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 Although all abbreviations and symbols are defined when they first appear in the 
text, I outline a list of the most frequently used here for convenience. Abbreviations and 
symbols are listed in order of their first appearance within the text. 

1. I2: an index of the proportion of total heterogeneity that is between-studies 
2. EBE: “Exotic Becomes Erotic” theory 
3. JPSP: Journal of Personality and Social Psychology 
4. GUI: graphical user interface 
5. JAGS: Just Another Gibbs Sampler 
6. d: effect sizes representing standardized mean differences 
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12. prob: probability 
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15. ϴ: theta, a latent trait in item response theory 
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(the discrimination parameter) 
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the curve is centered (the difficulty parameter) 
18. 3PL: three-parameter logistic model 

19. λ: parameter in the lambda model representing information about the difference 
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21. ���	: standard normal probability density function evaluated at x 
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30. ω: a vector of weight parameters corresponding to given p-value intervals 

31. Z-statistic: effect sizes divided by their standard errors 
32. CI: confidence interval 

33. ��: the model intercept, or the mean of the meta-analytic dataset if there are no 
predictors 

34. U(x, y): uniform distribution with a lower bound of x and an upper bound of y 
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A Weight-Function Model for Moderators of Publication Bias 

 
by 
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Doctor of Philosophy 
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Professor Jack L. Vevea, Chair 

 
 This dissertation begins by demonstrating that publication bias can depend on 
factors other than statistical significance, including study characteristics like social 
preferences and source of funding. After providing an empirical example of differing bias 
patterns, the dissertation presents a weight-function model that is capable of 
accommodating moderators of publication bias. Subsequent chapters describe a version 
of the model designed for sensitivity analyses, a Bayesian version, and an R package for 
implementing the model. Throughout the dissertation, the performance of each version of 
the model is assessed via simulation. Overall, the model outperforms competing models 
across simulation cells, and appears to be an effective tool in cases where study 
characteristics affect publication bias. 
 



 

 

17 

 

 

Chapter 1: An Introduction to Methods of Assessing Publication Bias 

 

 Across many scientific disciplines, regardless of subject, results favoring the 
researchers’ aims are vastly more likely to be published (Begg & Berlin, 1989; Fanelli, 
2012; Ioannidis, 1998). These favorable results are often termed “positive,” while 
unfavorable results, which do not support researchers’ hypotheses and are usually not 
statistically significant, are “negative” (Fanelli, 2012). In this dissertation, I disregard any 
directional claim and distinguish results as favorable or unfavorable. I do so for two 
reasons: First, calling all favorable results positive is an oversimplification, ignoring the 
fact that many researchers are interested in negative effects. An effect size may be 
“positive” to one researcher while simultaneously “negative” to another. Second, it seems 
counterintuitive to refer to results we aim to encourage in the research literature with such 
an emotionally laden word as “negative.” 

Publication bias typically arises when favorable results are published, while 
unfavorable results remain languishing in investigators’ file drawers (Iyengar & 
Greenhouse, 1988; Robert Rosenthal, 1979; Scargle, 1999). This situation is often 
nicknamed “the file-drawer problem” (Rosenthal, 1979). Of course, in reality, most 
investigators likely do not have file cabinets bursting with unfavorable, neglected papers; 
if a project begins to appear unfavorable, it may not receive funding or even be 
completed, much less written up. Fundamentally, publication bias can arise from any 
situation in which the body of published literature on an effect is not reflective of the true 
effect. Research with unfavorable conclusions, for any given reason, remains unpublished 
and, therefore, unavailable. 

The popularity of meta-analyses and quantitative systematic reviews has helped 
increase researchers’ awareness of publication bias (Parekh-Bhurke et al., 2011), partially 
because researchers can observe the effects of bias more easily when they attempt to 
combine effect sizes on a subject. Meta-analyses are often described as a more valid 
means of reviewing research than a narrative or qualitative review (King & He, 2006; 
Rothstein, 2008), but if meta-analysts cannot retrieve a sample of studies that is not 
systematically biased, the validity of their results may be called into question, along with 
any substantive conclusions they draw (Rothstein, 2008). It is important to realize, 
however, that publication bias is not a problem of meta-analysis, but rather a problem of 
the research community as a whole. Meta-analysis has increased our awareness of the 
issue and offers researchers the best opportunity of assessing the magnitude and severity 
of bias. 

 

1.1 Meta-Analysis 

 

 Because assessing publication bias is possible in the context of meta-analysis, it is 
logical to discuss meta-analysis before discussing methods of bias assessment. This 
section provides a general overview of meta-analysis methodology, not guidelines for 
conducting a meta-analysis, so details are limited. Many texts (including, but not limited 
to, Lipsey & Wilson, 2001; Cooper, Hedges, & Valentine, 2009; Borenstein, Hedges, 
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Higgins, & Rothstein, 2011; Schmidt & Hunter, 2014; Cumming, 2013) provide thorough 
further instruction for interested readers. 

In the twenty-first century, as consumers of research face an explosion of 
publicized scientific findings, meta-analysis may become a more useful tool than ever, 
and rightfully so. Users log on to social media daily only to be faced with a barrage of 
claims, and it may be difficult or even impossible for them to identify which are plausible 
and which are not. The same newspaper or Web site which one day proclaims that sugar 
causes excessive weight gain may encourage sugar consumption as a diet supplement the 
next day. If each of these conclusions is based on the results of a different study, which 
one should users heed? An individual study and its corresponding statistical significance 
is rarely the best source of information about population effects. Although a small 
literature does argue that single, well-designed, large studies should be the gold standard 
under some contexts (Scifres, Iams, Klebanoff, & Macones, 2009; LeLorier, Gregoire, 
Benhaddad, Lapierre, & Derderian, 1997), meta-analyses are superior in most contexts. 
Meta-analysis combines multiple sources to yield an overall effect estimate, resulting in 
higher power than a single study, and even allows the use of study characteristics as 
moderators, so that the effect may vary across study types (Rosenthal & DiMatteo, 2001).  
 There is evidence of attempts at research synthesis dating back to the early 19th 
century, mostly involving the reconciliation of differing estimates of physical constants 
(Chalmers, Hedges, & Cooper, 2002; Stigler, 1986; Nichols, 1891). However, meta-
analysis in a more familiar form emerged in 1904 with Karl Pearson, who synthesized 
correlation coefficients to assess the efficacy of smallpox inoculation, finding an average 
correlation between inoculation and survival of about 0.63 (Pearson, 1904; Rosenthal & 
DiMatteo, 2001). The medical fields conducted meta-analyses before the social sciences, 
likely because they were the first to be faced with an overwhelming body of evidence 
needing to be synthesized (Rosenthal & DiMatteo, 2001). Psychology joined in the late 
1970s; perhaps the most famous of the early psychology meta-analyses was that 
conducted by Smith, Glass, and Miller (1980) on psychotherapy effectiveness.  (Glass, in 
fact, initially coined the term “meta-analysis” in 1976.) 

To conduct a meta-analysis, researchers must first identify the question they wish 
to answer. Meta-analysis is sufficiently powerful and capable of addressing virtually any 
question that researchers can address in an individual study, even incorporating 
mediation, moderation, or structural equation modeling if necessary. The process of 
identifying a question should lead researchers to determine their study qualifications – 
that is, what features must a study have to be included, and what features will require that 
a study be omitted. Often, at this stage, the researcher may have decided what specific 
study characteristics are of interest and created a corresponding coding manual. Such 
characteristics might include the age of study participants, the location where the study 
was conducted, or any other potential moderators, ranging from the type of treatment to 
the type of outcome measure. After identifying a question and creating a coding manual, 
the researcher must begin the always-tedious process of searching the literature for results 
to incorporate and extracting and coding the necessary information from those studies.  

Once the researcher has identified studies and calculated effect sizes from those 
studies, he or she may begin analyzing the data using a fixed-effect, random-effects, or 
mixed-effects meta-analytic model. The researcher should choose a model based on the 
nature of the intended universe of generalization – that is, whether or not inference will 
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extend beyond the observed studies (Hedges & Vevea, 1998).  If the researcher wishes to 
make inferences about a population beyond the studies at hand,  a random- or mixed-
effects model is appropriate (Hedges & Vevea, 1998). In the rare case where a 
researcher’s goal is to generalize to exactly the population of studies at hand, addressing 
only the uncertainty of sampling in those studies, then a fixed-effect model is appropriate 
(Hedges & Vevea, 1998). 
 The primary difference between fixed-effect, random-effects, and mixed-effects 
meta-analytic models has to do with their handling of sources of variation between and 
among studies. Each study yields an effect size and a corresponding sample size. Effect 
sizes within studies, even if those studies are exact replications, will vary; this variation is 
primarily determined by sample size, and is sometimes referred to as sampling 
variability, or within-studies heterogeneity. This variation is the reason why two 
independent studies, each with 10,000 participants, are likely to produce slightly different 
effect-size estimates, although both are measuring the same phenomenon. A fixed-effect 
meta-analytic model allows only for the presence of within-studies heterogeneity and 
assumes that all studies in the meta-analysis are assessing an identical underlying 
population effect1. 
 Random-effects meta-analytic models allow for differences between the 
population effects of different studies. Two studies that represent different populations 
usually produce different effect sizes. A meta-analysis is not likely to contain 
representations of all possible populations. In such a case, using a fixed-effect model 
would allow the researcher to draw conclusions only about the two specific populations 
featured in their dataset. A random- or mixed-effects model, on the other hand, would 
allow the researcher to make inferences about studies involving all other possible 
populations. In short, random-effects meta-analyses allow for the possibility that studies 
are estimates of slightly different underlying population effects. This variation between 
studies (or between-studies heterogeneity) is measured by a parameter called the variance 

component, usually denoted ��. 
 This section is a brief summary of a complex procedure, but it has explained the 
necessary features to introduce the rest of this dissertation. 
 

1.2 Publication Bias 

 

There are many tools available for assessing publication bias. Some, like the 
selection models, can yield estimates of the mean effect(s) and the variance component 
that are adjusted for bias; some perform significance tests for the presence of bias; some 
do both of the above. For a detailed summary of these tools and examples of their use, I 
invite readers to peruse the related chapter in the Handbook of Research Synthesis and 

Meta-analysis (Vevea & Coburn, in press). Other authors have summarized these bias 
assessments as well; for books, I recommend Publication Bias in Meta-Analysis: 

Prevention, Assessment and Adjustments (Rothstein, Sutton, & Borenstein, 2005). Many 
articles also summarize these bias assessments (for example, see Peters et al., 2006; 
Ferguson & Brannick, 2012; Macaskill, Walter, & Irwig, 2001; Sterne, Egger, & Smith, 

                                                        
1 An exception is the “fixed-effects” model. In this case, the concern is only with within-study 

variability, but the goal is to estimate several average population effects (Rice, Higgins, & Lumley, 

2017). The circumstances in which such a model might be useful are unclear. 
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2001). Therefore, the descriptions provided in this chapter are relatively brief, and 
interested readers are advised to investigate these citations. 
 Readers may notice that a common technique, known as the failsafe-N, is absent 
from this discussion. The failsafe-N (Rosenthal, 1979) is excluded for a number of 
reasons. Although the technique is both intuitively appealing and popular among meta-
analysts, it is utterly valueless (Vevea & Coburn, in press); it has neither an underlying 
statistical model nor any kind of criterion, it is largely arbitrary, and it cannot 
accommodate empirical situations like between-studies heterogeneity (Vevea & Coburn, 
in press; Begg & Berlin, 1988; Becker, 2005; Iyenger & Greenhouse, 1988).2 Presenting 
a substantive example of the failsafe-N, even with a strong caveat, would promote use of 
the technique, and as an ethical researcher I cannot promote the use of the failsafe-N.  
 

1.3 Visual Methods 

 

 This section discusses two visual methods of assessing data for the presence of 
publication bias. It is important to note that neither of these methods can produce 
adjusted estimates of parameter values – that is, neither can quantitatively measure the 
impact of publication bias. These methods also cannot produce a statistical test for the 
presence of publication bias. By nature, interpretation of both graphs is somewhat 
subjective. However, they provide a crucial first glance at data patterns, and may inform 
future bias-related analyses.  
 

1.3.1 Funnel Plots 

 

 Light and Pillemer (1984) originally introduced the funnel plot as a scatterplot 
with effect-size estimates on the horizontal axis and their corresponding sample sizes on 
the vertical axis. The expectation, in the absence of both systematic heterogeneity and 
publication bias, is that the effect sizes will be evenly distributed around their underlying 
population mean (Light & Pillemer, 1984; Vevea & Coburn, in press). There will be 
more variability among the effect sizes with smaller sample sizes, due to the greater 
influence of sampling error. This means that, ideally, the scatterplot (if no publication 
bias is present) will appear symmetric with respect to the distribution of effect sizes and 
will resemble a funnel (Vevea & Coburn, in press). 
 In the years since its introduction, variations of the funnel plot have gained 
popularity. Researchers have debated whether to use sample size or another measure of 
study precision, such as variance or standard error (Vevea & Hedges, 1995; Sterne & 
Egger, 2001; Vevea & Coburn, in press). Sterne and Egger (2001) presented comparative 
plots using different measures of precision, noting that the choice of measure can impact 
interpretation of the plot. In this dissertation, I plot effect sizes against standard errors; 
this method allows the distribution of effect sizes to cover more plot space for the smaller 
studies, among which publication bias is more likely to be evident (Vevea & Coburn, in 
press). I also plot effect-size estimates on the vertical axis and standard errors on the 

                                                        
2 Orwin (1983) produced a modified version of the failsafe-N which does not assume that all missing 

effect sizes average to zero, and this version should not be condemned quite as strictly. 
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horizontal axis, to remain consistent with the graphical convention of plotting unknown 
quantities on the Y-axis and fixed quantities on the X-axis (Vevea & Coburn, in press).  
 When interpreting funnel plots, it is important to remember that asymmetry in the 
plot may be due to phenomena other than publication bias; any influence that is 
associated with both study precision and effect size can result in asymmetry (Vevea & 
Coburn, in press). Moderators of effect size, or systematic heterogeneity, can create 
asymmetry that is not due to bias. Because other factors can cause asymmetry, and 
because funnel plot interpretation is subjective by nature, the utility of the funnel plot is 
sometimes questioned (Terrin et al., 2005; Lau et al. 2006; Tang & Liu, 2000; Hunter et 
al., 2014). Nevertheless, the plot has value, particularly as a preliminary assessment of 
the presence of bias. 
 

1.3.2 Cumulative Meta-Analysis 

 

 The technique of cumulative meta-analysis is often used to determine whether a 
meta-analytic mean appears to stabilize in relation to some variable of interest; originally, 
the variable was time of publication (Clarke, Brice, & Chalmers, 2014). To visually 
assess whether the mean stabilizes, the meta-analyst creates a plot of the results. In such a 
plot, horizontal lines are drawn representing the pooled mean effect sizes and their 
corresponding error bars; the lowest line represents the pooled estimate of one effect size, 
the next two, and so on. The bottom line of the plot then represents the overall meta-
analysis including all of the effect-size estimates.  
 Kepes et al. (2014) demonstrated that it is possible to use cumulative meta-
analysis to explore the presence of publication bias by sorting effect sizes by a measure 
of study precision, rather than by year of publication. Studies can be pooled in order from 
least precise to most precise, or from most to least. After sorting, if the average effect size 
drifts (becoming either more positive or negative) as studies are added, there is evidence 
of a relationship between precision and effect size; in other words, publication bias may 
be present. Of course, like the funnel plot and the following methods based on the funnel 
plot, relationships between study size and effect size may exist due to moderator 
variables rather than publication bias.  Moreover, for some effect measures (e.g., log odds 
ratios), there is some inherent association between effect size and sample size (Ialongo, 
2016). Therefore, if such a relationship does exist, it should be interpreted with caution. 
 

1.4 Statistical Tests Based on Visual Methods 

 

 This section presents a brief discussion of three methods for assessing publication 
bias that yield statistical tests for the presence of a relationship between some measure of 
study size and effect size. All three methods are based on some variation of the funnel 
plot.  

It is important to remember that, although the relationship between study size and 
effect size can be viewed as a proxy for the presence of publication bias, such a 
relationship may exist when bias is not present; it may be due to moderator variables. 
These tests assume homogeneity of effect sizes; they assume that any asymmetry is due 
to bias. If the collection of effects is heterogeneous (i.e., has a large variance component), 



22 

 

 

 

these tests may show that bias is present when it is not. As with all statistical tests, they 
should be used (and interpreted) with care. 

 

1.4.1 Rank Correlation 

 

 The rank correlation was not originally developed to address publication bias; 
however, Begg and Mazumdar (1994) discovered that it provided a formal test for 
asymmetry in funnel plots. Their test calculates a rank correlation between the deviations 
of the effect sizes from their mean and the sampling variances of the effect sizes 
(primarily determined by study size). The correlation is a test statistic that can then be 
compared to the standard normal distribution; significance indicates the presence of a 
relationship between study size and effect size may be present. 
 

1.4.2 Egger’s Linear Regression 

 

 This test may be intuitive; if a test of the correlation between study size and effect 
size is useful, a regression of effect size on study size (or precision) is likely also useful. 
Egger et al. (1997) first described this process; they regressed effect sizes’ standard 
normal deviates (effect sizes divided by standard errors) on their precision (defined as the 
inverse of the standard error). If the resulting regression line does not run through the 
origin – that is, if the intercept of the regression differs from zero – there is evidence of a 
relationship between study size and effect size (Egger et al., 1997) 
 There are several existing variations of the regression test for publication bias, 
which are not described here for the sake of brevity. Some switch the role of intercept 
and slope, some involve different measures of study size, some accommodate binary 
outcomes, and so on. I refer interested readers to Vevea and Coburn (in press), which 
can, at the very least, provide a reading list. 
 

1.4.3 Trim-and-Fill 

 

 Trim-and-fill is a nonparametric method that was developed as a simpler 
alternative to parametric selection models (Duval and Tweedie, 2000a; 2000b). It is based 
on the idea that asymmetry present in funnel plots can be measured and rectified by 
imputing the “missing” effect sizes. The method uses an iterative process to “trim” 
asymmetric portions of the plot, then uses one of three estimators to generate, or “fill in,” 
new effect sizes that are mirror images of those that remain (Duval and Tweedie, 2000a; 
2000b), reflected across the axis of the funnel plot. This results in an artificially 
symmetric plot. Adjusted estimates of the mean and variance component can be 
calculated based on this symmetric data set. 
 The trim-and-fill method, of course, has some flaws; it sometimes imputes very 
unrealistic effect sizes and can perform poorly in the presence of between-studies 
heterogeneity (see Vevea & Coburn, in prep, for a summary). Still, the method is popular 
and accessible. 
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1.5 Selection Models 

 

 This section presents an overview of two of the more well-known selection 
models for assessing publication bias. These models attempt to describe the mechanism 
for effect suppression and combine this with an effect-size model that describes the 
distribution of effects in the absence of publication bias. The key to these models is their 
assumptions about the mechanism of suppression. If there was a consistent (and known) 
method of suppression leading to the presence of publication bias, it would be relatively 
easy to model. Instead, researchers must make assumptions and theorize about the most 
likely process of selection. The choice of selection mechanism is typically where these 
selection models differ. 
 Although selection models are more complex and difficult to implement, they are 
usually recommended over other methods if the number of studies in the meta-analysis is 
adequate to support estimation. They are often capable of accommodating between-study 
heterogeneity and moderators of effect size, a feature that most other methods lack. 
 

1.5.1 Vevea and Hedges 

 

 The Vevea and Hedges (1995) model is an extension of the original Hedges 
(1992) model. It assumes that the mechanism of selection is a step function based on p-
values. The meta-analyst can specify a series of p-value cutpoints at perceived milestones 
of statistical significance – for instance, p = 0.05, p = 0.10, et cetera. The relationship is 
described as a step function because of the differences between one’s perception of, for 
example, p = 0.049 and p = 0.051. Weights representing the relative likelihood of 
survival for effect sizes whose p-values fall in each of the p-value intervals can be 
estimated in the context of a fixed-effect, mixed-effects, or random-effects model. There 
is one exception: The first weight, which applies to the “most significant” range of p-
values, is fixed at 1.0 to allow for model identification. This means that subsequent 
weights must be interpreted relative to the first weight; they may exceed 1.0 and are not 
directly interpretable as probabilities. 
 The Vevea and Hedges (1995) model provides estimates of the variance 
component, the mean effect (or the intercept and slopes of a linear model for the mean), 
and the vector of weights that represent the selection process. The simultaneous 
estimation of these weights has the effect of adjusting the other parameters for the 
presence of selection. A likelihood-ratio test is conducted, comparing the adjusted model 
including selection to its unadjusted fixed-effect, random-effects, or mixed-effects 
counterpart. If this test is significant, there is evidence that publication bias may be 
present. 
 

1.5.2 Copas and Shi 

 

 The Copas and Shi model (2000; 2001) is frequently mentioned in discussions of 
selection models but has only recently seen practical use. It is a combination of a random-
effects model of effect size and a selection model, in which the probability of effect-size 
survival is a linear function of its standard error. This linear function can be rewritten as a 
propensity model, in which an effect size can survive if and only if its propensity for 
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survival is greater than zero (Copas & Shi, 2001; Copas & Li, 1997). If there is a positive 
correlation between observed effect sizes and their estimated propensities, this indicates 
the presence of publication bias. A correlation of zero indicates that effect sizes survive 
regardless of their standard error – that is, the absence of bias. The need to fix some 
parameters for model identification means that this model is fundamentally a sensitivity 
analysis, rather than a full-blown estimation of adjusted effects. 
 For more details and a demonstration of the model, please see Vevea and Coburn 
(in press) or Carpenter et al. (2009). 
 

1.6 Conclusions 

 

This chapter has provided very general descriptions of the concept of meta-
analysis and of several methods for assessing publication bias. Two of these methods, 
however, are especially relevant in the current dissertation. I recommend that readers pay 
specific attention to the funnel plot and the Vevea and Hedges (1995) weight-function 
model. The funnel plot appears in this dissertation several times, usually to aid readers in 
visualizing the presence and severity of asymmetry. The Vevea and Hedges (1995) model 
is the basis of the lambda model and its variations, which are the primary subject of this 
dissertation. 
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Chapter 2: Study Characteristics and Publication Bias 

 

 The methods in Chapter 1 assess situations in which studies with favorable, or 
statistically significant, results are more likely to be published. The problem of 
publication bias, however, is more complex than that. Publication bias does not depend 
solely on statistical significance. This chapter discusses the presence of other factors that 
can impact a study’s likelihood of publication. 

Imagine a situation in which two groups are conducting trials on the efficacy of a 
blood pressure medication. The first group has a conflict of interest, because the creators 
of the medication fund it. The second group also has a conflict: It is funded by the 
company producing the leading competing medication. If a given study’s results are 
nonsignificant, indicating that the new medication is no better than the leading 
competition, the second group of researchers are probably much more interested in 
publishing the study than the first group. A meta-analyst who ignores the role of funding 
source may miss this pattern of bias and conclude that publication bias is not an issue, 
because the suppression of results in opposite directions cancel each other out.  

Although funding source may not play as large a role in the social sciences as in 
the natural sciences or medical fields, researchers across fields conduct meta-analyses 
and should be aware of the role of funding in any case where it may be relevant. Studies 
are significantly more likely to favor a preferred therapy or treatment if they are funded 
by pharmaceutical firms or industry (Davidson, 1986; Easterbrook, Gopalan, Berlin, & 
Matthews, 1991; Kjaergard & Als-Nielsen, 2002; Lexchin, Bero, Djulbegovic, & Clark, 
2016; Sismondo, 2008). In nutrition research focused on the relationship between 
beverages and health, industry-sponsored studies are significantly more likely to 
recommend their sponsors’ products (Lesser, Ebbeling, Goozner, Wypij, & Ludwig, 
2007). Industry funding has a similar effect on studies assessing the efficacy of nicotine 
replacement therapy for smoking cessation (Etter, Burri, & Stapleton, 2007), studies 
reviewing the health effects of mobile phone use (Huss, Egger, Hug, Huwiler-Müntener, 
& Röösli, 2007), and studies of the protective effects of alcohol on cardiovascular disease 
(McCambridge & Hartwell, 2015). A systematic review of passive smoking reviews 
found that the only factor associated with concluding that passive smoking is not harmful 
was whether an author was affiliated with the tobacco industry (Barnes & Bero, 1998). 
Industry-funded studies are also more likely to become publications if their results favor 
the industry’s products (Melander et al., 2003). Bias related to source of funding can also 
operate in the other direction – for instance, “it should be borne in mind that there is 
currently considerable pressure from antismoking organizations for journals not to accept 
papers supporting any aspect of the tobacco industry’s position on smoking and health, 
regardless of the scientific merits of the paper, presumably so that the message to 
smokers to give up will come over as clearly as possible” (Thornton & Lee, 2000, p. 
209). 

To further complicate the situation, funding source is not the only study 
characteristic that may influence publication, and there may even be interactions between 
study characteristics. Research indicates that factors including the gender of the first 
author, whether a study is single- or multi-center, whether or not a study is randomized, 
year of publication, language of publication, and social preferences can influence studies’ 
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likelihood of publication, regardless of statistical significance (Abdel-Sattar, Krauth, 
Anglemyer, & Bero, 2014; Barnes & Bero, 1998; Begg & Berlin, 1988; Grégoire, 
Derderian, & Le Lorier, 1995; Kepes, Banks, McDaniel, & Whetzel, 2012; Melander, 
Ahlqvist-rastad, Meijer, & Beermann, 2003; Sismondo, 2008). This results in publication 
bias that depends on the level of the relevant study characteristic, since the magnitude of 
the average effect size differs across levels for no reason other than changing patterns of 
publication. For example, a randomized study must be prospectively organized, and 
therefore requires a greater time commitment and is more expensive than a comparative, 
non-randomized study (Begg & Berlin, 1988). This implies that randomized studies are 
more likely to be seen through to publication, regardless of whether or not their results 
are favorable (Begg & Berlin, 1988). Research confirms this theory, indicating that 
observational studies demonstrate a greater tendency toward publication bias than 
randomized studies (Berlin, Begg, & Louis, 1989; Dickersin & Min, 1993; Easterbrook et 
al., 1991). The trends for several types of therapy trials reveal that most nonrandomized 
studies demonstrated the efficacy of the new treatment, while most randomized trials 
reported no effect (Begg & Berlin, 1989). However, bias patterns related to 
randomization may differ as well, and randomization may interact with factors like 
funding source; some research shows that industry-funded randomized trials are more 
subject to bias than non-industry-funded ones (Djulbegovic et al., 2000).  
 Publication patterns can also vary across the type or prestige of journals. This 
effect is not necessarily due to bias on the part of journal editors or reviewers; it is 
possible, and understandably so, that researchers are likely to submit dramatic or exciting 
results in higher-prestige journals.  

The time that research is conducted can also play a role in its likelihood of 
publication, for a variety of reasons. Earlier studies published on a topic tend to be 
described as “exploratory,” while later ones on the same topic are “confirmatory.” If an 
exploratory study is deemed uninteresting, or if its results are unfavorable, it is more 
likely to be discarded prior to publication (Begg & Berlin, 1989). Time can also interact 
with prevailing social preferences. One example is that of the decline in gender 
differences over time, which researchers speculate may be due to the publication of a 
popular book in 1974 that encouraged publication of nonsignificant results (Hyde & 
Linn, 1988). Sometimes, as in the case of gender differences, a time trend in effect sizes 
may be due to changing patterns of publication bias. This is also known as time-lag bias, 
or the idea that dissemination of studies through publication is faster for favorable results 
(Banks, Kepes, & Banks, 2012). In the early days of a field, that field may be more 
subject to publication bias as favorable studies are published quickly; later, more 
unfavorable or nonsignificant studies may be published. A difference in bias patterns 
over time can also be due to the fact that results, whether favorable or not, tend to be 
published sooner if they are dramatic (Banks et al., 2012). Time-lag bias, as described, 
also exists in meta-analyses of individual patient data and in clinical trials (Hopewell, 
Clarke, Stewart, & Tierney, 2007). The effects of time on publication vary across fields, 
types of study, and possibly even outcome measures. Meta-analysts should take care to 
consider their subject of interest and assess whether time may have influenced 
publication patterns. 
 For more information about the impact of study characteristics on publication bias 
patterns, and for an exploration of their effects on various empirical meta-analyses, I 



27 

 

 

 

invite the interested reader to peruse Coburn and Vevea (2015). The next section 
introduces a specific empirical dataset, impacted by a relevant study characteristic, that I 
will use throughout this dissertation to demonstrate the models presented. 
 

2.1 Example 

 

 Throughout this dissertation, I use a substantive meta-analytic dataset to illustrate 
the issue of moderators of publication bias. This section introduces and describes the 
dataset; example sections in subsequent chapters use the dataset to demonstrate variations 
of the lambda model and the R package weightr. The dataset and a link to the 
corresponding meta-analysis are included in Appendix A. 
 

2.1.1 Dataset 

 

 This dataset is from a meta-analysis conducted on precognition. It focuses on 
participants’ ability to anticipate a randomly-occurring event before said event occurs. It 
consists of 90 studies; 9 are original experiments conducted by Daryl Bem, 69 are direct 
replications, and 11 studies are more generally related to the effects of randomly-
occurring future events. Bem’s original nine experiments (2011) assessed the retroactive 
effects of various stimuli, a concept known as “retrocausation.” Several of these 
experiments were variations of a task in which participants were presented with two 
curtain images and asked to choose one; behind one curtain lay a blank wall, and behind 
the other lay some type of stimulus, such as erotic stimuli (representing a positive 
outcome). Another experiment assessed participants’ ability to select a targeted image at 
random, during which they were either rewarded for a correct identification with a 
positively valenced image or penalized with a negatively valenced one. Most of the 
remaining experiments employed variations on this task to determine whether the roles of 
such psychological effects as priming and habituation could be reversed. They explored 
whether participants could respond to a priming word before being exposed to said word 
– that is, whether people could be retroactively primed. 
 Unsurprisingly, precognition, premonition, and other psychic phenomena 
(collectively known as “psi” phenomena) are controversial topics and are frequently the 
subject of heated debate. However, Bem’s original nine experiments (2011) spurred a 
level of controversy unusual even among psi research, for several reasons. First, Daryl 
Bem is a well-known researcher; he proposed the self-perception theory of attitude 
change (the idea that people can infer their attitudes from their own behavior as outside 
observers might; if someone gave a speech that was pro-Fidel Castro, for instance, they 
would be more likely to perceive themselves as in favor of Castro) (Bem, 1971). Bem is 
also known for his “Exotic Becomes Erotic” (EBE) theory (Bem, 2000), which posits that 
children who are attracted to activities enjoyed by children of the opposite gender are 
more likely to view members of their own gender as exotic and, therefore, erotic later in 
life. But Bem’s psi experiments did not attract attention only because of Bem’s history. 
The study containing Bem’s initial nine experiments (2011) was published in a reputable 
journal, the Journal of Personality and Social Psychology (JPSP). JPSP has a high 
impact factor (4.736 in 2015) and subjects its articles to rigorous peer review; Bem 
himself served for a time as one of its associate editors. In publishing his experiments, 
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Bem intended to produce evidence that even skeptics could not ignore – and, after a 
thousand total subjects and an investigation that spanned ten years, he succeeded. 
 Once Bem’s experiments were published, they became a media phenomenon, 
featured in such venues as the front page of the New York Times, The Colbert Report, and 
online blogs like Wired. This was likely more attention than any single previous psi study 
had ever attained, and such a flood of attention brought with it a flood of replications. To 
his credit, Bem expected and even ardently encouraged these replications; he 
intentionally kept his methodology and statistical analyses simple and provided extensive 
instructions. Of this flood of replications, Engber of Slate (2017) wrote,  
 

“If one had to choose a single moment that set off the ‘replication crisis’ in 
psychology – an event that nudged the discipline into its present and anarchic 
state, where even textbook findings have been cast in doubt – this might be it: the 
publication, in early 2011, of Daryl Bem’s experiments on second sight.” 
 

The dataset featured in this dissertation (Bem, Tressoldi, Rabeyron, & Duggan, 2016) 
includes 69 of these replications, along with the original studies, and assesses the overall 
effect of retroactive stimuli.  
 Of course, if a researcher is to demonstrate the impact of study characteristics on 
publication, relevant characteristics must be present. It is possible to examine the 
characteristic of “authorship,” denoted as “Bem” vs. “other” – that is, do the nine studies 
published by Bem demonstrate a different pattern of publication? Nine studies, however, 
is a very small number in one level of the moderator, which makes this moderator a poor 
candidate. Another (and perhaps a more interesting) question involves the year of 
publication. The meta-analysis includes 30 studies conducted pre-2011, before Bem’s 
research exploded onto the field, and 39 studies conducted post-2011 (excluding those 
published in 2011). If Bem’s research truly did spark a “replication crisis,” is such a crisis 
reflected in publication patterns? One wonders whether publication bias may have 
drastically decreased after 2011, as researchers scrambled to publish all replication results 
… including the unfavorable ones. 
 

2.1.2 Analyses 

 

 I use R version 3.4.2 (R Core Team, 2017) and its graphical user interface (GUI) 
RStudio, version 1.1.383 (R Core Team, 2017), along with the R packages metafor 
(Viechtbauer, 2010), ggplot2 (Wickham, 2009), and weightr (Coburn & Vevea, 2017), to 
conduct the example analyses throughout this dissertation.  
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 Figure 1 and Figure 2 present funnel plots of the effect sizes from studies 
published before 2011 and after 2011, respectively. On each plot, a horizontal line marks 
the unadjusted mean. Recall the guidelines for interpreting funnel plots that were 
presented in Chapter 1 of this dissertation. If no relationship exists between study size, or 
standard error, and effect size, the plot should give the impression of a horizontal funnel 
around the mean. Asymmetry in the plot indicates that there may be a relationship 
between study size and effect size, or that publication bias may be present (with the 
caveat, of course, that moderators of effect size can also give the impression of 
asymmetry).  
 
 

 
Figure 1. Funnel plot of effect sizes on precognition published before 2011. 
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Figure 2. Funnel plot of effect sizes on precognition published after 2011. 
 

 Figure 1, of the earlier studies, is less than ideal. There appear to be more positive 
effect sizes published, particularly in the region of about 0.1 to 0.5, than negative ones. 
As a result, the unadjusted mean is pulled upward – note that the horizontal line does not 
appear to be in the middle of the cloud of points and does not correspond to the apparent 
apex of the “funnel” at the left side of the plot. 
 In contrast, funnel plots rarely appear more symmetric than Figure 2. The 
horizontal funnel is clear. There is little to no visible asymmetry. As a result, the 
horizontal line almost perfectly bisects the cloud of points. 
 These funnel plots are a preliminary investigation, of course. They are not a 
significance test for the presence of bias, nor can they produce an adjusted mean or 
variance-component estimate for either group. However, the fact that these analyses are 
rudimentary does not diminish their worth.  

There is clearly asymmetry in the plot of the earlier studies that is not remotely 
present in the later studies. This piece of evidence supports the theory that publication 
bias, in the field of precognition, may have drastically decreased after 2011. At the very 
least, the pattern of publication certainly seems to have changed. I will continue to 
explore this substantive dataset with the models described in the following chapters. 

 

2.2 Conclusions 

 

 This chapter describes some study characteristics that can operate as moderators 
of publication bias. It then presents an empirical dataset, obtained from a published meta-
analysis, that is an example of such phenomena, and demonstrates that symmetry in 
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funnel plots may visibly differ across levels of a study characteristic (here, year of 
publication). 
 The next chapter, Chapter 3, describes the parameters of a simulation that I will 
refer to throughout the dissertation to explore the performance of the lambda model and 
its variants. Description of the model begins in Chapter 4. 
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Chapter 3: Simulation Design 

 

 To assess the performance of the models presented in this dissertation, I 
conducted an extensive simulation. Rather than repeating the description of its design 
once per chapter, I use this chapter to outline the simulation structure; the results of the 
simulation for each variant of the model are then presented in sections at the ends of the 
relevant chapters. 
 The lambda model and its variants are new, so it is important to assess their 
performance under ideal circumstances – that is, in cases where selection bias is 
generated according to the model, where the sample size (or the number of effect sizes in 
the meta-analysis) is large, and where between-studies heterogeneity (or the variance 
component) is small. These circumstances are where the models are likely to perform the 
best. Once their baseline performance is established, it is useful to know how the models 
perform when their assumptions are violated. To that end, I varied the size of the variance 
component, the number of studies, the method of generating selection bias, and the 
pattern of bias. The lambda models, of course, will not perform as well when bias is 
generated according to a different model, but it is crucial to explore their performance 
under such conditions because it is impossible to know the true generating model for 
publication bias. 
 All data were generated using R version 3.4.2, “Short Summer” (R Core Team, 
2017). I also used several R packages, namely weightr (Coburn & Vevea, 2015), R2jags 
(Su & Yajima, 2015), tictoc (Izrailev, 2014), metafor (Viechtbauer, 2017), and 
doParallel (Calaway, 2017). To implement the Bayesian models, I used the free software 
Just Another Gibbs Sampler, or JAGS (Plummer, 2017), which can be called via R 
through packages like R2jags (Su & Yajima, 2015). The entire simulation code is 
provided in Appendix B. Data were generated in the form of standardized mean 
difference effect sizes (d), with a true population mean of d = 0.20. 
 I varied four factors in this simulation – the number of effect sizes (or studies) per 
meta-analytic model (k), the percentage of between-studies heterogeneity (measured in 
terms of I2), the pattern of selection bias, and the method of bias generation. There are 
four levels of each factor, resulting in a total of 4 x 4 x 4 x 4 = 256 simulation cells. The 
factors and their corresponding levels are discussed in more detail below. 
 The levels of the first factor, number of studies, are k = 12, 24, 48, and 172. These 
levels are based on previous work in which I, along with an undergraduate research 
assistant, surveyed the number of studies (k) included in empirical social science and 
medical meta-analyses (Coburn, Vevea, & Orey, in prep; Coburn & Vevea, in prep). We 
searched Psychological Bulletin, the premier journal for meta-analyses in psychology, 
and the Campbell Collaboration, the social sciences database of systematic reviews, to 
represent the social sciences; for their medical counterparts, we searched the British 

Medical Journal (BMJ), a journal that publishes a relatively large number of meta-
analyses, and the Cochrane Collaboration, the medical database of systematic reviews 
(Coburn & Vevea, in prep). Table 1 presents an overview of the descriptive statistics of 
these four distributions. 
 



33 

 

 

Table 1. Descriptive statistics of distributions of the number of studies (k), trimmed. 

Estimate BMJ Cochrane Psych Bull Campbell 

Mean 57.76 13.02 119.22 27.82 

Standard 

deviation 

119.25 18.68 118.88 38.50 

Minimum 0.00 0.00 6.00 0.00 

Maximum 965.00 260.00 919.00 265.00 

Quantiles     

0.05 6.00 0.00 22.00 0.00 

0.10 7.00 1.00 30.50 1.60 

0.25 11.00 3.00 47.25 6.00 

0.50 21.00 7.00 84.50 13.00 

0.75 46.00 16.00 151.50 35.00 

0.90 122.00 30.50 238.50 61.00 

0.95 259.00 47.25 292.25 78.40 

Largest k trimmed from Psych Bull. Largest two ks trimmed from Cochrane. 
 
 Overall, Table 1 demonstrates that medical meta-analyses, such as those 
published in the BMJ and the Cochrane Collaboration, tend to be quite small, with a 50th 
percentile of k = 21 and k = 7, respectively. On the other hand, social science meta-
analyses can be large, with a 50th percentile of k = 84.5 for Psychological Bulletin 

(Coburn & Vevea, in prep; Coburn, Vevea, & Orey, in prep). I selected levels of k that 
represent both the high and low ends of these distributions; I also ensured that the levels 
were evenly divisible by two, as the models described in this dissertation incorporate a 
dichotomous moderator. k of 12 is about the 25th percentile of the BMJ; k of 24 is about 
the 5th percentile of Psychological Bulletin; k of 48 is about the 75th percentile of the BMJ 
and the 25th percentile of Psychological Bulletin; and finally, k of 172 is about the 90th 
percentile of the BMJ and the 75th percentile of Psychological Bulletin. The number of 
effect sizes in each level of the dichotomous group membership moderator per level is 6, 
12, 24, and 86 (the total number divided by two). 
 For the second factor, the percentage of between-studies heterogeneity, the four 
levels each correspond to values of I2. The I2 index is based on the ratio of between-
studies heterogeneity to total heterogeneity (including sampling variance), and this ratio 
is expressed as a percentage. The four levels represent I2 of 0%, 25%, 50%, and 75%. 
These levels are based on a tentative classification of I2 by Higgins and Thompson 
(2002), who proposed that values of 25%, 50%, and 75% represent low, medium, and 
high heterogeneity, respectively (Coburn & Vevea, in prep). However, it is impossible to 
generate effect sizes based solely on a value of I2; as described above, it is a ratio. 

Therefore, it is necessary to transform I2 into a variance component, or ��. The 

relationship between I2 and �� can be generally described as follows: 
 

�� =  ��
��� + ��	 

 

Or, rewritten to solve for ��: 
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�� = ����
��� − 1	 

 
This formula may clarify the description of I2; that is, the ratio between the 

amount of between-studies heterogeneity, ��, and the total amount of heterogeneity, 

including sampling variance, ��� + ��	. This simplified formula, however, operates 
under the assumption that the sampling variance is fixed across effect sizes, or that each 
effect size in a given meta-analysis has the same sampling variance (i.e., the same sample 
size). This situation is extremely unlikely to occur in practice. Therefore, the researcher 
must choose between sacrificing realism for the sake of accuracy and generating fixed 
sampling variances or sacrificing a degree of accuracy and permitting the sampling 
variances to differ (Coburn & Vevea, in prep). I chose the latter and worked with a 
database of empirical meta-analytic study sample sizes to obtain an average sampling 

variance (��) from which to generate population values of ��.  
To maintain empirical validity, or to emulate situations that are likely to arise in 

practice, my lab obtained a dataset of the sample sizes for individual studies from meta-
analyses in several of the primary branches of psychology (namely, 
industrial/organizational, health, developmental, social, and clinical). These sample sizes 
are from meta-analyses of standardized mean difference effect sizes, or d-statistics. The 
resulting distributions of three fields (industrial/organizational, social, and health) 
contained several studies with extremely large sample sizes (for example, 4,276), while 
the other two distributions (clinical and developmental) did not (Vevea, Zelinsky, Turitz 
Mitchell, Castaneda, & Coburn, in prep; Coburn & Vevea, in prep). After surveying these 
distributions, we wrote two R functions to generate any specified number of sample sizes 
with very similar distributions (Vevea et al., in prep; Coburn & Vevea, in prep). The first 
of these functions, modeled after the fields of industrial/organizational, social, and health, 
contains several extremely large sample sizes; the other, modeled after clinical and 
developmental, does not. For this simulation, I used the latter to generate a large number 
of sample sizes (k = 10,000) and computed their sampling variances. I then used the 

median of this semi-empirical distribution, 0.08, as an estimate of ��. Some algebra 

yielded �� values of 0.00, 0.03, 0.08, and 0.23, which correspond to �� values of 0%, 
25%, 50%, and 75%, respectively. This approach will not be perfectly accurate but 
should be an acceptable compromise. 

The third simulation factor is the pattern of selection bias. For each method of 
bias generation, I create “strong” and “weak” examples of bias. In this simulation, effect 
sizes are divided into two groups, and the degree of publication bias varies across groups. 
The levels of this third factor are then: (1) “None vs. None”; (2) “None vs. Weak”; (3) 
“None vs. Strong”; and (4) “Weak vs. Strong.” In the first level, no bias is present in 
either group; in the second, no bias is present in one group and weak bias in the other; 
and so on. This factor is important because it will demonstrate whether this model results 
in biased estimates when there is no bias in either group (the first level). It will also 
indicate whether the model reproduces estimates more accurately when, for instance, 
weak bias is present rather than strong bias. The fourth level of this factor will indicate 
how well the model can adjust for cases in which both groups suffer from bias, but to 
differing degrees. 
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Finally, we arrive at the fourth factor, the method of bias generation. This factor is 
a bit more complicated. There are four levels, described here separately. Each of these 
levels represents a different way of violating model assumptions; they are not intended to 
represent actual proposed selection mechanisms. For each level, I demonstrate conditions 
of what I dub “strong” and “weak” publication bias. Note that it is not necessary to 
demonstrate the conditions with no publication bias, as all effect sizes are simply 
retained. 

 

3.1 Level One: Step Function of p-value 

 

 For these cells, selection bias is generated exactly according to the model 
assumptions. The Vevea and Hedges (1995) model and, consequently, the lambda model 
both represent selection bias using weighted distribution theory, in which a weight 
function describes the likelihood of effect sizes in a given range (e.g., p < .05) being 
observed (Vevea & Hedges, 1995; Iyengar & Greenhouse, 1988; Hedges, 1984; Lane & 
Dunlap, 1978). It is possible to specify a variety of weight functions, of course. The 
Vevea and Hedges (1995) model, and its counterparts, use a step function based on user-
specified psychologically relevant p-value cutpoints, such as p = .01, p = .05, p = .10, p = 
.50, and so on. The model uses a step function because the likelihood of survival is likely 
to be drastically higher for a study with a p-value of .049 than for a study with p of .051, 
for example, and because there is likely to be little to no difference in the likelihood of 
survival within the same p-value interval. The latter means that studies with p of .051 and 
p of .059, for instance, are equally likely, or unlikely, to survive. For an illustration of this 
type of step function, see Figure 3. 
 

 
Figure 3. An illustration of a step function based on p-values. 
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 I generated selection bias according to this model by simulating effect sizes and 
retaining given proportions of effect sizes within specified p-value intervals. It is possible 
to specify any number of p-value intervals, but for this simulation I used a simplified 
approach distinguishing only between significant and nonsignificant effect sizes, with 
one cutpoint at p = .05.  
 For “strong” selection bias, only 20% of nonsignificant effects survive, while 
100% of significant ones do. Figure 4 illustrates its step function.  
 

 
Figure 4. A step function based on p-values, representing strong publication bias. 
 
 For “weak” selection bias, 70% of nonsignificant effects survive, while 100% of 
significant ones do. Figure 5 illustrates its step function.  



37 

 

 

 
Figure 5. A step function based on p-values, representing weak publication bias. 
 

The lambda model and its variants will likely perform best when bias is generated 
according to the model assumptions. It is also worthwhile to note that a step function with 
psychologically relevant p-value cutpoints is likely to be one of the most representative 
and empirically valid patterns of publication bias. However, it is always possible that 
existing bias is generated by some other mechanism, so it is important to explore the 
model’s performance under varying methods of bias generation. 

 

3.2 Level Two: Exponential Function of p-value 

 

 For Method Two, I generated selection bias as an exponential function of p-
values. The underlying idea is the same – that an observed effect size’s chance of 
survival, or of publication, is based on its corresponding p-value. However, the first 
method used a step function, which assumes that there is a steep drop-off in the chance of 
survival after given p-value cutpoints. This method uses an exponential function, 
assuming that the chance of survival decreases at a rate proportional to its current value.  
 The general formula for an exponential function is as follows: 
 ���	 = �� 

 

 It is also possible to add a “rate” parameter, ζ:3 

                                                        
3 λ is standard notation for the rate parameter. My use of ζ is non-standard, but avoids conflict with 

the λ parameter in the lambda model. 
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 ���	 = ����∗ �	 
 
 Exponential distributions are often used in the context of change over time, such 
as compound interest. In a time context, the rate parameter describes the expected 
number of events within a given time interval. In a survival context, however, the rate 
parameter is a kind of “hazard” estimate, or an estimate of constant risk. Increasing the 
rate parameter value increases the size of the number being exponentiated, and therefore 
increases the function’s rate of change. This results in a steeper exponential curve, or 
stronger publication bias. Decreasing the rate parameter value has the opposite effect. 
 For “strong” selection bias, I calculated the probability of survival as follows, 
with a rate parameter of 2. Figure 6 plots the corresponding function. 
 ��� = ���� ∗ !�"#$%&	 
 

 
Figure 6. An exponential function based on p-values, representing strong publication 
bias. 
 
 For “weak” selection bias, I calculated the probability of survival as follows, with 
a rate parameter of 0.50. Figure 7 plots the corresponding function. 
 ��� = ���'.) ∗ !�"#$%&	 
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Figure 7. An exponential function based on p-values, representing weak publication bias. 
 
 When “strong” bias is present, p-values close to zero have essentially a 100% 
chance of survival, and those close to one have less than a 25% chance. When “weak” 
bias is present, on the other hand, p-values close to one still retain about a 60% chance of 
survival.  
 

3.3 Level Three: Step Function of Effect Size 

 

 In certain fields, like the area of single-case design, the likelihood of publication 
can depend on factors other than p-value, such as effect size. (When it comes to single-
case design research, for instance, p-values are typically not even calculated.) For this 
level, I generate selection bias using a step function, very much like Model One; the only 
difference is that the cutpoints are based on an effect-size metric rather than a p-value 
metric. 

The most commonly-cited guidelines for assessing the magnitude of d-statistics 
were proposed by Cohen (1988). For standardized mean difference effect sizes, like the 
d-statistics generated here, Cohen defined small, medium, and large effect sizes as d = 
0.20, 0.50, and 0.80, respectively. Cohen proposed these guidelines under the very 
specific context of selecting population effect sizes for power analysis (Cohen, 1988), but 
the use of them as thresholds for substantive interpretation has spread across the research 
universe like a plague. In 1977, Cohen noted that “this is an operation fraught with many 
dangers,” and in 1988 he warned readers about the importance of being flexible with 
these values, specifically avoiding their use as de facto standards (Cohen, 1988; Lenth, 
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2001). Much like a worldwide game of Telephone, though, his message has been garbled 
beyond recognition, and today one is hard-pressed to find a researcher who knows the 
true meaning of Cohen’s guidelines. 
 I specified one effect-size cutpoint at d of 0.50. This value corresponds to 
Cohen’s “medium” effect size. The value d=0.50 is likely to be a psychologically 
relevant effect size, given the popularity of Cohen’s guidelines – such that larger effect 
sizes are more likely to be published, and smaller ones less likely. This structure also 
mirrors the structure of Method One.  
 I emphasize that my use of this cutpoint absolutely should not indicate that I 
support the use of Cohen’s guidelines in any context outside that of power analysis. 
However, I am aware that most of the research community do base their interpretations 
on his guidelines, and therefore a step function based on this cutpoint is psychologically 
relevant. 
 For “strong” selection bias, 100% of effect sizes above 0.50 survive, while only 
20% of those below do. Figure 8 plots the corresponding step function.  
 

 
Figure 8. A step function based on effect sizes, representing strong publication bias. 
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 For “weak” selection bias, 100% of effect sizes above 0.50 survive, compared to 
70% of those below. Figure 9 plots the corresponding step function.  
 

 
Figure 9. A step function based on effect sizes, representing weak publication bias. 
 
 

3.4 Level Four: Logistic Function of Effect Size 

 For consistency, and to parallel Level Two the way that Level Three parallels 
Level One, it makes sense to generate selection bias as an exponential function of effect 
size. However, doing so poses a problem. Unlike p-values, effect sizes can be negative 
numbers. It is still possible to exponentiate a negative number, of course. The problem is 

that doing so can yield negative values of ���	. In this situation, ���	 represents effect 
sizes’ probability of survival, and a probability cannot be a negative number. One could 
simply remove those effect sizes with negative probabilities, but artificially trimming the 
distribution in such a way would contribute additional bias.  
 To generate selection bias based on effect size, therefore, I used a logistic 

function, which must yield ���	 values between zero and one. More specifically, I used 
the two-parameter logistic (or 2PL) item response theory (IRT) model. IRT is a statistical 
paradigm for testing participants, or measuring participants, regarding some latent trait of 
interest, often denoted as theta (ϴ). In such a testing scenario, the probability of 
responding correctly to a dichotomous item i (usually a multiple-choice question) is a 
function of several parameters, including the individual’s ϴ value. In this case, I am 
modeling publication bias, so the probability of survival (which is dichotomous – an 
effect either survives or fails to survive) is a function of several parameters, including the 
individual effect size, ϴ.  
 In these equations, note that subscripts are omitted for the sake of simplicity. 

The standard logistic function is as follows: 
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��� = �*
1 + �* 

 
 The two-parameter logistic function (2PL) is: 
 

��� = �#∗�*�+	
1 + �#∗�*�+	 

 
 The standard logistic function yields a sigmoid curve. The additional parameters 
determine various aspects of the shape and location of the curve. The a parameter 
represents the maximum slope of the curve, or its steepness (in IRT, this is referred to as 
the discrimination parameter). The b parameter represents the location on the x-axis 
where the curve is centered (in IRT, this is the difficulty parameter). Three-parameter 
(3PL) and even four-parameter functions also exist, in which asymptotic minima or 
maxima can be specified; however, including such parameters is not necessary here, as 
the outcome is naturally bounded between zero and one. 
 For strong selection bias, I set the a parameter to 5 and the b parameter to 0.464, 
resulting in: 
 

��� = �)∗�*�'.,-,	
1 + �)∗�*�'.,-,	 

 
The corresponding logistic function is illustrated in Figure 10. 
 

 
Figure 10. A logistic function based on effect sizes, representing strong publication bias. 
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 The resulting curve, shown above, is centered at d = 0.464. I chose this center 
point so that a change in selection occurs approximately around p of 0.05. The curve is 
steep, with a maximum slope of 5. 
 For weak selection bias, I reduced the value of the a parameter to lessen the 
steepness of the curve, setting a to 3 and b to -0.464: 
 

��� = �.∗�*���'.,-,		
1 + �.∗�*���'.,-,		 

 
 The corresponding logistic function is illustrated in Figure 11. 
 

 
Figure 11. A logistic function based on effect sizes, representing weak publication bias. 
 
 This curve, featured above, is much less steep. It is centered at d = -0.484, 
corresponding to a p-value of 0.95, or representing one-tailed significance in the opposite 
direction. This mirrors the strong selection bias example and ensures that the chance of 
survival is higher for the negative effect size values, representing a weaker pattern of 
publication bias. A maximum slope of 3 ensures that the curve is fairly shallow. 

When “strong” bias is present, effect sizes below d of 0.464 have a drastically 
reduced chance of survival, decreasing to about 0% for effects below d of -0.50 and 
increasing to about 100% for effects above d of 0.90. When “weak” bias is present, on 
the other hand, effect sizes below d of -0.50 still have an almost 50% chance of survival, 
and effect sizes above d of 0.464 are about 100% likely to survive. In this way, although 
bias based on effect size is still present in the weak condition, it is much less severe. 
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 This simulation design results in a total of four factors, each with four levels, or a 
total of 256 independent simulation cells. However, keep in mind that the fourth factor, 
the pattern of selection bias, contains the level “None vs. None,” which compares two 
groups without any selection bias. No selection bias is present, so, for this level, all effect 
sizes are retained. Therefore, regardless of the method of bias generation, if no bias is 
present, there is no need to re-analyze these cells across methods. This results in a total of 
208 independent simulation cells.   

The rest of this dissertation explores the creation and evaluation of a weight-
function model that is capable not only of detecting the presence of differing publication 
bias patterns but also of conducting a significance test, including moderators of effect 
size, and providing adjusted estimates of all parameters. This model is henceforth known 
as the lambda model. 
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Chapter 4: The Lambda Model 

 

 Although our previous paper (Coburn and Vevea, 2015) presents some 
introductory approaches to the problem, no formal model currently exists that can assess 
moderators of publication bias. Therefore, this dissertation develops one. 
 The ideal model for this situation is one that can incorporate both random and 
systematic sources of heterogeneity while requiring minimal additional parameters to 
describe the publication bias process. This ideal model would yield adjusted estimates of 
the intercept, the variance component, and any moderator variables, and these estimates 
should maximize accuracy and power while minimizing bias and Type I error 
(qualifications for any ideal estimator). The model should also produce information about 
the pattern of publication bias and, if possible, information about the impact of study 
characteristic(s) on said pattern. 
 It is often more efficient to modify a pre-existing model, rather than developing a 
model which meets these requirements from scratch. The Vevea and Hedges (1995) 
weight-function model, as described in Chapter 1, is likely to be the best candidate. It can 
accommodate both random and systematic heterogeneity, it yields adjusted estimates for 
all parameters, and it produces some information about the pattern of bias (through its 
estimates of the weights for each p-value interval). Although selection models are 
sometimes dismissed because they can require large numbers of effect size or due to their 
computational intensity, my modified version of the Vevea and Hedges (1995) model can 
circumvent these arguments. Chapter 5 presents a simplified version of the lambda model 
which incorporates fixed weights to reduce the number of effect sizes required. Bayesian 
implementation, rather than maximum likelihood, also requires fewer effect sizes due to 
the inclusion of prior distributions; this version of the model is presented in Chapter 6. As 
for computational intensity, the R package weightr (described in Chapter 7) allows 
empirical meta-analysts to use the Vevea and Hedges (1995) model and the lambda 
model with one line of code in the free, multi-platform, open-source statistical software R 
(R Source Team, 2013).4  
  An adapted version of the Vevea and Hedges (1995) model must allow the 
pattern of bias to vary across levels of a moderator; it must do so with as few additional 
parameters as possible; and it must possess good statistical qualities. Both Coburn and 
Vevea (2015) and Coburn and Vevea (in prep) use the Vevea and Hedges (1995) model 
to assess publication bias across levels of a moderator variable, but they do so simply by 
estimating the model once per level. This procedure doubles the number of weight 
parameters estimated and requires many effect sizes both per interval and per level. 
Doing so technically allows the pattern of bias to vary, but it does not do so practically; 
estimating the model once per level means that the meta-analyst is very restricted in 
terms of how many p-value weights can be estimated, which in turn limits the 
information about the selection-bias pattern. This problem means that, although 
estimating the model once per level is technically possible, it is neither practical nor 

                                                        
4 The lambda model feature of weightr, although described here, will not be publicly available until 

the relevant research is published.  
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plausible. In contrast, the lambda model solves the problems described above, and it does 
so without requiring a larger number of effect sizes and while allowing the mean and 
variance component to remain constant across levels. Therefore, it may be a workable 
solution.  
 The lambda model is based on the original Vevea and Hedges (1995) model, 
which functions as described in Chapter 1. The lambda model incorporates study 
characteristics as moderators of the weights for the nonsignificant p-value intervals. In 
cases where the relevant study characteristic is a continuous variable, the procedure is 
straightforward. In cases where the study characteristic is categorical (e.g., separating 
studies that were published before and after an event), the variable can be dummy-coded. 
If there are two categories, or levels, of the study characteristic, there need only be one 
dummy-coded variable; effect sizes are then coded 0 if they belong to one level and 1 if 
they belong to the other. In this case, the lambda model estimates only one additional 

parameter, which I refer to as lambda (λ). λ contains information about the difference 

in the selection-bias pattern for the group coded 1. λ is a multiplicative constant on the 

weights for the nonsignificant p-value intervals. The model can estimate a full set of 
weights for one group and provides information about the second group through the 

estimation of λ. In principle, as described above, meta-analysts could specify a 

continuous study characteristic, a categorical characteristic with more than two levels, or 
multiple study characteristics; however, the version of the model presented in this 
dissertation employs one dummy-coded variable. 
 Much like the Vevea and Hedges (1995) model, the lambda model includes both 
an effect-size component and a selection component. The effect-size component is a 
fixed-effect, random-effects, or mixed-effects meta-analytic model, like those described 
in Chapter 1. The selection model, which illustrates the relative likelihood of survival for 
effect-size estimates with particular p-values, differs. The selection model is defined as 

the weighted probability density function of �� (the effect sizes), given parameters ββββ, ��, 

ωωωω, and λ: 

 

����/
, ��, 1, 2; ���, 4�, �	 = 1
5��� + ��

6���, ���, 4�	�
7
8 �� −Δ�

5��� + ��9
:

; 1
5��� + �� 6���, ���, 4�	�

7
8 �� −Δ�

5��� + ��9
: <��∞�∞

 

 

where λ is a multiplicative constant on certain nonsignificant weights (see below), �� is 

the between-studies variance component, �� and ��� denote the effect sizes and their 

corresponding sampling variances respectively, ��=	 the standard normal probability 

density function evaluated at z, and Δ� represents �
. In a mixed-effects model, 
 is a q-

dimensional vector of unknown regression coefficients, �>', >?, … , >A	, and B� is a 

vector of known predictors, (B�?, … , B�A	′. In a fixed-effect or random-effects model, q is 

equal to one, representing the intercept (or the overall mean). Multiplying the two (�
) 
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yields a function of linear predictors, allowing the meta-analyst to estimate models with 

varying numbers and types of predictors. When only the intercept is estimated, Δ� 
represents a mean-only fixed-effect or random-effects model.  

 The weight function, denoted as 6���, ���, 4�	 above, can be considered a function 

of p-value (��) and group membership (4�). Consider a weight function with J intervals in 
which, within each interval, the likelihood of survival is constant. Denote the left and 

right endpoints of the j-th interval (a) as DE�? and DE, respectively. The interval D?, or the 

first interval, has a lower bound of D' = 0; the last interval DG has an upper bound of DG = 1. These bounds exist because the intervals describe a distribution of p-values, and 
p-values cannot be smaller than zero or larger than one. If the one-tailed p-value of a 

given study i falls within the j-th such interval, its weight is denoted HE. Then: 

 

6���, 4�	 =
IJ
K
JL

H? M� 0 < �� ≤ D?;HE M� DE�? < �� ≤ DE  DP< 4� = 0 �� DE ≤ 0.05HE2 M� DE�? < �� ≤ DE  DP< 4� = 1 DP< DE > 0.05HG M� DG�? < �� ≤ 1 DP< 4� = 0 �� DG ≤ 0.05HG2 M� DG�? < �� ≤ 1 DP< 4� = 1 DP< DG > 0.05
 

 
  Because the number of studies present in each interval prior to censorship is 
unknown, the weights are relative rather than absolute; to compensate for this 
indeterminacy in a maximum-likelihood context, the weight for the first p-value interval 

(H?) is constrained to 1.0. Multiplying the weights for given intervals by λ allows the 

weights for those intervals to vary proportionally while estimating only one additional 
parameter. 

 Readers may wonder why λ applies only to the weights for the nonsignificant p-

value intervals. Theoretically, of course, it is possible to apply λ to all the estimated 

weights, regardless of statistical significance. Because λ is a multiplicative constant, 

however, doing so would mean that the shift in the probability of survival is constant 
across both significant and nonsignificant p-values, which is highly unlikely.  

Consider a hypothetical example. In this scenario, the meta-analyst specifies p-
value cutpoints at 0.01, 0.05, 0.10, 0.20, 0.50, and 1.00, resulting in six p-value intervals: 
0 < p < 0.01, 0.01 < p < 0.05, 0.05 < p < 0.10, 0.10 < p < 0.20, 0.20 < p < 0.50, and 0.50 
< p < 1.00. Assume that, for one group of effect sizes (coded as 1), the parameter values 
of the weights are, respectively, 1.00, 1.00, 0.90, 0.80, 0.70, and 0.50. This represents a 
situation where studies with p-values below 0.05 always survive selection and where the 
likelihood of survival decreases as studies’ p-values increase, such that studies with p-
values above 0.50 are only half as likely to survive as those with p-values below 0.05. 
Now assume that a second group of effect sizes (coded as 0) has parameter values of 
1.00, 1.00, 1.00, 1.00, 1.00, and 1.00. In other words, this second group of effect sizes 
represents a case in which studies always survive selection regardless of their p-value. If 

we allow λ to be a multiplicative constant of the significant p-value intervals, λ would 

be estimated at 1.00, indicating that the pattern of survival is the same across groups – 
which it is for the significant intervals (the first two). This specification of the model 

would not be able to reflect the differing patterns of selection. If λ was applied to the 

nonsignificant intervals, however, it would be estimated at approximately 0.73 – the 
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average of the four nonsignificant weights. This informs the meta-analyst that, for one 
group, the chances of surviving selection are lower for studies with nonsignificant p-
values. Although it is not a perfect representation – 0.73, for instance, underestimates the 

weight of 0.90 and overestimates the weight of 0.50 – applying λ to the nonsignificant 

p-value intervals yields a much more accurate representation.  

 Recall that λ is applied to the group of studies that are coded 1 on the relevant 

moderator variable. Either group can be coded 1. However, it sometimes makes more 
sense to code the group that is likely to be less biased as zero, which results in a smaller 

estimate of λ. Coding the more biased group as 1 is possible but may sometimes result 

in cases where λ is estimated at a large and unwieldy value. This coding decision does 

not fundamentally change the model. 
 The general issue of publication bias exists, in part, due to the reliance of the 
research community on null hypothesis significance testing (NHST). It is, therefore, 
ironic to base our assessment of publication bias on the results of a statistical test. 
However, researchers continually attempt to do so. For those who favor NHST, it is 
possible to formally compare the Vevea and Hedges (1995) model results to the lambda 
model results using a likelihood-ratio test. The meta-analyst can obtain the likelihood 
value for the original Vevea and Hedges model and compare it to the likelihood value of 
the lambda model. This test will have one degree of freedom, representing the one 

parameter that is fixed – λ. If the test is significant, the meta-analyst has a piece of 

evidence indicating that a model allowing selection to vary across groups is “better” than 
a model where selection is fixed. 
 Although I demonstrate the use of likelihood-ratio tests in the substantive 
example, I do not explore the performance of them in the simulations, simply because 
their use is not the focus of the model. The most important aspects of the model results 
are its recovery of the population mean estimate and its estimate of the difference in bias 

patterns across groups (λ), and both estimates are explored via simulation.  

 The lambda model allows selection-bias patterns to vary across groups of effect 
sizes while including as few additional parameters as possible. It also allows the variance 

component (��) and the overall mean, or conditional means (ββββ), to remain constant 

across groups. The two subsequent sections, respectively, demonstrate its use in a 
substantive example and explore its performance through simulation.  
 

4.1 Example 

 

 For the R code used to conduct these analyses, see Appendix C. Note that 
installing the R package weightr is required (Coburn & Vevea, 2015). 
 Recall that this example involves Daryl Bem’s work on precognition. Studies 
published before attention was drawn to the “replication crisis,” or before 2011, display 
asymmetry, indicating that a relationship is present between study size and effect size. 
Studies published after 2011, during the “replication crisis,” display a distinct lack of 
asymmetry. See Figure 1 and Figure 2 for the funnel plots of these groups. This is an 
ideal case for the lambda model. We have reason to believe that year of publication may 
impact selection bias, but it would make absolutely no sense for the conditional mean to 
differ across year of publication – unless, of course, some event occurred in 2011 that 
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impacted the world’s precognitive powers. Life is not an episode of The X-Files (Carter, 
1993-2002) so we proceed to the lambda model. 
 I coded the later studies as 0, and the earlier studies as 1. I set p-value cutpoints at 
p = 0.025, 0.05, 0.10, 0.50, 0.90, and 1.00, resulting in a total of six p-value intervals (or 
five estimated weights). I included p = 0.025 because a one-tailed p-value of 0.025 
represents one tail of a two-tailed alpha level of 0.05; 0.05 and 0.10 are also 
psychologically significant p-values, and 0.90 is the opposite tail corresponding to 0.10. p 
= 0.50 represents the point at which most effect size metrics switch from positive to 
negative. I would have included a few other cutpoints – perhaps 0.950 and 0.975 – but 
there were only one or two observed effect sizes with p-values in that range, which is too 
little information for the model to converge. 

The unadjusted parameter estimates are featured in Table 2, and the adjusted 
parameter estimates in Table 3. There is no variance-component estimate for the adjusted 
model, because the variance component is reduced so much that it is essentially zero. 
This results in a border condition, where the estimate is too close to its lower bound, 
meaning that the model cannot estimate the variance component – therefore, the adjusted 
parameter estimates are obtained from a fixed-effect model. Random-effects estimates 
are equal to fixed-effect estimates if the variance component is zero, so it is acceptable to 
estimate a fixed-effect model here. 

 
 

Table 2. Unadjusted random-effects meta-analytic parameter estimates, Bem data. 
 

Parameter Estimate Standard 

Error 

Z-

statistic 

p-value CI 

Lower 

Bound 

CI 

Upper 

Bound 

Intercept 

(>') 

0.07137 0.01418 5.033 .0000005 0.04358 0.09917 

Variance 
Component 

(τ2) 

0.00370 0.00230 
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Table 3. Lambda model parameter estimates, Bem data. 
 

Parameter Estimate Standard 

Error 

Z-

statistic 

p-value CI Lower 

Bound 

CI Upper 

Bound 

Intercept 

(
�) 0.02283 0.01513 1.509 0.131307 -0.006823 0.05248 

0.025 < p < 

0.05 (1S) 0.86589 0.39382 2.199 0.027901 0.094013 1.63777 

0.05 < p < 

0.10 (1T) 0.47020 0.26764 1.757 0.078947 -0.054367 0.99477 

0.10 < p < 

0.50 (1U) 0.24681 0.13440 1.836 0.066299 -0.016607 0.51024 

0.50 < p < 

0.90 (1V) 0.28793 0.18818 1.530 0.125986 -0.080886 0.65675 

0.90 < p < 

1.00 (1W) 

0.26683 
0.23848 1.119 0.263193 -0.200582 0.73424 

Lambda (λλλλ

) 
0.54729 0.29048 1.884 0.059554 -0.022042 1.11663 

 
 The adjusted intercept estimate is approximately 0.02, compared to the unadjusted 
estimate of 0.07; this is a reduction of about 68%.  Although precognitive studies tend to 
yield small effect sizes, a mean of 0.02 is objectively negligible. In fact, the adjusted 
mean is so small that it is not statistically significant (p > .05), and a difference of 0.02 
standard deviations on average in response time is not likely to be of practical l 
significance either. 

 To interpret the weights and λ, recall that the later studies were coded 0, so the 

nonsignificant weights for the earlier studies must be multiplied by λ. The later studies 

do display a typical selection-bias pattern; studies with p-values between 0.025 and 0.05 
are about 87% as likely to survive as those with p-values less than 0.025, those with p-
values between 0.05 and 0.10 are about 47% as likely, and so on. It is interesting to learn 
that, despite the low degree of asymmetry present in the funnel plot, publication bias may 
still be present among the studies published after 2011. The question, however, remains – 
does the pattern of bias differ across groups? 
 For the earlier studies, the weights for the first and second p-value intervals (1.00 
and 0.87, respectively) remain the same, because both intervals are significant (p < .05). 

The other weights are multiplied by λ, which is estimated at approximately 0.55. For 

example, the later studies have a weight of 0.47 for p-values between 0.05 and 0.10. 
Earlier studies have a weight of 0.26 (0.47 x 0.55) for that same interval. The chance of 
survival for studies published before 2011 is half that for studies published after 2011. 
That is a drastic difference. Although publication bias appears to affect both earlier and 
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later studies, the pattern is much more severe in studies published before 2011 – prior to 
the media storm sparked by Bem’s first studies (2011). 
 We can also conduct the likelihood-ratio test described above. For the Bem et al. 

(2016) data, the test is nonsignificant, X�(1) = 0.6432 (p = 0.42). This indicates that the 
lambda model and the original Vevea and Hedges (1995) model fit the data equally well.  
 Although the likelihood-ratio test is nonsignificant, the test alone is not conclusive 

proof that the pattern of bias does not differ. The λ estimate is substantively less than 

one and the funnel plots are drastically different. Including λ results in slightly better 

model fit, just not significantly better. The results of this statistical test can also vary 
depending on the intervals estimated. The lambda model, along with its Vevea and 
Hedges (1995) counterpart, is fundamentally a sensitivity analysis; hence, researchers 
should be reluctant to come to a general conclusion based on one significance test. 
 If researchers are in doubt about the necessity of the lambda model, I invite them 
to note the models’ nested structure. The lambda model will collapse to the Vevea and 

Hedges (1995) model if there is truly no difference in the selection pattern; λ will equal 

one. Therefore, if the bias pattern does not differ, using the lambda model should not 
change anything; if it does differ, even slightly, using the lambda model will provide a 
better estimate. 
 Thus far I have used terms like “should,” “likely,” and so on. I wish to emphasize 
that we have been working with one substantive dataset. To draw conclusions about the 
model’s future performance and overall abilities, we should evaluate its performance 
empirically. The next section of this chapter describes the results of a simulation to this 
end. 
 

4.2 Simulation Results 

 

 For each cell, I conducted approximately 10,000 replications. I say 
“approximately” because in some cells (especially when the sample size, k, is small and 
there is no heterogeneity) the models occasionally have trouble converging, resulting in 
the completion of fewer than 10,000 replications. When this happens, however, it is only 
due to the presence of a border condition (a variance component near zero), and it rarely 
occurs. For the vast majority of cells, 10,000 replications were conducted. 
 The next sections present assessments of simulation convergence, followed by the 
simulation results for the lambda model, broken down by parameter. I focus on the 

adjusted estimate of the mean and the estimate of λ, which are the primary parameters of 

interest. I present plots of the parameter estimates and their root mean squared error 
(RMSE) and discuss the model’s performance. I also compare its estimate of the mean to 
that from a completely unadjusted meta-analytic model and to that from the original 
Vevea and Hedges (1995) model. 
 

4.2.1 Convergence 

 

 In this section, note that I am not referring to whether the numerical optimization 
methods of model estimation converged on a parameter estimate. Those issues of failed 
optimization are discussed above – they occur rarely, and only in the presence of a border 
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condition. Here, I am interested in determining whether the simulation results have 
converged. If the cumulative mean of a given parameter estimate is fluctuating violently 
across cell replications, that cumulative mean is meaningless and cannot be treated as a 
representative estimate in assessments of bias and RMSE. 
 To assess convergence of the cumulative mean, I plot an estimate of the 
cumulative mean against the corresponding number of cell replications. When only a few 
replications have been completed (i.e., toward the left of the plot), the mean will 
fluctuate. However, by close to 10,000 replications, the plot will ideally be a straight line, 
indicating that the cumulative mean has stabilized (Coburn & Vevea, in prep). The 
presence of such a straight line does not absolutely guarantee convergence of the 
cumulative mean, but it is not evidence of non-convergence, and therefore we can assume 
that the mean is a viable estimate. 
 Plots of the cumulative mean estimate for four cells are presented in Figure 12. 
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Figure 12. Plots of the cumulative mean for the lambda model. 
 
 Plots from the other cells are not presented here for the sake of brevity. However, 
these plots are a representative example of the results across cells. There is no strong sign 
of non-convergence; therefore, we can proceed. 
  

4.2.2 Mean Estimate 

 

Across all cells, the parameter value of the overall mean prior to any selection 
mechanism is 0.20. The plots presented in this section compare the cumulative mean 
estimate, across 10,000 replications per cell, of each of three models – an unadjusted 
random-effects meta-analysis, the Vevea and Hedges (1995) model, and the lambda 
model. The population mean (pre-selection) is represented by a single horizontal line at 
0.20. The three models are represented by different line types; the lambda-model 
estimates are a solid line, the unadjusted estimates a line with two dashes, and the Vevea 
and Hedges (1995) estimates a dotted line. Points represent cell means. 
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First, I examine estimates of the mean in cells where the lambda model is likely to 

perform best – that is, in cells where the selection mechanism exactly matches the model. 
Figure 13 displays the results for cells where I2 is 0% (that is, there is no between-studies 
heterogeneity) and in which selection was generated according to the model.  The four 
panels represent bias patterns – “None,” “None vs. Weak,” and so on. Levels of k are 
presented along the x-axis.

 
Figure 13. Estimates of the mean from cells with I2 of 0%, bias generated with Method 1. 
 
 When I2 is 0% and no bias is present in either group (the top left panel of Figure 
13), the unadjusted model yields the most inflated estimate when k is 12, but by the time 
k reaches 172 the unadjusted model actually produces the least inflated estimate of the 
population mean. However, all three estimates are very close, which is a positive 
outcome overall – if no bias is present, the lambda model is not quite the best estimate, 
but it is still very close. 
 When weak bias is present in one group and I2 is 0% (the top right panel of Figure 
13), the pattern is similar to that in the top left panel, but the lambda model no longer 
inflates the mean as drastically. When strong bias is present in one group, though (both 
panels in the bottom row of Figure 13), the lambda model produces the least inflated 
estimate of the mean by far. Its estimate is virtually unbiased, even in cases where k is as 
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small as 12. It is worth noting that the Vevea and Hedges (1995) model yields a more 
accurate estimate of the mean than the unadjusted model when strong bias is present in 
one group, although this estimate is nowhere near as accurate as the lambda model 
estimate (which accommodates the difference across groups). 

For cells in which I2 is 25% (a variance component of 0.03) and in which bias was 
generated according to the lambda model (Method 1), see Figure 14. 

 

 
Figure 14. Estimates of the mean from cells with I2 of 25%, bias generated with Method 
1. 
 
 Now that some between-studies heterogeneity is present, the performance of the 
lambda model has improved in the top left panel, where no bias is present in either group. 
Its performance matches that of the unadjusted model by the time k is 172, yielding a 
virtually unbiased estimate of the mean. When weak bias is present in one group (the top 
right panel), the lambda model produces a more accurate estimate of the mean than either 
of the other two models by the time k reaches 24. Finally, for strong bias (the bottom two 
panels), the lambda model again performs flawlessly, with only very slight inflation when 
k is 12. One noticeable difference between Figure 13 and Figure 14, however, is that the 
Vevea and Hedges (1995) model also does a better job with I2 of 25% versus 0%; note 
that its estimate is less inflated in the bottom panels of Figure 14 than in Figure 13. The 
model is fundamentally incapable of accounting for the differing bias pattern across 
groups, but it makes a valiant effort regardless. 
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Figure 15 shows cells in which I2 is 50% (a variance component of 0.03) and in 
which bias was generated according to the lambda model (Method 1). 

 

 
Figure 15. Estimates of the mean from cells with I2 of 50%, bias generated with Method 
1. 
 
 The pattern in this figure is the same as in the previous two. In the top left panel 
(no bias in either group), the lambda model does just as well as the other two models by 
the time k is 48. When weak bias is present in one group, the lambda model yields a 
better estimate of the mean than even the Vevea and Hedges (1995) model (top right 
panel). When strong bias is present in one group (bottom two panels), the lambda model 
produces a virtually unbiased estimate of the population mean across all levels of k (with 
the slight exception of k of 12). The Vevea and Hedges (1995) model again generally 
does better than the unadjusted meta-analytic model, but the lambda model outperforms 
both. 

Finally, for cells where I2 is 75% (a variance component of 0.23) and bias is 
generated according to the lambda model, see Figure 16. 
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Figure 16. Estimates of the mean from cells with I2 of 75%, bias generated with Method 
1. 
 
 The pattern continues to hold. In the presence of heterogeneity – even at high 
levels, like an I2 of 75% – the lambda model vastly outperforms both of its competitors. 
Of course, these figures have so far only addressed cases in which bias was generated 
according to the model’s assumptions, and the results may vary across levels of bias 
generation, as the next figures will reveal.  

Now that we have examined plots of the mean estimate across levels of bias 
pattern and I2, we can examine variation in the mean estimate across levels of bias 
generation. Note that the facets now pertain to methods of bias generation. For these, and 
for most subsequent plots, to preserve space and eliminate unnecessary repetition, only 
cells with I2 of 0% and I2 of 75% are presented here. For interested readers, other plots 
are available in the Appendices (one Appendix per chapter).  
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Figure 17 shows cells where I2 is 0% and the bias pattern is “None vs. Weak.” 
 

 
Figure 17. Estimates of the mean across methods of bias generation from cells with I2 of 
0% and "None vs. Weak" bias pattern. 
 
 Across all four panels here, apart from the top left panel when k is 48 and above, 
these are the cells in which the lambda model yields a more inflated estimate of the mean 
than the other two models. It is never drastically more inflated than the others, however; 
the biggest difference is in the two panels on the right, where bias is generated as an 
exponential function of p-values or a logistic function of effect sizes. This is perhaps to 
be expected, as weak bias in one group is the most difficult to detect and as the lambda 
model generally performs better than competing models in the presence of heterogeneity. 
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Figure 18 shows cells where I2 is 75% and the bias pattern is “None vs. Weak.” 
 

 
Figure 18. Estimates of the mean across methods of bias generation from cells with I2 of 
75% and "None vs. Weak" bias pattern. 
 
 In the presence of high heterogeneity, a slightly different pattern becomes clear. 
For the top left panel, the lambda model yields the least inflated estimate for all levels of 
k above 12; this is expected, however, because the top left panel is one where generation 
matches the model assumptions. In the bottom left panel, where bias is based on a step 
function of effect sizes, the lambda model and the Vevea and Hedges (1995) models 
perform about equally well. This is also somewhat to be expected, because weak bias in 
one group is a small enough difference that the Vevea and Hedges (1995) model is still 
mostly able to compensate. For the two panels on the right, all models yield a somewhat 
inflated estimate; the lambda and Vevea and Hedges (1995) models are usually about 
equal, although Vevea and Hedges (1995) is more accurate in a few places. 
 The “None vs. Weak” cells are likely the most difficult ones for the lambda 
model, as weak bias in one group has less of an effect and is less easy to detect than 
strong bias. The next plots explore situations where strong bias is present in one group. 
Figure 19 shows cells where I2 is 0% and the bias pattern is “None vs. Strong.”  
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Figure 19. Estimates of the mean across methods of bias generation from cells with I2 of 
0% and "None vs. Strong" bias pattern. 
 
 For both panels on the left of Figure 19, the lambda model estimate is consistently 
less inflated than both the unadjusted model and the Vevea and Hedges (1995) model; 
bias generated as a step function, whether based on p-value or effect size, is closer to 
meeting the assumptions of the model than bias generated as an exponential or a logistic 
function. In the panel on the top right, the unadjusted model produces the most accurate 
mean estimate once k reaches 24. In the panel on the bottom right, where bias is 
generated as a logistic function, the lambda model and the unadjusted model both yield 
less inflated estimates (approximately equivalent) than the Vevea and Hedges (1995) 
model.  
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Finally, Figure 20 features a None vs. Strong bias pattern and I2 of 75%: 

 
Figure 20. Estimates of the mean across methods of bias generation from cells with I2 of 
75% and "None vs. Strong" bias pattern. 
 
 Figure 20 demonstrates something very interesting – and encouraging. It 
demonstrates that, regardless of the method of bias generation and the sample size (even 
in cases where bias is an exponential function of p-value or a logistic function of effect 
size), if the data are heterogenous and strong bias is present in at least one group, the 
lambda model yields a more accurate estimate of the mean. Because many social science 
meta-analyses have large I2 (Davis, Mengersen, Bennett, & Mazerolle, 2014) and most 
are likely subject to publication bias, these results are promising.  
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One bias pattern remains, “Weak vs. Strong.” This pattern seeks to explore the 
question of whether the model can adjust for cases in which bias is present in both 
groups, albeit to differing degrees. Figure 21 displays cells with I2 of 0% and “Weak vs. 
Strong.”  

 

 
Figure 21. Estimates of the mean across methods of bias generation from cells with I2 of 
0% and "Weak vs. Strong" bias pattern. 
 
 For both panels on the left, when bias is generated as a step function, the lambda 
model yields a consistently more accurate estimate of the mean across levels of k.  

Figure 22 displays cells with I2 of 75% and “Weak vs. Strong.” 
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Figure 22. Estimates of the mean across methods of bias generation from cells with I2 of 
75% and "Weak vs. Strong" bias pattern. 
 
 Again, when there is high heterogeneity (I2 of 75%), the lambda model really 
shines. Its performance is best when bias is generated according to the model (top left) 
and second best when bias is a step function of effect size (bottom left). The lambda 
model does still manage to yield a less inflated estimate than both other models even 
when bias is generated as an exponential function of p-value or a logistic function of 
effect size (right panels), but just barely. Compare the two right panels to the 
corresponding panels in Figure 20; notice that, when bias is not generated as a step 
function, the lambda model performs better if bias is present in one group, not both. 
 

4.2.3 λ Estimate 

 

 The plots in this section are slightly more complicated. The population mean is 

the same across all cells and all conditions (0.20). λ, however, is an estimate of the 

difference in bias patterns across groups, as a multiplicative constant. This means that the 

true estimate of λ varies across levels of bias pattern. 

 For the “None vs. Weak” bias pattern, the population value of λ should be about 

0.70 (one group has no bias, with a nonsignificant weight of 1.00, and the nonsignificant 
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weight for the second group is 0.70; 1.00 * 0.70 is 0.70). In the next figures, the observed 
“None vs. Weak” estimates are represented by a solid black line, and the predicted “None 
vs. Weak” estimates by a solid gray line. For the “None vs. Strong” bias pattern, the 

population value of λ should be about 0.30, for the same reasons; see Chapter 3 for 

details. A dashed black line represents the observed “None vs. Strong” estimates, and a 
dashed gray line the predicted estimates. The same pattern represents the “Weak vs. 
Strong” estimates, albeit with dotted lines. It is then possible to assess the accuracy of the 

λ estimate by the overlap of the black and gray lines. Figure 23 displays cells where I2 is 

0%. 

 
Figure 23. Estimates of λ across methods of bias generation and bias pattern from cells 

with I2 of 0%. 
 
 In the top left panel, where bias is generated according to the model, the estimates 

of λ are almost completely uninflated by the time k is 172. In the bottom left panel, by k 

of 172, the λ estimate is still accurate, even though bias was generated as a step function 

of effect size. The model performs worse for the two panels on the right, as those 
generation mechanisms are very different from the model; however, the general pattern 
persists, which is somewhat surprising considering how different the bias generation is. 

The same general pattern holds in Figure 24, which displays cells where I2 is 
75%. 
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Figure 24. Estimates of λ across methods of bias generation and bias pattern from cells 

with I2 of 75%. 
 
 Readers who compare the two right panels of Figure 23 and Figure 24 may notice 
that the lambda model continues to perform  well in the presence of high heterogeneity; 

its estimate of λ is much more accurate when k is 172, despite the differing bias 

generation mechanisms. 
 

4.3 Conclusions 

 

 I began this chapter by outlining the goals for an ideal model that can 
accommodate differing patterns of selection bias across levels of a moderator variable. I 
presented one such model, here dubbed the lambda model, that is a variation of the Vevea 
and Hedges (1995) weight-function model and explained why the lambda model meets 
my desired qualifications. 
 In the example section of this chapter, I used the Bem et al. (2016) empirical 
meta-analytic dataset to demonstrate that the lambda model can work with substantive 
data to illustrate differing patterns of selection. Then, in the simulation section, I 
discussed the results of an extensive simulation exploring the performance of the lambda 
model across levels of bias generation, bias patterns, sample size, and heterogeneity. This 
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simulation revealed that the lambda model generally yields a less inflated estimate of the 
population mean than both an unadjusted meta-analytic model and the Vevea and Hedges 
(1995) model across cells. The lambda model truly shines when between-studies 
heterogeneity increases – a heartening outcome, considering that so many social science 
meta-analyses feature a large degree of heterogeneity, and knowing that most other 
methods of bias assessment cannot account for heterogeneity at all (Vevea and Coburn, in 
prep). 
 The primary remaining problem with this model is its sample size requirement. 
Like the Vevea and Hedges (1995) model, the lambda model does require observed effect 
sizes in each specified p-value interval to converge, and meta-analysts may sometimes 
wish to specify more p-value cutpoints than are practical. The next chapter describes a 
lambda model that allows the meta-analyst to assess the effects of different fixed weight 
patterns on their data. Because this version does not estimate the weights, it circumvents 
the issue and will be useful for meta-analysts with smaller datasets. 
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Chapter 5: The Lambda Model as Sensitivity Analysis 

 

 Many meta-analyses in the published literature are relatively small, particularly in 
the medical field (Coburn, Vevea, & Orey, in prep), which makes estimation of the 
lambda model difficult. However, because the Vevea and Hedges (1995) model (and its 
lambda counterpart) has several desirable properties, Vevea and Woods (2005) presented 
a modification that both maintains some of the desirable properties of the original and is 
capable of use with small data sets. Their modification adopts the Vevea and Hedges 
(1995) model but circumvents the problem of directly estimating the weight function by 
imposing a set of fixed weights. These fixed weights are determined a priori and chosen 
to represent specific forms and severities of selection bias (Vevea & Woods, 2005). By 
applying a sequence of these models, with various sets of weights representing different 
types and severities of selection, meta-analysts can assess the impact of each selection 
pattern on their effect-size estimates and satisfy themselves that their results are robust to 
selection (Vevea & Woods, 2005). Because it fixes all the weight parameters, this model 
sacrifices the ability to produce valid standard errors and conduct likelihood-ratio tests. 
Nonetheless, it serves as a useful tool for assessing the impact of different selection 
patterns – and, most importantly, it does not require many effect sizes. 
 It is possible to implement a lambda version of the Vevea and Woods (2005) 
model as well. (Note: Although all publication bias models are sensitivity analyses by 
nature, I refer to this model as “the lambda model for sensitivity analysis” to differentiate 
it from the original version.) This version can take one of two forms: (1) all the weights 

and λ are fixed; (2) the weights are fixed and λ is freely estimated. The first version 

allows the meta-analyst to assess the change in the mean effect size across values of λ; 

additionally, λ is fixed, so the first version estimates only the mean(s) and variance 

component (the smallest number of parameters). However, the second version is more 
informative. The meta-analyst specifies a series of fixed weights, as before. Though only 

one additional parameter (λ) is estimated, the model can produce a “best guess” of the 

weight function in the second group, under the strict assumption that the differences in 
the nonsignificant weights across groups are constant. This allows the meta-analyst to 
assess the difference in bias patterns across groups while estimating only one parameter 
(in addition, of course, to a mean and variance component) and manipulating the baseline 
group at will. 
 Let us consider a theoretical example to clarify. Imagine a meta-analytic dataset 
with an unadjusted mean of d = 0.20. The effect sizes are divided into two groups 
according to some relevant study characteristic – “Group One” and “Group Two.” The 
researcher specifies four p-value cutpoints, p = 0.01, 0.025, 0.10, and 0.50, resulting in 
five intervals, p < 0.01, 0.01 < p < 0.025, 0.025 < p < 0.10, 0.10 < p < 0.50, and 0.50 < p 
< 1.00. To demonstrate the Vevea and Woods (2005) model, the researcher also specifies 
a set of weights for these intervals, rather than estimating the weights. The weights 
specified are 1.00, 0.90, 0.60, 0.40, and 0.10. This represents a pattern where effect sizes 
with p-values in the first interval (p < 0.01) have a weight of 1.00, or are 100% likely to 
survive selection, while effect sizes in the second interval are only 90% likely to survive, 
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and so on. These weights apply to the effect sizes in the baseline group, here referred to 

as “Group One.” λ is free to vary; assume that it is estimated as 0.50. Recall that λ 

applies only to nonsignificant intervals, where p > 0.025; in other words, it applies to the 
third, fourth, and fifth weights. Therefore, the model has estimated weights of 1.00, 0.90, 
0.30, 0.20, and 0.05 for the second group, “Group Two.” In this hypothetical case, where 
a strong one-tailed selection pattern is proposed by the a priori weights, the model 
indicates that survival of nonsignificant effect sizes is even less likely in the second 
group. The researcher has gained information about the differences in bias patterns across 
groups while estimating only one parameter. 
 The lambda model for sensitivity analysis shares the redeeming features of the 
original Vevea and Woods (2005) model, although it does possess a few limitations. It 
can include a variance component and moderators, meaning that it can still accommodate 
both systematic and random heterogeneity. It can function with small datasets. However, 
it operates under the same assumptions as the original lambda model – namely, it 
assumes that the meta-analyst has correctly identified the relevant study characteristic 
and assigned the effect sizes to groups. It also assumes that the differences in weights 
across groups can be represented by a multiplicative constant affecting the nonsignificant 
weights. 

Using the lambda model as a sensitivity analysis does require the meta-analyst to 
select some patterns of p-value intervals and weights. There is no “wrong” pattern to 
implement; the meta-analyst can experiment and assess the effects of various patterns of 
publication bias on their dataset. However, the meta-analyst should take care to try out a 
range of bias patterns, to be satisfied that the data are robust to different selection 
patterns. The number of intervals is no longer an issue, so the meta-analyst can try out 
one-tailed and two-tailed selection patterns with any given severity and can include steps 
at any cutpoint that may be psychologically relevant. 
 In the next two sections, respectively, I demonstrate the use of the lambda model 
as a sensitivity analysis on the Bem et al. (2016) dataset and go on to explore its 
performance through simulation. 
 

5.1 Example 

 

 For the substantive example, I implement five selection-bias patterns. Four of 
these patterns match the ones described in Vevea and Woods (2005). I strongly 
emphasize that it is not necessary to use these specific patterns; they were not intended to 
be a rule of thumb, merely an example. Because this dataset is featured only for 
illustration purposes, though, I include them here. Again, substantive meta-analysts are 
strongly encouraged to experiment with different selection patterns, and to implement 
patterns other than those presented in Vevea and Woods (2005). To this end, I include a 
fifth bias pattern of my own. 
 These five selection-bias patterns are presented in Table 4. Note that, for one-
tailed selection, the weights are larger when the p-values are smaller, corresponding to 
one-tailed alpha levels. For two-tailed selection, weights are larger for the smallest and 
largest p-values, corresponding to two-tailed alpha levels. I refer to the fifth pattern as 
“extreme two-tailed selection.” It describes a situation in which significant effect sizes 
(those with p < .05 or p > .95) always survive selection, while nonsignificant effect sizes 
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are much less likely to survive, with probabilities as low as .10 for p-values between .25 
and .75. In a sense, this fifth pattern demonstrates much stronger two-tailed selection than 
the fourth pattern, where probabilities drop only to .25. 
 
Table 4. The selection-bias patterns demonstrated on the Bem dataset. 

p-value 

interval 

(1) 

Moderate 

one-tailed 

selection 

(2) Severe 

one-tailed 

selection 

(3) 

Moderate 

two-tailed 

selection 

(4) Severe 

two-tailed 

selection 

(5) Extreme 

two-tailed 

selection 

.000-.005 1.00 1.00 1.00 1.00 1.00 

.005-.010 .99 .99 .99 .99 1.00 

.010-.050 .95 .90 .95 .90 1.00 

.050-.100 .90 .75 .90 .75 .50 

.100-.250 .80 .60 .80 .60 .25 

.250-.350 .75 .50 .75 .50 .10 

.350-.500 .65 .40 .60 .25 .10 

.500-.650 .60 .35 .60 .25 .10 

.650-.750 .55 .30 .75 .50 .10 

.750-.900 .50 .25 .80 .60 .25 

.900-.950 .50 .10 .90 .75 .50 

.950-.990 .50 .10 .95 .90 1.00 

.990-.995 .50 .10 .99 .99 1.00 

.995-1.000 .50 .10 1.00 1.00 1.00 
 

 The results of these analyses are presented in Table 5, which shows the adjusted 

mean and variance-component estimates for each selection pattern, along with λ. 

Remember that λ is not fixed, which allows us to explore the differences in bias patterns 

across groups. An alternative version (fixing λ) would allow us to explore different 

fixed values of λ but would ultimately be less informative. 

 
Table 5. The results of the lambda model sensitivity analyses on the Bem data. 

Parameter Pattern (1) Pattern (2) Pattern (3) Pattern (4) Pattern (5) 

Variance 

Component 

(YS) 

0.0018 0.0039 0.0000* 0.0000* 0.0000* 

Intercept 

(
�) 0.0338 -0.0047 0.0384 0.0331 0.0255 

Lambda (

λλλλ) 0.3299 0.3742 0.2729 0.3606 0.7615 

Notes: * indicates that a border condition was present, so the fixed-effect estimates are 
provided. (They equal the random-effects estimates, as the variance component is 
essentially zero.) 
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5.1.1 The Intercept 

 

 First, we can look at the intercept estimates. This allows us to assess the effect of 
the various selection-bias patterns on the overall mean. The adjusted intercepts will 
almost certainly vary across bias patterns; therefore, the question is not whether variance 
among them exists but about the magnitude of their variability. For this example, 
remember that the unadjusted mean effect, or intercept, is 0.0714 (see Table 2) – in other 
words, that participants who are presented with retroactive stimuli will remember more 
words than their counterparts, performing better by approximately 0.07 standard 
deviations. 
 Before we look at the variability of these mean estimates, we should discuss the 
difference between the concepts of statistical significance and clinical significance. An 
effect size may be statistically significant, even at a stringent alpha level, but may still be 
too small to be of practical or substantive interest. Hypothetically, a researcher with a 
sufficiently large sample size might find even the most minute effect sizes statistically 
significant. However, the clinical significance of the effect also matters. Consider the 
unadjusted estimate. Is an increase of 0.07 standard deviations in the number of words 
recalled practically, or clinically, important? Precognitive research is somewhat unique in 
that researchers are often interested in any effect size, regardless of its magnitude. If an 
infinitesimal effect exists, psi researchers proclaim that there is still evidence of 
precognition, albeit small. In this case, although 0.07 standard deviations is a small effect, 
it is on the large side for precognition. My goal is not to campaign either for or against 
the existence of precognitive powers, but I invite readers to think carefully about what 
they are willing to consider clinically significant. 
 The most severe bias patterns are Pattern #2 (dubbed “severe one-tailed 
selection”) and Pattern #5 (“extreme two-tailed selection”). As one might expect, those 
patterns are the ones which yield the smallest adjusted effect sizes. For Pattern #2, the 
adjusted effect is 0.0032 – virtually indistinguishable from zero, even in the field of 
precognition. For Pattern #5, the adjusted effect is 0.0340, a reduction of approximately 
48%; the effect is still present but has been drastically reduced. 
 It is important to remember that these adjusted estimates are the result of artificial 
bias patterns I have imposed on the data. The bias patterns are subjective and can be 
changed at will. Therefore, I would no more accept, say, 0.0032 as the one true effect-
size estimate than I would the original 0.0714. These estimates simply represent what the 
adjusted effect would be, given a certain precise selection-bias pattern. The question of 
interest here is whether bias patterns of varying severity are capable of drastically 
reducing the effect size. In this case, it certainly seems so. This indicates that the effect is 
not robust to selection, and that it may be an artifact of publication bias. (Again, this 
assumes that we are willing to accept the presence of an effect to begin with.) 
 

5.1.2 Lambda 

 

 Next, we can look at the estimates of λ. Across all five selection patterns, λ 

remains below one, indicating that the nonsignificant weights are smaller for the group 
coded 1 (the studies published before 2011). This is evidence that the direction of the 
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difference in bias patterns is consistent regardless of the fixed bias pattern imposed upon 
the group coded 0. 

 The estimate of λ hovers around 0.30, apart from Pattern #5, which is the most 

extreme weight pattern. The different magnitude of λ for Pattern #5 is likely because λ 

is a multiplicative constant on the nonsignificant weights. As the number of 

nonsignificant weights changes, along with their fixed values, the estimate of λ will 

typically change as well. 

 Much like the intercept estimates, these values of λ are the result of subjective 

fixed patterns. They were not estimated from the data and should not be interpreted as the 

true population value of λ. The question of interest is whether the difference between 

groups appears to hold constant across bias patterns, and in this case, it does. Pattern #5 is 
the exception – even in that situation, however, the direction of the difference is 
consistent. 
 In the next section, I evaluate the performance of the lambda model as sensitivity 
analysis through simulation. 
 

5.2 Simulation Results 

 

Again, for each cell, I conducted approximately 10,000 replications.  
I estimated the lambda model as a sensitivity analysis twice, each time with a 

different set of fixed weights. The two sets of fixed weights correspond to Set 1 and Set 3 
in the substantive example section described above; that is, the first set is an example of 
moderate one-tailed selection, and the second set an example of moderate two-tailed 
selection. 
 I now present assessments of simulation convergence, followed by the simulation 
results. The results in this chapter will be shorter than those presented in Chapter 4 for 
one simple reason; the mean and variance component are estimated based on user-
specified parameters, so it is not meaningful to assess their accuracy. I focus on the 

estimate of λ, which conveys information about the bias pattern in the second group 

relative to the user-specified bias pattern. I present plots of the parameter estimates and 
discuss the model’s performance.  
 

5.2.1 Convergence 

 

 The following plots show the cumulative average λ estimates, like those 

described at the end of Chapter 4. Again, we cannot absolutely prove that the estimates 
have converged; we aim to demonstrate that there is no evidence of non-convergence. 

Plots of the cumulative mean estimate for four cells are presented in Figure 25. 
These plots are all from selection pattern 1, but the results do not vary across selection 
patterns. 
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Figure 25. Plots of the cumulative mean for the lambda model as sensitivity analysis. 
 
 As before, the results do not demonstrate evidence of non-convergence, so we can 
assume that the average parameter estimate across iterations is a valid estimate. 
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5.2.2 λ Estimate 

 

As described in the simulation section at the end of Chapter 4, the plots of the 

average estimates of λ are slightly more complicated. While the population mean is the 

same across all cells and all conditions (0.20), λ is an estimate of the difference in bias 

patterns across groups, as a multiplicative constant. This means that the “true” estimate of 

λ varies across levels of bias pattern. I invite the reader to refer to the end of Chapter 4 

for a detailed explanation. 
 The gray lines on these plots still represent the approximate predicted patterns of 

λ estimates, while the black lines represent the observed patterns. The more the gray and 

black dots (or lines) overlap, the more accurate the reproduction of λ.  It is important to 

note that the λ estimates reported here are likely to be less accurate than those reported 

in Chapter 4. The reason for this is because, by specifying a fixed set of weights, the 
model we are estimating no longer approximates the data generating pattern (which 

generally simulates weights for two intervals, one significant and one nonsignificant). λ 

must therefore compensate for this mismatch, and the results are liable to be inaccurate, 
particularly for the second set of weights (the lambda model recognizes all p values 
greater than .05 as nonsignificant and does not by default understand a two-tailed alpha 
level of .95).  

Such inaccuracy is not much of a concern in this context, however, because meta-
analysts are using these results only as a sensitivity analysis and will be more interested 

in the general magnitude of λ than in its precise value. 

Figure 26 displays the results for cells with I2 of 0%, using the first set of fixed 
weights (representing moderate one-tailed selection). The lines now represent bias 
patterns, rather than models; the solid line depicts the cases where no bias is present in 
one group and weak bias is present in the other, and so on.  
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 In the top left panel of  

Figure 26, the estimate of λ is fairly accurate for the “None vs. Strong” and “Weak vs. 

Strong” bias patterns when k is 48 and 172. By k of 172, even the estimate of “None vs. 
Weak” is approaching the population value. The same general pattern holds in the bottom 
left and bottom right, although the estimates are less accurate. The “None vs. Strong” and 
“Weak vs. Strong” bias patterns in the top right panel, where bias is generated as an 
exponential function of p-values, yield the most inflated estimates. 
 

 

Figure 26. Estimates of λ across methods of bias generation and bias pattern from cells 

with I2 of 0%, using selection pattern 1. 
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Figure 27 displays the results for cells with I2 of 75%, using the first set of fixed 
weights.

 
Figure 27. Estimates of λ across methods of bias generation and bias pattern from cells 

with I2 of 75%, using selection pattern 1. 
 
 The same overall pattern holds in Figure 27 as it does in  

Figure 26, with the note that, in general, the estimates of λbecome more accurate in the 

presence of some heterogeneity, and they are still fairly accurate even across methods of 
bias generation.  
 We now move on to the results from the second selection pattern. Figure 28 

displays the average estimates of λ for cells with I2 of 0%, using the second set of fixed 

weights (representing moderate two-tailed selection bias). 
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Figure 28. Estimates of λ across methods of bias generation and bias pattern from cells 

with I2 of 0%, using selection pattern 2. 
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Figure 29 displays the results for cells with I2 of 75%, using the second set of 
fixed weights. 

 
Figure 29. Estimates of λ across methods of bias generation and bias pattern from cells 

with I2 of 75%, using selection pattern 2. 
 
 If heterogeneity is present (and high), the model is surprisingly robust to 
violations of its assumptions. Even when a set of weights has been specified that directly 
conflicts with the model’s assumptions, it does a relatively good job of reproducing the 
predicted values. (Of note, however, is the fact that it still performs most poorly in the top 
right panel, the case where bias is generated as an exponential function of p-value. That 
specific generation mechanism consistently results in the least accurate estimates.) 
 

5.3 Conclusions 

 

 This chapter presents a version of the lambda model that can work with a fixed set 

of weights and estimating only λ. Doing so allows interested meta-analysts to 

implement the lambda model on empirical datasets, regardless of the sample size of said 
datasets. In the process, of course, the researcher sacrifices the ability to rely on the 
adjusted parameter estimates, as they are no longer being estimated from the observed 
data. He or she, however, gains the opportunity to test out a wide range of selection 
patterns on their data, and to learn about the differences in bias patterns across groups in 
the process. 
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 The simulation presented in this chapter yields promising results. Even in cases 
where the fixed set of weights represents a pattern of two-tailed selection (a condition 
that the lambda model, in its present form, cannot yet handle correctly), even when 
selection bias is generated in a way that violates the model assumptions, and even in the 
presence of high heterogeneity, the lambda model generally does a good job of 
approximating the predicted parameter value.  
 In future research, it may be worthwhile to extend this simulation to different sets 
of fixed weights. Implementing this version of the lambda model on additional 
substantive datasets, such as those presented in Coburn and Vevea (2015), would also be 
productive. For now, however, we proceed to Chapter 6 – a Bayesian implementation of 
the lambda model. 
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Chapter 6: Bayesian Adaptations with R and JAGS 

 

 Previously, all discussions of the lambda model have referred to it in the context 
of maximum-likelihood estimation. This estimation method has several useful properties. 
Under certain circumstances and as the sample size approaches infinity, maximum 
likelihood yields consistent, efficient, asymptotically normal, and minimum variance 
estimates (Scholz, 1985). However, with finite sample sizes, maximum-likelihood 
estimation is not always ideal. The lambda model often involves estimating many 
parameters relative to a small dataset. Using maximum likelihood, the meta-analyst’s best 
hope of obtaining model convergence (and reasonable parameter values) is to reduce the 
number of parameters. For the smaller datasets, reducing the number of parameters may 
mean eliminating most p-value cutpoints, perhaps leaving only one (often at p = 0.05). In 
these cases, the model is still a useful tool, of course – but it would certainly be more 
useful if more weights were estimated. Therefore, it is advantageous to estimate the 
model using a method that is not so easily affected by sample size.  
 Using maximum likelihood to estimate the lambda model poses an additional 
complication. To ensure that the model is identified, at least one parameter must be fixed; 
this is accomplished by constraining the weight for the first p-value interval equal to 1 
and interpreting the weights for subsequent intervals relative to it. In other words, a 
weight of 0.50 indicates that effect sizes with p-values in that interval are half as likely to 
survive selection as those with p-values in the first interval. In the maximum-likelihood 
context, a weight of 0.50 does not mean that effect sizes in that interval have a 50% 
chance of survival. This example is somewhat intuitive; however, if subsequent weights 
were estimated at 0.76, 1.23, and 0.41, understanding and interpreting the results can 
quickly become difficult. 
 Bayesian estimation is an ideal candidate for handling both issues. It is not based 
on large sample theory, and therefore large samples are not required to obtain 
convergence (van de Schoot & Depaoli, 2014). A body of work exists, including but not 
limited to simulation studies, demonstrating the benefits of Bayesian statistics in the 
context of small data sets (e.g., van de Schoot & Depaoli, 2014; Zhang et al., 2007). 
Additionally, in Bayesian statistics, parameter estimates are obtained from a posterior 
distribution, which is formed from the combination of the likelihood given the data and 
the prior distribution. Rather than constraining the first weight to one, the meta-analyst 
can specify a relevant prior distribution, i.e. U(0, 1). As the meta-analyst goes on to 
specify priors – typically U(0, 1) – for the subsequent weights, these weights still cannot 
be interpreted as probabilities (because it is impossible to know the number of effect sizes 
that existed in each interval prior to selection), but they can be interpreted relative to each 
other, rather than only to the first weight. For example, consider using Bayesian 
estimation with p-value cutpoints at 0.05 and 0.10. This creates three intervals: p < 0.05, 
0.05 < p < 0.10, and 0.10 < p < 1.00. Assume that the model yields weight estimates for 
these intervals of 0.80, 0.50, and 0.20 (respectively). These can now be interpreted 
relative to each other. In a Bayesian context, the meta-analyst can make statements like, 
“Effect sizes with p-values between 0.10 and 1.00 are 40% less likely to survive selection 
than those with p-values between 0.05 and 0.10.” (Note that 0.40 = 0.20/0.50.) 
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This interpretation is more intuitive and allows the meta-analyst to compare all 

intervals, rather than being forced to compare each weight to the first. Being able to 
interpret the model results in this way also makes the model more user-friendly and 
approachable. For these reasons, among the others presented above, the lambda model is 
an ideal candidate for Bayesian estimation. 

 

6.1 Implementing the Lambda Model 

 

 I have created a Bayesian version of the lambda model using R (R Core Team, 
2017) and JAGS, or Just Another Gibbs Sampler (Plummer, 2003). The R package 
R2jags (Yu-Sung & Masanao, 2015) provides a wrapper for JAGS in the R interface, 
making it easy to estimate models and run simulations through the R console. Because 
the density of the lambda model is not pre-specified in JAGS, the way that common 
densities are (e.g.  the normal density), I employed a method called the “zeroes trick” 
(Lund, Jackson, Best, Thomas, & Spiegelhalter, 2013) to code and implement the model.  

 The zeroes trick relies on the fact that a Poisson observation of zero, or ψ(0), has 

a likelihood of ��Z.5 Setting λ equal to the negative log of the desired arbitrary 

likelihood, or −log ^� (where i is an index of sample size) and specifying a set of zeroes 
as observed data yield the desired likelihood contribution. It is important to keep in mind, 

however, that 2 must ultimately be positive because it is the mean of the Poisson 
distribution; therefore, the zeroes trick occasionally requires adding a constant to the 
negative log-likelihood. The value of the constant does not matter, as long as it is 

sufficiently large to ensure 2 remains positive. 
 Specification of prior distributions is a crucial aspect of Bayesian estimation. 
Priors must be specified for every parameter that is estimated in the model. In the case of 
the lambda model, this means priors must be specified for the mean (or intercept) and any 

conditional means, the variance component, λ, and weights for the p-value intervals. 

The ability to specify a prior distribution incorporating one’s own knowledge about the 
parameters involved is one of the premier benefits of Bayesian estimation. However, 
poorly or incorrectly specified priors may seriously impact the resulting posterior 
distributions and parameter estimates (for an example, see Depaoli, 2014), and research 
exploring so-called non-informative priors indicates that such priors may be more 
informative than believed (Gelman, 1996, 2006, 2009). As a compromise, some authors 
advocate weakly-informative priors, which attempt to remain vague while still restricting 
the parameter space to plausible values (Gelman, 2009); this can be especially helpful 
with complex models. 
 I used the same set of priors for all the Bayesian analyses presented in this 

chapter. For the mean, or β0, I specified a prior of N(0, 0.000012); this yields a 

distribution centered at zero with precision that is also essentially zero (0.0000000001), 
or a very, very wide normal distribution centered at zero. The prior for the inverse 

variance component, 1/τ2, is Γ(0.001, 0.001), or a gamma distribution with shape (α) 

                                                        
5 λ is absolutely standard notation for the Poisson distribution. In this paragraph only, use of λ is 

specific to the Poisson context. In all other cases, λ refers to the corresponding parameter of the lambda 

model. 
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and rate (β) parameters set to 0.001. Almost all the mass in such a prior distribution is 

near zero. The gamma distribution is a common conjugate prior in Bayesian estimation, 
and is often used as a prior for measures of precision (the inverse of a variance). It is used 
here for the same reason; precision cannot be negative and is positively skewed. There 
are no moderators in these simulations, so the remaining parameters are the weights and 
λ. The priors for all the weights are U(0, 1) – a uniform distribution from zero to one. The 
weights are bounded in this way so that, although they are not technically probabilities, 

they can roughly be interpreted as such. The prior for λ is U(0, 100). This is done in part 

to mirror the priors for the weights and in part because λ cannot be negative. The upper 

bound of the prior is set to 100; in practice, it is possible, although highly unlikely, that 

λ could exceed 100, but for the purposes of this dissertation, such a situation did not 

arise. Setting the upper bound at 100 will ideally aid model estimation by constraining 
the results to a reasonable range. 
 Bayesian analysis, which originally required (often difficult) analytical integration 
or approximation, can now be conducted much more easily using Markov chain Monte 
Carlo methods (Krushke, Aguinis, & Joo, 2012). The principle of Monte Carlo 
integration is that one can approximate a given posterior distribution using a large 
representative random sample of parameter values drawn from said distribution (Gilks, 
Richardson, & Spiegelhalter, 1996). From this large sample, the user can calculate the 
posterior mean, quantiles, shape, and so on (Krushke, Aguinis, & Joo, 2012). Rather than 
needing to compute complicated integrals, Monte Carlo integration allows us to generate 
a sample of parameter values simply by specifying a prior distribution and the form of the 
relevant likelihood function. Markov chains are used to handle the sampling procedure. 
In a Markov chain, the next sample drawn from a given distribution depends only on the 
current state of the chain – that is, on the current sample (Gilks, Richardson, & 
Spiegelhalter, 1996). Assuming that the chain does not start in a wildly inappropriate 
location (in other words, that its initial values are reasonable), and subject to certain terms 
and regulatory conditions, the Markov chain will eventually “forget” its initial state and 
converge on a unique posterior distribution (Gilks, Richardson, & Spiegelhalter, 1996). 
When the chain begins, however, each sample, or state, will depend more highly on the 
previous states and therefore on the initial values. Averaging across all states, or samples, 
in the chain without taking this early dependence into account would bias the posterior 
parameter estimates. As a result, analysts usually set aside a certain number of early 
samples as a “burn-in period” to be discarded. The length of the required burn-in period 
often varies depending on several factors, including the complexity of the model and the 
specific initial values; because of this, it is beneficial to conduct a trial run and determine 
the burn-in period based on the chain’s behavior. 
 In some cases, it may be difficult for a model to converge on a unique posterior 
distribution. If each new sample (or state) of a chain depends too highly on the previous 
sample, some autocorrelation is present. Allowing the chain to run for a longer period can 
often eliminate this problem. However, with Bayesian estimation, computational power 
may be at a premium, and longer run times are not always practical. In this case, or if 
data storage is limited and the user physically cannot store every iteration of the chain, a 
“thinning” parameter may be used. Thinning a chain results in discarding iterations, much 
like the burn-in process – although, rather than discarding a block of iterations at the 
start, thinning maintains every nth iteration. That is, if the thinning parameter is set to 5, 
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the first four iterations are discarded, the fifth is maintained, and so on. If the thinning 
parameter is 1, all iterations are stored. Of course, different researchers have different 
opinions of thinning. In this dissertation, I always set the thinning parameter to 1 unless 
otherwise specified. I saved all iterations of all replications in all simulation cells. 
 It is also advisable to run multiple Markov chains, rather than just one. Views on 
this issue have also been conflicting, with recommendations ranging from many short 
chains to a few long ones or to one extremely long chain (Gelfand and Smith, 1990; 
Gelman and Rubin, 1992a, b; Geyer, 1992; Gelman, 1995). If multiple chains are 
estimated, it is important to determine that convergence has occurred not only within the 
chains but also across the chains.  With more complicated models, particularly mixture 
models, other complications such as label switching may arise (Jasra, Holmes, & 
Stephens, 2005). Overall, running multiple long chains is generally worthwhile if 
possible (Gilks, Richardson, & Spiegelhalter, 1996); if one long chain seems to have 
converged but there is no convergence across chains, this may lead to an important 
investigation of the model or initial values. The researcher may also use a different set of 
initial values for each chain to ensure that their results are not dependent on the initial 
values, providing additional support for model convergence (Gelman and Rubin, 1992a, 
b; Gelman, 1995). 
 One also must determine when to stop the chains – that is, how long the chains 
should be, or how many iterations they will consist of. The chains should run long 
enough for their results to converge; if too much autocorrelation is present, the chains 
should be run longer. For simple models, the chains may converge after a relatively low 
number of iterations. Much like the issue of sample size in substantive research, more 
iterations are almost always better; however, also much like the sample size issue, the 
longer a chain the more expensive it is (in terms of computing power and storage space). 
Of course, once the chain has completely converged, additional iterations are not likely to 
change the value of the posterior estimates drastically. The difficulty lies in determining 
how long is “long enough.” Finally, the researcher must also decide on some set(s) of 
initial values. With multiple chains, it is useful to give each chain a unique set of initial 
values; this allows one to assess the impact of any given starting position, and 
convergence across the chains in this case will reinforce one’s confidence in the posterior 
parameter estimates.  
 Bayesian estimation certainly requires a lot of decisions on the part of the 
researcher (more so than maximum-likelihood estimation). It is complicated, and 
sometimes decisions that seem small can have an unforeseen impact on the results. If 
thoroughly researched and carefully conducted, however, Bayesian estimation yields 
many benefits. 
 The next section presents the results of the Bayesian lambda model, using the 
substantive dataset described previously. Finally, the last section of this chapter presents 
the results of a simulation exploring the performance of the Bayesian lambda model. 
 

6.2 Example 

 

 For the Bem et al. (2016) dataset, I estimated the Bayesian lambda model with six 
p-value cutpoints, resulting in a total of six estimated weights (as the first weight now 
does not need to be fixed to one). Estimating so many intervals in a maximum-likelihood 
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context is often difficult, depending upon the size of the dataset. However, Bayesian 
estimation handles the problem easily. 
 The p-value cutpoints I specified are p = 0.025, 0.05, 0.10, 0.50, 0.90, and 1.00; 
these match the cutpoints specified for the example in Chapter 4. I generated three chains, 
each with 5,000 burn-in iterations and each retaining 15,000 iterations post-burn-in, and 
each with its own unique (automatically generated) set of initial values. I specified the 
other information (regarding priors and thinning) as described above. I coded the earlier 
studies (published before 2011) as 1’s and the later studies (published after 2011) as 0’s. 
 

6.2.1 Model Convergence 

 

 Before examining the model parameter estimates, it is important to assess model 
convergence. It is impossible to prove convergence, but it is possible to fail to provide 
evidence of non-convergence. There are many convergence diagnostics for Bayesian 
estimation, both within-chains and between-chains. Several of these diagnostics are 
included in the R2jags package (Yu-Sung & Masanao, 2015). Gelman (2004) provides a 
useful discussion of convergence diagnostics. 
 The first method I used is the Gelman-Rubin (1992) convergence diagnostic. It 
compares the variance in parameter estimates between chains to the variance in the 
estimates within chains, essentially by conducting an analysis of variance (ANOVA) 
(Gelman & Rubin, 1992). If there is a significance difference between the variances, this 
indicates that the chains have not converged; that is, that there is a difference between 
chains, which can only be due to their differing initial values (Gelman & Rubin, 1992). 
Ideally, the chains have been allowed to run for so many iterations that they “forget” 
where they started (i.e., their initial parameter values), and their starting places will have 
no impact on their variance. The ANOVAs will be nonsignificant and the test statistic for 
each parameter, which follows an F-distribution, will be approximately 1. If the test 
statistics are greater than 1 and there is a difference between the chains, running the 
chains for longer would likely eliminate this difference and reduce the impact of the 
starting values by the scale of the test statistic. Therefore, the test statistics are called the 
“potential scale reduction factors” (PSRF). 

 For this dataset, there are ten parameters – the mean, the variance component, λ, 

and seven weights. I ran the Gelman and Rubin (1992) diagnostic with the function 
gelman.diag( ). All nine parameters, including the deviance parameter, yielded a PSRF of 
exactly 1.00. Guidelines indicate that PSRF below 1.10 suggest adequate convergence 
(Gelman & Rubin, 1992); therefore, all parameters appear to show no signs of non-
convergence across all three chains. 
 Figure 30 shows plots of the development of the scale reduction factors for each 
parameter across the chain iterations. These indicate whether the chains may be stable at 
reduced numbers of iterations. Although, for the Bem et al. (2016) dataset, the chains 
may be stable before reaching 15,000 iterations, data storage is not remotely an issue, so 
there is no reason to reduce the number of iterations. 
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Figure 30. Plots of the development of scale reduction factors for each parameter. 
 
 The Geweke (1992) diagnostic is also useful. It is calculated once per chain, and it 
is based on a test for the equality of the means of the first and last parts of a given 
Markov chain. By default, the “first” part is defined as the beginning 10% of the post-
burn-in iterations, and the “last” part as the final 50% (Geweke, 1992), although these 
proportions can be manually altered. If the means of these two parts are equal for each 
chain, there is no evidence of non-convergence. The test statistic for the Geweke (1992) 
diagnostic follows an asymptotically standard normal distribution. If the test statistic is 
significant for any parameter within a chain, that indicates that said parameter has not 
reached convergence. 
 I ran the Geweke (1992) diagnostic using geweke.diag( ) and calculated the p-
values for each test statistic. For the first chain, the means of the two chain segments did 
not differ significantly for any of the parameter estimates (all p > 0.05). For the second 
chain, two parameters (the fourth and fifth weights) reached significance (p < .05). For 
the third chain, none of the parameters were significant (p > .05). Examining the other 
convergence diagnostics and the actual trace plots for each parameter will determine 
whether this is a concern. 
 The Heidelberger-Welch (Heidelberger & Welch, 1981; 1983) diagnostic test uses 
the Cramer-von-Mises statistic to test the null hypothesis that the parameter values for 
each individual chain come from a stationary distribution. It is applied first to the entire 
chain; if the null hypothesis is rejected, indicating that the parameter distribution is not 
stationary, the first 10% of the chain is discarded and the test conducted again. This 
procedure continues until the first 50% of the chain is discarded; if the null hypothesis is 
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still rejected, this constitutes “failure” of the test, or evidence of non-convergence, and 
indicates that more iterations are needed.  
 To run this and the upcoming final diagnostic test, I installed the superdiag (Tsai, 
Gill, & Rapkin, 2015) R package and used the superdiag( ) function. This function also 
automatically calculates the Geweke (1992) and Gelman and Rubin (1992) diagnostics as 
well. All parameters, for all chains, passed the Heidelberger-Welch test for a stationary 
start. In addition, all parameters (again for all chains) passed the Heidelberger-Welch 
halfwidth test. Neither of these tests presents any evidence of non-convergence. 
 Finally, I implemented an MCMC diagnostic that aims to determine the number 
of iterations required to reach a given level of precision for each parameter estimate 
(proposed by Raftery & Banfield, 1991; Raftery & Lewis, 1992). The goal of this 
diagnostic is to determine the minimum number of burn-in (defined as M) and post-burn-
in (N) iterations required, as well as the minimum thinning interval (k), to reach ideal 
precision. Precision is defined by a preset quantile of interest (e.g., 0.025, 0.50, etc.), 
degree of accuracy, and probability. The diagnostic tool then produces a lower-bound 
value (minimum number) for M, N, and k based upon these preset criteria.  
 For the Raftery and Lewis (1992) diagnostic, the superdiag( ) function 
automatically varies the specified quantile (q), accuracy (r), and probability (s) per chain. 
For Chain 1, q = 0.001, r = 0.005, and s = 0.95; the diagnostic produced a minimum of 
3,746 iterations post-burn-in. For Chain 2, q = 0.1, r = 0.005, and s = 0.90, and the 
diagnostic produced a minimum of 9,740 post-burn-in iterations. Finally, for Chain 3, q = 
0.05, r = 0.005, and s = 0.999; in this case, the diagnostic produced a minimum number 
of 20,573 post-burn-in iterations. For all three chains, the model was estimated with 
15,000 post-burn-in iterations, so it is likely that no more iterations are necessary to 
achieve the specified levels of precision – at least according to the Raftery and Lewis 
(1992) diagnostic. (Regarding the third chain, I will tentatively assume that 15,000 are 
enough, keeping the other evidence in mind and knowing that this diagnostic can be 
overly optimistic in terms of the minimum number of iterations.)  
 These convergence diagnostics, of course, are not without flaws, and a 
conscientious researcher should not base their conclusion regarding convergence or non-
convergence solely on the results of these statistical tests. For instance, the Geweke 
(1992) and Heidelberger-Welch (1981; 1983) diagnostics are conducted once per 
parameter per chain, resulting in a total of sixty statistical tests and an inflated Type I 
error rate. It is also possible that these diagnostics are wrong – a test may not be 
significant, but evidence of non-convergence may still be present. With that in mind, we 
proceed to examine trace plots of the three chains for each of the ten parameters.  
 Trace plots are a crucial aspect of assessing convergence. They are essentially a 
line graph of the time series for each parameter, plotting the values of the parameter 
estimates by iteration. If there are multiple chains, the chains are often plotted on top of 
one another, differentiating by color, which also facilitates comparisons between the 
chains (Fernández-i-Marín, 2016). The trace plots contain only the post-burn-in 
iterations, so the chains should have “forgotten” their starting values and stabilized, and 
the trace plot should show white noise, a fuzzy blur. Trace plots displaying no evidence 
of non-convergence are often described as caterpillars; for an ideal trace plot, see Figure 
31.  
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Figure 31. An example of the ideal trace plot. 
 
 Trace plots for all estimated parameters are presented in Figure 32. 

If there is some sign of pattern or tendency in the time series of the chains, this 
indicates potential non-convergence; the objective is for a trace plot to appear random. 
Note that the trace plot for the mean resembles Figure 31 quite well. There are some 
spikes, but overall these spikes appear to be nothing more than random noise. In 
comparison, the trace plot for the variance component is bounded by the lower limit; the 
variance component cannot be negative, and therefore its parameter estimate cannot be 
lower than zero. The trace plot for λ is bounded by its lower limit of zero. For these 
cases, and in the subsequent trace plots of the weight estimates, notice that the upper or 
lower bounds of the parameter estimates influence the behavior of the chains. This is 
reasonable and not cause for concern; the trace plot for the variance component is often 
affected in such a way. Overall, the trace plots do not appear distinctly abnormal (for 
meta-analytic trace plots). 
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 Now that we have calculated a range of convergence diagnostics and manually 
examined the trace plots for each of the parameter estimates, and because we have found 
no evidence of non-convergence, we can proceed to the posterior distributions of the 
parameters. 
 

6.2.2 Model Results 

 

 It is useful to examine a histogram, or a density plot of the posterior broken down 
by chain; this provides additional information about whether the chains have converged 
in the same place and allows for comparison across chains (Fernández-i-Marín, 2016). 
The following density plots represent each chain with a slightly different shade, denoted 
in the legend. The density plots for the posterior distributions of all parameters are 
presented in Figure 33. Table 6 presents the mean, median, and standard deviation of 
each posterior distribution. Note that, although thus far I have referred to the distribution 
of the inverse of the variance component, Table 6 presents the summary statistics 
transformed to present the variance component in its original metric for interpretation. 

Figure 32. Trace plots for all parameters, Bem data. 
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Figure 33. Posterior distributions of all parameters, Bem data. 

 

Table 6. Posterior distribution of the Bem dataset, summary statistics. 

Parameter Mean Standard 

Error 

ML 

Estimates 

Intercept 
0.05259 0.01671 0.02283 

Variance Component 
0.00137 0.00174 N/A 

Lambda (λ) 
0.64140 0.34553 0.86589 

Weight 1 
0.85161 0.12046 1.00000 

Weight 2 
0.79033 0.15156 0.47020 

Weight 3 
0.64742 0.19612 0.24681 

Weight 4 
0.43765 0.14283 

0.28793 

Weight 5 
0.68756 0.18621 0.26683 

Weight 6 
0.58967 0.22930 0.54729 

 

 Unlike maximum-likelihood estimation, which produces point estimates, 
Bayesian estimation yields entire distributions for each parameter, and so permits the 
researcher to directly estimate the standard errors of the parameters. Therefore, the 
Bayesian standard errors are included in Table 6. 
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 We can refer to Table 3 to compare the Bayesian parameter estimates with the 
parameter estimates from the maximum-likelihood version of the lambda model. (I have 
also added those maximum-likelihood estimates to Table 6 for convenience.) One glaring 
difference is the estimate of the variance component; with maximum-likelihood 
estimation, we were unable to estimate a random-effects model at all and had to settle for 
a fixed-effect model. The Bayesian model does not reduce the estimate of the mean quite 
as far as the maximum-likelihood version; this is likely partially due to the estimation of 
the variance component and partially because the pattern of weights in the Bayesian 
version is not quite as drastic. Of course, remember that the weights are not directly 
comparable. For instance, to get an estimate of Weight 2 from the Bayesian model in the 
maximum-likelihood context, we would calculate its value relative to the value of Weight 
1:  0.79033/0.85161 = 0.92804, a less severe weight. 
 It is also worth noting that some of the weights in the Bayesian context may be 
less extreme because information from the prior distribution can compensate for a lack of 
observed data in each interval. Weight 5 is an example of a case where the Bayesian 
estimate is larger. There are fewer observed effect sizes in that p-value interval, so the 
mean of the prior distribution (0.50, the mean of a uniform distribution from 0 to 1) may 
have more impact. This is not necessarily a flaw. It likely just means that, in the case of 
smaller datasets, the Bayesian version of the lambda model may err on the side of 
conservatism. 
 In the next section, I discuss the results of a simulation (proposed in Chapter 3) to 
explore the performance of the Bayesian lambda model. 
 

6.3 Simulation Results 

 

 I conducted approximately 10,000 replications per cell. For each replication, I 
estimated the Bayesian lambda model with the priors described previously. I used three 
chains for each model, with 1,000 burn-in and 5,000 post burn-in iterations per chain, and 
a thinning interval of 1, meaning that there was no thinning and each iteration was 
retained. The results of the simulation are described below. 
 

6.3.1 Convergence 

 

This Bayesian simulation is very large, and all its corresponding data were stored. 
Given its collective size, the individual data are not particularly easy to manipulate. As a 
result, I assess model convergence using two diagnostic tests, and then survey trace plots 
from a few individual models.  

Rather than assessing Gelman’s potential scale reduction factor for each 
individual parameter in each of these models, I used what is known as the global potential 
scale reduction factor (GPSRF) to assess convergence of the entire model. The GPSRF 
automatically retains the maximum difference among all individual PSRFs for a model.  
 Across all cells, the average GPSRF was 1.016. The median of the distribution of 
GPSRF was 1.013, and the maximum GPSRF across all cells was 1.043, with a third 
quartile of 1.023. Guidelines indicate that PSRF below 1.10 suggest adequate 
convergence (Gelman & Rubin, 1992). Based on this rule of thumb, none of the cells 
display evidence of non-convergence. Of course, rules of thumb are not always reliable, 



98 

 

 

so it is useful to assess model convergence using other methods as well. With this in 
mind, I also used the Geweke (1992) diagnostic, as described previously. 
 Across all cells, the Geweke (1992) diagnostic test was non-significant for every 
single parameter. The average p-value of the diagnostic test per parameter ranged from a 
low of p = 0.45 to a high of p = 0.49, and no p-values were lower than 0.36. This also 
indicates that none of the cells displayed evidence of non-convergence. 
 Finally, as demonstrated, it is very useful to examine trace plots of the parameter 
estimates. The reader can likely imagine that doing this for every replication would be 
cumbersome. I do not present additional trace plots here. However, for each of several 
models that I selected and assessed, the trace plots did not differ much from those 
presented as a substantive example. With that, and with the results of the PSRF and the 
Geweke (1992) diagnostic, I conclude that the models, in general, do not bear cause for 
concern. 
 

6.3.2 Mean Estimate 

 

 The results for the average estimate of the mean are presented much as they were 
in Chapter 4. The plots presented here compare the average estimate of four models – the 
Bayesian lambda model, the maximum likelihood version of the lambda model, an 
unadjusted meta-analytic model, and the original Vevea and Hedges (1995) weight-
function model. A single horizontal line at 0.20 represents the population mean pre-
selection, and the models are distinguished by different line types. 
 Again, I begin with cells where the selection mechanism matches the model. 
Figure 34 displays the results for cells where I2 is 0%, and Figure 35 displays those for 
cells where I2 is 75%.  
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Figure 34. Estimates of the mean from cells with I2 of 0%, bias generated with Method 1. 
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Figure 35. Estimates of the mean from cells with I2 of 75%, bias generated with Method 
1. 
 
 When I2 is 0%, the Bayesian version of the lambda model performs almost 
identically to the maximum likelihood version, except for a few cases where the Bayesian 
version slightly underestimates the mean. When I2 is 75%, the maximum likelihood 
estimate is more accurate in most cases, while the Bayesian model is at least a slight 
underestimate.  
 This may be the case for a few reasons. Bayesian estimation differs from 
maximum likelihood estimation in some fundamental ways. It is possible that these cases 
of underestimation are due to the influence of the prior distribution(s). It is also possible 
that the results would differ if the initial values were changed, or if the models were run 
for more iterations. 
 Figure 36 and Figure 37, respectively, display the results of cells where I2 is 0% 
and selection bias was generated as an exponential function of p-value (Method 2, as 
described in Chapter 3). 
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Figure 36. Estimates of the mean from cells with I2 of 0%, bias generated with Method 2. 
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Figure 37. Estimates of the mean from cells with I2 of 75%, bias generated with Method 
2. 
 
 These figures reveal something unexpected and encouraging. Across cells, when 
bias is not generated according to model specifications, the Bayesian version of the 
lambda model produces a more accurate estimate of the mean. Although it sometimes 
underestimates the mean, it performs better than the maximum likelihood version when 
model assumptions are violated – sometimes much better. 
 This pattern is continued in Figure 38, Figure 39, Figure 40, and Figure 41, which 
display the results of cells with 0% and 75% I2 where bias was generated according to 
Method 3 and Method 4. 
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Figure 38. Estimates of the mean from cells with I2 of 0%, bias generated with Method 3. 
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Figure 39. Estimates of the mean from cells with I2 of 75%, bias generated with Method 
3. 
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Figure 40. Estimates of the mean from cells with I2 of 0%, bias generated with Method 4. 
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Figure 41. Estimates of the mean from cells with I2 of 75%, bias generated with Method 
4. 
 
 Across cells, the Bayesian model continues to perform better than its maximum 
likelihood counterpart when bias is not generated according to the model assumptions. 
These results are very encouraging. 
 The next section assesses the Bayesian estimate of the lambda parameter. 
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6.3.3 Lambda Estimate 

 

 Figure 42 displays the results of cells where I2 is 0%, and Figure 43 the cells 
where I2 is 75%. Again, the gray lines represent approximately ideal values of lambda per 
bias pattern. The line types in these plots represent levels of bias pattern. 
 

 
Figure 42. Estimates of lambda across methods of bias generation and bias pattern from 
cells with I2 of 0%. 
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Figure 43. Estimates of lambda across methods of bias generation and bias pattern from 
cells with I2 of 75%. 
 
 In terms of the lambda parameter, the Bayesian model performs very similarly to 
the maximum likelihood model. By the time the number of studies has reached 172, the 
estimate is fairly accurate. When k is small, around 12, the estimate of lambda is worse, 
which is to be expected, especially since the lambda parameter is more difficult to 
estimate accurately than the mean effect size. 
 

6.4 Conclusions 

 

 The Bayesian version of the lambda model is surprisingly robust to violations of 
model assumptions; in fact, it is more robust in most cases than the maximum likelihood 
version. If meta-analysts bear in mind that the Bayesian version of the lambda model can 
sometimes be overly conservative, the Bayesian version can be very useful. In fact, if 
there is a reason to believe that model assumptions have been violated, the Bayesian 
version may be preferable. 
 Future work should involve exploring the Bayesian model further. Changing the 
specified priors, the initial values, the number of chains, and the number of burn-in or 
post burn-in iterations may affect the performance of the model and understanding such 
changes in performance would be informative.
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Chapter 7: weightr: Software for Model Implementation 

 

 Software design, although often overlooked by researchers and statisticians, is 
arguably the most important area of model development. The reason is simple – if no one 
can use the model, there is no reason for the model to exist. A statistician might develop 
the “perfect” model – one with no bias, absolute accuracy, and capable of explaining all 
variance – but such a model is irrelevant if it cannot be used; it is a theory, not a tool. 
 It is possible to argue that empirical researchers should not need software to 
implement models, or that anyone interested in using a model should be capable of 
writing the code to implement it themselves. In the case of calculating a mean or a t-test, 
that is true. However, as models become more complicated, so does their implementation. 
An empirical researcher may be very interested in using structural equation modeling to 
assess a phenomenon but sitting that researcher down before a blank R terminal is 
unlikely to yield much success. It is implausible to expect an empirical user to be willing 
to dedicate as much time and effort to implementing a model as the models’ creators. 
Maintaining such an expectation will result in nothing but disappointment and may 
prevent the model from ever being used at all. Therefore, it is in statisticians’ best 
interests to ensure that the models they develop are both widely available and (relatively) 
easy to estimate. 
 Sometimes, as with selection modeling and publication bias, researchers may 
agree that a certain class of models performs best in a given situation, but the models are 
difficult to estimate or no software to do so is available. As a result, the area of research 
may stagnate, while empirical researchers use more convenient (but less effective) tools 
(e.g., the failsafe-N). For example, in publication bias assessment, many articles will note 
that selection models perform best, but very few meta-analysts employ selection models 
(Ferguson & Brannick, 2012); instead, the failsafe N is most commonly used, despite its 
long list of well-documented flaws. The Vevea and Hedges (1995) model was first 
published over 20 years ago but has received only 145 citations since then, a small 
number considering the model’s performance and capabilities. The primary reason for the 
model’s limited use is almost certainly the fact that it was, up until about two years ago, 
difficult to access.  In contrast, the Vevea and Woods (2005) model was published with 
usable code and, despite being 10 years more recent, has been cited 188 times. 
 Some statistical software, like SPSS, SAS, and Comprehensive Meta-Analysis (to 
name a few), is proprietary, meaning that the author of said software can restrict or 
prevent any modifications of it. Fortunately, though, the research world has recently 
begun to turn away from proprietary programs and toward free, open-source software like 
R (R Core Team, 2017). Rather than struggling to write and submit a macro for a brand-
new model that can fit into pre-existing software, statisticians can use R to create their 
own software in the form of R packages containing functions and even point-and-click 
applications. This software is then available to any interested parties, who can easily 
implement it themselves by accessing R and loading the required package. As of this 
writing, there are 12,726 packages available for download and installation on the 
Comprehensive R Archive Network (CRAN), the most common source of package 
distribution, and innumerable packages available on GitHub, a popular git network for 
package development. There are even conferences held focusing solely on R development 
and package usage, like useR! (a forum for the R community), rstudio::conf (about all 
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things R and RStudio), the Shiny Developer Conference (for developers of R Shiny 
applications), and more.  Many well-known companies also use R, including Facebook, 
Google, Twitter, the New York Times, Microsoft, Zillow, and the Food and Drug 
Administration (FDA). 
 For these reasons and many more, R is an ideal host for today’s budding 
programmer. I have used R to implement not only the lambda model and its variations 
presented here but also the Vevea and Hedges (1995) and the Vevea and Woods (2005) 
model. I developed a package dubbed weightr (for “weight-function models estimated in 
R,” and pronounced “waiter”). This chapter is styled as a “package vignette” – the term 
for a document released in conjunction with an R package, intended for users as a tutorial 
or guide. During the vignette, any text meant to be entered at an R terminal is presented 
in Courier New font to distinguish it as a command. 

Although a package vignette typically begins with an introduction fleshing out the 
concepts behind the software, I omit that section in lieu of the previous dissertation 
chapters, and begin. 

 

7.1 The weightr Package 

 

 My R package, weightr, provides a single function that can estimate all the 
models described above.6 weightr is available via the Comprehensive R Archive Network 
(CRAN), at https://cran.r-project.org/package=weightr, and can be installed directly 
through R by the commands install.packages(“weightr”) and library(“weightr”), assuming 
that the user is connected to the Internet. The current version of weightr is 1.1.2, and it 
was last updated on April 4th, 2017. If CRAN detects that the version of weightr on a 
user’s machine is out of date, it can either notify the user or update the package 
automatically. To any users who encounter “bugs,” or problems, while working with 
weightr, I invite feedback and communication. My contact information as package 
maintainer is provided on CRAN. 
 

7.1.1 Specifying Data 

 

 Before beginning to work with weightr, the user should note that weightr is not 
designed to handle all aspects of conducting meta-analyses. The package cannot, for 
instance, generate a forest plot or a cumulative meta-analysis. It does not possess an 
effect-size calculator. This is for a few reasons; first, many packages already exist that are 
more than capable of handling these aspects, including metafor (Viechtbauer, 2010). 
Second, that is not the purpose of weightr. weightr exists to do one primary task – that is, 
to estimate the Vevea and Hedges (1995) class of models – and to do it well. 
 Meta-analysts should not prepare to use weightr until they are equipped with a set 
of effect sizes and their corresponding sampling variances (as well as any moderator 
variables of interest). For meta-analysts in need of an effect-size calculator, metafor 
contains the function escalc(), and effect sizes can be extracted from said function with 

                                                        
6 Again, note that the lambda model variants will not be publicly available until the models are 

formally published. 
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relative ease. For this tutorial, however, it is easiest to work with the two datasets 
contained within weightr, as they are automatically installed along with the package. 

The first dataset, dat.bangertdrowns2004, is the smaller of the two, with k of 48. I 
have sourced the data from metafor (Viechtbauer, 2010), where it was extracted from a 
meta-analysis on the effects of school-based writing-to-learn interventions on academic 
achievement (Bangert-Drowns, Hurley, & Wilkinson, 2004). It contains some moderator 
variables. The second dataset, dat.gatb, is much larger; it consists of the results of 755 
studies assessing the General Aptitude Test Battery (GATB)’s predictive validity of job 
performance. Although the actual GATB consists of several scales, this dataset only 
assesses the General Ability subscale. Interested users may learn more about the 
substantive aspects of these datasets through their CRAN documentation and citations.  

We begin with the GATB data. Users can view the beginning of the data frame by 
entering the command head(dat.gatb); doing so will result in a screen like Figure 44. 

 

  
Figure 44. The beginning of the GATB dataset in weightr. 
 
 The first column, z, contains the Fisher’s z-transformed correlation coefficients; 
the second column, v, contains their corresponding sampling variances, calculated as 
1/(N – 3). This dataset contains a column of effect sizes and a corresponding column of 
variances, so it is ready for use with weightr. 
 We can view the beginning of the Bangert-Drowns data by entering the command 
head(dat.bangertdrowns2004), which yields Figure 45: 
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Figure 45. The beginning of the Bangert-Drowns dataset in weightr. 
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 This dataset contains more columns, most of which are moderator variables.  The 
last two columns, yi and vi, contain the effect sizes and their corresponding sampling 
variances; therefore, this dataset, too, is ready for use with weightr. 
 

7.1.2 Visualizing Data 

 

 It is inadvisable to begin an investigation of publication bias without first 
assessing the data visually, and a funnel plot is an excellent way of doing so. 
Conveniently, the function shiny_weightr() launches a local point-and-click interface that 
can produce both a funnel plot and a density plot. The user need only enter the command 
shiny_weightr() to launch the application. This interface is also available online, for those 
who have not installed R on a local machine, at 
https://vevealab.shinyapps.io/WeightFunctionModel/.  

First, we will work with the GATB data. To read data into the Shiny application, 
users must have the dataset saved as a file on their computer. The application accepts 
several file formats and structures and allows users to specify whether their file contains a 
header and how it is separated. I export dat.gatb from R as a text file with the command 
write.table(dat.gatb, "gatb.txt", sep="\t"). Clicking on the Browse… button and 
navigating to the location of the data file yields Figure 46. 

 
Figure 46. The beginning of the GATB dataset in weightr, point-and-click interface. 
 
 Note that I have selected some options in the menu on the left – namely, that the 
file contains a header and that the data are separated by tabs. Changing these options will 
change the display of the data on the right. Users need only select the correct options 
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corresponding to their data file, or the options which result in the data displaying 
correctly. Here, the column X.V1. contains the Fisher’s z-transformed correlation 
coefficients, and the column X.V2. their corresponding sampling variances. 
 I have also exported the Bangert-Drowns dataset, 
write.table(dat.bangertdrowns2004, "bangertdrowns2004.txt", sep="\t"), and I can upload 
this data as well. I do so here for the purposes of demonstration. However, take note that 
the Shiny application can accommodate only one dataset at once; in practice, switching 
back and forth is not likely to be practical. See Figure 47 for the beginning of the 
Bangert-Drowns dataset in Shiny. 
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Figure 47. The beginning of the Bangert-Drowns dataset in weightr, point-and-click interface. 
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 Once the user has uploaded a data file and selected the columns of effect sizes and 
variances using the menu on the left, clicking the tab labeled Funnel Plot yields Figure 48 
(for the GATB data) or Figure 49 (for the Bangert-Drowns data).   
 

 
Figure 48. A funnel plot of the GATB dataset in weightr. 
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Figure 49. A funnel plot of the Bangert-Drowns dataset in weightr. 
 

 Note that the funnel plot weightr produces differs from conventional funnel plots. 
Rather than plotting effect sizes on the horizontal axis, weightr plots them on the vertical 
axis, resulting in the appearance of a horizontal funnel rather than a vertical one. This 
change is done partly for theoretical reasons and partly for practical ones. Theoretically, 
when one constructs a scatterplot, the usual convention is to associate the random 
variable with the vertical axis and the fixed variable with the horizontal; in the case of a 
funnel plot, effect sizes are the random variable of interest. Therefore, in keeping with 
graphical traditions, a vertical funnel plot is fundamentally incorrect. In addition, in terms 
of practicality, a vertical funnel plot can be hard to read, particularly in situations where 
many small studies are clustered in one area. However, I recognize that vertical funnel 
plots are widely used, and users who prefer them can check the box labeled “Plot effect 
sizes on x-axis.” 
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 There are other checkboxes present above the funnel plot as well; users can opt to 
plot a line at the unadjusted or adjusted mean effect sizes, or to add contour lines at 
whatever p-value cutpoints they have specified, which results in a contour-enhanced 
funnel plot. Interested users may also turn the plot into an interactive tool by checking 
“Make funnel plot interactive,” allowing them to identify the x- and y-values or p-values 
corresponding to a specific point or set of points. Figure 50, featuring the GATB data, is 
an example of this tool: 
 

 
Figure 50. An interactive funnel plot of the GATB dataset in weightr. 
 

 By clicking, double-clicking, clicking and dragging (“brushing”), or hovering, 
users can select up to four different arrangements of points and view the values 
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corresponding to those points at once. Hovering over a point yields its p-value, while the 
others yield x- and y-coordinates; the point with a p-value of 0.44 is indicated with a red 
square. 
 Users will also find two sliders below the non-interactive funnel plot, one for 
height and one for width (both measured in pixels). These sliders exist because the point-
and-click interface will constrict or expand the plot automatically along with the 
boundaries of the window or web page. Although this may sometimes be helpful, it can 
be a hindrance when trying to assess a plot. The sliders allow users to specify their ideal 
dimensions. 
 Let us return to Figure 48 and Figure 49 and assess the original funnel plots, as 
was our intent. For the GATB dataset, the density of the plot is not constant throughout; 
there appear to be fewer smaller effect sizes, which may be a sign of bias. For the 
Bangert-Drowns dataset, there is also a drop-off in density around the effect size of zero, 
and a lack of symmetry. However, as this dataset is small, the change in density may be 
an artifact of sample size. 

The other unique feature of interest in the Shiny application is the density plot. If 
the user clicks on the tab labeled “Density Plot,” they will see a graph much like Figure 
51, below: 

 

 
Figure 51. A density plot of the GATB dataset in weightr (the Shiny application). 
 

 The density plot provides a graphical representation of the adjustment performed 
by the weight-function model. If no publication bias is present, the effect sizes are 
assumed to be normally distributed, with a mean equal to their unadjusted mean and a 
variance equal to their unadjusted variance component (plus their typical sampling 
variance). This unadjusted density is depicted by the dashed line. The solid line, on the 
other hand, depicts the adjusted density, where the expected density for effect sizes 
within each given p-value interval is multiplied by the estimated weight for the 
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corresponding interval. Greater density in an area, therefore, represents a greater 
likelihood of effect-size survival. (Remember, of course, that the weight for the first 
interval is fixed to one, and other intervals should be interpreted relative to it.) 
 Each “bump” in the solid line, then, represents a p-value cutpoint. Beginning from 
the far right, which corresponds to the first p-value interval, users can see a slight 
decrease (the shift from a weight of 1.00 to a weight of 0.84), another decrease (to a 
weight of 0.69), and so on. Users may wonder why the solid line, representing the 
adjusted density, falls outside of the unadjusted density, despite the reduced weights. In 
answer, recall that the mean and variance of the adjusted density differ as well. In this 
case, the variance-component estimate was adjusted upward, so it is perfectly logical that 
the adjusted density might be wider and, therefore, might sometimes fall outside its 
unadjusted counterpart. 
 These are the features of the Shiny application that pertain to data visualization. 
For model estimation, we now turn to the other aspect of weightr, the R function 
weightfunct(). Note that the Shiny application can implement these models as well; users 
need only select and/or input relevant choices in the sidebar, much as they select effect 
sizes and sampling variances.  
 

7.1.3 Model Estimation (Vevea and Hedges, 1995) 

 

 For the details of interval selection, refer to discussions of the process in Chapters 
1, 3, and 4. Assessing the funnel plot can aid in selecting intervals; it may be useful, for 
instance, to include p-values that correspond with areas of changes in density. Including p 
= 0.50 may be of interest; it is the point at which many effect-size metrics become 
negative.  

The GATB data we are using were originally analyzed in Vevea, Clements, and 
Hedges (1993); we can use the same cutpoints to replicate their analysis. These cutpoints 
are p = 0.001, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.50, and 1.00; they were chosen 
in part due to their psychological relevance and in part to obtain approximately equal 
numbers of observed effect sizes per interval (Vevea, Clements, & Hedges, 1993). The 
size of the GATB dataset is one of its major benefits; it contains so many effect sizes that 
we can specify a large number of p-value cutpoints. 

To estimate the model on the GATB data in the R console, users can implement 
the R function weightfunct(). For GATB, this code might look something like: 
weightfunct(effect = dat.gatb$z, v = dat.gatb$v). Effect sizes and variances are the only 
two arguments that are absolutely required, because, by default, the program uses one 
cutpoint at p = 0.025 (which corresponds to a two-tailed alpha level of 0.05). With the 
GATB data, to specify more cutpoints, we enter: weightfunct(effect = dat.gatb$z, v = 
dat.gatb$v, steps = c(0.001, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.50)). (Note that it 
is not necessary to enter the cutpoints in numerical order, as the function will sort them; 
nor is it necessary to manually include a cutpoint at p = 1.00, or one at p = 0.00.)  

Running this command estimates both aspects of the Vevea and Hedges (1995) 
model – an unadjusted model that corresponds to the traditional fixed-effect, mixed-
effects, or random-effects meta-analytic model, and a bias-adjusted model. The output 
will resemble that featured in Figure 52. 
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Figure 52. The Vevea and Hedges (1995) model estimated on the GATB data. 
 
 The function provides a lot of information, which can be visually overwhelming. 
The estimates of the mean (or intercept) and variance component will likely be of 
primary interest, both for the unadjusted and adjusted models, as will their corresponding 
standard errors. The likelihood-ratio test may also be informative. The estimates for the 
weights provide information about the pattern of publication bias, although individually 
they may be more difficult to interpret.  

The estimate of the mean has been reduced from 0.2602 to 0.1903 – an 
attenuation of about 27%. The variance component has increased from 0.0109 to 0.0176. 
The likelihood-ratio test is significant, with df = 9 and p < 0.05. This indicates that the 
adjusted model is a better fit for the data. Finally, note that the weights for the p-value 
intervals generally decrease moving from p of 0.001 to p of 1, indicating that effect sizes 
with larger p-values are less likely to survive selection. For this data, it appears that 
publication bias may be present.  

The command table=TRUE will cause the output to include a table of observed 
effect sizes and p-value intervals. weightfunct(effect = dat.gatb$z, v = dat.gatb$v, steps = 
c(0.001, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.50), table=TRUE)  yields Figure 53. 
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Figure 53. A table of observed effect sizes and p-value intervals based on the GATB data. 
 

The table command is useful in practice; when meta-analysts are selecting a series 
of p-value cutpoints for the Vevea and Hedges (1995) model, they will find the model has 
difficulty converging if there are few (or no) observed effect sizes in an interval. 
(Logically, of course, it is impossible to estimate a parameter with no data.) For the 
GATB example, with the selected cutpoints described above, all intervals contain 
observed effect sizes, so ideally there will be no problems with estimation. 

Another feature of interest is the command fe=TRUE, which forces the software 
to estimate fixed-effect models. This is especially useful in the case of a “border 
condition,” or circumstances in which the variance component is very near zero and 
difficult to estimate. The package default is fe=FALSE, a random-effects (or mixed-
effects) model. Entering the line: weightfunct(effect = dat.gatb$z, v = dat.gatb$v, steps = 
c(0.001, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.50), fe=TRUE) yields Figure 54. 
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Figure 54. A fixed-effect version of the Vevea and Hedges (1995) model, estimated on 
the GATB data. 
 
 Note that information about the variance component is now missing for both 
models. Estimating a fixed-effect model ignores the between-studies heterogeneity that is 
present in the data and yields different estimates of the mean and weights. However, if 
the variance component were zero or near zero, there would be no difference between the 
fixed-effect and random-effects model results. 
 To analyze the Bangert-Drowns data, we will need to select a smaller number of 
cutpoints, because there are fewer effect sizes. However, the Bangert-Drowns dataset has 
an interesting feature of its own; it includes several potential moderators of effect size. 
First, let’s estimate a random-effects meta-analytic model, without moderators, to choose 
a set of p-value cutpoints. 
 Running the command weightfunct(effect = dat.bangertdrowns2004$yi, v = 
dat.bangertdrowns2004$vi, table=TRUE) yields Figure 55.  
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Figure 55. The Vevea and Hedges (1995) model estimated on the Bangert-Drowns data, 
two cutpoints. 
 
 There are 34 observed p-values greater than p = 0.025, so we can likely add 
several cutpoints. The command weightfunct(effect = dat.bangertdrowns2004$yi, v = 
dat.bangertdrowns2004$vi, table=TRUE, steps=c(0.025, 0.05, 0.10, 0.50)) yields Figure 
56. 
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Figure 56. Attempting to estimate too many p-value cutpoints with the Vevea and Hedges 
(1995) model. 
 
 The package produces a warning when there are three or fewer observed effects in 
a given p-value interval. (Three is an arbitrary small number; the warning does not 
guarantee that an estimation problem has occurred, merely alerts the user to the 
possibility.) There are only 2 observed effects in one interval and 6 in another. If we 
remove the cutpoint at p = 0.05, things may look more reasonable. The command 
weightfunct(effect = dat.bangertdrowns2004$yi, v = dat.bangertdrowns2004$vi, 
table=TRUE, steps=c(0.025, 0.10, 0.50)) yields Figure 57. 
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Figure 57. The Vevea and Hedges (1995) model estimated on the Bangert-Drowns data 
with adequate cutpoints. 
 
 Now no intervals contain three or fewer observed effects, and we can see that the 
mean estimate (under intercept) has been adjusted downward from 0.2207 to 0.0189 – a 
drastic change. Effect sizes with p > 0.50 are, in fact, only about 0.06 times as likely to 
survive as effect sizes with p < 0.025. Although the likelihood-ratio test is nonsignificant 
(p = 0.34), possibly due to the smaller number of effects and the limited number of 
cutpoints, the drastic reduction in effect size is informative. In practice, users should try 
out a few sets of cutpoints and observe the resulting fluctuation in estimates. If the effect 
estimate is resilient and does not change much, the data are likely to be robust to possible 
publication bias. In this case, however, the estimate was reduced so far that publication 
bias is likely to be a threat to this dataset. 
 Now we can explore some of the moderators in this dataset. For this example, we 
will work with the variables length and grade. Recall that the Bangert-Drowns data 
studies the effectiveness of school-based writing-to-learn interventions on academic 
achievement. Length is a continuous moderator representing the length of the intervention 
in number of weeks. Grade is a categorical moderator representing the grade during 
which the intervention was administered, with four levels (1 = elementary, 2 = middle, 3 
= high school, 4 = college). The values of grade are numeric, but the variable is 
categorical, so we need to redefine the variable and tell R that it is a factor. To do so, we 
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use the command grade <- as.factor(dat.bangertdrowns2004$grade). We also redefine 
length by mean-centering it: length <- (dat.bangertdrowns2004$length - 
mean(dat.bangertdrowns2004$length, na.rm=TRUE)). We usually mean-center 
continuous variables in contexts where a score of zero on the variable is difficult to 
comprehend; mean-centering is also advantageous when calculating interaction terms. 
 To run the mixed-effects model, we enter the command: weightfunct(effect = 
dat.bangertdrowns2004$yi, v = dat.bangertdrowns2004$vi, steps = c(0.025, 0.10, 0.50), 
mods = ~length + grade). This yields Figure 58. 
 

 
Figure 58. The Vevea and Hedges (1995) model estimated on the Bangert-Drowns data 
with moderators of effect size. 
 
 The unadjusted intercept, after including these two moderator variables, is now d 
= 0.22; it represents the average effect of school-based writing-to-learn programs on 
academic achievement when the length of the program is 9.83 weeks (the average length) 
and the program is administered in elementary school (level 1 of grade).  
 The unadjusted length parameter estimate is approximately d = 0.013, which 
indicates that for every week longer the program is, the effect on academic achievement 
increases by approximately 0.013 standard deviations.  
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 For levels 2, 3, and 4 of the grade variable (representing middle school, high 
school, and college, respectively), we can calculate the unadjusted conditional means by 
summing the intercept and each of the respective parameter estimates.  The conditional 
mean for middle school programs is 0.2222223 – 0.261698 = -0.039475, indicating that 
such programs in middle school reduce academic achievement, albeit only by about 0.04 
standard deviations. The conditional mean for college is less than that for middle school 
programs as well, although there is still an improvement in academic achievement (d = 
0.216). The largest improvement in academic achievement occurs in high school, where 
the unadjusted conditional mean is d = 0.329.  
 The adjusted intercept (the effect of elementary school programs that are 9.83 
weeks long) is reduced by about 50%, to d = 0.100. The length parameter estimate hasn’t 
changed too much; it has moved from d = 0.013 to d = 0.011. The conditional mean for 
middle school programs has been adjusted downward, from d = -0.039 to d = -0.1183. 
For high school programs, it has been adjusted from d = 0.329 to d = 0.17716. Finally, 
for college programs, it has moved from d = 0.216 to d = 0.07223. 
 In this case, the estimates for grade levels are reduced more than the estimate for 
length. This certainly can happen and is, in fact, one of the advantages of this model; the 
model does not restrict conditions to be adjusted in the same direction or to the same 
degree. The effect of grade level appears to be more vulnerable to publication bias than 
the effect of length.  
 The model provides a notification at the bottom, informing users that two cases 
were removed from the dataset due to the presence of missing data. The command 
weightfunct(effect = dat.bangertdrowns2004$yi, v = dat.bangertdrowns2004$vi, steps = 
c(0.025, 0.10, 0.50), mods = ~length + grade)$removed tells us that those cases were row 
numbers 34 and 35. We can view those cases with the command 
dat.bangertdrowns2004[34:35,], which results in Figure 59.  
 

 
Figure 59. Cases with missing data removed by weightr. 
 
 
These two cases were removed because they had no scores, or scores of NA, on the length 
variable. 
 Researchers who use the model (or models) for simulation purposes will likely 
want to extract the model results and store them. To do so, save the output of 
weightfunct( ) as an object (here called wf_out). Then commands such as 
wf_out$unadj_par will produce a vector of the unadjusted estimates, and so forth. The 
command wf_out[1] extracts the first element of a list, which prints out the more 
technical output of the unadjusted model (see Figure 60).   
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Figure 60. Extracting the Hessian matrix from weightr. 
 
From this, users can extract the Hessian matrix, which contains all the information 
necessary to calculate the standard error for each parameter, as well as corresponding z-
tests and p-values. (This process is not described here for the sake of brevity.) 
 I have described the process of estimating the Vevea and Hedges (1995) model. I 
now move on to the Vevea and Woods (2005) model, followed by the lambda model 
variations. 
 

7.1.4 Model Estimation (Vevea and Woods, 2005) 

 

 To estimate the Vevea and Woods (2005) model, users need only add the single 
argument weights to weightfunct( ). This argument allows users to input a pre-specified 
vector of weights for their corresponding p-value cutpoints. 
 For the GATB example, we ran weightfunct(effect = dat.gatb$z, v = dat.gatb$v, 
steps = c(0.001, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.50)) to estimate the model. We 
can specify weights for those p-value intervals. There are 10 intervals, so we must specify 
10 weights. The command weightfunct(effect = dat.gatb$z, v = dat.gatb$v, steps = 
c(0.001, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.50), weights=c(1, 1, 1, 1, 1, 0.80, 
0.70, 0.60, 0.50, 0.10)) results in Figure 61. 
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Figure 61. The Vevea and Woods (2005) model estimated on the GATB data. 
 
 This pattern of weights represents a case in which all effect sizes with p-values 
below 0.05 survive selection, and the chance of survival drops from there until those with 
p-values above 0.50 are only 10% as likely to survive, relative to significant effects. This 
is a strong pattern of publication bias, which reduces the overall effect size from 0.26 to 
0.19.  
 A lot of information is absent in Figure 61 – no standard errors are provided, and 
everything based on the standard error is absent as well, including confidence intervals. 
The note explains why; the weights are not actually being estimated, so their standard 
errors are not meaningful. It is theoretically possible to calculate a standard error for the 
intercept, because that parameter is estimated, but the estimate is based purely on user-
specified information, so its standard error will not be meaningful either. The Vevea and 
Woods (2005) model is designed to allow users to test out a variety of selection patterns 
and observe their effect, rather than to estimate a pattern from the data. 
  The rest of the function operates as before. Users can calculate a fixed-effect 
model; they can include moderators, request a table of p-value cutpoints, extract results, 
and so on. The two important things to remember about the weights argument are that the 
user must specify the same number of weights as there are p-value intervals and that the 
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weights must be specified in the same order as the intervals they correspond to. (The 
latter is a good reason for specifying the p-value cutpoints in numerical order.) 
 We now move to estimation of the lambda model, the focus of this dissertation. 
 

7.1.5 Model Estimation (Lambda model; Coburn and Vevea, in prep) 

 

The lambda model is not yet implemented in the Shiny application, but that 
update is forthcoming, along with its public release. 
 To estimate this model and its variants, we will switch to the Bem et al. (2016) 
dataset, because neither the GATB nor the Bangert-Drowns dataset contains a moderator 
across which publication bias is likely to vary. To create a dummy-coded variable 
distinguishing the earlier studies from the later ones, we enter the command dummy <- 
c(rep(1, length(early$ES)), rep(0, length(later$ES))), creating a vector of ones with 
length equal to that of the early effect sizes and zeroes with length equal to that of the 
later effects.  
 To estimate the standard lambda model, exactly as described in Chapter 4 (a 
fixed-effect model with the same cutpoints), we run the command: weightfunct(effect = 
effects, v = variances, steps = c(0.025, 0.05, 0.10, 0.50, 0.90, 1.00), lambda_model = 
dummy, fe = TRUE). We set the argument lambda_model equal to the dummy-coded 
variable representing the relevant study characteristic. The output is featured in Figure 
62. 
 

 
Figure 62. The lambda model (in prep) estimated on the Bem data. 
 
 Note that the results correspond exactly to those described in Chapter 4.  



132 

 

 

 

 For the Vevea and Woods (2005) variant of the lambda model, as described in 
Chapter 5, we simply add the weights command. We match the pattern of selection 
described as “extreme two-tailed selection” in Chapter 5. The code is as follows: 
weightfunct(effect = effects, v = variances, steps = c(0.005, 0.01, 0.05, 0.10, 0.25, 0.35, 
0.50, 0.65, 0.75, 0.90, 0.95, 0.99, 0.95, 1), weights = c(1, 1, 1, .50, .25, .10, .10, .10, .10, 
.25, .50, 1, 1, 1), fe = TRUE, lambda_model = dummy). It yields Figure 63. 
 

 
Figure 63. The lambda model as sensitivity analysis (in prep) estimated on the Bem data. 
 
 Note that the results correspond exactly to those described in Chapter 5.  
 Although detailed examples are not provided here for the sake of space, it is of 
course possible to combine all the arguments described above with the lambda_model 
argument, including moderators of effect size, tables of p-values, and so on. It is also 
possible to extract parameter estimates in the same fashion as described. 
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7.2 Conclusions 

 

 I hope that this chapter aids interested users of the Vevea and Hedges (1995) 
model and its variations, including the lambda model. Using the weightr package, it is 
possible to replicate the analyses and simulations described in this dissertation. The 
package is already available for free through the Comprehensive R Archive Network (or 
CRAN), and it will include the lambda model once the model is released. 
 A model is useless if it cannot be implemented. In the time since the release of 
weightr, the package has been downloaded thousands of times and cited several times. I 
believe that it will continue to see use, and that the Vevea and Hedges (1995) class of 
models – including the lambda model – will gain popularity and traction as a result. 
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Chapter 8: Discussion 

 

 This dissertation begins in Chapter 1 by outlining the pervasive problem of 
publication bias. In Chapter 2, the issue is refined to that of study characteristics, such as 
funding source, and their influence on publication bias; evidence from various fields is 
provided. Chapter 3 describes the simulation used to evaluate the models included in the 
dissertation, and Chapters 4, 5, and 6 present several implementations of a new model, 
referred to as the lambda model, to address the role of study characteristics. Chapter 4 
implements a standard maximum-likelihood model, Chapter 5 implements a variant with 
fixed weights, and Chapter 6 demonstrates a Bayesian version. Finally, Chapter 7 
acknowledges the necessity of software for model implementation, and presents a tutorial 
on my R package, weightr, to implement various weight-function models. 
  There is no quick, simple cure for publication bias, no easy method of 
eliminating future bias or adjusting for its impact on all existing scientific research. 
However, we can always strive to improve. To eliminate sources of bias in future 
research, we can encourage the pre-registration of studies; we can ensure that our 
analyses are replicable and our data are available, as I have done in the Appendices of 
this dissertation. To adjust past studies’ results, we must understand that p-values are not 
the only factor impacting the likelihood of publication.  

The lambda model is not perfect – by necessity, it makes some restrictive 
assumptions – but it is an effective start. The simulation results reveal that the lambda 
model, in all its variants, tends to do a better job of reproducing the population mean than 
an unadjusted meta-analytic model when any degree of bias is present. In future research, 
I aim to conduct additional simulations on the performance of the lambda model. In 
addition, and perhaps more importantly, I will continue to dedicate my time and energy to 
this worthwhile cause – the quest to understand and eliminate publication bias in 
scientific literature. I sincerely hope that other researchers will join me, creating their 
own models and posing their own theories. In this way, we will improve the “science” of 
science. 
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Appendix A: Bem Dataset 

 

 The early variable here is coded 0 for studies published after 2011, 1 for studies 
published before 2011, and 2 for studies published in 2011. A PDF of the meta-analysis 
is available at the following URL: 
https://www.researchgate.net/profile/Patrizio_Tressoldi/publication/304843991_Feeling_
the_future_A_meta-
analysis_of_90_experiments_on_the_anomalous_anticipation_of_random_future_events/
links/5884ea3eaca272b7b44a858e/Feeling-the-future-A-meta-analysis-of-90-
experiments-on-the-anomalous-anticipation-of-random-future-events.pdf
 

Year Task N ES SE Early 

1 2013 
word 
recall 102 -0.054 0.098 0 

2 2009 priming 120 0.093 0.091 1 

3 2008 habituation 43 0.139 0.151 1 

4 2010 habituation 70 0.205 0.119 1 

5 2008 priming 50 0.471 0.147 1 

6 2009 habituation 46 0.268 0.148 1 

7 2011 reward 100 0.249 0.101 2 

8 2011 avoidance 150 0.194 0.082 2 

9 2011 priming 97 0.257 0.102 2 

10 2011 priming 99 0.202 0.101 2 

11 2011 habituation 100 0.221 0.1 2 

12 2011 habituation 150 0.145 0.082 2 

13 2011 habituation 200 0.092 0.071 2 

14 2011 
word 
recall 100 0.191 0.1 2 

15 2011 
word 
recall 50 0.412 0.145 2 

16 2012 reward 42 0.285 0.155 0 

17 2011 priming 169 0.108 0.077 2 

18 2013 
retro-
practice 67 0.255 0.123 0 

19 2006 priming 51 0.411 0.144 1 

20 2009 
word 
recall 38 -0.043 0.159 1 

21 2012 reward 59 0.145 0.129 0 

22 2012 
retro-
practice 194 0.139 0.072 0 

23 2012 
retro-
practice 416 0.061 0.049 0 

24 2012 word 112 -0.113 0.094 0 
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recall 

25 2012 
word 
recall 158 0 0.079 0 

26 2012 
word 
recall 124 0.114 0.09 0 

27 2012 
word 
recall 109 0.168 0.096 0 

28 2012 
word 
recall 211 -0.049 0.069 0 

29 2012 
word 
recall 106 -0.029 0.096 0 

30 2012 
word 
recall 2469 -0.005 0.02 0 

31 2005 habituation 47 0.085 0.144 1 

32 2012 reward 50 -0.05 0.139 0 

33 2012 reward 52 0.044 0.137 0 

34 2012 reward 50 0.159 0.14 0 

35 2012 reward 49 0.228 0.142 0 

36 2009 reward 41 0.182 0.155 1 

37 2008 reward 100 0.249 0.101 1 

38 2008 reward 25 0.504 0.206 1 

39 2008 reward 32 0.347 0.178 1 

40 2011 
word 
recall 88 0.026 0.106 2 

41 2012 avoidance 63 -0.012 0.124 0 

42 2012 avoidance 406 -0.024 0.05 0 

43 2012 avoidance 111 0.251 0.096 0 

44 2012 avoidance 201 0.21 0.071 0 

45 2012 avoidance 1222 0.068 0.029 0 

46 2012 avoidance 327 0.1 0.055 0 

47 2013 avoidance 640 0.052 0.04 0 

48 2010 
word 
recall 58 -0.012 0.13 1 

49 2004 habituation 40 0.313 0.159 1 

50 2001 habituation 72 0.178 0.118 1 

51 2004 habituation 183 -0.01 0.074 1 

52 2004 habituation 203 -0.06 0.07 1 

53 2004 habituation 203 0.07 0.07 1 

54 2003 priming 68 -0.129 0.121 1 

55 2010 habituation 20 0.249 0.218 1 

56 2012 
word 
recall 96 0.186 0.102 0 

57 2012 
word 
recall 98 0.111 0.101 0 

58 2012 habituation 50 -0.142 0.14 0 

59 2014 priming 28 -0.248 0.187 0 
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60 2009 priming 155 0.106 0.08 1 

61 2012 
word 
recall 50 0.015 0.139 0 

62 2012 
word 
recall 50 -0.219 0.141 0 

63 2012 
word 
recall 50 -0.04 0.139 0 

64 2011 
word 
recall 50 -0.118 0.14 2 

65 2012 priming 47 0.099 0.144 0 

66 2012 
word 
recall 50 0.078 0.139 0 

67 2012 priming 42 -0.096 0.152 0 

68 2012 
word 
recall 50 -0.042 0.139 0 

69 2003 habituation 84 0.17 0.109 1 

70 2002 priming 40 0.128 0.156 1 

71 2002 priming 50 0.166 0.14 1 

72 2002 priming 54 0 0.134 1 

73 2004 habituation 25 0.329 0.199 1 

74 2005 habituation 50 0.284 0.142 1 

75 2005 habituation 92 -0.018 0.103 1 

76 2013 
word 
recall 52 0.049 0.137 0 

77 2009 habituation 50 -0.163 0.14 1 

78 2013 
word 
recall 75 0.279 0.117 0 

79 2013 
word 
recall 25 0.292 0.198 0 

80 2013 
word 
recall 26 -0.399 0.198 0 

81 2012 text speed 48 0.06 0.142 0 

82 2012 text speed 60 -0.249 0.129 0 

83 2012 priming 100 0.036 0.099 0 

84 2012 
word 
recall 100 0.221 0.1 0 

85 2012 reward 103 0.12 0.098 0 

86 2012 
word 
recall 104 -0.007 0.097 0 

87 2013 
retro-
practice 102 0.152 0.099 0 

88 2012 reward 100 -0.022 0.099 0 

89 2000 reward 60 -0.076 0.128 1 

90 2006 habituation 52 0.046 0.137 1 
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Appendix B: R Simulation Code 

 

 The following code, with appropriate variations as necessary and where indicated, is sufficient to replicate all simulation cells 
presented in this dissertation. 
 
  ## Create a directory for the given cell: 
  setwd("K:/") 
  dir.create("Cell 72") 
  setwd("K:/Cell 72/") 
  start_time <- Sys.time() 
     
  ## Packages only need to be installed once, so the next lines can be commented out later. 
  install.packages("weightr") 
  install.packages("R2jags") 
  install.packages("tictoc") 
  install.packages("doParallel") 
   
  library(weightr) 
  library(R2jags) 
  library(tictoc) 
  library(doParallel) 
 
  source("C:/Users/kcobu/Desktop/Sample Size Functions.R") 
  
  ## These lines set up parallel processing. Number of cores may vary depending on computing power. (I used 15.) 
  detectCores() 
  cl <- makeCluster(15) 
  registerDoParallel(cl) 
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  ## This is the likelihood function for the adjusted lambda model. 
  neglike3 <- function(pars) { 
    vc = pars[1] 
    mn = XX %*% pars[2] 
    w = c(1, pars[3]) 
    lambda = pars[4] 
     
    eta = sqrt(v + vc) 
     
    contrib = log(w[wt]) 
    for (i in 1:length(dummy)) { 
      if (wt[i] > 1) { 
        if (dummy[i] == 1 && steps[wt[i]] > .05) { 
          contrib[i] = log(lambda * w[wt[i]]) 
        } 
      } 
    } 
    a = sum(contrib) 
    b = 1 / 2 * sum(((effect - mn) / eta) ^ 2) 
    c = sum(log(eta)) 
    Bij <- matrix(rep(0, number * nsteps), nrow = number, ncol = nsteps) 
    bi = -si * qnorm(steps[1]) 
    Bij[, 1] = 1 - pnorm((bi - mn) / eta) 
    if (nsteps > 2) { 
      for (j in 2:(length(steps) - 1)) { 
        bi = -si * qnorm(steps[j]) 
        bilast = -si * qnorm(steps[j - 1]) 
        Bij[, j] = pnorm((bilast - mn) / eta) - pnorm((bi - mn) / eta) 
      } 
    } 
    bilast = -si * qnorm(steps[length(steps) - 1]) 
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    Bij[, length(steps)] = pnorm((bilast - mn) / eta) 
     
    swbij = 0 
    for (j in 1:length(steps)) { 
      contrib = w[j] * Bij[, j] 
      for (i in 1:length(dummy)) { 
        if (j > 1) { 
          if (dummy[i] == 1 && steps[j] > .05) 
            contrib[i] = lambda * w[j] * Bij[i, j] 
        } 
      } 
      swbij = swbij + contrib 
    } 
     
    d = sum(log(swbij)) 
    return(-a + b + c + d) 
  } 
  
  ## This is the likelihood function for the Vevea and Woods (2005) version of the lambda model. 
  neglike4 <- function(pars) { 
    vc = pars[1] 
    mn = XX %*% pars[2] 
    w = weights 
    lambda = pars[3] 
     
    eta = sqrt(v + vc) 
     
    contrib = log(w[wt]) 
    for (i in 1:length(dummy)) { 
      if (wt[i] > 1) { 
        if (dummy[i] == 1 && steps[wt[i]] > .05) { 
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          contrib[i] = log(lambda * w[wt[i]]) 
        } 
      } 
    } 
    a = sum(contrib) 
    b = 1 / 2 * sum(((effect - mn) / eta) ^ 2) 
    c = sum(log(eta)) 
    Bij <- matrix(rep(0, number * nsteps), nrow = number, ncol = nsteps) 
    bi = -si * qnorm(steps[1]) 
    Bij[, 1] = 1 - pnorm((bi - mn) / eta) 
    if (nsteps > 2) { 
      for (j in 2:(length(steps) - 1)) { 
        bi = -si * qnorm(steps[j]) 
        bilast = -si * qnorm(steps[j - 1]) 
        Bij[, j] = pnorm((bilast - mn) / eta) - pnorm((bi - mn) / eta) 
      } 
    } 
    bilast = -si * qnorm(steps[length(steps) - 1]) 
    Bij[, length(steps)] = pnorm((bilast - mn) / eta) 
     
    swbij = 0 
    for (j in 1:length(steps)) { 
      contrib = w[j] * Bij[, j] 
      for (i in 1:length(dummy)) { 
        if (j > 1) { 
          if (dummy[i] == 1 && steps[j] > .05) 
            contrib[i] = lambda * w[j] * Bij[i, j] 
        } 
      } 
      swbij = swbij + contrib 
    } 
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    d = sum(log(swbij)) 
    return(-a + b + c + d) 
  } 
   
  ## This section specifies some information. First, the seed: 
  set.seed(3435) 
   
  ## Number of reps; note that this is processed in parallel, so it is number of reps per core. 
  reps <- 667 
   
  ## The variance component. I2 of 0% corresponds to vc of 0, 25% = 0.03, 50% = 0.08, and 75% = 0.23 
  ## K in each group is total k divided by 2; for 172, 86 
  vc1 <- 0.03 
  mu1 <- 0.2 
  k1 <- 86 
   
  vc2 <- 0.03 
  mu2 <- 0.2 
  k2 <- 86 
   
  start <- 1 
 

foreach(i = 1:15, .packages = c('weightr', 'R2jags',         'tictoc')) %dopar% { 
 

            while (start < reps) { 
 
              tryCatch({ 
 
                for (i in start:reps) { 
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                  tic() 
                   
                  ### Data Generation ### 
                   
                  ## Uncomment other data generation mechanisms as necessary. All four selection mechanisms are included here. ## 
                   
                  ## 1.0 
                  #  
                  # ## Group 0 ## 
                  #  
                  # # For strong: 
                  # w1 <- c(1.0, 0.2) 
                  # # For weak: 
                  # w1 <- c(1.0, 0.7) 
                  # # For none: 
                  w1 <- c(1.0, 1.0) 
 
                  output1 <- matrix(0,(20*k1),2) 
 
                  for(j in 1:(20*k1)) { 
 
                    n1a <- samplesize_no_outliers(1) 
                    n1b <- samplesize_no_outliers(1) 
 
                    v1 <- ( (n1a + n1b)/(n1a*n1b) ) + ( mu1^2/(2*(n1a + n1b)) ) 
                    d1 <- rnorm(1,mu1,sqrt(v1 + vc1)) 
                    p1 <- 1-pnorm(d1/sqrt(v1)) 
 
                    pint1 = 1 #p < .05 
                    if(p1 > .05) pint1 = 2 
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                    if(runif(1) < w1[pint1]) output1[j, 1:2] = c(d1,v1) 
 
                  } 
                   
                  output1 <- output1[rowSums(output1) !=0, , drop=TRUE] 
                  d1_survived <- output1[1:k1,1] 
                  v1_survived <- output1[1:k1,2] 
                   
                  # ## Group 1 ## 
                  #  
                  # # w2 <- c(1.0,1.0) 
                  # # For strong: 
                  # w2 <- c(1.0, 0.2) 
                  # # For weak: 
                  w2 <- c(1.0, 0.7) 
                  #  
                  output2 <- matrix(0,(20*k2),2) 
                  #  
                  for(j in 1:(20*k2)) { 
 
                    n2a <- samplesize_no_outliers(1) 
                    n2b <- samplesize_no_outliers(1) 
 
                    v2 <- ( (n2a + n2b)/(n2a*n2b) ) + ( mu2^2/(2*(n2a + n2b)) ) 
                    d2 <- rnorm(1,mu2,sqrt(v2 + vc2)) 
                    p2 <- 1-pnorm(d2/sqrt(v2)) 
 
                    pint2 = 1 #p < .05 
                    if(p2 > .05) pint2 = 2 
 
                    if(runif(1) < w2[pint2]) output2[j, 1:2] = c(d2,v2) 
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                  } 
 
                  output2 <- output2[rowSums(output2) !=0, , drop=TRUE] 
                  d2_survived <- output2[1:k2,1] 
                  v2_survived <- output2[1:k2,2] 
 
                  d <- c(d1_survived, d2_survived) 
                  v <- c(v1_survived, v2_survived) 
                  dummy <- c(rep(0,k1),rep(1,k2)) 
 
                  # ## 2.0 
                  # 
                  # ## Group 0 ## 
                  # 
   
                   # n1a <- samplesize_no_outliers(20 * k1) 
                   # n1b <- samplesize_no_outliers(20 * k1) 
                   #  
                   # v1 <- ((n1a + n1b) / (n1a * n1b)) + (mu1 ^ 2 / (2 * (n1a + n1b))) 
                   # d1 <- rnorm(20 * k1, mu1, sqrt(v1 + vc1)) 
                   # # 
                   # p1 <- 1-pnorm(d1/sqrt(v1)) 
 
                   # For selection, uncomment as needed. 
                   # .5 = weak, 2 = strong  
   
                   # prob1 <- exp(-.5*p1) 
                   # y1 <- rbinom(n=length(d1), size=1, prob=prob1) 
                   # df1 <- data.frame(y=y1, d=d1, v=v1, p=p1, prob=prob1) 
                   # data1 <- df1[(df1[,1] == 1),] 
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                   # d1_survived <- data1$d[1:k1] 
                   # v1_survived <- data1$v[1:k1] 
   
                   #  df1 <- data.frame(d = d1, v = v1) 
                   # # 
                   #  d1_survived <- df1$d[1:k1] 
                   #  v1_survived <- df1$v[1:k1] 
   
                   # 
                   # ## Group 1 ## 
                   # 
   
                   # n2a <- samplesize_no_outliers(20 * k2) 
                   # n2b <- samplesize_no_outliers(20 * k2) 
                   # # 
                   # v2 <- ((n2a + n2b) / (n2a * n2b)) + (mu2 ^ 2 / (2 * (n2a + n2b))) 
                   # d2 <- rnorm(20 * k2, mu2, sqrt(v2 + vc2)) 
                   # # 
                   # p2 <- 1 - pnorm(d2 / sqrt(v2)) 
   
                   # prob2 <- exp(-2 * p2) 
                   # y2 <- rbinom(n = length(d2), 
                   #              size = 1, 
                   #              prob = prob2) 
                   # df2 <- data.frame( 
                   #   y = y2, 
                   #   d = d2, 
                   #   v = v2, 
                   #   p = p2, 
                   #   prob = prob2 
                   # ) 
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                   # data2 <- df2[(df2[, 1] == 1), ] 
                   # d2_survived <- data2$d[1:k2] 
                   # v2_survived <- data2$v[1:k2] 
   
                    # df2 <- data.frame(d=d2, v=v2) 
                   # 
                    # d2_survived <- df2$d[1:k2] 
                    # v2_survived <- df2$v[1:k2] 
   
                   # d <- c(d1_survived, d2_survived) 
                   # v <- c(v1_survived, v2_survived) 
                   # dummy <- c(rep(0, k1), rep(1, k2)) 
 
                  # ## 3.0 
                  # 
                  # ## Group 0 ## 
                  # # 
                   # output1 <- matrix(0,(2000*k1),2) 
                  #  
                  #  # Steps = .1, .3, .5, .7, .9 
                  # w1 <- c(1,1,1,1,1,1) 
                  #  # Strong weights, possibly? 
                  #  #w1 <- c(0.2, 0.2, 0.2, 1, 1, 1) 
                  #  # Weak weights, possibly? 
                  #  w1 <- c(0.7, 0.7, 0.7, 1, 1, 1) 
                  #  
                  #  for(i in 1:2000*k1){ 
                  #  
                  #    n1a <- samplesize_no_outliers(1) 
                  #    n1b <- samplesize_no_outliers(1) 
                  #  
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                  #    v1 <- ( (n1a + n1b)/(n1a*n1b) ) + ( mu1^2/(2*(n1a + n1b)) ) 
                  #    d1 <- rnorm(1,mu1,sqrt(v1 + vc1)) 
                  #  
                  #    ef_int1 = 1 #effect is < .1 
                  #    if(d1 > .1 & d1 <= .3) ef_int1 = 2 
                  #    if(d1 > .3 & d1 <= .5) ef_int1 = 3 
                  #    if(d1 > .5 & d1 <= .7) ef_int1 = 4 
                  #    if(d1 > .7 & d1 <= .9) ef_int1 = 5 
                  #    if(d1 > .9) ef_int1 = 6 
                  #  
                  #    if(runif(1) < w1[ef_int1]) output1[i, 1:2] = c(d1,v1) 
                  #  } 
                  # # 
                  #  output1 <- output1[rowSums(output1) !=0, , drop=TRUE] 
                  #  d1_survived <- output1[1:k1,1] 
                  #  v1_survived <- output1[1:k1,2] 
                  #  
                  #  # 
                  #  # ## Group 1 ## 
                  #  # 
                   # output2 <- matrix(0,(2000*k2),2) 
                  #  
                  #  # Steps = .1, .3, .5, .7, .9 
                  #  # w2 <- c(1,1,1,1,1,1,1) 
                  #  # Strong weights, possibly? 
                  #  w2 <- c(0.2, 0.2, 0.2, 1, 1, 1) 
                  #  # Weak weights, possibly? 
                   # w2 <- c(0.7, 0.7, 0.7, 1, 1, 1) 
                  #  # w2 <- c(1,1,1,1,1,1) 
                  #  
                  #  
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                  #  for(i in 1:2000*k2){ 
                  #  
                  #    n2a <- samplesize_no_outliers(1) 
                  #    n2b <- samplesize_no_outliers(1) 
                  #  
                  #    v2 <- ( (n2a + n2b)/(n2a*n2b) ) + ( mu2^2/(2*(n2a + n2b)) ) 
                  #    d2 <- rnorm(1,mu2,sqrt(v2 + vc2)) 
                  #  
                  #    ef_int2 = 1 #effect is < .1 
                  #    if(d2 > .1 & d2 <= .3) ef_int2 = 2 
                  #    if(d2 > .3 & d2 <= .5) ef_int2 = 3 
                  #    if(d2 > .5 & d2 <= .7) ef_int2 = 4 
                  #    if(d2 > .7 & d2 <= .9) ef_int2 = 5 
                  #    if(d2 > .9) ef_int2 = 6 
                  #  
                  #    if(runif(1) < w2[ef_int2]) output2[i, 1:2] = c(d2,v2) 
                  #  } 
                  #  
                  #  output2 <- output2[rowSums(output2) !=0, , drop=TRUE] 
                  #  d2_survived <- output2[1:k2,1] 
                  #  v2_survived <- output2[1:k2,2] 
                  # # # # 
                  #  d <- c(d1_survived, d2_survived) 
                  #  v <- c(v1_survived, v2_survived) 
                  # dummy <- c(rep(0,k1),rep(1,k2)) 
                  #  
                  # ## 4 
                  # # Chance of survival is a logistic function of effect size 
                  # # 
                  # # ## Group 0 ## 
                  # # 
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                  # n1a <- samplesize_no_outliers(20 * k1) 
                  # n1b <- samplesize_no_outliers(20 * k1) 
                  #  
                  # v1 <- ((n1a + n1b) / (n1a * n1b)) + (mu1 ^ 2 / (2 * (n1a + n1b))) 
                  # d1 <- rnorm(20 * k1, mu1, sqrt(v1 + vc1)) 
                  #  
                  # #prob2 for strong, prob4 for weak 
                  # # prob2 <- exp(5*(d1 - 0.464))/(1 + exp(5*(d1 - 0.464))) 
                  # # prob4 <- exp(3*(d1 - -0.464))/(1 + exp(3*(d1 - -0.464))) 
                  #  
                  # # If no selection, comment out lines 411-416 
                  #  
                  # # y1 <- rbinom(n=length(d1), size=1, prob=prob4) 
                  # # df1 <- data.frame(y=y1, d=d1, v=v1, prob=prob4) 
                  # # data1 <- df1[(df1[,1] == 1),] 
                  #  
                  # # d1_survived <- data1$d[1:k1] 
                  # # v1_survived <- data1$v[1:k1] 
                  #  
                  # # If selection IS present, comment out lines 420-421 
                  #  
                  # d1_survived <- d1[1:k1] 
                  # v1_survived <- v1[1:k1] 
                  #  
                  # # ## Group 1 ## 
                  # # 
                  # n2a <- samplesize_no_outliers(20 * k2) 
                  # n2b <- samplesize_no_outliers(20 * k2) 
                  #  
                  # v2 <- ((n2a + n2b) / (n2a * n2b)) + (mu2 ^ 2 / (2 * (n2a + n2b))) 
                  # d2 <- rnorm(20 * k2, mu2, sqrt(v2 + vc2)) 
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                  #  
                  # # prob2 for strong, prob4 for weak -- change other lines 
                  # # prob2 <- exp(5*(d2 - 0.464))/(1 + exp(5*(d2 - 0.464))) 
                  # prob4 <- exp(3*(d2 - -0.464))/(1 + exp(3*(d2 - -0.464))) 
                  #  
                  #  
                  # # If no selection, comment out lines 437-442 
                  #  
                  # y2 <- rbinom(n=length(d2), size=1, prob=prob2) 
                  # df2 <- data.frame(y=y2, d=d2, v=v2, prob=prob2) 
                  # data2 <- df2[(df2[,1] == 1),] 
                  #  
                  # d2_survived <- data2$d[1:k2] 
                  # v2_survived <- data2$v[1:k2] 
                  #  
                  # # If selection IS present, comment out lines 446-447 
                  #  
                  # # d2_survived <- d2[1:k2] 
                  # # v2_survived <- v2[1:k2] 
                  #  
                  # d <- c(d1_survived, d2_survived) 
                  # v <- c(v1_survived, v2_survived) 
                  # dummy <- c(rep(0,k1),rep(1,k2)) 
                  #  
 
                  ###### Model Estimation ###### 
                   
                  ## Unadjusted Random-Effects Model ## 
                   
                  orig_models <- weightfunct(d, v) 
                  unadj_random <- rbind(orig_models[1][[1]]$par) 
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                  write.table( 
                    unadj_random, 
                    "unadj_random.csv", 
                    append = TRUE, 
                    row.names = FALSE, 
                    col.names = FALSE, 
                    sep = "," 
                  ) 
                   
                  ## Original Vevea and Hedges Model ## 
                   
                  orig_vandh <- rbind(orig_models[2][[1]]$par) 
                  write.table( 
                    orig_vandh, 
                    "orig_vandh.csv", 
                    append = TRUE, 
                    row.names = FALSE, 
                    col.names = FALSE, 
                    sep = "," 
                  ) 
                   
                  ## Lambda, weights "correctly" specified 
                   
                  steps <- c(.05, 1.0) 
                  npred <- 0 
                  intercept <- TRUE 
                  XX <- matrix(nrow = length(dummy), ncol = 1) 
                  XX[, 1] <- rep(1, length(dummy)) 
                  number <- length(dummy) 
                  nsteps <- 2 
                  effect <- d 
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                  si <- sqrt(v) 
                   
                  pars <- c(mean(v) / 4, mean(d), 0.1, 0.5) 
                   
                  wt <- rep(1, number) 
                  for (i in 1:number) { 
                    for (j in 2:nsteps) { 
                      if (-si[i] * qnorm(steps[j]) <= d[i] && 
                          d[i] <= -si[i] * qnorm(steps[j - 1])) 
                        wt[i] = j 
                    } 
                    if (d[i] <= -si[i] * qnorm(steps[nsteps - 1])) 
                      wt[i] = nsteps 
                  } 
                   
                  orig_lambda <- 
                    optim( 
                      par = pars, 
                      fn = neglike3, 
                      lower = c(0, -Inf, 0.01, 0.01), 
                      method = "L-BFGS-B", 
                      hessian = TRUE 
                    ) 
                  orig_lambda_pars <- rbind(orig_lambda$par) 
                  write.table( 
                    orig_lambda_pars, 
                    "orig_lambda.csv", 
                    append = TRUE, 
                    row.names = FALSE, 
                    col.names = FALSE, 
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                    sep = "," 
                  ) 
                   
                  ## Lambda Vevea and Woods (weights fixed, lambda free) Model 1 
                   
                  steps <- 
                    c( 
                      0.005, 
                      0.010, 
                      0.050, 
                      0.100, 
                      0.250, 
                      0.350, 
                      0.500, 
                      0.650, 
                      0.750, 
                      0.900, 
                      0.950, 
                      0.990, 
                      0.995, 
                      1 
                    ) 
                  nsteps <- length(steps) 
                   
                  pars1 <- c(mean(v) / 4, mean(d), 0.5) 
                  weights <- 
                    c(1, 
                      0.99, 
                      0.95, 
                      0.90, 
                      0.80, 
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                      0.75, 
                      0.65, 
                      0.60, 
                      0.55, 
                      0.50, 
                      0.50, 
                      0.50, 
                      0.50, 
                      0.50) 
                   
                  wt <- rep(1, number) 
                  for (i in 1:number) { 
                    for (j in 2:nsteps) { 
                      if (-si[i] * qnorm(steps[j]) <= d[i] && 
                          d[i] <= -si[i] * qnorm(steps[j - 1])) 
                        wt[i] = j 
                    } 
                    if (d[i] <= -si[i] * qnorm(steps[nsteps - 1])) 
                      wt[i] = nsteps 
                  } 
                   
                  orig_lambda_vw1 <- 
                    optim( 
                      par = pars1, 
                      fn = neglike4, 
                      lower = c(0, -Inf, 0.01), 
                      method = "L-BFGS-B", 
                      hessian = TRUE 
                    ) 
                  orig_lambda_vw1_pars <- rbind(orig_lambda_vw1$par) 
                  write.table( 
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                    orig_lambda_vw1_pars, 
                    "orig_lambda_vw1.csv", 
                    append = TRUE, 
                    row.names = FALSE, 
                    col.names = FALSE, 
                    sep = "," 
                  ) 
                   
                  ## Lambda Vevea and Woods (weights fixed, lambda free) Model 2 
                   
                  steps <- 
                    c( 
                      0.005, 
                      0.010, 
                      0.050, 
                      0.100, 
                      0.250, 
                      0.350, 
                      0.500, 
                      0.650, 
                      0.750, 
                      0.900, 
                      0.950, 
                      0.990, 
                      0.995, 
                      1 
                    ) 
                  nsteps <- length(steps) 
                   
                  pars2 <- c(mean(v) / 4, mean(d), 0.5) 
                  weights <- 
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                    c(1, 
                      0.99, 
                      0.95, 
                      0.90, 
                      0.80, 
                      0.75, 
                      0.60, 
                      0.60, 
                      0.75, 
                      0.80, 
                      0.90, 
                      0.95, 
                      0.99, 
                      1) 
                   
                  wt <- rep(1, number) 
                  for (i in 1:number) { 
                    for (j in 2:nsteps) { 
                      if (-si[i] * qnorm(steps[j]) <= d[i] && 
                          d[i] <= -si[i] * qnorm(steps[j - 1])) 
                        wt[i] = j 
                    } 
                    if (d[i] <= -si[i] * qnorm(steps[nsteps - 1])) 
                      wt[i] = nsteps 
                  } 
                   
                  orig_lambda_vw2 <- 
                    optim( 
                      par = pars2, 
                      fn = neglike4, 
                      lower = c(0, -Inf, 0.01), 
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                      method = "L-BFGS-B", 
                      hessian = TRUE 
                    ) 
                  orig_lambda_vw2_pars <- rbind(orig_lambda_vw2$par) 
                  write.table( 
                    orig_lambda_vw2_pars, 
                    "orig_lambda_vw2.csv", 
                    append = TRUE, 
                    row.names = FALSE, 
                    col.names = FALSE, 
                    sep = "," 
                  ) 
                   
                  ## Bayes lambda, weights "correctly" specified 
                   
                  steps <- c(.05, 1.0) 
                  npred <- 0 
                  intercept <- TRUE 
                  XX <- matrix(nrow = length(dummy), ncol = 1) 
                  XX[, 1] <- rep(1, length(dummy)) 
                  number <- length(dummy) 
                  nsteps <- 2 
                  effect <- d 
                   
                  si <- sqrt(v) 
                   
                  wt <- rep(1, number) 
                  for (i in 1:number) { 
                    for (j in 2:nsteps) { 
                      if (-si[i] * qnorm(steps[j]) <= d[i] && 
                          d[i] <= -si[i] * qnorm(steps[j - 1])) 
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                        wt[i] = j 
                    } 
                    if (d[i] <= -si[i] * qnorm(steps[nsteps - 1])) 
                      wt[i] = nsteps 
                  } 
                   
                  modelstring = " 
                  model { 
                  vcinv ~ dgamma(.001,.001) 
                  vc <- 1/vcinv 
                  mn ~ dnorm(0.2, 1.0E-5) 
                  lambda ~ dunif(0, 100) 
                   
                  #w[1] ~ dunif(0.99999, 1.00001) 
                  for(j in 1:nsteps){ 
                  w[j] ~ dunif(0, 1) 
                  } 
                   
                  for(i in 1:number) { 
                   
                  for(j in 1:nsteps){ 
                  a1[i,j] <- ifelse((dummy[i]==0 && wt[i]==j),log(w[j]),0) 
                  a2[i,j] <- ifelse((dummy[i]==1 && wt[i] > 1 && wt[i]==j && steps[j] > 0.05), log(lambda*w[j]),0) 
                  a3[i,j] <- ifelse((dummy[i]==1 && wt[i]==j && steps[j] <= 0.05), log(w[j]),0) 
                  a4[i,j] <- ifelse((dummy[i]==1 && wt[i]==j && wt[i]==1), log(w[j]),0) 
                   
                  bi[i,j] <- -sqrt(v[i])*qnorm(steps[j],0,1) 
                  } 
                   
                  a[i] <- sum((a1[i,]+a2[i,]+a3[i,]+a4[i,])) 
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                  eta[i] <- sqrt(v[i] + vc) 
                  bilast[i] <- -sqrt(v[i])*qnorm(steps[(nsteps-1)],0,1) 
                   
                  Bij[i,1] <- 1-pnorm( ((bi[i,1]-mn)/eta[i]), 0, 1 ) 
                   
                  for(j in 2:(nsteps-1)){ 
                  Bij[i,j] <- pnorm( ((bi[i,(j - 1)]-mn)/eta[i]), 0, 1) - pnorm( ((bi[i,j]-mn)/eta[i]), 0, 1) 
                  } 
                   
                  Bij[i,nsteps] <- pnorm( ((bilast[i]-mn)/eta[i]), 0, 1 ) 
                   
                  for(j in 1:nsteps){ 
                  d1[i,j] <- ifelse((dummy[i]==1 && j > 1 && steps[j] > 0.05), (lambda*w[j]*Bij[i,j]), (w[j]*Bij[i,j])) 
                  } 
                   
                  d[i] <- -log(sum(d1[i,])) 
                   
                  b[i] <- -1/2 * ((effect[i] - mn)/eta[i])^2 
                  c[i] <- -log(eta[i]) 
                   
                  L[i] <- a[i] + b[i] + c[i] + d[i] - 2000 
                  dummy2[i] ~ dpois(-L[i]) 
                  } 
                   
                  } 
                  " 
                  writeLines(modelstring, con = "modelstring.bug") 
                   
                  dummy2 <- rep(0, length(d)) 
                   
                  jags_params <- c("mn", "vcinv", "w", "lambda") 
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                  inits1 <- 
                    list( 
                      "mn" = 0.2, 
                      "vcinv" = 0.001, 
                      "w" = c(0.5, 0.5), 
                      "lambda" = 0.5 
                    ) 
                  inits2 <- 
                    list( 
                      "mn" = 0, 
                      "vcinv" = 0.001, 
                      "w" = c(0.2, 0.2), 
                      "lambda" = 1 
                    ) 
                  inits3 <- 
                    list( 
                      "mn" = 0.1, 
                      "vcinv" = 0.001, 
                      "w" = c(0.7, 0.7), 
                      "lambda" = 0.7 
                    ) 
                  jags.inits <- list(inits1, inits2, inits3) 
                   
                   
                  jags.fit <- jags( 
                    data = list( 
                      'effect' = d, 
                      'v' = v, 
                      'wt' = wt, 
                      'number' = number, 



170 

 

 

 

                      'dummy2' = dummy2, 
                      'dummy' = dummy, 
                      'steps' = steps, 
                      'nsteps' = nsteps 
                    ), 
                    parameters.to.save = jags_params, 
                    inits = jags.inits, 
                    n.chains = 3, 
                    n.burnin = 1000, 
                    n.iter = 5000, 
                    n.thin = 1, 
                    model.file = "modelstring.bug" 
                  ) 
                   
                  #update(jags, n.iter=30000, progress.bar="text") 
                   
                  # output <- coda.samples(jags.fit, n.iter = 10000) 
                   
                  # output <- coda.samples(jags, c("mn", "vcinv", "w", "lambda"), n.iter = 10000) 
                   
                  save(jags.fit, 
                       file = paste0("output ID ", round( 
                         as.numeric(Sys.time()) * (sample(1:100, 1, replace = TRUE)) 
                       ), ".rda"), 
                       compress = "xz") 
                   
                  runtime <- toc() 
                  runtime <- runtime$toc - runtime$tic 
                   
                  write.table( 
                    runtime, 
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                    "runtime.csv", 
                    append = TRUE, 
                    row.names = FALSE, 
                    col.names = FALSE, 
                    sep = "," 
                  ) 
                   
                  start <- start + 1 
                   
                } 
            }, warning = function(war) { 
              print(paste("MY_WARNING: ", war)) 
              print(c("warning at", start)) 
              return(start) 
            }, 
            error = function(err) { 
              print(paste("MY_ERROR: ", err)) 
              print(c("restarted on", start)) 
              return(start + 1) 
            }, 
            finally = { 
            }) 
          } 
            } 
   
  finish <- Sys.time() 
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Appendix C: R Code for Examples and Plots 

 

future <- read.csv("K:/Dropbox/feeling-the-future.csv", header=TRUE) 
 
future_g <- future$ES 
future_v <- future$SE^2 
 
install.packages("metafor") 
install.packages("tidyverse") 
install.packages(“ggplot2”) 
install.packages(“ggthemes”) 
 
library("metafor") 
library("tidyverse") 
library("ggplot2") 
library("ggthemes") 
 
early <- future %>% filter(Early == 1) 
later <- future %>% filter(Early == 0) 
effects <- c(early$ES, later$ES) 
variances <- c((early$SE^2), (later$SE^2)) 
 
rma(later$ES, later$SE, method="ML") 
 
plot(early$SE, early$ES) 
plot(later$SE, later$ES) 
 
## The following code generates Figures 1 and 2: 
 



173 

 

 

 

p_early <- ggplot(early, aes(x = SE, y = ES)) + 
  geom_point(size=3) + 
  scale_x_continuous(breaks = round(seq(min(early$SE), max(early$SE), by = 0.02),2)) + 
  scale_y_continuous(breaks = round(seq(-0.4, 0.5, by = 0.05),1), limits=c(-0.4,0.5))+ 
  ggtitle("Studies Published Before 2011")+ 
  geom_hline(yintercept = 0.1141) 
 
p_early + theme_base() 
 
 
p_later <- ggplot(later, aes(x = SE, y = ES)) + 
  geom_point(size=3) + 
  scale_x_continuous(breaks = round(seq(min(later$SE), max(later$SE), by = 0.02),2)) + 
  scale_y_continuous(breaks = round(seq(-0.4, 0.5, by = 0.05),1), limits=c(-0.4,0.5))+ 
  ggtitle("Studies Published After 2011")+ 
  geom_hline(yintercept = 0.0497) 
 
p_later + theme_base() 
 
 
##### This code yields the results of the adjusted and unadjusted lambda models presented in Chapter 4, along with the likelihood-
ratio tests ##### 
 
weightfunct(effects, variances, lambda_model=dummy, steps=c(0.025, 0.05, 0.10, 0.50, 0.90, 1.00), fe=TRUE) 
 
weightfunct(effects, variances, lambda_model=dummy, steps=c(0.025, 0.05, 0.10, 0.50, 0.90, 1.00), fe=TRUE)[2] 
 
#Value (-116.7981) vs: 
 
weightfunct(effects, variances, steps=c(0.025, 0.05, 0.10, 0.50, 0.90, 1.00), fe=TRUE)[2] #Value (-116.1549) 
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chisqdiff <- 116.7981-116.1549 
1 - pchisq(chisqdiff, 1) 
 
###
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Appendix D: Extra Simulation Plots From Chapter 4 

 

Figure D1 shows estimates of the mean in cells where I2 is 25% and the bias 
pattern is “None vs. Weak.” 

 
Figure D1. 
Figure D2 shows estimates of the mean in cells where I2 is 50% and the bias 

pattern is “None vs. Weak.” 
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Figure D2. 
Figure D3 features estimates of the mean in cells with I2 of 25% and a “None vs. 

Strong” bias pattern: 
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Figure D3. 
Figure D4 features estimates of the mean in cells with I2 of 50% and a “None vs. 

Strong” bias pattern: 
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Figure D4. 
Figure D5 features estimates of the mean in cells with I2 of 25% and “Weak vs. 

Strong.” 
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Figure D5. 
Figure D6 features estimates of the mean in cells with I2 of 50% and “Weak vs. 

Strong.” 
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Figure D6. 
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Appendix E: Extra Simulation Plots From Chapter 5 

 

MODEL 1, I2 25% 

 
MODEL 1, I2 50% 
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MODEL 2, I2 25% 
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MODEL 2, I2 50% 
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