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Abstract

Artificial Sensory Feedback for Neural Prostheses

by

Maria C. Dadarlat

Doctor of Philosophy in Bioengineering

University of California, San Francisco

Professor Philip Sabes, Chair

When controlling a motor prosthetic device or computer cursor using a brain-machine

interface (BMI), users guide their movements relying solely on visual feedback. In contrast,

our natural ability to plan and execute movements relies on feedback from multiple sen-

sory signals, and in particular on proprioception—the sense of the bodys position in space.

Proprioception guides movement without the need for continuous visual monitoring and is

integrated with vision, when both are available, to improve behavioral performance. Such

multisensory integration appears to be learned from multisensory experience, a process that

theoretically can be driven solely by the shared statistical structure of the inputs. To achieve

naturalistic control over prosthetic devices, BMIs will likewise need a proprioceptive feed-

back signal, one that can ultimately be integrated with natural vision. Here, we demonstrate

a novel, learning-based approach to artificial sensory feedback. We show that monkeys can

learn to use, in a naturalistic way, a continuous, multi-dimensional, multi-channel intracorti-
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cal microstimulation (ICMS) signal that encodes task-relevant feedback. After training with

correlated ICMS and visual feedback, monkeys could perform a goal-directed reaching task

without vision, using only the ICMS signal. Additionally, the animals integrated the natural

and artificial sensory inputs, combining both into a minimum-variance sensory estimate of

hand position relative to the target. The ICMS signal further resembled natural sensation in

its plasticity. For example, when a misalignment was imposed between vision and ICMS, the

ICMS estimate adapted back towards the rewarded visual cue. Furthermore, the monkey’s

valuation of the accuracy of the ICMS estimate was updated in response to trial conditions.

When the ICMS is randomly, but not consistently, perturbed, the monkey’s estimate using

artificial feedback grows less precise. Finally, we discussed theoretical ways to improve the

ICMS signal reliability by changing the parameters of the signal. Together these results

demonstrate that a learning-based approach can be used to provide a rich artificial sensory

signal, suggesting a new strategy for restoring proprioception to patients with BMIs as well

as a powerful new tool for studying the adaptive mechanisms of sensory integration.
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Chapter 1

Introduction

1.1 Brain-Machine Interfaces

The field of motor neural prosthetics aims to restore sensorimotor function to patients who

have suffered traumatic spinal chord injury. Fully repairing these injuries means restoring

both the ascending (sensory) and descending (motor) pathways of information flow. This

can be accomplished either by trying to repair the severed connections (Angeli et al., 2014;

van den Brand et al., 2012) or by artificially re-establishing the link between the brain and

the periphery (Carmena et al., 2003; Ethier et al., 2012; Fraser et al., 2009; Gilja et al., 2012;

Hatsopoulos et al., 2005; Ifft et al., 2013; Kim et al., 2011; Nishimura et al., 2013; O’Doherty

et al., 2009; Orsborn et al., 2014; ODoherty et al., 2011; Shanechi et al., 2014; Suminski

et al., 2010).
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Systems that perform the latter function are called Brain-Machine Interfaces (BMIs) and

consist of a network of devices that record neural activity in the brain, decode the user’s

motor intentions, and then translate those intentions into control over a wheelchair, robot

arm, or even the patient’s own limbs (Carmena et al., 2003; Ethier et al., 2012; Fraser et al.,

2009; Gilja et al., 2012; Hatsopoulos et al., 2005; Huang et al., 2009; Ifft et al., 2013; Kim

et al., 2011; Nishimura et al., 2013; O’Doherty et al., 2009; Orsborn et al., 2014; ODoherty

et al., 2011; Shanechi et al., 2014; Suminski et al., 2010; Zimmermann and Jackson, 2014).

Although some portion of BMI research is conducted with human subjects (Donoghue

et al., 2007; Hochberg et al., 2006; Kim et al., 2008, 2011; Wolpaw and McFarland, 2004),

ethical and practical considerations dictate that much of the preliminary work is performed in

non-human primates. These experiments typically involve monkeys moving a cursor around

a computer screen by modulating neural activity in primary motor cortex (M1), premotor

cortex (PMd or PMv), or parietal cortex (Carmena et al., 2003; Fraser et al., 2009; Gilja

et al., 2012; Hatsopoulos et al., 2005; Hauschild et al., 2012; Ifft et al., 2013; Nishimura et al.,

2013; O’Doherty et al., 2009; Orsborn et al., 2014; ODoherty et al., 2011; Shanechi et al.,

2014; Suminski et al., 2010). Movements made with cursors under BMI control are getting

faster and more precise—thanks in part to innovations in decoding algorithms (Bishop et al.,

2014; Dangi et al., 2013; Gilja et al., 2012; Ifft et al., 2013; Kao et al., 2013; Orsborn et al.,

2014; Shanechi et al., 2014, 2013; Yeom et al., 2014), but somehow they have yet to achieve

the fluidity of natural motor control.

Researchers have hypothesized that this lack is due in part to an absence of somatosensory
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feedback to the monkeys during BMI control. There’s ample evidence that an artificial

proprioceptive signal (the sense of the device’s position in space) would be useful: monkeys

(Suminski et al., 2010) and humans (Gomez-Rodriguez et al., 2011) can improve BMI control

if they receive natural proprioceptive feedback in the form of passive movements of the limb.

We expect that the benefit of proprioceptive feedback to BMI control will persist even with

further refinements in the software and hardware of Brain-Machine interfaces; after all, just

as deafferented patients with nominally intact motor systems exhibit motor impairments, a

motor neural prosthesis without somatic sensation will remain functionally impaired. Thus

one of the next important steps for neural prosthetic devices is to provide artificial sensory

feedback, restoring the flow of information from the somatosensory periphery to the cortex.

1.2 The importance of somatosensation

Somatosensory inputs such as touch and proprioception are essential for fine control of move-

ments and the dexterous manipulation of objects (Johansson and Flanagan, 2009; Sainburg

et al., 1993). Proprioception serves to generate a representation of the body’s posture and

movements (Kalaska, 1994), information that is crucial for future movement planning and

error correction. This data originates as a distributed network of sensors embedded in the

muscles, skin, and joints (Jones, 1994) which must be translated in the brain into a lower-

dimensional description of limb state and movement direction. By the time information

reaches primary somatosensory cortex (S1), cells already seem to encode proprioception in

more abstract and concise forms, such as static limb position (Prud’homme and Kalaska,
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1994) and dynamic movement direction (Pei et al., 2010; Prud’homme and Kalaska, 1994).

This information is further transmitted to parietal cortex, including area 5 (Kalaska, 1996),

and then to dorsal premotor cortex (PMd) and motor cortex, which are involved in planning

and executing reaching movements (Crammond and Kalaska, 1996; Scott and Kalaska, 1997;

Scott et al., 1997).

Somatosensation is essential to normal sensorimotor function: it relieves the need for con-

stant visual attention to manipulated objects and permits movements to be made outside

of the visual field (into pockets, etc.) but also enables tasks that are difficult to accomplish

even with intact vision. For example, the seemingly simple task of lifting an object or strik-

ing a match is more challenging and takes longer to accomplish when attempted without

cutaneous sensation from the fingers (Johansson and Westling, 1984; Westling and Johans-

son, 1984). Furthermore, proprioception enables spatially precise visually-guided movement

trajectories that require multi-joint coordination (Sainburg et al., 1993). Lastly, somatosen-

sation is more precise than vision in depth perception (van Beers et al., 2002) and has a

shorter feedback latency (Cluff et al., 2014). These attributes of natural proprioception

make artificial proprioception a desirable component of neural prosthetic devices.

Multisensory integration of vision and proprioception

Proprioception plays a particularly important role in precise movement planning (Sober and

Sabes, 2005, 2003). Humans (Ernst and Banks, 2002; van Beers et al., 1999) and animals

(Gu et al., 2008) naturally integrate multiple streams of sensory information (e.g., vision
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and proprioception) about relevant parameters (e.g., position, velocity, etc. of the hand)

into a unified estimate. As a concrete example, consider the problem of reaching to grasp

an object. To accomplish the reach, the brain must combine sensory estimates of the hand

and the object into the appropriate motor command. Evidence from behavioral experiments

indicates that, at least to a first approximation, this is a statistically optimal process, in that

the individual modalities are combined in order to minimize the variance of the integrated

sensory estimate (Alais and Burr, 2004; Ernst and Banks, 2002; Fetsch et al., 2012; Gu et al.,

2008; van Beers et al., 1999). This process can be expressed mathematically as

xint =
σ−21 x1 + σ−22 x2
σ−21 + σ−22

(1.1)

where x1, x2, and xint are the mean estimates from the individual modalities and the in-

tegrated estimate, respectively. The trial-to-trial variances of these estimates, σ2
1 and σ2

2,

can also be viewed as measures of the sensory uncertainty associated with a given estimate.

Note that the integrated estimate places more weight on the modality that has the smaller

variance (least uncertainty). The variance of the integrated estimate, σ2
int, given by Equation

1.2, is guaranteed to be smaller than the variances of the individual estimates, as long as

they are finite.

σ−2int = (σ−21 + σ−22 )−1 (1.2)

This decrease in variance is one reason artificial somatosensation is expected to improve the

performance of neural prostheses.
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Learning to integrate multisensory signals.

We would like to make sure that any artificial sensory feedback signal provided to a BMI

user is similarly integrated optimally with visual feedback, but the mechanisms underlying

multisensory integration seems to occur both behaviorally and at the neural level (Fetsch

et al., 2012; Gu et al., 2008), the underlying neural mechanisms are unknown.

Fortunately, the process of multisensory integration seems to be learned and remains plas-

tic in adulthood (Burge et al., 2010; Ernst, 2007; Simani et al., 2007; Wallace et al., 2006;

Wallace and Stein, 1997), so we can adapt models that plausibly explain this process to the

act of learning novel inputs. Our lab has recently proposed one such model of adaptive mul-

tisensory integration (Makin et al., 2013). The model stems from the idea that multisensory

integration can be viewed as one example of a more general, unsupervised learning problem:

latent variable density estimation (LVDE). The goal of LVDE is to extract low dimensional

representations of incoming data while retaining as much of the original statistical structure

as possible. This model is implemented with a simple neural network that learns LVDE via

a biologically plausible Hebbian-like learning rule (Hinton et al., 2006; model illustrated in

Figure 1.1). It consists of two populations of input neurons—visual neurons encoding hand

position in extrinsic coordinates, and proprioceptive neurons encoding hand position in terms

of joint angles—and an output population of multisensory neurons that receive projections

from the two input populations. Starting from a state of random connectivity, the links from

input to output are learned through exposure to data in which there is a strong correlation

between the two input populations arising from the fact that they both represent the same
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Figure 1.1: Learning to integrate multisensory signals. A schematic of a neural network model
learns, de novo and in an unsupervised fashion, to integrate visual and proprioceptive feedback of a
variable of interest, x, such as the position or velocity of the limb. Learning is driven by correlations
between the input populations, which in turn reflect their common encoding of x. This figure is
adapted from Makin et al., 2013.

underlying variable(s), x, for example the state of limb. After learning, the network is able

to perform minimum-variance cue combination, as well as a range of other movement-related

multisensory computations (Makin et al., 2013).

A learning-based approach to artificial feedback

A key insight from the model of Figure 1.1 is that the statistical properties of the input sig-

nals, namely the correlation between the activities of the two sensory neural populations, are

sufficient to drive the network to learn integrated representations of hand position (Makin

et al., 2013), without the need for supervisory signals. We do not know if this model ac-

curately captures the mechanisms implemented in the brain, but its biologically plausible

form makes it an exciting candidate and, moreover, it makes several testable predictions of
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practical importance for BCI.

One testable prediction that is particularly relevant for artificial somatosensation is that

temporal correlations between two input signals will drive learning and integration. This sug-

gests a powerful learning-based approach for delivering novel sensory signals to the brain:

if one provides a novel stream of information, for example by using intracortical mircostim-

ulation (ICMS), the brain should learn to interpret and integrate that signal as long as it

correlates over time with a known sensory signal.

1.3 Intracortical microstimulation

Mimicking natural sensations

Despite the known plasticity of the brain and predictions made by models such as the one

described above, the dominant approach to encoding artificial sensation for neural prosthetics

has been biomimetic (Fagg et al., 2007)—trying to replicate the patterns of neural activity

observed during natural sensory processing. Intuitively, a biomimetic code would be able to

instantly provide a rich and easily interpreted artificial sensory feedback signal. Preliminary

studies using electrical ICMS show promise, at least for artificial tactile feedback (Berg

et al., 2013; Tabot et al., 2013a); however, it not clear how well this approach will extend to

encoding more abstract sensations (e.g. proprioception).

First, it is not possible to simply invert the biophysics of neural activity, i.e. to precisely

recreate recorded patterns of activity, using presently-available tools. One common approach
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is to use electrical stimulation to alter ongoing neural activity. Unlike natural sensory inputs,

each pulse of electrical current activates a sphere of neural activity around the stimulation site

(Stoney et al., 1968; Tehovnik, 1996; Tehovnik et al., 2006) or, according to another study,

a sparse, distributed population of cells whose processes lie proximal to the stimulation

site (Histed et al., 2009). In either scenario, it is difficult to target individual neurons

without undesired and/or unpredictable collateral activity (Butovas and Schwarz, 2003).

This problem will be particularly acute in brain areas that lack a fine-scale topographic

map, i.e. where nearby neurons have different response properties, as is the case in the

proprioceptive regions of primary somatosensory cortex (Kaas et al., 1979; Weber et al.,

2012). Even if very small currents could be used to activate single neurons (Houweling and

Brecht, 2008; Voigt et al., 2008), the total number of (directly) activated neurons would be

limited by the size of the stimulating array. In the near term, then, it seems infeasible to

create targeted spatiotemporal patterns that mimic the precision and complexity of natural

sensory activity.

A second obstacle faced by biomimetic approaches is our piecemeal understanding of how

those natural patterns of activity encode the sense of touch (Johansson and Flanagan, 2009),

proprioception (Prud’homme and Kalaska, 1994), and complex interaction between the two

(Rincon-Gonzalez et al., 2012; Warren et al., 2011). Even in cases where elements of this

coding are known—e.g. topographic maps for the digits—spinal cord injury with sensory

loss raises the additional challenge that the code cannot be mapped using natural stimuli.

While the problem could be inverted—stimulating individual sites and asking for reports of
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the subsequent percept—this approach would be slow and imprecise.

Yet a third challenge for the biomimetic approach is the cortical remapping that occurs

after the loss of sensory afferents. Somatosensory perturbations elicit plastic changes in the

adult brain in a matter of months, so that cortical representations of deafferented surfaces

become occupied by expanded representations of the surrounding areas (Merzenich et al.,

1983a,b). For example, following complete loss of sensory input from the hand, the cortical

hand representation ultimately represents somatosensory input from the face (Pons et al.,

1991). Further complicating the matter, cortical stimulation itself alters the topography

of the sensory cortex (Recanzone et al., 1992), shifting the receptive fields of neighboring

cells towards that at the site of stimulation. Thus, neural plasticity must be considering in

designing systems for artificial somatosensory feedback: in the absence of a stable cortical

map, the target for biomimetic stimulation may itself be non-stationary.

Neural activity evoked by ICMS

Information is transmitted within and across neurons in the brain by chemical and electrical

processes. To provide artificial sensory feedback, we need a way to interface with one of

these processes and alter ongoing neural activity to encode useful information. One well-

studied approach to alter neural activity is Intracortical Microstimulation (ICMS) which

consists of delivering small, spatially-restricted electrical currents directly into the cortex.

The basic unit of electrical stimulation is a biphasic pulse of electrical current (Figure 1.2b).

In anesthetized rats, an ICMS pulse evokes a short (1-2 ms) burst of neural firing followed
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by a longer ( 100 ms) inhibitory period (Butovas and Schwarz, 2003), which mediated in

part by electrically coupled inhibitory networks (Butovas et al., 2006). At slightly higher

stimulation intensities, the inhibitory period is followed by a rebound response—about 50 ms

of excitation. If multiple stimulation pulses are delivered, the inhibitory/excitatory responses

interact in a complicated way, up until around 40 Hz where each stimulus pulse evokes one

or more spikes against a background of inhibition (Figure 2d in Butovas and Schwarz, 2003).

From these results, one can speculate that at higher stimulation frequencies (40 Hz and

above), ICMS can evoke a well-defined pattern of spiking in the nearby electrodes. The

results are not deterministic, but rather occur with some probability that is a function of

stimulation strength and distance from the stimulating electrode.

Cortical response to ICMS is further mediated by the state of the animal. Neural re-

sponses to ICMS evoked in awake, resting rats closely resemble those seen during anesthesia;

however, during active behavior such as whisking, the duration of the inhibitory period is

reduced (Venkatraman and Carmena, 2009). This difference in neural activation may be

caused by interactions with ongoing neural activity. Indeed, Venkatraman and Carmena,

2009 show that a computational model of the thalamo-cortical loop accurately captures the

transition between activity patterns observed in the two separate states.

Conscious perception of electrical stimulation

The following studies on ICMS detection and discrimination can help us optimize the pa-

rameters of stimulation used for artificial sensory feedback.
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Figure 1.2: Intracortical microstimulation. a) A voltage source drives electrical current through
a penetrating microelectrode (left). b)A typical ICMS pulse consists of a symmetric biphasic pair
of current pulses. Each pulse of the pair is of fixed amplitude (D, E) and duration (F), and the
two are separated by an interval of zero current amplitude ( inter-pulse interval; G). c) A stimulus
consists of one or more biphasic pulses delivered at variable frequencies (top vs. bottom).

ICMS detection

Humans and animals can “feel” electrical current delivered to certain parts of the surface

and depths of the brain; immediately, if delivered to somatosensory (Penfield and Boldrey,

1937) or other primary sensory cortices (vision; Dobelle et al., 1974), but also, with training,

to “higher” areas of cortex. This ability to detect an ICMS input is somewhat contingent

on the area that is being stimulated. In visual areas, the amount of current required to

evoke a sensation rises slightly from lower (V1) to higher (V3) visual areas (Murphey 2007).

In somatosensory cortex, excitation of primary areas such as S1 are readily detectible, but

training is required to detect stimulation of higher areas in parietal cortex (Doty, 1969).

Within a cortical area, there are several factors that affect ICMS detection. First, stim-

ulation of the surface tends to have a higher threshold (requires more current input for

detection) than intracortical stimulation (Doty, 1969). In fact, this threshold decreases from
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the uppermost to the deepest layers of cortex (at least in monkey primary visual cortex and

rat primary auditory cortex; Koivuniemi et al., 2011; Tehovnik and Slocum, 2009). At a

fixed stimulation site, increasing current amplitude increases the probability that the ICMS

signal is detected (explicitly shown in Berg et al., 2013; Fitzsimmons et al., 2007; O’Doherty

et al., 2009; Tabot et al., 2013b; Zaaimi et al., 2013). Similarly, increasing stimulation

frequency—the number of pulses delivered per second—decreases current threshold for de-

tection (Butovas and Schwarz, 2007; Koivuniemi and Otto, 2012), although in rat auditory

cortex this improvement saturates at around 80 Hz. With fixed frequency and amplitude, de-

tecting ICMS becomes easier with increasing numbers of stimulation pulses and stimulating

electrodes (Butovas and Schwarz, 2007; Tabot et al., 2013b; Zaaimi et al., 2013). Finally, the

shape and time-course of the electrical current also influence detectability. In general, sym-

metric, cathode-leading biphasic pulses are easiest to detect (Koivuniemi and Otto, 2012),

except in upper layers of cortex anode-leading pulses are more readily detectible (Tehovnik

and Slocum, 2009).

ICMS discrimination

The spatiotemporal pattern of ICMS inputs can be manipulated to elicit dissimilar sensa-

tions (Figure 1.2). For example, ICMS inputs with different temporal and spatial patterns

are discriminable from one another (Fitzsimmons et al., 2007; Otto et al., 2005; ODoherty

et al., 2011; Talwar et al., 2002; but see Ghose and Maunsell, 2012). Specifically, stimula-

tion duration (Fitzsimmons et al., 2007), amplitude (Johnson et al., 2013), and frequency
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(Fitzsimmons et al., 2007; Johnson et al., 2013; London et al., 2008; ODoherty et al., 2011;

Romo et al., 2000) are all parameters that are discriminable in an ICMS signal. Remarkably,

animals can even integrate information about the environment or the state of their own bod-

ies with ICMS inputs. Rats can distinguish if ICMS is delivered at different points along a

whisk cycle (Venkatraman and Carmena, 2011), and the location in space of the maximum

stimulation frequency of a continuous input (Thomson et al., 2013).

Human studies give us some insight into how this type of discrimination is possible.

Stimulation of different locations in the brain evoke sensations at slightly different parts of

the body (Heming et al., 2010; Penfield and Boldrey, 1937), though the location of the evoked

sensation doesn’t always match the receptive field of nearby cells (Heming et al., 2010).

Interestingly, humans can distinguish between stimulation with different parameters even if

the evoked sensation is not naturalistic. For instance, for a subject stimulated with ECOG

electrodes over hand somatosensory cortex, the evoked sensation felt like “wind running

down the hand,” and this sensation felt “stronger” at a higher stimulation frequencies (100

Hz vs. 75 Hz). Increasing the current amplitude of the stimulus elicited a similar change

in the evoked sensation—increasing strength with increasing current (Fridman et al., 2010;

Johnson et al., 2013). Thus increasing either amplitude or stimulation frequency seems to

have no effect on the quality of the sensation that is evoked, and changes only the perceived

strength.
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1.4 Candidate neural structures for artificial feedback

We next address the question of which brain area to target for artificial feedback. Consider

the neural pathway involved in goal-directed reaching: sensory information first ascends

from the periphery via the thalamus to modality-specific primary sensory areas. These,

in turn, project to a number of multisensory cortical areas in the parietal lobe. Motor

planning appears to occur across this parietal circuit and in the interconnected pre-motor

and primary motor cortex in the frontal lobe. As stimulation in higher processing areas

is likely to disrupt, rather than enhance, ongoing neural processing, the ideal target for

somatosensory stimulation would seem to be one that lies upstream of the multisensory areas

involved in movement planning. Furthermore, as most BMI users suffer from paralysis, we

limit ourselves to the parts of the somatosensory system above the spinal cord: the thalamus

and primary somatosensory cortex.

As the earlier stage of sensory processing, the thalamus is an attractive target for stim-

ulation. The percepts evoked by thalamic stimulation correspond to relatively small and

localized portions of the body surface (Heming et al., 2010), implying that each electrode

on a stimulating array could be used as a distinct input channel. Additionally, the neural

activity evoked by in cortex by stimulation in the thalamus may more closely resemble nat-

ural neural activity than that evoked by stimulation of cortex directly (Brockmeier et al.,

2012; Choi et al., 2012)—facilitating biomimetic stimulation. Unfortunately, however, the

thalamus is difficult to reach using currently available electrode arrays, so may not be the

best target for stimulation.
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Primary somatosensory cortex (S1) is still an early state of sensory processing, as neu-

rons in S1 respond primarily to touch and proprioceptive information. In primates, S1 is

composed of four cortical areas: 3a (mostly proprioceptive), 3b (mostly cutaneous), 1 (mixed

responses, but more cutaneous), and 2 (mixed responses, but more proprioceptive; Krubitzer

and Kaas, 1990). All of these subdivisions are good candidates for providing artificial so-

matic sensations, but areas 1 and 2 offer an important practical advantage—easier targeting

with electrode arrays because of their superficial location on bank of the post-central gyrus.

S1 also projects directly to areas that are known to perform multisensory integration (A5,

PMd) as well as to primary motor cortex, a connection that may play an important role in

the ability of somatosensory feedback to elicit rapid corrective responses during movement

execution (Omrani et al., 2012). For these and other reasons, most cortical approaches to

providing artificial somatic sensation have targeted S1 (Berg et al., 2013; London et al.,

2008; O’Doherty et al., 2009; ODoherty et al., 2011; Tabot et al., 2013a). For the work in

this thesis, I have taken the same approach, using ICMS to deliver artificial proprioceptive

information directly to primary somatosensory cortex.

1.5 Artificial proprioception in a non-BMI task.

ICMS has long been see as a potential tool for providing artificial feedback in neural pros-

thetics (London et al., 2011; Marzullo et al., 2010; O’Doherty et al., 2009; ODoherty et al.,

2011; Santhanam et al., 2006; Venkatraman and Carmena, 2011), but so far efforts to validate

its use have been limited, in part because electrical stimulation interferes with the neural
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Parameter Constraint
Current Amplitude (µA) > detection threshold; can remain fixed

Stimulation Frequency (Hz) > 100 Hz
Location multiple electrodes, spatially distinct

Table 1.1: Constraints on stimulation parameters

recordings required to perform a BMI task. Fortunately, there are ongoing hardware- and

software-based efforts to resolve these issues (Brown et al., 2008; Chu et al., 2013; Marzullo

et al., 2010; Rolston et al., 2009; Venkatraman and Carmena, 2009; Zanos et al., 2011), and

future iterations of neural recording and stimulating devices will free researchers of such con-

straints. In the meantime, we can still test the viability of an ICMS-based sensory feedback

signal outside of the context of BMIs by carefully designing a behavioral task where artificial

proprioception does not provide a redundant input (as it would for an intact animal who is

not performing a BMI task). To circumvent this issue, we designed a behavioral task that

required a monkey to reach to an invisible target (described in detail in Chapter 2). For

the monkey to successfully complete this task, he needed to know the position of his hand

relative to the target—an artificial proprioceptive signal we obligingly provided in the form

of spatiotemporally patterned ICMS in S1. We constrained the parameters of the ICMS

signal to maximize signal detectability and discriminability, as suggested by the discussion

in the previous section (constraints summarized in Table 1.1). Animals are then trained to

use the novel ICMS signal by extensive training on correlated visual and ICMS signals, which

we hypothesized to be sufficient to drive learning and integration of the new input.
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1.6 Dissertation summary

In the remainder of this dissertation we experimentally test the suitability of ICMS to encode

a learning-based artificial sensory feedback signal. To do so, we first verify that ICMS can

be used to encode a two-dimensional signal (hand position) and that this estimate can be

naturalistically integrated with visual feedback (Chapter 2). We next examine how estimates

of hand position are decoded from the ICMS signal and how the precision of the ICMS

signal depends on the number of stimulating electrodes (Chapter 3). Lastly, we compare the

plasticity of the ICMS signal to natural sensory inputs by asking the monkey to adapt to an

imposed misalignment (Chapter 4). We find that a learning-based ICMS-encoded artificial

feedback signal bears many similarities to natural sensory input—it is both integrated with

vision and will adapt to an imposed perturbation—validating its use as an artificial feedback

signal for neural prostheses and, further, suggesting that it could be used as model system

in which to study sensorimotor plasticity and neural encoding.

Resulting publications

At the time this manuscript was completed, none of the chapters had yet been published,

but all of the chapters (excluding Chapter 5) contain material that has been submitted for

publication or is in preparation.

• Parts of Chapter 1 overlap with material that will be published as part of a book

chapter (Dadarlat et al., 2014a).
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• Chapter 2 is under review as a journal article (Dadarlat et al., 2014b) and the work it

describes was awarded the 2013 Annual BCI Research Award.

• Chapters 3 and 4 are part of a manuscript that is in preparation (Dadarlat and Sabes,

2015).
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Chapter 2

Encoding artificial proprioception

2.1 Introduction

Humans plan and execute movements under the guidance of both vision and proprioception

(Sober and Sabes, 2005, 2003). In particular, maximally precise movements are achieved by

combining estimates of limb or target position from multiple sensory modalities, weighing

each by its relative reliability (Ernst and Banks, 2002; McGuire and Sabes, 2009; Morgan

et al., 2008; van Beers et al., 1999). Furthermore, in the absence of proprioception, even sim-

ple multi-joint movements become uncoordinated (Sainburg et al., 1995, 1993). Therefore,

we should not expect current brain-machine interfaces (BMIs), which rely on visual feedback

alone, to achieve the fluidity and precision of natural movement. It follows that a critical

next step for neural prosthetics is the development of artificial proprioception. As a demon-

stration of the potential value of somatosensory feedback, it has been shown that including
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natural kinesthetic feedback improves BMI control in intact monkeys to near-natural levels

(Suminski et al., 2010). The ideal artificial proprioceptive signal would be able to fill the

same roles that proprioception plays in natural motor control: providing sufficient informa-

tion to allow competent performance in the absence of other sensory inputs, and permitting

multisensory integration with vision to reduce movement variability when both signals are

available. Here we present a proof-of-concept study showing that both of these goals can be

achieved using multichannel intracortical microstimulation (ICMS). Most efforts to develop

artificial sensory signals have taken a biomimetic approach: trying to recreate the patterns

of neural activity that underlie natural somatosensation (Choi et al., 2012; Daly et al., 2012;

Fagg et al., 2007; Tabot et al., 2013b; Weber et al., 2012). We propose here a complemen-

tary approach, which focuses not on reproducing natural patterns of activity, but instead on

taking advantage of the natural mechanisms of sensorimotor learning and plasticity. In par-

ticular, the process of multisensory integration, where multiple sensory signal are combined

to improve the precision of sensory estimates, is learned from cross-modal experience during

development (citealpHeld1963,Xu2012) and relies on a continuous process of adaptive recal-

ibration even in adult humans and monkeys (Burge et al., 2008; Simani et al., 2007; Zaidel

et al., 2011). Recent theoretical work from our lab suggests that multisensory integration

can be learned with experience through a simple Hebbian-like learning rule (Makin et al.,

2013). In this model, successful integration of two sensory signals depends not so much on

choosing the right patterns of neural activity to encode spatial information, but rather on

the presence of spatiotemporal correlations between input signals, which allow downstream
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neurons to learn the common underlying cause, e.g. hand position. Following these theoret-

ical principles, we hypothesized that spatiotemporal correlations between a visual signal and

novel artificial signal in a behavioral context would be sufficient for a monkey to learn to

interpret and integrate the new modality. We tested this hypothesis by delivering real-time,

artificial sensory feedback to monkeys via non-biomimetic patterns of ICMS across multiple

electrodes in primary somatosensory cortex (S1). The monkeys ultimately learned to extract

the task-relevant information from this signal and to integrate this information with natural

sensory feedback.

2.2 Methods

Subjects and Implants

Subjects and Implants All animal procedures were performed in accordance with the Na-

tional Research Councils Guide for the Care and Use of Laboratory Animals and were ap-

proved by the UCSF Institutional Animal Care and Use Committee. Two adult male rhesus

macaque monkeys (Macaca mulatta) participated in this study. Each was chronically im-

planted with a 96-channel silicon microelectrode array coated with Iridium Oxide (Blackrock

Microsystems, Salt Lake City, UT) over their left primary somatosensory cortices (Brodmann

Areas 1, 2; S1). The cells on monkey Fs array had receptive fields spanning the shoulder,

back, side of the head, ear and occiput (bottom panels, Figure 2.1) whereas for monkey D

most receptive fields spanned the arm and shoulder (top panels, Figure 2.1).
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Figure 2.1: Physiological properties of stimulated somatosensory cortex. Location of
electrode arrays within S1 (right) and example neuronal receptive fields (left) for Monkey D (top)
and Monkey F (bottom). Colored circles (right) indicate array locations corresponding to the
matching colored receptive fields (left). Neurons responded mainly to light touch; circles with dark
borders correspond to cells that responded to limb movements (active and passive).

Behavioral Task

The animals were trained to perform reaches in the horizontal plane to an unseen target in a

two-dimensional virtual reality environment, where a mirror and an opaque barrier prevented

direct vision of the arm (Figure 2.2). The mirror reflected visual input from a projector, so

that the visual cues appeared in the horizontal plane of the reaching hand. Fingertip position

was monitored with an electromagnetic position sensor (Polhemus Liberty, Colchester, VT)

at 240 Hz.

Each trial consisted of four epochs (Figure 2.3a). i) The monkeys moved the middle
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Figure 2.2: Virtual reality environment. Animals sit in a virtual reality environment without
direct view of the arm. A mirror reflects images on rear-project screen and is adjusted so that visual
cues appear in the horizontal plane of the reaching hand. Hand position was tracked electromag-
netically (Polhemus Liberty, Colchester, VT), and feedback about the position of the hand, relative
to the target, was delivered via a random-dot visual flow field (inset) or via patterned ICMS.

fingertip of their right hand to a fixed start position, located in the center of the screen and

indicated by a circular visual target (10 mm radius). ii) After a brief delay (0.25 and 0.5 s for

Monkeys D and F, respectively), the target cue was initiated, indicating the movement vector

between the monkeys current finger position and the center of the unseen reach target (12

mm radius). Targets were selected uniformly from an annulus centered on the start target

with an inner radius of 40 mm and an outer radius of 80 mm. The movement vector cue was

provided in the form of a dot-field (VIS), multichannel ICMS (ICMS), or both (VIS+ICMS).

The monkeys were required to hold their position during this instructed-delay interval (0.2-
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0.7 s and 1-1.5 s, monkeys D and F, respectively). iii) After a go cue (750 Hz tone, 0.5

s) the monkeys made a reach under the guidance of continuously updating VIS, ICMS or

VIS+ICMS feedback. iv) After acquiring the target and holding for 400 ms (monkey D) or

500 ms (monkey F), the monkeys received a liquid reward. Trials were terminated without

reward if the monkeys moved too early during any of the delay intervals or if they failed to

reach the target before a timeout (10 s). Different task parameters were selected for each

animal to minimize the number of failed trials (e.g., aborted hold at start or target), and

therefore reflect the animals idiosyncratic behavioral tendencies.

Visual feedback For vision, the movement vector was encoded using a random moving-dot

flow-field (dot-field) consisting of approximately 600 dots over the visual display (roughly

53 cm x 33 cm, in the reaching plane). Each dot was initialized to a random location on

screen, and had a lifetime of 4 seconds (phases randomized), after which it reappeared at a

new random location. Each dot in the dot-field moved at the same angle as the movement

vector and at a speed proportional to the length of the movement vector, but could not ex-

ceed a maximum of 50 cm/s for Monkey D and 40 cm/s for Monkey F. A percentage of the

dots moved coherently together in the direction of the continuously updating movement vec-

tor. The remaining dots moved in random directions, selected independently and uniformly

from the circle. The percentage of dots moving coherently—the dot field coherence—was

parametrically varied in order to manipulate the precision of the visual feedback.

ICMS Intracortical microstimulation consisted of biphasic, charge-balanced pulse trains

delivered asynchronously to each of eight electrodes in the array. The pulse trains were
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Figure 2.3: Behavioral task and sensory feedback. a) Timeline of a behavioral trial. b)
Visual feedback of the instantaneous movement vector (black arrow) takes the form of a random
moving-dot flow-field (dot-field). c) Implantation site of stimulating electrode arrays for monkeys
D (black) and F (blue). CS-central sulcus; IPS-inferior parietal sulcus. Right: the assigned PD
of each stimulating electrode is overlaid on its location within the array. d) An example ICMS
trial showing the movement vector at the beginning of the reach (black arrow) and the monkeys
subsequent movement path (green). At right: ICMS patterns delivered during the trial; each
row represents the time-varying stimulation pattern of the electrode with the preferred direction
(PD) indicated at left (black arrow). Orange tick marks denote biphasic stimulation pulses, which
are shown subsampled for clarity. e) Inset: the instantaneous movement vectors encoded at two
time-points during the reach are shown as solid and dashed black arrows. Below, the pattern of
stimulation encoding each movement vector is shown across electrodes; arrowheads indicate the PD
of each electrode.
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cathode-leading and symmetric, with 200 µs/phase and a 250 µs phase separation. The

pulse amplitudes varied across electrodes, depending on perceptual threshold (see below)

and ranged between 34-60 µA for Monkey D, and 30-80 µA for Monkey F.

ICMS Detection. A preliminary two-alternative forced choice task was used to determine

the threshold pulse amplitudes at which the animals could detect ICMS on a given electrode.

The monkeys first moved to a fixed start position near the midline (as in main task above)

and maintained that position for 0.5 s. Next, there was a 0.5 s instructed delay period

during which two reach targets were displayed, to the right and left of midline. The presence

of an ICMS pulse train (100 Hz, 0.5 s) cued the animal to reach left; its absence cued the

rightward reach. Animals were initially trained on this task using multi-electrode stimulation,

and the task was then used to identify electrodes on which ICMS was detectable. Eight such

electrodes were identified for Monkey F. For Monkey D, seven such electrodes were identified;

the final electrode could not be detected when stimulated alone with amplitudes of less than

60 µA.

Movement Vector Encoding For ICMS, the movement vector was encoded in the spatial

and temporal patterns of stimulation across the array (Figure 2.3). Movement vector direc-

tion was encoded by the relative stimulation pulse rates across the electrodes. First, each of

the eight electrodes was arbitrarily assigned one of eight preferred directions (PD), equally

spaced around the circle. Then, the stimulation pulse rate fi of electrode i was calculated as

a function of angle between the direction movement vector, θ, and the electrodes assigned
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PD,

fi =
f0
2

(1 + cos(PDi − θ)) (2.1)

The frequency scaling factor, f0, linearly encoded the movement vector distance, d, within

the range of 100-300 Hz:

f0 =
d

dmax

fmax (2.2)

where dmax was 10 cm for Monkey F and 13.6 cm for Monkey D. The values of d and θ

were continuously updated during the reach to provide online feedback (Figure 2.3). where

dmax was 11.5 cm for Monkey F and 13.6 cm for Monkey D. The values of d and θ were

continuously updated during the reach to provide online feedback (Figure 2.3d,e).

Experimental Design

Behavioral sessions were divided into training blocks and testing blocks. The details of those

blocks changed during the course of training, as described below.

Behavioral Training. Monkeys first learned to perform the behavioral task using vision

alone, with 100% coherence. Next, we began training with only VIS+ICMS trials. A dot-

field coherence of 100% was used initially, and that value was slowly decreased across sessions

to encourage the animals to use to the ICMS signal. Coherence values were lowered to 25%

for Monkey D and 20% for Monkey F, depending on the animals performance level in the

VIS conditions. This training regime was employed for approximately 20,000 training trials

with Monkey D and 40,000 training trials with Monkey F, at which point the animals showed

clear evidence of sensory integration of the VIS and ICMS signals—improved performance

on VIS+ICMS trials compared to VIS trials, as evaluated on testing blocks (see below). We



CHAPTER 2. ENCODING ARTIFICIAL PROPRIOCEPTION 29

then altered the training regime to include 33% ICMS-only trials and 67% VIS+ICMS trials

once the animals were able to perform ICMS-only trials in the testing blocks (see below).

Behavioral Testing. In between blocks of training, approximately every 500-1000 training

trials, the animals performed a testing block to quantify performance across all feedback

conditions. By the end of the experiment, a total of 11 feedback conditions were used:

VIS, VIS+ICMS, and ICMS, with dot-field coherences of [0, 15, 25, 50, 100]% for monkey

D and [0, 10, 15, 25, 50]% for monkey F, with the difference between animals reflecting

individual performance levels in the VIS condition. At the beginning of the experiment,

animals had not been exposed to lower visual coherences and could not perform the task

at those coherences. Lower visual coherences for testing were introduced gradually during

the course of the experiment as performance improved (see Figures 2.4-2.5). For all testing

blocks, all conditions were randomized across trials.

As noted above, testing sessions revealed evidence of sensory integration of the VIS and

ICMS signals prior to the animals performing the ICMS-only task. Yet at this stage, the

animals still failed to initiate movement on ICMS-only trials, suggesting that they did not

generalize the task instructions to trials with no visual cues. We therefore temporarily

modified the ICMS-only testing protocol to help them generalize. First, we paired ICMS

with a visible target circle during ICMS-only testing trials. The brightness of the target

circle was gradually decreased, until it was finally removed entirely, and the monkeys were

reaching with ICMS alone (thin vertical green line in Figures 2.4-2.5). Next, the radius of the

reach target for ICMS-only trials was temporarily increased from 12 mm to 36 mm—for both
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testing and training trials—to avoid discouraging the animal from performing these trials.

The radius of the target was then decreased across training sessions until the monkey was

completing reaches to a standard 12 mm radius target (thick vertical green lines in Figures

2.4-2.5).

Data Analysis

Behavioral Performance Measures. We quantified the animals ability to use the various

sensory cues with the following performance measures (details of each are given below):

i) percent correct trials, ii) number of movement sub-segments, iii) normalized movement

time, iv) normalized path length, v) mean and variance of initial angle of the movement.

The first four metrics assessed animals use of the sensory cues throughout the trial, including

movement planning during the instructed delay period and online movement control. The

statistics of the initial angle assess only movement planning. The performance summaries

in the summary results figures were computed from the last seven testing sessions available

for each monkey.

i) Percent correct trials: This is the number of trials in which a monkey acquired a target

and received a reward, compared to the total number trials in which a reach movement was

initiated. We exclude in this analysis trials where the monkey made errors such as starting

a reach before the go cue, not initiating a trial, and swiping through the reach target.

ii) Number of movement sub-segments: This metric quantifies the number of discrete

sub-movements in a trial. Starting with the model assumption that sub-movements have

bell-shaped velocity profiles (Novak et al., 2002) we identified sub-movements by threshold
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crossings of the tangential velocity plot of a trajectory, with a threshold of 20% of the

maximum velocity on a given trial.

iii) Normalized movement time: Since maximum movement velocity was largely inde-

pendent of movement distance (data not shown), targets that were farther away took longer

to reach. Therefore, we normalized the movement time by the distance from the starting

point to the target.

iv) Normalized path length: Similarly, we normalized the integrated path length by the

distance from the starting point to the target.

v) Mean and variance of the initial angle. For each monkey and feedback condition,

we first computed a smoothed estimate of the mean initial angle as a function of target

angle (robust locally weighted scatterplot smoothing, using the MATLAB smooth function,

with a window of 40 data points). The initial angle variance was computed about this

mean. Standard errors for the mean variance were estimated via bootstrapping (Efron and

Tibshirani, 1993).

Quantifying use of direction and distance from the ICMS signal. A typical reach con-

sists of a long initial movement segment followed by one or more shorter, corrective sub-

movements. The distance and direction of this initial reach can be taken to reflect the

monkeys estimate of target distance and direction, as decoded from the sensory information

available during the instructed delay period.

i) Direction estimation: We assessed the monkeys ability to estimate target direction from

ICMS by regressing initial movement angle against target angle for ICMS-only trials. The
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initial movement angle was measured using the first movement sub-segment, as described

above. This assay ignores target-dependent biases in initial direction (see above), and is

therefore a conservative estimate of the animals ability to decide target direction.

ii) Distance estimation: We assessed the monkeys ability to estimate target distance

from ICMS by regressing initial movement distance against target distance for ICMS-only

trials. On a subset of trials, however, the initial movement deviated from the norm: animals

sometimes made a small initial reach that was followed by several larger corrections. On these

trials the distance of the initial reach segment was uncorrelated with movement distance.

Therefore, for this analysis we exclude trials for which the first movement segment was not

longest segment. This occurred in 30.2% of the trials for Monkey D and 12.2% of the trials

for Monkey F.

Model prediction for initial angle variance. Under the model of minimum variance sensory

integration (8), we can predict the sensory variability in the bimodal condition from the

variability for each unimodal condition. We focus on variability in the animals estimate of

the target angle based on the sensory cues during the instructed delay period. Unimodal

variances were computed from the variability in initial movement direction, σ2
V IS, and σ2

ICMS,

calculated as described for performance measure (v) above. Next, for each coherence level,

we predicted the bimodal variance under two limiting assumptions. First, we used the raw

initial angle variance directly, which implicitly assumes that all movement variability derives

from sensory variability:

σ2
V IS+ICMS =

σ2
V ISσ

2
ICMS

σ2
V IS + σ2

ICMS

(2.3)
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Second, we assumed that the movement variability was the largest possible value that would

still be consistent with the data—this is the smallest initial angle variance across conditions,

which we denote with σ2
MIN . Under this model, the bimodal initial angle variance is:

σ2
V IS+ICMS =

(σ2
V IS − σ2

MIN)(σ2
ICMS − σ2

MIN)

σ2
V IS + σ2

ICMS − 2σ2
MIN

+ σ2
MIN (2.4)

Model predictions for mean initial angle. The plots of mean initial angle for monkey D

show a clear dependence on the feedback type. If we suppose that these differences reflect

biases in the sensory estimates of target direction, then the minimum variance model can

be used to predict, for each coherence value, the mean initial angle in the VIS+ICMS trials

from those measured in the unimodal trials:

θ̄V IS+ICMS =
σ−2V IS θ̄V IS + σ−2ICMS θ̄ICMS

σ−2V IS + σ−2ICMS

(2.5)

Equation 2.5 can be summarized by the predicted visual cue weighting for each coherence,

wV IS =
σ−2V IS

σ−2V IS + σ−2ICMS

(2.6)

which depends only on the unimodal initial angle variances.

We compared these model predictions to empirical values of the visual cue weight-

ing,estimated from the mean initial angles. First, we divided the workspace into octants,

and for each octant and feedback condition, we computed the mean difference between the

initial angle andthe target angle, we which denote here as δ̄i,x for octant i and condition x.

For each octant and coherence level, we then estimated the visual cue weighting as

wi,V IS =
δi,V IS+ICMS − δi,ICMS

δi,V IS − δi,ICMS

(2.7)
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The standard error si,V IS of each wi,V IS was estimated from the standard errors of the com-

ponent means, δ̄i,x, by propagation of errors. Finally, for each coherence level we computed

the mean visual cue weighting across octants, with each octant weighted by its standard

error:

wV IS =

∑8
i=1 s

−2
i,V ISwi,V IS∑8

i=1 s
−2
i,V IS

(2.8)

2.3 Results

Behavioral task and feedback signals Two rhesus macaques were trained to make instructed-

delay center-out reaches to invisible targets (Figure 2.3) in a virtual reality environment

(Figure 2.1) guided by feedback that represented the vector (distance and direction) from

the middle fingertip to the reach target (black arrows, Figure 2.3b,d). This movement vector

was not explicitly shown; instead, it was encoded by one of three feedback types: a visual

signal (VIS), a signal delivered through patterned multi-channel ICMS pulse trains (ICMS),

or a combination of these two signals (VIS+ICMS). This task was chosen to best test whether

the ICMS signal can provide position information that can both be integrated with vision

and can replace it. By using natural movement, we obtain the most direct and precise

estimates of how well the ICMS signal encodes sensory information about the limb (e.g.,

not confounded by additional performance noise due to imperfect BMI control). However,

natural movement leaves natural proprioception intact, which would make an ICMS signal

encoding absolute limb position redundant. By encoding the relative positions of the limb

and target, the VIS and ICMS signals provide a feedback variable that is both required to
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Figure 2.4: Evolution of performance over training (Monkey D). Behavioral performance
measures are shown as a function of the cumulative number of VIS+ICMS trials performed (training
and testing). The data, collected during testing sessions, were smoothed for clarity (Gaussian
window with standard deviation of 2.8 training sessions, translating to approximately 2,500 training
trials for Monkey D and 2,800 training trials for Monkey F). The visual coherence on training trials
was decreased across training sessions (indicated by gray bars at the bottom of the figure and
vertical gray lines at the transitions). The left, thin green line denotes the onset of ICMS-only
trials, where target sizes were temporarily larger than in the other trial conditions; the right, thick
green line denotes the beginning of ICMS-trials with targets of standard size. a) percent correct
trials; b) number of movement segments measured online error corrections; c) movement time for
the trial is normalized by the initial distance to the reach target; d) path length, normalized as in
c.
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Figure 2.5: Evolution of performance over training (Monkey F). Same conventions as Figure
2.4.

complete the task and that is not available from natural sensory signals.

Performance with visual feedback. Monkeys first learned to perform the task with VIS

feedback alone. We quantified performance with three behavioral metrics designed to cap-

ture how well the animals made use of a sensory signal during reach planning and execution.

Performance on VIS-only trials increased monotonically with increasing dot-field coherence
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for all behavioral metrics (purple lines, Figure 2.6), demonstrating that differences in per-

formance reflect the precision of the sensory cue.

Learning ICMS After the monkeys could perform the reaching task using visual feedback,

we tested our hypothesis that spatiotemporal correlations between vision and ICMS could

drive integration of the new sensory modality. We did so by exposing the monkeys to

paired, correlated VIS+ICMS feedback signals both during the instructed delay period (as

static information) and throughout the reach (dynamically updated feedback). The visual

signal was first set to 100% coherence, but was gradually reduced across training blocks

to increase the relative value of the ICMS signal (ultimately settling at 20% for Monkey F

and 25% for Monkey D). Under this training regime, the animals learned to integrate the

two sensory signals, i.e. the addition of ICMS improved performance (see below). Animals

needed more explicit instruction to learn to initiate movement on ICMS-only trials (see

Methods). Once that was accomplished, the training regime changed to include ICMS-only

trials (33%), a pragmatic choice intended to speed learning. We periodically assessed learning

(approximately every 500-1000 training trials) by including testing blocks: trials of VIS-only,

VIS+ICMS, and ICMS-only trials where the visual dot-field coherence could take a range of

values ([0,10,15,25,50] for Monkey F; [0,15,25,50,100] for Monkey D).

Substitution of vision by ICMS We analyzed the data from testing blocks to determine

how well the animals could interpret the ICMS signal, using it in place of vision to perform

accurate reaches. Once the monkeys began making reaches on ICMS-only trials, they became

increasingly proficient across training sessions (Figure 2.4-2.5), and performance on ICMS
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Figure 2.6: Comparison of task performance across sensory feedback conditions. Be-
havioral performance measures are averaged across the last seven testing sessions for each monkey,
shown for each sensory feedback type and as a function of visual coherence (for VIS and VIS+ICMS
trials). Error bars denote bootstrapped standard error of the mean. The ICMS data points, which
are independent of visual coherences, are extended across the plot to aid visual comparison. a)
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to the reach target; c) movement time, normalized as in b.
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b

Figure 2.7: Sample movement paths. Sample movement paths from randomly selected successful
trials for Monkeys D (a) and F (b) for seven feedback conditions. Each reach begins at the fixed
central starting point and ends within the unseen reach target (here depicted in blue).

trials was ultimately comparable to performance with low-to-mid visual coherences (15-

25% for Monkey D, 15% for Monkey F; orange symbols, Figure 2.6). A more qualitative

impression of the performance comparisons can be obtained from sample movement paths

for various feedback conditions (Figure 2.7).

We next quantified how well the monkeys made use of the distance and direction informa-

tion encoded in the ICMS signal. To do this, we analyzed the distance and direction of the
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initial movement segment of the reach, which reflects the animals estimates of the required

movement vectors derived from sensory feedback during the instructed delay period (Figure

2.8). Monkey F was highly adept at estimating target angle (ICMS, regression R2 = 0.948;

Figure 2.8), performing as well with ICMS as with the highest visual coherences (50% VIS,

R2 = 0.945; Figure 2.9). Although demonstrating some idiosyncratic biases (see below),

monkey D was also able to derive good estimates of target direction from ICMS (ICMS, R2

= 0.900; Figure 2.8a; 100% VIS, R2 = 0.957; Figure 2.9a). Both monkeys were somewhat

worse at estimating distance than direction from ICMS.

Due to differences in performance across the workspace, we analyze distance estimation

separately for the two half-planes: the more proximal workspace, with target angles [-π, 0],

and the more distal workspace, with target angles [0, π]. For monkey F, distance estimates

were equally good across the workspace (gray symbols: [-π, 0], R2 = 0.432; orange symbols:

[0, π], R2 = 0.473; Figure 2.8d) and largely fall within one target radius of correct distance

(but not necessarily in the target on each trial, due to directional error), although these

values are lower than those the animal achieved with high-coherence VIS feedback ([-π, 0],

R2 = 0.716; [0, π], R2 = 0.751; Figure 2.9d).

Monkey D could accurately estimate distance in the distal half of the workspace (orange

symbols: [0, π], R2 = 0.494; Figure 2.8c), but was less able to do so in the proximal half

(gray symbols: [-π, 0], R2 = 0.108; Figure 2.8c). Still, these values are comparable to those

the animal achieved with the highest-coherence VIS feedback ([0, π], R2 = 0.365; [-π, 0],

R2 = 0.176; Figure 2.9c). In summary, the task performance observed in the ICMS-only
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Figure 2.8: Monkeys estimate both target distance and direction from ICMS. The panels
show correlations, for both direction and distance, between animals initial movements and the
target location. Black solid lines are unity and the thick colored lines represent linear fits between
the movement and target variable. Fits were performed separately for the distal (orange points,
target angle [0:π]) and proximal (gray points, target angle [-π:0]) halves of the workspace. (a,b)
Initial movement angle versus target angle for monkey D and F, respectively. (c,d) Initial movement
distance versus target distance for monkey D and F, respectively. Region within the dashed black
lines falls within the diameter of the target.

condition is driven by the animals ability to decode both distance and direction information

from the ICMS signal.

Augmentation of vision by ICMS In addition to serving as the training condition, VIS+ICMS

trials provide a test of the animals ability to improve performance by combining informa-

tion from the two sensory cues. This ability emerged during training, with performance on

VIS+ICMS trials becoming progressively better than for VIS trials, even before the animals
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could complete reaches with ICMS alone (Figure2.8), supporting the idea that multisensory

integration drives ICMS learning (Makin et al., 2013). Moreover, the hallmarks of multi-

sensory integration were observed in the asymptotic performance on VIS+ICMS trials, after

learning was complete (green data, Figure 2.6). At intermediate dot-field coherences (10-

25%), where performance between the two unimodal cues was similar, VIS+ICMS reaches

were significantly better, i.e., faster and straighter. In contrast, at high (50-100%) and low

(0%) dot-field coherences, behavior in the bimodal condition approximated that observed

with the more reliable of the unimodal cues.

Minimum-variance integration of vision and ICMS We next ask whether the visual and

ICMS cues were integrated in an optimal, i.e. minimum variance manner, as is the case for

natural visual and somatosensory signals (Ernst and Banks, 2002; van Beers et al., 1999).

The answer comes from an analysis of the statistics of the initial reach directions, which give

the most direct readout of the animals estimate of target direction following the instructed

delay period. The minimum variance model makes specific predictions about both the vari-

ance and bias of this estimate, and we consider each in turn. We first consider how the

variance of the initial reach angle depends on feedback condition (Figure 2.10a). For VIS

trials, the initial angle variance increased dramatically with decreases in coherence, as ex-

pected if the variance reflects the residual uncertainty about cue direction after the instructed

delay. Variability in the ICMS trial was comparable to VIS trials at 15-25% visual coher-

ence, consistent with the other movement metrics above. From these unimodal variances,

we can determine what the initial angle variance should be for the VIS+ICMS condition,
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under the model of minimum variance integration4. We computed this prediction under two

limiting conditions: assuming that the initial angle variance arises only from variability in

the sensory estimates of target direction (black dashed line, Figure 2.10a), or assuming that

the measurements also include the maximal consistent level of downstream (e.g., motor)

variability (see Methods; black dotted line,Figure 2.10a). The empirical variances observed

in the VIS+ICMS condition follow the predicted trend closely, and lie between the two lim-

iting predictions in the region where the animal received most of the multisensory training

(20-25% coherence; see Methods). This comparison suggests that after training, the animals

optimally combined the ICMS signal with vision. We next test this conclusion further by

analyzing the pattern of mean initial angles.

The animals exhibited idiosyncratic patterns of mean initial reach angle as a function of

target angle. For Monkey D, these patterns were clearly distinct between the VIS and ICMS

trials (Figure 2.10b; also see Figure 2.11 for Monkey F, where the patterns are less well

defined). Since the required movements are the same across cue conditions, these patterns

likely arise from biased estimation of the target direction. Therefore, they offer another

opportunity to test whether the VIS and ICMS signals are combined optimally. Minimum

variance integration predicts that in the VIS+ICMS condition, as the visual coherence in-

creases from 0% to 100%, the animals should transition from relying primarily on the ICMS

cue to primarily on the visual cue. This trend can be seen qualitatively in the pattern of

mean initial angles for Monkey D (Figure 2.10b): at 15% coherence, the VIS+ICMS mean

was close to that observed with ICMS alone; at 100% it was close to that observed with VIS.
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Figure 2.10: Integration of vision and ICMS minimizes reach variance. (a) Standard
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back conditions for each monkey. Standard deviation was calculated after subtracting a smoothed
estimate of mean initial angle (panel b); results were qualitative unchanged with only the target
angle subtracted (i.e., angle computed with respect to straight-line reach; Figure 2.11). Error bars
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tion 2.8); black unfilled circles: minimum variance model prediction (Equation 2.7); error-bars:
bootstrapped estimates of standard error. Data is from Monkey D.
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The relative weighting of the two modalities can be estimated quantitatively by modeling

the VIS+ICMS mean as an affine combination of the unimodal biases (Equation 2.5). As

expected, the weighting of the visual cue smoothly transitioned from zero to unity as the

visual coherence increased (green symbols, Figure 2.10c). Under the model of minimum vari-

ance integration, each sensory cue should be weighted inversely proportional to its variance

(Methods, Figure 2.10b). Using the unimodal variance data from Figure 2.10a, we obtained

quantitative predictions for the cue weighting in the VIS+ICMS trials (open black circles,

Figure 2.10c; Equations 2.7-2.8); these are in good agreement with the empirical data.

2.4 Discussion

We have shown that multi-channel patterned ICMS of primary somatosensory cortex can be

used to provide monkeys with continuous information about hand position that enables goal-

directed reaching. In particular, the monkeys were able to use ICMS to estimate the distance

and direction between their current hand location and the reach target. Furthermore, when

both visual and ICMS feedback was available, the monkeys combined these signals to achieve

increased levels of task performance, and they did so ator neartheoretical optimal levels, as

is observed for natural sensory signals (Ernst and Banks, 2002; van Beers et al., 1999).

What does the ICMS signal convey?

An important finding of this study is that animals can learn to use ICMS as a temporally

continuous feedback signal. However, it is possible that the animals only used the ICMS

signal to estimate the target location during the instructed delay period, with subsequent
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across feedback types that were observed for Monkey D. (c) Visual cue weighting for Monkey F
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in mean initial angle across feedback types. Green filled circles: visual cue weighting estimated
from data; black unfilled circles: minimum variance model prediction; error-bars: bootstrapped
estimates of standard error.
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corrective sub-movements guided either by the remembered target location or simply by a

random search. An analysis of corrective sub-movements, Figure 2.12, shows that this is not

the case. Sub-movement direction correlates well with the direction of the online movement

vector (target current hand position) at the end of the previous sub-movement. In fact,

the precision of the corrective movements in the ICMS-only condition is comparable to that

seen with high visual coherences, and is considerably lower than that observed with 0% VIS,

where no directional information is available, or that which would be expected by chance.

These results suggest that the VIS and ICMS cues are being used as online feedback signals.

Furthermore, if the animals had simply memorized the location of the target during the

instructed delay period, we would expect a decline in precision across sequential corrective

movements. Instead, the correlation between cued and executed sub-movements was largely

consistent across corrective sub-movement number, with no clear increase in error variance

for later sub-movements. These results strongly indicate that the animals are using the

online feedback to execute corrective sub-movements.

Another key result of the paper is that with only eight electrodes, we are able to deliver

continuous spatial information with a reliability comparable to that achieved with the visual

cue. Initial angle estimation with the ICMS signal has the same variance as that observed

with 15-20% visual coherence and is only about three times greater than that observed with

the highest coherence for both animals. Furthermore, when the signals are used online, ICMS

performance is even closer to that achieved with visual feedback (Figure 2.12). The better

performance (relative to vision) of ICMS during corrective movements could be due to either
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Figure 2.12: Directed error correction. a) Angle of the second sub-movement as a function
of instantaneous movement vector angle in trials that required error correction. Top: ICMS-only
trials; Bottom: VIS-only trials at high visual coherence (50% for Monkey F; 100% for Monkey D).
Black line: unity. b) Error variance (rad2) in sub-movement angle estimation.
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the inherent delays in visual feedback, the relative importance of somatosensory feedback

for online movement controls, the shorter integration times available for online corrections,

or a greater contribution of motor noise.

Learning to integrate a novel sensory signal The ability to use the ICMS signal was nec-

essarily learned during the training process, since, by design, the patterns of ICMS do not

mimic naturally occurring signals in the brain. This learning could be driven by several

possible mechanisms of learning. In the experiment, the visual and ICMS signals changed

in a correlated fashion. Previous modeling work from our lab showed that in a network with

unsupervised, Hebbian-like learning, such correlations are sufficient to learn optimal integra-

tion (Makin et al., 2013). Other learning mechanisms may also have contributed, including

error-corrective or reinforcement learning (Cheng and Sabes, 2007; Izawa and Shadmehr,

2011) of a sensory-to-motor mapping from ICMS to the appropriate movement. Our experi-

mental design cannot definitively distinguish between these possibilities, but the emergence

of multisensory integration before animals could perform with ICMS alone (Figures 2.4-2.5)

suggests that unsupervised, multisensory learning played a large, if not dominant, role.

While there is evidence of multisensory integration at all visual coherences (Figure 2.6),

optimal performance in the VIS+ICMS condition was only observed at mid-level visual co-

herences; performance at the lowest and highest coherence levels only approached optimality

(Figure 2.10). A likely explanation is that monkeys learned to integrate vision and ICMS

optimally when vision matched or was close to the training coherence (20% for monkey F;

25% for monkey D). In fact, a similar effect was observed in the network model of unsuper-
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vised sensory integration (Makin et al., 2013): small but apparent departures from optimal

integration were seen when the unimodal variances deviated too far from the regime in which

the network was trained. Those observations are qualitatively consistent with the present

results.

ICMS feedback as a tool for studying multisensory circuits

Animals ability to integrate ICMS signals and use them to control movement offers a novel

and potentially powerful tool for studying information processing in sensorimotor circuits.

For example, the posterior parietal cortex uses sensory feedback for a variety of multisensory

computations, including estimation of the position of the limb and the location of targets

(Batista et al., 1999; Battaglia-Mayer et al., 2000; Bremner and Andersen, 2012; Graziano

et al., 2000; Kalaska et al., 1990). Computational models have been developed to demonstrate

how neural circuits could perform these operations (Deneve et al., 2001; Ma et al., 2006;

Makin et al., 2013), but testing these models has proven difficult. The challenge stems, in

large part, from the fact that brain areas within the PPC exhibit complex, heterogeneous

and partially redundant spatial representations (Chang and Snyder, 2010; Marzocchi et al.,

2008; McGuire and Sabes, 2011) and interact in a complex network (Andersen and Buneo,

2002; Battaglia-Mayer et al., 2003; Kalaska, 1996; Sabes, 2011; Wise et al., 1997), often

with overlapping function (Levy et al., 2007; Yttri et al., 2013). It may not be possible to

discover how information is processed within this complex circuit only by manipulating the

distal sensory inputs. ICMS feedback, on the other hand, affords the experimenter proximal

control of the afferent signal. This has two pertinent advantages. First, the anatomical
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origin of the signal can be controlled. In this particular study, we stimulated areas of

somatosensory cortex that we know project directly to multisensory areas as such area 5 and

VIP (Lewis and Van Essen, 2000; Pearson and Powell, 1978); however, stimulation could be

performed in other brain areas that participate more strongly in other cortical circuits, e.g.,

in area 7 to study spatial representations in the circuits for saccadic eye movements. Second,

because the ICMS signal bypasses peripheral receptors and subcortical processing, it gives

the experimenter finer control over the statistics of the signal. Signal statistics play a big

role in current models of multisensory neuronal processing (Ma et al., 2006; Makin et al.,

2013), but the signal manipulations that would be most diagnostic for these models would

be challenging or impossible to achieve with natural stimulation. With ICMS feedback, the

manipulations become tractable, for example, changing the correlational structure between

neurons in a given area or between neurons representing two sensory signals, and gaining

full control over the timing and context of subjects exposure to the signal.

Furthermore, we think the learning observed in the present study taps into the same

mechanisms of plasticity that drives other forms of multisensory learning, such as intersensory

calibrationthe ability of two sensory modalities to come back into alignment following a

perturbation (Burge et al., 2008; Redding and Wallace, 2002; Sabes, 2011; Zaidel et al.,

2011). ICMS feedback offers an ideal tool for studying these mechanisms, e.g., for testing

models of learning (Makin et al., 2013) in real neural circuits, for the reasons described above

local access and control of statisticsand because we can observe changes in the behavioral

and electrophysiological state of the animal from the very first exposure to the novel signal.
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Neuroprosthetic applications

In this study, we show that ICMS can be used to deliver a task-relevant feedback signal

that guides online, multi-dimensional movement control. We chose to encode the position

of the hand relative to the reach target, as opposed to an absolute proprioceptive signal,

because this allowed us to study artificial sensation in a simple, natural task, without having

to suppress natural proprioception. Because the reach target was never visible, estimation

of the relative hand position was required in order to perform the task. To use this approach

to provide proprioceptive feedback from a prosthetic device, the ICMS signal would instead

encode the state of the device with respect to the body, for example joint or endpoint position

or velocity. Because these variables are also available via visual feedback, the same learning

mechanisms should apply.

We expect that ICMS feedback could play the same role for BMI control that propriocep-

tive feedback does for normal movement control. During natural movement, vision and pro-

prioception make comparable contributions to limb state estimation (Sober and Sabes, 2005,

2003; van Beers et al., 1996, 1999). While proprioceptive loss does not have a substantial

effect on the simplest reaches when visual feedback is available, it does impair performance

of movements that require inter-joint coordination, which include most activities of daily life

(Sainburg et al., 1995). We have shown that the eight-channel ICMS signal used here can

provide online feedback with reliability that is also comparable to vision. We expect that

increasing the number of electrodes and optimizing the encoding scheme will further improve

the quality and information capacity of this signal.
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Our learning-based approach can be contrasted with a biomimetic approachthe attempt

to reproduce natural patterns of sensory-evoked neural activity. In practice, a truly biomimetic

stimulation scheme is not attainable, due to a range of technical and scientific considera-

tions, such as the lack of access to the full neuronal population, inability to translate electrical

stimulation into naturalistic neural activity patterns, an incomplete understanding of neural

encoding mechanisms, and difficulty in characterizing those patterns in patients with sensory

loss. Our approach circumvents these issues by taking advantage of the inherent plasticity

of the brain. On the other hand, completely disregarding prior knowledge about natural

neural signals, such as somatotopic organization, will impair initial performance and may

limit the rate or extent of learning. In fact, learning-based and biomimetic approaches (Choi

et al., 2012; Daly et al., 2012; Fagg et al., 2007; Tabot et al., 2013b; Weber et al., 2012) are

highly complementary, and systems optimized for clinical applications would likely benefit

from taking a combined approach.



55

Chapter 3

Optimizing the ICMS signal

3.1 Introduction

In the previous chapter we saw that intracortical microstimulation (ICMS) could be used to

encode an abstract, two-dimensional variable in real time. Monkeys were asked to perform

a reaching task to an unseen target guided by a vector describing the distance and direction

between their current hand position and the center of the reach target. The ICMS signal

encoded the amplitude of this “movement vector” in the mean stimulation frequency across

all of the stimulating electrodes, where larger vector amplitudes resulted in higher mean

frequencies and smaller resulted in lower. Movement vector direction, θ, was encoded in the

relative firing rate across electrodes by assigning each electrode a “preferred direction” (PD)

chosen from the set of cardinal and ordinal directions. Then, during a behavioral trial, the

stimulation frequency of each electrode was set to be proportional to the difference between
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it’s PD and the direction of the movement vector.

Monkeys ultimately learned to perform the reaching task using this artificial signal; in

fact, ICMS was ultimately as precise as visual feedback at low-to-middle levels of reliability.

For our second monkey (Monkey F), this translated into a target angle estimation with near-

zero bias and an error variance of 0.09 rad2. But despite being functionally informative, this

level of performance is more than twice as variable (or half as precise) as performance with

the highest level of visual coherence. How can that be? Is this an inherent limitation on the

precision of an artificial sensory signal, or does it reflect some factor of our implementation,

such as the range of stimulation frequencies or the number of electrodes that we used to

encode the signal?

The process of translating an external vector into movement takes many steps, and

noise can corrupt the signal at each step. For simplicity, we will concentrate on encoding

of a single variable, movement vector direction, θ. Consider the process: at each point

during a reach, θ is calculated and then translated into stimulation frequencies across eight

electrodes (see Equations 3.1 and 3.2). Electrical stimulation evokes neural activity, but not

deterministically, but with some noise added (see Butovas and Schwarz, 2003). Some portion

of this neural population projects onto downstream areas in cortex, which are responsible for

reading out (decoding) the input neural activity and estimating θ. Finally, the new estimate

of θ must be incorporated into a motor plan, and the movement must be accordingly adjusted.

The issues evoked by this process can be formalized into two, related questions whose

answers will help us optimize encoding of an artificial signal:
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• First, how is the ICMS signal being decoded?

• Given this neural decoding algorithm, what factors of ICMS encoding limit the signal’s

precision?

To answer the first question, we randomly perturbed the ICMS signal while the monkey

was performing the behavioral task by silencing (setting to zero amplitude) a subset of stim-

ulating electrodes. We then compared the patterns of errors he made under perturbation to

predictions made several possible decoding algorithms. Although the ICMS signal encod-

ing contains redundancies (eight parameters with only two unknown), we expected that a

minimum-variance solution would use information from all eight electrodes (à la multisen-

sory integration seen in Ernst and Banks, 2002; van Beers et al., 1996) and so for simplicity

restricted our analysis to the following three decoding algorithms: the analytical solution

(ANA), a center-of-mass decode (COM), and a winner-take-all approach (WTA). Please keep

in mind that these strategies needn’t be implemented by the monkey at the cognitive level–

they can be thought of as describing the computations performed by downstream neurons

on the incoming, multi-channel signal.

1. Analytic: The monkey computes the (correct) analytic answer to decode θ from the

set of stimulation frequencies, SF (where SF is an 1xN vector, where N is the number

of stimulating electrodes). Then target angle is estimated as:

θ̂ = tan−1

2(SF − 1

2
)

 cos(PD1) ... cos(PDN)

sin(PD1) ... sin(PDN)


+
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where + marks the pseudoinverse (see Eqns. 3.1-3.2 for a description of ICMS encod-

ing).

2. The monkey uses a center-of-mass strategy (COM), weighing each electrode by its

stimulating frequency. Then, target angle is estimated as:

θ̂ =

∑8
i=1 PDifi∑8

i=1 fi

where PDi is the direction assigned to be encoded by the electrode i and fi is the

stimulation frequency of that electrode.

3. The monkey uses a winner-take-all strategy (WTA), moving in the preferred direction

of the electrode with the highest stimulation frequency. Then target angle is estimated

as:

θ̂ = PD(max[f ])

where f is the set of stimulation frequencies across all eight electrodes and PD is the

set of directions encoded by its corresponding electrode.

To answer the second question, we modeled the effect of several of the parameters used to

encode the ICMS signal (number of stimulating electrodes, stimulation frequency, number of

neurons activated by stimulation) on behavioral performance and compared the experimental

and theoretical results. To explicitly compare the effect of number of stimulating electrodes

on ICMS signal precision (as measured by behavior), we trained the monkey on a degraded

ICMS signal and examined his level of improvement.
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3.2 Methods

In this section, I have tried to include enough information to make this chapter parse-able

without external reference, but I have omitted many details. Please refer to the methods

section in Chapter 2 for a more detailed description.

Behavioral task

All animal procedures were performed in accordance with the National Research Councils

Guide for the Care and Use of Laboratory Animals and were approved by the UCSF In-

stitutional Animal Care and Use Committee. One adult male rhesus macaque monkey was

implanted with a 96-channel silicon microelectrode array coated with Iridium Oxide (Black-

rock Microsystems) over left primary somatosensory cortex (Brodmann Areas 1, 2; S1). The

animal was trained to perform reaches in the horizontal plane to an unseen target in a two-

dimensional virtual reality environment, where a mirror and an opaque barrier prevented

direct vision of the arm. The mirror reflected visual input from a projector, so that the

visual cues appeared in the horizontal plane of the reaching hand.

Each trial consisted of four epochs: i) The monkey moved to a start position, located in

the center of the workspace (circle of 1 cm radius; Figure 3.1a). ii) The monkey was required

to maintain its position for an instructed delay period (1-1.5 s) during which the monkey

received either visual (VIS), ICMS, or bi-modal (VIS+ICMS) feedback encoding a movement

vector (the distance and direction between his fingertip and the center of the reach target).

Reach target positions were selected uniformly from an annulus centered on the start target
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with an inner radius of 40 mm and an outer radius of 80 mm (Figure 3.1a). iii) After a go

cue the monkey was free to reach under the guidance of continuously updating VIS, ICMS

or VIS+ICMS feedback. iv) After acquiring the target the monkey received a liquid reward.

Visual feedback The movement vector was encoded with a random moving-dot flow-field,

where each dot in the field moved at a speed proportional to the length of the movement

vector. A percentage of the dots moved coherently in the direction of the continuously

updating movement vector, while the remaining dots moved in random directions. In the

experiments described below the dot field coherence was always set at twenty percent–the

value at which vision and ICMS seemed to be equally reliable (see Chapter 2).

ICMS Intracortical microstimulation consisted of biphasic, charge-balanced pulse trains

delivered asynchronously to each of eight electrodes in the array. The pulse amplitudes

varied across electrodes, depending on perceptual threshold (established using a two-target

forced choice task) and ranged between 30-80 µA. Eight electrodes, each of which could be

individually detected, were chosen to encode the ICMS signal.

The movement vector was encoded via the spatial and temporal patterns of stimulation

across the eight stimulating electrodes. Movement vector direction was encoded by the rela-

tive stimulation pulse rates across the electrodes. First, each of the electrodes was arbitrarily

assigned one of eight preferred directions (depicted as back arrows in Chapter 3, e.g. Figure

3.1b), equally spaced around the circle. Then, the stimulation pulse rate fi of electrode i

was calculated as a function of angle between the direction movement vector, θ, and the
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electrodes assigned PD,

fi =
f0
2

(1 + cos(PDi − θ)) (3.1)

The frequency scaling factor, f0, linearly encoded the movement vector distance, d, within

the range of 100-300 Hz:

f0 =
d

dmax

fmax (3.2)

where dmax was 10 cm. The values of d and θ were continuously updated during the reach

to provide online feedback.

Experimental Design

The monkey had previously learned to use the eight-electrode ICMS signal (see Chapter

2). Furthermore, he had shown signs of integrating vision and ICMS to gain improved

performance on trials using combined feedback (vs. either uni-modal feedback signals),

particularly when the visual dot-field coherence was fixed at twenty percent.

Instantaneous degradation experiments.

To assess how the monkey used the ICMS signal, we looked at the causal relationship between

a degraded ICMS signal and task performance. We degraded the IMCS signal by “silencing”

(setting to zero µA current amplitude) a subset of electrodes. The signal was only degraded

during ICMS-only trials. To avoid adaptation or learning in response to the degraded signal,

we degraded the signal instantaneously—randomly interspersing trials with degraded and

intact conditions. The signal could be degraded by silencing two, four, six, or zero (a control)
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stimulating electrodes. There were two separate sets of degradation conditions (Figure 3.1b),

each of which silenced different subsets of electrodes. Only one set of conditions was ever

used per behavioral session.

Behavioral sessions.

Behavioral sessions consisted of randomly interspersed VIS+ICMS and ICMS-only trials.

Degradation sessions consisted of one-half VIS+ICMS trials and one-half ICMS-only trials,

where the ICMS signal condition was drawn uniformly from a set of four possibilities: 8

electrodes, 6 electrodes, 4 electrodes, or 2 electrodes. There were two sets of degradation

conditions, which silenced different subsets of electrodes (see Figure 3.1b). Training sessions

consisted of VIS+ICMS trials with fully intact ICMS. These sessions were inserted before

each of the last two testing sessions to battle what what appeared to be a gradual decline in

ICMS-only performance across behavioral sessions (see Figure 3.1c). The experiment took

place over eight behavioral sessions in the following sequence: Set 1, Set 1, Set 2, Set 2,

Training, Set 1, Training, Set 1.

ICMS recovery

We tested if the animal could be re-trained to agilely use a degraded ICMS signal by pairing

the degraded signal with vision. Training sessions consisted of 66.7% VIS+ICMS trials and

33.3% ICMS-only. There were three total training sessions. On the first two sessions, the

experimenter had mistakenly degraded the signal to five (rather than four, as had previously

been planned) electrodes. On the third session, the degraded signal consisted of the cardinal
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directions, as planned (see Figure 3.7). Although further training sessions were scheduled,

conditions outside of the experimenter’s control forced an early termination of the study.

Data analysis

Data metrics

Regressions All regressions shown were conducted on ICMS-ony conditions (excluding any

VIS+ICMS data points). Linear regressions were done using the “regress function” in MAT-

LAB. Expontial regression were simply linear regression using log(y) as the dependent vari-

able.

Fraction correct trials: Fraction correct trials is computed as the sum of completed trials

divided by the number of trials the monkey attempts to complete. This calculations excludes

errors due to factors such as not initiating a trial, starting to move before the go tone, and

swiping through the reach target.

Number of movement sub-segments: This metric quantifies the number of discrete sub-

movements in a trial. Starting with the model assumption that sub-movements have bell-

shaped velocity profiles (51) we identified sub-movements by threshold crossings of the tan-

gential velocity plot of a trajectory, with a threshold of 20% of the maximum velocity on a

given trial.

Initial movement angle: The initial movement angle is the angle of the monkey’s initial

movement (the direction of the endpoint of the first sub-movement).

Initial movement angle error: Initial angle error is computed as the difference between
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the angle of the monkey’s initial movement angle and the angle of the reach target.

err = (initial mvmt. angle)− (target angle)

Behavioral performance as a function of trial parameters: We looked at how task per-

formance was affected by five parameters: reach target radial distance, target x-position,

target y-position, target angle, and the duration of the instructed-delay period. For all but

the first parameter, we divided the parameter space into 10 equal bins, and calculated the

average initial angle error and fraction correct trials for each bin. For radial target distance

we needed to first square the values to ensure a uniform distribution of points. The calcula-

tions for two-dimensional plots were similar, but divided the trials into a (10x10) matrix of

possible parameter combinations.

Modeling

Modeling target angle estimation To differentiate between the three possible decoding strate-

gies (Analytic solution, Center-of-Mass, and Winner-Take-All), we modeled target angle es-

timation under the strategies during both intact and degraded input, using the same trial

parameters (target locations) we used in the experiments. We simulated “silencing” elec-

trodes by removing those preferred directions from the following calculations.

In the following equations, θ̂ is movement angle, PDi is the direction assigned to be

encoded by the electrode i, and fi is the stimulation frequency of that electrode.

We estimated movement angle for COM as :

θ̂ =

∑8
i=1 PDifi∑8

i=1 fi
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To properly compute a circular center-of-mass, we rotated the preferred directions of the

electrodes (originally in the range [−π, π]) to be centered on the target angle. For example,

for a target angle of 3 radians, the electrodes whose PD were less than (π−3)rad were shifted

up by 2π.

For WTA, movement angles were estimated as:

θ̂ = PD(max[f ])

Finally, for ANA, movement angle is estimated as:

θ̂ = tan−1

2(

 f1

fN

− 1

2
)

 cos(PD1) ... cos(PDN)

sin(PD1) ... sin(PDN)


+

where + marks the pseudoinverse.

Later, when we look at the effect of ICMS parameters on the precision of the signal, fi,

the stimulation frequency on each electrode, is replaced by gi, the set of neural responses

evoked by each electrode. We find gi by first choosing the number of neurons, Q, that are

activated by a single electrode (this could range anywhere from 5-500 neurons—see Histed

et al., 2009 and Tehovnik, 1996), and then assuming that each neuron will fire with a rate

drawn from a poisson distribution with a mean equal to the stimulation frequency ,fi, of the

nearby electrode (a common noise model used to estimate neural response to natural stimuli).

Thus we get a Qx1 vector of neural responses on each electrode, gi, where gi,j = Pois(fi) is

the response of neuron j on electrode i. Then, our equations for each decoding scheme are

slightly modified from before to:
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• COM

θ̂ =

∑8
i=1 PDi

∑Q
j=1 gi,j∑8

i=1

∑Q
j=1 gi,j

• WTA

θ̂ = PD(max

 Q∑
j=1

g1,j, ...,
Q∑

j=1

gN,j

)

• ANA

θ̂ = tan−1

2(

 ḡ1

ḡN

− 1

2
)

 cos(PD1) ... cos(PDN)

sin(PD1) ... sin(PDN)


+

To get a robust estimate of performance, we generated 10000 artificial trials for these simula-

tions, drawing the target angle in each trial uniformly from [-π,π]. Electrodes were “silenced”

for degradation trials by setting the responses of neurons on the silenced electrodes to zero.

3.3 Results

Decoding the movement vector from ICMS

Performance metrics

The monkey made the quickest, most direct reaches to targets under the VIS+ICMS con-

dition. With ICMS alone—even with all eight electrodes—he performed somewhat worse

than with VIS+ICMS in all of the performance metrics we employ. In ICMS-only trials, the

monkey’s behavioral performance improved with increasing number of stimulating electrodes

(except for total movement distance). For instance, he completed a larger fraction of trials

(Figure 3.1c) with more electrodes: at his worst (2 electrodes) he completed less than 10%
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of trials, while at his best (with eight electrodes) he completed nearly 95% of trials. The

reaches he made with more electrodes were also faster (Figure 3.1e) and required fewer online

corrections (Figure 3.1f) than those with fewer electrodes.

Once interesting and unexpected result was the sensitivity of behavioral performance

to the identity of the electrodes we silenced (set identity; Figure 3.1b) and to extended

testing on degraded stimuli. First, we see that the monkey tended to perform better with

Set 1 electrodes than with Set 2 electrodes (Figure 3.1g). We can conclude that thought

we thought all electrodes were equal, some electrodes were actually more equal than others.

Furthermore, when degradation sessions were presented in sequence, behavioral performance

across sessions grew continuously worse in all conditions; however, we found that performance

could be rescued by inserting a training session (all VIS+ICMS with intact ICMS; small bold

T at bottom of Figure 3.1g) between degradation sessions. Including a training session largely

recovered behavioral performance (see 4, 6, and 8 electrodes), even elevating it above the

original levels (see 4 and 6 electrodes). This sensitivity of the ICMS percept to degradation

was very surprising, as more than half (62.5 %) of all trials on these days featured intact

ICMS. It seems that confidence in the ICMS signal (and thus signal reliability) is not only

determined by the trial-to-trial reliability of the signal but is also learned over time.

Error in target angle estimation

To determine how ICMS signal is decoded by the monkey, we examined plots of initial move-

ment angle as a function of true target angle during intact and degraded ICMS conditions
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Figure 3.1: Instantaneous degradation of the ICMS signal. R2 values and fit lines report a
linear regression on the ICMS-only conditions (no VIS+ICMS). a) Behavioral task layout. Reach
target centers are drawn uniformly from an annulus (gray area) surrounding the start target location
(green circle). b) The two sets of degradation conditions. In this schematic, each arrow indicates
that the electrode with the matching preferred direction had non-zero current amplitude in that
condition. Missing arrows indicate silenced electrodes. c) Fraction correct within a degradation
condition, averaged across sessions and degradation sets. d) Normalized movement distance (path
length divided by target distance). e) Normalized movement time (time divided by target distance).
f) Number of movement sub-sections. g) Percent correct trials across training sessions. At the top
the set of degradation conditions used in each session (set 1 or set 2) is labeled. Dashed gray lines
mark switches in conditions. Small bold T’s denote training sessions interspersed between testing
sessions. At right each condition is labeled: V+S is paired, 20% coherence; numbers indicate number
of stimulating electrodes (8, 6, 4, or 2).
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Figure 3.2: Initial angle estimation as a function of reach target angle Behavioral task
performance across degradation conditions. Data points are from all attempted trials, not only
those that the monkey completed correctly. The left column plots data from behavioral session
using degradation set 1, and the right plots that from set 1. In each of the initial angle plots the
electrodes encoding the ICMS signal are plotted at upper left (black arrows, where each arrow
indicates the PD of one of the non-zero amplitude stimulating electrodes). At bottom middle and
far right is plotted the correlation coefficient for each condition. Note each subfigure has different
axis labels. Thin grey lines mark the PDs of active electrodes.
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(Figure 3.2). To increase our sample size, we plotted initial movement angles from all at-

tempted trials, even ones where the monkey did not complete the reach to the target. As

expected, the variance of errors in estimating target angle was higher when fewer electrodes

were encoding the ICMS signal, at least for the degradation conditions in Set 2 (Figure

3.2l). In contrast, for Set 1, error variance seems relatively fixed from four to eight elec-

trodes (Figure 3.2f). Furthermore, initial angle estimates seemed biased towards the PDs of

the remaining electrodes, as shown clearly in Figure 3.2b,h. In this condition, initial angle

estimates were somewhat accurate in the range between the two electrodes’ preferred direc-

tions ([0, π/2]), but they were biased away from the true answer, towards these preferred

directions outside of that range.

We tried to explain this data by estimating the pattern of errors that would be seen during

degraded ICMS trials under three decoding strategies, ANA, COM, and WTA (Figure 3.3),

translating stimulating frequencies directly into estimated movement angles (see Methods).

Although we made estimates for all of the ICMS degradation conditions, here we only plotted

estimates of movement angles from the two-electrode condition from Sets 1 (Figure 3.3a) and

2 (Figure 3.3b), as these were the conditions with the most distinct error patterns. Both the

ANA and COM models captured the pattern of errors seen in Figure 3.2 remarkably well,

particularly in the two-electrode condition for Set 1 (Figure 3.3a). In contrast, for Set 2, all of

the models captured the two-electrode condition equally well (Figure 3.3b). The patterns of

errors for four and six active electrodes (not shown) were more subtle and difficult to compare

directly, but they are better approximate (globally) by either ANA or COM estimates than
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Figure 3.3: Modeling Initial angle estimation Target angles match the data in Figure 3.2b,h.
Grey circles: true experimental data. Black circles: simulated movement angles for each trial under
ANA (left), COM (center), and WTA (right). Black lines denote unity (the encoded target angles).
a) 2-electrode condition for Set 1. b) 2-electrode condition for Set 2.

by WTA (see 3.4). We conclude that it is most likely that the monkey used one of the more

sophisticated decoding algorithm, ANA or COM, to estimate the movement vector angle

encoded in the ICMS signal; it is difficult to differentiate between the two at this point since

their accuracy was so similar.
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Figure 3.4: Error variance of model predictions Variance of errors between experimental
(plotted in Figure 3.2) and the model (Figure 3.3) estimates of movement angle. Thick lines
represent results for data from Set 1; thin lines from Set 2. Error vars denote standard error of the
mean estimate for error variance, computed by a bootstrap method.

Limits on ICMS precision

The models described above assume a noiseless decode of movement vector angle from the

set of stimulation frequencies, but, of course, this is not the case. The ICMS signal incurs

noise in translating from stimulation frequency to firing rate of activated neurons, in the

transmission of that information from the stimulated cortex to downstream areas responsible

for decoding, and in translating the decoded estimate into actual movement. Other sources

of noise could include interference between electrodes that activate overlapping populations

of neurons and neural encoding of other parameters, such as natural proprioception (Pei

et al., 2010; Prud’homme and Kalaska, 1994). Unfortunately, there is little we can do to try

to minimize some of these sources of noise, but we can try to optimize the parameters of the
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ICMS signal in order to maximize signal precision. In particular, we can model the expected

effect of the following parameters on ICMS reliability: the number of stimulating electrodes

(N), the stimulation frequency, and the number of neurons that are activated per electrode

(Q). It is obvious how to manipulate the former parameters, and the latter can be controlled

indirectly, by adjusting the stimulating current amplitude, which increases the probability of

spiking in nearby neurons (Butovas and Schwarz, 2003). We incorporated these parameters

into the decoding models as described in the Methods section, and plotted the results in

Figure 3.5.

The predictions made by the models are somewhat complicated, and no single parameter

acts independently, but there are several general remarks that we can make. First, increasing

the number of stimulating electrodes (x-axis on all plots) will improve the precision of the

ICMS estimate, but with diminishing returns as performance asymptotes. In fact, the rate

at which performance asymptotes is correlated highly with stimulation frequency (compare

rates for different stimulation frequencies in Figure 3.5), while the level seems to be set by

the number of activated neurons (compare Figure 3.5c and d). Furthermore, surprisingly, if

noise is added to the model, than COM makes better, more precise estimates than ANA in

all cases but for very few electrodes with high firing rates (see Figure ??b,d).

To test the predictions of these models for the effect of stimulation frequency on behav-

ioral performance, we plotted the data from the instantaneous degradation experiments as a

function of the workspace (Figure 3.6a-d) and then projected that data onto the parameters

of the movement vector: distance and angle (Figure 3.6f-j). As our encoding scheme mapped
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Figure 3.5: Expected effect of ICMS parameters on signal precision. The expected accuracy
of movement vector angle estimation using COM (black) and ANA (blue) models as a function of
ICMS signal encoding parameters. a-b) Interaction between number of neurons activated (a: 10,
b: 100), number of stimulating electrodes, and stimulation frequency. c-d) Magnified version of top
panels (areas marked by thin rectangle on top). Red and pink lines along vertical axis mark the
same values across all panels.
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Figure 3.6: Behavioral performance across the workspace. Fraction correct trials (top) and
average angle errors (bottom) are plotted as a function of [x,y] position in the workspace (Figure
3.1a). a-e) This data shows averages across the three session using Set 2 degradation conditions
(see black arrow in center of each top plot). f-j) Projection of error variance from data in (a-e) onto
individual parameters: radial distance and target angle.

distance onto mean stimulation frequency, this was an direct method of testing the effect

of frequency on signal precision. In this experiment, the hand-to-target distance range of

30 mm to 90 mm mapped onto a stimulation frequency range of 80 to 240 Hz. We can see

that in this range, there was no systematic effect of frequency on error variance when ICMS

is intact (Figure 3.6g, top panel). At the very least, error variance did not decrease with

increasing stimulation frequency, as was predicted by the neural decoding models. Similarly,

there is no systematic error in initial angle estimation as a function of target direction.



CHAPTER 3. OPTIMIZING THE ICMS SIGNAL 76

In contrast, degrading the ICMS signal by silencing electrodes profoundly effected the

monkey’s ability to perform the behavioral trials. Scanning the plots from left to right (a-

e) visually exemplifies the degradation of performance and accumulation of bias that was

incurred with fewer electrodes. By the time only two electrodes were left, the monkey was

able to complete just a few trials: those in which the reach target happened to lie close to

the PD of one of the active electrodes—the direction in which the monkey tends to head in

most trials with this condition (Figure 3.6e).

What can explain the discrepancies between the model predictions and our experimental

results? To start with, the error variance predicted by these models (ranging from 2−5 to 0.01

rad2 in Figure 3.5c) is orders of magnitude smaller than that in the experiments described

in Chapter 2 (compare to an experimental ICMS error variance of 0.09 rad2), even after

removing the maximum variance possibly attributable to motor noise (then 0.07 rad2) and

assuming a paltry 10 neurons activated per stimulating electrode. One possibility is that,

within the range of stimulation frequencies used during this experiment to encode target

angle (80-240 Hz), there is little noise reduction to be gained, and we would need a larger

number of trials to be able to observe the small differences in performance at the extremes

of this range. Of course, another possibility is that the empirical error variance reflects the

sum of higher-magnitude, non-motor noise sources that were in included in the model. In

the latter case, we would expect little gain from increasing stimulation frequency past 80

Hz. These results agreed with a rat model of ICMS detection, where increasing stimulation

frequency up to but not beyond 80 Hz increased the probability of detection (Koivuniemi
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and Otto, 2012).

We next experimentally tested the effect of electrode number on ICMS reliability. The

instantaneous degradation experiments can’t address this issue as any drop in performance

could be due to the novelty of the degraded signal and not reflect any inherent limits to the

information that can be encoded with a smaller number of electrodes. Therefore, we trained a

monkey on a degraded ICMS signal(dICMS; four active electrodes whose preferred directions

matched the cardinal directions) paired with a twenty-percent coherence visual dot-field.

Each training session consisted of 66% VIS+dICMS trials and 33% dICMS-only trials. We

then compared the behavioral performance before training (instantaneous degradation) and

on the third training day (Figure 3.7; Tables 3.1-3.2).

With four active electrodes (encoding the cardinal directions), the monkey only completed

53.4% of trials during the instantaneous degradation experiments. Surprisingly, after only

three days of training with a multisensory signal (20% visual coherence dot-field paired with

the four electrodes the encoding cardinal directions), the monkey’s performance recovers to

74.8% correct trials (Figure 3.7 and Table 3.1). Furthermore, he is now completing trials

across the entire workspace without obvious systematic bias (compare panels c and d in

Figure 3.7). The error variance for dICMS was even lower than ICMS using eight active

electrodes (0.204 rad2 after training vs. 0.136 rad2 during instantaneous degradation trials),

though this effect may reflect an ongoing re-stabilization of the IMCS percept as it was still

higher than the error variance found for intact ICMS in Chapter 2 (0.09 rad2). Pairing vision

with the degraded signal not only improves understanding of the signal itself, but “recovers”
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Figure 3.7: Error bias by target radius and angle: before and after training. Plots of initial
angle errors and fraction correct trials as a function of reach target radius and angle. Top: error
in initial movement angle, calculated as (initial movement angle - reach target angle). Bottom:
fraction completed trials (of total attempted). Parameters (error and fraction correct trials) are
calculated as a function of squared radius to maintain uniform sampling of points across space. Left
half: comparison of performance on 20% coherence vision paired with (far left) all eight electrodes
and (middle left) a subset of four electrodes, after training on the latter. Right half: comparison
of performance on ICMS-only trials when only four electrodes are encoding the movement vector
either instantaneously (middle right) or after training on paired vision and degraded ICMS (far
right). Black lines overlaid on plots indicate the PDs of the active electrodes.

the multisensory signal. By the third recovery day, trials performed with 20% vision paired

with four electrodes were completed at 99.1%, only half a percent lower than 20% vision

paired with all eight electrodes (99.6%). Furthermore, the error variance in initial angle

estimation fell to 0.16 rad2, as compared to 0.2 rad2 of ICMS with eight electrodes. These

results are summarized in Table 3.1.
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Percent correct trials
Condition Instantaneous # trials After Training # trials

20% coh. vision + 8 ICMS electrodes 99.6% 451 – –
20% coh. vision + 4 ICMS electrodes – – 99.1% 213

8 ICMS electrodes 92.4% 92 – –
4 ICMS electrodes (cardinal) 53.4% 103 74.8% 99
4 ICMS electrodes (ordinal) 39.6% 111 – –

Table 3.1: Percent of correctly completed trials by task condition. We compare performance levels
before (instantaneous) and after (after training) being trained on a degraded signal. The values in
conditions for which we have no data are left blank.

Error variance (rad2)
Condition Instantaneous # trials After Training # trials

20% coh. vision + 8 ICMS electrodes 0.202 (0.203) 450 (451) – –
20% coh. vision + 4 ICMS electrodes – – 0.159 (0.161) 211 (213)

8 ICMS electrodes 0.250 (0.316) 85 (92) – –
4 ICMS electrodes (cardinal) 0.136 (0.292) 55 (103) 0.204 (0.344) 74 (99)
4 ICMS electrodes (ordinal) 0.197 (0.849) 44 (111) – –

Table 3.2: Variance of initial angle errors (initial movement angle - target angle) by task condition.
The first number in each column describes the variance of errors in correctly complete trials while
the second, parenthesized, value refers to the variance of errors for all attempted trials. We compare
performance levels before (instantaneous; left) and after (after training; right) being trained on a
degraded signal. The values in conditions for which we have no data are left blank.

3.4 Discussion

Encoding an ICMS signal

The question then remains, will having more electrodes really help? We have some in-

dication from this training experiment that the monkey substantially improves at using a

four-electrode ICMS signal with training, but we didn’t get a chance to determine the behav-

ioral asymptote. Furthermore, the error variances during the instantaneous degradation to

the four-electrode condition is strangely low—even lower than with the intact ICMS signal,
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making it difficult to understand the data. But remember, that data was collected while the

ICMS percept was unstable (Figure 3.1g), and in fact the training on the degraded input

did not occur until after the experiments described in Chapter 4, which could have further

destabilized the ICMS signal. If we instead compare the error variance at the endpoint of

training with four electrodes to that at the end of training with eight active electrodes (at

the end of Chapter 2), the number are closer to what one might expect: 0.09 rad2 with eight

electrodes and 0.2 rad2 with four. If we believe these numbers, ICMS with four electrodes

at that stage in training was about half as precise as ICMS with eight electrodes.

Although we don’t know how precise the ICMS signal could ultimately become with

only four electrodes, these results do tell us something about the decoding model that is

being used. Consider that the Center-of-Mass decode precision improved by three to then

times when going from four to eight stimulating electrodes (Figure 3.5). In contrast, for

the Analytic decode, the precision only doubled in that range, strongly implying that this

is the decoding algorithm used by the monkeys. The results of Figure 3.4 confirm this

hypothesis, where the Analytic solution was slightly better at predicting the experimental

pattern of errors than were either the Center-of-Mass or Winner-Take-All decodes. Strangely,

the Analytic solution is not the most desirable outcome, as including noise in the decoding

model makes it slightly worse than COM at estimating the true target angle.
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Improving the reliability of artificial sensation

These results of the modeling study, however flawed in magnitude, give several suggestions

for improving ICMS precision. Assuming a ANA decoding algorithm, it is easier (and more

effective) to increase the stimulation frequency or amplitude than to increase the number

of stimulating electrodes. Indeed, according to the models, increasing stimulation frequency

from 50 to 100 Hz was more effective than increasing the number of stimulating electrodes

from 10 to 20, although this improvement seemed to saturate quickly after 100 Hz. Similarly,

increasing the number of activated neurons from 10 to 100 yielded more than a fivefold

improvement in the asymptotic level of performance, implying that increasing stimulation

amplitude would improve signal reliability as long as stimulating electrodes were placed at

a distance that would prevent interference.

Stability of the ICMS percept

If the ICMS signal were stable across task conditions, performance levels should remain

the same, regardless if the monkey reaches near vs. far, reaches right vs. left, or reaches

ballistically vs. slowly. As we saw in Figure 3.6, the error in target angle estimation is

impervious to variation in trial parameters for VIS+ICMS and ICMS-only with 8 electrodes,

and only once the signal was degraded did systematic biases begin to appear. These results

are important, as they say that the monkey was equally able to decode inputs at high

(around 240 Hz for trials with the most distance targets) and low (around 100 Hz for trials

with the closest targets) stimulation frequencies in decoding. Furthermore, as performance
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was consistent across instructed delay periods (1-1.5 s; data not shown), the monkey was

able to decode all of the necessary information within the first second of presentation. In

the experiments from Chapter 2, we saw a similar independence of trial parameters for both

monkeys, indicating that the ICMS percept was, indeed, stable across trial conditions.

On the other hand, the ICMS signal percept was sensitive to training conditions. The

fraction of correct trials with intact ICMS is lower than that reported in Chapter 2, likely

due to experiments involving instantaneous degradation of the ICMS signal, which actively

harmed the ICMS percept (see Figure 3.1g). This sensitivity reflects an active mechanism of

plasticity, whereby an estimate of the accuracy of a sensory sensory signal is updated more

slowly than the instantaneous estimate of cue reliability (Zaidel et al., 2011). Although

detrimental to performance in this particular experiment, plasticity of the ICMS signal and

adaptation to ongoing events is a desirable attribute of the signal, as it better approximates

natural sensation.
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Chapter 4

Plasticity of Artificial Signals

4.1 Introduction

The utility of an artificial sensory signal depends on its ability to function like natural

sensory signal. In Chapter 2, that meant that ICMS could serve as an informative signal

on its own and that it was integrated with vision when both sensory inputs were available.

But integration is only one component of normal multisensory processing: multisensensory

systems are also constantly adapting, calibrating their estimates to one another and to the

outside world (Simani et al., 2007; Zaidel et al., 2013). Such ongoing plasticity lets us react

quickly and flexibly to external perturbations; without it, we wouldn’t be able to recover

from injury or other unexpected changes in our sensory or motor systems.

Sensory recalibration is thought to be driven by (at least) two forces: error-corrective

learning and internal realignment (Cheng and Sabes, 2007; Izawa and Shadmehr, 2011; Shad-



CHAPTER 4. PLASTICITY OF ARTIFICIAL SIGNALS 84

mehr et al., 2010; Simani et al., 2007; Zaidel et al., 2013). Error-corrective learning describes

adaptation in response to an external error signal, e.g. how close was the endpoint of your

reach to the target you were reaching for? Internal realignment of signals describes adapta-

tion in response to a misalignment of sensory cues, where the two cues are thought to adapt

towards each other to reduce any discrepancies (Burge et al., 2010; Zaidel et al., 2011).

The latter form occurs even in the absence of any active movements, in response to passive

exposure to misaligned sensory cues (Cressman and Henriques, 2010; Zaidel et al., 2011).

The process of multisensory calibration is made apparent in experiments that impose an

artificial shift between two sensory cues (Burge et al., 2008; Cressman and Henriques, 2010;

Izawa and Shadmehr, 2011; Simani et al., 2007; Zaidel et al., 2013, 2011). A common form of

this experiment involves putting prism goggles on human subjects, which shift visual feedback

with respect to proprioception. At first, people make biased reaches in the direction of the

integrated estimate, often having to make large corrections just to reach their target; however,

humans can adapt to this shift on the order of just a few trials. To make accurate reaches

under the imposed shift, the estimates of individual sensory cues must be re-calibrated. The

dynamics of this process seems to depend both on the identity of the cue the is rewarded and

the relative reliability of the two cues (Zaidel et al., 2013). Surprisingly, in many experiments

involving adult animals or humans the two cues never achieve internal consistency—that is,

they don’t adapt all the way (Burge et al., 2010; Zaidel et al., 2011; visual inspection of

Fernández-Ruiz and Dı́az, 1999; Knudsen and Knudsen, 1990; Tseng et al., 2007).

A useful (naturalistic) artificial sensory feedback signal would react to an external per-
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turbation in a similar fashion. If we impose a shift between vision and ICMS, we would

expect sensory adaptation by the mechanisms of internal realignment and error-correction,

the dynamics of which would depend on the relative reliability of our cues and the experi-

mental paradigm (Zaidel et al., 2013). We can further expect that the signal would not fully

adapt, instead saturating at some point.

The design of an experiment to test artificial adaptation should be guided by the following

factors:

1. Multisensory integration was most “optimal” around the visual training coherence

(twenty percent), so we should use this value in any experiment involving adaptation;

at this level, ICMS and vision are are about equally reliable.

2. We should like to to test adaptation of the ICMS signal, so the experiment should be

designed to maximize that possibility. One way to do so would be by setting vision as

the rewarded cue and forcing ICMS to adapt.

Our experiment to examine the plasticity of the ICMS signal would then look as follows.

The monkey performs reaches under two sensory modalities of equal reliability: vision and

ICMS. After a block of baseline trials where vision and ICMS agree, a shift is imposed (IMCS

is shifted relative to vision). The monkey will continue to make reaches using both vision

and shifted ICMS, the the signal encoded by the visual cue will be the one that is “correct.”

To estimate changes in unisensory cues, we will interleave trials with vision-only and ICMS-

only. To isolate the rate of error-based learning, we can further test the monkey on a block

of ICMS-only trials.
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Showing that the ICMS percept successfully adapts under the pressures of multisen-

sory calibration would extend its potential uses from an artificial feedback signal for Brain-

Machine Interfaces to a unique tool to study the sensorimotor processing and plasticity in

the brain.

4.2 Methods

Monkeys performed the task described in this chapter after the instantaneous degradation

study described in Chapter 3.

Behavioral Experiment

Subject and Implant

All animal procedures were performed in accordance with the National Research Councils

Guide for the Care and Use of Laboratory Animals and were approved by the UCSF Insti-

tutional Animal Care and Use Committee. One rhesus macaque participated in this study.

He had previously been chronically implanted with a 96-channel silicon microelectrode ar-

ray coated with Iridium Oxide (Blackrock Microsystems) over left primary somatosensory

cortices (Brodmann Areas 1, 2; S1).

Behavioral Task

The monkey had previously been trained to perform instructed-delay reaches to an unseen

target in a two-dimensional virtual reality environment (Figure 4.2a), as described previously.
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Each trial consisted of four epochs: i) The monkey moved his right hand (tip of the middle

finger) to a fixed start position in the center of the screen (a visible circle of 10 mm radius).

ii) An instructed delay period began (1-1.5 s) during which the target cue was presented

but the monkey was prohibited from moving. The target cue encoded a movement vector

between the monkeys current finger position and the center of the unseen reach target (12 mm

radius) and was provided in the form of a visual dot-field (VIS), a multichannel ICMS signal

(ICMS), or both (VIS+ICMS). Targets were selected uniformly from an annulus centered on

the start target with an inner radius of 40 mm and an outer radius of 80 mm. iii) After a

go cue, the monkeys made a reach under the guidance of continuously updating VIS, ICMS

or VIS+ICMS feedback. iv) After acquiring the target the monkey received a liquid reward.

Trials were terminated without reward if the monkeys moved too early during any of the

delay intervals or if they failed to reach the target before a timeout (10 s).

Visual feedback The movement vector was encoded visually using a random moving-dot

flow-field (dotfield) consisting of approximately 600 dots over the visual display. A percentage

of the dots moved coherently together in the direction of the continuously updating movement

vector (the dot-field coherence); the rest moved in random directions. All of the dots moved

at the same speed, proportional to the length of the movement vector.

ICMS The monkey involved in this study had previously been trained to interpret the

ICMS signal, and we use the same parameters of stimulation and encoding scheme as has

been described previously (see Chapter 2 Methods).

Briefly: Intracortical microstimulation consisted of biphasic, charge-balanced pulse trains
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delivered asynchronously to each of eight electrodes in the array. The movement vector was

encoded in the spatial and temporal patterns of stimulation across the array. Direction was

encoded by the relative stimulation pulse rates across the electrodes. First, each of the eight

electrodes was arbitrarily assigned one of eight preferred directions (PD), equally spaced

around the circle. Then, the stimulation pulse rate fi of electrode i was calculated as a

function of angle between the direction movement vector, θ, and the electrodes assigned

PD,

fi =
f0
2

(1 + cos(PDi − θ)) (4.1)

The frequency scaling factor, f0, linearly encoded the movement vector distance, d, within

the range of 100-300 Hz:

f0 =
d

dmax

fmax (4.2)

where dmax was 11.5 cm for Monkey F. The values of d and θ were continuously updated

during the reach to provide online feedback.

Imposing a shift between ICMS and vision

The ICMS signal was “shifted” relative to vision by reassigning the preferred directions

(PD) of each of the electrodes: PD′ = PD+π/4. The change in encoding scheme effectively

imposes a shift of −π/4 on ICMS: if under the new encoding scheme the set of electrodes

were encoding a movement vector with direction zero, then under the old encoding scheme

(which the monkey is using upon application of the shift) the electrodes would be encoding

a movement vectors of (zero - π/4).
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Experimental Design

In the experiments described below, vision is the rewarded cue whenever a shift is imposed,

meaning that vision encodes the correct, “true” movement vector while ICMS encodes one

that is shifted.

Multisensory integration Before conducting adaptation experiments, we confirmed that

the monkey performed multisensory integration of vision and ICMS. To test multisensory

integration, the monkey spent a behavioral session performing reaches using randomly in-

terleaved VIS-only, VIS+ICMS, and ICMS-only trials (2:1:1 trial ratio). 100 correct trials

into the behavioral session, a shift of -π/4 was imposed in ICMS. The shift remained for a

series of four subsequent behavioral sessions.

Multisensory adaptation The previous experiment (testing multisensory integration) pro-

vided a baseline measure for individual cue estimates before adaptation. To test for adapta-

tion of the ICMS percept, we exposed the monkey to shifted feedback over the course of 850

VIS+ICMS trials. No unisensory trials were presented during this time period. After train-

ing, we again tested unisensory percepts, randomly interleaving these trials with VIS+ICMS

trials (2:1:1 VIS+ICMS:VIS:ICMS).

Estimating the time-course of adaptation To estimate the time course of adaptation, we

rapidly switched between blocks of not-shifted and shifted trials (100 trials long). Each

block consisted of randomly-interleaved VIS+ICMS, VIS-only, and ICMS-only trials (5/7 :

1/7 : 1/7). To analyze adaptation, we superimposed trials from each block in order of their

appearance in the block (first ICMS-only trial, second ICMS-only trial, third ICMS-only
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trial, and etc.), regardless of the true trial number.

Error-corrective learning To isolate error-corrective learning, we trained the animal on

shifted ICMS-only trials (approximately 300), where vision (had it been present) would have

been the rewarded cue.

Data Analysis

Behavioral Performance Measures. We quantified the monkey’s ability to use the various

sensory cues by the mean and variance of errors in the estimates of target angle, a parameter

this monkey has been shown to estimate accurately (Chapter 2). Error (in rad) is calculated

as: err = (initial movement angle - target angle), where initial movement angle is calculated

as described below. This metric assess only the monkey’s ability to interpret ICMS during

the Instructed Delay period, and ignores any online corrections he may make. Furthermore,

we only analyzed target estimates on trials the monkey successfully completes, as the trials

are relatively easy to complete and failing to do so often reveals a lack of motivation that

would only add noise to the data.

Initial movement angle was found by first calculating the number of movement sub-

segments that composed a reach. Starting with the model assumption that sub-movements

have bell-shaped velocity profiles we identified sub-movements by threshold crossings of the

tangential velocity plot of a trajectory, with a threshold of 20% of the maximum velocity on a

given trial. The angle between the starting point and the endpoint of the first sub-movement

is then taken to be the initial movement angle.
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Permutation tests: mean estimate different from zero To test if the single-modality es-

timates were different at each time point, we performed a two-sided permutation test (N

= 10000) comparing each distribution with a normal distribution of the same variance but

mean zero.

Time point of adaptation (long study) To determine when adaptation had taken place

across a set of 1000 training trials, I found the trial number where the mean of a sliding fifty-

sample window became (consistently) significantly different from the mean of the first fifty

data points (post-shift baseline). Datasets were compared using a two-sided permutation

test (N = 10000).

4.3 Results

Multisensory integration of vision and ICMS

In Chapter 2, two monkeys ultimately learned to performed optimal multisensory integration

of vision and ICMS, at least during trials when the visual signal coherence approximated

the value they used during behavioral training. We made these conclusions based on target

estimation error variances and small biases, but did not test for integration via any exper-

imental manipulations. Here, we confirmed in one monkey that multisensory integration

takes place during paired VIS+ICMS trials by imposing a shift (see Methods) of −π/4 rad.

between the movement vectors encoded in vision and ICMS (bottom panel of Figure 4.2b).

Imposing a shift visibly biased the monkey’s initial estimate of target angle away from the
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Figure 4.1: Behavioral setup. a) Behavioral setup. A monkey performs reaches in a virtual-reality
environment guided by time-varying visual and ICMS feedback. b) Top: visual feedback encodes
a movement vector (purple arrow) using a random dot-field at 20% coherence (20/100 dots move
in the same direction; the rest move in random directions). Bottom: ICMS can be manipulated
to encode a different movement vector than vision. In this example, the ICMS movement vector
(orange arrow) is rotated counter-clockwise by π/4 (45 degrees) relative to the visual movement
vector (purple arrow). Vision encodes the true location of the target (grey dashed circle).

true value, yielding curved movement paths (Figure 4.2a). To verify the consistency of this

effect, we plotted the time course of VIS+ICMS angle estimation errors just before and after

a shift was imposed (Figure 4.2b). While before the shift the monkey’s errors centered on

zero, after the shift the animal had a consistent negative bias, indicating integration of vision

and ICMS. A low percentage of VIS+ICMS trials (only 1/4 of total trials) ensured that no

adaptation took place during the course of this experiment, and a two-sided permutation

test found no significant difference in mean values between the first twenty and last twenty

points in the shifted data series (p = 0.714). Linear regression on each set of data (pre- and

post-shift) also verified that there is no change is mean error over time (black lines, Figure

4.2b).

As the VIS+ICMS target angle errors showed no adaptation over a short timecourse,
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Figure 4.2: Multisensory integration of vision and shifted ICMS. a) Sample movement
paths for VIS+ICMS trials when vision and ICMS agree (left: Not Shifted) and once a shift is
imposed (right: Shifted). Target locations are shown here for clarity but were not present during
the trials. b) Time-series plot of error in target angle estimation for VIS+ICMS trials (yellow
circles) before a shift was imposed (left; white background) and after (right; gray background).
The purple arrow indicates the expected error given the visual dot field (where zero error matches
the true target location). The orange arrow indicates the expected error given the ICMS signal.
Black lines and R2 values depict linear regression on data. There was no significant difference in
error between the beginning and end of the shift period depicted here. c) Comparison of sensory
estimates before (white background) and after (gray background) a shift was imposed. Error bars
denote standard deviation. Yellow circles surrounded by dashed lines display optimal integrated
estimates (and std.) given unisensory estimates. Overlaid (blue curve) is the variance of errors in
each condition (blue line) and estimates for optimal integration (dashed-blue circles). Unisensory
trials (VIS-only, purple squares; ICMS-only, orange triangles) were randomly interspersed with the
bimodal trials (VIS+ICMS, orange circles) plotted in (d). Data is averaged across each period
separately. Arrows are as in (d). * indicates a significant differences as determined by permutation
tests, p-values corrected for multiple comparisons. d) Variance in initial angle estimation. Data
repeats what is plotted in panel (c).
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we could average the time-series data across the two conditions to get an estimate of the

accuracy (bias) and precision (inverse variance) of each of the sensory estimates (VIS-only,

ICMS-only, and VIS+ICMS) before and after a shift was imposed (Figure 4.2c). Before the

shift, the errors hovered around a mean of zero. After the shift, the visual estimate remained

at zero but incurred an increase in variance (Figure 4.2d). Both the ICMS and VIS+ICMS

estimates were significantly different after the shift (p ≤ 0.01), moving closer towards the

encoded ICMS signal (−π/4; orange arrow). They also became significantly different from

the VIS estimate alone (p ≤ 0.01).

Optimal multisensory integration (described in Equation 4.3) predicts that the monkey’s

estimate of target angle during VIS+ICMS trials (θ̂V IS+ICMS) will be a weighted average of

his estimates based on each unisensory input (θ̂V IS and θ̂ICMS).

θV IS+ICMS =
σ−2V IS

σ−2V IS + σ−2ICMS

θ̂V IS +
σ−2ICMS

σ−2V IS + σ−2ICMS

θ̂ICMS (4.3)

Here, θ̂i and σ−2i represent the mean and variance for unisensory estimate i. The variance

of this optimal estimate is calculated as:

σ−2V IS+ICMS = (σ−2V IS + σ−2ICMS)−1 (4.4)

We compared the empirical values and the predicted, optimal, values of θV IS+ICMS and

σ2
V IS+ICMS (Figure 4.2). Instead of explicitly calculating θ, we looked at the pattern of

angle estimation errors across the workspace. The mean errors in VIS+ICMS (yellow circles)

closely match the optimal estimate (yellow circles with dashed lines) both before and after

the shift was imposed; however, the variance of the errors is much larger than would be
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expected under optimal integration. Perhaps as a result of the increased visual variance,

the monkey ended up weighing the visual signal less than would be expected from optimal

integration (wV IS,emp. = 0.31 vs. wV IS,opt. = 0.39)—meaning that the monkey showed a

small preference towards ICMS. Of course, given the variance of the empirical values, this

distinction is likely artificial.

Multisensory adaptation

To drive sensory adaptation we trained the monkey on 850 VIS+ICMS trials with shifted

ICMS, as shown in the time-series plot of errors in target angle estimation (Figure 4.3a).

No unisensory trials were presented during the training period, but we took estimates of

unisensory perception just before the shift (BS), just after the shift (AS), and after the

extended period of training (T). Before a shift was imposed, all of the sensory estimates had

distributions centered on zero (Figure 4.3; compare the three distributions on the far left

with solid black line indicating zero error).

The mean visual estimate increases slightly from BS to T (Table 4.1), but the distributions

don’t seem to be significantly different from each other (p = [0.534, 0.126, 0.149]) or from

zero (p = [0.682, 0.476, 0.076]; see Methods). As the data is very noisy, it is not clear if the

visual estimate really remained at zero, as suggested by the statistical analysis, or if there

was a small positive shift in the estimate.

In contrast, after extended training on VIS+(shifted ICMS), the mean estimates for both

VIS+ICMS and ICMS-only have shifted partially towards vision at zero error (Figure 4.3b-c).
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ICMS was shifted by −pi/4 at the point labeled as “Shift.” BS: before shift; AS: after shift; T: after
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for VIS+ICMS. Solid black line at zero: rewarded estimates. Dashed black line at −π/4: imposed
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Arrows denote center-of-mass of histogram. The presence of a horizontal comparison bar denotes
a significant difference between the means of the distributions.



CHAPTER 4. PLASTICITY OF ARTIFICIAL SIGNALS 97

The adaptation in ICMS was not complete, extending to only 28.4% of the initial shift. The

lack of total adaptation is not likely due to the noise of the sensory system, since the error

estimates remained significantly different from zero-mean at time at time T (p < 0.001), but

rather must reflect some underlying mechanism of adaptation.

Determining the time-course of adaptation proved difficult, as the variance in the VIS+ICMS

was considerable and the difference in means before and after adaptation, though significant,

was small (0.2 rad difference; Table 4.1). A naive attempt (described in the Methods section)

found that a sliding window of fifty data points was significantly different from the starting

point at around 500 trials after the shift takes place, approximately 150 trials after training

commences. This estimate is rough, but implies that ICMS adapts to a new estimate in a

relatively short time period, after which it saturates.

We next compared the relationship across sensory modalities within each time point

(Figure 4.3). As discussed previously, the three sensory estimates were all zero-mean before

the shift, and only ICMS and VIS+ICMS changed just after the shift. At AS, the three

distributions were significant different from each other (Figure 4.3c), and this relationship

persisted after ICMS had adapted (still present at time T). Furthermore, the near-optimality

of the mean VIS+ICMS estimate persisted after training (Figure 4.3b, dashed circles just left

of VIS+ICMS distribution); however, as at the previous time points, the empirical data had

higher variance than would be expected under minimum-variance integration. The empirical

visual weight increased to 0.34 after training, up from 0.31 just after the shift, and far above

the optimal weight of 0.24.
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Error variance (rad2) Error mean (rad)
Condition BS AS T BS AS T

VIS 0.177 0.250 0.423 -0.019 0.029 0.135
ICMS 0.225 0.160 0.134 -0.073 -0.694 -0.497

VIS+ICMS 0.244 0.268 0.182 -0.067 -0.481 -0.279

Table 4.1: Variance of initial angle errors (initial movement angle - target angle) by task condition.
We compare performance levels before the shift (BS), just after the shift (AS), and after training
on the shifted signal (T).

Our rough estimate of the time-course of adaptation (by 150 trials) implies that no

further adaptation occurred in the remaining 700 training trials—that ICMS adaptation

under bimodal (VIS+ICMS) exposure had reached saturation. To test if further adaptation

could be driven by error-corrective learning, and to find the time-course and extent of that

learning, we trained the animal on shifted ICMS-only trials. To our surprise, the ICMS

signal failed to adapt any further under this training paradigm (Figure 4.4). The mean

estimate was stable across days (compare T1 to T2, p = 0.637) and within a behavioral

session (compare T1 to T3 p = 0.880; Figure 4.4a-b), and the pattern of errors had similar

distributions at all three time points (Figure 4.4c).

To obtain a better estimate of the adaptation time course and dynamics (pictured in

Figure 4.3), we repeated the shift experiment ten times, though on a shorter time scale—

switching between blocks of 100 non-shifted trials and 100 shifted trials (Figure 4.5a). 5/7

of the trials in each block were VIS+ICMS, 1/7 were ICMS-only, and 1/7 were VIS-only.

We superimposed the data from each block, separated by trial type (Figure 4.5b,c), and

fit a linear (shown) and exponential (not-shown) regression to the data. Neither gave a

particularly good fit (see R2 for both linear and exponential fits on the plots)—not because
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Figure 4.4: ICMS adaptation under error-corrective learning a) Time-series plot of angle
estimation errors in ICMS-only trials. ICMS is shifted (−π/4;dashed black line) relative to vision.
Data collection began after ICMS has previously adapted. Thick colored bars on top mark out
different time points of interest in the data. Dashed red line marks a break separates data from
two behavioral sessions. b) Summary of data from selected time points in (a). Error bars denote
standard deviation. Black stars denote the mean of the distribution is significantly different from
zero (p =< 0.001, two-sided permutation test). There are no significant difference between the
means of the distributions (p = [0.637,0.880,0.730], two-sided permutation test). c) Distribution of
errors from three time points, overlaid.

the data is better fit by some other curve, but because it is static over this time period.

In fact, the mean error across the shifted and not-shifted blocks is remarkably stable (Fig-

ure 4.5d), in particular in the VIS+ICMS condition where we have more samples per block.

The mean VIS+ICMS estimates in the not-shifted condition have a positive bias, reflect-

ing the adaptation ICMS had previously undergone (Figure 4.3). Indeed, the VIS+ICMS

bias equalled that of ICMS-only in the non-shifted condition (0.27 vs. 0.25 rad) and had

an integrated estimate of -0.32 rad during the shifted condition. The ICMS bias observed

during the non-shifted trials matched the expected value given the level of adaptation seen

during shifted trials (36% during non-shifted vs. 38% adaptation during shifted). This level

of adaptation was higher than what was observed during the earlier adaptation experiment,

where the mean ICMS estimate had adapted to -0.50 rad. from an initial estimate at -0.69

rad., a total of 28% towards the rewarded direction at zero radians. Here, during the fast-
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shift experiments, mean ICMS estimates were at -0.42 radians. Perhaps during the course of

this experiments leading up to this (data not shown) ICMS had continued to adapt towards

vision. The mean visual estimate was the same across shifted and unshifted conditions (p =

0.430), and seems to have incurred a positive bias (on average 0.12 rad), though the distribu-

tion of errors was not found to be statistically different from a normal distribution centered

at zero with the same variance as vision.

4.4 Discussion

How does ICMS compare to natural sensory signals?

These results are noisy, and it is difficult to compare the details of ICMS signal plasticity to

that of natural sensory inputs. If we compare the processes at a courser level, we can say

that natural and artificial adaptation share some of the same characteristics. For example,

the ICMS estimate does adapt in response to a imposed shift, though it adapts more slowly

than natural sensation (humans performing a reaching task adapt on the order of tens rather

than hundreds of trials; Fernández-Ruiz and Dı́az, 1999; Taylor et al., 2014; Tseng et al.,

2007). Our estimated adaptation timescale of hundreds of trials matches more closely the

adaptation rate of monkeys passively exposed to misaligned input who have not yet fully

adapted after 500 trials (Zaidel et al., 2011)1. Furthermore, the ICMS estimate adapted to

a lesser extent than proprioception in those same monkeys (compare our 28.4% adaptation

to a proprioceptive adaptation of 35% to 72% for monkeys) but, oddly, matched the extent

1Admittedly, this estimate could be a reflection of adaptation saturation and not the speed of adaptation.
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in humans performing the same unrewarded task (20% and 27% in humans; both monkey

and human values are from Zaidel et al., 2011).

Natural and artificial adaption aren’t wholly similar: unlike plasticity in natural sensory

systems, we could not drive adaptation in response to error corrective feedback. There are

three possible explanations for this result, which I’ll list in order of increasing probability.

The first possibility is that the result should be taken at face value—the artificial percept

only adapts in response to misaligned inputs and does not change in response to an error

signal in trials. Though this explanation is unlikely, we don’t have any literature to draw

upon in asserting that the ICMS signal should, in fact, adapt in response to trial error. The

second possibility is that the negative result reflects a flaw in the experimental design: we

tested for error-corrective learning after adaptation during VIS+ICMS trials had already

saturated. It is plausible that, after saturation, no further adaptation could take place. If

we had performed the same experiment just after the shift was first imposed, we may have

had a better chance document error-corrective learning. The last possibility is that we saw

no error-based adaption because the error signal in this behavioral task is very weak: the

target was never explicitly shown and all feedback ceased as soon as the monkey reached the

target. In this case, the monkey had to infer error from the length of his reach path and the

difference between the direction of his initial movement and the direction of the rewarded

endpoint (see Figure 4.2c for sample movement paths). A weak error signal would translate

into a slow learning rate, so although error-corrective learning took place during training,

no change could be detected over the 300 trials of the experiment.
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Rapid switching experiments: a failure to adapt

Why did the ICMS signal fail to adapt on the shorter timescale experiments (100 trials)?

According to our (admittedly rough) estimate, adaptation seemed to have occurred by 150

training trials. Then we should have seen at least a small change over the time-course of

100 trials, but only if the experiments were identical. One important difference between the

two experiments was the relative ratio of VIS+ICMS to VIS-only and ICMS-only trials. We

saw adaptation occur when the monkey was trained exclusively on VIS+ICMS trials. In

contrast, only 5/7 of the trials were VIS+ICMS in the short-timescale experiments. Is it

possible that having VIS+ICMS only 71% of the time fails to drive adaptation? Intuitively,

single-modality trials should only improve the accuracy of the individual estimates. In VIS-

only trials, error feedback should work to counteract any bias incurred from VIS+IMCS trials

(see section below on Visual yoking). In ICMS-only trials, error feedback should further drive

the ICMS percept towards the rewarded, clockwise direction. Instead, including these trials

seems to forestall adaption—supporting our previous assertion that the error-feedback signal

is weak or even absent in these trials.

Relative weighting of vision and ICMS during shifted input

The results of Chapter two showed that ICMS was equally informative as vision at twenty

percent coherence; yet, when a shift between senses was imposed, the monkey gave a weight

of 0.3 to vision and 0.7 to ICMS (assuming an affine combination). A lopsided weighing

persisted throughout the adaptation experiment, including the experiments in Figure 4.5
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involving adaptation on a short timescale, where the estimated visual weight was only wV IS =

0.21. These weights are not unexpected, as they reflect the instantaneous variability of each

of the sensory cues during the adaptation experiment, where vision proved more variable

than ICMS once a shift was imposed (see Table 4.1), but they are inconsistent with our

previous evaluation of relative vision and ICMS reliability.

Visual “yoking”

That vision was the less reliable signal in these experiments is inferable from the small posi-

tive bias incurred in its mean estimate during adaptation (0.14 rad after extended adaptation

and 0.15 rad during the short-term adaptation experiments, though neither were signficant).

These results are consistent with the the supervised model of inter-sensory calibration pro-

posed by Zaidel et al., 2013 (Model 2 in Figure 1c), where the process of adaptation relies

both on the relative reliability and accuracies of the two cues. In this model, the goal of

adaptation is to correct the integrated estimate, not only the inaccurate cue. If the accurate

cue is less reliable (e.g. vision in our experiment), the integrated estimate will lie closer to

the more reliable cue (ICMS). Then in an attempt to rectify the integrated estimate, vision

will be “yoked” (pulled) away from the correct answer, resulting in a transient positive bias.

As discussed in the introduction, the process of adaptation is thought to consist of both

inter-sensory calibration and error correction, so we would expect to see this result only if

the rate of internal recalibration were lower than error-corrective learning and if adaptation

saturated before the misalignment could be fully corrected. Of course, this requirement is
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inconsistent with the data we have collected regarding error-corrective learning, as the visual

mean after adaptation never became statistically different from zero, the positive bias may

illusory.

Minimum-variance multisensory integration

Figure 4.2b reveals that although the mean multisensory estimates closely matched the opti-

mal estimates, the variance of those estimates were greater, in all cases exceeding at least one

of the single modality variances (see Table 4.1). Although these is no obvious explanation

for this result, the adaptation studies were conducted after the instantaneous degradation

experiments from Chapter 3, which we saw to de-stabilize his percept of IMCS. Perhaps the

transient destabilization resulted in a long-term perturbation of minimum-variance integra-

tion.

Conclusions

Although the results presented here may frustrate the reader (and the experimenter) who

desired to carefully characterize the process of artificial sensory adaptation, we think they

at least qualitatively substantiate an important point: that an artificial sensory signal will

adapt in response to a misalignment between itself and a natural sensory signal. That it does

so validates its use both as supplemental feedback for neural prosthetics and as a model,

however difficult, with which to study sensorimotor plasticity in the brain.



106

Chapter 5

Conclusions

This thesis work makes several significant contributions to the field of neural prosthetics,

but we’ve left many questions unanswered and even unasked. After a brief summary of the

contributions of this thesis (below), we will address some remaining topics of interest.

5.1 Contributions of this thesis

First, we showed that monkeys could learn to use, in a naturalistic way, a continuous,

multi-dimensional, multi-channel intracortical microstimulation (ICMS) signal that encoded

task-relevant feedback (Chapter 2). After training with correlated ICMS and visual feedback,

monkeys could perform a goal-directed reaching task without vision, using only the ICMS

signal. Furthermore, the animals learned to integrate the natural and artificial sensory

inputs, combining both into a minimum-variance sensory estimate of hand position relative

to the target. The ICMS signal described here was not proprioception in the traditional
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sense, as hand position was described relative to a moving reference frame (the reach target),

but by fixing the reference frame, this same signal could be applied to encode artificial

proprioception for prosthetic limbs—in that case encoding the position of the limb relative

to the body.

We also showed that the ICMS percept shared some of the mechanisms of plasticity of

natural sensory signals observed in adults. First, we found that the brain keeps a long-term

estimate of ICMS precision that can be degraded and restored, based on the quality of the

ICMS inputs that the monkey receives (Chapter 3). Furthermore, we found that the ICMS

signal would adapt in response to a perturbation (Chapter 4). When we shifted the ICMS

signal relative to a rewarded, visual cue, the ICMS estimate adapted towards in response.

These results highlight the suitability of an ICMS-based approach to studying neural circuits

and systems.

Lastly, we found that the variables encoded in the multi-channel ICMS signal seemed

to be decoded by downstream neurons using an algorithm that approximated the analytic

solution to the problem (Chapter 3), and suggested several simple methods to maximize the

precision of an ICMS signal.

5.2 Learning to use an artificial sensory signal

We showed animals can successfully learn to use a two-dimensional artificial ICMS signal

in a naturalistic way, being able to use it in absence of additional sensory input, and being

near-optimally integrated with vision. These results, summarized in Chapter 2, describe
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the a monkey’s ability to use a learning-based ICMS signal after an average of 65,000 trials

spread over the course of months of behavioral training (n = 2). If an average trial lasted 2.5

s (1.25 s of which was instructed delay), then these monkeys were exposed to 45 continuous

hours of paired vision and ICMS before they optimally integrated the two signals; however,

monkeys began to show signs of integration (where VIS+ICMS trials outperformed VIS-only

trials) maybe half-way through training, say after 22 hours and 30 minutes (see Chapter 2).

Is that a lot or a little? It’s hard to compare directly, but the timescale in not far what

what is seen for the development of multisensory integration in adult superior colliculus (a

common model system).

Multisensory integration seems to be a learned phenomena, absent in newborn animals

and developed only after exposure to multisensory inputs (Xu et al., 2012). Although this

normally happens during a plastic period early in life, the ability to develop integrative

responses is maintained into adulthood (Yu et al., 2010). Yu and colleagues found that cells

in the superior colliculus of dark-reared adult cats began to develop integrative responses to

multisensory inputs after around 3,600 exposures (100 ms each; 6 minutes total). By 37,800

trials (1 hour and 3 minutes), cells already exhibited superadditivity—the cell’s response to

the multisensory signal was more than the sum of its response to each unisensory signal.

Though an order of magnitude less than our timescales, the two are not inconsistent due

to the low number of conditions the experimenters presented (only two). In contrast, our

exposure signal could take a continuous range of values (θ ∈ [−π, π] rad; dist. ∈ [0, 10]cm),

presenting a larger range of values that must be learned, and, as the number of integrative
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neurons grow with multisensory exposure, a longer total training period.

These responses were contingent on the multisensory inputs being present simultaneously.

If vision and audition were spatially (but not temporally) coincident, neurons would develop

responses to each unisensory input but did not integrate the two (Yu et al., 2010). We can

infer, then, that training on paired VIS+ICMS trials was necessary for the development

of visual-ICMS integration in our monkeys. Had the monkeys learned to use the ICMS in

absence of the visual dot-field, they probably wouldn’t have been able to integrate, optimally

or otherwise, vision and ICMS.

Remarkably, the experiments described above were conducted under anesthesia, meaning

that cells in cat superior colliculus developed multisensory receptive fields and integrative

capabilities under anesthesia—implying that the spatiotemporal correlations between inputs

were both necessary and sufficient to drive learning. These results, that spatiotemporal

correlations drive integration, agree with the predictions of a neural-network model that

learns to integrate multisensory inputs (Makin et al., 2013)—the same model that inspired

our learning-based approach.

5.3 The limits of ICMS-based signal precision

The suitability of learning-based ICMS as artificial sensory feedback for neural prosthetics

depends very much on its ability to encode useful information—how many variables can

we encode and with what precision? We concluded in Chapter 2 that the ICMS signal

was as precise as vision at twenty to twenty-five percent visual coherence, but there are
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several reasons to suspect that this value could ultimately be even higher. First of all,

multisensory integration was closes to being optimal (minimum-variance) near twenty percent

visual coherence—the visual signal with which ICMS was paired during training. We argued

in Chapter 2 that, under a different training regime, integration would have looked optimal

at all visual coherence levels. Then, if learning is highly influenced by the conditions of

training, conceivably the ICMS signal ended up being only as precise as twenty percent

visual coherence because it was the signal it was trained on.

We have some evidence that the reliability of the ICMS signal was matched with the

reliability of it’s partner visual signal: in Monkey D we saw an immediate drop in the number

of trials the animal could complete at low coherence VIS+ICMS once we started training

ICMS with fifteen percent visual coherence (see Chapter 2, Figure 2.4). His performance

was rescued as soon as we returned to training with vision at twenty-five percent coherence.

Perhaps the next step in improving the reliability of the ICMS signal will be simply to pair

it with a high-precision visual signal.

5.4 How sensitive is the ICMS signal to design

choices?

As we’ve discussed, learning plays an essential role in in interpreting artificial sensory feed-

back delivered using ICMS. But how important were the particulars (the design choices we

made) of the artificial signal to the final outcome? For example, we delivered the ICMS
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signal to primary somatosensory cortex (S1), a cortical area known to part of the pathway

involved in multisensory integration (Sabes, 2011) that projects both to higher cortical areas

as well as to motor cortex and the spinal chord. The cells in S1 encode touch sensation, po-

sition of the limbs (proprioception), and even the direction of objects moving across the skin

(Krubitzer and Kaas, 1990; Pei et al., 2010)—the building blocks of somatosensation. Had

the signal been delivered to a cortical area outside of this pathway, we might not have seen

evidence of multisensory integration; had the signal been delivered to a cortical area further

along the pathway, we might have succeeded only in disrupting ongoing sensory encoding.

In addition, although our signal was non-biomimetic in the traditional sense (we didn’t

try to replicate the spatiotemporal patterns of neural activity seen during natural sensory

processing), we borrowed many concepts observed in natural sensory encoding. For example,

by assigning each electrode a direction to encode (its preferred direction, PD), we end up

imposing artificial tuning curves on on nearby neurons. Since stimulation frequency was

proportional to the (circular) distance between the electrode’s PD and the movement vectors

directions, and stimulating at higher frequencies drives neurons to fire at higher frequencies

(Butovas and Schwarz, 2003), each electrode effectively imposes a tuning curve on the set of

nearby neurons.

Furthermore, since we have electrodes with unique preferred directions, stimulation across

the set of electrodes—each of which drives its local population in proportion to its stimulation

frequency—effectively established a population encoding of movement direction and distance.

Looking across the population of neurons, one would see a gradation in firing rate that
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is proportional to the cosine of the (circular) distance between the movement vector and

the preferred direction imposed by the nearby stimulating electrode. Thus the population

activity, though unfaithful to the native receptive fields of the stimulated electrodes, will look

remarkably like a neural population encoding natural movement (see Figure 1, Pei et al.,

2010). Although this sort of mimicry may not be necessary for artificial sensory feedback

signal to be learnable, it might have helped speed the process.

5.5 Moving beyond a two-dimension signal.

Your (natural) arm provides many sensory feedback signals that would be equally useful

for a robotic arm: at minimum we need information about touch (pressure and location)

and a sense of the position and movement of the limb in space (of the fingers, the forearm,

etc.). These two basis senses might be best encoded using different approaches, as they are

essentially of different character.

Encoding touch information using ICMS

Touch is a widely distributed percept that might be best described a matrix of inputs that

can be sparse (a single fingertip grazes a table) or full (your forearm rests on the table).

To abstract this information into fewer variables would not be easy: we would have to

encode, separately for each the body part, the extent and magnitude of the sensation. A

biomimetic approach might be the most straightforward here, since the body is already

conveniently mapped out by the receptive fields of neurons in somatosensory cortex (Kaas
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et al., 1979); however, we can only sample a subset of that space with currently available

electrode arrays. It may prove just as easy to take a learning-based approach to touch,

assigning a “receptive field” to each electrode on a stimulating array. These receptive fields

can vary in size depending on the part of the body they encode, having finer gradation for

areas like the fingertips and sampling areas like the shoulder more coarsely.

Encoding proprioception using ICMS

Proprioception is a more tractable somatosensation to encode artificially. Although the sense

of the body’s position in space begins as a distributed signal at the periphery (e.g. the set

of lengths of muscle spindles and joint capsules across the entire arm), it can abstracted

into a lower dimensional space without loss of information. For example, hand position can

be described by two variables ([x,y] or [r,θ]); joint angles (of the wrist, elbow, shoulder) by

three. We can then feasibly use a learning-based approach (much like the one taken in this

thesis) to encode all of the the necessary proprioceptive information.

Learning to use a high-dimensional artificial signal

One criticism of the learning-based approach is that although it is possible to learn a two-

dimensional artificial signal, humans (and monkeys) would be unable to learn any high-

dimensional variables because keeping track of many artificial variables is too high of a

cognitive load. This unfortunate view misrepresents the neural operations underlying arti-

ficial processing, which likely rely on many of the same mechanisms of plasticity as natural
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sensorimotor function. As an example of learning to effortlessly perform a complicated task,

consider learning to play a sport (swinging a tennis racket or shooting a free-throw) or even

learning to play a video game. As a concrete example, consider Super Mario 64. The first

few times you want to execute a long jump with a punch at the end, you must look carefully

at the controller and press the control stick plus Z plus the A button, and then press the B

button once you’ve reached your enemy—quite a complicated task. If this state of cognitive

attention to motor control persisted forever, we would never play video games—they would

be far too tedious; happily, we quickly adapt and are able to transition from thinking “let’s

get that guy” to executing a jump and punch, without concentrating on the intervening

steps.

The classical studies of Bach-y-Rita have shown that a similar learning procedure applies

to adaptation to artificial sensory information being input at the periphery. In the first of his

experiments, blind subjects were taught to detect visual objects using a sensory substitution

system that translated video input from a camera into a matrix of tactile inputs on the

subjects back. Users of this system had great success, learning to recognize faces, partially

occluded objects, and shadows. Most importantly, they reported the external localization

of stimuli, meaning that the objects they sensed seemed to come directly from the camera

rather than having to interpreted from the tingling or touch on their backs (Bach-y Rita

et al., 1969). We expect a similar outcome for artificial sensory feedback delivered using

ICMS: subjects may begin by using a cognitive strategy, but ultimately the interpretation

will be sub-conscious, allowing the user to focus on the task at hand rather than the array
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of sensory information he receives.

5.6 Will learning-based ICMS ever feel “natural?”

Sensations evoked by electrical stimulation of somatosensory

cortex

Learning-based approaches are commonly criticized for not being intuitive to use, as the

percepts they evoke may not match the information they encode. This may be true, but,

generally speaking, stimulation of the human somatosensory system (excluding the periph-

ery) tends to produce “unnatural” percepts, regardless of stimulation patterns (Heming

et al., 2010). These percepts may be naturalistic in a certain sense—they are “felt” on the

parts of the body that are close or similar to the receptive fields of nearby neurons. Wilder

Penfield and Edwin Boldrey (1937) are often cited for their famous paper reporting that

electrical stimulation of the cortical surface produces sensations in body parts such as the

fingers, hand, face, and etc., depending on the site of stimulation (see also Heming et al.,

2010), and this statement is often interpreted to mean (and cited to support the notion)

that stimulation of cortex produces naturalistic sensations. Instead, Penfield reports that

the patient,

..when asked what the sensation was like, replied “like going to sleep.” When

asked it is was numbness or tingling, she replied “Both.”
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204 of the recorded responses in this patient felt like “tingling or electricity,” 131 felt like

numbness, and forty-nine felt like a movement was evoked (though none was observed; Pen-

field and Boldrey, 1937, pg. 433). Other, minor sensations (at relatively low frequency)

included pain, the feeling of cold, a sense of blood rushing, thickness of the tongue and

swelling of the tongue. A similar result is seen in other parts of the somatosensory circuit:

although they were able to sometimes match the location of receptive fields of stimulated

neurons, ICMS of human thalamus produced (predominantly) a “tingle” sensation, even

when the patterns of stimulation matched those previously recorded in the thalamus (Hem-

ing et al., 2010).

On the other hand, ICMS does seem to evoke natural sensations in animal experiments.

ICMS has been shown to bias the perception of natural stimuli in the direction of the receptive

field of the stimulated cell in both the visual (Salzman et al., 1990, 1992) and somatosensory

(Tomilson et al., 2013) systems. Furthermore, ICMS has been successfully substituted for

natural sensation in behavioral tasks: animals trained on natural sensation can (quickly)

generalize to the new input (Otto et al., 2005; Romo et al., 2000, 1998; Tabot et al., 2013a;

Tomilson et al., 2013; Venkatraman and Carmena, 2011).

Why should this difference in evoked sensation exist between ICMS in human and an-

imals? One might think that it lies in the type of electrode that was used: a surface or

macro-electrode used in humans might evoked a different percept than a micro-electrode

used in animal studies. Indeed, in human thalamus, electrical stimulation with a micro-

electrode evokes smaller projected fields—the size and location of the percept evoked by
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IMCS—than with a macro-electrode, but the predominant sensation evoked by both was

still “tingle” (Heming et al., 2010). Perhaps the reason the sensations evoked in the animal

studies described above seemed to feel natural is that the percepts evoked by ICMS shared

important characteristics with the natural signals (e.g. in human studies cited above there

were similarities between the receptive fields of recorded neurons and the projected fields

of ICMS) even if sensations themselves were not wholly the the same. In fact, in the one

study which thoughtfully probed the matter, rats who transitioned smoothly between natu-

ral whisker deflections and ICMS of barrel cortex were able to differentiate between the two

if they were rewarded for doing so (Venkatraman and Carmena, 2011).

Differences in neural activity patterns evoked by IMCS and

natural input

The current cannot impose upon neurons the spatiotemporally coded and in-

tegrated output they normally achieve; it can only drive them in bizarre and

nonsensical synchrony. Thus any subtle, highly integrated neural effects result-

ing from the stimulation must ensue only because the neural systems downstream

... receiving the nonsense signal are able to transform it into an effective neural

code.

– Robert Doty, 1969

The differences between sensations evoked by natural sensory input and ICMS likely

mirror differences between the evoked spatiotemporal patterns of activity (see Butovas and
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Schwarz, 2003 for an example of ICMS-evoked neural activity). As Robert Doty stated,

it then falls to the neurons downstream of the ICMS input to try to interpret the foreign

patters of activity; perhaps, failing to do so, we then interpret the inputs as tingle. Of

course, with practice animals improve at detecting these patterns—current thresholds for

ICMS detection fall over time. But these improvements comes at the expense of detecting

low-threshold visual stimuli at the same receptive field (Ni and Maunsell, 2010), as if the

downstream neurons specialize in detecting certain patterns, however unnatural to begin

with, that reflect the type of inputs they regularly receive. This thesis is supported by

evidence that, before training, more ”naturalistic” patterns of ICMS-evoked neural activity

have lower thresholds for detection (Brugger et al., 2012). In this study, current-source

density analysis was used to determine that activity patterns evoked by natural whisker

stimulation most closely resembled those evoked by ICMS of layer IV neurons—the layer

with the lowest current thresholds for detection.

Delivering naturalistic sensory information to the brain

The logical conclusion to this argument might seem to be that the only way to encode

natural, intuitive information via electrical stimulation would be to precisely mimic natural

patterns of activity. In fact, what I am arguing is that the term “naturalistic” merely reflects

an endpoint: it’s a descriptive term that compares the input a neuron is currently receiving

to the distribution of inputs the neuron regularly receives. A brain can be trained to detect

completely novel patterns of input (ala Ni and Maunsell, 2010), and we spend much of our
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lives, especially during development, doing just that.

Training is even required to use the most successful neural prosthetic device—the cochlear

implant. Patients who are implanted do not instantaneously regain audition; instead, users

must practice with the device, relearning how to hear (e.g. Fryauf-Bertschy et al., 1992).

We expect a similar training procedure will be required to interpret artificial somatosensory

input: initially extraneous ICMS inputs will become meaningful over time. Importantly,

these inputs won’t simply be interpretable with attention: humans won’t simply learn that

the set of stimulation frequencies [5, 10, 54, 100] is encoding a hand position of [0,4], they

will come to feel, instantaneously, that their hand is at [0,4].
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