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ABSTRACT OF THE DISSERTATION

Towards Efficient and Effective Privacy-Preserving

Machine Learning

by

Lingxiao Wang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Quanquan Gu, Chair

The past decade has witnessed the fast growth and tremendous success of machine learning.

However, recent studies showed that existing machine learning models are vulnerable to pri-

vacy attacks, such as membership inference attacks, and thus pose severe threats to personal

privacy. Therefore, one of the major challenges in machine learning is to learn effectively

from enormous amounts of sensitive data without giving up on privacy. This dissertation

summarizes our contributions to the field of privacy-preserving machine learning, i.e., solving

machine learning problems with strong privacy and utility guarantees.

In the first part of the dissertation, we consider the privacy-preserving sparse learn-

ing problem. More specifically, we establish a novel differentially private hard-thresholding

method as well as a knowledge-transfer framework for solving the sparse learning problem.

We show that our proposed methods are not only efficient but can also achieve improved

privacy and utility guarantees.

In the second part of the dissertation, we propose novel efficient and effective algorithms

for solving empirical risk minimization problems. To be more specific, our proposed algo-
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rithms can reduce the computational complexities and improve the utility guarantees for

solving nonconvex optimization problems such as training deep neural networks.

In the last part of the dissertation, we study the privacy-preserving empirical risk mini-

mization in the distributed setting. In such a setting, we propose a new privacy-preserving

framework by combining the multi-party computation (MPC) protocol and differentially

private mechanisms and show that our framework can achieve better privacy and utility

guarantees compared with existing methods.

The methods and techniques proposed in this dissertation form a line of researches that

deepens our understandings of the trade-off between privacy, utility and efficient in privacy-

preserving machine learning, and could also help us develop more efficient and effective

private learning algorithms.
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CHAPTER 1

Introduction

The success of machine learning techniques relies on large-scale data. For many applica-

tions such as medical research, it is difficult for them to reap the fruits of machine learning

because their data is often highly sensitive such as individual patient records that may not

be permitted to share due to privacy expectations or regulations. More importantly, recent

studies have found that trained machine learning models can surprisingly leak an individual’s

sensitive information, which urges us to deal with privacy breaches when we deploy machine

learning models. These privacy concerns give rise to the following question: Is it possible

for us to leverage machine learning techniques without giving up on privacy? The answer

is affirmative, and the primary research goal in this dissertation is to develop principled

ways to address privacy concerns when using machine learning methods to solve real-world

problems.

In the past decade, much work has been done to advance machine learning with dif-

ferential privacy (DMN06) since differential privacy can provide statistical data privacy for

sensitive information and has recently emerged as the new gold standard in data privacy pro-

tection. However, design efficient and effective privacy-preserving machine learning methods

have many challenges. More specifically, in many modern machine learning applications, the

problem dimension can increase with the number of observations, i.e., the high-dimensional

setting. Thus, directly applying existing privacy-preserving methods without considering the

model structure information such as sparse structure or low-rank structure will often output

models with very unsatisfied privacy and utility guarantees. Although, many approaches
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(KST12; TS13; JT14; TTZ15) have been proposed to solve differentially private learning

problems in the high-dimensional setting, theses methods either have unsatisfactory utility

guarantees or are computationally inefficient. Therefore, the natural question to ask here is:

can we achieve the best of both worlds, i.e., a strong utility guarantee and high computa-

tional efficiency, for solving high-dimensional private learning problems? Two of my works

(see Chapter 2 and Chapter 3) aim at addressing this question.

In addition, many machine learning problems such as training deep neural networks

are nonconvex optimization problems, which makes designing efficient and effective privacy-

preserving machine learning methods much more challenging. For instance, the most popular

method to train private deep neural networks is differentially private stochastic gradient de-

scent (DP-SGD) (BST14a; WYX17a; ZZM17b) due to the strong privacy guarantees it can

provide. However, DP-SGD is computationally hard for large-scale problems (e.g., large

model parameters and training dataset) due to the large variance of the stochastic gradi-

ent estimator. Therefore, how to fully utilize the power of non-private machine learning

approaches and thus design more efficient algorithms is one of the major challenges in the

current privacy-preserving machine learning literature. One of my work (see Chapter 4) aims

at address this challenge when we consider the nonconvex optimization problem. Another

major issue of existing privacy-preserving machine learning methods lies in their possibly

significant degeneration of trained models’ utility compared with the model trained using

the non-private counterparts. In Chapter 5, we introduce a differentially private Laplacian

smoothing stochastic gradient descent method to mitigate this degradation for solving the

empirical risk minimization.

In many real-world applications such as medical research and personalized recommen-

dation, data is collected by different organizations and individuals. These parties wish to

learn collective models by combining data across institutions to produce more accurate mod-

els. However, the privacy concerns become more acute in this distributed/federated learning

setting since: (1) different parties do not want to expose their data to others; and (2) the
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well-trained collective model should provide protection against inference attacks. Therefore,

it is very challenging to design privacy-preserving distributed learning framework which can

address these privacy concerns and achieve strong utilities. In Chapter 6, we discuss how to

combine the Cryptograph technique and the advanced differentially private mechanism to

address these concerns.

The major contributions of my works are summarize as follows. Two of my works aim

at developing more efficient and effective privacy-preserving sparse learning methods. More

specifically, we propose a differentially private iterative gradient hard thresholding algorithm,

which allows us to have strong privacy and utility guarantees. Our algorithm is a synergistic

combination of the state-of-the-art privacy-preserving mechanism and sparse learning algo-

rithm, which has a linear convergence rate and can be applied to a broad class of private

high-dimensional machine learning with the sparse model structure. Built upon this method,

we develop a knowledge transfer framework to further improve the utility guarantee of our

method when solving the sparse learning problem. The key insight of the proposed frame-

work is to use a non-private “teacher” model to train a privacy-preserving “student” model

while preserving the model structure information of the “teacher” model. We show that our

proposed framework can achieve the state-of-the-art utility guarantee compared with exiting

methods.

I also study the differentially private nonconvex optimization problem. I develop an ef-

ficient privacy-preserving stochastic nonconvex optimization algorithm and prove that our

method can reduce the computational complexity and achieves state-of-the-art privacy pri-

vacy and utility guarantees compared with DP-SGD. The key insight of our method consists

of two parts: (1) leveraging the historical gradient information to consistently reduce the

accumulated variance of the gradient estimator; and (2) an adaptive step size to reduce

the sensitivity, which is the key to provide strong privacy guarantees, of the gradient es-

timator. Furthremore, we develop a differentially private Laplacian smoothing stochastic

gradientdescent method to improve the utility guarantee of existing methoods. The core of
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our method is the Laplacian smoothing, which smooths out the random noise used in the

privacy-preserving mechanisms. We show that our new approach could improve the trained

private models’ utility, both numerically and theoretically.

To address the privacy concern and achieve strong utilities in the distributed setting, we

proposed solutions that combines differential privacy with secure multi-party computation

(ZE15a). Our solution’s key insight comes from two sources: Firstly, we combine different

parties’ local information within a secure computation, which allows us to protect each

party’s private records. Secondly, we add the required differential privacy noise inside the

secure computation after aggregation, which can reduce the amount of random noise in

the privacy-preserving mechanisms. With these two insights, our proposed framework can

not only address the privacy concerns in the distributed/federated learning setting but also

significantly improve the utilities in privacy-preserving empirical risk minimization.

The rest of the dissertation is organize as follows. We first discuss our efforts in solving

differentially private sparse learning problem. In Chapter 2, we introduce our proposed

efficient private learning algorithm: differentially private iterative gradient hard thresholding

(DP-IGHT). We prove that our proposed algorithm can achieve a linear convergence rate.

Based on the proposed algorithm, we introduce a knowledge transfer framework for private

sparse learning problem in Chapter 3. Our proposed framework not only enjoys the fast

convergence rate of DP-IGHT but also significantly improve the utility guarantees compared

with existing methods. We then study the differentially private nonconvex optimization

in Chapter 4 and Chapter 5. In Chapter 4, we propose an efficient learning algorithm for

training deep neural networks with privacy guarantees. In Chapter 5, we develop an effective

method to improve the utility guarantees in private deep learning. Next, we introduce a

novel privacy-preserving framework for distributed empirical risk minimization in Chapter

6. Lastly, we conclude the dissertation by elaborating several future research directions in

Chapter 7.
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CHAPTER 2

Differentially Private Iterative Gradient Hard

Thresholding for Sparse Learning

2.1 Introduction

In modern high-dimensional data analytics, where the problem dimension can increase with

the number of observations, sparse learning has emerged as a prominent method to allevi-

ate overfitting and provide statistically reliable results. Consequently, many sparse learning

algorithms such as `1 convex relaxation based methods (Tib96; Gee08; NYW09) have been

proposed in the past two decades. Compared with `1 convex relaxation based sparse learn-

ing algorithms, `0 constrained sparse learning algorithms (Zha11; YLZ14; JTK14; CG16)

received increasing attention due to its small estimation bias. In specific, the `0 constrained

sparse learning is formulated as follows

min
θ∈Rd

LS(θ) :=
1

n

n∑
i=1

`(θ; zi) subject to ‖θ‖0 ≤ s, (2.1.1)

where S = {z1, z2, . . . , zn} denotes the training dataset with zi = (xi, yi), LS is the empirical

loss function, ‖θ‖0 denotes the number of nonzero entries in θ, s is a parameter for tuning

the sparsity level of θ, and we assume that the data are generated from some underlying

statistical model with sparse parameter vector θ∗ ∈ Rd such that ‖θ∗‖0 = s∗. The goal of

sparse learning is to recover θ∗.

In many applications, the data used for sparse learning are sensitive datasets, such as

financial records or genomic data, raising a big concern that the adversaries may be able
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to infer the private information from the trained model. This privacy concern necessitates

the private-preserving algorithms for learning sparse models. The prerequisite for devel-

oping such algorithms is a rigorous privacy definition. In recent years, differential privacy

(DMN06) has been served as the most widely adopted notion of statistical data privacy and

has been applied to many real world applications (EPK14; DKY17). The formal definition

of differential privacy is as follows.

Definition 2.1.1 (Differential privacy (DMN06)). A randomized mechanism M : Sn → R

satisfies (ε, δ)-differential privacy if for any two adjacent data sets S, S ′ ∈ Sn differing by one

example, and any output subset O ⊆ R, it holds that

P[M(S) ∈ O] ≤ eε · P[M(S ′) ∈ O] + δ.

According to the definition, differential privacy requires that datasets differing by one

example lead to similar distributions on the output of a randomized algorithm. This implies

that an adversary will draw essentially the same conclusions about an individual whether or

not that individual’s data was used even if many records are known a priori to the adversary.

There exist several studies (KST12; TS13; TTZ15) trying to develop differentially pri-

vate algorihthms for solving sparse learning problems. However, they only consider sparse

linear regression, and the convergence rates and utility guarantees of these methods are

suboptimal. In order to overcome the limitations of existing differentially private sparse

learning algorithms, we propose a differentially private iterative gradient hard thresholding

(DP-IGHT) algorithm for solving the sparsity constrained learning problem (2.1.1), which

is not only very efficient but also has comparable or even better utility guarantees than the

state-of-the-art methods. We summarize the contributions of our work as follows

• Compared with existing work that is limited to sparse linear regression, our differ-

entially private sparse learning algorithm is generic enough that it can be applied

to a broad family of loss functions that satisfy the restricted strong convexity and
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smoothness conditions (BRT09; NYW09), and each component function is Lipschitz

continuous. We demonstrate the superiority of our framework through two concrete

examples: sparse linear regression and sparse logistic regression.

• We prove the linear convergence rate for our DP-IGHT algorithm, which outperforms

the sub-linear convergence rate of Frank-Wolfe based method (TTZ15), and does not

rely on any computationally intractable support selection algorithm as required by

(KST12).

• We establish strong utility guarantee for our DP-IGHT algorithm. Specifically, it

achieves the best known utility guarantee (KST12) for sparse linear regression while

not requiring any extra support selection procedure. Our approach also provides the

first utility guarantee for sparse logistic regression.

Notation. For a d-dimensional vector x = [x1, ..., xd]
>, we use ‖x‖2 = (

∑d
i=1 |xi|2)1/2 to

denote its `2-norm, and use ‖x‖∞ = maxi |xi| to denote its `∞-norm. We let supp(x) be the

index set of nonzero entries of x, and supp(x, s) be the index set of the top s entries of x in

terms of magnitude. We use Sn to denote the input space with n examples and R to denote

the output space. Given two sequences {an} and {bn}, if there exists a constant 0 < C <∞

such that an ≤ Cbn, we write an = O(bn), and we use Õ(·) to hide the logarithmic factors.

We denote the d by d identity matrix by Id. For simplicity, we use `i(·) to denote `(·; zi)

throughout the paper.

2.2 Related Work

To develop differentially private algorithms, the commonly used methods include output

perturbation (CM09), objective perturbation (CM09), and gradient (iterative) perturba-

tion (BST14b). More specifically, output perturbation adds random noise to the out-

put of a non-private algorithm. Objective perturbation perturbs the objective function
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of learning algorithms by random noise before learning. And the idea of gradient pertur-

bation is to introduce random noise into the intermediate steps of the learning algorithm.

Although these approaches have been extensively studied for empirical risk minimization

(CM09; CMS11b; KST12; BST14b; ZZM17b; WYX17b; WGX18; JWE18b) in classical set-

ting, their applications to sparse learning in the high-dimensional regime remain understud-

ied.

There exist several ad hoc approaches (KST12; TS13; JT14; TTZ15) to solving dif-

ferentially private (sparse) learning in the high-dimensional setting. For example, (JT14)

proposed a differentially private algorithm with the dimension independent utility guaran-

tee for empirical risk minimization. Nevertheless, their method only works for specific loss

functions and the utility guarantee is sub-optimal in terms of other parameters. The most rel-

evant studies to ours are (KST12; TS13; TTZ15), which studied differentially private sparse

linear regression. In detail, (KST12; TS13) proposed to first perform some differentially

private model selection algorithms to estimate the support set of sparse model parameter

vector, and then run the objective perturbation algorithm to estimate the parameter vec-

tor with its support restricted to the estimated subset. While, their method can achieve

O
(
s∗2 log(2/γ)/(nε)2

)
utility guarantee, where ε is the privacy budget and γ is the probabil-

ity that the model selection algorithms can successfully select the true support, the model

selection algorithms, such as exponential mechanism, may be computational inefficient or

even intractable in practice. In addition, the privacy and utility guarantees of their al-

gorithm only holds for the exact optimal solution to the perturbed optimization problem.

Later on, (TTZ15) developed a differentially private Frank-Wolfe algorithm, which is based

on the gradient perturbation, for sparse learning. They showed that their algorithm can

achieve O
(
ω(C)2/3 log n/(nε)3/2

)
utility guarantee, where ω(C) is the Gaussian width of the

constraint set C. However, their approach only has a sublinear convergence rate and the

Gaussian width ω(C) can only be estimated for some specific convex set such as `1-norm

ball.
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Different from the aforementioned methods for sparse learning, our proposed DP-IGHT

algorithm does not require exactly solving the optimization problem or the extra model

selection procedure. Therefore, it is able to attain better empirical performances and more

preferable in practice. In addition, our algorithm enjoys a linear convergence rate, which is

more efficient than previous methods. The detailed comparisons of different algorithms for

sparse linear regression are summarized in Table 2.1.

Algorithm Method Utility Convergence RSC/RSS Support selection

Frank-Wolfe
Iterative O

(
log(nd)

(nε)2/3

)
Sub-linear No No

(TTZ15)

Two stage
Objective O

(
s∗2 log(2/γ)

(nε)2

)
NA Yes Yes

(KST12)

DP-IGHT
Iterative O

(
s∗2 log d

(nε)2

)
Linear Yes No

This paper

Table 2.1: Comparison of different (ε, δ)-DP algorithms for sparse linear regression. We

ignore the log(1/δ) term in the utility guarantees. Note that γ is the probability that the

differentially private model selection algorithms can successfully recover the true support.

2.3 Preliminaries

In this section, we present some definitions that will be used throughout our paper. We first

introduce several classes of functions that we considered in our work.

Definition 2.3.1 (G-Lipschitz continuous). A function f : Rd → R is G-Lipschitz continu-

ous, if the following inequality holds for all θ1,θ2 ∈ domf

|f(θ1)− f(θ2)| ≤ G‖θ1 − θ2‖2.
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Note that for a differentiable function f , G-Lipschitz continuous implies that the gradient

norm is bounded, i.e., ‖∇f(θ)‖2 ≤ G for all θ ∈ domf .

Definition 2.3.2 (Sparse eigenvalue condition). A twice differentiable function f : Rd → R

satisfies sparse eigenvalue condition with parameters µ > 0 and β > 0, if the following holds

for the Hessian of f for all θ ∈ domf ,

µ = inf
v

{
v>∇2f(θ)v | ‖v‖0 ≤ s, ‖v‖2 = 1

}
,

β = sup
v

{
v>∇2f(θ)v | ‖v‖0 ≤ s, ‖v‖2 = 1

}
.

For sparse learning problems, sparse eigenvalue condition (BRT09) implies the restricted

strong convexity and smoothness conditions (NYW09; LW13), which guarantee the objective

function behaves like a strongly convex and smooth function over a sparse domain even the

function is general convex in its entire domain. In the following discussion, we denote κ by

β/µ.

Zero-concentrated differential privacy. Although the notion of (ε, δ)-DP, i.e., Definition

2.1.1, is widely used for the analysis of the output and objective perturbation methods, it is

not suitable for the gradient perturbation method since it will give loose composition results.

We propose to use the notion of zero-concentrated differential privacy (BS16b), which has a

sharp composition result and thus is a better choice for gradient perturbation method.

Definition 2.3.3 (Zero-concentrated differential privacy). A randomized mechanism M :

Sn → R satisfies ρ-zero-concentrated differential privacy (ρ-zCDP) if for any two adjacent

datasets S, S ′ ∈ Sn differing by one example, it holds that for all α ∈ (1,∞)

Dα(M(S)||M(S ′)) ≤ ρα, (2.3.1)

where Dα(M(S)||M(S ′)) is the α-Renyi divergence1 between two distributions M(S) and

M(S ′).

1The formal definition can be found in (Ren61).
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Note that ρ-zCDP can be converted to (ε, δ)-DP through the following lemma, which is

established in (BS16b).

Lemma 2.3.4. If a randomized mechanism M : Sn → R satisfies ρ-zCDP, then it satisfies

(ρ+ 2
√
ρ log(1/δ), δ)-differential privacy for any δ > 0.

Next, we introduce the definition of `2-sensitivity, which is used to control the variance

of the Gaussian Mechanism for ensuring ρ-zCDP.

Definition 2.3.5 (`2-sensitivity (DMN06)). For two adjacent datasets S, S ′ ∈ Sn differing

by one example, the `2-sensitivity ∆2(q) of a function q : Sn → Rd is defined as ∆2(q) =

supS,S′ ‖q(S)− q(S ′)‖2.

Based on `2-sensitivity, we can use Gaussian mechanism to make our algorithms satisfy

ρ-zCDP.

Lemma 2.3.6 (Gaussian mechanism (BS16b)). Given a function q : Sn → Rd, the Gaussian

Mechanism M(S) = q(S) + u, where u ∼ N(0, σ2I), satisfies ∆2(q)2/(2σ2)-zCDP.

ρ-zCDP has the invariant property of post-processing and the property of composition

as follows.

Lemma 2.3.7 ((BS16b)). For two randomized mechanismsM1 : Sn → Rd,M2 : Sn×Rd →

Rd. IfM1 satisfies ρ1-zCDP andM2 satisfies ρ2-zCDP, thenM2(S,M1(S)) satisfies (ρ1+ρ2)-

zCDP.

2.4 Algorithmic Framework

In this section, we present our differentially private iterative gradient hard thresholding (DP-

IGHT) algorithm, which is illustrated in Algorithm 1, for solving the sparsity constrained

optimization problem (2.1.1).
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Algorithm 1 Differentially Private Iterative Gradient Hard Thresholding (DP-IGHT)

Require: loss function LS, thresholding parameters s, step size η, iteration number T ,

initial estimator θ0, privacy budget ρ, Lipschitz constant G

for t = 1, 2, 3, . . . , T do

θt = Hs

(
θt−1 − η(∇LS(θt−1) + u)

)
, where u ∼ N(0, σ2Id) with σ2 = TG2/(n2ρ)

end for

Ensure: θT

At the core of our proposed Algorithm 1 is the gradient perturbation procedure at each

iteration, which ensures the differential privacy. More specifically, we perturb the gradient

with Gaussian noise at each iteration and make use of the composition and post-processing

properties of differential privacy to characterize the upper bound on the total privacy loss.

Compared with the objective perturbation based approaches (CM09; CMS11b; KST12), our

algorithm does not require the optimization problem to be solved exactly in order to achieve

the privacy and utility guarantees. In addition, since it is very hard to characterize the

sensitivity of the optimization problem with the sparsity constraint (XCM12), we do not

pursue the output perturbation based approaches (CMS11b; ZZM17b).

According to Algorithm 1, to enforce the sparsity constraint, we use the iterative gra-

dient hard thresholding (IGHT) algorithm, which has been shown to have a linear rate of

convergence (JTK14; YLZ14; CG16). Note that if we set σ2 = 0 in Algorithm 1, it will

reduce to the original IGHT algorithm. The hard thresholding operator Hs(·) in Algorithm

1 is defined as follows:

[Hs(θ)]i =

 θi, if i ∈ supp(θ, s)

0, otherwise .
(2.4.1)

Hs(θ) preserves the top s elements in θ in terms of magnitude and set others to be zero.

We will show later that the proposed DP-IGHT algorithm also enjoys a linear convergence

rate, and therefore is more efficient than existing methods.
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2.5 Main Results

In this section, we first present the main theoretical properties of Algorithm 1 for generic

models, and then show its applications to two specific examples: sparse linear regression and

sparse logistic regression.

Recall that the goal of sparse learning is to estimate the underlying sparse parameter

vector θ∗ of a statistical model. Thus, we impose a high probability upper bound on the

gradient of the objective function at θ∗, which is used to characterize the statistical error of

different statistical models.

Condition 2.5.1. For a given sample size n and tolerance parameter γ ∈ (0, 1), let ε(n, γ)

be the smallest scalar such that with probability at least 1− γ, we have

‖∇LS(θ∗)‖∞ ≤ ε(n, γ),

where ε(n, γ) depends on the sample size n and γ.

Equipped with this condition, we are ready to establish the main theoretical results of

Algorithm 1.

2.5.1 Results for Generic Model

We first present the privacy guarantee of Algorithm 1 for solving sparse learning problem

(2.1.1) under ρ-zCDP.

Theorem 2.5.2. Suppose each component function `i of LS is G-Lipschitz continuous, the

output θT of Algorithm 1 satisfies ρ-zCDP after T iterations if σ2 = TG2/(n2ρ).

Remark 2.5.3. According to Lemma 6.2.6, we can also derive that the output θT of Algo-

rithm 1 satisfies (ε, δ)-DP if σ2 = TG2/
(
n
(√

log(1/δ) + ε −
√

log(1/δ)
))2

. Furthermore, if

ε ≤ log(1/δ), we can get σ2 ≤ 6TG2 log(1/δ)/(nε)2, which matches the bound of the noise
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variance for gradient perturbation methods (WYX17b). Note that for the Lipschitz param-

eter G, we can exactly calculate a tight upper bound for sparse linear regression and sparse

logistic regression. However, for general loss functions, one practical approach to choose G

is to use gradient clipping (ACG16b).

Next, we provide the utility guarantee of Algorithm 1 for solving sparse learning problem

(2.1.1).

Theorem 2.5.4. Suppose the loss function LS satisfies sparse eigenvalue condition with

parameters µ, β, and Condition 2.5.1, and each component function `i is G-Lipschitz con-

tinuous. There exist constants {Ci}5
i=1 such that if σ2 = TG2/(n2ρ), η = C1/(β + µ),

and s ≥ C2κ
2s∗, then θT converges to θ∗ at a linear rate. In addition, if we choose

T = C3κ log
(
ρn2µ2‖θ∗‖2

2/(κ
2G2s log d)

)
, the following holds with probability at least 1− γ

E‖θT − θ∗‖2
2 ≤ C4

κ2s∗

µ2
ε(n, γ)2

+ C5
κ3G2s∗ log d

n2µ2ρ
· log

ρnµ‖θ∗‖2

s∗κG
, (2.5.1)

where the expectation is taken over the randomness of the Gaussian noises in Algorithm 1.

Remark 2.5.5. The utility bound in (2.5.1) consists of two terms: the first one denotes the

statistical error, while the second term corresponds to the error introduced by the Gaussian

mechanism. It is worth noting that the error term caused by the Gaussian mechanism

depends on s∗ log d instead of d comparing with the previous differentially private learning

algorithms (BST14b). According to Lemma 6.2.6, we can also derive the following utility

guarantee under (ε, δ)-DP

O

(
s∗κ2ε(n, γ)2

µ2
+
κ3G2s∗ log d log(1/δ)

n2ε2µ2

)
,

and we defer such result to the supplemental material.
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2.5.2 Implications for Specific Examples

In this subsection, we demonstrate the implications of the main theory for Algorithm 1 when

it is applied to specific examples. Note that here we directly spell out the utility results under

(ε, δ)-DP for the ease of comparison.

2.5.2.1 Sparse Linear Regression

The first example we considered is the linear regression problem in the high-dimensional

regime yi = 〈xi,θ∗〉 + ξi, where y = [y1, . . . , yn] ∈ Rn denotes the response vector, X =

[x1, . . . ,xn]> ∈ Rn×d is the design matrix, ξ = [ξ1, . . . , ξn] ∈ Rn is a noise vector, and θ∗ ∈ Rd

with ‖θ∗‖0 = s∗ is the underlying sparse regression coefficient vector that we want to recover.

In the high-dimensional regime, we have n � d. In order to estimate the sparse parameter

vector θ∗, according to (2.1.1), we consider the following sparsity constrained optimization

problem, which has been studied in many previous works (Zha11; YLZ14; JTK14; CG16)

min
θ∈Rd

F (θ) :=
1

2n
‖Xθ − y‖2

2 subject to ‖θ‖0 ≤ s, (2.5.2)

where we have each component function as `i(θ) =
(
〈xi,θ〉 − yi

)2
/2. The next corollary

provides the privacy and utility guarantees of Algorithm 1 for solving (2.5.2).

Corollary 2.5.6. Suppose each row of the design matrix xi is an independent sub-Gaussian

random vector with ‖xi‖2 ≤ K, and the noise vector ξ ∼ N(0, ν2In). For a given privacy

budget ε > 0 and a constant δ ∈ (0, 1), there exist constants {Ci}3
i=1 such that if n ≥

C1s log d, and we choose σ2 = 2λTK2(
√

2s‖θ∗‖2 + ν log n)2 log(1/δ)/(n2ε2), appropriate η,

large enough s, then for T = C2κ log
(
n2ε2/(sK2 log d log(1/δ))

)
, the output θT of Algorithm

1 satisfies (ε, δ)-DP. In addition, with probability at least 1− exp(−C3n), we have

E‖θT − θ∗‖2
2 ≤ C4ν

2K2 s
∗ log d

n
+ C5K

2
(
‖θ∗‖2

2 + ν2
)s∗2 log d log(1/δ)

n2ε2
,

where C4, C5 are some constants depending on log terms, which are small constants.
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Remark 2.5.7. Corollary 2.5.6 implies that O
(
s∗ log d/n+ s∗2 log d log(1/δ)/(n2ε2)

)
utility

guarantee can be achieved by our algorithm in the setting of (ε, δ)-DP. The term O(s∗ log d/n)

denotes the statistical error for sparse vector estimation, which matches the minimax lower

bound (RWY11). The term O(s∗2 log d log(1/δ)/(n2ε2)) corresponds to the error introduced

by the Gaussian mechanism, which matches the best known result (KST12).

2.5.2.2 Sparse Logistic Regression

For logistic regression, we assume that each observation yi is drawn from the following

Bernoulli distribution P(yi = 1|xi,θ∗) = exp
(
〈θ∗,xi〉−log

(
1+exp(〈θ∗,xi〉)

))
, where xi ∈ Rd

is the predictive vector, θ∗ ∈ Rd with ‖θ∗‖0 = s∗ is the underlying parameter vector we want

to recover. According to (2.1.1), we propose to solve the following sparsity constrained

maximum likelihood estimation problem (YLZ14; LAL16; CG16)

min
θ∈Rd

LS(θ) := − 1

n

n∑
i=1

[
yi〈θ,xi〉 − log

(
1 + exp(〈θ,xi〉)

)]
subject to ‖θ‖0 ≤ s, (2.5.3)

where we have each component function as `i(θ) = log
(
1 + exp(〈θ,xi〉)

)
− yi〈θ,xi〉. We

have the following theoretical guarantees for sparse logistic regression.

Corollary 2.5.8. Suppose each row of the design matrix xi is independent sub-Gaussian

random vector and ‖xi‖2 ≤ K. For a given privacy budget ε > 0 and a constant δ ∈ (0, 1),

there exist constants {Ci}4
i=1 such that if n ≥ C1s log d, and we choose σ2 = TK2 log(1/δ)/(n2ε2),

appropriate η, large enough s, then for T = C2κ log
(
n2ε2/(sK2 log d log(1/δ))

)
, the output

θT of Algorithm 1 is (ε, δ)-DP. In addition, with probability at least 1− exp(−C3n)−C4/d,

we have

E‖θT − θ∗‖2
2 ≤ C5K

2 s
∗ log d

n
+ C6K

2 s
∗ log d

n2ε2
log(1/δ),

where C5, C6 are some constants depending on log terms, which are small constants.

Remark 2.5.9. In the setting of (ε, δ)-DP, our proposed algorithm can achieveO(s∗ log d/n+

s∗ log d log(1/δ)/(n2ε2)) utility guarantee after T = O(log
(
n2ε2/s)

)
iterations. In particular,
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the termO(s∗ log d/n) corresponds to the statistical error, while the termO(s∗ log d log(1/δ)/(n2ε2))

denotes the error caused by the Gaussian mechanism. To the best of our knowledge, this is

the first utility guarantee for sparse logistic regression.

2.6 Numerical Experiments
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(a) Sparse linear regression
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(c) Sparse logistic regression
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(d) Sparse logistic regression

Figure 2.1: Numerical results for sparse linear regression and sparse logistic regression.

In this section, we present experimental results of our proposed algorithm on both syn-

thetic and real datasets. We compare our algorithm with Two stage (KST12) and Frank-

Wolfe (TTZ15) methods. Although these two approaches were originally proposed for sparse

linear regression, and have no theoretical guarantees for sparse logistic regression, they can
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Method ε = 2 ε = 4 ε = 6 ε = 8 ε = 10

IGHT 0.785 0.785 0.785 0.785 0.785

Frank-Wolfe 1.514 (0.093) 1.320 (0.090) 1.210 (0.084) 1.105 (0.079) 1.094 (0.071)

Two stage 1.286 (0.112) 1.072 (0.101) 1.042 (0.082) 0.997 (0.080) 0.986 (0.075)

DP-IGHT 1.057 (0.107) 0.890 (0.081) 0.854 (0.073) 0.823 (0.070) 0.810 (0.066)

Table 2.2: Comparison of different algorithms for various privacy budgets ε in terms of MSE

on the test data and its corresponding standard error on E2006-TFIDF.

Method ε = 2 ε = 4 ε = 6 ε = 8 ε = 10

IGHT 0.0625 0.0625 0.0625 0.0625 0.0625

Frank-Wolfe 0.1271 (0.0043) 0.1034 (0.0037) 0.0938 (0.0034) 0.0852 (0.0036) 0.0807 (0.0031)

Two stage 0.1213 (0.0041) 0.0989 (0.0039) 0.0893 (0.0035) 0.0810 (0.0033) 0.0791 (0.0034)

DP-IGHT 0.1168 (0.0038) 0.0956 (0.0035) 0.0841 (0.0037) 0.0797 (0.0030) 0.0762 (0.0032)

Table 2.3: Comparison of different algorithms for various privacy budgets ε in terms of test

error and its corresponding standard deviation on RCV1 data.

still be applied to sparse logistic regression and produce reasonable empirical results. Thus

we also include them as two baselines for sparse logistic regression. For all the experiments,

we choose the variance of the random noise of different methods as suggested by their theo-

retical guarantees, and select other parameters, such as the step size, iteration number, and

thresholding parameter by five-fold cross-validation. Note that we use the non-private itera-

tive gradient hard thresholding method as the non-private baseline. In contrast to DP-IGHT,

the non-private IGHT does not add any noise in the gradient step.
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2.6.1 Synthetic Data Experiments

We first investigate the performances of different methods on synthetic datasets for sparse

linear and logistic regression.

Sparse Linear Regression. For sparse linear regression, the underlying sparse vector θ∗

has s∗ nonzero entries that are drawn independently from a uniform distribution over the

interval (−1, 1). We generate the design matrix X ∈ Rn×d such that each element of X follows

i.i.d. uniform distribution over the interval (−2, 2), then we scale each row xi such that

‖xi‖2 ≤ 2s∗. The observation is generated according to y = X>θ∗+ξ, where the noise vector

ξ ∼ N(0, ν2I) with ν2 = 0.1. We consider the following settings: (i) n = d = 1000, s∗ = 10;

(ii) n = d = 5000, s∗ = 30. We set δ = 0.01 and vary the privacy budget ε from 2 to 10. Note

that due to the hardness of the problem itself, we choose relatively large privacy budgets

compared with the low-dimensional problem to ensure meaningful results. Figure 2.1(a)

and 2.1(b) illustrate the relative estimation error ‖θ̂ − θ∗‖2/‖θ∗‖2 versus privacy budget of

different methods over 10 trails. We can see that the relative estimation errors of our method

are close to the non-private baseline (IGHT), and are better than existing private methods.

Sparse Logistic Regression. For sparse logistic regression, we generate the underlying

sparse vector θ∗ and the design matrix X ∈ Rn×d in the same way as sparse linear regression.

Each observation yi is generated from the following logistic distribution

yi =

 1, with probability 1/
(
1 + exp(〈xi,θ∗〉)

)
,

0, with probability 1− 1/
(
1 + exp(〈xi,θ∗〉)

)
.

We also consider the following two settings: (i) n = 1000, d = 1000, s∗ = 10; (ii) n =

5000, d = 5000, s∗ = 30. In addition, we choose the privacy budget ε from 2 to 10, and

set δ = 0.01. We demonstrate the relative estimation error ‖θ̂ − θ∗‖2/‖θ∗‖2 versus privacy

budget ε of different methods in Figure 2.1(c) and 2.1(d). The results show that our method
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can output accurate estimators when we have relative large privacy budget. In addition, it

consistently outperforms the baseline algorithms under different privacy budget.

2.6.2 Real Data Experiments

In this experiment, we use two real datasets, E2006-TFIDF dataset (KLR09) and RCV1

dataset (LYR04), for the evaluation of sparse linear regression and sparse logistic regression,

respectively.

E2006-TFIDF Data. For sparse linear regression problem, we use E2006-TFIDF dataset,

which consists of financial risk data from thousands of U.S. companies. In detail, it contains

16087 training examples, 3308 testing examples, and we randomly sample 50000 features for

this experiment. In addition, we set s∗ = 2000, δ = 0.01, ε ∈ [2, 10]. Table 2.2 reports the

mean square error (MSE) on the test data of different methods for various privacy budgets

over 10 trails. In specific, MSE on the test data is defined as follows: ‖X>testθ̂−ytest‖2
2/(2ntest),

where {Xtest,ytest} are the test data, ntest is the number of test examples, and θ̂ is the

estimator learned on the training data. The results in Table 2.2 show that the performance

of our algorithm is close to the non-private baseline (i.e., IGHT), and is much better than

Frank-Wolfe and Two stage.

RCV1 Data. In order to compare different algorithms for sparse logistic regression, we use

RCV1 dataset, which is a Reuters Corpus Volume I data set for text categorization research.

More specifically, RCV1 is an archive of over 800000 manually categorized newswire stories

made available by Reuters, Ltd. for research purposes. It contains 20242 training examples,

677399 testing examples and 47236 features. We use the whole training dataset and a subset

of the test dataset, which contains 20000 testing examples for our experiment. In detail, we

set s∗ = 500, δ = 0.01, ε ∈ [2, 10]. We compare all algorithms in terms of their classification

error on the test set over 10 replications, which is summarized in Table 2.3. It is obvious
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that our algorithm achieves the lowest test error among private algorithms on RCV1 dataset,

which demonstrates the superiority of our algorithm.

2.7 Additional Results

In this section, we present the utility guarantee of Algorithm 1 in the setting of (ε, δ)-DP.

Corollary 2.7.1. Suppose the loss function satisfies the same conditions as in Theorem

2.5.4. There exist constants {Ci}5
i=1, if σ2 = TG2/(n(

√
log(1/δ) + ε −

√
log(1/δ)))2, η =

C1/(β + µ), s ≥ C2κ
2s∗, then for T = C3κ log

(
n2µ2 log(1/δ)/(κsG2 log d)

)
, the following

holds with probability at least 1− γ

E‖θT − θ∗‖2
2 ≤ C4

κ2s∗

µ2
ε2 + C5

κ3G2s∗ log d

n2µ2ε2
· log

nµ‖θ∗‖2 log(1/δ)

s∗κG
.

Remark 2.7.2. The utility bound in (2.7.1) consists of two terms: the first one denotes the

statistical error, while the other one corresponds to the error introduced by the Gaussian

mechanism.

2.8 Proofs of the Main Results

In this section, we lay out the proofs of our main results.

2.8.1 Proof of Theorem 2.5.2

We first prove the privacy guarantee of Algorithm 1.

Proof. Here we will derive the concentrated differential privacy of Algorithm 1. As men-

tioned before, the key to provide the privacy guarantee is to characterize the `2-sensitivity

of the proposed mechanism. For our proposed algorithm, we propose to add Gaussian noise

at each iteration. Thus we will first to upper bound the `2-sensitivity of the gradient at
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each iteration, and use the composition and post-processing properties of the concentrated

differential privacy to derive the privacy guarantee.

Recall that we have the following update rule at (t + 1)-th iteration θt+1 = Hs

(
θt −

η
(
∇LS(θt) +u

))
. We consider the following query function qt = ∇LS(θt). For two adjacent

datasets S, S ′ differing by one example indexed by i and i′, the `2-sensitivity ∆(qt) of qt can

be characterized as follows:

∆(qt) =
1

n
‖∇`i(θt)−∇`i′(θt)‖2 ≤

2G

n
,

where the last inequality is due to the G-Lipschitz continuous of each component function.

For the query function qt, we consider the following Gaussian mechanism M′
t = qt + u,

where u ∼ N(0, σ2I). According to Lemma 2.3.6, the Gaussian mechanism M′
t will satisfy

G2/(σ2n2)-zCDP. Therefore, according to Lemma 2.3.7, the mechanismMt = Hs

(
θt−ηM′

t

)
will still satisfy G2/(σ2n2)-zCDP. Since we will run Algorithm 1 for T iterations, according

to the composition property, i.e., Lemma 2.3.7, we can obtain that Algorithm 1 satisfies

TG2/(σ2n2)-zCDP.

2.8.2 Proof of Theorem 2.5.4

In this subsection, we provide the utility guarantee of Algorithm 1.

Proof. In order to provide the utility guarantee of our proposed method, we need to charac-

terize the effect of Gaussian noise we add at each iteration. Recall that, at (t+1)-th iteration,

we have θt+1 = Hs

(
θt−η(∇LS(θt)+u)

)
, where u ∼ N(0, σ2I). According to Theorem 2.5.2,

we have σ2 = TG2/(n2ρ), which implies E‖u‖2
∞ ≤ TG2 log d/(n2ρ) by Lemma 2.10.1.

Let Ω = supp(θt)∪ supp(θt+1)∪ supp(θ∗) and θ̃t+1 = PΩ

(
θt− η(∇LS(θt) + u)

)
, where

PΩ(θ) means that we main the elements of θ in Ω and set others to zero. It implies that
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θt+1 = Hs(θ̃t+1). According to Lemma 3.3 in (LAL16), we have

‖θt+1 − θ∗‖2
2 ≤

(
1 +

2
√
s∗√

s− s∗

)
‖θ̃t+1 − θ∗‖2

2.

Therefore, if we can establish the convergence as ‖θ̃t+1 − θ∗‖2
2 ≤ ρ‖θt − θ∗‖2

2, we can obtain

that ‖θt+1 − θ∗‖2
2 ≤ α1ρ‖θt − θ∗‖2

2, where α1 = 1 + 2
√
s∗/
√
s− s∗. For θ̃t+1, we have

‖θ̃t+1 − θ∗‖2
2 =

∥∥PΩ

(
θt − η(∇LS(θt) + u)

)
− θ∗

∥∥2

2

=
∥∥∥θt − θ∗ − ηPΩ

(
∇LS(θ∗) +

(
H(γ)

)
∗Ω(θt − θ∗) + u

)∥∥∥2

2
(2.8.1)

where H(γ) =
∫ 1

0
∇2LS(θ∗ + γ(θ − θ∗))dγ, the last equation is due to the fundamental

theorem of calculus, and H(γ)∗Ω denotes that we restrict columns of H(γ) to the support Ω.

Furthermore, taking expectation over u conditioned on θt, we have

E‖θ̃t+1 − θ∗‖2
2 = E

∥∥A(θt − θ∗)− ηPΩ

(
∇LS(θ∗) + u

)∥∥2

2

≤ E
(
‖A‖2

2 · ‖θt − θ∗‖2
2

)
+ η2E

∥∥PΩ

(
∇LS(θ∗) + u

)∥∥2

2

− 2ηE〈A(θt − θ∗),PΩ

(
∇LS(θ∗)

)
〉 − 2ηE〈A(θt − θ∗),PΩ(u)〉,

where the first equality is due to the definition of PΩ and A = I − η
(
H(γ)

)
ΩΩ

. Thus by

Young’s inequality, we can obtain

−2ηE〈A(θt − θ∗),PΩ(u)〉 ≤ 2ηµ

7
E‖θt − θ∗‖2

2 +
14η

µ
E
(
‖A‖2

2 ·
∥∥PΩ(u)‖2

2

)
.

By the same argument, we can further get

−2ηE〈A(θt − θ∗),PΩ

(
∇LS(θ∗)

)
〉 ≤ 2ηµ

7
E‖θt − θ∗‖2

2 +
14η

µ
E
(
‖A‖2

2 ·
∥∥PΩ

(
∇LS(θ∗)

)∥∥2

2

)
.

Plugging these two results into (2.8.1), we can obtain

E‖θ̃t+1 − θ∗‖2
2 ≤ E

(
‖A‖2

2 · ‖θt − θ∗‖2
2

)
+ η2E

∥∥PΩ

(
∇LS(θ∗) + u

)∥∥2

2

+
4ηµ

7
E‖θt − θ∗‖2

2 +
14η

µ
E
(
‖A‖2

2 ·
∥∥PΩ

(
∇LS(θ∗)

)∥∥2

2

)
+

14η

µ
E
(
‖A‖2

2 ·
∥∥PΩ(u)

∥∥2

2

)
≤
(

1− 3ηµ

7

)
E‖θt − θ∗‖2

2 +
(14η

µ
− 14η2

)(
E
∥∥PΩ

(
∇LS(θ∗)

)∥∥2

2
+ E

∥∥PΩ(u)
∥∥2

2

)
,
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where the last inequality is due to the sparse eigenvalue condition of L. As we discussed

before, we can get

E‖θt+1 − θ∗‖2
2 ≤ α1

(
1− 3ηµ

7

)
E‖θt − θ∗‖2

2 + α1(2s+ s∗)
[(14η

µ
− 14η2

)(
‖∇LS(θ∗)‖2

∞ + E‖u‖2
∞
)]
,

Since we have η = 2/(β + µ), s ≥ (4κ2 + 1)s∗, where κ = β/µ, we can get

E‖θt+1 − θ∗‖2
2 ≤ ρE‖θt − θ∗‖2

2 + C1
κ2s∗(β − µ)

(β + µ)2µ

(
‖∇LS(θ∗)‖2

∞ + E‖u‖2
∞
)

≤ ρE‖θt − θ∗‖2
2 + C2

κ2s∗(β − µ)

(β + µ)2µ
(ε2 + TG2 log d/(n2ρ)), (2.8.2)

where the last inequality is due to Condition 2.5.1 and Lemma 2.10.1, and ρ = 1 − 1/(7κ),

C1, C2 are absolute constants. Thus taking sum of (2.8.2) over t = 0, 1, . . . , T −1 and taking

expectation with respect to all t’s, we can get

E‖θT − θ∗‖2
2 ≤ ρT‖θ∗‖2

2 + C2
κ2s∗(β − µ)

(β + µ)2µ(1− ρ)
(ε2 + TG2 log d/(n2ρ))

= ρT‖θ∗‖2
2 + C3

κ3s∗(β − µ)

(β + µ)2µ
(ε2 + TG2 log d/(n2ρ))

≤ ρT‖θ∗‖2
2 + C3

κ2s∗

µ2
(ε2 + TG2 log d/(n2ρ)), (2.8.3)

which implies that

E‖θT − θ∗‖2
2 ≤ ρT‖θ∗‖2

2 + C3
κ2s∗

µ2
ε2 + C5

s∗Tκ2G2

n2µ2ρ
log d,

where C4, C5 are absolute constants. Thus if we take T such that ρT‖θ∗‖2
2 ≤ C5s

∗k2G2 log d/(n2µ2ρ),

i.e.,

T = C6κ log
ρn2µ2‖θ∗‖2

2

s∗κ2G2 log d
, (2.8.4)

where C6 is an absolute constant, we have the following inequality

E‖θT − θ∗‖2
2 ≤ C3

κ2s∗

µ2
ε2 + C7

s∗κ3G2

n2µ2ρ
log d · log

ρnµ‖θ∗‖2

s∗κG
.

where C7 is an absolute constant.
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2.8.3 Proof of Corollary 2.7.1

Proof. According to Lemma 6.2.6, we have that if Algorithm 1 satisfies ρ-zCDP, then it

satisfies (ρ + 2
√
ρ log(1/δ), δ)-DP for any δ > 0. This implies if we want Algorithm 1

satisfies (ε, δ)-DP, we only need ε = ρ+ 2
√
ρ log(1/δ), which gives us ρ = (

√
log(1/δ) + ε−√

log(1/δ))2. According to Theorem 2.5.4, we have σ2 = TG2/(n2ρ). Therefore, plugging

the above relationship between ε and ρ into Theorem 2.5.4, we can obtain

σ2 =
TG2

n2
(√

log(1/δ) + ε−
√

log(1/δ)
)2 , T = C1κ log

(
log(1/δ)n2µ2‖θ∗‖2

2

κ2G2s∗ log d

)
,

and we have the following utility guarantee in the setting of (ε, δ)-DP

E‖θT − θ∗‖2
2 ≤ C2

κ2s∗

µ2
ε2 + C3

κ3G2s∗ log d log(1/δ)

n2µ2ε2
· log

nµ‖θ∗‖2 log(1/δ)

s∗κG
,

where C1, C2, C3 are absolute constants.

2.9 Proof of Specific Examples

In this section, we prove the results for different examples. To make use of the general

results, we only need to verify the required conditions for specific examples. To this end, we

need the following lemmas, which has been previously proved for many common examples

of sub-Gaussian random design (RWY11).

Lemma 2.9.1. Suppose each row of the design matrix X ∈ Rn×d are independent isotropic

sub-Gaussian random vector with sub-Gaussian parameter α, there exist some constants

{Ci}2
i=1 such that for all v ∈ Rd with at most s nonzero entries, if n ≥ C1sα

2 log d, with

probability at least 1− exp(−C2n), we have

4

5
‖v‖2

2 ≤
‖Xv‖2

2

n
≤ 6

5
‖v‖2

2.

The second one, which has been proved in (LW13), provides the statistical error of sparse

learning problems.
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Lemma 2.9.2. For a Gaussian random vector ξ ∈ Rn with zero mean and variance ν2In,

if each row of X ∈ Rn×d are independent sub-Gaussian random vector with sub-Gaussian

parameter α, we have with probability at least 1− exp(−C3n)∥∥∥∥ 1

n
X>ξ

∥∥∥∥
∞
≤ C4να

√
log d

n
,

where C3, C4 are absolute constants.

2.9.1 Proof of Corollary 2.5.6

Now, we are ready to prove the results for sparse linear regression.

Proof. According to the objective function in (2.5.2), we have the following close form of

gradient and Hessian for sparse linear regression

∇LS(θ) =
1

n

n∑
i=1

(x>i θ − yi)xi, ∇2LS(θ) =
X>X

n
,

where xi is the i-th row of the design matrix X. According to Lemma 2.9.1, for all v ∈ Rd

with at most C1s nonzero entries, as long as n ≥ C2sK
2 log d, we have with probability at

least 1− exp(−C3n),

µ‖v‖2
2 ≤ v>∇2LS(θ)v ≤ β‖v‖2

2,

where µ = 4/5, β = 6/5, and {Ci}3
i=1 are absolute constants. This implies sparse eigenvalue

condition of L with parameters µ and β as defined above. In addition, we have ‖∇`i(θ)‖2 ≤

|x>i θ − yi| · ‖xi‖2 ≤
(√

2s‖θ∗‖2 + ν log n
)
K where the inequality is due to the fact that

θ = θt with | supp(θt)| ≤ s, and the contraction property ‖θt − θ∗‖2 ≤ ‖θ∗‖2. Thus

we have G-Lipschitz continuous condition holds for sparse linear regression with parameter

G =
(√

2s‖θ∗‖2 + ν log n
)
. Furthermore, we have ∇LS(θ∗) = X>ξ/n. According to Lemma

2.9.2, we have ‖∇LS(θ∗)‖∞ ≤ C5νK
√

log d/n holds with probability at least 1−exp(−C6n),

where C5, C6 are absolute constants. Thus we have Condition 2.5.1 holds for sparse linear
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regression. Thus, plugging all the parameters of sparse linear regression in Corollary 2.7.1,

we can get

E‖θT − θ∗‖2
2 ≤ C7ν

2K2 s
∗ log d

n
+ C8K

2(‖θ∗‖2
2 + ν2)

s∗2 log d log(1/δ)

n2ε2
,

holds with probability at least 1− exp(−C5n)− exp(−C6n).

2.9.2 Proof of Corollary 2.5.8

Now, we will prove the results for sparse logistic regression.

Proof. According to the loss function in (2.5.3), we can obtain

∇LS(θ) = − 1

n

n∑
i=1

(
yi − ψ(θ>xi)

)
xi, ∇2LS(θ) =

1

n

n∑
i=1

ψ′(θ>xi)xix
>
i ,

where ψ(x) = exp(x)/(1 + exp(x)) and ψ′(x) = exp(x)/(1 + exp(x))2. In addition, for all

v ∈ Rd, we have

v>∇2LS(θ)v =
1

n

n∑
i=1

ψ′(θ>xi)v
>xix

>
i v.

Since we have θ>xi is bounded, we have ψ′(x) is upper and lower bounded by some constants

C1, C2. Therefore, according to Lemma 2.9.1, for all v ∈ Rd with at most C2s nonzero entries,

as long as n ≥ C3sK
2 log d, we have with probability at least 1− exp(−C4n),

µ‖v‖2
2 ≤ v>∇2LS(θ)v ≤ β‖v‖2

2,

where µ = 4/5C1, β = 6/5C2, and {Ci}4
i=1 are absolute constants, which implies sparse

eigenvalue condition. Furthermore, we have

‖∇`i(θ)‖2 =
∥∥(yi − ψ(θ>xi)

)
xi
∥∥

2
≤ ‖xi‖2 ≤ K,

where the first inequality is due the the fact that yi ∈ {0, 1} and ψ(x) ∈ (0, 1). Thus we have

G-Lipschitz continuous condition holds for sparse logistic regression with parameter G = K.
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In addition, we have ∇LS(θ∗) = 1
n

∑n
i=1 bixi, where bi = yi−ψ(θ∗>xi). Therefore, according

to Corollary 2 in (LW13), we have ‖∇LS(θ∗)‖∞ ≤ C5K
√

log d/n holds with probability at

least 1 − C6/d, where C5, C6 are absolute constants. Therefore, plugging these parameters

into Corollary 2.7.1, we can obtain

E‖θT − θ∗‖2
2 ≤ C7K

2 s
∗ log d

n
+ C8K

2 s
∗ log d

n2ε2
log(1/δ),

where C7, C8 are absolute constants.

2.10 Auxiliary Lemmas

Lemma 2.10.1. For a random vector u ∼ N(0, σ2Id), we have E‖u‖2
∞ ≤ Cσ2 log d, where

C is a universal constant.

Proof. Since u ∼ N(0, σ2Id), we have coordinates ui are i.i.d. N(0, σ2). Therefore, let Xi =

|ui|, we have Xi is a folded normal distribution. In addition, we have E‖u‖2
∞ = E(maxi |ui|)2.

Let Z = maxiXi, we want to bound EZ2. For any t > 0, we have

exp{t2EZ2} ≤ E exp{t2Z2} ≤ Emax
i

exp{t2X2
i } ≤ 2

d∑
i=1

E exp tXi ≤ 4d exp
{t2σ2

2

}
,

where the first inequality is due to the Jensen’s inequality, the second inequality is due to

the fact that (maxiXi)
2 ≤ maxiX

2
i , and the last one comes from the moment generating

function of the folded normal distribution. Thus we have

EZ2 ≤ log 4d

t2
+
σ2

2
.

Plugging t = 1/σ into the above inequality, we can get

EZ2 ≤ 2σ2 log 4d.
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2.11 Conclusions

In this paper, we proposed a privacy preserving iterative gradient hard thresholding algo-

rithm for sparse learning. We establish a linear convergence rate and strong utility guarantee

of our algorithm. Experiments on both synthetic and real world data demonstrate the su-

periority of our algorithm.

29



CHAPTER 3

A Knowledge Transfer Framework for Differentially

Private Sparse Learning

3.1 Introduction

In the Big Data era, sensitive data such as genomic data and purchase history data, are

ubiquitous, which necessitates learning algorithms that can protect the privacy of each in-

dividual data record. A rigorous and standard notion for privacy guarantees is differential

privacy (DMN06). By adding random noise to the model parameters (output perturbation),

some intermediate steps of the learning algorithm (gradient perturbation), or the objective

function of learning algorithms (objective perturbation), differentially private algorithms en-

sure that the trained models can learn the statistical information of the population without

leaking any information about the individuals. In the last decade, a surge of differentially

private learning algorithms (CM09; CMS11b; KST12; BST14b; TTZ15; ZZM17b; WYX17b;

WGX18; JWE18b; WJE19) for empirical risk minimization have been developed. However,

most of these studies only consider the classical setting, where the problem dimension is

fixed. In the modern high-dimensional setting where the problem dimension can increase

with the number of observations, all these empirical risk minimization algorithms fail. A

common and effective approach to address these issues is to assume the model has a certain

structure such as sparse structure or low-rank structure. In this prospectus, we consider

high-dimensional models with sparse structure. Given a dataset S = {(xi, yi)}ni=1, where

xi ∈ Rd and yi ∈ R are the input vector and response of the i-th example, our goal is to
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estimate the underlying sparse parameter vector θ∗ ∈ Rd, which has s∗ nonzero entries, by

solving the following `2-norm regularized optimization problem with the sparsity constraint

min
θ∈Rd

L̄S(θ) := LS(θ) + λ‖θ‖2
2/2 subject to ‖θ‖0 ≤ s, (3.1.1)

where LS(θ) := n−1
∑n

i=1 `(θ; xi, yi) is the empirical loss on the training data, `(θ; xi, yi) is

the loss function defined on the training example (xi, yi), λ ≥ 0 is a regularization parameter,

‖θ‖0 counts the number of nonzero entries in θ, and s controls the sparsity of θ. The reason

we add an extra `2 regularizer to (3.1.1) is to ensure the strong convexity of the objective

function without making any assumption on the data.

In order to achieve differential privacy for sparse learning, a line of research (KST12;

TS13; JT14; TTZ15; WG19a) studied differentially private learning problems in the high-

dimensional setting, where the problem dimension can be larger than the number of obser-

vations. For example, (JT14) provided a differentially private algorithm with the dimension

independent utility guarantee. However, their approach only considers the case when the un-

derlying parameter lies in a simplex. For sparse linear regression, (KST12; TS13) proposed a

two-stage approach to ensure differentially privacy. In detail, they first estimate the support

set of the sparse model parameter vector using some differentially private model selection al-

gorithm, and then estimate the parameter vector with its support restricted to the estimated

subset using the objective perturbation approach (CM09). Nevertheless, the support selec-

tion algorithm, like exponential mechanism, is computational inefficient or even intractable

in practice. (TTZ15) proposed a differentially private algorithm for sparse linear regression

by combining the Frank-Wolfe method (FW56) and the exponential mechanism. Although

their utility guarantee is worse than (KST12; WG19a), it does not depend on the restricted

strong convexity (RSC) and smoothness (RSS) conditions (NYW09). Recently, (WG19a) de-

veloped a differentially private iterative gradient hard thresholding (IGHT) (JTK14; YLZ14)

based framework for sparse learning problems by injecting Gaussian noise into the interme-

diate gradients. However, all the aforementioned methods either have unsatisfactory utility

guarantees or are computationally inefficient. For example, the utility guarantees provided
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by (KST12; TS13; WG19a) depend on the `2-norm bound of the input vector, which can

be in the order of O(
√
d) and grows as d increases in the worse case. While the utility

guarantee of the algorithm proposed by (TTZ15) only depends on the `∞-norm bound of

the input vector, it has a worse utility guarantee, and its convergence rate is sub-linear.

auxiliary features

private data
features+predictions

private-preserving 
predictions 

trainning
prediction

not accessible accessible 

“teacher” model “student” model

Figure 3.1: Illustration of the proposed teacher-student framework.

Therefore, a natural question is whether we can achieve the best of both worlds: a

strong utility guarantee and high computational efficiency. To this end, we propose to make

use of the idea of knowledge distillation (BCN06; HVD15), which is a knowledge transfer

technique originally introduced as a mean of model compression. The original motivation of

using knowledge distillation is to use a large and complex “teacher” model to train a small

“student” model, while maintaining its accuracy. For the differentially private sparse learning

problem, similar idea can be applied here: we can use a non-private “teacher” model to

train a differentially private “student” model, while preserving the sparse information of the

“teacher” model. We notice that several knowledge transfer approaches have been recently

investigated in the differentially private classification problem (HCB16; PAE16; BTT18;

YJS19). Nevertheless, the application of knowledge distillation to the generic differentially

private high-dimensional sparse learning problem is new and has never been studied before.
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In this prospectus, we propose a knowledge transfer framework for solving the high-

dimensional sparse learning problem on a private dataset, which is illustrated in Figure 3.1.

Our proposed algorithm is not only very efficient but also has improved utility guarantees

compared with the state-of-the-art methods. More specifically, we first train a non-private

“teacher” model using IGHT from the private dataset. Based on this “teacher” model, we

then construct a privacy-preserving dataset using some auxiliary inputs, which are drawn

from some given distributions or public datasets. Finally, by training a “student” model

using IGHT again based on the newly generated dataset, we can obtain a differentially private

sparse estimator. Table 3.1 summarizes the detailed comparisons of different methods for

sparse linear regression, and we summarize the contributions of our work as follows

• Our proposed differentially private framework can be applied to any smooth loss func-

tion, which covers a broad family of sparse learning problems. In particular, we show-

case the application of our framework to sparse linear regression and sparse logistic

regression.

• We prove a better utility guarantee and establish a liner convergence rate for our

proposed method. For example, for sparse linear regression, our method achieves

O
(
K2s∗2

√
log d/(nε)

)
utility guarantee, where K is the `∞-norm bound of the input

vectors, and ε is the privacy budget. Compared with the best known utility bound

O
(
K̃2s∗2 log d/(n2ε2)

)
(KST12; WG19a) ( K̃ is the `2-norm bound of the input vectors),

our utility guarantee is better than it by a factor of O
(
K̃2
√

log d/(K2nε)
)
. Considering

that K̃ can be
√
d times larger than K, the improvement factor can be as large as

O
(
d
√

log d/(nε)
)
. Similar improvement is achieved for sparse logistic regression.

• With the extra sparse eigenvalue condition (BRT09) on the private data, our method

can achieve O
(
K2s∗3 log d/(n2ε2)

)
utility guarantee for sparse linear regression. It is

better than the best known result (KST12; WG19a) O
(
K̃2s∗2 log d/(n2ε2)

)
by a factor

of O
(
K̃2/(K2s∗)

)
, which can be as large as O

(
d/s∗

)
. Similar improvement is also
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Table 3.1: Comparison of different algorithms for sparse linear regression in the setting of

(ε, δ)-DP. We report the utility bound achieved by the privacy-preserving mechanisms, and

ignore the log(1/δ) term. Note that nε � 1, xi denotes the i-th input vector, and υ is the

probability that the support selection procedure can successfully recover the true support.

Algorithm
Data

Utility
Convergence Utility

Assumption Rate Assumption

Frank-Wolfe
maxi∈[n] ‖xi‖∞ ≤ 1 O

(
log(nd)

(nε)2/3

)
Sub-linear No

(TTZ15)

Two Stage
maxi∈[n] ‖xi‖2 ≤ K̃ O

(
K̃2s∗2 log(2/υ)

(nε)2

)
NA RSC/RSS

(KST12)

DP-IGHT
maxi∈[n] ‖xi‖2 ≤ K̃ O

(
K̃2s∗2 log d

(nε)2

)
Linear RSC/RSS

(WG19a)

DPSL-KT
maxi∈[n] ‖xi‖∞ ≤ K O

(
K2s∗2

√
log d

nε

)
Linear No

λ > 0

DPSL-KT maxi∈[n] ‖xi‖∞ ≤ K
O
(
K2s∗3 log d

(nε)2

)
Linear RSC/RSS

λ = 0 RSC/RSS

achieved for sparse logistic regression.

Notation. For a d-dimensional vector x = [x1, ..., xd]
>, we use ‖x‖2 = (

∑d
i=1 |xi|2)1/2 to

denote its `2-norm, and use ‖x‖∞ = maxi |xi| to denote its `∞-norm. We let supp(x) be

the index set of nonzero entries of x, and supp(x, s) be the index set of the top s entries

of x in terms of magnitude. We use Sn to denote the input space with n examples and

R,R′ to denote the output space. Given two sequences {an}, {bn}, if there exists a constant

0 < C <∞ such that an ≤ Cbn, we write an = O(bn), and we use Õ(·) to hide the logarithmic

factors. We use Id ∈ Rd×d to denote the identity matrix. Throughout the prospectus, we use
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`i(·) as the shorthand notation for `(·; xi, yi), and θmin to denote the minimizer of problem

(3.1.1).

3.1.1 Additional Related Work

To further enhance the privacy guarantee for training data, there has emerged a fresh line of

research (HCB16; PAE16; BTT18; YJS19) that studies the knowledge transfer techniques for

the differentially private classification problem. More specifically, these methods propose to

first train an ensemble of “teacher” models based on disjoint subsets of the private dataset,

and then train a “student” model based on the private aggregation of the ensemble. However,

their approaches only work for the classification task, and cannot be directly applied to

general sparse learning problems. Moreover, their sub-sample and aggregate framework may

not be suitable for the high-dimensional sparse learning problem since each “teacher” model

is trained on a subset of the private dataset, which makes the “large d, small n” scenario even

worse. In contrast to their sub-sample and aggregate based knowledge transfer approach,

we propose to use the distillation based method (BCN06; HVD15), which is more suitable

for the high-dimensional sparse learning problem.

3.2 Proposed Method

We first lay out several definitions, which will be used throughout this chapter.

Definition 3.2.1. A function f : Rd → R is λ-strongly convex, if for any θ1,θ2 ∈ Rd,

f(θ1)− f(θ2)− 〈∇f(θ2),θ1 − θ2〉 ≥ λ‖θ1 − θ2‖2
2/2.

Definition 3.2.2. A function f : Rd → R is β̄-smooth, if for any θ1,θ2 ∈ Rd,

f(θ1)− f(θ2)− 〈∇f(θ2),θ1 − θ2〉 ≤ β̄‖θ1 − θ2‖2
2/2.

Next we present the definition of sub-Gaussian distribution (Ver10).
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Definition 3.2.3. We say X ∈ Rd is a sub-Gaussian random vector with parameter α > 0,

if (E|u>X|p)1/p ≤ α
√
p for all p ≥ 1 and all unit vector u with ‖u‖2 = 1.

Next, we present our differentially private sparse learning framework, which is illustrated

in Algorithm 2. Note that Algorithm 2 will call IGHT algorithm (YLZ14; JTK14) in Algo-

rithm 3. IGHT enjoys linear convergence rate and is widely used for sparse learning. Note

that for the sparsity constraint, i.e., ‖θ‖0 ≤ s, the hard thresholding operator Hs(θ) is de-

fined as follows: [Hs(θ)]i = θi if i ∈ supp(θ, s) and [Hs(θ)]i = 0 otherwise, for i ∈ [d]. It

preserves the largest s entries of θ in magnitude. Equipped with IGHT, our framework also

has a linear convergence rate for solving high-dimensional sparsity constrained problems.

Algorithm 2 Differentially Private Sparse Learning via Knowledge Transfer (DPSL-KT)

input Loss function L̄S, distribution D̃, IGHT parameters s, η1, η2, T1, T2, function f , θ0, σ

1: θ̂ = IGHT(θ0, L̄S, s, η1, T1)

2: Generate training set: Sp = {(x̃i, yp
i )}mi=1, where yp

i = 〈θ̂, x̃i〉+ ξi, x̃i ∼ D̃, ξi ∼ N(0, σ2)

3: Constructing the new task: L̃(θ) = (2m)−1
∑m

i=1

(
yp
i − 〈θ, x̃i〉

)2

4: θp = IGHT(θ0, L̃, s, η2, T2)

output θp

Algorithm 3 Iterative Gradient Hard Thresholding (IGHT)

input Loss function LS, parameters s, η, T , θ0

1: for t = 1, 2, 3, . . . , T do

2: θt = Hs

(
θt−1 − η∇LS(θt−1)

)
3: end for

output θT

There are two key ingredients in our framework: (1) an efficient problem solver, i.e., iter-

ative gradient hard thresholding (IGHT) algorithm (YLZ14; JTK14), and (2) the knowledge

transfer procedure. In detail, we first solve the optimization problem (3.1.1) using IGHT,
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which is demonstrated in Algorithm 3, to get a non-private “teacher” estimator θ̂. The next

step is the knowledge transfer procedure: we draw some synthetic features {x̃i}mi=1 from a

given distribution D̃, and output the corresponding private-preserving responses {yp
i }mi=1 us-

ing the Gaussian mechanism: yp
i = 〈θ̂, x̃i〉+ ξi, where ξi is the Gaussian noise to protect the

private information contained in θ̂. Finally, by solving a new sparsity constrained learning

problem L̃ using the privacy-preserving synthetic dataset Sp = {(x̃i, yp
i )}mi=1, we can get a

differentially private “student” estimator θp.

Our proposed knowledge transfer framework can achieve both strong privacy and utility

guarantees. Intuitively speaking, the newly constructed learning problem can reduce the

utilization of the privacy budget since we only require the generated responses to preserve

the privacy of original training sample, which in turn leads to a strong privacy guarantee. In

addition, this new learning problem contains the knowledge of the “teacher” estimator, which

preserves the sparsity information of the underlying parameter. As a result, the “student”

estimator can also have a strong utility guarantee.

3.3 Main Results

In this section, we will present the privacy and utility guarantees for Algorithm 2. We start

with two conditions, which will be used in the result for generic models. Later, when we

apply our result to specific models, these conditions will be verified explicitly.

The first condition is about the upper bound on the gradient of the function LS, which

will be used to characterize the statistical error of generic sparse models.

Condition 3.3.1. For a given sample size n and tolerance parameter ζ ∈ (0, 1), let ε(n, ζ) be

the smallest scalar such that with probability at least 1− ζ, we have ‖∇LS(θ∗)‖∞ ≤ ε(n, ζ).

To derive the utility guarantee, we also need the sparse eigenvalue condition (Zha10) on

the function LS, which directly implies the restricted strong convex and smooth properties
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(NYW09; LW13) of the function LS.

Condition 3.3.2. The empirical loss LS on the training data satisfies the sparse eigenvalue

condition, if for all θ, there exist positive numbers µ and β such that

µ = inf
v

{
v>∇2LS(θ)v | ‖v‖0 ≤ s, ‖v‖2 = 1

}
,

β = sup
v

{
v>∇2LS(θ)v | ‖v‖0 ≤ s, ‖v‖2 = 1

}
.

3.3.1 Results for Generic Models

We first present the privacy guarantee of Algorithm 2 in the setting of (ε, δ)-DP.

Theorem 3.3.3. Suppose the loss function on each training example satisfies ‖∇`i(θmin)‖∞ ≤

γ, and D̃ is a sub-Gaussian distribution with parameter α̃ and the covariance matrix ‖Σ̃‖2 ≤

β̃, and m ≥ C1α̃s log d for some absolute constant C1. Given a privacy budget ε and a con-

stant δ ∈ (0, 1), the output θp of Algorithm 2 satisfies (ε, δ)-DP if σ2 = 8mβ̃sγ2 log(2.5/δ)/(n2ε2λ2).

Remark 3.3.4. Theorem 3.3.3 suggests that in order to ensure the privacy guarantee, the

only condition on the private data is the `∞-norm bound on the gradient of the loss function

on each training example. This is in contrast to the `2-norm bound required by many

previous work (KST12; TTZ15; WG19a) for sparse learning problems. We remark that `∞-

norm bound is a milder condition than `2-norm bound, and gives a better utility guarantee

that only depends on the `∞-norm of the input data vectors instead of their `2-norm.

Next, we provide the linear convergence rate and the utility guarantee of Algorithm 2.

Theorem 3.3.5. Suppose that the loss function L̄S is β̄-smooth and LS satisfies Condition

3.3.1 with parameter ε(n, ζ). Under the same conditions of Theorem 3.3.3 on `i, D̃, σ2, there

exist constants {Ci}8
i=1 such that if n = m ≥ C1α̃s log d, s ≥ C2κ

2s∗ with κ = β̄/λ, the

stepsize η1 = C3λ/β̄
2, η2 = C4/β̃, then θp converges to θ∗ at a linear rate. In addition, if

we choose λ2 = C5γ
√
s∗ log d log(1/δ)/(nε), for large enough T1, T2, with probability at least

38



1− ζ − C6/d, the output θp of Algorithm 2 satisfies

‖θp − θ∗‖2
2 ≤ C7

s∗

β̄2
ε(n, ζ)2 + C8

(
1/β̄2 + α̃2/β̃

)γ√s∗3 log d log(1/δ)

nε
.

Remark 3.3.6. The utility bound of our method consists of two terms: the first term

denotes the statistical error of generic sparse models, while the second one corresponds to

the error introduced by the Gaussian mechanism, and is the dominating term. Therefore, the

utility bound is of order O
(
γ
√
s∗3 log d log(1/δ)/(nε)

)
, which depends on the true sparsity

s∗ rather than the dimension of the problem d, and therefore is desirable for sparse learning.

The following corollary shows that if LS further satisfies Condition 3.3.2, our method can

achieve an improved utility guarantee.

Corollary 3.3.7. Suppose that LS satisfies Condition 3.3.2 with parameters µ, β. Under

the same conditions of Theorem 3.3.5 on LS, `i, D̃, the output θp of Algorithm 2 satisfies

(ε, δ)-DP if we set λ = 0 and σ2 = 8mβ̃sγ2 log(2.5/δ)/(n2ε2µ2). In addition, there exist

constants {Ci}7
i=1 such that if n = m ≥ C1α̃s log d, s ≥ C2κ

2s∗ with κ = β/µ, step size

η1 = C3µ/β
2, η2 = C4/β̃, for large enough T1, T2, with probability at least 1− ζ −C5/d, the

output θp of Algorithm 2 satisfies

‖θp − θ∗‖2
2 ≤ C6

s∗

β2
ε(n, ζ)2 + C7α̃

2γ
2s∗2 log d log(1/δ)

β̃µ2n2ε2
.

Remark 3.3.8. Corollary 3.3.7 shows that if the training loss on the private data satisfies

the sparse eigenvalue condition, Algorithm 2 can achieve Õ
(
γ2s∗2/(nε)2

)
utility guarantee

by setting λ = 0 and the variance σ2 accordingly. It improves the utility without the sparse

eigenvalue condition Õ
(
γs∗3/2/(nε)

)
in Theorem 3.3.5 by a factor of Õ

(
nε/γ

√
s∗
)
. Note that

sparse eigenvalue condition has been verified for many sparse models (NYW09) including

sparse linear regression and sparse logistic regression.
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3.3.2 Results for Specific Models

In this subsection, we demonstrate the results of our framework for specific models. Note

that the privacy guarantee has been established in Theorem 3.3.3, and we only present the

utility guarantees.

3.3.2.1 Sparse linear regression

We consider the following linear regression problem in the high-dimensional regime (Tib96):

y = Xθ∗ + ξ, where y ∈ Rn is the response vector, X ∈ Rn×d denotes the design matrix,

ξ ∈ Rn is a noise vector, and θ∗ ∈ Rd with ‖θ∗‖0 ≤ s∗ is the underlying sparse coefficient

vector that we want to recover. In order to estimate the sparse vector θ∗, we consider the

following sparsity constrained estimation problem, which has been studied in many previous

work (Zha11; FR13; YLZ14; JTK14; CG16)

min
θ∈Rd

1

2n
‖Xθ − y‖2

2 +
λ

2
‖θ‖2

2 subject to ‖θ‖0 ≤ s. (3.3.1)

The utility guarantee of Algorithm 2 for solving (3.3.1) can be implied by Theorem 3.3.5.

Here we only need to verify Condition 3.3.2 for the sparse linear regression model. In specific,

we can show that ∇LS(θ∗) = X>ξ/n, and we can prove that ‖∇LS(θ∗)‖∞ ≤ C1ν
√

log d/n

holds with probability at least 1−exp(−C2n), where C1, C2 are absolute constants. Therefore,

we have ζ = 1 − exp(−C2n), ε(n, ζ) = C1ν
√

log d/n. By substituting these quantities into

Theorem 3.3.5, we can obtain the following corollary.

Corollary 3.3.9. Suppose that each row of the design matrix satisfies maxi∈[n] ‖xi‖∞ ≤

K, and the noise vector ξ ∼ N(0, ν2In). Under the same conditions of Theorem 3.3.5

on D̃, σ2, η1, η2, s, there exist constants {Ci}5
i=1 such that if m = n ≥ C1s log d, λ2 =

C2K
2s∗
√

log d log(1/δ)/(nε), with probability at least 1−C3/d, the output θp of Algorithm

2 satisfies

‖θp − θ∗‖2
2 ≤ C4ν

2K2 s
∗ log d

n
+ C5α̃

2K2 s
∗2
√

log d log(1/δ)

β̃nε
.
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Remark 3.3.10. Corollary 3.3.9 suggests that O
(
s∗ log d/n + K2s∗2

√
log d log(1/δ)/(nε)

)
utility guarantee can be achieved by our algorithm. The term O(s∗ log d/n) denotes the

statistical error for sparse vector estimation, which matches the minimax lower bound

(RWY11). While the term Õ(K2s∗2/(nε)) corresponds to the error introduced by the privacy-

preserving mechanism, and is the dominating term. Compared with the best-known result

(KST12; WG19a) Õ(K̃2s∗2/(n2ε2)), where ‖xi‖2 ≤ K̃ for all i ∈ [n], our utility guarantee

does not require the sparse eigenvalue condition and is better than their results by a factor

of Õ
(
K̃2/(K2nε)

)
. Since we have K̃ ≤

√
dK in the worst case, the improvement factor can

be as large as Õ
(
d/(nε)

)
. Compared with the utility guarantee Õ

(
1/(nε)2/3

)
obtained by

(TTZ15), our method improves their result by a factor of Õ
(
(nε)1/3/(Ks∗)2

)
, which demon-

strates the advantage of our framework.

Next, we present the theoretical guarantees of our methods under the extra sparse eigen-

value condition for sparse linear regression.

Corollary 3.3.11. Suppose that each row xi of the design matrix satisfies xi ∼ N(0,Σ),

maxi∈[n] ‖xi‖∞ ≤ K, and the noise vector ξ ∼ N(0, ν2In). For a given ε, δ, under the same

conditions of Corollary 3.3.7 on D̃, σ2, λ, η1, η2, s, there exist constants {Ci}4
i=1 such that if

m = n ≥ C1s log d, the output of Algorithm 2 satisfies (ε, δ)-DP. In addition, with probability

at least 1− C2/d, we have

‖θp − θ∗‖2
2 ≤ C3ν

2K2 s
∗ log d

n
+ C4α̃

2K2 s
∗3 log d log(1/δ)

β̃n2ε2
.

Remark 3.3.12. According to Corollary 3.3.11, the output of Algorithm 2 will satisfy (ε, δ)-

DP with the utility guarantee Õ
(
K2s∗3/(n2ε2)

)
, which improves the result in Corollary 3.3.9

by a factor of Õ
(
nε/s∗

)
.

3.3.2.2 Sparse logistic regression

For high-dimensional logistic regression, we assume the label of each example follows an

i.i.d. Bernoulli distribution conditioned on the input vector P(y = 1|x,θ∗) = exp
(
θ∗>x −

41



log
(
1+exp(θ∗>x)

))
, where x ∈ Rd is the input vector, θ∗ ∈ Rd with ‖θ∗‖0 ≤ s∗ is the sparse

parameter vector we would like to estimate. Given observations {(xi, yi)}ni=1, we consider the

following maximum likelihood estimation problem with sparsity constraints (YLZ14; CG16)

min
θ∈Rd
− 1

n

n∑
i=1

[
yiθ
>xi − log

(
1 + exp(θ>xi)

)]
+
λ

2
‖θ‖2

2 subject to ‖θ‖0 ≤ s. (3.3.2)

The utility guarantee of Algorithm 2 for solving (3.3.2) is shown in the following corollary.

Corollary 3.3.13. Under the same conditions of Corollary 3.3.9 on xi, D̃, σ2, η1, η2, s, there

exist constants {Ci}5
i=1 such that if m = n ≥ C1s log d, λ2 = C2K

√
s∗ log d log(1/δ)/(nε),

with probability at least 1− C3/d, the output θp of Algorithm 2 satisfies

‖θp − θ∗‖2
2 ≤ C4K

2 s
∗ log d

n
+ C5α̃

2K

√
s∗3 log d log(1/δ)

β̃nε
.

Remark 3.3.14. Corollary 3.3.13 suggests that O
(
s∗ log d/n + K

√
s∗3 log d log(1/δ)/(nε)

)
utility guarantee can be obtained by our algorithm for sparse logistic regression. The term

Õ
(
Ks∗3/2/(nε)) caused by the Gaussian mechanism is the dominating term and does not

depend on the sparse eigenvalue condition, and is better than the best-known result (WG19a)

Õ
(
K̃2s∗2/(n2ε2)

)
by a factor of Õ

(
K̃2s∗1/2/(Knε)

)
. The improvement factor can be as large

as Õ
(
dK/(nε)

)
since K̃ ≤

√
dK.

If we have the extra sparse eigenvalue condition, our method can achieve an improved

utility guarantee for sparse logistic regression as follows.

Corollary 3.3.15. Suppose that each row xi of the design matrix satisfies xi ∼ N(0,Σ),

maxi∈[n] ‖xi‖∞ ≤ K. For a given ε, δ, under the same conditions of Corollary 3.3.7 on

D̃, σ2, λ, η1, η2, s, there exist constants {Ci}4
i=1 such that if m = n ≥ C1s log d, the output of

Algorithm 2 satisfies (ε, δ)-DP. In addition, with probability at least 1− C2/d, we have the

following utility for θp

‖θp − θ∗‖2
2 ≤ C3K

2 s
∗ log d

n
+ C4α̃

2K2s∗2
log d log(1/δ)

β̃n2ε2
.
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Remark 3.3.16. Corollary 3.3.15 shows that our method can obtain an improved utility

guarantee Õ
(
K2s∗2/(nε)2

)
for sparse logistic regression under the extra sparse eigenvalue

assumption.

3.4 Experiments

In this section, we present experimental results of our proposed algorithm on both synthetic

and real datasets. For sparse linear regression, we compare our framework with Two stage

(KST12), Frank-Wolfe (TTZ15), and DP-IGHT (WG19a) algorithms. For sparse logistic

regression, we compare our framework with DP-IGHT (WG19a) algorithm. For all of our

experiments, we choose the parameters of different methods according to the requirements

of their theoretical guarantees. More specifically, on the synthetic data experiments, we

assume s∗ is known for all the methods. On the real data experiments, s∗ is unknown,

neither our method or the competing methods has the knowledge of s∗. So we simply choose

a sufficiently large s as a surrogate of s∗. Given s, for the parameter λ in our method,

according to Theorem 4.5, we choose λ from a sequence of values c1

√
s log d log(1/δ)/(nε),

where c1 ∈ {10−6, 10−5, . . . , 101}, by cross-validation. For competing methods, given s,

we choose the iteration number of Frank-Wolfe from a sequence of values c2s, where c2 ∈

{0.5, 0.6, . . . , 1.5}, and the regularization parameter in the objective function of Two Stage

from a sequence of values c3s/ε, where c3 ∈ {10−3, 10−2, . . . , 102}, by cross-validation. For

DP-IGHT, we choose its stepsize from the grid {1/20, 1/21, . . . , 1/26} by cross-validation.

For the non-private baseline, we use the non-private IGHT (YLZ14).

3.4.1 Numerical Simulations

In this subsection, we investigate our framework on synthetic datasets for sparse linear and

logistic regression. In both problems, we generate the design matrix X ∈ Rn×d such that

each entry is drawn i.i.d. from a uniform distribution U(−1, 1), and the underlying sparse
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vector θ∗ has s nonzero entries that are randomly generated. In addition, we consider the

following two settings: (i) n = 800, d = 1000, s∗ = 10; (ii) n = 4000, d = 5000, s∗ = 50. We

choose D̃ to be a uniform distribution U(−1, 1), which implies β̃ = 1/3.
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Figure 3.2: Numerical results for sparse linear and logistic regression.

Table 3.2: Comparison of different algorithms for various privacy budgets ε with δ = 10−5

in terms of MSE (mean ± std) and its corresponding standard deviation on E2006-TFIDF.

Method ε = 0.8 ε = 1.5 ε = 2.5 ε = 3.5 ε = 4.5

IGHT 0.8541 0.8541 0.8541 0.8541 0.8541

Frank-Wolfe 4.471 (0.239) 2.004 (0.155) 1.535 (0.140) 1.206 (0.095) 1.099 (0.082)

Two stage 4.022 (0.159) 1.803 (0.141) 1.326 (0.093) 1.107 (0.103) 1.053 (0.069)

DP-IGHT 3.731 (0.207) 1.687 (0.126) 1.304 (0.035) 1.067 (0.051) 0.968 (0.062)

DPSL-KT 1.227 (0.110) 1.178 (0.056) 1.065 (0.054) 0.971 (0.031) 0.952 (0.010)

Sparse linear regression For sparse linear regression, the observations are generated ac-

cording to the linear regression model y = X>θ∗ + ξ, where the noise vector ξ ∼ N(0, ν2I)

with ν2 = 0.1. In our experiments, we set δ = 0.01 and vary the privacy budget ε from

0.8 to 5. Note that due to the hardness of the problem itself, we choose relatively large

privacy budgets compared with the low-dimensional problem to ensure meaningful results.

Figure 4.2(a) and 4.2(b) illustrate the estimation error ‖θ̂−θ∗‖2/‖θ∗‖2 of different methods

averaged over 10 trails. The results show that the estimation error of our method is close to
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Table 3.3: Comparison of different algorithms for various privacy budgets ε with δ = 10−5 in

terms of test error (mean ± std) and its corresponding standard deviation on RCV1 data.

Method ε = 2 ε = 4 ε = 6 ε = 8

IGHT 0.0645 0.0645 0.0645 0.0645

Frank-Wolfe 0.1381 (0.0045) 0.1134 (0.0041) 0.0978 (0.0032) 0.0882 (0.0033)

Two stage 0.1272 (0.0044) 0.1061(0.0038) 0.0949 (0.0035) 0.0866 (0.0031)

DP-IGHT 0.1179 (0.0035) 0.1026 (0.0036) 0.0922 (0.0032) 0.0824 (0.0029)

DPSL-KT 0.1105 (0.0038) 0.0974 (0.0035) 0.0885 (0.0029) 0.0787(0.0031)

the non-private baseline, and is significantly better than other private baselines. Even when

we have a small privacy budget (i.e., ε = 0.8), our method can still recover the underlying

sparse vector with reasonably small estimation error, while others fail.

Sparse logistic regression For sparse logistic regression, each label is generated from

the logistic distribution P(y = 1) = 1/
(
1 + exp(x>i θ

∗)
)
. In this problem, we vary the

privacy budget ε from 2 to 10, and set δ = 0.01. We present the estimation error versus

privacy budget ε of different methods in Figure 4.2(c) and 4.2(d). The results show that our

method can output accurate estimators when we have relative large privacy budget, and it

consistently outperforms the private baseline.

3.4.2 Real Data Experiments

For real data experiments, we use E2006-TFIDF dataset (KLR09) and RCV1 dataset (LYR04),

for the evaluation of sparse linear regression and sparse logistic regression, respectively.

E2006-TFIDF data For sparse linear regression problem, we use E2006-TFIDF dataset,

which consists of financial risk data from thousands of U.S. companies. In detail, it contains

16087 training examples, 3308 testing examples, and we randomly sample 25000 features

for this experiment. In order to validate our proposed framework, we randomly divide
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the original dataset into two datasets: private dataset and public dataset. For the private

dataset, it contains 8044 training examples, and we assume that this dataset contains the

sensitive information that we want to protect. For the public dataset, it contains 8043

training examples. We set s = 2000, δ = 10−5, ε ∈ [0.8, 5]. We estimate β̃ by the sample

covariance matrix. Table 3.2 reports the mean square error (MSE) on the test data of

different methods for various privacy budgets over 10 trails. The results show that the

performance of our algorithm is close to the non-private baseline even when we have small

private budgets, and is much better than existing methods.

RCV1 data For sparse logistic regression, we use a Reuters Corpus Volume I (RCV1) data

set for text categorization research. RCV1 is released by Reuters, Ltd. for research purposes,

and consists of over 800000 manually categorized newswire stories. It contains 20242 training

examples, 677399 testing examples and 47236 features. As before, we randomly divide the

original dataset into two datasets with equal size serving as the private and publice datasets.

In addition, we randomly choose 10000 test examples and 20000 features, and set s = 500,

δ = 10−5, ε ∈ [2, 8]. We estimate β̃ by the sample covariance matrix. We compare all

algorithms in terms of their classification error on the test set over 10 replications, which is

summarized in Table 3.3. Evidently our algorithm achieves the lowest test error among all

private algorithms on RCV1 dataset, which demonstrates the superiority of our algorithm.

3.5 Additional Results

In this section, we present the additional theoretical guarantees of our methods under the

extra sparse eigenvalue conditions for sparse linear and logistic regression.

3.5.1 Additional Main Results

Corollary 3.5.1. Suppose that each row xi of the design matrix satisfies xi ∼ N(0,Σ),

maxi∈[n] ‖xi‖∞ ≤ K, and the noise vector ξ ∼ N(0, ν2In). For a given ε, δ, under the same
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conditions of Corollary 3.3.7 on D̃, σ2, λ, η1, η2, s, there exist constants {Ci}4
i=1 such that if

m = n ≥ C1s log d, the output of Algorithm 2 satisfies (ε, δ)-DP. In addition, with probability

at least 1− C2/d, we have

‖θp − θ∗‖2
2 ≤ C3ν

2K2 s
∗ log d

n
+ C4α̃

2K2 s
∗3 log d log(1/δ)

β̃n2ε2
.

Remark 3.5.2. According to Corollary 3.5.1, we can achieve an improved utility guarantee

Õ
(
K2s∗3/(nε)2

)
for sparse linear regression if we have further assumption, i.e., Gaussian

distribution, on the private data xi.

Corollary 3.5.3. Suppose that each row xi of the design matrix satisfies xi ∼ N(0,Σ),

maxi∈[n] ‖xi‖∞ ≤ K. For a given ε, δ, under the same conditions of Corollary 3.3.7 on

D̃, σ2, λ, η1, η2, s, there exist constants {Ci}4
i=1 such that if m = n ≥ C1s log d, the output of

Algorithm 2 satisfies (ε, δ)-DP. In addition, with probability at least 1− C2/d, we have the

following utility for θp

‖θp − θ∗‖2
2 ≤ C3K

2 s
∗ log d

n
+ C4α̃

2K2s∗2
log d log(1/δ)

β̃n2ε2
.

Remark 3.5.4. Corollary 3.5.3 shows that if we have further assumption, i.e., Gaussian dis-

tribution, on the private data xi, we can obtain an improved utility guarantee Õ
(
K2s∗2/(nε)2

)
for sparse linear logistic regression.

3.6 Proofs of the Main Results

3.6.1 Proof of Theorem 3.3.3

In this subsection, we will derive the differential privacy of Algorithm 2. First, we need

the following lemma to characterize the properties of the generated samples. It has been

previously proved for many common examples of sub-Gaussian random design (RWY11;

ANW10; RZ12).
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Lemma 3.6.1. Suppose each row of the design matrix X̃ ∈ Rm×d follows sub-Gaussian dis-

tribution with parameter α̃, and the covariance matrix ‖Σ̃‖2 ≤ β̃, there exist some constants

{Ci}2
i=1 such that for all v ∈ Rd with at most s nonzero entries, if m ≥ C1sα

2 log d, with

probability at least 1− exp(−C2m), we have

ψ1β̃‖v‖2
2 ≤
‖X̃v‖2

2

m
≤ ψ2β̃‖v‖2

2,

where ψ1 = 4/5 and ψ2 = 6/5.

Proof of Theorem 3.3.3. Note that there is no privacy issue with respect to the newly gener-

ated features x̃i ∈ Rd for i = 1, . . . ,m. We only need to prove that the generated predictions

yp
1 , . . . , y

p
m satisfy differential privacy. Thus by the post-processing property, i.e., Lemma

6.2.5, we can show that the output θp of Algorithm 2 satisfies differential privacy.

According to Algorithm 2, we generate the new training set Sp with i-th example as

(yp
i , x̃i), where yp

i = 〈θ̂, x̃i〉 + ξi, x̃i ∼ D̃, ξi ∼ N(0, σ2). Consider the following function

q : Sn → Rm such that the i-th coordinate of q(S) is 〈θ̂S, x̃i〉, where θ̂S is trained on the

training set S using IGHT, i.e., Algorithm 3. Thus for the function q, we can characterize its

sensitivity as follows: for two adjacent training sets S, S ′ with one different example indexed

by i, we have

∆(q) =

√√√√ m∑
i=1

(
〈θ̂S, x̃i〉 − 〈θ̂S′ , x̃i〉

)2

=

√√√√ m∑
i=1

〈θ̂S − θ̂S′ , x̃i〉2

≤
√

2mβ̃
∥∥θ̂S − θ̂S′∥∥2

, (3.6.1)

where the last inequality is due to the Lemma 3.6.1. Note that the inequality (3.6.1) holds

with probability at least 1−exp(−C2m). We will show in next that how this high probability

can be absorbed into the definition of (ε, δ)-DP. Let us define the event E: inequality (3.6.1)

holds, and we have P[Ē] ≤ δ2, where δ2 = exp(−C2m). As long as we have m ≥ C3 log(2/δ),
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we can get δ2 ≤ δ/2. Given the event E holds, we can proceed to derive the privacy guarantee

of our method as follows.

For two adjacent training sets S and S ′, we define θmin
S and θmin

S′ as follows

θmin
S = argmin

θ∈Rd
L̄S(θ) := LS(θ) +

λ

2
‖θ‖2

2 subject to ‖θ‖0 ≤ s,

θmin
S′ = argmin

θ∈Rd
L̄S′(θ) := LS′(θ) +

λ

2
‖θ‖2

2 subject to ‖θ‖0 ≤ s.

Therefore, we can obtain∥∥θ̂S − θ̂S′∥∥2
≤
∥∥θ̂S − θmin

S

∥∥
2

+
∥∥θ̂S′ − θmin

S′

∥∥
2

+
∥∥θmin

S − θmin
S′

∥∥
2

≤ %T
∥∥θmin

S

∥∥
2

+ %T
∥∥θmin

S′

∥∥
2

+
∥∥θmin

S − θmin
S′

∥∥
2
, (3.6.2)

where % < 1 and the last inequality is due to the convergence guarantee (YLZ14) of IGHT

for L̄S, L̄S′ . Since L̄S is strongly convex with parameter λ, we have

〈∇L̄S(θmin
S )−∇L̄S(θmin

S′ ),θmin
S − θmin

S′ 〉 ≥ λ
∥∥θmin

S − θmin
S′

∥∥2

2
.

In addition, we have 〈∇L̄S(θmin
S ),θmin

S′ − θmin
S 〉 ≥ 0, 〈∇L̄S′(θmin

S′ ),θmin
S − θmin

S′ 〉 ≥ 0, which

implies

〈∇L̄S′(θmin
S′ )−∇L̄S(θmin

S′ ),θmin
S − θmin

S′ 〉 ≥ λ
∥∥θmin

S − θmin
S′

∥∥2

2
.

Thus we can obtain

λ
∥∥θmin

S − θmin
S′

∥∥
2
≤
√

2s
∥∥∇L̄S′(θmin

S′ )−∇L̄S(θmin
S′ )

∥∥
∞

=

√
2s

2n

∥∥∇`(θmin
S′ ; xi)−∇`(θmin

S′ ; xi′)
∥∥
∞. (3.6.3)

Since we have ‖∇`(θmin
S′ ; xi)‖∞ ≤ γ for all xi, we can get

‖θmin
S − θmin

S′ ‖2 ≤
√

2sγ

nλ
. (3.6.4)

As a result, combining (3.6.1), (3.6.2), and (3.6.4), for large enough T , we can obtain

∆(q) ≤ 2

√
msβ̃

γ

nλ
. (3.6.5)
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As a result, according to Lemma 6.2.4, to ensure (ε, δ/2)-DP, we need to add the zero mean

Gaussian vector with the variance parameter

σ2 =
8mβ̃sγ2

n2ε2λ2
log(2.5/δ). (3.6.6)

We use M to denote our mechanism, i.e., Algorithm 2. Given E happens, M satisfies

(ε, δ/2)-DP. Now, we are ready show that M satisfies (ε, δ)-DP. According to Remark 3.1.2

in (DMN06), we need to prove that

max
O∈R

log
P[M(S) ∈ O]− δ
P[M(S ′) ∈ O]

≤ ε.

Since we have for all O ∈ R

P[M(S) ∈ O] = P[M(S) ∈ O | E] · P[E] + P[M(S) ∈ O | Ē] · P[Ē]

≤
(
eεP[M(S ′) ∈ O | E] + δ/2

)
· P[E] + δ/2

≤ eεP[M(S ′) ∈ O] + δ/2 + δ/2,

where the second inequality is due to the (ε, δ/2)-DP of our method given inequality (3.6.1)

holds, and the fact that P[Ē] ≤ δ/2. Therefore, we can obtain that

max
O∈R

log
P[M(S) ∈ O]− δ
P[M(S ′) ∈ O]

≤ max
O∈R

log
eεP[M(S ′) ∈ O] + δ/2 + δ/2− δ

P[M(S ′) ∈ O]
= ε,

which implies Algorithm 2 satisfies (ε, δ)-DP. And the conditions we need are: x̃i are

i.i.d. sub-Gaussian random vector with parameter α, the generated sample size m ≥

max{C1sα̃
2 log d, C3 log(2/δ)}, where C1, C3 are absolute constants.

3.6.2 Proof of Theorem 3.3.5

In this subsection, we establish the utility guarantee of Algorithm 2. In order to prove the

utility guarantee of our method, we need the following lemmas.

Lemma 3.6.2. Consider the sparsity constrained problem (3.1.1). Suppose that L̄S is β̄-

smooth, and LS satisfies Condition 3.3.1 with parameter ε. There exist constants {Ci}5
i=1
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such that if η = C1λ/β̄
2, s ≥ C2κ

2s∗, where κ = β̄/λ, the output θ̂ of Algorithm 3 satisfies

the following with probability at least 1− ρ

‖θT − θ∗‖2
2 ≤ %T‖θ0 − θ∗‖2

2 + C4
s∗

β̄2
(ε2 + λ2‖θ∗‖2

∞),

where % = 1− 1/(7κ). If T is large enough, we have ‖θT − θ∗‖2
2 ≤ C5s

∗(ε2 + λ2‖θ∗‖2
∞)/β̄2.

The next lemma, which has been proved in (LW13), provides the statistical error of

sparse linear regression, which will be used to characterize the statistical error of our newly

constructed learning problem.

Lemma 3.6.3. For a Gaussian random vector ε ∈ Rn with zero mean and variance ν2In,

if each row of X ∈ Rn×d are independent sub-Gaussian random vector with sub-Gaussian

parameter α, we have with probability at least 1− exp(−C6n)∥∥∥∥ 1

n
X>ε

∥∥∥∥
∞
≤ C7να

√
log d

n
,

where C6, C7 are absolute constants.

Proof of Theorem 3.3.5. According to Lemma 3.6.2, we can obtain that

‖θ̂ − θ∗‖2
2 ≤ C1

s∗

β̄2
(ε2 + λ2‖θ∗‖2

∞), (3.6.7)

where C1 is a universal constant. According to Algorithm 2, we have

L̃(θ) =
1

2m

m∑
i=1

(
yp
i − 〈θ, x̃i〉

)2
.

Note that according to Lemma 3.6.1, L̃ satisfies Condition 3.3.2 with parameters ψ1β̃, ψ2β̃,

where ψ1 = 4/5, ψ2 = 6/5 . In addition, according to Lemma 3.6.3, we have ‖∇L̃(θ̂)‖∞ =

‖X̃>ξ/n‖∞ = ε̃ ≤ C2σα̃
√

log d/m holds with probability at least 1 − exp(−C3m). As a

result, according to Lemma 3.6.2, we can get

‖θp − θ̂‖2
2 ≤ C4

s∗

β̃2
ε̃2, (3.6.8)
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where C2, C3, C4 are universal constants. As a result, combining (3.6.7) and (3.6.8), we can

obtain

‖θp − θ∗‖2
2 ≤ 2‖θ̂p − θ̂‖2

2 + 2‖θ̂ − θ∗‖2
2

≤ 2C1
s∗

β̄2
(ε2 + λ2‖θ∗‖2

∞) + 2C2
s∗

β̃2
ε̃2

≤ C5
s∗

β̄2
(ε2 + λ2‖θ∗‖2

∞) + C6α̃
2 s
∗

β̃2
· log d

m
σ2,

where C5, C6 are absolute constants. Plugging the definition of σ2 in (3.6.6), we can get

‖θ̂p − θ∗‖2
2 ≤ C5

s∗

β̄2
(ε2 + λ2‖θ∗‖2

∞) + C7α̃
2 β̃s̃

∗2

β̃2

γ2 log d

n2ε2λ2
log(2.5/δ).

Let λ2 = C8γ
√
s∗ log d log(1/δ)/(nε), we can get

‖θ̂p − θ∗‖2
2 ≤ C9

s∗

β̄2
ε2 + C10

(
1

β̄2
+
α̃2

β̃

)
γ
√
s∗3 log d log(1/δ)

nε
,

where C7, C8, C9, C10 are absolute constants. Note that according to Lemma 3.6.2, Algorithm

2 has a linear convergence rate.

3.6.3 Proof of Corollary 3.3.7

In this subsection we show that if LS further satisfies Condition 3.3.2, our method can achieve

an improved utility guarantee.

Proof of Corollary 3.3.7. We first prove the privacy guarantee of our method. The proof is

similar to the proof of Theorem 3.3.3. Since we have that L satisfies Condition 3.3.2 with

parameters µ, β, we can get the sensitivity of our method according to (3.6.5) as follows

∆(q) ≤ 2

√
msβ̃

γ

nµ
.

Therefore, according to (3.6.6), if we add the noise with the following variance

σ2 =
8mβ̃sγ2

n2ε2µ2
log(2.5/δ),
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we can ensure that Algorithm 2 satisfies (ε, δ)-DP.

Next, we establish the utility guarantee of our method. According to (3.6.7), we have

‖θ̂ − θ∗‖2
2 ≤ C1

s∗

β2
ε2. (3.6.9)

In addition, according to (3.6.8), we have

‖θ̂p − θ̂‖2
2 ≤ C2α̃

2 β̃s̃
∗2

β̃2

γ2 log d

n2ε2µ2
log(2.5/δ). (3.6.10)

Combining (3.6.9) and (3.6.10), we can get

‖θ̂p − θ∗‖2
2 ≤ C3

s∗

β2
ε2 + C4α̃

2 s
∗2γ2 log d

β̃n2ε2µ2
log(2.5/δ),

where C1, C2, C3, C4 are absolute constants. This completes the proof.

3.7 Proofs of Specific Examples

In this section, we only establish the utility guarantees of our proposed method for different

problems, including sparse linear regression and sparse logistic regression since the privacy

guarantee of Algorithm 2 has been proved in Theorem 3.3.3. For the ease of presentation,

we use L to denote LS in the following discussion.

3.7.1 Proof of Corollary 3.3.9

In order to prove Corollary 3.3.9, we only need to verify Condition 3.3.1 for L, the upper

bound γ of `i.

Proof of Corollary 3.3.9. According to the objective function in (3.3.1), we have the follow-

ing close form of gradient and Hessian for L

∇L(θ) =
1

n

n∑
i=1

(x>i θ − yi)xi, ∇2L(θ) =
X>X

n
,
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where xi is the i-th row of the design matrix X. First, we verify that L̄ is β̄-smooth.

According to the proof of Lemma 3.6.2, we only need to show the upper bound of ∇2L(θ)

restricted to some 3s sparse support Ω. As a result, we have
∥∥(∇2L(θ)

)
Ω,Ω

∥∥
2
≤ 3sK2, which

implies that β̄ = 3sK2 + λ. In addition, we have ∇L(θ∗) = X>ε/n. According to the proof

of Corollary 2 in (LW13), we have ‖∇L(θ∗)‖∞ ≤ C1νK
√

log d/n holds with probability at

least 1 − exp(−C2n), where C1, C2 are absolute constants. Thus we have Condition 3.3.1

holds for L. Next, we are going to estimate the parameter γ for our utility guarantee. For

the loss function on each training example, we have `i(θ) = (〈xi,θ〉 − yi)2/2, which implies

∇`i(θ) = (〈xi,θ〉 − yi)xi. According to (3.6.3), we need to verify ‖∇`i(θmin)‖∞ ≤ γ, where

θmin is the minimizer of (3.1.1). Since we have ‖∇`i(θmin)‖∞ = ‖(〈xi,θmin〉 − yi)xi‖∞ ≤

C3

√
sK2, which implies that γ ≤ C3

√
sK2.

Finally, plugging these results into Theorem 3.3.5, we have if λ2 = C4K
2s∗
√

log d log(1/δ)/
(
nε
)
,

we can get

‖θ̂p − θ∗‖2
2 ≤ C5ν

2K2 s log d

n
+ C6α̃

2K
2s∗2

√
log d log(1/δ)

β̃nε
.

3.7.2 Proof of Corollary 3.3.13

In this subsection, we prove the results for sparse logistic regression, and we only need to

verify Conditions 3.3.1 for L, the upper bound γ of `i.

Proof of Corollary 3.3.13. According to the loss function in (3.3.2), we can obtain

∇L(θ) = − 1

n

n∑
i=1

(
yi − ψ(θ>xi)

)
xi, ∇2L(θ) =

1

n

n∑
i=1

ψ′(θ>xi)xix
>
i ,

where ψ(x) = exp(x)/(1 + exp(x)) and ψ′(x) = exp(x)/(1 + exp(x))2. Since we have ψ′(x) ≤

1, following the same proof procedure as before, we can get L̄ is β̄-smooth with β̄ = 3sK+λ.

In addition, we have ∇L(θ∗) = 1
n

∑n
i=1 bixi, where bi = yi−ψ(θ∗>xi). Thus, according to the

54



proof of Corollary 2 in (LW13), we have ‖∇L(θ∗)‖∞ ≤ C1K
√

log d/n holds with probability

at least 1− C2/d, where C1, C2 are absolute constants. In addition, we have

‖∇`i(θmin)‖∞ =
∥∥(yi − ψ(θ>minxi)

)
xi
∥∥
∞ ≤ K,

where the inequality is due the the fact that yi ∈ {0, 1}, ψ(x) ∈ (0, 1), and ‖xi‖∞ ≤ K.

Thus we have γ = K for sparse logistic regression.

Finally, plugging these results into Theorem 3.3.5, we have if λ2 = C6K
√
s∗ log d log(1/δ)/

(
nε
)
,

we can get

‖θ̂p − θ∗‖2
2 ≤ C7ν

2K2 s log d

n
+ C8α̃

2K
√
s∗3 log d log(1/δ)

β̃nε
.

3.7.3 Proof of Corollary 3.3.11

To prove this result, we only need to verify that L satisfies the sparse eigenvalue condition

since other conditions has been previously verified in the proof of Corollary 3.3.9.

Proof of Corollary 3.3.11. Since we have ∇2L(θ) = X>X/n, according to Proposition 1 in

(ANW10), we can obtain that L satisfies Condition 3.3.2 with parameters β = 6/5 and

µ = 4/5 with probability at least 1 − exp(−C1n) if we have n ≥ C2s log d, where C1, C2

are absolute constants. Therefore, following the same proof procedure as in the proof of

Theorem 3.3.3, this high probability can be absorbed into the δ term in the (ε, δ)-DP. As a

results, we complete the proof.

3.7.4 Proof of Corollary 3.3.15

To prove this result, we only need to verify that L satisfies the sparse eigenvalue condition

since other conditions has been previously verified in the proof of Corollary 3.3.13.
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Proof of Corollary 3.3.15. Since we have ∇2L(θ) = (n)−1
∑n

i=1 ψ
′(θ>xi)xix

>
i , and ψ′(θ>xi

is upper and lower bounded by some constants C1, C2, we can follow the same procedure

as in the proof of Corollary 3.3.11 to show that L satisfies Condition 3.3.2 with parameters

β = 6/5C1 and µ = 4/5C2. As a results, we complete the proof.

3.8 Proofs of Additional Lemmas

In this section, we prove the additional lemmas used in the proofs of the main results. For

the ease of presentation, we use L to denote LS.

3.8.1 Proof of Lemma 3.6.2

Proof. According to Algorithm 3, we have

θt+1 = Hs

(
θt − η∇L̄(θt)

)
.

We denote Ω = supp(θt) ∪ supp(θt+1) ∪ supp(θ∗), and we have s ≤ |Ω| ≤ (2s + s∗). In

addition, we denote θ̃t+1 by PΩ

(
θt−η∇L̄(θt)

)
, thus we have θt+1 = Hs(θ̃t+1). Furthermore,

we have the following

‖θ̃t+1 − θ∗‖2
2 =

∥∥PΩ

(
θt − η∇L̄(θt)

)
− θ∗

∥∥2

2

=
∥∥θt − θ∗ − ηPΩ

(
∇L̄(θt)

)∥∥2

2

=
∥∥∥θt − θ∗ − ηPΩ

(
∇L̄(θ∗) +

(
H(γ)

)
∗Ω(θt − θ∗)

)∥∥∥2

2
,

where the last equation is due to the fundamental theorem of calculus, H(γ) =
∫ 1

0
∇2L̄(θ∗+

γ(θ − θ∗))dγ, and H(γ)∗Ω denotes that we restrict columns of H(γ) to the support Ω.

Therefore, according to the definition of PΩ, we can further obtain

‖θ̃t+1 − θ∗‖2
2 =

∥∥A(θt − θ∗)− ηPΩ

(
∇L̄(θ∗)

)∥∥2

2

≤ ‖A‖2
2 · ‖θt − θ∗‖2

2 + η2
∥∥PΩ

(
∇L̄(θ∗)

)∥∥2

2
− 2η〈A(θt − θ∗),PΩ

(
∇L̄(θ∗)

)
〉,
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where we have A = I− η
(
H(γ)

)
ΩΩ

. Thus by Young’s inequality, we can obtain

−2η〈A(θt − θ∗),PΩ

(
∇L̄(θ∗)

)
〉 ≤ 2ηβ̄

7
‖θt − θ∗‖2

2 +
14η

β̄

(
‖A‖2

2 ·
∥∥PΩ

(
∇L̄(θ∗)

)∥∥2

2

)
.

Therefore, we can get

‖θ̃t+1 − θ∗‖2
2 ≤ ‖A‖2

2 · ‖θt − θ∗‖2
2 + η2

∥∥PΩ

(
∇L̄(θ∗)

)∥∥2

2
+

2ηβ̄

7
‖θt − θ∗‖2

2 +
14η

β̄

(
‖A‖2

2 ·
∥∥PΩ

(
∇L̄(θ∗)

)∥∥2

2

)
≤
(

1− 5ηβ̄

7

)
‖θt − θ∗‖2

2 +
(14η

β̄
− 14η2

)∥∥PΩ

(
∇L̄(θ∗)

)∥∥2

2
,

where the last inequality is due to the Condition 3.3.2.

In addition, according to Lemma 3.3 in (LAL16), we have

‖θt+1 − θ∗‖2
2 ≤

(
1 +

2
√
s∗√

s− s∗

)
‖θ̃t+1 − θ∗‖2

2, (3.8.1)

which implies that

‖θt+1 − θ∗‖2
2 ≤ α

(
1− 5ηβ̄

7

)
‖θt − θ∗‖2

2 + α(2s+ s∗)
[(14η

β̄
− 14η2

)(
‖∇L̄(θ∗)‖2

∞
)]
,

where α = 1 + 2
√
s∗/
√
s− s∗. Since we have η = 2λ/β̄2, as long as s ≥ (4κ2 + 1)s∗, where

κ = β̄/λ, we can get

‖θt+1 − θ∗‖2
2 ≤ %‖θt − θ∗‖2

2 + C1
s∗λ

β̄3
‖∇L̄(θ∗)‖2

∞,

where the we have % ≤ 1− 1/(7κ) < 1.

In addition, we have ∇L̄(θ∗) = ∇L(θ∗) + λθ∗. According to Condition 3.3.1, we have

‖∇L̄(θ∗)‖∞ = ‖∇L(θ∗) + λθ∗‖∞ ≤ ‖∇L(θ∗)‖∞ + λ‖θ∗‖∞ ≤ ε+ λ‖θ∗‖∞.

As long as we choose λ = O(ε/‖θ∗‖∞), we can get

‖θt+1 − θ∗‖2
2 ≤ %‖θt − θ∗‖2

2 + C2
s∗λ

β̄3
(ε2 + λ2‖θ∗‖2

∞). (3.8.2)

Thus taking sum of (3.8.2) over t = 0, 1, . . . , T − 1, we can get

‖θT − θ∗‖2
2 ≤ %T‖θ∗‖2

2 + C2
s∗λ

β̄3(1− %)
(ε2 + λ2‖θ∗‖2

∞)

≤ %T‖θ∗‖2
2 + C2

s∗

β̄2
(ε2 + λ2‖θ∗‖2

∞). (3.8.3)
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Therefore, if we have

T ≥ C3κ log
β̄‖θ∗ − θ0‖2

s∗(ε+ λ‖θ∗‖∞)
,

we can obtain that

‖θT − θ∗‖2
2 ≤ C4

s∗

β̄2
(ε2 + λ2‖θ∗‖2

∞),

where {Ci}4
i=1 are universal constants.

3.9 Conclusions and Future Work

In this prospectus, we developed a differentially private framework for sparse learning using

the idea of knowledge transfer. We establish the linear convergence rate and the utility

guarantee of our method. Experiments on both synthetic and real-world data demonstrate

the superiority of our algorithm. For the future work, it is very interesting to generalize our

framework to other structural constrained learning problems such as the low-rank estimation

problem. It is also very interesting to study the theoretical lower-bound of the differentially

private sparse learning problem to access the optimality of our proposed method.
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CHAPTER 4

Efficient Privacy-Preserving Stochastic Nonconvex

Optimization

4.1 Introduction

For many important domains such as health care and medical research, the datasets used to

train machine learning models contain sensitive personal information. There is a risk that

models trained on this data can reveal private information about individual records in that

training data (FLJ14; SSS17b; CLE19). This motivates the research on privacy-preserving

machine learning, much of which has focused on achieving differential privacy (DMN06), a

rigorous definition of privacy that provides statistical data privacy for individual records.

In the past decade, many differentially private machine learning algorithms for solving the

empirical risk minimization (ERM) problem have been proposed (e.g., (CMS11b; KST12;

BST14c; ZZM17b; WYX17b; JWE18b; WG19b; WG20)). Almost all of these are for ERM

with convex loss functions, but many important machine learning approaches, including deep

learning, are formulated as ERM problems with nonconvex loss functions. Furthermore,

these learning problems often require large training sets, necessitating the use of stochastic

optimization algorithms such as stochastic gradient descent (SGD).

Several recent studies have advanced the application of differential privacy in deep learn-

ing (ACG16b; PAE16; MRT18b; BDL19). The studies prove differential privacy is satisfied,

but evaluate utility experimentally. Only a few differentially private algorithms for solving

nonconvex optimization problems have proven utility bounds (ZZM17b; WYX17b). For ex-
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ample, (WYX17b) proposed a differentially private gradient descent (DP-GD) algorithm with

both privacy and utility guarantees. However, each iteration of DP-GD requires computing

the full gradient, which makes it too expensive for use on large training sets. (ZZM17b)

proposed a random round private stochastic gradient descent (RRPSGD) that can achieve

the same privacy guarantee as DP-GD with reduced runtime complexity, but with slightly

worse utility bounds. In this paper, we propose a differentially private Stochastic Recursive

Momentum (DP-SRM) algorithm for nonconvex ERM. At the core of our algorithm is the

stochastic recursive momentum technique (CO19) that can consistently reduce the accu-

mulated variance of the gradient estimator. Our approach is more scalable than stochastic

variance reduced algorithms (JZ13; RHS16; AH16; LJC17; NLS17; FLL18; ZXG18) since it

eliminates the periodical computation of the checkpoint gradient which usually requires a

giant batch size.

Contributions. We develop a new differentially private stochastic optimization algorithm

for nonconvex ERM and provide a sharp analysis of the privacy guarantee using Rényi Differ-

ential Privacy (RDP) (Mir17) (Section 4.6). Our algorithm matches the best-known utility

guarantee for nonconvex optimization, with lower computational complexity. To achieve

the same utility guarantee, the gradient complexity (i.e., the number of stochastic gradients

calculated in total) of our algorithm is O
(
n3/2

)
, which outperforms the best previous results

(ZZM17b; WYX17b) by a factor of Θ(n1/2). We evaluate our proposed methods on two non-

convex ERM techniques: nonconvex logistic regression and convolutional neural networks.

We report on experiments on several benchmark datasets (Section 4.7), finding that our

method not only produces models that are the closest to the non-private models in terms of

model accuracy but also reduces the computational cost.

Notation. We use curly symbol such as B to denote the index set. For a set B, we use |B| to

denote its cardinality. For a finite sum function F =
∑n

i=1 fi/n, we denote FB by
∑

i∈B fi/|B|.

For a d-dimensional vector x ∈ Rd, we use ‖x‖2 to denote its `2-norm. Given two sequences

{an} and {bn}, if there exists a constant 0 < C < ∞ such that an ≤ Cbn, we write
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an = O(bn). Besides, if there exist constants 0 < C1, C2 < ∞ such that C1bn ≤ an ≤ C2bn,

we write an = Θ(bn). We use n, d to represent the number of training examples and the

problem dimension, respectively. We also use the standard notation for (ε, δ)-DP where ε is

the privacy budget and δ is the failure probability.

4.2 Related Work

Over the past decade, many differentially private machine learning algorithms for convex

ERM have been proposed. There are three main approaches to achieve differential pri-

vacy in such settings, including output perturbation (WLK17; ZZM17b), objective pertur-

bation (CMS11b; KST12; INS19), and gradient perturbation (BST14c; WYX17b; JWE18b).

However, other than the methods using gradient perturbation, it is very hard to generalize

these methods to nonconvex ERM because of the difficulty in computing the sensitivity for

nonconvex ERM. Thus, most differentially private algorithms for nonconvex ERM are based

on the gradient perturbation, including our work. The problem with gradient perturbation

approaches is that their iterative nature quickly consumes any reasonable privacy budget.

Hence, the main challenge is to develop algorithms for nonconvex ERM that can provide

sufficient utility while maintaining privacy with high computational efficiency.

Several recent works (ACG16b; PAE16; XLW18) studied deep learning with differential

privacy. (ACG16b) proposed a method called moments accountant to keep track of the pri-

vacy cost of stochastic gradient descent algorithm during the training process, which provides

a strong privacy guarantee. (PAE16) established a Private Aggregation of Teacher Ensem-

bles (PATE) framework to improve the privacy guarantee of deep learning for classification

tasks. (XLW18) and (YJS19) investigated the differentially private Generative Adversarial

Nets (GAN) with different distance metrics. However, none of these works provide utility

guarantees for their algorithms.

Table 4.1 summarizes differentially private nonconvex optimization algorithms that pro-
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Table 4.1: Comparison of different (ε, δ)-DP algorithms for nonconvex optimization. We

report the utility bound in terms of E‖∇F (θp)‖2, where θp is the output of the differen-

tially private algorithm, d is the problem dimension, E is taken over the randomness of the

algorithm.

Algorithm Utility Gradient Complexity

RRPSGD (ZZM17b) O
(

(d log(n/δ) log(1/δ))1/4

(nε)1/2

)
O
(
n2
)

DP-GD (WYX17b) O
(

(d log(1/δ))1/4

(nε)1/2

)
O

(
n2ε
d1/2

)
DP-SRM

O
(

(d log(1/δ))1/4

(nε)1/2

)
O

(
(nε)3/2

d3/4

)
(This paper)

vide utility guarantees for nonconvex ERM. The Random Round Private Stochastic Gradient

Descent (RRPSGD) method developed by (ZZM17b) is the first differentially private noncon-

vex optimization algorithm with the utility guarantee. This method performs the perturbed

SGD (adding Gaussian noise to the stochastic gradients), for a random number of itera-

tions (GL13). The gradient complexity of RRPSGD is O(n2), which makes it impractical

for most settings. (ZZM17b) showed that RRPSGD is able to find a stationary point in

expectation with a diminishing error O
(
(d log(n/δ) log(1/δ))1/4/(nε)1/2

)
. Their analysis of

the privacy guarantee is based on the standard privacy-amplification by subsampling result

and strong composition theorem (BST14c). Although such an analysis can be easily adapted

to the nonconvex setting with stochastic optimization algorithms, it results in a large bound

on the variance of the added noise compared with relaxed definitions such as the moments

accountant (ACG16b) and Gaussian differential privacy (DRS19).

(WYX17b) proposed the Differentially Private Gradient Descent (DP-GD) algorithm for

nonconvex optimization. DP-GD has a comparable gradient complexity O
(
n2ε/d1/2

)
, and an
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improved utility guarantee O
(
(d log(1/δ))1/4/(nε)1/2

)
compared with that of RRPSGD. The

reason DP-GD can achieve this factor of O
(
(log(n/δ))1/4

)
improvement, is that it uses the

full gradient rather than the stochastic gradient. This makes DP-GD computationally very

expensive or even intractable for large-scale machine learning problems (n is big). Recently,

(WCX19) also proposed a differentially private stochastic algorithm for nonconvex optimiza-

tion. Their goal is to find the local minima, while we aim to find the stationary point. In

addition, their utility guarantee is asymptotic—it provides the desired utility guarantee only

if an infinite number of iterations could be run. In contrast, our utility guarantee holds for

a finite number of iterations.

4.3 Preliminaries

We consider the empirical risk minimization (ERM) problem: given a training set S =

{(x1, y1), . . . , (xn, yn)} drawn from some unknown but fixed data distribution with xi ∈

RD, yi ∈ Y ⊆ R, we aim to find a solution θ̂ ∈ Rd that minimizes the following empirical

risk,

F (θ) :=
1

n

n∑
i=1

fi(θ), (4.3.1)

where F (θ) is the empirical risk function (i.e., training loss), fi(θ) = `(θ; xi, yi) is the loss

function defined on the i-th training example (xi, yi), and θ ∈ Rd is the model parameter

we want to learn.

Here, we provide some definitions and lemmas that will be used in our theoretical analysis.

Definition 4.3.1. θ ∈ Rd is an ζ-approximate stationary point if ‖∇f(θ)‖2 ≤ ζ.

Definition 4.3.2. A function f : Rd → R is G-Lipschitz, if for all θ1,θ2 ∈ Rd, we have

|f(θ1)− f(θ2)| ≤ G‖θ1 − θ2‖2.

Definition 4.3.3. A function f : Rd → R has L-Lipschitz gradient, if for all θ1,θ2 ∈ Rd,

we have ‖∇f(θ1)−∇f(θ2)‖2 ≤ L‖θ1 − θ2‖2.
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Differential privacy provides a formal notion of privacy, introduced by (DMN06):

Definition 4.3.4 ((ε, δ)-DP (DMN06)). A randomized mechanism M : Sn → R satisfies

(ε, δ)-differential privacy if for any two adjacent data sets S, S ′ ∈ Sn differing by one element,

and any output subset O ⊆ R, it holds that P[M(S) ∈ O] ≤ eε · P[M(S ′) ∈ O] + δ.

To achieve (ε, δ)-DP for a given function q : Sn → R, we can use Gaussian mechanism

(DR14) M = q(S) + u, where u is a standard Gaussian random vector with variance that

is proportional to the `2-sensitivity of the function q, ∆(q), which is defined as follows.

Definition 4.3.5 (`2-sensitivity(DR14)). For two adjacent datasets S, S ′ ∈ Sn differing

by one element, the `2-sensitivity ∆(q) of a function q : Sn → R is defined as ∆(q) =

supS,S′ ‖q(S)− q(S ′)‖2.

Rényi differential privacy. Although the notion of (ε, δ)-DP is widely used in the out-

put and objective perturbation methods, it suffers from the loose composition and privacy-

amplification by subsampling results, which makes it unsuitable for the stochastic iterative

learning algorithms. In this work, we will make use of the notion of Rényi Differential Pri-

vacy (RDP) (Mir17) which is particularly useful when the dataset is accessed by a sequence

of randomized mechanisms (WBK19).

Definition 4.3.6 (RDP (Mir17)). For α > 1, ρ > 0, a randomized mechanismM : Sn → R

satisfies (α, ρ)-Rényi differential privacy, i.e., (α, ρ)-RDP, if for all adjacent datasets S, S ′ ∈

Sn differing by one element, we have Dα

(
M(S)||M(S ′)

)
:= logE

[(
M(S)/M(S ′)

)α]
/(α −

1) ≤ ρ.

According to Definition 4.3.6, RDP measures the ratio of probability distributionsM(S)

and M(S ′) by α-order Renyi Divergence with α ∈ (1,∞). As α → ∞, RDP reduces to

ε-DP.

To further improve the privacy guarantee when using the Gaussian mechanisms to satisfy

RDP, we establish the following privacy-amplification by subsampling result, which is derived

based on the result in (WBK19).
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Lemma 4.3.7. Given a function q : Sn → R, the Gaussian MechanismM = q(S)+u, where

u ∼ N(0, σ2I), satisfies (α, α∆2(q)/(2σ2))-RDP. In addition, if we apply the mechanism M

to a subset of samples using uniform sampling without replacement with sampling rate τ ,

M satisfies (α, 3.5τ 2∆2(q)α/σ2)-RDP given σ′2 = σ2/∆2(q) ≥ 0.7, α ≤ 2σ2 log(1/τα
(
1 +

σ′2)
)
/3 + 1.

Remark 4.3.8 (Comparison with moment accountant). Suppose ∆(q) = 1, Lemma 4.3.7

suggests that to achieve (α, 3.5τ 2α/σ2)-RDP of the subsampled Gaussian mechanism, we

require σ2 ≥ 0.7. For the moment accountant based method (ACG16b), it can achieve

the asymptotic privacy guarantee of
(
α, τ 2α/(1− τ)σ2 +O(τ 3α3/σ3)

)
-RDP when τ goes to

zero and σ2 ≥ 1, α ≤ σ2 log(1/τσ). In contrast to moment accountant, our result has a

closed-form bound on the privacy guarantee and a relaxed requirement of σ2.

It is worth noting that there exist some other works (MTZ19; ZW19) also studying the

privacy-amplification by subsampling results. However, they consider the Poisson subsam-

pling approach, which is different from our uniform subsampling method.

Based on Lemma 4.3.7, we can establish a strong privacy guarantee of our method in

terms of RDP, and then transfer it to (ε, δ)-DP using the following lemma.

Lemma 4.3.9 ((Mir17)). If a randomized mechanism M : Sn → R satisfies (α, ρ)-RDP,

then M satisfies (ρ+ log(1/δ)/(α− 1), δ)-DP for all δ ∈ (0, 1).

4.4 Algorithm

Our proposed algorithm for differentially private nonconvex ERM, is illustrated in Algorithm

4.

The main idea is to construct the differentially private gradient estimator vtp iteratively

based on the information obtained from the previous updates. We initialize v0 to be the mini-

batch stochastic gradient ∇FB0(θ0) and inject Gaussian noise, u0, with covariance matrix
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Algorithm 4 Differentially Private Stochastic Recursive Momentum (DP-SRM)

input θ0, T,G, L, γ, β, n0, privacy parameters ε, δ, accuracy for the first-order stationary

point ζ

1: Uniformly sample b0 examples without replacement indexed by B0

2: Compute v0 = ∇FB0(θ0), where ∇FB0(θ0) =
∑

i∈B0 ∇fi(θ
0)/b0, draw u0 ∼ N(0, σ2

0Id)

with σ2
0 = 14TG2α/(βn2ε), α = log(1/δ)/

(
(1− β)ε

)
+ 1

3: Release the differentially private gradient estimator v0
p = v0 + u0

4: for t = 0, 1, 2, . . . , T − 1 do

5: θt+1 = θt − ηtvtp, where ηt = min
{
ζ/(n0L‖vtp‖2), 1/(2n0L)

}
6: Uniformly sample b examples without replacement indexed by Bt+1

7: Compute vt+1 = ∇FBt+1(θ
t+1) + (1 − γ)

(
vtp − ∇FBt+1(θ

t)
)
, draw ut+1 ∼ N(0, σ2Id)

with σ2 = 14T
(
(1− γ)ζ/n0 + γG

)2
α/(βn2ε), α = log(1/δ)/

(
(1− β)ε

)
+ 1

8: Release the differentially private gradient estimator vt+1
p = vt+1 + ut+1

9: end for

output θ̃ chosen uniformly at random from {θt}T−1
t=0
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σ2
0Id (lines 2, 3), to make it differentially private. Then, we recursively update vt (line 7) as

vt = ∇FBt(θt) + (1 − γ)
(
vt−1
p − ∇FBt(θt−1)

)
, where ∇FBt(θt), ∇FBt(θt−1) are mini-batch

stochastic gradients and vt−1
p is the private gradient estimator released at the last iteration.

The momentum parameter, γ, is used to control the decay rate of the prior information,

vt−1
p − ∇FBt(θt−1). This is called stochastic recursive momentum (CO19), which can lead

to fast convergence. After updating vt, we again inject Gaussian noise ut with covariance

matrix σ2Id (line 8), to provide differential privacy. The variance σ2
0, σ2 of the Gaussian

random vectors are determined by our RDP-based analysis. We choose an adaptive step size

(line 5) to bound the sensitivity of the gradient estimator vtp, which is the key to establish

the tight privacy and utility guarantees (Section 4.6) of our algorithm.

4.5 Main Results

In this section, we establish formal privacy and utility guarantees for Algorithm 4.

Theorem 4.5.1. Suppose that each component function fi is G-Lipschitz and has L-

Lipschitz gradient. Given the total number of iterations T , the momentum parameter γ and

the accuracy for the first-order stationary point ζ, for any δ > 0 and the privacy budget ε,

Algorithm 4 satisfies (ε, δ)-differential privacy with σ2
0 = 14TG2α/(βn2ε) and σ2 = 14T

(
(1−

γ)ζ/n0 + γG
)2
α/(βn2ε) if we have α− 1 = log(1/δ)/

(
(1− β)ε

)
≤ 2σ′2 log

(
1/τα(1 + σ′2)

)
/3

with β ∈ (0, 1) and σ′2 = min{b2σ2/
(
4((1 − γ)ζ/n0 + γG)2

)
, b0σ

2
0/(4G

2)} ≥ 0.7, where b0

and b are batch sizes, and τ = max{b0/n, b/n}.

Remark 4.5.2. According to Theorem 4.5.1, there exists a constraint on the parameter

α, which is due to the privacy-amplification by subsampling result in Lemma 4.3.7, and is

similar to the constraint given by the moments accountant (ACG16b) and other RDP-based

analyses with subsampling approaches (MTZ19; ZW19). Furthermore, as we mentioned in

Remark 4.3.8, our result relaxes the requirement of the variance σ′2 compared with the

moments accountant based analysis.
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Following the previous work (BFT19), we can get rid of the constraints in Theorem 4.5.1

by using the larger mini-batch size, as states in the following corollary.

Corollary 4.5.3. Given the total number of iterations T , the momentum parameter γ

and the accuracy for the first-order stationary point ζ. Under the same conditions of The-

orem 4.5.1 on fi, σ
2
0, σ

2, for any δ > 0 and the privacy budget ε, Algorithm 4 satisfies

(ε, δ)-differential privacy if we choose b2
0 = b2 = n2ε/T , β = 1/2, and T is larger than

O
(

log4(1/δ)/ε3
)
.

Theorem 4.5.1 requires that each component function fi is G-Lipschitz and has L-

Lipschitz gradient which will be used to derive the sensitivity of the underlying query

function (i.e., the gradient estimator vt in Algorithm 4) and thus determine the variance

of the Gaussian noise. The G-Lipschitz condition has been widely assumed in the literature

of differential privacy (ACG16b; WYX17b; JWE18b; BFT19), and the L-Lipschitz gradient

condition has also been made in several previous works (ZZM17b; FKT20). In practice, we

can use the clipping technique (ACG16b) to ensure that at each iteration, ‖∇fi(θt)‖2 ≤ C1

and ‖∇fi(θt)−∇fi(θt−1)‖2 ≤ C2, where C1, C2 are some predefined constants. As a result,

we can guarantee that the sensitivity of vt is bounded by 2
(
(1−γ)C2 +γC1

)
/b (see (4.6.1)).

Then, we can replace G and ζ/n0 with C1 and C2 in Algorithm 4 to establish the same

privacy guarantee.

The following theorem shows the utility guarantee and the gradient complexity, which is

the total number of the stochastic gradients we need to estimate during the training process,

of Algorithm 4.

Theorem 4.5.4. Under the same conditions of Theorem 4.5.1 on fi, σ
2, σ2

0, α, if we choose

the number of iterations T = C1nε
√
LDF/

(
G
√
d log(1/δ)

)
, where DF = F (θ0) − F (θ∗)

and F (θ∗) is a global minimum of F , the accuracy for the first-order stationary point ζ =

C2G
1/2
(
LDFd log(1/δ)

)1/4
/(nε)1/2, batch sizes b0 = C3G

2/(ζLDF ), b = C4G
2/(n0ζ), n0 =

LDF/ζ and the momentum parameter γ = C5ζ/n0, then the output θ̃ of Algorithm 4 satisfies
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the following

E‖∇F (θ̃)‖2 ≤ C6G
1/2
(
LDFd log(1/δ)

)1/4
/(nε)1/2,

where {Ci}6
i=1 are absolute constants, and the expectation is taken over all the randomness

of the algorithm, i.e., the random Gaussian noise and the subsample gradient. Since we

have T = O
(
nε/d1/2

)
, b0 = O

(
(nε)1/2/d1/4

)
and b = O(1), the total gradient complexity of

Algorithm 4 is O
(
(nε)3/2/d3/4 + (nε)1/2/d1/4

)
.

Remark 4.5.5 (Comparison with existing methods). According to Theorem 4.5.4, our method

can achieve the following utility guarantee

O

(
G1/2(LDFd log(1/δ))1/4

(nε)1/2

)
.

This result matches the best known result for differentially private nonconvex optimization

method (WYX17b). However, there method is based on gradient descent, which is computa-

tionally very expensive in large-scale machine learning problems. Furthermore, the gradient

complexity of our method is

O

(
(nε)3/2

d3/4
+

(nε)1/2

d1/4

)
.

This result is smaller thanO(n2) gradient complexity provided by (ZZM17b) andO
(
n2ε/d1/2

)
gradient complexity provided by (WYX17b).

Theorem 4.5.4 shows that our method only requires the computation of a large batch

gradient with batch size b0 = O
(
(nε)1/2/d1/4

)
at the beginning. Therefore, our method is

more scalable than existing differentially private stochastic variance reduced algorithms, such

as DP-SVRG (WYX17b) designed for convex optimization, which often require the periodic

computation of the checkpoint gradient with a giant batch size (full batch in DP-SVRG).
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4.6 Proof Outline of the Main Results

In this section, we present the proof outline of the main results in Section 4.5. Our proof

involves new techniques for the privacy and utility guarantees that are of general use for

variance reduction-based algorithms. The detailed proof can be found in Section B in the

supplemental material.

4.6.1 Privacy Guarantee

According to Algorithm 4, the mechanism at t-th iteration is Mt, which is a composition

of t Gaussian mechanisms: G0, . . . ,Gt, where G0 = ∇FB0(θ0) + u0 and Gt = ∇FBt(θt) −

(1 − γ)∇FBt(θt−1) + ut. Therefore, we want to show that Mt is differentially private. For

the given dataset S, we use S ′ to denote its neighboring dataset with one different example

indexed by i′

There are two main challenges in providing a tight privacy analysis. The first one is to

deal with the subsampled mechanisms {Gi}T−1
i=0 . The second one is to control the sensitivity

of Gt when t > 0. The first challenge can be addressed by our privacy-amplification by

subsampling result (Lemma 4.3.7), which gives us a tight closed-form bound on the privacy

guarantee. We can overcome the second challenge by using an adaptive stepsize, enabling

us to use a small amount of random noise to achieve differential privacy.

According to Algorithm 4, Gt is the application of the following Gaussian mechanism G̃t

to a subset of uniformly sampled examples, indexed by Bt

G̃t =

 1
b

∑n
i=1∇fi(θ0) + u0, t = 0

1
b

∑n
i=1

(
∇fi(θt)− φ∇fi(θt−1)

)
+ ut, t > 0,

where φ = 1− γ. For q̃0 =
∑n

i=1∇fi(θ0)/b0 in G̃0, the sensitivity ∆(q̃0) is determined by

‖q̃0(S)− q̃0(S ′)‖2 ≤
1

b
‖∇fi(θ0)−∇fi′(θ0)‖2 ≤

2G

b0

,
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where the last inequality is due to G-Lipschitz of each component function. For q̃t =∑n
i=1∇fi(θt)/b−(1−γ)

∑n
i=1∇fi(θt−1)/b in G̃t when t > 0, the sensitivity ∆(q̃t) = ‖q̃t(S)−

q̃t(S
′)‖2 is determined by

1− γ
b
‖∇fi(θt)−∇fi(θt−1) +∇fi′(θt)−∇fi′(θt−1)‖2 +

γ

b
‖∇fi(θt)−∇fi′(θt)‖2. (4.6.1)

Therefore, we have

‖qt(S)− qt(S
′)‖2 ≤

2L(1− γ)

b
‖θt − θt−1‖2 +

2γG

b

=
2L(1− γ)

b
ηt−1‖vt−1

p ‖2 +
2γG

b

≤ 2(1− γ)ζ

n0b
+

2γG

b
,

where the first inequality is due to L-Lipschitz continuous gradient and G-Lipschitz of each

component function. The last inequality comes from the adaptive stepsize we choose as

follows ηt = min
{
ζ/(n0L‖vtp‖2), 1/(2n0L)

}
. Note that the proposed adaptive stepsize ηt is

the key to control the sensitivity of q̃t. If we choose a fixed stepsize such as ηt = 1/(2L), the

sensitivity of q̃t will be in the order of O(G2/b), which will lead to a much larger random

noise to achieve differential privacy and thus deteriorate the utility of our method.

According to Lemma 4.3.7, if the noise u0 and ut satisfy σ2
0 = 14TαG2/(βn2ε) and σ2 =

14Tα
(
(1 − γ)ζ/n0 + γG

)2
/(βn2ε), the Gaussian mechanism G̃t satisfies

(
α, βεn2/

(
7b2

0T
))

-

RDP, and the privacy-amplification by subsampling result shows that Gt satisfies (α, βε/T )-

RDP. Therefore, by the composition rule of RDP (Mir17), after T ′ iterations, Algorithm 4

satisfies (α, βT ′ε/T )-RDP. According to Lemma 4.3.9 and α = log(1/δ)/
(
(1 − β)ε

)
+ 1, we

have that after T ′ iterations, Algorithm 4 satisfies (T ′ε/T, δ)-DP.

4.6.2 Utility Guarantee

According to the definition of θ̃, we have

E‖∇F (θ̃)‖2 =
1

T

T−1∑
t=0

E‖∇F (θt)‖2 ≤
1

T

T−1∑
t=0

E
∥∥vtp∥∥2

+
1

T

T−1∑
t=0

E
∥∥∇F (θt)− vtp

∥∥
2
,
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where the expectation is taken over all the randomness of the algorithm. The key challenge

in establishing a tight utility guarantee is to derive tight upper bounds for
∑T−1

t=0 E
∥∥vtp∥∥2

/T

and
∑T−1

t=0 E
∥∥∇F (θt)− vtp

∥∥
2
/T when we have adaptive stepsize ηt and the random noise ut

in vtp.

First of all, by taking into account the adaptive stepsize ηt, we can upper bound the term∑T−1
t=0 E

∥∥vtp∥∥2
/T as follows

4n0LDF

Tζ
+

1

Tζ

T−1∑
t=0

E
∥∥∇F (θt)− vtp

∥∥2

2
+ 2ζ,

where DF = F (θ0)−F (θ∗). Furthermore, we can obtain the upper bound for
∑T−1

t=0 E
∥∥vtp−

∇F (θt)
∥∥2

2
/T as follows

2(1− γ)2ζ2

n2
0γb

+
2γG2

b
+

G2

Tγb0

+
Tdσ2 + dσ2

0

Tγ
,

where the first term is determined by ηt, and the last term is determined by the random noise

ut in vtp. The last term in this bound is dominated by dσ2/γ, which validates the necessity

of using the adaptive stepsize to control the sensitivity of vt and thus enable a small σ2.

Finally, combining these two new bounds and plugging the value of parameters in The-

orem 4.5.4, we can obtain that

E‖∇F (θ̃)‖2 ≤ C1ζ + C2

√
LDFd log(1/δ)G

nεζ
.

By solving the smallest ζ, we can obtain ζ = (LDFd log(1/δ))1/4(C2G)1/2/(C1nε)
1/2. Thus

we have E‖∇F (θ̃)‖2 ≤ C3ζ, where C1, C2, C3 are some constants.

4.7 Experiments

This section presents results from experiments that evaluate our method’s performance on

different nonconvex ERM problems and different datasets. All experiments are implemented

in Pytorch platform version 1.2.0 within Python 3.7.6. on a local machine which comes with

Intel Xeon 4214 CPUs and NVIDIA GeForce RTX 2080Ti GPU (11G GPU RAM).
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4.7.1 Nonconvex Logistic Regression

We first consider the binary logistic regression problem with a nonconvex regularizer (RSP16)

min
θ∈Rd

1

n

n∑
i=1

yi log φ(x>i θ) + (1− yi) log
[
1− φ(x>i θ)

]
+ λ

d∑
i=1

θ2
j/(1 + θ2

j ),

where φ(x) = 1/
(
1 + exp(−x)

)
is the sigmoid function, θj is the j-th coordinate of θ, and

λ > 0 is the regularization parameter. We set λ = 0.001 in this experiment. Here, we

report results for the a9a dataset, a commonly-used binary classification benchmark with

32561 training examples, 16281 test examples, and 123 features. We found similar results

for the ijcnn1 dataset (49990 training examples, 91701 test examples, 22 features), which

are presented in Section A in the supplemental material.

Baseline methods. We compare our method (DP-SRM) with random round private

stochastic gradient descent (RRPSGD) proposed by (ZZM17b) , differentially private gradi-

ent descent (DP-GD) proposed by (WYX17b), and differentially private adaptive gradient

descent (DP-AGD) proposed by (LK18b).

Gradient clipping and privacy tracking. We use the gradient clipping technique of

(ACG16b) to ensure that at t-th iteration of Algorithm 4, ‖∇fi(θt)‖2 and ‖∇fi(θt) −

∇fi(θt−1)‖2 are upper bounded by some predefined values C1 and C2, respectively. This will

ensure that the sensitivity of the gradient estimator vt is upper bounded by 2
(
(1−γ)C1+γC2

)
(see (4.6.1)), and gives us the desired privacy protection. At each iteration, we add the Gaus-

sian noise with variance σ2, and keep track of the RDP according to Lemma 4.3.7 and transfer

it to (ε, δ)-DP according to Lemma 4.3.9.

Parameters. For all the algorithms, the step size is tuned around the theoretical values

to give the fastest convergence using grid search. For our method, we tune the batch size

b by searching the grid {50, 100, 200}. We set C1 = 1, C2 = 0.01 and γ = C2. We choose

ε ∈ {0.2, 0.5} and δ = 10−5.

Results. Due to the randomized nature of all the algorithms, the experimental results are
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Table 4.2: Comparison of different algorithms on a9a dataset when ε ∈ {0.2, 0.5} and

δ = 10−5. We use the STORM algorithm (CO19) as the non-private baseline.

Privacy Non-private
Method Test Error

Data
CPU time (s) Gradient Norm

Budget Baseline Passes

ε = 0.2 0.3346

DP-GD 0.4155 (0.0107) 20 1.245 0.0953 (0.0212)

DP-AGD 0.3713 (0.0043) 360 96.21 0.0437 (0.0020)

RRPSGD 0.4019 (0.0033) 8 39.61 0.2175 (0.0116)

(0.007) DP-SRM 0.3579 (0.0009) 4 0.6007 0.0528 (0.0042)

ε = 0.5 0.3346

DP-GD 0.3859 (0.0057) 20 1.261 0.0866 (0.0129)

DP-AGD 0.3627 (0.0038) 365 95.45 0.0402 (0.0022)

RRPSGD 0.3861 (0.0028) 10 52.32 0.1454 (0.0126)

(0.007) DP-SRM 0.3506 (0.0011) 5 0.7383 0.0502 (0.0061)

obtained by averaging the results over 30 runs. Figures 4.1 shows the objective function

value and the gradient norm of different algorithms for privacy budgets ε ∈ {0.2, 0.5} on

a9a datasets. We also report the 95% confidence interval of these results. We can see from

the plots that Our DP-SRM algorithm outperforms the other three baseline algorithms in

terms of the objective loss, gradient norm, and convergence rate by a large margin. Table 4.2

summarizes the test error of different algorithms as well as the CPU time (in seconds) of

the training process. The results also corroborate the advantages of our method in terms of

accuracy and efficiency.

4.7.2 Convolutional Neural Networks

We compare our algorithm with the differentially private stochastic gradient descent (DP-

SGD) algorithm proposed by (ACG16b) on training convolutional neural networks for image

classification on both MNIST (LBB98) and CIFAR-10 (Kri09) datasets.
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(d) ε = 0.5

Figure 4.1: Results for nonconvex logistic regression on a9a dataset. (a), (b) illustrate the

objective loss versus the number of epochs. (c), (d) present the gradient norm versus the

number of epochs.
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Figure 4.2: Results on MNIST dataset. (a), (b) depict the test error under the privacy

budget ε = 3.0. (c), (d) illustrate the test error under the privacy budget ε = 1.2.
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(c) ε = 4.0
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(d) ε = 4.0

Figure 4.3: Results for CNN6 on CIFAR-10 dataset. (a), (b) depict the test error under the

privacy budget ε = 2.0. (c), (d) illustrate the test error under the privacy budget ε = 4.0

Architecture for MNIST. For MNIST dataset, we consider a 4 layer CNN 1, which can

1https://github.com/facebookresearch/pytorch-dp.
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achieve 99% classification accuracy on the test dataset after training with SGD.

Parameters for MNIST. We choose privacy budgets ε ∈ {1.2, 3.0, 7.0}, and set δ =

10−5. To ensure the privacy guarantee (see (4.6.1)), we set the clipping parameter C1 =

1.5 for the term ‖∇fi(θt)‖2. For the term ‖∇fi(θt) − ∇fi(θt−1)‖2, we choose the clipping

parameter C2 by searching the grid {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. For both DP-SGD and

DP-SRM, we tune the batch size b by searching the grid {256, 512, 1024} and the step size by

{0.01, 0.05, 0.1, 0.25, 0.5}. For DP-SRM, we tune the batch size b0 by {b, 2b, 4b}. In addition,

we set the momentum parameter γ = C2.

Results for MNIST. Figures 4.2 illustrates the average test error and the corresponding

95% confidence interval of different methods versus the number of iterations as well as the

training time (in seconds) under the privacy budgets ε = 1.2 and ε = 3.0 over 30 trials. We

see similar results under the privacy budget ε = 7.0, and thus defer them in Section A in

the supplemental material. The CNN trained by the non-private SGD can achieve 1% test

error after 20 epochs. Figure 4.2(a) and Figure 4.2(c) show that our proposed method can

achieve 3.62% and 4.49% test errors when ε = 3.0 and ε = 1.2, which are better than DP-

SGD with 3.81% and 5.33% test errors. Besides, our method converges faster than DP-SGD.

Figure 4.2(a) and Figure 4.2(b) demonstrate that compared with DP-SGD, our method only

takes 0.3× iterations and 0.4× training time to achieve comparable performances under the

privacy budget ε = 3.0.

Architecture for CIFAR-10. We consider two convolutional neural networks for CIFAR-

10. The first one is a five layer CNN with two convolutional layers and three fully connected

layers, and we call it CNN5 2. For CNN5, we train it from the scratch using our DP-SRM

method and the DP-SGD method (ACG16b) and compare their performances in terms of the

model accuracy, iteration numbers and the training time. For the second one, we consider

a similar architecture as in (ACG16b), which has three convolutional layers with 32, 64,

2https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html.
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128 filters in each convolution layer and three fully connected layers, and we denote it by

CNN6. For CNN6, we follow the same experiment setting as in (ACG16b): we use CIFAR-

100 dataset as a public dataset, and first train a network with the same architecture on this

dataset as the pretrained model. Then, we initialize the convolutional layers of CNN6 using

the cnvolutional layers of the pretrained model, and only train the fully connected layers of

CNN6 on CIFAR-10 dataset using different private methods.

Parameters for CNN6. We choose three different privacy budgets ε ∈ {2.0, 4.0, 8.0}

and δ = 10−5. We set the clipping parameter C1 = 2 for the term ‖∇fi(θt)‖2. For the

term ‖∇fi(θt) − ∇fi(θt−1)‖2, we choose the clipping parameter C2 by searching the grid

{0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}. For DP-SGD, we tune the batch size by searching

the grid {64, 128, 256} and the step size by {0.01, 0.02, 0.05, 0.1, 0.15, 0.2}. For DP-SRM, we

tune the batch size b by searching the grid {64, 128, 256}, step size by {0.01, 0.02, 0.05, 0.1, 0.15, 0.2},

and b0 by {b, 2b, 4b}. In addition, we set the momentum parameter γ = C2.

Results for CNN6. Figure 4.3 presents the average test error and the corresponding 95%

confidence interval of different methods versus the number of iterations as well as the training

time (in seconds) over 30 trials. The CNN6 trained by the non-private SGD will have 18.5%

test error after 150 epochs. The results show that our proposed method can achieve 33.2%

and 31.0% test errors given ε = 2.0 and ε = 4.0, which are comparable to the results of

DP-SGD with 33.2% and 31.2% under the same privacy budgets. However, we can see from

the plots that our method can significantly reduce the iteration numbers and the training

time. For example, when ε = 4.0, DP-SGD takes 1.3 × 104 iterations and 1115 seconds to

achieve 31.2% test error. In sharp contrast, our method only takes 6.8× 103 iterations and

643 seconds to achieve 31.0% test error. We can observe similar results for CNN5, which are

presented in Section A in the supplemental material.
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4.8 Additional experiments

In this section, we present additional experiment results on nonconvex logistic regression and

convolutional neural networks.

4.8.1 Results on ijcnn1 dataset

In this subsection, we present the additional experiment of our method on ijcnn1 dataset.

In this dataset, we follow the same settings as before: we set the clipping thresholds C1 =

1, C2 = 0.01, and set the momentum parameter γ = C2. Figures 4.4 illustrates the objective

function value and the gradient norm of different algorithms under various privacy budgets

ε ∈ {0.2, 0.5}. We can see that our proposed algorithm (DP-SRM) outperforms the other

three baseline algorithms (RRPSGD, DP-GD, and DP-AGD) in terms of the objective loss,

gradient norm, and convergence rate by a large margin. Table 4.3 shows the test error of

different algorithms as well as the CPU time (in seconds) of the training process on ijcnn1

dataset. It demonstrates that our algorithm convergences faster and can achieve a better

test error on the test set than other baselines.
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Figure 4.4: Results for nonconvex logistic regression on ijcnn1 dataset. (a), (b) show the

objective loss versus the number of epochs. (c), (d) illustrate the gradient norm versus the

number of epochs.
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Table 4.3: Comparison of different algorithms on ijcnn1 dataset under different privacy

budgets ε ∈ {0.2, 0.5} and δ = 10−5. Note that the non-private baseline denotes the test

error of the non-private STORM algorithm (CO19).

Privacy Non-private
Method Test Error

Data
CPU time Gradient Norm

Budget Baseline Passes

ε = 0.2 0.2096

DP-GD 0.3160 (0.0120) 20 0.5180 0.0184 (0.0024)

DP-AGD 0.2645 (0.0044) 346 90.05 0.0133 (0.0018)

RRPSGD 0.3110 (0.0106) 8 47.64 0.0175 (0.0023)

(0.002) DP-SRM 0.2503 (0.0090) 4 0.4748 0.0117 (0.0008)

ε = 0.5 0.2096

DP-GD 0.2717 (0.0081) 20 0.4990 0.0171 (0.0024)

DP-AGD 0.2416 (0.0029) 365 94.28 0.0397 (0.0025)

RRPSGD 0.3033 (0.0110) 10 59.06 0.0160 (0.0018)

(0.002) DP-SRM 0.2341 (0.0042) 5 0.4368 0.0082 (0.0005)

4.8.2 Additional Results on MNIST and CIFAR-10 datasets

In this subsection, we present additional experiment results on convolutional neural networks.

Figures 4.5 shows the average test error (over 30 trials) and the corresponding 95% confidence

interval of different methods versus the number of iterations as well as the training time under

different privacy budgets on MNIST and CIFAR-10 datasets.

Results on MINST dataset. We can see from Figure 4.5(a) and Figure 4.5(b) that our

proposed method can achieve 2.91% test error when ε = 7.0, which is comparable to the

2.93% test errors achieved by DP-SGD. Furthermore, the results show that our method is

more efficient than DP-SGD in terms of iteration numbers and the training time. More

specifically, our method is more than 2× faster than DP-SGD to achieve the desired test

error.

Parameters for CNN5. We choose three different privacy budgets ε ∈ {6.0, 8.0, 10.0},
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Figure 4.5: Results for CNN on MNIST and CIFAR-10 datasets. (a), (b) illustrate the

results on MNIST dataset. (c), (d) demonstrate the results for CNN6 on CIFAR-10 dataset.

(e)-(j) show the results for CNN5 on CIFAR-10 dataset.

and set δ = 10−5. We set the clipping parameter C1 = 2 for the term ‖∇fi(θt)‖2. For the

term ‖∇fi(θt) − ∇fi(θt−1)‖2, we choose the clipping parameter C2 by searching the grid

{0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. For DP-SGD, we tune the batch size by searching the grid

{32, 64, 128} and the step size by {0.01, 0.02, 0.05, 0.1, 0.2}. For DP-SRM, we tune the batch

size b by searching the grid {32, 64, 128}, step size by {0.01, 0.02, 0.05, 0.1, 0.2}, and b0 by

{b, 2b, 4b}. In addition, we set the momentum parameter γ = C2.

Results for CNN5 on CIFAR-10 dataset. Figures 4.5(e)-4.5(j) present the average

test error of different methods versus the number of iterations as well as the training time

under different privacy budgets for CNN5 on CIFAR-10 dataset. The CNN5 trained by the
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non-private SGD will have 39.5% test error after 100 epochs. The results show that that

our proposed method has 50.3%, 48.2% and 47.1% test errors when ε = 6.0, ε = 8.0 and

ε = 10.0. Nevertheless, DP-SGD has 51.0%, 50.2% and 49.3% test errors under the privacy

budgets ε = 6.0, ε = 8.0 and ε = 10.0, which are worse than our method. Furthermore,

we can see from the plots that compared with DP-SGD, our method can reduce both the

iteration numbers and the training time.

Results for CNN6 on CIFAR-10 dataset. Figure 4.5(c) and Figure 4.5(d) illustrate the

average test error of different methods versus the number of iterations and the training time

for CNN6 on CIFAR-10 dataset. We can see from the results that that our proposed method

can achieve 29.3% test errors given the privacy budget ε = 8.0, which are comparable to the

results of DP-SGD with 29.4% under the same privacy budget. However, we can see from

the plots that our method can significantly reduce the iteration numbers and the training

time. When ε = 8, DP-SGD takes 5.8 × 104 iterations and 5176 seconds to achiever 29.4%

test error. In sharp contrast, our method only takes 2.6 × 104 iterations and 2589 seconds

to achieve 29.3% test error.

4.9 Proof of main results

In this section, we present the proofs of our main results.

4.9.1 Proof of Theorem 4.5.1

We will provide the privacy guarantee of Algorithm 4 in this subsection. To this end, we

need the following composition rule for RDP.

Lemma 4.9.1 ((Mir17)). If k randomized mechanisms Mi : Sn → R for i ∈ [k], satisfy

(α, ρi)-RDP, then their composition
(
M1(S), . . . ,Mk(S)

)
satisfies (α,

∑k
i=1 ρi)-RDP. More-

over, the input of the i-th mechanism can base on the outputs of previous (i−1) mechanisms.
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We will first show that our proposed algorithm satisfies RDP using Lemma 4.3.7 and

Lemma 4.9.1. Then we will transform it into (ε, δ)-DP based on Lemma 4.3.9. For the given

dataset S, we use S ′ to denote its neighboring dataset with one different example indexed by

i′ in the following discussion. According to Algorithm 4, we use the followingMt to denote

the mechanism at t-th iteration

Mt =

 ∇FBt(θt) + (1− γ)
(
vt−1
p −∇FBt(θt−1)

)
+ ut, t > 0,

v0 + u0, t = 0.
(4.9.1)

Therefore, our goal is to show the privacy guarantees of Mt for t = 0, 1, . . . , T .

Case 1: If t = 0, we have v0 = ∇FB0(θ0) and M0 is equivalent to the following Gaussian

mechanism

G0 = ∇FB0(θ0) + u0,

where u0 ∼ N(0, σ2
0Id). Note that the mechanism G0 is based on the subsampling, thus we

will use the results of privacy-amplification by subsampling, i.e., Lemma 4.3.7, to show that

G0 satisfies RDP given appropriate u0. To this end, we first consider the following Gaussian

mechanism without subsampling

G̃0 =
1

b0

n∑
i=1

∇fi(θ0) + u0.

Sensitivity. Consider the query on the dataset S as follows q̃0(S) =
∑n

i=1∇fi(θ0)/b0,

where q̃0(S) denotes that the query is based on the dataset S. Thus, we have

q̃0(S)− q̃0(S ′) =
1

b0

(
∇fi(θ0)−∇fi′(θ0)

)
.

Since each component function is G-Lipschitz, we can obtain the `2-sensitivity of this query

as follows

∆̃0 =
1

b0

‖∇fi(θ0)−∇fi′(θ0)‖2 ≤
2G

b0

. (4.9.2)
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Privacy guarantee of G0. By Lemma 4.3.7, if the Gaussian noise u0 in G̃0 has the following

variance

σ2
0 =

14TαG2

βn2ε
, (4.9.3)

the mechanism G̃0 satisfies
(
α, βεn2/

(
7b2

0T
))

-RDP. Therefore, according to the privacy-

amplification by subsampling result in Lemma 4.3.7, we have that the mechanism G0 satisfies

(α, ρ0)-RDP, where ρ0 = βε/T . Furthermore, the variance σ2
0 should satisfy the following

condition

σ2
0

∆̃2
0

=
σ2

0b
2
0

4G2
=

7b2
0Tα

βn2ε
≥ 0.7.

And the parameter α should satisfy α ≤ 1 + 2(σ0/∆̃0)2 log
(
1/τα(1 + (σ0/∆̃0)2)

)
/3.

Case 2: If t > 0, according to the definition of Mt in (4.9.1), we consider the following

Gaussian mechanism

Gt = ∇FBt(θt)− (1− γ)∇FBt(θt−1) + ut.

Now, we are going to show that Gt satisfies RDP given appropriate ut. Since the mechanism

Gt is based on the subsampling, we will use the similar proof procedure as in Case 1 to

show that Gt satisfies RDP. Thus we consider the following Gaussian mechanism without

subsampling

G̃t =
1

b

n∑
i=1

∇fi(θt)− (1− γ)
1

b

n∑
i=1

∇fi(θt−1) + ut.

Sensitivity. We consider the following query without subsampling

q̃t(S) =
1

b

n∑
i=1

∇fi(θt)− (1− γ)
1

b

n∑
i=1

∇fi(θt−1).

Thus we have

q̃t(S)− q̃t(S
′) =

1

b

(
∇fi(θt)− (1− γ)∇fi(θt−1)−∇fi′(θt) + (1− γ)∇fi′(θt−1)

)
.
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As a result, we can obtain the `2-sensitivity of the query q̃t as follows

∆̃t =
1

b

∥∥(1− γ)
(
∇fi(θt)−∇fi(θt−1)−∇fi′(θt) +∇fi′(θt−1)

)
+ γ
(
∇fi(θt)−∇fi′(θt)

)∥∥
2

≤ 2L(1− γ)

b
‖θt − θt−1‖2 +

2γG

b
,

where the inequality is due to L-Lipschitz continuous gradient and G-Lipschitz of each com-

ponent function. Furthermore, according to the update rule of Algorithm 4 and the definition

of ηt−1, we have

‖θt − θt−1‖2 ≤ ηt−1‖vt−1
p ‖2 ≤ min

{
ζ

n0L‖vt−1
p ‖2

,
1

2n0L

}
· ‖vt−1

p ‖2 ≤
ζ

n0L
,

which implies that

∆̃t ≤
2L(1− γ)

b
‖θt − θt−1‖2 +

2γG

b
≤

2
(
(1− γ)ζ/n0 + γG

)
b

. (4.9.4)

Privacy guarantee of Gt. By Lemma 4.3.7, if we the Gaussian noise ut in G̃t has the

variance as follows

σ2
t =

14Tα
(
(1− γ)ζ/n0 + γG

)2

βn2ε
, (4.9.5)

the mechanism G̃t satisfies
(
α, βεn2/

(
7b2T

))
-RDP. Thus based on the privacy-amplification

by subsampling result (Lemma 4.3.7), we can get that the mechanism Gt satisfies (α, ρ)-RDP,

where ρ = βε/T . In addition, the variance σ2
t should satisfy the following condition

σ2
t

∆̃2
t

=
σ2
t b

2

4
(
(1− γ)ζ/n0 + γG

)2 =
7b2Tα

βn2ε
≥ 0.7.

And the parameter α should satisfy α ≤ 1 + 2(σt/∆̃t)
2 log

(
1/τα(1 + (σt/∆̃t)

2)
)
/3. As a

result, we show that Gt satisfies (α, ρ)-RDP.

Privacy guarantee of Mt. By the definition of the mechanism Mt in (4.9.1), Mt is a

composition of G0, . . . ,Gt, i.e.,Mt = (G0, . . . ,Gt). According to the composition property of

RDP, i.e., Lemma 4.9.1, we have Mt satisfies (α, ρ0 + (t− 1)ρ)-RDP. Since ρ0 = ρ = βε/T ,
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we have that after T ′ iterations of Algorithm 4, it satisfies (α, βT ′ε/T )-RDP. According to

Lemma 4.3.9 and α = log(1/δ)/
(
(1− β)ε

)
+ 1, we have that after T ′ iterations, Algorithm 4

satisfies (T ′ε/T, δ)-DP. As a result, we have that for each θt, where t = 1, . . . , T , it satisfies

(ε, δ)-DP. Finally, by the definition of θ̃, we have θ̃ satisfies (ε, δ)-DP.

4.9.2 Proof of Theorem 4.5.4

In this subsection. we provide the utility guarantee of our method. According to the as-

sumption that each component function has L-Lipschitz continuous gradient, we can obtain

that

‖∇F (x)−∇F (y)‖2 =
1

n

n∑
i=1

‖∇fi(x)−∇fi(y)‖2 ≤ L‖x− y‖2,

which implies that F (x) has L-Lipschitz continuous gradient. Thus we have

F (θt+1) ≤ F (θt) + 〈∇F (θt),θt+1 − θt〉+
L

2
‖θt+1 − θt‖2

2

= F (θt)− ηt〈∇F (θt),vtp〉+
η2
tL

2

∥∥vtp∥∥2

2

= F (θt) +
ηt
2

∥∥∇F (θt)− vtp
∥∥2

2
− ηt

2

∥∥∇F (θt)
∥∥2

2
− ηt

(
1

2
− ηtL

2

)∥∥vtp∥∥2

2
,

where the last equality is due to the fact that 2〈∇F (θt),vtp〉 =
∥∥∇F (θt)

∥∥2

2
+
∥∥vtp∥∥2

2
−∥∥∇F (θt)− vtp

∥∥2

2
. Since ηt ≤ 1/(2n0L), we can obtain that

F (θt+1) ≤ F (θt) +
1

4n0L

∥∥∇F (θt)− vtp
∥∥2

2
− ηt

4

∥∥vtp∥∥2

2
.

In addition, we have

ηt
4

∥∥vtp∥∥2

2
=

ζ2

8n0L
min

{
2
∥∥vtp/ζ∥∥2

,
∥∥vtp/ζ∥∥2

2

}
≥
ζ
∥∥vtp∥∥2

− 2ζ2

4n0L
.

Thus we have

F (θt+1) ≤ F (θt) +
1

4n0L

∥∥∇F (θt)− vtp
∥∥2

2
−
ζ
∥∥vtp∥∥2

4n0L
+

ζ2

2n0L
. (4.9.6)
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Summing over t = 0, . . . , T − 1 and taking expectation in (4.9.6), we can get

ζ

4n0L

T−1∑
t=0

E
∥∥vtp∥∥2

≤ F (θ0)− EF (θT ) +
1

4n0L

T−1∑
t=0

E
∥∥∇F (θt)− vtp

∥∥2

2
+

Tζ2

2n0L

≤ F (θ0)− F (θ∗) +
1

4n0L

T−1∑
t=0

E
∥∥∇F (θt)− vtp

∥∥2

2
+

Tζ2

2n0L
. (4.9.7)

For the term E
∥∥∇F (θt)−vtp

∥∥2

2
, we can bound it as follows: we first consider the conditional

expectation

Et
∥∥vtp −∇F (θt)

∥∥2

2
= Et

∥∥(1− γ)
(
vt−1
p −∇FBt(θt−1)

)
+∇FBt(θt)−∇F (θt) + ut

∥∥2

2

= Et
∥∥(1− γ)

(
vt−1
p −∇F (θt−1)

)
+ (1− γ)∇F (θt−1)− (1− γ)∇FBt(θt−1)

+∇FBt(θt)−∇F (θt)
∥∥2

2
+ Et‖ut‖2

2

= Et
∥∥(1− γ)

(
vt−1
p −∇F (θt−1)

)
+ (1− γ)

(
∇FBt(θt)−∇FBt(θt−1)

+∇F (θt−1)−∇F (θt)
)

+ γ
(
∇FBt(θt)−∇F (θt)

)∥∥2

2
+ Et‖ut‖2

2,

(4.9.8)

where Et is taken over the randomness at the t-th iteration given the observations after

(t− 1)-th iteration, the first equation comes from the definition of vtp, the second one is due

to the independence of the random variables. Therefore, we can obtain that

Et
∥∥vtp −∇F (θt)

∥∥2

2
= (1− γ)2Et

∥∥vt−1
p −∇F (θt−1)

∥∥2

2
+ 2γ2Et

∥∥∇FBt(θt)−∇F (θt)
∥∥2

2
+ Et‖ut‖2

2

+ 2(1− γ)2Et
∥∥∇FBt(θt)−∇FBt(θt−1) +∇F (θt−1)−∇F (θt)

∥∥2

2
,

(4.9.9)
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where the equality is due to the expansion of (4.9.8) and Cauchy-Schwartz inequality. In

addition, we have

Et
∥∥∇F (θt)−∇F (θt−1)−∇FBt(θt) +∇FBt(θt−1)

∥∥2

2

≤ 1

b
· 1

n

n∑
i=1

∥∥∇F (θt)−∇F (θt−1)−∇fi(θt) +∇fi(θt−1)
∥∥2

2

≤ 1

b
· 1

n

n∑
i=1

∥∥∇fi(θt)−∇fi(θt−1)
∥∥2

2

≤ L2

b
‖θt − θt−1‖2

2,

where the first inequality is due to Lemma 4.11.1, the second one comes from the fact that

E‖X −EX‖2
2 ≤ E‖X‖2

2 for any random variable X, and the last one is due to the gradient

Lipschitz property of each component function. According to the update rule, we have

‖θt − θt−1‖2 ≤ ηt−1

∥∥vt−1
p

∥∥
2
≤ min

{
ζ

n0L
∥∥vt−1

p

∥∥
2

,
1

2n0L

}
·
∥∥vt−1

p

∥∥
2
≤ ζ

n0L
,

which implies

Et
∥∥∇F (θt)−∇F (θt−1)−∇FBt(θt) +∇FBt(θt−1)

∥∥2

2
≤ ζ2

n2
0b
. (4.9.10)

Thus plugging (4.9.10) into (4.9.9), we can obtain that

Et
∥∥vtp −∇F (θt)

∥∥2

2
≤ (1− γ)2

∥∥vt−1
p −∇F (θt−1)

∥∥2

2
+

2(1− γ)2L2

b
‖θt − θt−1‖2

2

+ 2γ2Et
∥∥∇FBt(θt)−∇F (θt)

∥∥2

2
+ Et‖ut‖2

2

≤ (1− γ)2
∥∥vt−1

p −∇F (θt−1)
∥∥2

2
+

2(1− γ)2ζ2

n2
0b

+
2γ2G2

b
+ Et‖ut‖2

2,

(4.9.11)

where the second inequality follows the following inequality (using Lemma 4.11.1, E‖X −

EX‖2
2 ≤ E‖X‖2

2, and the G-Lipschitz of each component function)

Et
∥∥∇FBt(θt)−∇F (θt)

∥∥2

2
≤ 1

b
· 1

n

n∑
i=1

∥∥∇fi(θt)∥∥2

2
≤ G2

b
. (4.9.12)
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Therefore, taking expectations over all iterations in (4.9.11), we can get

E
∥∥vtp −∇F (θt)

∥∥2

2
≤ (1− γ)2E

∥∥vt−1
p −∇F (θt−1)

∥∥2

2
+

2(1− γ)2ζ2

n2
0b

+
2γ2G2

b
+ dσ2.

(4.9.13)

Following the proof of Lemma 9 in (YLL20), we have

γ

T−1∑
t=0

E
∥∥vtp −∇F (θt)

∥∥2

2
≤ 2T (1− γ)2ζ2

n2
0b

+
2Tγ2G2

b
+ Tdσ2 + E

∥∥v0
p −∇F (θ0)

∥∥2

2

≤ 2T (1− γ)2ζ2

n2
0b

+
2Tγ2G2

b
+ Tdσ2 +

G2

b0

+ dσ2
0,

where the last line comes from the definition of v0
p = ∇FB0(θ0) + u0 and the inequality

E
∥∥∇FB0(θ0)−∇F (θ0)

∥∥2

2
≤ G2/b0 (see equation (4.9.12)). Therefore, we can obtain that

T−1∑
t=0

E
∥∥vtp −∇F (θt)

∥∥2

2
≤ 2T (1− γ)2ζ2

n2
0γb

+
2TγG2

b
+
Tdσ2 + dσ2

0

γ
+
G2

γb0

. (4.9.14)

Combining (4.9.7) and (4.9.14), we can get

ζ

4n0L

T−1∑
t=0

E
∥∥vtp∥∥2

≤ F (θ0)− F (θ∗) +
1

4n0L

T−1∑
t=0

E
∥∥∇F (θt)− vtp

∥∥2

2
+

Tζ2

2n0L

≤ F (θ0)− F (θ∗) +
T (1− γ)2ζ2

2n3
0Lγb

+
TγG2

4Ln0b
+
Tdσ2 + dσ2

0

4n0Lγ
+

G2

4Lγn0b0

+
Tζ2

2n0L
.

Hence we have

1

T

T−1∑
t=0

E
∥∥vtp∥∥2

≤ 4n0L

Tζ

(
F (θ0)− F (θ∗)

)
+

2ζ

n2
0γb

+
γG2

ζb
+
dσ2 + dσ2

0/T

ζγ
+

G2

Tζγb0

+ 2ζ

≤ 6ζ +
2ζ

n2
0γb

+
γG2

ζb
+
dσ2 + dσ2

0/T

ζγ
+

G2

Tζγb0

, (4.9.15)

where the first inequality is due to T = b4n0L
(
F (θ0)−F (θ∗)

)
/ζ2c+1. In addition, according

to (4.9.14) and Jensen’s inequality, we have

1

T

T−1∑
t=0

E
∥∥∇F (θt)− vtp

∥∥
2
≤
√

2ζ

n0

√
γb

+

√
2γG√
b

+

√
dσ +

√
dσ0/
√
T

√
γ

+
G√
Tγb0

. (4.9.16)

88



Thus by the definition of θ̃, we have

E‖∇F (θ̃)‖2 =
1

T

T−1∑
t=0

E‖∇F (θt)‖2

≤ 1

T

T−1∑
t=0

E
∥∥vtp∥∥2

+
1

T

T−1∑
t=0

E
∥∥∇F (θt)− vtp

∥∥
2

≤ 6ζ +
2ζ

n2
0γb

+
γG2

ζb
+
dσ2

ζγ
+
dσ2

0

Tζγ
+

G2

Tζγb0

+

√
2ζ

n0

√
γb

+

√
2γG√
b

+

√
dσ
√
γ

+

√
dσ0√
Tγ

+
G√
Tγb0

,

(4.9.17)

where the second inequality comes from (4.9.15) and (4.9.16). Without loss of generality,

we can assume G > 1. Let γ2 = 2ζ2/n2
0, b = G2/(n0ζ), b0 = G2/(ζLDF ), where DF =

F (θ0)− F (θ∗) and F (θ∗) is a global minimum of F , by the definition of T , we can get

E‖∇F (θ̃)‖2 ≤ 15ζ +
dσ2

ζγ
+

√
dσ
√
γ

+
dσ2

0

Tζγ
+

√
dσ0√
Tγ

. (4.9.18)

Furthermore, we have

σ2 =
14T

(
(1− γ)ζ/n0 + γG

)2
log(1/δ)

n2ε2
, σ2

0 =
14TG2 log(1/δ)

n2ε2
. (4.9.19)

Plugging (4.9.19) into (4.9.18), we can obtain

E‖∇F (θ̃)‖2 ≤ 15ζ +
C1TdζG

2 log(1/δ)

n2
0n

2ε2γ
+

√
C1Td log(1/δ)ζG

n0nε
√
γ

+
C2dG

2 log(1/δ)

n2ε2ζγ

+

√
C2d log(1/δ)G

nε
√
γ

≤ 15ζ +
C3LDFG

2d log(1/δ)

n2ε2ζ2
+

√
C4G2LDFd log(1/δ)

nε
√
ζ

+
C5n0dG

2 log(1/δ)

n2ε2
+

√
C6n0d log(1/δ)G

nε
√
ζ

. (4.9.20)

Let ζ =
√
G
(
LDFd log(1/δ)

)1/4
/
√
nε, n0 = LDF/ζ, we have T = 4n0nε

√
LDF/

(
G
√
d log(1/δ)

)
,

and we can get

E‖∇F (θ̃)‖2 ≤ C7

√
G(LDFd log(1/δ))1/4

√
nε

,
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where {Ci}7
i=1 are absolute constants.

Gradient Complexity. Since we have b = G2/(n0ζ), b0 = G2/(ζLDF ), the total

gradient complexity is

2(T − 1)b+ b0 ≤
8LDn0

ζ2
· G

2

n0ζ
+

G2

ζLD
.

According to the definition of ζ, we have the total gradient complexity is O
(
(nε)3/2/d3/4 +

(nε)1/2/d1/4
)
.

4.10 Proof of Lemma 4.3.7

Without loss of generality, we assume ∆(q) = 1. According to Theorem 9 in (WBK19), we

have

ρ′(α) ≤ 1

α− 1
log

(
1 + τ 2

(
α

2

)
min

{
4(eρ(2) − 1), 2eρ(2)

}
+

α∑
j=3

τ j
(
α

j

)
2e(j−1)ρ(j)

)
, (4.10.1)

where τ is the subsample rate, ρ(j) = j/(2σ2). Next, we will show that the summation term

in the right hand side of the above inequality is dominated by the second term under certain

conditions. First of all, when σ2 is large, i.e., σ2 ≥ 0.7, we have

min
{

4(eρ(2) − 1), 2eρ(2)
}
≤ 6/σ2,

which implies that

τ 2

(
α

2

)
min

{
4(eρ(2) − 1), 2eρ(2)

}
≤ τ 2

(
α

2

)
6/σ2.

Next, we consider the summation term in (4.10.1), and we have

α∑
j=3

τ j
(
α

j

)
2e(j−1)ρ(j) ≤ τ 2

(
α

2

)( α∑
j=3

τ j−2αj−2e
(α−1)j

2σ2

)

≤ τ 2

(
α

2

)
ταe

3(α−1)

2σ2

1− ταe
α−1

2σ2

,
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where the first inequality is due to the fact that

e(j−1)ρ(j) = e
(j−1)j

2σ2 ≤ e
(α−1)j

2σ2 and

(
α

j

)
=

α!

j!(α− j)!
≤ α2αj−2

3!
.

In addition, the last inequality comes from the condition that τα exp
(
(α − 1)/(2σ2)

)
< 1

and the sum of the geometric sequence. Therefore, as long as

α− 1 ≤ 2

3
σ2 log

1

τα(1 + σ2)
, (4.10.2)

we have

α∑
j=3

τ j
(
α

j

)
2e(j−1)ρ(j) ≤ τ 2

(
α

2

)
1

σ2
.

In addition, we require that τα exp
(
(α− 1)/(2σ2)

)
< 1. By plugging the condition of α into

the above requirement, we can obtain that this condition can hold if τ < 1.

As a result, under the conditions that σ2 ≥ 0.7, α ≤ log(1/τ
(
1 + σ2)

)
, we can obtain

that

ρ′(α) ≤ 1

α− 1
log

(
1 + τ 2

(
α

2

)
10

σ2

)
≤ 1

α− 1
τ 2

(
α

2

)
7

σ2
≤ 3.5ατ 2/σ2.

4.11 Auxiliary Lemmas

Lemma 4.11.1. (LJC17) Consider vectors ai satisfying
∑n

i=1 ai = 0. Let B be a uniform

random subset of {1, 2, . . . , n} with size m, we have

E
∥∥∥∥ 1

m

∑
i∈B

ai

∥∥∥∥2

2

≤ 1{|B| < n}
mn

n∑
i=1

‖ai‖2
2.

4.12 Conclusions

We propose an efficient differentially private algorithm for nonconvex ERM. We prove both

privacy and utility guarantees for our method. Both theoretical analyses and experiments

91



demonstrate the advantage of our algorithms compared with the state-of-the-art. It would

be very interesting to study our method’s performances in super large or even industrial level

neural networks. It would also be very interesting to study the optimization lower bound for

the differentially private nonconvex stochastic optimization problem.
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CHAPTER 5

Dp-lssgd: A Stochastic Optimization Method to Lift

the Utility in Privacy-Preserving ERM

5.1 Introduction

Many released machine learning (ML) models are trained on sensitive data that are often

crowdsourced or contain private information (YKL11; FYZ17; LGN17). With overparame-

terization, deep neural nets (DNNs) can memorize the private training data, and it is possible

to recover them and break the privacy by attacking the released models (SSS17a). For ex-

ample, Fredrikson et al. demonstrated that a model-inversion attack can recover training

images from a facial recognition system (FJR15). Protecting the private data is one of the

most critical tasks in ML.

Differential privacy (DP) (DKM06a) is a theoretically rigorous tool for designing al-

gorithms on aggregated databases with a privacy guarantee. The idea is to add a certain

amount of noise to randomize the output of a given algorithm such that the attackers cannot

distinguish outputs of any two adjacent input datasets that differ in only one entry.

For repeated applications of additive noise based mechanisms, many tools have been

invented to analyze the DP guarantee for the model obtained at the final stage. These

include the basic and strong composition theorems and their refinements (DKM06a; DRV10;

KOV15), the moments accountant (ACG16a), etc. Beyond the original notion of DP, there

are also many other ways to define the privacy, e.g., local DP (DJW14), concentrated/zero-

concentrated DP (DR16; BS16a), and Rényi-DP (RDP) (Mir17).
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Differentially private stochastic gradient descent (DP-SGD) reduces the utility of the

trained models severely compared with SGD. As shown in Figure 5.1, the training and

validation losses of the logistic regression on the MNIST dataset increase rapidly when the

DP guarantee becomes stronger. The convolutional neural net (CNN) 1 trained by DP-

SGD has much lower testing accuracy than the non-private one on the MNIST. We will

discuss the detailed experimental settings in Section 5.4. A natural question raised from

such performance degradations is:

Can we improve DP-SGD, with negligible extra computational complexity and memory

cost, such that it can be used to train general ML models with improved utility?
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Figure 5.1: Training (left) and validation (middle) losses of the logistic regression on the

MNIST trained by DP-SGD with (ε, δ = 10−5)-DP guarantee. (right): testing accuracy of a

simple CNN on the MNIST trained by DP-SGD with (ε, δ = 10−5)-DP guarantee.

We answer the above question affirmatively by proposing differentially private Laplacian

smoothing SGD (DP-LSSGD) to improve the utility in privacy-preserving empirical risk

minimization (ERM). DP-LSSGD leverages the Laplacian smoothing (OWY18) as a post-

processing to smooth the injected Gaussian noise in the differentially private SGD (DP-SGD)

to improve the convergence of DP-SGD in training ML models with DP guarantee.

1github.com/tensorflow/privacy/blob/master/tutorials/mnist_dpsgd_tutorial.py
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5.1.1 Our Contributions

The main contributions of our work are highlighted as follows:

• We propose DP-LSSGD and prove its privacy and utility guarantees for convex/nonconvex

optimizations. We prove that under the same privacy budget, DP-LSSGD achieves bet-

ter utility, excluding a small term that is usually dominated by the other terms, than

DP-SGD by a factor that is much less than one for convex optimization.

• We perform a large number of experiments logistic regression and CNN to verify the

utility improvement by using DP-LSSGD. Numerical results show that DP-LSSGD

remarkably reduces training and validation losses and improves the generalization of

the trained private models.

In Table 5.1, we compare the privacy and utility guarantees of DP-LSSGD and DP-SGD.

For the utility, the notation Õ(·) hides the same constant and log factors for each bound.

The constants d and n denote the dimension of the model’s parameters and the number of

training points, respectively. The numbers γ and β are positive constants that are strictly

less than one, and D0, Dσ, G are positive constants, which will be defined in Section 5.3.

Table 5.1: Utility and Differential Privacy Guarantees.

Algorithm DP Assumption Utility Measurement Reference

DP-SGD (ε, δ) convex Õ
(√

(D0+G2)d

(εn)

)
optimality gap (BST14a)

DP-SGD (ε, δ) nonconvex Õ
(√

d/(εn)
)

`2-norm of gradient (ZZM17a)

DP-LSSGD (ε, δ) convex Õ
(√

γ(Dσ+G2)d

(εn)

)
optimality gap This Work

DP-LSSGD (ε, δ) nonconvex Õ
(√
βd/(εn)

)
1 `2-norm of gradient This Work

1 Measured in the norm induced by A−1
σ , we will discuss this in detail in Section 5.4.
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5.1.2 Related Work

There is a massive volume of research over the past decade on designing algorithms for

privacy-preserving ML. Objective perturbation, output perturbation, and gradient perturba-

tion are the three major approaches to perform ERM with a DP guarantee. (CM08; CMS11a)

considered both output and objective perturbations for privacy-preserving ERM, and gave

theoretical guarantees for both privacy and utility for logistic regression and SVM. (SCS13)

numerically studied the effects of learning rate and batch size in DP-ERM. (WLF16) studied

stability, learnability and other properties of DP-ERM. (LK18a) proposed an adaptive per-

iteration privacy budget in concentrated DP gradient descent. The utility bound of DP-SGD

has also been analyzed for both convex and nonconvex smooth objectives (BST14a; ZZM17a).

(JWE18a) analyzed the excess empirical risk of DP-ERM in a distributed setting. Be-

sides ERM, many other ML models have been made differentially private. These include:

clustering (SCL15; YS15; BDL17), matrix completion (JTT18), online learning (JKT12a),

sparse learning (TTZ15; WG19a), and topic modeling (PFC16). (GM17) exploited the ill-

conditionedness of inverse problems to design algorithms to release differentially private

measurements of the physical system.

(SS15a) proposed distributed selective SGD to train deep neural nets (DNNs) with a

DP guarantee in a distributed system, however, the obtained privacy guarantee was very

loose. (ACG16a) considered applying DP-SGD to train DNNs in a centralized setting. They

clipped the gradient `2 norm to bound the sensitivity and invented the moment accountant

to get better privacy loss estimation. (PAE17) proposed Private Aggregation of Teacher

Ensembles/PATE based on the semi-supervised transfer learning to train DNNs, and this

framework improves both privacy and utility on top of the work by (ACG16a). Recently

(PSM18) introduced new noisy aggregation mechanisms for teacher ensembles that enable a

tighter theoretical DP guarantee. The modified PATE is scalable to the large dataset and

applicable to more diversified ML tasks.
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Laplacian smoothing (LS) can be regarded as a denoising technique that performs post-

processing on the Gaussian noise injected stochastic gradient. Denoising has been used in the

DP earlier: Post-processing can enforce consistency of contingency table releases (BCD07)

and leads to accurate estimation of the degree distribution of private network (HLM09).

(NTZ13) showed that post-processing by projecting linear regression solutions, when the

ground truth solution is sparse, to a given `1-ball can remarkably reduce the estimation

error. (BMS17) used Expectation-Maximization to denoise a class of graphical models’

parameters. (BW18) showed that in the output perturbation based differentially private

algorithm design, denoising dramatically improves the accuracy of the Gaussian mechanism

in the high-dimensional regime. To the best of our knowledge, we are the first to design

a denoising technique on the Gaussian noise injected gradient to improve the utility of the

trained private ML models.

5.1.3 Notation

We use boldface upper-case letters A, B to denote matrices and boldface lower-case letters

x, y to denote vectors. For vectors x and y and positive definite matrix A, we use ‖x‖2 and

‖x‖A to denote the `2-norm and the induced norm by A, respectively; 〈x,y〉 denotes the

inner product of x and y; and λi(A) denotes the i-th largest eigenvalue of A. We denote the

set of numbers from 1 to n by [n]. N (0, Id×d) represents d-dimensional standard Gaussian.

5.1.4 Organization

This paper is organized in the following way: In Section 5.2, we introduce the DP-LSSGD

algorithm. In Section 5.3, we analyze the privacy and utility guarantees of DP-LSSGD

for both convex and nonconvex optimizations. We numerically verify the efficiency of DP-

LSSGD in Section 5.4. We conclude this work and point out some future directions in

Section 5.8.
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5.2 Problem Setup and Algorithm

5.2.1 Laplacian Smoothing Stochastic Gradient Descent (LSSGD)

In this paper, we consider empirical risk minimization problem as follows. Given a training

set S = {(x1, y1), . . . , (xn, yn)} drawn from some unknown but fixed distribution, we aim to

find an empirical risk minimizer that minimizes the empirical risk as follows,

min
w

F (w) :=
1

n

n∑
i=1

fi(w), w ∈ Rd, (5.2.1)

where F (w) is the empirical risk (a.k.a., training loss), fi(w) = `(w; xi, yi) is the loss function

of a given ML model defined on the i-th training example (xi, yi), and w ∈ Rd is the

model parameter we want to learn. Empirical risk minimization serves as the mathematical

foundation for training many ML models that are mentioned above. The LSSGD (OWY18)

for solving (5.2.1) is given by

wk+1 = wk − ηA−1
σ

(
1

b

∑
ik∈Bk

∇fik(wk)

)
, (5.2.2)

where η is the learning rate, ∇fik denotes the stochastic gradient of F evaluated from the

pair of input-output {xik , yik}, and Bk is a random subset of size b from [n]. Let Aσ = I−σL

for σ ≥ 0 being a constant, where I ∈ Rd×d and L ∈ Rd×d are the identity and the discrete

one-dimensional Laplacian matrix with periodic boundary condition, respectively. Therefore,

Aσ :=



1 + 2σ −σ 0 . . . 0 −σ

−σ 1 + 2σ −σ . . . 0 0

0 −σ 1 + 2σ . . . 0 0

. . . . . . . . . . . . . . . . . .

−σ 0 0 . . . −σ 1 + 2σ


(5.2.3)

When σ = 0, LSSGD reduces to SGD.

Note that Aσ is positive definite with condition number 1 + 4σ that is independent of

Aσ’s dimension, and LSSGD guarantees the same convergence rate as SGD in both convex
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and nonconvex optimization. Moreover, Laplacian smoothing (LS) can reduce the variance

of SGD on-the-fly, and lead to better generalization in training many ML models including

DNNs (OWY18). For v ∈ Rd, let u := A−1
σ v, i.e., v = Aσu. Note Aσ is a convolution

matrix, therefore, v = Aσu = u − σd ∗ u, where d = [−2, 1, 0, · · · , 0, 1]T and ∗ is the

convolution operator. By the fast Fourier transform (FFT), we have

A−1
σ v = u = ifft (fft(v)/(1− σ · fft(d))) ,

where the division in the right hand side parentheses is performed in a coordinate wise way.

5.2.2 DP-LSSGD

DP ERM aims to learn a DP model, w, for the problem (5.2.1). A common approach

is injecting Gaussian noise into the stochastic gradient, and it resulting in the following

DP-SGD

wk+1 = wk − η
(

1

b

∑
ik∈Bk

∇fik(wk) + n

)
, (5.2.4)

where n is the injected Gaussian noise for DP guarantee. Note that the LS matrix A−1
σ can

remove the noise in v. If we assume v is the initial signal, then A−1
σ v can be regarded as

performing an approximate diffusion step on the initial noisy signal which removes the noise

from v. We will provide a detailed argument for the diffusion process in the appendix. As

numerical illustrations, we consider the following two signals:

• 1D: v1 = {sin(2iπ/100) + 0.1N (0, 1)|i = 1, 2, · · · , 100}.

• 2D: v2 = {sin(2iπ/100) sin(2jπ/100) + 0.2N (0, I2×2)|i, j = 1, 2, · · · , 100}.

We reshape v2 into 1D with row-major ordering and then perform LS. Figure 5.2 shows that

LS can remove noise efficiently. This noise removal property enables LSSGD to be more

stable to the noise injected stochastic gradient, therefore improves training DP models with

gradient perturbations.
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Figure 5.2: Illustration of LS (σ = 10 for v1 and σ = 100 for v2). (a): 1D signal sampled

uniformly from sin(x) for x ∈ [0, 2π]. (b), (c), (d): 2D original, noisy, and Laplacian

Smoothed noisy signals sampled uniformly from sin(x) sin(y) for (x, y) ∈ [0, 2π]× [0, 2π].

We propose the following DP-LSSGD for solving (5.2.1) with DP guarantee

wk+1 = wk − ηA−1
σ

(
1

b

∑
ik∈Bk

∇fik(wk) + n

)
. (5.2.5)

In this scheme, we first inject the noise n to the stochastic gradient ∇fik(wk), and then

apply the LS operator A−1
σ to denoise the noisy stochastic gradient, ∇fik(wk) + n, on-the-

fly. We assume that each component function fi in (5.2.1) is G-Lipschitz. The DP-LSSGD

for finite-sum optimization is summarized in Algorithm 5. Compared with LSSGD, the main

difference of DP-LSSGD lies in injecting Gaussian noise into the stochastic gradient, before

applying the Laplacian smoothing, to guarantee the DP.

5.3 Main Theory

In this section, we present the privacy and utility guarantees for DP-LSSGD. The technical

proofs are provided in the appendix.

Definition 5.3.1 ((ε, δ)-DP). ((DKM06a)) A randomized mechanismM : SN → R satisfies

(ε, δ)-DP if for any two adjacent datasets S, S ′ ∈ SN differing by one element, and any output
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Algorithm 5 DP-LSSGD

Input: fi(w) is G-Lipschitz for i = 1, 2, · · · , n.

w0: initial guess of w, (ε, δ): the privacy budget, η: the step size, T : the total number of

iterations.

Output: (ε, δ)-differentially private classifier wpriv.

for k = 0, 1, · · · , T − 1 do

wk+1 = wk − ηA−1
σ

(
1
b

∑
ik∈Bk ∇fik(w

k) + n
)
, where n ∼ N (0, ν2I) and ν is defined in

Theorem 5.3.2, and Bk ⊂ [n].

end for

returnwT

subset O ⊆ R, it holds that

P[M(S) ∈ O] ≤ eε · P[M(S ′) ∈ O] + δ.

Theorem 5.3.2 (Privacy Guarantee). Suppose that each component function fi is G-

Lipschitz. Given the total number of iterations T , for any δ > 0 and privacy budget ε,

DP-LSSGD, with injected Gaussian noise N (0, ν2) for each coordinate, satisfies (ε, δ)-DP

with ν2 = 20TαG2/(µn2ε), where α = log(1/δ)/
(
(1− µ)ε

)
+ 1, if there exits µ ∈ (0, 1) such

that α ≤ log
(
µn3ε/(5b3Tα + µbn2ε)

)
and 5b2Tα/(µn2ε) ≥ 1.5.

Remark 5.3.3. It is straightforward to show that the noise in Theorem 5.3.2 is in fact also

tight to guarantee the (ε, δ)-DP for DP-SGD. . We will omit the dependence of µ in our

results in the rest of the paper since µ is a constant.

For convex ERM, DP-LSSGD guarantees the following utility in terms of the gap between

the ergodic average of the points along the DP-LSSGD path and the optimal solution w∗.

Theorem 5.3.4 (Utility Guarantee for convex optimization). Suppose F is convex and

each component function fi is G-Lipschitz. Given ε, δ > 0, under the same conditions of

Theorem 5.3.2 on ν2, α, if we choose ηk = 1/
√
T and T = C1(Dσ+G2/b)n2ε2/

(
dG2 log(1/δ)

)
,
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where Dσ = ‖w0 − w∗‖2
Aσ

and w∗ is the global minimizer of F , the DP-LSSGD output

w̃ =
∑T−1

k=0 ηk/
(∑T−1

i=0 ηi
)
wk satisfies the following utility

E
(
F (w̃)− F (w∗)

)
≤
C2G

√
6γ(Dσ +G2/b)d log(1/δ)

nε
,

where γ = 1/d
∑d

i=1 1/[1 + 2σ − 2σ cos(2πi/d)], C1, C2 are universal constants.

Proposition 5.3.5. In Theorem 5.3.4, γ = 1+ωd

(1−ωd)
√

4σ+1
, where ω = 2σ+1−

√
4σ+1

2σ
< 1. That

is, γ converge to 0 almost exponentially as the dimension, d, increases.

Remark 5.3.6. In the above utility bound for convex optimization, for different σ (σ = 0

corresponds to DP-SGD), the only difference lies in the term γ(Dσ+G2). The first part γDσ

depends on the gap between initialization w0 and the optimal solution w∗. The second part

γG2 decrease monotonically as σ increases. σ should be selected to get an optimal trade-off

between these two parts. Based on our test on multi-class logistic regression for MNIST

classification, σ 6= 0 always outperforms the case when σ = 0.

For nonconvex ERM, DP-LSSGD has the following utility bound measured in gradient

norm.

Theorem 5.3.7 (Utility Guarantee for nonconvex optimization). Suppose that F is noncon-

vex and each component function fi is G-Lipschitz and has L-Lipschitz continuous gradient.

Given ε, δ > 0, under the same conditions of Theorem 5.3.2 on ν2, α, if we choose η = 1/
√
T

and T = C1(DF + LG2/b)n2ε2/
(
dLG2 log(1/δ)

)
, where DF = F (w0) − F (w∗) with w∗ be-

ing the global minimum of F , then the DP-LSSGD output w̃ =
∑T−1

k=0 wk/T satisfies the

following utility

E‖∇F (w̃)‖2
A−1
σ
≤ C2

G
√
βdL(2DF + LG2/b) log(1/δ)

nε
,

where β = 1/d
∑d

i=1 1/[1 + 2σ − 2σ cos(2πi/d)]2, C1, C2 are universal constants.

Proposition 5.3.8. In Theorem 5.3.7, β = 2ω2d+1−ξω2d+2ξdωd−2ω+ξ
σ2ξ3(1−ωd)2

, where ω = 2σ+1−
√

4σ+1
2σ

and ξ = −
√

1+4σ
σ

. Therefore, β ∈ (0, 1).
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It is worth noting that if we use the `2-norm instead of the induced norm, we have the

following utility guarantee

E‖∇F (w̃)‖2
2 ≤

E‖∇F (w̃)‖2
A−1
σ

λmin(A−1
σ )

≤ (1 + 4σ)E‖∇F (w̃)‖2
A−1
σ
≤ 4ζ

G
√

6dL(2DF + LG2) log(1/δ)

nε

where ζ =
√

1
d

∑d
i=1

(1+4σ)2

(1+2σ−2σ cos(2πi/d))2
> 1. In the `2-norm, DP-LSSGD has a bigger utility

upper bound than DP-SGD (set σ = 0 in ζ). However, this does not mean that DP-LSSGD

has worse performance. We provide an example to support this claim in the appendix.

5.4 Experiments

In this section, we verify the efficiency of DP-LSSGD in training multi-class logistic regres-

sion and CNNs for MNIST and CIFAR10 classification. We use v ← v/max (1, ‖v‖2/C)

(ACG16a) to clip the gradient `2-norms of the CNNs to C. The gradient clipping guaran-

tee the Lipschitz condition for the objective functions. We train all the models below with

(ε, 10−5)-DP guarantee for different ε. For Logistic regression we use the privacy budget

given by Theorem 5.3.2, and for CNNs we use the privacy budget in the Tensorflow privacy

(Aa19). We checked that these two privacy budgets are consistent.

5.4.1 Logistic Regression for MNIST Classification

We ran 50 epochs of DP-LSSGD with learning rate scheduled as 1/t with t being the index

of the iteration to train the `2-regularized (regularization constant 10−4) multi-class logistic

regression. We split the training data into 50K/10K with batch size 128 for cross-validation.

We plot the evolution of training and validation loss over iterations for privacy budgets

(0.2, 10−5) and (0.1, 10−5) in Figure 5.3. We see that the training loss curve of DP-SGD

(σ = 0) is much higher and more oscillatory (log-scale on the y-axis) than that of DP-LSSGD

(σ = 1, 3). Also, the validation loss of the model trained by DP-LSSGD decays faster and

has a much smaller loss value than that of the model trained by DP-SGD. Moreover, when
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the privacy guarantee gets stronger, the utility improvement by DP-LSSGD becomes more

significant.
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Figure 5.3: Training and validation losses of the multi-class logistic regression by DP-LSSGD.

(a) and (b): training and validation curves with (0.2, 10−5)-DP guarantee; (c) and (d):

training and validation curves with (0.1, 10−5)-DP guarantee. (Average over 5 runs)

Next, consider the testing accuracy of the multi-class logistic regression trained with

(ε, 10−5)-DP guarantee by DP-LSSGD includes σ = 0, i.e., DP-SGD. We list the test accuracy

of logistic regression trained in different settings in Table 5.2. These results reveal that DP-

LSSGD with σ = 1, 2, 3 can improve the accuracy of the trained private model and also

reduce the variance, especially when the privacy guarantee is very strong, e.g., (0.1, 10−5).
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Table 5.2: Testing accuracy of the multi-class logistic regression trained by DP-

LSSGD with (ε, δ = 10−5)-DP guarantee and different LS parameter σ. Unit: %.

(5 runs)

ε 0.30 0.25 0.20 0.15 0.10

σ = 0 81.74 ± 0.96 81.45 ± 1.59 78.92 ± 1.14 77.03 ± 0.69 73.49 ± 1.60

σ = 1 84.21 ± 0.51 83.27 ± 0.35 81.56 ± 0.79 79.46 ± 1.33 76.29 ± 0.53

σ = 2 84.23 ± 0.65 83.65 ± 0.76 82.15 ± 0.59 80.77 ± 1.26 76.31 ± 0.93

σ = 3 85.11 ± 0.45 82.97 ± 0.48 82.22 ± 0.28 80.81 ± 1.03 77.13 ± 0.77
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Figure 5.4: Accuracy of the logistic regression on MNIST when different learning rates are

used to train the model. Left: (0.1, 10−5)-DP; Right: (0.2, 10−5)-DP.

5.4.1.1 The Effects of Step Size

We know that the step size in DP-SGD/DP-LSSGD may affect the accuracy of the trained

private models. We try different step size scheduling of the form {a/t|a = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0},

where t is again the index of iteration, and all the other hyper-parameters are used the same

as before. Figure. 5.4 plots the test accuracy of the logistic regression model trained with dif-

ferent learning rate scheduling and different privacy budget. We see that the private logistic

regression model trained by DP-LSSGD always outperforms DP-SGD.
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5.4.2 CNN for MNIST and CIFAR10 Classification

In this subsection, we consider training a small CNN 2 with DP-guarantee for MNIST clas-

sification. We implement DP-LSSGD and DP-LSAdam (KB15) (simply replace the noisy

gradient in DP-Adam in the Tensorflow privacy with the Laplacian smoothed surrogate)

into the Tensorflow privacy framework (Aa19). We use the default learning rate 0.15 for

DP-(LS)SGD and 0.001 for DP-(LS)Adam and decay them by a factor of 10 at the 10K-th

iteration, norm clipping (1), batch size (256), and micro-batches (256). We vary the noise

multiplier (NM), and larger NM guarantees stronger DP. As shown in Figure 5.5, the privacy

budget increases at exactly the same speed (dashed red line) for four optimization algorithms.

When the NM is large, i.e., DP-guarantee is strong, DP-SGD performs very well in the ini-

tial period. However, after a few epochs, the validation accuracy gets highly oscillatory

and decays. DP-LSSGD can mitigate the training instability issue of DP-SGD. DP-Adam

outperforms DP-LSSGD, and DP-LSAdam can further improve validation accuracy on top

of DP-Adam.

Next, we consider the effects of the LS constant (σ) and the learning rate in training the

DP-CNN for MNIST classification. We fixed the NM to be 10, and run 60 epochs of DP-SGD

and DP-LSSGD with different σ and different learning rate. We show the comparison of DP-

SGD with DP-LSSGD with different σ in the left panel of Figure 5.7, and we see that as σ

increases it becomes more stable in training CNNs with DP-guarantee even though initially it

becomes slightly slower. In the middle panel of Figure 5.7, we plot the evolution of validation

accuracy curves of the DP-CNN trained by DP-SGD and DP-LSSGD with different learning

rate, where the solid lines represent results for DP-LSSGD and dashed lines for DP-SGD.

DP-LSSGD outperforms DP-SGD in all learning rates tested, and DP-LSSGD is much more

stable than DP-SGD when a larger learning rate is used.

Finally, we go back to the accuracy degradation problem raised in Figure 5.1. As shown

2github.com/tensorflow/privacy/blob/master/tutorials/mnist_dpsgd_tutorial.py
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Figure 5.5: Performance comparison (validation accuracy) between different DP optimization

algorithms in training CNN for MNIST classification with a fixed δ = 10−5.

in Figure 5.3, LS can efficiently reduce both training and validation losses in training multi-

class logistic regression for MNIST classification. Moreover, as shown in the right panel of

Figure 5.7, DP-LSSGD can improve the testing accuracy of the CNN used above significantly.

In particular, DP-LSSGD improves the testing accuracy of CNN by 3.2% and 5.0% for

(0.4, 10−5) and (0.2, 10−5), respectively, on top of DP-SGD. DP-LSAdam can further boost

test accuracy. All the accuracies associated with any given privacy budget in Figure 5.7 (right

panel), are the optimal ones searched over the results obtained in the above experiments with

different learning rate, number of epochs, and NM.
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5.4.3 CNN for CIFAR10 Classification

In this section, we will show that LS can also improve the utility of the DP-CNN trained by

DP-SGD and DP-Adam for CIFAR10 classification. We simply replace the CNN architecture

used above for MNIST classification with the benchmark architecture in the Tensorflow

tutorial 3 for CIFAR10 classification. Also, we use the same set of parameters as that used

for training DP-CNN for MNIST classification except we fixed the noise multiplier to be 2.0

and clip the gradient `2 norm to 3. As shown in Figure 5.6, LS can significantly improve the

validation accuracy of the model trained by DP-SGD and DP-Adam, and the DP guarantee

for all these algorithms are the same (dashed line in Figure 5.6).
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Figure 5.6: Performance comparison between different differentially private optimization

algorithms in training CNN for CIFAR10 classification with a fixed δ = 10−5.

5.5 Proof of the Main Theorems

5.5.1 Privacy Guarantee

To prove the privacy guarantee in Theorem 5.3.2, we first introduce the following `2-sensitivity.

3github.com/tensorflow/models/tree/master/tutorials/image/cifar10
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Figure 5.7: Left & middle panels: Contrasting performance (validation acc) of DP-SGD and

DP-LSSGD with different σ and different learning rate. Right panel: ε vs. Testing accuracy

of the private models trained by different DP-optimization algorithms with a fixed δ = 10−5.

Definition 5.5.1 (`2-Sensitivity). For any given function f(·), the `2-sensitivity of f is

defined by

∆(f) = max
‖S−S′‖1=1

‖f(S)− f(S ′)‖2,

where ‖S − S ′‖1 = 1 means the data sets S and S ′ differ in only one entry.

We will adapt the concepts and techniques of Rényi DP (RDP) to prove the DP-guarantee

of the proposed DP-LSSGD.

Definition 5.5.2 (RDP). For α > 1 and ρ > 0, a randomized mechanism M : Sn → R

satisfies (α, ρ)-Rényi DP, i.e., (α, ρ)-RDP, if for all adjacent datasets S, S ′ ∈ Sn differing by

one element, we have

Dα

(
M(S)||M(S ′)

)
:=

1

α− 1
logE

(
M(S)

M(S ′)

)α
≤ ρ,

where the expectation is taken over M(S ′).

Lemma 5.5.3. (WJE19) Given a function q : Sn → R, the Gaussian Mechanism M =

q(S) + u, where u ∼ N(0, σ2I), satisfies (α, α∆2(q)/(2σ2))-RDP. In addition, if we apply

the mechanism M to a subset of samples using uniform sampling without replacement, M
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satisfies (α, 5τ 2∆2(q)α/σ2)-RDP given σ′2 = σ2/∆2(q) ≥ 1.5, α ≤ log(1/τ
(
1 + σ′2)

)
, where

τ is the subsample rate.

Lemma 5.5.4. (Mir17) If k randomized mechanisms Mi : Sn → R, for i ∈ [k], satisfy

(α, ρi)-RDP, then their composition
(
M1(S), . . . ,Mk(S)

)
satisfies (α,

∑k
i=1 ρi)-RDP. More-

over, the input of the i-th mechanism can be based on outputs of the previous (i − 1)

mechanisms.

Lemma 5.5.5. If a randomized mechanism M : Sn → R satisfies (α, ρ)-RDP, then M

satisfies (ρ+ log(1/δ)/(α− 1), δ)-DP for all δ ∈ (0, 1).

With the definition (Def. 5.5.2) and guarantees of RDP (Lemmas 5.5.3 and 5.5.4), and

the connection between RDP and (ε, δ)-DP (Lemma 5.5.5), we can prove the following DP-

guarantee for DP-LSSGD.

Proof of Theorem 5.3.2. Let us denote the update of DP-SGD and DP-LSSGD at the k-th

iteration starting from any given points wk and w̃k, respectively, as

wk+1 = wk − ηk
(

1

b

∑
ik∈Bk

∇fik(wk) + n

)
, (5.5.1)

and

w̃k+1 = w̃k − ηkA−1
σ

(
1

b

∑
ik∈Bk

∇fik(w̃k) + n

)
, (5.5.2)

where Bk is a mini batch that are drawn uniformly from [n], and |Bk| = b is the mini batch

size.

We will show that with the aforementioned Gaussian noise N (0, ν2) for each coordinate

of n, the output of DP-SGD, w̃, after T iterations is (ε, δ)-DP. Let us consider the mechanism

M̂k = 1
b

∑
ik∈Bk ∇fik(w

k) + n, and Mk = n
b
∇F (wk) + n with the query qk = n

b
∇F (wk).

We have the `2-sensitivity of qk as ∆(qk) = ‖∇fik(wk) − ∇fi′k(w
k)‖2 ≤ 2G

b
. According to

Lemma 5.5.3, if we add noise with variance

ν2 =
20TαG2

n2εµ
,
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the mechanism Mk will satisfy
(
α, (n2εµ/b2)/

(
10T

))
-RDP. By post-processing theorem,

we immediately have that under the same noise, M̃k = A−1
σ (∇F (wk) + n) also satisfies(

α, (n2εµ/b2)/
(
10T

))
-RDP. According to Lemma 5.5.3, M̂k will satisfy

(
α, µε/T

)
-RDP pro-

vided that ν2/∆(qk)
2 ≥ 1.5, because τ = b/n. Let α = log(1/δ)/

(
(1 − µ)ε

)
+ 1, we obtain

that M̂k satisfies
(

log(1/δ)/
(
(1− µ)ε

)
+ 1, µε/T

)
-RDP as long as we have

ν2

∆(qk)2
=

5Tαb2

n2εµ
≥ 1.5.

In addition, we have

1

τ
(
1 + ν2/∆(qk)2

) =
µn3ε

5b3Tα + µbn2ε
,

which implies that α = log(1/δ)/
(
(1 − µ)ε

)
+ 1 ≤ log

(
µn3ε/(5b3Tα + µbn2ε)

)
. Therefore,

according to Lemma 5.5.4, we have wk satisfies
(

log(1/δ)/
(
(1 − µ)ε

)
+ 1, kµε/T

)
-RDP.

Finally, by Lemma 5.5.5, we have wk satisfies
(
kµε/T + (1 − µ)ε, δ

)
-DP. Therefore, the

output of DP-SGD, w̃, is (ε, δ)-DP.

Remark 5.5.6. In the above proof, we used the following estimate of the `2 sensitivity

∆(qk) = ‖A−1
σ ∇fi(wk)−A−1

σ ∇fi′(wk)‖2/n ≤ 2G/n.

Indeed, let g = ∇fi(wk)−∇fi′(wk) and d = A−1
σ g, then according to (OWY18) we have

‖d‖2 + 2σ
‖D+d‖2

2

d
+ σ2‖Ld‖2

2

d
= ‖g‖2,

where d is the dimension of d, and

D+ =



−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

0 0 −1 . . . 0 0

. . . . . . . . . . . . . . . . . .

1 0 0 . . . 0 −1


.
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Moreover, if we assume the g is randomly sampled from a unit ball in a high dimensional

space, then a high probability estimation of the compression ratio of the `2 norm can be

derived from Lemma. 5.5.8.

Numerical experiments show that ‖A−1
σ ∇fi(wk) − A−1

σ ∇fi′(wk)‖2 is much less than

‖∇fi(wk)−∇fi′(wk)‖2, so for the above noise, it can give much stronger privacy guarantee.

5.5.2 Utility Guarantee – Convex Optimization

To prove the utility guarantee for convex optimization, we first show that the LS opera-

tor compresses the `2 norm of any given Gaussian random vector with a specific ratio in

expectation.

Lemma 5.5.7. Let x ∈ Rd be the standard Gaussian random vector. Then

E‖x‖2
A−1
σ

=
d∑
i=1

1

1 + 2σ − 2σ cos(2πi/d)
,

where ‖x‖2
A−1
σ

.
= 〈x,A−1

σ x〉 is the square of the induced norm of x by the matrix A−1
σ .

Proof of Lemma 5.5.7. Let the eigenvalue decomposition of A−1
σ be A−1

σ = UΛUT , where

Λ is a diagonal matrix with Λii = 1
1+2σ−2σ cos(2πi/d)

We have

E‖x‖2
A−1
σ

= E[Tr(x>UΛU>x)]

=
d∑
i=1

Λii

=
d∑
i=1

1

1 + 2σ − 2σ cos(2πi/d)
= γ.

Proof of Theorem 5.3.4. Recall that we have the following update rule wk+1 = wk−ηkA−1
σ (∇fik(wk)+

n), where ik are drawn uniformly from [n], and n ∼ N (0, ν2I). Let∇fBk =
∑

ik∈Bk ∇fik(w
k)/b,
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observe that

‖wk+1 −w∗‖2
Aσ

= ‖wk − ηkA−1
σ (∇fBk(wk) + n)−w∗‖2

Aσ

= ‖wk −w∗‖2
Aσ

+ η2
k

(∥∥A−1
σ

(
∇fBk(wk)−∇F (wk) +∇F (wk)

)∥∥2

Aσ
+ ‖A−1

σ n‖2
Aσ

+ 2〈A−1
σ ∇fBk(wk),n〉

)
− 2ηk〈∇fBk(wk) + n,wk −w∗〉.

Taking expectation with respect to Bk and n given wk, we have

E‖wk+1 −w∗‖2
Aσ

= E‖wk −w∗‖2
Aσ
− 2ηkE〈∇F (wk),wk −w∗〉+ η2

kE‖∇fBk(wk)−∇F (wk)‖2
A−1
σ

+ η2
kE‖∇F (wk)‖2

A−1
σ

+ η2
kE‖n‖2

A−1
σ
.

In addition, we have

E‖∇fBk(wk)−∇F (wk)‖2
A−1
σ
≤ E‖∇fBk(wk)−∇F (wk)‖2

2 ≤
G2

b
, (5.5.3)

and (
1− Lηk

2

)
ηk‖∇F (wk)‖2

2 ≤ F (wk)− F (w∗), (5.5.4)

which implies that

η2
kE‖∇F (wk)‖2

A−1
σ
≤ η2

kE‖∇F (wk)‖2
2 ≤

(
2

2− Lηk

)
ηkE
(
F (wk)− F (w∗)

)
≤ 4

3
ηkE
(
F (wk)− F (w∗)

)
,

where the last inequality is due to the fact that ηt ≤ 1/(2L). Therefore, we have

E‖wk+1 −w∗‖2
Aσ
≤ E‖wk −w∗‖2

Aσ
− 2

3
ηkE
(
F (wk)− F (w∗)

)
+ η2

k

(
G2/b+ γdν2

)
,

where the inequality is due to the convexity of F , and Lemma 5.5.7. It implies that

2

3
ηkE
(
F (wk)− F (w∗)

)
≤
(
E‖wk −w∗‖2

Aσ
− E‖wk+1 −w∗‖2

Aσ

)
+ η2

k(G
2/b+ γdν2).

Now taking the full expectation and summing up over T iterations, we have

T−1∑
k=0

2

3
ηkE
(
F (wk)− F (w∗)

)
≤ Dσ +

T−1∑
k=0

η2
k(G

2/b+ γdν2),
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where Dσ = ‖w0 −w∗‖2
Aσ

. Let vk = ηk/
(∑T−1

k=0 ηk
)
, we have

T−1∑
k=0

vkE
(
F (wk)− F (w∗)

)
≤ Dσ +

∑T−1
k=0 η

2
k(G

2/b+ γdν2)

2
∑T−1

k=0 ηk/3
.

According to the definition of w̃ and the convexity of F , we obtain

E
(
F (w̃)− F (w∗)

)
≤ Dσ +

∑T−1
k=0 η

2
k(G

2/b+ γdν2)

2
∑T−1

k=0 ηk/3

≤ Dσ +
∑T−1

k=0 η
2
kG

2/b

2
∑T−1

k=0 ηk/3
+

∑T−1
k=0 η

2
k

2
∑T−1

k=0 ηk/3
· 20γdTG2 log(1/δ)

n2ε2µ(1− µ)
.

Let η = 1/
√
T and T = C1(Dσ +G2/b)n2ε2/

(
γdG2 log(1/δ)

)
, we can obtain that

E
(
F (w̃)− F (w∗)

)
≤
C2G

√
γ(Dσ +G2/b)d log(1/δ)

nε
,

where C1, C2 are universal constants.

5.5.3 Utility Guarantee – Nonconvex Optimization

To prove the utility guarantee for nonconvex optimization, we need the following lemma,

which shows that the LS operator compresses the `2 norms of any given Gaussian random

vector with a specific ratio in expectation.

Lemma 5.5.8. Let x ∈ Rd be the standard Gaussian random vector. Then

E‖A−1
σ x‖2

2 =
d∑
i=1

1

(1 + 2σ − 2σ cos(2πi/d))2
.

Proof of Lemma 5.5.8. Let the eigenvalue decomposition of A−1
σ be A−1

σ = UΛUT , where

Λ is a diagonal matrix with Λii = 1
1+2σ−2σ cos(2πi/n)

We have

E‖A−1
σ x‖2

2 = E[Tr(x>UΛU>UΛU>x)]

= E[Tr(x>UΛ2U>x)]

=
d∑
i=1

Λ2
ii

=
d∑
i=1

1

(1 + 2σ − 2σ cos(2πi/d))2
= β.
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Proof of Theorem 5.3.7. Recall that we have the following update rule wt+1 = wk−ηkA−1
σ (∇fik(wk)+

n), where ik are drawn uniformly from [n], and n ∼ N (0, ν2I). Let∇fBk =
∑

ik∈Bk ∇fik(w
k)/b,

since F is L-smooth, we have

F (wk+1) ≤ F (wk) + 〈∇F (wk),wk+1 −wk〉+
L

2
‖wk+1 −wk‖2

2

= F (wk)− ηk〈∇F (wk),A−1
σ (∇fBk(wk) + n)〉

+
η2
kL

2

(∥∥A−1
σ

(
∇fBk(wk)−∇F (wk) +∇F (wk)

)∥∥2

2
+ ‖A−1

σ n‖2
2 + 2〈A−1

σ ∇fBk(wk),A−1
σ n〉

)
.

Taking expectation with respect to Bk and n given wk, we have

EF (wk+1) ≤ EF (wk)− ηkE〈∇F (wk),A−1
σ ∇fBk(wk)〉+

η2
kL

2

(
E‖A−1

σ

(
∇fBk(wk)−∇F (wk)

)
‖2

2

+ E‖A−1
σ ∇F (wk)

∥∥2

2
+ E‖A−1

σ n‖2
2

)
≤ EF (wk)− ηk

(
1− ηkL

2

)
E‖∇F (wk)‖2

A−1
σ

+
η2
kL

2
(G2/b+ dβν2)

≤ EF (wk)− ηk
2
E‖∇F (wk)‖2

A−1
σ

+
η2
kL(G2 + dβν2)

2
,

where the second inequality uses Lemma 5.5.8, the inequality (5.5.3), and the last inequality

is due to 1−ηkL/2 > 1/2. Now taking the full expectation and summing up over T iterations,

we have

EF (wT ) ≤ F (w0)−
T−1∑
k=1

ηk
2
E‖∇F (wk)‖2

A−1
σ

+
T−1∑
k=1

η2
kL(G2/b+ dβν2)

2
.

If we choose fix step size, i.e., ηk = η, and rearranging the above inequality, and using

F (w0)− EF (wT ) ≤ F (w0)− F (w∗), we get

1

T

T−1∑
k=1

E‖∇F (wk)‖2
A−1
σ
≤ 2

ηT

(
F (w0)− F (w∗)

)
+ ηL(G2/b+ dβν2),

which implies that

E‖∇F (w̃)‖2
A−1
σ
≤ 2DF

ηT
+ ηL(G2/b+ dβν2)

≤ 2DF

ηT
+ ηL

(
G2/b+

20dβTG2 log(1/δ)

n2ε2µ(1− µ)

)
.
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Let η = 1/
√
T and T = C1(2DF + LG2/b)n2ε2/

(
dLβG2 log(1/δ)

)
, where DF = F (w0) −

F (w∗), we obtain

E‖∇F (w̃)‖2
A−1
σ
≤ C2

G
√
βdL(2DF + LG2/b) log(1/δ)

nε
,

where C1, C2 are universal constants.

It is worth noting that if we use the `2-norm instead of the induced norm, we have the

following utility guarantee

E‖∇F (w̃)‖2
2 ≤

E‖∇F (w̃)‖2
A−1
σ

λmin(A−1
σ )

≤ (1 + 4σ)E‖∇F (w̃)‖2
A−1
σ
≤ 4ζ

G
√

6dL(2DF + LG2) log(1/δ)

nε

where ζ =
√

1
d

∑d
i=1

(1+4σ)2

(1+2σ−2σ cos(2πi/d))2
> 1. In the `2-norm, DP-LSSGD has a bigger utility

upper bound than DP-SGD (set σ = 0 in ζ). However, this does not mean that DP-LSSGD

has worse performance. To see this point, let us consider the following simple nonconvex

function

f(x, y) =


x2

4
+ y2, for x2

4
+ y2 ≤ 1

sin
(
π
2

(
x2

4
+ y2

))
, for x2

4
+ y2 > 1.

(5.5.5)

For two points a1 = (2, 0) and a2 = (1,
√

3/2), the distance to the local minima a∗ = (0, 0)

are 2 and
√

7/2, while ‖∇f(a1)‖2 = 1 and ‖∇f(a2)‖2 =
√

13/2. So a2 is closer to the local

minima a∗ than a1 while its gradient has a larger `2-norm.

5.6 Calculations of β and γ

5.6.1 Calculation of γ

To prove Proposition 5.3.5, we need the following two lemmas.

Lemma 5.6.1 (Residue Theorem). Let f(z) be a complex function defined on C, then the

residue of f around the pole z = c can be computed by the formula

Res(f, c) =
1

(n− 1)!
lim
z→c

dn−1

dzz−1
((z − c)nf(z)) . (5.6.1)
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where the order of the pole c is n. Moreover,∮
f(z)dz = 2πi

∑
ci

Res(f, ci), (5.6.2)

where {ci} be the set of pole(s) of f(z) inside {z||z| < 1}.

The proof of Lemma 5.6.1 can be found in any complex analysis textbook.

Lemma 5.6.2. For 0 ≤ θ ≤ 2π, suppose

F (θ) =
1

1 + 2σ(1− cos(θ))
,

has the discrete-time Fourier transform of series f [k]. Then, for integer k,

f [k] =
α|k|√
4σ + 1

where

α =
2σ + 1−

√
4σ + 1

2σ

Proof. By definition,

f [k] =
1

2π

∫ 2π

0

F (θ)eikθ dθ =
1

2π

∫ 2π

0

eikθ

1 + 2σ(1− cos(θ))
dθ. (5.6.3)

We compute (5.6.3) by using Residue theorem. First, note that because F (θ) is real valued,

f [k] = f [−k]; therefore, it suffices to compute (5.6.3)) for nonnegative k. Set z = eiθ.

Observe that cos(θ) = 0.5(z + 1/z) and dz = izdθ. Substituting in (5.6.3) and simplifying

yields that

f [k] =
−1

2πiσ

∮
zk

(z − α−)(z − α+)
dz, (5.6.4)

where the integral is taken around the unit circle, and α± = 2σ+1±
√

4σ+1
2σ

are the roots of

quadratic −σz2 + (2σ + 1)z − σ. Note that α− lies within the unit circle; whereas, α+ lies

outside of the unit circle. Therefore, because k is nonnegative, α− is the only singularity of
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the integrand in (5.6.4) within the unit circle. A straightforward application of the Residue

Theorem, i.e., Lemma 5.6.1, yields that

f [k] =
−αk−

σ(α− − α+)
=

αk√
4σ + 1

.

This completes the proof.

Proof of Proposition 5.3.5. First observe that we can re-write γ as

1

d

d−1∑
j=0

1

1 + 2σ(1− cos(2πj
d

))
. (5.6.5)

It remains to show that the above summation is equal to 1+αd

(1−αd)
√

4σ+1
. This follows by

lemmas 5.6.2 and standard sampling results in Fourier analysis (i.e. sampling θ at points

{2πj/d}d−1
j=0). Nevertheless, we provide the details here for completeness: Observe that that

the inverse discrete-time Fourier transform of

G(θ) =
d−1∑
j=0

δ

(
θ − 2πj

d

)
.

is given by

g[k] =


d/2π if k divides d,

0 otherwise.

Furthermore, let

F (θ) =
1

1 + 2σ(1− cos(θ))
,
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and use f [k] to denote its inverse discrete-time Fourier transform. Now,

1

d

d−1∑
j=0

1

1 + 2σ(1− cos(2πj
d

))
=

1

d

∫ 2π

0

F (θ)G(θ)

=
2π

d
DTFT−1[F ·G][0]

=
2π

d
(DTFT−1[F ] ∗DTFT−1[G])[0]

=
2π

d

∞∑
r=−∞

f [−r]g[r]

=
2π

d

∞∑
`=−∞

f [−`d]
d

2π

=
∞∑

`=−∞

f [−`d].

The proof is completed by substituting the result of lemma 5.6.2 in the above sum and

simplifying.

We list some typical values of γ in Table 5.3.5.

Table 5.3: The values of γ corresponding to some σ and d.

σ 1 2 3 4 5

d = 1000 0.447 0.333 0.277 0.243 0.218

d = 10000 0.447 0.333 0.277 0.243 0.218

d = 100000 0.447 0.333 0.277 0.243 0.218

5.6.2 Calculation of β

The proof of Proposition 5.3.8 is similar as the proof of Proposition 5.3.5. The only difference

is that we need to compute

f [k] =
1

2π

∫ 2π

0

eikθ

(1 + 2σ(1− cos θ))2dθ. (5.6.6)
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By Residue theorem, for k > 0 (note that f [−k] = f [k] ), we have

f [k] =
1

2π

∫ 2π

0

eikθ

(1 + 2σ(1− cos θ))2dθ

=
1

2πi

∮
zk+1

(z + σ(2z − z2 − 1))2
dz

= lim
z→α−

d

dz

(
(z − α−)2 zk+1

(z + σ(2z − z2 − 1))2

)
= lim

z→α−

d

dz

(
zk+1

σ2(z − α+)2

)
=

(k + 1)αk

4σ + 1
+

2σαk+1

(4σ + 1)3/2
,

where α− = 2σ+1−
√

4σ+1
2σ

. Therefore, we have

β =
2α2d+1 − ξα2d + 2ξdαd − 2α + ξ

σ2ξ3(1− αd)2
.

We list some typical values of β in Table 5.3.8.

Table 5.4: The values of β corresponding to some σ and d.

σ 1 2 3 4 5

d = 1000 0.268 0.185 0.149 0.128 0.114

d = 10000 0.268 0.185 0.149 0.128 0.114

d = 100000 0.268 0.185 0.149 0.128 0.114

5.7 Laplacian Smoothing and Diffusion Equation

Let u(x, t) be a function defined on the space-time domain [0, 1]×[0,+∞), suppose it satisfies

the following diffusion equation with the Neumann boundary condition
∂u
∂t

= ∂2u
∂x2
, (x, t) ∈ [0, 1]× [0,+∞),

∂u(0,t)
∂x

= ∂u(1,t)
∂x

= 0, t ∈ [0,+∞)

u(x, 0) = f(x), x ∈ [0, 1]

(5.7.1)
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If we apply the backward Euler in time and central finite difference in space to discretize

the governing equation in (5.7.1), we get

v∆t − v0 = ∆tLv∆t,

where v0 is the discretization of f(x), and v∆t is the numerical solution of (5.7.1) at time

∆t. Therefore, we have

v∆t = (I −∆tL)−1v0,

which is the LS with σ = ∆t.

5.8 Conclusions

In this paper, we integrated Laplacian smoothing with DP-SGD for privacy-presrving ERM.

The resulting algorithm is simple to implement and the extra computational cost compared

with the DP-SGD is almost negligible. We show that DP-LSSGD can improve the utility of

the trained private ML models both numerically and theoretically.
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CHAPTER 6

Distributed Learning Without Distress:

Privacy-preserving ERM

6.1 Introduction

In many applications, such as medical research and financial fraud detection, it is valuable

to build machine learning models by training on sensitive data. This raises privacy concerns

since adversaries may be able to infer information about the training data from the learned

model. Model parameters can reveal sensitive information about individual records including

specific features of the records (FLJ14) to the presence of particular records in the data

set (SSS17b). In the case of neural networks, the model parameters can also inadvertently

store sensitive parts of the training data (CLE19). Differential privacy (DN04; Dwo08) aims

to thwart such analysis. It provides statistical privacy for individual records by adding

random noise to the model parameters. Many works have shown that differential privacy

can be used to enable privacy-preserving machine learning in the centralized setting where a

single organization owns all the data (CM09; CMS11b; JKT12b; JT13; WYX17a; ZZM17b).

The problem becomes more acute when the data is owned by different organizations that

wish to collaboratively learn from their private data. For instance, multiple hospitals may

want to collaboratively train a classifier over their patient medical records without disclosing

their own records to other hospitals. The goal of distributed machine learning (also referred

to as federated learning (MRT18a)) is to enable a group of independent data owners to

develop a model from their combined data without exposing that data to others.
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Multi-party computation (MPC) protocols allow participants to jointly compute a func-

tionality over their private inputs by employing cryptographic techniques like homomorphic

encryption, secret sharing, and oblivious transfer. Lindell and Pinkas (LP00) proposed

one of the earliest approaches to use MPC for private data mining, which was followed

by several works considering different adversarial models or applications (YZW05; VKC08;

LP09; PSS09). A recent focus has been to achieve practical and efficient distributed ma-

chine learning using MPC protocols (CRT18; WDC18; MZC18), and in certain settings

such methods have been shown to scale to learning tasks with hundreds of millions of

records (NWI13b; GSB17). However, unlike approaches using differential privacy on the

model, these approaches only protect the training data during the learning process; they

provide no protection against inference attacks on the resulting model.

Pathak et al. (PRR10) proposed the first differentially-private machine learning in dis-

tributed setting. Their method securely aggregates local models and uses output perturba-

tion to achieve differential privacy. However, the noise scales inversely proportional to the

smallest data set size of the m parties. This can be improved by a factor of
√
m by first

training differentially-private local models using the method of Chaudhuri et al. (CMS11b),

and then performing näıve aggregation of the local models. In this work, we propose an

output perturbation method that improves over Pathak et al.’s method by a factor of m

by adding the noise inside an MPC with the scale of noise required roughly inversely pro-

portional to the size of the entire data set. Recent works on distributed noise genera-

tion (DKM06b; BRB17; HLK17; SCR17) try to achieve a similar bound by requiring parties

to add partial noise locally, and combining these noises to ensure differential privacy. How-

ever, these methods require additional noise to tolerate corruptions and collusion. More

concretely, with a minimum of k honest parties out of m, their noise bound is worse than

ours by a factor of
√
m/k. On the other hand, in our approach the noise is generated inside

the MPC such that any honest participant can be assured that sufficient noise is added to

protect their own privacy even if all other participants are dishonest and colluding.
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While these model aggregation approaches are computationally efficient, they tend to

produce less accurate global models compared to the centralized setting, especially when

the number of data owners is large (in the extreme, when each party has only one training

instance). For such scenarios, distributed iterative learning with gradient perturbation is

a better option. Shokri and Shmatikov (SS15b) provide such a solution for deep learning,

where the local gradients are perturbed and then revealed for updating the global model.

Their privacy budget is per parameter, however, and not for the entire training so huge

total privacy budgets are required. Abadi et al. (ACG16b) proposed a tighter bound on the

privacy budget using moments accountant which is applicable to centralized setting. Wang

et al. (WYX17a) used the moments accountant to propose iterative learning with gradient

perturbation for the centralized setting. We propose a method for distributed setting using

zero-concentrated differential privacy (BS16b) which achieves similar tight bound on privacy

budget. Moreover, we add noise inside MPC after gradient aggregation, thus reducing the

noise by a factor of
√
m compared to the näıve aggregation of noisy gradients. While Chase

et al. (CGL17) also achieve similar bound on noise in distributed learning setting, their

method considers only the convex case. We achieve a different (and tighter) utility bound

for the strong convexity case. Further, Chase et al. use differential privacy which has different

composition properties than the zero-concentrated differential privacy that we consider. We

also note that the method proposed by Rajkumar and Agarwal (RA12) has similar objectives,

but their protocol requires a trusted third party to execute the SGD algorithm, whereas our

method does not depend on any trusted party. In addition, although their method has

the same scale of noise as ours, in their method each party samples local noise which is

aggregated by the trusted third party. This is not secure in the presence of colluding parties

as noted by Bindschaedler et al. (BRB17) and Shi et al. (SCR17). In our method, parties

collaboratively generate noise within the MPC. Finally, their method requires noise from two

sources: the Gaussian noise η and the Laplace noise ρ. Generation of ρ consumes ε privacy

budget per iteration, as opposed to using ε budget for the entire learning process, and hence
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violates the privacy constraints.

In this paper, we introduce differentially-private distributed machine learning protocols

using both output perturbation and gradient perturbation where the noise is added within

a secure multi-party computation. Our output perturbation method securely aggregates the

local models and achieves ε-differential privacy by adding Laplace noise to the aggregated

model parameters. In our gradient perturbation method, the parties collaboratively run

an iterative, gradient-based learning algorithm where they securely aggregate the local gra-

dients at each iteration. This provides (ε, δ)-differential privacy by adding Gaussian noise

to the aggregated gradients. In both the methods the sampled noise is (roughly) inversely

proportional to the size of the entire data set. While the first method is computationally

efficient, requiring only single invocation of MPC, its accuracy decreases compared to cen-

tralized method when the number of parties is large relative to the total amount of data —

this is inherent to any model aggregation based method. The iterative gradient perturbation

method, on the other hand, does not suffer from accuracy degradation but requires one MPC

protocol execution per iteration. Both methods achieve accuracy close to their non-private

counterparts where no noise is added and no data privacy provided.

6.1.1 Contributions

This work makes the following contributions, which address challenges in distributed learn-

ing.

Output Perturbation and Gradient Perturbation Methods. We propose two ap-

proaches to privately train accurate machine learning models in the distributed setting.

While the output perturbation method (Section 6.3.1) is computationally more efficient, the

gradient perturbation method (Section 6.3.2) maintains high accuracy regardless of how the

data is partitioned.

Reduced Noise Bounds. We give noise bounds for each method that are smaller than
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the best previous approaches for output perturbation (PRR10) and gradient perturba-

tion (SS15b), while ensuring differential privacy in the distributed setting (Theorem 6.3.1 for

output perturbation and Theorem 6.3.4 for gradient perturbation). For gradient perturba-

tion, we use zero-concentrated differential privacy to achieve the lowest known bound on the

privacy budget. Moreover, we generate the noise within the MPC protocol. This allows us

to add only a single copy of noise, compared to previous works that combine noise from each

participant (DKM06b; BIK17; BRB17; HLK17; SCR17). We provide a theoretical analy-

sis of our methods’ error bounds which match the state-of-art error bounds in centralized

settings.

Experimental Evaluation on Real Data Sets. We implement regularized logistic re-

gression and regularized linear regression models for classification and regression tasks re-

spectively. We report results from experiments performed on the KDDCup99 and Adult data

sets for classification and the KDDCup98 data set for regression. We compare our methods

with previous work on distributed learning, varying the number of parties and local data set

sizes. Our methods produce models that are closest to the non-private models in terms of

model accuracy and generalization error since we add less noise than previous distributed

learning methods.

6.2 Background on Differential Privacy and Multi-Party Compu-

tation

This section introduces differential privacy (including the zero-concentrated differential pri-

vacy notion we use), and secure multi-party computation.

Notation: For any d-dimensional vector x = [x1, ..., xd]
>, we use ‖x‖ = (

∑d
i=1 |xi|2)1/2 to

denote its `2-norm. Given two sequences {an} and {bn}, we write an = O(bn) if there exists

a constant 0 < C <∞ such that an ≤ Cbn, and we use Õ(·) to hide the logarithmic factors.
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6.2.1 Differential Privacy

Differential privacy was introduced by Dwork (DMN06) and is defined as follows:

Definition 6.2.1 ((ε, δ)-Differential Privacy). Given two adjacent data sets D,D′ ∈ Dn dif-

fering by a single element, a randomized mechanismM : Dn → Rd provides (ε, δ)-differential

privacy if it produces response in the set S with probability P[M(D) ∈ S] ≤ eεP[M(D′) ∈

S] + δ.

The above definition reduces to ε-Differential Privacy (ε-DP) when δ = 0. We can

achieve ε-DP and (ε, δ)-DP by adding noise sampled from Laplace and Gaussian distri-

butions respectively, where the noise is proportional to the sensitivity of M, given as

∆M = ‖M(D) − M(D′)‖. Throughout this paper we assume the `2-sensitivity which

considers the upper bound on the `2-norm of M(D)−M(D′).

Zero-Concentrated Differential Privacy While, the notion of differential privacy per-

forms well for methods like output perturbation, it is not suitable for gradient perturbation

methods which require repeated sampling of noise in the iterative training procedure. Zero-

concentrated differential privacy (BS16b) (zCDP) has a tight composition bound and hence

is a better option for gradient perturbation.

We first define the privacy loss random variable which is used in the definition of zCDP.

Definition 6.2.2. For two adjacent data sets D,D′ ∈ Dn differing by one sample, a ran-

domized mechanismM : Dn → Rd, and an outcome o ∈ Rd, the privacy loss random variable

Z is defined as

Z = log
P[M(D) = o]

P[M(D′) = o]
. (6.2.1)

Definition 6.2.3. A randomized mechanism M : Dn → Rd satisfies ρ-zCDP if for any two

adjacent data sets D,D′ ∈ Dn differing by one sample, it holds that for all α ∈ (1,∞),

E
[
e(α−1)Z

]
≤ e(α−1)αρ. (6.2.2)
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Note that (6.2.2) implies that P[Z > λ + ρ] ≤ e−λ
2/(4ρ) for all λ > 0, which suggests

that the privacy loss Z is tightly concentrated around zero mean, and hence it is unlikely to

distinguish D from D′ given their outputs.

Bun and Steinke (BS16b) give the following lemmas to achieve zCDP with the Gaus-

sian mechanism. Lemma 6.2.4 bounds the amount of Gaussian noise to guarantee ρ-zCDP.

Lemma 6.2.5 gives the composition of multiple zCDP mechanisms. Finally, Lemma 6.2.6

specifies the mapping from ρ-zCDP to (ε, δ)-DP.

Lemma 6.2.4. Given a function q : Dn → Rd, the Gaussian Mechanism M = q(D) + u,

where u ∼ N(0, σ2Id), satisfies ∆2(q)2/(2σ2)-zCDP.

Lemma 6.2.5. For two randomized mechanisms M1 : Dn → Rd, M2 : Dn × Rd → Rd. If

M1 satisfies ρ1-zCDP and M2 satisfies ρ2-zCDP, then M2(D,M1(D)) satisfies (ρ1 + ρ2)-

zCDP.

Lemma 6.2.6. If a randomized mechanismM : Dn → Rd satisfies ρ-zCDP, then it satisfies

(ρ+ 2
√
ρ log(1/δ), δ)-differential privacy for any δ > 0.

6.2.2 Secure Multi-Party Computation

Our threat model considers semi-honest participants who wish to compute a joint function-

ality without revealing their individual inputs to other participants. In this threat model,

while the parties do not tamper with the joint functionality or provide garbage inputs,

they are allowed to passively infer about inputs of other parties based on the protocol

execution. We use generic multi-party computation protocols to securely aggregate local

models and gradients. A multi-party computation (MPC) protocol enables two or more

parties to jointly compute a function of their private inputs, without disclosing any infor-

mation about those inputs other than their size and whatever can be inferred from the

revealed output (Yao82). The notion of MPC goes back to a series of talks given by An-

drew Yao in the 1980s. The protocol he introduced, now known as Yao’s garbled circuits
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protocol, can compute any function securely. Numerous other secure multi-party compu-

tation protocols have been devised since then (e.g., (GMW87; LP07; DPS12; NNO12)),

and many tools have been developed for efficiently implementing MPC computations (e.g.,

(MNP04; DGK09; BSM10; HEK11; HFK12; RHH14; WMK16; ZE15b)). It is now practical

to execute two-party protocols with millions of inputs (GSB17; GFA17), and global-scale,

many-party protocols with malicious level security for small inputs (WRK17).

Secure aggregation of local classification models using MPC was shown to be practical

by Tian et al. (TJG16). This work used a two-party computation, with a semi-honest threat

model and non-colluding servers. A similar approach has been used to scale multi-party

regressions (NWI13a; GSB17). We can use these methods to achieve secure aggregation. For

scenarios where the risks of collusion are too high, many-party MPC protocols can be used

that provide security to a single honest participant even if all other participants are malicious.

In this work, we do not focus on improving or evaluating the MPC execution, since the

methods we propose can be implemented using well known MPC techniques. Appendix 6.7

provides information on the MPC implementation we use and its cost.

6.3 Multi-Party Machine Learning

In this section we describe our output perturbation and gradient perturbation methods in

detail along with theoretic analysis of differential privacy and generalization error bound.

We consider the following empirical risk minimization (ERM) objective:

JD(θ) =
1

n

n∑
i=1

`(θ, xi, yi) + λN(θ),

where `(θ) is a convex loss function that is G-Lipschitz and L-smooth over θ ∈ Rd. N(·) is

regularization term. We consider J(·) to be λ-strongly convex. Each data instance (xi, yi) ∈

D lies in a unit ball. For a party j, with data set Dj of size nj, we denote its data instance

as (x
(j)
i , y

(j)
i ).
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6.3.1 Model Aggregation with Output Perturbation

We extend the differential privacy bound of Chaudhuri et al. (CM09) to the multi-party

setting, ensuring sufficient noise to preserve the privacy of each participant’s data throughout

the multi-party computation, including the final output.

Givenm parties, each having a data setDj of size nj and the corresponding local model es-

timator θ̂(j) obtained by minimizing the local objective function: JDj(θ) = 1
nj

∑nj
i=1 `(θ, x

(j)
i , y

(j)
i )+

λN(θ). The perturbed aggregate model estimator is given as θ̂priv = 1
m

∑m
j=1 θ̂

(j) +η, where η

is the Laplace noise added to the aggregate model estimator to preserve differential privacy.

Secure model aggregation can be performed using the framework of Tian et al. (TJG16) as

mentioned in Section 6.2.2.

The next theory provides a bound on the noise magnitude needed to achieve differential

privacy:

Theorem 6.3.1. Given a perturbed aggregate model estimator θ̂priv = 1
m

∑m
j=1 θ̂

(j) + η

where θ̂(j) = arg minθ
1
nj

∑nj
i=1 `(θ, x

(j)
i , y

(j)
i ) + λN(θ) and the data lie in a unit ball and `(·)

is G-Lipschitz , then θ̂priv is ε-differentially private if

η = Lap

(
2G

mn(1)λε

)
,

where n(1) is the size of the smallest data set among the m parties, λ is the regularization

parameter and ε is the differential privacy budget.

Proof. Let there be m parties such that one record of party j changes in the neighbouring

data sets, then

Pr(θ̂|D)

Pr(θ̂|D′)
=

Pr
(

1
m

∑
i 6=j θ̂

(i) + 1
m
θ̂(j) + η|D

)
Pr
(

1
m

∑
i 6=j θ̂

(i) + 1
m
θ̂′(j) + η|D′

) =
exp

[
m.n(1)ελ

2G
‖θ̂(j)‖
m

]
exp

[
m.n(1)ελ

2G
‖θ̂′(j)‖
m

]
≤ exp

[n(1)ελ

2G
‖θ̂(j) − θ̂′(j)‖

]
≤ exp

[n(1)ελ

2G

2G

njλ

]
≤ exp (ε),

where the second inequality follows from Corollary 8 of Chaudhuri et al. (CMS11b).
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We now provide a bound on the excess empirical risk and true risk similar to Pathak

et al. (PRR10). Our bounds are tighter than Parthak et al.’s as we require less differential

privacy noise.

Theorem 6.3.2. Given a perturbed aggregate model estimator θ̂priv = 1
m

∑m
j=1 θ̂

(j)+η where

θ̂(j) = arg minθ
1
nj

∑nj
i=1 `(θ, x

(j)
i , y

(j)
i ) + λN(θ) and an optimal model estimator θ∗ trained on

the centralized data such that the data lie in a unit ball and `(·) is G-Lipschitz and L-smooth,

then the bound on excess empirical risk is given as:

J(θ̂priv) ≤ J(θ∗) + C1
G2(λ+ L)

n2
(1)λ

2

(
m2 +

d2 log2(d/δ)

m2ε2
+
d log(d/δ)

ε

)
,

where C1 is an absolute constant.

The proof of Theorem 6.3.2 follows from Pathak et al. (PRR10). The main difference is

that we use the sensitivity bound as 2G/(mn(1)λ) instead of 2G/(n(1)λ) and thereby achieve

a tighter bound. The full proof is given in Appendix 6.5.1.

Theorem 6.3.3. Given a perturbed aggregate model estimator θ̂priv = 1
m

∑m
j=1 θ̂

(j)+η where

θ̂(j) = arg minθ
1
nj

∑nj
i=1 `(θ, x

(j)
i , y

(j)
i ) + λN(θ) and an optimal model estimator θ∗ trained on

the centralized data such that the data lie in a unit ball and `(·) is G-Lipschitz and L-smooth,

then the following bound on true excess risk holds with probability at least 1− γ:

E[J̃(θ̂priv)]−min
θ
J̃(θ) ≤ C1

G2(λ+ L)

n2
(1)λ

2

(
m2 +

d2 log2(d/δ)

m2ε2
+
d log(d/δ)

ε

)
+ C2

G2 log(1/γ)

λn
,

where n is the size of the centralized data set. J̃(θ) = Ex,y[`(θ, x, y)] + λN(θ), C1, C2 are

absolute constants, and the expectation is taking with respect to the noise η.

See Appendix 6.5.2 for the proof of Theorem 6.3.3. The true excess risk bound in Theorem

6.3.3 implies that the private output of our algorithm converges to the population optimum

at the order of 1/n.
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6.3.2 Iterative Learning with Gradient Perturbation

We consider this centralized ERM objective for m parties, each with a data set Dj of size

nj:

JD(θ) = min
θ

1

m

m∑
j=1

1

nj

nj∑
i=1

`(θ, x
(j)
i , y

(j)
i ) + λN(θ).

The parties can collaboratively learn a differentially private model via iterative learning

by adding noise to the aggregated gradients within the MPC in each iteration with the

following noise bound.

Theorem 6.3.4. Given a centralized model estimator θT obtained by minimizing JD(θ)

after T iterations of gradient descent algorithm executed jointly by m parties each having

dataset D(j) of size nj where each data instance (x
(j)
i , y

(j)
i ) ∈ D(j) lie in a unit ball and `(θ)

is G-Lipschitz and L-smooth over θ ∈ C. If the learning rate is 1/L and the gradients are

perturbed with noise z ∈ N (0, σ2Id), then θT is (ε, δ)-differentially private if

σ2 =
8G2T log(1/δ)

m2n2
(1)ε

2
, (6.3.1)

where n(1) is the size of the smallest data set among the m parties.

Proof. Given a gradient at step t,

Mt = ∇J(θ,D) +N (0, σ2Ip) =
1

m

m∑
j=1

1

nj

nj∑
i=1

∇`(θ, x(j)
i , y

(j)
i ) +N (0, σ2Ip).

We assume that only one data instance of one party changes in neighbouring datasets D

and D′. Hence the sensitivity bound, ‖∇J(θ,D)−∇J(θ,D′)‖ ≤ 2G
mn(1)

.

Thus, using Lemma 6.2.4, Mt is ρ-zCDP with ρ = 2G2

m2n2
(1)
σ2 . By composition from

Lemma 6.2.5, we observe that θT is Tρ-zCDP. Applying Lemma 6.2.6, we obtain Tρ +

2
√
Tρ log(1/δ) = ε. Solving the roots of this equation, we obtain

ρ ≈ ε2

4T log(1/δ)
=⇒ σ2 =

8G2T log(1/δ)

m2n2
(1)ε

2
.
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Thus, θT is (ε, δ)-differentially private for the above value of σ2.

Additionally, we observe that differential privacy is also guaranteed for each intermediate

model estimator:

Corollary 6.3.5. Intermediate model estimator θt at each iteration t ∈ [1, T ] is (
√
t/T ε, δ)-

differentially private.

Hence, an adversary cannot obtain additional information from the intermediate compu-

tations. See Appendix 6.5.3 for the proof of Corollary 6.3.5.

Next, we provide theoretical bounds on the excess empirical risk and the true excess risk

of our proposed method.

Theorem 6.3.6. Given a centralized model estimator θT obtained by minimizing JD(θ)

after T iterations of gradient descent algorithm executed jointly by m parties each having

dataset D(j) of size nj where each data instance (x
(j)
i , y

(j)
i ) ∈ D(j) lie in a unit ball and `(θ)

is G-Lipschitz and L-smooth over θ ∈ C. If the learning rate is 1/L and the gradients are

perturbed with noise z ∈ N (0, σ2Id) with σ2 defined in (6.3.1), and if we choose the iteration

number as

T = Õ

(
log

(
m2n2

(1)ε
2

dG2 log(1/δ)

))
,

then we have a bound on excess empirical risk:

E[J(θT )]− J(θ∗) ≤ C1

G2Ld log2(mn(1)) log(1/δ)

m2n2
(1)λ

2ε2
,

where the expectation is taking with respect to the noise η, n(1) is the size of the smallest

data set among the m parties, C1 is an absolute constant.

Appendix 6.5.4 provides the proof.

Based on the excess empirical risk, we next derive the true excess risk.

133



Theorem 6.3.7. Given a centralized model estimator θT obtained by minimizing JD(θ)

after T iterations of a gradient descent algorithm executed jointly by m parties each having

dataset D(j) of size nj where each data instance (x
(j)
i , y

(j)
i ) ∈ D(j) lie in a unit ball and `(θ)

is G-Lipschitz and L-smooth over θ ∈ C. If we choose the learning rate, noise level, and

iteration number as suggested in Theorem 6.3.6, with probability at least 1− γ, we have the

following bound on true excess risk:

E[J̃(θT )]−minθJ̃(θ) ≤ C1

G2Ld log2(mn(1)) log(1/δ)

m2n2
(1)λ

2ε2
+ C2

G2 log(1/γ)

λn
,

where n is the size of the centralized data set, n(1) is the size of the smallest data set among

the m parties and C1, C2 are absolute constants.

Theorem 6.3.7 (proof in Appendix 6.5.5) suggests that the output of our iterative gradient

perturbation method converges to the population optimum at the order of 1/n. Note that

our true excess risk bound is comparable to that of Wang et al. (WYX17a) in centralized

setting.

6.4 Experiments

We report on experiments for both classification and regression tasks. For classification, we

use a regularized logistic regression model over the KDDCup99 (HB99) data set (additional

experiments on the Adult (AN07) data set yield similar results, described in Appendix 6.6.3).

The KDDCup99 data set contains around 5,000,000 network instances. The task is to

predict whether a network connection is a denial-of-service attack or not. We randomly

sample 70,000 records and divide it into training set of 50,000 records and test set of 20,000

records. We pre-processed the data according to the procedure of Chaudhuri et al. (CMS11b),

resulting in records with 122 features. For regression, we train a ridge regression model over

the KDDCup98 (PH98) data set, consisting of demographic and other related information

of approximately 200,000 American veterans. The task is to predict the donation amount
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Table 6.1: Comparison of noise magnitudes for various multi-party differential privacy meth-

ods.

Pathak Local Out P Local Obj P Local Grad P MPC Out P MPC Grad P

Analytical Bound (L - Laplace, N - Gaussian)

L( 2G
n(1)λε

) L( 2G√
mn(1)λε

) L( 2G
n(1)ε

) N (
√

2TG√
mn(1)ε

) L( 2G
mn(1)λε

) N (
√

2TG
mn(1)ε

)

Noise Generation Input (m = 100, n(1) = 500, λ = 0.01, ε = 0.5, G = 1 and T = 100)

800 ×10−3 80.0 ×10−3 8.00 ×10−3 5.66 ×10−3 8.00 ×10−3 0.57 ×10−3

Generated Noise (standard deviation over 1000 samples)

1150 ×10−3 112 ×10−3 11.6 ×10−3 5.63 ×10−3 12.2 ×10−3 0.572 ×10−3

of an individual in dollars. We randomly sample 70,000 records and divide it into a training

set of 50,000 records and test set of 20,000 records. We perform the same pre-processing as

in the case of previous data sets and additionally perform feature selection using PCA to

retain around 100 features. After pre-processing, each record consists of 95 features.

For all the experiments, we set Lipschitz constant G = 1, learning rate η = 1, regu-

larization coefficient λ = 0.001, privacy budget ε = 0.5, failure probability δ = 0.001 and

total number of iterations T = 1, 500 for gradient descent. We compare our methods with

the baselines in terms of optimality gap and relative accuracy loss. Optimality gap is the

measure of empirical risk bound J(θ)−J(θ∗) over the training data, where θ∗ is the optimal

non-private model in the centralized setting. Relative accuracy loss is the difference in the

accuracy (mean square error in case of regression) of θ and θ∗ over the test data. We mea-

sure the optimality gap and relative accuracy loss of all the models up to 1,500 iterations

of gradient descent training and report the results for different partitioning of training data

sets. We vary the number of parties m from 100 (where each party has 500 data instances)

to 1,000 parties (with each party having 50 data instances) and up to 50,000 parties (each

having only one data instance).
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Baselines for comparison. For the model aggregation method, we compare to the method

of Pathak et al. (PRR10) (denoted as Pathak), and the other differential privacy baselines

are obtained by applying the output perturbation (denoted as Local Out P) and objective

perturbation (denoted as Local Obj P) method of Chaudhuri et al. (CMS11b) on each local

model estimator θ̂(j) to obtain a differentially private local model estimator and then the

model aggregation is performed to obtain the differentially private aggregate model θ̂priv. For

the iterative learning method, we consider the baseline of aggregation of locally perturbed

gradients similar to that of Shokri and Shmatikov (SS15b) (denoted as Local Grad P),

except that we improve the noise bound by using zCDP. We also include the method of

Rajkumar and Agarwal (RA12) (denoted as Rajkumar and Agarwal) in our comparison,

though note that their method does not provide the same level of privacy as our method.

Our output perturbation based model aggregation method and gradient perturbation based

iterative learning method are denoted as MPC Out P and MPC Grad P respectively.

All the above methods consume a total privacy budget of ε = 0.5, except Rajkumar and

Agarwal which consumes ε = 0.5 budget each iteration. Table 6.1 summarizes the amount

of noise each method needs to preserve differential privacy. As the table shows, our methods

add the least amount of noise. Though Local Obj P adds noise in the same range as our

methods, it uses the noise in a fundamentally different way. While the other methods add the

sampled noise (either via output perturbation or via gradient perturbation) to the optimal

non-private model that minimizes the required objective function J(θ), Local Obj P adds

the sampled noise directly to the objective function J(θ) and hence optimizes an altogether

different objective function J ′(θ) = J(θ) + Lap( 2G
n1ε

), which explains why its optimality gap

increases with decreasing value of local data set size n(1).

Results. Figures 6.1 and 6.2 show the results for m = 1, 000; Appendix 6.6 includes plots

for other numbers of parties. For both the classification and regression tasks, our proposed

methods perform better than the baselines both in terms of optimality gap and relative

accuracy loss. For the classification task (Figure 6.1), MPC Grad P achieves optimality
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Figure 6.1: Optimality Gap and Relative Accuracy Loss Comparison on KDDCup99 (m =

1, 000). (All models have privacy budget ε = 0.5, except Rajkumar and Agarwal which

consumers ε = 0.5 privacy budget each iteration.)

gap in the order of 10−3 in 500 iterations and relative accuracy loss in the order of 10−4 within

200 iterations, and MPC Out P also achieves values in the same range. Rajkumar and

Agarwal adds noise of the same order as our methods and hence achieves performance close

to ours, but as noted earlier, their method consumes ε budget per iteration. Our methods

perform order of magnitudes better than the other baselines.

For the regression task (Figure 6.2), MPC Grad P gradually converges to an optimality

gap in the order of 10−3 and relative accuracy loss in the order of 10−2. MPC Out P incurs

loss due to data partitioning (which is unavoidable even for non-private aggregation methods)

but still outperforms the baselines of model aggregation by orders of magnitude.
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Figure 6.2: Optimality Gap and Relative Accuracy Loss Comparison on KDDCup98 (m =

1, 000). (As in Figure 6.1, all models have privacy budget ε = 0.5, except Rajkumar and

Agarwal.)

6.5 Proofs of the Main Theorems

6.5.1 Proof of Theorem 6.3.2

Before we prove Theorem 6.3.2, we provide a bound on the Laplace random vector given in

below Lemma (as proved in Chaudhuri and Monteleoni (CM09)).

Lemma 6.5.1. Given a d-dimensional random variable η ∼ Lap(β) with P (η) = 1
2β
e−
‖η‖1
β

, with probability at least 1 − δ, the `2-norm of the random variable is bounded as ‖η‖ ≤

dβ log
(
d
δ

)
.

For any differentiable and convex objective function, Chaudhuri and Monteleoni (CM09)

propose the following lemma to bound the sensitivity of model estimator:

Lemma 6.5.2 (Lemma 1 of Chaudhuri and Monteleoni (CM09)). Let θ1 = arg minθG(θ)

and θ2 = arg minθG(θ) + g(θ) such that G(θ) and g(θ) are both differentiable and convex.

Then ‖θ1 − θ2‖ ≤ g1
G2

where G2 = minv minθ v
>∇2G(θ)v for any unit vector v ∈ Rd and

g1 = maxθ ‖∇g(θ)‖.
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We also give the following theorem to bound the excess risk between distributed non-

private model estimator and the optimal model estimator in the centralized setting. This

theorem is used to prove the Theorem 6.3.2.

Theorem 6.5.3. Given an aggregate model estimator, θ̂ = 1
m

∑m
j=1 θ̂

(j) where we have

θ̂(j) = arg minθ
1
nj

∑nj
i=1 `(θ, x

(j)
i , y

(j)
i ) + λN(θ) and an optimal model estimator θ∗ trained on

the centralized data such that the data lie in a unit ball and `(·) is G-Lipschitz , we have

‖θ̂ − θ∗‖ ≤ G(m− 1)

n(1)λ
.

Proof. For a party Pj, the local model estimator is given as:

θ̂(j) = arg min
θ

1

nj

nj∑
i=1

`(θ, x
(j)
i , y

(j)
i ) + λN(θ) = arg min

θ
G(θ).

The centralized model estimator is hence given as:

θ∗ = arg min
θ

1

nj

nj∑
i=1

`(θ, x
(j)
i , y

(j)
i ) +

∑
l 6=j

1

nl

nl∑
i=1

`(θ, x
(l)
i , y

(l)
i ) + λN(θ) = arg min

θ
G(θ) + g(θ).

Thus we have the following values of g1 and G2:

g1 = max
θ
‖∇g(θ)‖ = max

θ

∑
l 6=j

1

nl
‖∇`(θ, x(l)

i , y
(l)
i )‖ ≤ G

∑
l 6=j

1

nl

G2 = min
v

min
θ
‖v>∇2G(θ)v‖ = min

v
min
θ
‖v>

( 1

nj
‖∇2`(θ, x

(j)
i , y

(j)
i )‖+ λ.1

)
v‖ ≥ λ

Using Lemma 6.5.2, we have ‖θ̂(j) − θ∗‖ = G
λ

∑
l 6=j

1
nl

. Applying triangle inequality, we get:

‖θ̂ − θ∗‖ ≤ 1

m

∑
j

‖θ̂(j) − θ∗‖ =
G

mλ

∑
j

∑
l 6=j

1

nl
=
G(m− 1)

mλ

∑
j

1

nj
≤ G(m− 1)

n(1)λ
.

Now we are ready to prove Theorem 6.3.2 using Lemma 6.5.1 and Theorem 6.5.3.

Proof of Theorem 6.3.2. Using Taylor Expansion, we have

J(θ̂priv) = J(θ∗) + (θ̂priv − θ∗)∇J(θ∗) +
1

2
(θ̂priv − θ∗)∇2J(θ)(θ̂priv − θ∗),
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where θ = αθ̂priv + (1− α)θ∗ for some α ∈ [0, 1]. By definition, ∇J(θ∗) = 0, thus we get

J(θ̂priv)− J(θ∗) ≤ 1

2
‖θ̂priv − θ∗‖2.‖∇2J(θ)‖.

Since `(·) is L-smooth, we have ‖∇2J(θ)‖ ≤ λ+ L, therefore

J(θ̂priv) ≤J(θ∗) +
λ+ L

2
‖θ̂ − θ∗ + η‖2

≤J(θ∗) +
λ+ L

2

[
‖θ̂ − θ∗‖2 + ‖η‖2 + 2(θ̂ − θ∗)>η

]
≤J(θ∗) +

λ+ L

2

[
‖θ̂ − θ∗‖2 + ‖η‖2 + 2‖θ̂ − θ∗‖ · ‖η‖

]
.

By Theorem 6.5.3 and Lemma 6.5.1, we obtain

J(θ̂priv) ≤ J(θ∗) +
G2(m− 1)2(λ+ L)

2n2
(1)λ

2
+

2G2d2(λ+ L)

m2n2
(1)λ

2ε2
log2

(
d

δ

)
+

2G2d(m− 1)(λ+ L)

mn2
(1)ελ

2
log

(
d

δ

)
≤ J(θ∗) + C1

G2(λ+ L)

n2
(1)λ

2

(
m2 +

d2 log2(d/δ)

m2ε2
+
d log(d/δ)

ε

)
,

where C1 is an absolute constant.

6.5.2 Proof of Theorem 6.3.3

Proof. The proof follows from Sridharan et al. (SSS09) where the authors give the following

relation between true risk and empirical risk bounds:

J̃(θ̂priv)−min
θ
J̃(θ) ≤ 2

[
J(θ̂priv)− J(θ∗)

]
+

16G2

λn

[
32 + log

(
1

δ

)]
.

Substituting the empirical risk bound from Theorem 6.3.2 will complete the proof.

6.5.3 Proof of Corollary 6.3.5

Proof. By composition property of Lemma 6.2.5, each θt is (tρ)-zCDP.

From Lemma 6.2.6, the privacy budget εt for iteration t is given as εt = tρ+2
√
tρ log(1/δ)
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Total privacy budget is ε = Tρ+ 2
√
Tρ log(1/δ)

=⇒ tε

T
= tρ+ 2

√
tρ log(1/δ)

(√
t

T

)
= tρ

(
1−

√
t

T

)
+

√
t

T
εt

=⇒ εt =

√
t

T
ε+
√
Tt

(√
t

T
− 1

)
ρ

In the proof of Theorem 6.3.4, we showed that: ρ ≈ ε2

4T log(1/δ)

Substituting the value of ρ, we get the relation between εt and ε:

εt =

√
t

T
ε+

√
t

T

(√
t

T
− 1

)
ε2

4 log(1/δ)
≤
√

t

T
ε

Hence, each intermediate model estimator θt is (
√
t/T ε, δ)-differentially private.

6.5.4 Proof of Theorem 6.3.6

Proof. From L-smoothness assumption:

E[J(θt+1)− J(θt)] ≤ E[〈∇J(θt), θt+1 − θt〉+
1

2L
‖∇J(θt) + zt‖2]

= E[− 1

L
〈∇J(θt),∇J(θt) + zt〉+

1

2L
‖∇J(θt) + zt‖2]

= − 1

2L
‖∇J(θt)‖2 +

1

2L
Ezt‖zt‖2 ≤ −λ

L
(J(θt)− J∗) +

dσ2

2L

The last inequality comes from the strong convexity assumption. The above equation is

conditioned on the randomness of θt, and can be written as:

E[J(θt+1)]− J(θ∗) ≤ (1− λ

L
)(J(θt)− J(θ∗)) +

dσ2

2L

Summing over t = 0, . . . , T iterations, and taking expectation:

E[J(θT )]− J(θ∗) ≤ (1− λ

L
)T (J(θ0)− J(θ∗)) +

dσ2

2λ

When T = O
(

log
( m2n2

(1)
ε2

dG2 log(1/δ)

))
,

E[J(θT )]− J(θ∗) ≤ C1

G2d log2(mn(1)) log(1/δ)

m2n2
(1)ε

2
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where C1 is an absolute constant and the big-O notation hides other log, L, λ terms.

6.5.5 Proof of Theorem 6.3.7

Proof. We want to bound E[J̃(θT )]−minθJ̃(θ), where J̃(θ) = ED[JD(θ)]. We denote J̃(θ̃) =

minθJ̃(θ). According to Theorem 1 in (SSS09), we have the following holds with probability

at least 1− γ

J̃(θT )− J̃(θ̃) ≤ 2(J(θT )− J(θ∗)) + C2
G2 log(1/γ)

λmn(1)

,

where C2 is an absolute constant. Therefore, we have the following holds with probability

at least 1− γ

E[J̃(θT )]−min
θ
J̃(θ) ≤ 2(E[J(θT )]− J(θ∗)) + C2

G2 log(1/γ)

λmn(1)

≤ C1

G2d log2(mn(1)) log(1/δ)

m2n2
(1)ε

2
+ C2

G2 log(1/γ)

λmn(1)

,

where C1 is an absolute constant.

6.6 More Experimental Results

6.6.1 Experiments on KddCup99 dataset

With the increasing number of parties m (and accordingly decreasing the local data set size

n(1)), performance of all the methods decrease except that of MPC Grad P (see Figures

6.3 and 6.4). While the performance of baselines deteriorate mainly due to the large amount

of noise they add, the performance of MPC Out P, on the other hand, decreases with

decreasing local data set size due to the loss in information from data partitioning (which

is the case with any model aggregation based method, including the non-private ones). For

m = 50, 000, the large amount of noise destroys the utility of Pathak (Figure 6.4).
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Figure 6.3: Optimality Gap and Relative Accuracy Loss Comparison on KddCup99 (m =

100)

*All models except Rajkumar and Agarwal have privacy budget ε = 0.5.
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Figure 6.4: Optimality Gap and Relative Accuracy Loss Comparison on KddCup99 (m =

50, 000)

*All models except Rajkumar and Agarwal have privacy budget ε = 0.5.
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Figure 6.5: Optimality Gap and Relative Accuracy Loss Comparison on KddCup98 (m =

100)

*All models except Rajkumar and Agarwal have privacy budget ε = 0.5.

6.6.2 Experiments on KddCup98 dataset

Overall, with the increasing number of parties m (and accordingly decreasing the local data

set size n(1)), performance of all the methods decrease except that of MPC Grad P (see

Figures 6.5 and 6.6). Though the performance of MPC Out P decreases with decreasing

the local data set size, it still outperforms the baselines of model aggregation. We note that

for m = 50, 000, Local Obj P performs worse than the Local Out P which is due to the

deviation in the objective function of Local Obj P as mentioned earlier. The utility of

Pathak is severely affected due to the large amount of noise added, which is why the plot

is out of the range for m = 50, 000 (Figure 6.6).

6.6.3 Experiments on Adult dataset

The Adult (AN07) data set consists of demographic information of approximately 47,000

individuals, and the task is to predict whether the annual income of an individual is above
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Figure 6.6: Optimality Gap and Relative Accuracy Loss Comparison on KddCup98 (m =

50, 000)

*All models except Rajkumar and Agarwal have privacy budget ε = 0.5.

or below $50,000. After removing records with missing values, we end up with 45,222 records

of which 30,000 records formed the training set and the remaining records formed the test

set. After pre-processing, each record consisted of 104 features.

We vary the number of parties m from 100 (where each party has 300 data instances) to

1,000 parties (with each party having 30 data instances) and all the way to 30,000 parties

(each having only one data instance).

Our proposed methods MPC Out P and MPC Grad P outperform the baselines both

in terms of optimality gap and relative accuracy loss (Figures 6.7, 6.8 and 6.9). MPC Grad

P achieves optimality gap in the order of 10−2 and relative accuracy loss in the order of 10−4

for all settings, while the performance of MPC Out P deteriorates with decreasing local

data set size (due to the information loss from data partitioning). Nevertheless, MPC Out

P still outperforms all the baselines by orders of magnitude.
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Figure 6.7: Optimality Gap and Relative Accuracy Loss Comparison on Adult (m = 100)

*All models except Rajkumar and Agarwal have privacy budget ε = 0.5.
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Figure 6.8: Optimality Gap and Relative Accuracy Loss Comparison on Adult (m = 1, 000)

*All models except Rajkumar and Agarwal have privacy budget ε = 0.5.
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Figure 6.9: Optimality Gap and Relative Accuracy Loss Comparison on Adult (m = 30, 000)

*All models except Rajkumar and Agarwal have privacy budget ε = 0.5.

6.7 Implementation of Secure Aggregation

For our prototype implementation of secure aggregation, we implemented the two-party

non-collusive framework of Tian et al. (TJG16). We used the Obliv-C (ZE15b) framework

for performing the MPC, and measured the runtime and bandwidth cost of doing secure

aggregation along with noise generation inside the MPC framework (See Table 6.2). We

conducted experiments using both semi-honest Yao’s garbled circuits protocols, and in the

active-secure dual execution model (HKE12). This provides security against fully malicious

adversaries, but leaks up to one arbitrary bit of information about private inputs with each

protocol execution.

Across all the data sets, the garbled circuit for performing the secure aggregation along

with noise generation took around 700 to 900 MB of bandwidth, consisting of around 37

million to 48 million gates for Yao’s protocol. The primary cost of the protocol is transmitting

the ciphertexts of the garbled gates, and the circuit complexity is dominated by the noise

generation. The bandwidth of oblivious transfer (OT) ranged from 32 to 41 MB. The cost

is double for dual execution protocol. Note that the cost does not depend on the size of the
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Table 6.2: Secure Aggregation in MPC

Adult KDDCup99 KDDCup98

Number of Features 104 122 95

Gate Count 40,733,500 47,781,200 37,209,600

GC Bandwidth (MB) 776.93 911.35 709.72

OT Bandwidth (MB) 35.17 41.19 32.28

Yao Runtime (sec) 22.28 26.45 20.31

DualEx Runtime (sec) 56.46 65.21 50.67

data set; it only depends on the number of parties, the number of features in the data set,

the needed precision, and the method used to add the required differential privacy noise.

As the table suggests, the number of gates grows linearly with the number of features, with

roughly 391,600 gates per feature.

Overall secure aggregation took less than 2 seconds using Yao’s protocol, and the remain-

ing computation time was taken by the noise generation. For sampling the Laplace noise,

each party first inputs its share of random number ui, which is XORed inside the MPC

to generate the randomness u =
⊕

ui. Next, the Laplace noise of scale b is generated as:

Lap(b) = ± log([u]).b, where [.] shrinks the input to (0,1] range and b = 2
m.n(1)λε

. We used the

big integer library (Doe17) to perform the log operation within the MPC. Gaussian noise

can be generated in the same way using the Box-Muller method (BM58). There are many

opportunities to reduce this cost without reducing security by generating the required noise

differently, which we plan to explore in future work.
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CHAPTER 7

Conclusion and Future Work

Privacy concerns emerge as one of the major problems when deploying machine learning

methods in real-world applications. The main focus of the thesis is to address these concerns

by developing more efficient and effective privacy-preserving machine learning algorithms.

To this end, we propose a series of differentially private sparse learning methods in Chapter

2 and Chapter 3. In Chapter 2, we design a differentially private iterative gradient hard

thresholding algorithm to train the private sparse model in a more efficient way. In Chapter

3, we establish a knowledge transfer framework, which focuses on improving the utility

guarantee of the private sparse model.

In Chapter 4 and Chapter 5, we study the differentially private nonconvex optimization.

In Chapter 4, we develop a private stochastic optimization algorithm for training deep neural

network which can significantly reduce the computational complexities. Chapter 5 focuses

on the utility of solving private empirical risk minimization.

In Chapter 6, we provide a new privacy-preserving framework for distributed empirical

risk minimization. We prove that the proposed framework can achieve the same utility

guarantee as the centralized one without sacrificing the privacy.

While we have made progress towards developing more efficient privacy-preserving ma-

chine learning algorithms with strong privacy and utility guarantees, there are still many

unsolved fundamental questions. My future research plans focus on further pushing the

frontier of privacy-preserving machine learning by understanding the fundamental limits of

privacy-preserving methods, designing new, theoretically principled privacy-preserving ma-
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chine learning methods for distributed/federated problems, and building privacy-preserving

systems for real-world problems.

Understanding the Privacy Risks in Practice: Although differential privacy provides

strong bounds on the worst-case privacy loss, it does not elucidate what privacy attacks could

be realized in practice. Therefore, there remains a large gap between achievable privacy guar-

antees using privacy-preserving machine learning methods and what can be inferred using

known attacks in practice. Therefore, it is very important to understand the privacy risks

of existing privacy-preserving machine learning methods in practice. To achive this goal,

our idea is to use the membership inference attack as the testbed for evaluating the privacy

leakage of privacy-preserving machine learning methods. More specifically, the potential

solution may consist of two parts: Firstly, we develop a new privacy leakage metric that cap-

tures the inference risk under realistic assumptions such as skewed priors (wherein members

only make up a small fraction of the candidate pool). Secondly, we design more powerful

inference attacks to empirically evaluate the privacy leakage of models trained with privacy-

preserving machine learning methods. We believe that the potential solution can shed light

on how vulnerable our model could be in practice even trained with privacy-preserving ma-

chine learning methods. We also aim to establish more powerful attacks, including attribute

inference in the future, to help us better understand the privacy risks in practice.

Privacy-Preserving Federated Learning: Although we developed the privacy-preserving

federated learning (FL) method using secure multi-party computation to achieve state-of-

the-art privacy and utility guarantees in Chapter 6, there still exist many unsolved research

questions in this field. For example, communication cost is often the bottleneck in FL. There-

fore, it is imperative for us to design new privacy-preserving federated learning methods that

can significantly reduce communication costs while maintaining strong privacy and utility

guarantees. Besides, private data are often distributed non-i.i.d. across different users in

FL. Thus, privacy-preserving federated learning methods should deal with the heterogeneous

data without deteriorating both the privacy and utility guarantees. More importantly, FL
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often relies on a trusted central server that can aggregate and analyze local information.

What if the central server is vicious, and how can we protect each user’s privacy without

sacrificing the collective model’s utility in such setting? I aim to address these research ques-

tions in privacy-preserving federated learning. By solving these research questions, I believe

the new privacy-preserving federated learning methods we build will profoundly impact both

literature and real-world applications.

Lower Bounds for Differentially Private Optimization: The most widely used op-

timization method for solving machine learning problems with privacy guarantees is the

differentially private gradient-based method, such as DP-SGD. However, there is no lower

bound result for differentially private optimization methods, and thus it is unclear whether

existing differentially private optimization methods are optimal in terms of computational

complexity. To better understand the fundamental limits of differentially private optimiza-

tion methods, it is very important for us to establish lower bounds on the complexity of

solving the privacy-preserving machine learning problem with only accessing up to first-

order stochastic oracles. To this end, we will extend the existing proof technique from the

non-private optimization problems to differentially private optimization problems, and our

lower bounds will reveal how the privacy mechanism affects the optimization process with

existing optimization methods such as stochastic gradient descent, and how can we design

more efficient differentially private algorithms for solving privacy-preserving machine learn-

ing problems.
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[LBB98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-

based learning applied to document recognition.” Proceedings of the IEEE,

86(11):2278–2324, 1998.

[LGN17] Y. Liu, K. Gadepalli, M. Norouzi, G. Dahl, T. Kohlberger, A. Boyko, S. Venu-

gopalan, A. Timofeev, P. Nelson, G. Corrado, and et al. “Detecting Cancer

Metastases on Gigapixel Pathology Images.” arXiv:1703.02442, 2017.

[LJC17] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. “Non-convex finite-

sum optimization via scsg methods.” In NeurIPS, 2017.

[LK18a] J. Lee and D. Kifer. “Concentrated Differentially Private Gradient Descent with

Adaptive per-iteration Privacy Budget.” ArXiv:1808.09501, 2018.

[LK18b] Jaewoo Lee and Daniel Kifer. “Concentrated differentially private gradient de-

scent with adaptive per-iteration privacy budget.” In ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining, 2018.

[LP00] Yehuda Lindell and Benny Pinkas. “Privacy Preserving Data Mining.” In Ad-

vances in Cryptology—CRYPTO, 2000.

[LP07] Yehuda Lindell and Benny Pinkas. “An Efficient Protocol for Secure Two-

Party Computation in the Presence of Malicious Adversaries.” In Advances in

Cryptology—EUROCRYPT. 2007.

[LP09] Yehuda Lindell and Benny Pinkas. “Secure Multiparty Computation for Privacy-

Preserving Data Mining.” Journal of Privacy and Confidentiality, 2009.

[LW13] Po-Ling Loh and Martin J Wainwright. “Regularized M-estimators with non-

convexity: Statistical and algorithmic theory for local optima.” In Advances in

Neural Information Processing Systems, pp. 476–484, 2013.

162



[LYR04] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. “Rcv1: A new bench-

mark collection for text categorization research.” Journal of machine learning

research, 5(Apr):361–397, 2004.
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Näıve Bayes Classification.” The VLDB Journal, 2008.

[WBK19] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. “Subsampled

Renyi Differential Privacy and Analytical Moments Accountant.” In Interna-

tional Conference on Artificial Intelligence and Statistics, 2019.

[WCX19] Di Wang, Changyou Chen, and Jinhui Xu. “Differentially Private Empirical Risk

Minimization with Non-convex Loss Functions.” In International Conference on

Machine Learning, 2019.

167



[WDC18] Qian Wang, Minxin Du, Xiuying Chen, Yanjiao Chen, Pan Zhou, Xiaofeng Chen,

and Xinyi Huang. “Privacy-preserving collaborative model learning: The case of

word vector training.” IEEE Transactions on Knowledge and Data Engineering,

30(12):2381–2393, 2018.

[WG19a] Lingxiao Wang and Quanquan Gu. “Differentially Private Iterative Gradient

Hard Thresholding for Sparse Learning.” In Proceedings of the 28th International

Joint Conference on Artificial Intelligence, 2019.

[WG19b] Lingxiao Wang and Quanquan Gu. “Differentially Private Iterative Gradient

Hard Thresholding for Sparse Learning.” In International Joint Conference on

Artificial Intelligence, 2019.

[WG20] Lingxiao Wang and Quanquan Gu. “A Knowledge Transfer Framework for Dif-

ferentially Private Sparse Learning.” AAAI, 2020.

[WGX18] Di Wang, Marco Gaboardi, and Jinhui Xu. “Empirical risk minimization in

non-interactive local differential privacy revisited.” In Advances in Neural Infor-

mation Processing Systems, pp. 973–982, 2018.

[WJE19] Lingxiao Wang, Bargav Jayaraman, David Evans, and Quanquan Gu. “Efficient

Privacy-Preserving Nonconvex Optimization.” arXiv preprint arXiv:1910.13659,

2019.

[WLF16] Y. Wang, J. Lei, and S. Fienberg. “Learning with Differential Privacy:

Stability, Learnability and the Sufficiency and Necessity of ERM Principle.”

ArXiv:1502.06309, 2016.

[WLK17] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey

Naughton. “Bolt-on differential privacy for scalable stochastic gradient descent-

based analytics.” In ACM International Conference on Management of Data,

2017.

168



[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. “EMP-toolkit: Efficient

MultiParty computation toolkit.” https://github.com/emp-toolkit, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Global-Scale Secure Mul-

tiparty Computation.” In ACM Conference on Computer and Communications

Security, 2017.

[WYX17a] Di Wang, Minwei Ye, and Jinhui Xu. “Differentially Private Empirical Risk

Minimization Revisited: Faster and More General.” In Advances in Neural In-

formation Processing Systems, 2017.

[WYX17b] Di Wang, Minwei Ye, and Jinhui Xu. “Differentially Private Empirical Risk

Minimization Revisited: Faster and More General.” In Advances in Neural In-

formation Processing Systems, pp. 2719–2728, 2017.

[XCM12] Huan Xu, Constantine Caramanis, and Shie Mannor. “Sparse algorithms are

not stable: A no-free-lunch theorem.” IEEE transactions on pattern analysis

and machine intelligence, 34(1):187–193, 2012.

[XLW18] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. “Differentially

Private Generative Adversarial Network.” arXiv preprint arXiv:1802.06739,

2018.

[Yao82] Andrew C Yao. “Protocols for Secure Computations.” In Symposium on Foun-

dations of Computer Science, 1982.

[YJS19] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “PATE-GAN: Gen-

erating Synthetic Data with Differential Privacy Guarantees.” In International

Conference on Learning Representations, 2019.

[YKL11] M. Yuen, I. King, and K. Leung. “A Survey of Crowdsourcing Systems.” In

169

https://github.com/emp-toolkit


Proceedings of the IEEE international conference on social computing (Socialcom

2011), 2011.

[YLL20] Huizhuo Yuan, Xiangru Lian, Ji Liu, and Yuren Zhou. “Stochastic Recursive

Momentum for Policy Gradient Methods.” arXiv preprint arXiv:2003.04302,

2020.

[YLZ14] Xiaotong Yuan, Ping Li, and Tong Zhang. “Gradient hard thresholding pursuit

for sparsity-constrained optimization.” In International Conference on Machine

Learning, pp. 127–135, 2014.

[YS15] Y. Wang Y. Wang and A. Singh. “Differentially Private Subspace Clustering.”

In Advances in Neural Information Processing Systems (NIPS 2015), 2015.

[YZW05] Zhiqiang Yang, Sheng Zhong, and Rebecca N. Wright. “Privacy-Preserving Clas-

sification of Customer Data without Loss of Accuracy.” In SIAM International

Conference on Data Mining, 2005.

[ZE15a] Samee Zahur and David Evans. “Obliv-C: A Language for Extensible Data-

Oblivious Computation.” IACR Cryptol. ePrint Arch., 2015:1153, 2015.

[ZE15b] Samee Zahur and David Evans. “Obliv-C: A Language for Extensible Data-

Oblivious Computation.” Cryptology ePrint Archive, Report 2015/1153, 2015.

[Zha10] Tong Zhang. “Analysis of multi-stage convex relaxation for sparse regulariza-

tion.” Journal of Machine Learning Research, 11(Mar):1081–1107, 2010.

[Zha11] Tong Zhang. “Adaptive forward-backward greedy algorithm for learning sparse

representations.” IEEE transactions on information theory, 57(7):4689–4708,

2011.

[ZW19] Yuqing Zhu and Yu-Xiang Wang. “Poission Subsampled Rényi Differential Pri-
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