) e2t(N−1)ε ≤ β−1/2. Plugging these bounds on N back
into (3.16) yields

Eh2 ≤ β−1/2 +CKβ−1/2 ≤ C(1 +K)
√

t

log(1/ε)
.

Proof of Theorem 3.2

Finally, we are ready to prove Theorem 3.2. As we discussed at the beginning of the section,
we may assume that δ = δ(f) ≤ 1, which implies that E∣∇f ∣ ≤ 2. We may also assume
that m(f) ≥ log−1/2(1/δ): if not, then either Ef ≤ 2 log−1/2(1/δ) or (1 −Ef) ≤ 2 log−1/2(1/δ).
In the first case, f may be approximated well by the zero function, which in turn may be
approximated by functions of the form Φ(⟨a, x − b⟩). Specifically, for any a, b ∈ Rn with
⟨a, b⟩ > 0, Φ(⟨a, x − sb⟩) → 0 as s→∞ and so

lim
s→∞

E(f(X) −Φ(⟨a,X − sb⟩))2 = Ef 2 ≤ Ef ≤ 2√
log(1/δ)

.
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That is, if Ef ≤ 2 log−1/2(1/δ) then the conclusion of Theorem 3.2 holds trivially. A similar
argument (but with the zero function replaced by the constant function 1) holds when
(1 −Ef) ≤ 2 log−1/2(1/δ). Thus, we may assume that m(f) ≥ log−1/2(1/δ).

As in the discussion at the beginning of the section, take t ∈ [1,2] and a, b ∈ Rn satisfying
the conclusion of Proposition 3.4. Let gt(x) = Φ(⟨a, x − b⟩) and g = P −1

t gt (which exists,
recall, because ∣a∣ ≤ Lt).

By Proposition 3.4 and because Φ is a contraction,

E(gt − ft)2 ≤ E(⟨a,X − b⟩ − vt)2 ≤ C δ(f)
1/4

m(f)C
≤ δC′

,

where the last inequality follows from the assumption that m(f) ≤ log−1/2(1/δ). Set h = g−f .
Since g is Φ composed with a linear function, E∣∇g∣ ≤ φ(0) ≤ 1 and hence E∣∇h∣ ≤ E∣∇g∣ +
E∣∇f ∣ ≤ 3. By Lemma 3.12,

E(g − f)2 ≤ C√
log(1/δC′)

≤ C√
log(1/δ)

.

This completes the proof of Theorem 3.2.

Open Problems

There are two natural open problems that our work leaves unresolved. The first problem
asks for a sharp dependence on both δ and n simultaneously. In particular, we know of no
obstacle to having a dimension-independent rate of

√
δ:

Conjecture 3.13. There is a universal constant C > 0 such that for every A ⊂ Rn, there
exists a half-space B with

γn(A∆B) ≤ C
√
δ.

The second open problem asks for a generalization of our arguments to other semigroups.
Although we have not discussed it here, the Bakry-Ledoux semigroup proof of Bobkov’s
inequality generalizes to certain non-Gaussian measures. For example (and this is still not
the most general case), consider a probability measure µ on Rn with density e−V (x) for
some function V ∶ Rn → R satisfying Hess(V ) ≥ In. Bakry and Ledoux showed that such
measures also satisfy the Gaussian isoperimetric inequality: for any A ⊂ Rn, I(µ(A)) ≤
µ+(A). We could therefore ask about equality and near-equality cases of this inequality.
A fairly straightforward generalization of the Carlen-Kerce argument shows that if equality
is attained then A is a half-space and there is a one-dimensional subspace E ⊂ Rn such
that the marginal of µ on E is Gaussian. Our proof of Theorem 3.2 seems somewhat more
difficult to generalize, but it may be possible. Actually, our original proof of Theorem 3.2
in [40] contained many computations that were specific to Gaussian measures; thanks to
improvements suggested by Ledoux, most of the Gaussian-specific parts have been removed
from the proof presented here. However, some work remains to be done.
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Conjecture 3.14. Let µ be a probability measure on Rn with a density of the form e−V (x)

for some V satisfying Hess(V ) ≥ In. If µ+(A) ≤ I(µ(A)) + δ then there exist a, b ∈ Rn such
that

µ(A∆{x ∈ Rn ∶ ⟨a, x − b⟩ ≥ 0}) ≤ C
√
δ.

Moreover, the marginal of µ on span(a) is close to a Gaussian measure.

We deliberately left some vagueness in the phrase “close to a Gaussian measure,” because
we are not sure what the right notion of closeness is. We note that the one dimensional version
of this conjecture was studied by de Castro [12], who established the first part (that A must
be close to a half-space). (Although in the one-dimensional case, the correct dependence on

δ is δ/
√

log(1/δ) instead of
√
δ; this was noted already by Cianchi et al. [13])



48

Chapter 4

Robust Gaussian noise stability

In Chapter 3, we investigated the near-equality cases in the Gaussian isoperimetric inequality
from Chapter 1. In this chapter, we will consider the analogous problem for the notion of
noise sensitivity that was introduced in Chapter 2. To that end, recall that Prρ denotes the
distribution under which (X,Y ) ∈ Rn × Rn is distributed as a mean-zero Gaussian vector
with covariance ( In ρIn

ρIn In
), and recall the definition of Jρ from Section 2.3. By Theorem 2.5,

EρJρ(f(X), g(Y )) ≤ Jρ(Ef,Eg) for any f, g ∶ Rn → [0,1]; we also showed that equality is
attained only when f(x) = Φ(⟨a, x − b⟩) and g(x) = Φ(⟨a, x − d⟩) for some a, b, d ∈ Rn. The
main result of this chapter is that if equality is almost attained in Theorem 2.5, then f and
g are almost of this form. To this end, define

δ(f, g) = J(Ef,Eg) −EρJ(f(X), g(Y )). (4.1)

Theorem 4.1. For any 0 < ρ < 1, there exists C(ρ) < ∞ such that for any f, g ∶ Rn → [0,1]
there exist a, b, d ∈ Rn such that

E∣f(X) −Φ(⟨a,X − b⟩)∣ ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ

E∣g(X) −Φ(⟨a,X − d⟩)∣ ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ ,

where m = Ef(1 −Ef)Eg(1 −Eg).

The main difference between Theorem 4.1 and Theorem 3.2 (besides the fact that one
deals with noise stability and one with isoperimetry) is that the rate in Theorem 4.1 is
polynomial in δ; we do not, however, believe that the exponent of δ is optimal. We should
mention that a more careful tracking of constants in our proof would improve the exponent
of δ slightly. However, this improvement would not bring the exponent above 1

4 and it would
not prevent the exponent from approaching zero as ρ→ 1.

Although Theorem 4.1 is stated only for 0 < ρ < 1, the same result for −1 < ρ < 0
follows from certain symmetries. Indeed, one can easily check from the definition of J that
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J(x, y;ρ) = x − J(x,1 − y;−ρ). Taking expectations,

EρJ(f(X), g(Y );ρ) = Ef −EρJ(f(X),1 − g(Y );−ρ)
= Ef −E−ρJ(f(X),1 − g(−Y );−ρ).

Now, suppose that −1 < ρ < 0 and that f, g almost attain equality in Theorem 2.5:

EρJ(f(X), g(Y );ρ) ≤ J(Ef,Eg;ρ) + δ.

Setting g̃(y) = 1 − g(−y), this implies that

E−ρJ(f(X), g̃(Y );−ρ) ≥ J(Ef,Eg̃;−ρ) − δ.

Since 0 < −ρ < 1, we can apply Theorem 4.1 to f and g̃ to conclude that f and g̃ are close
to the equality cases of Theorem 2.6, and it follows that f and g are also close to one of
these equality cases. Therefore, we will concentrate for the rest of this chapter on the case
0 < ρ < 1.

Optimal dependence on ρ in the case f = g
The dependence on ρ in Theorem 4.1 is particularly interesting as ρ → 1, since it is in that
limit that Borell’s inequality recovers the Gaussian isoperimetric inequality (as we showed
in Section 2.2). As it is stated, however, Theorem 4.1 does not recover a robust version
of the Gaussian isoperimetric inequality because of its poor dependence on ρ as ρ → 1. In
particular, as ρ→ 1, the exponent of δ tends to zero and the constant C(ρ) tends to infinity.

It turns out that a poor dependence on ρ is necessary in some sense. To see this, take
n = 1, A = [2,∞) and B = [−1,0] ∪ [1,∞). If B′ = [0,∞) then B′ is a half-space with the
same measure as B; hence,

δ(A,B) = Prρ(X ∈ A,Y ∈ B′) −Pr(X ∈ A,Y ∈ B) ≤ Pr(X ∈ A,Y /∈ B).

Now, if X ∈ A and Y /∈ B then X − Y ≥ 1. But X − Y is a mean-zero Gaussian variable with
variance 2(1 − ρ), and so

δ(A,B) ≤ Prρ(X − Y ≥ 1) ≤ e−c/(1−ρ)2 .

On the other hand, the distance between B and the nearest half-space is some fixed constant.
Hence, either the exponent of δ must decay like (1− ρ)2 as ρ→ 1, or the constant in front of
δ must grow like ec/(1−ρ)

2
.

We can, however, obtain much a much better dependence on ρ if we restrict to the case
f = g. In this case, it turns out that δ(f, f) grows only like (1 − ρ)−1/2 as ρ → 1, which is
exactly the right rate for recovering the Gaussian isoperimetric inequality.
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Theorem 4.2. For every ε > 0, there is a ρ0 < 1 and a C(ε) such that for any ρ0 < ρ < 1 and
any f ∶ Rn → [0,1] with Ef = 1/2, there exists a ∈ Rn such that

E∣f(X) −Φ(⟨a,X⟩)∣ ≤ C(ε)(δ(f, f)√
1 − ρ

)
1
4
−ε

.

The requirements Ef = 1/2 and ρ0 < ρ < 1 are there for technical reasons, and we do not
believe that they are necessary (see Conjecture 4.22).

Since
√

1 − ρ ∼ arccos(ρ) as ρ → 1, we may combine Theorem 4.2 with Theorem 2.3 to
obtain a polynomial-rate, dimension-free robustness result for the Gaussian isoperimetric
inequality:

Corollary 4.3. For every ε > 0, there is a C(ε) < ∞ such that for every set A ⊂ Rn such
that γn(A) = 1/2 and A has Gaussian surface area less than 1

√

2π
+ δ, there is a half-space B

such that
P(A∆B) ≤ C(ε)δ1/4−ε.

Actually, one can prove Corollary 4.3 directly from Theorem 4.1, because in the case
γn(A) = 1/2, one doesn’t need to take ρ → 1 in order to relate Gaussian noise sensitivity to
Gaussian surface area. Indeed, recall that when γn(A) = 1/2, Corollary 2.4 achieves equality
for every ρ. Nevertheless, we will give a proof based on Theorem 4.2. The advantage of this
proof is that if Theorem 4.2 is proved without the assumption γn(A) = 1/2, then this proof
will automatically extend to that case.

Proof. There is some potential for confusion, because we have been using δ both for the gap
in the isoperimetric inequality and for the gap in Borell’s inequality. Just for the duration of
this proof, let δ be the isoperimetric deficit and let δ′ = δ′(ρ) be the gap in Borell’s inequality.
Then γ+n(A) ≤ I(γn(A)) + δ by the definition of δ. By Corollary 2.4,

Prρ(X ∈ A,Y /∈ A) ≤ arccosρ√
2π

(I(γn(A)) + δ)

and so if A′ is a half-space with γn(A′) = γn(A) then

δ′

arccosρ
=

Prρ(X ∈ A,Y /∈ A) −Prρ(X ∈ A′, Y /∈ A′)
arccosρ

≤ I(γn(A)) + δ√
2π

−
Prρ(X ∈ A′, Y /∈ A′)

arccosρ
.

By (2.8), when we take the limit as ρ→ 1, the I(γn(A)) term on the right hand side cancels
with the Prρ(X ∈ A′, Y /∈ A′) term (under the assumption γn(A) = 1/2, those two terms are
actually equal for every ρ, and so there is no need to take the limit). Hence,

lim sup
ρ→1

δ′√
1 − ρ

≤ C lim sup
ρ→1

δ′

arccosρ
≤ C ′δ.

In particular, we may take ρ large enough so that δ′/
√

1 − ρ ≤ 2C ′δ and then apply Theo-
rem 4.2.
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Note that Corollary 4.3 does not strictly improve Corollary 3.3 because of the restriction
γn(A) = 1/2. However, a resolution of the technical issues that we alluded to earlier would
remove this restriction, and would therefore go some way towards answering Conjecture 3.13.

On highly correlated functions

Let us mention one more corollary of Theorem 4.2. We have used EρJ(f(X), f(Y )) as a
functional generalization of Prρ(X ∈ A,Y ∈ A). However, Eρf(X)f(Y ) is another commonly
used functional generalization of Pρ(X ∈ A,Y ∈ A) which appeared, for example, in [33].
Since xy ≤ J(x, y) for 0 < ρ < 1, we see immediately that Theorem 2.5 holds when the left
hand side is replaced by Eρf(X)f(Y ). The equality case, however, turns out to be different:
whereas equality in Theorem 2.5 holds for f(x) = Φ(⟨a, x − b⟩), there is equality in

Eρf(X)f(Y ) ≤ Jρ(Ef,Ef) (4.2)

only when f is the indicator of a half-space. Moreover, a robustness result for (4.2) follows
fairly easily from Theorems 4.1 and 4.2. Note that Jρ(1

2 ,
1
2) = Prρ(X1 ≤ 0, Y1 ≤ 0) = 1

4 +
1

2π arcsin(ρ).

Corollary 4.4. For any 0 < ρ < 1, there is a constant C(ρ) < ∞ such that if f ∶ Rn → [0,1]
satisfies Ef = 1/2 and

Ef(X)f(Y ) ≥ 1

4
+ 1

2π
arcsin(ρ) − δ

then there is a half-space B such that

E∣f(X) − 1B(X)∣ ≤ C(ρ)δc,

where c > 0 is a universal constant.

We could also state a two-function version of Corollary 4.4, at the cost of making the
exponent depend on ρ.

Proof outline

Our proof of Theorem 4.1 has the same general outline as the proof of Theorem 3.2: take
Rt = EρJ(Ptf(X), Ptg(Y )) and consider the formula

dRt

dt
= ρ

2π
√

1 − ρ2
Eρ exp(−v

2
t +w2

t − 2ρvtwt
2(1 − ρ2)

) ∣∇vt −∇wt∣2 (4.3)

from Lemma 2.8, where vt = Φ−1 ○ Ptf and wt = Φ−1 ○ Ptg. In the first step of the proof, we
argue that for every t > 0, vt and wt must be close to linear functions, and so ft and gt must
be close to functions of the form Φ(⟨a, x− b⟩). This step has a similar proof as the analogous
step in the proof of Theorem 3.2: we split the expectation in (4.3) using the reverse Hölder
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inequality. We control one of the resulting terms using concentration and the smoothness of
Pt, and we use a type of Poincaré inequality to relate the other term to the distance between
vt and a linear function.

The second step of the proof is to show that if ft is close to a function of the form
Φ(⟨a, x− b⟩) then f is also close to a function of the same form. We cannot simply reuse the
argument of Section 3.2 for this step, because the crucial assumption (that E∣∇f ∣ is bounded)
may not hold. and spectral information. Here, we will use a geometric argument to say that
if h = 1A − 1B where B is a half-space, then E∣h∣ can be bounded in terms of E∣Pth∣. This
improved argument is essentially the reason that the rates in Theorem 4.1 are polynomial,
while the rates in Theorem 3.2 were logarithmic.

4.1 Approximation for large t

This section is the analogue of Section 3.1, but for the noise sensitivity problem instead of
the isoperimetric inequality. In this section, we will show that vt is close to linear for t > 0.
Recall the definition of δ from (4.1), and recall that Lt = (e2t − 1)−1/2.

Proposition 4.5. For any 0 < ρ < 1, and for any t > 0, there exists C(t, ρ) such that for any
f, g and for any 0 < α < 1, there exist a, b, d ∈ Rn with ∣a∣ ≤ Lt such that

E(ft(X) −Φ(⟨a,X − b⟩))2 +E(gt(X) −Φ(⟨a,X − b⟩))2

≤ C(t, ρ)(m(f)m(g))−C(t,ρ)( δ
α
)

1

1+4L2
t
/(1−ρ)

1
1+α

where m(f) = Ef(1 −Ef).

Let us observe – and this will be important when we apply Proposition 4.5 – that by
Lemma 1.10, ∣a∣ ≤ Lt implies that Φ(⟨a, ⋅⟩ − b) can be written in the form Pt+s1B for some
s > 0 and some half-space B.

The main goal of this section is to prove Proposition 4.5. The proof proceeds according
to the following steps:

• First, using a Poincaré-like inequality (Proposition 4.6) we show that if Eρ∣∇v(X) −
∇w(Y )∣2 is small then v and w are close to linear functions (with the same slope).

• In Proposition 4.8, we use the reverse Hölder inequality and some concentration prop-
erties to show that if dRt

dt is small, then Eρ∣∇vt(X)−∇wt(Y )∣2p must be small for some
p < 1.

• Using Theorem 1.7, we argue that if Eρ∣∇vt(X)−∇wt(Y )∣2p is small then Eρ∣∇vt(X)−
∇wt(Y )∣2 is also small. Thus, we can apply the Poincaré inequality mentioned in the
first bullet point, and so we obtain linear approximations for vt and wt.

This proof outline should appear somewhat familiar, because it is similar to the outline
of Proposition 3.4’s proof.



53

A Poincaré-like inequality

Recall that we proved the equality case by arguing that if dRt
dt = 0 then ∣∇vt(X)−∇wt(Y )∣ is

identically zero, so ∇vt and ∇wt must be constant and thus vt and wt must be linear. The
first step towards a robustness result is to show that if ∣∇vt(X) − ∇wt(Y )∣ is small, then vt
and wt must be almost linear, and with the same slope.

Proposition 4.6. For any smooth functions f, g ∈ L2(γn), if we set a = 1
2(E∇f +E∇g) then

for any 0 < ρ < 1,

E(f(X) − ⟨X,a⟩ −Ef)2 +E(g(X) − ⟨X,a⟩ −Eg)2 ≤
Eρ∣∇f(X) − ∇g(Y )∣2

1 − ρ
.

By testing Proposition 4.6 against quadratic polynomials, we see that it is sharp up to a
factor of 2. In fact, Proposition 4.6 may be sharpened by a factor of 2 with a slightly more
complicated argument [41]. The proof we give here is simpler, though, and it generalizes more
easily. The two ingredients are Poincaré’s inequality (1.9) and a fairly standard correlation
bound:

Lemma 4.7. For any f, g ∈ L2(γn),

Covρ(f(X), g(Y )) ≤ ρ
√

Var(f)Var(g) ≤ ρVar(f) +Var(g)
2

. (4.4)

Hence,

E(f(X)−g(X))2 ≥ (Ef −Eg)2+(1−ρ)(Var(f)+Var(g)) ≥ (1−ρ)(Ef 2+Eg2)−2EfEg. (4.5)

The property (4.4) is sufficiently useful to have its own name: a pair of random variables
(X,Y ) are said to have Rényi correlation at most ρ if for every pair of functions f, g,

Cov(f(X), g(Y )) ≤ ρ
√

Var(f)Var(g). Under this terminology, Lemma 4.7 simply says that
ρ-correlated Gaussians have Rényi correlation ρ.

Proof. Suppose without loss of generality that Ef = Eg = 0. If we expand f = ∑α fαHα and
g = ∑α gαHα in the Hermite basis, then

Ef(X)Ptg(X) = ∑
α

e−t∣α∣fαgα ≤ ∑
α

e−t∣α∣∣fαgα∣.

Now, Ef = Eg = 0 implies that f0 = g0 = 0. Hence

∑
α

e−t∣α∣∣fαgα∣ ≤ e−t∑
α

∣fαgα∣ ≤ e−t (∑
α

f 2
α∑

α

g2
α)

1/2

= e−t
√
Ef 2Eg2.

Finally, observe that with t = log(1/ρ), Ef(X)Ptg(X) = Eρf(X)g(Y ). This proves the
first inequality in (4.4); the second inequality follows because the geometric mean is larger
than the arithmetic mean. The proof of (4.5) then follows by expanding the square and
applying (4.4).
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Proof of Proposition 4.6. Assume without loss of generality that Ef = Eg = 0. We begin
with the left hand side. Integrating by parts, one checks that EXf(X) = E∇f . Hence,

E(f(X) − ⟨X,a⟩)2 = Ef 2 + ∣a∣2 − 2⟨a,E∇f⟩.

Adding to this the corresponding equation for g, we have

E(f(X) − ⟨X,a⟩)2 +E(g(X) − ⟨X,a⟩)2 = Ef 2 +Eg2 + 2∣a∣2 − 2⟨a,E∇f +E∇g⟩
= Ef 2 +Eg2 − 2∣a∣2. (4.6)

On the other hand (4.5) implies that for h1, h2 ∈ L2(γn),

E(h1(X) − h2(Y ))2

1 − ρ
≥ (Eh1 −Eh2)2 +Var(h1) +Var(h2) = Eh2

1 +Eh2
2 − 2Eh1Eh2.

Applying this to the partial derivatives of f and g, we have

Eρ∣∇f(X) − ∇g(Y )∣2
1 − ρ

≥ E∣∇f ∣2 +E∣∇g∣2 − 2⟨E∇f,E∇g⟩. (4.7)

Since Ef = Eg = 0, Poincaré’s inequality implies that Ef 2 ≤ E∣∇f ∣2 and Eg2 ≤ E∣∇g∣2, while
the Cauchy-Schwarz inequality implies that ∣a∣2 = ∣(E∇f +E∇g)/2∣2 ≥ ⟨E∇f,E∇g⟩ Hence, the
right hand side of (4.6) is at most the right hand side of (4.7).

The reverse-Hölder inequality

Recall the formula for dRt
dt given in Lemma 2.8. In this section, we will use the reverse-

Hölder inequality to split this formula into an exponential term and a term depending on
∣∇vt(X) −∇wt(X)∣. We will then use the smoothness of vt and wt to bound the exponential
term, with the following result:

Proposition 4.8. For any 0 < ρ < 1 and any t > 0, there is a c(t, ρ) > 0 such that for any
r ≤ 1

1+4L2
t /(1−ρ)

and for any f and g,

dRt

dt
≥ c(t, ρ)m2

L2
t (1+Lt)2

1−ρ (E∣∇vt(X) − ∇wt(Y )∣2r)1/r
.

The three ingredients in the proof of Proposition 4.8 are the same as the ingredients in
the proof of the isoperimetric analogue, Proposition 3.5: we use the reverse-Hölder inequal-
ity (3.5) to split the expectation, a Lipschitz concentration bound (Lemma 3.6) to control
the exponential term, and Lemma 3.7 to relate the mean and median of Ptf .

Proof of Proposition 4.8. We begin by applying the reverse-Hölder inequality (3.5) to the
equation in Lemma 2.8: for any r < 1 and β = (1 − r)/r,

dRt

dt
≥ ρ

2π
√

1 − ρ2
(Eρ exp (β v

2
t +w2

t − 2ρvtwt
2(1 − ρ2)

))
−1/β

(Eρ∣∇vt −∇wt∣2r)
1/r

. (4.8)
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Let us first consider the exponential term in (4.8). Since 2∣vtwt∣ ≤ v2
t +w2

t , we have

Eρ exp (β v
2
t +w2

t − 2ρvtwt
2(1 − ρ2)

) ≤ Eρ exp (β v
2
t +w2

t

2(1 − ρ)
)

≤ (E exp (β v2
t

1 − ρ
)E exp (β w2

t

1 − ρ
))

1/2

, (4.9)

where we used the Cauchy-Schwarz inequality in the last line. Recall from Theorem 1.7
that vt and wt are both Lt-Lipschitz. Thus, we can apply Lemma 3.6 with f = vt and
λ = 2βL2

t /(1 − ρ); we see that if λ = 2βL2
t /(1 − ρ) ≤ 1

2 , then

E exp (β v2
t

1 − ρ
) ≤ CeλM2

t ,

where Mt is a median of vt. Applying the same argument to wt and plugging the result
into (4.9), we have

Eρ exp (β v
2
t +w2

t − 2ρvtwt
2(1 − ρ2)

) ≤ Ceλ(M2
t +N

2
t ),

where Nt is a median of wt. Going back to (4.8), we have

dRt

dt
≥ cρ√

1 − ρ2
e−

λ
β
(M2

t +N
2
t )(Eρ∣∇vt −∇wt∣2r)

1/r

, (4.10)

provided that λ = 2βL2
t /(1− ρ) ≤ 1

2 . The equivalent condition on β is β ≤ 1
4(1− ρ)/L2

t , and so
the equivalent condition on r = β/(1 + β) is r ≤ 1

1+4L2
t /(1−ρ)

. Finally, we invoke Corollary 3.8

to show that

exp ( − λ
β
M2

t ) = exp ( − 2L2
tM

2
t

1 − ρ
) ≥ (cEf(1 −Ef))2

L2
t (1+Lt)2

1−ρ

(and similarly for g and Nt). Plugging this into (4.10) completes the proof.

Proof of Proposition 4.5

We are now prepared to prove Proposition 4.5 by combining Proposition 4.8 with Theorem 1.7
and Proposition 4.6. Besides combining these three results, there is a small technical obstacle:
we know only that the integral of dRt

dt is small; we don’t know anything about dRt
dt at specific

values of t. So instead of showing that vt is close to linear for every t, we will show that for
every t, there is a nearby t∗ such that vt∗ is close to linear. By ensuring that t∗ is close to t,
we will then be able to argue that vt is also close to linear.

Proof of Proposition 4.5. For any 0 < r < 1, Theorem 1.7 implies that

(Eρ∣∇vt −∇wt∣2r)
1/r ≥ (

Eρ∣∇vt −∇wt∣2
∥∇vt −∇wt∥2−2r

∞

)
1/r

≥
(Eρ∣∇vt −∇wt∣2)

1/r

(2Lt)2(1−r)/r
.
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By Proposition 4.6 applied to vt and wt, if we set a = 1
2(E∇vt +E∇wt) and we define ε(vt) =

E(vt(X) − ⟨X,a⟩ −Ev)2 (and similarly for ε(wt)), then

(ε(vt) + ε(wt))1/r ≤ (2Lt)2(1−r)/r

1 − ρ
(Eρ∣∇vt −∇wt∣2r)

1/r
.

Now we plug this into Proposition 4.8 to obtain

(ε(vt) + ε(wt))1/r ≤ C(t, ρ)m−C(t,ρ)dRt

dt
. (4.11)

Recall that δ(f, g) = ∫
∞

0
dRs
ds ds. In particular,

αt min
t≤s≤t(1+α)

dRt

dt
∣
s

≤ ∫
t(1+α)

t

dRs

ds
ds ≤ δ(f, g)

and so there is some s ∈ [t, t(1 + α)] such that dRt
dt

∣
s
≤ δ

αt . If we apply this to (4.11) with t

replaced by s and with r = 1
1+4L2

t /(1−ρ)
≤ 1

1+4L2
s/(1−ρ)

, we obtain

ε(vs) + ε(ws) ≤ C(t, ρ)m−rC(t,ρ)( δ
α
)
r

= C(t, ρ)m−C′
(t,ρ)( δ

α
)
r

.

Since Φ is Lipschitz, if we denote E(fs − Φ(⟨X,a⟩ − Evs))2 by ε(fs) (and similarly for gs),
then we have

ε(fs) + ε(gs) ≤ C(t, ρ)m−C(t,ρ)( δ
α
)
r

. (4.12)

So far, we have shown that fs and gs are close to functions of the desired form; next, we
turn our attention to ft and gt. Define ε(ft) = E(ft −P −1

s−tΦ(⟨X,a⟩ −Evs))2 and similarly for
ε(gt). By an interpolation inequality, we can compare ε(fs) and ε(ft). We will prove the
lemma after this proof is complete.

Lemma 4.9. For any t < s and any h ∈ L2(Rn, γn),

E(Pth)2 ≤ (E(Psh)2)t/s(Eh2)1−t/s
.

To complete the proof of Proposition 4.5, apply Lemma 4.9 with h = f−P −1
s Φ(⟨X,a⟩−Evs)

(note that P −1
s Φ(⟨X,a⟩−Evs) exists by Lemma 1.10, because ∣a∣ ≤ Ls). Since Eh2 ≤ sup ∣h∣ ≤ 1

and s ≤ (1 + α)t, we see that

ε(ft) = E(Pth)2 ≤ (E(Psh)2)t/s ≤ ε(fs)1/(1+α).

Applying this (and the equivalent inequality for g) to (4.12), we have

ε(ft) + ε(gt) ≤ C(t, ρ) 1
1+αm−C(t,ρ)/(1+α)( δ

α
)

r
1+α
.

Since α < 1, 1
2 ≤

1
1+α ≤ 1 and so we can absorb the power 1

1+α into the constant C(t, ρ).
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Proof of Lemma 4.9. Expand Psh in the Hermite basis as Psh = ∑ bαHα. Then

E(Psh)2 = ∑ b2
α

E(Pth)2 = ∑ b2
αe

2(s−t)∣α∣

Eh2 = ∑ b2
αe

2s∣α∣.

By Hölder’s inequality applied with the exponents s/t and s/(s − t),

E(Pth)2 = ∑ b
(s−t)/s
α e2(s−t)∣α∣b

t/s
α

≤ (∑ b2
αe

2s∣α∣)
(s−t)/s

(∑ b2
α)

t/s

= (Eh2)(s−t)/s(E(Psh)2)t/s.

4.2 Approximation for small t

After Proposition 4.5, the second step step in proving Theorem 4.1 is to show that if Ptf
and Ptg are close to the equality cases of Theorem 2.5 then f and g are also. This step
marks the main difference between this proof and the proof of Theorem 3.2. Indeed, in
Chapter 3 we used a spectral argument. That spectral argument was responsible for the
logarithmically slow rates (in δ) in Theorem 3.2, and it also required some smoothness
properties of f (namely, a bound on E∣∇f ∣) that we can no longer assume. Here, we use a
different argument that gives polynomial rates. The argument here will need the function
f to take values only in {0,1}. Thus, we will first establish Theorem 4.1 for sets; having
done so, it is not difficult to extend it to functions using the correspondence, described in
Section 1.2, between functions Rn → R and Ehrhard subsets of Rn+1.

The main goal of our argument is to bound E∣h∣ from above in terms of E∣Pth∣, for some
function h. In Section 3.2, we brought up the example hk(x) = sgn(sin(kx)) to show why
this is not possible for general h. The example of hk is problematic because there is a lot of
cancellation in Pth. The essence of this section is that for the functions h we are interested
in, there is a geometric reason – as opposed to a reason based on smoothness, as in Chapter 3
– which disallows too much cancellation. Indeed, we are interested in functions h of the form
1A − 1B where B is a half-space. The negative part of such a function is supported on B,
while the positive part is supported on Bc. As we will see, this fact allows us to bound the
amount of cancellation that occurs, and thus bound E∣h∣ in terms of E∣Pth∣:

Proposition 4.10. Let B ⊂ Rn be a half-space and A ⊂ Rn be any other set. There is an
absolute constant C such that for any t > 0,

γn(A∆B) ≤ Cmax{E∣Pt1A − Pt1B ∣, (e2t − 1)1/4
√
E∣Pt1A − Pt1B ∣},

The main idea in Proposition 4.10 is in the following lemma, which states that if a non-
negative function is supported on a half-space then Pt will push strictly less than half of its
mass onto the complementary half-space.
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Lemma 4.11. There is a constant c > 0 such that for any b ∈ R, if f ∶ Rn → [0,1] is supported
on {x1 ≤ b} then for any t > 0,

E(Ptf)1{X1≥e−tb} ≤ max{1

2
Ef − c (Ef)2

√
e2t − 1

,
3

8
Ef}.

Proof. Because Pt is self-adjoint,

E(Ptf)1{X1≥e−tb} = EfPt1{X1≥e−tb} = EfΦ( X1 − b√
e2t − 1

) .

Now, the set {b − Ef ≤ x1 ≤ b} has measure at most φ(0)Ef . In particular, Ef1{b−Ef≤x1≤b} ≤
φ(0)Ef ≤ 1

2Ef .
Let A = {x1 ≤ b−Ef} and B = {b−Ef ≤ x1 ≤ b} and recall that f is supported on {x1 ≤ b},

so that f = f(1A + 1B). Now,

Φ( x1 − b√
e2t − 1

) ≤
⎧⎪⎪⎨⎪⎪⎩

Φ( − Ef
√

e2t−1
) x ∈ A

1
2 x ∈ B

and so

EfΦ( X1 − b√
e2t − 1

) = E1AfΦ( X1 − b√
e2t − 1

) +E1BfΦ( X1 − b√
e2t − 1

)

≤ Φ(− Ef√
e2t − 1

)E1Af +
1

2
E1Bf

= 1

2
Ef − (1

2
−Φ( − Ef√

e2t − 1
))Ef1A. (4.13)

There is a constant c > 0 such that for all x ≥ 0, Φ(−x) ≤ max{1
2 − cx,

1
4}. Applying this with

x = Ef
√

e2t−1
, we have

(4.13) ≤ 1

2
Ef −Ef1A min{c Ef√

e2t − 1
,
1

4
} ≤ max{1

2
Ef − c (Ef)2

√
e2t − 1

,
3

8
Ef}

where in the last inequality, we recalled that Ef1A ≥ 1
2Ef .

Proof of Proposition 4.10. Without loss of generality, B is the half-space {x1 ≤ b}. Let f be
the positive part of 1A − 1B and let g be the negative part, so that γ(A∆B) = Ef +Eg. Note
that f is supported on Bc and g is supported on B.

Without loss of generality, Ef ≥ Eg; Lemma 4.11 implies that if Ef ≤ C
√
e2t − 1 then

2E(1BPtf + 1BcPtg) ≤ Ef +Eg − c(Ef +Eg)2

√
e2t − 1

. (4.14)
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On the other hand, if Ef ≥ C
√
e2t − 1 then

2E(1BPtf + 1BcPtg) ≤
3

4
Ef +Eg ≤ 7

8
(Ef +Eg). (4.15)

Thus,

E∣Ptf − Ptg∣ = EPtf +EPtg − 2Emin{Ptf,Ptg}
= Ef +Eg − 2Emin{Ptf,Ptg}
≥ Ef +Eg − 2E(1BPtf + 1BcPtg)

≥ min{c(Ef +Eg)2

√
e2t − 1

,
Ef +Eg

8
},

Where we have applied (4.14) and (4.15) in the last inequality. Now there are two cases,
depending on which term in the minimum is smaller: if the first term is smaller then

Ef +Eg ≤ C(e2t − 1)1/4
√
E∣Ptf − Ptg∣;

otherwise, the second term in the minimum is smaller and

Ef +Eg ≤ 8E∣Ptf − Ptg∣.

In either case,

γ(A∆B) = Ef +Eg ≤ Cmax{E∣Ptf − Ptg∣, (e2t − 1)1/4
√
E∣Ptf − Ptg∣},

as claimed.

Synchronizing the ts

Let A be an arbitrary set. If we knew that there was a half-space B such that E(Pt1A−Pt1B)2

was small, then Proposition 4.10 would imply that γn(A∆B) is small. Now, Proposition 4.5
and Lemma 1.10 imply only that that E(Pt1A −Pt+s1B)2 is small for some half-space B and
some s ≥ 0. In this section, we will argue that s must be small. Now, this is not necessarily
the case for arbitrary sets A; in fact, for any s > 0 one can find A such that E(Pt1A−Pt+s1B)2

is arbitrarily small. However, our sets A are not arbitrary: they are sets which are almost
optimally noise stable for correlation ρ. In particular, if e−t = ρ then E1APt1A is close to
E1BPt1B.

Using this extra information, the proof of robustness proceeds as follows: since E1APt1A
is close to E1BPt1B and Pt1A is close to Pt+s1B, we will show that E1BPt+s1B is close to
E1BPt1B. But we know all about B: it is a half-space. Therefore, we can find explicit and
accurate estimates for E1BPt+s1B and E1BPt1B in terms of t, s and γn(B); using them, we can
conclude that s is small. Now, if s is small then we can show (again, using explicit estimates)
that E(Pt1B−Pt+s1B)2 is small. Since E(Pt1A−Pt+s1B)2 is small (this was our starting point,
remember), we can apply the triangle inequality to conclude that E(Pt1A − Pt1B)2 is small.
Finally, we can apply Proposition 4.10 to show that E∣1A − 1B ∣ is small.
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Proposition 4.12. For every t, there is a C(t) such that the following holds. For sets
A,A′ ⊂ Rn, suppose that B,B′ ⊂ Rn are parallel half-spaces with γ(A) = γ(B), γ(A′) = γ(B′).
If there exist s, ε1, ε2 > 0 such that

E(Pt1A − Pt+s1B)2 ≤ ε21

and
E1APt1A′ ≥ E1BPt1B′ − ε2

then
(E(Pt1A − Pt1B)2)1/2 ≤ C(t) ε1 + ε2

(I(γ(A))I(γ(A′)))C(t)
,

where I(x) = φ(Φ−1(x)).

Rather than prove Proposition 4.12 all at once, we have split the part relating E(Pt1B −
Pt+s1B)2 and E1B(Pt1B′ − Pt+s1B′) into a separate lemma.

Lemma 4.13. For every t there is a C(t) such that for any parallel half-spaces B and B′,
and for every s > 0,

(E(Pt1B − Pt+s1B)2)1/2 ≤ C(t) E1B(Pt1B′ − Pt+s1B′)
(I(γ(B))I(γ(B′)))C(t)

.

Proof. First of all, one can easily check through integration by parts that for a smooth
function f ∶ R→ R,

∫
∞

b
φ(x)(Lf)(x)dx = −f ′(b)φ(b). (4.16)

By rotating B and B′, we can assume that B = {x1 ≤ a} and B′ = {x1 ≤ b}. Let Fab(t) =
E1BPt1B′ = ∫

∞

a φ(x)Φ( e−tx−b
√

1−e−2t
)dx and consider its derivative: by (4.16), if Lt = (e2t − 1)−1/2

then

F ′

ab(t) = ∫
∞

a
φ(x)LΦ( e−tx − b√

1 − e−2t
)dx

= −Ltφ(a)φ(
e−ta − b√
1 − e−2t

)

= −Lt
2π

exp ( − a
2 + b2 − 2e−tab

2(1 − e−2t)
)

≤ −Lt
2π

exp ( − a2 + b2

1 − e−2t
).

Now, Lt is decreasing in t and exp(−x/(1 − e−2t)) is increasing in t. In particular, for any
τ ∈ [t, t + s],

F ′

ab(τ) ≤ −
Lt+s
2π

exp ( − a2 + b2

1 − e−2t
).
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Hence,

Fab(t) − Fab(t + s) ≥ −smax
s≤τ≤t

F ′

ab(τ) ≥
sLt+s

2π
exp ( − a2 + b2

1 − e−2t
). (4.17)

If s is large, this is a poor bound because sLt+s decreases exponentially in s. However, when
s ≥ 1 we can instead use

Fab(t) − Fab(t + s) ≥ Fab(t) − Fab(t + 1) ≥ Lt+1

2π
exp ( − a2 + b2

1 − e−2t
). (4.18)

Equations (4.17) and (4.18) show that if E1B(Pt1B′ − Pt+s1B′) is small then s must be
small. The next step, therefore, is to control E(Pt1B − Pt+s1B)2 in terms of s. Now,

E(Pt1B − Pt+s1B)2 = E((Pt1B)2 + (Pt+s1B)2 − 2(Pt1B)(Pt+s1B))
= E1B(P2t1B + P2(t+s)1B − 2P2t+s1B)
= (Faa(2t) − Faa(2t + s)) − (Faa(2t + s) − Faa(2t + 2s))
≤ s(F ′

aa(2t) − F ′

aa(2t + 2s)), (4.19)

where the inequality follows because

F ′

aa(t) = −
Lt
2π

exp ( − (1 − e−t)a2

1 − e−2t
) = −Lt

2π
exp ( − a2

1 + e−t
)

and so F ′

aa is an increasing function. To control the right hand side of (4.19), we go to the
second derivative of F :

F ′′(t) = e2t

2π(e2t − 1)3/2
exp ( − a2

1 + e−t
) + 1

2π
√
e2t − 1

a2e−t

(1 + e−t)2
exp ( − a2

1 + e−t
)

This is decreasing in t; hence

E(Pt1B − Pt+s1B)2 ≤ s(F ′(2t) − F ′(2t + 2s)) ≤ 2s2F ′′(2t). (4.20)

We will now complete the proof by combining our upper bound on E(Pt1B − Pt+s1B)2

with our lower bounds on E1B(Pt1B′ − Pt+s1B′). First, assume that s ≤ 1. Then Lt+s ≥ Lt+1

and so (4.17) plus (4.20) implies that

(E(Pt1B − Pt+s1B)2)1/2 ≤ 2π exp ( a
2 + b2

1 − e−2t
)
√

2F ′′(2t)
Lt+1

E1B(Pt1B′ − Pt+s1B′)

= 2π1− 2
1−e−2t

√
2F ′′(2t)
Lt+1

E1B(Pt1B′ − Pt+s1B′)

(I(γ(B))I(γ(B′)))
2

1−e−2t
.

If we take C(t) ≥ max{
√

2F ′′(2t)/Lt+1,2/(1 − e−2t)} then the Lemma holds in this case. On
the other hand, if s > 1 then (4.18) implies that

2π1− 2
1−e−2t

Lt+1

E1B(Pt1B′ − Pt+s1B′)

(I(γ(B))I(γ(B′)))
2

1−e−2t
≥ 1.
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Since E(Pt1B − Pt+s1B)2 ≤ 1 trivially, the Lemma holds in this case provided that

C(t) ≥ max{1/Lt+1,2/(1 − e−2t)}.

Proof of Proposition 4.12. By the Cauchy-Schwarz inequality,

E1APt1A ≤ E1APt+s1B +
√
E(Pt1A − Pt+s1B)2 ≤ E1APt+s1B + ε1.

Moreover, E1APt+s1B ≤ E1BPt+s1B since B is a super-level set of Pt+s1B with the same volume
as A. Thus,

E1BPt1B − ε2 ≤ E1APt1A

≤ E1APt+s1B + ε1
≤ E1BPt+s1B + ε1.

By Lemma 4.13,

(E(Pt1B − Pt+s1B)2)1/2 ≤ C(t)E1B(Pt1B − Pt+s1B) ≤ C(t)(ε1 + ε2)

Finally, the triangle inequality gives

(E(Pt1A − Pt1B)2)1/2 ≤ (E(Pt1A − Pt+s1B)2)1/2 + (E(Pt1B − Pt+s1B)2)1/2

≤ ε1 +C(t)(ε1 + ε2).

Of course, 1 can be absorbed into the constant C(t).

Proof of Theorem 4.1

First, define t by e−t = ρ. We then have L2
t =

ρ2

1−ρ2 and so the exponent of δ in Proposition 4.5
becomes

1

1 + 4 ρ2

(1−ρ2)(1−ρ)

⋅ 1

1 + α
= (1 − ρ2)(1 − ρ)

1 − ρ + 3ρ2 + ρ3
⋅ 1

1 + α
. (4.21)

Of course, we can define α > 0 (depending on ρ) so that (4.21) is

η ∶= (1 − ρ2)(1 − ρ)
1 + 3ρ

.

Now suppose that f = 1A and g = 1A′ for some A,A′ ⊂ Rn. Proposition 4.5 implies that
there are a ∈ Rn and b ∈ R such that ∣a∣ ≤ Lt and

E((Pt1A)(X) −Φ(⟨a,X⟩ − b))2 ≤ C(ρ)mc(ρ)δη.

Since ∣a∣ ≤ Lt, Lemma 1.10 implies that we can find some s > 0 and a half-space B such that
Φ(⟨a, x⟩ − b) = (Pt+s1B)(x); then

E(Pt1A − Pt+s1B)2 ≤ C(ρ)mc(ρ)δη. (4.22)
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At this point, it isn’t clear that γ(A) = γ(B); however, we can ensure this by modifying B
slightly:

E(Pt1A − Pt+s1B)2 ≥ (EPt1A −EPt+s1B)2 = (γ(A) − γ(B))2.

Therefore let B̃ be a translation of B so that γ(B̃) = γ(A). By the triangle inequality,

(E(Pt1A − Pt+s1B̃)2)1/2 ≤ (E(Pt1A − Pt+s1B)2)1/2 + (E(Pt+s1B − Pt+s1B̃)2)1/2

≤ (E(Pt1A − Pt+s1B)2)1/2 + ∣γ(B) − γ(B̃)∣1/2

≤ 2(E(Pt1A − Pt+s1B)2)1/2
.

By replacing B with B̃, we can assume in (4.22) that γ(A) = γ(B) (at the cost of increasing
C(ρ) by a factor of 2).

Now we apply Proposition 4.12 with ε21 = C(ρ)mc(ρ)δη and ε2 = δ. The conclusion of
Proposition 4.12 leaves us with

(E(Pt1A − Pt1B)2)1/2 ≤ C(ρ)mc(ρ)(ε1 + ε2)
≤ C(ρ)mc(ρ)δη/2.

where we have absorbed the constant C(t) from Proposition 4.10 into C(ρ) and c(ρ). Since
E∣X ∣ ≤ (EX2)1/2 for any random variable X, we may apply Proposition 4.10:

γ(A∆B) ≤ C(ρ)
√
E∣Pt1A − Pt1B ∣

≤ C(ρ)(E(Pt1A − Pt1B)2)1/4

≤ C(ρ)mc(ρ)δη/4.

By applying the same argument to A′ and B′, this establishes Theorem 4.1 in the case that
f and g are indicator functions.

To extend the result to other functions, note that EJ(f(X), g(Y )) = EJ(1A(X̃),1A′(Ỹ ))
where X̃ and Ỹ are ρ-correlated Gaussian vectors in Rn+1, and

A = {(x,xn+1) ∈ Rn+1 ∶ xn+1 ≥ Φ−1(f(x))}
A′ = {(x,xn+1) ∈ Rn+1 ∶ xn+1 ≥ Φ−1(g(x))}.

Moreover, Ef = γn+1(A) and Eg = γn+1(A′). Applying Theorem 4.1 for indicator functions
in dimension n + 1, we find a half-space B so that

γn+1(A∆B) ≤ C(ρ)mc(ρ)δη/4. (4.23)

By slightly perturbing B, we can assume that it does not take the form {xi ≥ b} for any
1 ≤ i ≤ n; in particular, this means that we can write B in the form

B = {(x,xn+1) ∈ Rn ∶ xn+1 ≥ ⟨a, x⟩ − b}.
for some a ∈ Rn and b ∈ R. But then

γn+1(A∆B) = E∣f(X) −Φ(⟨a,X⟩ − b)∣;
combined with (4.23), this completes the proof.
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4.3 Optimal dependence on ρ

In this section, we will prove Theorem 4.2. To do so we need to improve the dependence on ρ
that appeared in Theorem 4.1. Before we begin, let us list the places where the dependence
on ρ can be improved:

1. In Proposition 4.8, we needed to control

Eρ exp (β v
2
t (X) +w2

t (Y ) − 2ρvt(X)wt(Y )
2(1 − ρ2)

).

Of course, the denominator of the exponent blows up as ρ→ 1. However, if vt = wt then
the numerator goes to zero (in law, at least) at the same rate. In this case, therefore,
we are able to bound the above expectation by an expression not depending on ρ.

2. In the proof of Proposition 4.5, we used an L∞ bound on ∣∇vt∣ and ∣∇wt∣ to show that
for some r < 1,

Eρ(∣∇vt(X) − ∇wt(Y )∣2)1/r ≤ C(t)Eρ(∣∇vt(X) − ∇wt(Y )∣2r)1/r
.

This inequality is not sharp in its ρ-dependence because when vt = wt, the left hand
side shrinks like (1−ρ)1/r as ρ→ 1, while the right hand side shrinks like 1−ρ. We can
get the right ρ-dependence by using an Lp bound on ∣∇vt(X)−∇vt(Y )∣ when applying
Hölder’s inequality, instead of an L∞ bound.

3. In applying Proposition 4.12, we were forced to take e−t = ρ. Since most of our bounds
have a (necessary) dependence on t, this causes a dependence on ρ which is not optimal.
To get around this, we will use the subadditivity property of Kane [28], and Kindler
and O’Donnell [30] to show that we can actually choose certain values of t such that
e−t is much smaller than ρ. In particular, we can take t to be quite large even when ρ
is close to 1.

Once we have incorporated the first two improvements, we will obtain a better version
of Proposition 4.5:

Proposition 4.14. For any α, t > 0, there is a constant C(t, α) such that for any f ∶ Rn →
[0,1], there exist a ∈ Rn, b ∈ R with ∣a∣ ≤ Lt such that

E(ft(X) −Φ(⟨X,a⟩ − b))2 ≤ C(t, α)m
4L2
t (1+Lt)2
1+8L2

t
−α

( δ

ρ
√

1 − ρ
)

1

1+8L2
t
−α

.

where Lt = (e2t − 1)−1/2, δ(f) = EρJ(f(X), f(Y )) − J(Ef,Ef), and m(f) = Ef(1 −Ef).
Moreover, this statement holds with a C(t, α) which, for any fixed α, is decreasing in t.

Once we have incorporated the third improvement above, we will use the arguments of
Section 4.2 to prove Theorem 4.2.



65

A better bound on the auxiliary term

First, we will tackle item 1 above. Our improved bound leads to a version of Proposition 4.8
with the correct dependence on ρ.

Proposition 4.15. Let Lt = (e2t−1)−1/2. There are constants 0 < c,C < ∞ such that for any
t > 0, if r ≤ 1

1+8L2
t

then

dRt

dt
≥ ρ√

1 − ρ2
(cm(f))4L2

t (1+Lt)
2(E∣∇vt(X) − ∇vt(Y )∣2r)

1/r

where m(f) = Ef(1 −Ef).

To obtain this improvement, we note that for a Lipschitz function v, (v(X)−v(Y ))/
√

1 − ρ
satisfies a Gaussian tail bound that does not depend on ρ:

Lemma 4.16. If v ∶ Rn → R is L-Lipschitz then

Prρ(v(X) − v(Y ) ≥ Ls
√

2(1 − ρ)) ≤ 1 −Φ(s).

In particular, if 4βL2 < 1 then

Eρ exp (β (v(X) − v(Y ))2

(1 − ρ)
) ≤ 1√

1 − 4βL2
.

Proof. Let Z1 = X+Y
2 and Z2 = X−Y

2 , so that EZ2
1 =

1+ρ
2 and EZ2

2 =
1−ρ
2 . Now we condition on

Z1: the function v(Z1 + Z2) − v(Z1 − Z2) is 2L-Lipschitz in Z2 and has conditional median
zero (because it is odd in Z2); thus

Prρ(v(Z1 +Z2) − v(Z1 −Z2) ≥ Ls
√

2(1 − ρ)∣Z1) ≤ 1 −Φ(s).

Now integrate out Z1 to prove the first claim.
Proving the second claim from the first one is a standard calculation.

Next, we use the estimate of Lemma 4.16 to prove a bound on

Eρ exp (β v
2
t (X) + v2

t (Y ) − 2ρvt(X)wt(Y )
2(1 − ρ2)

)

that is better than the one from (4.9) which was used to derive Proposition 4.8.

Lemma 4.17. There is a constant C such that for any t > 0, and for any β > 0 with 8βL2
t ≤ 1,

Eρ exp (β v
2
t (X) + v2

t (Y ) − 2ρvt(X)vt(Y )
2(1 − ρ2)

) ≤ 4e2βL2
tN

2
t ,

where Nt is a median of vt.
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Proof. We begin with the Cauchy-Schwarz inequality:

Eρ exp (β v
2
t (X) + v2

t (Y ) − 2ρvt(X)vt(Y )
2(1 − ρ2)

)

= Eρ exp (β (vt(X) − vt(Y ))2

2(1 − ρ2)
) exp (β vt(X)vt(Y )

1 + ρ
)

≤ (Eρ exp (2β
(vt(X) − vt(Y ))2

2(1 − ρ2)
))

1/2

(E exp (2β
vt(X)2

1 + ρ
))

1/2

. (4.24)

Now, recall from Theorem 1.7 that vt is Lt-Lipschitz. In particular, Lemma 4.16 implies that
if 8βL2

t ≤ 1 then the first term of (4.24) is at most
√

2. Finally, Lemma 3.6 (with λ = 4L2
tβ)

implies that the second term of (4.24) is bounded by 2
√

2e2βL2
tN

2
t .

Proof of Proposition 4.15. Take β ≤ L−2
t /8 and let r = β

1+β so that 1
r −

1
β = 1. Beginning

from (4.8) in the proof of Proposition 4.8, we can apply Lemma 4.17 to obtain

dRt

dt
≥ c ρ√

1 − ρ2
e−2L2

tN
2
t (Eρ∣∇vt(X) − ∇vt(Y )∣2r)

1/r

,

and we conclude by applying Corollary 3.8, which implies that

e−2L2
tN

2
t ≥ (cm(f))4L2

t (1+Lt)
2

.

Higher moments of ∣∇vt(X) − ∇vt(Y )∣
Here, we will carry out the second step of the plan outlined at the beginning of Section 4.3.
The main result is an upper bound on arbitrary moments of ∣∇vt(X) − ∇vt(Y )∣.

Proposition 4.18. There is a constant C such that for any t > 0 and any 1 ≤ q < ∞,

(Eρ∣∇vt(X) − ∇vt(Y )∣q)1/q ≤ C(L2
t +Lt)

√
q(1 − ρ) (

√
log(1/m(f)) +Lt

√
q) .

If we fix q and t, then the bound of Proposition 4.18 has the right dependence on ρ
(this can be tested by setting vt to be a quadratic function). In particular, we will use
Proposition 4.18 instead of the uniform bound ∣∇vt∣ ≤ Lt, which does not improve as ρ→ 1.

The main tool for the proof of Proposition 4.18 is a result of Pinelis [46], which will allow
us to relate moments of ∣∇vt(X) − ∇vt(Y )∣ to moments of ∥Hess(vt)∥F .

Theorem 4.19. Let Z and Z ′ be independent standard Gaussian vectors on Rn. Let f ∶ Rn →
Rk be a C1 function with Ef = 0, and let Df be the n × k matrix of its partial derivatives.
For any convex function Ψ ∶ Rk → Rn,

EΨ(f(Z)) ≤ EΨ(π
2
Df(Z) ⋅Z ′).
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Proof. Define Zθ = Z ′ cos θ+Z sin θ. Then Z0 = Z ′, Zπ/2 = Z and for every θ, Zθ is a standard
Gaussian vector on Rn. By the fundamental theorem of calculus,

f(Z ′) − f(Z) = ∫
π/2

0

d

dθ
f(Zθ) dθ = ∫

π/2

0
Df(Zθ) ⋅Zθ+π/2 dθ.

By Jensen’s inequality applied to the normalized Lebesgue measure on [0, π/2],

Ψ(f(Z ′) − f(Z)) ≤ 2

π ∫
π/2

0
Ψ(π

2
Df(Zθ) ⋅Zθ+π/2) dθ.

Note that for any θ, the pair (Zθ, Zθ+π/2) is equal in distribution to (Z,Z ′). Hence, taking
expectations of the above inequality,

EΨ(f(Z ′) − f(Z)) ≤ EΨ(π
2
Df(Z) ⋅Z ′) .

Since Ef = 0, Jensen’s inequality applied conditioned on Z implies that EΨ(f(Z ′)−f(Z)) ≥
EΨ(f(Z)).

It can be checked directly that for any fixed matrix A and for a standard Gaussian vector
Z ′, E∣AZ ′∣q ≤ (C√

q)q/2∥A∥F . By specializing Theorem 4.19 to the case Ψ(x) = ∣x∣q, we obtain
the following corollary:

Corollary 4.20. For any 1 ≤ q < ∞ and any smooth f ∶ Rn → R,

(E∣f(Z) − f(Z ′)∣q)1/q ≤ C√
q(E∥Df∥qF )

1/q
,

where C is a universal constant.

Proof. Define h ∶ R2n → Rk by h(x, y) = f(x) − f(y). Let Z and Z ′ be independent standard
Gaussian vectors in Rn, and set W = (Z,Z ′) so that W is a standard Gaussian in R2n.
Applying Theorem 4.19 to h with Ψ(x) = ∣x∣q, we obtain

E∣h(W )∣q ≤ CqE∣Dh(W ) ⋅W ′∣q ≤ (C√
q)qE∥Dh(W )∥qF ,

where W ′ is an independent copy of W , and the last inequality came from applying the
inequality E∣AW ′∣q ≤ (C√

q)q/2∥A∥F conditioned on W . Finally, note that E∣h(W )∣q =
E∣f(Z) − f(Z ′)∣q and

E∥Dh(W )∥qF = E∥Df(Z) −Df(Z ′)∥qF ≤ 2qE∥Df∥qF .

To go from Corollary 4.20 to Proposition 4.18 takes two steps. The first is to decompose
the ρ-correlated Gaussians X and Y in terms of independent Gaussians and apply Propo-
sition 4.18 on the result; this step is responsible for achieving the correct dependence on
ρ. The second step is to apply Lemma 3.9, the bound on E∥Hess(vt)∥qF from the previous
chapter.
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Proof of Proposition 4.18. Let Z,Z1 and Z2 be independent standard Gaussians on Rn; set
X = √

ρZ +
√

1 − ρZ1 and Y = √
ρZ +

√
1 − ρZ2 so that X and Y are standard Gaussians with

correlation ρ. Conditioned on Z, define the function

h(x) = ∇vt(
√
Z +

√
1 − ρx),

so that h(Z1) = ∇vt(X) and h(Z2) = ∇vt(Y ). Note that

(Dh)(x) =
√

1 − ρHess(vt)(
√
ρZ +

√
1 − ρx);

thus Corollary 4.20 (conditioned on Z) implies that

E(∣∇vt(X) − ∇vt(Y )∣q ∣ Z) ≤ (C
√
q(1 − ρ))qE(∥Hess(vt)(X)∥qF ∣ Z).

Integrating out Z and raising both sides to the power 1/q, we have

(E∣∇vt(X) − ∇vt(Y )∣q)1/p ≤ C
√
q(1 − ρ)(E∥Hess(vt)∥qF )

1/q
.

We conclude by applying Lemma 3.9 to the right hand side.

With the first two steps of our outline complete, we are ready to prove Proposition 4.14.
This proof is much like the proof of Proposition 4.5, except that it uses Propositions 4.15
and 4.18 in the appropriate places.

Proof of Proposition 4.14. For any non-negative random variable Z and any 0 < α < 2,
0 < r < 1, Hölder’s inequality applied with p = 2r/γ implies that

EZ2 = EZγZ2−γ ≤ (EZ2r)γ/(2r)(EZ2r(2−γ)/(2r−γ))(2r−γ)/(2r).

In particular, if we set q = 2r(2 − γ)/(2r − γ) then we obtain

(EZ2r)1/r ≥
⎛
⎜
⎝

EZ2

(EZq)(2−γ)/q
⎞
⎟
⎠

2/γ

. (4.25)

Now, set Z = ∣∇vt(X) − ∇vt(Y )∣, a = E∇vt and ε(vt) = E(vt(X) − ⟨X,a⟩ − Evt)2. Then
Proposition 4.6 implies that EZ2 ≥ 2(1 − ρ)ε(vt), while Proposition 4.18 implies that

(EZq)1/q ≤ C(L2
t +Lt)

√
q(1 − ρ) (

√
log(1/m(f)) +Lt

√
q) ;

putting these together with (4.25), we have

(EZ2r)1/r ≤
⎛
⎜⎜
⎝

2(1 − ρ)ε(vt)

(C(L2
t +Lt)

√
q(1 − ρ)(

√
log(1/m(f)) +Lt

√
q))

2−γ

⎞
⎟⎟
⎠

2/γ

= c
√

1 − ρ
⎛
⎜⎜
⎝

ε(vt)

((L2
t +Lt)

√
q(

√
log(1/m(f)) +Lt

√
q))

2−γ

⎞
⎟⎟
⎠

2/γ

.
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Now define η = 8L2
t /(1 + 8L2

t ) and choose r = 1 − η (so as to satisfy the hypothesis of
Proposition 4.8). If we then define γ = 2r − αη = 2 − (2 + α)η for some 0 < α < 1, we will find
that q = 2r 2+α

α ≤ 6/α. In particular, the last displayed quantity is at least

(1 − ρ)(cα)(2−γ)/γ ε(vt)2/γ

((L3
t + 1)

√
log(1/m(f)))(2−γ)/γ

Since (L3
t + 1)(2−γ)/γ depends only on t, we can put this all together (going back to (4.25))

to obtain

(E∣∇vt(X) − ∇vt(Y )∣2r)1/r ≥ c(t, α)(1 − ρ) ε(vt)2/γ

logC(t)(1/m(f))

= c(t, α)(1 − ρ) ε(vt)
1+8L2

t
1−4αL2

t

logC(t)(1/m(f))
.

Combined with Proposition 4.15, this implies

dRt

dt
≥ c(t)ρ

√
1 − ρ m(f)4L2

t (1+Lt)
2

logC(t)(1/m(f))
ε(vt)

1+8L2
t

1−4αL2
t

≥ c(t, α)ρ
√

1 − ρm(f)4L2
t (1+Lt)

2
+αε(vt)

1+8L2
t

1−4αL2
t , (4.26)

where the last line follows because for every α > 0 and every C, there is a C ′(α) such that for
every x ≤ 1

4 , logC(1/x) ≤ C ′(α)x−α. Now, with (4.26) as an analogue of (4.11), we complete
the proof by following that of Proposition 4.5. Let us reiterate the main steps: recalling that
δ = ∫

∞

0
dRs
ds ds, we see that for any α, t > 0, there is some s ∈ [t, t(1 + α)] so that dRt

dt
∣
s
≤ δ
αt .

By (4.26) applied with t = s, we have

ε(vs) ≤ C(t, α)m
4L2
t (1+Lt)2(1−4αL2

t )
1+8L2

t
−α

( δ

ρ
√

1 − ρ
)

1−4αL2
t

1+8L2
t .

Now, note that Φ is a contraction, and so Lemma 4.9 implies that

E(ft(X) − P −1
s−tΦ(⟨X,E∇vs⟩ −Evs))

2 ≤ C(t, α)m
4L2
t (1+Lt)2(1−4αL2

t )
1+8L2

t
−α

( δ

ρ
√

1 − ρ
)

1−4αL2
t

1+8L2
t
−α

.

By changing α and adjusting C(t, α) accordingly, we can put this inequality into the form
that was claimed in the proposition.

Finally, recall that ∣E∇vs∣ ≤ Ls by Theorem 1.7, and so P −1
s−tΦ(⟨X,E∇vs⟩ − Evs) can be

written in the form Φ(⟨X,a⟩ − b) for some a ∈ Rn, b ∈ R with ∣a∣ ≤ Lt.
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On the monitonicity of δ with respect to ρ

The final step in the proof of Theorem 4.2 is to improve the application of Lemma 4.13.
Assuming, for now, that f is the indicator function of a set A, the hypothesis of Theorem 4.2
tells us if e−t = ρ then E1APt1A is almost as large as possible; that is, it is almost as large as
E1BPt1B where B is a half-space of probability P(A). This assumption allows us to apply
Lemma 4.13, but only with t = log(1/ρ). In particular, this means that we will need to use
this value of t in Proposition 4.14, which implies a poor dependence on ρ in our final answer.

To avoid all these difficulties, we will follow Kane [28] and Kindler and O’Donnell [30]
to show if E1APt1A is almost as large as possible for t = log(1/ρ), then it is also large for
certain values of t that are larger.

Proposition 4.21. Suppose A ⊂ Rn has P(A) = 1/2. If θ = cos(k arccosρ) for some k ∈ N,
and

J(1/2,1/2;ρ) −EρJ(1A(X),1A(Y );ρ) ≤ δ
then

J(1/2,1/2; θ) −EθJ(1A(X),1A(Y ); θ) ≤ kδ

Proof. Let Z and Z ′ be independent standard Gaussians on Rn and define Zθ = Z ′ cos θ +
Z sin θ. Note that for any θ and any j ∈ N, Z(j+1)θ and Zjθ have correlation cos θ. In
particular, if θ = arccos(ρ), then the union bound implies that

Pθ(X ∈ A,Y /∈ A) = Pr(Z(0) ∈ A,Z(kθ) /∈ A)

≤
k−1

∑
j=0

Pr(Zjθ ∈ A,Z(j+1)θ /∈ A)

= kPrρ(X ∈ A,Y /∈ A). (4.27)

The remarkable thing about this inequality is that it becomes equality when A is a half-space
of measure 1/2, because in this case, Prρ(X ∈ A,Y /∈ A) = 1

2π arccos(ρ).
Recall that EρJ(1A(X),1A(Y );ρ) = Prρ(X ∈ A,Y ∈ A). Thus, the hypothesis of the

proposition can be rewritten as

(1

2
− 1

2π
arccos(ρ)) − (γn(A) −Prρ(X ∈ A,Y /∈ A)) ≤ δ,

which rearranges to read

Prρ(X ∈ A,Y /∈ A) ≤ δ + 1

2π
arccosρ.

By (4.27), this implies that

Prθ(X ∈ A,Y /∈ A) ≤ kδ + 1

2π
arccos θ,

which can then be rearranged to yield the conclusion of the proposition.
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Let us point out two deficiencies in Proposition 4.21: the requirement that P(A) = 1/2
and that k be an integer. The first of these deficiencies is responsible for the assumption
Ef = 1

2 in Theorem 4.2, and the second one prevents us from obtaining a better constant in
the exponent of δ. Both of these restrictions come from the subadditivity condition (4.27),
which only makes sense for an integer k, and only achieves equality for a half-space of
volume 1

2 . But beyond the fact that our proof fails, we have no reason not to believe that
some version of Proposition 4.21 is true without these restrictions. In particular, we make
the following conjecture:

Conjecture 4.22. There is a function k(ρ, a) such that

• for any fixed a ∈ (0,1), k(ρ, a) ∼
√

1 − ρ as ρ→ 1;

• for any fixed a ∈ (0,1), k(ρ, a) ∼ ρ as ρ→ 0; and

• for any a ∈ (0,1) and any A ⊂ Rn the quantity

J(a, a;ρ) −EρJ(1A(X),1A(Y );ρ))
k(ρ, a)

is increasing in ρ.

If this conjecture were true, it would tell us that sets which are almost optimal for some
ρ are also almost optimal for smaller ρ, where the function k(ρ, a) quantifies the almost
optimality. Note that the other direction is certainly false: sets which are almost optimal for
some ρ need not be almost optimal for larger ρ. A simple example is the set (∞,−ε] ∪ [0, ε],
which is almost optimal for fixed ρ as ε→ 0, but far from optimal if

√
1 − ρ≪ ε.

In any case, let us move on to the proof of Theorem 4.2. If the conjecture is true, then
the following proof will directly benefit from the improvement.

Proof of Theorem 4.2. We will prove the theorem when f is the indicator function of a set
A. The extension to general f follows from the same argument that was made in the proof
of Theorem 4.1.

Fix ε > 0. If ρ0 is close enough to 1 then for every ρ0 < ρ < 1, there is a k ∈ N such that
k arccos(ρ) ∈ [π2 − ε,

π
2 −

ε
2]. In particular, this means that cos(k arccos(ρ)) ∈ [c1(ε), c2(ε)],

where c1(ε) and c2(ε) converge to zero as ε→ 0. Moreover, this k must satisfy

k ≤ C(ε)
arccos(ρ)

≤ C(ε)√
1 − ρ

.

Now let θ = cos(k arccos(ρ)). By Proposition 4.21, A satisfies

J(1/2,1/2; θ) −EθJ(1A(X),1A(Y ); θ) ≤ C(ε) δ√
1 − ρ

.
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Now we will apply Proposition 4.14 with ρ replaced by θ and t = log(1/θ). Since θ ≤ c2(ε),
it follows that Lt = θ/

√
1 − θ2 ≤ c3(ε) (where c3(ε) → 0 with ε). Thus, the conclusion of

Proposition 4.14 gives us a ∈ Rn, b ∈ R such that

E((Pt1A)(X) −Φ(⟨X,a⟩ − b))2 ≤ C( δ

θ
√

(1 − θ)(1 − ρ)
)

1−c4(ε)

≤ C(ε)( δ√
1 − ρ

)
1−c4(ε)

. (4.28)

Now we apply the same small-t argument as in Theorem 4.1: Lemma 3.1 implies that
there is some s > 0 and a half-space B such that

E(Pt1A − Pt+s1B)2 ≤ C(ε)(δ/
√

1 − ρ)1−c4(ε)

and we can assume, at the cost of increasing C(ε), that P(B) = P(A). Then Proposition 4.12
implies that

E(Pt1A − Pt1B)2 ≤ C(ε)(δ/
√

1 − ρ)1−c4(ε),

and we apply Proposition 4.10 (recalling that t is bounded above and below by constants
depending on ε) to conclude that

P(A∆B) ≤ C(ε)(δ/
√

1 − ρ)1/4−c4(ε)/4.

Recall that c4(ε) is some quantity tending to zero with ε. Therefore, we can derive the claim
of the theorem from the equation above by modifying C(ε).

Finally, we will prove Corollary 4.4.

Proof of Corollary 4.4. Since xy ≤ J(x, y), the hypothesis of Corollary 4.4 implies that

EJ(f(X), f(Y )) ≥ 1

4
+ 1

2π
arcsin(ρ) − δ.

Now, consider Theorem 4.2 with ε = 1/8. If ρ > ρ0 then apply it; if not, apply Theorem 4.1.
In either case, the conclusion is that there is some a ∈ Rn such that

E∣f(X) −Φ(⟨X,a⟩)∣ ≤ C(ρ)δc.

Setting g(X) = Φ(⟨X,a⟩), Hölder’s inequality implies that

∣Eg(X)g(Y ) −Ef(X)f(Y )∣ = ∣E(g(X) − f(X))g(Y ) +Ef(X)(g(Y ) − f(Y ))∣
≤ 2E∣f − g∣.

In particular,

Eg(X)g(Y ) ≥ 1

4
+ 1

2π
arcsin(ρ) − δ −C(ρ)δc. (4.29)
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But the left hand side can be computed exactly: if ∣a∣ = (e2t−1)−1/2 and A = {x ∈ Rn ∶ x1 ≤ 0}
then

Eg(X)g(Y ) = EPt1A(X)Pt1A(Y )
= E1A(X)P2t−log(ρ)1A(X)

= 1

4
+ 1

2π
arcsin(e−2tρ)

≤ 1

4
+ 1

2π
arcsin(ρ) − 1

2π
ρ(1 − e−2t),

where the last line used the fact that the derivative of arcsin is at least 1. Combining this
with (4.29), we have

1 − e−2t ≤ C(ρ)δc (4.30)

On the other hand,

E∣g − 1A∣ = 2(1/2 −Eg1A) =
1

2
− 1

π
arcsin(e−t) ≤

√
1 − e−2t,

which combines with (4.30) to prove that E∣g−1A∣ ≤ C(ρ)δc. Applying the triangle inequality,
we conclude that

E∣f − 1A∣ ≤ E∣f − g∣ +E∣g − 1A∣ ≤ C(ρ)δc.
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Chapter 5

Applications of Gaussian noise
stability

In this chapter, we will survey some applications of Gaussian noise sensitivity in computer
science and economics. We will begin with boolean noise stability and the “majority is
stablest” theorem of Mossel, O’Donnell and Oleszkiewicz [42]. The majority is stablest
theorem has applications in computational complexity and in quantitative social choice. We
will briefly discuss one of these applications, and then go on to prove a robust version of
the majority is stablest theorem. From boolean noise stability, we will move to spherical
noise stability. Since high-dimensional Gaussian vectors behave in many ways like uniformly
random points on a sphere, we can translate our results on robust Gaussian noise stability
into statements on sufficiently high dimensional spheres. This has algorithmic implications
for Goemans and Williamson’s Max-Cut algorithm.

Since the material in this chapter is fairly wide-ranging, we will not make any particular
effort to remain self-contained. In particular, we will quote without proof the invariance
principle of Mossel et al. [39, 42] and some classical properties of spherical harmonics.

5.1 Boolean noise stability and Arrow’s theorem

Consider the boolean hypercube {−1,1}n and let ξ = (ξ1, . . . , ξn) be a uniformly random
element of it. Then the ξi are independent and Pr(ξi = 1) = Pr(ξi = −1) = 1/2. There is
a natural correlation structure on the boolean hypercube: for some parameter ρ ∈ [−1,1],
define σ = (σ1, . . . , σn) ∈ {−1,1}n by letting each σi be an independent random variable on
{−1,1} with Eσi = 0 and Eσiξi = ρ. Write Prρ for the joint distribution of σ and ξ.

For a set A ⊂ {−1,1}n, define the noise stability of A to be Prρ(ξ ∈ A,σ ∈ A). As in the
Gaussian case, we may consider the problem of choosing A to maximize the noise stability.
On the boolean hypercube, however, this problem turns out to be more complicated than
on Rn with the Gaussian measure. In particular, the boolean hypercube is not rotationally
invariant, so different half-spaces have different properties. For example, the half-space
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{x ∈ {−1,1}n ∶ x1 ≤ 0} has measure 1/2 and noise stability (1 + ρ)/4, while the half-space
{x ∈ {−1,1}n ∶ ∑xi ≤ 0} has measure 1/2 (at least, for odd n), and by the central limit
theorem its noise stability converges to Jρ(1/2,1/2) = 1

4 +
1

2π arcsin(ρ). Since arcsin is concave
on [0,1], the subcube {x ∈ {−1,1}n ∶ x1 ≤ 0} is more noise stable than the Hamming ball
{x ∈ {−1,1}n ∶ ∑xi ≤ 0}.

It turns out to be profitable to consider a more restricted problem that excludes examples
like the subcube. For a function f ∶ {−1,1}n → [0,1], we define the influence of the ith
coordinate by

Infi(f) = EVar(f(ξ1, . . . , ξn) ∣ ξ1, . . . , ξi−1, ξi+1, . . . , ξn).

In particular, if the range of f is {0,1} then Infi(f) is the probability that changing the ith
coordinate will change the output of f . The influence can also be written in terms of the
Fourier expansion:

Infi(f) = ∑
S∋i

∣S∣f̂ 2
S. (5.1)

Note that if f(x) = x1 then Inf1(f) = 1, while Infi(f) = 0 for i ≠ 1. On the other hand,
if f(x) = sgn(∑xi) (we will call this example the “majority function” for obvious reasons)
then Infi(f) = O(n−1/2) for every i. In what follows, we will restrict ourselves to functions
in which every variable has low influence. Intuitively, such functions do not depend much
on any single variable. Our example above showed that the majority function is not the
most noise stable zero-mean function, because the function f(x) = x1 is more noise stable.
Remarkably, if we restrict to functions of low influence then the majority function is – in an
appropriate asymptotic sense – the most noise stable zero-mean function.

Denote the noise stability of f ∶ {−1,1}n → [0,1] by

Sρ(f) = Eρf(ξ)f(σ).

Theorem 5.1. For every δ > 0, there is a τ > 0 such that the following holds: suppose that
f ∶ {−1,1}n → [0,1] is a function with Infi(f) ≤ τ for every i. Then for every 0 < ρ < 1,

Sρ(f) ≤ Jρ(Ef,Ef) +C(ρ)δ. (5.2)

If, moreover, there is some 0 < ρ < 1 such that

Sρ(f) ≥ Jρ(Ef,Ef) − δ (5.3)

then there exist a, b ∈ Rn such that

E∣f(ξ) − 1{⟨a,ξ−b⟩≥0}∣ ≤ C(ρ)δc(ρ), (5.4)

where 0 < c(ρ),C(ρ) < ∞ are constants depending only on ρ.

If we set an = 1
√
n
(1, . . . ,1) and bn = Φ−1(Ef)an, then the central limit theorem implies

that E1{⟨an,ξ−bn⟩≤0} → Ef and Sρ(1{⟨an,ξ−bn⟩≤0}) → J(Ef,Ef ;ρ). In the case Ef = 1
2 and

bn = 0, (5.2) says, therefore, that no low-influence function can be much more noise stable
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than the simple majority function, while (5.4) says that any low-influence function which
is close to optimal must be a perturbation of some weighted majority function. We should
mention that (5.2) is due to Mossel et al. [42], while (5.4) is our contribution.

We remark that Theorem 5.1 is not stated in the most general form that we can prove.
In particular, we could state a two-function version of Theorem 5.1 or a version that uses the
functional EρJρ(f(ξ), f(σ)) in place of Eρf(ξ)f(σ). These variations, however, are proved
in essentially the same way, namely by combining the ideas from [42] with the appropriate
Gaussian robustness result. In order to avoid repetition, therefore, we will only state and
prove one version.

Arrow’s theorem

Before proving Theorem 5.1, let us discuss an application: in economics, Arrow’s theorem [1]
says that any non-dictatorial election system between three candidates which satisfies two
natural properties (namely, the “independence of irrelevant alternatives” and “neutrality”)
has a chance of producing a non-rational outcome. (By non-rational outcome, we mean
that there are three candidates, A, B and C say, such that candidate A is preferred to
candidate B, B is preferred to C and C is preferred to A.) Kalai [26, 27] showed that
if the election system is such that each voter has only a small influence on the outcome,
then the probability of a non-rational outcome is substantial. From Theorem 5.1, we will
see that the simple majority system minimizes the chance of a non-rational outcome, and
that an election system with an almost-minimal chance of non-rationality must be close to
a weighted majority system.

In order to state the result precisely, we need to introduce some notation from social
choice theory. For k ≥ 2, let L(k) be the set of linear orderings on {1, . . . , k}. A social
choice function for n voters on k candidates is a function (L(k))n → L(k). Intuitively, each
voter provides a ranking on the candidates, and the social choice function aggregates these
rankings into a single global ranking.

We say that a social choice function is a dictatorship if there is some i ∈ {1, . . . , n} such
that f(r1, . . . , rn) depends only on ri. That is, a dictatorship listens only to the opinion of
the ith voter. Such a social choice function is generally considered undesirable in the theory
of social choice.

For an ordering r = (r(1) > r(2) > ⋅ ⋅ ⋅ > r(k)) ∈ L(k), and a permutation π ∶ {1, . . . , k} →
{1, . . . , k}, write π(r) for the order (π(r(1)) > ⋅ ⋅ ⋅ > π(r(k))). We say that a social choice
function f is neutral if for all permutations π and all n-tuples (r1, . . . , rn) ∈ (L(k))n, we have
π(f(r1, . . . , rn)) = f(π(r1), . . . , π(rn)). In other words, f has no built-in preference for any
candidates: if we rename the candidates then we only rename the outcome.

Next, we define the independence of irrelevant alternatives (IIA) property. Intuitively,
a social choice function satisfies IIA if for any pair of candidates a, b ∈ {1, . . . , k}, the final
ordering of a and b depends only the voters’ preferences between a and b. More precisely, if
r1, r′1, . . . , rn, r

′

n ∈ L(k) are such that for every i, ri ranks a above b if and only if r′i ranks a
above b, then f(r1, . . . , rn) ranks a above b if and only if f(r′1, . . . , r′n) ranks a above b. This
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assumption can be motivated in several ways. For example, Arrow motivates it by arguing
that if a candidate dies after the votes are cast, then the fact that they merely appeared on
the ballot should not affect the relative ranking of the other candidates. Another motivation
is that the IIA property rules out the possibility of “spoiler” third-party candidates.

An ideal social choice function would not be a dictatorship, it would be neutral, and
independent alternatives would be irrelevant. Arrow showed, however, that this ideal is
impossible:

Theorem 5.2. Suppose f is a social choice function on n ≥ 3 voters and k ≥ 3 alternatives
which is neutral and satisfies IIA. Then f is a dictatorship.

We can get a different view of Arrow’s theorem by considering generalized social choice
functions. A generalized social choice function is not constrained to take values in L(k);
instead of producing a linear order, it produces a collection of pairwise preferences. That
is, a generalized social choice function is a map from L(k)n to the set of total, asymmetric
binary relations on {1, . . . , k}. Since every linear order is a total, asymmetric binary relation,
every social choice function is a generalized social choice function. But when k ≥ 3, not every
generalized social choice function is a social choice function.

The definitions of neutrality, dictatorship, and IIA extend naturally to generalized social
choice functions. Suppose, then, that f is a generalized social choice function which is
neutral and satisfies IIA. By Arrow’s theorem, either f is a dictatorship or it fails to be a
social choice function: there exists some voting profile r1, . . . , rn such that f(r1, . . . , rn) is
not a linear order. Kalai [26, 27] considered a quantitative version of this claim: if f is far
from a dictatorship, must there be many voting profiles that result in something that is not
a total order? Equivalently, if r1, . . . , rn are chosen independently and uniformly at random
from L(k), could it be that f(r1, . . . , rn) is a total order with high probability? Note that
Theorem 5.2 only asserts the existence of a single voting profile that fails to produce a linear
order. It still leaves open the possiblity that we could construct a generalized social choice
function that is far from a dictatorship, satisfies IIA, and for which only one out of (k!)n
voting profiles fails to produce a linear order. Such a generalized social choice function would
still be quite attractive to social choice theorists.

Unfortunately, no such function exists. Moreover, the answer is closely related to The-
orem 5.1. To explain why, let us point out a different characterization of the IIA property:
for a total binary relation R and for a, b ∈ {1, . . . , k}, let Ra>b ∈ {−1,1} be 1 if and only if
aRb. Then f satisfies IIA if and only if for every a, b ∈ {1, . . . , k} there exists an antisym-
metric function ga,b ∶ {−1,1}n → {−1,1} such that f(r1, . . . , rn)a>b = ga,b(ra>b1 , . . . , ra>bn ). This
is simply another way of saying that the ordering f puts on a and b depends only on the
ordering that the voters put on a and b. Under the additional assumption that f is neutral,
the function ga,b must be the same for all a, b ∈ {1, . . . , k}.

Now suppose without loss of generality that k = 3 (under IIA, any generalized social choice
function on k ≥ 3 candidates induces a generalized social choice function on any subset of the
candidates). The following two observations allow us to reduce our question on generalized
social choice functions to a question on the noise sensitivity of boolean functions:
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1. If r is a uniformly random element of L(3) and a, b, c are distinct elements of {1,2,3}
then ra>b and rb>c satisfy Era>b = Erb>c = 0 and Era>brb>c = −1/3.

2. A total, symmetric binary relation R on {a, b, c} is a linear order if and only if Ra>b,Rb>c,
and Rc>a are not all equal. Equivalently,

1 +Ra>bRb>c +Rb>cRc>a +Rc>aRa>b

4
=
⎧⎪⎪⎨⎪⎪⎩

0 if R is a linear order

1 otherwise.

Hence, if f is any neutral generalized social choice function satisfying IIA, g ∶ {−1,1}n →
{−1,1} is the associated pairwise function, and r is a uniformly random element of L(k)n,
then

Pr(f(r) /∈ L(3)) = E1 + fa>b(r)f b>c(r) + f b>c(r)f c>a(r) + f c>a(r)fa>b(r)
4

= E1 + g(ra>b)g(rb>c) + g(rb>c)g(rc>a) + g(rc>a)g(ra>b)
4

= 1

4
+ 3

4
S−1/3(g).

Hence, we obtain the following theorem as an immediate corollary of Theorem 5.1.

Theorem 5.3. For any ε > 0, there exists τ > 0 such that the following holds. Let f be a
neutral generalized social choice function on 3 candidates that satisfies IIA. If for all dictator
functions g, Pr(f = g) ≤ τ , then

Pr(f /∈ L(3)) ≥ 1

4
− 3

2π
arcsin(1/3) − ε. (5.5)

Moreover, if

Pr(f /∈ L(3)) ≤ 1

4
− 3

2π
arcsin(1/3) + ε

then there exists v ∈ Rn such that

E∣g(σ) − sgn(⟨v, σ⟩)∣ ≤ Cεc, (5.6)

where C and c are positive universal constants.

Since 1
4 −

3
2π arcsin(1/3) ≈ 8.77%, (5.5) implies that every IIA and neutral generalized

social choice function which is far from dictatorial has a reasonable chance of producing a
non-linear ranking as its outcome. Moreover, (5.6) implies that essentially the only functions
which get close to this bound are those that use a weighted majority vote to decide between
each pair of candidates.

Social choice functions are often assumed to satisfy an additional constraint, anonymity,
which requires a social choice function to be invariant under permutations of voters. Under
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this additional assumption (5.6) implies that g must actually be close to a simple (i.e.,
unweighted) majority function. Remarkably, the generalized social choice function which
makes pairwise decisions by the simple majority vote was the first such function to be
mathematically studied: in 1785, the Marquis de Condorcet [14] observed that pairwise
majority voting could result in a relation that is not a linear order; this phenomenon is
widely known as “Condorcet’s paradox.” From this historical viewpoint, Theorem 5.3 is
somewhat surprising since it says that in some sense, Condorcet’s voting method is the best
way to obtain a linear order on the candidates.

The proof of Theorem 5.1

We begin the proof of Theorem 5.1 by recalling some Fourier-theoretic properties of {−1,1}n.
For more background on the Fourier analysis of boolean functions, see the lecture notes by
O’Donnell [45]. For S ⊂ [n], define χS ∶ {−1,1}n → {−1,1} by χS(x) = ∏i∈S xi. Then
{χS ∶ S ⊂ [n]} form an orthonormal basis of L2({−1,1}n). We will write f̂S for the coefficients
of f in this basis; that is,

f(x) = ∑
S⊂[n]

f̂SχS(x). (5.7)

Recall that Prρ denotes the distribution on {−1,1}n × {−1,1}n under which (ξi, σi)ni=1 are
independent, Eρξi = Eρσi = 0, and Eρξiσi = 1. Define the Bonami-Beckner semigroup Qt by

(Qtf)(ξ) = Ee−t(f(σ) ∣ ξ).

In terms of the Fourier expansion, one can check that

Qtf = ∑
S⊂[n]

e−t∣S∣f̂SχS. (5.8)

Also, Qt is a self-adjoint operator, and it satisfies

Eρf(ξ)g(σ) = Ef(ξ)(Qlog(1/ρ)g)(ξ) = Eg(ξ)(Qlog(1/ρ)f)(ξ). (5.9)

The invariance principle

Note that any function f ∶ {−1,1}n → R can be extended to a multilinear function Rn → R
through the Fourier expansion (5.7): since χS(x) is defined for all x ∈ Rn, we may define
g(x) for x ∈ Rn by g(x) = ∑S f̂SχS(x). We will say that g is the multilinear extension of
f ; note that g and f agree on {−1,1}n, thereby justifying the term “extension.” A word of
caution: we will sometimes define functions f ∶ {−1,1}n → R by formulas that make sense
on all of Rn (for example, f(x) = 1{⟨a,x−b⟩≥0}). In such a case, the multilinear extension of f
is not the same as the function 1{⟨a,x−b⟩≥0} ∶ Rn → R.

Let us remark on some well-known and important properties of multlinear polynomials.
First of all, let (X,Y ) ∈ Rn × Rn be a mean-zero Gaussian vector with covariance matrix
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( In ρIn
ρIn In

), as it was in the last chapter. Since Eξi = EXi = 0, Eξ2
i = EX2

i = 1, and Eρξiσi =
EρXiYi = ρ, it is trivial to check that for multilinear functions f and g,

Ef(ξ) = Ef(X)
Ef 2(ξ) = Ef 2(X)

Eρf(ξ)g(σ) = Eρf(X)g(Y ). (5.10)

Recall the Ornstein-Uhlenbeck semigroup from Chapter 1; by (1.14) and (5.8), it follows
that if f is a multilinear polynomial then for any t > 0, Qtf and Ptf are equal (as multilinear
polynomials). In particular, there is no ambiguity in using the notation ft for both Ptf and
Qtf .

Despite these similarities, f(X) and f(ξ) can have very different distributions in general
(for example, if f(x) = x1). The main technical result of [42] is that when f has low influence
and t > 0, then ft(X) and ft(ξ) have similar distributions. We will quote a rather weaker
statement then the one proved in [42], which will nevertheless be sufficient for our purposes.
In particular, we will only need to know that if g(ξ) takes values in [0,1], then g(X) mostly
takes values in [0,1]. Before stating the theorem from [42], let us introduce some notation:
for a function f taking values in R, let f̄ be its truncation which takes values in [0,1]:

f̄(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if f(x) < 0

f(x) if 0 ≤ f(x) ≤ 1

1 if 1 < f(x).

Theorem 5.4. Suppose f is a multilinear polynomial such that f(ξ) ∈ [0,1] for all ξ ∈
{−1,1}n. If f satisfies maxi Infi(f) ≤ τ then for any η > 0,

E(fη(X) − fη(X))2 ≤ Cτ cη (5.11)

We will now use Theorem 5.4 to prove Theorem 5.1. First, (5.11) and the triangle
inequality imply that for any 0 < ρ′ < 1,

Eρ′fη(X)fη(Y ) ≤ Eρ′fη(X)fη(Y ) +Cτ cη. (5.12)

By (5.10) and (5.9),

Eρ′fη(X)fη(Y ) = Eρ′fη(ξ)fη(σ) = Ee−2ηρ′f(ξ)f(σ). (5.13)

Now set ρ′ = e2ηρ (assuming that η is small enough so that e2ηρ < 1). By (5.13) and (5.12),

Eρf(ξ)f(σ) = Eρ′fη(X)fη(Y ) ≤ Eρ′fη(X)fη(Y ) +Cτ cη. (5.14)

Applying Theorem 2.5 to fη, we see that Eρf(ξ)f(σ) ≤ Jρ′(Efη,Efη) + Cτ cη. Now, Theo-
rem 5.4 implies that ∣Efη − Ef ∣ ≤ Cτ cη, and the derivatives of Jρ(x,x) in both x and ρ can
be bounded by a constant depending only on ρ; hence,

Jρ′(Efη,Efη) ≤ Jρ(Ef,Ef) +C(ρ)(∣ρ − ρ′∣ + ∣Efη −Ef ∣) ≤ Jρ(Ef,Ef) +C(ρ)(η +Cτ cη).
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Plugging this into (5.14), we have Eρf(ξ)f(σ) ≤ Jρ(Ef,Ef), which proves (5.2).
Next, we prove (5.4). Under our assumption that Eρf(ξ)f(σ) ≥ Jρ(Ef,Ef) − δ, (5.14)

implies that

Eρ′fη(X)fη(Y ) ≥ Jρ(Ef,Ef) −Cτ cη − δ
≥ Jρ(Efη,Efη) −Cτ cη − δ
≥ Jρ′(Efη,Efη) −C(ρ)η −Cτ cη − δ,

where the second inequality follows because ∣Ef − Efη ∣ ≤ Cτ c
η

and ∂J(x,y;ρ)
∂x is bounded.

Applying Theorem 4.1 (with ρ′ in place of ρ) to fη, we see that there are a, b ∈ Rn such that

E(fη(X) − 1{⟨a,X−b⟩≥0})2 ≤ C(ρ)(η + τ cη + δ)c(ρ).

By (5.11) and the triangle inequality, we may replace fη by fη:

E(fη(X) − 1{⟨a,X−b⟩≥0})2 ≤ C(ρ)(η + τ cη + δ)c(ρ). (5.15)

The next step is to pull (5.15) back to the discrete cube by replacing X with ξ on the
left hand side of (5.15). We will do this using Theorem 5.4. As a prerequisite, we need
to show that 1{⟨a,x−b⟩≥0} has small influences; this is essentially the same as saying that a is
well-spread:

Lemma 5.5. There is an a ∈ Rn satisfying (5.15) with ∑a2
i = 1 and maxi ∣ai∣ ≤ Cτ c.

Once we have shown that 1{⟨a,x−b⟩≥0} has small influences, we can use Theorem 5.4 to
show that the multilinear extension of 1{⟨a,x−b⟩≥0} is close to 1{⟨a,x−b⟩≥0}:

Lemma 5.6. Let ga,b be the multilinear extension of the function x↦ 1{⟨a,x−b⟩≥0}. If ∑i a2
i = 1

and maxi ∣ai∣ ≤ τ then for any η > 0,

E(ga,bη (X) − 1{⟨a,X−b⟩≥0})2 ≤ C(η + τ cη).

From Lemma 5.6 and the triangle inequality, we conclude from (5.15) that

E(fη(X) − ga,bη (X))2 ≤ C(ρ)(η + τ cη + δ)c(ρ).

Since fη − ga,bη is a multilinear polynomial, its second moment remains unchanged when X is
replaced by ξ:

E(fη(ξ) − ga,bη (ξ))2 = E(fη(X) − ga,bη (X))2 ≤ C(ρ)(η + τ cη + δ)c(ρ).

Now, ga,b is the indicator of a half-space on the cube; thus, E(ga,bη (ξ) − ga,b(ξ))2 ≤ Cηc (see,
for example, [5]). Applying this and the triangle inequality, we have

E(fη(ξ) − ga,b(ξ))2 ≤ C(ρ)(η + τ cη + δ)c(ρ). (5.16)

The last piece is to replace fη by f . We do this with a simple lemma which shows that
for any function f , if fη is close to some indicator function then f is also close to the same
indicator function.
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Lemma 5.7. For any functions f ∶ {−1,1}n → [0,1] and g ∶ {−1,1}n → {0,1} and any η > 0,

E(f(ξ) − g(ξ))2 ≤ C
√
E(fη(ξ) − g(ξ))2.

Applying Lemma 5.7 to (5.16), we obtain

E(f(ξ) − ga,b(ξ))2 ≤ C(ρ)(η + τ cη + δ)c(ρ).

By choosing τ and η small enough compared to δ, the proof of Theorem 5.1 is complete,
modulo the proofs of Lemmas 5.5, 5.6 and 5.7. We will prove them in the coming section.

Gaussian and boolean half-spaces

Here we will prove the lemmas of the previous section. Before doing so, let us observe that
EXi1{⟨a,X−b⟩≥0} is proportional to ai, a fact which has already been noted by Matulef et
al. [38]:

Lemma 5.8.
EXi1{⟨a,X−b⟩≥0} = aiφ(⟨a, b⟩).

Proof. Let ei ∈ Rn be the vector with 1 in position i and 0 elsewhere. We may write
ei = aia + a⊥, where a⊥ is some element of Rn which is orthogonal to a. Note that ⟨X,a⊥⟩ is
independent of ⟨X,a⟩ and so E⟨X,a⊥⟩1{⟨a,X−b⟩≥0} = 0. Hence,

EXi1{⟨a,X−b⟩≥0} = E⟨aia + a⊥,X⟩1{⟨a,X−b⟩≥0} = aiE⟨a,X⟩1{⟨a,X−b⟩≥0} = aiEX11{X1≥⟨a,b⟩},

where the last equality follows because, by the rotational invariance of the Gaussian mea-
sure, ⟨a,X⟩ has the same distribution as X1. Finally, integration by parts shows that
EX11{X1≥⟨a,b⟩} = φ(⟨a, b⟩).

Next, we prove Lemma 5.5. The point is that if a half-space is close to a low-influence
function f then that half-space must also have low influences. We can then perturb the
half-space to have even lower influences without increasing its distance to f by much.

Proof of Lemma 5.5. Suppose that f has influences bounded by τ , and that

E(f(X) − 1{⟨a,X−b⟩≥0})2 ≤ γ, (5.17)

where γ = C(ρ)(η + τ cη + ε)c. We will show that there is some ã such that ∑i ã2
i = 1,

maxi ∣ãi∣ ≤ Cτ c, and
E(f(X) − 1{⟨ã,X−b⟩≥0})2 ≤ Cγc. (5.18)

When applied to the function fη, this will imply the claim of Lemma 5.5.
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Since X1, . . . ,Xn are orthonormal,

E(f(X) − 1{⟨a,X−b⟩≥0})2 ≥
n

∑
i=1

(EXif(X) −EXi1{⟨a,X−b⟩≥0})
2

=
n

∑
i=1

(f̂{i} − aiφ(⟨a, b⟩))
2
, (5.19)

where the equality used Lemma 5.8. Define κa,b = φ(⟨a, b⟩), and note from (5.1) that since the

influences of f are bounded by τ , ∣f̂{i}∣ ≤
√
τ for every i. Hence for any i with ∣ai∣κa,b ≥ 2

√
τ ,

we have (f̂{i} − aiκa,b)
2 ≥ a2

iκ
2
a,b/4. Combining this with (5.17) and (5.19),

γ ≥ E(f(X) − 1{⟨a,X−b⟩≥0})2 ≥
κ2
a,b

4
∑

{i∶∣ai∣κa,b≥2
√
τ}

a2
i . (5.20)

We now consider two cases, depending on whether κa,b is large or small. First, suppose
that κa,b ≤ γ1/3; suppose also, without loss of generality, that ⟨a, b⟩ ≤ 0 (if not, replace f by
1−f). Then κa,b = φ(⟨a, b⟩) ≥ Φ(⟨a, b⟩) = E1{⟨a,X−b⟩≥0}; on the other hand, (5.17) implies that
(Ef −E1{⟨a,X−b⟩≥0})2 ≤ E(f − 1{⟨a,X−b⟩≥0})2 ≤ γ and so

Ef ≤ √
γ +E1{⟨a,X−b⟩≥0} ≤

√
γ + κa,b ≤ 2γ1/3.

Since f takes values in [0,1], it follows that Ef 2 ≤ Cγc; in particular,any half-space with
small enough measure will satisfy (5.18).

Now suppose that κa,b ≥ γ1/3 (which is in turn larger than τ 1/3 by definition); then (5.20)
implies that

∑
{i∶∣ai∣≥2τ1/6}

a2
i ≤ ∑

{i∶∣ai∣κa,b≥2
√
τ}

a2
i ≤ 4γ1/3.

If we define ā to be the truncated version of a (i.e. āi = ai if ∣ai∣ < 2τ 1/6 and āi = 0 otherwise),
then this implies that ∣a− ā∣2 ≤ 4γ1/3. Since ∣a∣ = 1, it then follows from the triangle inequality
that ∣ā∣ ≥ 1 − 2γ1/6. Set ã = ā/∣ā∣. If γ is small enough so that 1 − 2γ1/6 ≤ 1/2 then

max
i

∣ãi∣ =
1

∣ā∣
max
i

∣āi∣ ≤
2τ 1/6

1 − 2γ1/6
≤ 4τ 1/6

and

∣a − ã∣ ≤ ∣a − ā∣ + ∣ā − ã∣ ≤ 2γ1/6 + 1 − ∣ā∣
∣ā∣

≤ 8γ1/6.

By the triangle inequality, ã satisfies (5.18).

Next, we will prove Lemma 5.6: if ga,b is the multilinear extension of a low-influence half-
space, then ga,b is close to a half-space. Observe that this is very much not the case for general
half-spaces: the multilinear extension of 1{x1≥0} is x1, which is not close, in L2(Rn, γn), to
any half-space.

The main idea of the proof is to study the quantity Ega,b(X)⟨a,X − b⟩. By showing that

this is almost as large as E1{⟨a,X−b⟩≥0}⟨a,X − b⟩, we show that ga,b(X) is close to 1{⟨a,X−b⟩≥0}.
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Proof of Lemma 5.6. Suppose without loss of generality that ⟨a, b⟩ ≥ 0. Let h(x) = ⟨a, x − b⟩
and let g be the multilinear extension of 1{h≥0}. First of all, the Berry-Esseen [20] theorem
implies that for any t ∈ R, ∣Pr(⟨a, x⟩ ≥ t)−Pr(⟨a,X⟩ ≥ t)∣ ≤ τ . By the formula EZ = ∫

∞

0 Pr(Z ≥
t) dt for a non-negative random variable Z, we have

Eg(ξ)h(ξ) = Eh(ξ)1{h(ξ)≥0}

= ∫
∞

0
Pr(⟨a, ξ − b⟩ ≥ t) dt

= ∫
∞

⟨a,b⟩
Pr(⟨a, ξ⟩ ≥ t) dt

≥ ∫
M

⟨a,b⟩
Pr(⟨a, ξ⟩ ≥ t) dt

≥ ∫
M

⟨a,b⟩
Pr(X1 ≥ t) dt −Mτ

≥ ∫
∞

⟨a,b⟩
Pr(X1 ≥ t) dt −Mτ −Ce−M2

/2

= Eh(X)1{h(X)≥0} −Mτ −Ce−M2
/2.

Choosing M =
√

log(1/τ), we have

Eg(ξ)h(ξ) ≥ Eh(X)1{h(X)≥0} −Cτ c. (5.21)

Now, h is linear and so ht = e−th; since Qη is self-adjoint, Theorem 5.4 implies that

Eg(ξ)h(ξ) = eηEg(ξ)hη(ξ)
= eηEgη(ξ)h(ξ)
= eηEgη(X)h(X)
≤ eηEgη(X)h(X) +Ceη(η + τ cη)
≤ Egη(X)h(X) +C(η + τ cη),

where the last inequality assumes that η < 1 (if not then the lemma is trivial anyway),
and uses the fact that Egη(X)h(X) is bounded by a universal constant. Combining this
with (5.21),

Eh(X)1{h(X)≥0} ≤ Egη(X)h(X) +C(η + τ cη). (5.22)

Now, let m(X) = 1{⟨a,X−b⟩≥0} − gη(X) and take ε = E∣m∣. Note that because gη ∈ [0,1],
when m ≠ 0 then m and h have the same sign; in particular, m(x)h(x) ≥ 0. Let A =
{x ∶ ⟨a,X − b⟩ ∈ [−ε/2, ε/2]}. Then Pr(A) ≤ ε/2, and since ∣m∣ ≤ 1 pointwise we must have
E∣m∣1Ac ≥ E∣m∣ −Pr(A) ≥ ε/2. But on Ac we have ∣h(x)∣ ≥ ε/2; since m(x)h(x) ≥ 0,

Em(X)h(X) ≥ Em(X)h(X)1{X∈Ac} ≥
ε

2
E∣m∣1Ac ≥

ε2

4
.
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Applying this to (5.22) yields ε ≤ C(η + τ cη)c. So if we recall the definition of ε, then we see
that

E∣1{⟨a,X−b⟩≥0} − gη(X)∣ ≤ C(ηe2η + τ cη)c.

By changing the constant c, we may replace E∣ ⋅ ∣ with E(⋅)2; by (5.11) and the triangle
inequality, we may replace gη by gη. This completes the proof of the lemma. Note that
the only reason for proving this lemma with gη instead of g was for extra convenience when
applying it; the statement of the lemma is also true with g instead of gη.

The only remaining piece is Lemma 5.7.

Proof of Lemma 5.7. Suppose f ∶ {−1,1}n → [−1,1] and g ∶ {−1,1}n → {−1,1}. This does
not exactly correspond to the statement of the lemma, but it will be more convenient for
the proof; we can recover the statement of the lemma by replacing f by 1+f

2 and g by 1+g
2 .

Let ε = E(fη(ξ) − g(ξ))2. Since g takes values in {−1,1}, we have Eg2 = 1. Then the
triangle inequality implies that (Eg2)1/2 ≤ (Ef 2

η )1/2 +
√
ε; squaring both sides, we have

Ef 2
η ≥ Eg2 − 2E(f 2

η )1/2
√
ε ≥ 1 − 3

√
ε.

Since Ef 2 ≤ 1, we have

E(f − fη)2 = ∑
S⊂[n]

f̂ 2
S(1 − e−η∣S∣)2

≤ ∑
S⊂[n]

f̂ 2
S(1 − e−η∣S∣)

= Ef 2 −Ef 2
η

≤ 3
√
ε.

It then follows by the triangle inequality that E(f − g)2 ≤ C
√
ε.

5.2 Spherical noise stability and Max-Cut rounding

The well-known similarity between a Gaussian vector and a uniformly random vector on a
high-dimensional sphere suggests that there might be a spherical analogue of our Gaussian
noise sensitivity result. The correlation structure on the sphere that is most useful for our
purposes is the uniform measure over all pairs of points (x, y) whose inner product ⟨x, y⟩ is
exactly ρ. Under this model of noise, we can use robust Gaussian noise sensitivity to show,
asymptotically in the dimension, robustness for spherical noise sensitivity. This uses the
theory of spherical harmonics and has applications to rounding semidefinite programs (in
particular, the Goemans-Williamson algorithm for Max-Cut). Our proof uses and generalizes
the work of Klartag and Regev [31], in which a related problem was studied in the context
of one-way communication complexity.
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Our spherical noise stability result mostly follows from Theorem 4.1, by replacing X and
Y by X/∣X ∣ and Y /∣Y ∣. When n is large, these renormalized Gaussian vectors are uniformly
distributed on the sphere and their inner product is tightly concentrated around ρ. The fact
that their inner product is not exactly ρ causes some difficulty, particularly because Qρ is
actually orthogonal to the joint distribution of two normalized Gaussians. Working through
this difficulty with some properties of spherical harmonics, we obtain the following spherical
analogue of Theorem 4.1:

Theorem 5.9. Let 0 < ρ < 1 and write Qρ for the measure of (X,Y ) on the sphere Sn−1

where the pair (X,Y ) is uniformly distributed in

{(x, y) ∈ Sn−1 × Sn−1 ∶ ⟨x, y⟩ = ρ}.
For measurable A1,A2 ⊂ Sn−1, define

δ = δ(A1,A2) = Qρ(X ∈ B1, Y ∈ B2) −Qρ(X ∈ A1, Y ∈ A2),
where B1 and B2 are parallel spherical caps with the same volumes as A1 and A2 respectively.
Define also

m(A1,A2) = p(1 − p)q(1 − q)
where p = Pr(X ∈ A1) and q = Pr(Y ∈ A2).

For any A1,A2 ⊂ Sn−1, there exist parallel spherical caps B1 and B2 such that

Q(A1∆B1) ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ
∗

Q(A2∆B2) ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ
∗ .

where δ∗ = max(δ, n−1/2 logn).

The case ρ = 0 of the above theorem is related to work by Klartag and Regev [31]. In this
case one expects that X and Y should behave as independent random variables on Sn−1 and
that therefore for all A1,A2, Q0(X ∈ A1, Y ∈ A2) should be close to Q(X ∈ A1)Q(Y ∈ A2).
Indeed the main technical statement of Klartag and Regev (Theorem 5.2) says that for every
two sets,

∣Q0(X ∈ A1, Y ∈ A2) −Q(X ∈ A1)Q(Y ∈ A2)∣ ≤
C

n
.

In other words the results of Klartag and Regev show that in the case ρ = 0, a uniform
orthogonal pair (X,Y ) on the sphere behaves like a pair of independent random variables
up to an error of order n−1, while our results show that for 0 < ρ < 1, (X,Y ) that are ρ
correlated behave like Gaussians with the same correlation.

That spherical caps minimize the quantity Qρ(X ∈ A1, Y ∈ A2) over all sets A1 and A2

with some prescribed volumes is originally due to Baernstein and Taylor [2], while a similar
result for a different noise model is due to Beckner [4]. Their results do not follow from ours
because of the dependence on n in Theorem 5.9, and so one could ask for a sharper version
of Theorem 5.9 that does imply these earlier results. One obstacle is that we do not know a
proof of Beckner’s inequality that gives control of the deficit.
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Rounding the Goemans-Williamson algorithm

Let G = (V,E) be a graph and recall that the Max-Cut problem is to find a set A ⊂ V such
that the number of edges between A and V ∖ A is maximal. It is of course equivalent to
look for a function f ∶ V → {−1,1} such that ∑(u,v)∈E ∣f(u) − f(v)∣2 is maximal. Goemans’
and Williamson’s breakthrough was to realize that this combinatorial optimization problem
can be efficiently solved if we relax the range {−1,1} to Sn−1. Let us say, therefore, that an
embedding f of a graph G = (V,E) into the sphere Sn−1 is optimal if

∑
(u,v)∈E)

∣f(u) − f(v)∣2

is maximal. An oblivious rounding procedure is a (possibly random) function R ∶ Sn−1 →
{−1,1} (we call it “oblivious” because it does not look at the graph G). We will then denote
by Cut(G,R) the expected value of the cut produced by rounding the worst possible optimal
spherical embedding of G:

Cut(G,R) = 1

2
min
f

E ∑
(u,v)∈E

∣R(f(u)) −R(f(v))∣,

where the minimum is over all optimal embeddings f . If MaxCut denotes the maximum
cut in G, then Goemans and Williamson [21] showed that when R(x) = sgn(⟨X,x⟩) for a
standard Gaussian vector X, then for every graph G,

Cut(G,R) ≥ MaxCut(G)min
θ
αθ,

where αθ = 2
π

θ
1−cos θ . In the other direction, Feige and Schechtman [19] showed that for every

oblivious rounding scheme R and every ε > 0, there is a graph G such that

Cut(G,R) ≤ MaxCut(G)(ε +min
θ
αθ).

In other words, no rounding scheme is better than the half-space rounding scheme. Using
Theorem 4.1, we can go further:

Theorem 5.10. Suppose R is a rounding scheme on Sn−1 such that for every graph G with
n vertices,

Cut(G,R) ≥ MaxCut(G)(min
θ
αθ − ε).

Then there is a hyperplane rounding scheme R̃ such that

E∣R(Y ) − R̃(Y )∣ ≤ Cεc
⋆
,

where Y is a uniform (independent of R and R̃) random vector on Sn−1, C and c are absolute
constants, and ε⋆ = max{ε, n−1/2 logn}.

In other words, any rounding scheme that is almost optimal is essentially the same as
rounding by a random half-space.
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Proof of Theorem 5.9

To make the connection between Theorem 4.1 and Theorem 5.9, we define, for a subset
A ⊂ Sn−1, the radial extension Ā ⊂ Rn by

Ā = {x ∈ Rn ∶ x ≠ 0 and
x

∣x∣
∈ A}

From the spherical symmetry of the Gaussian distribution it immediately follows that γn(Ā) =
Q(A). The proof of Theorem 5.9 crucially relies on the fact that Qρ(A1,A2) is close to
Prρ(Ā1, Ā2) in high dimensions. More explicitly it uses the following lemmas:

Lemma 5.11. For any half-space H = {x ∈ Rn ∶ ⟨a, x⟩ ≤ b} there is a spherical cap B = {x ∈
Sn−1 ∶ ⟨a, x⟩ ≤ b′} such that γn(B̄) = γn(H) and

γn(B̄∆H) ≤ Cn−1/2 logn.

Lemma 5.12. For any two sets A1,A2 ⊂ Sn−1 and any ρ ∈ [−1 + ε,1 − ε] it holds that

∣Qρ(A1,A2) −Prρ(Ā1, Ā2)∣ ≤ C(ε)n−1/2 logn.

Given Lemmas 5.12 and 5.11, the proof of Theorem 5.9 is an easy corollary of Theo-
rem 4.1:

Proof of Theorem 5.9. Define δ∗ = δ(Ā1, Ā2). LetH1,H2 be parallel half-spaces with γn(Hi) =
γn(Āi), and letB1,B2 be the corresponding caps whose existence is guaranteed by Lemma 5.11.
Then

δ∗ = δ(Ā1, Ā2)
= Prρ(X ∈H1, Y ∈H2) −Prρ(X ∈ Ā1, Y ∈ Ā2)
≤ Prρ(X ∈ B̄1, Y ∈ B̄2) −Prρ(X ∈ Ā1, Y ∈ Ā2) +O(n−1/2 logn)
≤ Qρ(X ∈ B1, Y ∈ B2) −Qρ(X ∈ A1, Y ∈ A2) +O(n−1/2 logn)
= δ(A1,A2) +O(n−1/2 logn),

where the first inequality follows from Lemma 5.11 and the second follows from Lemma 5.12.
From Theorem 4.1 it follows that there are parallel half-spaces H1 and H2 with γn(Hi) =

γn(Āi) satisfying

γn(Āi∆Hi) ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ
∗ .

By Lemma 5.11, there are parallel caps B1 and B2 such that

Q(Ai∆Bi) = γn(Āi∆B̄i) ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ
∗ .

The proof of Lemma 5.11 is quite simple, so we present it first:
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Proof of Lemma 5.11. Let H = {x ∈ Rn ∶ ⟨a, x⟩ ≤ b}, and suppose without loss of generality
that b ≥ 0. For any ε > 0, define

H+

ε = {x ∈ Rn ∶ ⟨a, x⟩ ≤ b(1 + ε)}
H−

ε = {x ∈ Rn ∶ ⟨a, x⟩ ≤ b(1 − ε)}.

Note that γn(H+

ε ∖H−

ε ) ≤ Cε.
Now define B = {x ∈ Sn−1 ∶ ⟨x, a⟩ ≤ b/

√
n}. Then B̄ = {x ∈ Rn ∶ ⟨x, a⟩ ≤ b∣x∣/

√
n}, and so

γn(B̄ ∖H+

ε ) = γn((1 + ε)b ≤ ⟨X,a⟩ ≤ b∣X ∣/
√
n)

≤ γn(∣X ∣ ≥ (1 + ε)
√
n)

≤ Ce−cε2n,

where the last line follows from standard concentration inequalities (Bernstein’s inequalities,
for example). Similarly,

γn(H−

ε ∖ B̄) ≤ γn(∣X ∣ ≤ (1 − ε)
√
n) ≤ Ce−cε2n.

Since H−

ε ⊂H ⊂H+

ε and γn(H+

ε ∖H−

ε ) ≤ Cε, it follows that

γn(H∆B̄) ≤ Cε +Ce−cε2n.

By choosing ε = Cn−1/2 logn, we have

γn(H∆B̄) ≤ Cn−1/2 logn. (5.23)

Now, the lemma claimed that we could ensure γn(B̄) = γn(H). Since the volume of the
cap B′ ∶= {⟨a, x⟩ ≤ b′∣x∣} is continuous and strictly increasing in b′, we may define b′ to be
the unique real number such that γn(B̄′) = γn(H). Now, either B ⊂ B′ or B′ ⊂ B; hence
γn(B̄∆B̄′) = ∣γn(B̄) − γn(B̄′)∣. On the other hand, (5.23) implies that

∣γn(B̄) − γn(B̄′)∣ = ∣γn(B̄) − γn(H)∣ ≤ Cn−1/2 logn,

and so the triangle inequality leaves us with

γn(H∆B̄′) ≤ γn(H∆B̄) + γn(B∆B̄′) ≤ Cn−1/2 logn.

We defer the proof of Lemma 5.12 until the next section, since this proof requires an
introduction to spherical harmonics.
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Spherical harmonics and Lemma 5.12

We will try to give an introduction to spherical harmonics which is as brief as possible, while
still containing enough material for us to explain the proof of Lemma 5.12 adequately. A
slightly less brief introduction is contained in [31]; for a full treatment, see [43].

Let Sk be the linear space consisting of harmonic, homogeneous, degree-k polynomials.
We will think of Sk as a subspace of L2(Sn−1,Q); then {Sk ∶ k ≥ 0} spans L2(Sn−1,Q). One
can easily check that Sk is invariant under rotations. Hence it is a representation of SO(n).
It turns out, moreover, that Sk is an irreducible representation of SO(n); combined with
Schur’s lemma, this leads to the following important property:

Lemma 5.13. If T ∶ L2(Sn−1) → L2(Sn−1) commutes with rotations then {Sk ∶ k ≥ 0} are the
eigenspaces of T .

In particular, we will apply Lemma 5.13 to the operators Tρ defined by (Tρf)(X) =
E(f(Y )∣X), where (X,Y ) ∼ Qρ. In other words, (Tρf)(x) is the average of f over the set
{y ∈ Sn−1 ∶ ⟨x, y⟩ = ρ}. Clearly, Tρ commutes with rotations; hence Lemma 5.13 implies that
{Sk ∶ k ≥ 0} are the eigenspaces of Tρ. In particular, there exist {µk(ρ) ∶ k ≥ 0} such that
Tρf = µk(ρ)f for all f ∈ Sk. Moreover, to compute µk(ρ), it is enough to compute Tρf for a
single f ∈ Sk. For this task, the Gegenbauer polynomials provide good candidates: define

Gk(t) = E(t + iW1

√
1 − t2)k,

where the expectation is over W = (W1, . . . ,Wn−1) distributed uniformly on the sphere Sn−2.
Define fk(x) = Gk(x1); it turns out that fk ∈ Sk; on the other hand, one can easily check
that fk(e1) = 1, while (Tρfk)(e1) = Gk(ρ). From the discussion above, it then follows that

µk(ρ) = E(ρ + iW1

√
1 − ρ2)k.

With this explicit formula, we can show that µk(ρ) is continuous in ρ:

Lemma 5.14. For any ε > 0 there exists C(ε) such that if ρ, η ∈ [−1 + ε,1 − ε] then

∣µk(ρ) − µk(η)∣ ≤ C(ε)(∣ρ − η∣ + n−1/2).

We will leave the proof of Lemma 5.14 to the end. Instead, let us show how it can be
used to prove that Qρ(X ∈ A1, Y ∈ A2) is continuous in ρ.

Lemma 5.15. For any ε > 0 there exists C(ε) such that if ρ, η ∈ [−1 + ε,1 − ε] then

∣Qρ(X ∈ A1, Y ∈ A2) −Qη(X ∈ A1, Y ∈ A2)∣ ≤ C(ε)Q1/2(A1)Q1/2(A2)(∣ρ − η∣ + n−1/2).

Proof. Take f, g ∈ L2(Sn−1,Q) and write f = ∑∞

k=0 fk where fk ∈ Sk. Then

∣EgTρf −EgTηf ∣ ≤ ∥Tρf − Tηf∥2∥g∥2
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(where ∥f∥2 denotes
√
Ef 2) and

∥Tρf − Tηf∥2
2 =

∞

∑
k=0

(µk(ρ) − µk(η))2∥fk∥2
2

By Lemma 5.14, we have

∥Tρf − Tηf∥2 ≤ C(ε)(∣ρ − η∣ + n−1/2)∥f∥2,

and therefore
∣EgTρf −EgTηf ∣ ≤ C(ε)∥f∥2∥g∥2(∣ρ − η∣ + n−1/2).

Note that if f = 1A1 and g = 1A2 then EgTρf = Qρ(X ∈ A1, Y ∈ A2), while ∥f∥2 = Q(A1)1/2.

The proof of Lemma 5.12 is straightforward once we know Lemma 5.15. As we have
already mentioned, normalized Gaussian vectors from Prρ have a joint distribution that is
similar to Qρ, except that their inner products are close to ρ instead of being exactly ρ. But
Lemma 5.15 implies that a small difference in ρ doesn’t affect the noise sensitivity by much.

Proof of Lemma 5.12. Let X,Y be distributed according to Prρ. Then

Prρ(X ∈ Ā1, Y ∈ Ā2) = Prρ(
X

∣X ∣
∈ A1,

Y

∣Y ∣
∈ A2),

Note that conditioned on ∣X ∣, ∣Y ∣ and ⟨X,Y ⟩, the variables X/∣X ∣, Y /∣Y ∣ are distributed
according to Qr, where r = ⟨X,Y ⟩/(∣X ∣∣Y ∣). Now with probability 1 − 1

n2 it holds that

∣X ∣2, ∣Y ∣2 ∈ n ±Cn1/2 logn, ⟨X,Y ⟩ ∈ ρn ±Cn1/2 logn.

On this event, we have

r = ⟨ X
∣X ∣

,
Y

∣Y ∣
⟩ ∈ ρ ±Cn−1/2 logn.

Using Lemma 5.15 we get that

Prρ(X ∈ Ā1, Y ∈ Ā2) ≤ Qρ(X ∈ A1, Y ∈ A2) +C(ε)n−1/2 logn.

A similar argument yields a bound in the other direction and concludes the proof.

Our final task is the proof of Lemma 5.14:

Proof of Lemma 5.14. Define Zρ = ρ + iW1

√
1 − ρ2 (recalling that W = (W1, . . . ,Wn−1) is

uniformly distributed on Sn−2) so that µk(ρ) = EZk
ρ . Note that if ∣W1∣ ≤ 1

2 (which happens
with probability at least 1 − exp(−cn)) then

∣Zρ∣ = ρ2 +W1(1 − ρ2) ≤ 1 + ρ2

2
≤ 1 − ε

2
≤ exp(−cε).
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Now,

µk(ρ) − µk(η) = E(Zk
ρ −Zk

η )

= E(Zρ −Zη)
k−1

∑
j=1

Zj
ρZ

k−1−j
η . (5.24)

If ∣W1∣ ≤ 1
2 then ∣Zj

ρZ
k−1−j
η ∣ ≤ exp(−cεk) and so

∣∑
j

Zj
ρZ

k−1−j
η ∣ ≤ k exp(−cεk) ≤ C(ε)

Applying this to (5.24), we have

∣µk(ρ) − µk(η)∣ = E(Zk
ρ −Zk

η )1{∣W1∣≥1/2} +E1{∣W1∣<1/2}(Zρ −Zη)
k−1

∑
j=1

Zj
ρZ

k−1−j
η

≤ 2γn(∣W1∣ ≥ 1/2) +C(ε)E∣Zρ −Zη ∣
≤ exp(−cn) +C(ε)∣ρ − η∣,

where E∣Zρ −Zη ∣ ≤ C(ε)∣ρ − η∣ because ∣
√

1 − ρ2 −
√

1 − η2∣ ≤ C(ε)∣ρ − η∣.

Spherical noise and Max-Cut

In this section, we will outline how robust noise sensitivity on the sphere (Theorem 5.9)
implies that half-space rounding for the Goemans-Williamson algorithm is robustly optimal
(Theorem 5.10). The key for making this connection is Karloff’s family of graphs [29]: for any
n, d ∈ N, let Gn,d = (Vn,d,En,d) be the graph whose vertices are the ( n

n/2
) balanced elements

of {−n−1/2, n−1/2}n, and with an edge between u and v if ⟨u, v⟩ = d/n. Karloff showed that
if d ≤ n/24 then the optimal cut of Gn,d has value ∣En,d∣(1 − d/n). Moreover, the identity
embedding (and any rotation of it) is an optimal embedding of Gn,d into Sn−1. In these
embeddings, every angle between two connected vertices is d/n; hence, it is easy to calculate
the expected value of a rounding scheme:

Lemma 5.16. Let (X,Y ) be distributed according to Qd/n. For any rounding scheme R,

Cut(Gn,d,R) ≤
∣En,d∣

2
E∣R(X) −R(Y )∣,

where the expectation is with respect to X,Y and R.

Proof. Recall that

Cut(G,R) = 1

2
min
f

ER ∑
(u,v)∈E

∣R(f(u)) −R(f(v))∣

≤ 1

2
EREf ∑

(u,v)∈E

∣R(f(u)) −R(f(v))∣,
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where the expectation is taken over all rotations f . But if f is a uniformly random rotation
then for every (u, v) ∈ En,d, the pair (f(u), f(v)) is equal in distribution to the pair (X,Y )
(and both pairs are independent of R).

Theorem 5.10 follows fairly easily from Lemma 5.16, Theorem 5.9, and the fact that
MaxCut(Gn,d) = ∣En,d∣(1 − d/n). Indeed, choose n and d such that ∣d/n − cos−1 θ∗∣ ≤ n−1,
where θ∗ ≈ 2.33 minimizes αθ, and suppose there is a rounding scheme R such that

Cut(Gn,d,R) ≥ MaxCut(Gn,d)(αθ∗ − ε).

Let θ = cos(d/n); since αθ is continuous in θ, it follows that ∣αθ − αθ∗ ∣ ≤ C
n . Taking ε⋆ =

max{ε, n−1/2 logn}, we have ∣αθ − αθ∗ ∣ ≤ Cε⋆ and so

Cut(Gn,d,R) ≥ MaxCut(Gn,d)(αθ −Cε⋆)
= ∣En,d∣(1 − cos θ)(αθ −Cε⋆)

= 2

π
θ∣En,d∣(1 −Cε⋆).

By Lemma 5.16, 1
2E∣R(X)−R(Y )∣ ≥ 2

πθ(1−Cε⋆). If we define the (random) subset AR ⊂ Sn−1

by AR = {x ∶ R(x) = 1}, and set ρ = cos θ then

Q(AR) − Sρ(AR) =
1

2
E(∣R(X) −R(Y )∣∣R)

Taking expectations,

E(Q(AR) − Sρ(AR)) =
1

2
E∣R(X) −R(Y )∣ ≥ 2

π
arccosρ −Cε⋆. (5.25)

Let δR be the random deficit δR = 2
π arccosρ−(Q(AR)−Sρ(AR)), so that (5.25) implies EδR ≤

Cε⋆. Take ηR to be the distance from AR to the nearest hemisphere: ηR = min{Q(AR∆B) ∶
B is a hemisphere} and let BR be a hemisphere that achieves the minimum (which is attained
because the set of hemispheres is compact with respect to the distance d(A,B) = Q(A∆B)).
Recall that θ ≈ θ∗ ≈ 2.33 and so ρ = cos θ < 0; by the same symmetries discussed following
Theorem 4.1, Theorem 5.9 applies for ρ < 0, but with the deficit inequality reversed. Hence,
ηR ≤ Cmax{δR, n−1/2 logn}c. Taking expectations,

EηR ≤ CEmax{δR, n−1/2 logn}c ≤ Cmax{EδR, n−1/2 logn}c = C ′εc
⋆
.

Consider the rounding scheme R̃(y) which is 1 when y ∈ BR and −1 otherwise. Then
E(∣R(Y ) − R̃(Y )∣∣R) = 2ηR, and so the displayed equation above implies that

E∣R(Y ) − R̃(Y )∣ ≤ Cεc
⋆
.

Since R̃ is a hyperplane rounding scheme, this completes the proof of Theorem 5.10.
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[3] D. Bakry and M. Ledoux. “Lévy–Gromov’s isoperimetric inequality for an infinite
dimensional diffusion generator”. In: Inventiones mathematicae 123.2 (1996), pp. 259–
281.

[4] William Beckner. “Sobolev inequalities, the Poisson semigroup, and analysis on the
sphere Sn.” English. In: Proc. Natl. Acad. Sci. USA 89.11 (1992), pp. 4816–4819. doi:
10.1073/pnas.89.11.4816.

[5] I. Benjamini, G. Kalai, and O. Schramm. “Noise sensitivity of Boolean functions and
applications to percolation”. In: Inst. Hautes Études Sci. Publ. Math. 90 (1999), pp. 5–
43.

[6] S. Bobkov. “Extremal properties of half-spaces for log-concave distributions”. In: The
Annals of Probability (1996), pp. 35–48.

[7] S. G. Bobkov. “An isoperimetric inequality on the discrete cube, and an elementary
proof of the isoperimetric inequality in Gauss space”. In: Ann. Probab. 25.1 (1997),
pp. 206–214.
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