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ABSTRACT OF THE DISSERTATION

Likelihood-Free Estimation for Some Flexible Families of Distributions

by

Matthew Alexander Arvanitis

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, March 2018

Dr. Barry C. Arnold, Chairperson

Historically, the collection of available statistical models for fitting data has been, more or less,

restricted to those which are analytically tractable. However, computing power today permits us

to use models that, while more complex and often devoid of closed-form distribution or density

functions, provide better fits to data. In this thesis, statistical theory, primarily parameter estimation,

is developed for three such models: Arnold & Ng’s bivariate beta family and its Arnold & Ghosh

subfamily of copulas, an 8-parameter family of bivariate Asymmetric Laplace distributions, and a

collection of compound random variables. All are distributions whose densities, in general, cannot

be written down, but whose realizations can easily be generated via simulation. I apply, and adapt,

several methods of likelihood-free statistical inference; including Modified Maximum Likelihood

Estimation (MMLE), Approximate Bayesian Computation (ABC), and Markov-Chain Monte-Carlo

(MCMC); to achieve various forms of parameter estimates.

For each of the models studied, sub-models were identified and cataloged. In doing so,

care is taken to assure that a reasonable balance between the dimensionality of the parameter spaces

and the flexibility of the resulting models is maintained. Moreover, in one case, a collection of

vii



sub-models is formed, each of which permits simple parameter estimation, while one of the models

from the collection is chosen to provide the best fit according to a particular metric. This is done

to simplify parameter estimation through dimension reduction while maintaining a high level of

diversity of available models. In other cases, a more direct approach is taken, where the model is

selected based on prior knowledge.
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Chapter 1

Likelihood-Free Estimation

1.1 Overview

The Gaussian distribution is arguably the most ubiquitous distribution applied in the statis-

tics discipline. In academics, it is a benchmark for elementary statistics courses, where it is taught

to be used in many applications, including those unrelated to the Central Limit Theorem. In prac-

tice, possibly because of its ubiquity in college courses, it is also a popular tool. Clearly the Central

Limit Theorem provides justification for its application to countless practical problems. We raise the

question, however, as to whether it is overused when the Central Limit Theorem does not provide

justification to do so. In this thesis, I entertain the argument that Gaussian distributions, as well as

other popular distributions, are applied to many problems for which other, namely more complex,

models may be justifiably more appropriate. As part of the larger effort to expand the availability

of applicable statistical methods, this thesis is aimed at developing statistical theory, particularly

parameter estimation, for several models that, with few exceptions, do not have closed-form distri-

bution or density functions, but lend themselves to a wide array of applications. In this chapter, a
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comprehensive overview of current methods is studied, setting the stage for the specific applications

in subsequent chapters.

Many methods for dealing with analytically intractable distributions have been proposed

and implemented. The primary interest herein is on methods that provide a reasonable estimation

framework for these distributions. In the following sections, we summarize four such methods:

Modified Maximum Likelihood Estimation (MMLE), Approximate Bayes Computation (ABC),

Markov Chain Monte Carlo methods, and Statistical Learning techniques. A brief summary of

the methods and some examples will be provided.

Consider some family of distributions F = {F(x; θ) : θ ∈ Θ}, where Θ is a set of possible

m-dimensional vectors, θ. For the following sections, assume X ··= (X1, X2, ..., XK) is a collection

of iid d-dimensional random vectors, each with distribution F(x; θ0) ∈ F, and x ··= (x1, x2, ..., xK)

is a realization of X. Notation: for any k, denote Xk = (X1k, X2k, ..., Xdk), and xk = (x1k, x2k, ..., xdk).

1.2 Modified Maximum Likelihood (MMLE)

Often, the marginal distributions of X1 are well-known and tractable. In order for MMLE

to be applicable, the maximum likelihood estimates for the marginal parameters must be analyti-

cally accessible, and those marginal parameters must exhibit some analytical relationship with the

parameter, θ. Plugging in the marginal MLEs results in k1 equations with k2 unknowns, k1 ≤ k2.

Under typical circumstances, this inequality is strict. Therefore, k2 − k1 additional equations must

be introduced. A common way to do this is to obtain additional estimates using the Method of

Moments. This method is most readily illustrated with a simple example.

2



Example: A Bivariate Poisson Distribution

Suppose X satisfies

X1
d
=


Y1 + Y3

Y2 + Y3


where Y1,Y2, and Y3 are independent Poisson random variables with parameters θ1, θ2, and θ3,

respectively. Then the marginal distributions of X11 and X21 are Poisson with parameters α1 =

θ1 + θ3, and α2 = θ2 + θ3, respectively. Therefore, the marginal MLEs are given by the vector

α̂MLE = 1
K

∑K
k=1 xk. However, this gives only two equations, while we need to estimate three pa-

rameters. To do this we choose the mixed moment, µ12 = E(X11X21), which can be estimated by

(µ̂12)MOM = 1
K

∑K
k=1 x1kx2k, and apply MOM. The moment is given by

E(X11X21) = E((Y1 + Y3)(Y2 + Y3))

= E(Y1)E(Y2) + E(Y3)(E(Y1) + E(Y2)) + E(Y2
3 )

= θ1θ2 + θ3(θ1 + θ2) + θ2
3 + θ3

= θ1θ2 + θ3(1 + θ1 + θ2) + θ2
3

Now, solving the three equations in three unknowns, we obtain MMLE estimates:

(θ̂1)MMLE = (α̂1)MLE(1 + (α̂2)MLE) − (µ̂12)MOM

(θ̂2)MMLE = (α̂2)MLE(1 + (α̂1)MLE) − (µ̂12)MOM

(θ̂3)MMLE = (µ̂12)MOM − (α̂1)MLE(α̂2)MLE

At no point did we need the joint discrete density function to complete this process, and, thus,

it qualifies as a likelihood-free method of parameter estimation. This method does, however, have

some pitfalls. Most notably, if the space of marginal parameters corresponding toΘ is not a product

3



space, this method can be inappropriate. For example, the 3-parameter bivariate Beta distribution

[31] (discussed in more detail in the next section) is a family of bivariate beta distributions that does

not include all possible combinations of Beta marginals (in fact, completely defining one marginal

limits the possibilities for the other to only a one-dimensional set). So, with the exception of cases

with large K, this method may not (probably wouldn’t) yield marginal MLEs that map to possible

parameters for the distribution.

1.3 Approximate Bayesian Computation (ABC)

ABC is a method of parameter estimation which applies a carefully-chosen collection of

summary statistics to compare the original data and proposed simulated data sets through some

specified distance function. Specifically, assume that Fθ̃(θ) is an appropriate prior distribution for

θ. We are interested in obtaining a sample of size N from the posterior distribution, Fθ̃|X(θ|x).

Define Sy ··= (S 1, S 2, ..., S M) to be a collection of summary statistics that are thought to be strongly

informative about the unknown value of the parameter and can be calculated directly from the

data, y. Also, define ρ(Sx,Sy) to be a distance function, preferably capable of detecting differences

between data sets whenever they are drawn from different elements of F. In addition, declare a

certain positive value, ε0, as an acceptance threshold. Then the ABC algorithm proceeds as follows:

Step 1. Set t = 0.

Step 2. Generate a single proposal value, θ∗, from Fθ̃(θ).

Step 3. Simulate an iid sample, y∗, of K realizations from Y ∼ F(y; θ∗).

Step 4. Compute ρ(Sx,Sy∗). If ρ(Sx,Sy∗) < ε0, then step t to t + 1 and accept θ∗ as θ(t), a

4



draw from Fθ̃|X(θ|x). Otherwise, reject it.

Step 5. If t < N, repeat Step 2. Otherwise, stop.

This is the most basic form of this algorithm, and it has been adapted to many specific applications.

It has become an increasingly popular tool for parameter estimation in the absence of tractable den-

sity functions. Obvious pitfalls include the need to judiciously select the set of summary statistics

and ρ; in many cases, it may not be known or may be difficult to assess the quality of those ulti-

mately selected, due, in part, to the absence of a density. See [42] for a recent detailed description

of this method, some adaptations, and applications. Additional recent work and applications may be

found in [13], [8], and [44]. To illustrate the effectiveness of the method, we consider an example

where the joint density is analytically tractable so that a comparison with a more standard estimation

strategy can be made.

Example: Olkin & Liu 3-Parameter Bivariate Beta Distribution

Olkin and Liu [31] proposed a bivariate beta distribution with the following density:

f (x1, x2;α, β, γ) =
xα−1

1 xβ−1
2 (1 − x1)α+γ−1(1 − x2)β+γ−1

B(α, β, γ)(1 − x1x2)α+β+γ
I{0 < x1, x2 < 1} (1.1)

where B(α, β, γ) is the generalized beta function,

B(α, β, γ) =
Γ(α)Γ(β)Γ(γ)
Γ(α + β + γ)

(1.2)

In a Bayesian setting we consider the prior distribution

fα̃,β̃,γ̃(α, β, γ) =
αa1−1e−

α
b1 βa2−1e−

β
b2 γa3−1e−

γ
b3

Γ(a1)Γ(a2)Γ(a3)ba1
1 ba2

2 ba3
3

I{α, β, γ > 0} (1.3)

Note that the marginals in Equation 1.3 are all gamma distributions and are independent. This is a

natural choice for a joint prior for the three positive parameters, but Equation 1.3 is clearly not a

5



conjugate prior for the model in Equation 1.1. The posterior distribution is thus obtained.

fα̃,β̃,γ̃|X(α, β, γ|X = x) ∝ fα̃,β̃,γ̃(α, β, γ)
K∏

j=1

f (x j;α, β, γ). (1.4)

In order to demonstrate the use of ABC in this example, we assume that the density

function (1.1) is unknown. First, assume the actual parameter values are α = 2, β = 3, and γ = 4,

and set the hyper-parameters of the prior to a1 = a2 = a3 = 3, and b1 = b2 = b3 = 1, so that

fα̃,β̃,γ̃(α, β, γ) =
(αβγ)2e−(α+β+γ)

8
I{α, β, γ > 0}, (1.5)

and E(α̃) = E(β̃) = E(γ̃) = 3. We will then generate a single simulated data set of size 100; this data

set will be assumed to be x in this example. Since the marginals are beta distributions, we consider

the sufficient statistics for the marginals, as well as one additional mixed statistic, i.e.,

Sy =
1
K

 K∑
i=1

log(y1i),
K∑

i=1

log(y2i),
K∑

i=1

log(1 − y1i),
K∑

i=1

log(1 − y2i),
K∑

i=1

log(1 − y1iy2i)

 (1.6)

We define ρ to simply be the sum of squared distances.

ρ(Sx,Sy) =
(
Sx − Sy

) (
Sx − Sy

)′
(1.7)

An important question at this point is whether Sy provides sufficient identifiability, that is whether

a difference in the distributions of X and Y induces a ρ significantly greater than zero. In this

example, we have the advantage of knowing the density, and thus, we know that Sy is, in fact, by

the factorization criterion, a set of sufficient statistics, and we are therefore guaranteed identifiability

with sufficiently large K. But, this is often not the case when applying ABC, so this step is generally

considered the most important, and most difficult, in the process of applying ABC. In subsequent

chapters, some examples of this will be exhibited.

Lastly, we must define the distance threshold for acceptance, ε0. Generally, the smaller

this value is, the more accurately the resulting sample will resemble a sample from the posterior
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distribution. The trade-off is that small values of ε0 will reduce the acceptance rate, and hence

increase the processing time. Therefore, this parameter can be thought of as a desired accuracy

setting. We set it to 0.001.

We set the desired sample size from the posterior to N = 100 (it need not be equal to

K). Using the means of the sampled parameter values, we may obtain estimates of the parameters.

For comparison, we also compute the maximum likelihood estimates. The results are shown in

Table 1.1.

Estimator Acceptance Rate α̂ β̂ γ̂

ABC 0.0001038122 2.239767 2.948822 3.968311
MLE N/A 2.270081 3.063669 4.062024

Table 1.1: ABC Results for Olkin-Liu Bivariate Beta with α = 2, β = 3, and γ = 4.

It should be noted that this distribution produces estimators that are heavily correlated (It

will be revisited in Section 1.4.2 for this reason.). This correlation contributes to the low acceptance

rate, but, the largest contributor, aside from the desired accuracy level, ε0, is the prior distribution.

Drawing from a distribution in which a greater level of (correct) prior information is contained leads

to a better acceptance rate. Ultimately, while there a several components of the procedure that must

be decided upon for ABC, the method is highly effective if good choices of the summary statistics

are made together with a well-tuned selection of ε0.

1.4 Markov Chain Monte Carlo (MCMC)

One of the most popular numerical techniques for inference, or more generally, modeling

distributions, MCMC is a method which ostensibly builds a Markov Chain with the target distri-
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bution as its long-run distribution, so that each step eventually should produce a draw from the

target distribution. Upon sufficient burn-in and applying any necessary thinning, what results is, for

all practical purposes, a random sample from the target distribution. In general, MCMC requires

knowledge of the likelihood function, or at least some scalar multiple of it. However, with an in-

creasingly rich selection of density estimation techniques now available, this is becoming less of

a problem. In addition, methods of density estimation can be selected to maximize the utility of

simulated data, further enhancing the efficiency of MCMC algorithms. In the following section, the

most general form of MCMC is discussed. Following this, some adaptations of MCMC relevant to

the distributions studied in this thesis are explained.

1.4.1 General MCMC Algorithm

The standard MCMC algorithm, also known as the Metropolis-Hastings Algorithm, is

particularly simple. As with ABC, assume that Fθ̃(θ), with density fθ̃(θ), is an appropriate prior

distribution for θ. We are, again, interested in obtaining a sample of size N from the posterior

distribution, Fθ̃|X(θ|x). Assume, in addition, that we have a method of estimating the likelihood

function

L̂(θ|x) =

K∏
k=1

f̂ (xk|θ)

where f̂ is an estimate of the density, f , of X1, so that the estimated posterior density becomes

f̂θ̃|X(θ|x) = fθ̃(θ)L̂(θ|x)

Then the Metropolis-Hastings algorithm proceeds as follows:

Step 1. Set t = 1. Draw an initial value θ(1), from Fθ̃(θ), or possibly from some other

desired proposal distribution.
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Step 2. Step t to t + 1. Generate a single proposal value, θ∗, from the desired proposal

distribution.

Step 3. Simulate an iid sample, y∗, of M realizations from Y ∼ F(y; θ∗), where M is

sufficiently large to accurately estimate f at all points in x.

Step 4. Estimate f̂ (xk|θ
∗) for all k ∈ {1, 2, ...,K}, using the chosen density estimation

technique based on the data, y∗, and compute the estimated likelihood, L̂(θ∗|x),

and posterior, f̂θ̃|X(θ∗|x).

Step 5. Simulate a single realization, u, from U ∼ U(0, 1). If u <
f̂θ̃|X(θ∗ |x)

f̂θ̃|X(θ(t−1) |x)
, then accept

θ∗ as θ(t) as a draw from Fθ̃|X(θ|x). Otherwise, set θ(t−1) as θ(t).

Step 6. If t = N, then stop. Otherwise, repeat Step 2.

Typically, f̂ should be chosen to maximize the utility of available resources (usually simulated data)

according to known characteristics of the family of parametric distributions being studied. One of

the methods for choosing a density estimator is found in Appendix A.

Typically, burn-in and thinning will be applied to avoid bias in the posterior sample. Burn-

in involves the removal of a number of initial draws of the chain, and thinning involves considering

as part of the posterior sample only a sparse subset of the realizations of the chain subsequent to

burn-in. As a result, the length of the chain must be increased in order to obtain a final sample of

size N after the particular burn-in and thinning strategies have been applied.
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1.4.2 Differential Evolution MCMC (DE-MCMC)

Often the posterior estimators of θ can be heavily correlated. Failing to take this into

account can slow the convergence rate of MCMC significantly. To deal with this problem, Storn

and Price [41] proposed DE-MCMC.

While this method may be adapted to yield approximate maximum likelihood estimates,

we elect to cover Bayesian estimation here. The primary reason for this is that information about

well-understood marginal distributions may be applied to the prior distribution to increase the effi-

ciency of the process. The method proceeds as follows:

1. Begin the Markov chain by simply drawing
{
θ(1), θ(2)

}
as an iid sample from the prior, Fθ̃(θ).

Set t = 2.

2. Set t to t + 1. Sample
(
θ(t1), θ(t2)

)
from

{
θ(1), θ(2), ..., θ(t−1)

}
, without replacement.

3. Set

θ∗ = θ(t−1) + τ
(
θ(t1) − θ(t2)

)
+ ε∗ (1.8)

where τ = 2.38√
2d

and ε∗ is a random error term.

4. Generate U ∼ U(0, 1). If U <
f̂θ̃|X(θ∗ |X)

f̂θ̃|X(θ(t−1) |X)
, then set θ(t) = θ∗. Otherwise, set θ(t) = θ(t−1).

5. If the required chain length is achieved, then stop. Otherwise, and return to Step 2.

Upon stopping, the set
{
θ(b+q), θ(b+2q), ..., θ(b+Nq)

}
, where q is a thinning parameter, and the

values
{
θ(1), θ(2), ..., θ(b)

}
are considered “burn-in,” and are thus omitted, is then considered a sample

from the actual posterior, fθ̃|X(θ|X).
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Example: Olkin & Liu 3-Parameter Bivariate Beta Distribution

We now return to the example used to demonstrate the use of ABC. Recall that it was

previously stated that, with the Olkin & Liu Bivariate Beta distribution, the estimators tend to be

highly correlated. So, the MCMC-DE method will be applied in order to deal with this issue. We

will apply the same prior distribution given by

fα̃,β̃,γ̃(α, β, γ) =
(αβγ)2e−(α+β+γ)

8
I{α, β, γ > 0} (1.9)

Also, we will assume the same actual parameter values, α = 2, β = 3, and γ = 4, and K = 100 (in

fact, we will assume the same data as was used in Example 1.3).

For this method, we also need to choose an error term, ε∗. It is necessary to explain how

this will be done, and thus, how Step 3 of the algorithm will be implemented. This term is intended

only to provide perturbations. Also, since the parameters must be positive, it must depend on the

proposed parameters. For this reason, a pre-selected variance for the perturbations is applied; in this

case, we set it to 1, and apply a tri-variate Gamma distribution. Set the constant value,

θ∗∗ =



α̃(t−1) + τ
(
α̃(t1) − α̃(t2)

)
β̃(t−1) + τ

(
β̃(t1) − β̃(t2)

)
γ̃(t−1) + τ

(
γ̃(t1) − γ̃(t2)

)


, (1.10)

as indicated in Step 3. Then, we obtain a draw for θ∗ from the distribution,

θ∗ = ε∗ + θ∗∗ ∼ Γ3
(
shape =

[
θ∗∗

]2 , rate = θ∗∗
)

, (1.11)

where Γ3 indicates a tri-variate Gamma distribution with independent marginals. This results in a

distribution for each element of ε∗ with mean 0, and variance 1, as desired.

As this is intended to be an MCMC procedure, a density estimation technique is necessary.

For this, the Turner & Sederberg [45] method will be applied. We will apply a burn-in of 10000
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iterations, and thin by taking every 100th iteration. Hence, for a sample of size, N = 100, we need

20000 iterations in the Markov chain. For this comparison, using the same data as was used for

Example 1.3; the results are displayed in Table 1.2.

Estimator α̂ β̂ γ̂

MCMC-DE 1.963814 2.726850 3.491819
ABC 2.239767 2.948822 3.968311
MLE 2.270081 3.063669 4.062024

Table 1.2: MCMC-DE Results for Olkin-Liu Bivariate Beta with α = 2, β = 3, and γ = 4.

There are two potential reasons why the MCMC-DE results compare less favorably to

the ABC results. First, the ABC procedure did, in fact, benefit from the presence of a sufficient

statistic for the parameters, which is generally not the case. It therefore had maximal information

to maximize efficiency. Unlike the ABC procedure, the MCMC-DE procedure required the use

of an estimator for the density, which was based on simulated data, and may not provide the most

accurate representation of the density and cause the chain to either take much longer than anticipated

to burn in, or introduce some unwanted bias in the accept/reject decision. Second, the MCMC-DE

procedure draws deeply into the collection of previous values in the chain to form new proposals.

This may create the necessity to expand, maybe vastly, the length of the burn-in, as well as require

more stringent thinning.

Overall, the MCMC-DE estimation procedure requires a careful selection of search pa-

rameters. With sufficient burn-in and thinning, the procedure may be applicable to at least some

situations where the parameter estimators are highly correlated.
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1.4.3 Gibbs Sampler

A popular method of drawing samples, the Gibbs Sampler is particularly useful when the

distribution of the parameters is more tractably described in terms of the conditional distributions

of each parameter given the values of the other parameters. Suppose, for example, that p = 3,

with θ = (θ1, θ2, θ3), where the (prior and posterior) distributions of θ̃1|
(
θ̃2, θ̃3

)
; θ̃2|

(
θ̃1, θ̃3

)
; and

θ̃3|
(
θ̃1, θ̃2

)
are all known, at least to the extent that draws from these distributions are easily obtained.

The Gibbs Sampler proceeds by drawing an initial θ(0) from a prior distribution. Then, for each

t ∈ {1, 2, ...,N + b},

1. Draw θ(t)
1 from θ̃1|

(
θ̃2 = θ(t−1)

2 , θ̃3 = θ(t−1)
3

)
;

2. Draw θ(t)
2 from θ̃2|

(
θ̃1 = θ(t)

1 , θ̃3 = θ(t−1)
3

)
;

3. Draw θ(t)
3 from θ̃3|

(
θ̃1 = θ(t)

1 , θ̃2 = θ(t)
2

)
,

where b is the desired burn-in. See [10] for an overview of the Gibbs Sampler and its foundational

theory.

1.5 Statistical Learning

Statistical learning, also known as machine learning, techniques involve, most generally,

the use of presented data to ’learn’ about the underlying distribution, restricted by a certain set of

assumptions. In particular, and in the context of the general problem presented at the beginning of

this chapter, we are interested in inferring the value of θ0 from x. We do this by attempting to ’learn’

the relationship φ : x −→ Θ through what is most intuitively viewed as a process of ’trial and error.’
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Ultimately, we wish to construct φ so that it provides the best possible estimates of θ. There are two

major extremes in the continuum of statistical learning methods: supervised, and unsupervised.

Supervised learning presents training data,

Ytest =


y1 y2 · · · yK

θ1 θ2 · · · θK

 , (1.12)

where each yk is known to be data drawn from F(x; θk), for all k ∈ {1, 2, ...,K}. The algorithm

attempts to fit the best φ according to a certain set of assumptions about φ. The simplest form

of this is linear regression, but sometimes far less must be assumed about φ, rendering regression

inadequate, and instead requiring a complex algorithm or process to obtain φ.

Unsupervised learning is more difficult, for the second row of the training data is absent.

The algorithm is, instead, tasked with finding important anomalies across the datasets that may

ultimately be important to understanding where they came from. This method may sometimes

precede supervised learning as a way to obtain a relevant set of measurements (which are usually

in the form of statistics) that appear to change from one dataset to the next. Subsequently varying

these statistics in a supervised learning context could lead to a reasonable φ.

There are many approaches to statistical learning, but this thesis will focus on only one:

Neural Networks. These are discussed in the next section.

1.5.1 Neural Networks

A neural network is a construct with an input (statistics), and an output (parameters). In

the context of the problem, the neural network is φ, and we use statistical learning to construct it. To

illustrate, we use a simple example: suppose y1, y2, ..., yK ∼ B(α, β), and we wish to estimate (α, β)

via the method of moments, that is, we want φ, such that φ(y) = (α̂MOM, β̂MOM). A one-step neural
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network may be implemented to achieve this.

ȳ

s2

α̂MOM

β̂MOM

This neural network is about as simple as one would get, so much so that it is uninterest-

ing. It is predetermined by knowledge of the estimators, and no learning is necessary. In general,

the decisions, that is the calculations, in each step are not known a priori. Instead, the training data,

Ytest, can be used as a measure of quality for the network. In this way, until it becomes maximally

successful for the test data, e.g., the sum of squared errors is minimized, we can change its calcu-

lations; that is, change the internal functions. For example, suppose that, rather than ȳ and s2, an

arbitrary collection of summary statistics is placed in the first stage. The learning process would be

to manipulate the calculations made from the summary statistics to the estimators of the parame-

ters. We needn’t be restricted to only one stage; a second set of summary measures, based on the

summary statistics, may be computed, forming a second stage from which the parameter estimates

may be obtained. In this sense, just about any statistical inference problem can be implemented by

a neural network, but only a small subset of them are best implemented by this tool.

Now, to reduce the problem of ’learning’ to one that is manageable, we add some re-

strictions to the network’s structure, which, as it happens, form the most common form of a neural

network. First, each function is restricted to a linear function of all values in the previous stage.

Second, a sigmoid function is applied to these linear functions, resulting in all values in each (in-

termediate) stage having a value in [0, 1]. Third, a cost function, usually a sum of squared errors, is
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computed from the last stage results and the training parameters. With these restrictions, the method

of steepest decent may be applied.

Returning to the Beta example, suppose two intermediate stages, one with six nodes and

one with four nodes, are added, forming a total of four stages. We shall restrict the first stage to the

following collection of moments:

m11 =

K∑
k=1

yk m15 =

K∑
k=1

(1 − yk)

m12 =

K∑
k=1

y2
k m16 =

K∑
k=1

(1 − yk)2

m13 =

K∑
k=1

y3
k m17 =

K∑
k=1

(1 − yk)3

m14 =

K∑
k=1

y4
k m18 =

K∑
k=1

(1 − yk)4

The second and third stages will learn. This results in the network shown in Figure 1.1.

Note, here, that we deliberately choose less-than-optimal statistics, that is, non-minimally-

sufficient statistics, in order to form a challenging scenario for the learning process. For the sigmoid

function, we choose the commonly-used Logistic function (the distribution function of a standard

Logistic random variable).

We can apply the learning algorithm (using the R package neuralnet) to a set of 500 Beta

distributions with various parameters, of which 375 are randomly chosen to be training sets, and the

other 125 are to be used for cross-validation. All data sets are of size K = 100. The average bias

and MSE on the cross-validation sets for the resulting Neural Network are recorded in Table 1.3;

included for comparison are the average bias and MSE for the corresponding MLEs.

Clearly not as good as the MLE, as is to be expected, the Neural Network is nevertheless

a means by which reasonable estimates can be obtained, without the need for a density. In addition,
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the Neural network need only “learn” once. After this, it is simple to apply.1

Bias MSE
Estimator α̂ β̂ α̂ β̂

Neural Network −7.778 −2.889 13.480 18.301
MLE −2.940 −3.281 6.917 7.307

Table 1.3: Bias and MSE for Neural Network applied to Beta Distributions.

m11

m12

m13

m14

m15

m16

m17

m18

m21

m22

m23

m24

m25

m26

m31

m32

m33

m33

α̂NN

β̂NN

Figure 1.1: Neural Network for Obtaining estimates of a B(α, β) Model.

1However, the most advanced neural networks conceivable would undoubtedly continue to learn from all data to which
they are applied.
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Chapter 2

Bivariate Beta Distributions and

Copulas

2.1 Introduction

The array of convenient families of bivariate beta distributions is vast. A comprehensive

survey of the many variations can be found in [32]. Distributions of this type are commonly used

as prior distributions for bivariate binomial parameter estimation, as well as for other modeling

applications. One such application will be demonstrated in Chapter 3. In this chapter, we will

begin with an 8-Parameter bivariate beta model and discuss a collection of its most interesting

sub-families. This will be followed by an introduction to a flexible collection of 5-parameter sub-

families. For this collection, we develop applicable parameter estimation techniques adapted from

those methods discussed in Chapter 1. In addition, we will look at an interesting sub-family of the 8-

parameter model whose marginals are uniform, that is, a family of copulas, which will be followed
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Figure 2.1: Densities for X ∼ BB(3, 0, 8, 5, 0, 0, 6, 4) (left), and X ∼ BB(0, 3, 0, 9, 5, 7, 0, 4) (right).

by a demonstration of an applicable parameter estimation technique. Lastly, some model-selection

techniques will be explored.

2.2 General (8-Parameter) Bivariate Beta Distributions

Arnold & Ng [5] proposed a family of bivariate beta distributions which, most notably,

can be easily simulated and include the full range of possible correlations. While these may be

extended to higher dimensions, we focus on the bivariate case in this chapter. The most general

family is the 8-Parameter family, constructed as follows.

Define U1,U2, ...,U8 to be independent random variables with Ui ∼ Γ(δi, 1) for all i. Also

define the variables

V1 ··=
U1 + U5 + U7

U3 + U6 + U8
, and V2 ··=

U2 + U5 + U8

U4 + U6 + U7
. (2.1)

19



These Vi’s have beta distributions of the second kind. Finally, define

X =


X1

X2

 ··=


V1
1+V1

V2
1+V2

 ,

This forms an 8-parameter family of bivariate beta random variables with distribution function

FX(x; δ), where δ = (δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8). Though there are some special cases in which

FX may be written in closed form, this joint distribution, in general, has no known closed form,

nor does the associated density, fX(x; δ). The marginal distributions are X j ∼ B(α j, β j), j ∈ {1, 2},

where

δ1 + δ5 + δ7 = α1,

δ2 + δ5 + δ8 = β1,

δ3 + δ6 + δ8 = α2, and (2.2)

δ4 + δ6 + δ7 = β2.

Examples of the bivariate density are shown in Figure 2.1 (generated through simulation). By

design, the last four parameters, (δ5, δ6, δ7, δ8), impact the behavior of both random variables, so

we shall call them the dependence parameters. By convention, we will reduce this model by stating

δk = 0 if and only if Uk ≡ 0, for any k ∈ {1, 2, .., 8}, while maintaining enough nonzero δ’s to avoid

either of the numerators or denominators in Equation 2.1 from being zero. Throughout this chapter,

we will say that X ∼ BB(δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8), where some parameters are allowed to be zero,

or the more compact form, X ∼ BB(δ).

The natural symmetry of the beta distribution provides some useful symmetries of the bi-

variate beta that will be exploited in subsequent sections. For example, if X ∼ BB(δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8),
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and Y ∼ BB(δ1, δ4, δ3, δ2, δ7, δ8, δ5, δ6), then Y d
=


X1

1 − X2

. Applying these symmetries can be

thought of as rotating the data about one or both of the lines x1 = 1
2 and x2 = 1

2 .

2.2.1 Two Interesting Sub-Models

Two sub-models have been discussed in earlier literature. One is the 5-parameter family,

also discussed in [5], where δ3 = δ4 = δ5 = 0, so that

V1 ··=
U1 + U7

U6 + U8
, and V2 ··=

U2 + U8

U6 + U7
,

which was actually the original motivation for the full 8-parameter model. Another subfamily is the

Olkin & Liu 3-Parameter Bivariate Beta, discussed in Section 1.4.2, corresponding to the case in

which δ3 = δ4 = δ5 = δ7 = δ8 = 0, which, as it happens, is a sub-model of the 5-parameter family.

Statistical Inference

Assume we obtain a sample x = (x1, x2, ..., xK) (using the same notation as in Chapter 1)

from a BB(δ) distribution.

3-Parameter Olkin-Liu Sub-Model

First assume the Olkin-Liu 3-parameter sub-model, i.e. that δ2 = δ4 = δ5 = δ7 = δ8 = 0,

and the other δ’s are unknown. Recall that for this model, the density is known. We obtain maximum

likelihood estimators for the three parameters. The likelihood is given by

L(δ|x) =

K∏
k=1

 xδ1−1
1k xδ2−1

2k (1 − x1k)δ1+δ6−1(1 − x2k)δ2+δ6−1

B(δ1, δ2, δ6)(1 − x1kx2k)δ1+δ2+δ6

 , (2.3)
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so that the log-likelihood is

`(δ|x) = (δ1 − 1)
K∑

k=1

log(x1k) + (δ2 − 1)
K∑

k=1

log(x2k) + (δ1 + δ6 − 1)
K∑

k=1

log(1 − x1k)

+ (δ2 + δ6 − 1)
K∑

k=1

log(1 − x2k) − K log [B(δ1, δ2, δ6)] − (δ1 + δ2 + δ6)
K∑

k=1

log(1 − x1kx2k)

Differentiating, we have

∂`

∂δ1
=

K∑
k=1

log(x1k) +

K∑
k=1

log(1 − x1k) −
K∑

k=1

log(1 − x1kx2k)

+ ψ(δ1) − ψ(δ1 + δ2 + δ6)

∂`

∂δ2
=

K∑
k=1

log(x2k) +

K∑
k=1

log(1 − x2k) −
K∑

k=1

log(1 − x1kx2k)

+ ψ(δ2) − ψ(δ1 + δ2 + δ6)

∂`

∂δ6
=

K∑
k=1

log(1 − x1k) +

K∑
k=1

log(1 − x2k) −
K∑

k=1

log(1 − x1kx2k)

+ ψ(δ6) − ψ(δ1 + δ2 + δ6),

where ψ(a) = d
da log Γ(a), a > 0 is the digamma function. Setting these derivatives to zero, a

Newton-Raphson search is thus immediately feasible to obtain the solution, i.e. the wide-sense

MLEs.

There are four Olkin-Liu models that may be obtained utilizing the symmetries discussed

earlier:

Model 1: δ = (0, 0, δ3, δ4, δ5, 0, 0, 0);

Model 2: δ = (δ1, δ2, 0, 0, 0, δ6, 0, 0) (the original Olkin-Liu);

Model 3: δ = (0, δ2, δ3, 0, 0, 0, δ7, 0);
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Model 4: δ = (δ1, 0, 0, δ4, 0, 0, 0, δ8).

The densities of these are all similar. These four models by themselves form a means of obtaining

a 3-parameter estimate for various bivariate datasets on the unit square. Model selection is particu-

larly easy in that the model producing the maximum value of the likelihood at its respective MLE

is the one chosen. Also, combined, these four sub-families include multiple distributions with any

correlation in (−1, 1)\ {0}. The benefit of this collection of sub-families is they involve a small num-

ber of parameters, and so are useful for smaller datasets. An unfortunate characteristic, however, is

that only a small subset (in fact, one of measure zero) of possible marginal distributions are repre-

sented by this collection. To see this, consider Model 2 and any possible set of marginal parameters,

(α1, α2, β), where X1 ∼ B(α1, β), and X2 ∼ B(α2, β). Then exactly one distribution in this family has

this particular set of marginal parameters: the one with δ1 = α1, δ2 = α2, and δ6 = β. Thus, in the

4-dimensional space of possible marginals, only a specific 3-dimensional subset encompasses the

parameter space for this model, and, at most, only one representing a specific set of marginals.

5-Parameter Sub-Model

We now proceed to the more complex 5-Parameter sub-model. Arnold & Ng [5] demon-

strated three methods of parameter estimation, the most successful of which was an MMLE pro-

cedure. Recently, Crackel [12] successfully applied ABC to obtain parameter estimates for this

model, i.e., he found a collection of summary statistics, Sx ··= (S 1(x), S 2(x), ..., S M(x)), with

M = 5, and a distance function, ρ(Sx,Sy), that result in an efficient parameter estimator for δ =
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(δ1, δ2, 0, 0, 0, δ6, δ7, δ8). In particular, Crackel chose

S 1(x) =
1
K

K∑
k=1

log(x1k)

S 2(x) =
1
K

K∑
k=1

log(x2k)

S 3(x) =
1
K

K∑
k=1

log(1 − x1k) (2.4)

S 4(x) =
1
K

K∑
k=1

log(1 − x2k)

S 5(x) =

∑K
k=1(x1k − x̄1)(x2k − x̄2)√∑K

k=1(x1k − x̄1)2 ∑K
k=1(x2k − x̄2)2

and

ρ(Sx,Sy) =

5∑
m=1

|(S 1(x) − (S 1(y)| (2.5)

For the proposal distribution, Crackel used a prior distribution, as is customary for ABC,

though it is hoped that the choice of prior will have minimal effect on the final inferences. In this

case, the prior was simply five independent gamma distributions1.

For more general sub-models, and for the 8-parameter model, it is necessary to include

additional statistics statistics in S. For these, Crackel added three statistics to those found in Equa-

tion 2.4.

S 6(x) = 1 −
6
∑K

k=1(x1k − x2k)2

K(K2 − 1)
(Spearman’s Rank Correlation Coefficient)

S 7(x) =
Kc − Kd

1
2 K(K − 1)

(Kendall’s Correlation Coefficient), and (2.6)

S 8(x) =
1
K

K∑
k=1

√
x1kx2k

These estimators are not expected to approach any well-known limiting distribution as K

gets large, since the set of statistics is not known to be sufficient or provide identifiability. With this
1Others were tested, but this appeared to be the most successful.
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said, simulation does strongly suggest that as K −→ ∞, δ̂ −→ δ, i.e. that these estimators appear to

be consistent.

2.2.2 Other Families and their Limitations

There is a plethora of other sub-families of the 8-parameter model that may be obtained by

setting various sets of parameters equal to zero. The two sub-families discussed to this point have a

particular property that, as it turns out, permit a greater degree of accuracy for parameter estimation:

their dependence parameters are, at least in part, defined by their marginal parameters, and in the

case of the Olin-Liu distributions, completely defined by them. In particular, the Olkin-Liu model

permits only a small subset of possible marginal distributions. The 5-parameter model also restricts

its marginals, e.g. it cannot have X1 ∼ B(1, 2) and X2 ∼ B(1, 5). However, it is a bit more general

than Olkin-Liu: for a given set of possible marginals, say X1 ∼ B(3, 5) and X2 ∼ B(3, 4), δ6 must

be in the interval [2, 4]. Once defined, δ6, along with the marginals, completely defines the other

four parameters. In both of these cases, along with many similar cases, knowledge of the marginals

greatly reduces the range of possible values for the remaining unknown parameters. Since MLEs

for the marginal parameters are easily attainable, parameter estimation for these and similar models

is also made much easier. An unfortunate characteristic of these sub-families is consequently made

obvious: if there is no justification to limit the range of possible marginals, these models would be

inadequate. For the remainder of this section, we will show that forming sub-families that eliminate

this problem introduces additional problems.

The full, 8-parameter model is one such example. For this model, parameter estimation

is impractical except in cases where enormous datasets are available, for more reasons than just the

one highlighted in the previous paragraphs. While distinct parameter sets almost certainly map to
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Figure 2.2: Densities for X ∼ BB(1.43, 0.58, 0.87, 1.57, 7.02, 0.73, 30.41, 6.46) (left), and X ∼
BB(17.44, 2.24, 0.034, 15.09, 4.44, 0.64, 16.98, 7.37) (right).

distinct distributions in even the full family, there is a clear identifiability problem from a practical

point of view. A brief simulation study has shown this conclusively. For example, the (estimated)

densities of two of these distributions with significantly different parameter sets are shown in Fig-

ure 2.2. While the marginal distributions of both are the same, the parameter vectors differ by a

Euclidean distance of more than 25, yet the densities differ by less than 4%.2 For comparison, this

is a smaller difference than that between the univariate exp(λ = 0.50) and exp(λ = 0.53) densities.

An additional example is shown in Figure 2.3. Here the Euclidean distance between the parameter

vectors is more than 28, which exceeds the largest parameter value, while the difference in the den-

sities is less than 1.2%, that is, a smaller difference than that between the univariate exp(λ = 0.50)

and exp(λ = 0.51) densities. In addition, one of these has independent marginals, while the other’s

2This was calculated as the mean absolute difference:

d =

∫ 1

0

∫ 1

0

∣∣∣ fX(x; δ(1)) − fX(x; δ(2))
∣∣∣ dx1dx2
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Figure 2.3: Densities for X ∼ BB(1, 1, 1, 0, 0, 10, 10, 0) (left), and X ∼ BB(11, 1, 11, 20, 0, 0, 0, 0)
(right).

parameter make-up is dominated by the dependence parameters. Plenty of other examples exist.

We now show that even a collection of simple sub-families where all possible marginal

distributions can be represented presents significantly more difficulty for estimation than the two

models shown previously, and, in some cases, also presents identifiability issues. A simple sufficient

condition for a sub-family to represent all possible marginal distributions is to require that all four of

δ1, δ2, δ3, and δ4 be active, that is, they are (permitted to be) non-zero. This leaves the dependence

parameters as free parameters. Note that, by Equation 2.2, δ1, δ2, δ3, and δ4 are completely defined

by the marginal parameters and the dependence parameters:

δ1 = α1 − δ5 − δ7

δ2 = α2 − δ5 − δ8

δ3 = β1 − δ6 − δ8 (2.7)

δ4 = β2 − δ6 − δ7,

where X1 ∼ B(α1, β1), and X2 ∼ B(α2, β2). We establish a temporary alternative parameteriza-
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tion with the marginal parameters and dependence parameters to form several five-parameter sub-

families. These sub-families are given in Table 2.1.3 While there are 15 of them, there are only 5

classes which behave differently from one another, outside of symmetries.

Some general observations about these families can be made before going into specifics.

First, because the alternate parameterization includes the marginal parameters, the MLEs for these

parameters can be used to obtain the final estimates for δ1, δ2, δ3, and δ4. Second, the one additional

parameter, δ, is in every case contained in a finite closed interval, making a search more tractable.

This arrangement strongly suggests that parameter estimation should be trivial. This, as will be

shown, is not the case. We will discuss methods for parameter estimation for these sub-families in

the following sections.

Class A (Model 1)

For this class, only one of the dependence parameters is active, and it is associated with

a positive correlation, though the relationship is not necessarily linear. This can be understood by

recognizing that, for Model 1, if δ5 is large (relative to the other parameters), then small values of

U5 will be associated with small values of both X1 and X2, and large values of U5 will be associated

with large values of both X1 and X2. A (not necessarily linear) correlation is often best measured

through Spearman’s Rank Correlation coefficient, ρS . In fact, for any fixed (α1, α2, β1, β2), there is a

one-to-one correspondence between δ and ρS . The estimate for δ can be obtained by implementing

a bisection search over values for δ in the range [0,min{α1, α2}], each step simulating a large dataset

and comparing the resulting estimated ρS to that obtained from the data. The number of steps is

3More general forms of these models can be constructed, where the δ’s can be replaced by functions of some free
parameter, e.g. δ5 = g5(δ), δ6 = g6(δ), δ7 = g7(δ), and δ8 = g8(δ), and any of these functions may be identically zero.
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Class Family δ5 δ6 δ7 δ8 Restrictions

A

1 δ 0 0 0 0 ≤ δ ≤ min{α1, α2}

2 0 δ 0 0 0 ≤ δ ≤ min{β1, β2}

3 0 0 δ 0 0 ≤ δ ≤ min{α1, β2}

4 0 0 0 δ 0 ≤ δ ≤ min{β1, α2}

B
5 δ δ 0 0 0 ≤ δ ≤ min{α1, β1, α2, β2}

6 0 0 δ δ 0 ≤ δ ≤ min{α1, β1, α2, β2}

C

7 δ 0 δ 0 0 ≤ δ ≤ min{α1
2 , α2, β2}

8 δ 0 0 δ 0 ≤ δ ≤ min{α1, β1,
α2
2 }

9 0 δ δ 0 0 ≤ δ ≤ min{α1, β1,
β2
2 }

10 0 δ 0 δ 0 ≤ δ ≤ min{β1
2 , α2, β2}

D

11 δ δ δ 0 0 ≤ δ ≤ min
{
α1
2 , β1, α2,

β2
2

}
12 δ δ 0 δ 0 ≤ δ ≤ min

{
α1,

β1
2 ,

α2
2 , β2

}
13 δ 0 δ δ 0 ≤ δ ≤ min

{
α1
2 , β1,

α2
2 , β2

}
14 0 δ δ δ 0 ≤ δ ≤ min

{
α1,

β1
2 , α2,

β2
2

}
E 15 δ δ δ δ 0 ≤ δ ≤ min

{
α1
2 ,

β1
2 ,

α2
2 ,

β2
2

}
Table 2.1: Five-Parameter Families of Bivariate Beta Distributions.
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chosen based upon the desired accuracy level for δ̂. We therefore apply an MMLE procedure using

ρS to predict δ. To form a 100(1− τ)% confidence region, we can apply a bootstrap procedure, sim-

ulating datasets of size K from the estimated distribution and applying the same procedure multiple

independent times to obtain an approximate sample from the estimator.

We demonstrate the procedure for an example, X ∼ BB(δ), where δ = (1, 2, 3, 4, 5, 0, 0, 0),

and K = 100. The resulting parameter estimate is given by δ̂ = (1.07, 0.63, 3.66, 3.75, 5.60, 0, 0, 0).

The (bootstrap-generated) box plots are given in Figure 2.4. It should be observed that the increased

variability of δ̂1 and δ̂2 is a result of the fact that these two estimators are calculated from the MLEs

of α1 and α2 as well as the (significantly larger) δ̂5, while δ̂3 and δ̂4 are calculated from the MLEs

of β1 and β2 alone. In this way, it is important to keep in mind that different configurations of

the marginal parameters could greatly impact the variability of the specific estimators. Now, these

estimates (aside from δ3 and δ4 which are estimated directly from the marginal MLEs) are virtually

indistinguishable from educated guesses. If, on the other hand, K = 1000, the estimates improve,

but are still not ideal. This model, along with this method for parameter estimation, simple as they

are, create a practically intractable estimation problem. Yet, it is the simplest conceivable sub-family

of the full model whose marginal parameters are free.

Remark 1. At this point, it may not be clear as to the difference between the impacts of δ5 and δ6

on the distribution, for they are both associated with positive correlation (and the same for δ7 and

δ8 for negative correlation). For some distributions, this difference is quite subtle, and potentially

insignificant, but not all. This will be made clear when copulas are discussed in Section 2.3.
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Figure 2.4: Parameter Estimation results for X ∼ BB(1, 2, 3, 4, 5, 0, 0, 0) with K = 100.

Class B (Model 5)

We now consider the case where δ defines both δ5 and δ6. Stronger correlations can

be observed between δ and ρS with Model 5 than Model 1. Therefore, the same method as that

described for Model 1 can be applied. We use δ = (1, 2, 3, 4, 3, 3, 0, 0) to generate data, x, with

K = 100. The resulting parameter estimate is given by δ̂ = (0.66, 1.34, 1.89, 3.03, 2.87, 2.87, 0, 0).

The (bootstrap-generated) box plots are given in Figure 2.5.

Of the five classes shown in Table 2.1, this class is arguably the easiest to deal with, for

both δ5 and δ6 (in Model 5) affect correlation in concert with one another, so the estimates are

reasonable. The next class, however, presents a very different problem.
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Figure 2.5: Parameter Estimation results for X ∼ BB(1, 2, 3, 4, 3, 3, 0, 0) with K = 100 with the
actual values (red).

Class C (Model 7)

For this class of models, the two non-zero dependence parameters impact correlation in a

conflicting way. Thus, a different collection of statistics for estimating δ is needed. The change to

the distribution over the range of possible values for δ is, again, very subtle, as seen in the example

in Figure 2.6. In the case shown, there is clearly the appearance of positive correlation when δ is

at its maximum value. However, by symmetry, a similar distribution may be constructed which

exhibits the exact opposite effect, and thus, by continuity, yet another where correlation is zero. So

32



correlation alone is insufficient. Rather, we use the four mixed moments

S 1(x) =

K∑
k=1

x1kx2k,

S 2(x) =

K∑
k=1

(1 − x1k)x2k,

S 3(x) =

K∑
k=1

x1k(1 − x2k), and (2.8)

S 4(x) =

K∑
k=1

(1 − x1k)(1 − x2k);

which represent one method of capturing tail dependencies. Simulation suggests that these four

moments provide a some level of identifiability for δ, given any fixed set of marginal parameters.

To estimate the parameters, we may, once again, apply MMLE. We do so by borrowing

from ABC to obtain an estimate of δ. To do this, we obtain δ∗ from a U
(
0,min

{
α̂1
2 , α̂2, β̂2

})
, where

α̂, β̂1, α̂2, and β̂2 are the marginal MLEs. Comparing the statistics in Equation 2.8 obtained from the

original data to those from a simulated dataset with the proposed parameters, we can accept only the

best values of δ by setting (ABC’s) ε0 appropriately. However, large sample sizes are still required

to obtain reasonable assessments of the relationship. Not only this, but also some combinations

of marginal parameters result in extremely poor estimation performance, even for reasonably large

sample sizes. In particular, when the range of possible values for δ is small relative to the size of

the largest marginal parameter, the distribution simply does not change significantly over the range

of possible values for δ. As an example, consider the case where (α1, α2, β1, β2) = (1, 2, 3, 4). Then

δ ∈
[
0, 1

2

]
, making the range of possible distributions so similar, a very large dataset is required

to provide any hope for identifiability within this family. The good news is that we can assess the

severity of this when bootstrapping for the confidence regions.
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Figure 2.6: Densities (obtained by simulation) for X ∼ BB(6, 3, 3, 7, 0, 0, 0, 0) (left), and X ∼
BB(0, 0, 3, 4, 3, 0, 3, 0) (right).

We test this on the family discussed earlier, setting δ = 2: X ∼ BB(2, 1, 3, 5, 2, 0, 2, 0).

The results, similar to those for Model 1, exhibit excessive variation from all parameters except δ3,

which is given by the marginal MLE only.

2.2.3 Summary of Bivariate Beta Sub-Models

The final two classes of models and the accompanying parameter estimation techniques

are similar to Class C. While MMLE is the only method demonstrated here for these distributions,

other methods were attempted with little improvement without adding significantly more complexity

to the processes.

In light of this, some observations can be made about the 8-Parameter Bivariate Beta dis-

tribution and its sub-models. First, there is a clear trade-off between flexibility and a reasonable

ability to perform parameter estimation. From the Olkin-Liu to the full, 8-Parameter, model, there
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Figure 2.7: Parameter Estimation results for X ∼ BB(2, 1, 3, 5, 2, 0, 2, 0) with K = 100 with the
actual values (red).

are many sub-models that may be useful for some applications. Arnold’s 5-Parameter model only

mildly restricts its marginals while also remaining flexible. On the other hand, any model allowing

every collection of marginals, even when only one dependence parameter is active, is cumbersome

when it comes to parameter estimation. The greatest problem manifests when more than one de-

pendence parameter is introduced. How these dependence parameters affect the joint distributions

of members of the same family with significantly different marginal distributions is vast, and thus it

is an insurmountable problem without imposing some significant restrictions.

Ultimately, the most important lesson learned from this analysis is that if a dataset is small,

that is to say, not “big data,” then the marginally restricted models are preferred, but should be used

only with caution, for their fitness may be questionable. For big data, however, the models which

are not marginally restricted, such as those discussed in this section, may be useful, and parameter

estimation is such cases is easy via MMLE methods for point estimations, and subsequent Bootstrap

for confidence regions.
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Figure 2.8: Voter turnout proportion vs. proportion supporting Trump for the 50 states.

In future work, much more can be done to explore this family, particularly for big data

applications with tail dependence properties. In addition, more creatively formed sub-families may

be capable of maintaining a high degree of flexibility while also eliminating the problem of practical

identifiability. Specific sub-families should be constructed based on the known prior information

about the phenomenon being studied.

2.2.4 An Example

We apply a few of the Bivariate Beta models discussed in this section to a dataset of size

K = 50. In the 2016 election, voter turnout and the proportion of voters supporting Trump are

recorded by state (D.C. is omitted as an obvious outlier). Set X1 to be the voter turnout proportion

and X2 to be the proportion of voters supporting Trump. The data is given Figure 2.8. We apply
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Figure 2.9: Olkin-Liu Model 3 (left) and Independent Model (right) Fitted to 2016 Election Data.

four models to this data: the 3-parameter Olkin-Liu Model 3, the 4-parameter independent model, a

5-parameter Arnold & Ng Model (rotated), and the 5-parameter Model 7 from Table 2.1; the results

are given in Figures 2.9 and 2.10. In Table 2.2, the estimates for the appropriate parameters and the

Akaike Information Criterion (AIC), which is computed from an estimated log-likelihood for the

two 5-parameter models, are shown. The two plots in Figure 2.9 are constructed with the known

densities and parameters given by the MLEs. To construct the densities in Figure 2.10, the ABC

method applied by Crackel is used to estimate the parameters of the left density, and a similar ABC

procedure is used to obtain estimates for the plot on the right. According to AIC, the 4-parameter

independent model provides the best fit to the data.
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Figure 2.10: Arnold & Ng Model with δ1 = δ2 = δ6 = 0 (left) and Model 7 from Table 2.1 (right)
Fitted to 2016 Election Data.

2.3 Bivariate Beta Copulas

When the marginal parameters of the 8-Parameter Bivariate Beta distribution are fixed,

parameter estimation becomes a bit more tractable. As is shown in Equation 2.7, the number of

free parameters is reduced to four. In addition, once the marginals are defined, the impacts of

the four parameters are more predictable. In this section, we restrict the marginals to a special

case: X1 ∼ B(1, 1), and X2 ∼ B(1, 1), that is, the marginals are U(0, 1). Formally, a multivariate

distribution whose marginals are U(0, 1) is called a copula.4 We, in this section, discuss exclusively

this sub-family of copulas contained in the 8-Parameter Bivariate Beta model.

4A review of copulas can be found in [30].
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Olkin-Liu Independent Arnold & Ng Model 7 from
Estimate Model 3 Model (Rotated) Table 2.1

δ1 0 33.42 0 34.628
δ2 0 11.72 0 10.088
δ3 13.99 25.63 9.725 26.138
δ4 11.13 12.09 11.257 10.461
δ5 0 0 12.847 1.824
δ6 0 0 0 0
δ7 14.43 0 10.477 1.824
δ8 0 0 8.327 0

AIC −193.900 −213.2484 −185.0856 −209.9852

Table 2.2: Bivariate Beta models applied to Trump election data.

2.3.1 Definitions

The sub-family of copulas can be defined by expressing δ1, δ2, δ3, and δ4 in terms of δ5,

δ6, δ7, and δ8, in order to generate uniform marginal distributions.

δ1 = 1 − δ5 − δ7;

δ2 = 1 − δ5 − δ8;

δ3 = 1 − δ6 − δ8; (2.9)

δ4 = 1 − δ6 − δ7;

so that the parameter space, ∆, may be defined by (δ5, δ6, δ7, δ8) ∈ ∆ where

δ5 ∈ [0, 1];

δ6 ∈ [0, 1];

δ7 ∈ [0, 1 −max{δ5, δ6}]; (2.10)

δ8 ∈ [0, 1 −max{δ5, δ6}];

Notation: Throughout this chapter, denote (δ6, δ7, δ8) by δ(5), (δ5, δ7, δ8) by δ(6), (δ5, δ6, δ8)
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by δ(7), and (δ5, δ6, δ7) by δ(8).

This subfamily will hereafter be called the Arnold & Ghosh 4-parameter family of copulas

[4]. We will develop some useful methods for applying this model, and construct a method for

parameter estimation for a small sub-collection of these models. The uniquely flexible characteristic

of this family is a consequence of the fact that it is a multi-parameter copula, an unusual case in the

world of copulas. The family includes the full range of possible correlations, i.e. it includes both

the upper and lower Fréchet-Hoeffding bounds. In addition, it includes the product copula i.e. the

bivariate U(0, 1) distribution with independent marginals.

The cost associated with these benefits is complexity. Because the density is not available

in general, maximum likelihood estimates of the parameters are inaccessible in closed form. In

addition, mixed moments are also not analytically accessible and must be computed through simu-

lation. And, as with any family of (continuous) copulas, accurate parameter estimation will require

an unusually large amount of data. Thus, the problem of parameter estimation is far from trivial.

Therefore, we propose a staged approach, in which the family is dismantled into smaller subclasses

for which parameter estimation is more tractable, prior information and sample moments are used

to eliminate obvious misfit subfamilies, and a final model is selected based on a reasonable metric.

The following sections detail this process.

2.3.2 Sub-Families

A most useful way to break down the problem of parameter estimation into a more man-

ageable form is to construct subfamilies with 1, 2, and 3 parameters. We will look more closely at

some 1-parameter sub-families; larger families will be left for future work. These smaller families

often allow for more accessible parameter estimation methods. As will be seen with a particular

40



collection of 1-parameter subfamilies, correlation can be strongly related to the single parameter,

often monotonically. Figure 2.11 depicts this relationship for one such 1-parameter family, where

the range of possible values for the correlation is complete. This will provide an easy method of

elimination of some subfamilies whose correlation ranges do not include the data’s sample correla-

tion.

One-Parameter Subfamilies

We limit this discussion to a collection of 1-parameter sub-families whose Pearson corre-

lation measures have one-to-one correspondence with the parameter. Table 2.3 gives a complete list

of these copulas,5 and Figures 2.11 and 2.12 show the corresponding correlation plots, for the first

of each class, as functions of the single parameter (based on sample correlations of large simulated

samples). Included is a quadratic model drawn from the data for each. Thus, given a specific model

from this list, the parameter can be estimated with the sample correlation. In addition, confidence

bounds can be constructed through a simple bootstrap procedure. It is easy to see that some of these

families include one or both of the Fréchet-Hoeffding Bounds, while some include neither. Another

important observation is that some are related by rotating about the horizontal and vertical lines

through
(

1
2 ,

1
2

)
, as with the general BB class, and thus are included within the same class.

Because the dependence structure is not always well-captured by a straight correlation

measure, there are many other 1-parameter subfamilies with alternative defining characteristics.

The number of such subfamilies is infinite; Table 2.4 provides a list of some of these cases.

Parameter estimation for these eleven models is less straightforward than the first nine-

5Roman class indexes in parentheses coincide with Arnold & Ghosh (2017).
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Eq. Class Family δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

A (IV) 1 0 0 0 0 δ δ 1 − δ 1 − δ

B (V)

2 0 0 1 − δ 1 − δ 1 δ 0 0

3 1 − δ 1 − δ 0 0 δ 1 0 0

4 0 1 − δ 1 − δ 0 0 0 1 δ

5 1 − δ 0 0 1 − δ 0 0 δ 1

C (VI)

6 1 − δ 1 − δ 1 1 δ 0 0 0

7 1 1 1 − δ 1 − δ 0 δ 0 0

8 1 − δ 1 1 1 − δ 0 0 δ 0

9 1 1 − δ 1 − δ 1 0 0 0 δ

D (VII)

10 δ δ 0 0 0 δ 1 − δ 1 − δ

11 δ 0 0 δ 1 − δ 1 − δ 0 δ

12 0 δ δ 0 1 − δ 1 − δ δ 0

13 0 0 δ δ δ 0 1 − δ 1 − δ

E (VIII)
14 δ 1 1 − δ 0 0 δ 1 − δ 0

15 1 − δ 0 δ 1 δ 0 0 1 − δ

F (IX)
16 1 δ 0 1 − δ 0 δ 0 1 − δ

17 0 1 − δ 1 δ δ 0 1 − δ 0

G
18 1 − δ 1 − δ 1 − δ 1 − δ δ δ 0 0

19 1 − δ 1 − δ 1 − δ 1 − δ 0 0 δ δ

Table 2.3: One-Parameter Families of Bivariate Beta Copulas with Parameter Monotonically Re-
lated to Correlation.
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Model 1 : δ = 0.000527ρ2 + 0.500083ρ + 0.499590

Model 2 : δ = −0.868636ρ2 + 3.191099ρ + −1.324581

Model 6 : δ = −0.840308ρ2 + 2.486301ρ + 0.003652

Model 10 : δ = 0.051894ρ2 + 0.703307ρ + 0.651374

Model 14 : δ = 0.003635ρ2 + 1.043670ρ + 0.500149

Model 16 : δ = −0.008851ρ2 + 1.044066ρ + 0.500824

Model 18 : δ = −0.262718ρ2 + 1.259909ρ + 0.001420

2.3.3 One-Parameter Subfamilies

, 2.4, and 2.5 lists these families.

To gain the full benefit, we propose a model-building process that efficiently selects the

simplest model well-fit to the data. In essence, the process is a forward model-building proce-

dure, beginning with the independent case, and testing the sub-models for fitness in a guided order,

governed by the results of the previous model fitness tests.

2.3.4 Statistical Inference

Since this family does not have a density, we must apply a likelihood-free method for

parameter estimation. In particular, we choose the staged Markov Chaim Monte Carlo (MCMC)

method described in this section. However, before addressing the details, some framework is nec-

essary. Let x(1), x(2), ..., x(n) be a random sample from FX(x; δ). We will apply a Gibbs Sampler for

the four parameters, updating one at a time. For each step, we will also apply an MCMC process

for obtaining draws of the individual parameters.

34

Figure 2.11: Correlation for Bivariate Beta Copula, Model 1. A linear model through (0, 0) and
(1, 1) is included.

teen. It can be shown that Classes H and J have zero correlation for all possible values of δ, yet

they have a clear dependence relationship for almost all values of δ. Classes H, I, and J include the

product copula while Class K does not, and none of these contain the Fréchet-Hoeffding Bounds.

While the members of Class I exhibit a monotonic relationship between δ and Corr(X1, X2), it is a

weak relationship, covering only about one eighth of the spectrum of possible correlation values,

and correlation is not an important characteristic of this family. Lastly, the members of Class K

exhibit a non-monotonic relationship between δ and Corr(X1, X2), and only over a narrow window

of possible correlations. In future work, many of these and other families can be further devel-

oped, and appropriate (sets of) statistics may be chosen specifically to form convenient one-to-one

relationships with the parameter.

When it comes to model selection, prior information is very useful, providing a way

of eliminating (or choosing) potential subfamilies. For example, some subfamilies include, say,

the product copula and some do not. Also, prior knowledge may provide the expectation that the
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Figure 2.12: Correlation for Bivariate Beta Copula, Models 2, 6, 10, 14, 16, and 18.
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Eq. Class Family δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

H 20 1 − δ 1 − δ 1 − δ 1 − δ δ
2

δ
2

δ
2

δ
2

I

21 1 − δ
2 1 − δ

2 1 − δ 1 − δ 0 δ
2

δ
2

δ
2

22 1 − δ 1 − δ 1 − δ
2 1 − δ

2
δ
2 0 δ

2
δ
2

23 1 − δ
2 1 − δ 1 − δ 1 − δ

2
δ
2

δ
2 0 δ

2

24 1 − δ 1 − δ
2 1 − δ

2 1 − δ δ
2

δ
2

δ
2 0

J

25 1 − δ 1 − δ
2 1 1 − δ

2
δ
2 0 δ

2 0

26 1 − δ
2 1 − δ 1 − δ

2 1 δ
2 0 0 δ

2

27 1 1 − δ
2 1 − δ 1 − δ

2 0 δ
2 0 δ

2

28 1 − δ
2 1 1 − δ

2 1 − δ 0 δ
2

δ
2 0

K
29 1 − δ 1 − δ δ δ δ 1 − δ 0 0

30 1 − δ δ δ 1 − δ 0 0 δ 1 − δ

Table 2.4: Other One-Parameter Families of Bivariate Beta Copulas.

correlation is positive only, or provide knowledge of some type of symmetry for the data source.

Many other prior assumptions can limit the applicable subfamilies as well. For example, Model 1

includes both Fréchet-Hoeffding Bounds, but does not include the product copula. Thus, knowledge

that the phenomenon will never exhibit independence is useful for model selection. More generally,

the known behavior of a system may allow for substantial narrowing of the potentially applicable

models. Once a sub-collection of families is chosen (using prior information), parameter estimation

is relatively easy via the method of moments.

Multi-Parameter Subfamilies

A vast collection of 2- and 3-parameter sub-families can be formed to possess various

characteristics. A collection of them is given in Tables 2.5, and 2.6. We leave parameter estimation

and model selection for these for future work.
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2.3.3 Model Selection

We now return to the nineteen families shown in Table 2.3. If no prior information is

known, model selection is still possible, though a bit more difficult.

To begin, we must gain an understanding of the interesting characteristics of the model

classes A through G. In Figures 2.13, and 2.14 we show the densities6 for three cases of each class:

δ = 0, δ = 0.5, and δ = 1.

An immediate observation from these densities is that nothing about them is particularly

surprising. Each of the dependence parameters, in all cases, tends have a strong (positive) asso-

ciation with a specific tail dependence, illustrated by the densities exhibiting concentration at the

corners. Specifically, when δ5 is significant, the density includes concentration near the corner at

(0, 0); when δ6 is significant, the density includes concentration near the corner at (1, 1); when δ7

is significant, the density includes concentration near the corner at (0, 1); and when δ8 is signifi-

cant, the density includes concentration near the corner at (1, 0). For model selection, this can be

exploited, most notably by matching both known (or expected) cases of tail dependence, or any

known lack of the same. For example, if a phenomenon exhibits a tail dependency, one where,

say, X1 tends to be either small or large whenever X2 is large, then Model 14 may be a reasonable

candidate. So, it would be very useful to have a strong measure of tail dependencies.

We propose the vector, S(x), of eight statistics that appear to not only be effective at

identifying tail dependencies, but also at providing a general identifiability for the full, 4-parameter

6When the joint density is not analytically accessible, it was estimated through simulating large data sets.
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Figure 2.13: Densities for Models 1 (top), 2 (center), and 6 (bottom), for δ = 0 (left), δ = 0.5
(center), and δ = 1 (right).
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Figure 2.14: Densities for Models 10 (top), 14 (center), and 18 (bottom), for δ = 0 (left), δ = 0.5
(center), and δ = 1 (right).
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copula family. They are given in Equation 2.11.

S 1(x) =
K11

K
, where K11 =

∑
k:x1k≤

1
2 &x2k≤

1
2

1,

S 2(x) =
K12

K
, where K12 =

∑
k:x1k≤

1
2 &x2k>

1
2

1,

S 3(x) =
K21

K
, where K21 =

∑
k:x1k>

1
2 &x2k≤

1
2

1,

S 4(x) =
K22

K
, where K22 =

∑
k:x1k>

1
2 &x2k>

1
2

1, (2.11)

S 5(x) =
1

K11

∑
k:x1k≤

1
2 &x2k≤

1
2

log
[
(1 + x1k)(1 + x2k) − 2 + (1 − x1k)(1 − x2k)

(1 − (1 − x1k)(1 − x2k))3

]
,

S 6(x) =
1

K12

∑
k:x1k≤

1
2 &x2k>

1
2

log
[
(1 + x1k)(2 − x2k) − 2 + (1 − x1k)x2k

(1 − (1 − x1k)x2k)3

]
,

S 7(x) =
1

K21

∑
k:x1k>

1
2 &x2k≤

1
2

log
[
(2 − x1k)(1 + x2k) − 2 + x1k(1 − x2k)

(1 − x1k(1 − x2k))3

]
,

S 8(x) =
1

K22

∑
k:x1k>

1
2 &x2k>

1
2

log
[
(2 − x1k)(2 − x2k) − 2 + x1kx2k

(1 − x1kx2k)3

]
,

The first four statistics are the proportions of data points in each of the four equally-sized quadrants

in the unit square, and the last four are (partial) log-likelihood functions of a related distribution,

which will be discussed further next.

The Ali-Michail-Haq copula, who’s density is known, turns up in many applications.

In the context of the 4-parameter Bivariate Beta Copula, it specifically appears when one of the

dependence parameters is 1 and the other three are 0. The density in the case of δ5 = 1 is

fX(x) =
(1 + x1)(1 + x2) − 2 + (1 − x1)(1 − x2)

(1 − (1 − x1)(1 − x2))3 I{0 ≤ x1, x2 ≤ 1}

This is the underlying density of the log-likelihood functions forming the last four statistics in Equa-

tion 2.11, and thus, the Ali-Michail-Haq distribution has an important tie to the larger 4-parameter
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family of copulas. It turns out that these log-likelihood functions are useful measures of tail de-

pendence for this particular family, better than Spearman’s, Pearson’s as well as other weighted

correlation coefficients that were tested in this research.

The foundation is now set for the model selection process. Now, since the parameter space

of this family of copulas (Equation 2.10) is compact; that is to say, it is a closed and bounded subset

of R4 of volume 1
6 ; a natural next step for any analyst would be to build a lattice of points within

this space and measure the statistics in Equation 2.11 for a large simulated data set generated from

each point in the lattice. Locating the point in the lattice producing those statistics with the closest

(Euclidean) distance to the same statistics given by the original data should produce a reasonable

starting point for model selection. In the context of Models 1 through 19, we can apply a similar

routine, exploiting the monotonic relationship between correlation and δ for each to obtain an es-

timate, then record the statistics, S, and choose the model yielding the closest value of S for the

estimated value of δ. Denote the distribution function of Model m ∈ {1, 2, ..., 19} with parameter δ

by Fm(x; δ). We detail the process below:

Step 1. Obtain estimates, δ̂(1), δ̂(2), ..., δ̂(19) using the method of moments.

Step 2. Compute S(x) from the original data, x.

Step 3. Simulate samples,
{
ym

}19
m=1, of size J ≥ 10000, from the distributions Fm(x; δ̂(m))

for all m ∈ {1, 2, ..., 19}.7

Step 4. Compute the sum of squared error,
[
S(x) − S(ym)

] [
S(x) − S(ym)

]′, for all values

of m.
7The value of J is chosen to be sufficiently large to provide overall identifiability for Models 1 though 19.
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Step 5. Select Model m0 with estimate δ̂(m0), where m0 is the subscript of the data set

resulting in the smallest such SSE value.

We test this procedure by simulating 10000 data sets of size 100 from randomly-selected

Models from Table 2.3 and random values of δ. Applying the above procedure, we find that it

successfully chooses the correct model in 26% of the test cases. Of those correctly chosen, we

computed the correlation from each data set, and used the models, examples of which are shown

in Figures 2.11 and 2.12, to obtain estimates for δ. The average bias and mean squared error are

given in Table 2.7. Given the effectiveness of the statistics S, an ABC procedure may also be

applied to those test cases the Model Search correctly identified, with the non-informative prior

(δ̃5, δ̃6, δ̃7, δ̃8) ∼ Uni f orm(∆), SSE as ρ, and an ε0 = 0.01. The results of this are also provided in

Table 2.7. In both cases, a bootstrap procedure can be applied to obtain interval estimates.

Estimator Mean Bias Mean Squared Error

Model Search with MOM 0.01677 0.01865

ABC −0.04200 0.03179

Table 2.7: Model Search and ABC methods for 1-Parameter Bivariate Beta Copula, Models 1
through 19.

There may be some concern about the low percentage of correct model choices. There

are two major reasons for this. First, the sample size is relatively small, so variations in the data can

easily lead to different models becoming better fits. For large data sets, the proportion of cases in

which the correct model is chosen can exceed 70%, but, even for extremely large data sets, it does

not exceed 80%. This is likely attributable to the second reason: there is some practical overlap

amongst the models. So it is expected that if a test case is within an overlap between two models,
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either model could be selected without (practical) error. This reinforces the previous observation

that use of prior knowledge is a valuable addition to the model selection process.

An optional addition to this procedure would be to engage in a search over some neigh-

borhood of the estimate, in the unrestricted space, ∆. Definition of the neighborhood, however, is a

subjective decision. One possibility is to define a prior distribution ’centered’ at this estimate and

proceed with ABC. In this way, parameter estimation can ultimately lead to any parameter set in

∆. The important question, left for future work, is whether or not the models in Table 2.3, provide

sufficient coverage of ∆ to justify this step. It can, however, be said with reasonable certainty that

this step is applicable only to large data sets.

2.4 Conclusions

In this chapter we have investigated the 8-Parameter Bivariate Beta distribution, some of

its sub-families, and particularly its sub-family of copulas.

We showed that difficulties arise for parameter estimation for not only the full model,

but many of its sub-families, even some which are rather simple. This problem is made clear for

sub-families whose marginal distributions are unrestricted because the behavior of the dependence

structure changes with the marginal parameters. Sub-models for which parameter estimation is

tractable will tend to have restricted marginals; that is, marginals which are functionally related to

the dependence parameters. We conclude that the 8-parameter model should be viewed only as an

omnibus of simpler models, each with both identifiable and useful characteristics.

For the sub-family of copulas, we exhibited the flexibility of the family, particularly in

its ability to model tail dependencies and the full range of correlations. We reduced the problem of

parameter estimation by reducing the number of parameters, resulting in nineteen models over seven
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classes. This provided a means by which parameter estimation is accessible through the Method of

Moments. Specifically, these sub-families were chosen, in part, for the parameter’s monotonic

relationship with a simple statistic: correlation. Model selection was accomplished by exploiting

the compactness of the parameter space with a search based on a useful collection of statistics. ABC

can also be applied using these same set of statistics. Multi-parameter models can be addressed in

similar, though more tedious, methods.
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Chapter 3

Bivariate Laplace Distributions

3.1 Introduction

The Laplace distribution, also known as the double exponential distribution, is often a

useful alternative to the Gaussian distribution when heavier tails are desired. It is the error distri-

bution associated with results obtained when absolute error, rather than squared error, is minimized

in regression scenarios. Asymmetric Laplace distributions are, as the name would suggest, double

exponential distributions where the scale parameters of the positive and negative parts of the density

may be different. They are a more general form of the standard Laplace distribution, and are relevant

for a larger variety of applications. In this chapter, we construct a family of bivariate Asymmetric

Laplace (BAS L) distributions, the most general form of which has 8 parameters, hereafter referred

to as the “full model.” We provide intuitive interpretations of the parameters, exhibit a similarity

between the BAS L distribution and the Bivariate Beta Copula discussed in Chapter 2, and demon-

strate a parameter estimation technique for a sub-family of this class of distributions. We finish this

chapter with an example of a subfamily applied to a regression scenario with bivariate responses.
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3.2 Definitions

Define the random variables U j ∼ Γ(δ j, 1), j = 1, 2, ..., 8, where δ j > 0, j ∈ {1, 2, ..., 8},

βi > 0, i = 1, 2, 3, 4, and

δ1 = 1 − δ5 − δ7;

δ2 = 1 − δ5 − δ8;

δ3 = 1 − δ6 − δ8; (3.1)

δ4 = 1 − δ6 − δ7;

Then, the random variable,

X =


X1

X2

 =


β3(U3 + U6 + U8) − β1(U1 + U5 + U7)

β4(U4 + U6 + U7) − β2(U2 + U5 + U8)

 , (3.2)

has a bivariate asymmetric Laplace distribution, with a parameter space, (β, δ) given by

δ5 ∈ [0, 1];

δ6 ∈ [0, 1];

δ7 ∈ [0, 1 −max{δ5, δ6}]; (3.3)

δ8 ∈ [0, 1 −max{δ5, δ6}];

and

β1 ∈ [0,∞);

β2 ∈ [0,∞);

β3 ∈ [0,∞); (3.4)

β4 ∈ [0,∞).
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Figure 3.1: Densities of BAS L

(
β =

(
1, 1

2 ,
1
3 ,

1
4

)
, δ = (0, 0, 0, 0)

)
(left), and

BAS L
(
β =

(
1, 1

2 ,
1
3 ,

1
4

)
, δ =

(
2
5 , 0,

3
5 , 0

))
(right).

Notation: We will write X ∼ BAS L(β = (β1, β2, β3, β4), δ = (δ1, δ2, δ3, δ4)), or more briefly X ∼

BAS L(β, δ).

Examples of the density are given in Figure 3.1.1 It should be mentioned that even

more general versions are possible, particularly those which include location parameters for each

marginal. In this chapter, we restrict our study to the form shown in Equation 3.2, that is the version

“centered” at (0, 0). We use the quotation marks here since the origin is not, in general, the mean of

a BAS L distribution. The exact formula for the mean vector is given in the next section.

3.3 Moments

Moments are easy to compute for the BAS L, though they become increasingly tedious to

evaluate as the order of the moments increases. Some useful moments are given in Equations 3.5,

1The density on the left is for an independent case, so its density function is available in closed form. The one on the
right has no closed-form density, and is generated though simulation and density estimation techniques.
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3.6, 3.7, 3.8, and 3.9.

E[X] =


E[X1]

E[X2]

 =


E

[
β3(U3 + U6 + U8) − β1(U1 + U5 + U7)

]
E

[
β4(U4 + U6 + U7) − β2(U2 + U5 + U8)

]


=


β3(δ3 + δ6 + δ8) − β1(δ1 + δ5 + δ7)

β4(δ4 + δ6 + δ7) − β2(δ2 + δ5 + δ8)

 (3.5)

=


β3 − β1

β4 − β2


We next compute the covariance matrix:

Var[X1] = E[X2
1] − E[X1]2

=E
[
β2

3(U3 + U6 + U8)2
]

+ E
[
β2

1(U1 + U5 + U7)2
]

− 2β1β3E[(U1 + U5 + U7)]E[(U3 + U6 + U8)]

− β2
3E[(U3 + U6 + U8)]2 − β2

1E[(U1 + U5 + U7)]2

+ 2β1β3E[(U1 + U5 + U7)]E[(U3 + U6 + U8)] (3.6)

=β2
3E

[
(U3 + U6 + U8)2

]
− β2

3E[(U3 + U6 + U8)]2

+ β2
1E

[
(U1 + U5 + U7)2

]
− β2

1E[(U1 + U5 + U7)]2

=β2
3Var[(U3 + U6 + U8)] + β2

1Var[(U1 + U5 + U7)]

=2
[
β2

3 + β2
1

]
Similarly,

Var[X2] = 2
[
β2

4 + β2
2

]
(3.7)
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The covariance is

Cov[X1, X2] =E
[
(β3(U3 + U6 + U8) − β1(U1 + U5 + U7)) ·

(β4(U4 + U6 + U7) − β2(U2 + U5 + U8))
]
− E[X1]E[X2]

=β3β4E[U2
6] − β2β3E[U2

8] − β1β4E[U2
7] + β1β2E[U2

5] (3.8)

− β3β4E[U6]2 + β2β3E[U8]2 + β1β4E[U7]2 − β1β2E[U5]2

=β3β4Var[U6] − β2β3Var[U8] − β1β4Var[U7] + β1β2Var[U5]

=β3β4δ6 − β2β3δ8 − β1β4δ7 + β1β2δ5

Thus, the variance-covariance matrix is given by

Var[X] =


2
[
β2

3 + β2
1

]
β3β4δ6 − β2β3δ8 − β1β4δ7 + β1β2δ5

β3β4δ6 − β2β3δ8 − β1β4δ7 + β1β2δ5 2
[
β2

4 + β2
2

]
 (3.9)

3.4 Interpretation of Parameters

For this family, it is easy to see that, by construction, β completely determines the marginal

distributions of X, i.e.

X1 ∼ AS L(β1, β3), so that fX1(x1) =
1

β1 + β3


e

x1
β1 , if x1 < 0

e−
x1
β3 , if x1 ≥ 0

, (3.10)

and

X2 ∼ AS L(β2, β4), so that fX2(x2) =
1

β2 + β4


e

x2
β2 , if x2 < 0

e−
x2
β4 , if x2 ≥ 0

. (3.11)

where AS L represents the asymmetric Laplace distribution. The marginal MLEs are available in

closed form:
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β̂1 = µ1 +
√
µ1µ3; β̂3 = µ3 +

√
µ1µ3 (3.12)

and

β̂2 = µ2 +
√
µ2µ4; β̂4 = µ4 +

√
µ2µ4 (3.13)

where

µ1 =
1
K

∑
x1<0

x1,

µ2 =
1
K

∑
x2<0

x2,

µ3 =
1
K

∑
x1≥0

x1, and (3.14)

µ4 =
1
K

∑
x2≥0

x2.

It should be noted that these are not simple means of the positive and negative values of X1 and

X2, which, themselves, can be used to compute estimators of β; in contrast, the denominators in

all four expressions are K, the size of the entire dataset. These MLEs will be useful for parameter

estimation in the next section.

The other four parameters, δ, bear a strong resemblance to the same parameters of the

Bivariate Beta Copula, for they range over the same set of values, and each influences the two

distributions in a similar way, particularly through tail dependencies. Referring, once again, to

Figure 3.1, we see that when δ5 and δ7 are active, i.e., not equal to 0, we have two concurrent tail

dependencies, as are seen by the stretching of the contour lines away from the origin in the third and

fourth quadrants.

This is distinct from the situation with other bivariate asymmetric Laplace distributions.

One such family was introduced by Kotz, et. al. [25], who constructed a multivariate asymmetric
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Laplace family of distributions based on the Gaussian distribution’s dependence properties. The

two-dimensional version has density,

fY1,Y2(y1, y2) =

exp


((

m1σ2
σ1
−m2ρ

)
y1+

(
m2σ1
σ2
−m1ρ

)
y2

)
σ1σ2(1−ρ2)


πσ1σ2

√
1 − ρ2

·K0

C(m1,m2, σ1, σ2)

√
y2

1σ2

σ1
− 2ρy1y2 +

y2
2σ1

σ2

 ,

where

C(m1,m2, σ1, σ2) =

√
2σ1σ2(1 − ρ2) +

m2
1σ2

σ1
− 2m1m2ρ +

m2
2σ1

σ2

σ1σ2(1 − ρ2)
,

and K0(·) is a the modified Bessel function of the third kind (See Kotz).

This distribution has 5 parameters, (m1,m2, σ1, σ2, ρ). m1 and m2 control skewness, and

all five are responsible for dependence structure. Consequently this large family of distributions

is capable of representing many unique combinations of dependence structure and marginals. In

addition, observations from this distribution can easily be simulated through the relation,

Y d
= mW +

√
WZ, (3.15)

where W ∼ exp(1), Z ∼ BVN(0,Σ), W ⊥ Z, and

Σ =


σ2

1 σ1σ2ρ

σ1σ2ρ σ2
2

 (3.16)

Similar to the observations made in Chapter 2, the marginal distributions are related to the depen-

dence structure. That is, given a particular pair of marginal distributions, the Kotz family is limited

in its capacity to exhibit specific dependence structures. In contrast, though the X ∼ BAS L(δ,β)

may provide additional flexibility, it has the defect that it fails to have closed form expressions for

its densities. Hence, for it, likelihood-free techniques must be applied.
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3.5 Statistical Inference

Assume, first, that β = (1, 1, 1, 1). In this case, both marginals have standard Laplace

distributions. Additionally, a method of moments solution for δ is available in closed form. The

2nd- and 3rd-order mixed moments yield covariances with simple forms:

γ11 = Cov[X1, X2] = δ5 + δ6 − δ7 + δ8

γ21 = Cov[X2
1 , X2] = 2(−δ5 + δ6 + δ7 − δ8) (3.17)

γ12 = Cov[X1, X2
2] = 2(−δ5 + δ6 − δ7 + δ8)

Higher-order moments become increasingly complex, but a 4th-order mixed moment ultimately

yields

γ22 = Cov[X2
1 , X

2
2] = 2(2 + δ2

5 + 3δ6 + 3δ7 + δ5(3 + 2δ6 − 2δ7 − 2δ8) + 3δ8 + (−δ6 + δ7 + δ8)2) (3.18)

The corresponding sample moments may be computed to provide an estimate for δ:

δ̂5 =
1

24

(
6γ̂11 − 2γ̂2

11 − 3γ̂21 − 3γ̂12 − γ̂22 − 4
)

δ̂6 =
1

24

(
6γ̂11 − 2γ̂2

11 + 3γ̂21 + 3γ̂12 − γ̂22 − 4
)

δ̂7 =
1

24

(
−6γ̂11 − 2γ̂2

11 + 3γ̂21 − 3γ̂12 − γ̂22 − 4
)

(3.19)

δ̂8 =
1

24

(
−6γ̂11 − 2γ̂2

11 − 3γ̂21 + 3γ̂12 − γ̂22 − 4
)

where γ̂i j is the sample correlation corresponding to γi j, for i, j ∈ {1, 2}. These estimators provide

reasonable estimates for K ≈ 105 or larger. For smaller sample sizes, alternative methods are

necessary.

Now, when we re-introduce β as unknown, we can obtain the marginal MLEs as described

previously. However, the data cannot be transformed so that it has standard Laplace marginals.
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Consider the most intuitive means by which to do this: normalizing the data in each of the four

quadrants in R2 with the corresponding β’s, i.e., set

x++ = {xk : x1k, x2k ≥ 0},

x+− = {xk : x1k ≥ 0 ∧ x2k < 0},

x−+ = {xk : x1k < 0 ∧ x2k ≥ 0},

x−− = {xk : x1k, x2k < 0}.

Then, defining

y++ = (x++)′B34,

y+− = (x+−)′B32,

y−+ = (x−+)′B14,

y−− = (x−−)′B12;

where Bi j is a two-row matrix with an appropriate number of columns to permit matrix multipli-

cation, and β−1
i in all entries of the first row, and β−1

j in all entries of the second row, i ∈ {1, 3},

and j ∈ {2, 4}. Then, each of |y++|, |y++|, |y++|, and |y++| can easily be shown to be from standard

bivariate exponential distributions. However, the data y = y++ ∪ y++ ∪ y++ ∪ y++ is from a distribu-

tion with standard Laplace marginals if and only if β1 = β3, and β2 = β4. Otherwise, the expected

value will not be (0, 0), that is there are (expected to be) different amounts of data in each quadrant.

Attempting an additional transformation to resolve this is a risky endeavor, and will not be done

here. Rather, we choose an alternative method for characterizing this family.

Suppose x is an observed random sample of size K from X ∼ BAS L(β, δ), where β and δ

are unknown. With the marginal MLEs, we can obtain estimates for β, setting the stage for a variety
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of methods. We focus on one: an MCMC method with data-informed proposals.

Consider the following process. First, select a large sample,
(
δ(1), δ(2), ..., δ(M)

)
. This

sample can be randomly selected from δ̃ ∼ Uni f orm(∆), where ∆ is the parameter space de-

fined in Equation 2.10, or be consciously decided upon, e.g. a lattice. Obtain simulated samples,(
y(1), y(2), ..., y(M)

)
, from FX(x; β̂, δ(m)),m ∈ {1, 2, ...,M}, respectively, where β̂ =

(
β̂1, β̂2, β̂3, β̂4

)
, is

a vector of the marginal MLEs given in Equations 3.12 and 3.13. Now assume β̂ is the true value

of β, and estimate the density, fX(x; β̂, δ(m)) based on each data set, y(m), and using the method of

density estimation outlined in Appendix A. Compute the likelihood of x for each δ(m) based on

these estimated densities.

At this point there are a couple of options. If M is very large, set δ̂ = δ(m0) where

fX(x; β̂, δ(m0)) is the density estimate resulting in the largest value of the likelihood, i.e. obtain a

brute-force maximum likelihood estimate. The MMLE estimate would then be
(
β̂, δ̂

)
. Alternatively,

one can consider a sub-collection of the y(m)’s resulting in the ’best’ likelihood values, and apply

some carefully chosen model to these. This model can then be used as a proposal distribution for

δ in a MCMC process. A bootstrap process can then be applied to obtain simulated values from

the marginal maximum likelihood estimators, β̂. In the next section, we demonstrate the latter on a

4-parameter sub-model of the 8-parameter family.

3.5.1 MCMC Parameter Estimation

Suppose it is known that, in reality, δ7 = δ8 = 0, β2 = β4 = 1, and that the observed

sample, x, is of size K = 250. In addition, suppose the true parameters are β = (3, 1, 5, 1) and

δ = (0.14, 0.71, 0, 0). We construct a Markov Chain whose limiting distribution will estimate the

distribution of the true MLE of (β, δ).
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For the proposal distribution, we apply the procedure summarized at the end of the previ-

ous section. Experience suggests that the estimators, δ̂5 and δ̂6, exhibit a negative correlation. Thus,

we choose the model for (δ̂5, δ̂6) to be the Olkin-Liu Bivariate Beta, Model 4, denoted BBOL4 , as

defined in Section 2.2.1, particularly for its simplicity and its negative correlation. The process for

obtaining a proposal distribution for (β, δ) is detailed as follows:

Step 1. Compute the marginal MLEs, β̂, from the original data, x.

Step 2. Set m0 ∈ N. This value will be the number of samples required to determine the

MLE for the proposal distribution for δ. We set it at 40. Sample n0 = m2
0 values,

(d51, d61), (d52, d62), ..., (d5n0 , d6n0) from a Uni f orm(S ) distribution, where S is

the unit square: S = (0, 1) × (0, 1); call the sample L.

Step 3. Simulate large samples,
{
y(d5,d6)

}
(d5,d6)∈L

, of size, say, J ≥ 25000, each from the

random variable Yd5,d6 ∼ BAS L(β = β̂, δ = (d5, d6, 0, 0)) corresponding to the

ordered pair, (d5, d6) ∈ L.

Step 4. Estimate the densities, f̂d5,d6(y;β = β̂, δ = (d5, d6, 0, 0)) of Yd5,d6 using the

method in Appendix A, from the datasets,
{
y(d5,d6)

}
(d5,d6)∈L

.

Step 5. Compute L̂(δ5, δ6|X = x) =
∏K

k=1 f̂d5,d6(xk;β = β̂, δ = (d5, d6, 0, 0)), for all (d5, d6) ∈

L.

Step 6. Select the m0 ordered pairs, (d51, d62), (d51, d62), .., (d5m0 , d6m0), from L that cor-

respond to the largest values of L̂(δ5, δ6|X = x). From this dataset, obtain MLEs,

(â, b̂, ĉ), for (δ̃5, δ̃6) ∼ BBOL4(a, b, c). The proposal distribution for (δ5, δ6) is

BBOL4(â, b̂, ĉ).
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The process of obtaining a single proposal value is as follows:

Step 1. Obtain a sample, δ∗ = (δ∗5, δ
∗
6, 0, 0), from (δ̃5, δ̃6) ∼ BBOL4(â, b̂, ĉ).

Step 2. Obtain a sample, y∗, of size K from X ∼ BAS L(β̂ = β̂, δ = δ∗), where β̂ is the set

of marginal MLEs for β. Compute the marginal MLEs, β∗, from the new sample

y∗.

Step 3. The proposal is (β = β∗, δ = δ∗).

For the MCMC process, we apply the standard Metropolis-Hastings algorithm, shown in

Section 1.4.1, using the density estimation method detailed in Appendix A. We detail this process

next:

Step 1. Set t = 1. Set the initial value (β, δ)(0) = (β̂, δ = (0, 0, 0, 0)),. Since this param-

eter set represents independent marginals, we know the corresponding density

and thus the likelihood: L̂((β, δ)(0)|x) = L(β̃, δ̃|x).

Step 2. Step t to t + 1. Generate a single proposal value, (β, δ)∗, from the proposal

distribution detailed above.

Step 3. Simulate an iid sample, y∗, of M realizations from Y ∼ F(y; (β, δ)∗), where M

is sufficiently large to accurately estimate f at all points in x. In this case, we

choose M = 25000.

Step 4. Estimate f̂ (xk|(β, δ)∗) for all k ∈ {1, 2, ...,K} based on y∗, and compute the esti-

mated likelihood, L̂((β, δ)∗|x).
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Figure 3.2: Initial δ sample and corresponding BBOL4(3.12, 3.26, 19.72) proposal model.

Step 5. Simulate a single realization, u, from U ∼ U(0, 1). If u <
L̂((β,δ)∗ |x)

L̂((β,δ)(t−1) |x)
, then

accept (β, δ)∗ as (β, δ)(t) as a draw from Fβ̃,δ̃|X(β, δ|x). Otherwise, set (β, δ)(t) to

(β, δ)(t−1).

Step 6. If t = N, where N is the desired chain length, then stop. Otherwise, repeat Step

2.

We apply this process to the example presented at the beginning of this section. We

wish to obtain a sample of size 200, apply a burn-in period of 100 steps, and thinning to every

100th step. This requires a chain length of N = 20100. For a typical MCMC scenario, a much

larger chain length would be necessary, but due to the nature of this proposal distribution, we are

able to use such a small N. Applying the above process to construct the proposal distribution, the

corresponding BBOL4 model is shown in Figure 3.2.

Remark 2. A similar method would be useful for estimation involving different nonzero δ’s, with
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Figure 3.3: MCMC parameter estimation results for X ∼ BAS L(β = (3, 1, 5, 1), δ =

(0.14, 0.71, 0, 0)) and K = 250.

the possible exception of the proposal distribution for δ. For example, if δ6 and δ7 are nonzero, then

the proposal distribution would need to have support in the lower triangle of the unit square. So, we

may apply the family of distributions defined by considering V1 ∼ B(α1, γ), and V2 ∼ B(α2, γ), with

V1 ⊥ V2. Then if we set δ̃6 = V(1), and δ̃7 = 1 − V(2), the support of (δ̃6, δ̃7) is, in fact, the desired

space, and the three-parameter family of distributions is sufficiently flexible for this application.

Alternatively, to serve this purpose, we can truncate (V1,V2) to the lower triangle. Both of these

distributions are difficult to characterize, but they are nevertheless tractable options for a proposal

distribution, and they both provide easy simulation of proposal values.

The BAS L parameter estimates are computed as the means of the thinned MCMC sample,

and variance is computed from the same. The results are shown in Figure 3.3.
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3.5.2 Non-Linear Regression Example

Suppose a data set (w, y) is available; where w is a K × 2 matrix, and y is a K × 2 matrix,

and the data set is one for which the following model is applicable:

yk = g(wk·) + εk· (3.20)

where g : R2 −→ R2 is some function, and ε is a K × 2 matrix of error parameters. Suppose,

further that it is deemed that squared error is too stringent a restriction on the error term, maybe

because positive errors in both response categories (the first and second columns of y) will often be

extreme, but negative errors cannot exhibit the same extreme behavior due to some known physical

limitations. In addition, we suspect that the columns of y are correlated, and thus we should also

suspect the same about ε. Then (a sub-model of) the 8-parameter bivariate asymmetric Laplace

distribution may be an appropriate model for ε. In particular, consider volume data for Google,

Inc. (GOOG) and Microsoft, Inc. (MSFT) stock from February, 23, 2017, to February, 23, 2018,

a total of 253 trading days.2 The data is shown in Figure 3.4. It can be seen that there is a slightly

periodic underlying pattern for Microsoft, and, to a lesser degree, for Google. We apply non-linear

regression to the data by numerically fitting a sinusoidal function to each time series separately,3

that is, setting

g(w1,w2) =


g1(w1)

g2(w2)

 =


a1 + b1 sin(c1w1 + d1)

a2 + b2 sin(c2w2 + d2)

 , (3.21)

2Source: www.nasdaq.com
3It can be argued that the two sinusoidal functions are, themselves, correlated. However, for purposes of this analysis,

we assume independence.
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Figure 3.4: Microsoft Volume (left) and Google Volume (right) and corresponding periodic models
(red).

where (a1, b1, c1, d1, a2, b2, c2, d2) is a set of unknown parameters. We fit this regression model

numerically where we minimize absolute error; for both stocks. The resulting fitted model is
ŷk1

ŷk2

 = ĝ


wk1

wk2

 =


(1.90 × 107) + (4.00 × 106) sin(0.0363wk1 + 0.855)

(1.30 × 106) + (4.00 × 105) sin(0.0335wk2 + 1.763)

 . (3.22)

Plots of these are overlaid on the data in Figure 3.4. From this, we obtain ε for both stocks:

εk· =


yk1 − ŷk1

yk2 − ŷk2

 . (3.23)

Applying the above-outlined process, the proposal distribution for (δ5, δ6) is this time selected as

the Olkin-Liu, Model 3, and shown in Figure 3.5. Using the MCMC process, the six unknown

parameters are estimated; the estimates are β1 = 2931540, β2 = 292311, β3 = 7116668, β4 =

507974.5, δ5 = 0.6167675, and δ6 = 0.5559745. The results are shown in Figure 3.6, where box-

plots are included. This BAS L model is overlaid on the ε’s in Figure 3.7. A bivariate normal model
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Figure 3.5: BAS L proposal distribution: (δ̃5, δ̃6) ∼ BBOL3(47.7, 23.6, 37.1).

with parameters equal to its MLEs is also shown for comparison.

For a means of comparing the resulting BAS L model to the stock data, that is, quantifying

model fitness, we compute the mean and covariance matrix for the model, and compare these to the

sample values of the same. These values are shown in Table 3.1. Also, according to the Akaike

information criterion (AIC) criterion, the BAS L model (AIC=15925.09) provides a slightly better

fit than the Gaussian model (AIC=16198.17). However, the Gaussian model is clearly a model

misspecification for two reasons. First, there are two distinctly different tail dependencies in this

data, but, as a symmetric model (about a set of rotated axes), the Gaussian model cannot capture this

phenomenon. Second, the Gaussian’s tails are not heavy enough for this data; Laplace distributions

are far better equipped to deal with heavy-tailed data.
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Figure 3.6: MCMC BAS L parameter estimates for Stock Volumes, and corresponding box plots.
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Figure 3.7: Residuals with fitted BAS L model (left) and Gaussian model (right).
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Source Ê(ε) V̂ar(ε)

Model

4185128

215663.5


1.184818 × 1014 2.538417 × 1012

2.538417 × 1012 6.869677 × 1011


Data

3909728

184893.8


7.970902 × 1013 3.887233 × 1012

3.887233 × 1012 4.557925 × 1011


Table 3.1: Comparison of moments between BAS L model and data.

3.6 Conclusions

In this chapter we introduced a new 8-parameter bivariate Asymmetric Laplace distribu-

tion with a flexible dependence structure. We also showed that its parameters have intuitive interpre-

tations, and we exhibited a closed-form method of moments solution for its 4-parameter sub-family

with standard Laplace marginals. We finished by demonstrating parameter estimation of this model

based on residuals from a regression model. We showed that, in this case where absolute error was

minimized, the BAS L model provided a better fit to the residuals than a Gaussian model.

In general, the family of 8-parameter BAS L distributions constitutes a flexible collection

of models appropriate for heavy-two-tailed bivariate data for which symmetric models are inade-

quate. Future work in this area would include a more thorough comparison the the BAS L and Kotz

models, particularly identifying any overlap and properties unique to either. In addition, further

exploration of specific sub-families may reveal additional useful characterizations of this family,

and possibly reveal as yet unknown interrelationships between this family and other well-known

families of distributions, whether asymmetric Laplace or other, entirely different, distributions.

Another avenue for further research is through Sklar’s Theorem [40], that is, by separat-

ing each particular BAS L distribution into its marginals and its underlying copula. The form of
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this copula may lead to interesting discoveries regarding the family of copulas associated with all

members of the BAS L class. With this said, it can be asserted with a high level of certainty that,

while the dependence parameters behave similarly to those of the Bivariate Beta Copula, the copu-

las that correspond to BAS L models are not the same as the Bivariate Beta Copulas, certainly not in

general, though some conceivable non-empty intersection between the two classes of copulas may

exist. This, however, does not guarantee that the BAS L copulas do not include some known copulas.

In general, they can be expected to constitute new flexible family of copulas for general use.

Lastly, higher-dimensional versions of the BAS L family rapidly become increasingly

complex, as the dimension increases chiefly because of the rapid increase in the number of pa-

rameters in the model (in two dimensions there are 8 parameters, while in 3 and 4 dimensions there

are 28 and 84, respectively). However, if a suitable method of model selection among nested sub-

models can be agreed upon, higher-dimensional models may be tractable, and thus useful for more

general applications.
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Chapter 4

Compound Random Variables

4.1 Introduction

Compound random variables, that is to say, random sums of random variables, have been

studied in many forms. For example much work has been done to develop theory involving com-

pound geometric and compound Poisson random variables, particularly for insurance and risk as-

sessment applications. However, this is just a small subset of the vast assortment of such random

variables. Many other forms constitute natural extensions that remain under the same umbrella.

These include forms where the counting variable has some lesser-known distribution, the summand

variables are not necessarily independent of the counting variable, multivariate forms, and others.

Further, the summand random variable need not have only positive support, something generally

assumed for compound random variables studied to date.

In this chapter, we begin with a thorough study of compound geometric random variables

and review the vast literature on the subject. We proceed with some examples of parameter estima-

tion for a specific case of compound geometric random variables. We then extend the study to two
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distinct forms of bivariate compound random variables, and present some examples. Lastly, we will

introduce a family of bivariate compound geometric distributions with exponential marginals and

exhibit a method of likelihood-free parameter estimation.

4.2 Compound Geometric Random Variables

Consider the random variable, Y , defined by

Y =

M∑
j=1

X j (4.1)

where the X j’s are iid random variables and M ∼ Geo(1− p), p ∈ (0, 1), i.e. P(M = k) = (1− p)pk−1,

k ∈ N, and where M is independent of the X j’s. Then Y is of the compound geometric type.

In addition, throughout this chapter, it will be assumed that X d
= X j for all j, whenever X j’s are

mentioned in the above context. Likewise, Y d
= Y j for all j, whenever Y j’s are mentioned in the

above context. From Equation 4.1, by conditioning on M, we may obtain the following relationship

between the characteristic functions, φX and φY , of X and Y , respectively:

φY (t) =
(1 − p)φX(t)
1 − pφX(t)

, (4.2)

or equivalently,

φX(t) =
φY (t)

1 − p + pφY (t)
. (4.3)

These random variables are useful for several applications, including, but not limited to, insurance

risk vs. ruin, p-thinning of point processes and aging. They also naturally arise in the study of

certain types of branching processes.
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4.2.1 Definitions

Define G(p) to be the collection of all random variables satisfying Equation (4.1) for some

random variable, X and the given value of p. Also define

G ··=
⋃

0<p<1

G(p) and G ··=
⋂

0<p<1

G(p)

A random variable in G is also sometimes termed geometrically infinitely divisible (g.i.d.).

A random variable, V , is said to be infinitely divisible if for each K ∈ N, there exists a set

of K iid random variables
{
Xk

(K)
}K

k=1
such that

V d
=

K∑
k=1

Xk
(K).

The characteristic function of any compound geometric random variable, Y , may be written in the

form

φY (t) =
(
1 − log φV (t)

)−1

where V is some infinitely divisible random variable with characteristic function, φV (t) [22].

Consider the stationary process, {Y j}
∞
j=0, satisfying

Y j =


Y j−1 + X j w.p. p

X j w.p. 1 − p
(4.4)

for j ∈ N, where the sequence {X j}
∞
j=1 is iid. Then φY (t) and φX(t), once again, satisfy Equations 4.2

and 4.3. In this way, the process defined by Equation 4.4 is related to a compound geometric random

variable. Specifically, for some iid sequence {X j}, each Y j is compound geometric with parameter

(1 − p), i.e. Y j ∈ G(p).
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4.2.2 Exponential and Related Distributions

We wish to determine which characteristic functions, φY (t), would, according to Equa-

tion 4.3, induce a valid characteristic function, φX(t).

If X ∼ exp(β),

φY (t) =
(1 − p)(1 − iβt)−1

1 − p(1 − iβt)−1

=

[
1 − i

(
β

1 − p

)
t
]−1

(4.5)

Since this is a valid characteristic function for all p, in fact, also exponential, the exponential distri-

bution is in G.

Now, consider the special case where φY (t) = φX(ct). We have just seen that X is ex-

ponential if and only if Y is exponential, and thus setting c = 1 − p, the exponential is one such

random variable. Is there any other random variable, Y , which satisfies φY (ct) =
(1−p)φY (t)
1−pφY (t) ? Well, a

degenerate at 0 clearly satisfies it. Otherwise, define

ψ(t) =
φ(t) − 1
φ(t)

so that

ψ(ct) =
1

1 − p
ψ(t)

If ψ is representable as a power series, we may write

ψ(t) =

∞∑
j=0

a jt j

and, by the uniqueness of power series representations, solve:

∞∑
j=0

a jc jt j =
1

1 − p

∞∑
j=0

a jt j
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Clearly a0 = 0. However, if more than one ak is nonzero, there is no solution for c. Only one, in

fact, exactly one, ak, k > 0, must be nonzero, but any such k works. In general, we may pick k ∈ N,

and set ak = θ ∈ C.1 It would then follow that

ψ(t) = θtk

We may then conclude that

φ(t) =
1

1 − θtk (4.6)

satisfies φ(ct) =
(1−p)φ(t)
1−pφ(t) , when c =

k
√

1
1−p . However, note that the function f (t) = 1 − θtk forms

either a semi-infinite line (when k is even) or an infinite line (when k is odd) on the complex plane

which passes through 1. A necessary condition for φ to be a valid cf is that f (t) must be outside the

(open) unit disk for all t. Therefore, for odd k, it must be that the line is vertical (i.e. that θ is purely

imaginary). For even values of k, it must be that the real part of θ is negative. Thus, the solution is

given by Equation 4.6, where θ is in some subset of {z : <{z} ≤ 0, k = 2m;<{z} = 0, k = 2m+1,m ∈

N}. It should be noted that this is a necessary condition, but it holds under only the assumption that

φ(t) is analytic on a neighborhood of its trace in C. So, 1) further sufficiency conditions (due to the

positive definiteness requirement) may be present, and 2) since characteristic functions generally do

not need to be analytic, there may yet be more solutions. The case where k = 1 and θ = αi, α ∈ R+

is the characteristic function for an exponential. Also, if k = 2 and θ < 0 is real, then this represents

a Laplace distribution centered at 0. Based on these results, it appears all solutions are related to the

exponential distribution.

1We shall see in a moment that there are restrictions on what θ may be.
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4.2.3 Characterizations

We now consider the more general question of finding random variables which are in G(p)

for various values of p. As an example, consider φY (t) = (1 − itβ)−α, i.e. Y ∼ Γ(α, β). Plotting the

trace of the corresponding φX(t) function for a few choices of p, α and β (Figure 4.1) indicates that

sometimes it may be a valid characteristic function, and sometimes it is clearly not.

First, notice that for any Y ∈ G(p), φY (t) is given by Equation 4.2. Therefore, we may

immediately conclude that Y ∈ G(p) if and only if the left hand side of Equation 4.2 is a valid

characteristic function. However, this is generally difficult to assess, for it involves analysis of

complex-valued functions. If Y has non-negative support, we may avoid this by using Laplace

transforms rather than characteristic functions. So, we begin with this special case.

Suppose that Y is a non-negative random variable which can be written in the form given

in Equation 4.1. Then the Laplace Transform of the X j’s can be written as

LX(t) =
LY (t)

1 − p + pLY (t)
(4.7)

Now, note that the distribution of a random variable, Y , is completely monotone if and only if it

satisfies (−1)nF(n)
Y (y) ≤ 0 for all n ∈ N. So, if Equation 4.7 does not yield a legitimate Laplace

Transform, it must be that Y is not g.i.d. Hence, we must check that LX(0) = 1 and that LY (t) has

complete monotonicity. Consider again the case where Y ∼ Γ(α, β), where α , 1. Then the Laplace
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(a) α = 4; β = 2; and p = 0.5
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(b) α = 4; β = 6; and p = 0.05
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(c) α = 2; β = 0.75; and p = 0.7
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(d) α = 9; β = 5; and p = 0.5

Figure 4.1: φX(t) for various choices of p, β, and α. Included in the plot is the unit circle (in red) to
indicate that it is not a valid characteristic function based on the one requirement |φY (t)| ≤ 1. In this
case plots (a), (c), and (d) violate this requirement. Plot (b) may be a valid characteristic function.
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Transform of X is given by

LX(t) =
LY (t)

1 − p + pLY (t)

=
(1 + βt)−α

1 − p + p(1 + βt)−α

= ((1 − p)(1 + βt)α + p)−1

Applying the first three derivatives to this expression, and setting to zero, we have

∂LX(t)
∂t

∣∣∣∣∣
t=0

= −(1 − p)αβ

∂2LX(t)
∂t2

∣∣∣∣∣∣
t=0

= (1 − p)α(p − pα + (1 − p)(1 + α))β2

∂3LX(t)
∂t3

∣∣∣∣∣∣
t=0

=
[
(p − 1)αβ3(1 + tβ)α−3(p2(α − 2)(α − 1)

+4(p − 1)p(α2 − 1)(1 + tβ)α + (p − 1)2(1 + α)(2 + α)(1 + tβ)2α)
]

/
[
p − (p − 1)(1 + tβ)α

]4

From just these three derivatives, a necessary condition for X to be completely monotone is that

p < 1+α
2α . This is not a sufficient condition as can be seen from the traces of the characteristic

functions in Figure 4.1 (see plots (a) and (d)).

We may also explore the moments of random variables in order to assess whether they are

compound geometric. If we look at the first three moments of X, we have

µ(1)
X = (1 − p)µY

µ(2)
X = (1 − p)

(
µY

(2) − 2pµ2
Y

)
µ(3)

X = 6µ2
Y (1 − p)p

(
2pµY

2 + pµY
(2) − 4µY

− µY
(2) − 2pµY − 2p2µ2

Y

)
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Consider the Poisson distribution. Is this g.i.d.? Assume that Y ∼ Poi(λ) can be written in the form

of Equation 4.1. Then the moments of X would be

µ(1)
X = (1 − p)λ

µ(2)
X = (1 − p)λ((1 − 2p)λ + 1)

µ(3)
X = 6p(1 − p)λ3(p(3 − 2p)λ − 5 − p − λ)

The second moment gives a necessary condition for Y ∈ G: λ < 1
2p−1 if p > 1

2 . Also, the third

moment gives a necessary condition for Y ∈ G to be λ <
5+p

3p−2p2−1 if p < 1
2 , and λ >

5+p
3p−2p2−1 if

p > 1
2 . No valid λ can satisfy these conditions simultaneously, so Y < G for any λ.

4.2.4 Additional Properties

Consider the random variable, Y given by the following mass function:

P(Y = qk) =
6

(πk)2 , for k ∈ N

where {qk}
∞
k=1 is the sequence of positive prime numbers. Let p ∈ (0, 1). If Y ∈ G(p), notice that

0 <
6

4π2 = P(Y = 3)

0 <
6

9π2 = P(Y = 5)

This implies that there exist k1 and k2 such that

P(X1 + X2 + ... + Xk1 = 3,M = k1) > 0, and

P(X1 + X2 + ... + Xk2 = 5,M = k2) > 0

so that

P(Y = 8) ≥ P(X1 + X2 + ... + Xk1 + Xk1+1 + Xk1+2 + ... + Xk1+k2 = 8,M = k1 + k2) > 0,
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a contradiction. In fact, as is shown in the following proof, any random variable whose support is

not closed under addition cannot be in G(p).

Proposition 3. Let Y be any random variable with support not closed under addition. Then Y < G.

Proof. Since supp(Y) is not closed under addition, there exists some set I ⊂ R, disjoint from

supp(X), such that P(Y ∈ I) = 0 and for some collection of sets I1, I2, ..., Im satisfying P(Y ∈ I j) > 0

for all j = 1, 2, ...,m,
∑m

i=1 yi ∈ I for all y1 ∈ I1, y2 ∈ I2, ..., ym ∈ Im. Now, for any iid sequence of

random variables X1, X2, ... and M ∼ Geo(1 − p), if there exist k1, k2, ..., km such that

P(X1 + X2 + ...+Xk1 ∈ I1,M = k1) > 0,

P(X1 + X2 + ...+Xk2 ∈ I2,M = k2) > 0,

...

P(X1 + X2 + ...+Xkm ∈ Im,M = km) > 0

then it immediately follows that

P(X1 + X2 + ... + Xk1 + Xk1+1 + Xk1+2 + ... + Xk1+k2 + ... + Xk1+k2+...km ∈ I,M = k1 + k2 + ... + km) > 0

so that it cannot be that Y ∈ G(p). �

This is clearly not a sufficient condition since we have already seen many cases with

support closed under addition; various gamma distributions (see Figure 4.1), for example; that have

the property.

Proposition 4. No bounded random variable other than Y ≡ 0 is in G.

Proof. Suppose Y ∈ G(p) with Y . 0. Then clearly X1 . 0. So there exists y0 > 0 such that
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P(|X1| > y0) > 0. Let u0 > 0 be arbitrary. Then there is some k ∈ N such that ky0 > u0. We have

P(|Y | > u0) =

∞∑
j=1

P(X1 + X2 + ... + X j > u0,M = j)

>

∞∑
j=1

P(X1 + X2 + ... + X j > ky0,M = j)

> P(X1 + X2 + ... + Xk > ky0,M = k)

> P(X1 > y0, X2 > y0, ..., Xk > y0,M = k)

= P(X1 > y0)P(X2 > y0) · · · P(Xk > y0)P(M = k)

=
[
P(X1 > y0)

]k p(1 − p)k−1

> 0

Since u0 was arbitrary, Y is not bounded. �

Proposition 5. If Y is of the compound geometric type satisfying Equation 4.1, and, in addition, X

is non-degenerate and positive with a finite first moment, then for the random variable, V =
(1−p)Y

µ ,

where µ = E(X),

lim
p→1−

V ∼ exp(1), (4.8)

that is, Y
E(Y)

d
→ W, as p→ 1−, where W ∼ exp(1).

Proof. From Equation 4.2,

φV (t) =
(1 − p)φX

( (1−p)t
µ

)
1 − pφX

( (1−p)t
µ

)
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Thus, by L’Hopital’s Rule, and the fact that φ′X(0) = iµ,

lim
p→1−

φV (t) = lim
p→1−

(1 − p)φX
( (1−p)t

µ

)
1 − pφX

( (1−p)t
µ

)
= lim

p→1−

φX
( (1−p)t

µ

)
+

(1−p)t
µ φ′X

( (1−p)t
µ

)
φX

( (1−p)t
µ

)
−

pt
µ φ
′
X

( (1−p)t
µ

)
= (1 − it)−1

This concludes the proof. �

Compound Geometric Convolutions

Compound Geometric convolutions are of considerable interest. A positive continuous

random variable of the form Equation 4.1 which also satisfies

FY (x) = p
∫ y

0
FY (y − t)d (FX(t)) + pFX(y)

is known as a Compound Geometric Convolution. Close examination of the tail behavior of such

random variables applies to insurance risk models, queuing theory, and reliability theory. See [11],

[35], and [49] for the most recent developments in this area.

Relationship with Exponential Random Variables

Exponential random variables bear a resemblance to elements of G(p) when p is close to

1, as is suggested by Proposition 5. In fact, several authors have applied the exponential distribution

as a bound for various forms of the compound geometric random variables; [9], [15], [16]. Sev-

eral methods, including Cramer’s and Stein’s Methods, are applied to approximate the compound

geometric distribution for various applications.
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Identifiability

Lin and Stoyanov [29] showed that, under some regularity conditions, moments can be

used to characterize compound geometric distributions.

Multivariate Geometric and Compound Geometric Distributions

A natural extension of the compound geometric random variables is a multivariate version,

based on a multivariate geometric distribution. Arnold [2] constructed a version based on a process

with multiple outcomes, and showed that the elements are independent if and only if the summand

variables are (positive or negative) exponential.

4.2.5 General Compound Random Variables

Klebenov and Rachev [23], who construct a foundational theory of random sums of iid

random variables, point out that the probability generating functions for the compounding variable,

M, form a semigroup (in the algebraic sense). They use this fact to establish a method of approx-

imating arbitrary geometric sums of random variables using infinitely-divisible random variables.

In addition, they establish some means of measuring the goodness of approximations of M-infinite

divisible random variables by applying a point-wise metric to the modulus of the characteristic

functions. They also extend this theory to the multivariate case. Satheesh [39] further develops this

theory by pointing out that the semigroup property does not allow for common applications, such

as the case where P(Y = 0) > 0, and constructing a more flexible model.

Wang [46] describes multivariate compound random variables in their most general form,

and also derives a compound Poisson distribution as the asymptotic limit of sums of independent
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multivariate random variables.

In Section 4.3, we investigate bivariate compound random variables and, in Section 4.5,

develop a method for statistical inference for data from one of these models.

4.2.6 Statistical Inference

The areas with surprisingly little development in the literature for compound random vari-

ables are parameter estimation and model adequacy checking. Patel and Patel [33] did discuss

maximum likelihood estimation in such a setting. Their techniques pertain, however, strictly to the

Geometric Competing Risks Failure Model, that is, one in which two causes of failure, which are

independent and geometrically distributed, are applied to a series of independent test subjects. Esti-

mation of the geometric parameters in light of censored data then proceeds. Beyond this, there is no

apparent reference to statistical inference and assessing the quality thereof. A possible reason for

this might be that the realized value of M is often known, in which case the problem of statistical

inference for Y would become uninteresting. However, in many cases, it is quite conceivable that

the only data available is, for example, that which is reported as public information, e.g. total claims

expenditures, but without the number of claims or individual amounts of claims. So, the premise

that only Y1,Y2, ... are observed is reasonable in many cases.

In the interest of constructing tools which can reliably build accurate compound geomet-

ric models, several methods of parameter estimation are discussed. Suppose Y1,Y2, ...,Yn are iid

compound geometric random variables, i.e.

Yk =

Mk∑
i=1

X(k)
i

where the X(k)
i are absolutely continuous and iid for all k and all i; and M1,M2, ...,MK

iid
∼ Geo(1− p),
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p ∈ (0, 1). Further, consider the special case in which the density of X(k)
( j)
··=

∑ j
i=1 X(k)

i is f j(x; θ) and

is known up to an unknown parameter θ, for all k. For more general cases, that is to say the vast

majority of cases, convolution of j iid Xis is not easily obtained for all j, and therefore L(p, θ) is not

attainable analytically. However, numerical options may apply in many of these cases.

Maximum Likelihood

Recall that if X ∼ exp (β), then Y ∼ exp
(

β
1−p

)
. So, from the above sample, no information

can be discerned about p and β as separate parameters. However, as will be seen in Section 4.5, this

is not necessarily true in multivariate cases.

So, suppose X is not exponential. Then the likelihood of (p, θ) is given by

L(p, θ) =

n∏
k=1

 ∞∑
j=1

f j(yk; θ)(1 − p)p j−1


= (1 − p)n

n∏
k=1

 ∞∑
j=1

f j(yk; θ)p j−1


So the log likelihood becomes

`(p, θ) = n log (1 − p) +

n∑
k=1

log

 ∞∑
j=1

f j(yk; θ)p j−1

 (4.9)

Suppose X ∼ Γ(2, β). Then Equation 4.9 becomes

`(p, θ) = n log (1 − p) +

n∑
k=1

log

 ∞∑
j=1

y2 j−1
k exp{−yk

β }

Γ(2 j)β2 j

 p j−1


= n log (1 − p) +

n∑
k=1

log


 1

exp{ yk
β }
√

pβ

 ∞∑
j=0

(
yk
√

p
β

)2 j+1

(2 j + 1)!


= n log (1 − p) +

n∑
k=1

log


sinh

(
yk
√

p
β

)
√

p exp{ yk
β }β


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To maximize this, we may attempt to use the Newton-Raphson method. However, this particular

distribution for X causes some difficulty. The likelihood, if plotted as a surface in R3, forms a

“ridge,” along which the log likelihood is almost perfectly flat. In this case, Newton-Raphson

becomes confused, and there is little likelihood that it will correctly identify the location of the true

maximum without a very large n. The reason for this seems to be that α is too close to 1 (i.e. that the

distribution is too close to being exponential), causing the negative correlation between p and β to

be too strong to separate their estimates. For illustration, data was generated with β = 6.1, p = 0.86,

and n = 100. A small portion of the log likelihood is plotted in Figure 4.2. It should be noted that

Figure 4.2: Log Likelihood Y such that X ∼ Γ(2, 6.1) and M ∼ Geo(0.14).

this issue may frequently arise with this type of random variable (the compound geometric). It will

often occur when the distribution of X involves an unknown location parameter, θ. In this case, as

either p or θ increases, Y will also tend to increase, and strong negative correlation between the

estimators for these parameters manifests itself, potentially leading to an identifiability problem for
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estimation. Though β, for the gamma example, is not a location parameter, the mean nevertheless

is positively correlated with it. However, there are alternatives to maximum likelihood that may

reduce the impacts of this problem, as will be exhibited next.

Bayesian Inference

We now apply Bayesian estimation to obtain estimates of p and β in the X ∼ Γ(2, β)

example. Note that having an informative prior (or even one with a dependence structure between p

and β) is important, for it will limit the natural tendency of the model to estimate the two parameters

as one, as was (at least partially) the case with maximum likelihood. This is not an unreasonable

assumption to make, for if it is not applied, little knowledge about p and β, as distinct parameters,

is even contained in a typical sample. So, we strive to choose informative priors which form a

reasonable model of reality. In this case, we consider the joint prior for p and β, where p and β are

independent:

π(p, β) =
βu0−1e−

β
v0 pa0−1(1 − p)b0−1

B(a0, b0)Γ(u0)vu0
0

, (4.10)

so that the marginal priors are p ∼ B(a0, b0), and β ∼ Γ(u0, v0). The posterior density becomes

h(p, β; y) = Cπ(p, β)
n∏

k=1

 ∞∑
j=1

f j(yk; β)(1 − p)p j−1


= C

βu0−1e−
β

v0 pa0−1(1 − p)b0−1

B(a0, b0)Γ(u0)vu0
0

n∏
k=1

 ∞∑
j=1

y2 j−1
k exp{−yk

β }

Γ(2 j)β2 j

 (1 − p)p j−1


= C

βu0−1e−
β

v0 pa0−1(1 − p)b0−1

B(a0, b0)Γ(u0)vu0
0

n∏
k=1


(1 − p) sinh

(
yk
√

p
β

)
√

p exp{ yk
β }β


where C is a normalization constant.

Now, we would like the (joint) loss function to be some two-parameter version of squared

error loss. This could be as simple as the sum of two squared error loss functions, or one which
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highlights a greater loss in poorly estimating one parameter over the other. Here, we consider a loss

function which measures percentage error equally between the two parameters by simply adding

the squared percentage errors:

L( p̂, β̂) =

[
log

(
p̂
p

)]2

+

[
log

(
β̂

β

)]2

To obtain a Bayes estimate, the following must be minimized:

R(π, p̂, β̂) =

∫ ∞

0

∫ 1

0
L( p̂, β̂)h(p, β; y) dp dβ

In order to do this; we combine two types of numerical methodology: 1) numerical integration, and

2) numerical optimization. For each step in the optimization, numerical integration is done for the

current values of p̂ and β̂, and the first step uses the expected values of p and β from their marginal

priors.

MOM Estimates

For the Method of Moments estimates, note that E(M) = 1
1−p and E(M2) =

p
(1−p)2 . We

have

µ(1)
Y =

µ(1)
X

1 − p

µ(2)
Y =

µ(2)
X (1 − p) + 2p

(
µ(1)

X

)2

(1 − p)2

Setting the sample moments equal to these, we have

Y set
=

µ(1)
X

1 − p
(4.11)

Y2 set
=
µ(2)

X (1 − p) + 2p
(
µ(1)

X

)2

(1 − p)2 (4.12)
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Noting that E(X) = 2β, E(X2) = 6β2, we have in this case

Y =
2β

1 − p
(4.13)

Y2 =
6β2(1 − p) + 2p (2β)2

(1 − p)2 (4.14)

So, the Method of Moments estimates are

p̂MOM =
−3

(
Y
)2

+ 2Y
2(

Y
)2

β̂MOM =
2
(
Y
)2
− Y

2(
Y
)

Checking this for various simulated realizations yields inaccurate results for both p̂ and β̂, even

when n is in the thousands. Again, this issue may be as a result of the apparent negative correlation

between them.

Clearly, statistical inference of the compound geometric random variable is a complex

problem. Correlation between estimates may also be a common problem, particularly when location

parameters of X are to be estimated. However, the Bayesian method of estimation has built-in

machinery to mitigate, though not completely eliminate, these issues.

4.3 Related Random Variables

In a more general form, M may not have a geometric distribution, or perhaps not even

a well-known distribution. Moreover, the compounding machinery needn’t be restricted to sum-

mation; other methods, such as considering order statistics and alternative functions of X, produce

many useful forms. Even more ambitious types could be compound geometric random variables

where {X j}
∞
j=1 is not independent of M, or where the X j’s are either not independent of one another
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or not identically distributed. In this more general setting, the range of possible random variables is

much more broad. Some of these forms are briefly described in the following paragraphs.

Alternate Distributions for M

If M in Equation 4.1 has a Negative Binomial distribution, then Y is said to be Negative

Binomial Infinitely Divisible and its characteristic function satisfies

φY (t) =
(
1 − log φV (t)

)−r

where V is some infinitely divisible random variable and r ∈ R+ [19]. Note that if r = 1, then Y

is just g.i.d. This Y differs from the g.i.d. version in that there is a minimum number of X js being

summed to form Y . This type of random variable may be useful to model phenomena which have

a minimum number of occurrences, each with a random magnitude. For example, a company can

offer a service on an unlimited basis for a certain flat rate, and the number of times a customer uses

the service is at least once (maybe it is natural to use it at the time of purchase). In this case, Y

could model the overall cost of providing the services to its customers, where r is the number of

customers who purchased the service at the flat rate, and the X j’s model the cost of each instance of

a customer using the service.

Other distributions, such as the Poisson, the geometric with support including 0, or more

exotic forms may include some viable options. These distributions can potentially form useful

models for several applications.

Infinite support and independence between M and X are not necessities. Consider the case

where M ∼ Bin(n, p), and mX|M = m ∼ U(0, 1) for all m ∈ {0, 1, 2, · · · , n}, with the convention

that Y = 0 whenever M = 0. It is easy to see, in this case, that the support of Y is [0, 1), with
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P(Y = 0) > 0.

Geometric Minimum and Maximum

To this point in the chapter, we have dealt with models involving convolution of the X’s.

However, this is not the only option. Instead, suppose that

Y = max
j∈{1,2,...,M}

{X j}.

If the density and distribution functions of X are available in closed form, so too will be the density

and distribution functions for Y . Hence, for phenomena to which this model may apply, it is a

potentially viable alternative to convolution.

Discrete X

Since the turn of the century, much interest has been brewing on the compound geometric

random variable where X is assumed to be supported on N. With applications in actuarial and risk

assessment fields, this area is rich in literature. Willmot [48] is a starting point for further research.

Support on (−∞,∞)

To date, compound geometric random variables with both negative and positive support

have received little attention. Insurance and actuarial applications generally consider nonnegative

X′s, but other applications may require a larger support set. For example, if X ∼ N(0, 1), then the ge-

ometric compounding of X forms a seamless continuum between normal and Laplace distributions.

Explicitly, the family, {Yp}p∈(0,1), where

Yp =

Mp∑
j=1

X j,
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with Mp ∼ Geo(1− p) and {X1, X2, ...} is a sequence of iid N(0, 1) random variables, independent of

Mp, has two limiting distributions:

lim
p−→0+

Yp ∼ N(0, 1), (4.15)

and

lim
p−→1−

Yp ∼ Laplace(0, 1), (4.16)

that is, a standard Laplace distribution.2

4.4 Multivariate Compound Random Variables

Multivariate compound random variables come in many forms. Two types of such random

variables are discussed here.

4.4.1 Compound Random Vectors of the First Kind

Consider the random variable, M ··= (M1,M2, ...,MK)′ ∈ S M ⊂ (N ∪ 0)K , with distribu-

tion FM, and the random vector, X ··= (X1, X2, ..., XK)′ ∈ S X ⊂ R
K , with distributions F1, F2, ..., Fk,

respectively and Xk1 ⊥ Xk2 for all k1 , k2. Then the random vector

Y =

K�
k=1

 Mk∑
m=1

Xkm

 (4.17)

where Xkm
d
= Xk, and Xk1m1 ⊥ Xk2m2 for all (k1,m1) , (k2,m2), is a compound random vector of

the first kind. This may be an appropriate model for the scenario described in Section 4.3, where

M has a univariate negative binomial, but the costs are separated into K categories. We note here

2In fact, X needn’t be normal for this to hold. Similar to what was shown in Proposition 5, if X 1) has a finite first
moment; 2) has both positive and negative non-degenerate support; that is, at least two distinct negative and two distinct
positive values are in the support set; 3) is appropriately scaled; and 4) is non-zero with probability 1; the latter limit will
be some asymmetric Laplace distribution.
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that it is possible for the cost in one area to be zero, and thus that a particular Mk could be zero.

Generally, the distribution and density functions of Y are not expressible in closed form. However,

some results are accessible in general.

Properties

The moments of Y can be computed directly:

µY = E(Y) = E(X) ? E(M), (4.18)

where ? denotes element-wise multiplication. Also,

ΣY = Var(Y)

= Var(E(Y|M)) + E(Var(Y|M))

= diag (E(X))2 Var (M) + diag (E(M))2 Var (X)

For t = (t1, t2, ..., tK)′, the characteristic function is

φY(t) = E
[
eit′Y

]
= E

[
e

i
(
t1

∑M1
m=1 X1m+t2

∑M2
m=1 X2m+...+tK

∑MK
m=K XKm

)]
= E

[
E

[
e

i
(
t1

∑M1
m=1 X1m+t2

∑M2
m=1 X2m+...+tK

∑MK
m=K XKm

)∣∣∣∣M]]
= E

[(
φX1(t1)

)M1
(
φX2(t2)

)M2 · · ·
(
φXK (tK)

)MK
]

Example

Suppose K = 2, and M1 ∼ Bin(n = 6, p = 0.78) and M2 = 6 − M1, so that M2 ∼

Bin(6, 0.22), and suppose X1, X2
iid
∼ Γ(α = 5, β = 3). Figure 4.3 shows 10,000 realizations of Y .
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Figure 4.3: Ten Thousand Realizations of the Compound Random Vector of the First Kind.

Note that since M2 = 0 with positive probability, the strip on the bottom edge appears on the plot.

With all four parameters, n, p, α, and β, free, this family can produce a large array of forms. The

mean and variance are

E(Y) =


E(X1)E(M1)

E(X2)E(M2)

 =


(15)(6)(0.78)

(15)(6)(0.22)

 =


70.2

19.8

 (4.19)
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and

ΣY = diag (E(X))2 Var (M) + diag (E(M))2 Var (X)

=


(3)(5) 0

0 (3)(5)


2 

(6)(0.78)(0.22) −(6)(0.78)(0.22)

−(6)(0.78)(0.22) (6)(0.78)(0.22))


+


(6)(0.78) 0

0 (6)(0.22)


2 

(3)(5)2 0

0 (3)(5)2


= 1.0296


225 0

0 225




1 −1

−1 1

 + 75


21.9024 0

0 1.7424



1 0

0 1


=


1874.34 −231.66

−231.66 362.34


4.4.2 Compound Random Vectors of the Second Kind

Consider the random variable, M ∈ S M ⊂ (N ∪ 0), with distribution FM, and the random

vector, X ∈ S X ⊂ R
K , with distribution FX. Then the random vector

Y =

M∑
k=1

Xk (4.20)

where Xk
d
= X, and Xk1 ⊥ Xk2 for all k1 , k2, is a compound random vector of the second kind.

It should be noted that X needn’t be independent of M. This property opens the door to a vast array

of forms, including those with compact support. The following example illustrates this.

Example

Suppose M ∼ Geo(1 − p) (the version of the geometric with support N), and (mX|M =

m) ∼ BBOL(αU , αV , αW), where BBOL denotes the Olkin-Liu 3-parameter bivariate beta distribution,
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Model 2, as defined in Section 2.2.1. In this case, it is clear that the support of Y is the unit square.

We consider the case where p = 0.5, (αU , αV , αW) = (1, 2, 3). Ten thousand realizations of this is

shown in Figure 4.4.
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Figure 4.4: Ten Thousand Realizations of the Compound Random Vector of the Second Kind.

4.5 A Bivariate Compound Geometric Distribution

As was suggested in Section 4.2, exponential distributions turn up in many ways when

compound geometric distributions are discussed. In the interest of extending these distributions to

bivariate forms in a meaningful way, we introduce a bivariate Compound Random Vector of the

Second Kind, where, in the context in Section 4.4.2, X has exponential marginals.
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4.5.1 Pseudo-Exponential Distributions

To do this, we must first introduce the Filus [17] conditionally-specified exponential

model. Suppose V1 ∼ exp(α), and V2|V1 = v1 ∼ exp(β(v1)), where α > 0 and β : R+ −→ R+

is some differentiable-a.e function with domain R+. Then the joint density of V is

fV(v) = αβ(v1)e−αv−β(v1)v2 I(v1 > 0, v2 > 0). (4.21)

In general, while the marginal of V1 is clearly exponential, the marginal of V2 is not. However,

Arnold [3] introduced a survival variation of this distribution, constructed in a similar manner to the

Filus model. Set X1 ∼ exp(α), and X2|X1 > x1 ∼ exp(β(x1)). Then, the survival function for X is

P(X1 > x1, X2 > x2) = e−αx1−β(x1)x2 , x1, x2 > 0. (4.22)

In order for this to be a valid survival function, β(x1) must also be positive for all values of x1 > 0,

for, if β
(
x(0)

1

)
≤ 0 for some x(0)

1 > 0, limx2→∞ P
(
X1 > x(0)

1 , X2 > x2
)
, 0, a violation of the properties

of a survival function. The mixed derivative gives the associated density function.

fX(x) = [αβ(x1) + β′(x1)(β(x1)x2 − 1)]e−αx1−β(x1)x2 , (x1, x2) ∈ S × R+, (4.23)

where S = R+ \ S −, and S − is the subset of R+ (of measure zero) over which β′(x1) is not defined.

Proposition 6. A necessary and sufficient condition for (4.23) to be uniformly non-negative is

0 ≤ β′(x1) ≤ αβ(x1) ∀x1 ∈ S (4.24)

Proof. First, since e−αx1−β(x1)x2 > 0 for all x1, x2 > 0, we need only check the coefficient. For
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sufficiency, assume (4.24). Then, for any (x1, x2) ∈ S × R+,

αβ(x1) + β′(x1)(β(x1)x2 − 1) ≥ β′(x1) + β′(x1)(β(x1)x2 − 1)

= β′(x1)(1 + β(x1)x2 − 1)

= β′(x1)(β(x1)x2)

≥ 0

For necessity, assume αβ(x1) + β′(x1)(β(x1)x2 − 1) ≥ 0 ∀(x1, x2) ∈ S × R+. Notice

that if for some x(0)
1 ∈ S , β′

(
x(0)

1

)
< 0, then setting x(0)

2 = 2
β
(
x(0)

1

) − α

β′
(
x(0)

1

) (which is positive since

β
(
x(0)

1

)
is positive), then αβ

(
x(0)

1

)
+β′

(
x(0)

1

) (
β
(
x(0)

1

)
x(0)

2 − 1
)

= β′
(
x(0)

1

)
< 0, a contradiction. Hence,

β′(x1) ≥ 0 ∀x1 ∈ S . Also, ∀x1 ∈ S ,

lim
x2→0+

αβ(x1) + β′(x1)(β(x1)x2 − 1) = αβ(x1) − β′(x1) (4.25)

So, by continuity in x2, β′(x1) ≤ αβ(x1) ∀x1 ∈ S . �

If, in addition, β(x1) is differentiable everywhere, then it must be that β(0) > 0 (that is,

its continuous extension to 0 from the right exists and is greater than 0). To show this, recall from

calculus the following lemma:

Lemma 7. If g(x1) is a continuous measurable function with g(a) = 0 and g(x1) ≥ 0 for all x1 > a,

then for any b > a, there exists x(0)
1 ∈ (a, b] such that∫ x(0)

1

a
g(x1)dx1 ≤ g

(
x(0)

1

) (
x(0)

1 − a
)

(4.26)

Proof. By the Extreme Value Theorem and since g(a) ≤ g(x1) ∀x1 ∈ (a, b], there exists x(0)
1 ∈

(a, b] such that g
(
x(0)

1

)
≥ g(x1) for all x1 ∈ [a, b]. It follows that

1

x(0)
1 − a

∫ x(0)
1

a
g(x1)dx1 ≤ g

(
x(0)

1

)
(4.27)
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The result immediately follows. �

Assume β(0) = 0 (and therefore, by necessity, β′(0) = 0), and set a = 0 and b = 1
2α . Since

β(x1) is differentiable everywhere, β′(x1) is continuous and satisfies Lemma 7 for g. It follows from

Lemma 7 and the Fundamental Theorem of Calculus that there exists x(0)
1 ∈ (0, b] such that

0 ≤ β′
(
x(0)

1

)
≤ αβ

(
x(0)

1

)
= α

∫ x(0)
1

0
β′(x1)dx1 ≤ αβ

′
(
x(0)

1

)
x(0)

1 ≤
β′(x(0)

1 )
2

(4.28)

Since β(x1) > β(0) for x1 > 0, it must be that β′
(
x(0)

1

)
> 0. Thus, (4.28) is a contradiction, so it must

be that β(0) > 0. Finally, a key result.

Proposition 8. If S = R+, then X2 ∼ exp(β(0)).

Proof. By Equation 4.22, P(X2 > x2) = limx1−→0+ P(X1 > x1, X2 > x2) = e−β(0)x2 . �

Remark 9. Clearly the fact that X2 ∼ exp(β(0)) requires that β(0) > 0. However, relaxing the

requirement that β(x1) be differentiable everywhere to only being differentiable a.e. does form a

larger family of distributions. For example, define β(x1) so that β(x1) = 1
k+1 whenever x1 ∈

[
1

k+1 ,
1
k

)
for x1 < 1 and k ∈ N, and β(x1) = bx1c otherwise. Clearly, this β(x1) satisfies (4.24) for all x1 ∈ S

(in fact, all positive step functions do), where S − = N∪{k−1 : k ∈ N}, but β(0) is not defined (though,

by any reasonable definition, it would be zero). In this case, (X1, X2) is not an absolutely continuous

random vector, nor does it have an exponential marginal distribution for X2 (it is actually a mixture

of an infinite number of exponentials). Undoubtedly, even more exotic forms of β(x1) are possible,

but they nevertheless must satisfy (4.24).

Example: Arnold Survival Pseudo-Exponential Nonlinear Model

Consider the family with joint distribution function given in Equation 4.22, in which

β(x1) =
√

2αx1 + γ2, where γ ≥ 1. We have that 0 ≤ β′(x1) = α√
2αx1+γ2

≤ α
√

2αx1 + γ2 = αβ(x1),
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satisfying (4.24). In this case, the density of X is given by

fX(x) = αβ(x1) + β′(x1)(β(x1)x2 − 1)e−αx1−β(x1)x2

= α

√
2αx1 + γ2 +

α√
2αx1 + γ2

(√
2αx1 + γ2x2 − 1

)
e−αx1−x2

√
2αx1+γ2

(4.29)

= α

√2αx1 + γ2 −
1√

2αx1 + γ2
+ x2

 e−αx1−x2
√

2αx1+γ2

Since β(x1) is differential everywhere, the marginals are, by Proposition 8,

fX(x1) = αe−αx1 , (4.30)

and

fY (x2) = γe−γx2 (4.31)

This forms a 2-parameter family of bivariate exponential distributions. The corresponding survival

copula is thus

P
(
S X1(X1) < u1, S X2(X2) < u2

)
= P

(
e−αX1 < u1, e−γX2 < u2

)
= P

(
X1 > −α

−1 log (u1) , X2 > −γ
−1 log (u2)

)
= α

√−2 log (u1) + γ2 −
1√

−2 log (u2) + γ2
+ −γ−1 log (u2)


· elog(u1)−γ−1 log(u2)

√
−2 log(u1)+γ2

(4.32)

Example: Arnold Survival Pseudo-Exponential Linear Model

If, in Equation 4.22, β(x1) = β0 + β1x1, where β0 > 0 and β1 ≤ αβ0, the joint density is

given by

fX(x) = [αβ0 + αβ1x1 + β1(β0x2 − 1 + β1x1x2)]eαx1−β0 x2−β1 x1 x2 , x1, x2 > 0. (4.33)
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By Proposition 8, the marginals are

fX1(x1) = αe−αx1 , (4.34)

and

fX2(x2) = β0e−β0 x2 , (4.35)

with joint survival function,

P(X1 > x1, X2 > x2) = e−αx1−β0 x2−β1 x1 x2 , x1, x2 > 0. (4.36)

For the remainder of this chapter, we will write X ∼ LPES (α, β0, β1). It should be mentioned that

if, as a special case, α = β0 = 1 and β1 = θ ∈ [0, 1], then X has the Gumbel Bivariate Exponential

Distribution [18].

Returning to the general case, given S X1(x1) and S X2(x2) are the survival functions for X1

and X2, respectively, the survival copula corresponding to this distribution is derived as follows:

P(S X1(X1) < u, S X2(X2) < v) = P(e−αX1 < u, e−β0X2 < v)

= P(−αX1 < log u,−β0X2 < log v)

= P
[
X1 > −

log u
α

, X2 > −
log v
β0

]
(4.37)

= e
α
( log u

α

)
+β0

(
log v
β0

)
−β1

( log u
α

)( log v
β0

)

= uve−θ(log u)(log v)

where θ =
β1
αβ0

. Since it must be that 0 ≤ β1 ≤ αβ0, we have that θ ∈ [0, 1]. This is an Archimedean

copula with generating function ψ(t) = log(1 − θ log t), i.e., P(S X1(X1) < u, S X2(X2) < v) =

ψ−1 (ψ(u) + ψ(v)) for this choice of ψ. Thus, when β1 is close to β0α, the dependence between

X1 and X2 is strong. In the next section, we introduce a compound geometric random vector of the

second kind, with this bivariate exponential distribution as its summand variables.
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4.5.2 A Compound Geometric Distribution with Bivariate Pseudo-Exponential Com-

ponents

Define Y by

Y =

M∑
j=1

X j (4.38)

where M ∼ Geo(1 − p), p ∈ (0, 1), and {X j}
∞
j=1 is a sequence of iid random variables, independent

of M, with distribution X j ∼ LPES (α, β0, β1) for all j ∈ N. Since the marginals are exponential, by

Equation 4.5, the marginals of Y are known:

Y1 ∼ exp (α(1 − p)) , and Y2 ∼ exp (β0(1 − p)) (4.39)

This is a 4-parameter family of distributions, and we will write Y ∼ CGLPES (p, α, β0, β1).

While the joint density is not tractable in general, knowledge of the marginal distributions will set

the stage for an MMLE method of parameter estimation. However, unlike the previous distributions

to which likelihood-free methods were applied, simulating values from this distribution is not a

trivial matter. The most accessible manner would be by way of Sklar’s Theorem [40], that is by

simulating realizations from the copula, Equation 4.37, and then applying the exponential quantile

functions to obtain the marginal values. The procedure for simulating a single observation from

X ∼ LPES (α, β0, β1) is outlined in the following process:

Step 1. Set θ =
β1
αβ0

.

Step 2. Simulate u from U ∼ U(0, 1), and, independent of U, w from W ∼ U(0, 1).

Step 3. Find the v ∈ (0, 1) satisfying

FV |U(v|u) = w, (4.40)
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where FV |U(v|u) = ve−θ(log u)(log v)(1 − log v), via Newton-Raphson.

Step 4. Then, by the Probability Integral Transform, x =
(
S −1

X1
(u), S −1

X2
(v)

)
is from X ∼

LPES (α, β0, β1).

To obtain a simulated sample from Y ∼ CGLPES (p, α, β0, β1), then, obtain m from M ∼ Geo(1 − p),

and simulate (x1, x2, ..., xm), independently, from X ∼ LPES (α, β0, β1) using the process outlined

above. Then

y =

m∑
j=1

x j (4.41)

is a realization from Y ∼ CGLPES (p, α, β0, β1).

Parameter Estimation for the CGLPES Distribution

Now, as mentioned before, the marginal parameters for Y are estimable via MLEs. But,

this provides estimates for only two of the four parameters. In fact, the copula of the CGLPES (p, α, β0, β1)

is dependent on α and β0 only via θ =
β1
αβ0

, i.e., p and θ completely define the dependence structure

of this distribution, and the marginals have no impact on corresponding copula. We will therefore

continue this discussion about only p and θ. Here, we must take care to avoid the problems illus-

trated in Section 4.2.6. Similar to that case, we have a trade-off, this time between p and θ. Is this

trade-off direct enough to significantly restrict the space of these two parameters?

The answer to this question is evidently, yes. To see this, we recognize that the Archimedean

copula in Equation 4.37 includes only non-positive correlations (it is the product copula when

θ = 0). However, the larger p is, the larger M will tend to be, and thus, the more likely Y2 will

tend to be large whenever Y1 is. A plot of two cases with the same marginal distributions, Fig-

ure 4.5, makes this distinction clear. When p is small and θ is large, X1 and X2 will tend not to both
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be small, that is, whenever one is small, the other will tend not to be. However, when p is large, this

effect is overshadowed in Y by averaging, and thus, θ is difficult, if not practically impossible, to

measure, even with very large sample sizes. We can deal with this problem in two ways. First, we
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Figure 4.5: Ten Thousand Realizations of Y ∼ CGLPES (p = 0.05, α = 5, β0 = 15, β1 = 50) (left)
,and Y ∼ CGLPES (p = 0.95, α = 95, β0 = 285, β1 = 50) (right).

can apply Bayesian principles, restricting the expected ranges of values for both parameters through

a carefully chosen prior. Second, we can reduce the model by setting both p and θ to be functions

of a single parameter. Since the former was exhibited previously in the univariate case, we choose

the latter in this example.

First, we choose to restrict the parameter space to a region (a curve), C, for (p, θ) to reflect

the diminishing relevance of θ as p increases, while preserving its possible importance for small

values of p. We choose C to be the curve given by θ = (1− p)2. Simulation shows that the effects of
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parameters θ and p interact strongly with Pearson correlation of the copula along C. Figure 4.6 is a

plot of Pearson correlation, ρ = Corr
(
e−α(1−p)Y1 , e−β0(1−p)Y2

)
, as a function of p, along C, modeled

by a cubic polynomial, with ρ as the domain and p as the range. The ordered pairs (p, ρ̂) used

to generate this model (via regression) were obtained by generating very large samples for several

values of p and computing the corresponding sample correlations. The correlations on this curve

range from −0.54 to 0.65. The reason that ρ was chosen as the domain of the cubic model is that it

is how the model will be applied to parameter estimation, making the estimation of p as simple as

plugging in ρ̂ to the polynomial model.
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Figure 4.6: Cubic model of p as a function of ρ and where θ = (1 − p)2.

This dimensional reduction of the parameter space results in a rather simple method of

parameter estimation. Suppose y = (y1, y2, ..., yK) is an iid sample from Y ∼ CGLPES (p, α, β0). We

apply an MMLE procedure, where the parameter, p (and, thus, θ), is determined by the Pearson

correlation, in accord with Figure 4.6. We bootstrap this process to obtain a confidence region
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for (p, α, β0). This parameter-space reduction may appear to be somewhat unsatisfying; however,

experience indicates that if a model corresponds to a parameter pair that falls below C, it can be

closely represented by a model with parameters on C. One notable example is the product copula,

which would be represented by the origin on this plot. The copula corresponding to (p = 0.2938, θ =

0.4987) ∈ C yields a copula almost indistinguishable from the product copula.

To test the MMLE approach for its capacity to identify the true distribution, we simulate

1000 samples from an arbitrary collection of parameter sets (p, α, β0),3 each sample of size 200. For

each we perform the MMLE procedure, and record the mean bias and the MSE for each of the three

parameter estimates. The results are shown in Table 4.1.

Parameter Mean Bias Mean Squared Error
p 0.0255 0.0041
α 0.0549 0.0209
β0 0.0481 0.0204

Table 4.1: Parameter estimation results for 1000 arbitrary samples of size 100 from Y ∼

CGLPES (p, α, β0); bias and MSE for α and β0 are computed from percentage errors.

4.6 Conclusions

In this chapter, we introduced compound random variables and discussed some of the

literature related to them. We, in particular, discussed the important relationship between exponen-

tial random variables and compound geometric random variables. We also discussed some of the

many possible variations of this type of random variable and how they may apply to practical prob-

lems. Two different forms of multivariate compound random variables followed, and we gave brief

3The p’s were drawn from a B(3, 13), that is, kept relatively small, so that it did not drown out the affects of β1 for
most samples.
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examples of these. We finished with a bivariate compound geometric random variable with expo-

nential marginals, and a dependence structure defined by a conditionally-specified survival model.

We showed that one such version, the linear version, induces a convenient 3-parameter model with

a wide range of correlations, and for which a simple and reliable MMLE method of parameter

estimation is feasible

The possibilities to continue work in this area are vast. First, in light of the numerous

applications in actuarial and risk assessment fields, further development of multivariate exponen-

tial compound geometric distributions, and survival models particularly, encompass promising ar-

eas for further research. The model discussed in Section 4.5 admits a new dependence structure

for compound geometric exponential models. Extensions of this model to higher dimensions are

straightforward, as Arnold [3] describes: for d dimensions, define X so that

X1 ∼ exp(α),

X2|X1 < x1 ∼ exp(β1(x1)),

X3|X1 < x1, X2 < x2 ∼ exp(β2(x1, x2)), (4.42)

...

Xd |X1 < x1, X2 < x2, ..., Xd−1 < xd−1 ∼ exp(βd−1(x1, x2, ..., xd−1)).

Applying the Compound Random Vector of the Second Kind to X forms a multivariate version of

the bivariate distribution discussed here. Though parameter estimation may be more difficult, the

techniques highlighted and applied in this thesis may make it tractable for practical applications.
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Chapter 5

Conclusions

This thesis has addressed a selection of questions regarding once intractable statistical

models. With increasing computing capabilities, these models are becoming more accessible for

common use. We have addressed three specific families of distributions that, in general, lack

tractable density functions. In order to make full use of these models, unconventional methods

must be constructed to estimate the parameters, based on data sets to which they are assumed to

apply. Prediction and forecasting can then ensue unimpeded by the roadblocks of cumbersome an-

alytical techniques. In essence, we are able to use the simplicity of simulating large amounts of

data, and, through one or more of a variety of methods, infer a model’s parameters, thus making the

model useful.

This chapter will be organized into two parts. First will be a summary of the three mod-

els discussed in this thesis, some of the findings associated with them, and conclusions about their

benefits and pitfalls. Second will be a discussion of likelihood-free techniques, including the cur-

rent state of the discipline, and brief mentions of some underutilized methods. Throughout, we
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will address possibilities for future work. In particular, we will address how some of the general

findings about the models and methods studied in this thesis can be improved, adapted to specific

applications, or augmented.

5.1 Specific Models

The models studied in this thesis comprise a minuscule sample of the vast array of statisti-

cal models that, only a few decades ago, would not be applicable to data because analysis involving

the models was too computationally expensive. These three models were chosen for one or more of

three primary reasons:

1. Their potential to be useful for an array of applications, that is, their flexibility;

2. Their lack of closed-form densities; and

3. Their ease of simulating realizations.

In Chapter 2, we discussed an 8-parameter family of bivariate beta distributions with gamma com-

ponents. In chapter 3, we discussed a family of bivariate asymmetric Laplace distributions, also

with gamma components, that are, in fact, a spin-off of the Bivariate Beta copula. In Chapter 4,

we discussed a field with a much larger base in the literature, compound distributions. Primarily,

we looked at such models related to the exponential distribution, and studied a bivariate compound

geometric version based on a survival model. We address each of these in the following sections.
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5.1.1 Bivariate Beta Distributions and Copulas

The 8-parameter Bivariate Beta model is a huge family, producing the full range of pos-

sible correlations and possible marginal beta distributions. There are, however, some issues that

were identified in this work. First, the full model should not be applied to any practical estima-

tion scenario, for the model exhibits a clear identifiability problem. For vastly different parameter

configurations within this family, the corresponding densities can be, for all practical purposes, in-

distinguishable. This is a problem not only for parameter estimation, but also for understanding the

effects of the parameters on the density shape. We cannot solve this problem entirely, for if we do,

it will defeat the original purpose of the model: flexibility. What we can do is view the full model

as an “omnibus” which includes various sub-models of potential interest.

In this thesis, this amounted to a starter kit. That is to say, we introduced what is arguably

the most simple collection of 5-parameter sub-models whose set of possible marginal distributions

is unrestricted. However, even this collection of models presents problems for parameter estimation.

The reason for this appears to be a result of the nature of the parameters being estimated. To explain,

recall that, given knowledge of the marginal parameters, the Olkin-Liu model is completely defined.

No further investigation of the dependence structure is necessary, for it is completely defined by the

marginal distributions. In contrast, for the 5-parameter Arnold model and the 5-parameter models

constructed in Section 2.2.2, the situation is different. Here, upon defining the marginal parameters,

a free parameter remains, one whose range depends on the marginals. It is also the most difficult to

assess, for no help in its estimation is available from the well-established, not to mention density-

based, estimation techniques available for the marginals. We can surely count parameters—three

for Olkin-Liu, and five for the Arnold & Ng family—and even note the claim that the presence of
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a density is significantly better than its absence. Nevertheless, the key take-away from this work is

the following:

Models that contain dependence parameters which are independent of the marginal
distributions present a significantly more difficult problem for estimation than
models that do not.

This is an illustration of the trade-off between flexibility and tractability. When multiple parameters

are independent of the marginal distributions, the problem is compounded. In future work, further

development of model-building strategies could prove useful, allowing for ways to identify, and

incorporate into the final model, only the most significant parameters. Of course, there are hundreds

of possible sub-models, all with parameter spaces of different shapes, sizes, and cross-sections of

the full-model’s space. Whenever possible, prior information should be incorporated not only into

an informative prior distribution, but also into the design of the model selection process.

These issues with dependence parameters are nothing new. It is probably why the use of

copulas is arguably one of the most rapidly growing fields of application of mathematical statistics

today. And, that is why the second part of Chapter 2 was devoted to them. Since standard uniform

distributions are B(1, 1) distributions, there exists a sub-family of the full, 8-parameter, family of

bivariate beta distributions which are also copulas. The particularly unique characteristic of this sub-

family is the fact that it has four parameters, a rare characteristic of copulas, most of which have

only a single parameter. Like other sub-families of the full model, parameter estimation presents

difficulty. In fact, as was suggested in the previous paragraph, this difficulty is arguably greater than

most, since all four parameters are dependence parameters. However, there are some interesting

characteristics of the distribution that can be attributed to these parameters. Namely,

Each parameter of Arnold and Ghosh’s 4-parameter family of copulas contributes
to a specific and identifiable tail dependency.
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While there is certainly interaction amongst these contributions, a clear conclusion that can be

made from the extensive simulation studies is that a particular tail dependency exists if and only if

the corresponding parameter is nonzero. Specifically,

1. If δ5 > 0, then a tail dependency exists in the lower left, i.e. X1 and X2 tend to be small

simultaneously;

2. If δ6 > 0, then a tail dependency exists in the upper right, i.e. X1 and X2 tend to be large

simultaneously;

3. If δ7 > 0, then a tail dependency exists in the upper left, i.e. X2 will tend to be large when X1

is small; and

4. If δ8 > 0, then a tail dependency exists in the lower right, i.e. X1 will tend to be large when

X2 is small.

Of course, some of these statements conflict with one another. Specifically, either of the first two

statements conflicts with either of the last two. But, it is important to distinguish conflict from con-

tradiction. For example, if δ6 = δ7 = 0.5, both corresponding statements are true, as is shown in the

center density plot in Figure 2.14. In other words, if X2 is large, X1 will tend to be extreme, that is,

either small or large, to a greater degree than in the independent case. These interactions, however,

do complicate things for parameter estimation. In many cases, such as the one just highlighted,

correlation measures or other measures of tail dependency do not work well, probably because the

measures are sensitive to the interference caused by adjacent tail dependencies.

Another observation in this work is the persistence of the Ali-Michail-Haq copula through-

out this research. This was something that piqued the interest of Roger Nelsen when hearing a talk
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on this subject. This distribution (with its parameter equal to 1) is in the 4-parameter Arnold/Ghosh

family, particularly in the case where δ5 = 1, and δ6 = δ7 = δ8 = 0. Hence, the Ali-Michail-Haq

distribution represents a significant lower tail dependency. Also, its density function turned out to

be useful for parameter estimation. The continuing ubiquity of this distribution is a mystery, but

also an opportunity for further research.

In all, the work on the 8-parameter family, and its sub-families of copulas, is truly a work

in progress. More must still be done than has been done. This research has as yet been unsuccess-

ful in completely characterizing this family, but it has unearthed a host of new opportunities for

research. Included in these are, most notably, characterizing the (classes of) families in Tables 2.4,

2.5, and 2.6, and forming model-selection processes for identifying useful models.

5.1.2 Bivariate Asymmetric Laplace Distributions

In this thesis, we studied a bivariate asymmetric Laplace distribution with eight parame-

ters. With an intuitive interpretation of its parameters, this family is applicable to a range of practical

problems, and its dependence parameters have a similar influence on the distribution to those of the

Bivariate Beta copula. The difficulty with this distribution is in parameter estimation. While the

marginal parameters are estimable via the MLEs, the dependence parameters, as has been the en-

during theme of this thesis, present a problem for estimation.

In this work, while this problem was not solved, it was reduced. We developed a proposal

distribution for MCMC which involves the Olkin-Liu Bivariate Beta Model. Specifically, we used

the distribution to model two of the dependence parameters, based on large samples and a method

of density estimation. The subsequent MCMC procedure provided reasonable estimates. However,

it is by no means assumed that the method presented is ideal or maximally effective. The door is
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open for improvements, particularly those that obviate the need for density estimation.

Higher-dimensional versions are cumbersome for this family of distributions. In order for

the family to retain its flexibility, the number of parameters for three dimensions alone would more

than triple, and for four, it would increase by an order of magnitude. However, if a suitable (for-

ward) model selection technique can be constructed, it may permit utilization of higher-dimensional

versions of this family.

An example of a regression scenario showed the applicability of this model to practical

problems. The data included stock volumes over a year for two distinct stocks, and a regression

model was applied to obtain residuals. The bivariate asymmetric Laplace model was applied to

the residuals, and, according to the Akaine Information Criterion, it was preferred over a bivariate

normal model.

Lastly, this model is an alternative to another bivariate asymmetric Laplace distribution,

the Kotz [25] model. The Kotz model is easy to extend to higher dimensions, a reason why it may

be preferred over the BAS L. However, if multiple tail dependencies are present, the BAS L may be

preferred. Much more work can be done to further this comparison, to include assessing similarities

and differences, and identifying strengths of each.

In all, the BAS L distribution is a flexible family with, in general, no closed-form density.

The parameters are easily interpretable, and parameter estimation is tractable for reduced models.

Future work can focus on conducting a complete investigation of the model and its sub-models. One

area is to apply advancements in data visualization methods by applying our intuitive understanding

of the parameters’ interpretations to augment the parameter estimation methods.
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5.1.3 Compound Random Variables

Compound random variables include a large array of different random variables. In this

work, the focus was on the overarching presence of exponential distributions, and bivariate versions

of that distribution.

We constructed a model whose marginals are both exponential and whose copula is com-

pletely defined by only two of the parameters. This model is an example of the vast array of models

that can be constructed through geometric compounding. In light of an evident identifiability prob-

lem, we reduced the space defining the copula to one of a single dimension, which led to a relatively

simple method of parameter estimation on a new 3-parameter family of bivariate exponential distri-

butions, constructed with conditionally-specified survival components.

An expansion of the parameter space is possible, particularly one that extends the space

to at least some subset of the space below the curve, C, discussed in Section 4.5.2. This may prove

useful in some cases, but should be done with caution to avoid reintroducing identifiability issues

with the model.

Many possibilities exist for new models of the compound type, many of which will not

result in tractable distribution functions, but will be uniquely applicable to specific types of datasets.

5.2 Likelihood-Free Methods

Distributions which are defined by the manipulation of random variables, rather than the

manipulation of distribution functions, offer a particular advantage. When studying a phenomenon

in this way, we can identify specific random variables to model specific components of the phe-

nomenon, and manipulate them according to the perceived behavior of this overall system. Such
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constructions of random variables are preferred because they provide intuitive justification for their

application to common phenomena. However, as has been the case throughout this thesis, defin-

ing random variables in this way will often lead to intractable distribution and density functions,

and have, in the past, been avoided for this reason. One important point to be observed is that

we no longer need to avoid these types of constructions, and further advancement of the field of

Likelihood-Free Statistical Inference will continue to make these constructions even more inferen-

tially accessible.

The methods described and applied herein, by no means, form a comprehensive list. In

this section, we briefly revisit each of the methods discussed, and express some areas where more

development may be possible.

5.2.1 Modified Maximum Likelihood

If the marginal distributions of an otherwise intractable joint distribution are well-known,

and their parameters can be easily estimated, then modified maximum likelihood estimation may

be a viable method for estimating parameters of the joint distribution. This method was applied in

several cases throughout this work, and proved useful. It is (often) simple and intuitive.

This method offers an opportunity to apply Sklar’s Theorem, that is, to dismantle the

joint distribution into its marginal distributions and a copula. Once done, the marginals can be

estimated separately from the parameters defining the dependence structure. However, it should be

noted that oftentimes a parameter can influence both marginal distributions and the copula. This

can sometimes be resolved through an iterative process. For example, we can apply MMLE to

estimate the marginal distributions, then apply these estimated distributions to the data to obtain

an estimated copula, and ultimately estimate the copula parameters constrained by the marginal
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parameters. This process can be repeated by bootstrapping the marginal estimates and repeating the

constrained copula estimation. What results can be considered either an estimated sample from the

distribution of the estimators, or a proposal distribution, as was the case in Chapter 3.

5.2.2 Approximate Bayesian Computation

We applied ABC in various ways throughout this thesis. It is a flexible and effective

method for parameter estimation, and its use is justifiable even in the absence of prior information.

Most critical is the set of statistics, S(x). If no such set is known, and cannot be obtained

though research, then this method may yield poor results. In addition, the distance function, ρ, must

be large in all cases where the parameters are significantly different. A simple but costly error is to

construct ρ so that it is not equally sensitive to important differences in all of the statistics within

S. For example, if S 1(x) tends to be an order of magnitude larger than S 2(x), and ρ is just the sum

of squared errors, then ρ will end up ignoring errors in S 2 in favor of those in S 1. So scaling is

important.

The choice of ε0 is another concern. If too small, the only cost is excessive run times (due

to a small acceptance rate). However, an ε0 that is too large can cause excess bias and error in the

posterior sample. Thus, simulation should be done to identify the smallest reasonable value of ε0 to

be used in the ABC procedure.

Some adaptations of ABC may prove useful. For example, in MMLE, if the marginal

MLEs are easily obtainable but the remaining parameters are not by any means, a possible solution

is to apply ABC in the following way. If a reasonable S(x) is still available, particularly for the

remaining free parameter space after the marginal parameters are defined, do the following:
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Step 1. Obtain the marginal MLEs, µMLE .

Step 2. Bootstrap the marginal MLEs to obtain a proposal set of marginal parameters,

µ∗MLE .

Step 3. Obtain the proposal from the remaining parameter space, which may be partially

defined by the marginal parameters, µ∗MLE , using any desired prior distributions.

Step 4. Perform the standard ABC step for accepting or rejecting the proposal.

Step 5. If t = N, then stop. Otherwise, repeat Step 2.

This method technically uses the data for its prior distribution. However, if we consider this method

to be applied as the second stage of the MMLE parameter estimation process, one where the

marginal MLEs are considered the true values, the method is justified, for the prior can legitimately

be the distribution of the marginal MLEs, combined with any other prior information.

Another possible form for the prior distribution is a “learning” prior, one which, at some

point in the process, begins to propose parameters which are similar to more successful previous

proposals, and dissimilar to less successful ones. Many forms of this type of prior were attempted,

but none worked. In all cases, they either led the process to converge illegitimately, or created ex-

cessive bias in the posterior sample. Whether it is possible to construct such a proposal distribution

remains an open question.

5.2.3 Markov Chain Monte Carlo

A method applied in much more general settings where realizations are needed from an

arbitrary distribution, MCMC can be a useful means to obtain a set of realizations from a posterior
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distribution in a likelihood-free scenario. For the BAS L distribution, this method was applied,

allowing for a specific proposal distribution to be constructed and applied. The result was a sample

that exhibited minimal bias, and variation.

While this method was effective, it still did require density estimation. In future work

either variations of this method that can avoid this, or other methods entirely, would be preferred, to

form a purely likelihood-free method.

5.3 A Note About Pseudo-Randomness

The methods discussed herein are heavily reliant on the ability to simulate large amounts

of data with computers. A well-known fact is that no random-number generator is truly random; it

merely mimics randomness, and this pseudo-randomness becomes more of a factor as the size of a

dataset grows. Thus, in engaging in these likelihood-free practices, we must remain cognizant of

this, for the sizes of datasets generated in this endeavor will only continue to increase.
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Appendix A

Density Estimation

This appendix gives the details of the method of parameter estimation used in Chapter 3.

Consider an absolutely continuous (a.e.) random variable, X, supported on R2, with distribution

function, FX(x; θ) and density fX(x; θ), both of which are unknown. However, the marginal dis-

tributions, F1(x1; θ) and F2(x2; θ), are known, and the corresponding quantile functions, F−1
1 (u1; θ)

and F−1
2 (u2; θ), respectively, are known. We wish to estimate the density, fX(x; θ), at the points,

x = (x1, x2, ..., xK).

First, obtain quantiles
(
q1,(n+1)−1 , q1,2(n+1)−1 , ..., q1,n(n+1)−1

)
and

(
q2,(n+1)−1 , q2,2(n+1)−1 , ..., q2,n(n+1)−1

)
,

where qi,p satisfies

Fi(qi,p) = p (A.1)

for all p ∈ (0, 1) and i ∈ {1, 2}, such that the convex hull of x is contained in the rectangle with cor-

ners c11 and cnn, where ci j is the center of the rectangle,
(
q1,i(n+1)−1 , q1,(i+1)(n+1)−1) × (q2, j(n+1)−1 , q2,( j+1)(n+1)−1

)
,

for all i, j ∈ {1, 2, ..., n− 1}. Then generate a large sample, y = (y1, y2, ..., yM), from FX(x; θ), where

M is sufficiently large to reduce error below some desired threshold. In addition, M must be suffi-
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ciently large so that every sub-rectangle,
(
q1,m1(n+1)−1 , q1,(m1+1)(n+1)−1) × (q2,m2(n+1)−1 , q2,(m2+1)(n+1)−1

)
,

where 1 ≤ m1,m2 ≤ n, contains at least one point in y. Define ai j to be the area of the rectangle

centered at ci j, for i, j ∈ {1, 2, ..., n}. Finally, define {di j}
n,n
i=1, j=1 by

di j =
(the number of points in y in the rectange centered at ci j

Mai j
(A.2)

Then di j is the approximate value of fX(ci j; θ).

Define ri j to be the rectangle with corners ci j and ci+1, j+1, for i, j ∈ {1, 2, ..., n − 1}, and

denote ci j =
(
(c1)i j, (c2)i j

)
. Then, by design, every point in x is in some ri j. If xk ∈ ri0 j0 , then

estimate the density by the weighted mean of the di j’s at the four corners of ri0 j0 .

f̂X(xk; θ) =

i0+1∑
i=i0

j0+1∑
j= j0

(c1)i0+1, j0+1 − (c1)i0 j0 − |(c1)i j − xk1|

(c1)i0+1, j0+1 − (c1)i0 j0
·

(c2)i0+1, j0+1 − (c2)i0 j0 − |(c2)i j − xk2|

(c2)i0+1, j0+1 − (c2)i0 j0
di j

(A.3)

This approximation can easily be shown to be continuous everywhere, as well as differentiable a.e.,

in the convex hull of x. It can also be shown to be converge to the actual density as both n and M

increase, though the rate of convergence is dependent upon the distribution being measured. Below

is an R function which computes the log-likelihood, where the density estimate for x is obtained

using this method, for a given BAS L parameter set.

GetLogLikelihood <- function(X,params,minGridSize=M,N=simSz)

{

maxSize <- 1000000

K <- length(X[,1])

xLim <- c(min(X[,1]),max(X[,1]))

yLim <- c(min(X[,2]),max(X[,2]))

gridSize <- max(c(3,minGridSize))

tailSize <- ceiling(gridSize/10)

centerSize <- gridSize-2*tailSize

qSeq <- c(1/(centerSize+2)ˆ(tailSize:1+1),

(1:(centerSize+1))/(centerSize+2),

1-1/(centerSize+2)ˆ(1:tailSize+1))

xBrks <- qASL(qSeq,c(params$beta1,params$beta3))

130



yBrks <- qASL(qSeq,c(params$beta2,params$beta4))

xP <- diff(xBrks)

yP <- diff(yBrks)

areas <- xP %*% t(yP)

estD <- matrix(0,gridSize,gridSize)

xVec <- xBrks[1:gridSize]+diff(xBrks)/2

yVec <- yBrks[1:gridSize]+diff(yBrks)/2

while ((xLim[1]<min(xVec))|(xLim[2]>=max(xVec))|

(yLim[1]<min(yVec))|(yLim[2]>=max(yVec)))

{

gridSize <- gridSize + 1

tailSize <- ceiling(gridSize/10)

centerSize <- gridSize-2*tailSize

qSeq <- c(1/(centerSize+2)ˆ(tailSize:1+1),

(1:(centerSize+1))/(centerSize+2),

1-1/(centerSize+2)ˆ(1:tailSize+1))

xBrks <- qASL(qSeq,c(params$beta1,params$beta3))

yBrks <- qASL(qSeq,c(params$beta2,params$beta4))

xP <- diff(xBrks)

yP <- diff(yBrks)

areas <- xP %*% t(yP)

estD <- matrix(0,gridSize,gridSize)

xVec <- xBrks[1:gridSize]+diff(xBrks)/2

yVec <- yBrks[1:gridSize]+diff(yBrks)/2

}

n <- max(c(N,1000*(gridSize)ˆ2))

numBlks <- n %/% maxSize

if (n>maxSize*(numBlks))

{

n <- c(rep(maxSize,numBlks),n-maxSize*(numBlks))

numBlks <- numBlks + 1

} else

{

n <- rep(maxSize,numBlks)

}

delta <- rep(0,8)

delta[5:8] <-c(params$delta5,params$delta6,

params$delta7,params$delta8)

delta[1] <- max(0,min(c(1,1-delta[5]-delta[7])))

delta[2] <- max(0,min(c(1,1-delta[5]-delta[8])))

delta[3] <- max(0,min(c(1,1-delta[6]-delta[8])))

delta[4] <- max(0,min(c(1,1-delta[6]-delta[7])))

totalCt <- 0

totalObs <- 0
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for (j in 1:numBlks)

{

locsLength <- gridSizeˆ2

locs <- data.frame(var1=integer(locsLength),

var2=integer(locsLength),

freq=integer(locsLength))

U <- matrix(rgamma(n[j]*8,delta,1),nrow=8)

Y <- cbind(colSums(U[c(3,6,8),])*params$beta3-

colSums(U[c(1,5,7),])*params$beta1,

colSums(U[c(4,6,7),])*params$beta4-

colSums(U[c(2,5,8),])*params$beta2)

Y <- Y[(Y[,1]>xVec[1])&(Y[,1]<xVec[gridSize])&

(Y[,2]>yVec[1])&(Y[,2]<yVec[gridSize]),]

eXp <- xP*n[j]

eYp <- yP*n[j]

totalObs <- totalObs + sum(locs[,3])

den <- (totalCt+n[j])

prop0 <- totalCt/den

locs <- as.data.frame(table(findInterval(Y[,1],xBrks),

findInterval(Y[,2],yBrks)))

totalCt <- totalCt + n[j]

estD[cbind(locs[,1],locs[,2])] <- estD[cbind(locs[,1],

locs[,2])]*prop0 + locs[,3]/den

}

estD <- estD/areas

ell <- rep(0,K)

for (k in 1:K)

{

xPos <- sum(X[k,1]>xVec)

xRw <- (X[k,1]-xVec[xPos])/(xVec[xPos+1]-xVec[xPos])

xLw <- 1-xRw

yPos <- sum(X[k,2]>yVec)

yRw <- (X[k,2]-yVec[yPos])/(yVec[yPos+1]-yVec[yPos])

yLw <- 1-yRw

ell[k] <- log(xLw*yLw*estD[xPos,yPos] +

xRw*yLw*estD[xPos+1,yPos] +

xLw*yRw*estD[xPos,yPos+1] +

xRw*yRw*estD[xPos+1,yPos+1])

}

return(sum(ell))

}
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