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Abstract

N Angry Men

by

Arthur E. Tilley III

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Thomas Scanlon, Chair

We develop the basic results of Bayesian Networks and propose these Networks as a
setting for the Classical Condorcet Jury Theorem (CCJT) and related results. Bayesian
Networks will allow us to address the plausibility of one of the central assumptions of the
CCJT, the independence of individual votes, as well as provide a setting for attempts to
generalize the CCJT to situations in which individual votes are not independent.

In the second chapter we define CJT Networks, a family of Bayesian Networks in which we
interpret the CCJT. We begin with the classical result for juries with homogeneous compe-
tence and independent votes and then turn to comparing simple majority rule and random
dictatorship for juries with non-homogeneous competence (and independent votes). The
main contribution is an elegant combinatorial proof that simple majority rule is preferred
to random dictatorship for juries with member competences all in the interval [1

2
, 1) with at

least one competence greater than 1
2
.

In the third chapter we address the source and consequences of dependence between ju-
ror votes. Our primary concern is with Dietrich and Spiekermann’s observation (e.g. [9])
that even in the simplified case where deliberation between jurors is not permitted, it is
likely that the individual votes are not mutually independent due to common causes be-
tween individual votes. Once again we use the framework of Bayesian Networks to make
the nature of the dependence explicit. We examine Dietrich and Spiekermann’s generaliza-
tion of the homogeneous CJT to situations where the individual votes are not independent.
We argue that their theorem depends on implausible assumptions and show how there does
not appear to a reasonable substitute in sight. We close by looking at an entirely different
approach to dependence, which models the group deliberation process as a linear dynam-
ical system, and we introduce the Cesaro voting method to extend on the results of DeGroot.
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Chapter 1

The Formal Theory of Voting

1.1 Introduction

Consider a set J of agents faced with the task of making some binary choice. The group
is required to settle on exactly one of two alternatives, say A0 or A1. Assume further that
there is some property C such that exactly one of A0 or A1 has property C, and that each
group member j ∈ J has some probability pj (which we will call the competence of member
j) of voting for the alternative with property C.

There are many judgement aggregation methods such a group might use to produce their
group decision. Two traditional methods are:

1. Simple Majority Rule: Each member writes their vote (A0 or A1) on a ballot and
puts the ballot into a hat. The votes are then tallied, and the alternative with the
most votes becomes the group decision (with some procedure to determine the group
decision in the case of ties, perhaps flipping a coin or revoting).

2. The Random Ballot: Each member writes their individual vote on a ballot and puts
the ballot into a hat. A single ballot is selected at random from the hat, and the
alternative written on that ballot becomes the group decision.

Let us say that that a judgement aggregation method M1 is preferable to another method
M2 (with respect to C) just in case the probability that M1 will result in the alternative
with property C is greater than than the probability that M2 will result in the alternative
with property C. We then ask

For a fixed property C, under what circumstances is Simple Majority Rule prefer-
able to Random Ballot with respect to C?

Credit is given to the Marquis de Condorcet1 for initiating a mathematical discussion of
this question in his 1785 work [7]. His result is now known as the Condorcet Jury Theorem.

1Marie Jean Antoine Nicolas de Caritas, Marquis de Condorcet
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We give a formal statement and proof of this theorem in the next chapter after we have
introduced the framework of Bayesian Networks, but we can state the result informally as
follows: In addition to the setup above with a set J of size N , suppose that N = 2n + 1 is
odd and that group competence is homogeneous, that is, there is some p ∈ [0, 1] such that
pi = p for all 1 ≤ i ≤ N . Suppose further that the events that the individual jurors vote
correctly/incorrectly are mutually independent. Then

1. If 1
2
< p < 1 then the probability that simple majority rule results in the alternative

with property C is strictly increasing in odd N , and tends to 1 as N tends to infinity.

2. If 0 < p < 1
2

then the probability that simple majority rule results in the alternative
with property C is strictly decreasing in odd N , and tends to 0 as N tends to infinity.

In particular, under these assumptions, simple majority rule is preferable to random ballot
when 1

2
< p < 1, since, under this framework, random ballot is equivalent to a one member

jury. Likewise, random ballot is preferable to simple majority rule when 0 < p < 1
2
.

Traditionally, the property C is taken to be something like “correctness,” and so the
alternative with property C is often referred to as the “the correct alternative,” “the better
alternative,” or “the right alternative.” We will follow this tradition. The reader should
keep in mind, however, that the results we will prove hold with respect to any any property
C so long as both of the following are satisfied:

1. Exactly one of the two alternatives in question has property C.

2. For all j ∈ J , the competence pj is just the probability that group member j will vote
for the alternative with property C.

We will mention the above theorem frequently throughout this dissertation and will refer to
it as the (homogeneous) Classical Condorcet Jury Theorem (CCJT) to distinguish it from
any of the many “Condorcet Jury Theorems” (CJTs) that followed the original when it was
reintroduced into the contemporary decision theory and social choice literature by Black in
his 1958 paper [4]. Since that time, the research arising from Condorcet’s original result has
branched in many directions including

1. Groups with heterogeneous competences, where the pi depend on the member i ∈ J ,
as opposed remaining constant across all group members.

2. Situations in which the events of each of the jurors voting correctly are not mutually
independent.

3. Finding an optimal sequence of of non-equal weights for different jurors votes given
that we know their competences ahead of time (so-called non-simple majority rule, or
weighted voting),2

2See Shapley and Grofman [19].
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4. Choosing an optimal sub-collection of jurors to decide the issue by simple majority
rule, given that we know the competences of the agents ahead of time,

5. Taking “strategic voting” into account, that is, considering situations in which an agent
might have a reason to vote for what they believe to be the incorrect option,

6. Generalizing to non-binary decisions: for example, if the group is asked to rank three
or more alternatives.

For a concise survey of the central results springing from the Classical Condorcet Jury
Theorem during the past century see [11].

This dissertation will focus on the first and second items on the above list. This means

1. We will focus solely on binary choice scenarios.

2. We are motivated by the desire to know how to utilize a group of agents when we have
little knowledge of their competencies beyond a simple lower or upper bound.

3. We are only interested in comparing probabilities with which the application of var-
ious methods result in a group decision for an alternative with property C given the
probabilities pi that the individuals will vote for the alternative with property C. In
particular we do not concern ourselves with “strategic voting.”

One of the primary goals of this paper is to situate the CCJT and related results inside
the framework of Bayesian Networks, introduced in the following section. The use of causal
networks in the voting literature to examine dependence between votes is introduced and
used in a semi-formal manner by Dietrich and Spiekermann in [9]. In this dissertation we
explicitly develop the basic results of Bayesian Networks and propose them as a setting for
the CCJT and related results. This will allow us to address the plausibility of one of the
central assumptions of the CCJT, the independence of individual votes, as well as provide a
setting for attempts to generalize the CCJT to situations in which individual votes are not
independent.

In the second chapter we define CJT Networks, a family of Bayesian Networks in which
we interpret the CCJT. We begin with the classical result for juries with homogeneous
competence and independent votes and then turn to comparing simple majority rule and
random ballot for juries with non-homogeneous competence (and independent votes). The
main contribution is an elegant combinatorial proof that simple majority rule is preferred to
random ballot for juries with member competences all in the interval [1

2
, 1) with at least one

competence greater than 1
2
.

In the third chapter we address the source and consequences of dependence between juror
votes. In the first section our primary concern is with Dietrich and Spiekermann’s obser-
vation (e.g. [9]) that even in the simplified case where deliberation between jurors is not
permitted, it is likely that the individual votes are not mutually independent due to common
causes between individual votes. Once again we use the framework of Bayesian Networks
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to make the nature of the dependence explicit. We examine Dietrich and Spiekermann’s at-
tempt to generalize homogeneous CCJT to situations where individual votes have common
causes. We argue that their theorem depends on implausible assumptions and argue that
there does not appear to be a reasonable substitute condition in sight.

In the second section of Chapter 3 we extend on a different approach to modeling de-
pendence, introduced by DeGroot, which models the group deliberation process as a linear
dynamical system. This approach does not consider common causes of individual votes, but
rather the potential for jurors to influence each other’s degree of confidence during deliber-
ation. We introduce the Cesaro Judgement Aggregation Method to extend on the results of
DeGroot.

NOTE: Throughout this paper we often use the word jury to refer to the body of agents
trying to arrive at a decision and juror to refer to a given member of such a group. The
purpose of this is to save space, not to restrict the discussion to court juries. The reader is
welcome to substitute “collection of individual agents faced with arriving at a group decision
on one of two alternatives” for “jury” and “individual agent within such a collection” for
“juror”.

1.2 Bayesian Networks

Bayesian Networks impose a graph structure on a set Υ of random variables in order to
make explicit the dependencies between various subsets of Υ as well as to facilitate the
computation of the joint distribution of those variables. We will be primarily concerned
with the former feature.

To define Bayesian Networks we will need some basic concepts from probability theory
and the theory of graphs.

Concepts from Probability Theory

We assume the reader is familiar with the definition of a probability space, but we recall
some important additional concepts.

Definition 1.1. Let S = (Ω,Σ, P ) be a probability space with underlying set Ω, σ-algebra Σ,
and probability measure P . Let Υ = {Xi}1≤i≤n be a set of random variables on S with each
Xi taking values in some finite set DXi

=: Di.

1. We will use defining formulas to denote sets. In particular, given formulae φ and ψ
defining events E,F ∈ Σ, let φ∧ψ and φ∨ψ denote the intersection E ∩F and union
E ∪ F , respectively. For instance if x ∈ DX , y ∈ DY then

(X = x ∧ Y = y) := {ω ∈ Ω : X(ω) = x ∧ Y (ω) = y}

2. We will frequently consider tuples A = (Xji)1≤i≤r of variables from of Υ. Formally we
can define such an tuple A as the function f : {1, . . . , r} → Υ such that f(i) = Xji.
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3. Given a tuple A = (Xji)1≤i≤r of variables from Υ, define DA to be the cartesian product
DA :=

∏r
i=1Dji. For ā ∈ DA we will write A = ā for

∧r
i=1(Xji = ai).

4. Given tuples A = (Xji)1≤i≤r, B = (Xki)1≤i≤s of variables from Υ we write A ⊆ B
to mean that each variable in A is in B (formally, range(A) ⊆ range(B)). Also, for
A = (Xji)1≤i≤r, B = (Xki)1≤i≤s tuples of variables from Υ define A ∪ B to be the
concatenation of A and then B (Again, formally we can define this as the function f
from {1, . . . , r+s} into Υ whose restriction to {1, . . . , r} is A and such that f(r+ i) =
Xki for all 1 ≤ i ≤ s.)

5. Given X ∈ Υ and A some tuple of variables from Υ, we define the transition kernel
pX,A : DX × DA → [0, 1] to be the conditional probability distribution P (X|A) of X
given the variables in A defined as follows: For x ∈ DX and ā ∈ DA

pX,A(x, ā) := P (X = x|A = ā).

6. Given tuples A,B and C of Υ, we say that A is independent of B given C, denoted
(AqB|C), if for all ā ∈ DA, b̄ ∈ DB, c̄ ∈ DC such that P (B = b̄∧C = c̄) > 0 we have

P (A = ā|B = b̄ ∧ C = c̄) = P (A = ā|C = c̄).

Otherwise we say that A and B are dependent given C.

The restriction that P (B = b̄ ∧ C = c̄) > 0 in the definition of independence has the
following consequence.

Lemma 1.2. 1. If A,B,C are tuples from Υ and B ⊆ C then (AqB|C).

2. If A,B,C are tuples from of Υ with B and C disjoint, then

(AqB|C)⇒ (Aq (B ∪ C)|C).

3. If A,B,C are tuples from Υ such that (AqB|C), then for all ā ∈ DA, b̄ ∈ DB, c̄ ∈ DC

such that P (C = c̄) > 0,

P (A = ā|C = c̄)P (B = b̄|C = c̄) = P (A = ā ∧B = b̄|C = c̄).

Proof. The first part follows immediately from the definitions since if ā ∈ DA, b̄ ∈ DB,
c̄ ∈ DC with P (B = b̄∧C = c̄) > 0 then, since B ⊆ C we see that B = b̄∧C = c̄ and C = c̄
are the same event. In particular

P (A = ā|B = b̄ ∧ C = c̄) = P (A = ā|C = c̄).

For the second part, let ā ∈ DA, d̄ ∈ DB∪C , c̄ ∈ DC with

P (B ∪ C = d̄ ∧ C = c̄) > 0.
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Then d̄ = b̄c̄ for some b̄ ∈ DB, and

P (A = ā|(B ∪ C) = d̄ ∧ C = c̄) = P (A = ā|B = b̄ ∧ C = c̄) = P (A = ā|C = c̄).

For the third part, let ā ∈ DA, b̄ ∈ DB, c̄ ∈ DC such that P (C = c̄) > 0, and note that if
either of P (A = ā|C = c̄) or P (B = b̄|C = c̄) is equal to zero then the equality to be shown
follows immediately. And otherwise we have

P (A = ā ∧B = b̄|C = c̄) = P (A = ā|B = b̄ ∧ C = c̄)P (B = b̄|C = c̄) =

P (A = ā|B = b̄)P (B = b̄|C = c̄)

Concepts from Graph Theory

We assume the reader is familiar with the graph theoretic notions of adjacency, incidence,
and directed/undirected graphs.

If G = (V,E) is an undirected graph we will identify E with a set of unordered pairs or
singletons from V , that is, E ⊆ {{v, u} : v, u ∈ V } (note that v may be equal to u). We
may also express the fact that {v, u} ∈ E by vEu, and we will express the fact that e is an
edge between v and u by v −e u

If G = (V,E) is a directed graph we will identify E with a set of ordered pairs E ⊆ V 2.
Again we may also express the fact that (v, u) ∈ E by vEu, and we will express the fact
that e is an edge from v to u by v →e u or u←e v.

Definition 1.3 (Skeletons and Paths).

1. Skeleton: If G = (V,E) is a directed graph, define the skeleton of G to be the undirected
graph G′ = (V,E ′) where E ′ = {{v, u} : (v, u) ∈ E}. Given e = (v, u) ∈ E, we will
refer to the edge {v, u} ∈ E ′ as the image of e in G′.

2. Path: If G = (V,E) is an undirected graph, with u, v ∈ V , a path from u to v
(of length r) is a tuple of edges {ei}1≤i≤r such that for some vertices {wi}0≤i≤r with
w0 = u, wr = v we have, for all 0 ≤ i < r, the relation wi −ei+1 wi+1.

3. Directed Path: If G = (V,E) is a directed graph, with u, v ∈ V , a directed path from
u to v (of length r) is a tuple of edges {ei}1≤i≤r such that for some vertices {wi}0≤i≤r
with w0 = u, wr = v we have, for all 0 ≤ i < r, the relation wi →ei+1 wi+1.

4. Trail: If G = (V,E) is a directed graph, with u, v ∈ V , an undirected path or trail
from u to v (of length r) is a tuple of edges {ei}1≤i≤r such that the list of images of the
edges ei (in the same order) in the skeleton G′ of G form a path from u to v in G′ of
length r.
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5. Cycle: A cycle is a directed path from a vertex v to itself. We say that a directed
graph G is acyclic if it does not have any cycles, and we refer to a directed acyclic
graph as a DAG.

Definition 1.4 (Descendant, Ancestor, Parent, Child). Let D = (V,E) be a DAG, and let
u, v ∈ V .

1. We say that u is a descendant of v (and v is an ancestor of u) if v = u or there is a
directed path from v to u.

2. We say that v is a parent of u (and u a child of v) if vEu.

3. For any v ∈ V , define parD(v) to be the set of parents of v in D.

4. For any v ∈ V , define desD(v) to be the set of descendants of v in D.

This is enough to define Bayesian Networks.

Definition 1.5 (Bayesian Network). Let S = (Ω,Σ, P ) be a probability space and let Υ =
{Xi}1≤i≤n be a set of random variables on Ω such that each X ∈ Υ takes on finitely many
values. Let D = (V,E) be a DAG with V = Υ.

For any x̄ ∈ DΥ, and for 1 ≤ i ≤ n let the tuple x̄i ∈ Dpar(Xi) be the sub-tuple of x̄
consisting of exactly the elements of x̄ corresponding to parents of Xi and in the same order
in which they appear in x̄.
We say D is a Bayesian Network for Υ if we can express the joint probability distribution of
the variables Υ as

P (X1 = x1, . . . , Xn = xn) =
n∏
i=1

pXi,par(Xi)(xi, x̄i) (1.1)

We will now prove that a DAG is a Bayesian Network just in case each of its vertices are
independent of their non-descendants given their parents.

Theorem 1.6. Let S = (Ω,Σ, P ) be a probability space and let Υ = {Xi}1≤i≤n be a set of
random variables on Ω such that each X ∈ Υ takes on finitely many values. Let D = (V,E)
be a DAG with V = Υ.
Then D is a Bayesian Network for Υ if and only if

For all X ∈ Υ, X q (Υ \ desD(X))|parD(X). (1.2)

Proof. First we assume D is a Bayesian Network and prove the independence statement
(1.2).
Fix 1 ≤ i ≤ n and consider the variable Xi ∈ Υ. We can assume without loss that
Υ = {Xi}1≤i≤n is indexed so that decD(Xi) = {Xj ∈ Υ : j ≥ i}.
Let x̄ ∈ DΥ such that the first i− 1 coordinates satisfy P (X1 = x1, . . . , Xi−1 = xi−1) > 0.
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Since D is a Bayesian Network, we have

P (X1 = x1, . . . , Xn = xn) =
n∏
j=1

pXj ,par(Xj)(xj, x̄j)

A straightforward induction on size |decD(Xi)| = n − i, summing over all possible values
in DY for each Y ∈ decD(Xi), shows that the joint probability distribution of the variables
{Υ \ decD(Xi)} ∪ {Xi} is given by

P (X1 = x1, . . . , Xi = xi) =
i∏

j=1

pXj ,par(Xj)(xj, x̄j)

Similarly, summing over all possible values in DXi
shows that the joint probability distribu-

tion of the variables {Υ \ decD(Xi)} is given by

P (X1 = x1, . . . , Xi−1 = xi−1) =
i−1∏
j=1

pXj ,par(Xj)(xj, x̄j)

Thus
P (Xi = xi|X1 = x1, . . . , Xi−1 = xi−1) =

P (X1 = x1, . . . , Xi = xi)

P (X1 = x1, . . . , Xi−1 = xi−1)
= pXi,par(Xi)(xi, x̄i)

This establishes the left to right direction of the theorem.
For the other direction we will need a nice ordering of D.

Definition 1.7 (Topological Ordering). Given a directed graph G = (V,E), a topological
ordering for G is a linear ordering (V,<) of the vertex set V such that,

For all u, v ∈ V, (u, v) ∈ E ⇒ u < v. (1.3)

Lemma 1.8. A directed graph G has a topological ordering if and only if it is acyclic.

Proof. Clearly a directed graph with a cycle cannot have a topological ordering. For an
algorithm to compute a topological ordering for a DAG see, e.g. Kahn [14].

Now assume that the independence assumption (1.2) holds. We must establish (1.1) from
Definition 1.5
We can assume without loss that DX = m := {1, 2, . . . ,m} for all X ∈ Υ. Also, by Lemma
1.8 we can assume that Υ = {Xi}1≤i≤n is indexed in accordance with a topological ordering
for D.
Let x̄ ∈mn be any n-tuple of elements from m.

Then simple probability tells us that
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P (
n∧
i=1

(Xi = xi)) = P (X1 = x1)P

([
n∧
i=2

(Xi = xi)

]
| X1 = x1

)
=

P (X1 = x1)P (X2 = x2|X1 = x1)P

([
n∧
i=3

(Xi = xi)

]
| X1 = x1) ∧X2 = x2

)
=

. . . =
n∏
i=1

P

(
Xi = xi |

[
i−1∧
j=1

Xj = xj

])
Now because of the way we ordered Υ, if Xj ∈ parD(Xi) then j < i, and conversely if

j < i then Xj ∈ V \ desD(Xi). Thus, by (1.2) we see that any factor in the above product
reduces to

P

(
Xi = xi |

[ ∧
1≤j<i

Xj = xj

])
=

P

Xi = xi |

 ∧
1≤j≤n

Xj∈par(Xi)

Xj = xj


 = pXi,par(Xi)(xi|x̄i),

where, as in the definition of Bayesian Networks, x̄i denotes the sub-tuple of x̄ consisting of
coordinates k for Xk ∈ parD(Xi). Thus

P (
n∧
i=1

(Xi = xi)) =
n∏
i=1

pXi,par(Xi)(xi|x̄i),

and this completes the proof.

We are interested in another characterization of Bayesian Networks that involves the
notion of d-connectedness. For this we will need to define

Definition 1.9 (Linear, converging, and diverging nodes). Let D = (V,E) be a DAG, let
p = {ei}1≤i≤r be a trail in D. Let v ∈ V be a node on p other than the first or last node
on the trail, so that there are exactly two consecutive edges ek, ek+1 on the trail p that are
incident with v. These occur in exactly one of four possible arrangements, which we will
group into three types:

1. Linear
−→ek v −→ek+1 or ←−ek v ←−ek+1

2. Converging
−→ek v ←−ek+1
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3. Diverging
←−ek v −→ek+1

Definition 1.10 (D-connectedness). Let D = (V,E) be a DAG, let A,B,C be disjoint
subsets of V , and let p = {ei}1≤i≤r be a trail from a vertex a ∈ A to a vertex b ∈ B. We
call p a d-connecting path with respect to C (or a d-connecting path given C) if, for every
node v on the path that is not equal to a or b, the node v is either

1. linear and in V \ C,

2. diverging and in V \ C, or

3. converging and having a descendant (possibly itself) in C.

If such a trail exists we say that A and B are d-connected with respect to C or d-connected
given C. Otherwise we say that A and B are d-separated with respect to C.

Theorem 1.11. Let S = (Ω,Σ, P ) be a probability space and let Υ = {Xi}1≤i≤n be a set of
random variables on Ω such that each X ∈ Υ takes on finitely many values. Let D = (V,E)
be a DAG with V = Υ.
Suppose that for any X ∈ Υ and any disjoint subsets A,B ⊆ Υ \ {X} such that ¬(X qA|B)
we have {X} and A d-connected given B.
Then D is a Bayesian Network with respect to Υ.

Proof. Suppose for contradiction that for some X ∈ Υ we have

¬(X q (Υ \ desD(X))|parD(X)).

Then letting T = (Υ \ desD(X)) \ parD(X) we see by the second part of Lemma 1.2 that

¬(X q T |parD(X)).

Then by assumption there is a d-connecting path p given parD(X) from the variable X to
some variable Y that is not a descendant of X nor a parent of X. We consider two cases.

First suppose that the first arrow on the path p upon leaving X points away from X.
Since Y is not a descendant of X there must be some first converging node v on the path.
But since p is d-connecting with respect to parD(X), either v or one of its descendants must
be in parD(X), and this gives a contradiction since D is acyclic.

Now assume the first arrow on the path p upon leaving X points towards X. The node
u that this arrow points away from is a parent of X. Now u cannot be equal to Y since Y
is not a parent of X. But then u must be a either a diverging or a linear node, which gives
a contradiction since the path p is d-connecting given parD(X).

Having reached a contradiction in both cases, we conclude that (1.2) in the statement of
Theorem 1.6 is satisfied, so that D must be a Bayesian Network with respect to Υ.
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We can say more about the relation between Bayesian Networks and d-connectedness.
Verma, Pearl, and Geiger have proved the following

Theorem 1.12 (Verma, Pearl, Geiger). Suppose D is a Bayesian Network for variables Υ
on probability space (Ω,Σ, P ) with A,B,C disjoint subsets of Υ such that ¬(AqB|C). Then
A and B are d-connected with respect to C.
Conversely, if D is a DAG on Υ such that A and B are d-connected with respect to C then
there is at least one distribution P that such that D is a Bayesian Network with respect to
Υ and such that ¬(AqB|C).

Proof. See [20] and [10].

In [18] Pearl notes that the converse above is an understatement: Most distributions P
make ¬(A q B|C), since a “precise tuning of parameters” is required to ensure (A q B|C)
when A and B are d-connected with respect to C. Here is a simple example of such a precise
tuning.

Let X, Y, Z be random variables taking values in {0, 1}. Let X and Y take each value
with probability .5, and let Z be distributed as the indicator function for (X = 1 ∧ Y =
0)∨ (X = 0∧Y = 1). Let D be the DAG with vertex set Υ = {X, Y, Z}, with one edge from
X to Z, one edge from Y to Z, and no other edges. It is easy to check that D is a Bayesian
Network for the variables {X, Y, Z}, that X q Z|∅, and yet {X} and {Z} are d-connected
with respect to the empty set. Also notice that removing either of the two edges results in
a DAG that is not a Bayesian Network for Υ.

X Y

Z
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Chapter 2

Independent Voter Competence

The Classical Condorcet Jury Theorem for juries with homogeneous voter competence in-
volves a positive integer N and a parameter p ∈ [0, 1], where N represents the size of a
jury faced with making some verdict, and p represents the competence of any member of
the jury, that is, the probability of any one member arriving at the correct alternative when
deliberating alone. Any sort of generalization of this theorem to juries with members of het-
erogeneous competence will take as its initial data - instead of a single parameter p - a tuple
{pi}1≤i≤N ∈ [0, 1]N of parameters where for each 1 ≤ i ≤ N the parameter pi represents the
competence of the ith juror.

We begin this chapter by situating these parameters inside of the framework of Bayesian
Networks. This will allow us to analyze their structure in terms of a family of random vari-
ables in a DAG and, in so doing, give a more satisfying account of potential dependence
relationships between these competencies. This will come in handy when we turn to the
issue of dependent voter competence in the next chapter.

This is not the first attempt to situate the CCJT within some kind of DAG of random
variables. Dietrich and Spiekermann introduce the general idea of a “causal network” in [9]
enough to address the technique of conditioning on common causes (see Chapter 3 for more
on this), but insofar as we can understand their putting forward any kind of network to
accurately interpret the classical theorem, their network is largely a straw man to illustrate
how independence between votes is highly implausible.

Consider the following Bayesian Network, which we might call the Naive Network for
the CCJT and which is not unlike the aforementioned network proposed by Dietrich and
Spiekerman. There is a single binary variable X denoting the true state of the world (think
suspect actually guilty or suspect actually innocent), and for each juror i there is a binary
random variable Vi which indicates the vote of the ith voter. In the DAG of the Naive Net-
work, there is one edge from X to each of the Vi, and there are no other edges. Now certainly
in such a network, since the variable X is unknown, the variables Vi are d-connected (with
respect to the empty set) and so by the results at the end of the last chapter, the variables
Vi will “almost never” be independent (with respect to the empty set of variables).
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X

V1 V2 V3 VN

· · · · · ·

· · · · · · · · ·

Figure 2.1: A Naive Bayesian Network for the CCJT

We agree that the CCJT requires that the jurors exist in a highly idealized setting. Nev-
ertheless, to claim that networks like the one just given are the most accurate representation
of the classical theorem inside a Bayesian Network is to disregard an implicit but necessary
application condition of the CCJT . Let us elaborate: The original statement of the CCJT
for juries with homogeneous competence involves nothing more than a competence p, the
probability that any individual voter will vote correctly when deliberating alone, and the
theorem gives a condition on p (in particular the condition that p > 1

2
) which, once sat-

isfied, ensures that simple majority rule is preferred to random ballot. Furthermore, and
importantly, the attractiveness of the theorem is supposed lie with the assumption that this
condition is reasonable: In order for simple majority rule to be preferred to random ballot,
“all that is required” is the “reasonable requirement” that jurors have individual competence
p greater than 1

2
.

But to claim that p > 1
2

is a reasonable condition is to assume that, in some way, “The
truth, while perhaps not totally perspicuous, is there to be found in the court evidence; all
the pieces of the puzzle are present and only need to be put together; and the truth will
usually be discovered (by “reasonable” jurors).” Such an assumption takes a highly idealized
notion of the quality of court evidence, and the plausibility of these kinds of assumptions is
beyond the scope of this paper. Our point is simply that any defense of the CCJT as being
at all useful is going to come with the aforementioned assumptions about the nature of the
court evidence.

So, given that this is the case, and given that we are going to interpret the CCJT inside
a Bayesian Network, what should that network look like?

The goal of the CJT Network, defined below, is to provide the simplest possible Bayesian
Network where we can interpret the parameter p (in the homogeneous case) or the parame-
ters {pi} (in the heterogeneous case) in terms of some family of random variables which are
mutually independent, perhaps conditional on some restriction about the nature of the court
evidence. For the sake of argument, we provide conditions under which the philosophical
baggage of the CCJT is satisfied: where the truth, though perhaps clouded, is right there
in the evidence waiting to be found, and yet the approach does not introduce dependencies
between the competencies.
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2.1 A Bayesian Network for the CCJT

Definition 2.1 (CJT Network). Let N = 2n + 1 be an odd positive integer, and let Φ =
{pi}1≤i≤N ∈ [0, 1]N . Let S = (Ω,Σ, P ) be a probability space and Υ = (X,E, {Vi}1≤i≤N , V )
be binary random variables on Ω. We say that a directed acyclic graph Ξ is a CJT Network
(of order N with competence Φ and with respect to variables Υ) if

1. Ξ is a Bayesian Network with respect to the set of variables {X,E, V } ∪ {Vi}1≤i≤N ,

2. The edges in Ξ are given by Figure 2.2. Specifically, the {Vi} are all parents of V , E
is a parent of each of the {Vi}, X is a parent of E, and there are no other edges,

3. V is the indicator function for the event

N∑
i=1

Vi >
N

2
. (2.1)

4. For all i ∈ J , pi = P (Vi = 1|E = 1) = P (Vi = 0|E = 0).

X

E

V1 V2 V3 VN

V

· · ·· · ·

· · ·· · · · · ·· · ·

· · ·

Figure 2.2: A CJT Network of order N

Each random variables in Υ takes values in the set {0, 1} which we interpret as the two
alternatives from which the group must choose. The value of X is the correct alternative.
The value of E should be thought of as the alternative toward which the evidence points. For
1 ≤ i ≤ N , the value of Vi represents the alternative voted for by the ith juror. The value
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of V represents the alternative ultimately chosen by the group of all N jurors via simple
majority rule.

Notice that we do not claim to know the marginal distributions any of the variables in
Υ. The only requirements we make on the various distributions are that the conditional
probabilities Φ = {pi}1≤i≤N = P (Vi = 1|E = 1) = P (Vi = 0|E = 0) are known, that V is
distributed as in equation 2.1 above, and that Ξ is a Bayesian Network for the variables Υ.

We now assert that the CCJT can then be viewed as an examination of the value
P (V = X|E = X) as a function of the jury size N and the competencies Φ.

Definition 2.2. Let Ξ be a CJT Network of order N = 2n + 1 with competences Φ =
{pi}1≤i≤N ∈ [0, 1]N and with respect to variables Υ = (X,E, {Vi}1≤i≤N , V ). We make the
following definitions

1.
Γ := P (V = X|E = X)

is the probability that the jury will come to the truth given that the evidence points to
the truth.

2. Let N := {1, . . . , N}. Given k ∈ N, let

Nk := {σ ⊆ N : |σ| = k},

and let

M(N) := {σ ⊆ N : |σ| > N

2
}

be the set of all “majorities” from N.

3. Given σ ⊆ N, and α ∈ {0, 1}, we define

Nσ,α :=

(∧
j∈σ

Vj = α

)
∧

∧
j /∈σ

Vj 6= α


to be the event that the set σ will consist of exactly the jurors who voted for α.

4. Given σ ⊆ N, and α ∈ {0, 1}, we define

Mσ,α := P (Nσ,α|E = α) .

Lemma 2.3 (Independence Lemma). Let P be the probability measure corresponding to a
CJT Network Ξ of order N with competence Φ = {pi}1≤i≤N . Let σ ⊆ N. If we define

Mσ :=
∏
j∈σ

pj
∏

j∈N\σ

(1− pj),
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then
Mσ,1 = Mσ,0 = Mσ

Proof.

Mσ,1 = P

(∧
j∈σ

Vj = 1

)
∧

 ∧
j∈N\σ

Vj = 0

 |E = 1


=
∏
j∈σ

P (Vj = 1|E = 1)
∏

j∈N\σ

P (Vj = 0|E = 1) = Mσ,

and the case for Mσ,0 is similar.

We can use this lemma to express the group competence as a neat sum of products

Corollary 2.4. If P is the probability measure corresponding to a CJT Network Ξ of order
N with competence Φ = {pi}1≤i≤N then

Γ =
∑

σ∈M(N)

∏
i∈σ

pi
∏
i∈N\σ

(1− pi)

 =
N∑

k=n+1

∑
σ∈Nk

∏
i∈σ

pi
∏
i∈N\σ

(1− pi)


Proof. By lemma 2.3

Γ = P (V = X|E = X) = P (V = X = 1|E = X) + P (V = X = 0|E = X) =

P (V = X|E = X = 1)P (X = 1|E = X) + P (V = X|E = X = 0)P (X = 0|E = X) =

P (V = 1|E = X = 1)P (X = 1|E = X) + P (V = 0|E = X = 0)P (X = 0|E = X) =

P (V = 1|E = 1)P (X = 1|E = X) + P (V = 0|E = 0)P (X = 0|E = X)

where in the last equality we have used the fact that V is independent of X given E by
Lemma 1.6. Now since

P (X = 1|E = X) + P (X = 0|E = X) = 1

it suffices to show that

P (V = 1|E = 1) = P (V = 0|E = 0) =
∑

σ∈M(N)

∏
i∈σ

pi
∏
i∈N\σ

(1− pi)


But this is true by Lemma 2.3 since

P (V = 1|E = 1) =
∑

σ∈M(N)

Mσ,1
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and similarly

P (V = 0|E = 0) =
∑

σ∈M(N)

Mσ,0.

Now recall the method of random ballot, in which, after the jurors deliberate individually
on the available evidence, and cast their ballots, one ballot is chosen at random (via a
uniform distribution) and the alternative written on that ballot become the group decision.
Note that the method of random ballot is formally equivalent to a judgement aggregation
method which we might call random dictatorship or random temporary executive, in which,
after the jurors deliberate individually on the available evidence, one special juror is chosen
at random (via a uniform distribution) and this special juror is instructed to pronounce the
verdict as an executive decision.

One could give the method of random ballot its own Bayesian Network or just combine it
with a preexisting CJT Network. We have chosen the latter. Given a CJT Network Ξ with
respect to variables Υ, we can add two more random variables R and D to Υ to capture the
random ballot method. The variable R will model the random selection process, and the
value of the variable D is the alternative chosen by the randomly selected juror.

Definition 2.5 (Augmented CJT Network). Suppose Ξ = (Υ, EDGE) is a CJT Network
of order N = 2n+ 1 with competence Φ = {pi}1≤i≤N ∈ [0, 1]N , and with respect to variables
Υ = (X,E, {Vi}1≤i≤N , V ) on a probability space S = (Ω,Σ, P ).

Let R and D be two additional random variables with respect to S, and let Υ∗ = (Υ, R,D)
We say that a directed acyclic graph Ξ∗ = (Υ∗, EDGE∗) is an Augmented CJT Network

(of order N , with competence Φ, and with respect to the variables Υ∗) if

1. Ξ∗ is a Bayesian Network with respect to the variables {X,E, V,R,D} ∪ {Vi}i∈J .

2. The edges in EDGE∗ \EDGE consist of an arrow from each of the Vi to the variable
D and an arrow from R to D. There are no other arrows in EDGE∗ \ EDGE.

3. The variable R takes values in N and is distributed uniformly.

4. The variable D is the indicator function for the event

N∨
i=1

(R = i ∧ Vi = 1).

It is easy to see that Definitions 2.2, Lemma 2.3, and Corollary 2.4 continue to be true
in an Augmented CJT Network. We can also define a counterpart to Γ above.

Definition 2.6. Given an augmented CJT Network Ξ∗, define

∆ := P (D = X|E = X)
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X

E

V1 V2 V3 VN R

V D

· · ·· · ·

· · ·· · · · · ·· · ·

· · · · · ·

Figure 2.3: Including the process of random ballot

Lemma 2.7. If Ξ∗ is an augmented CJT Network of order N with competencies Φ =
{pi}1≤i≤N then

∆ =
1

N

N∑
i=1

pi.

Proof.

∆ = P (D = X|E = X) =
N∑
i=1

P (R = i ∧D = X|E = X) =

N∑
i=1

P (D = X|R = i ∧ E = X)P (R = i|E = X) =
1

N

N∑
i=1

P (D = X|R = i ∧ E = X) =

1

N

N∑
i=1

P (Vi = X|R = i ∧ E = X).

Now any one of these last summands can be written

P (Vi = X|R = i ∧ E = X) =
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P (Vi = X = 1|R = i ∧ E = X) + P (Vi = X = 0|R = i ∧ E = X) =

P (Vi = X|R = i ∧ E = X = 1)P (X = 1|E = X ∧R = i)+

P (Vi = X|R = i ∧ E = X = 0)P (X = 0|E = X ∧R = i) =

P (Vi = 1|R = i ∧ E = X = 1)P (X = 1|E = X ∧R = i)+

P (Vi = 0|R = i ∧ E = X = 0)P (X = 0|E = X ∧R = i) =

P (Vi = 1|E = 1)P (X = 1|E = X ∧R = i) + P (Vi = 0|E = 0)P (X = 0|E = X ∧R = i) =

pi [P (X = 1|E = X ∧R = i) + P (X = 0|E = X ∧R = i)] = pi

So the lemma is proved.

We will often want to think of Γ and ∆ as functions of a positive integer N and Φ,
independently of any CJT Network Ξ. While we will primarily be concerned with the
functions ΓN , ∆N with N odd, we will occasionally make use of the functions Γ2n and ∆2n.

Definition 2.8. Let N be a positive integer, and N = {1, 2, . . . , N}.

1. Define ΓN : [0, 1]N → R by

ΓN(x̄) :=
N∑

k=dN
2
e

∑
σ∈Nk

∏
i∈σ

pi
∏
i∈N\σ

(1− pi)


2. Define ∆N : [0, 1]N → R.

∆N(x̄) :=
1

N

N∑
i=1

xi.

2.2 Juries with homogeneous competence

The Classical Condorcet Jury Theorem considers the special case where all competencies in
Φ are equal:

Definition 2.9. We say that a CJT Network Ξ of order N with competence Φ = {pi}1≤i≤N
has homogeneous competence if there exists some p ∈ [0, 1] such that pi = p for all 1 ≤ i ≤
N . Otherwise we say that Ξ has heterogeneous competence.

When homogeneity is satisfied, the values Mσ, Γ, and ∆, simplify quite a bit.

Lemma 2.10. Let n ∈ N and let Ξ be a CJT Network (possibly Augmented) of order
N = 2n+ 1, homogeneous competence p, and with respect to variables Υ.
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1. For all σ ⊆ N
Mσ = p|σ|(1− p)N−|σ|

2.

Γ =
N∑

i=n+1

(
N

i

)
pi(1− p)N−i

3.
∆ = p

Once again it will be nice to consider Γ and ∆ (for Ξ of homogeneous competence) as
functions in their own right, although in this case the latter is just the inclusion map.

Definition 2.11. Let N be a positive integer.

1. Define ΓN : [0, 1]→ R by

ΓN(x) :=
N∑

i=dN
2
e

(
N

i

)
xi(1− x)N−i.

2. Define ∆ : [0, 1]→ R by
∆(x) := x.

An Example / Contrasting with Random Ballot

Let us look at a simple example. We take a jury of size N = 3 with homogeneous juror
competence p. If we name the jurors, 1, 2, and 3, then the possible majorities are the sets
{1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}. We see that

Γ3(p) = 3p2(1− p) + p3.

If the jurors have a competence level of, say, p = 2
3
, then Γ3(p) = Γ3(2

3
) = 20

27
.

Notice that Γ3(2
3
) > 2

3
= ∆(2

3
). Thus, given that E = X, the probability of of arriving

at the correct result by method of random ballot is strictly less reliable than the method of
majority rule. We will prove this for general p ∈ (1

2
, 1) in Corollary 2.17 below.

The Classical Condorcet Jury Theorem

Theorem 2.12 (Classical Condorcet Jury Theorem). Let n ∈ N, and let N = 2n+ 1.

1. The sequence {Γ2n+1(x)}n∈N is strictly increasing in the index n for all x ∈ (1
2
, 1).

2. The sequence {Γ2n+1(x)}n∈N is strictly decreasing in the index n for all x ∈ (0, 1
2
).
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3. If x ∈ (1
2
, 1), then Γ2n+1(x)→ 1 as n→∞.

4. If x ∈ (0, 1
2
), then Γ2n+1(x)→ 0 as n→∞.

5. If x ∈ {0, 1
2
, 1}, then Γ2n+1(x) = x.

The standard proof of the CCJT uses the weak law of large numbers.1 Our proof uses
basic analytical techniques (and Stirling’s approximation) to analyze the behavior of the
function ΓN(p) more closely. Our proof also makes explicit a difference formula for the
function Γ2n+1(p) (in the variable n) revealing the extent of the monotonicity of Γ2n+1(p) in
the variable n. This difference formula will come in handy in Chapter 3.

First a lemma.

Lemma 2.13. For n ∈ N and N = 2n+ 1,

1.
d

dx
ΓN = Γ′N =

(
2n+ 1

n+ 1

)
(n+ 1)(x(1− x))n.

2.

ΓN

(
1

2

)
=

1

2
.

3.
ΓN (1) = 1.

(i). Taking the first derivative of ΓN gives us

Γ′N(x) =
2n+1∑
i=n+1

(
2n+ 1

i

)[
−xi(2n+ 1− i)(1− x)2n−i + ixi−1(1− x)2n+1−i]

=
2n+1∑
i=n+1

(
2n+ 1

i

)[
−xi(2n+ 1− i)(1− x)2n−i]+

2n+1∑
i=n+1

(
2n+ 1

i

)[
ixi−1(1− x)2n+1−i]

=
2n+1∑
i=n+1

(
2n+ 1

i

)[
−xi(2n+ 1− i)(1− x)2n−i]+

2n∑
i=n

(
2n+ 1

i+ 1

)[
(i+ 1)xi(1− x)2n−i] .

Naming the summands on the left Ti and those the right Si, this says that

Γ′N(x) =
2n+1∑
i=n+1

Ti +
2n∑
i=n

Si = T2n+1 + Sn +
2n∑

i=n+1

(Ti + Si).

1 One can use the WLLN or CLT to show that the limit of the average of the voter competencies must
be equal to p and thus greater than one half. The theorem follows quickly from this.
Note that the laws of large numbers and the central limit theorem will be of no use once we get to hetero-
geneous jury competence in the next section.
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We find that for n+ 1 ≤ i ≤ 2n we have

Ti + Si = xi(1− x)2n−i
(

2n+ 1

i

)
[−(2n+ 1− i) +K(i+ 1)] ,

where

K =

(
2n+1
i+1

)(
2n+1
i

) =
(2n+ 1)!

(2n− i)!(i+ 1)!

(2n+ 1− i)!i!
(2n+ 1)!

=
(2n+ 1− i)!i!

(2n− i)!(i+ 1)!
=

2n+ 1− i
i+ 1

.

Thus
∑2n

i=n+1(Ti + Si) = 0, and so Γ′N = T2n+1 + Sn.
It is also immediate that T2n+1 = 0. So

Γ′N = Sn =

(
2n+ 1

n+ 1

)
[(n+ 1)xn(1− x)n] .

(ii). By the binomial theorem,

ΓN

(
1

2

)
=

2n+1∑
i=n+1

(
2n+ 1

i

)
1

22n+1

=
1

22n+1

2n+1∑
i=n+1

(
2n+ 1

i

)
(1)i(1)2n+1−i =

1

22n+1

1

2
(1 + 1)2n+1 =

1

2
.

(iii). Obvious.

Definition 2.14. For n ∈ N, N = 2n+ 1, and x ∈ [0, 1], define

DN(x) := ΓN+2(x)− ΓN(x).

Lemma 2.15. For n ∈ N, N = 2n+ 1, and x ∈ [0, 1],

DN(x) =

(
2n+ 1

n+ 1

)
(2x− 1)((1− x)x)n+1.

Proof. It follows from Lemma 2.13 that

ΓN(x) = ΓN

(
1

2

)
+

∫ x

1
2

Γ′N(t)dt =
1

2
+

∫ x

1
2

(
2n+ 1

n+ 1

)
[(n+ 1)tn(1− t)n] dt.
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Thus
ΓN+2(x)− ΓN(x) =∫ x

1
2

(
2n+ 3

n+ 2

)[
(n+ 2)tn+1(1− t)n+1

]
dt−

∫ x

1
2

(
2n+ 1

n+ 1

)
[(n+ 1)tn(1− t)n] dt =(

2n+ 1

n+ 1

)∫ x

1
2

(2n+ 3)(2n+ 2)

(n+ 2)(n+ 1)

[
(n+ 2)tn+1(1− t)n+1

]
− [(n+ 1)tn(1− t)n] dt =

(
2n+ 1

n+ 1

)∫ x

1
2

[
(4n+ 6)tn+1(1− t)n+1 − (n+ 1)tn(1− t)n

]
dt =(

2n+ 1

n+ 1

)∫ x

1
2

(t(1− t))n [(4n+ 6)t(1− t)− (n+ 1)] dt.

It can be checked that an antiderivative of this last integrand is (2t− 1)((1− t)t)n+1, and
the lemma is shown.

Corollary 2.16. Let n ∈ N and N = 2n+ 1,

1. DN(x) > 0 for x ∈ (1
2
, 1),

2. DN(x) < 0 for x ∈ (0, 1
2
),

3. DN(x) = 0 for x ∈ {0, 1
2
, 1}.

Proof. Straightforward.

This establishes parts (1), (2), and (5) of Theorem 2.12.
We take this moment to present a corollary saying when majority rule is preferred to random
ballot.

Corollary 2.17. For n ∈ N and N = 2n+ 1,

1. ΓN(x) > ∆(x) = x for x ∈ (1
2
, 1),

2. ΓN(x) < ∆(x) = x for x ∈ (0, 1
2
),

3. ΓN(x) = ∆(x) = x for x ∈ {0, 1
2
, 1}.

Proof. By 2.16, since Γ1(x) = ∆(x).

Lastly we prove part (3) of the theorem. Part (4) will follow by a symmetrical argument.
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Part (3). The general strategy is as follows. Again let n ∈ N and N = 2n+1. We know that
on (1

2
, 1) the functions {Γ2n+1} are pointwise increasing in n (by 2.16(1)), have positive x

derivative (by 2.13(1)) , and thus are bounded above by 1 (by 2.13(3)). So for each x ∈ (1
2
, 1)

a pointwise limit L(x) exists.
For a fixed x ∈ (1

2
, 1), let Ix := [x, 1], and let GN,x : Ix → R be the restriction of Γ′N to

Ix. That is

GN,x(z) = Γ′N(z)|I =

(
2n+ 1

n+ 1

)
(n+ 1)(z(1− z))n

for all z ∈ Ix.
Then if we can show that the sequence of functions {GN,x}n∈ω converges uniformly on Ix
to the zero function, it follows that the restrictions ΓN |Ix converge to L|Ix , which must be
a constant function and indeed must equal 1|Ix by 2.13(3). Doing this for an arbitrary
x ∈ (1

2
, 1) gives us the the conclusion that we want.

So fix x ∈ (1
2
, 1). The last factor in GN,x(x) above appears frequently enough for us to

give its base a name. Define y(z) := z(1 − z). As z increases through the domain Ix, y
decreases from y(x) < 1

4
to zero. In particular, we have y(x) ∈ (0, 1

4
) and so for all z ∈ Ix

we have y(z) ∈ (0, y(x)).
We wish to find, for each ε > 0, a positive integer M such that, for all n > M we

have GN,x(z) < ε for all z ∈ Ix. Equivalently, we wish to show that, as n → ∞, we have
lnGN,x(z)→ −∞ independent of z ∈ Ix.
First notice that for z ∈ Ix we have ln(y(z)) ∈ (−∞, α] where α = ln y(x) < −4.
We see that

lnGN,x(z) = ln

((
2n+ 1

n+ 1

)
(n+ 1)(y(z))n

)
= ln ((2n+ 1)!)− 2 ln (n!) + n ln(y(z)).

Using Stirling’s approximation on the first two terms (and using big-O notation) we write

lnGN,x(z) = (2n+1) ln (2n+ 1)−(2n+1)+O(ln (2n+ 1))−2n ln (n)+2n−2O(ln (n))+n ln (y(z))

= 2n ln (2n+ 1)− 2n ln (n) + n ln (y(z))±O(ln (n))

= n

[
ln

(
2n+ 1

n

)2

+ ln (y(z))± O(ln (n))

n

]
≤

= n

[
ln

(
2n+ 1

n

)2

+ ln y(x)± O(ln (n))

n

]
But as n → ∞ the expression in square brackets converges to ln 4 − ln y(x) < 0 and this
expression is independent of z ∈ Ix. Thus since the factor of n outside the square brackets
goes to ∞, we conclude that lnGN,x(z) goes to −∞ independent of z ∈ Ix.

Thus we have shown that {G2n+1,x}n∈ω converges uniformly to the zero function, thus
ΓN(z)|Ix → 1. Since x was arbitrary this gives ΓN(x) → 1 for x ∈ (1

2
, 1). This shows part
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(3) of the theorem, and part (4) follows in a similar manner. This completes the proof of
the CCJT.

Figure 1.1 gives a graph of the functions y = ΓN(x) for juries of 1, 3, 7, 31, and 141 jurors
with homogeneous competence x .

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5

-0.25

0.25

0.5

0.75

1

Figure 2.4: y = ΓN(x) for N ∈ {1, 3, 7, 31, 141} jurors with homogeneous competence x

2.3 Juries with heterogeneous competence

In this section we consider how to generalize some of the previous results to situations in
which the jury has heterogeneous competence.

Theorem 2.12 itself does not have an obvious translation to the heterogeneous case with-
out some additional information about the individual competences of the incoming jurors,
e.g. competences following some sequence or governed by some probability distribution.

If, say for part (1), the only requirement was that we draft two new jurors with com-
petence greater than 1

2
, then group competence is certainly not increasing in group size, as

can be seen by introducing two jurors with competence .6 into a jury of one member with
competence .9.

(.9)(.6)(.6) + (.9)(.6)(.4) + (.9)(.6)(.4) + (.1)(.6)(.6) = .792 < .9.
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As similar claim holds for part (2).
In the case of part (3), it is easy to see that if there is some lower bound m > 1

2
such that

each new juror i has competence pi > m then it follows from Theorem 2.12 that the jury
competence must go to 1 in the limit. Indeed if the competences of the jurors even converges
to m > 1

2
then the jury competence must go to 1 in the limit. If, however, we only require

that each new juror has competence pi >
1
2
, and if the competence of the incoming jurors

converges to 1
2

sufficiently fast, then we witness some interesting behavior. In particular
Berend and Paroush prove the following theorem (see [1]).

Theorem 2.18 (Berend and Paroush). Let {pi}1≤i<∞ ∈ [0, 1]∞, and let PN be the probability
that a jury with N members with respective competences p1, . . . , pN will arrive at the correct
verdict. Then limN→∞ PN = 1 if and only if at least one of the following conditions holds

1. ∑N
i=1 pi −

N
2√∑N

i=1 pi(1− pi)
→∞

2. For every sufficiently large N

|{i : 1 ≤ i ≤ N, pi = 1} > N

2

In this chapter we are less interested in asymptotic results than with comparing simple
majority rule to random ballot for a fixed jury size N . In particular we are interested in
generalizing Corollary 2.17 to juries with heterogeneous competence Φ = {pi}i∈N when each
pi ∈ (1

2
, 1) (or each pi ∈ (0, 1

2
)).

In [5], Boland notices the that the following 1956 theorem by Hoeffding [13], gives an
approximation to Corollary 2.17 for heterogeneous competence:

Theorem 2.19 (Hoeffding). Let {Xi}1≤i≤N be independent Bernoulli random variables with
respective probabilities {pi}1≤i≤N of success, and let S =

∑N
i=1Xi be the random variable

denoting the number of successes in all N trials. Let p̄ := 1
N

∑N
i=1 pi, and let b, c be two

integers such that 0 ≤ b ≤ Np̄ ≤ c ≤ N . Then

P (b ≤ S ≤ c) ≥
c∑

k=b

(
N

k

)
p̄k(1− p̄)N−k (2.2)

The lower bound is attained only if pi = p̄ for all 1 ≤ i ≤ N unless b = 0 and c = N .

Letting c = N and b = N+1
2

in Hoeffding’s result and then applying the Corollary 2.17 to
the right hand side of (2.2), we see that a heterogeneous jury with p̄ ≥ 1

2
+ 1

2N
will be more

likely to arrive at the correct decision than the method of random ballot.
We are interested in proving a similar theorem but with the requirement that pi ≥ 1

2
for
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all 1 ≤ i ≤ N and no further restriction on the average p̄.
The theorem that we prove is 2.27 below. Note that Berend and Sapir (see [2]) have

proved a more general form of this theorem in which they compare the probability of a
correct verdict by simple majority rule with a jury of size N to that of the method of
selecting a random sub jury of size m ≤ N and deciding the issue by means of simple
majority rule amongst that subjury. While our result is less general, it makes use of some
interesting combinatorics.
We will first need to derive some corollaries from Hall’s Marriage Theorem.

Hall’s Marriage Theorem on Graphs

Definition 2.20. Let G = (V,E) be an undirected graph.

1. We will say that G is finite if V and E are finite sets.

2. Let U ⊆ V . We define NG(U), the neighborhood of U , to be all vertices adjacent to
some vertex in U .

NG(U) = {w ∈ V : ∃u ∈ U({w, u} ∈ E)}

3. Let U ⊆ V and F ⊆ E. We define

DG(F,U) = {{x, y} ∈ F : x ∈ U ∨ y ∈ U}

to be all edges in F that are incident with some vertex in U .

4. Given d ∈ N, we say that G is d-regular if |NG({v})| = d for every v ∈ V .

5. We say that G is bipartite if we can partition the vertex set V into two disjoint subsets
V1 and V2 such that every edge in G is incident with a vertex in V1 and a vertex in V2.
We refer to the pair (V1, V2) as a bipartition for G.
(NOTE: We will write V = V1 ⊕ V2 to emphasize that a union is disjoint. Also, if we
are building a vertex set for G out of two preexisting sets U1 and U2 which may have
nonempty intersection, we will write V = U1⊕U2 to mean that we are setting V equal
to the union of disjoint copies of U1 and U2, as in V = (U1 × {1}) ∪ (U2 × {2}).)

6. A subset M ⊆ E is called a matching for G if the edges of M are pairwise non-adjacent,
that is, no two edges in M share a vertex. We say that M covers some subset U ⊆ V
if, for every vertex v ∈ U , there is some edge in M incident with v.

Theorem 2.21 (Hall’s Marriage Theorem). Let G be a finite, bipartite graph with bipartition
V = V1 ⊕ V2. Then G has a matching that covers V1 if and only if G satisfies the Marriage
Condition:

For every subset Z ⊆ V1, |Z| ≤ |NG(Z)|. (2.3)
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Proof. We refer the reader to Hall’s original paper [12].

Theorem 2.22. Let d be a positive integer, and let G = (V,E) be a finite, d-regular, bipartite
graph with bipartition V = V1 ⊕ V2. Then G has a matching that covers V1.

Proof. We will show that G satisfies the Marriage Condition (2.3).
Fix some subset Z ⊆ V1. Let H = (W,F ) be the subgraph of G with vertices W = Z⊕NG(Z)
and edge set F equal to the restriction of E to W . Then

d|Z| = |DG(E,Z)| = |F | = |DG(F,NG(Z))| ≤ |DG(E,NG(Z))| = d|NG(Z)|.

Dividing through by d gives the desired inequality, and therefore the theorem.

Given a set S, and k ∈ N, let Sk = {σ ⊆ S : |σ| = k}.

Corollary 2.23. Let S be a set with |S| = N , and let k ∈ N with k ≤ N
2

. Then there exists
a permutation φk,N of Sk such that for all σ ∈ Sk

φk,N(σ) ∩ σ = ∅.

Proof. Let G = (V,E) be the bi-partite graph with bi-partition V = V1 ⊕ V2 = Sk ⊕ Sk and
edge set

E = {{σ, τ} : σ ∈ V1, τ ∈ V2, σ ∩ τ = ∅}.

G is in fact
(
N−k
k

)
-regular, thus Theorem 2.22 tells us that G has a matching that covers

V1. Since V1 = Sk = V2 this matching is actually a permutation with the desired property.

Corollary 2.24. Let S be a set with |S| = N , and let k ∈ N with k ≤ N
2

. Then there exists
a bijection ψk,N : Sk → SN−k such that for all σ ∈ Sk

σ ⊆ ψk,N(σ).

Proof. Let φk,N be as in Corollary 2.23. For σ ∈ Sk, define ψk,N(σ) = S \ φk,N(σ).

Lemma 2.25. Let N = {1, 2, . . . , N}, and let k ∈ N with k ≤ N
2

.

1. Given ȳ = (y1, . . . yN) ∈ [1,∞)N ,

∑
σ⊆N
|σ|=k

∏
j∈σ

yj ≤
∑
σ⊆N
|σ|=N−k

∏
j∈σ

yj.
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2. Given ȳ = (y1, . . . yN) ∈ (0, 1]N ,∑
σ⊆N
|σ|=k

∏
j∈σ

yj ≥
∑
σ⊆N
|σ|=N−k

∏
j∈σ

yj.

3. In both cases equality holds if and only if

a) ȳ = 1 = (1, 1, . . . , 1), or

b) N is even and k = N
2

.

Proof. We will prove the first part and the half of part (3) corresponding to ȳ ∈ [1,∞)N .
The second part and other half of part (3) will follow by a similar argument.
Let ȳ = (y1, . . . yN) ∈ [1,∞)N , and let ψ := ψk,N be as in Corollary 2.24. First notice that

for all σ ∈ Nk,
∏
j∈σ

yj ≤
∏

j∈ψ(σ)

yj. (2.4)

Thus ∑
σ⊆N
|σ|=k

∏
j∈σ

yj ≤
∑
ψ(σ)
σ⊆N
|σ|=k

∏
j∈ψ(σ)

yj =
∑
σ⊆N
|σ|=N−k

∏
j∈σ

yj. (2.5)

This proves part (1).
Furthermore we have (2.5) just in case each equality holds in each instance of (2.4). Now

clearly these are satisfied if ȳ = 1 = (1, 1, . . . , 1), and if N is even and k = N
2

then clearly
ψ(σ) = σ for all σ ∈ Nk, and the inequalities in 2.4 are equalities.

Conversely, suppose that for some α ∈ N, yα > 1 and that k < N
2
. Now φ is a bijection,

there are
(
N−1
k

)
sets σ ∈ Nk that do not contain α, and there are only

(
N−1
N−k

)
sets τ ∈ NN−k

that do not contain α. Since k < N
2

we see that
(
N−1
N−k

)
<
(
N−1
k

)
, and thus there must be

some σ ∈ Nk such that α /∈ σ and α ∈ ψ(σ). Thus the corresponding inequality in 2.4 is
strict, and equality does not hold. This establishes the half of part (3) corresponding to
ȳ ∈ [1,∞)N .

We define the probability of a tie vote.

Definition 2.26 (Probability of a Tie Vote). Given a positive integer n, N = 2n, and
x̄ ∈ [0, 1]N , we define β2n to be the probability of a tie:

β2n =
∑
σ∈Nn

∏
j∈σ

xj
∏

j∈N\σ

(1− xj)

For an odd integer N ′, we define
βN ′ = 0.
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Comparing Simple Majority Rule and Random Ballot for
Heterogeneous Juries

Armed with Lemma 2.25 and this definition, we are now ready to prove our theorem.

Theorem 2.27. For N a positive integer (of either parity) and 1
2

= (1
2
, 1

2
, . . . , 1

2
) of length N ,

1. ΓN(x̄) ≥ ∆N(x̄) + 1
2
βN(x̄) for x̄ ∈ [1

2
, 1)N .

2. ΓN(x̄) ≤ ∆N(x̄) + 1
2
βN(x̄) for x̄ ∈ (0, 1

2
]N .

3. The inequalities are strict for all x̄ 6= 1
2
.

Proof. Showing that equality holds for x̄ = 1
2

(for N of either parity) is similar to the proof
of Lemma 2.13(ii) and is left to the reader. Now we let D := [1

2
, 1)N , and we begin by

showing the inequality in (1) is strict for x̄ ∈ D \ {1
2
}.

Recall our definitions of ΓN and ∆N for heterogenous juries:

ΓN(x̄) :=
N∑

k=dN
2
e

∑
σ⊆N
|σ|=k

∏
j∈σ

xj
∏

j∈N\σ

(1− xj),

and

∆N(x̄) =
1

N

∑
j∈N

xj.

The function y(x) = x
1−x defines an increasing bijection from [1

2
, 1) onto [1,∞). Note

that x = y(x)
1+y(x)

and 1 − x = 1
1+y(x)

. For j ∈ N, let yj = y(xj), and ȳ = (y1, . . . , yN). Also,

let E = [1,∞)N .
Then

ΓN(x̄) =

(∏
j∈N

(
1

1 + yj
)

)
N∑

k=dN
2
e

∑
σ⊆N
|σ|=k

∏
j∈σ

yj,

and

∆N(x̄) =
1

N

∑
j∈N

(
yj

1 + yj

)
=

1

N

(∏
j∈N

(
1

1 + yj
)

)∑
j∈N

(
yj
∏
i 6=j

(1 + yi)

)
.

So letting P =
(∏

j∈N( 1
1+yj

)
)

, it suffices to show that

NP−1ΓN(x) > NP−1∆N(x) +
1

2
NP−1βN

that is, it suffices to show that, for all ȳ ∈ E \ {1},
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N
N∑

k=dN
2
e

∑
σ⊆N
|σ|=k

∏
j∈σ

yj >
∑
j∈N

(
yj
∏
i 6=j

(1 + yi)

)
+

1

2
NP−1βN . (2.6)

Now notice that for the first term of the right hand side of (2.6) we have

∑
j∈N

(
yj
∏
i 6=j

(1 + yi)

)
=
∑
σ⊆N

|σ|
∏
j∈σ

yj =
N∑
k=0

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj. (2.7)

So making this substitution, we see that it suffices to show, for all ȳ ∈ E \ {1}, that

N
N∑

k=dN
2
e

∑
σ⊆N
|σ|=k

∏
j∈σ

yj >
N∑
k=0

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj +
1

2
NP−1βN . (2.8)

For N an odd integer the second term on the right hand side of (2.8) is zero, and for N = 2n
the expression becomes

1

2
NP−1βN = n

∑
σ∈Nn

∏
j∈σ

yj. (2.9)

Let us first consider the case for odd N = 2n+ 1. Inequality (2.8) becomes

(2n+ 1)
2n+1∑
k=n+1

∑
σ⊆N
|σ|=k

∏
j∈σ

yj >
2n+1∑
k=0

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj. (2.10)

We break up the sum on the right into two parts for k ≤ n and k ≥ n+ 1, and we subtract
the latter from both sides to get

2n+1∑
k=n+1

∑
σ⊆N
|σ|=k

(2n+ 1− k)
∏
j∈σ

yj >
n∑
k=0

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj. (2.11)

The k = 2n+ 1 term on the left and the k = 0 term on the right are equal to zero. We drop
them and reindex the sum on the left from 1 to get

n∑
k=1

∑
σ⊆N
|σ|=k+n

(n+ 1− k)
∏
j∈σ

yj >

n∑
k=1

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj. (2.12)

And for this it will suffice to show that the kth term on the left is no greater than the
(n + 1 − k)th term on the right, and that at least one such inequality is strict. That is, it
suffices to show that for all ȳ ∈ E \ {1}, and 1 ≤ k ≤ n we have
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∑
σ⊆N
|σ|=k+n

(n+ 1− k)
∏
j∈σ

yj >
∑
σ⊆N

|σ|=n+1−k

(n+ 1− k)
∏
j∈σ

yj. (2.13)

Or equivalently, dividing both sides by n + 1− k, letting r := n + 1− k, and recalling that
k + n = N − (n+ 1− k) = N − r, it suffices to show that∑

σ⊆N
|σ|=N−r

∏
j∈σ

yj >
∑
σ⊆N
|σ|=r

∏
j∈σ

yj (2.14)

for all ȳ ∈ E \ {1}, and 1 ≤ r ≤ n, and that at least one such inequality is strict.
But this claim follows immediately from the first part of Lemma 2.25.

We now consider the case of even N = 2n.
Inequality (2.8) becomes

2n
2n∑
k=n

∑
σ⊆N
|σ|=k

∏
j∈σ

yj >
2n∑
k=0

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj + n
∑
σ∈Nn

∏
j∈σ

yj. (2.15)

We break the first sum on the right hand side into three parts for k < n, k > n, k = n and
combine this last part with the other term already on the right hand side to get

2n
2n∑
k=n

∑
σ⊆N
|σ|=k

∏
j∈σ

yj >
n−1∑
k=0

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj +
2n∑

k=n+1

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj + 2n
∑
σ∈Nn

∏
j∈σ

yj. (2.16)

Subtracting the last term of (2.16) from both sides gives

2n
2n∑

k=n+1

∑
σ⊆N
|σ|=k

∏
j∈σ

yj >
n−1∑
k=0

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj +
2n∑

k=n+1

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj. (2.17)

Again subtracting the last term of (2.17) from both sides gives

2n∑
k=n+1

∑
σ⊆N
|σ|=k

(2n− k)
∏
j∈σ

yj >

n−1∑
k=0

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj. (2.18)

Now the k = 2n term on the left and the k = 0 term on the right are both equal to zero, so
we drop them and reindex the sum on the left from 1 to get
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n−1∑
k=1

∑
σ⊆N
|σ|=k+n

(n− k)
∏
j∈σ

yj >

n−1∑
k=1

∑
σ⊆N
|σ|=k

k
∏
j∈σ

yj. (2.19)

And for this it will suffice to show that the kth term on the left is no greater than the n−kth
term on the right, and that at least one such inequality is strict. That is, it suffices to show
that for all ȳ ∈ E \ {1}, and 1 ≤ k < n we have∑

σ⊆N
|σ|=k+n

(n− k)
∏
j∈σ

yj ≥
∑
σ⊆N
|σ|=n−k

(n− k)
∏
j∈σ

yj. (2.20)

Equivalently, letting r := n − k, dividing both sides by n − k, and recalling that n + k =
N − (n− k) = N − r, it suffices to show that∑

σ⊆N
|σ|=N−r

∏
j∈σ

yj ≥
∑
σ⊆N
|σ|=r

∏
j∈σ

yj (2.21)

for all ȳ ∈ E \ {1} and 1 ≤ r ≤ n− 1 and that for at least some r this inequality is strict.
But as in the odd case, the claim follows immediately from the first part of Lemma 2.25.

This concludes the case for ȳ ∈ E \ {1} and hence for x̄ ∈ [1
2
, 1)N .

The case for x̄ ∈ (0, 1
2
]N parallels the above case except that the direction of all the

inequalities is reversed. The function y that we used to map the interval [1
2
, 1) to [1,∞)

also maps the interval (0, 1
2
] to (0, 1]. So to prove the theorem for x̄ ∈ (0, 1

2
]N \ {1

2
} we can

proceed as we did above, using the second part of Lemma 2.25 at the end.

A reasonable aggregation method for even sized juries

We noted that we are not suggesting that Γ2n corresponds to any sensible judgement aggre-
gation method. It makes no sense to define a decision procedure involving a rule “in case
of a tie, the correct decision wins.” This is not to say, however, that we should ignore the
problem of finding a reasonable judgement aggregation method for even sized groups. The
question is not foreign to the CJT literature itself. Berend and Sapir, for instance, suggest
that, for an even sized jury, a tie should be followed by deciding the issue by means of a
coin flip, and indeed Theorem 2.27 for even N entails that such a method is preferred to
random ballot in the case of x̄ ∈ [1

2
, 1)N \ {1

2
} (simply subtract 1

2
βN from both sides of the

inequality).
In this section we introduce a different approach to dealing with ties. In short: In case

of a tie, the jury should simply vote again (we assume that they do so with their original
competences pi). While perhaps not applicable to every real life situation, particularly when
dealing with groups of stubborn voters, we believe the approach is certainly more reasonable
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than that of leaving the decision up to a 50/50 lottery.
With this in mind we make the following definition.

Definition 2.28. [Ties Result in Re-voting] Let n be a positive integer. We define Γ̂2n :
[0, 1]2n → R by

Γ̂2n(x̄) :=
α2n

1− β2n

where

α2n :=
2n∑

k=n+1

∑
σ∈Nk

∏
j∈σ

xj
∏

j∈N\σ

(1− xj) = Γ2n − β2n

and
β2n :=

∑
σ∈Nn

∏
j∈σ

xj
∏

j∈N\σ

(1− xj).

So α2n is the probability that a proper majority will vote correctly, and β2n is the prob-
ability of a tie. The value Γ̂2n(x̄) is both the probability of the success of the jury and the
probability of success given the event of a tie. That is, it is the unique solution Z to the
equation

Z = α2n + Zβ2n.

That is, it is the probability that a the even sized jury will either have a proper majority
voting for the correct outcome or arrive at a tie and, when revoting, have a proper majority
voting for the correct outcome or arrive at another tie and, when revoting, ...(and so on).
The following theorem should be obvious, but we give a short proof nonetheless. It says that
the method of resolving ties by revoting is preferred to the method of settling ties via the
flip of a fair coin for x̄ ∈ [1

2
, 1)2n \ {1

2
}.

Theorem 2.29. Let n be a positive integer and x̄ ∈ [1
2
, 1)2n \ {1

2
}. Then

Γ̂2n(x̄) > α2n(x̄) +
1

2
β2n > ∆2n(x̄).

Proof. The second inequality is immediate from Theorem 2.27.
For the first inequality, we must show

Γ̂2n =
α2n

1− β2n

≥ α2n +
1

2
β2n,

or equivalently

α2n ≥ (1− β2n)(α2n +
1

2
β2n) = α2n +

1

2
β2n − α2nβ2n −

1

2
β2

2n,

or equivalently

α2n +
1

2
β2n >

1

2
,

which is true since α2n + 1
2
β2n = Γ2n − 1

2
β2n > ∆2n by Theorem 2.27.



CHAPTER 2. INDEPENDENT VOTER COMPETENCE 35

Alternately, we could simply observe that α2n(x̄)+ 1
2
β2n gives the probability of success of

the Berend and Sapir’s judgement aggregation method, which begins with a vote but which,
in the event of a tie, decides the issue by the flip of a fair coin. Since the latter method only
differs from the method corresponding to Γ̂ in how it deals with ties, and since a revote is
preferred to a coin flip for x̄ ∈ [1

2
, 1)2n \ {1

2
}, the theorem is shown.
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Chapter 3

Dependent Voter Competence

In most real life group decision scenarios, the individual members are not isolated from one
another, and indeed they spend quite a bit of time and resources attempting to influence
the position of their fellow group members. An obvious example is, of course, a court
jury: After the court evidence has been presented and the closing statements are made, the
jurors deliberate, sometimes at great length, about the best interpretation of the evidence
presented. Regardless of the direction in which the evidence points (represented by the
random variable E in the previous section) it is likely that an outspoken member of the jury
will influence the probability that its fellow jury members will come to the correct decision.

Another example is a democratic electoral race, during which citizens spend a great deal
of energy discussing which of two or more candidates would better fill the office. Regardless
of the direction that the sum total of publicly available information about the relative merits
of the two candidates points, a strategic campaign by one voter or group of voters for or
against a candidate can greatly influence the likelihood that another voter will cast its vote
for that candidate.

The reader has probably already noticed that the model of judgment aggregation given
in the previous chapter will not adequately model these types of situations, since it assumes
that there is some lump of evidence E such that that the family {Vi} of random variables
giving the votes of the individual group agents are mutually independent given E. More
specifically, recall that if our deliberating group consisted of N members N = {1, . . . , N}
with competencies p1, . . . , pN , (with pi = P (Vi = 1|E = 1) = P (Vi = 0|E = 0)), and if
σ ⊆ N, then (by 2.3) the probability Mσ,α that σ consists of exactly the members that voted
for alternative α (given that the evidence pointed to α) was simply the product

Mσ =
∏
i∈σ

pi
∏
i∈N\σ

(1− pi). (3.1)

The literature surrounding the CJT has not been ignorant of the fact that a more com-
plex account of dependence between voter competence is necessary if a theorem is going
to have any hope of applicability to real life. Ladha [15] examined generalizations of the
CJT for which voter competences are not independent but where an estimate on the pair-
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wise correlations ρ between voter competence is known, and Boland, Proschan and Tong [6]
consider situations in which each juror’s vote is correlated with the vote of a group leader.
Until recently, however, most approaches toward dependence in the voting literature have
emphasized the tendency of members of the jury to directly influence the opinion of fellow
group members and have ignored the more general problem that most dependencies between
random variables representing quantities measured in nature are not a result of a direct
causal interaction between these quantities but rather are due to the variables in question
being effects of a common cause. In a recent paper, Dietrich and Spiekermann have ex-
amined this phenomenon in detail, advocated the use of causal networks to model complex
dependencies, and attempted to give an analogue of the CJT that takes complex dependence
into account. An evaluation of this approach is the topic of the first section of this chapter.
In the subsequent section we address dependence resulting from direct causal chains between
voters, namely the ability for voters to influence each other during deliberation.

3.1 Conditioning on Common Causes

Dietrich and Spiekermann refer to the independence assumption inherent in the CCJT as
Classical Independence and give the following definition:

Definition 3.1 (Classical Independence, (p.91 [9])). If X is the random variable represent-
ing the true state of the world with regard to the binary choice (e.g. guilty or innocent, etc)
and the {Vi} are the random variables representing the votes of the group members, then the
{Vi} are independent conditional on X.

In attempting to draw attention to how the assumption of Classical Independence may
fail even when there is no causal chain leading from any one of the group members to
any other, Dietrich and Spiekermann give the following thought experiment from historical
fiction.

Imagine a government relying on a group of economic advisers. Towards the end
of 2007, when the US housing market starts dropping, the government wants
to know whether a recession is imminent. It asks all advisers and adopts the
majority view. To ensure that the experts do not influence each other, safe-
guards are in place to prevent any communication between them. If the classical
CJT applied, we could conclude that the probability of a correct majority vote
converges to 1 as more and more advisers are consulted. But this conclusion
is unlikely to be true because Classical Independence is typically violated even
though the experts do not communicate. To see this, consider a few examples.
First, if all economists rely on the same publicly available evidence, then this
evidence will usually cause them to vote in the same way. For instance, if all the
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evidence misleadingly suggests healthy growth (with the evidence indicating, say,
that banks have much healthier balance sheets than they actually have) while a
bank crash is already around the corner, then most reasonable economists will be
wrong in their prediction. The votes are then dependent through consulting the
same evidence. More precisely, given for instance that alternative 1 is correct,
incorrect votes for 0 by some voters raise the probability of misleading evidence,
which in turn raises the probability that other voters also vote incorrectly, a vi-
olation of independence. Second, if all economists rely on the same theoretical
assumptions for the interpretation of the evidence (such as low correlations be-
tween market prices of certain credit default swaps), this common influence is
likely to induce dependence between the votes. In the extreme, either all get it
right or all get it wrong. Finally, if the experts are more likely to make wrong
predictions in weather that gives headaches, then weather creates dependence
between votes. Again, in the extreme either all get it right or all get it wrong
(and have headaches).[p 94 [9]]

We summarize two of Dietrich and Spiekermann’s main points as follows.

1. Variables that have effects on more than one of the random variables {Vi} can induce
dependence between the latter even if there are no directed causal chains between the
voters.

2. In any real world situation, the network of common causes are likely to be much more
complex than a network where all of the variables {Vi} have a single ancestor, a parent
X representing the true state of the world. Indeed any DAG representing a real world
situation will have the {Vi} separated from the variable X by many intermediary
variables.

We concur with both of these observations. With regard to the first point, we have already
noted in our discussion of Bayesian Networks in the first chapter how in a diverging node
A ← C → B dependence can propagate from A to B through C if we are not conditioning
on C. With respect to the second observation above, we would agree and indeed add that
in most group decision making scenarios the true state of the world X is unlikely to be a
parent of any of the {Vi} (although it is likely to be a distant ancestor). At any rate, since
there will likely be many common parents of the variables {Vi} other than X, we will not
be able to prevent dependence from propagating between the {Vi} simply by conditioning
on the distant ancestor X.

These are facts which, to a limited extent, we anticipated in Chapter 2, when we
introduced CJT Networks. There we wanted to situate the CCJT inside some simple
Bayesian Network including the true state of the world X with descendants {Vi}, but
in the spirit of the CCJT wanted to consider the simplest possible situation in which
the individual votes were independent. For this reason we were careful not to define
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the competencies pi of the jurors as the probabilities P (Vi = X) but as the probabilities
pi = P (Vi = 1|E = 1) = P (Vi = 0|E = 0). Recall that in a CJT Network the range {0, 1} of
each of the variables was the set of alternatives themselves, not the correctness/incorrectness
of the choice, but the principal remains the same. Since the variable E was the only parent
of our variables {Vi}, this approach allowed us to admit the existence of the most obvious
common cause between the variables {Vi} in any voting situation - even in those where the
group members are isolated from one another. Since we were conditioning on the known
parent in letting pi = P (Vi = 1|E = 1) = P (Vi = 0|E = 0), the variables Vi were not
d-connected (see Definition 1.10) with respect to {E}, independence of the variables Vi with
respect to E was established, and we were allowed to use (3.1) above to compute the prob-
ability P (V = X|E = X).

While we maintain that this basic dependence structure ( X a parent of E which is in
turn a parent of each of the Vi) is the best way to situate the CCJT inside the framework of
Bayesian Networks, it was never meant to be less coarse of an abstraction than the CCJT
itself, and there are a couple of reasons why it will never be applicable to any but the most
ideal group decision making scenarios.

In the CJT Network

1. The only common cause affecting the variables {Vi} was the unique parent E, and

2. The nature of this variable E suggested that the best reading of the CCJT was to
assume that all probabilities of interest, the parameters pi and the aggregate probability
of the jury voting correctly, were actually to be thought of as being conditional on E
taking a specific value.

But, as Dietrich and Spiekermann point out, there are likely to be a very complex system of
variables E1, . . . , Em that are common causes of many different subsets of the family {Vi}.
And the escape used in the CJT Network will not work in general. There will not be any
“natural values” e1, . . . em that we can assume the variables {Ei} to take, that is, some
natural values e1, . . . em such that we can claim that the individual competences pi are “best
interpreted as” P (V = α|E1 = e1, . . . , EN = eN) or that group competence Γ is “really”
P (V = X|E1 = e1, . . . , EN = eN). Dietrich and Spiekermann’s solution is simple: If we
cannot condition on a particular sequence of values for all common causes of variables {Vi},
we can condition on all possible values.

Let us consider a simple example.
Let N be a positive integer, let N = {1, . . . , N}, and consider the simplified case where

we have a Bayesian Network Θ with binary random variables {Vi}i∈N such that there is no
directed path between any two of the Vi and the {Vi}i∈N have exactly one parent, a random
variable F taking values in the finite set DF . Suppose there are no other variables in Θ. (See
figure 3.1.)

Thus the Vi are independent conditional on F . But suppose this time that there is no
particular value in DF that we can assume F to take. Suppose we want to compute the
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F

V1 V2 V3 VN

· · · · · ·

· · · · · · · · ·

Figure 3.1: Conditioning on a single parent F taking many values.

probability M∗
σ of the event N∗σ that a certain subset σ ⊆ N is exactly the set of indices j

for which Vj = 1 (and all others take value 0):
If we know the marginal probability distribution on the variable F , we can compute this

value as follows
M∗

σ =
∑
v∈DF

P (F = v)P (N∗σ |F = v).

But since F is the unique parent of the variables {Vi}, the latter are independent conditional
on F = v for any v ∈ DF , and the multiplicative property of equation 3.1 is restored

M∗
σ =

∑
v∈DF

P (F = v)P

(∧
j∈σ

Vj = 1

)
∧

 ∧
j∈N\σ

Vj = 0

 |F = v


∑
v∈DF

P (F = v)
∏
j∈σ

P (Vj = 1|F = v)
∏

j∈N\σ

P (Vj = 0|F = v).

It is easy to see that we can extend this simplified example to the general case where
there are any finite number F1 . . . Fm of parents of the variables {Vi} since if the variable
Fi takes values in the set Di, we can amalgamate the Fi into one common parent F taking
values in the cartesian product of the Di. Dietrich and Spiekermann refer to the resulting
random variable simply as the problem and denote it by Π. Thus they advocate the following
replacement for Classical Independence in 3.1.

Definition 3.2 (New Independence, p.91 [9])). The random variables {Vi} are independent
conditional on the problem Π.

The Framework

Let us once again define a Bayesian Network appropriate to the issue at hand.
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Definition 3.3 (Generalized CJT Network). Let M be a positive integer, n ∈ N, and N =
2n + 1. Let DΠ be some finite set with |DΠ| = M . Let Y : P(DΠ) → [0, 1] be a function,
and let Φ = {pi,π}1≤i≤N,π∈DΠ

∈ [0, 1]NM . Let S = (Ω,Σ, P ) be a probability space and
Υ = (X,Π, {Vi}1≤i≤N , V ) be random variables on Ω.

We say that a directed acyclic graph Θ is a Generalized CJT Network (of order (N,M)
with competence (Y,Φ) and with respect to variables Υ) if

1. Θ is a Bayesian Network with respect to {X,Π, V } ∪ {Vi}1≤i≤N .

2. The variable Π takes values in the set DΠ.

3. The function Y is the push-forward distribution on Π. That is, for π ∈ DΠ,

Y (π) = P (Π = π).

4. The edges in Θ are given by Figure 3.2. Specifically, the {Vi} are all parents of V , Π
is a parent of each of the {Vi}, X is a parent of Π, and there are no other edges,

5. V is the indicator function for the event

N∑
i=1

Vi >
N

2
. (3.2)

6. For all 1 ≤ i ≤ N and π ∈ DΠ,

pi,π = P (Vi = 1|Π = π).

Note the difference from the original CJT Network in the interpretation of the variables
{Vi}i∈N and and V . In the original CJT Network the variables Vi represented the alternative
for which the ith juror voted and V represented the alternative chosen by the jury as a
whole. In the Generalized CJT Network the variables Vi represent the success/failure of the
ith juror at arriving at the correct alternative X, and V represents the success/failure of
the jury in arriving at X. It follows that in a Generalized CJT Network the competences
pi,π must be interpreted differently as well, above and beyond their being conditional on the
variable Π instead of E.

Definition 3.4. Let M be a positive integer, n ∈ N, and N = 2n + 1. Let Θ be a CJT
Network of order (N,M), with competence (Y,Φ) with Φ = {pi,π}1≤i≤N,π∈DΠ

∈ [0, 1]NM , and
with respect to variables Υ = (X,Π, {Vi}1≤i≤N , V ). Again, let N = {1, . . . , N}. We make
the following definitions

1.

Γ∗ := P (V = 1) = P

(
N∑
i=1

Vi >
N

2

)
is the probability that the group votes correctly.
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X

Π

V1 V2 V3 VN

V

· · ·· · ·

· · ·· · · · · ·· · ·

· · ·

Figure 3.2: A Generalized CJT Network of order N

2. Given σ ⊆ N, define

N∗σ :=

(∧
j∈σ

Vj = 1

)
∧

 ∧
j∈N\σ

Vj = 0


to be the event that the set σ will consist of exactly the jurors who vote correctly.

3. Given σ ⊆ N, we define
M∗

σ := P (N∗σ).

Then by the argument in the above example for the network with variables {Vi} with
parent F , we have the following lemma.

Lemma 3.5. Let M be a positive integer, n ∈ N, and N = 2n+ 1. Let P is the probability
measure for a Generalized CJT Network Θ of order (N,M) with competence (Y,Φ) with
Φ = {pi,π}i∈J,π∈DΠ

∈ [0, 1]NM .
For σ ⊆ N,

M∗
σ =

∑
π∈DΠ

Y (π)
∏
j∈σ

pj,π
∏

j∈N\σ

(1− pj,π).

We can use this lemma to compute Γ∗.

Theorem 3.6. Let M be a positive integer, n ∈ N, and N = 2n + 1. Let ΓN be as in
Definition 2.8.



CHAPTER 3. DEPENDENT VOTER COMPETENCE 43

If P is the probability measure for a Generalized CJT Network Θ of order (N,M), with
competence (Y,Φ) with Φ = {pi,π}i∈N,π∈DΠ

∈ [0, 1]NM , then

Γ∗ =
∑
π∈DΠ

Y (π)ΓN(p1,π, p2,π, . . . , pN,π).

Proof.

Γ∗ =
N∑

k=n+1

∑
σ⊆N
|σ|=k

pσ =

N∑
k=n+1

∑
σ⊆N
|σ|=k

∑
π∈DΠ

P (Π = π)
∏
j∈σ

pi,π
∏

j∈N\σ

(1− pi,π) =

∑
π∈DΠ

P (Π = π)
N∑

k=n+1

∑
σ⊆N
|σ|=k

∏
j∈σ

pi,π
∏

j∈N\σ

(1− pi,π) =

∑
π∈DΠ

Y (π)ΓN(p1,π, p2,π, . . . , pN,π).

Again we can augment this Generalized CJT Network to account for the method of
random ballot by adding random variable R and D, where R is a uniform random variable
with range N, and D is the event that the juror pointed to by R votes correctly. See Chapter
2 for details.

Definition 3.7. If Θ∗ is an augmented Generalized CJT Network of order (N,M) and with
competence (Y,Φ) with Φ = {pi,π}1≤i≤N,π∈DΠ

then define

∆∗ := P (D = 1) = P

(
N∨
i=1

(R = ji ∧ Vi = 1)

)
The following result is immediate.

Lemma 3.8. If Θ∗ is an augmented Generalized CJT Network of order (N,M) and with
competence (Y,Φ) with Φ = {pi,π}1≤i≤N,π∈DΠ

then

∆∗ =
1

N

∑
π∈DΠ

Y (π)
N∑
i=1

pi,π.

As in Chapter 2, it will be convenient to consider Γ∗ and ∆∗ as functions of N and (Φ, Y )
independent of any Generalized CJT Network Θ.
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Definition 3.9. Let N , M be positive integers. Let N = {1, 2, . . . , N} and M = {1, 2, . . . ,M}.
Also let Y : M→ [0, 1] be a probability distribution on M.

1. Define Γ∗N,M,Y : [0, 1]NM → R by

Γ∗N,M,Y (x̄) :=
∑
k∈M

Y (k)ΓN(x1,k, x2,k, . . . , xN,k)

2. Define ∆∗N,M,Y : [0, 1]NM → R.

∆∗N,M,Y (x̄) :=
1

N

∑
k∈M

Y (k)
N∑
i=1

xi,k

Generalized Homogeneity

We give the following correlate of homogeneous voter competence in the case where we are
conditioning on multiple states of the world.

Definition 3.10 (Generalized Homogeneity of voter competence). We say that a Generalized
CJT Network Θ of order (N,M) and with competence (Y,Φ) with Φ = {pi,π}1≤i≤N,π∈DΠ

has generally homogeneous competence or competence homogeneous with respect to the
problem Π if, for all π ∈ DΠ, there is some pπ such that pi,π = pπ for all i ∈ N.
When competence is homogeneous with respect to the problem Π we will write pi,π as pπ and
Φ = {pπ}π∈DΠ

Note: When competence is homogeneous with respect to the problem Π, it will be useful
to think of the distribution Y as a probability distribution on a competence random variable
p ∈ [0, 1]. This will come in handy since in many cases what is of interest is not the state of
the problem Π, but the competence of the jury in that state.
Thus for S ⊆ [0, 1] a Borel set, we will sometimes use the common shorthand

Y (S) := Y ({π ∈ DΠ : pπ ∈ S}) = P (Π ∈ {π ∈ DΠ : pπ ∈ Sp}),

and, when S = {p} is a singleton, we will suppress the braces:

Y (p) := Y ({π ∈ DΠ : pπ = p}) = P (Π ∈ {π ∈ DΠ : pπ = p}).

Once again, when general homogeneity is satisfied, the values M∗
σ , Γ∗, and ∆∗, simplify

quite a bit.

Lemma 3.11. Let Θ be a CJT Network (possibly augmented) of order N = 2n + 1 with
competence (Y,Φ), and with respect to variables Υ. Assume homogeneity with respect to the
problem Π.
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1. For all σ ⊆ N
M∗

σ =
∑
π∈DΠ

Y (π)(pπ)|σ|(1− pπ)N−|σ|.

2.

Γ∗ =
∑
π∈DΠ

Y (π)
N∑

k=n+1

(
N

k

)
(pπ)k(1− pπ)N−k =

∑
π∈DΠ

Y (π)ΓN(pπ).

And indeed we can sum over all possible values pπ instead of the values π ∈ Dπ to get

Γ∗ =
∑
p∈[0,1]

Y (p)
N∑

k=n+1

(
N

k

)
(p)k(1− p)N−k =

∑
p∈[0,1]

Y (p)ΓN(p)

3.
∆∗ =

∑
π∈DΠ

Y (π)pπ.

or, summing over all possible values pπ,

∆∗ =
∑
p∈[0,1]

Y (p)p.

Once again it will be nice to consider Γ∗ and ∆∗ as functions in their own right.

Definition 3.12. Given a probability distribution P on the interval [0, 1], define supp(P ),
the support of P , by

supp(P ) = {r ∈ [0, 1] : P (r) > 0}.

Define Dis[0, 1] to be all probability distributions on [0, 1] such that supp(P ) is a finite set.

Definition 3.13. Let N and M be positive integers, and let M = {1, 2, . . . ,M}. Also let
P : M→ [0, 1] be a probability distribution on M.

1. Define Γ∗N,M,P : [0, 1]M → R by

Γ∗N,M,P (x̄) :=
∑
k∈M

P (k)ΓN(xk)

2. Define ∆∗N,M,P : [0, 1]M → R by

∆∗N,M,P (x̄) :=
∑
k∈M

P (k)xk

Alternately we can define these as functions of a distribution P ∈ Dis[0, 1].
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1. Define Γ∗N : Dis[0, 1]→ R by

Γ∗N(P ) :=
∑
p∈[0,1]

P (p)ΓN(p)

2. Define ∆∗N : Dis[0, 1]→ R by

∆∗(P ) :=
∑
p∈[0,1]

P (p)p

Tendency to Exceed 1
2

We turn towards giving Dietrich and Spiekermann’s “new and improved” competence re-
quirement in terms of Generalized CJT Networks.

Definition 3.14 (Tendency to Exceed 1
2

and New Competence (p. 101 [9])). Let Θ be a
Generalized CJT Network Θ of order (N,M) with generally homogeneous competence (Y,Φ)
with Φ = {pπ}π∈DΠ

.
We say that competence Tends to Exceed 1

2
if

for all ε ∈ [0,
1

2
], Y (

1

2
+ ε) ≥ Y (

1

2
− ε). (3.3)

In this case we say that New Competence holds.

Note that, given that competence is generally homogeneous, Definition 3.14 only depends
on the distribution Y , and so it makes sense to speak of a distribution Y ∈ Dis[0, 1] as
satisfying New Competence.1 Thus we can state Dietrich and Spiekermann’s theorem as
follows:

Theorem 3.15 (Dietrich and Spiekermann). Let N = 2n+ 1, and let Y ∈ Dis[0, 1] satisfy
New Competence.
Then

1. {Γ∗2n+1(Y )}n is increasing in n.

2. L := limn→∞ Γ∗2n+1(Y ) exists.

3. L = Y
(
(1

2
, 1]
)

+ 1
2
Y
(

1
2

)
.

4. L < 1 if Y ((1
2
, 1]) 6= 1.

5. L = 1 if Y ((1
2
, 1]) = 1.

Proof. See pp. 116-120 of [9].

1Alternately, we could speak of a sequence of Generalized CJT Networks of orders {(2n+ 1,M)}1≤n<∞
and homogeneous competence (Y,Φ) as satisfying New Competence, but we do not take this route.
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An Objection

While it is unfortunate that the above theorem only applies to groups with homogeneous
competence with respect to the problem Π, it is understandable that this would be the first
step in a general project aiming to develop an analogue to the CCJT for a general Bayesian
Network of dependence between voter competence.
There is another issue however, that is more damning.
Following Dietrich and Spiekermann’s definition of Tendency to Exceed 1

2
, those authors

state

To paraphrase this condition once more, the problem is more likely to be of the
sort on which voters are competent than of the sort on which they are incom-
petent (where voters are homogeneous in competence, as in the classical setup).
[p. 101, [9]]

If this were in fact an accurate paraphrase of the requirement for Theorem 3.15 we
would view that theorem as a successful generalization of the CCJT to Bayesian Networks
with competence homogeneous with respect to the problem Π. Unfortunately, this is not
an accurate paraphrase of Tendency to Exceed 1

2
used in New Competence. Indeed, the

“paraphrase” just given more closely corresponds to the requirement that

Y ((
1

2
, 1]) ≥ Y ([0,

1

2
)) (3.4)

which is strictly weaker than the condition in Definition 3.14. For instance consider a distri-
bution P on competence such that P (1) = .99 and P (.49) = .01. This easily satisfies (3.4)
but fails (3.3).

Indeed, the fact that Theorem 3.15 fails to apply under distributions like the one just
given seems to show the theorem to be of little value. In the distribution just given, the
voters are very capable: Under typical circumstances they are perfect in their judgement,
and the possibility of error only appears under highly unlikely circumstances, and even then
they are just slightly more likely to settle upon the incorrect conclusion than the correct one.
What’s worse, the there is a natural kind of monotonicity which the condition Tendency to
Exceed 1

2
fails to satisfy. Consider a probability distribution similar to the one just given.

Again P (1) = .99, but now P (0) = .1. This distribution does satisfy (3.3), even though it
was produced from a distribution that failed to satisfy this condition by moving exactly one
of the possible competencies down quite a bit (but maintaining its probability).

So if New Competence is not a reasonable condition to require of a group for any attempt
at a CJT for general Bayesian Networks, what is?

Two approaches come readily to mind. The first is to require that the “paraphrase”
above be taken literally. That is, we require the condition in inequality 3.4 above. Another
approach is to require that the expected (homogeneous) competence of the group members
be greater than 1

2
.
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Note that neither of these conditions implies the other. As may be seen by examining the
two distributions

P (.51) = .51; P (.01) = .49 :

Expected Member Competence = .51(.51) + .01(.49) = .265 <
1

2
.

P (.99) = .49; P (.49) = .51 :

Expected Member Competence = .49(.51) + .99(.49) = .735 >
1

2
.

We devote the remainder of this section to showing how both of these approaches fail to
ensure the non-decreasing monotonicity of group competence Γ∗N as a function in the size N
of the group.

The Difference Function

Recall the difference function DN from Definition 2.14. For any distribution P ∈ Dis[0, 1],
we can define the increase D∗N,P in group competence as a result of adding two members to
a size-N jury of homogeneous competence.

Definition 3.16. Let N be an odd positive integer and P ∈ Dis[0, 1]. Define

D∗N,P := Γ∗N+2(P )− Γ∗N(P ).

We can express this value in terms of our original difference function from Definition
2.14.

Lemma 3.17. Let N be an odd positive integer and P ∈ Dis[0, 1] be a probability distribution
with finite support. Then

D∗N,P =
∑
p∈[0,1]

P (p)(2p− 1)

(
N
N+1

2

)
[p(1− p)]

N+1
2 .

Proof. By Lemma 2.15

D∗N,P = Γ∗N(P )− Γ∗N+2(P ) =
∑
p∈[0,1]

P (p)[ΓN+2(p)− ΓN(p)]

=
∑
p∈[0,1]

P (p)DN(p) =
∑
p∈[0,1]

P (p)

(
N
N+1

2

)
(2p− 1)[p(1− p)]

N+1
2 .

Notice that the binomial coefficient does not depend on the index of summation, allowing
us to define the following normalized difference, which we can extend to an exponential
polynomial function on R.
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Definition 3.18 (Normalized Difference Function). Let N be an odd positive integer, x ∈ R,
and P ∈ Dis[0, 1].

1. Define

DN,P =
D∗N,P(
N

N+1
2

) =
∑
p∈[0,1]

P (p)(2p− 1)[p(1− p)]
N+1

2 .

2. Define

DP (x) =
∑
p∈[0,1]

P (p)(2p− 1)[p(1− p)]
x+1

2 .

We observe that

Proposition 3.19. DN,P is positive, negative, or zero if and only if D∗N,P is positive, nega-
tive, or zero, respectively.

We are interested in conditions on P ∈ Dis[0, 1] such that D̄N,P is monotonic non-
decreasing in N .

A special case

Suppose that Π admits exactly two possible competencies p, q, so that P (p) = α 6= 0 and
P (q) = 1 − α 6= 0. Let us also assume that 1

2
< p < 1 and 0 < q < 1

2
. Let y = x+1

2
so that

D̄P reduces to

∇(y) = D̄P (x) = α(2p− 1)[p(1− p)]y + (1− α)(2q − 1)[q(1− q)]y.

Let us consider the zeros of this function. Setting ∇(y) = 0, taking logarithms, and rear-
ranging gives

y log
p(1− p)
q(1− q)

= log
(α− 1)(2q − 1)

α(2p− 1)
.

If p and q are symmetric about 1
2
, then ∇ has a zero just in case every y is a zero, which

happens just in case α = 1
2
.

On the other hand if p and q are not symmetric about 1
2
. Then the logarithm on the left

is nonzero, and dividing both sides by this logarithm gives the unique zero

y =
log (α−1)(2q−1)

α(2p−1)

log p(1−p)
q(1−q)

.

It is straightforward to check that this root is non-singular, since the system ∇(y) = ∇′(y) =
0 entails that p and q are symmetric about 1

2
.



CHAPTER 3. DEPENDENT VOTER COMPETENCE 50

The Condition P ((1
2 , 1]) ≥ P ([0, 1

2))

We briefly mention an example showing that the condition 3.4 does not guarantee mono-
tonicity. The following distribution P satisfies 3.4 but makes D̄P (3) negative:

P (.6) = P ((
1

2
, 1]) = .6; P (.25) = P ([0,

1

2
)) = .4 :

D̄P (3) = .6(.2)[.6(.4)]2 + .4(−.5)[.25(.75)]2 < 0.

Expected competence greater than 1
2

We define the expected competence as follows

Definition 3.20 (Expected Competence). Let Θ be a Generalized CJT Network Θ of order
N with generally homogeneous competence (Y,Φ). We define the expected competence as

pE(Y ) :=
∑
p∈[0,1]

pY (p)

Notice that the value pE(Y ) only depends on a distribution Y ∈ Dis[0, 1], and so we
may view pE as a real valued function on the set Dis[0, 1]. The following proposition is
immediate.

Proposition 3.21. For P ∈ Dis[0, 1],

pE(P ) = ∆∗(P ).

A candidate constraint that is probably the most analogous with the restriction on com-
petence in the CCJT would be to require that pE > 1

2
. How much of the conclusion of

Dietrich and Spiekermann’s theorem can we recover with this definition of competence? It
turns out that, not only can we construct distributions P with pE(P ) > 1

2
where the compe-

tence fails to be increasing in the size of the jury, we can even find examples where picking a
randomly selected juror is more reliable than simple majority rule within a jury of odd size
greater than one. That is, we can find P ∈ Dis[0, 1] such that

1

2
< pE = ∆∗(P ) > Γ∗N(P )

This fact is already mentioned by Dietrich and Spiekermann but not elaborated on. The
following theorem shows how badly the condition on the expectation fails to be a sufficient
condition for a CJT.

Theorem 3.22. Let N be any positive integer and y ∈ R with y ≥ 1. Let S ⊆ [0, 1]N+1 ×
(0, 1)N be defined by
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S =
{

(p0, . . . , pN , Q0, . . . , QN−1) ∈ [0, 1]N+1 × (0, 1)N :

N−1∑
i=0

Qi < 1, ∀(0 ≤ i < j ≤ N)(pi > pj), p0 >
1

2
, pN <

1

2

}

And let QN := 1−
∑N−1

i=0 Qi.

Define D̂ : S → R and E : S → R by

D̂ : (p0, . . . , pN , Q0, . . . , QN−1) 7→
N∑
i=0

Qi(2pi − 1)(pi(1− pi))y

E : (p0, . . . , pN , Q0, . . . , QN−1) 7→
N∑
i=0

Qipi.

Then there is a non-empty open subset U ⊆ S on which D̂ is negative and E > 1
2
.

Proof. We fix an arbitrary real y ≥ 1, and prove the result by induction on N .
First let N = 1. Then

S =

{
(p0, p1, Q0) ∈ (

1

2
, 1]× [0,

1

2
)× (0, 1)

}
D̂ : (p0, p1, Q0) 7→ Q0(2p0 − 1)(p0(1− p0))y + (1−Q0)(2p1 − 1)(p1(1− p1))y

E : (p0, p1, Q0) 7→ Q0p0 + (1−Q0)p1.

Let F denote the p0 = 1 face of S. Notice that when restricted to F the function D̂ reduces
to

D̂(1, p1, Q0) = (1−Q0)(2p1 − 1)(p1(1− p1))y,

which is negative on S since p1 < 1
2
. Furthermore when restricted to F the function E

reduces to
E(1, p1, Q0) = Q0 + (1−Q0)p1,

which, for any p1 ∈ [0, 1
2
) gives a path traveling from p1 to 1 as the parameter Q0 travels

from 0 to 1. Thus for any p1 ∈ [0, 1
2
) there is a Qp1 such that the function E(1, p1, ·) maps

the open interval (Qp1 , 1) above 1
2
. This Qp1 is equal to

1
2
−p1

1−p1
, the solution to the equation

E(1, p1, X) = 1
2
, and this value changes continuously with the argument p1.

So let S ′ be the subset of F that lies on the Q0-increasing side of the curve 〈p1(t), Q0(t)〉 =

〈t,
1
2
−t

1−t 〉 for t in the open interval (0, 1
2
). Then S ′ is a (two dimensional) open (in the subspace

topology) subset of F ; furthermore D̂ is negative on all of S ′ but E is greater than 1
2

on all
of S ′.
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Now since D̂ is continuous in C, we see that there is a (three dimensional) open subset
of S on which D̂ is negative and E is greater than 1

2
. This completes the N = 1 case.

Now let N be a positive integer greater than one, and suppose the result is true for
integers less than N .

Let S ′ be the denote the following subset of the pN−1 = pN face of the closure of S

S ′ =
{

(p0, . . . , pN−2, pN , pN , Q0, . . . , QN−1) ∈ [0, 1]N+1 × (0, 1)N :

N−1∑
i=0

Qi < 1, ∀(0 ≤ i < j ≤ N)(pi > pj), p0 >
1

2
, pN <

1

2

}

Now we can define a function D̂′ on the set S ′ using the formula for D̂

D̂′(p0, . . . , pN , pN , Q0, . . . , QN−1) =[
N−2∑
i=0

Qi(2pi − 1)(pi(1− pi))y
]

+ (QN−1 +QN)(2pN − 1)(pN(1− pN))y

And we can define a function E ′ on the set S ′ using the formula for E.

E ′(p0, . . . , pN , pN , Q0, . . . , QN−1) =

[
N−2∑
i=0

Qipi

]
+ (QN−1 +QN)pN

Now QN := 1−
∑N−1

i=0 Qi so QN−1 +QN = 1−
∑N−2

i=0 Qi =: Q̂. So we can write

D̂′(p0, . . . , pN , pN , Q0, . . . , QN−1) =[
N−2∑
i=0

Qi(2pi − 1)(pi(1− pi))y
]

+ Q̂(2pN − 1)(pN(1− pN))y

E ′(p0, . . . , pN , pN , Q0, . . . , QN−1) =

[
N−2∑
i=0

Qipi

]
+ Q̂pN

Notice that the values of D̂′ and E ′ are independent of the argument QN−1. Let’s temporarily
focus on the following QN−1 = 0 subset S ′′ of the closure of S ′:

S ′′ =
{

(p0, . . . , pN−2, pN , pN , Q0, . . . , QN−2, 0) ∈ [0, 1]N+1 × (0, 1)N−1 × {0} :

N−2∑
i=0

Qi < 1, ∀(0 ≤ i < j ≤ N)(pi > pj), p0 >
1

2
, pN <

1

2

}
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Now we can define a function D̂′′ on the set S ′′ using the formula for D̂′

D̂′′(p0, . . . , pN , pN , Q0, . . . , QN−2, 0) =[
N−2∑
i=0

Qi(2pi − 1)(pi(1− pi))y
]

+ Q̂(2pN − 1)(pN(1− pN))y

And we can define a function E ′′ on the set S ′′ using the formula for E ′.

E ′′(p0, . . . , pN , pN , Q0, . . . , QN−2, 0) =

[
N−2∑
i=0

Qipi

]
+ Q̂pN

After routine relabeling of variables we see that D̂′′, E ′′, and S ′′ are (isomorphic to) the D̂, E,
and S in the N−1 induction hypothesis. Thus, we have an open subset of U ′′ of S ′′ on which
D̂′′ is negative and E ′′ > 1

2
. By continuity we have an open subset of U ′ of S ′ on which D̂′

is negative and E ′ > 1
2
. Finally by continuity we have an open subset of U of S on which D̂

is negative and E > 1
2
. This completes the case for N and completes the proof.

The following “existence theorem” is an understatement to say the least.

Corollary 3.23. For and M,N positive integers, with M ≥ 2.
There exists P ∈ Dis[0, 1] and α, β ∈ support(P ) such that all of the following hold:

1.
|support(P )| = M

2.

P (α) <
1

2
< P (β),

3.

pE(P ) = ∆∗(P ) >
1

2

4.
Γ∗N(P ) > Γ∗N+2(P )

Proof. Immediate from Theorem 3.22.

3.2 Linear Update Functions

In this section we turn to dependence induced by direct causal chains between voters. In
particular we hope to model the deliberation process of groups like court juries.

Let J = {1, . . . , n} be our deliberating group. We can model the deliberation process by
viewing our set {pi}1≤i≤n of voter competencies as initial competences p̄0 = {pi,0}1≤i≤n to
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be periodically updated by a set {Ui}i∈J of update functions with Ui : [0, 1]n → [0, 1]. We
obtain a sequence {p̄j}j∈N of competence vectors by letting p̄j = {pi,j}1≤i≤n with the latter
defined recursively by pi,j+1 = Ui(p̄j) . We interpret the value Ui(p̄j) as being the posterior
competence of the ith member given the prior vector p̄j of publicly available competences of
the jury members at a given time j.

Note that in this situation it may be at least as appropriate to refer to the values pi,j
as degrees of belief or confidences instead of competences if we are also willing to make the
simplifying assumption that at any time a voter will vote correctly with probability equal to
its degree of belief.

We imagine that after each round of deliberation a juror i’s new degree of belief is a
function Ui of the degrees of belief of its and all of its fellow group members’ degrees of belief
just prior to the most recent deliberation. We can then measure how each member of the
jury feels about an issue after j deliberations by computing p̄j, and we can even investigate
the limiting behavior of the sequence {p̄j} as j →∞.

For an arbitrary family {Ui}1≤i≤n of update functions, computing the vector p̄j for large
j, let alone computing limj→∞ p̄j, will not be computationally feasible. In what follows we
examine the case where each Ui is the restriction to the n-cube [0, 1]n of a linear functional
on Rn. In this case, the collection {Ui} determines an n-by-n matrix A = [ai,j] where, given
x̄ = (x1, . . . , xn) ∈ [0, 1]n, we have Ui(x̄) =

∑n
k=1 ai,kxk. Thus

p̄j+1 = (U1(p̄j), . . . , Un(p̄j)) = Ap̄j,

and for any m ∈ N we have
p̄m = Amp̄0.

Note that Ui(x̄) =
∑n

k=1 ai,kxk maps [0, 1]n into [0, 1] only if the coefficients {ai,k}k are
non-negative real numbers. Furthermore, the sum of these coefficients must be between 0
and 1 inclusive, and indeed for each i the function Ui maps onto [0, 1] just in case Ui(1̄) = 1
(where 1̄ = (1, . . . , 1)), which in turn is true just in case the coefficients {ai,k}k sum to 1.

Any non-negative, real matrix A with row sums ‖Ai,·‖1 = 1 for all 1 ≤ i ≤ n is called a
(non-negative, row) stochastic matrix, and we give the following definition.

Definition 3.24 (Transition Matrix). Given a set J = {1, . . . , n} of jurors with update
functions {Ui : [0, 1]n → [0, 1]}1≤i≤n and given a non-negative row stochastic matrix A = [ai,j]
satisfying Ui(x̄) =

∑n
k=1 ai,kxk for all x̄ ∈ [0, 1]n, we say that A is the transition matrix for

the jury J and update functions {Ui}1≤i≤n. We also say that the jury J has update functions
{Ui}1≤i≤n admitting a transition matrix A.

Given this machinery, our primary concern is the following:

Given a jury J , with transition matrix A and initial competencies/degrees of
belief given by the vector p̄0, does the sequence {p̄i} = Akp0 converge? Given
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that the sequence does converge, can we compute the limit? What should we do
in situations where the sequence does not converge?

The theory of Perron-Frobenius gives an partial answer to this question, and we shall begin
by examining it below. This approach to modeling dependence between voter competence
as a linear dynamical system was first introduced by DeGroot in [8], and certain details were
clarified by Berger in [3], although both authors were primarily concerned with conditions
under which the limiting vector p̄∞ = limk→∞ p̄k had all components equal, that is, when
the group reached a consensus. For a recent examination of the DeGroot method we refer
the reader to the recent work of Mossel and Tamuz, for instance [17]. After presenting a
framework similar to DeGroot’s, we go on to present, for the first time, the Cesàro Judgement
Aggregation Method, which extends on the results of DeGroot by producing a limiting vector
of degrees of belief for a large number transition matrices A whose powers {Ak} do not
converge.

Positive Transition Matrices

Fix some positive integer n and some jury J = {1, . . . , n}. Suppose the update functions
for J admit a transition matrix A. Let us assume further that A is a positive matrix, that
is, each of the entries of A are positive. This models situations where each juror j ∈ J is
influenced to some non-zero degree by the opinion of each of its neighbors.
We can use Perron-Frobenius theory to conclude that for any such matrix A, not only does
limN→∞A

N exist, but p̄∞ = limN→∞ p̄N does not depend on A. We present a proof of the
following theorem in Appendix A.

Theorem 3.25. Given a jury J = {1, . . . , n} with update functions {Ui}1≤i≤n admitting a
positive transition matrix A, the limit A∞ = limN→∞A

N exists and is equal to the orthogonal
projection mapping onto the subspace spanned by the eigenvector 〈1, 1, . . . , 1〉. Furthermore,
the vector p̄∞ = A∞p̄0 = limN→∞ p̄N = 〈pa, . . . , pa〉 where pa = 1

n

∑n
i=1 p0,i is the average of

the competences in the initial competence vector p̄0.

Proof. See Theorem A.11

This result is already striking. It says that if we are using a system of deliberation
in which, at each phase of the deliberation, each voter gives some non-zero weight to the
current degree of belief of every member of the jury and updates their belief linearly in
accordance with these weights, then the jury will converge to a homogeneous jury with
uniform competence equal to the averages of the initial competences of the jurors.

One might point out that no actual jury will undergo an infinite number of deliberations
nor will a real deliberation be organized neatly into a sequence of repeating sub-deliberations
and tentative votes, as the framework above suggests. Yet the result above remains important
since it says that the jury competence can be made arbitrarily close to the aforementioned
average simply by taking a sufficiently large finite number of deliberation steps.
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A more plausible objection is that, particularly in cases of large deliberating bodies like
those for major elections, there are portions of the population that do not give any weight
to the level of belief of members outside that group. In large bodies of naturally occurring
deliberating bodies it is unlikely that every component is receiving a signal, direct or indirect,
from every other component. In particular the transition matrix A for the jury J may contain
zeros.

Non-negative Transition Matrices

Fortunately, there are many cases where some jurors give no weight to some of their fellow
jury members, so that the update functions determine a matrix with zeros, and yet the
sequence Ak still converges. To formulate the conditions under which this is the case it will
be helpful to introduce the notion of the accessibility graph G(A) of a matrix A.

Definition 3.26 (Accessibility Graph). Given an n× n matrix A = [ai,j], define the acces-
sibility graph G(A) of A to be the directed graph (V,E) on n vertices V = {v1, . . . , vn} such
that there is an edge (vi, vj) ∈ E between two vertices if and only if ai,j 6= 0.

If J is a jury with update functions {Ui} admitting a transition matrix A as above, then
there is an edge from vi to vj just in case voter i gives positive weight to the confidence level
of juror j. In particular, if A is a positive transition matrix for a jury of n members as in the
previous subsection, the graph G(A) is the unique graph (V,E) on n vertices with (i, j) ∈ E
for every i, j ∈ V .

Definition 3.27 (Strongly Connected Graph). A directed graph G = (V,E) is said to be
strongly connected if for any two vertices u, v ∈ V there is a directed path (see Definition
1.3) from u to v.

With this definition, we can prove the following theorem. Again we present a proof of
this theorem in Appendix A.

Theorem 3.28. Let J = {1, . . . , n} with update functions {Ui}1≤i≤n admitting a transition
matrix B. Suppose that the accessibility graph G(B) is strongly connected and has at least
one loop (of length one).

Then the limit B∞ = limN→∞B
N exists and is equal to the orthogonal projection map

onto the subspace spanned by the eigenvector 〈1, 1, . . . , 1〉. Furthermore, the vector p̄∞ :=
B∞p̄0 = limN→∞ p̄N = 〈pa, . . . , pa〉 where pa = 1

n

∑n
i=1 p0,i is the average of the competences

in the initial competence vector p̄0.

Proof. See Theorem A.16.

Thus, in order to obtain the conclusion of 3.25, it is not necessary that each component
vi of the network be receiving a direct signal from another component vj so long as both
(1) there is some chain of signals which, over a fixed finite number Ni,j of units of time, will
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allow vi to give positive weight to the state of vj as of Ni,j units of time in the past, and (2)
at least one component is giving positive weight to its own previous value.

The Cesàro Judgement Aggregation Method

As we have noted, if the transition matrix A has eigenvalues λ 6= 1 with |λ| = 1 then the
sequence {Ak}1≤k<∞ will not converge. In certain circumstances, however, we can modify our
strategy to produce a vector of confidences which still represent both the initial confidence
vector as well as the deliberations between voters. We have the following theorem, whose
proof is given in the appendix.

Theorem 3.29 (Cesaro Limit). Let J = {1, . . . , N} with initial confidence vector p̄0 and
update functions {Ui}1≤i≤N admitting a transition matrix B.

Define the sequence {pk} recursively by

p̄k+1 = Bp̄k.

Also define the sequence {q̄k} by

q̄k =
1

k

k−1∑
j=0

p̄j.

Then the Cesàro Limit, defined as
q∞ = lim

k→∞
q̄k

exists, and is equal to the orthogonal projection of p̄0 onto the eigenspace N(B − I).

Proof. See Theorem A.18 of the appendix.

Definition 3.30 (Cesàro Confidence Vector). Given a jury J = {1, . . . , N} with initial
confidence vector p̄0 and update functions {Ui}1≤i≤N admitting a transition matrix B, we
define the Cesàro Confidence Vector for J and {Ui}1≤i≤N to be the vector

C(p̄0, B) := q∞

where q∞ is as in Theorem 3.29.

Note that if the transition matrix B is reducible, (that is, if G(B) is not strongly con-
nected), the eigenspace N(B − I) may have dimension greater than one. The important
observation, however, is that even in the case where the transition matrix in question should
happen to satisfy the hypotheses of Theorem 3.28, the Cesàro Confidence Vector is the same
final vector as would have resulted by simply taking the limit of the vectors p̄k = Bkp̄0. This is
important because it means that in situations where we know that a jury’s update functions
admit a transition matrix, but do not have further information about that matrix, we can
err on the side of caution and use the Cesàro Voting Method.

We close by presenting, for the first time, the Cesàro Judgement Aggregation Method of
Length T
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Definition 3.31 (Cesàro Judgement Aggregation Method of Length T ). Let T be a positive
integer and let J = {1, . . . , N} be some group faced with a decision between two exhaustive
and mutually exclusive alternatives A0 and A1. We define the Length-T Cesàro Judgement
Aggregation Method as follows:

1. Each member j ∈ J begins by writing a real number vj,0 on a ballot and writes their
name on the ballot. The number must represent that juror’s confidence that alterna-
tive A1 is correct (a number of 1 represents total confidence for alternative A1 and 0
represents total confidence for alternative A0.)

2. All ballots then are revealed to every member of the group. After each member has wit-
nessed their fellow group members’ ballots, each member revises their degree of support
for the the two alternatives.

3. Each member j then fills out another ballot, with a new number vj,1, and writes their
name on the ballot. Again the ballots are revealed, and the group members revise their
degree of support. This process continues for a total of T iterations (giving a total of
T + 1 ballots per group member).

4. Meanwhile, at each revelation of the ballots, a clerk records the names and numbers on
the ballots. At the end of T -iterations, the clerk computes, for each j ∈ J , the average
qj of each of values {vj,i}0≤i≤T .

5. The clerk then decides the group decision according a Bernoulli probability distribution
on {A0, A1} which selects A1 with probability ΓN(q̄) (as defined in Definition 2.8) if N
is odd, and with probability Γ̂N(q̄) (as defined in Definition 2.28) if N is even.

Our emphasis in this section has been to find a judgement aggregation method extending
that of Theorem 3.28 that is guaranteed to terminate, and we have been less concerned
with computing the method’s probability of success. Nevertheless we include the following
proposition.

Proposition 3.32. Let J = {1, . . . , N} be some group faced with a decision between two
exhaustive and mutually exclusive alternatives A0 and A1. Suppose that the initial confidences
in alternative A1 are given by the vector p̄0. Suppose that each group member alters their
confidence in accordance with update functions {Ui}1≤i≤N admitting a transition matrix B.

If ΓC(T ) denotes probability that the group will arrive at the correct alternative via a
Length T Cesàro Judgement Aggregation Method. Then, as T →∞,

ΓC(T )→ ΓN(C(p̄0, B)) for N odd, and

ΓC(T )→ Γ̂N(C(p̄0, B)) for N even.

Proof. Immediate from 3.29
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Appendix A

Stochastic Matrices and
Perron-Frobenius Theory

This appendix is meant to bridge the gap between a solid foundation in linear algebra (say up
to and including the Jordan normal form of a matrix) and the theorems of the first section of
Chapter 3. Many of the theorems are stated without proof if they are well known and have
proofs that are widely accessible. For a more thorough treatment see any text on stochastic
matrices or Perron-Frobenius Theory, for example [16].

Definition A.1 (Preliminary Definitions). Let A be a square matrix with complex entries.

• size(A) is the dimension (or side length) of A.

• index(A) is the smallest non-negative integer l such that null(Al) = null(Al+1).

• The spectrum of A, denoted σ(A), is the set of eigenvalues of A.

• For λ ∈ σ(A), index(λ) is defined to be index(A− λI).

• For λ ∈ σ(A), geomult(λ) = dim(null(A− λI)) is the geometric multiplicity of λ.

• For λ ∈ σ(A), algmult(λ) = dim(null(A − λI)size(A)) = dim(null(A − λI)index(λ)) is
the algebraic multiplicity of λ.

• For λ ∈ σ(A), we say that λ is a simple eigenvalue if algmult(λ) = 1.

• For λ ∈ σ(A), we say that λ is a semi-simple eigenvalue if algmult(λ) = geomult(λ)
or equivalently if index(λ) = 1.

• The spectral radius of A, denoted ρ(A) is defined as maxλ∈σ(A) |λ|.
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A.1 Limits and Summability

Definition A.2. Let A be a square matrix with complex entries.

• A is convergent if the sequence {Ak} converges (pointwise).

• A is (Cesàro) Summable (to L) if the limit

L = lim
k→∞

Sk(A)

exists, where

Sk(A) :=
1

k

k−1∑
j=0

Aj.

We use the following two theorems without proof.

Theorem A.3. Suppose M is an n× n matrix with σ(M) = {λ1, . . . λs}. Let M = N−1JN
where J is a Jordan form of M . Let ki denote the size of the largest Jordan block for λi
in J (so ki = index(λi)). Let f : C → C be function such that for any 1 ≤ i ≤ s and
0 ≤ d ≤ ki − 1, the value f (d)(λi) (the dth derivative of f at λi) is defined.

Then the following matrix f(A) is well-defined (does not depend on the particular Jordan
Decomposition J).

f(A) := N−1f(J)N,

where f(J) is defined by replacing each Jordan block

Ji =


λi 1 0
0 λi 1 0

0
. . . . . . 0

0
. . . 1
0 λi


of J with the matrix

f(Ji) =



f(λi) f ′(λi)
f ′′(λi)

2!
. . . f (r−1)(λi)

(r−1)!

0 f(λi) f ′(λi)
f ′′(λi)

2!

...

0
. . . . . . f ′′(λi)

2!

0
. . . f ′(λi)
0 f(λi)


,

where r is the size of the Jordan block.

Proof. See [16] pp. 601-603.
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Theorem A.4. Suppose that
∑∞

j=0 cj(z−z0)j converges to f(z) at each point inside a circle
|z − z0| = r, and suppose that A is a matrix such that |λi − z0| < r for each eigenvalue
λi ∈ σ(A).
Then

∑∞
j=0 cj(A− z0I)j converges to f(A).

Proof. See [16] pp. 605-606.

Corollary A.5. Let

J =


λ 1 0
0 λ 1 0

0
. . . . . . 0

0
. . . 1
0 λ


with size(J) = r.

1. If |λ| < 1 then the sequence {Jk} converges to the zero matrix.

2. If |λ| ≥ 1 and λ 6= 1 then the sequence {Jk} diverges.

3. If λ = 1 then the sequence {Jk} converges if and only if r = 1.

Proof. Applying Theorem A.4 to f(x) = xk gives

Jk =



λk
(
k
1

)
λk−1

(
k
2

)
λk−2 . . .

(
k
r−1

)
λk−r+1

0 λk
(
k
1

)
λk−1

(
k
2

)
λk−2 ...

. . .

0
. . . . . .

(
k
2

)
λk−2

0
. . .

(
k
1

)
λk−1

0 λk


.

If |λ| < 1, then ∣∣∣∣(ki
)
λk−i

∣∣∣∣ =

∣∣∣∣ k!

(k − i)!i!
λk−i

∣∣∣∣ ≤ ki

i!
|λ|k−i,

which goes to zero as k →∞.
If |λ| ≥ 1 and λ 6= 1, it is easy to see that entries on the main diagonal (as well as any other
nonzero entries) diverge as k →∞.
If λ = 1 and there are any nonzero entries above the main diagonal then these diverge as
k →∞.
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Theorem A.6. A matrix A is convergent just in case

1. ρ(A) < 1 or

2. ρ(A) = 1 with λ = 1 the only eigenvalue on the unit circle and λ = 1 semi-simple.

When A is convergent, A has a Jordan form

P−1AP =

[
Id 0
0 C

]
,

where d = algmultA(1), Id is a d× d identity matrix, and ρ(C) < 1. (In particular we allow
d = 0 or d = size(A).)

If A is convergent, it converges to the projection onto null(A− I) along range(A− I).

Proof. This follows from Corollary A.5 together with the following observations. The matrix
A converges just in case each of its Jordan blocks converge.
Also, if

A = P

[
I 0
0 C

]
P−1

converges, then, since ρ(C) < 1, the limit must be

P

[
I 0
0 0

]
P−1.

Since the first d columns of P are a basis for null(A− I) and the remaining columns are a
basis for range(A− I), we conclude that this limit is the projection onto null(A− I) along
range(A− I).

It is easy to see that if the sequence {Ak}1≤k<∞ converges to some L, then A is summable
to L as well. The converse is false, as can be seen by considering the 1× 1 matrix A = [−1].
More generally, we have the following theorem, which the reader should compare to A.6.

Theorem A.7. A matrix A is summable just in case ρ(A) ≤ 1 with any eigenvalues on the
unit circle being semi-simple.

When A is summable, it has a Jordan form

PAP−1 =

[
Id 0
0 D

]
,

where d = algmultA(1), Id is a d×d identity matrix (in particular, we allow d = 0 or d = n),
ρ(D) ≤ 1, λ = 1 is not an eigenvalue of D, and all eigenvalues λ of D on the unit circle
have index(λ) = 1.
If A is summable it is summable to the projection onto null(A− I) along range(A− I).
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Proof. If J = P−1AP is a Jordan form for A, then A is summable just in case J is, and J
is summable just in case each of its Jordan blocks are summable. So it suffices to determine
when a Jordan block

J∗ =


λ 1 0
0 λ 1 0

0
. . . . . . 0

0
. . . 1
0 λ


for an eigenvalue λ is summable.
It follows from theorem A.4 that the diagonal entries of Sk(J

∗) := 1
k

∑k−1
j=0(J∗)j are

F (λ) :=
1

k

k−1∑
j=0

λj =

{
1 for λ = 1

1
1−λ( 1

k
− λk

k
) for λ 6= 1

. (A.1)

We can see that if |λ| > 1 then J∗ is not summable (because the main diagonal diverges),
and if |λ| < 1 then J(λ) is summable to zero (indeed it converges to 0). It only remains to
consider the case where |λ| = 1.

Suppose that |λ0| = 1, J ′ is a Jordan block for λ0, and size(J ′) > 1 (equivalently
index(λ) > 1). It follows from Theorem A.4 that the entries of the superdiagonal of Sk(J

′)
consists of the derivative dF

dλ
(λ0). When λ0 = 1 this quantity is

dF

dλ
(λ0) =

1

k

k−1∑
j=0

jλj−1
0 =

1

k
(1 + 2 + . . .+ k − 1) =

k − 1

2
,

which diverges to infinity. For λ0 6= 1 with |λ0| = 1 we can use A.1 to see that

dF

dλ
(λ0) =

(
1

1− λ0

)(
1

1− λ0

(
1

k
− λk0

k

)
− λk−1

0

)
,

which oscillates indefinitely as k →∞.
So A is summable just in case the Jordan blocks of J = P−1AP are either 1 × 1 blocks

containing a scalar λ with |λ| = 1 or blocks for eigenvalues λ satisfying |λ| < 1. The 1 × 1
blocks are summable to the limit of F in (A.1), which is 1 for λ = 1 and 0 for |λ| = 1 with
λ 6= 1. The last claim of the theorem follows just as in the Theorem A.6

A.2 Perron’s Theorem

Definition A.8. Let X = [xi,j] be any m× n matrix with complex entries.

•
‖X‖∞ := max

1≤i≤m

∑
1≤j≤n

|xi,j|

is the maximum absolute row sum of X.
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• X is positive ( non-negative) if its entries are positive (resp. non-negative) real num-
bers.

• |X| is the non-negative matrix whose (i, j)th entry is |xi,j|, that is, |X| = [|xi,j|].

• If X has entries in R and Y is another m×n matrix with entries in R, we write X < Y
(X ≤ Y ) to mean that xi,j < yi,j (resp. xi,j ≤ yi,j) for each 1 ≤ i ≤ m, 1 ≤ y ≤ n.

• A square, non-negative matrix A is (row) stochastic if each of its rows sums to 1.

Theorem A.9 (Perron’s Theorem). Let A be positive matrix with ρ(A) = r. Then

• r > 0.

• r ∈ σ(A).

• algmultA(r) = 1.

• There exists a unique positive eigenvector p̄ for A such that
∑

1≤i≤n pi = 1, and, except
for positive multiples of p̄, there are no other non-negative eigenvectors for A of any
eigenvalue.

• r is the only eigenvalue λ of A with |λ| = r.

Proof. See [16].

Definition A.10 (Perron vector, Perron root). The value r = ρ(A) in the preceding theorem
is called the Perron root of A.
The eigenvector p̄ is called the Perron vector of A.

Theorem A.11. Given a jury J = {1, . . . , n} with update functions {Ui}1≤i≤n admitting a
positive transition matrix A, the limit A∞ = limN→∞A

N exists and is equal to the projection
mapping onto the subspace spanned by the eigenvector 〈1, 1, . . . , 1〉. Furthermore, the vector
p̄∞ = A∞p̄0 = limN→∞ p̄N = 〈pa, . . . , pa〉 where pa = 1

n

∑n
i=1 p0,i is the average of the

competences in the initial competence vector p̄0.

Proof. Perron’s Theorem tells us that A satisfies the conditions for convergence in Theorem
A.6. Namely, since the transition matrix A is row stochastic, the Perron root ρ(A) = 1 of A
is the only eigenvalue on the unit circle and is semi-simple (in fact it is simple). Thus A is
convergent.

In addition, the Perron vector p̄ of A is equal to ( 1
n
, . . . , 1

n
). The unit vector parallel to

p̄ is ū = ( 1√
n
, . . . , 1√

n
), so the projection mapping onto null(A − I) is x̄ 7→ 〈x, ū〉ū, which is

equal to the vector whose components are all the average of the components of x̄.
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A.3 The Perron-Frobenius Theorem for

Non-Negative Matrices

Unfortunately, the results of the Perron theorem do not hold for general non-negative ma-
trices. For example, the 2× 2 identity matrix has λ = 1 as a non-simple eigenvalue, and the
matrix

A =

[
0 1
1 0

]
has an eigenvalue on the unit circle other than 1. In this section we will examine a subclass
of non-negative matrices for which the results of the Perron theorem do hold.

Definition A.12. Let A be a square, non-negative matrix.

• A permutation matrix is a square matrix P whose only non-zero entries are equal to
1 and such that P contains a exactly one such entry per column and exactly one per
row.

• A is reducible if there exists a permutation matrix P such that

P TBP =

[
C1 C2

0 C3

]
with C1 and C3 square. Otherwise the matrix is said to be irreducible.

• An irreducible matrix A is said to be primitive if it has exactly one eigenvalue on the
unit circle.

• An irreducible matrix A is said to be imprimitive if it is not primitive.

Intuitively, B is reducible if there exists a proper non-empty subset S of the basis vectors
such that span(S) is invariant under B. It shouldn’t be surprising that this condition is
equivalent to an easily stated one for the graph G(B) (defined in chapter 3).

Theorem A.13. A square matrix B is irreducible if and only if G(B) is strongly connected.

Proof. First note that if P is a permutation matrix then G(B) ∼= G(P TBP ) since the latter
is simply a relabeling of the the vertices of G(B). Thus G(B) is strongly connected just in
case G(P TBP ) is.

Now assume that B is reducible and

M := P TBP =

[
M1 M2

0 M3

]
with M1 and M3 square. Then clearly there is no path in G(M) from the jth vertex to the
ith vertex where i ≤ (size(M1)) < j. Thus G(M) is not strongly connected, and therefore
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G(B) is not strongly connected.
Next suppose that G(B) is not strongly connected. Let V = {v1, . . . , vn} be the list of

vertices of G(B). Then there are vertices vi and vj such that there is no path of directed
edges from vj to vi (it is easy to see that we can assume vi and vj are distinct). Let

C = {v ∈ V : ∃ a path from vj to v}.

Then there is a permutation τ that re-indexes V such that C is an end segment of V . Thus
there is some permutation matrix Pτ such that

P T
τ BPτ =

[
M1 M2

0 M3

]
with the size of M3 being equal to the size of C. Thus B is reducible.

Theorem A.14 (Perron-Frobenius Theorem for Non-negative Matrices). Let A be an irre-
ducible, non-negative matrix with r = ρ(A)

• r > 0.

• r ∈ σ(A).

• algmultA(r) = 1.

• There exists a unique positive eigenvector p̄ for the eigenvalue λ = r such that
∑

1≤i≤n pi =
1, and, except for positive multiples of p̄, there are no other non-negative eigenvectors
of A corresponding to any eigenvalue.

As in the positive case, r and p̄ are referred to respectively as the Perron root and Perron
vector of A.

Proof. See [16].

The reader will notice that this theorem is identical to Theorem A.9 except for the
assumption of irreducibility and also that there is now a possibility of eigenvalues λ 6= r
with |λ| = r, that is, A may be imprimitive. Fortunately there is an easily verified condition
which guarantees primitivity.

Theorem A.15. A non-negative irreducible matrix A is primitive if at least one of its
diagonal entries is non-zero.

Proof. See [16].

Thus we have the desired theorem for non-negative transition matrices:
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Theorem A.16. Given a jury J = {1, . . . , n} with update functions {Ui}1≤i≤n admitting a
transition matrix B, and given that the accessibility graph G(B) is strongly connected and
has at least one loop (of length one), then the limit B∞ = limN→∞B

N exists and is equal to
the projection map onto the subspace spanned by the eigenvector 〈1, 1, . . . , 1〉. Furthermore,
the vector p̄∞ = B∞p̄0 = limN→∞ p̄N = 〈pa, . . . , pa〉 where pa = 1

n

∑n
i=1 p0,i is the average of

the competences in the initial competence vector p̄0.

Proof. By Theorem A.13, the row stochastic matrix B is irreducible and thus satisfies the
conditions of the Perron-Frobenius theorem for non-negative matrices. Furthermore, since
G(B) has at least one loop, the main diagonal of B contains some nonzero entry, and by
Theorem A.15 we know that B is primitive. Thus we can once again use Theorem A.6 as in
the proof of Theorem A.11 to get the desired result.

A.4 General Stochastic Matrices

Canonical Form for Reducible Matrices

If A is reducible, there is a permutation matrix P such that

P TAP =

[
B C
0 D

]
with B,D square. If either of B,D are reducible we can apply another permutation, and,
repeating this process, we eventually obtain a permutation matrix Q such that

QTAQ =



A1,1 A1,2 · · · · · · · · · A1,r

0 A2,2 · · · · · · · · · A2,r

0 0
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · · · · · · · Ar,r


,

where each matrix Ai,i is irreducible or the 1× 1 zero matrix.
Lastly, if there are rows of the above block decomposition having nonzero entries only in the
corresponding diagonal block, permute these rows to the bottom.1

1More specifically, for each matrix Ai,i residing in rows α, . . . , α+ δ, such that these rows have all their
non-zero entries contained in Ai,i itself, look for the first index β > α+ δ such that β is the last row in some
block of rows for matrices Aj,· and such that all blocks of rows for matrices Ak,· with k > j also have their
non-zero entries contained in their diagonal block Ak,k. If no such β exists, do nothing to Ai,i. Otherwise
let σ be the cyclic permutation of the indices α through β that sends α + δ to β. Then conjugate by the
permutation matrix for σ.
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This gives us a matrix of the following form

RTAR =



B1,1 B1,2 · · · B1,s B1,s+1 B1,s+2 · · · B1,t

0 B2,2 · · · B2,s B2,s+1 B2,s+2 · · · B2,t
...

. . .
...

...
... · · · ...

0 0 · · · Bs,s Bs,s+1 Bs,s+2 · · · Bs,t

0 0 · · · 0 Ds+1,s+1 0 · · · 0
0 0 · · · 0 0 Ds+2,s+2 · · · 0
...

... · · · ...
...

...
. . .

...
0 0 · · · 0 0 0 · · · Dt,t


, (A.2)

which is called the canonical form of A.
All blocks on the diagonal are either irreducible or the 1 × 1 zero matrix. But since rows
still sum to 1, the blocks Di,i for s+ 1 ≤ i ≤ t cannot be zero.

Theorem A.17. If λ is an eigenvalue of a row stochastic matrix A and |λ| = 1 then λ is
semi-simple.

Proof. Let A be row stochastic with canonical form given by (A.2).
First consider the eigenvalues of a block Bi,i. Such a matrix is either the 1×1 zero matrix, in
which case is has no eigenvalues on the unit circle, or Bi,i is irreducible. If Bi,i is irreducible,
then since the rows of A sum to 1 and the matrices Bi,d for i < d ≤ t are not all null, we
have Bi,i1̄ ≤ 1̄ and Bi,i1̄ 6= 1̄ (where 1̄ is the vector of ones with length equal to size(Bi,i).
Now recall that for all λ ∈ σ(Bi,i) we have |λ| ≤ ‖Bi,i‖∞ ≤ 1 (the maximum absolute row
sum). So if |λ| = 1 then ρ(Bi,i) = 1. Let q̄ > 0 be the Perron vector for BT

i,i. Then q̄TA = q̄T ,
and thus q̄T (I −Bi,i) = 0. But also (I −Bi,i)1̄ ≥ 0 and (I −Bi,i)1̄ 6= 0, so q̄T (I −Bi,i)1̄ > 0
which is impossible.
Thus all eigenvalues of A on the unit circle are in

⋃
s+1≤j≤t σ(Dj,j). But the matrices Dj,j

are both irreducible and stochastic, thus their eigenvalues on the unit circle have algebraic
multiplicity one. Any such eigenvalue may be repeated in more than one such matrix Dj,j

but in each such matrix the algebraic multiplicity, and therefore the geometric multiplicity,
is equal to one. Thus the algebraic multiplicity of λ in A is equal to its geometric multiplicity
in A.

We may now prove Theorem 3.29.

Theorem A.18. Given a jury J = {1, . . . , n} with initial confidence vector p̄0 and update
functions {Ui}1≤i≤n admitting a transition matrix B, define the sequence {pk} recursively by

p̄k+1 = Bp̄k.

Also define the sequence {q̄k} by

q̄k =
1

k

k−1∑
j=0

p̄j.
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Then the limit
q∞ = lim

k→∞
q̄k

exists, and is equal to the orthogonal projection of p̄0 onto the eigenspace N(B − I).

Proof. By Theorem A.17, all eigenvalues λ of B with |λ| = 1 are semi-simple and thus B
satisfies the conditions of Theorem A.7. Then the limit L := limk→∞ Sj(B) exists and is
equal to the projection onto null(B− I) along range(B− I). Lastly, we see that the vectors

q̄k =
1

k

k−1∑
j=0

p̄j =
1

k

k−1∑
j=0

Bj p̄0 = (Sk(B))p̄0

converge to
q̄∞ = lim

k→∞
q̄k = lim

k→∞
(Sk(B))p̄0 = Lp̄0.



70

Bibliography

[1] Daniel Berend and Jacob Paroush. “When is Condorcet’s Jury Theorem valid?” In:
Social Choice and Welfare 15 (1998), pp. 481–488.

[2] Daniel Berend and Luba Sapir. “Monotonicity in Condorcet Jury Theorem”. In: Social
Choice and Welfare 24.1 (2005), pp. 83–92.

[3] Roger L. Berger. “A Necessary and Sufficient Condition for Reaching a Consensus
Using DeGroot’s Method”. In: Journal of the American Statistical Association 76.374
(1981), pp. 415–418.

[4] Duncan Black. The Theory of Committees and Elections. London: Cambridge Univer-
sity Press, 1958.

[5] Philip J Boland. “Majority Systems and the Condorcet Jury Theorem”. In: Journal of
the Royal Statistical Society. Series D (The Statistician) 38.3 (1989), pp. 181–189.

[6] Philip J. Boland, Frank Proschan, and Y. L. Tong. “Modelling Dependence in Simple
and Indirect Majority Systems”. In: Journal of Applied Probability 26.1 (1989), pp. 81–
88.

[7] Marquis de Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions
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