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Abstract

Damage Assessment and Collapse Simulations
of Structures under Extreme Loading Conditions

by

Thanh Do Ngoc

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Filip C. Filippou, Chair

This dissertation presents a family of new beam-column element models which are based
on damage-plasticity and are suitable for the damage assessment and the collapse simulation
of structures.

First, a new 1d hysteretic damage model based on damage mechanics is developed that re-
lates any two work-conjugate response variables such as force-displacement, moment-rotation
or stress-strain. The strength and stiffness deterioration is described by a damage variable
with continuous evolution. The formulation uses a criterion based on the hysteretic energy
and the maximum absolute deformation value for the damage initiation with a cumulative
probability distribution function for the damage evolution. The damage evolution function
is extended to accommodate the sudden strength and stiffness degradation of the force-
deformation relation due to brittle fracture. The model shows excellent agreement with
the hysteretic response of an extensive set of reinforced concrete, steel, plywood, and ma-
sonry specimens. In this context it is possible to relate the model’s damage variable to the
Park-Ang damage index so as to benefit from the extensive calibration of the latter against
experimental evidence.

The 1d damage model is then extended to the development of beam-column elements
based on damage-plasticity. In these models the non-degrading force-deformation relation
in the effective space is described by a linear elastic element in series with two rigid-plastic
springs with linear kinematic and isotropic hardening behavior. The first model, the series
beam element, assumes that the axial response is linear elastic and uncoupled from the
flexural response. The second model, the NMYS column element, uses an axial-flexure
interaction surface for the springs to account for the inelastic axial response and capture the
effect of a variable axial load on the flexural response. A novel aspect of the beam-column
formulation is that the inelastic response is monitored at two locations that are offset from
the element ends to account for the spread of inelasticity for hardening response and the
size of the damage zones for softening response. The plastic hinge offsets account for the
response coupling between the two element ends.
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The implementation of the damage-plasticity elements with the return-mapping algo-
rithm ensures excellent convergence characteristics for the state determination. The pro-
posed elements compare favorably in terms of computational efficiency with more sophisti-
cated models with fiber discretization of the cross section while achieving excellent agreement
in the response description for homogeneous metallic structural components. The excellent
accuracy is also confirmed by the agreement with experimental results from more than 50
steel specimens under monotonic and cyclic loading. The models are able to describe ac-
curately the main characteristics of steel members, including the accumulation of plastic
deformations, the cyclic strength hardening in early cycles, the low-cycle fatigue behavior,
and the different deterioration rates in primary and follower half cycles. With the plastic
axial energy dissipation accounted for in the damage loading function, the damage-plasticity
column model captures the effect of a variable axial force on the strength and stiffness dete-
rioration in flexure, the severe deterioration under high axial compression, the nonsymmetric
response under a variable axial force, and the very large plastic axial and flexural deforma-
tions before column failure. The validation studies point out the dependence of the strength
and stiffness deterioration on the section compactness, the element slenderness, the axial
force history, and the axial shortening of the columns. A regression analysis is then used to
establish guidelines for the damage parameter selection in relation to the geometry and the
boundary conditions of the structural member.

The proposed damage-plasticity frame elements are deployed in an analysis framework
for the large-scale simulation and collapse assessment of structural systems. The capabilities
of the modeling approach are demonstrated with the case study of an 8-story 3-bay special
moment-resisting steel frame that investigates various aspects of the structural collapse be-
havior, including the global and local response under strength and stiffness deterioration, the
magnitude and distribution of the local damage variables, and the different types of collapse
mechanism. The study proposes new local and global damage indices, which are better suited
for the collapse assessment of structures than existing engineering demand parameters like
the maximum story drift. The incremental dynamic analysis of the 8-story moment frame
under a suite of earthquake ground motions confirms the benefits of the proposed damage in-
dices for the collapse assessment of structures. The study shows that an aftershock as strong
as the main shock increases the collapse margin ratio by as much as 30% and requires more
stringent design criteria for protecting the building from collapse that currently specified.

The study compares different modeling aspects for the archetype building to assess the
benefits of the proposed beam-column elements, such as the ability to account for the member
damage, the offset location of the plastic hinges, the inelastic axial response, the axial-flexure
interaction, and the sudden strength and stiffness deterioration due to brittle fracture of
the structural member. The study concludes that the proposed family of beam-column
elements holds great promise for the large scale seismic response simulation of structural
systems with strength and stiffness deterioration, because of their computational efficiency
and excellent accuracy. Consequently, the proposed models should prove very useful for
the damage assessment and the collapse simulation of structures under extreme loading
conditions.
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Chapter 1

Introduction

1.1 Motivation

Over the last decades, we are continuously reminded of the lack of resilience in the
built-environment by earthquakes, tsunamis, hurricanes, that cause intolerable structural
damage, economic loss, and significant loss of lives. These hazards pose a constant threat to
the resilience of our community. In particular, the seismic hazard has caused severe dam-
age to a wide variety of structural types, ranging from reinforced concrete (RC), masonry,
wood, to steel, which is widely believed to exhibit superior performance during earthquakes.
Damage in steel structures, even though not as severe as in other structural types such as
RC structures, also results in significant economic loss and thus deserves more attention.
One example of serious damage in steel structures is the Cordova building during the Prince
William Sound, Alaska earthquake in 1964. Damage to this six-story steel frame was concen-
trated in the first story where a number of wide flange columns buckled due to the high axial
forces. Another example of a severely damaged steel structure is the Pino Suarez Complex
during the Mexico City earthquake in 1985. In this case, the large brace forces induced axial
overstress in the columns and lead to column buckling, and in turns, the collapse of a 21-
story building. A detailed discussion on past performance of steel moment-frame buildings
in earthquake can be found in the FEMA 355E report [107].

To prevent structural collapse and enhance the community resilience in a multi-hazard
environment, it is critical to understand the deterioration in structures so that proper pre-
vention and/or mitigation practices can be undertaken. For the purpose, often times a
numerical model is employed to simulate the structural response and quantify the level of
damage. However, as will be discussed in detail in the remaining of this dissertation, many
existing models have serious limitations in the accuracy and the efficiency.

Due to the above limitations, the major challenge in this generation is two-fold: first,
to establish an accurate, efficient, and reliable analytical framework to quantify the perfor-
mance of existing and new structures under extreme loading conditions both predictively
and retrospectively; and second, to develop the design and retrofit guidelines to improve the
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system resilience against the effect of manmade and natural hazards. The framework con-
sists of several critical components: (1) a damage model to predict the structural response
and assess the damage states and collapse fragility, (2) a probabilistic model to evaluate
the multi-hazard risks, and (3) a financial model to estimate the repair/replacement cost as
well as the necessary recovery time for the structure to be fully operational. The analysis
permits a resilient design for a new building or an economical retrofitting scheme for an
existing structure with optimal use of available resources.

This dissertation addresses the first major component of this interdisciplinary framework:
to develop efficient and accurate damage models for the response simulation and damage
assessment of structural systems in a multi-hazard environment.

1.2 Literature Review

The following review of relevant literature is presented in three parts: the first addresses
the existing deterioration models, the second reviews some notable beam and column ele-
ment models, and the third discusses the engineering demand parameters commonly used in
damage evaluation of components and structures.

1.2.1 Damage models

The assessment of structural resilience depends on the analytical description of the dam-
age evolution under a sequence of extreme cyclic loading conditions. Existing models of
material damage fall into three broad categories:

(a) Rigorously formulated 3d material constitutive models based on continuum damage
mechanics (CDM) that describe the evolution of the strength and stiffness deterio-
ration. These models focus on local response simulations of structural components,
which however, make their high computational cost unsuitable for the simulation of
structural systems under multi-hazard scenarios.

(b) Hysteretic models with strength and stiffness deterioration rules. These models can, in
turn, be divided into polygonal and smooth response description models. The first type
assumes piece-wise linear response between events corresponding to cracking, yielding
and ultimate capacity. The second type uses algebraic or differential equations to
generate a smooth hysteretic response with a gradual transition from the elastic to
the inelastic range. These models are simpler than the ones in the first category and
are widely used in practice. However, they exhibit some limitations in the damage
description of components, such as in the degradation in primary and follower half
cycles, the unloading stiffness deterioration, the lack of a consistent damage measure,
among others.

(c) Damage index models. These models establish a damage index for quantifying compo-
nent damage. The damage index calibration is based on experimental measurements
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and observations or on analytical results with some of the hysteretic models under (b).
The models, however, do not explicitly describe the degrading hysteretic response as
the models under (a) and (b), and thus, lacks the correlation between the structural
response and the damage states.

Examples of CDM models are those by Simo and Ju [91], Lemaitre [54], and Huang [38]
for ductile materials, and those by Mazars and Pijaudier-Cabot [62] and Wu and Faria [110]
for concrete materials. The cyclic void growth model (CVGM) by Rice and Tracey [83] and
the model by Kanvinde and Deierlein [44] also fall in this category. Because these models
focus on local response simulations of structural components, their high computational cost
makes them unsuitable for the simulation of structural systems under multi-hazard scenarios.

Models in the second category can be further classified into to groups: polygonal models
and smooth models. Polygonal hysteretic models are relatively easy to formulate, but of-
tentimes depend on many rules limiting their generality and making their consistency and
numerical robustness challenging. Several such models have been proposed over the years
starting with Clough [17] and Takeda et al. [98]. The force-deformation relation of the for-
mer represents the stiffness degradation by adjusting the reloading behavior to target the
maximum previous displacement in the loading direction and is often referred to as the peak-
oriented model. Takeda’s model uses a trilinear envelope to distinguish the cracking from
the yield moment of a reinforced concrete component and is characterized by a more complex
unloading and reloading peak-oriented behavior than Clough’s model. The three-parameter
model by Park, Reinhorn, and Kunnath [72, 81] uses a pivot rule to describe the stiffness
deterioration and includes strength degradation based on the hysteretic energy at unload-
ing. The model by Song and Pincheira [94] relates the strength and stiffness deterioration to
the maximum deformation at the most recent inelastic excursion in the opposite direction.
Finally, the model by Ibarra et al. [39] uses a piecewise linear monotonic backbone relation
and four deterioration modes: strength, post-capping, unloading stiffness, and accelerated
reloading stiffness. [57] reports the extensive calibration of this model. Because of their
formulation polygonal models accommodate strength and stiffness deterioration as discrete
updates at the instant of load or deformation reversal.

Smooth hysteretic models are more computationally involved than polygonal models but
are more consistent and numerically robust. A prominent example of this group is the
model of Bouc [11] and its extension by Wen [108] and Baber et al. [9, 8]. Sivaselvan and
Reinhorn [93] and Ray and Reinhorn [80] demonstrated the ability of smooth hysteretic
models to accommodate a continuous strength and stiffness deterioration through the use
of rate equations for the strength and stiffness evolution. Sivaselvan and Reinhorn [93] also
proposed an elegant framework for combining basic polygonal and smooth hysteretic models
in parallel or in series with the intent of assigning one suitable component to a corresponding
physical mechanism like plastic yielding, slip, friction, etc.

Park and Ang [73] proposed an early damage model with the damage index as the linear
combination of the normalized maximum deformation and the normalized hysteretic energy.
In contrast, the model by Krätzig [49] uses the normalized hysteretic energy of each load
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cycle to establish the damage index of the component. To account for the dependence
of damage on the deformation history, Krätzig distinguishes the energy dissipation of a
primary half cycle (PHC) that extends the deformation envelope from a follower half cycle
(FHC) that remains within the current extreme deformations. Mehanny and Deierlein [64]
adopted the idea of PHC and FHC but based the damage index on the maximum plastic
deformations instead of hysteretic energy. Rahnama and Krawinkler [79] proposed a damage
index as an exponential function of the normalized energy dissipation in each load cycle.
Finally, Bozorgnia and Bertero [12] suggested a modification of the Park-Ang damage index
to discount damage in the elastic range. They also introduced a weight coefficient for the
contribution of the deformation ductility relative to the energy dissipation.

1.2.2 Beam-column models

The following review of the existing beam and column elements is presented in two parts.
First, the element models without strength and stiffness deterioration are discussed. Then,
the discussion focuses on the models that account for the deterioration in the response.

1.2.2.1 Element models with nondegrading response

Existing nondegrading beam-column models can be classified into three main categories:

(a) Continuum models: this approach requires a discretization of the structural model
and is common in finite element analysis. These models specify a stress-strain relation
for the material response and focus on the local behavior of structural components.
However, the high computational cost limits their use in large-scale simulations of
structural systems.

(b) Distributed plasticity models: the element response is monitored at several sections
along the element length. The models permit plastic hinges to form at any section
and account directly for the interaction of the element response, such as axial, flexure,
shear, torsion, and warping. The section response is determined from a stress-resultant
model [24] or a fiber-based model. The latter can, in turn, be divided into elements
with a displacement- and a force-based or a mixed formulation.

(c) Concentrated plasticity models: the inelastic behavior is concentrated in the nonlinear
plastic hinges typically located at the element ends. The hysteretic behavior of the
plastic hinges are given by a moment-rotation relation.

Distributed plasticity elements based on the displacement-formulation adopt a similar
approach in standard finite element method and utilize displacement interpolation functions
to relate the section deformations to the element deformations [112]. Since the relation is
approximate, several elements are required to describe accurately the nonlinear element
response. Distributed plasticity elements based on the force- or mixed-formulation, on the
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other hand, use force interpolation functions to relate the section forces to the element forces.
Since equilibrium is satisfied exactly, the force-based formulation only requires one element
to describe accurately the nonlinear behavior and permits fewer degrees of freedom in the
structural model. Further discussion on the advantages of the force-based elements can be
found in Spacone et al. [95], Neunhoffer and Filippou [65], Taylor et al. [102].

One of the earliest concentrated plasticity models is the two-component element pro-
posed by Clough, Benuska, and Wilson [17]. It consists of a linear elastic-perfectly plastic
component in parallel with a linear elastic component and is able to represent a post-yield
linear hardening behavior in the flexural response. Another notable model in this category
is the one-component element by Giberson [30], which consists of a linear elastic component
in series with two nonlinear springs located at the element ends. The springs assume a
rigid-plastic with linear hardening behavior and are activated when the moment exceeds the
plastic flexural capacity. Both the one-component and the two-component models assume a
linear elastic axial response that is uncoupled from the flexural behavior. The models have
been extended to accommodate the axial-flexure interaction in the plastic hinge response
[37, 76]. Concentrated plasticity models are widely used in response simulations of struc-
tural components of different materials, including steel [67, 67, 75, 70, 37, 76], reinforced
concrete [100], and concrete-filled steel tubes [34, 48].

Concentrated plasticity models compare favorably to continuum and distributed plas-
ticity models in the numerical efficiency but also exhibit several limitations. First, despite
the effort to account for the response interaction, the challenge to capture sufficiently the
coupling of complex element response remains. Second, many concentrated plasticity models
explicitly specify a zero-length rotational spring element and require additional nodes and
degrees of freedom at the interface between the spring and the elastic beam element. This
problem can be resolved by specifying the plastic hinges implicitly in the element state deter-
mination [77, 48]. Moreover, the approximatation of the rigid-plastic behavior in the plastic
hinges with a large elastic stiffness leads to numerical nonconvergence under dynamic load-
ing and unreasonable sensitivity of the dynamic response to the damping models, especially
when the initial stiffness is used in Rayleigh damping [15].

1.2.2.2 Element models with degrading response

The element models with degrading response are based on the models with nondegrading
response in Section 1.2.2.1 and specify the deterioration in three main manners: (1) in the
material stress-strain relation or in the section moment-curvature relation of a fiber-based
element, (2) in the zero-length spring’s moment-rotation relation of a concentrated plasticity
model, and (3) in the force-deformation relation of a concentrated plasticity model.

(1) Degrading material stress-strain and section moment-curvature
A degrading stress-strain relation for the material response is specified in continuum mod-

els and distributed plasticity models. The material models are typically based on continuum
damage mechanics (CDM), such as those listed in category (a) in Section 1.2.1. These ele-
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ments account for the coupling of complex element response and capture the deterioration at
the local material level. However, in addition to the high computational cost, the elements
are susceptible to mesh inobjectivity [20].

To resolve this issue, many regularization techniques have been proposed, such as by
Coleman and Spacone [18], Addessi and Ciampi [2]. Another approach is the beam with
hinge element by Scott et al. [86, 87], and Ribeiro et al. [82]. The element consists of three
segments: an interior elastic beam element and two plastic hinge segments at the element
ends with a specified plastic hinge length, and adopts a proper numerical integration scheme.
To represent the deterioration in the element response, a degrading stress-strain relation can
be specified for the material response in each fiber, or alternatively, a degrading moment-
curvature relation can be specified for the section response.

A recent approach to describe the column strength and stiffness deterioration is the fiber
hinge element by Kasai et al. [46]. The inelastic behavior is localized at the column base
and modeled by the zero-length fiber hinge element, which is discretized into fibers with a
degrading stress-strain relation.

(2) Degrading spring moment-rotation
One of the most common approaches to simulate strength deterioration is to define a

degrading moment-rotation relation for the zero-length rotational springs at the ends of a
concentrated plasticity beam-column element. This approach is recommended in ATC-72
guidelines for modeling of tall buildings [61]. The moment-rotation relation can adopt any
deterioration hysteretic model summarized in 1.2.1.

Besides the same drawbacks as in the concentrated plasticity models with nondegrading
response, these models fail to capture the effect of a variable axial force on the strength
deterioration in flexure, which is critical in tall structures where the columns are subjected
to high axial forces from the overturning effect.

(3) Degrading element force-deformation
An efficient approach to incorporate deterioration in concentrated plasticity formulation

is to adopt the continuum damage mechanics concept [41, 54]. These element models employ
a nondegrading force-deformation relation to describe the response without strength deteri-
oration, and define some criteria for damage initiation and growth to represent the strength
and stiffness deterioration in the element response.

Some of the earliest models in this category include the work by Cipolina et al. [16],
Florez-Lopez [28], and Inglesis et al. [40]. The models adopted a simple bilinear force-
deformation with kinematic hardening for the base response and proposed different damage
evolution laws for steel and reinforced concrete (RC) components based on experimental
measurements of steel and RC cantilever specimens under cyclic loading. Faleiro et al. [26]
proposed an element model that uses an energy variable to describe the damage initiation
and growth. Kaewkulchai et al. [42] formulated a beam-column element with a multi-linear
force-deformation relation that adopted the Mroz’s hardening rule and a damage variable
resembling the Park-Ang damage index to investigate the progressive collapse of structures.
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One limitation of the existing models is in the criteria for damage initiation and growth.
Models that adopt an elastic energy variable to govern the damage evolution fail to capture
the low-cycle fatigue behavior due to repeated cycles between the same range of deforma-
tion values. Other models that are based on the cumulative plastic deformations do not
distinguish the two deterioration rates in the primary and the follower half cycles.

1.2.3 Damage assessment of structures

The engineering demand parameters (EDP) commonly used for damage assessment of
structures can be classified into two categories: the parameters of the structural response
and the damage indices derived from a damage index model. Each category can, in turn, be
divided into the local and the global parameters that relate to the local and global response,
respectively [21, 109].

1.2.3.1 Structural response

Local parameters are related to the response of each individual member. The most
common local response for collapse assessment is the plastic hinge rotation [4]. Krishnan
[52] studied the plastic hinge distribution to interpret the collapse mechanisms of tall steel
moment-frames. The local plastic rotations are used to define the non-simulated collapse
modes of the structures in FEMA P695 [4]. Once the plastic rotation in any member reaches a
threshold, the structure triggers a non-simulated mechanism. Other important local damage
indicators include the fiber stress-strain and the element force-deformation. These parame-
ters are critical to detect the local limit states, including cracking, yielding, buckling [21].

Global parameters account for the contributions from all members to the behavior of one
or several stories/floors. The most widely used global response for collapse assessment is
the maximum story drift and residual drift [3]. The maximum drift is typically used as the
main EDP to evaluate the structural collapse fragility, often times through an incremental
dynamic analysis [105]. Other important global damage indicators include the peak moments
and shear forces, and the maximum floor velocity and acceleration [21].

1.2.3.2 Damage indices

Damage indices may be defined locally for an individual member or globally for an en-
tire structure [109]. Many damage models have been proposed up to date to quantify the
member’s damage state based on the displacement amplitude, the energy dissipation, the
number of loading cycles, or a combination thereof. Some representative models for the local
damage indices are summarized in Section 1.2.1. The main disadvantages of many existing
local damage indices are two-fold [109]: (1) the lack of parameter calibration against different
damage states of various structural types, and (2) the ability to address various component
failure mechanisms besides the flexural modes, such as the failure of steel columns under the
combined axial and flexural effects.
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The overall damage state of a structure depends on both the distribution and the severity
of the localized damage. The global damage indices may be defined as weighted average of
the local damage indices or from the variation in the structural characteristics, such as
the modal properties [109]. Different formulation have been proposed to formulate the global
damage indices from the local damage indices in Section 1.2.1 across the structure with some
weight distributions. Two most widely used approaches to quantify the contribution from
each member are based on the local damage itself and the local energy absorption, such as in
Park et al. [73, 71], Kunnath et al. [53], Bracci et al. [13]. These weighted average methods
are simple to implement; however, they inherit many limitations of the local damage indices
[109]. Moreover, a comparison is necessary to assess different weighing alternatives.

The global damage indices can also be evaluated in terms of the local damage indices
in the element models that are based on continuum damage mechanics such as those in
Section 1.2.2.2(1) and Section 1.2.2.2(3). Faleiro et al. [26] defined a member damage index
in terms of a ratio of the damaged and undamaged free energy variables in the element
response. To account for the contribution of the member deterioration to the global response,
the model evaluated the sum of the damaged free energy among all elements and the sum of
the corresponding undamaged free energy, then the global damage index was defined in terms
of the ratio of the two quantities. The damage indices were demonstrated in the simulation
of a two-story RC frame under quasi-static cyclic loading. Hanganu et al. [35] and Scotta
et al. [88] employed a distributed plasticity model with a degrading material stress-strain
relation to examine the damage states of RC structures. The damage indices were calibrated
against experimental data of RC cantilever columns and compared to the limit states criteria
in FEMA 356 [3] through a nonlinear dynamic analysis of a RC frame.

Another approach to detect the damage evolution is to examine the change in the modal
properties. DiPasquale and Cakmak [23, 22] proposed thee softening indices to reflect the
structural damage state in term of three periods: the period of the undamaged structure,
the maximum period, and the period of the damaged structure. The studies showed that
the softening indices correlate well with the stiffness deterioration of a structure and are
consistent with several other damage indices, such as the Park-Ang damage index [73].
However, the formulation based solely on the fundamental period neglects the critical impact
of the higher modes and the distribution of damage within the structure [109]. An alternative
approach is to examine the fundamental and the higher mode shapes as well as the variations
in the flexibility coefficients, such as in the work by Raghavendrachar and Aktan [78].

The next definition of global damage indices is associated with the economic loss. This
methodology does not directly relate to the structural response as the other approaches;
however, it has an important implication in damage mitigation practices and resilience as-
sessment of structures. Hasselman and Wiggins [36] used a damage ratio to quantify the
global damage state, which is defined as the ratio of the repair cost to the replacement cost.
Based on the data from the 1971 San Fernando earthquake, the study proposed a log-log
relationship between the damage ratio and the interstory drift. Gunturi and Shah [33] pro-
posed the global damage as a collective measure of three main components: the structural
damage, the nonstructural damage, and the content damage, which are dependent on the
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Park-Ang damage index, the maximum story drift, and the maximum floor acceleration. A
major challenge of the financial damage indices is the need for an extensive validation with
data in real events and, to some extent, the subjective nature of the financial loss estimation.

1.3 Objectives and Scope

This dissertation develops new damage models for the response simulation and damage
assessment of structures under extreme loading conditions. The main objectives of the study
are as follows:

(1) To present a new hysteretic damage model based on damage mechanics to describe
better the continuous strength and stiffness deterioration in structural components.

(2) To implement the damage formulation in the development of efficient and accurate
beam and column elements for modeling of steel components.

(3) To generalize the concentrated plasticity frame elements with the plastic hinge offsets
to describe the coupling of the inelastic zones at the element ends.

(4) To calibrate the model parameters against experimental data of steel beams and
columns under various loading scenarios. The calibration permits a regression analysis
to establish a set of guidelines for the parameter identification.

(5) To investigate the dynamic response and collapse behavior of steel special moment
frames (SMF). The new element models are deployed in the response simulation of an
8-story 3-bay SMF under a suite of ground motions up to collapse.

(6) To highlight the unique features of the proposed element models in the collapse simu-
lations and identify limitations of existing models commonly used in practice.

(7) To examine the brittle failure in the element and how the failure sequence influences
the collapse behavior, force redistribution, and the local and global response.

(8) To formulate new global damage indices from the local element damage variables to
assist in the damage assessment of structures.

(9) To introduce the concept of Localized Damage Region (LDR) to identify the most
probable story collapse mechanisms in SMFs.

1.4 Dissertation Outline

The dissertation is organized into 6 chapters and 3 appendices, each of which addresses
one or several objectives outlined in the previous section.
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Chapter 1 discusses the motivation for the study and presents a detailed literature review
of relevant topics. The chapter concludes with a brief review of continuum damage mechanics
and the basic coordinate system of 2d frame elements.

Chapter 2 presents a new hysteretic damage model. The chapter starts with a detailed
description of the model formulation and parameters, followed by a series of validation
examples to showcase its capabilities to capture a vast range of hysteretic behaviors and
damage evolution. The chapter concludes with a comparison of the model’s damage variable
with an existing damage index model commonly used in practice.

Chapter 3 and 4 present new damage-plasticity beam and column elements, respectively.
Each chapter starts with the element formulation and the state determination in a nonde-
grading configuration, followed by a discussion of the damage formulation in the element
response. Simulations of components and structures are presented to validate the model
capabilities. To facilitate the parameter identification, detailed guidelines for the parameter
calibration are presented at the end of each chapter.

Chapter 5 incorporates the new damage models in a simulation of an 8-story 3-bay steel
special moment-resisting frame (SMF). The chapter investigates the static and dynamic
response of the archetype building up to collapse. The chapter presents new damage indices
and discusses its implementation in damage evaluation and collapse assessment of steel SMFs.
Finally, the reference structural model is compared against several alternatives to examine
different modeling assumptions.

Chapter 6 summarizes the key findings in the present study, highlights some limitations
of the current models, and offers recommendations for future development.

Appendix A offers further discussion on the selection of the statistical function for the
damage evolution law, then introduces two useful statistical functions as alternatives. Ap-
pendix B presents the mathematical derivations of the return-mapping algorithm and the
algorithmic tangent of the element models. Appendix C discusses the thermodynamic frame-
work of the damage formulation.

1.5 Preliminaries

1.5.1 Continuum damage mechanics

The proposed models in this dissertation are based on the theory of effective stress and
equivalent strain in continuum damage mechanics (CDM) [41]. The theory relates the ma-
terial response in the true physical configuration to the response in an effective undamaged
state. With a bar denoting the variables in the effective space, the equivalent strain hypoth-
esis postulates the equality of the true strain ε with the effective strain ε̄:

ε = ε̄ (1.1)

The effective stress theory then states that the actual stress σ and the effective stress σ̄ at a
given strain are related through a damage variable d as is the stiffness E and Ē in the two
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configurations:

σ = (1− d)σ̄ (1.2)

E = (1− d)Ē (1.3)

1.5.2 Basic coordinate system for plane frame elements

In Chapter 3 and Chapter 4, the element force-deformation relation is defined in a basic
system to accommodate the nonlinear geometry under large displacements. The study adopts
the corotational formulation, which defines a reference rigid coordinate system that rotates
with the element as it deforms and distinguishes the element deformations from the rigid body
motion. Equilibrium in the element free body is satisfied in the deformed configuration, with
the element basic forces defined relative to the chord in its position under large displacements.
The static and kinematic variables for a frame element are shown in the global coordinate
system p− u in Figure 1.1(a), in the local p̄− ū coordinate system in Figure 1.1(b), and in
the basic system q− v in Figure 1.1(c). Transformation of the basic element forces to the
end forces in the global coordinate system is possible with the direction cosines of the chord
orientation in the deformed configuration.

This dissertation limits the element formulation to 2d response and neglects the biaxial
bending and torsion effect. The element models relate the basic forces q = [qa, qi, qj]

T to the

basic deformations v = [va, vi, vj]
T . qa and va denote the axial force and axial deformation,

while qi − vi and qj − vj represent the flexural force and flexural deformation at end i and
end j, respectively.

(c)
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Figure 1.1: Coordinate systems for plane frame elements: (a) global coordinate system, (b)
local coordinate system, (c) basic system
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Chapter 2

Hysteretic Damage Model

This chapter presents a hysteretic damage model for the response simulation of structural
components with strength and stiffness deterioration under cyclic loading. The model is
based on 1d continuum damage mechanics and relates any two work-conjugate response
variables such as force-displacement, moment-rotation or stress-strain. The strength and
stiffness deterioration is described by a continuous damage variable. The formulation uses
a criterion based on the hysteretic energy and the maximum absolute deformation value
for damage initiation with a cumulative probability distribution function for the damage
evolution. A series of structural component response simulations showcase the ability of the
model to describe different types of hysteretic behavior. The relation of the model’s damage
variable to the Park-Ang damage index is also discussed.

2.1 Introduction

2.2 Formulation

The continuum damage mechanics (CDM) theory uses damage as an internal variable d
to describe the stress-strain relation at the material level and provides a physical motivation
for this choice [41]. For the modeling of structural components, Cipolina [16], Florez-Lopez
[40] and Faleiro et al. [26] extended the formulation to stress resultants by showing that
a damage-based model for stress resultants is thermodynamically consistent with the CDM
material model and gives results that are consistent with experimental observations [26].

Consequently, the proposed hysteretic damage model is presented in the general context
of any two work-conjugate variables s and e, where s denotes the stress or stress resultant
and e the corresponding strain or deformation. The following description refers to s as force
and e as deformation, but the model can be used for force-displacement, moment-rotation,
moment-curvature, or stress-strain hysteretic relations.

The formulation consists of three independent parts: (1) the force-deformation relation
in the effective space defining a boundary to serve as the upper bound of the true response
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under positive deformations and as the lower bound of the true response under negative
deformations; (2) the damage loading function describing the trigger and the accumulation of
the energy dissipation, which is then used in the third component, the damage evolution law,
to establish the damage variable d. The latter controls the strength and stiffness deterioration
of the force-deformation relation by reducing the effective force s̄ to the true force s.
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Figure 2.1: Relation between effective and true response

Figure 2.1 illustrates the interplay of the model components: first the relation between
the effective force s̄ and the deformation is defined, as represented by the long dash line in
the figure. Given the effective force-deformation relation the damage loading function serves
as the criterion for damage growth. It is defined in terms of the energy dissipation in the
effective force-deformation space. Finally, the damage evolution law relates the value of the
damage loading function to the damage variable d which is used to reduce the effective force
s̄ to the true force s and the effective unloading stiffness Ē to the true unloading stiffness
E. A solid red line depicts the resulting relation between the deformation and the true
force in Figure 2.1. The threshold of damage initiation coincides with the yield point of the
effective force-deformation relation in the figure, but can it be set to any value, since it is an
independent parameter of the damage evolution law.

The following subsections describe each component of the hysteretic damage model in
detail.

2.2.1 Constitutive relation in effective space

The force-deformation relation in effective space serves as the boundary of the degrading
response. While any suitable relation can be used for the purpose, the following discussion
focuses on two representative relations: (i) the Giuffré, Menegotto, Pinto (GMP) model
with isotropic hardening [27], and (ii) a simple bilinear model with elastic unloading and
a bilinear reloading path that describes either ”pinching” or the Bauschinger effect of the
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hysteretic relation. The GMP model is suitable for metallic components with symmetric hys-
teretic behavior under positive and negative deformations and with pronounced Bauschinger
effect in the reloading response, while the simple bilinear model is suitable for components
with asymmetric monotonic behavior in tension and compression, and for components with
bilinear reloading following an elastic unloading, particularly those exhibiting ”pinching”.

The first model in effective space describes a smooth hysteretic relation with a gradual
transition from the elastic to the plastic behavior. The model requires the following param-
eters: the elastic stiffness E, the yield strength sy, the hardening ratio b, the parameter r
controlling the transition from the elastic to the plastic branch, two parameters cR1 and cR2

controlling the evolution of parameter r, and four parameters a1, a2, a3, a4 describing the
isotropic hardening behavior, two for the response under positive forces and two under nega-
tive forces. [27] presents details of the formulation and the numerical state determination of
the model. Here, the model is extended to accommodate asymmetric hardening and reload-
ing behavior with different values for parameters b, r, cR1, cR2 for the response under positive
and negative forces. Figure 2.2(a) shows the force-deformation relation of the model for two
and a half cycles with one incomplete load reversal under negative deformation. Units are
not displayed since these are not pertinent to the discussion. The hardening modulus Eh in
Figure 2.2(a) is the product of the elastic stiffness E and the hardening ratio b [27].

(a) GMP model (b) Bilinear hysteretic model
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Figure 2.2: Selected force-deformation relations in effective space

The second force-deformation relation in effective space has two bilinear curves with in-
dependent parameters for accommodating asymmetric behavior in tension and compression,
as Figure 2.2(b) shows. Each bilinear curve depends on three parameters: the yield strength
sy, the elastic modulus E1, and the post-yield modulus E2. The subscript p or n refers to the
bilinear curve under a positive or negative deformation, respectively. Unloading takes place
with the modulus E1 of the corresponding backbone curve, while reloading takes place from
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the point of complete unloading to the maximum or minimum deformation for a positive
or negative deformation increment, respectively. The reloading path is bilinear with the
first branch connecting the point of complete unloading with an intermediate point px and
py, and the second branch connecting the latter with the point of maximum or minimum
previous deformation. Asymmetric reloading behavior is possible with different reloading
parameters in tension (pxp and pyp) than in compression (pxn and pyn). Figure 2.2(b) illus-
trates an asymmetric reloading response with pinching behavior for reloading in the positive
direction, and a Bauschinger effect for reloading in the negative direction. The intermediate
point coordinates px and py are defined relative to the deformation and force range of the
reloading path: px = py results in a linear peak-oriented reloading path in Figure 2.3(a),
px < py describes a reloading behavior similar to the Bauschinger effect of metallic materials
in Figure 2.3(b), and px > py describes ”pinching” behavior in Figure 2.3(c).
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Figure 2.3: Effect of px and py on the reloading response of the hysteretic model

2.2.2 Damage loading function.

The damage loading function represents the criterion for damage growth. In the proposed
model this criterion is defined in terms of the energy dissipation in the effective force space.
Because structural components may exhibit different damage evolution under a positive force
than under a negative force, it is important that the damage loading function distinguishes
between the energy dissipation under positive force states from that under negative force
states. To accomplish this the following definition separates the positive effective force s̄+

from the negative effective force s̄−:

s̄± =
s̄± |s̄|

2
(2.1)

Consequently, s̄+ is equal to s̄ for s̄ ≥ 0 and equal to zero otherwise. In contrast, s̄− is equal
to s̄ for s̄ ≤ 0 and is equal to zero otherwise.
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(a) Determination of ψt and ψc (b) Half cycle with partial and full energy dissipation
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Figure 2.4: Illustration of ψt and ψc and of the effect of the parameter Cwc

The damage loading function is expressed in terms of two variables ψt and ψc in Fig-
ure 2.4 representing the energy dissipation under positive effective forces and negative effec-
tive forces, respectively. These are defined by the integral of the product of s̄+ or s̄− with
the deformation increment (ė)dτ over the pseudo-time variable τ

ψt(t) =

t∫
t0

C+
wc(e) s̄

+(e) ė(τ) dτ (2.2)

ψc(t) =

t∫
t0

C−
wc(e) s̄

−(e) ė(τ) dτ (2.3)

ė denotes the deformation derivative with respect to the pseudo-time τ , t0 denotes the time
at the start of loading, and t denotes the pseudo-time at the current state. Figure 2.4(b)
shows that the constants C±

wc in the integrals of Equation (2.2) and Equation (2.3) serve
as weights of the energy dissipation increment for differentiating the effect of deformations
exceeding the previous extreme values from the effect of deformations within the extreme
values. Denoting with emin the minimum and emax the maximum previous deformation the
weights Cwc are defined by:

Cwc(e) =

{
1 if e < emin or e > emax

0 ≤ Cwc ≤ 1 if emin ≤ e ≤ emax

(2.4)

Cwc in Equation (2.2) and Equation (2.3) thus represents the effect of primary and follower
half cycles in [49] and [63] on the energy dissipation with continuous updating of the energy
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dissipation variables as opposed to the discrete updating at the end of each half cycle in
many earlier models.

The separation of the energy dissipation into contributions under positive and negative
effective forces in Equation (2.2) and Equation (2.3) offers the opportunity to account for
the coupling effect that the energy dissipation in one loading direction has on the damage
in the opposite loading direction, as exhibited by the hysteretic behavior of different types
of structural components, e.g. concrete shear walls [77]. To include this coupling effect two
energy dissipation variables ψ+ and ψ− are introduced as the linear combination of ψt and
ψc in the following form: (

ψ+

ψ−

)
=

[
1 C+

cd

C−
cd 1

](
ψt
ψc

)
(2.5)

In this definition C±
cd are damage coupling parameters with C+

cd ≥ 0 weighing the contribution
of the energy dissipation under negative forces on the energy variable ψ+ and C−

cd ≥ 0 weigh-
ing the contribution of the energy dissipation under positive forces on the energy variable
ψ−.

To complete the definition of the damage loading function the energy threshold ψ̃± for
damage growth needs to be defined. The maximum previous energy dissipation serves this
purpose with the definition:

ψ̃±(t) = maxψ±(τ) t0 ≤ τ < t (2.6)

Consequently, the damage loading function is defined by:

g±(t) = ψ±(t)− ψ̃±(t) (2.7)

Damage growth occurs when g±(t) > 0.

2.2.3 Damage evolution law

The third component of the hysteretic damage model is the damage evolution law that
relates the energy dissipation variables ψ±(t) to the damage variable d. Noting that the
damage variable d in CDM ranges from 0 at damage initiation to 1 at complete loss of
strength, the damage evolution law requires the definition of a threshold energy ψ±

d0 for
damage initiation and a limit (ultimate) energy ψ±

d1 at complete loss of strength. These
energies are defined as multiples of the corresponding energy at yield initiation ψ±

y according
to:

ψ±
d0 = C±

d0ψ
±
y (2.8)

ψ±
d1 = C±

d1ψ
±
y (2.9)

where C±
d0 and C±

d1 are model parameters. Cd0 = 0 implies that the damage evolution starts
with the virgin material, while Cd0 = 1 implies that the damage initiation coincides with the
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yield point of the effective force-deformation relation. The greater Cd0 > 1 is, the more the
damage initiation is delayed after yielding. The parameters C±

d1 play the same role as the
deformation ductility at the complete strength loss of the component.

With the introduction of the threshold and the limit energy the energy dissipation can
be normalized according to:

ψ̂± =
ψ± − ψ±

d0

ψ±
d1 − ψ

±
d0

(2.10)

with ψ̂± denoting the normalized energy dissipation of the component.
Noting that the damage variable d ranges from 0 to 1 it is convenient to tap into the vast

array of cumulative probability distribution functions (CDF) for the damage evolution law
with the normalized energy ψ̂ in Equation (2.10) taking the place of the random variable
and the damage variable d the place of the cumulative probability.
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Figure 2.5: Effect of parameters d±p on the damage evolution

Among possible CDFs the proposed model uses the beta CDF [101] for the damage
evolution law, because it seems to match better the degradation of structural components
and fits the analytical form of the model well. With it the dependence of the damage variable
d on the normalized energy dissipation ψ̂ becomes:

d± = FB(ψ̂±, β±
1 , β

±
2 ) (2.11)

where FB is the beta CDF with its parameters β1 and β2. The latter can be assigned different
values for the damage evolution under ψ̂+ than under ψ̂−, as reflected by the superscripts.
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For better identification of the effect of the parameters β1 and β2 on the damage evolution
it is useful to introduce the following relations:

dp1 = β2/β1 (2.12)

dp2 = min(β1, β2) (2.13)

The parameter dp1 thus represents the ratio of β2 to β1, while the parameter dp2 is equal
to the smaller of β1 and β2. Figure 2.5 shows the benefit of this parameter change in the
interpretation of the parameter effect on the damage evolution. Figure 2.5(a) shows the effect
of dp1 on the damage evolution under constant dp2 = 1. The value dp1 = 1 corresponds to

a uniform rate of damage accumulation with normalized energy dissipation ψ̂, while a value
dp1 > 1 biases the damage rate accumulation toward the early stages of energy dissipation,
and a value of dp1 < 1 biases it toward the later stages. Figure 2.5(b) shows the effect of
dp2 on the damage evolution under constant dp1 = 1. The value dp2 = 1 corresponds to a

uniform rate of damage accumulation with normalized energy dissipation ψ̂, while a value
dp2 > 1 concentrates the damage accumulation in the middle range of energy dissipation and
a value dp2 < 1 concentrates it in the early and late stages. It is evident from Figure 2.5 that
the parameters dp1 and dp2 afford considerable flexibility in the description of the damage
evolution.

Upon determination of the damage variables d± with the damage evolution law in Equa-
tion (2.11) the true force s results from the linear combination of the positive effective force
s̄+ and the negative effective force s̄− after multiplication with the respective damage vari-
ables

s =
(
1− d+

)
s̄+ +

(
1− d−

)
s̄− (2.14)

The model formulation can be shown to be thermodynamically consistent. The state
determination of the damage model evaluates the force sn at step n given the deformation
en and the history variables at step n− 1. Table 2.1 summarizes the algorithm.

2.3 Effect of Damage Parameters

Following the model description it is helpful to showcase the effect of the model param-
eters on the strength and stiffness deterioration of the hysteretic behavior. The following
discussion also aims at facilitating the parameter selection by demonstrating the response
sensitivity of the model to a range of parameter values. The discussion uses the backbone
envelope in Figure 2.6 for the effective force-deformation relation. This choice is motivated
by the recommendation of the FEMA study in [19] for the response description of different
structural component types. The multi-linear envelope in Figure 2.6 consisting of the elastic
range, the strength hardening range, two strength softening ranges, and the residual strength
plateau can be adjusted to match the backbone envelope of different structural component
types: to this end one or both strength softening ranges may be present while the strength
hardening range and the residual strength plateau may be missing from the envelope [19].
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1. State determination in effective space

Evaluate s̄n and internal variables

2. Energy variables

Identify C±
wc in (2.4)

Compute ψt and ψc in (2.2)-(2.3)

Evaluate ψ+ and ψ− in (2.5)

3. Damage loading functions

Identify ψ̃± in (2.6)

Evaluate g± in (2.7)

IF g∗ < 0 with ∗ = ’+’, ’-’ THEN:

No damage growth, go to Step 4a

ELSE:

Damage accumulates, go to Step 4b

4a. No damage loading: d∗n = d∗n−1

4b. Damage loading

Evaluate ψ̂∗ in (2.10)

Update d∗n in (2.11)

5. Update sn in (2.14)

Table 2.1: State determination algorithm of hysteretic damage model

The following parameter study sets the residual strength plateau to zero, since this has little
bearing on the parameter influence of the response.

The damage threshold coefficient Cd0 in Equation (2.8) controls the damage initiation
and affects the post-yield range prior to the onset of strength softening, as Figure 2.7(a)
shows: a higher Cd0 value delays the onset of damage and increases the range of the post-
yield hardening range. The limit (ultimate) damage coefficient Cd1 in Equation (2.9) controls
the energy at complete strength loss thus affecting the ultimate deformation ductility and
the strength softening behavior: a higher Cd1 increases the ultimate deformation at complete
loss of strength in Figure 2.7(b) thus reducing the rate of strength softening. The damage
evolution parameters dp1 and dp2 in Equation (2.12)-Equation (2.13) affect the rate of dam-
age accumulation. Figure 2.7(c)-(d) illustrate their effect on the response, as discussed in
connection with Figure 2.5: dp1 controls the bias of damage growth between the early and
late response stages, while dp2 controls the evolution of the rate of damage growth with
energy dissipation.
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Figure 2.6: FEMA force-deformation envelope
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Figure 2.7: Effect of damage parameters on force-deformation relation

The cyclic degradation coefficient Cwc in Equation (2.4) controls the contribution of the
energy dissipation under follower half cycles on the damage growth: while a value of Cwc = 0
neglects completely this contribution, a value of Cwc = 1 accounts for it fully and results in
more severe strength and stiffness degradation under cyclic loading. Figure 2.7(e) shows the
effect of two typical values of Cwc on the strength and stiffness deterioration of the hysteretic
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response. Later correlation studies show that this range of values covers the hysteretic
behavior of most specimens. Finally, the damage coupling coefficient Ccd in Equation (2.5)
controls the effect of the energy dissipation under a positive effective force on the damage
variable for the response under a negative effective force and vice versa. Figure 2.7(f) shows
the behavior of the model for two limit values of Ccd: for Ccd = 0 the energy dissipation under
a positive force has no effect on the strength and stiffness deterioration under a negative force
and vice versa. For Ccd = 1 the energy dissipation under a positive force is accounted for
fully in the determination of the damage variable for the response under a negative force
and the same is true for the energy dissipation under a negative force for the response under
a positive force.

2.4 Illustrative example
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Figure 2.8: Sample cyclic response of proposed model

The following example illustrates the hysteretic behavior of the proposed model. The
example uses the bilinear model of Figure 2.2(b) for the effective force-deformation relation
with the following parameters: syp = 45, E1p = 4,500, E2p = 150, syn = -50, E1n = 5,000,
E2n = 100. Under cyclic reloading, the selection of px = py ensures a straight reloading path
from the point of complete unloading to the largest previous deformation in the opposite
direction. Figure 2.8(a) shows the force-deformation relation in the effective space without
damage, while Figure 2.8(b) shows the evolution of strength and stiffness deterioration of
the hysteretic force-deformation relation under the imposed cyclic deformation history. The
parameters for the damage loading function are C±

d0 = 5, C±
d1 = 100, C±

wc = 0.2, C±
cd = 0.25,

while the parameters for the damage evolution law are [d±p1; d
±
p2] = [2; 1.5].
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The onset of damage after yielding at load point (LP) 1 occurs at LP 2 because of the
selection of Cd0 greater than 1. The strength reduction between LP 2 and 3 is evident. The
effect of the energy dissipation up to LP 4 is evident in the strength reduction between LP
4, 5 and 6 because of the value for the damage coupling parameter C−

cd set at 0.25 for the
case in hand.

The proposed hysteretic damage model accommodates both types of degradation in
FEMA P440A [19]: the cyclic or between-cycle degradation, which describes the loss of
strength and stiffness from one cycle to the next, and the in-cycle degradation, which de-
scribes the loss of strength and stiffness within a cycle. The former is evident in the strength
and stiffness reduction between LP 6, 10 and 14, and between LP 8 and 12. The latter is
evident in the continuous strength reduction between LP 2 and 3, and between LP 5 and 6.
Moreover, it is evident in the model response when the deformation exceeds the maximum
previous value in the same direction, as is the case between LP 14 and 18, and between LP
20 and 21.
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Figure 2.9: Evolution of damage variables d± under cyclic loading

Figure 2.9 shows the evolution of the positive damage variable d+ in Figure 2.9(a) and
of the negative damage variable d− in Figure 2.9(b) for the load history in Figure 2.8. The
rate of increase of the positive damage variable d+ is highest when the positive deformation
exceeds the maximum previous value as is the case between LP 2 and 3, and between LP 20
and 21 in Figure 2.9(a). The same is true for the negative damage variable d− between LP 5
and 6, and between LP 14 and 18 in Figure 2.9(b). The non-zero damage coupling parameter
Ccd causes the increase of the positive damage variable d+ under negative deformations
between LP 5 and 6, and between LP 14 and 18 in Figure 2.9(a) albeit at a slower rate
because of the selection C+

cd = 0.25. The same is true for the negative damage variable d−



CHAPTER 2. HYSTERETIC DAMAGE MODEL 24

under positive deformations between LP 20 and 21 in Figure 2.9(b) for which the damage
coupling parameter C−

cd = 0.25 is responsible.
The positive damage variable d+ also increases but at a lower rate under positive de-

formations not exceeding the previous maximum value, as is the case between LP 7 and 8,
and between LP 11 and 12 in Figure 2.9(a). The rate of this increase is controlled by the
parameter C+

wc = 0.2. Similarly, the negative damage variable d− increases between LP 9
and 10, and between LP 13 and 14 in Figure 2.9(b), with the rate of increase controlled by
the parameter C−

wc = 0.2.
The proposed model describes the stiffness deterioration more consistently than models

based on the pivot rule [72, 81], in which the point at complete unloading from a positive
or negative force targets a predefined pivot point in the opposite load direction. Under a
cyclic deformation history with decreasing magnitudes, the pivot rule leads to an increase in
stiffness, whereas the proposed model describes a more realistic reduction of the unloading
stiffness, as Figure 2.8 shows between LP 3-4 and LP 8-9. The proposed model also captures
well the continuous reduction of the unloading stiffness, as is evident by the comparison of
the unloading stiffness between LP 15 and 16 with that between LP 18 and 19 in Figure 2.8,
in contrast to existing models with discrete updating which fail to characterize the gradual
unloading stiffness reduction in large excursions with incomplete unloading and reloading.
Figure 2.10(a) shows a sample hysteretic behavior of a reinforced concrete column subjected
to a cyclic displacement pattern with decreasing amplitude [99]. The numerical solution using
the proposed model shown in red captures well the evolution of the stiffness deterioration
in the three unloading branches. It is confirmed in the higher damage values at the three
unloading instants in Figure 2.10(b).
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2.5 Validation Studies

This section presents five case studies for validations of the proposed hysteretic damage
model: the first presents simulations of reinforced concrete columns, the second simulates
the cyclic response of steel beam-column subassemlies, the third examines the low-cycle
fatigue behavior of steel cantilever beam under repeated loading, the fourth investigates the
effect of load history on the degrading response of plywood shear walls, and the fifth is a
comprehensive case study addressing the simulation of various structural systems classified
by FEMA [19]. The objective of the validation studies is two-fold: (1) to showcase the ability
of the model to represent accurately the degradation of various structural components, (2)
to provide insight of typical parameter ranges for different types of structural systems.

2.5.1 Reinforced concrete columns

The first example studies the cyclic response and the failure mechanisms of four rein-
forced concrete columns. The two specimens in Figures 2.11(a)-(b) are flexure-critical (FC)
and exhibit significant degradation in the plastic regions due to bending. Flexural failure
mechanism occurs mostly in well-designed slender structural components with adequate shear
reinforcement. In contrast, the two specimens in Figures 2.11(c)-(d) are flexure-shear-critical
and shear-critical (SC), and fail in shear-related mechanisms. Shear-critical components fail
because the shear strength is exceeded, mainly either in deep members or due to insufficient
shear reinforcement.

Parameter Kanda et al Kono et al Ohue et al Umehara et al
sy (kN) 70 1.2 100 200

E1 (kN/mm) 14 0.25 33 80
E2 (kN/mm) 1.3 0.025 6 30

px 0 0.5 0.8 0.8
py 0 0.9 0.2 0.1
Cd0 [1; 1] [1; 1] [1; 1] [1; 1]
Cd1 [100; 100] [100; 100] [60; 60] [60; 60]
Cwc [0.05; 0.05] [0.05; 0.05] [0.25; 0.25] [0.25; 0.25]
Ccd [0.5; 0.5] [0.5; 0.5] [0.7; 0.7] [0.6; 0.6]
d+p [2; 1] [3; 1] [3; 1.5] [3; 1.5]

d−p [2; 1] [3; 1] [3; 1.5] [3; 1.5]

Table 2.2: Parameters used in simulations of reinforced concrete columns

Table 2.2 summarizes the parameters used in the simulations. To represent different
reloading behaviors, the bilinear hysteretic model in Figure 2.2(b) is used in the effective
space. Since the response is quite symmetric under positive and negative deformations, the
same parameters are used to describe the response under positive and negative deformations.
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The different reloading behaviors are reflected in the reloading parameters px and py. For
specimen STC2 in Figure 6(a), px = py captures the typical peak-oriented reloading behavior
commonly observed in reinforced concrete components. For specimen L1N60 in Figure 6(b),
px < py describes the Bauschinger effect due to a high reinforcement ratio. For specimen
4D13RS in Figure 6(c) and specimen CUW in Figure 6(d), px > py captures the pronounced
pinching behavior due to sliding, slip, and shear failure.
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Figure 2.11: Simulations of reinforced concrete columns

In all specimens, the threshold coefficient Cd0 = 1 indicates the onset of degradation upon
reinforcement yielding. The damage parameters distinguish well the degrading behaviors of
FC and SC columns. The limit coefficient Cd1 for the FC specimens (Cd1 = 100) is higher
than for the SC specimens (Cd1 = 60) to indicate a higher ductility capacity of the FC
columns. A relatively high cyclic degradation coefficient (Cwc = 0.25) and damage coupling
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coefficient (Ccd = 0.6–0.7) seem to capture adequately the rapid strength deterioration under
cyclic shear.

2.5.2 Steel beam-column joints

Figure 2.12 compares the experimental and the numerical load-displacement of four steel
beam-column subassemblages. This example selects the GMP model in Figure 2.2(a) to
describe the effective response.

The model captures well the smooth transition from the elastic to the plastic range and
the Bauschinger effect in the reloading response. This is achieved with the reloading param-
eter r that varies within a relatively small range between 4–5. The threshold coefficients
C±
d0 are greater than 1 for all specimens so that strength degradation initiates after yielding.

The relatively high displacement ductility of the steel specimens is reflected in the limit
coefficients C±

d1 in the range between 100–125. The damage evolution parameters d±p1 be-
tween 4–5 and d±p2 = 1 capture well the degradation rate in the softening range. The cyclic
coefficients Cwc and the damage coupling coefficients Ccd simulate accurately the strength
and stiffness degradation due to cyclic loading. Similar damage parameters are specified for
the positive and negative response due to symmetric degrading behavior. One exception is
a higher d+p1 than d−p1 in specimen UCSD-3R to capture the more severe deterioration under
positive forces.

Parameter EERC-RN2 EERC-RN3 UCSD-1R UCSD-3R
E (kip/in) 100 100 100 100
sy (kip) 150 150 130 140

b 0.04 0.05 0.045 0.045
r 4 5 4 4
Cd0 [3; 3] [2; 2] [3; 3] [3; 3]
Cd1 [125; 125] [100; 100] [100; 100] [120; 120]
Cwc [0.12; 0.12] [0.1; 0.1] [0.15; 0.15] [0.15; 0.15]
Ccd [0.5; 0.5] [0.5; 0.5] [0.5; 0.5] [0.5; 0.5]
d+p [4.2; 1] [5; 1] [4.5; 1] [5; 1]

d−p [4.2; 1] [5; 1] [4.5; 1] [3; 1]

Table 2.3: Parameters used in simulations of steel beam-column joints

2.5.3 Low-cycle fatigue of steel components

To study the low-cycle fatigue behavior, the experimental campaign by Krawinkler [51]
furnishes measurements of the hysteretic behavior for steel components. Three identical
cantilever steel beams are selected for the response simulation: specimen B24 is subject to
a monotonic deformation history, and specimens B25 and B28 to cyclic load protocols.
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Figure 2.12: Simulations of steel beam-column assemblages

The subsequent simulations use the GMP model in Figure 2.2(a) to describe the effec-
tive force-deformation relation. The same parameters are specified to reflect the symmetric
geometry and properties of the specimens under positive and negative deformations. The
following parameters are satisfactory for specimen B24 in Figure 2.13(a): E = 28, sy = 9.8,
b = 0.04, r = 4, Cd0 = 5, Cd1 = 150, dp1 = 3, dp2 = 1.5. The selection of Cd0 greater than 1 is
typical for steel components to indicate that the strength reduction initiates after yielding.
The values of Cd1, dp1 and dp2 are also representative of steel components. The numerical
solution matches rather well the post-yield response of the specimen. The evolution of the
hysteretic energy in Figure 2.13(a2) confirms that the numerical solution agrees rather well
with the experimental result.

Next, the cyclic test B25, which consists of several cycles at a constant displacement
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(b2) B25: Force time history
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Figure 2.13: Simulation of steel cantilever beams under cyclic loading

amplitude, facilites the calibration of the cyclic degradation coefficient Cwc and the damage
coupling coefficient Ccd. The numerical force-deformation relation with Cwc = 0.14 and
Ccd = 0.5 in Figure 2.13(b) compares reasonably well with the experimental measurements.
One limitation is the inadequate representation of the rapid strength degradation in the last
half cycle. The parameters dp1 and dp2 of the damage evolution function could be modified
to concentrate more damage at larger energy dissipation. The discrepancy also suggests
that the selection of the limit coefficient Cd1 = 150 may not be accurate enough. Instead
a slightly lower value may represent better the rapid degradation and the lower ductility
capacity. Nonetheless, the force time history in Figure 2.13(b2) confirms that the proposed
damage model captures adequately the peak forces in the half cycles.

To validate the calibration, the same parameters are used to simulate the response of an-
other identical specimen under a different cyclic deformation history. Figure 2.13(c) shows
the force-deformation relation for specimen B28, which is subjected to a cyclic deformation
history with larger amplitudes. The numerical solution agrees well with the experimental
result albeit with the same limitations as previously discussed. Although the model under-
estimates the strength in compression, the numerical solution shows a consistent pattern of
strength degradation in reasonable agreement with the experiment, as the force time history
in Figure 2.13(c2) shows.
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2.5.4 Effect of load histories on plywood shearwalls response
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Figure 2.14: Numerical and experimental correlation for plywood shear walls

To study the model response under different load histories the experimental campaign
by Gatto and Uang [29] furnishes measurements of the hysteretic behavior for four identical
plywood shear walls under different deformation histories corresponding to the ISO, CUREE,
SPD and NF loading protocol. For the first three protocols the loading consists of groups of
displacement cycles of either constant or variable amplitude from one cycle to the next with
gradually increasing average amplitude of the group as loading progresses. The NF loading
protocol consists of several cycles with small but ever increasing displacement amplitude
followed by very few large displacement cycles of increasing amplitude to simulate the effect
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of near-fault ground motions [50].
Figure 2.14 shows the numerical results for the plywood shear walls under the four load

histories. The proposed damage model uses the bilinear hysteretic model in Figure 2.2(b) to
represent the force-deformation relation of the plywood shear wall in the effective space. The
same parameters are used for the effective response under positive and negative deformations
with the following properties: syp = 17 kN, E1p = 1.7 kN/mm, E2p = 0.6 kN/mm, syn =
-17 kN, E1n = 1.7 kN/mm, E2n = 0.6 kN/mm. To account for the pronounced pinching of
the hysteretic force-displacement relation during reloading the control point coordinates of
the bilinear reloading branch are selected as px = 0.9, py = 0.2, very similar to the values
for systems S1, S2 and S5 in Table 2.4. The same reloading parameters are used in both
loading directions.

The parameters of the damage loading function are C±
d0 = 1, C±

d1 = 200, C±
wc = 0.15,

and C±
cd = 0.2, with the parameters of the damage evolution law set as [d±p1; d

±
p2] = [2.25; 1].

These parameters are kept the same for the analysis of the plywood shear walls under the
four load histories.

The comparison of the numerical results with the experimental measurements show satis-
factory agreement for the evolution of the strength and stiffness deterioration of the plywood
shear walls under the four load histories. The agreement is particularly good for the SPD
load history Figure 2.14(c) and quite good for the NF load history in Figure 2.14(d). The
ability of the model to capture the non-symmetric damage evolution between positive and
negative deformations in Figure 2.14(d) is noteworthy since this type of loading proved chal-
lenging for earlier models. The underestimation of the actual deterioration in the early cycles
under the ISO load protocol in Figure 2.14(a) and the overestimation of the deterioration
under the CUREE load protocol in Figure 2.14(b) suggest that the energy dissipation of
displacement cycles with large amplitude may have a stronger impact on the deterioration
than the energy of displacement cycles with small amplitude which are quite numerous in
the CUREE protocol for simulating the effect of far field ground motions. This leads to the
conclusion that a value for the damage evolution law parameter d±p2 greater than 1 may be a
more suitable choice than the selected value d±p2=1, which corresponds to the damage variable
d being proportional to the normalized energy dissipation in Figure 2.5(b). As noted already,
no effort is made in this study to optimize the selection of parameters for best fit, which is
left for further study with parameter identification methods. The extensively calibrated hys-
teretic model by Ibarra et al. [39] shows similar discrepancies between the numerical and the
experimental results for the early cycles of the ISO and CUREE load history underscoring
the importance of further study for the calibration of the damage evolution law.

2.5.5 Degrading behavior of structural systems

To further showcase the ability of the proposed damage model to represent the hysteretic
behavior of different structural component types, the comprehensive study of the effects
of strength and stiffness degradation on the seismic response of structural systems in the
framework of the FEMA P440A Recommendations is used as a reference [19]. The capacity
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boundary curves of the FEMA P440A Recommendations inform the parameter selection for
the damage loading function and for the damage evolution law of each structural component.
The following structural components are used in the correlation studies: a typical gravity
frame, subsequently referred to as system S1, a non-ductile moment frame (S2), a ductile
moment frame (S3), a stiff non-ductile system (S4), a stiff and highly-pinched non-ductile
system (S5), and a limited ductility moment frame (S7). These categories of hysteretic
behavior follow the classification in the FEMA P440A Recommendations.

2.5.5.1 System S1 - Typical Gravity Frame

The capacity boundary for a typical gravity frame is characterized by a sudden strength
drop of 45% of the yield strength of the component following yielding [19]. This capacity
boundary is representative of the moment-rotation relation of a beam-to-column shear tab
connection in Figure 2.15(b), as established by experiments such as those by Liu and Astaneh
[58]. The observed strength degradation of these connections is caused by the closing of the
gap between the beam and the column flange causing the bearing strength failure of the bolts
in the shear tab and eventually leading to the shear connection failure [58]. The response
under positive and negative deformation does not appear to be the same, but the FEMA
P440A Recommendations do not discuss the matter.
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(a) Relation between effective and true response (b) Numerical and experimental correlation

Figure 2.15: Simulation of beam-to-column shear tab connections (S1 system)

Figure 2.15(a) shows the bilinear hysteretic model in Figure 2.2(b) for the effective
moment-rotation relation of the shear tab connections with the values reported in the col-
umn under the label S1 in Table 2.4. The values sy, E1 and E2 under a positive rotation are
different from the values under a negative rotation to do justice to the observed response in
Figure 2.15(b). The same is true for the damage parameters Cd0 and Cd1 for the damage
initiation and the damage limit, respectively. To account for the pronounced pinching of the
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hysteretic moment-rotation relation during reloading, the relative control point coordinates
of the bilinear reloading branch are selected as px = 0.90 and py = 0.20. Furthermore, the
parameter dp2 of the damage evolution law is selected to account for the sudden strength
loss and the subsequent reduced strength plateau of the connections. In accordance with
Figure 2.5 the smaller the value of dp2 is relative to 1 the sharper the early drop, particularly
if it is weighted with a value of dp1 larger than 1. Accordingly, d+p2 = 0.1 and d−p2 = 0.3 are
selected along with d+p1 = 1 and d−p2 = 2. Figure 2.15(a) shows the resulting true response
according to Equation (2.14) for the cyclic deformation history of the experimental results.
The true response of the damage model compares quite favorably with the experimental
measurements in Figure 2.15(b), particularly with regard to the strength degradation of the
connection.

2.5.5.2 System S2 - Non-Ductile Moment Frame

The capacity boundary for a non-ductile moment frame is characterized by a very sharp
strength drop to 15% of the yield strength of the component following yielding [19]. The
strength plateau at this strength extends from a relative drift of 3% to the ultimate drift of
6%. This capacity boundary is representative of older steel and concrete structures [19], such
as the steel moment-resisting frames with pre-Northridge welded beam-column connections,
in which connection fracture leads to the sudden strength drop, and reinforced concrete
frames with inadequate column and joint confinement as well as poor detailing of the re-
inforcement, in which the sudden strength drop is related to the shear failure of columns
and joints. Figure 2.16(b) shows the measured moment-rotation relation of a pre-Northridge
welded steel beam-to-column connection from the experiments by Stojadinovic and Goel
[96]. The response under positive and negative moment is not the same, but the FEMA
P440A Recommendations do not discuss the matter.

Figure 2.16(a) shows the bilinear hysteretic model in Figure 2.2(b) for the effective
moment-rotation relation of the non-ductile welded steel beam-column connection with the
values reported in the column under the label S2 in Table 2.4. The values sy, E1 and E2

under a positive rotation are only slightly different from the values under a negative rotation
to account for the observed response in Figure 2.16(b). The damage parameter Cd0 is set to
1 for positive and negative deformations to reflect the fact that damage initiates at the onset
of yielding. The significant difference in the resulting true response in Figure 2.16(a) and (b)
arises from the large difference in the value of the damage limit parameter Cd1 (Table 2.4):
it is set to 10 under positive deformations and to 200 under negative deformations. The
low value of C+

d1 represents very well the rapid strength loss of the fracturing connections in
Figure 2.16(b). To account for the asymmetric reloading behavior, different control point
coordinates are selected for the two bilinear reloading branches with pxp = 0.1 and pyp = 0.4
representing the evident Bauschinger effect under positive moments, and pxn = 0.95 and
pyn = 0.1 describing the pronounced pinching under negative moments.

The parameter dp2 of the damage evolution law is selected again to account for the sudden
strength loss of the connections under positive rotations. In accordance with Figure 2.5 the
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(a) Relation between effective and true response (b) Numerical and experimental correlation
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Figure 2.16: Simulation of pre-Northridge non-ductile welded steel beam-column connections
(system S2)

smaller the value of dp2 is relative to 1 the sharper the early drop, particularly if it is weighted
with a value of dp1 larger than 1. Accordingly, d+p2 = 0.05 is selected along with d+p1 = 4.
In contrast, the parameters of the damage evolution law under negative deformations are
left to the default values of 1 (Table 2.4). Figure 2.16(a) shows the resulting true response
according to Equation (2.14) for the cyclic deformation history of the experimental results.
The true response of the damage model is consistent with the experimental measurements
for all cycles in Figure 2.16(b) with regard to the strength deterioration under positive
and negative moments. The Bauschinger effect under reloading in the positive direction
is consistent with the experimental observations for all cycles. In contrast, the pinching
of the hysteretic moment-rotation relation during reloading in the negative direction is only
captured well in the late cycles. To improve these results, the future extension of the bilinear
hysteretic model should consider relating the coordinates of the reloading control point to
the damage evolution.

2.5.5.3 System S3 - Ductile Moment Frame

The capacity boundary for a ductile moment frame consists of 4 linear segments: the lin-
ear elastic range is followed by the strength hardening segment with stiffness equal to 2% of
the initial stiffness, which is then followed by a strength softening segment over the deforma-
tion range from 4% to 6%, and a residual strength plateau up to the ultimate deformation
of 8%. This capacity boundary is representative of newer steel and concrete structures,
such as the post-Northridge steel special moment-resisting frames with ductile beam-column
connections and well detailed reinforced concrete moment resisting frames [19].

Figure 2.17(b) shows the measured moment-rotation relation of a post-Northridge welded
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(a) Relation between effective and true response (b) Numerical and experimental correlation
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Figure 2.17: Simulation of post-Northridge ductile steel beam-column connections (system
S3)

beam-column connection with reduced beam section from the experiments by Venti and En-
gelhardt [106]. Because all metallic components show a Bauschinger effect during reloading,
the effective response is based on the GMP model in Figure 2.2(a). To accommodate the
discrepancy in the hardening and reloading behavior under positive and negative moments,
the parameter values for b, r, cR1, cR2 for the positive branch are different from those for the
negative branch. The relatively large r+ = 7 and r− = 10 in combination with c+R2 = 0.75
and c−R2 = 1 result in full hysteresis loops with large energy dissipation capacity. The param-
eters c+R1 = 0.82 and c−R1 = 0.85 make the transition from elastic to plastic behavior more
gradual as the deformation amplitude increases. Figure 2.17(a) shows the cyclic behavior of
the model in the effective space.

The model captures the asymmetric onset of strength deterioration in Figure 2.17(b)
with a value for the damage threshold parameter under positive deformations C+

d0 = 22
that differs from that of the same parameter under negative deformations C−

d0 = 11. Both
values indicate that strength reduction initiates after significant plastic deformation. The
high values of C±

d1 = 150 represent very well the significant ductility of the steel component.
The asymmetric strength degradation is captured by selecting two values for the damage
parameter dp2, with d−p2 under negative moment less than 1 for describing an early strength
reduction, while d+p2 is equal to 1. Both dp1 values are set equal to 2 slightly biasing the
strength reduction to smaller normalized energy dissipation values according to Figure 2.5.
Figure 2.17(a) shows the resulting true response for the cyclic deformation history of the
specimen. Except for the reloading response in the last cycle, the true response of the damage
model compares very well with the experimental results in Figure 2.17(b) with regard to the
reloading behavior and the strength and stiffness deterioration under the cyclic load history.
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2.5.5.4 System S4 - Stiff, Non-Ductile System

The capacity boundary for a relatively stiff lateral force-resisting system is characterized
by the significant and rapid strength loss to 30% of the yield strength at a deformation of
0.4% [19]. The strength loss is followed by an extensive strength plateau from a deformation
of 2% to the ultimate deformation of 8%. This capacity boundary is representative of
concentrically braced steel frames that experience a significant and rapid strength loss due
to brace buckling at a small lateral drift [19].

(a) Relation between effective and true response (b) Numerical and experimental correlation
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Figure 2.18: Simulation of stiff, non-ductile concentrically braced steel frame (system S4)

Figure 2.18 shows the force-displacement relation of a concentrically braced steel frame
from the experiments by Uriz and Mahin [104]. To capture the Bauschinger effect during
reloading, the GMP model in Figure 2.2(a) is used for the effective force-deformation relation.
Similar to specimen S3, a large value for parameters r± = 10 and c±R2 = 0.5 describes a full
hysteresis loop in the first cycle with a relatively sharp transition from the elastic to the
plastic range. In contrast to the ductile response of specimen S3, a high value for the
parameters c±R1 = 0.96 is used to extend the gradual transition range during reloading and
represents well the reloading stiffness deterioration after buckling initiation.

Slightly different values for the damage threshold coefficients, C+
d0 = 35 and C−

d0 = 30,
are selected to simulate the asymmetric onset of strength deterioration under positive and
negative deformation. Similar to the steel specimen S3, the values indicate that strength
reduction initiates after significant plastic deformation. A damage parameter value dp2 less
than 1 with d+p2 = 0.5 and d−p2 = 0.3 in combination with a d±p1 value greater than 1 captures
very well the rapid strength deterioration after buckling initiation at the end of the second
loading cycle. The severe cyclic degradation and the damage coupling under positive and
negative deformations for the non-ductile system are reflected in relatively high values for Cwc
and Ccd, with C±

wc = 0.27 and C±
cd = 0.50. Figure 2.18(b) shows that overall the resulting
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true response compares rather well with the experimental measurements in regard to the
evolution of the strength and stiffness degradation of the non-ductile concentric steel braced
frame, even though the model slightly overestimates the measured strength in the first cycle
under negative deformation.

2.5.5.5 System S5 - Stiff, Non-Ductile System with Pronounced Pinching

The capacity boundary for a relatively stiff, non-ductile system consists of 4 linear seg-
ments: the linear elastic range is followed by the strength hardening segment with high
relative stiffness, which is then followed by two strength softening segments up to the ulti-
mate deformation of 6% [19]. This capacity boundary is representative of non-ductile ma-
sonry walls and concrete frames with masonry infill with the elastic range corresponding to
the pre-cracking response and the steep strength hardening segment to the post-cracking
response until yielding [19]. Figure 2.19(b) shows the measured force-displacement relation
of a masonry wall from the experiments by Shing [90].

(a) Relation between effective and true response (b) Numerical and experimental correlation
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Figure 2.19: Simulation of stiff, non-ductile masonry wall with pronounced pinching (system
S5)

Figure 2.19(a) shows the shows the bilinear hysteretic model in Figure 2.2(b) for the
effective force-displacement relation of the masonry wall. Because the experimental response
under positive and negative deformations is quite similar, the same parameters are used for
the effective force-deformation relation under positive and negative deformations. The same
is true for all damage parameters of the model except for dp1. The column under label S5
in Table 2.4 lists the parameter values for the true response in Figure 2.19(a). The damage
threshold coefficient C±

d0 is set equal to 1 to indicate that the onset of strength reduction
for the masonry wall coincides with the yielding of the reinforcement. The relatively low
displacement ductility of the system is reflected in the limit damage parameter value C±

d1
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= 80. To account for the pronounced pinching of the hysteretic force-displacement relation
during reloading the control point coordinates of the bilinear reloading branch are selected
as px = 0.80 and py = 0.20. The selection of the value of 0.15 for the cyclic degradation
coefficient C±

wc appears to capture well the effect of the energy dissipation during follower
cycles of the deformation history. The true response of the damage model compares rather
well with the experimental measurements in Figure 2.19(b) in regard to the evolution of the
strength and stiffness deterioration of the masonry wall. The hysteretic behavior also shows
reasonable agreement.

2.5.5.6 System S7 - Limited Ductility Moment Frame

The capacity boundary for a structural component of limited ductility consists of 4 lin-
ear segments: the linear elastic range is followed by the yield plateau with limited ductility,
which is then followed at a deformation of 2% by a strength softening segment that termi-
nates at 20% of the yield strength of the component. This is followed, in turn, by a short
residual strength plateau up to the ultimate deformation of 6% [19]. This capacity bound-
ary is representative of older lightly reinforced concrete columns and beam-column joints
with inadequate confinement that are susceptible to shear failure [19]. Figure 2.20(b) shows
the measured force-displacement relation of a lightly reinforced concrete column from the
experiments by Sezen and Moehle [89].

(a) Relation between effective and true response (b) Numerical and experimental correlation
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Figure 2.20: Simulation of lightly reinforced concrete column with limited-ductility (system
S7)

Figure 2.20(a) shows the the shows the bilinear hysteretic model in Figure 2.2(b) for
the effective force-displacement relation of the lightly reinforced concrete column. Because
the experimental response under positive and negative deformations is practically the same,
the same parameters are used for the effective force-deformation relation under positive and
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negative deformations. The same is true for the damage parameters of the model, which are
listed in the column under label S7 in Table 2.4. To account for the yield plateau of limited
ductility, a small value of E2p = E2n = 0.4 is assigned to the strain hardening stiffness. For
the same reason the damage threshold coefficient C±

d0 is set equal to 10 to delay the onset
of damage until an energy dissipation of 10 times the yield energy. The low displacement
ductility of the system is reflected in the limit damage parameter value C±

d1 = 40. The
selection of the value of 0.5 for the damage parameter d±p2 in combination with the value
of 2.1 for the damage parameter d±p1 is meant to capture the rapid strength deterioration
following the onset of damage. To account for the pronounced pinching of the hysteretic force-
displacement relation during reloading the control point coordinates of the bilinear reloading
branch are selected as px = 0.50 and py = 0.10 under positive and negative deformations. The
selection of the value of 0.25 for the cyclic degradation coefficient C±

wc appears to capture well
the effect of the energy dissipation during follower cycles of the deformation history. Equally
important is the effect of the energy dissipation under positive moments and of the energy
dissipation under negative moments on the strength reduction in the opposite direction, as
reflected in the relatively high value of the coupling damage parameter C±

cd = 0.5. While
Figure 2.20(a) only includes the nonlinear material response of the specimen, the numerical
response in Figure 2.20(b) superimposes the additional force contribution from the nonlinear
geometry effect under the axial force of the column, which is noticeable as negative stiffness
during the early reloading stage under large deformations. Figure 2.20(b) shows that the
resulting true response compares quite favorably with the experimental measurements in
regard to the evolution of the strength and stiffness degradation of the lightly reinforced
concrete column. The hysteretic behavior also seems to be adequately captured.

2.5.5.7 Conclusions from the simulations of degrading behavior

The preceding simulations demonstrate the flexibility of the proposed damage model for
the simulation of the hysteretic behavior of different structural component types. Table 2.4
summarizes the parameters for the simulations. The top 16 rows of the table contain the
parameters of the force-deformation relation in effective space. The effective response with
the GMP model in Figure 2.2(a) requires 14 parameters: the initial stiffness E, the yield
strength sy, the hardening ratios b±, the reloading parameters r±, c±R1, c

±
R2, and the isotropic

hardening parameters a1, a2, a3, a4. The first two parameters are the same under positive
and negative deformations. The default values a2 = a4 = 0 are assumed in all simulations to
represent the onset of isotropic hardening behavior at the start of the deformation history.

The strength envelope for the bilinear hysteretic model in Figure 2.2(b) requires 6 mate-
rial parameters, 3 for the envelope under positive deformations and 3 for the envelope under
negative deformations. These are the yield strength sy, the initial modulus E1, and the post-
yield modulus E2. Furthermore, the bilinear hysteretic model requires four more parameters
for the coordinates of the control point for the bilinear reloading branch in Figure 2.2(b), pxp
and pyp in the positive reloading direction and pxn and pyn in the negative reloading direc-
tion. These can be used for the description of the Bauschinger effect in metallic structural
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components or for the description of pinching in structural members with sliding, slip and
shear deformations.

Parameter S1 S2 S3 S4 S5 S7
E - - 6,000 2,167 - -
sy - - 28 580 - -

[b+; b−] - - [0.0125; 0] [0.005; 0.005] - -
[r+; r−] - - [7; 10] [10; 10] - -

[c+R1; c
−
R1] - - [0.82; 0.85] [0.96; 0.96] - -

[c+R2; c
−
R2] - - [0.75; 1] [0.5; 0.5] - -

[a1; a3] - - [0.025; 0.025] [0.05; 0.05] - -
[a2; a4] - - [0; 0] [0; 0] - -
syp 1.6 7.5 - - 45 310
E1p 53.3 730 - - 300 31
E2p -5.0 50 - - 14.3 0.4
syn -0.6 -6.6 - - -45 -310
E1n 120 660 - - 300 31
E2n 6.7 100 - - 14.3 0.4

[pxp; pyp] [0.9; 0.2] [0.1; 0.4] - - [0.8; 0.2] [0.5; 0.1]
[pxn; pyn] [0.9; 0.2] [0.95; 0.1] - - [0.8; 0.2] [0.5; 0.1]
Cd0 [3; 10] [1; 1] [22; 11] [37; 31] [5; 5] [10; 10]
Cd1 [120; 200] [10; 200] [150; 150] [110; 110] [80; 80] [40; 40]
Cwc [0.05; 0.05] [0.25; 0.25] [0.14; 0.14] [0.27; 0.27] [0.15; 0.15] [0.25; 0.25]
Ccd [0.30; 0.30] [0.50; 0.50] [0.36; 0.36] [0.50; 0.50] [0.20; 0.20] [0.50; 0.50]

[d+p1; d
+
p2] [1.0; 0.1] [4.5; 0.05] [2.0; 1.0] [1.5; 0.5] [2.0; 1.5] [2.1; 0.5]

[d−p1; d
−
p2] [2.0; 0.3] [1.0; 1.0] [2.0; 0.75] [3; 0.3] [1.5; 1.5] [2.1; 0.5]

Table 2.4: Parameters for the simulations of the degrading hysteretic behavior of structural
components

Most parameters of the effective response correspond to mechanical properties of the
structural components, such as the initial stiffness and the yield strength, and can, therefore,
be readily established. The hardening or softening post-yield behavior can also be readily
established for typical structural components. Observations about the reloading behavior
of a structural component are used for the selection of the parameters px and py: the case
0 ≤ py < px ≤ 1 represents pinching behavior, while the case 0 ≤ px < py ≤ 1 represents
reloading behavior mimicking the Bauschinger effect. The selection px = py results in a
linear reloading branch from the point of complete unloading to the maximum previous
deformation under a force of opposite sign. While any px = py ≤ 1 is equally suited for the
purpose, the discussion makes reference to px = py = 1 for this case.

The remaining 12 parameters control the evolution of strength and stiffness deterioration
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and have a clear physical meaning. Of these 4 are relatively easy to establish from the
capacity boundary of a structural component: the threshold damage parameter C±

d0 and
the limit damage parameter C±

d1. The determination of the remaining 8 parameters should
ideally be based on formal parameter identification methods. Such a formal process is beyond
the scope of this study. Moreover, the correlation studies of the numerical results with the
experimental measurements show that very satisfactory agreement results with a relatively
consistent set of values for these parameters across a wide spectrum of observed hysteretic
behavior of structural components. This conclusion is supported by the small range of
variation for the numerical values of Ccd and Cwc in Table 2.4. The same is also true for the
values of dp, particularly after consideration of Figure 2.5.

While the agreement between numerical simulations and experimental results in Fig-
ure 2.15-Figure 2.20(d) can certainly be improved, the description for the evolution of the
strength and stiffness deterioration seems very satisfactory. The small variation of the pa-
rameters Ccd, Cwc in Table 2.4 and the direct relation of the parameters dp to the damage
evolution according to Figure 2.5 implies that a selection of values within the range of Ta-
ble 2.4 is likely to result in a very satisfactory representation of the observed hysteretic
behavior.

2.6 Damage Variables

2.6.1 Comparison with Park-Ang index

The purpose of the following discussion is two-fold: first to show that the damage variable
d of the proposed model can be calibrated to give an assessment of the damaged state of a
structural component that is consistent with the well known damage index by Park-Ang for
standard cases of structural component characteristics and loading, and second to highlight
the flexibility and some of the capabilities of the proposed formulation by pointing out
specific cases where the damage variable deviates from the Park-Ang damage index. It is
worth pointing out at the outset that alternative damage indices such as the one proposed by
Mehanny and Deierlein [63], or, improvements of the Park-Ang index such as the proposal
by Bozorgnia and Bertero could have been used for the comparison without changing the
essence of the argument.

The Park-Ang (PA) damage index dPA [73] is the linear combination of the maximum
deformation em and the hysteretic energy dissipation E

dPA =
em
eu

+
β

syeu

∫
dE (2.15)

where eu is the deformation capacity under monotonic loading. This damage index has been
extensively calibrated and is referenced often in seismic response studies. Because the original
proposal does not distinguish between the effect of positive and negative deformations, the
following discussion is limited to cases with symmetric response. Because the proposed
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model accounts for the effect of two damage variables on the hysteretic response according
to Equation (2.14), the following discussion is limited to load histories with the largest
excursion of each cycle occurring under positive deformations, so that the Park-Ang index
can be compared with the damage variable d+.

(a) Monotonic response (b) Comparison of damage evolution after calibration
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Figure 2.21: Monotonic response and comparison of Park-Ang damage index with damage
variable d+

At the outset of the comparison the following parameters are selected for the proposed
model: E2p/E1p = 0.05, Cd0 = 0, Cd1 = 100, dp1 = 1.5, dp2 = 0.8. While the first and third
parameter are arbitrary, Cd0 is set equal to zero to match the assumption of the Park-Ang
index that damage initiates even under elastic deformation, which may not be realistic for
many structural components [12]. The selection of the parameters dp1 and dp2 is so that the
damage evolution law of the model is almost linear with increasing deformation to match
the linear evolution of the Park-Ang damage index. This parameter selection results in the
normalized force-deformation response in Figure 2.21(a) for the bilinear hysteretic model
in Figure 2.2(b) for the effective force-deformation relation. The dPA parameters in Equa-
tion (2.15), i.e. the ultimate deformation eu and the energy dissipation parameter β, are then
selected to match the damage evolution of the model in Figure 2.21(a): with the selection
eu/ey = 32 where ey is the yield deformation and β = 0.15, dPA and d+ are practically the
same in Figure 2.21(b). The Park-Ang damage index dPA varies linearly with the normalized
deformation e/ey. As already noted, the damage evolution law parameters dp1 and dp2 were
specifically selected to match this linear variation as closely as possible. Figure 2.5, however,
shows the considerable flexibility of the proposed model in the description of the damage
evolution by variation of these parameters.

After calibrating the monotonic response of the proposed model to match the Park-Ang
damage index, it is possible to select the parameters Cwc and Ccd of the model that affect
the damage evolution under cyclic loading to give a good agreement with the Park-Ang
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(a) Cyclic response for Cwc = 0.15 and Ccd = 0.30 (b) Comparison of damage evolution after calibration
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Figure 2.22: Cyclic response and comparison of damage index dPA with damage variable d+

damage index dPA. Selecting the cyclic response in Figure 2.22(a) for the calibration, the
selection Cwc = 0.15 and Ccd = 0.30 gives a very satisfactory agreement of dPA and d+ in
Figure 2.22(b). The value Cwc is near the lower end of the range of values for this parameter
in Table 2.4, while the value of Ccd is near the middle of the range of parameter values.

(a) Cwc = 0.05, Ccd = 0.20
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Figure 2.23: Effect of parameters Cwc and Ccd on damage index dPA and damage variable
d+

Clearly connected with the selection of parameters Cwc and Ccd is the concept of primary
and follower half cycles by Krätzig [49] which is also adopted in the damage index proposal
of Mehanny and Deierlein [64]. To illustrate the flexibility of the proposed model to account
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for the effect of primary and follower half cycles, Figure 2.23 shows the discrepancy that
arises between the damage variable d+ and the Park-Ang damage index dPA when selecting
values for the parameters Cwc and Ccd at the low end of the range of values in Table 2.4 for
Figure 2.23(a) and at the high end of the range of values in Table 2.4 for Figure 2.23(b). In
the former case the Park-Ang index evolves faster than the damage variable of the proposed
model, while the opposite is true in the latter case with more significant discrepancy. The
slight difference of the Park-Ang index between Figure 2.23(a) and Figure 2.23(b) stems
from the change in the energy dissipation of the cyclic response because of the change in the
model parameter values from Figure 2.23(a) to Figure 2.23(b).

2.6.2 Damage states

The preceding section demonstrates the correlation of the damage variables to the Park-
Ang damage index. This section goes one step further in order to demonstrate the calibration
of the damage variables for several typical damage states of steel components. The simu-
lations of two identical steel subassemblages from the experimental campaign by Yu et al.
[111] are used for the purpose.

Figure 2.24 compares the experimental and the numerical response of the specimens
under different cyclic load histories. The GMP model in Figure 2.2(a) is adopted for the
effective response. The following parameters give consistent results with the experimental
data: E = 100 kip/in, sy = 110 kip, b = 0.045, r = 5, Cd0 = 3, Cd1 = 130, Cwc = 0.15, Ccd
= 0.4, [d+p1 , d+p2] = [d−p1 , d−p2] = [3.6, 1.25]. The same parameters are used for specimen LS1
and LS2 because of the same geometry.
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Figure 2.24: Response of steel beam-column subassemblages under cyclic load protocols
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To illustrate the deterioration in the specimens, Figures 2.25(a)-(b) plot the evolution
of the damage variables in the simulation of specimen LS2 and compare it with the Park-
Ang damage index. Six load points (LP) are identified corresponding to important events
observed during the experiment. Between LP 1 and LP 2 the specimen is subjected to a
large negative displacement leading to pronounced yielding and the initiation of buckling.
Between LP 2 and LP 3, the specimen undergoes small cycles without exceeding the previous
minimum and maximum displacements and experiences pronounced buckling. Between LP
3 and LP 4 the specimen is subjected to a large positive displacement causing severe damage
with a fatigue crack in the bottom flange at the reduced beam section (RBS). Between LP
4 and LP 5, the displacement reverses to the negative direction. The previous minimum
displacement is exceeded at LP 5, and the specimen continues to load into the negative
displacement range to LP 6, where large cracks develop through the flange thickness causing
a fracture failure.
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(a) Positive damage
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(b) Negative damage
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Figure 2.25: Comparison of damage evolution in specimen LS2

For a direct comparison with the Park-Ang damage index [73], Figure 2.25(c) plots a
single damage variable d that represents both the positive and negative damage variables
d±. For simplicity, this damage variable is taken as the maximum of the positive and negative
damage variables d = max(d+, d−). As expected from the comparison study in Section 2.6.1,
the damage variable d and the Park-Ang damage index dPA are consistent for this standard
case. Table 2.5 correlates the observed events with the corresponding damage values.

The correlation gives rise to the following damage thresholds:

• d = 0.0–0.2: yielding of panel zone, beam flange and web

• d = 0.2–0.4: initiation of buckling leading to some strength deterioration

• d = 0.4–0.6: crack propagation and significant strength degradation

• d = 0.6–1.0: failure through fracture
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Limit state
Damage
variable

Park-Ang
index

Damage
level

Panel zone yielding 0.02 0.08 Light
Beam bottom flange yielding 0.2 0.2 Moderate
Notable buckling 0.3 0.3 Moderate
Fatigue crack in bottom flange RBS 0.55 0.51 Severe
Cracks through flange thickness and fracture 0.63 0.57 Severe

Table 2.5: Correlation of damage measures and limit states for specimen LS2

It is instructive to extend the calibration to a wider variety of specimens and load histo-
ries. This task is, however, beyond the scope of this work and left for future studies.

2.7 Damage Evolution Law for Brittle Failure

Often times fracture initiates and the structural components undergo a drastic reduc-
tion in strength and stiffness. The damage evolution function based on the CDF of the
beta distribution accounts for such sudden strength deterioration through the selection of
parameters Cd0, Cd1, dp1, dp2. With a small difference in the values for Cd0 and Cd1, the
limit energy ψd1 is very close to the threshold ψd0 and the damage evolution is rapid. Suit-
able values for dp1 and dp2 accelerate damage in certain deformation ranges, for example,
dp1 > 1 and dp2 < 1 leads to rapid damage accumulation in early cycles. Both methods are
reasonable for simulating brittle response but they have certain limitations. In the former,
the damage initiation coincides with the onset of the brittle failure, which implies that the
model is unable to describe the gradual damage prior to fracture. In the latter, since the
damage evolution law is a smooth function, it is unable to distinguish the distinct behaviors
in the damage accumulation pre- and post-fracture.

To address these issues, a composite damage evolution law is proposed. The composite
function introduces two energy variables ψf and ψu that satisfy ψd0 ≤ ψf < ψu ≤ ψd1. ψf is
the energy at which fracture takes place and ψu is the ultimate energy at complete strength
loss. The energy variables can be normalized to give the condition 0 ≤ ψ̂f < ψ̂u ≤ 1.
Different values can be specified for the variables under positive and negative moments at
end i and end j, and for brevity, the superscript ± and the subscript i and j have been
dropped. The damage evolution in the preceding sections is modified to account for the
rapid strength degradation following fracture:

d =



FB

(
ψ̂, β1, β2

)
, 0 ≤ ψ̂ ≤ ψ̂f

FB

(
ψ̂f , β1, β2

)
+

1− FB
(
ψ̂f , β1, β2

)
ψ̂u − ψ̂f

(
ψ̂ − ψ̂f

)
, ψ̂f < ψ̂ ≤ ψ̂u

1, ψ̂u < ψ̂ ≤ 1

(2.16)
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In Equation (2.16) the damage evolution consists of three segments. When the energy ψ̂
is less than the fracture energy ψ̂f , the damage evolution follows the cumulative distribution
function (CDF) of the beta distribution similar to the formulation without brittle damage.
When the energy ψ̂ exceeds the fracture threshold ψ̂f but is less than the ultimate threshold

ψ̂u, the damage variable increases linearly to 1 at ψ̂ = ψ̂u. At higher energy, the strength
is completely lost and the damage variable remains equal to 1. Figure 2.26 shows the three
segments of the damage evolution.
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Figure 2.26: Damage evolution with brittle failure

To illustrate the proposed damage evolution law for brittle failure, the following presents
simulations of steel cantilever beams under repeated cyclic loading from the experiments by
Krawinkler [51]. Two specimens selected for the simulations are B13 and B18. Note that
three other specimens from the same experimental campaign have been simulated in 2.5.3 to
investigate the low-cycle fatigue phenomenon: B24, B25, and B28. The two groups B1 and
B2 exhibit vastly different behaviors. While the specimens in group B2 experience gradual
deterioration due to local buckling in beam flanges, the specimens in group B1 fail from
crack propagation at weldments with relatively higher rate of deterioration [51].

The following damage parameters are used in the simulation of B13 and B18: Cd0 = 10,
Cd1 = 300, Cwc = 0.13, Ccd = 0.3, [dp1, dp2] = [3, 1.5], ψ̂f = 0.078, ψ̂u = 0.1. These parameters
result in the damage evolution that is consistent with the distinct deterioration patterns in
the B1 and B2 groups. For specimens in group B1, the slow crack propagation in the early
cycles causes little deterioration for a larger number of cycles in the beginning, but as the
crack approaches its critical size, the specimens show rapid strength reduction. On the other
hand, for specimens in group B2, strength reduction due to local flange buckling initiates
earlier but the deterioration rate is more gradual [51]. Such behaviors are captured by the
threshold coefficient Cd0 and the limit coefficient Cd1, which are higher in the simulation of
specimens in group B1 than in group B2. The higher Cd0 allows damage to initiate later
while the higher Cd1 results in more ductile response prior to the onset of fracture.
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(a) B13: load-displacement
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(c) B18: load-displacement
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(d) B18: damage evolution

Figure 2.27: Simulations of steel beam with brittle failure

Figure 2.27 shows the load-displacement relation and the evolution of the positive damage
variable d+ for specimens B13 and B18. The model also simulates well the limited deteri-
oration prior to the onset of fracture. The damage evolution function in Equation (2.16)
with ψ̂f = 0.078 and ψ̂u = 0.1 captures accurately the sharp strength reduction in both
specimens during the last half cycle. The distinct deterioration rates prior and post-fracture
are evident in the damage evolution in Figure 2.27(b) and (d).

More extensive calibration is required to identify practical values for the parameters ψ̂f
and ψ̂u and correlate them with physical properties of components. Nonetheless, the excellent
results in the case study show that the model has significant promise in the hysteretic
response simulation of structural members susceptible to brittle failure.
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Chapter 3

Damage-Plasticity Beam Model

This chapter extends the 1d hysteretic damage model in Chapter 2 to formulate a new
beam element based on damage-plasticity for the response simulation and damage assess-
ment of steel structures under extreme load conditions. First, the series beam element based
on resultant plasticity and the serial springs formulation is introduced to describe the nonde-
grading force-deformation relation in the effective space. The inelastic response is monitored
at two locations offset from the element ends to account for the spread of inelasticity for
hardening response and the size of the damage zones for softening response. The plastic hinge
offsets accommodate the response coupling between the two element ends and represent more
accurately the post-yield hardening behavior.

The damage formulation allows the beam element to describe the main characteristics
of steel components, including the accumulation of plastic deformations, the cyclic strength
hardening in early cycles, the low-cycle fatigue behavior, the distinct deterioration rates in
primary and follower half cycles. The damage evolution function is extended to accommodate
the sudden strength and stiffness deterioration from element brittle failure.

The chapter concludes with an extensive parameter calibration for more than 50 steel
components under monotonic and cyclic load histories. A regression analysis is then used
to establish guidelines for the damage parameter selection in relation to the geometry and
the boundary conditions of the structural member. The validation studies indicate the
dependence of the strength and stiffness deterioration on the section compactness and the
element slenderness. The proposed model compares favorably in terms of computational
efficiency with more sophisticated models with fiber discretization of the cross section while
achieving excellent agreement in the response description for homogeneous metallic structural
components. The implementation of the damage-plasticity elements with the return-mapping
algorithm ensures excellent convergence characteristics for the state determination. Because
of the computational efficiency and excellent accuracy, the proposed beam element holds
great promise for the large scale seismic response simulation of structural systems with
strength and stiffness deterioration and should prove very useful in the damage assessment
and the collapse simulation of structures under extreme loading conditions.
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3.1 Series Beam Element

3.1.1 Formulation

The series beam element model relates the basic element forces q = [qa qi qj]
T , where qa

is the axial force and qi and qj are the flexural forces at end i and end j, to the corresponding
element deformations v = [va vi vj]

T . The beam model assumes that the axial response is
linear elastic and uncoupled from the flexural response. The model consists of a linear elastic
beam element in series with nonlinear plastic hinges at the element ends. The plastic hinges
are rigid-plastic and linear hardening that activate when the element end forces reach the
plastic capacity Mp. Figure 3.1 sketches a series beam element of length L with axial stiffness
EA, flexural stiffness EI, and two plastic hinges at the ends.

q i

q jEA EI

qa

L

i j

Figure 3.1: Series beam element

The element offers three main advantages over existing beam models based on concen-
trated plasticity in the literature. First, the element describes exactly the rigid-plastic be-
havior of the plastic hinges and do not suffer from the numerical issues that plague existing
series models using a high elastic stiffness for the rigidity of the plastic hinge before yielding.
Second, the formulation avoids additional nodes at the interface between the zero-length
inelastic springs and the elastic element, and thus, permits a better-conditioned model with
fewer degrees of freedom. Third, the element state determination adopts the robust return-
mapping algorithm in classical plasticity to ensure excellent convergence properties.

The beam element is formulated based on resultant plasticity with an associative flow rule
[92] and the concept of a serial spring model. The equilibrium and compatibility relations
of the series beam model are illustrated in Figure 3.2, where qe-ve, qp-vp, q-v represent the
force-deformation relation of the linear elastic element, of the nonlinear hinges, and of the
element, respectively.

The equilibrium relation equates the element force q to the force in the elastic component
qe and the plastic component qp:

q = qe = qp (3.1)

The kinematic relation assumes an additive decomposition of the element deformation
v into the elastic deformation ve and the plastic deformation vp, which is analogous to the
strain decomposition in material models in classical plasticity [92].

v = ve + vp (3.2)
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qqp
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vevp

Mp Mp

qe

+ =

Figure 3.2: Equilibrium and compatibility relations of series beam model

The constitutive law of the elastic component relates the force q to the elastic deformation
ve through the elastic stiffness ke:

q = keve = ke (v − vp) (3.3)

The following discusses the three main aspects of the element formulation: the yield
function, the flow rules, and the hardening rules.

Yield function
Two yield functions fi and fj describe the admissible force state of the response at end

i and end j, respectively. fi and fj are functions of three history variables: the element

forces q, the back-forces qb = [qb,a qb,i qb,j]
T describing the kinematic hardening behavior,

and the internal variables α = [αi αj]
T governing the isotropic hardening behavior. With

Mp = [Mp,i Mp,j]
T denoting the plastic flexural capacities and Hi,i and Hi,j denoting the

isotropic hardening modulus of the response at end i and j, the yield functions fi and fj are
given by:

fi (q,qb,α) = |qi − qb,i| − (Mp,i +Hi,iαi) (3.4)

fj (q,qb,α) = |qj − qb,j| − (Mp,j +Hi,jαj) (3.5)

While the model accommodates unequal plastic capacities at the two ends, the same
capacity Mp,i = Mp,j = Mp is used in this study, which is a reasonable assumption for steel
components. Figure 3.3 plots the two initial yield surfaces defined by the yield functions fi
and fj in the (qi, qj) force space and the four unit normals n±

i and n±
j . The yield envelope

consists of four lines qi = ±Mp and qj = ±Mp.
The normal n to the yield envelope is given by:

n = [ni nj] =

[
∂fi
∂q

∂fj
∂q

]
=

 0 0
sign (qi − qb,i) 0

0 sign (qj − qb,j)

 (3.6)
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Figure 3.3: Yield envelope of series element

The yield functions in Equations (3.4)–(3.5) can be written more compactly as follows:

f (q,qb,α) = nT (q− qb)− (Mp + Hiα) (3.7)

where Hi is a diagonal 2×2 isotropic hardening matrix with the isotropic hardening moduli
Hi,i and Hi,j on the diagonal. It is noteworthy that the yield envelope given by fi and fj in
Equations (3.4)–(3.5) is nonsmooth with four singular points on the boundary of the elastic
domain.

Flow rules
The associative flow rule describes the evolution of the plastic deformation vp. To account

for the singularity at the corners, the Koiter’s rule [47] states that the plastic deformation
rate v̇p, or equivalently, the plastic deformation increment ∆vp, is a linear combination of
the normals ni and nj:

v̇p = βini + βjnj = nβ (3.8)

where β = [βi βj]
T is a vector of the consistency parameters.

Figure 3.4 illustrates three scenarios of the plastic deformation increment. In Fig-
ure 3.4(a), only the yield surface defined by fi is ’active’, that is, βi > 0 and βj = 0 and
the plastic deformation increment is colinear to the normal ni. In Figure 3.4(b), only the
yield surface defined by fj is ’active’, that is, βj > 0 and βi = 0 and the plastic deformation
increment is colinear to the normal nj. In Figure 3.4(c), both yield surfaces are ’active’ and
the plastic deformation increment depends on both ni and nj.

Hardening rules
The rate of the internal variable α and the back-force qb are given as functions of the
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∆vp = βjnj
+

∆vp = βini
+

βini
+

βjnj
+
∆vp = βini

++ βjnj
+

(a) (b) (c)

Figure 3.4: Scenarios of plastic deformation increments: (a) only fi active, (b) only fj active,
(c) both fi and fj active

consistency parameters β:

α̇ = β (3.9)

q̇b = Hknβ (3.10)

where Hk is a 3×3 diagonal matrix with ’0’ and the kinematic hardening moduli Hk,i and
Hk,j on the diagonal.

The consistency parameter β and the yield function f satisfy the unilateral constraints
known as the Kuhn-Tucker condition:

β ≥ 0 and f ≤ 0 and βmfm = 0, m = i, j (3.11)

The consistency condition asserts additional loading/unloading conditions for the yield
surfaces:

βmḟm = 0, m = i, j (3.12)

Given the deformation rate v̇, the consistency parameter β can be evaluated as follows:

β =
[
nT (ke + Hk) n + Hi

]−1
nTkev̇ (3.13)

The expresion of the tangent stiffness upon plastic loading is:

kt = ke − ken
[
nT (ke + Hk) n + Hi

]−1
nTke (3.14)

The derivation of the consistency parameters and the tangent stiffness can be found in
Appendix B.
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3.1.2 Plastic hinge offset

The series beam element in Section 3.1 is generalized by placing the two nonlinear springs
at distances χi = ci/L and χj = cj/L from the ends. Figure 3.5 sketches the series beam
element of length L, axial stiffness EA and flexural stiffness EI composed of a linear elastic
beam element in series with two offset rigid-plastic plastic hinges in the interior of the
element. While the model permits different offset ratios χi and χj at the two ends, for
simplicity a symmetric placement of the plastic hinges χi = χj = χ is used in the remaining
of the dissertation.

q i

q j

c i c j

EA EI

qa

L

i j

Figure 3.5: Series beam element with plastic hinge offset

The governing relations in Equations (3.1)–(3.3) still apply. It is noteworthy that the
plastic force qp and plastic deformation vp are associated with the response at the element
ends, and the plastic response is activated when the moment reaches the plastic capacity Mp

at the hinge location. In the absence of element loading, the moment distribution is linear
along the beam span, and the hinge moments Mi and Mj can be linearly interpolated from
the element flexural forces qi and qj, as Figure 3.6 shows.

-qp,i

qp,j

Mi

Mj
χjχi

L
L L

Figure 3.6: Moment interpolation between the hinge locations and the element ends

The moment interpolation matrix bp is defined based on the plastic hinge offset χ:

bp =

1 0 0
0 χ χ
0 χ 1− χ

 (3.15)
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The force and deformation of the plastic hinges qh–vh can be related to the plastic force
and deformation qp–vp through the force interpolation matrix bp:

qh = bpqp (3.16)

vp = bTp vh (3.17)

where qh = [N , Mi, Mj]
T denotes the axial force and the bending moments at the plastic

hinge locations and vh = [θa, θi, θj]
T are the corresponding hinge axial deformations and

rotations. Due to the assumption of linear elastic axial response, the axial deformation in
the plastic hinges θa is zero.

The yield functions in Equation (3.7) become:

f = nT (bpq− qb)− (Mp + Hiα) (3.18)

where the normal n can be evaluated as:

n =

 0 0
sign [(χ− 1)qi + χqj − qb,i] 0

0 sign [−χqi + (1− χ)qj − qb,j]

 (3.19)

It is evident in Equation (3.19) that the plastic hinge offsets couple the forces at the two
element ends.

The same hardening rules in Equations (3.9)–(3.10) are adopted for the evolution of the
back-force qb, and the internal variable α. The plastic deformation rate v̇p is then given by
the interpolation matrix bp, the normal to the yield surface n, and the consistency parameter
β:

v̇p = bTp nβ (3.20)

The consistency parameter β have the following expression:

β =
[
nT
(
bpkeb

T
p + Hk

)
n + Hi

]−1
nkev̇ (3.21)

and the tangent stiffness kt is given by:

kt = ke − keb
T
p n
[
nT
(
bpkeb

T
p + Hk

)
n + Hi

]−1
nTbpke (3.22)

The series beam model in Section 3.1.1 is a special case with χ = 0. It is possible to
extend the formulation with more than two plastic hinges to accommodate various inelastic
phenomenon, such as shear and bond-slip; however, it is left for future studies.

3.1.3 State determination: Return-mapping algorithm

Given the deformation vn at the current step n and the previous history variables, the
state determination of the element model evaluates the end force qn, the internal hardening
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variable qb,n and αn, the plastic deformation vp,n, and the tangent stiffness kt. The ele-
ment state determination is based on the return-mapping algorithm in classical multisurface
plasticity.

The algorithm starts with an elastic predictor assuming that the deformation increment
is entirely elastic, and evaluates the trial force qtr, the trial back-force qtrb , and the trial
internal variable αtr:

qtr = ke (vn − vp,n−1) (3.23)

qtrb = qb,n−1 (3.24)

αtr = αn−1 (3.25)

The trial normal to the yield surface ntr can be expressed as:

ntr =

 0 0
sign

[
(χ− 1)qtri + χqtrj − qtrb,i

]
0

0 sign
[
−χqtri + (1− χ)qtrj − qb,j

]
 (3.26)

The trial yield function f tr is evaluated from the trial force and state variables:

f tr =
(
ntr
)T

(bpq
tr − qtrb )− (Mp + Hiα

tr) (3.27)

If both yield functions are positive, f tri > 0 and f trj > 0, the trial force state is admissible
and the element response is elastic. The trial elastic state is accepted and the end force qn
equals to the trial value qtr:

qn = qtr (3.28)

Similarly, the state variables are equal to the corresponding trial values:

qb,n = qtrb (3.29)

αn = αtr (3.30)

vp,n = vp,n−1 (3.31)

and the tangent stiffness kt is equal to the elastic stiffness ke:

kt = ke (3.32)

If at least one yield condition is violated, f tri ≥ 0 and/or f trj ≥ 0, plastic correction is
required to adjust the force back to the admissible domain. A yield surface m is considered
’active’ if the consistency parameter βm > 0 and the corresponding yield function fm = 0
after the correction with m = i, j. The selection of active surfaces satisfies two constraints
of the Kuhn-Tucker conditions after the plastic correction: (1) the consistency parameter
β is positive, (2) the yield function f defined by the corrected variables qn, qb,n, and αn
are non-positive, that is, the point (qi, qj) does not fall outside the admissible domain in
the force space upon correction. The identification of the active yield surfaces involves two
steps:
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(1) Both yield surfaces are assumed active, the trial consistency parameter βtr is evaluated:

βtr =
[
nT
(
bpkeb

T
p + Hk

)
n + Hi

]−1
f tr (3.33)

(2) Enforcing the Kuhn-Tucker conditions, the active surfaces can be shown to correspond
to the positive trial consistency parameters βtr.

m ∈ Jact = {i, j | βtrm > 0} (3.34)

where Jact denotes the indices of the active yield surfaces.

To account only for the active constraints, the normal ntr is revised to include only the
active yield surfaces. For example, if both yield surfaces are active, ntr =

[
ntri ntrj

]
. If only

the yield surface at end i is active, ntr = ntri .

ntr =
[
ntrm
]
, m ∈ Jact (3.35)

Similarly, the trial yield function f tr and the isotropic hardening modulus Hi are revised
to reflect the active yield surfaces. For example, if only the yield surface at end i is active,
f tr = f tri and Hi = Hi,i.

f tr =
[
f trm
]
, m ∈ Jact (3.36)

Hi = Hi (Jact,Jact) (3.37)

With the modifications in Equation (3.35)–(3.37) to include only the active surface(s),
the consistency parameters β can then be evaluated as follows:

β =
[
nT
(
bpkeb

T
p + Hk

)
n + Hi

]−1
f tr (3.38)

The plastic deformations vp, the internal variables α and the back-forces qb are then
updated:

vp,n = vp,n−1 + bTp nβ (3.39)

qb,n = qb,n−1 + Hknβ (3.40)

αn = αn−1 + β (3.41)

The force qn is updated from the trial value qtr as follows:

qn = qtr − keb
T
p nβ (3.42)

Finally the tangent stiffness kt is given in Equation (3.22). Table 3.1 summarizes the
state determination algorithm of the general series beam model with offsets.

Figure 3.7 is a graphical illustration of the returning-mapping scheme for an element
response under the assumption of an elasto-plastic behavior and no plastic hinge offset for
simplicity. The shaded region is the elastic domain with fi < 0 and fj < 0. Plastic correction
is required when the trial force qtr falls outside this region. Note that the force correction
is ∆q = qtr − q = kenβ = βikeni + βjkenj, which is a linear combination of keni and kenj.
The area outside the elastic domain can be divided into three regions A, B, C separated by
these vectors, as shown in Figure 3.7(a).
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Given: end deformations vn and history variables at step n− 1

Required : state variables at step n

1. Elastic predictor:

Evaluate qtr, qtrb , αtr in (3.23)–(3.25)

Evaluate ntr in (3.26)

2. Check of plastic process:

Evaluate f tr in (3.27)

IF f tri < 0 and f trj < 0 THEN:

Elastic update, go to Step 3

ELSE:

Plastic correction, go to Step 4

ENDIF

3. Elastic update:

Update qb,n, αn, vp,n in (3.29)–(3.31)

Update qn, kt in (3.28) and (3.32)

EXIT

4. Identification of active yield surfaces in two steps

Assume both surfaces are active and evaluate trial βtr in (3.33)

Identify active surfaces Jact that correspond to positive βtr

5. Consistency parameters β:

Update ntr, f tr, Hi in (3.35)–(3.37)

Compute β in (3.38)

6. State variables update:

Update vp,n in (3.39)

Update qb,n, αn in (3.40)–(3.41)

7. Element end forces and tangent stiffness:

Update qn in (3.42)

Evaluate kt in (3.22)

Table 3.1: State determination algorithm of series beam model with plastic hinge offset
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Figure 3.7: Return-mapping algorithm for series element
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(i) Region A: This region corresponds to a positive trial yield function at end i, f tri > 0,
and is defined by the area outside the yield envelope between vectors ken

+
i for qi > 0

and between vectors ken
−
i for qi < 0. If the trial force qtr falls in this region, only

the yield surface at end i is active, i.e. the consistency parameter βi > 0 and βj = 0.
The normal ntr = ntri in Equation (3.35) and the plastic deformation increment ∆vp
is parallel to the normal ni of the yield surface fi = 0. The force correction ∆q is
parallel to keni. The corrected force q gives fi = 0 and fj < 0. The plastic correction
scheme is shown in Figure 3.7(b).

(ii) Region B: This region corresponds to a positive trial yield function at end j, f trj > 0,
and is defined by the area outside the yield envelope between vectors ken

+
j for qj > 0

and between vectors ken
−
j for qj < 0. If the trial force qtr falls in this region, only

the yield surface at end j is active, i.e. the consistency parameter βj > 0 and βi = 0.
The normal ntr = ntrj in Equation (3.35) and the plastic deformation increment ∆vp
is parallel to the normal nj of the yield surface fj = 0. The force correction ∆q is
parallel to kenj. The corrected force q gives fi < 0 and fj = 0. The plastic correction
scheme is shown in Figure 3.7(c).

(iii) Region C: This region is defined by the area outside the yield envelope and between
the vectors ken

±
i and ken

±
i in the same quadrant of the force space. If the trial force

qtr falls in this region, both yield surfaces are active, i.e. the consistency parameters

βi > 0 and βj > 0. The normal ntr =
[
ntri ntrj

]T
in Equation (3.35). The plastic

deformation increment ∆vp is a linear combination of the normals ni and nj. The
correction process adjusts the force q to the ’corner’ of the admissible domain and
gives fi = 0 and fj = 0. The plastic correction scheme is shown in Figure 3.7(d).

(iv) Along the common edges between two regions, A & C and B & C, the correction
scheme is similar to the scheme in regions A and B, respectively. The only difference
is that upon the correction process, the force q targets the singular point of the yield
envelope and gives fi = fj = 0.

The force correction processes in Figures 3.7(b)–(d) results from the two-step scheme in
the previous discussion. An example is shown in Figure 3.8. In the first step, both surfaces
are assumed active and the trial force qtr is projected to the nearest corner in the quadrant
in Figure 3.8(a). The trial consistency parameters βtr can be interpreted as the projection
of the force increment ∆q to vectors keni and kenj. In the second step, since βtrj < 0,
only the yield surface i is active and the force correction is adjusted accordingly as shown in
Figure 3.8(b).

It is important to point out that the signs of the trial yield functions f tr are not sufficient
to identify the active surfaces. For example, if only one trial yield function is positive, f tri > 0
and f trj < 0, it is not guaranteed that only the surface i is active, βi > 0 and βj = 0. The
force correction affects both qi and qj due to the coupling terms in the elastic stiffness ke, and
could activate the surface j after the correction, fj > 0, and thus violates the Kuhn-Tucker
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Figure 3.8: Two-step identification of active surfaces

condition. Figure 3.9 illustrates two scenarios in which determining the active surfaces based
solely on the signs of the trial yield functions is erroneous.
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qtr βjkenj
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βikeni
+

q fj = 0

fi = 0

(a) βi < 0

keni
-

kenj
+

qtr

q

βjkenj
+

fj = 0

fi = 0

(b) fi > 0

Figure 3.9: Violation of Kuhn-Tucker condition due to incorrect active β’s

In the first scenario in Figure 3.9(a), the trial force qtr gives a positive value for both
trial yield functions f tri > 0 and f trj > 0. If both surfaces are assumed active, the correction
brings the force qtr to the corner to satisfy fi = fj = 0. However, this projection of the
force increment ∆q onto vectors keni and kenj indicates that βi < 0, and thus violates the
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Kuhn-Tucker condition that requires positive consistent parameters β. In this scenario, the
trial force qtr lies in region B in Figure 3.7(a), which shall only activate surface j even though
f tri > 0.

In the second scenario in Figure 3.9(b), the trial force qtr gives f tri < 0 and f trj > 0. If
the active surfaces are based on signs of the trial yield functions, only surface j is active
and the force correction is parallel to kenj. However, the correction gives fi > 0 and brings
the force qtr outside the admissible domain. This violates the Kuhn-Tucker condition that
requires the yield functions to remain nonpositive, f ≤ 0. In this scenario, the trial force
qtr lies in region C in Figure 3.7(a), which shall activate both surfaces i and j even though
f tri < 0.

3.1.4 Model parameters

The series beam element requires 7 parameters: the Young modulus E, the cross-sectional
area A, the moment of inertia I, the flexural plastic capacity Mp, the kinematic hardening
ratio Hkr, the isotropic hardening ratio Hir, and the offset parameter χ. Since the first 4
parameters are readily available from the material properties and the member geometry, this
section addresses the last 3 parameters.

3.1.4.1 Hardening parameters Hkr and Hir

The kinematic hardening ratio Hkr and the isotropic hardening ratio Hir are directly
related to the kinematic hardening modulus Hk and the isotropic hardening modulus Hi in
terms of the flexural stiffness under antisymmetric bending 6EI/L:

Hk = Hkr
6EI

L
(3.43)

Hi = Hir
6EI

L
(3.44)

Figure 3.10 illustrates the evolution of the yield surface with linear isotropic and kinematic
hardening from fn−1 to fn. The end forces evolve from an elastic state qn−1 to a plastic state
qn. Kinematic hardening translates the yield surface while isotropic hardening expands or
contracts the yield surface in the force space.

Figures 3.10(a1)-(a2) illustrate the evolution of the yield envelope in the case of kinematic
hardening with Hkr > 0. In Figure 3.10(a1) only the yield surface j is active, βj > 0, and
the yield envelope translates parallel to the normal nj. The force qn gives fn,i < 0 and
fn,j = 0. In Figure 3.10(a2) both yield surfaces i and j are active, βi > 0 and βj > 0, and
the translation of the yield envelope is a linear combination of both ni and nj. The force qn
targets the corner of the new yield surfaces, implying that fn,i = 0 and fn,j = 0.

Figures 3.10(b1)-(b2) illustrate the evolution of the yield envelope in the case of isotropic
hardening with Hir > 0. In Figure 3.10(b1) only the yield surface i is active, βi > 0, and
the yield envelope expands in the direction parallel to the normal ni. The force qn gives
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Figure 3.10: Evolution of yield surfaces: (a) kinematic hardening with Hkr > 0, and (b)
isotropic hardening with Hir > 0

fn,i = 0 and fn,j < 0. In Figure 3.10(b2) only the yield surface j is active, βj > 0, and the
yield envelope expands in the direction that is a linear combination of both ni and nj. The
force qn targets the corner of the new yield surface, implying fn,i = 0 and fn,j = 0.

Figures 3.11(a)-(b) compare the cyclic response for different values of the hardening
ratios Hkr and Hir. Figures 3.11(c)-(d) show the cyclic response with combined hardening:
Hkr = 0.005 and Hir = 0.005 in Figure 3.11(c) leads to strength hardening with increasing
inelastic deformations, whereas Hkr = 0.005 and Hir = -0.005 in Figure 3.11(d) gives a
gradual strength degradation with increasing inelastic deformations. The horizontal slope
in the reloading segments results from the fact that Hkr = -Hir. Different colors are used in
Figures 3.11(c)-(d) to distinguish the response in each cycle.

With different signs and relative values of Hkr and Hir, the model can accommodate
cyclic hardening as well as strength degradation. Although a gradual strength deterioration
is possible with Hir < 0, the range of degrading behaviors the model can describe is limited
and the model does not accommodate stiffness deterioration. These limitations will be
addressed in the later section by introducing damage to the element response.
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Figure 3.11: Sample cyclic response with linear kinematic and isotropic hardening

3.1.4.2 Offset parameter

The offset parameter χ represents the location of the plastic hinges from the element
ends and ranges from χ = 0 for the hinges at the element ends to χ = 0.5 for the hinges
at the element midspan. Figure 3.12 compares the flexural force-deformation relation at the
base of a cantilever beam subjected to a monotonically increasing transverse load at the free
end for different offset parameter χ = 0, 0.05, 0.1. For the linear moment distribution in this
case study, the offset parameter χ increases the yield moment at the base. This strength
increase results from the extrapolation of moment from the hinge locations to the element
ends, with a larger offset leading to a higher moment amplification.

The ability of the plastic hinge offsets to describe the coupling of the inelastic zones at
the element ends is demonstrated in the following section.
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Figure 3.12: Effect of offset on flexural response of a cantilever beam

3.2 Examples of Series Beam Element

3.2.1 Pushover analysis of portal frame

This example compares the series beam element to a more sophisticated element based
on distributed plasticity in a simple structure under a standard load pattern. The steel
portal frame in Figure 3.13 is used for illustration. The columns are subjected to an axial
compression of Pv = 160 kips, which is 10% of the column axial plastic capacity Np to
represent the effect of gravity loading on the portal frame. The frame is subjected to a
monotonically increasing lateral displacement at the girder level.

L = 20 ft

H = 14 ft W21x111W21x111

W21x93

Pv Pv

Integration
    points

A A Section A-A

Figure 3.13: Structural model of portal frame

The column and beam elements assume an elastic-perfectly-plastic (EPP) behavior. The
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corotational formulation is used to account for the nonlinear geometry. Each column is
modeled with a force-based distributed beam-column element with 4 integration points along
the length and 9 fibers in each cross section: 2 in each flange and 5 in the web. The idealized
model of the column and its discritization scheme is shown in Figure 3.13. The distributed
plasticity model is used to capture the axial-flexure interaction in the columns.

For comparison, two different models are used to simulate the girder: (1) Model M1 using
a force-based beam-column element with the same discretization scheme as the columns,
and (2) Model M2 using the series beam element. In this example, no plastic hinge offset is
specified in the girder, χ = 0.

Figure 3.14 compares the global and the local response in the two models. The base shear-
lateral drift relation in Figure 3.14(a) is practically identical. Both models can capture the
linear elastic segment at small drifts, followed by the gradual yielding and transition to
plastic behavior, and the linear softening range. The negative stiffness in Figure 3.14(a)
indicates the effect of the column axial force under the large lateral displacement.

The girder response in the two models are shown in Figure 3.14(b). While the elastic
response is identical, the plastic behavior shows slight discrepancies between the models.
Model M1 gives a smooth transition from the elastic to the plastic range due to the gradual
yielding of the fibers. In contrast, model M2 exhibits an abrupt yielding when the girder
moment reaches the plastic capacity Mp. The yield moment in model M1 is slightly smaller
than in model M2 due to a small axial force in the girder that reduces the flexural yield
strength. The series beam element in model M2 neglects the axial-flexure interaction, and
thus, does not capture this strength reduction. However, the discrepancy is negligible (within
2%).

The response of the left column is shown in Figures 3.14(c)–(d). It is noteworthy that
even though the two models use the same column element, the column response show slight
discrepancies due to the differences in the girder response. The girder in model M2 yields
at a higher moment, which leads to a higher transverse shear and imposes a higher axial
force demand on the columns. Consequently, the columns in model M2 yield at a smaller
moment.

One advantage of the concentrated plasticity over the distributed plasticity approach is
the improvement in the numerical efficiency because model M1 requires state determination
and storage of all fiber response whereas model M2 only monitors the response at the element
ends. The running time of model M2 is 2 times faster than model M1 in this simple example.

3.2.2 General bending of simply-supported beam

The objectives of this example are two-fold: (1) to illustrate the calibration of the hard-
ening parameters, and (2) to showcase the ability of the plastic hinge offsets to couple the
inelastic response at the element ends and describe accurately the hardening response. For
the purposes, the study uses a simply-supported beam with a bilinear moment-curvature
relation that is subjected to proportional rotations at two ends. The 10-ft beam, shown in
Figure 3.15, is made of a W30x173 steel profile with fy = 50 ksi yield strength. The imposed
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Figure 3.14: Pushover response of portal frame with EPP element behavior

rotation ratio is ρ = vj/vi, where vi and vj are the element deformations at the left and
right end of the beam, respectively. The following evaluates the moment distribution under
different rotation ratio ρ ranging from −1 to 1. ρ = −1 represents a uniform moment and
curvature distribution while ρ = 1 corresponds to antisymmetric bending.

For comparison, three different alternatives are used to model the beam:

(1) Model DP : represents the distributed plasticity formulation. This model uses one
Euler-Bernoulli force-based distributed plasticity beam-column element with 3 inte-
gration points along its length. Each cross section is discretized into 9 fibers: 2 in
each flange and 5 in the web. The number of elements and integration points have
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Figure 3.15: Simply-supported beam with proportional end rotations

been calibrated to give sufficient accuracy in the numerical response. The fiber stress-
strain constitutive relation adopts the bilinear plasticity model with linear kinematic
hardening Hk = 1.5%E and no isotropic hardening Hi = 0.

(2) Model CP1 : represents the concentrated plasticity formulation without plastic hinge
offsets. A kinematic hardening ratio Hkr = 2.5% is used to describe the post-yield
hardening behavior. No plastic hinge offset is specified, χ = 0.

(3) Model CP2 : represents the concentrated plasticity formulation with plastic hinge
offsets. This model is similar to model CP1 except the kinematic hardening ratio
Hkr = 1% and the offset χ = 0.065.

Figure 3.16(a) illustrates the calibration of the hardening parameter Hkr in model CP1.
To account for the gradual yielding and a slightly higher yield strength than the nominal value
Mp in model DP, the hardening parameter in model CP1 is calibrated to match the moment
at a target rotation value vtarget under antisymmetric bending with equal end deformations
ρ = 1. In this example, vtarget = 0.03 is used, which results in the hardening parameter
Hkr = 2.5%.

Another common approach, shown in Figure 3.16(b), is to introduce a constant ’fictitious
plastic moment’M∗

p higher than the nominal valueMp. The stiffness transition initiates when
the moment reaches the ’fictitious’ yield strength M∗

p to accommodate the higher strength
during the gradual yielding. However, this approach does not capture the coupling of the
response at the element ends that changes the fictitious moment M∗

p under different rotation
ratios ρ. This limitation can be addressed with the plastic hinge offsets, as will be shown in
the following discussion.

Figure 3.17 compares model DP and models CP1 and CP2 in the monotonic moment-
rotation at both two element ends under three rotation ratios ρ = 0.5, ρ = −0.5, and ρ = −1.
Each curve is denoted by the model name followed by the element end, for instance, ’DP-i’
represents the moment-rotation relation at end i in model DP. Model CP1 captures rather
well the response under antisymmetric bending with ρ = 0.5 in Figure 3.17(a). However, it
is evident in Figures 3.17(b)-(c) that Hkr = 2.5% gives excessive hardening under symmetric
bending with ρ = −0.5 and ρ = −1. Model CP1 underestimates the moment at rotations
smaller than the target value while it overestimates the moment beyond the target rotation.
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The moment-rotation relation in model CP2 under different rotation ratios is shown
in Figures 3.17(d)-(f). The plastic hinge offsets couple the response at the element ends
and capture better the variation in the yield strength under different rotation ratios. The
response under antisymmetric bending is almost identical to model DP while the response
under symmetric bending shows a better agreement than model CP1.

Calibration of the hardening parameter in model CP2 with plastic hinge offsets is per-
formed in two steps: (1) calibrate the hardening ratio Hkr to match the post-yield response
given by the DP model under ρ = 1, and (2) identify the fictitious yield moment M∗

p , then
evaluate the offset parameter χ = 1/2 −Mp/2M

∗
p . The offsets offer more flexibility in the

parameter calibration. While model CP1 has the kinematic hardening ratio Hkr as the only
degree of freedom to calibrate the hardening response, model CP2 has two, which are the
kinematic hardening ratio Hkr and the offset parameter χ. The additional parameter allows
model CP2 to avoid the rather arbitrary target rotation in model CP1.

Next the beam ends are subjected to a proportional cyclic rotation history with a fixed
rotation ratio ρ = vi/vj. The rotation at end j follows a cyclic pattern with the following
peak rotation values: 0.01, −0.01, 0.02, −0.02, 0.04, −0.04. Figure 3.18 compare model DP
with model CP1 and CP2, respectively, in the moment-rotation at both ends for 3 cases
ρ = 1, 0.5,−0.5. Same parameters in the monotonic cases are used in the simulations. It
is evident that the plastic hinge offsets capture very well the coupling of the response at
the two ends and describe more consistently the post-yield hardening behavior. It is also
noteworthy that the both CP models are significantly more efficient than model DP with a
factor of 5–10 times reduction in the computation time.
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(c) ρ = −1, χ = 0
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(d) ρ = 0.5, χ = 0.065
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(e) ρ = −0.5, χ = 0.065
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Figure 3.17: Moment-rotation relation of simply-supported beam under monotonic loading

3.2.3 Reduced beam section (RBS) connections

In earthquake-resistant design of steel structures, reduced beam sections (RBS) inten-
tionally move the plastic hinges away from the beam ends. Properties of the RBS depend
on two main parameters: (1) location of the RBS from the beam ends, and (2) design of
the RBS such as the radius cut. The latter reduces the strength at the RBS relative to the
nominal section strength along the beam span.

In practice, a beam with RBS is usually modeled by 3 elastic beams in series with 2
nonlinear springs at the RBS locations as shown in Figure 3.19(a). This modeling approach,
so-called model A, requires 6 nodes for the assembly, 4 of which locate at the interface
between the elastic beams and the plastic hinges, and as a result, generate additional global
dofs. The moment-rotation relation of the plastic hinges is specified by the user. Ideally, the
hinges are rigid-plastic, but in practice, they are often approximated as semi rigid-plastic with
a very large initial stiffness. This proposition is known to give rise to numerical problems,
including excessive damping forces and violation of equilibrium at degrees of freedom (dofs)
with no inertial forces [15].

An improved modeling approach, so-called model B, shown in Figure 3.19(b), is a serial
assembly of 2 exterior linear elastic beam elements and 1 interior inelastic beam element



CHAPTER 3. DAMAGE-PLASTICITY BEAM MODEL 71

-0.04 -0.02 0 0.02 0.04
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP1

(a) χ = 0, ρ = 1, end i

-0.04 -0.02 0 0.02 0.04
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP1

(b) χ = 0, ρ = 0.5, end i

-0.04 -0.02 0 0.02 0.04
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP1

(c) χ = 0, ρ = −0.5, end i

-0.04 -0.02 0 0.02 0.04
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP1

(d) χ = 0, ρ = 1, end j

-0.02 -0.01 0 0.01 0.02
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP1

(e) χ = 0, ρ = 0.5, end j

-0.02 -0.01 0 0.01 0.02
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP1

(f) χ = 0, ρ = −0.5, end j

-0.04 -0.02 0 0.02 0.04
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP2

(g) χ = 0.065, ρ = 1, end i

-0.04 -0.02 0 0.02 0.04
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP2

(h) χ = 0.065, ρ = 0.5, end i

-0.04 -0.02 0 0.02 0.04
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP2

(i) χ = 0.065, ρ = −0.5, end i

-0.04 -0.02 0 0.02 0.04
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP2

(j) χ = 0.065, ρ = 1, end j

-0.02 -0.01 0 0.01 0.02
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP2

(k) χ = 0.065, ρ = 0.5, end j

-0.02 -0.01 0 0.01 0.02
Rotation

-1.5

-1

-0.5

0

0.5

1

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP
CP2

(l) χ = 0.065, ρ = −0.5, end j

Figure 3.18: Moment-rotation relation of simply-supported beam under cyclic loading



CHAPTER 3. DAMAGE-PLASTICITY BEAM MODEL 72

c i c j

L

j

21 3

i 4 5

j

21 3

i

(a)

j

1

i

(b)

(c)

Figure 3.19: Modeling approaches for reduced-beam sections: (a) 3 linear-elastic beams with
2 zero-length springs, (b) 2 linear-elastic beams with 1 series beam without offset, (c) 1 series
beam with offset

with plastic hinges at the ends. The state determination of the plastic hinges are performed
implicitly in the inelastic element. This method requires 4 nodes, 2 of which locate in the
beam interior between the elastic elements and the inelastic element. In the subsequent
discussion, the series beam element with the plastic hinges at the element ends is selected
to represent the inelastic element in model B. The exact representation of the rigid-plastic
behavior in model B avoids the numerical problems in model A.

A more direct approach, so-called model C, is proposed here to use 1 beam element with
plastic hinge offsets, as shown in Figure 3.19(c). As opposed to model A and B, model C
does not require additional nodes and dofs at the interface between the plastic hinges and
the elastic beam. The RBS design is reflected in two parameters in model C: the offset
parameter χ and the strength modification factor λ. The offset χ indicates the RBS location
at distance c = χL from the element ends. The strength modification factor λ gives the
moment capacity at the RBS relative to the nominal strength Mp with 0 < λ ≤ 1.

The simply-support beam under general bending in Section 3.2.2 is revisited but with
reduced sections in the beam interior. Figure 3.20 compares the moment-rotation relation
at the beam ends and at the hinge locations for three load scenarios using model B and
model C. All parameters in the two models are the same except for the hardening ratio Hkr.
To describe the same post-yield hardening stiffness Hk in Equation (3.43), the kinematic

hardening ratios in model B, H
(B)
kr , and in model C, H

(C)
kr , are proportional to the flexural

stiffness:
H

(B)
kr

H
(C)
kr

=
EI/L(B)

EI/L(C)
=

1

1− 2χ
(3.45)

This modification accounts for the different flexural stiffness EI/L in the two models
due to the element length: while the element in model C has length L, the interior beam
in model B has length (1 − 2χ)L. The adjustment in Equation (3.45) ensures the same
hardening response in the two models regardless of the RBS location. It is evident that
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Figure 3.20: Moment-rotation of beam with RBS: (a) ρ = 0.5, χ = 0.05, λ = 0.6, (b)
ρ = −0.5, χ = 0.05, λ = 0.8, (c) ρ = −0.5, χ = 0.1, λ = 0.6

the two models give identical response. The rigid-plastic response at the plastic hinges are
accurately represented by proposed beam model.

The following subsections present two case studies: a portal frame and a three-story
frame. The structure in both examples have RBS in the beam interior. The objective is to
showcase the effect of the hinge offset location and the strength reduction at the RBS on the
structural response.

3.2.3.1 Example 1: Portal frame

The first example illustrates the effect of the plastic hinge offsets and the strength reduc-
tion on the sequence of yielding at a beam-column joint and its effect on the local and global
response. For the purpose, a portal frame with height H = 14 ft and bay width L = 20 ft
is used. The columns and girders are made of W21x111 and W24x104 wide flange section,
respectively. The columns are subjected to an axial compression of Pv = 160 kips, which is
10% of the column axial plastic capacity Np to represent the effect of gravity loading on the
portal frame. Three RBS designs are considered: (i) λ = 0.8, χ = 0.1, (ii) λ = 0.7, χ = 0.1,
(iii) λ = 0.8, χ = 0.05, and compared to the reference design without RBS: λ = 1, χ = 0. In
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this example, the columns and girders are simulated by the proposed beam-column model.
The element response is elasto-plastic. Figure 3.21 plots the base shear against the lateral
drift, the left column response at the base and the top, and the girder response at the left
end in a pushover analysis.
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Figure 3.21: Effect of hinge offset on portal frame response: static response

Without the RBS, yielding occurs at the base and the top of the columns while the
girder remains elastic. This results from the smaller capacity Mp,g in the girder relative to
the capacity Mp,c in the column that is reduced due to the axial forces. Column yielding is
typically undesirable and avoided in earthquake-resistant design. Figure 3.21 suggests that
while the column base yields in all four cases, the response at the top and in the girder vary
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with the RBS parameters. The response with χ = 0.1, λ = 0.8, shown in blue in Figure 3.21,
is identical to the reference response without RBS, that is, the columns yield while the girder
is elastic. In the alternative RBS designs with χ = 0.1, λ = 0.7 (in red), and with χ = 0.05,
λ = 0.8 (in black), the girder induces plastic rotations while the column tops remain elastic.
The parameters are selected ensure the amplified moment at the girder end is below the
capacity of the columns. These designs efficiently divert the inelastic behavior away from
the beam-column interface. For the same RBS location, a lower RBS capacity reduces the
moment at the beam ends, and in turns, the moment at the top of the columns and the
lateral base shear. Moreover, for the same RBS capacity, a smaller displacement of the RBS
from the column face lowers the amplified end moments, which in turns reduces the moment
at the column tops and the lateral base shear. Therefore, the two cases χ = 0.1, λ = 0.7
and χ = 0.05, λ = 0.8 give a smaller base shear than the case χ = 0.1, λ = 0.8.

3.2.3.2 Example 2: Collapse mechanism of 3-story frame

This example demonstrates the RBS connection as an effective design alternative to pre-
vent a weak story mechanism and examines the effect of different RBS designs on the collapse
mechanisms. A 3-story 1-bay frame with a fundamental period of 1.12 sec in Figure 3.22
is used for illustration. The frame is modeled with distributed plasticity elements for the
columns and concentrated plasticity elements for the girders. Each column is represented by
one forced-based element with four integration points along the column height to account for
the axial-flexure interaction. Each section in the column is discretized into 9 layers, 2 in each
flange and 5 in the web. Each girder is modeled by one series beam element. This example
assumes an elastic-perfectly plastic behavior in the element response and neglects the effect
of floor slabs on the member strength and stiffness as well as the shear deformations in the
panel zones.

Columns and girders are of wide flange sections: W21x73 in the 1st and 2nd floor girders,
W21x57 in the girder at the roof level, W24x84 in the 1st and 2nd story columns, and W24x76
in the 3rd story columns. Pushover analysis with a lateral load distribution proportional
to the fundamental mode shape is performed to assess the structural performance. The
structure forms a 1-story collapse mechanism at large roof drifts, as shown in Figure 3.23(a),
with significant plastic deformations at the base of the 1st-story columns, in the 1st-floor
girders, and especially, at the top end of the 1st-story columns.

The weak-story mechanism is highly undesirable and shall be avoided in design. To
enhance the structural performance at collapse, several design alternatives are proposed.
One approach is to modify the column design to utilize larger sections. Two such alternatives
are considered for comparison: model MC1 uses W24x94 sections for the 1st story columns,
while model MC2 uses W24x94 sections for both the 1st and the 2nd story columns. In both
models, other members are the same as in the original design, which shall be referred as the
reference model MR hereafter. The key design parameters of the models are summarized in
Table 3.2. With larger column sections, the collapse behavior is improved, that is, model
MC1 initiates a 2-story mechanism and model MC2 forms a full mechanism involving all
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Figure 3.22: Structural model of 3-story moment frame

three stories. Figure 3.23 plots the 3-fold magnified deformed shape of models MR, MC1,
MC2, respectively, at the instant of 20% reduction in the maximum base shear. Increasing
the column capacity reduces the adverse effect of column hinging by accumulating more
plastic deformations in the girders instead of the columns.

(a) (b) (c)

Figure 3.23: Collapse mechanisms of 3-story 1-bay moment frame: (a) 1-story, (b) 2-story,
(c) full 3-story

Figure 3.24 compares the pushover response of the three models. As expected, models
MC1 and MC2 show higher base shear than model MR due to the increased column strength.
The collapse mechanism is reflected in the slope of the softening segment in the plot of
base shear versus roof drift in Figure 3.24(a). Under the same gravity load, the geometric
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stiffness contribution is the highest in the 1-story mechanism and the smallest in the full
3-story mechanism; therefore, at collapse model MR shows the steepest softening segment
while model MC2 has the flattest softening slope. As expected, the softening slope in model
MC1 and MC2 is approximately 2 and 3 times the slope in model MR, respectively. The
different collapse mechanisms are also evident in the interstory drift distribution at 0.04 roof
drift ratio in Figure 3.24(b).
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Figure 3.24: Response comparison of design alternatives

The design refinement reflects the widely-used ’strong column - weak beam’ concept,
which requires the capacity of the columns to exceed the girders at a beam-column joint to
avoid excessive column hinging. The criteria enforces the ratio SCWB to be greater than
unity:

SCWB =

∑
M∗

pc∑
M∗

pb

≥ 1 (3.46)

where
∑
M∗

pc is the sum of the projections of the nominal flexural strength of the columns
above and below the joint to the beam centerline with a reduction for the axial force in the
columns.

∑
M∗

pb is the sum of the projections of the expected flexural strength of the beams
at the plastic hinge locations to the column centerline. Similar to the AISC recommendations,
the nominal beam yield strength is amplified by Ry = 1.5 factor, which is the ratio of the
expected yield stress to the specified minimum yield stress. In this case study, the SCWB
ratio at a beam-column joint on the 1st story in models MR, MC1, MC2 are 1.30, 1.39, 1.47,
respectively. The result suggests that the criteria SCWB >1 is not sufficient to prohibit the
undesirable weak story collapse mechanisms.

Another approach to enhance the design of steel structures is to utilize reduced beam
sections (RBS) in girders. Three alternative designs are considered with varying RBS location
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χ and strength λ relative to the nominal strength of the original section. Model MO1 has
χ = 0.08 and λ = 0.75 while model MO2 has higher RBS strength capacity λ = 0.8 and
model MO3 specifies a farther offset χ = 0.095 from the beam-column interface. The key
design parameters of the models are summarized in Table 3.2.

Figure 3.25 compares the pushover response of the three alternative designs with RBS
and the reference model MR. All three models with RBS give smaller peak base shear
than the reference model because of the strength reduction in the girders due to the RBS.
The softening behavior suggests that models MR, MO2, and MO3 have the same collapse
mechanism whereas model MO1 shows a different behavior. This observation is reinforced in
the interstory drift distribution at 0.04 roof drift ratio. While models MR, MO2, and MO3
form a 1-story mechanism as evident in the excessive drift in the 1st-story relative to the
upper levels, model MO3 indicates a full 3-story mechanism with a relatively regular drift
distribution across the building height.
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Figure 3.25: Response comparison of RBS designs

Figure 3.26 plots the force-deformation response at the beam-column joint on the 1st story
to illustrate the force redistribution in the two distinct collapse mechanisms. In models MR,
MO2, MO3, the 1st-story column exhibits significant plastic deformations at the top end
while the 1st-floor girder accumulates less. The two members show distinct behavior as the
1-story mechanism is triggered, in which the column continues to load inelastically whereas
the girder unloads elastically. Less column plastic deformations are induced in models MO2
and MO3 than in model MR due to the smaller girder end moment, which attracts relatively
more plastic deformations in the girder and less in the columns. On the other hand, in model
MO1, the 1st story column remains elastic while significant plastic deformations are induced
in the 1st floor girders. Plastic hinges only form in the girders and at the base of the 1st
story columns, which gives rise to the full 3-story mechanism.
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Figure 3.26: Member response at the beam-column joint in the 1st story

The case study suggests that the RBS has a significant effect on the collapse behavior of
steel moment frames. In this example, the RBS design in model MO1 is effective to avoid the
undesirable weak story mechanism, while model MO2 and MO3 are not. The latter two not
only fail to safeguard against the undesirable story mechanism but also weaken the structure
due to the reduced strength at the RBS. The results lead to an important implication in
frame design, that is, the RBS must be properly designed to avoid the large extrapolated
moment from the RBS to the girder end that is still unable to prevent the excessive column
plastic deformations.

Model
1st story
column

2nd story
column

3rd story
column

λRBS χRBS SCWB Mechanism

MR W24x84 W24x84 W24x76 1 0 1.30 1-story
MC1 W24x94 W24x84 W24x76 1 0 1.39 2-story
MC2 W24x94 W24x94 W24x76 1 0 1.47 full
MO1 W24x84 W24x84 W24x76 0.75 0.08 1.30 full
MO2 W24x84 W24x84 W24x76 0.80 0.08 1.30 1-story
MO3 W24x84 W24x84 W24x76 0.75 0.095 1.30 1-story

Table 3.2: Design alternatives of 3-story frame
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3.3 Damage-Plasticity Beam Element

This section adopts the 1d damage hysteretic model in Chapter 2 to the series beam
element in the preceding sections to describe the strength and stiffness deterioration in the
element behavior. The moment and rotation in the plastic hinges, Mi − θi at end i and
Mj − θj at end j, are the work-conjugate variables that govern the damage accumulation,
which are analogous to the force s and the deformation e in the 1d formulation.

Figure 3.27 illustrates the equilibrium and the compatibility conditions for the element
response in the effective space and the true space. The effective response is represented by
the black line and the true response is shown in red. In both configurations, under the same
force q, the element end deformation v is the sum of the elastic deformation ve and the
plastic deformation vp, in which the latter is defined as the permanent deformation upon
complete elastic unloading. The damage variable d reduces the forces in both the elastic and
the plastic components to enforce equilibrium q = qe = qp at the element ends. While the
elastic component unloads at a reduced stiffness than the initial elastic stiffness, the plastic
component unloads vertically due to the rigid-plastic behavior.

qqpqe

+ =

qe
qp q

∆q=dq

kt
kt

ve vp v=ve+vp

ke
ke

Figure 3.27: Equilibrium and compatibility relations of plastic-damage beam model

The following subsections describe the three parts of the element formulation in detail:
(1) an undamaged response in the effective space, (2) a damage loading function, and (3) a
damage evolution law; and highlight the key differences from the 1d damage model.

3.3.1 Effective response

The effective response describes the relation between the effective end forces q̄ to the
end deformations v. While any force-deformation relation q̄–v of a beam element can be
used, this study adopts the series beam element with plastic hinge offsets in Section 3.1 to
describe the constitutive relation in the effective space. The overscore symbol represents the
variables in the effective space, for instance, the effective moments at the hinge locations are

M̄ =
[
M̄i M̄j

]T
.
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3.3.2 Damage loading function

The damage loading function describes the relation between the variables in the effective
space with the energy dissipation that controls the damage evolution. In the proposed
element model, the bending moment at the plastic hinges, M̄i and M̄j, and the plastic hinge
rotations, θi and θj, are the work-conjugate variables that govern the damage accumulation
analogous to the force s̄ and the deformation e in the 1d damage model. To accommodate the
asymmetrical response under positive and negative moments, the model isolates the positive
effective moments M̄+ and the negative effective moments M̄−:

M̄± =
M̄± |M̄|

2
(3.47)

where |M̄| =
[
|M̄i| |M̄j|

]T
represents the magnitude of the effective hinge moments, M̄+ =[

M̄+
i M̄+

j

]T
and M̄− =

[
M̄−

i M̄−
j

]T
are the positive and the negative components of the

effective hinge moments, respectively. The positive effective moment at hinge i, M̄+
i , is equal

to M̄i for M̄i > 0 and zero otherwise. Similarly, the negative effective moment at hinge i,
M̄−

i , is equal to M̄i for M̄i < 0 and zero otherwise.
The damage loading function is expressed in terms of two variables ψ+ and ψ− represent-

ing the energy dissipation under positive effective moments and negative effective moments,
respectively.

ψ+ =

(
ψ+
i

ψ+
j

)
ψ− =

(
ψ−
i

ψ−
j

)
(3.48)

The energy variables are defined by the integral of the product of M̄+ or M̄− with the
rotation increment dθ. Equations (3.49)–(3.50) give the expressions of the positive energy
ψ+
i and ψ+

j , and the negative energy ψ−
i and ψ−

j , where the subscript m represents end i
and j. Similar to the 1d damage formulation, the energy variables ψ depend on the cyclic
degradation parameters C±

wc,m and the damage coupling coefficients C±
cd,m:

ψ+
m =

∫
C+
wc,mM̄

+
mdθm + C+

cd,m

∫
C−
wc,mM̄

−
mdθm (3.49)

ψ−
m =

∫
C−
wc,mM̄

−
mdθm + C−

cd,m

∫
C+
wc,mM̄

+
mdθm (3.50)

The coefficient Cwc serves as a weight of the energy dissipation increment for differen-
tiating the effect of the rotations exceeding the previous extreme values from the effect of
the rotations within the extreme values. Denoting with θm,min the minimum and θm,max the
maximum previous hinge rotation, the weight Cwc,m is defined as:

Cwc,m =

{
1 if θm < θm,min or θm > θm,max

0 ≤ Cwc,m ≤ 1 if θm,min ≤ θm ≤ θm,max

(3.51)
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In Equations (3.49)–(3.50), C±
cd,m are the damage coupling parameters with C+

cd,m ≥ 0
weighing the contribution of the energy dissipation under negative moments on the energy
variable ψ+

m, and C−
cd,m ≥ 0 weighing the contribution of the energy dissipation under positive

moments on the energy variable ψ−
m.

It is noteworthy that in the element formulation, the energy variables ψ± in Equations
(3.49)–(3.50) depend on the plastic hinge rotation θ, and in turns, the plastic deformation
vp. This is different than the 1d damage formulation in which the energy dissipation ψ is
depend on the total deformation e.

The model defines the energy thresholds ψ̃±
m:

ψ̃±
m(t) = maxψ±(τ) t0 ≤ τ < t (3.52)

where τ is a pseudo-time variable and t is the current pseudo-time.
Four damage loading functions g+i , g−i , g+j , g−j compare the energy variables ψ± in Equa-

tions (3.49)–(3.50) with the corresponding thresholds ψ̃±
m in Equation (3.52). Damage grows

when the energy exceeds the threshold value.

g±m = ψ±
m − ψ̃±

m, m = i, j (3.53)

3.3.3 Damage evolution law

The element model computes four damage variables for the positive and negative response
at the two plastic hinges:

d =
[
d+ d−] =

[
d+i d−i
d+j d−j

]
(3.54)

The damage evolution law relates the damage variables d to the energy dissipation vari-
ables ψ± in Equations (3.49)–(3.50). The evolution law requires a definition of the energy
thresholds ψ̄±

d0 corresponding to an undamaged state and the energy limits ψ̄±
d1 corresponding

to a complete loss of strength. These energies are expressed as multiples of the yield energy
ψy of a cantilever beam:

ψy,m =
M2

p,mL

6EI
(3.55)

where Mp is the plastic flexural capacity, EI is the element flexural stiffness, and L is the
element length.

With Cd0 and Cd1 denoting the damage threshold coefficient and the damage limit coef-
ficient, the energy thresholds ψ̄±

d0 and the energy limits ψ̄±
d1 are given as:

ψ±
d0,m = C±

d0,mψy,m (3.56)

ψ±
d1,m = C±

d1,mψy,m (3.57)

It is convenient to normalize the energy variables ψ± in terms of the energy thresholds
and energy limits:

ψ̂±
m =

ψ±
m − ψ±

d0,m

ψ±
d1,m − ψ

±
d0,m

(3.58)
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The cumulative distribution function (CDF) of the beta distribution is used to evaluate
the element damage variables d:

d±m = FB

(
ψ̂±
m, β

±
1,m, β

±
2,m

)
(3.59)

where FB denotes the CDF of the beta distribution and β1 and β2 are the parameters of the
CDF. Similar to the 1d damage formulation, to better identify the effect of the parameters on
the damage evolution, the damage evolution law introduces two damage evolution parameters
dp1 and dp2 defined as the ratio and the smaller of the two original parameters β1 and β2.

The true moments M result from linear combinations of the positive and negative effective
moments, M̄+ and M̄− after multiplication with the respective damage variables:

Mm =
(
1− d+m

)
M̄+

m +
(
1− d+m

)
M̄−

m m = i, j (3.60)

The true flexural end forces qf = [qi, qj] are extrapolated from the moments at the hinge
locations to the element ends:

qf = b−1
pf M (3.61)

where bpf denotes a subset of the moment interpolation matrix bp without the axial terms.
Note that the damage-plasticity beam formulation assumes that the axial response is linear
elastic and uncoupled from the flexural response. Consequently, the axial force qa in the true
space is equal to the effective axial force:

qa = q̄a =
EA

L
va (3.62)

Finally, the tangent stiffness kt is the derivative of the true end forces qn with respect
to the end deformations vn. Table 3.3 summarizes the state determination of the damage-
plasticity beam model.

3.4 Examples of Damage-Plasticity Beam Element

3.4.1 Simply-supported beam

This example extends the case study of the simply-supported beam under general bending
in Section 3.2.2 by introducing damage to the element behavior. The objectives are two-fold:
(1) to showcase the ability of plastic hinge offsets to describe the coupling of plasticity and
damage in the element response, and (2) to compare the proposed damage-plasticity beam
element to a distributed plasticity element with a degrading stress-strain relation in the
material response. The example compares the moment-rotation relation using the following
three models to simulate the beam: (1) Model CP1: a damage-plasticity beam element
without plastic hinge offset χ = 0, (2) Model CP2: a damage-plasticity beam element with
plastic hinge offset, and (3) Model DP: a distributed plasticity element with force-based
formulation.
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Given: end deformations vn and history variables at step n− 1

Required : state variables at step n

1. State determination in effective space:

Procedure for the series beam model in Table 3.1

Outputs: q̄n, vp,n, αn, qb,n, M̄, θ

2. Decomposition of M̄n into M̄+
n and M̄−

n in (3.47)

3. Energy variables ψ±
i,n and ψ±

j,n (3.49)–(3.50)

4. Damage loading functions:

Evaluate the energy threshold ψ̃±
i,n and ψ̃±

j,n in (3.52)

Evaluate damage loading functions g±i and g±j in (3.53)

5. Check of damage for each of the four damage loading functions:

IF g ≤ 0, THEN

Damage unloading, go to 6a

ELSE

Damage loading, go to 6b

6a. Damage unloading:

Update d±i,n = d±i,n−1 and d±j,n = d±j,n−1

Go to 7

6b. Damage loading:

Compute normalized energy ψ̂±
i and ψ̂±

j in (3.58)

Evaluate d±i,n and d±j,n in (3.59)

Go to 7

7. End forces and tangent stiffness:

Update the hinge moments Mn from M±
n and d±

n in (3.60)

Update the end forces qn in (3.61)–(3.62)

Evaluate the tangent stiffness kt

Table 3.3: State determination algorithm of damage-plasticity beam model
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(a) CP1: ρ = 1
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(b) CP1: ρ = 0.5
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(c) CP1: ρ = −0.5

0 0.01 0.02 0.03 0.04 0.05
Rotation

0

0.25

0.5

0.75

1

1.25

1.5

N
or

m
al

iz
ed

 m
om

en
t M

/M
p

DP-i
CP-i
DP-j
CP-j

(d) CP2: ρ = 1
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(e) CP2: ρ = 0.5
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(f) CP2: ρ = −0.5

Figure 3.28: Degrading moment-rotation relation of simply-supported beam under mono-
tonic loading

Model DP uses a bilinear plasticity model with linear hardening for the effective re-
sponse and the following damage parameters to describe the deterioration: Cd0 = 10,
Cd1 = [500; 300], [dp1, dp2] = [2.5, 1.5], Cwc = 0.12, Ccd = 0.3. The limit coefficients
C−
d1 < C+

d1 captures the lower ductility of under compressive stresses to account for the
more severe strength deterioration due to buckling. In model CP1, the damage is described
by the following parameters: Cd0 = 5, Cd1 = 120, [dp1, dp2] = [2.5, 1.5], Cwc = 0.12, Ccd = 0.3.
In reference to Figure 3.16, the hardening parameters in model CP1 are calibrated for the
target rotation vtarget = 0.03 under ρ = 1. In model CP2, a plastic hinge offset χ = 0.065 is
specified at both element ends. The following damage parameters describe the strength and
stiffness degradation: Cd0 = 5, Cd1 = 160, [dp1, dp2] = [2.5, 1.5], Cwc = 0.12, Ccd = 0.3.

Figure 3.28 shows the degrading moment-rotation under monotonic rotation histories.
Both models CP1 and CP2 describe with sufficient accuracy the strength softening under
various bending ratios. In model CP1, the agreement in the response with model DP is
better under antisymmetric bending. However, as expected, model CP1 underestimates
the strength at rotations smaller than the target vtarget under antisymmetric bending. The
plastic hinge offsets in model CP2 couple the response at the two ends and allow the model to
capture more accurately the variation in the yield strength and the strength deterioration.
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Not only does the softening range is closely captured, the response prior to softening is
described more consistently. The improvement in the response simulation under symmetric
bending ρ = −0.5 is significant with the plastic hinge offsets.

To conclude the comparison study, the following compares the degrading moment-rotation
with and without the plastic hinge offsets under cyclic loading. It is evident in Figure 3.29
that the plastic hinge offsets and the damage parameters capture well the response under
both antisymmetric bending and symmetric bending scenarios.

3.4.2 Portal frame

The objectives of this example are two-fold: (1) to evaluate the local and the global
response of a simple structure with and without strength deterioration in the girder, and
(2) to investigate the effect of cyclic degradation on the force-deformation relation and the
damage evolution in the element response. This example examines the dynamic response of
a steel portal frame with height H = 14 ft and bay width L = 20 ft in Figure 3.13 under the
LA30 ground motion. Following the ’strong column-weak beam’ concept, damage is assumed
to accumulate in the girder while the columns have an elasto-plastic behavior. To account for
the axial-flexure interaction, each column is modeled with a force-based distributed beam-
column element with 4 integration points along the length and 9 fibers in each cross section: 2
in each flange and 5 in the web. The girder is modeled with the proposed damage-plasticity
beam element. To investigate the effect of element damage and cyclic degradation, three
models with different girder response are examined:

• Model M0 : The girder response is elasto-plastic without strength deterioration.

• Model M1 : The damage parameters are Cd0 = 0, Cd1 = 120, [dp1, dp2] = [2.5, 1.5],
Cwc = 0.1, Ccd = 0.3. The threshold coefficient Cd0 = 0 implies damage initiation at
the onset of yielding. The cyclic degradation coefficient Cwc and the coupling coefficient
Ccd indicate a relatively mild level of strength and stiffness deterioration due to cyclic
loading.

• Model M2 : Same as model M1, but the parameters that govern the cyclic degradation
are higher: Cwc = 0.3 and Ccd = 0.6 to describe more severe deterioration in the girder
response.

It is evident in Figure 3.30 that the element damage has a significant impact on the
dynamic behavior of the portal frame. The time history of the lateral displacement in Fig-
ure 3.30(a) shows higher displacement amplification with more severe strength and stiffness
deterioration in the girder. While model M0 and M1 result in residual displacements in the
negative direction, model M2 induces residual displacements in the opposite direction.

Figures 3.30(b)-(d) highlight the effect of cyclic degradation on the local response in the
girder. Figure 3.30(b) plots the moment-rotation relation in model M0 and model M1 to
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(a) χ = 0, ρ = 1, end i
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(b) χ = 0, ρ = 0.5, end i
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(c) χ = 0, ρ = −0.5, end i
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(d) χ = 0, ρ = 1, end j
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(e) χ = 0, ρ = 0.5, end j
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(f) χ = 0, ρ = −0.5, end j
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(g) χ = 0.065, ρ = 1, end i
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(h) χ = 0.065, ρ = 0.5, end i
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(i) χ = 0.065, ρ = −0.5, end i
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(j) χ = 0.065, ρ = 1, end j
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(k) χ = 0.065, ρ = 0.5, end j
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(l) χ = 0.065, ρ = −0.5, end j

Figure 3.29: Degrading moment-rotation relation of simply-supported beam under cyclic
loading
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(b) Girder response with and without damage
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(c) Girder response with cyclic degradation
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(d) Girder damage evolution

Figure 3.30: Dynamic response of portal frame

study the effect of element damage. Model M1 shows a wider range of rotation in the hystere-
sis loops, which leads to more excessive lateral drift in the negative direction. Figure 3.30(c)
compares the moment-rotation relation in model M1 and model M2 to examine the effect
of cyclic degradation. As expected from the lateral displacement time history, the rotations
in the two cases depart to opposite directions. Higher values of Cwc and Ccd lead to a more
pronounced strength reduction especially in the follower cycles, which are numerous in this
ground motion. Figure 3.30(d) compares the evolution of a damage variable at the girder
left end in model M1 and model M2, which is taken as the higher of the two variables d+i
and d−i . In model M2, the higher values of the damage parameters result in 35% strength
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loss in contrast to 15% in model M1.
Figures 3.31–3.32 isolate several load cycles in model M1 and model M2 to correlate the

strength reduction in the force-deformation relation to the evolution of the damage variable.
Note that the damage variable in Figures 3.31–3.32 are plotted against the total rotation
instead of the plastic rotation in Figure 3.30(d).
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Figure 3.31: Girder moment-rotation and damage evolution in model M1

Figure 3.31 presents the response in model M1. Figure 3.31(a) shows the response from
the beginning of the load history up to the load cycle with the largest rotation increment
in the positive direction. The girder first undergoes several cycles while remaning elastic
then yields and initiates damage. The large rotation increment in the primary cycle ex-
ceeds the previous maximum rotation and results in a rapid increase in the damage variable.
Figure 3.31(b) highlights the primary cycle with the largest rotation increment. Since the
previous maximum rotation of approximately 0.032 is exceeded, the damage evolution is
relatively rapid. During this period, the girder unloads and reloads several times without
yielding and accumulating damage under negative rotation, which is reflected in the hori-
zontal segments in the damage evolution plot. Figure 3.31(c) illustrates the follower cycles
near the end of the load history. With Cwc = 0.1, only a portion of the energy dissipation
increment contributes to the damage growth, and consequently, the damage accumulation is
relatively gradual.
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Figure 3.32: Girder moment-rotation and damage evolution in model M2

Figure 3.32 presents the moment-rotation and the damage evolution in model M2. Fig-
ure 3.32(a) shows the response from the beginning of the load history to the load cycle with
the largest rotation increment in the negative direction. The large rotation increment in the
primary cycle results in a rapid damage growth. In contrast to model M1 with mild cyclic
degradation, the element damage accumulates relatively earlier and induces a significant
displacement increment in the opposite direction. Figure 3.32(b) highlights the follower half
cycles in which the previous maximum rotation magnitude is not exceeded. The girder is
reloading in the negative rotation direction with a few instances of unloading and reloading
without accumulating further damage. The deterioration rate is quite rapid in these fol-
lower cycles because of the high cyclic degradation parameter Cwc. Figure 3.32(c) illustrates
the follower half cycles near the end of the load history. In contrast to the load cycles in
Figure 3.32(b), damage accumulates from the rotation reversals in both loading directions.

In summary, based on the comparison of the global and the local response, it is important
to account for the strength and stiffness deterioration in the element behavior. The cyclic
degradation proves to have a significant impact on the dynamic behavior of structures,
especially in this case study with a ground motion record with numerous cycles. Moreover,
the damage-plasticity model captures well the distinct deterioration rates in primary and
follower half cycles.
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3.5 Validation Studies

A database with more than 50 experiments of steel wide-flange components is assembled
for the validation of the proposed damage-plasticity beam model. The geometry of specimens
in the database satisfies the following conditions:

5 ≤ bf/2tf ≤ 8 30 ≤ h/tw ≤ 55 35 ≤ Lb/ry ≤ 120 (3.63)

where bf is the flange width, tf is the flange thickness, h is the fillet-to-fillet web depth, tw
is the web thickness, Lb is the unbraced length, and ry is the radius of gyration about the
weak axis of the cross section.

A calibration study is performed to showcase the capabilities of the model to capture the
measured degrading response as well as to correlate the model’s damage parameters with
physical properties of specimens, such as the geometry and material properties. Based on
the response comparison, a multivariate regression analysis is performed to derive empirical
functions for the damage parameters. These functions establish a set of guidelines for the
parameter selection.

The section first illustrates the simulation of a sample steel specimen from the database.
Then, a multivariate regression analysis is presented to derive the empirical formulae for the
parameters. The study concludes with a parameter sensitivity analysis to identify the extent
to which each parameter affects the numerical solutions.

3.5.1 Simulation of steel components

The experimental campaign by Yu et al. [111] provides measurements of the hysteretic
behavior of two identical steel beam-to-column subassemblages under different deformation
histories, referred to as experiment LS1 and LS3. The load protocol of specimen LS1 is a
standard symmetrical cyclic history consisting of groups of displacement cycles with con-
stant amplitudes from one cycle to the next with gradually increasing average amplitude of
the group as loading progresses. The deformation history of specimen LS3 consists of sev-
eral small cycles with variable and gradually increasing amplitudes followed by a few large
displacement pulses. The LS1 deformation history represents the effect of far-field ground
motions while the LS3 protocol simulates the effect of near-fault ground motions on the
hysteretic behavior of steel components.

Figure 3.33 shows the numerical results for the steel assembly under the two load histories.
The series beam model in Section 3.1 describes the force-deformation relation in the effective
space with the kinematic hardening ratio Hkr = 0.015 and isotropic hardening ratio Hir =
0.002. Although the plastic hinge offset could capture better the yield strength in the early
cycles, no hinge offset is specified, χ = 0, for simplicity. In this simulation the CDF of the
beta distribution in Section 3.3.3 is used. The damage parameters are Cd0 = 5, Cd1 = 130,
dp1 = 3, dp2 = 1.5, Cwc = 0.14, Ccd = 0.4. Same parameters are specified for the positive and
negative response to account for the symmetrical degrading behavior of the steel specimen.
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Figure 3.33: Moment-rotation relation of steel specimens LS1 and LS3 [111]

The damage threshold coefficient Cd0 > 0 indicates damage initiation after significant
plastic deformations in the steel specimens. The numerical solution simulates well the cyclic
hardening behavior in the early cycles following yielding of the specimen. The limit coefficient
Cd1 = 130 appears to capture sufficiently the ductility capacity of the specimen in both load
cases. The damage evolution parameter dp1 > 1 in combination with dp2 > 1 describe
consistently the deterioration rate in both specimens. These values for dp1 and dp2 appear
to be typical for steel specimens with ductile respone and high energy dissipation capacity.
The cyclic coefficient Cwc and the couplding coefficient Ccd are able to capture the strength
and stiffness degradation due to repeated load reversals.

One limitation in the response comparison is the inadequate representation of the Bauschinger
effect in the reloading behavior. A possible solution is to use a different element model in
the effective space to account for the gradual smooth transition from the elastic to plastic
behavior, such as to adopt the generalized plasticity [7, 48]; however, this is not pursued
further here. Nonetheless, the model simulates consistently the gradual strength and stiff-
ness degradation of the specimen under both loading scenarios and the agreement with the
experimental results is acceptable.

3.5.2 Regression analysis for parameter identification

The simulations of the specimens in the database indicate an evident correlation between
the model’s damage parameters and the section compactness and the specimen slendernes.
These properties are reflected in: (1) the flange width-to-thickness ratio bf/2tf , (2) the web
depth-to-thickness ratio h/tw, and (3) the slenderness ratio Lb/ry. Figure 3.34 illustrates the
variation in the limit coefficient Cd1 with the section compactness bf/2tf and h/tw and the
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slenderness ratio Lb/ry. The ductility capacity governed by the limit coefficient Cd1 shows
the strongest correlation with the slenderness of the components.
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Figure 3.34: Variation in the limit coefficient Cd1 with the section compactness and member
slender

The value of a damage parameter can be evaluated empirically using the folowing ex-
pression, where X represents the parameter Cd0, Cd1, dp1, dp2, Cwc, Ccd.

X = α0.

(
bf
2tf

)α1

.

(
h

tw

)α2

.

(
Lb
ry

)α3

(3.64)

The objective is to identify the coefficients α0, α1, α2, α3 to best fit the value of parameter
X obtained from the simulations. Taking the natural logarithm of both sides, Equation (3.64)
can be rewritten in a standard form of a linear multivariate regression problem:

lnX = lnα0 + α1 ln

(
bf
2tf

)
+ α2

(
h

tw

)
+ α3

(
Lb
ry

)
(3.65)

Table 3.4 lists the coefficients of the multivariate linear regression for the damage param-
eters.

Parameter α0 α1 α2 α3

Cd0 37.44 0.2439 -0.3799 -0.0149
Cd1 2640 -0.6246 0.0122 -0.3631
Cwc 0.0166 0.0104 0.0723 0.4190
Ccd 0.0818 -0.1156 0.1328 0.3044
dp1 2.092 0.0114 0.1321 -0.0485
dp2 1.306 -0.0518 -0.0770 0.1148

Table 3.4: Regression coefficients for parameter calibration
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3.5.3 Parameter sensitivity

For each damage parameter X, define the error ρX as the relative difference between the
predicted value Xp using Equation (3.64) and the ’exact’ value Xe from the simulation:

ρX =
(Xp −Xe)

Xe

(3.66)

then the minimum value ρX,min and the maximum ρX,max give the boundary for the error in
the prediction of parameter X.
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Figure 3.35: Cyclic load protocols for cantilever beam

To evaluate the sensitivity of the numerical solution to the damage parameters, the
proposed damage-plasticity beam model simulates the force-deformation relation of a steel
W30x99 cantilever beam subjected to two different cyclic load patterns: the CUREE protocol
and the NF protocol [50]. The CUREE protocol consists of groups of displacement cycles
with gradually increasing average amplitude as the loading progresses. The NF protocol
consists of several cycles of small but ever increasing displacement amplitude followed by
very few large displacement pulses of increasing amplitude. The former simulates the effect
of far-field ground motions and the latter represents the effect of near-fault ground motions.

In each load scenario, the numerical solution that uses the regression expression in Equa-
tion (3.64) for the parameter identification is selected as the reference response. For each
parameter, while the remaining parameters are fixed, the numerical solution is reevaluated
at Xmin = (1 + ρX,min)Xr and Xmax = (1 + ρX,max)Xr, where Xr is the parameter value in
the reference solution. These account for the uncertainty in the parameter estimation and
provide an upper bound and a lower bound for the numerical response. Figure 3.36 shows the
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Figure 3.36: Reference cyclic response under different loading histories

reference force-deformation relation in the two load scenarios and Figures 3.37–3.38 present
the numerical solutions evaluated at different parameter values.

The change in the damage variable d = max(d+, d−) at the end of the load history is
selected to quantify the effect of the parameters on the numerical solutions. Note that while
other measures can be used for the comparison, this study makes use of the damage variable
d because: (i) the damage variable is closely related to the energy dissipation, which is a
common damage measure in performance-based design, (ii) the damage variable is readily
available from the model state determination. The error εmin is defined as the relative
difference in the damage variable d at Xmin and the error εmax corresponds to Xmax.

εmin =
dmin − dr

dr
εmax =

dmax − dr
dr

(3.67)

where dmin and dmax correspond to the damage variable d in the solution at Xmin and Xmax,
respectively, and dr represents the damage variable d in the reference case. A positive ε
overestimates the damage variable d and predicts more severe strength and stiffness deterio-
ration in the response. A smaller magnitude of ε indicates that the response is less sensitive
to the variation in the parameter value.

Table 3.5 summarizes the relative errors in the two load patterns. In each load scenario,
the response sensitivity to the parameters is ranked based on the range of error ∆ε =
|εmax − εmin|. The response is most sensitive to the parameter of rank ’1’ and least sensitive
to the parameter of rank ’6’.

In both load scenarios, the numerical solution is most sensitive to the limit coefficient
Cd1. It is noteworthy that the excessive error in the damage variable of almost +25% in the
NF load pattern corresponds to a ρmin = +30% overestimation in the value of Cd1. However,
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Figure 3.37: Sensitivity analysis: CUREE loading
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Figure 3.38: Sensitivity analysis: NF loading
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CUREE NF
Parameter

εmin εmax Ranking εmin εmax Ranking
Cd0 +1.15% -1.25% 6 +1.95% -2.08% 6
Cd1 +15.48% -16.77% 1 +23.14% -19.57% 1
Cwc -11.11% +8.01% 2 -4.54% +4.17% 3
Ccd -5.72% +4.77% 4 -3.64% +3.40% 4
dp1 -9.79% +6.67% 3 -12.38% +9.28% 2
dp2 -3.58% +2.94% 5 -2.51% +2.35% 5

Table 3.5: Sensitivity ranking of damage parameters

only 4 among more than 50 specimens yield an error ρ between ±20% and ±30% while the
others are within ±20% and give the maximum error ε of approximately 15%. This still
indicates that the model is most sensitive to Cd1 but the error in the prediction is far more
reasonable.

The ranking of the damage evolution parameter dp1 and the cyclic degradation parameter
Cwc are switched in the two load patterns. The error ∆ε for parameter dp1 is relatively high
in both load cases whereas the error ∆ε for parameter Cwc is more significant in the CUREE
protocol than in the NF protocol. Effect of the displacement history on the cyclic degradation
is evident in the ranking of the cyclic degradation parameter Cwc. Cyclic degradation is
significant in the CUREE protocol due to the numerous cycles with complete load reversals
in contrast to the NF protocal with a displacement history that biases to one direction and
consists of many incomplete cycles with little damage accumulation.

The model is least sensitive to the damage threshold coefficient Cd0 and followed by the
second damage evolution parameter dp2. The effect of the damage threshold Cd0 is mainly in
the early cycles up to the onset of strength softening and less pronounced in the subsequent
cycles. The negligible variation in the damage variable suggests that it is sufficient to specify
constant values for Cd0 and dp2 so as to reduce the number of parameters to be calibrated.

3.6 Damage Evolution with Brittle Failure

3.6.1 Formulation

To account for the sudden strength and stiffness deterioration in the event of brittle
failure, the damage evolution law in Section 2.7 is adopted. The damage evolution function
is shown in Figure 2.26. The damage evolution law introduces two energy variables: ψ±

f and

ψ±
u that satisfy the constraint ψd0 ≤ ψ±

f < ψ±
u ≤ ψd1. ψ±

f is the energy at which fracture
takes place and ψ±

u is the ultimate energy at complete strength loss. The energy variables
can be normalized to give the condition 0 ≤ ψ̂f < ψ̂u ≤ 1. Different values can be specified
for the variables under positive and negative moments at end i and end j, and for brevity the
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superscript ± and the subscript i and j are dropped. The damage variables d± are evaluated
from a composite function in Equation (2.16).

3.6.2 Validation studies

The section presents four simulations of steel cantilever beam specimens that exhibit
brittle damage at large inelastic deformations. The damage-plasticity beam element with the
damage evolution that accommodates the brittle damage is used in all simulations. Table 3.6
lists the damage parameters in each case, including the threshold coefficient Cd0, the limit
coefficient Cd1, the evolution parameters dp1 and dp2, the cyclic degradation coefficient Cwc,

the damage coupling coefficient Ccd, the normalized fracture energy ψ̂f , and the normalized

ultimate energy ψ̂u.

Parameter Popov, EERC-3 Uang, DC3 Ricles, 1E Engelhardt, 3B
Cd0 8 7 5 7
Cd1 110 200 140 170
Cwc 0.10 0.15 0.15 0.13
Ccd 0.40 0.40 0.50 0.40
dp1 3 3 3 3
dp2 1.5 1.5 1.5 1.5

ψ̂f 0.15 0.11 0.28 0.27

ψ̂u 0.20 0.12 0.33 0.30

Table 3.6: Parameters for the simulations of steel beams with brittle damage

Figure 3.39(a) shows the measured moment-rotation of the specimen EERC-3 from the
experimental campaign by Popov [74]. The specimen is made of a W18x50 steel cantilever
beam with a pre-Northridge connection. Figure 3.39(b) shows the measured moment-rotation
of the steel specimen DC3 from the experiments by Uang [31] of a W27x194 beam section.
Figure 3.39(c) shows the response of the specimen 1E from the experimental campaign
by Ricles [84] with a W36x150 beam section. Figure 3.39(d) shows the response of the
specimen 3B from the experiments by Engelhardt [25] with a W36x150 beam section and
weld connection.

The proposed model simulates quite accurately the strength degradation pre- and post-
fracture in the specimens. The first two specimen show negligible damage prior to the onset of
fracture whereas the latter two specimens show a gradual strength and stiffness degradation
before the onset of severe strength deterioration in the last cycle. The relatively low fracture
energy parameter ψ̂f in the first two specimen captures the drastic strength reduction at a
lower normalized energy level with limited previous accumulated damage.

The specimens represent two distinct types of failure mechanisms observed in steel com-
ponents under cyclic loading [51]. The first mechanism is related to crack propagation at
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Figure 3.39: Moment-rotation relation of steel specimens with brittle failure

weldments, in which little deterioration is induced for a number of cycles in the beginning,
then as the crack approaches its critical size, the specimens show rapid strength reduction.
The second mechanism typically involves local buckling and leads to more gradual deterio-
ration prior to the brittle failure. As evident in the response simulation of the two specimens
in Figure 3.39, the composite evolution function accommodates well both types of degrading
behavior.
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Chapter 4

Damage-Plasticity Column Element

This chapter extends the 1d hysteretic damage model in Chapter 2 to formulate a new
column element based on damage-plasticity for the response simulation and damage assess-
ment of steel structures under extreme load conditions, especially when the axial forces are
significant. First, the NMYS column element based on resultant plasticity and the serial
springs formulation is introduced to describe the nondegrading force-deformation relation
in the effective space. The model accounts for the axial-flexure interaction in a yield enve-
lope with consistent associative flow rules and linear hardening laws. Similar to the beam
formulation in Chapter 3, plastic hinge offsets are introduced to approximate the spread of
inelasticity and enhance the simulation of the post-yield hardening response. The implemen-
tation of the damage-plasticity element with the return-mapping algorithm ensures excellent
convergence characteristics for the state determination.

With the plastic axial energy dissipation accounted for in the damage loading function,
the damage-plasticity column model captures the effect of a variable axial force on the
strength and stiffness deterioration in flexure, the severe deterioration under high axial com-
pression, the nonsymmetric response under variable axial forces, and the excessive plastic
axial and flexural deformations near column failure. The damage-plasticity model compares
favorably in terms of computational efficiency with more sophisticated models with fiber
discretization of the cross section while achieving excellent agreement in the response de-
scription for homogeneous metallic structural components. The excellent accuracy is also
confirmed by the agreement with experimental results from column specimens under the
combined effect of axial and bending in various load scenarios. Because of the computa-
tional efficiency and excellent accuracy, the proposed column element holds great promise
for the large scale seismic response simulation of structural systems with strength and stiff-
ness deterioration and should prove very useful in the damage assessment and the collapse
simulation of structures under extreme loading conditions.
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4.1 NMYS Column Element

4.1.1 Force-deformation relation

The NMYS column model relates the basic element forces q = [qa qi qj]
T , where qa is the

axial force and qi and qj are the flexural forces at end i and end j, to the corresponding ele-
ment deformations v = [va vi vj]

T . The model describes the element basic force-deformation
relation using a yield surface to account for the axial-flexure N -M interaction, thus gives
rise to the name NMYS model. The NMYS column model consists of a linear elastic element
in series with two rigid-plastic and linear hardening springs at the ends. The rigid-plastic
springs are activated when the bending moment reaches a yield strength that varies with the
axial force according to an N -M interaction diagram. Figure 4.1 sketches an NMYS column
element of length L with axial stiffness EA and flexural stiffness EI and two nonlinear hinges
at the ends.

q i

q jEA EI

qa

L

i j

Figure 4.1: NMYS column element

The element model adopts the series formulation with an elastic and a plastic component.
The force-deformation relation of the former is denoted by qe–ve, and the latter is given by
the qp–vp. The force-deformation relation is governed by equilibrium, compatibility, and
constitutive laws:

Equilbrium : q = qe = qp (4.1)

Compatibility : v = ve + vp (4.2)

Constitutive law : q = keve = ke (v − vp) (4.3)

where k represents a stiffness matrix and the subscripts e and p indicate the variables of the
elastic and the plastic components, respectively.

The following discusses the three main aspects of the element formulation: the yield
function, the flow rules, and the hardening rules.

Yield function
Two yield functions fi and fj describe the admissibility of the element response at end

i and end j, respectively. The yield envelope is defined by nonlinear functions of the axial
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basic force qa and the flexural basic forces qi and qj:

fi =

∣∣∣∣qa − qb,aNp

∣∣∣∣c1 +

∣∣∣∣qi − qb,iMp

∣∣∣∣c2 + c3

∣∣∣∣qa − qb,aNp

∣∣∣∣c4 ∣∣∣∣qi − qb,iMp

∣∣∣∣c5 − (1 +Hip,iαi) (4.4)

fj =

∣∣∣∣qa − qb,aNp

∣∣∣∣c1 +

∣∣∣∣qj − qb,jMp

∣∣∣∣c2 + c3

∣∣∣∣qa − qb,aNp

∣∣∣∣c4 ∣∣∣∣qj − qb,jMp

∣∣∣∣c5 − (1 +Hip,jαj) (4.5)

With the subscripts i and j dropped for brevity, qb are the back-forces that govern the
kinematic hardening behavior, Np and Mp are the axial and flexural plastic capacities, Hip

is an isotropic hardening parameter, α is an internal variable that governs the isotropic
hardening behavior, and c1, c2, c3, c4, c5 are coefficients of the yield envelope. While it is
possible to specify different coefficients c1 to c5 to distinguish the response at the two ends,
this study limits to symmetrical yielding behavior and assumes the same coefficients at both
ends.

In the case of elastic-perfectly-plastic response, the hardening parameters and variables
are irrelevant: qb,a = 0 and qb,i = qb,j = 0, Hip,i = Hip,j = 0, αi = αj = 0. In a purely
axial force state, yielding initiates when the axial force reaches the plastic axial capacity,
qa = ±Np, qi/j = 0. In a purely flexural force state, yielding initiates when the bending
moment reaches the plastic flexural capacity, qa = 0, qi/j = ±Mp. Figure 4.2(a) plots the
yield envelope defined by two surfaces fi = 0, fj = 0 in the force space N -Mi-Mj. The red
surface corresponds to fi = 0 and the blue surface corresponds to fj = 0. The admissible
state is defined by the region inside both envelopes. Figure 4.2(b) shows a projection of the
same envelope on the N -Mi plane. This is a 2d representation of the yield surface fi = 0.
The yield envelope in Figure 4.2 is given by the following parameters: c1 = 2, c2 = 2,
c3 = 3.5, c4 = 2.5, c5 = 1.5.

Flow rules
The associative flow rule describes the evolution of the plastic deformation vp in terms

of the normals ni and nj to the yield envelopes. The normals ni and nj are derivatives of
the yield functions fi and fj with respect to the end force q, respectively. To account for the
singularities at the interface between the two yield surfaces, the Koiter’s rule expresses the
plastic deformation increment, or equivalently, the plastic deformation rate v̇p as a linear
combination of the normals ni and nj [47].

v̇p = βini + βjnj = nβ (4.6)

where β = [βi βj]
T are the plastic consistency parameters. Since the axial and the flexural

terms in Equations (4.4)–(4.5) are coupled, except for the pure bending force state, in general
the element accummulates plastic axial deformations as yielding progresses. Consequently,
the column model describes an elastic-plastic axial response as opposed to the linear elastic
behavior in the beam model.
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Figure 4.2: Yield surfaces

The consistency condition imposes plastic loading and unloading constraints on the two
yield surfaces during plastic flow f = 0:

βmḟm = 0, m = i, j (4.7)

Plastic unloading corresponds to zero consistency parameters βi = βj = 0 and negative
increments of the yield function values ḟi < 0 and ḟj < 0. Plastic loading occurs when
the consistency parameters are positive, βi > 0 and/or βj > 0, while the yield functions
remain constant ḟi = 0 and/or ḟj = 0. During plastic loading, a yield surface is ’active’ if
the corresponding consistency parameter is positive β > 0, and otherwise, ’inactive’ if the
consistency parameter is zero β = 0. Identification of active yield surfaces of the column
model is an iterative process and will be discussed in subsequent sections. If only the yield
envelope at end i is active, βi ≥ 0, βj = 0, and the plastic deformation increment is colinear
with the normal to the surface i: v̇p = βini. If both envelopes are active, βi > 0 and
βj > 0, and the plastic deformation increment is a linear combination of both normals:
v̇p = βini + βjnj.

Hardening rules
The evolution of the internal variable α and the back-force qb are described as functions

of the consistency parameters β:

α̇ = β (4.8)

q̇b = Hknβ (4.9)
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where Hk is a 3×3 kinematic hardening matrix with the hardening moduli of the axial and
flexural response on the diagonal.

Finally, the Kuhn-Tucker conditions enforce unilateral constraints on the consistency
parameter β and the yield functions f = [fi fj]

T .

β ≥ 0 and f ≤ 0 and βmfm = 0, m = i, j (4.10)

Remarks on model formulation:
The NMYS column model and the series beam model share many common features in

the formulation. Both elements are classified as concentrated plasticity and are based on
the series formulation with an elastic component in connection with two rigid-plastic and
linear hardening springs. Both models adopt the associative flow rules and the Koiter’s rule
to account for multi-surface plasticity. The hardening rules of the two models are identical.
The column element inherits similar positive features as the series beam element in Chapter 3:
exact representation of the rigid-plastic hinge behavior, implicit state determination of the
plastic hinge to avoid additional nodes and global degrees of freedom (dofs) at the interface
between the elastic component and the plastic hinges, robust and efficient return-mapping
algorithm.

The main difference between the models, which is also a major advantage of the proposed
column model over several other commonly used concentrated plasticity column models in
practice, is the ability to describe an inelastic axial response and to account for the effect
of the axial force on the flexural yield strength. The beam model neglects the axial-flexure
interaction and assumes a linear elastic axial response, whereas the NMYS column model
accounts for the coupling and captures the axial plastic deformation and the elastic-linear
hardening axial behavior. These assumptions are justified by a negligible axial force in beam
members and a relatively large axial force in column members.

The yield functions of the beam model in Equations (3.4)–(3.5) have unit of bending
moments, whereas the yield functions of the column model in Equations (4.4)–(4.5) are
dimensionless because the element basic forces are normalized by the respective plastic ca-
pacities. The yield envelope of the beam model is defined by linear functions of the flexural
forces qi and qj, whereas the yield envelope of the column model is given by nonlinear func-
tions of both the axial force qa and the flexural forces qi and qj. Consequently, the state
determination of the column model is iterative.

It is noteworthy that the yield envelope of the beam model is a special case of Equations
(4.4)–(4.5). With the coefficient c1 assumes a very large value and c2 = 1, c3 = 0, the yield
function in Equations (4.4)–(4.5) becomes:

fm =

∣∣∣∣qm − qb,mMp

∣∣∣∣− (1 +Hip,mαm) m = i, j (4.11)

Multiplying Equation (4.11) by Mp and denoting Hi,m = MpHip,m, the yield function
becomes:

f ∗
m = |qm − qb,m| − (Mp +Hi,mαm) m = i, j (4.12)
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which is the same as the yield function of the beam model in Equations (3.4)–(3.5)
Another discrepancy between the models is the definition of the isotropic hardening

parameter, which will be addressed in Section 4.1.4.

4.1.2 Plastic hinge offset

The formulation in Section 4.1.1 places the rigid-plastic springs at the element ends. Sim-
ilar to the series beam model, this section introduces the plastic hinge offset to concentrate
the inelastic behavior at a distance away from the column ends. The objectives of the plastic
hinge offset are two-fold: (1) to account for the spread of plasticity from the column ends
into the interior region, and (2) to simulate more accurately the column post-yield hardening
response.

q i

q jEA EI

qa

L

c i c j

Figure 4.3: NMYS column element with plastic hinge offset

Assume the nonlinear springs are offset by the same distance ci = cj from the element
ends, the model defines the offset parameter χ = ci/L = cj/L where L is the element
length. The force interpolation matrix bp is introduced to evaluate the response at the
spring locations:

bp =

1 0 0
0 χ− 1 χ
0 −χ 1− χ

 (4.13)

The normal and flexural forces in the plastic hinge qh = [N Mi Mj]
T , and the corre-

sponding hinge normal and flexural deformations vh = [θa θi θj]
T are expressed in terms of

the plastic forces qp and plastic deformations vp:

qh = bpqp (4.14)

vp = bTp vh (4.15)

With the plastic hinge offsets, the yield functions are defined for the spring force qh
instead of the element end force q in Equations (4.4)–(4.5). For consistency, the back-forces
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Nb, Mb,i, Mb,j follow the sign convention of internal axial force and bending moment. The
yield functions are given as follows:

fi =

∣∣∣∣Ni −Nb

Np

∣∣∣∣c1 +

∣∣∣∣Mi −Mb,i

Mp

∣∣∣∣c2 + c3

∣∣∣∣Ni −Nb

Np

∣∣∣∣c4 ∣∣∣∣Mi −Mb,i

Mp

∣∣∣∣c5 − (1 +Hip,iαi) (4.16)

fj =

∣∣∣∣Nj −Nb

Np

∣∣∣∣c1 +

∣∣∣∣Mj −Mb,j

Mp

∣∣∣∣c2 + c3

∣∣∣∣Nj −Nb

Np

∣∣∣∣c4 ∣∣∣∣Mi −Mb,j

Mp

∣∣∣∣c5 − (1 +Hip,jαj) (4.17)

The original formulation in 4.1.1 with two plastic hinges at the element ends is a special
case with χ = 0. The next subsection presents the state determination of the NMYS column
element model.

4.1.3 Return mapping algorithm

The state determination of the NMYS column model uses an iterative return-mapping
algorithm to determine the element end force qn and other variables at step n from the
end deformation vn and the history variables. First, an elastic predictor assumes no plastic
deformation increment and gives a trial force qtr:

qtr = ke (vn − vp,n−1) (4.18)

The trial axial force N tr and bending moments M tr
i and M tr

j at the spring locations are
computed from the trial force qtr according to Equation (4.14). The trial internal variable
αtr and the back-force qtrb assume the values from the previous step n− 1:

αtr = αn−1 (4.19)

qtrb = qb,n−1 (4.20)

The trial variables qtr, αtr, qtrb are used to evaluate the trial yield functions f tr in Equa-
tions (4.16)–(4.17). If both trial yield functions return a negative value, f tri < 0 and f trj < 0,
the elastic assumption is valid and the trial variables are accepted.

qn = qtr (4.21)

αn = αtr (4.22)

qb,n = qtrb (4.23)

vp,n = vp,n−1 (4.24)

Otherwise, if at least one trial yield function returns a nonnegative value, f tri ≥ 0 and/or
f trj ≥ 0, plastic correction is required. The correction uses the closest point projection
algorithm and evaluates the variables at step n by applying the Newton-Ralphson scheme
iteratively to reduce the residuals of the variable increments and enforce the Kuhn-Tucker
conditions [92].
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With the superscripts denoting the iteration number, the following residuals are defined:
Rvp for the plastic deformation vp, Rf for the yield function f , Rα for the internal variable
α, and Rb for the back-force qb.

R(k)
vp = −v(k)

p,n + vp,n−1 + bTp n(k)β(k) (4.25)

R
(k)
f = f

(
q(k)
n ,α(k)

n ,q
(k)
b,n

)
(4.26)

R(k)
α = −α(k)

n +αn−1 + β(k) (4.27)

R
(k)
b = −q

(k)
b,n + qb,n−1 + Hkn

(k)β(k) (4.28)

The residual vector R is defined as:

R = [Rvp Rf Rα Rb]
T (4.29)

At each iteration the goal is to reduce the residuals to zero:

R(k) = 0 (4.30)

The iterations solve for the state variable x that represents the consistency parameter β,
the end force q, the internal variable α, and the back-force qb.

x = [β q α qb]
T (4.31)

The dimension of vectors R and x vary with the number of active yield surfaces. While
the dimension of Rvp and Rb are 3× 1, the residuals Rα and Rf are 1× 1 if only one surface
is active and 2 × 1 if both are active. Similarly for the variable vector x, the dimension of
the element end force q and the back-force qb are 3 × 1 while the consistency parameter β
and the internal variable α are 1× 1 or 2× 1.

A yield surface fm is considered ’active’ if the respective consistency parameter βm > 0.
The iterative procedure starts with an initial set of trial active constraints defined by J

(0)
act.

J
(0)
act = {m ∈ i, j | f trm ≥ 0} (4.32)

The subsequent iterations modify this initial set and iteratively enforce the Kuhn-Tucker
conditions. At each iteration, the set of active yield surfaces Jact is updated as follows:

(i) Let J
(k−1)
act denote the set of active yield surfaces at iteration k−1. If there exists indices

m not in J
(k−1)
act such that the yield functions violate the admissibility, f

(k−1)
m > 0,

include m in J
(k−1)
act and repeat the iteration.

(ii) The increment of the consistency parameters ∆β
(k−1)
m , m ∈ J

(k−1)
act is computed by

solving the linearized residual equations (4.30).

(iii) Update β
(k)
m = β

(k−1)
m + ∆β

(k−1)
m for m ∈ J

(k−1)
act . If β

(k)
m < 0 for some m ∈ J

(k−1)
act ,

remove these constraints from the active set J
(k−1)
act and restart the iteration with the

new active constraints. Otherwise, set J
(k)
act = J

(k−1)
act and proceed to the next iteration.
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The Newton-Raphson iterations start with the intial consistency parameters β(0) = 0
and the initial state variables equal to the trial values.

q(0) = qtr (4.33)

α(0) = αtr (4.34)

q
(0)
b = qtrb (4.35)

At iteration k, the Newton-Raphson scheme requires the Jacobian matrix J(k−1), defined
as the derivative of the residual R with respect to the variable x evaluated at x(k−1).

J(k−1) =
∂R

∂x
=



∂Rvp

∂β

∂Rvp

∂q

∂Rvp

∂α

∂Rvp

∂qb
∂Rf

∂β

∂Rf

∂q

∂Rf

∂α

∂Rf

∂qb
∂Rα

∂β

∂Rα

∂q

∂Rα

∂α

∂Rα

∂qb
∂Rb

∂β

∂Rb

∂q

∂Rb

∂α

∂Rb

∂qb


at x = x(k−1) (4.36)

Equation (4.30) is linearized to solve for the increment of the state variable ∆x(k−1)

0 ≈ R(k) = R(k−1) +
∂R

∂x
∆x(k−1) (4.37)

∆x(k−1) = −J(k−1)\R(k−1) (4.38)

The model variable at iteration k, x(k), is updated from the history value x(k−1) and the
increment ∆x(k−1).

x(k) = x(k−1) + ∆x(k−1) (4.39)

With the new variable x(k), the yield function f (k) is evaluated. The iterations repeat with
the updated active surfaces based on the consistency parameter β(k). The plastic correction
algorithm terminates when the residual norms are less than the specified tolerance values,
‖R(k−1)

w ‖ < tolw, where w ∈ {vp, f, α, b}. Separate residual norms are checked against
different tolerances for unit consistency and to avoid nonconvergence due to significant dis-
crepancies between the residual norms when evaluating ‖R‖.

It is noteworthy that the element end force qn can also be updated from the trial force
qtr as follows:

qn = qtr − ke∆vp = qtr − keb
T
p nβ (4.40)

In view of Equation (4.40), the consistency parameters β can be regarded as the con-
travariant components of the force correction ∆q = qtr − qn along the vectors keb

T
p ni and

keb
T
p nj. Figure 4.4 gives a graphical illustration of the return mapping algorithm for a simple
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case with an elasto-plastic element behavior and no plastic hinge offset. Figure 4.4(a) plots
a cross-section of the yield surfaces fi = 0 and fj = 0 in the plane defined by vectors keb

T
p ni

and keb
T
p nj evaluated at an intersection point. The region defined by fi > 0 and fj > 0 can

be divided into 3 subregions Γi, Γj, Γij. The condition β1 > 0 and β2 > 0 corresponds to
subregion Γij. In an iteration, if the trial force falls into this subregion, both surfaces are
active. Conversely, region Γi gives βi > 0 but βj < 0, and region Γj gives βj > 0 but βi < 0.
If the trial force falls into Γi or Γj, only one constraint is active although both yield functions
are positive. The return-mapping procedure in subregions Γij and Γj is shown in Figures
4.4(b)-(c), respectively. This illustration demonstrates that the sign of the yield function f
is insufficient to determine the set of active surfaces.

fi < 0
fj < 0

fi = 0

fj = 0 kebp
Tni 

kebp
Tnj 

Γij

Γi

Γj

(a) Definition of Γi, Γj, Γij

fi < 0
fj < 0

fi = 0

fj = 0 kebp
Tni 

kebp
Tnj 

qtrβi > 0

βj > 0

(b) Γij: βi > 0 and βj > 0

fi < 0
fj < 0

fi = 0

fj = 0 kebp
Tni 

kebp
Tnj 

qtr

βj > 0

βi < 0

(c) Γj: βi < 0 and βj > 0

Figure 4.4: Geometric illustration of return-mapping algorithm at corner point

The state determination of the NMYS column model is summarized in Tables 4.1–4.2: the
elastic predictor in Table 4.1 and the iterative plastic correction in Table 4.2. The algorithmic
tangent kt is the derivative of the end force qn with respect to the end deformation vn. A
derivation of the tangent is presented in Appendix B.

4.1.4 Model parameters

Parameters of the NMYS model can be classified into three main categories:

(1) Parameters of the geometry and material properties : the Young modulus E, the cross-
sectional area A, the moment of inertia I, the axial and flexural plastic capacities Np

and Mp. These 5 parameters depend solely on the specimen geometry and material
properties and do not require calibration;

(2) Parameters of the yield envelope: coefficients c1, c2, c3, c4, c5 of the yield functions,
presented in Section 4.1.4.1.
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1. Elastic predictor:

Evaluate qtr, qtrb , αtr

Evaluate trial spring forces N tr, M tr
i , M tr

j

2. Check of plastic process:

Evaluate f tr in Equations (4.16)–(4.17)

IF f tri < 0 and f trj < 0 THEN:

Update qb,n, αn, vp,n

Update qn, kt

EXIT

ELSE Initialization for plastic correction:

Initialize J
(0)
act = {m ∈ i, j | f trm > 0}

Initialize q
(0)
n , α

(0)
n , q

(0)
b,n, f (0), v

(0)
p,n

Initialize β(0) = 0

Set k = 1 and go to Table 4.2

ENDIF

Table 4.1: Elastic predictor algorithm

(3) Hardening parameters : the kinematic hardening ratio Hkr and the isotropic hardening
parameter Hip, presented in Section 4.1.4.2.

4.1.4.1 Yield surface parameters

Figure 4.5 illustrates the effect of 5 parameters c1, c2, c3, c4, c5 on the yield envelope,
which shows the projection of the 3d N -Mi-Mj surface onto N -Mi and/or N -Mj planes.
The response with c1 = 2, c2 = 2, c3 = 4, c4 = 2, c5 = 2 is used as a reference in all five
plots. In each plot, one coefficient varies from 1 to 20 while the others remain equal to the
respective reference values. Due to symmetry, it is sufficient to show the envelope in only
one quadrant.

Increasing c1, c2, c4, c5 makes the yield envelope more convex, whereas increasing c3
makes the envelope more concave. As c3 varies, changes to the yield envelope is symmetrical
about the reference axis N/Np = M/Mp, whereas c1 and c2, c4 and c5 give asymmetrical
changes to the yield envelope. The yield envelope is relatively less sensitive to c1 and c2 than
c3, c4, c5. Therefore, it is recommended to calibrate the latter three coefficients first.
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1. Check of yield functions:

Evaluate the spring forces N
(k−1)
n , M

(k−1)
i,n , M

(k−1)
j,n from q

(k−1)
n

Evaluate yield function f
(k−1)
m , for m = i, j

IF ∃m /∈ J
(k−1)
act : f

(k−1)
m > 0 THEN:

For all m, reset J
(k−1)
act = J

(k−1)
act ∪ {m} and repeat 1

ELSE:

Go to 2

ENDIF

2. Evaluation of residuals:

Evaluate R(k−1) = [Rvp Rf Rα Rb]
T

IF ‖R(k−1)
w ‖ < tolw, w ∈ {vp, f, α, b}, THEN:

Update qn, αn, qb,n and go to 7

ELSE:

Go to 3

ENDIF

3. Evaluation of force and internal variable increments:

Evaluate the Jacobian J(k−1)

Evaluate the increments ∆x(k−1) = [∆β ∆q ∆α ∆qb]
T

4. Check of active constraints:

Update β(k) = β(k−1) + ∆β(k−1)

IF β
(k)
m < 0, m ∈ J

(k−1)
act , THEN:

Reset J
(k−1)
act = {m ∈ J

(k−1)
act | β(k)

m > 0}
Go to 2

ELSE:

Go to 5

5. Update of forces and internal variables:

Update x(k) to obtain β
(k)
n,m, q

(k)
n , α

(k)
n,m, q

(k)
b,n, m ∈ J

(k−1)
act

Set J
(k)
act = J

(k−1)
act

6. Set k − 1← k and go to 1

7. Evaluate the tangent stiffness kt

Table 4.2: Plastic correction algorithm: closest point projection
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Figure 4.5: Effect of yield surface parameters

4.1.4.2 Hardening parameters

The hardening behavior of the NMYS column element is governed by 2 parameters: the
kinematic hardening ratio Hkr and the isotropic hardening parameter Hip. The dimensionless
ratio Hkr describes the kinematic hardening behavior and translates the yield envelope as
plastic deformations accumulate. The hardening ratio Hkr relates to the hardening modulus
Hk of the plastic hinge moment-rotation relation through the flexural stiffness 6EI/L under
antisymmetric bending with equal end deformations:

Hk =
6EI

L
Hkr (4.41)

The isotropic hardening parameter Hip describes the istropic hardening behavior and
expands or contracts the yield envelope as plastic deformations accumulate. It is noteworthy
that the isotropic hardening parameter Hip in Equations (4.4)–(4.5) is not equivalent to the
isotropic hardening ratio Hir in the series beam formulation in Chapter 3. Table 4.3 compares
the units of relevant variables in the beam and the column models. The variables are in
unit of force, deformation, or a combination thereof, or dimensionless (’1’ in Table 4.3).
In the series beam model, the isotropic hardening ratio Hir is dimensionless, whereas in
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the NMYS column model, the isotropic hardening parameter Hip has dimension [force−1 ×
deformation−1] .

Variable(s) Beam model Column model
fi, fj force 1
ni, nj 1 force−1

vp deformation deformation
βi, βj deformation force × deformation
αi, αj deformation force × deformation

Hir or Hip 1 force−1 × deformation−1

Table 4.3: Unit comparison of beam and column models

Figure 4.6 illustrates the effect of the hardening behavior on the yield envelope. The
kinematic hardening in Figure 4.6(a) translates the envelope while preserving the initial
shape. The isotropic hardening with Hip > 0 in Figure 4.6(b) expands the yield envelope.
It is noteworthy that the shape of the yield envelope changes during the expansion or con-
traction.
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Figure 4.6: Effect of hardening parameters on yield envelope

4.1.5 Example 1: Cantilever column

The first example examines the response of a cantilever column under a combined effect
of axial forces and bending moments. The column, shown in Figure 4.7, is 10 ft in length and
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has a W24x162 steel profile with a yield strength fy = 50 ksi. For comparison, two element
models are used to simulate the column response: a concentrated plasticity model (CP) and
a distributed plasticity model (DP) . The objectives of this example are three-fold: (1) to
calibrate the yield surface parameters c1 to c5 of the NMYS model, (2) to highlight the effect
of the axial-flexure interaction on the yielding behavior, and (3) to validate the accuracy and
efficiency of the NMYS model in comparison to the more sophisticated distributed plasticity
approach.

N

Uh

H = 10ft W24x162

(a) (b)

Integration
    points

(c)

Figure 4.7: Cantilever column: (a) structure and loading, (b) concentrated plasticity (CP)
model, (c) distributed plasticity (DP) model

In model DP, one force-based distributed plasticity element is used with 4 integration
points along the column height. Each section is discretized into 9 fibers: 2 in each flange
and 5 in the web. The Gauss-Lobatto integration rule is used along the element length
and the mid-point rule in each cross section. The material constitutive relation assumes a
bilinear elastic-plastic response [92]. In model CP, one NMYS element is used to simulate
the column. The parameters E, A, I, Np, and Mp are specified based on the geometry and
material properties.

The following presents two case studies with different assumptions of the column behavior.

4.1.5.1 Elastic-perfectly-plastic element behavior

In the first case study, the column assumes an elastic-perfectly-plastic (EPP) behavior.
In both models, same flexural deformations are increased monotonically under constant axial
compressions, whose values range from 20% to 80% the plastic axial capacity, N/Np = −0.2,
−0.4, −0.6, −0.8. The yield surface coefficients c1 to c5 in the NMYS model are calibrated
against the yield envelope given by model DP. Two response variables are compared in the
models: the plastic axial deformation and the flexural yield strength.
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The following coefficients are found to describe well the yield envelope: c1 = 2, c2 = 2,
c3 = 2.95, c4 = 2, c5 = 1.33. Without hardening, the yield function in Equations (4.4)–(4.5)
becomes:

fm =

(
Nm

Np

)2

+

(
Mm

Mp

)2

+ 2.95

(
Nm

Np

)2(
Mm

Mp

)1.33

− 1 (4.42)

where m = i, j indicates the element end.
Figure 4.8(a) compares the normalized axial force N/Np against the axial deformation

va and Figure 4.8(b) plots the normalized bending moment Mi/Mp at end i against the cor-
responding flexural deformation vi. The response comparison gives rise to two observations.
First, the axial shortening given by the two models agree rather well, especially under the
moderate axial load levels N/Np = −0.4 and N/Np = −0.6. Model CP underestimates the
axial deformation under the small axial load level N/Np = −0.2 and the high axial load
level N/Np = −0.8; however, the discrepancies are within 15% the response in model DP,
which are acceptable considering the small deformation values. The satisfactory agreement
suggests that the associative flow rule and the Koiter’s rule are reasonable to describe the
evolution of plastic deformations in steel components.
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Figure 4.8: Monotonic response of cantilever column with EPP behavior

Second, the yield surface coefficients capture very well the axial-flexure interaction. Fig-
ure 4.8(b) proves that the variation in the yield moment is consistent between the two
models. The response deviates slightly at the transtion from the elastic to the plastic range:
while model DP describes a gradual yielding with a smooth curve, model CP shows sudden
yielding with an abrupt stiffness transition. However, the discrepancies are minor and the
two models are identical in the elastic and the post-yield response.

Next, the column is subjected to a number of load histories to further validate the
accuracy of the NMYS element model. Figures 4.9–4.10 compare the column response in 6
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load scenarios. For each load case (LC), three comparisons are shown: the load path on the
axial-flexure interaction diagram N -M , the axial response qa/Np − va/L, and the flexural
response at the base (end i) qi/Mp − vi.

(1) LC1: shown in Figure 4.9(a). The column is subjected to a constant axial compression
N/Np = −0.4 and a cyclic lateral displacement at the free end that consists of sym-
metric cycles about the undeformed configuration with increasing amplitudes from one
cycle to the next. This cyclic displacement pattern is representative of far-field ground
motions, and thus shall be referred to as the FF pattern in subsequent discussions.
Except for the stiffness transition at yield initiation, the two models give essentially
identical response.

(2) LC2: shown in Figure 4.9(b). The column is subjected to the FF pattern and a variable
axial load history N/Np = −0.2 ∓ 0.4. First, an axial compression N/Np = −0.2 is
imposed to represent the effect of gravity loading. Then the axial load varies from
N/Np = −0.6 to N/Np = +0.2 to represent the variation due to overturning effect.
The axial compression is ”in-phase” with the lateral displacement, that is, the column
is compressed more with higher lateral displacement in the positive direction. The
evolution of the axial deformation agrees well in early cycles and slightly deviates
with increasing inelastic deformations. However, the discrepancies are relatively minor
and model CP captures well the overall behavior. Model CP is able to simulate the
asymmetrical flexural response under positive and negative moments due to the variable
axial force. The satisfactory match in the load path confirms the model accuracy.

(3) LC3: shown in Figure 4.9(c). The column is subjected to a constant axial compression
N/Np = −0.2 and a cyclic lateral displacement history that consists of several large
pulses and load reversals biased to one direction. This pattern is representative of near-
field ground motions, and thus shall be referred to as the NF pattern in subsequent
discussions. As expected from the observation in Figure 4.8(a), model CP underesti-
mates the axial deformation under small axial compression N/Np = −0.2. However,
model CP captures well the flexural response and the overall axial deformation evolu-
tion.

(4) LC4: shown in Figure 4.9(d). The column is subjected to the NF pattern and a
variable axial load history N/Np = −0.2∓0.4 same as LC2. Similar observations hold,
including the consistency in the axial and the flexural response and slight discrepancies
in the axial deformation. Same as LC2, model CP captures well the effect of the axial
force variation on the column yielding.

(5) LC5: shown in Figure 4.9(e). The column is subjected to the FF pattern and a variable
axial force history that ranges from N/Np = −0.6 to N/Np = +0.2. First, a reference
constant axial compression N/Np = −0.2 is imposed, then the axial force oscillates
about this value with increasing amplitude as loading progresses. As opposed to LC2
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(b2) LC2: axial response
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Figure 4.9: Cyclic response of cantilever column with EPP response
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(e2) LC5: axial response
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(f2) LC6: axial response
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Figure 4.10: Cyclic response of cantilever column with EPP response (continued)

and LC4, the axial compression is ”out-of-phase” with the lateral displacement, that
is, as the lateral displacement increases in the positive direction, the axial compression
decreases and switches to tension in later cycles. Consequently, compared to LC2 and
LC4, the flexural force-deformation relation exhibits a different trend in which the
response under negative moments softens with increasing negative deformations.

(6) LC6: shown in Figure 4.9(f). The column is subjected to the NF pattern and the
variable axial force history in LC5. The agreement in the two models is excellent..

Similar to the comparison between the DP and the CP beam models in Chapter 3, the
NMYS column model outperforms the DP model in numerical efficiency with a factor of 2–3
times reduction in the computation time. Convergence in the NMYS model is quadratic and
is achieved within 3–4 iterations per load step for a tolerance of 1e−16.

It is noteworthy that the simulations neglect the geometric nonlinearity and assume
linear geometry. This is hypothetical because for such excessive lateral displacement values
in these load cases, the effect of axial force is significant and nonlinear geometry must
be accounted for to accurately represent the column behavior. However, for illustration
purposes, the assumption of linear geometry is reasonable to focus only on the material
nonlinearity. Moreover, since the two models are subjected to the same axial force histories
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and show negligible discrepancies in the response, the above conclusions are expected to hold
under nonlinear geometry.

4.1.5.2 Hardening element behavior

The second case study evaluates the NMYS element in the presence of hardening behavior
to demonstrate the effect of the plastic hinge offsets χ. The same column in Figure 4.7 is
subjected to a constant axial compression and a cyclic lateral displacement at the free end.
Six levels of axial force are considered: N/Np = 0, −0.1, −0.2, −0.4, −0.6, −0.8. The
effect of the axial force at large displacement values is accounted for by the corotational
formulation and is reflected in the post-yield stiffness reduction with increasing axial force
levels.

Model DP assumes no isotropic hardening Hi = 0 and a kinematic hardening Hk = 2%E.
The normalized base moment Mi/Mp are plotted against the horizontal drift ratio for two
cases of plastic hinge offsets: no offset χ = 0 in Figure 4.11 and with offsets χ = 0.2 in
Figure 4.12. In model CP, the isotropic hardening parameter Hip = 0, while the kinematic
hardening ratio Hkr = 0.0175 for χ = 0 and Hkr = 0.0075 for χ = 0.2. Similar to the
calibration in the series beam model in Chapter 3, without offsets, the kinematic hardening
ratio Hkr is calibrated to match the moment at a target drift ratio, which is 0.1 in this case
study. With offsets, the hardening ratio Hkr is selected to match the post-yield stiffness
observed in model DP.

The response without plastic hinge offsets in Figure 4.11 shows that model CP captures
well the reduction in the yield moment as the axial force increases. Similar to model DP, the
NMYS element exhibits a behavior analogous to isotropic hardening, that is, the moment
increases as the column cycles between same deformation values and accumulates plastic
deformations. This phenomenon is evident during early cycles after the first yield initiation
and more pronounced under higher axial compression. Overall, model CP without plastic
hinge offsets offers a reasonable approximation of the ’exact’ response given by model DP. The
comparison, however, also identifies some limitations. Although the moment at the target
rotation is captured well in all cases of axial force, model CP underestimates the moment
at smaller rotations than the target value. Moreover, the excessive post-yield hardening
exacerbates the discrepancies, especially under higher axial force levels.

Figure 4.12 proves that the plastic hinge offsets enhance model CP’s response tremen-
dously. Although model CP does not capture exactly the moment at every load reversal
particularly under high axial compression N/Np = −0.6 and N/Np = −0.8, the agreement
between model CP and DP is significantly improved. The column response under low to
moderate axial compression, i.e. less than 50% the plastic axial capacity, which is typical
in low- to mid-rise moment frames, is represented very well by the proposed NMYS element
with offsets. Model CP captures satisfactorily the post-yield hardening even at high axial
compression N/Np = −0.8. However, some discrepancies remain, such as the insufficient
representation of the Bauschinger effect in the reloading response and the strength increase
due to cyclic loading under high axial force. The first limitation results from the assumption
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(b) N/Np = −0.1, χ = 0
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(c) N/Np = −0.2, χ = 0
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(d) N/Np = −0.4, χ = 0
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(e) N/Np = −0.6, χ = 0
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(f) N/Np = −0.8, χ = 0

Figure 4.11: Cyclic response of cantilever column with hardening behavior, χ = 0

of linear hardening, which could be addressed by introducing a nonlinear hardening rule to
accommodate the gradual yielding, such as with generalized plasticity [7]. The second limi-
tation suggests that a nonassociative flow rule may be explored to improve the description
of the yield envelope evolution.

4.1.6 Example 2: Four-story three-bay frame

The second example evaluates the response of the NMYS column model and its interac-
tion with other elements in a structural model. The study selects the four-story three-bay
steel special moment frame (SMF) in Figure 4.13, which is adapted from the PG-2RSA
performance group in the NIST study of FEMA P695 Methodology [68]. The columns and
girders are wide-flange sections whose sizes are shown in Figure 4.13. The fundamental pe-
riod obtained from an eigenvalue analysis of the structure is 1.62 sec. This is rather high for
a four-story frame, but is adopted here to be consistent with the NIST report [68].

In this study, the girders and columns assume an elastic-perfectly-plastic (EPP) behavior.
The effect of gravity loading is accounted for with constant axial compression on the columns.
Two models are used to simulate the dynamic response of the SMF:
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(a) N/Np = 0, χ = 0.2
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(b) N/Np = −0.1, χ = 0.2
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(c) N/Np = −0.2, χ = 0.2
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(d) N/Np = −0.4, χ = 0.2
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(e) N/Np = −0.6, χ = 0.2
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(f) N/Np = −0.8, χ = 0.2

Figure 4.12: Cyclic response of cantilever column with hardening behavior, , χ = 0.2

(1) Model DP: Each girder and column is represented by a force-based distributed plas-
ticity beam-column element with 4 integration points along the element length. Each
cross section is discretized into 12 layers: 3 in each flange and 6 in the web. The bilin-
ear elastic-plastic material model is adopted with hardening parameters Hk = Hi = 0
to represent the fiber stress-strain relation.

(2) Model CP: Each girder is represented by a series beam element with Hkr = Hir = 0.
Each column is represented by a NMYS column element with Hkr = 0, Hip = 0. No
plastic hinge offset is specified in the members, χ = 0, which gives sufficient accuracy
for a cantilever column with EPP element behavior, as the example in Section 4.1.5
shows.

Both models assume rigid beam-column connections and neglect the effect of floor slabs
and shear deformations in panel zones at the beam-column interface. Rayleigh damping
is used with the damping matrix proportional to the mass matrix and the tangent stiffness
matrix. The damping coefficients are obtained from the first and the third mode of vibration
with a damping ratio of 2.5%. The corotational formulation is used to account for the
nonlinear geometry effect.
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Figure 4.13: Four-story three-bay moment-resisting frame

The frame is subjected to the LA30 record. Figure 4.14 shows the global response of the
SMF: the average 1st story drift in Figure 4.14(a) and the average roof drift in Figure 4.14(b).
The models give identical response up to the major pulse at approximately 12 sec leading to
a considerable drift increment. The response following the pulse deviates slightly; however,
the discrepancies are negligible. Model CP captures well the main characteristics of the
response, for instance, the residual drift is biased to the negative direction near the end of
the load history.

Figures 4.14(c)-(d) show the distribution of the story drift ratios (DR) and the floor
accelerations at the instant of respective maximum value attained. Both models give a
similar story drift distribution and indicate the maximum DR of roughly 5.2% in the 3rd
story. The floor acceleration distribution shows discrepancies in the bottom two floors: while
model DP suggests a higher acceleration in the 2nd floor, model CP predicts a higher value in
the 1st story. However, this does not significantly affect the accuracy because the difference
is quite small and model CP captures well the maximum acceleration on the 3rd floor, which
is more relevant in damage assessment of the SMF. The excessive 3rd story drift and floor
acceleration relative to the others suggests a potential weak story mechanism that involves
the 3rd story members and induces high plastic deformations at these locations.

Next, the local element response is examined. This study adopts the following naming
convention for a member: ’X1-X2-X3-X4’, where the first three terms identify the member
and the last term specifies the element end. X1 represents the member type: ’C’ for a
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Figure 4.14: Global dynamic response of four-story three-bay steel moment frame

column and ’G’ for a girder. X2 represents the member location in the vertical direction,
which equals the number of floor or story from the ground. X3 represents the member
location in the lateral direction, which is the column line or the bay number from left to
right. X4 indicates the element end: ’T’ for the top and ’B’ for the bottom end of a column,
’L’ for the left and ’R’ for the right end of a girder. For instance, C-1-3-B refers to the base
of the first-story column that is the third from left, and G-2-1-R refers to the right end of
the leftmost girder on the second-floor.

Figure 4.15 presents the response of several representative columns and girders, including
the N -M load path as well as the axial and the flexural response.
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(b) C-1-1: axial
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(c) C-1-1-B: flexural
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(e) C-2-3: axial
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(f) C-2-3-B: flexural
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(i) C-3-1-B: flexural
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(k) G-2-3-L: flexural

-0.02 -0.01 0 0.01 0.02
Flexural deformation

-1

-0.5

0

0.5

1

G
ir

de
r 

fl
ex

ur
al

 f
or

ce
, M

/M
p DP

CP

(l) G-3-1-L: flexural

Figure 4.15: Local dynamic response of four-story three-bay steel moment frame
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(i) C-1-1: The agreement between the models in Figures 4.15(a)-(c) is excellent. Model
CP is able to capture the variable axial compression of up to 35% the plastic axial
capacity. The model describes well the asymmetric yield strength under positive and
negative moments. The load cycles under negative moments correspond to higher
axial compression, and in turns, smaller flexural yield strength according to the N -M
interaction diagram.

(ii) C-2-3: Model CP accurately predicts the column elastic state throughout the load
history, which is evident in the load path inside the initial yield envelope. Both models
give consistent axial response with a compression of up to 15% the plastic axial capacity.

(iii) C-3-1: Despite the overestimation in the axial shortening of 0.05% the element length,
model CP gives an excellent estimate of the axial force level and the flexural force-
deformation relation. The model is able to capture the smaller flexural yield strength
due to higher axial compression under negative moments. The axial compression in
C-3-1 is higher than C-2-3 because the overturning effect exerts additional compression
on the left columns as the structure leans permanently to the left direction relative to
the ground.

(iv) G-1-1, G-2-3, G-3-1: Model CP describes accurately the flexural force-deformation
relations and the spread of yielding up to the higher floors. In this case, the yield
strength is practically equal to the nominal strength Mp, which supports the assump-
tion to neglect the axial-flexure interaction in the series beam model.

4.2 Damage-Plasticity Column Element

4.2.1 Formulation

The damage-plasticity column element adopts the damage mechanics concepts to describe
the continuous strength and stiffness degradation in the column response. The framework
for the formulation is similar to the beam element in Section 3.3 and consists of three
main components: a constitutive relation in effective space, a damage loading function,
and a damage evolution law. The following discussion highlights the key aspects of each
component.

4.2.1.1 Effective response

A major difference between the damage-plasticity formulation of the beam and the col-
umn models is the force-deformation relation in the effective space. While the beam model
neglects the axial-flexure interaction due to small axial force in girder members, the column
model accounts for this coupling effect. Although any force-deformation relation with N -M
interaction could be used, this study adopts the NMYS column model in Section 4.1 to
describe the effective response.
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4.2.1.2 Damage loading function

The damage loading function describes the relation between the variables in the effective
space and the energy dissipation that controls the damage evolution. In the proposed element
model, the effective force and deformation in the plastic hinges N̄ − θa, M̄i − θi, M̄j − θj
are the work-conjugate variables that govern the damage accumulation, which are analogous
to the effective force s̄ and the deformation e in the 1d damage model in Chapter 2. To
accomodate asymmetrical response under positive and negative forces, the model isolates
the positive and the negative components of the effective forces q̄h in the plastic hinge:

q̄±
h =

N̄±

M̄±
i

M̄±
j

 =
1

2

 N̄
M̄i

M̄j

 ± 1

2

 |N̄ ||M̄i|
|M̄j|

 (4.43)

where |q̄h| =
[
|N̄ | |M̄i| |M̄j|

]T
represents the magnitude of the effective hinge forces, q̄+

h =[
N̄+ M̄+

i M̄+
j

]T
and q̄−

h =
[
N̄− M̄−

i M̄−
j

]T
are the positive and the negative components

of the effective hinge forces, respectively.
The model assumes damage accumulation is governed by the energy dissipation. It is

instructive to distinguish the energy dissipation due to the axial and flexural response. To
this end, the axial energy variables ψ±

a and the flexural energy variables ψ±
f are defined

as integrals of the product of the effective hinge force with the corresponding deformation
increment and scaled by two coefficients Cwc and Ccd:

ψ±
a,m = C±

i,m

∫
C±
wc,mN̄

−dθa (4.44)

ψ±
f,m =

∫
C±
wc,mM̄

±
mdθm + C±

cd,m

∫
C∓
wc,mM̄

∓
mdθm (4.45)

where m = i, j. Similar to the 1d damage formulation in Chapter 2, C±
wc,i and C±

wc,j are the
cyclic degradation coefficients that determine the weight of the energy increment based on
the current deformation relative to the previous maximum and minimum deformations. Cwc
equals to 1 if the deformation exceeds the previous extreme values, and less than 1 otherwise.
With θm,max and θm,min denoting the maximum and minimum rotations at spring m = i, j,
the cyclic degradation coefficient is defined as:

Cwc,m =

{
1 if θm < θm,min or θm > θm,max

0 ≤ Cwc,m ≤ 1 if θm,min ≤ θm ≤ θm,max

(m = i, j) (4.46)

C±
cd,i and C±

cd,j are the damage coupling coefficients that govern the effect of the response

in one loading direction on the damage accumulation in the other direction. C±
i,i and C±

i,j are
the axial-flexure interaction coefficients that govern the effect of the axial response on the
damage accumulation.
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Then, the total energy variables ψ± consist of the contribution from the axial response
ψ±
a and the flexural response ψ±

f :

ψ±
m = ψ±

a,m + ψ±
f,m (m = i, j) (4.47)

It is noteworthy that only the axial compression N̄− contributes to the energy variables
ψ± to account for the strength degradation due to buckling of steel members under high
compression. It is also worth pointing out that in the element formulation, the energy
variables ψ± depend on the plastic hinge deformation θ. This is different than the 1d
damage formulation in Chapter 2 in which the energy dissipation ψ depends on the total
deformation e.

The damage formulation requires the energy threshold variables ψ̃±
m to initiate the damage

growth and defined as the previous maximum energy dissipation ψ±
m:

ψ̃±
m(t) = maxψ±(τ) t0 ≤ τ < t (m = i, j) (4.48)

Finally, four damage loading functions for the two plastic hinges g±i and g±j are given as:

g±m = ψ±
m − ψ̃±

m, (m = i, j) (4.49)

4.2.1.3 Damage evolution law

The damage evolution law evaluates four damage variables, d+i and d−i for the positive
and negative moments at spring i, and d+j and d−j for the positive and negative moments
at spring j, based on the energy dissipation variables ψ± in Equation (4.47). The damage
evolution law of the column element is similar to the 1d damage formulation in Chapter 2 and
the damage-plasticity beam model in Chapter 3. The following highlights the key aspects of
the formulation.

The evolution law requires a definition of the energy thresholds ψ̄±
d0 corresponding to an

undamaged state and the energy limits ψ̄±
d1 corresponding to a complete loss of strength.

These energy variables are expressed as multiples of the yield energy ψy of a cantilever
column without axial force:

ψy,m =
M2

p,mL

6EI
(4.50)

where Mp is the nominal plastic flexural capacity, EI is the element flexural stiffness, and L
is the element length.

With Cd0 and Cd1 denoting the damage threshold coefficient and the damage limit coef-
ficient, the energy thresholds ψ±

d0 and the energy limits ψ±
d1 are given as:

ψ±
d0,m = C±

d0,mψy,m (4.51)

ψ±
d1,m = C±

d1,mψy,m (4.52)
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The energy variables ψ±
i and ψ±

j in Equation (4.47) are normalized with respect to the
threshold and the limit energy variables ψd0 and ψd1:

ψ̂±
m =

ψ±
m − ψ±

d0,m

ψ±
d1,m − ψ

±
d0,m

(4.53)

Similar to the damage-plasticity beam formulation, the damage variables can be evaluated
with two evolution functions. The first evolution function adopts the cumulative distribution
function (CDF) of the beta distribution. The function modifies the original parameters of
the CDF of the beta distribution and introduces two parameters dp1 and dp2, same as the
damage model in Chapter 2 and Chapter 3.

d±m = FB

(
ψ̂±
m, β

±
1,m, β

±
2,m

)
(4.54)

where FB denotes the CDF of the beta distribution and β1 and β2 are the parameters of
the CDF. Similar to the 1d damage formulation Chapter 2, to better identify the effect of
the parameters on the damage evolution, the damage evolution law introduces two damage
evolution parameters dp1 and dp2 defined as the ratio and the smaller of the two original
parameters β1 and β2.

The second evolution law is a composite function similar to the formulation in Section 2.7.
This evolution function accommodates sudden strength degradation due to brittle failure.

d±m =



FB

(
ψ̂±
m, β1, β2

)
, 0 ≤ ψ̂±

m ≤ ψ̂f

FB

(
ψ̂f , β1, β2

)
+

1− FB
(
ψ̂f , β1, β2

)
ψ̂u − ψ̂f

(
ψ̂±
m − ψ̂f

)
, ψ̂f < ψ̂±

m ≤ ψ̂u

1, ψ̂u < ψ̂±
m ≤ 1

(4.55)

While the axial force N is equal to the value in the effective space N̄ , the true moments
Mi and Mj result from linear combinations of the positive and negative effective moments
and the damage variables:

Mm =
(
1− d+m

)
M̄+

m +
(
1− d+m

)
M̄−

m m = i, j (4.56)

The true force q at the element ends are obtained from an extrapolation of the true
spring force qh:

q = b−1
p qh (4.57)

4.2.2 Implementation

The state determination of the damage-plasticity column model is summarized in Tables
4.1–4.2.
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Given: end deformations vn and history variables at step n− 1

Required : state variables at step n

1. State determination in effective space:

Procedure for the series beam model in Tables 4.1–4.2

Outputs: q̄n, vp,n, αn, qb,n, q̄h, vh

2. Decomposition of q̄h into q̄+
h and q̄−

h

3. Energy variables ψ±
i,n and ψ±

j,n with contribution from the axial term

4. Damage loading functions:

Evaluate the energy threshold ψ̃±
i,n and ψ̃±

j,n

Evaluate damage loading functions g±i and g±j

5. Check of damage for each of the four damage loading functions:

IF g ≤ 0, THEN

Damage unloading, go to 6a

ELSE

Damage loading, go to 6b

6a. Damage unloading:

Update d±i,n = d±i,n−1 and d±j,n = d±j,n−1

Update ψ̃±
i,n = ψ̃±

i,n−1 and ψ̃±
j,n = ψ̃±

j,n−1

Go to 7

6b. Damage loading:

Compute normalized energy ψ̂±
i and ψ̂±

j

Evaluate d±i,n and d±j,n

Update ψ̃±
i,n = ψ±

i,n and ψ̃±
j,n = ψ±

j,n

Go to 7

7. End forces and tangent stiffness:

Update the hinge force qh from q̄±
h

Update the end forces qn from qh

Evaluate the tangent stiffness kt

Table 4.4: State determination algorithm of damage-plasticity column model
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4.2.3 Model parameters

Parameters of the damage-plasticity column model are classified into two main categories:

(i) Parameters of the effective constitutive relation: These parameters vary with the ele-
ment model in the effective space. In this study we select the NMYS column element
with the following parameters: Young modulus E, cross-sectional area A, moment of
inertia I, plastic axial capacity Np, plastic flexural capacity Mp, kinematic hardening
ratio Hkr, isotropic hardening parameter Hip. The first 5 parameters depend on the
geometry and material properties and do not require calibration.

(ii) Damage parameters : threshold coefficient Cd0, limit coefficient Cd1, evolution param-
eters dp1 and dp2, cyclic degradation coefficient Cwc, coupling coefficient Ccd, axial-
flexure interaction coefficient Ci. For each damage parameter, 4 different values can
be specified for the response under positive and negative forces at spring i and j. The
first 6 parameters are also present in the damage-plasticity beam model in Chapter 3,
and only the last parameter is unique for the column model. The subsequent sections
focus on the axial-flexure coefficient Ci and its effect on the strength and stiffness
degradation under a combined axial and flexural action.

4.3 Illustrative Example

The following example studies the response of a W24x131 cantilever column in Fig-
ure 4.16 under a constant or variable axial force in combination with a monotonic or cyclic
lateral displacement history at the free end. The objective is two-fold: (1) to illustrate the
capabilities of the damage-plasticity column element, and (2) to investigate the effect of the
axial-flexure interaction coefficient Ci on the strength and stiffness degradation. The column
is modeled by one damage-plasticity column element with the following parameters: c1 = 2,
c2 = 2, c3 = 3.5, c4 = 2, c5 = 2; Hkr = 0.02, Hip = 1.5e−4; C±

d0 = 0, C±
d1 = 200, [d±p1, d

±
p2] =

[2.8, 1.3], C±
wc = 0.1, C±

cd = 0.3, Ci = 2.

4.3.1 Monotonic response

First the column is subjected to a monotonic lateral displacement history and five sepa-
rate cases of constant axial force N/Np = 0, −0.2, −0.4, −0.6, +0.4. The moment-rotation
relation in Figure 4.17(a) shows that the strength deterioration is the least severe under
tension N/Np = +0.4 and most severe under high compression N/Np = −0.8. As the axial
compression increases, (i) yielding initiates at a smaller moment, and (ii) the strength degra-
dation is more severe. The yield strength reduction directly stems from the N -M interaction
envelope. The more severe degradation results from an increase in the energy variable ψ in
Equation (4.47), with the superscript ’+’ dropped for brevity. As the axial compression
increases, the increase in the axial energy ψa overcomes the decrease in the flexural energy
ψf and leads to an overall increase in the total energy ψ.
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H = 8ft W24x131
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Figure 4.16: Cantilever column: (a) Structure and loading, (b) Idealized model
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(b) N/Np = −0.2
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(c) N/Np = −0.6

Figure 4.17: Monotonic response of cantilever column under different levels of axial force

Under the constant axial tension N/Np = +0.4, the column yields at the same strength
as under the compression N/Np = −0.4 because of the symmetry in the N -M yield envelope.
The column under tension, however, exhibits higher ductility than the other cases because
the axial energy variable ψa neglects the tensile force N+ and only considers the compressive
force N− in Equation (4.44).

The evolution of the total energy ψ and the contributions from the axial and the flexural
response are demonstrated in Figure 4.17(b)-(c). The contribution from the axial response
increases with the level of axial compression and ψa ≈ ψf under N/Np = −0.6. It is clear
in Equation (4.47) that ψa is proportional to the axial-flexure interaction coefficient Ci. A
higher value of Ci leads to a higher value of ψa and, consequently, more severe strength
deterioration. Ci must be selected properly to avoid excessive strength deterioration due
to a high value of Ci as well as an unrealistic increase in ductility under a higher axial
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compression due to a low value of Ci.

4.3.2 Cyclic response
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Figure 4.18: Cyclic response comparison: (a) variable axial force N/Np = −0.4 ∓ 0.3, (b)
constant axial force N/Np = −0.4

The same cantilever column is subjected to a cyclic lateral displacement history at the
free end and two separate axial load scenarios. The lateral displacement follows a cyclic
pattern with drift ratios of 2%, 4%, 6%, in which the cycles are repeated once at each drift
ratio. In the first axial load case, the axial compression remains constant N/Np = −0.4.
In the second load case, the column is subjected to a variable axial load history. The
column is first subjected to an axial compression of N/Np = −0.4, then a variable quantity
∓0.3Np is superimposed to represent the overturning effect in multi-story frames. The
axial compression and lateral displacement are in-phase, that is, the axial force varies from
N/Np = −0.7 at the maximum positive drift to N/Np = −0.1 at the maximum negative
drift in each load cycle.

Figure 4.18 compares the column response in the two load patterns. Under the vari-
able axial load, yielding takes place under a higher axial force than in the constant axial
force scenario. Consequently, the yield moment is slightly lower, as Figures 4.18(a2)-(b2)
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show. While the moment-rotation relation is relatively symmetrical under the constant axial
force, the response is asymmetrical in the variable load pattern. The higher axial compres-
sion under positive rotations leads to more pronounced strength and stiffness degradation.
The asymmetrical degrading behavior is also reflected in the damage evolution in Figures
4.18(a3)-(b3). The constant axial load gives comparable positive and negative damage vari-
ables d+ and d−, whereas under the variable axial load, the positive damage variable d+ is
higher. The positive damage variable d+ in the variable load case exceeds both the dam-
age variables d+ and d− under constant compression, which implies that it is important to
account for the variable axial forces for more accurate damage assessment of steel columns.

It is noteworthy that with a higher value of Ci, the effect of axial compression would
be amplified and the asymmetry in the moment-rotation relation and the damage evolution
under variable axial forces would become more pronounced.

4.4 Comparison with Other Column Models

This section uses the same cantilever column in the Section 4.3 to compare the response
of the damage-plasticity column element with two other column models commonly used in
practice. Figure 4.19 illustrates the three modeling approaches in this comparison study: (i)
Model CP with the proposed damage-plasticity column element, (ii) Model CP0 with a con-
centrated plasticity element without N -M interaction, and (ii) Model DP with a distributed
plasticity element.

N
Uh

H = 8ft W24x131

(a) (b)

Integration
    points

(c)

N/Np N/Np

M/Mp
M/Mp

(d)

Figure 4.19: Modeling approaches for response simulation of a cantilever column: (a) Struc-
ture and loading, (b) Model CP, (c) Model CP0, (d) Model DP

Model CP0 assumes the axial force-deformation relation is linear elastic and the axial
response is uncoupled from the flexural response, that is, the axial force does not affect the
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yield strength and the strength deterioration. In this study, the damage-plasticity beam
element in Chapter 3 is selected to represent this modeling approach. Model CP0 adopts
the damage loading function and the evolution law in Chapter 3 to describe the strength
softening in the stress-resultants.

Model DP uses 3 displacement-based distributed plasticity beam-column element to rep-
resent the cantilever column. Each element monitors the response at three sections along
the element length, each of which is, in turns, discretized into 9 fibers: 2 in each flange and
5 in the web. The discretization scheme is calibrated a-priori to give consistent solutions
with an equivalent model with one force-based element. The model adopts the 1d hysteretic
damage model in Chapter 2 with a bilinear elastic-plastic model for the stress-strain relation
the effective space [92].

4.4.1 Concentrated plasticity without N-M interaction

In the first example, the column assumes an elasto-plastic behavior in the effective space
and is subjected to a variable axial force N/Np = −0.2 ∓ 0.3 and a cyclic displacement
pattern with lateral drift ratios of +1%, −2%, +4%, −6% at the end of the half cycles. The
same damage parameters are specified in the two models. Figure 4.20(a)-(b) compares the
flexural response in the two models with and without damage. Due to the axial force, the
yield moment is smaller in model CP than in model CP0. The variable axial force pattern
results in the asymmetrical moment-rotation relation under positive and negative rotations in
model CP, whereas the response in model CP0 is relatively symmetrical. Figure 4.20(c)-(d)
compare the load path in both the effective space and the true space on an N -M interaction
diagram defined by the yield surface parameters c1 = 2, c2 = 2, c3 = 3.5, c4 = 2, c5 =
2. In the effective space, while model CP describes consistently the variation in the yield
strength under variable axial forces and the load path remains on the envelope as plastic flow
occurs, model CP0 does not capture the strength reduction and the load path penetrates
the envelope. In both models, strength degradation shifts the load path horizontally toward
the y-axis while maintaining the axial force to preserve equilibrium.

In the second example, the column assumes a linear kinematic hardening response and
is subjected to a cyclic lateral displacement history with drift ratio amplitude of 2% and
4% and a variable axial load N/Np = −0.3 ± 0.4. The axial force ranges from N/Np =
+0.1 at the end of a half cycle in the negative direction to N/Np = −0.7 in the positive
direction. The modification factor λ = 0.76 is adopted to represent the constant strength
reduction in model CP0 to match model CP at the first yield initiation, which correponds
to N/Np = −0.38 and M/Mp = 0.76.

Figure 4.21 compares the column response with and without damage in the two models.
In model CP, the effect of the variable axial force on the effective response is evident in
Figure 4.21(a) with the smaller moment under positive rotations due to the higher axial
compression. Model CP0 fails to capture the variable axial force and gives a symmetrical
effective response. The response comparison with damage in Figures 4.21(c)–(d) emphasizes
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Figure 4.20: Response comparison of model CP and model CP0

the limitation of the model without the N -M interaction. Model CP0 overestimates the
strength under positive rotations and underestimates the strength under negative rotations.

4.4.2 Distributed plasticity

In this case study, the cantilever column is subjected to a cyclic displacement history
with drift ratios +2%, −2%, +4%, −4%, +6%, −6%, in which each amplitude is repeated
once. Two levels of constant axial force are considered: N/Np = 0 (no axial force) and
N/Np = −0.2. In contrast to the elasto-plastic effective response in the previous case study,
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(d) Degrading response: Model CP0

Figure 4.21: Comparison of cyclic response with variable axial compression

this example assumes a post-yield linear hardening behavior.
The following parameters are specified in model CP: Hkr = 0.018, Hip = 1.5e−4, χ = 0,

C±
d0 = 10, C±

d1 = 300, [d±p1, d
±
p2] = [2.5, 1.5], C±

wc = 0.12, C±
cd = 0.3, and Ci = 4. In model

DP, the parameters of the effective response are the yield stress sy = 50 ksi, kinematic
hardening modulus Hk = 2.2%E, and isotropic hardening modulus Hi = 0.15%E. The
damage parameters are C±

d0 = 10, [C+
d1, C

−
d1] = [650; 380], [d±p1, d

±
p2] = [2.5, 1.5], C±

wc = 0.12,
C±
cd = 0.3. A smaller value is specified for the negative limit coefficient, C−

d1 < C+
d1, to

represent a more rapid degradation in the fiber stress-strain relation due to local buckling
under high compressive stresses. Figure 4.22 shows a sample cyclic stress-strain relation.
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Figure 4.22: Sample stress-strain relation

Figure 4.23 shows that model CP replicates very well the response of model DP under
N/Np = 0. Model CP underestimates the increase in the bending moment from cyclic
hardening in the early cycles under N/Np = −0.2. The description of the hardening behavior
can be improved with a plastic hinge offset from the column base to modify the yield strength.
However, this is not pursued further in this study. Nonetheless, model CP captures rather
well the strength and stiffness deterioration in the column response in both load scenarios.
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Figure 4.23: Comparison of cyclic response of cantilever column

It is noteworthy that similar values for C±
d0, C

±
wc, C

±
cd, d

±
p1, d

±
p2 are used in both models,

while the values for the limit coefficient C±
d1 are different. The key distinction in the two
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models is that while the parameters of model CP describe directly the force-deformation
relation of the ’global’ stress-resultants, the parameters of model DP describe the stress-
strain relation of the ’local’ fibers, which are then integrated in the sections and along the
element length to evaluate the ’global’ response. For a direct comparison of the damage
evolution, a single ’damage index’ is derived for each model to represent the level of strength
and stiffness deterioration at the base of the cantilever column.

Model CP defines the damage index DCP as a combination of the two damage variables
d+ and d− that represent the strength and stiffness deterioration under positive and negative
moments.

DCP =
d+w+ + d−w−

w+ + w− (4.58)

where the integration weights w± are equal to the corresponding damage variables d±.
In model DP, the following notations are defined: the fiber damage variables d±f , the

section damage variables d±s , and the element damage variables d±e . The fiber damage
variables d±f are readily available from the material state determination, while the section
damage variables d±s and the element damage variables d±e are given by integration of the
fiber response, as Figure 4.27 illustrates. Figure 4.24 illustrates the section discretization at
the column base.

S1
S2
S3

F2 F3 F4 F5 F6

Uh

F7F1 F9F8

Figure 4.24: Numbering of fibers in cross-section of DP model

Figure 4.25 and Figure 4.26 plot representative stress-strain relation and the fiber damage
variables df in fiber F1, F4, F9 at the column base without axial force N/Np = 0 and with
axial force N/Np = −0.2, respectively. In the former scenario, the strain history is relatively
symmetric, whereas in the latter case, the initial compression leads to an asymmetric strain
history biased toward the compression side. With the axial compression, the fiber dam-
age state is asymmetric with higher strength and stiffness deterioration under compressive
stresses. These observations highlight that the axial compression has a tremendous impact
on the fiber behavior as well as the global response.

Let nIP denote the number of fibers in a section and w±
f the integration weights rep-

resenting the contribution of each fiber to the section damage variables d±s . The section
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Figure 4.25: Sample fiber response under N/Np = 0

damage variables d±s are defined as weighted averages of the fiber damage:

d+s =

nIP∑
f=1

d+f w
+
f

nIP∑
f=1

w+
f

d−s =

nIP∑
f=1

d−f w
−
f

nIP∑
f=1

w−
f

(4.59)

where w±
f = 1 is assumed in this study to imply equal contributions from the fibers.

The element damage variables d±e are defined as weighted averages of the section damage
variables along the element length. Let w±

s denote the integration weights representing
the contribution of each section to the element damage d±e . To account for the damage
localization in a particular section, the coefficients w±

s are assumed equal to d±s to assign
more weights to the heavily damaged sections.

d+e =

nIP∑
s=1

d+s w
+
s

nIP∑
s=1

w+
s

d−e =

nIP∑
s=1

d−s w
−
s

nIP∑
s=1

w−
s

(4.60)
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Figure 4.26: Sample fiber response under N/Np = -0.2

The damage indices D±
DP are weighted averages of the element damage variables d±e

among all ne elements:

D+
DP =

ne∑
e=1

d+e w
+
e

ne∑
e=1

w+
e

D−
DP =

ne∑
e=1

d−e w
−
e

ne∑
e=1

w−
e

(4.61)

where w±
e denote the integration weights of the positive and the negative response. The

weights are assumed equal to the corresponding damage variables, w+
e = d+e and w−

e = d−e .
Finally, a single global damage index DDP is defined by combining the positive and the

negative variables D±
DP .

DDP =
D+
DPw

+
DP +D−

DPw
−
DP

w+
DP + w−

DP

(4.62)

where w±
DP denotes the integration weights of the positive and the negative damage variables

and are set equal to the corresponding damage variables.
Figure 4.27 illustrates the relation between the global and local damage variables in

model DP, with the superscript ± of the damage variables and integration weights dropped
for brevity.
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Figure 4.27: Damage measures of DP model

Figure 4.28 shows the same trend in the evolution of the damage indices DDP and DCP .
Both exhibit several instants with rapid ’jumps’ as well as those with slower damage accu-
mulation. The former correspond to the primary cycles in which the previous minimum or
maximum deformation is exceeded and the latter correspond to the follower cycles with the
current deformation bounded by the previous minimum or maximum values. The excellent
agreement in Figure 4.28 implies the equivalence in the damage description in the two models
and justifies the use of damage mechanics for stress-resultants.
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Figure 4.28: Comparison of damage variables DCP and DDP

It is noteworthy to point out that the goal of this example is to showcase the capability
of the proposed model to replicate the response of a more sophisticated model widely used
in practice. The comparison, however, does not strive to prove or disprove the validity of the
proposed model based on the advantages or the limitations of the distributed plasticity mod-
els. A detailed study of the distributed plasticity models is beyond the scope of this study.
The validation of the proposed model is discussed in the next section through calibrations
against experimental measurements of steel columns.
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4.5 Validation Studies

This section presents three case studies to validate the proposed damage-plasticity column
element against experimental results of steel column components. The simulations investi-
gate the model’s ability to describe the effect of the axial load variation on the strength
and stiffness degradation as well as on the axial shortening. In all three cases, the test
configuration involves wide-flange steel columns that are restrained at one or both ends and
sufficiently supported to prevent out-of-plane movement. The columns are subjected to con-
stant or variable axial compression and cyclic lateral displacements at one end. The case
studies do not strive for exhaustive accuracy in the simulations but attempt to convey to
the readers the new element model’s potential to capture sufficiently the unique hysteretic
behaviors of steel columns up to failure.

4.5.1 Columns by Lignos [56]

Two sets of cantilever column specimens, W14x82 and W16x89, from the experimental
campaign by Lignos et al. [56] are selected in this case study. The parameters used in
the simulations of the W16x89 column are: c1 = 2, c2 = 2, c3 = 2.95, c4 = 2, c5 = 1.33,
Hkr = 0.01 and Hip = 5e − 4, χ = 0, Cd0 = 15, Cd1 = 200, Cwc = 0.15, Ccd = 0.6,
[dp1, dp2] = [3.5, 1.5], Ci = 2.75. Same damage parameters are used to simulate the response
of the W14x82 column, except for the limit coefficient Cd1 = 205 and the axial-flexure
interaction coefficient Ci = 2.5.

4.5.1.1 Monotonic response

Figure 4.29 compares the monotonic moment-rotation of the two column sections under
different level of constant axial compression. The numerical solutions are shown in dashed
lines and the experimental results are in solid lines.

The column model is able to capture the yield strength of different column sections and
under different axial load levels. Under the same compression N/Np = −0.3, the W14x82
column has a smaller yield strength than the W16x89 column due to the section geometry.
For the same W16x89 column section, the yield strength decreases as the axial compression
increases from N/Np = −0.3 to N/Np = −0.5. This is captured well by the N -M yield
envelope.

The model describes well the different ductility capacities of the W14x82 and W16x89
columns under the same axial compression N/Np = −0.3. This results from the fact that the
W14x82 section is more compact than the W16x89 section. This is captured with a higher
value of the limit coefficient Cd1 and a lower value of the axial-flexure interaction coefficient
Ci for the W14x82 specimen.

For the W16x89 column, the axial-flexure interaction coefficient Ci = 2.75 captures quite
well the strength reduction due to the increase in axial compression. In the softening range,
however, the numerical model underestimates the damage underN/Np = −0.5. This suggests
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Figure 4.29: Response under constant axial compression and monotonic lateral displacement

that to improve the result, instead of specifying a constant value for Ci, the parameter could
be defined as a function of the axial response, for instance, Ci increases under higher axial
compression. This is not pursued further and left for future investigation. As expected,
the numerical solutions also show discrepancies in the transition from the elastic to the
plastic range, which is a typical limitation of the linear hardening assumption. This can be
addressed by introducing a nonlinear hardening rule, such as with generalized plasticity [7].

4.5.1.2 Effect of axial load level on damage

The W14x82 column is subjected to a cyclic lateral displacement history under two
separate cases of constant axial compression: N/Np = −0.5 and N/Np = −0.75. The same
parameters in the monotonic cases are used for the simulations. The yield surface coefficients
capture the yield strength reduction with increasing axial compression. The significant post-
yield cyclic hardening in the first few cycles in both load cases are simulated relatively well
by the isotropic hardening parameter Hip and the damage threshold coefficient Cd0 to delay
the onset of strength deterioration. The axial-flexure interaction coefficient Ci allows the
model to sufficiently distinguish the ductility capacity in the two load scenarios.

Although the numerical solutions do not capture exactly the strength at some load re-
versals, the unloading stiffness in the last few cycles, and the brittle failure in the last cycle,
overall the damage-plasticity column model represents well the main characteristics of the
response in Figure 4.30. To simulate the sharp strength reduction in the last half cycle, the
damage evolution law could be modified to accommodate the sudden damage increment due
to the brittle failure. This is, however, beyond the scope of this study.
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Figure 4.30: Effect of axial load level on cyclic response of steel column

4.5.1.3 Effect of axial load history on damage

The W16x89 column is subjected to two separate axial load patterns: (1) the axial
compression remains constant throughout the load history at 50% the plastic axial capacity
N/Np = −0.5, and (2) the column is first subjected to the same axial compression N/Np =
−0.5, then the compression varies from 25% the plastic capacity N/Np = −0.25 to 75% the
capacity N/Np = −0.75.
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Figure 4.31: Effect of variable axial load on cyclic response of steel column
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Figure 4.31 compares the moment-rotation relation in the two load scenarios. The numer-
ical solution simulates rather well the asymmetrical response under the variable axial force.
Compared to the constant load case in Figure 4.31(a), the response under variable axial
force shows less degradation under positive rotations and more degradation under negative
rotations.

The model, however, underestimates the positive moments in the variable load pattern.
This observation implies that under positive rotations, the model overestimates the axial
contribution ψ+

a to the total energy dissipation ψ+, and in turns, overestimates the positive
damage variable d+. As recommended in the monotonic load case, to enhance the accuracy,
the interaction coefficient Ci may be defined as an evolutionary function of the axial force
level.

4.5.1.4 Axial shortening

The axial shortening has a tremendous impact on the column strength and stiffness de-
terioration as well as the global stability [60, 97]. The plastic axial deformation contributes
to the axial energy, and ultimately affects the total energy and the damage variables. Fig-
ure 4.32 shows the axial shortening of the W14x82 column under a relatively high axial
compression N/Np = −0.75.
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Figure 4.32: Axial shortening of steel column under constant axial load

The numerical solution captures very well the experimental response up to a rotation
of 0.02 and underestimates the axial deformation in the last two half cycles, in which the
column exhibits substantial shortening at the onset of fracture. The discrepancies in the axial
shortening at the end of the load history is approximately 1% the column height, which is
relatively minor.
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4.5.2 Columns by MacRae [59]

This case study investigates the cyclic response of the steel cantilever columns from the
experimental campaign by MacRae [59]. Four axial compression levels are selected for the
simulations: N/Np = −0.3,−0.5,−0.6,−0.8. The columns are referred to as C3, C5, C6,
C8, which correspond to the axial compression level.
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Figure 4.33: Cyclic response of steel columns under constant axial load

The following parameters are used to simulate the response of the four specimens: c1
= 2, c2 = 3, c3 = 4, c4 = 2, c5 = 2.5, Hkr = 0.02, Hip = 2e − 4, χ = 0, Cd0 = 10,
Cd1 = 175, Cwc = 0.15, Ccd = 0.5, Ci = 3. Figure 4.33 plots the load-drift relation for the
four load cases. Overall, the element model captures the reduction in strength, stiffness,
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and displacement ductility with increasing axial compression with reasonable accuracy. The
post-yield cyclic hardening behavior in early cycles prior to softening is represented better
in the cases with lower axial compression. The model predicts particularly well the peak
strength under N/Np = −0.3 and N/Np = −0.5, but underestimates the peak positive load
under high axial compression N/Np = −0.8. The discrepancies in the case of high axial
compression N/Np = −0.8 supports the earlier suggestion to specify the damage parameters
as evolutionary functions of the damage states instead of as constants.

Figure 4.34(a) plots the evolution of the positive damage variable d+ under N/Np = −0.3.
The red dashed lines in Figure 4.34(a) represent two envelopes for the damage variables. The
envelope on the right indicates the maximum values for the positive damage variable d+ and
the envelope on the right corresponds to the maximum values for the negative damage vari-
able d−. The envelopes show two distinct characteristics in primary and follower cycles. In
primary cycles, damage evolves as the cumulative maximum or minimum drift ratios increase,
which is reflected in the diagonal segments of the damage envelopes. In follower cycles, dam-
age evolves as the cumulative maximum or minimum drift ratios remain unchanged, which
is reflected in the vertical segments of the damage envelopes. The damage increment in each
vertical segment represents the amount of cyclic degradation due to repeated load cycles.

-6 -3 0 3 6
Horizontal drift ratio (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
am

ag
e 

va
ri

ab
le

Positive damage d+
Damage Envelope

(a) Damage envelopes of specimen C3

0 1 2 3 4 5
Horizontal drift ratio (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
am

ag
e 

va
ri

ab
le

C3
C5
C6
C8

(b) Comparison of damage evolution

Figure 4.34: Damage evolution of steel column specimens

Figure 4.34(b) compares the positive damage envelope in the four load patterns. Under
the same drift ratio, the higher axial compression induces more severe damage. Alternatively,
to reach the same damage level, the column under a smaller axial compression can withstand
a higher drift ratio. This implies a more gradual degradation and higher ductility capacity
under smaller axial forces. It is noteworthy that the column failure when the experiments
terminated corresponds to a damage value of approximately 0.6 in all four specimens. This
suggests a possible damage threshold to represent the failure of steel columns.
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4.5.3 Columns by Newell and Uang [66]

This example studies the strength and stiffness deterioration in stockier columns. Two
column sections W14x176 and W14x233 from the experimental program by Newell and
Uang [66] are selected for illustration. Both column ends are restrained with base plates
and strengthened by haunch stiffeners. First, a compression of N/Np = −0.15 is imposed
to represent the effect of gravity loading. Then, the lateral drift and variable axial force are
applied in-phase to reach a target axial force. The specimens are designated by the cross
section size and the target axial load. For instance, W14x176-55 refers to the W14x176
column under a variable axial force pattern with the maximum target of 55% the plastic
axial capacity: N/Np = −0.15± 0.4.
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Figure 4.35: Cyclic response of steel column under variable axial compression

It was reported that during the tests, the load pattern was modified because the axial
force and the lateral drift were not applied in-phase due to limitations of the experimental
setup. It was verified analytically, however, that both the modified and the original protocols
give comparable response at the end of each half cycle when the target axial force and drift
are obtained [66]. In this study, the original protocol is adopted. Due to the discrepancies
in the load patterns, only the force at the end of each half cycle is relevant for comparison.
The following parameters are used in the simulations: Hkr = 0.05, Hir = 3e−5, χ = 0,
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Cd0 = 10, [dp1, dp2] = [3, 1.5], Ccd = 0.6, Cwc = 0.15. For specimen W14x176, Cd1 = 220 and
Ci = 1.5, and for specimen W14x233, Cd1 = 270 and Ci = 1. Figures 4.35(a)-(b) compare
the bending moment at the end of each half cycle for the four specimens. Figure 4.35(c)
highlight the magnitude of the moment under positive and negative drift ratios normalized
by the corresponding plastic capacity.

The comparison gives rise to three observations. First, the strength reduction due to the
higher axial compression is less pronounced in stockier columns with a more compact cross
section. This is evident in Figure 4.35(c) as the black curves are above the red curves for
both specimens and the deviation between the two is smaller for the W14x233 specimens.
The model captures this feature with a higher limit coefficient Cd1 and a smaller axial-flexure
interaction coefficient Ci for the W14x233 specimens. Second, the different ductility capacity
in the two columns is captured sufficiently by the model. While the W14x176 columns reach
the peak strength and exhibit strength softening at drift ratio of 0.07, the W14x233 columns
do not show strength reduction even at large drift ratios. Third, the asymmetrical response
due to the variable axial load history is less pronounced than observed in the previous case
studies, implying that the effect of axial forces on the strength deterioration is less significant
in stockier columns. This is reflected in the relatively low values of the axial-flexure inter-
action coefficient Ci. The numerical solutions, however, slightly underestimate the negative
moments and overestimate the positive moments. This suggests that separate coefficients
C+
i and C−

i for the response under positive and negative moments may be worthwhile.

4.5.4 Remarks on parameter Ci

The section concludes with a discussion on the axial-flexure interaction coefficient Ci.
Table 4.5 lists the parameter values and summarizes the relevant properties of the column
specimens in the previous simulations.

Section bf/2tf h/tw Lb/ry Cd1 Ci

W14x233 4.6 10.7 43.9 270 1
W14x176 6.0 13.7 44.8 220 1.5
W14x82 5.9 22.4 59.5 205 2.5
W16x89 5.9 27 59.3 200 2.75
W10x49 8.9 23.1 34.1 185 3

Table 4.5: Comparison of Ci and Cd1 in column simulations

The validation studies show that the effect of the axial response on the element damage
varies with the cross sections and the geometry of the column specimens. Stocky columns
with more compact cross sections appear to be less affected by the axial compression. It is
evident that the value of Ci is higher for a less compact section and for a more slender column.
This observation suggests that the axial-flexure interaction coefficient Ci is closely related to
the limit coefficient Cd1, which governs the ultimate ductility capacity of the column element.
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A regression analysis is performed to relate the two parameters and suggests the following
relation:

ln(Ci) = 17.383− 3.114 ln(Cd1) (4.63)

with an R-value of 0.939, which ensures sufficient confidence in the correlation.
The relation in Equation (4.63) is derived from the calibration of 5 column specimens

under monotonic and cyclic displacement patterns in combination with constant and variable
axial forces. It is instructive to extend the correlation studies to cover a broader range
of column specimens and load histories. Nonetheless, Equation (4.63) allows for the first
estimate of the model parameters, which are in satisfactory agreement with the available
test data.
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Chapter 5

Case Study: 8-story Steel Moment
Frame

In this chapter, the damage-plasticity beam and column elements in the preceding chap-
ters are deployed in an analysis framework for the large-scale simulation and collapse as-
sessment of structural systems. The capabilities of the modeling approach are demonstrated
with the case study of an 8-story 3-bay special moment-resisting steel frame that investigates
various aspects of the structural collapse behavior, including the global and local response
under element strength and stiffness deterioration, the magnitude and distribution of the
local element damage variables, and the different types of collapse mechanism. The chapter
is organized as follows. First, the archetype structure and its idealized numerical model
are described. The static and dynamic behaviors of the structure are discussed, with a fo-
cus on the continuous element strength deterioration and the response redistribution due to
damage accumulation. The study proposes new local and global damage indices, which are
better suitable for the collapse assessment of structures than existing engineering demand
parameters like the maximum story drift. The incremental dynamic analysis of the 8-story
moment frame under a suite of earthquake ground motions highlights the benefits of the
proposed damage indices for the collapse assessment of structures. The study shows that
an aftershock as strong as the main shock increases the collapse margin ratio by as much as
30% and requires more stringent design criteria for protecting the building from collapse that
currently specified. Finally, the study compares different modeling aspects for the archetype
building to highlight the benefits of the proposed beam-column elements.

5.1 Archetype Building

This study examines the static and dynamic behavior of an eight-story three-bay steel
special moment frame (SMF). The frame is adapted from the PG-2RSA performance group
in the NIST evaluation of the FEMA P-695 methodology [68]. Figure 5.1 shows the plan
view and the elevation view of the SMF. The columns and girders are wide-flange sections
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with the dimensions summarized in Table 5.1. The sections are designed for the seismic
design category (SDC) Dmax in accordance the AISC 341-05 strength requirements [5] and
the ASCE/SEI 7-05 seismic requirements [1]. Reduced beam section (RBS) connections are
used in the girders following the AISC 358-05 recommendations [6]. The fundamental period
from eigenvalue analysis of the SMF is 2.29 sec [68], which seems rather high for a mid-rise
structure. To be consistent with the design specified in the NIST report, this value is adopted
in the subsequent analyses.

Tributary area for 
   gravity loading

140’

10
0’

3@
20

’

3@20’Special moment frame

(a) Plan view of archetype building

15 ft

13 ft

13 ft

13 ft

13 ft

13 ft

13 ft

13 ft

20 ft 20 ft 20 ft

(b) Frame elevation view

Figure 5.1: Archetype eight-story three-bay special moment frame

Story Elevation (in.) Beam Size
Exterior

Column Size
Interior

Column Size
1 166.55 W30x108 W24x131 W24x162
2 322.55 W30x116 W24x131 W24x162
3 478.55 W30x116 W24x131 W24x162
4 634.55 W27x94 W24x131 W24x162
5 790.55 W27x94 W24x131 W24x131
6 946.55 W24x84 W24x131 W24x131
7 1102.55 W24x84 W24x94 W24x94
8 1258.55 W21x68 W24x94 W24x94

Table 5.1: Member sizes for eight-story three-bay moment resisting frame
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5.2 Structural Model

5.2.1 Element models

5.2.1.1 Girder model

Each girder is modeled with the beam element based on damage-plasticity in Chapter 3.
Plastic hinge offsets are specified and the yield strength at the reduced sections is lower than
the nominal value to simulate the response of RBSs. Table 5.2 summarizes the strength
reduction factor λ and the hinge offset ratio χ at the reduced sections used in the analysis.
The kinematic hardening ratio Hkr = 0.025 and the isotropic hardening ratio Hir = 0.002
are used. The damage parameters are specified based on the section compactness h/tw and
bf/tf and the member slenderness Lb/ry in accordance with the guidelines for the parameter
identification in Chapter 3.

Beam Size Strength reduction, λ Hinge offset, χ
W30x116 0.805 0.074
W30x108 0.808 0.074
W27x94 0.802 0.068
W24x84 0.798 0.061
W21x68 0.797 0.055

Table 5.2: Parameters of reduced beam sections

5.2.1.2 Column model

Each column is modeled with the column element based on damage-plasticity in Chapter 4
to capture the effect of variable axial forces on the yielding and deterioration in the flexural
response. The kinematic hardening ratio Hkr = 0.025 and the isotropic hardening parameter
Hip = 1.5e−4 are specified. The parameters c1, c2, c3, c4, c5 are calibrated to match the yield
envelope given by an equivalent distributed plasticity model. For the W24 column sections,
the following values give sufficient accuracy c1 = 2.1, c2 = 2, c3 = 2.95, c4 = 2, c5 = 1.335.
The damage parameters are specified in accordance with the guidelines for the parameter
identification in Chapter 3 and Chapter 4.

5.2.1.3 Assumptions

To simplify the graphical illustration, a single damage variable d = max(d+, d−) is used
to represent the strength and stiffness deterioration in each plastic hinge of a beam-column
element. The damage variable d is cumulative over the range [0, 1] and has similar char-
acteristics as the two damage variables d+ and d−. Other combinations of the two damage
variables d+ and d− may be worthwhile exploring in future studies.
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The primary focus of this study is on modeling of the deterioration in the columns and
girders, and thus, other contributions to the global strength and stiffness deterioration are
not accounted for. For instance, the panel zones are assumed to induce negligible shear
deformations and strength deterioration. The effect of floor slabs on the element yield
strength and flexural stiffness is also neglected. Figure 5.2 illustrates the model of a typical
floor. Rigid joint offsets are specified to account for the member clear span.

 Beam 
element

Column
element

   Rigid  
joint offset

 P.H.
offset

Plastic
 hinge 
 (P.H.)

Figure 5.2: Typical floor model of the eight-story three-bay moment frame

5.2.2 Mass, damping, nonlinear geometry

A lumped mass model is adopted for the subsequent dynamic analyses. Rayleigh damping
is used with the damping matrix proportional to the constant mass matrix and the tangent
stiffness matrix for a damping ratio of 2.5%. The corotational formulation is used to account
for the nonlinear geometry effect. Inflexible leaning columns are specified adjacent to the
SMF to capture the P-∆ effect from the additional tributary gravity on the perimeter frame.

5.2.3 Member naming convention

The same naming convention as Section 4.1.6 is used. For example, C-3-1-T refers to the
top end of the 3rd story exterior column on the left, G-1-2-R refers to the right end of the
1st floor girder in the second bay from the left.

5.3 Static Response

A pushover analysis is conducted under the factored gravity loads and the monotonically
increasing lateral forces with distribution proportional to the fundamental mode shape, as
Figure 5.3(a) shows. Figure 5.3(b) plots the base shear normalized by the weight of the
structure against the average roof drift. The limited ductility capacity is evident in the
relatively rapid strength reduction over a small range of drift ratio values.



CHAPTER 5. CASE STUDY: 8-STORY STEEL MOMENT FRAME 156

1.00

0.92

0.81

0.67

0.52

0.38

0.24

0.11

(a) Lateral load distribution

0 0.01 0.02 0.03 0.04 0.05
Average roof drift ratio

0

0.02

0.04

0.06

0.08

0.1

0.12

N
or

m
al

iz
ed

 sh
ea

r, 
V

/W
(b) Pushover curve

Figure 5.3: Pushover response: load distribution and normalized base shear vs roof drift

The story drift distribution over the height of the building at different roof drift levels
in Figure 5.4(a) identifies the collapse mechanism of the structure. Between RD = 0.03 and
RD = 0.04, plastic hinges form at the top ends of all the 2nd-story columns to initiate a
2-story mechanism. The mechanism slightly reduces the drift in stories 3 to 8 while increases
the drift in the bottom two stories. Beyond RD = 0.04, plastic hinges form at the top ends
of all the 1st-story columns and the structure transitions into a 1-story mechanism. The new
mechanism reduces the drift in the 2nd story while further increasing the 1st story drift. The
two collapse mechanisms are also reflected in the story shear distribution in Figure 5.4(b).
As the roof drift increases, the story shear-drift relation in the upper stories ’unloads’ while
it continues increasing and exhibits evident strength deterioration in the lower stories where
the weak-story mechanism occurs.

Figure 5.5 shows the distribution of element damage at roof drift ratio RD = 0.045.
The 1-story collapse mechanism concentrates damage mostly in the 1st story columns and
girders. On the same story and floor, higher damage is observed in the columns on the
right and in the girders on the left due to the pronounced overturning effect. The excessive
damage values indicate severe local buckling in the right exterior column C-1-4.

5.4 Ground motions

This study adopts the suite of far-field ground motions in FEMA P695 [4]. The set
consists of 21 ground motion records from sites located at distances greater than or equal to
10 km from the fault rupture. No more than two records are taken from the same earthquake
to avoid the record-to-record bias. Criteria for the record selection are described in [4].
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Figure 5.4: Story drift and shear distribution
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Figure 5.5: Damage distribution at RD = 0.045

Table 5.3 summarizes the main properties of the 21 far-field ground motions from the
PEER database [14], including the record name, year, and station, the magnitude Mw, and
the peak ground acceleration PGA.

Figure 5.6 plots the elastic response spectrum for the 21 ground motion records with 2.5%
damping ratio. The median of the pseudo-acceleration on the spectrum is also highlighted
in the figure.
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ID Name Year Mw Station PGA(g)
FF1 Northridge 1994 6.7 Beverley Hills - Mulhol 0.52
FF2 Northridge 1994 6.7 Canyon County - WCL 0.48
FF3 Duzce, Turkey 1999 7.1 Bolu 0.82
FF4 Hector Mine 1999 7.1 Hector 0.34
FF5 Imperial Valley 1979 6.5 Delta 0.35
FF6 Imperial Valley 1979 6.5 El Centro Array #11 0.38
FF7 Kobe, Japan 1995 6.9 Nishi-Akashi 0.51
FF8 Kobe, Japan 1995 6.9 Shin-Osaka 0.24
FF9 Kocaeli, Turkey 1999 7.5 Duzce 0.36
FF10 Kocaeli, Turkey 1999 7.5 Arcelik 0.22
FF11 Landers 1992 7.3 Yermo Fire Station 0.24
FF12 Landers 1992 7.3 Coolwater 0.42
FF13 Loma Prieta 1989 6.9 Capitola 0.53
FF14 Loma Prieta 1989 6.9 Gilroy Array #3 0.56
FF15 Manjil, Iran 1990 7.4 Abbar 0.51
FF16 Superstition Hills 1987 6.5 El Centro Imp. Co. 0.36
FF17 Superstition Hills 1987 6.5 Poe Road 0.45
FF18 Chi-Chi, Taiwan 1999 7.6 CHY101 0.44
FF19 Chi-Chi, Taiwan 1999 7.6 TCU045 0.51
FF20 San Fernando 1971 6.6 LA - Hollywood 0.21
FF21 Friuli, Italy 1976 6.5 Tolmezzo 0.35

Table 5.3: Far-field ground motion information

5.5 Dynamic Response

This section investigates the dynamic behavior of the archetype SMF subjected to the 21
ground motions magnified by a scale factor SF. This study uses a collapse criteria based on
the maximum story drift DR. Because there are cases in which the structure stabilizes after
it experiences an excessive story drift, global collapse initiates when the maximum story DR
exceeds 10% and continues to grow thereafter. In the following discussion, the displacements
and accelerations are measured relative to the ground.

5.5.1 Local damage distribution

The location and the magnitude of the damage variables within the structure indicate
where severe damage concentrates and offer insight into the collapse mechanisms. In par-
ticular, the symmetry of the damage distribution is indicative of the overturning effect due
to the relative motion of the structure. For illustration, this section examines the local re-
sponse of the members on the first story where damage is most severe: the exterior columns



CHAPTER 5. CASE STUDY: 8-STORY STEEL MOMENT FRAME 159

0 0.5 1 1.5 2 2.5
Period T (sec)

0

0.5

1

1.5

2

2.5

3

Ps
eu

do
-A

cc
el

er
at

io
n 

(g
)

Individual
Median

(a) Individual records

0 0.5 1 1.5 2 2.5
Period T (sec)

0

0.2

0.4

0.6

0.8

1

1.2

Ps
eu

do
-A

cc
el

er
at

io
n 

(g
)

(b) Median value

Figure 5.6: Elastic response spectrum of the far-field ground motions, ξ = 2.5%

C-1-1 and C-1-4, and the girders G-1-1 and G-1-3. The following subsections compare two
scenarios with a nonsymmetric and a symmetric damage evolution in the exterior columns
and discuss the damage distribution in the girders.

5.5.1.1 Nonsymmetric column damage

A nonsymmetric damage distribution results from the considerable discrepancies in the
plastic energy dissipation in the columns of the same story. Such discrepancies are typically
due to the larger drift in one direction that amplifies the overturning effect and induces more
plastic axial deformations in the columns on one side than on the other. In a special case, the
structure initiates a weak-story mechanism and permanent deformations in one dominant
direction, which exacerbates the discrepancies in the column plastic axial deformations, and
in turn, leads to a nonsymmetric damage distribution.

Figure 5.7 shows the response under the Hector Mine record at Hector station (FF4) with
scale factor SF = 6.6. A large pulse at t = 7 sec initiates a 2-story mechanism, as evident
in the excessive drifts in the bottom two stories in Figure 5.7(a), and leads to a one-sided
relative motion in the positive direction. The damage distribution is highly nonsymmetric
with higher damage on the right side of the structure. The high damage value at the base
of C-1-4 indicates severe local buckling in the column. It is noteworthy that the damage in
the interior columns is relatively mild because of the higher ductility of the larger section
size. Moreover, damage in the interior columns is more symmetric due to the reduced effect
of the overturning moment.

Figure 5.8 compares the response at the base of the 1st story exterior columns C-1-1 on the
left and C-1-4 on the right. The comparison of the moment-rotation relation in Figure 5.8(a)
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Figure 5.7: Response distribution and deformed shape (FF4, SF = 6.60)

leads to two observations: (1) the columns accumulate similar flexural deformations, and (2)
the strength and stiffness deterioration is more pronounced in C-1-4 than in C-1-1. The
first observation suggests that the axial deformations govern the discrepancies in the column
response. Due to the relative motion of the structure causing permanent deformations in
the positive direction, the overturning effect induces higher compression and more excessive
plastic axial deformations on C-1-4, as Figure 5.8(b) shows. The evolution of the plastic axial
deformations in Figure 5.8(b) correlates well with the damage evolution in Figure 5.8(c).
After the large pulse at t = 7 sec triggers the weak-story mechanism, the accumulation of
plastic axial deformations in C-1-4 accelerates due to the overturning effect and leads to
higher damage increments than in C-1-1.

5.5.1.2 Symmetric column damage

A symmetric damage distribution results from the negligible discrepancies in the plastic
energy dissipation in the columns when the ground motion induces relatively equal large
drifts in both directions. Two scenarios resulting in a symmetric damage distribution are:
(1) the ground motion has relatively small intensity that induces minor discrepancies in the
column plastic deformations, and (2) the impact of axial forces from the overturning effect
on the column response is relatively small, which is typical in low-rise to mid-rise structures.

Figure 5.9 shows the response under the Northridge record at Beverly Hills station (FF1)
with a scale factor SF = 5.0. The evolution of the story drifts in Figure 5.9(a) indicates
comparable drifts in the two directions, with the maximum positive drift ratio of 0.06 and the
maximum negative drift ratio of −0.07. The damage distribution in Figure 5.9(b) is rather
symmetric, with the damage in C-1-4 (d = 0.51) practically equal to the damage in C-1-1
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Figure 5.8: Response of 1st story exterior columns (FF4, SF = 6.60): (a) Flexural response
at base, (b) Plastic axial deformation, (c) Damage evolution
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Figure 5.9: Response distribution and deformed shape (FF1, SF = 5.00)

(d = 0.49). Even though the maximum drift is smaller in the positive direction, the right
column is slightly more damaged because the structure develops permanent deformations in
the positive direction and accumulates more plastic energy in the later follower cycles.

The symmetric damage distribution is reflected in the similar moment-rotation relation
at the base of the exterior columns in Figure 5.10(a). The evolution of the plastic axial
deformation in Figure 5.10(b) and the damage variables in Figure 5.10(c) correlate well with
the 1st story drifts in Figure 5.9. The large positive drift at t = 5-8 sec gives rise to rapid
increments in the plastic axial deformations and damage in C-1-4. At t = 8-9 sec, the large
negative drift induces significant increases in the plastic axial deformations and damage in
C-1-1, and the damage in the two columns becomes practically equal. Thereafter, as the



CHAPTER 5. CASE STUDY: 8-STORY STEEL MOMENT FRAME 162

structure forms a 2-story mechanism and leans permanently to the right, C-1-4 gradually
accumulates more plastic axial deformations and exceeds slightly the damage in C-1-1 at the
end of the ground motion. The discrepancies, however, are negligible in this case.

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
Flexural deformation

-1

-0.5

0

0.5

1

M
om

en
t, 

M
/M

p

C-1-1
C-1-4

(a)

0 5 10 15 20 25 30
Time (sec)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Pl
as

tic
 a

xi
al

 d
ef

or
m

at
io

n 
(%

) C-1-1
C-1-4

(b)

0 5 10 15 20 25 30
Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
am

ag
e 

va
ria

bl
e

C-1-1
C-1-4

(c)

Figure 5.10: Response of 1st story exterior columns (FF1, SF = 5.0): (a) Flexural response
at base, (b) Plastic axial deformation, (c) Damage evolution

5.5.1.3 Girder damage

Since the axial forces in the girders are relatively small, girder damage depends entirely
on the flexural response, and in particular, on the plastic flexural deformations. If the
columns on the same story experience similar axial deformations, which typically leads to a
symmetric column damage pattern, the plastic flexural deformations in the adjacent girders
are comparable and the girder damage distribution is symmetric. Otherwise, if the differ-
ential plastic axial deformations in the columns are significant, the floor rotation imposes
different rotation demand on the adjacent girders and results in a nonsymmetric damage
pattern. In general, however, the damage discrepancies in girders on the same floor are less
pronounced than in the columns due to the relatively small differences in the plastic flexural
deformations.

Figure 5.11 illustrates a slightly nonsymmetric girder damage distribution between G-1-
1-L and G-1-3-R under FF4 with SF = 6.6. The global response and local response in the
1st-story columns are shown in Figure 5.7 and Figure 5.8. Since more plastic deformations
are accumulated in C-1-4 than in C-1-1, less plastic deformations are developed in G-1-3
than in G-1-1, and as a result, the strength deterioration in G-1-3 is less pronounced, as
evident in the moment-rotation relation in Figure 5.11(a).

5.5.2 Collapse mechanism

For all 21 ground motions, the structure forms either a 1-story or a 2-story collapse
mechanism. The deformed shape with fivefold magnification in Figure 5.12 shows a 1-story
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Figure 5.11: Girder response of 1st floor girders (FF4, SF = 6.6)

mechanism under the Loma Prieta record at Gilroy Array station (FF14) with scaled factor
SF = 9.0, and a 2-story mechanism under the Northridge record at Beverly Hills station
(FF1) with scaled factor SF = 5.6. In addition to the local damage variables discussed in
the preceeding section, the following examines two global variables that are indicative of a
weak-story collapse mechanism: the story drifts and the floor rotations.

(a) One-story mechanism (b) Two-story mechanism

Figure 5.12: Deformed shape with weak-story collapse mechanism: (a) FF14, SF = 9.0, (b)
FF1, SF = 5.6

Figure 5.13(a) plots the evolution of the story drifts under FF14, SF = 9.0. The 1st story
drift ratio increases drastically near the end of the ground motion and is well-separated from
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the other stories, which is indicative of a 1-story collapse mechanism. The 1-story mechanism
induces significant damage to the structural members in the 1st story and negligible damage
in the upper stories. This is reflected in the more pronounced deterioration in the 1st story
shear in Figure 5.13(b) relative to the 2nd story shear in Figure 5.13(c).
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Figure 5.13: Story DR and shear distribution of a one-story mechanism (FF14, SF = 9.0)

The floor rotation results from the difference in the column axial deformations on the
same story and adopts a positive convention for the counter-clockwise direction. Figure 5.14
shows two distinct trends in the distribution of the average floor rotation. In the first case,
the floor rotation distribution under FF4 with SF = 6.6 in Figure 5.14(a) gives rise to two
observations. First, all floor rotations remain negative and gradually increase in magnitude.
This behavior implies that the structure undergoes permanent relative motion to the right
until collapse. Second, the rotations from the 2nd floor to the 8th floor are practically the
same and well-separated from the 1st floor. Since rotations are cumulative as elevation
increases, the difference in the rotation between adjacent floors is the relative rotation due
to diffential shortening in the columns between the floors. This suggests that the overturning
effect is significant in the bottom two stories and negligible in the upper stories, which implies
a 2-story mechanism consistent with the observation from the dynamic analysis.

The second case in Figure 5.14(b) examines the floor rotations under FF1 with SF =
3.2. In contrast to the first case, the floor rotations alternate in signs with relatively small
magnitude and remain stable until the end of the ground motion. This behavior implies that
the structure oscillates in both directions and does not collapse. The rotations on different
floors are more evenly distributed, which implies that the stories contribute similarly to the
total roof rotation and a weak-story mechanism is not likely.

5.5.3 Other response distribution

5.5.3.1 Plastic hinges

In contrast to the pushover analysis, the dynamic analysis indicates a wider spread of
plastic hinges in almost all elements up to the roof level. This observation leads to two
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Figure 5.14: Time history of the average floor rotations

implications: (1) for flexible structures, which is typically the case for most tall buildings, the
higher mode effect is important, and (2) the constant lateral force distribution proportional
to the fundamental mode shape in pushover analysis might not represent sufficiently the
force distribution in the dynamic analysis.

5.5.3.2 Lateral inertial forces

As opposed to a constant load pattern in the pushover analysis, the lateral force dis-
tribution varies in the dynamic analysis. To illustrate some commonly observed patterns,
Figure 5.15 plots the distribution of the average lateral floor acceleration at various instants
for 3 different ground motions.
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Figure 5.15: Distribution of floor acceleration
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In the first case in Figure 5.15(a), the inertial force distribution is rather irregular. Lo-
cation of the maximum acceleration varies and the sign alternates with increasing eleva-
tion. This pattern emphasizes the impact of the higher modes. In the second case in
Figure 5.15(b), the distribution is relatively uniform over the building height. In the third
case in Figure 5.15(c), the inertial force distribution is a combination of the two: irregular
with alternating signs in the beginning and more uniform as the ground motion progresses.

The magnitude of the inertial forces reduces toward the end of shaking due to two reasons:
(1) the reduction in the ground motion intensity near the end, and (2) the damage localization
in the structure due to the strength deterioration in the element response.

5.5.4 Further remarks
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Figure 5.16: Dynamic response under FF9

This section examines the story drifts and damage distribution under the same ground
motion with different scale factors to investigate the effect of ground motion intensity on
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the dynamic behavior. The response under the Kocaeli record at Duzce station (FF9) with
scale factor SF ranging from 2.5 to 4.5 is selected for illustration. The time history of the
1st story drift in Figure 5.16(a) shows that the permanent deformation changes direction as
the scale factor varies. Figure 5.16(b) plots the drift distribution when the maximum value
is attained. Two important observations arise: (1) for the same ground motion, the story
where the highest drift value is attained varies with the ground motion intensity, and (2)
the maximum drift does not increase monotonically with the ground motion intensity. The
second remark is shown in the relation of the maximum drift and the spectral acceleration
Sa in Figure 5.16(c). The change in the relative motion direction leads to the nonmonotonic
relation and explains the ’resurrection’ phenomenon observed in the literature in which the
structure regains stability as the ground motion intensity increases.

Figures 5.16(d)–(e) highlights the effect of the ground motion intensity on the damage
distribution. For SF = 2.5, the maximum drift is attained in the positive direction and the
right columns are more damaged, whereas for SF = 4.5, the maximum drift is attained in
the negative direction and the damage in the left columns is more severe.

5.6 Global Damage Index

The preceeding sections suggest a close correlation between the local damage variables
and the global response. This section derives a global damage index from the local damage
variables to assist in the assessment of the global damaged states. The section starts with
the formulation of the global damage index and an example to illustrate the satisfactory
correlation to the collapse mechanisms. The section proceeds with a comparison study with
the maximum story drift, which is the most common Engineering Demand Parameter (EDP)
for damage assessment of structures. Based on the comparison, three limit states of steel
structures are identified in terms of the damage values. The section concludes with a case
study to demonstrate the use of the proposed damage index in the collapse assessment of
the archetype structure under an earthquake sequence.

5.6.1 Formulation

Figure 5.17 illustrates four damage indices: the column top and bottom indices, the joint
indices, and the floor indices.

The column top index of the k-th story, D
(k)
t , is defined as a weighted average of the

damage variables d
(el)
t at the top end of column element el on the k-th story. Similarly, the

column base index of the k-th story, D
(k)
b , is defined as a weighted average of the damage

variables d
(el)
b at the base of column element el on the k-th story.

D
(k)
t =

∑
w

(el)
t d

(el)
t∑

w
(el)
t

D
(k)
b =

∑
w

(el)
b d

(el)
b∑

w
(el)
b

(5.1)
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Figure 5.17: Illustration of column indices, joint indices, and floor indices

where w
(el)
t serves as weight for the damage variable d

(el)
t and w

(el)
b is the weight for the

damage variable d
(el)
b . w

(el)
t = w

(el)
b = 1 is adopted in this study.

The joint index at the k-th node, D
(k)
j , is defined as a weighted average of the damage

variables d(el) at the end of element el adjacent to node k:

D
(k)
j =

∑
w(el)d(el)∑
w(el)

(5.2)

where w(el) serves as weight for the damage variable d(el); w(el) = 1 is adopted in this study,
implying that the joint index is the mean of the respective local damage variables.

The floor index of the k-th floor, D
(k)
f , is defined as a weighted average of the joint indices

Dj on floor k:

D
(k)
f =

∑
WjDj∑
Wj

(5.3)

where Wj serves as weight for the joint index Dj and Wj = 1 is adopted in this study.
Finally, the global damage index, DG, is defined as the weighted average of the floor

indices Df :

DG =
W

(1)
b D

(1)
b +

∑
W

(k)
f D

(k)
f

W
(1)
b +

∑
W

(k)
f

(5.4)



CHAPTER 5. CASE STUDY: 8-STORY STEEL MOMENT FRAME 169

where D
(1)
b and W

(1)
b are the 1st-story column base index and the corresponding weight, and

D
(k)
f and W

(k)
f are the floor index and the corresponding weight. The weight is assumed equal

to the respective damage index, W
(1)
b = D

(1)
b , W

(k)
f = D

(k)
f to emphasize the contribution of

the floors with more severe deterioration.

5.6.2 Localized Damage Region

When a story mechanism initiates, the structure deforms as multiple blocks: one ’active’
block with highly inelastic element behavior and several adjacent ’passive’ blocks with elastic
or mildly inelastic element behavior. A localized damaged region (LDR) is defined as the
’active’ block, which is a collection of elements over one or more stories with significantly
higher damage than in the other elements outside the block. The LDR is characterized by a
high column top index Dt and a high column base index Db at the upper and lower edges of
the block, and relatively high floor indices Df on the intermediate floors within the LDR.

Dt,max

Db,max

LDR

‘Passive’ 

   block

‘Passive’ 

   block

‘Active’ 

   block

Figure 5.18: Typical configuration of a story mechanism

Figure 5.18 illustrates a possible weak-story collapse mechanism of a five-story two-bay
frame. The element ends with relatively high damage and plastic deformations are shown
with red circles. The LDR consists of the 2nd and 3rd stories and is restricted between
the column bases with the highest damage index Db and the column tops with the highest
damage index Dt. The LDR has significant story drifts, vertical floor translations, and
floor rotations due to the excessive element deformations, as opposed to the limited element
deformations in the adjacent ’passive’ blocks.

The following example demonstrates the correlation of the LDR and the collapse behav-
iors of the structure. Figure 5.19 shows the distribution of the column top and base damage
indices and the floor indices for the archetype eight-story SMF under FF1 with SF = 5.6.
It is noteworthy that the global damage indices Dt, Db, Df have lower values than the local
element damage variables because the former are averages of the latter and account also for
the undamaged element ends. The LDR consists of members in the bottom 2 stories and



CHAPTER 5. CASE STUDY: 8-STORY STEEL MOMENT FRAME 170

D(2)
t = 0.27

D(1)
b = 0.61

D(1)
F = 0.30

Localized 
damaged
region 
(LDR)

(a) Localized damage region

D(8)
F = 0

D(7)
F = 0

D(6)
F = 0

D(5)
F = 0.00

D(4)
F = 0.00

D(3)
F = 0.00

D(2)
F = 0.06

D(1)
F = 0.30

(b) Floor indices

D(1)
t = 0.13

D(2)
t = 0.27

D(3)
t = 0

D(4)
t = 0

D(5)
t = 0

D(6)
t = 0

D(7)
t = 0

D(8)
t = 0

(c) Column top indices

D(1)
b = 0.61

D(2)
b = 0

D(3)
b = 0

D(4)
b = 0

D(5)
b = 0

D(6)
b = 0

D(7)
b = 0

D(8)
b = 0

(d) Column base indices

Figure 5.19: Damage indices and localized damage region (FF1, SF = 5.6)

satisfies all three conditions: (1) the upper edge corresponds to the maximum column top

index D
(2)
t = 0.27 on the 2nd story, (2) the lower edge corresponds to the minimum column

base damage D
(1)
b = 0.61 on the 1st story, and (3) the floor indices between the two edges

are relatively high D
(1)
f = 0.3. The LDR is consistent with the 2-story mechanism observed

for this ground motion.
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5.6.3 Comparison with maximum story drift

Figure 5.20(a) plots the global damage index DG against the maximum story drift ratio
DR. Each data point corresponds to a dynamic analysis under one of the 21 far-field ground
motions with a scale factor SF . For clarity, lines are drawn to connect the data points from
the same ground motion. The figure zooms in the response up to collapse and leaves out the
data points beyond collapse in which the structure is unstable and the maximum story drift
becomes unbounded. The damage index DG initiates at DR ≈ 0.025 and varies essentially
linearly with the story drift DR up to DR ≈ 0.15 when the structure becomes unstable.
Due to the weak-story mechanism, both the story drift and the damage are excessive in the
LDR, which explain the correlation of the two variables.
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Figure 5.20: Comparison of damage index DG and maximum story drift

To distinguish the two variables, Figure 5.20(b)-(c) plots the evolution of the maximum
story drift ratio DR and the global damage index DG under FF12 and SF = 6.9. The
story drift shows two significant increments at load point (LP) 1 and 3 when the previous
maximum or minimum drift value is exceeded, while remains constant between LP1 and LP2
and after LP3. The maximum story drift is able to capture the large earthquake pulses that
cause excessive drift increments but fails to account for the damage accumulation in follower
half cycles after the maximum drift is attained. In contrast, the global damage index DG not
only predicts the rapid damage growth between LP2 and LP3, but also captures the gradual
damage accumulation during the load reversal from LP1 to LP2 and during the follower
cycles after LP3. The global damage index is cumulative and attains its maximum value at
the end of the ground motion, which is critical for ground motions with longer duration and
numerous cycles.

Figure 5.21 plots the two variables against the ground motion intensity, which is repre-
sented by the spectral acceleration Sa evaluated at the fundamental period of the archetype
structure. This plot is known as the incremental dynamic analysis (IDA) curve [105] and
typically used in collapse assessment of structures. It is noteworthy that the maximum story
drift DR does not always vary monotonically with the ground motion intensity because it
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does not account for the direction of motion. In contrast, the global damage index DG varies
monotonically with the ground motion intensity.
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Figure 5.21: Incremental dynamic analysis curve in terms of story drift and damage index

It is noteworthy that the proposed global and local damage measures correlate well
with both the global and the local response variables. In particular, the damage variables
account for the plastic axial deformation, which is critical in collapse simulations but typically
neglected in practice due to limitations of available column models. Therefore, the proposed
damage formulation is a rational way to bridge from the local to the global response and
avoids separate limit state checks that are commonly used in practice.

5.6.4 Damage-base limit states

This subsection calibrates the global damage index DG against the maximum story drift
ratio DR to define three limit states of the archetype structure in terms of damage: life
safety (LS), collapse prevention (CP), and collapse (CL). FEMA 356 [3] associates the LS
limit state with a story drift value DR = 0.025 and the CP limit state with DR = 0.05.
A drift ratio between DR = 0.1 and DR = 0.15 has been widely adopted for the CL limit
state [4]. These story drift values correspond to the following damage thresholds at the limit
states of the 8-story frame:

(1) Life safety (LS): DG = 0.01. Damage initiates in several elements after sufficient
plastic deformations. The story drift is relatively small and a story mechanism is not
present.

(2) Collapse prevention (CP): DG = 0.1. Significant plastic deformations are accumulated
in several elements and the strength and stiffness deterioration is moderate, especially
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in the 1st and 2nd stories. The structure forms a localized damage region (LDR) and
initiates a weak-story mechanism.

(3) Collapse (CL): DG = 0.4 Elements in the LDR undergo significant plastic deforma-
tions and severe damage due to local buckling and/or brittle failure. Differential col-
umn shortening results in considerable floor rotations. The weak-story mechanism is
pronounced with significant story drifts.
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Figure 5.22: Comparison of max drift ratio DR and damage index DG at different limit
states: (a) Life safety, (b) Collapse prevention, (c) Collapse

Figures 5.22(a)–(c) compare the damage index DG and the maximum story drift ratio DR
at the three limit states on the IDA curves in terms of the damage index DG. Figure 5.22(d)–
(e) compare the ground motion intensity at the three limit states defined by the two response
variables. The red circles correspond to the limit states in terms of the story drift and
the blue circles in terms of the damage index. The slight discrepancies in the spectral
acceleration Sa at the LS limit state suggest that a smaller damage threshold may provide
a more consistent result, and indeed, DG = 0.075 gives better agreement. However, this is
not pursued here because the small damage value implies an impractical level of accuracy.
The value DG = 0.01 is selected to represent an arbitrary small threshold when the global
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damage index DG begins to accumulate. At the CP and the CL limit states, the agreement
between the two criteria is satisfactory.
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Figure 5.23: Probability of different damage limit states

Figure 5.23 compares the fragility curves for the three limit states defined in terms of
the proposed damage index. The curves are constructed from the IDA results and assume
that the fragility function follows the cumulative distribution function of the log-normal
distribution. The fragility curves permits an estimation of the structural damage state for a
given ground motion intensity so that measures for damage mitigation can be undertaken.

5.6.5 Case study: collapse assessment with aftershocks

The following case study illustrates an application of the proposed global damage index in
the damage assessment of structures in the event of aftershocks. The archetype 8-story frame
is subjected to a series of ground motions consisting of a main shock and an aftershock. An
incremental dynamic analysis is performed and the global damage index is used to assess the
change in the damaged states and the collapse fragility of the structure with consideration
of aftershocks.

5.6.5.1 Ground motions

Characterization of aftershocks involves two major sources of uncertainties: the probable
intensity and the location of the aftershock relative to the main shock. Both can create
different damaging effects to the structure. Another critical aspect is when the aftershock
occurs after the main shock. This has an important implication in repair of damaged build-
ings, that is, whether it is more practical to repair immediately after the main shock and
perhaps again following the aftershock, or to repair after the aftershock provided that the
structure survives the main shock. These complex issues are beyond the scope of this study.
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For this preliminary study, the following assumptions are made: (1) the main shock is among
the 21 far-field ground motions in the preceeding sections; (2) the aftershock is identical to
the main shock, and consequently, has the same spectral shape and energy content; (3)
the effect of free vibration after the MS is neglected and the aftershock follows the main
shock immediately; (4) the effect of the aftershock location is not accounted for; and (5) the
ground motions are scaled by the same factor in the main shock and the aftershock for the
incremental dynamic analysis.
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Figure 5.24: Acceleration history of FF1 record with aftershock

The simplifications, in particular (2)-(5), might not give the most realistic representation
of the AS; however, they are sufficient for the current study. Moreover, the selection of the
aftershock as large as the main shock has been done in design practice and found to give
confidence to engineers, public officials, and owners as they already have a clear idea of what
the structure undergoes in the main shock. Figure 5.24 illustrates the ground acceleration
history of the MS and aftershock sequence, in which the MS is the FF1 record with SF = 1.

5.6.5.2 Collapse probability

Figures 5.25(a)–(b) plot the collapse probability against a ground motion intensity mea-
sure and a target demand parameter, respectively, in two cases: (1) if only the main shock
is considered (MS), and (2) both the main shock and the aftershock are considered (MS +
AS).

The fragility curves in Figure 5.25(a) suggest that under the same spectral acceleration
Sa, the aftershock leads to a considerable increase in the collapse risk: from 20% under MS
to 45% under MS + AS, 40% under MS to 75% under MS + AS. The aftershock also results
in a roughly 30% increase in the collapse margin ratio, which is proportional to the ground
motion intensity corresponding to a 50% collapse probability [4].
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Figure 5.25: Collapse probability with and without consideration of aftershocks

Figure 5.25(b) implies a substantial increase in the collapse risk if an aftershock follows.
For example, the structure does not collapse with DG = 0.2 at the end of the main shock;
however, if an aftershock follows, the collapse risk increases significantly with a 80% prob-
ability. In another example, the threshold DG = 0.4 at the end of the main shock is the
median damage level corresponding to a 50% collapse probability if only the main shock is
accounted for; however, if an aftershock follows, this damage level almost ensures collapse
with a 98% probability. Figure 5.25(b) suggests that to target a 50% collapse probability, the
structure is designed for a damage threshold DG = 0.4 if only the main shock is accounted
for. However, if the aftershock is also considered, the target damage threshold becomes
DG = 0.13, which implies that the structure is designed for the CP limit state instead of the
CL limit state at the end of the main shock. Due to the substantial increase in the collapse
probability and the more stringent requirements of the allowable damage when aftershocks
are present, the study recommends that aftershocks should be considered in the dynamic
analysis and design of structures. The structure should be ’red-tagged’ once the damage
index exceeds the CP limit state threshold DG = 0.1 to account for the possible following
aftershock.

It is instructive to compare the collapse fragility of the structure under aftershocks using
other commonly used damage measures, such as the maximum story drift and the residual
story drift. This task will be pursued in future studies.
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5.7 Effect of Modeling Assumptions

The proposed damage-plasticity element models account for three characteristic features
that capture complex global and local behavior up to collapse: (1) the strength and stiffness
deterioration of the element response, (2) the plastic hinge offsets, and (3) the inelastic axial
force-deformation relation and the effect of variable axial forces on the flexural behavior. In
practice, one or several aspects are often neglected in the simulations due to limitations of
available models. In this section, the structural model in the preceeding sections is used as
a reference (model R) to compare against three alternatives that represent commonly-used
existing models:

• Model A: same as Model R, but the element response does not account for damage.
The element behavior is linear elastic with linear kinematic and isotropic hardening.

• Model B : same as Model R, but no plastic hinge offset is specified. The model does
not explicitly simulate the RBS connections.

• Model C : same as Model R, but the column response does not account for the inelas-
tic axial behavior and the axial-flexural interaction. To replicate this behavior, the
damage-plasticity beam element in Chapter 3 is used to model the columns.

The comparison addresses two objectives: (1) to evaluate the change in the dynamic re-
sponse of the archetype SMF in the absence of the aboved features in the element models, (2)
to identify potential limitations of the existing element models and highlight the advantages
of the proposed models in collapse assessment of SMFs.

5.7.1 Effect of element damage

The response under the Loma Prieta record at Gilroy Array station (FF14) is used
to distinguish model R and model A. With the strength and stiffness deterioration, the
structure collapses at SF = 9.0 compared to SF = 12.15 if no element damage is accounted
for. Figure 5.26 compares the global and local response of the two models under the same
ground motion intensity SF = 9.0. The average lateral roof drifts are almost identical up
to t = 15 sec whereas the 1st story drifts deviate substantially after t = 5 sec. In contrast
to model A, model R shows a drastic increase in the 1st story drifts and indicates the loss
of global stability. The residual story drift distribution in Figure 5.26(c) implies a 1-story
collapse mechanism with excessive 1st story drift in model R and a stable structure with
negligible deformations in model A.

Figures 5.26(d)-(f) highlight the local response of the members in the 1st story. Model
A captures well the yield strength and the response prior to softening because both models
use the same elements to describe the nondegrading response, but misses the strength and
stiffness deterioration under cyclic loading. Without the strength and stiffness deterioration,
less plastic axial deformation is accumulated in the columns, as evident in the axial response
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Figure 5.26: Comparison of dynamic response in model R and model A

of C-1-1 in Figure 5.26(d). Model A gives stable hysteresis loops for the column moment-
rotation relation and overlooks the severe strength reduction in C-1-1, as Figure 5.26(e)
shows. Discrepancies in the girder response are less pronounced in Figure 5.26(f) because
the damage in the girders is relatively mild.

Figure 5.27 shows the response of model A at SF = 12.15 to demonstrate the different
collapse behavior when element damage is not accounted for. The story drift distribution in
Figure 5.27(a) suggests that the structure is subjected to a large pulse at t = 5 sec leading
to a 2-story mechanism with excessive drifts in the bottom two stories. In contrast to the
collapse behavior of model R at SF = 9.0, the structure does not lose stability but stabilizes
with smaller story drifts as the ground motion progresses. Figure 5.27(b) compares the story
drift distribution at the instant of maximum story drift and at the end of the ground motion
to highlight the structural stability in the absence of element damage. The global response is
also reflected in the floor rotation distribution in Figure 5.27(c), which shows large positive
rotations with the bottom two floors in the early cycles followed by stable oscillations with
small amplitudes in later cycles.
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Figure 5.27: Dynamic response without element damage (FF14, SF = 12.15)

5.7.2 Effect of plastic hinge offsets

Model B uses the same beam and column elements as the reference model R but does
not explicitly simulate the RBS connections. No plastic hinge offset is specified in the
girders: the offset parameter χ = 0 and the section strength factor λ = 1. To investigate
the impact of the plastic hinge offsets, this section compares the two models using three
representative ground motions: (1) Imperial Valley record at Delta station (FF5) with scale
factor SF = 2.7, (2) San Fernando record at LA-Hollywood station (FF20) with scale factor
SF = 6.84, (3) Duzce record at Bolu station (FF3) with scale factor SF = 6.12.

Global response
Figure 5.28 compares the average roof translation and suggests moderate discrepancies

between the two models. The RBSs enhance the structural performance by reducing the
roof drift under FF5 but show no benefit under FF20 and FF3.
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Figure 5.28: Comparison of model R and model B: average roof translation

The 1st story drift in Figure 5.29 offers further insight of the model response. Under
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FF5, the plastic hinge offsets in model R strengthen the structure and avoid the rapid story
drift increments that lead to instability in model B. Under FF20, the offsets also improve
the global response by reducing the story drift. Conversely, under FF3, the offsets weaken
the structure and cause excessive 1st story drifts.
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Figure 5.29: Comparison of model R and model B: 1st story drift

The story drift time history suggests that the roof drift alone is insufficient to capture the
complex behavior of structures under extreme loads. Additional response variables in the
stories and elements are necessary to evaluate the response at a more local level, especially
when the inelastic behavior is localized in a small portion of the structure in an event of a
weak-story mechanism.

Collapse mechanism
The residual story drift distribution in Figure 5.30 compares the collapse mechanisms

predicted by the models. Among the three cases, the plastic hinge offsets are the most
effective under the FF5 record with SF = 2.7: model R remains stable while model B
collapses in a 1-story mechanism. Under the FF20 record with SF = 6.84, both models
show excessive story drifts but indicate different collapse mechanisms: model R forms a
2-story mechanism with DR = 0.11 whereas model B initiates a 1-story mechanism with
DR = 0.14. In this case, although both models collapse, the plastic hinge offsets improve
the global behavior with smaller drifts and a slightly less catastrophic collapse mechanism.
Under the FF3 record at SF = 6.12, model R collapses with a 2-story mechanism while
model B remains stable. This is in agreement with the story drift evolution and suggests
that the RBSs appear to be counter-effective.

Damage distribution
Figure 5.31 compares the final damage profiles of the two models. The plastic hinge

offsets accumulate more plastic deformations and damage at the reduced sections in the
girders to protect the adjacent column ends from severe deterioration. Due to the response
redistribution, damage initiates in the girder earlier and spreads among more members in
model R than model B.
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Figure 5.30: Comparison of model R and model B: collapse mechanisms

Under FF5, in model R, only the base of C-1-1 is significantly damaged while the damage
in other members are relatively mild. The damage profile suggests that no member fails from
severe local buckling and the structure does not initiate a weak-story collapse mechanism.
In contrast, damage in model B localizes at both ends of all the 1st story columns and is
relatively negligible elsewhere. The high damage values imply severe local buckling that
leads to column failure, and subsequently, a 1-story collapse mechanism.

Under FF20, in model R, the highest damage locates at the base of the 1st story columns,
the top end of the 2nd story columns, and the 1st floor girders. On the other hand, in model
B, damage concentrates at the top and bottom of the 1st story columns. The damage
profiles are consistent with the collapse mechanisms observed in the two models: a 2-story
mechanism in model R and a 1-story mechanism in model B.

Under FF3, in model R, the highest damage concentrates at the base of the 1st story
columns, the top of the 2nd story columns, and the 1st floor girders. The high damage values
indicate severe local buckling at these locations and a 2-story collapse mechanism. Damage
in model B localizes at the base of the 1st story columns, the top of C-1-4, and the 1st floor
girders. The damage distribution indicates a potential 1-story mechanism. It is noteworthy
that in contrast to the first two ground motions, in this case the column damage in model R
is higher because the excessive girder damage leads to the weak-story collapse mechanism,
which in turns accelerates the damage accumulation in these columns.

5.7.3 Axial-flexure interaction

To further investigate the effect of variable axial forces on the strength and stiffness
deterioration in the flexural response, two variations of model C are examined:

• Model CA: no strength reduction in the columns.

• Model CB: the column strength is reduced based on the FEMA P695 recommen-
dations [4]. The strength reduction in a column is determined from the axial-flexure
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Figure 5.31: Comparison of model R and model B: damage distribution
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interaction envelope for a constant axial force Pgrav + 0.5PE, where Pgrav is the gravity
load and PE is the maximum axial force imposed on the column that results from the
lateral forces in pushover analysis.

Model CB gives rise to two important observations: (1) theoretically the calibration
shall be performed for each individual column because the column axial force varies between
stories as well as among members on the same story due to the overturning effect, (2) since
the lateral forces are applied in one direction in the pushover analysis, the overturning effect
exerts higher axial forces and implies higher strength reduction to the columns of one side
of the building. Conversely, the lateral force direction in dynamic analysis varies, and thus,
the assumption of the direction in pushover analysis could result in inaccurate estimation of
the column strength. To account for the variable load direction, on each floor, the strength
reduction in the exterior columns is conservatively selected based on the higher axial force
among the two, and the same procedure applies to the interior columns. With these two
remarks, model CB requires preprocessing to calibrate the column strength 16 times, i.e. for
one exterior and one interior column on each story.

The following discussion highlights the dynamic response of the models in comparison to
the reference model.

Model CA
The response under FF17 with SF = 9.4 highlights the key differences in model R and

model CA. Figure 5.32 plots the evolution and the distribution of the story drifts. The
evolution of the drift in the 1st story and at the roof level indicates that model CA remains
stable while model R loses stability. The residual deformations in model CA are relative
small and do not initiate a weak-story mechanism whereas model R collapses in a 2-story
mechanism with considerable drifts in the bottom 2 stories.
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Figure 5.32: Comparison of model R and model CA: story drift and deformed shape (FF17,
SF = 9.40)

In addition to the excessive lateral drifts, the inelastic axial response allows model R to
simulate the significant shortening when the columns are severely damaged, and in turns, the
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Figure 5.33: Comparison of model R and model CA: effect of column shortening (FF17, SF
= 9.40)

considerable vertical floor displacement and floor rotation, as illustrated in Figures 5.33(a)-
(b). The vertical translation shown in Figure 5.33(a) is given as the average displacements
at the top end of the columns on the same story normalized by the column height. Model
CA does not capture the plastic axial deformation in the columns and only accounts for the
elastic axial deformation, which is relatively negligible, and thus, fails to describe the floor
vertical translations as observed in model R. Consequently, the differential axial deformations
in model CA are relatively small and lead to insignificant floor rotations. Variations in the
floor rotation with alternating signs and small amplitudes imply that the structure oscillates
about the undeformed configuration without initiating permanent relative displacements in
one dominant direction or a weak-story mechanism.

Figure 5.34 shows the response of left exterior column in the 1st story. Figure 5.34(a)
shows the load path at the column base during the first 3 inelastic half cycles in which
the column yields and accumulates plastic deformations. The axial and flexural forces are
normalized by the respective plastic capacities and superimposed on the initial yield envelope.
At the first instant, model R yields at 0.8Mp due to an axial compression −0.25Np, whereas
model CA yields at the nominal strength Mp. At the second instant, both models yield
at a similar strength −0.9Mp under practically no axial force. After several elastic load
reversals the models yield the third time, at which model R yields at −0.7Mp under an
axial compression −0.5Np and model CA yields at a slightly higher strength than Mp. It
is evident that under a small axial force, model CA gives reasonable approximations of the
column yield strength while it overestimates the strength as the axial force increases.

Figures 5.34(b)-(e) compare the flexural and axial response of C-1-1. Model CA fails to
capture the excessive strength and stiffness deterioration in the column hysteretic behavior
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(c) C-1-1 axial response
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(f) C-1-1-B damage evolution

Figure 5.34: Comparison of model R and model CA: local column response (FF17, SF =
9.40)

and the significant increments in the flexural deformation near the end of the ground mo-
tion. As expected, the two models differ significantly in the axial response. While model
CA gives a linear elastic response with limited axial deformations, model R captures the
accumulation of the plastic axial deformations as the column yields. The differences in the
plastic deformations are reflected in the evolution of the damage variables in the two models,
as Figure 5.34(f) shows.

The damage distribution at the end of the ground motion in Figures 5.35(a)-(b) are con-
sistent with the global and the local response. While model R indicates a 2-story mechanism
with damage concentration in the members of the lower two stories, model CA suggests a
different mechanism with damage localized in the girders. The symmetry of the damage
distribution also distinguishes the two models and emphasizes the effect of the axial force
on the element damage. In model CA, without the inelastic axial behavior, damage in the
columns depends solely on the flexural response. On the same floor, the elements accumulate
the same plastic flexural deformations, and thus, leading to the symmetric damage pattern.
The inelastic axial response and the axial-flexural interaction allow model R to capture the
nonsymmetric damage distribution due to the considerable overturning effect.
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Figure 5.35: Comparison of model R and model CA: damage distribution (FF17, SF = 9.40)

Model CB
With the modification based on the FEMA P695 recommendations [4], in contrast to

model CA, model CB overestimates the yield strength reduction and the element damage.
For all ground motions, model CB requires a lower scale factor SF to trigger collapse,
which implies that the model overestimates the collapse fragility of the SMF. The response
under the Northridge record at Canyon County station (FF2) is representative of the ground
motion suite and distinguishes well the two models. Figure 5.36 plots the roof drift and the
1st story drift as well as the residual deformed shape under FF2 with SF = 7.92. The drifts
are almost identical up to t = 7 sec then start to deviate. Near the end of the ground motion,
the 1st story drift in model CB grows rapidly and leads to a 1-story collapse mechanism, as
evident in the deformed shape at t = 12 sec in Figure 5.36(d). In contrast, in model R, the
structure remains stable and does not initiate a weak-story mechanism. It is noteworthy that
the deformed shape in model CB shows significant vertical translation of the floors, which
results from the excessive lateral story drifts. In each story, the column axial deformations
are uniform and the floor remains practically horizontal. In contrast, in model R, even
though the vertical translation is less pronounced, the floor rotation is evident due to the
discrepancies in the shortening of the columns in a story.

Figure 5.37 shows the response of C-1-1 and the damage distribution to further distinguish
the two models. Figure 5.37(a) shows the load path at the column base during the first 3
inelastic half cycles in which the column yields and accumulates plastic deformations. The
axial and flexural forces are normalized by the respective plastic capacities and superimposed
on the initial yield envelope. At the first instant, model R yields at 0.8Mp under an axial
compression −0.25Np. On the other hand, model CB yields at 0.6Mp, which results from the
strength reduction due to a constant axial force according to FEMA P695 recommendations.
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Figure 5.36: Comparison of model R and model CB: story drift and deformed shape (FF2,
SF = 7.92)

At the second instant, model R yields at a strength slightly lower than Mp under a small
axial compression −0.05Np, while model CB again yields at roughly 0.6Mp. At the third
instant, model R yields under a negative moment with a slightly smaller magnitude than
−Mp at axial force −0.12Np, whereas model CB yields at −0.6Mp. It is evident that the
constant axial force Pgrav + 0.5PE underestimates the column yield strength under the effect
of variable axial force.

Figures 5.37(b)-(e) compare the flexural and axial response of C-1-1. Model CB over-
estimates the element damage and shows excessive strength and stiffness deterioration in
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the column hysteretic behavior. The flexural deformation grows drastically near the end of
the ground motion implying the loss of column stability. As expected, the two models differ
tremendously in the axial response. While model CB gives a linear elastic response with lim-
ited axial deformation, the damage-plasticity element in model R captures the plastic axial
deformations accumulated as the column yields. In model R, the plastic axial deformations
are different in the members on the two sides of the structure and lead to the floor rotations
as shown in the deformed shape in Figure 5.36(c). The discrepancies in the models are
reflected in the damage evolution in the column. Figure 5.37(f) plots the damage variable
d defined as the higher of the positive and the negative damage variables d+ and d− at the
base of the column.

As expected, model CB shows more severe damage in the 1st story columns than model R.
In contrast, the damage in the 1st floor girders is higher in model R, which implies different
load redistribution mechanisms in the two models. In model CB, the high damage values
indicate severe local buckling at both ends of the 1st story columns and leads to a 1-story
collapse mechanism. Model R shows severe local buckling at the base of the 1st story exterior
columns and the 1st floor girders, moderate damage at the base of 1st story interior columns,
and mild to no damage in other members. This damage distribution suggests a possible 2-
story mechanism, however, the damage values at the top end of the 2nd story columns are
relatively small to trigger a weak story mechanism. It is evident that the column strength
modification in model CB weakens the structure and concentrates damage in a smaller region.
Moreover, without the inelastic axial behavior, the column damage in model CB depends
solely on the flexural response. On the same floor, the same plastic flexural deformations
result in a symmetric damage pattern. In contrast, the inelastic axial response and the
axial-flexure interaction allow model R to capture the nonsymmetric damage distribution to
better identify the more vulnerable locations within the structure.

5.8 Consideration of Element Brittle Failure

5.8.1 Background

Due to software limitations, the FEMA P695 methodology [4] does not explicitly simulate
the sudden strength deterioration in the element behavior, and instead, uses component
limit checks to account for the non-simulated modes. FEMA recommends that if the plastic
rotation in any plastic hinge exceeds θp = 0.063, the component is assumed to fracture.
FEMA P695 recommends that global collapse takes place if fracture occurs in any element
or the story drift exceeds the collapse limit, whichever occurs first. One limitation of this
methodology is that it overestimates the true collapse probability because failure of one
element does not necessarily result in global collapse. Moreover, the method does not address
the response redistribution in the structure in the event of an element failure, which is a very
important characteristic of the structural behavior. To address these limitations, another
structural model of the eight-story SMF, so-called model D, is developed using the same
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Figure 5.37: Comparison of model R and model CB: local column response and damage
distribution (FF2, SF = 7.92)
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elements as in model R, but the damage evolution is modified to account for the sudden
strength deterioration in the element response.

5.8.2 Calibration of model parameters

To describe the sudden strength reduction in the element response, the composite damage
evolution function in Section 2.7 is adopted. The following values are specified for the
evolution law: the normalized fracture energy ψ̂f = 0.14 and the normalized ultimate energy

ψ̂u = 0.18. These values are calibrated so that the plastic energy at the onset of brittle
failure ψ̃ = ψ̂f corresponds to the target plastic rotation θp = 0.063 under a constant axial
compression of 0.3Np. This axial force level is chosen to match the median axial force level
in the columns of the SMF subjected to the ground motion suite.

5.8.3 Pushover analysis

Figure 5.38(a) compares the base shear in model D and model R. It is noteworthy that
the pushover curve of model D is jagged with sudden reduction in the base shear. Each
drop corresponds to an instant of element fracture, and the relatively flat plateaus between
the drops indicate the force redistribution after the element failure. Four important events
are identified on the pushover curve of model D. The first event A corresponds to the first
fracture at the base of C-1-4. Up to this point, both models have identical response, and thus,
the same maximum base shear Vmax. Thereafter, due to the accelerated element strength
reduction, the normalized base shear in model D remains smaller. The second event B takes
place shortly after A and corresponds to the onset of fracture at the top end of C-1-4. The
third event C occurs at a roof drift ratio of 0.035 when the base of C-1-3 fractures and
leads to the rapid drop in the base shear. The fourth event D follows almost immediately as
fracture initiates at the base of C-1-1 and C-1-2. The roof drift reaches its maximum value
of 0.036 then slightly decreases as the structure loses stability and the base shear quickly
drops to zero.

The fracturing sequence is confirmed in the response of the 1st story columns in Fig-
ure 5.38(b). Fracture of an element leads to a significant drop in the column moment. As
fracture progresses among the 1st story columns, the forces redistribute and lead to slight
increases in the force demand in the top ends of C-1-1, C-1-2, C-1-3 as Figure 5.38(b) shows.

5.8.4 Dynamic analysis

Model D is subjected to the same 21 far-field ground motions with increasing intensity
until collapse. Response under the following two representative cases illustrate the effect of
element sudden strength deterioration: (1) the Landers record at Coolwater station (FF12)
with scale factor SF = 5.4, and (2) the Superstition Hills record at Poe Road station (FF17)
with scale factor SF = 7.2.
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Figure 5.38: Pushover analysis response with sudden strength deterioration

Global response
Figure 5.39 compares the 1st story drifts in the two models. The 1st story is selected

because most inelastic phenomena are expected to localize in this region. For each ground
motion, the instants of element fracturing are identified, which correspond to the damage
variable d exceeding the threshold 0.6. Model D exhibits many similar behaviors under the
two ground motions. In both cases, the drifts become excessive and indicate the loss of
global stability. The first fracture occurs at the base of the exterior column under higher
axial compression. Subsequent cycles lead to failure of both exterior columns, excessive story
drifts, and then failure at the base of the interior columns. The structure technically collapses
at this point as it is no longer able to resist lateral forces at the base. Failure at the top of the
1st story columns follows shortly and accentuates the 1-story mechanism. Conversely, under
both ground motions, model R suggests a stable structure without a weak-story mechanism.

The two cases FF12 and FF17, however, differ in the relative motion history of the
structure. After the first event, under FF12, the structure switches direction and leans
permanently to the right, whereas under FF17, the structure maintains in the same direction.
Under FF12, as the structure deforms in the opposite direction after the first exterior column
fractures, the overturning effect imposes higher axial compression on the remaining 1st story
exterior column, making it more susceptible to fracture. The load reversal with a large
drift amplitude in FF12 accentuates the strength deterioration in the exterior columns and
initiates collapse faster than in FF17.

Local response
Figures 5.40(a)-(b) show the response of the exterior column C-1-1 and the interior col-

umn C-1-2 under FF12. The two models give identical response up to the first event because
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Figure 5.39: Comparison of model R and model D: 1st story drift

the damage evolution is the same until the plastic energy ψ̃ reaches the fracture plastic energy
limit ψf and initiates the brittle failure. In model D, both the exterior and interior columns
experience a sharp strength reduction due to excessive plastic deformations during primary
half cycles, in which the deformation exceeds the previous maximum value. The exterior
column fails at a smaller plastic flexural deformation amplitude than the interior column due
to the higher axial compression and plastic axial deformations from the overturning effect.

Figures 5.40(c)-(d) compare the response of the two exterior columns C-1-1 and C-1-4
under FF17. In model D, both columns fracture and lose all the strength capacity, but in
slightly different manners due to the relative motion of the structure. The high axial force and
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Figure 5.40: Comparison of model R and model D: 1st story column response

plastic deformations accelerate the damage growth in C-1-4, and the column undergoes rapid
damage increments within a single primary cycle. On the other hand, C-1-1 is subjected
to a lower axial demand and the damage accumulation is relatively more gradual. The
strength reduction occurs in multiple subsequent follower half cycles, which explains the
longer duration to trigger global collapse in FF17 than FF12.

The case studies highlight the limitations in the FEMA P695 recommendation of the
plastic rotation limit θp = 0.063 for the non-simulated collapse mode. First, the criteria does
not account for the plastic axial deformations and fails to distinguish the failure modes of
the columns from the girders. Second, the constant plastic rotation limit θp does not account
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for the effect of cyclic degradation, which causes the substantial low-cycle fatigue behavior
in follower half cycles. Therefore, the proposed element model addresses the limitations of
the FEMA P695 criteria and offers a more rational and consistent approach to capture the
non-simulated collapse mode.

5.8.5 Further remarks
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Figure 5.41: 1st story drift ratio under FF19, SF = 6.93

The study concludes with an example to illustrate the complex dynamic response with
brittle failure in one or several elements. The 1st story drift under the Chi-Chi record at
TCU045 station (FF19) with scale factor SF = 6.93 is shown in Figure 5.41. It is interesting
that even with column failure, model D gives smaller drifts than model R. Only two major
events occur in model D: fracture at the base of C-1-4 at roughly t = 40 sec and then at the
top end of C-1-4 at t = 45 sec. The frame then undergoes a large number of cycles without
severe damage in other members. The structure does not lose both exterior columns under
this ground motion, which is the key driver for the instability under FF12 and FF17.

The local element response and the damage distribution in Figure 5.42 offer further
insight of the dynamic behavior. The response of C-1-4 in Figure 5.42(a) is vastly different
in the two models. Model D shows a significant strength reduction in a primary half cycle,
whereas model R shows relatively less severe damage. In contrast, the response of C-1-1 in
Figure 5.42(b) is very similar in the two models with only a slight discrepancy in the damage
value at the base: d = 0.3 in model R and d = 0.4 in model D. The response of G-1-1 in
Figure 5.42(c) shows more plastic deformations and damage in model R. The damage profile
of model D indicates higher damage in the 1st story columns and lower damage in the other
members relative to model R. In this case, the girder damage governs the global behavior
and leads to an unfavorable response in model R.
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Figure 5.42: Local response and damage distribution under FF19, SF = 6.93

Discrepancies in the local response are attributed to the force redistribution among the
members. As fracture progresses, additional forces are exerted on the adjacent members.
The simulation result suggests as that as C-1-4 fractures in model D, the additional demand
is mainly distributed to the adjacent 1st story columns instead of the 1st floor girders.
Further study is required to examine alternative load paths, such as to distribute the response
partially to both the columns and the girders.
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Chapter 6

Concluding Remarks

6.1 Summary

The objective of this dissertation is the development of a family of beam-column element
models which are based on damage-plasticity and are suitable for the damage assessment
and the collapse simulation of structures.

First, a new hysteretic damage model based on damage mechanics is developed that re-
lates any two work-conjugate response variables such as force-displacement, moment-rotation
or stress-strain. The strength and stiffness deterioration is described by a damage variable
with continuous evolution. The formulation uses a criterion based on the hysteretic energy
and the maximum absolute deformation value for the damage initiation with a cumulative
probability distribution function for the damage evolution. The damage evolution function
is extended to accommodate the sudden strength and stiffness degradation of the force-
deformation relation due to brittle fracture. The model shows excellent agreement with
the hysteretic response of an extensive set of reinforced concrete, steel, plywood, and ma-
sonry specimens. In this context it is possible to relate the model’s damage variable to the
Park-Ang damage index so as to benefit from the extensive calibration of the latter against
experimental evidence.

The 1d damage model is then extended to the development of beam-column elements
based on damage-plasticity. In these models the non-degrading force-deformation relation
in the effective space is described by a linear elastic element in series with two rigid-plastic
springs with linear kinematic and isotropic hardening behavior. The first model, the series
beam element, assumes that the axial response is linear elastic and uncoupled from the
flexural response. The second model, the NMYS column element, uses an axial-flexure
interaction surface for the springs to account for the inelastic axial response and capture the
effect of a variable axial load on the flexural response. A novel aspect of the beam-column
formulation is that the inelastic response is monitored at two locations that are offset from
the element ends to account for the spread of inelasticity for hardening response and the
size of the damage zones for softening response. The plastic hinge offsets account for the
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response coupling between the two element ends. The proposed models assume that damage
is governed by the plastic energy dissipation and the maximum absolute deformation values
in the plastic hinges. In the column model, the plastic energy dissipation accounts for
the interaction between the axial and the flexural response during the degrading hysteretic
behavior. The excellent accuracy of the proposed models is confirmed with the agreement
with experimental results from more than 50 steel specimens under monotonic and cyclic
loading. The models are able to describe accurately the main characteristics of steel members,
including the accumulation of plastic deformations, the cyclic strength hardening in early
cycles, the low-cycle fatigue behavior, and the different deterioration rates in primary and
follower half cycles.

The proposed damage-plasticity frame elements are deployed in an analysis framework for
the large-scale simulation and collapse assessment of structural systems. Pushover analysis
and dynamic analyses under a suite of 21 far-field ground motions are performed on an
8-story, 3-bay moment resisting steel frame to investigate various aspects of the dynamic
behavior of the structure under high ground motion intensity, including the local damage
distribution, the distribution of various response variables, and the characteristics of the
collapse mechanism. The study proposes new local and global damage indices, which are
better suited for the collapse assessment of structures than existing engineering demand
parameters like the maximum story drift, and culminates with the definition of key limit
states for steel structures in terms of the new damage indices.

To account for the damage distribution over a portion of the structure, the Localized
Damage Region (LDR) is introduced to accurately identify the most probable collapse mecha-
nisms consistent with the observed simulated results. Then, an incremental dynamic analysis
of the archetype structure under an earthquake sequence is used to highlight the consistency
of the proposed damage indices for the collapse assessment of multi-story frames.

The study compares different modeling aspects for the archetype building to assess the
benefits of the proposed beam-column elements, such as the ability to account for the member
damage, the offset location of the plastic hinges, the inelastic axial response, the axial-flexure
interaction, and the sudden strength and stiffness deterioration due to brittle fracture of the
structural member.

6.2 Conclusions

6.2.1 Hysteretic damage model

• The modular formulation of the damage model accommodates any force-deformation
relation for the non-degrading effective response and any function for the damage
evolution law. Moreover, the proposed formulation is thermodynamically consistent.

• The correlation studies of the proposed hysteretic damage model with an extensive set
of experimental data for the hysteretic behavior of steel, reinforced concrete, masonry,
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and plywood specimens under different load histories demonstrate its ability to describe
accurately different types of hysteretic behavior with a consistent set of parameters.

• The continuous updating of the damage variables d+ and d− on the basis of a continuous
damage evolution law matches the continuous strength and stiffness degradation of
structural members under cyclic load reversals in contrast to models with discrete
updates at the end of each half cycle.

• The damage variables give an assessment of the damaged state of a structural member
that is consistent with well-known damage indices and can thus benefit from the exten-
sive calibration of the latter against a large database of experimental observations. The
comparison of the damage variables with the Park-Ang damage index, in particular,
under different load histories highlights the flexibility of the proposed formulation and
its ability to overcome some limitations of this well known index in agreement with
recent proposals for its improvement.

6.2.2 Damage-plasticity beam and column elements

• Because the series beam model and the NMYS column model account directly for the
rigid-plastic behavior of the plastic hinges, they do not suffer from the numerical issues
that plague existing series models that use a high elastic stiffness to simulate the rigidity
of the inelastic spring before yielding. Because the series spring formulation does
not require additional nodes at the interface between the zero-length inelastic spring
and the elastic element, it is characterized by a better-conditioned, robust numerical
response.

• The plastic hinge offsets represent well the spread of inelasticity and describe accurately
the post-yield hardening response and the coupling between the response at the element
ends. Moreover, the plastic hinge offsets are ideally suitable for the modeling of girders
with reduced beam section (RBS) connections with a single element.

• By adopting the resultant-plasticity concept in connection with the 1d hysteretic dam-
age model, the proposed beam and column element models are able to describe the
characteristic hysteretic behavior of steel components, including the accumulation of
plastic deformations, the cyclic strength hardening in early cycles, the low-cycle fatigue
behavior, and the different deterioration rates in primary and follower half cycles.

• The two proposed damage evolution laws, a smooth cumulative distribution function
and a composite function that includes a sudden change, capture well the most typical
degrading response of steel members: the gradual deterioration captures the strength
loss due to local buckling, while the sudden strength and stiffness loss captures the
brittle fracture of the member or its connection.
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• With the inclusion of the plastic axial energy dissipation in the damage loading func-
tion, the damage-plasticity column model captures the effect of a variable axial force
on the strength and stiffness deterioration in flexure, the severe deterioration under
high axial compression, the nonsymmetric response under a variable axial force, and
the large plastic axial and flexural deformations near column failure.

• The correlation studies of the proposed beam-column models with data from more
than 50 wide-flange steel specimens under monotonic and cyclic loading give regression
equations for the selection of the damage parameters in relation to the web and flange
compactness and the member slenderness.

• The proposed beam-column models compare favorably in terms of computational ef-
ficiency with more sophisticated models with fiber discretization of the cross section
while achieving excellent agreement in the response description for homogeneous metal-
lic structural components. The implementation of the damage-plasticity elements
with the return-mapping algorithm ensures excellent convergence characteristics for
the state determination.

• The proposed beam-column models strike a balance between accuracy and numerical
efficiency to meet the challenge of large-scale simulations of steel multi-story frames
under seismic excitations.

6.2.3 Damage assessment of steel moment-frames

The pilot study of an 8-story, 3-bay moment resisting steel frame leads to the following
conclusions:

• The pushover analysis with a load distribution that follows the fundamental mode
of vibration according to FEMA P695 gives unreliable results regarding the plastic
hinge distribution and the collapse mechanism unless the influence of higher modes is
included, especially for tall buildings.

• A weak-story collapse mechanism is reflected in the concentration of high plastic de-
formations in the element response, severe story shear deterioration, relatively large
rotations of the floors above the weak stories, and excessive story drifts in one or several
stories of multi-story moment resisting frames.

• The magnitude and the distribution of the element damage variables offer insight into
the local element response and the global structural behavior. A nonsymmetric damage
distribution, typical of a structure with a weak story mechanism, results from excessive
story drifts in one dominant direction inducing higher plastic axial deformations in the
columns on one side of the building. In contrast, a symmetric damage distribution is
indicative of a more stable structure and occurs when the magnitude of the maximum
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positive and negative story drift is about the same and the plastic axial deformations
are comparable in the columns on both sides of the building.

• The proposed global and local damage indices are cumulative and monotonically in-
creasing with the ground motion intensity. This characteristic allows the damage in-
dices to capture more accurately the continuous damage evolution of the structure and
offer several advantages over commonly used EDPs such as the maximum story drift,
which only captures the maximum value. Moreover, the damage indices are highly
dependent on the plastic axial deformation, which is critical in the collapse assessment
of multi-story buildings but is often neglected in seismic response analyses.

• By correlating the proposed global damage index with the maximum story drift three
limit states are identified for the damage evaluation of steel moment-resisting frames:
life safety, collapse prevention, and collapse.

• The Localized Damage Region (LDR), which is established directly from the damage
distribution, is able to identify the most probable collapse mechanism of the structure
in agreement with the results of several dynamic response simulations.

• The incremental dynamic analysis of the archetype structure under an earthquake se-
quence demonstrates the capabilities of the damage indices and emphasizes the impor-
tant influence of aftershocks in the collapse of multi-story frames. With an aftershock
as strong as the main shock, the collapse margin ratio increases by as much as 30%.

• Neglecting the strength and stiffness deterioration of structural members leads to an
underestimation of the collapse fragility and to the inability to predict the actual
collapse mechanism.

• The plastic hinge offsets play an important role in the seismic response of the multi-
story frames under high ground motion intensities. The dynamic response with offset
plastic hinges for simulating RBS connections in the girders of the multi-story frame
gives contradictory results: (1) On the one hand, the RBS connections improve the
dynamic behavior of the structure and prevent collapse at an intensity that results in a
weak-story collapse mechanism for the frame without the RBS connections; (2) On the
other hand, the RBS reduces the lateral strength of the multi-story frame and leads
to a significant damage accumulation in the RBS connection that leads to early global
collapse.

• Neglecting the column strength reduction due to the axial-flexure interaction leads to
an underestimation of the collapse fragility and an inaccurate prediction of the collapse
mechanism. In contrast, the calibration of the column strength based on the constant
axial force recommendation in FEMA P695 leads to an overestimation of the collapse
fragility.
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• Column models with linear elastic axial response fail to capture the pronounced vertical
floor translations, the floor rotations, and the nonsymmetric damage distribution when
a weak-story collapse mechanism arises.

• The sudden strength and stiffness deterioration due to brittle fracture of the member
leads to the redistribution of forces and plastic deformations in adjacent elements,
and in turn, to the progressive failure of the corresponding members of the structural
model. As a result, significant damage is localized in a smaller region as the structure
that initiates a weak-story mechanism and leads to higher collapse fragility.

6.3 Recommendations for Further Study

This dissertation develops an analytical framework for the large-scale simulation and
collapse assessment of structural systems and showcases its potential in the pilot study of
the 8-story moment frame in Chapter 5. It is recommended to extend the study to different
steel structures to cover a range of building configurations common in earthquake resistant
design practice. It is also recommended to explore the impact of different ground motion
characteristics on the damage evolution of structures. A thorough investigation of common
modeling assumptions regarding damping is also important. Finally, it is recommended to
correlate the damaged variables and the associated damage states to economic losses so as
to extend the study to the resilience assessment of structures under one or more extreme
events in sequence.

There is, naturally, room for further investigation of the proposed hysteretic damage
model and the beam-column element models. Areas of further study are:

• Different constitutive models for the force-deformation relation in the effective force
space may be better suited for the variety of structural systems with materials ranging
from steel and reinforced concrete to timber and masonry. Similarly, different damage
evolution functions may provide a better description for the damage evolution of these
materials.

• The inclusion of the damage parameter evolution in terms of non-mechanical effects,
such as fire, environmental conditions, and chemical exposure, can help extend the
proposed framework to the evaluation of structures under multi-hazard risk scenarios.

• The inclusion of the axial strength deterioration under significant flexural damage in
the column model can improve the assessment of the collapse risk of multi-story frames
under seismic excitations.
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Appendix A

Alterative Damage Evolution
Functions

The wealth of cumulative distribution functions (CDFs) in statistics permits a wide range
of damage evolution characteristics. Further study is necessary to evaluate the capabilities
and applications of the CDFs. This appendix presents two representative functions that could
be potential alternatives for the proposed damage evolution functions in this dissertation.
The first function is the CDF of the beta distribution. This function is similar to the
proposed function in Chapter 2 but with the original parameters of the statistical function.
The second function is the CDF of the lognormal distribution, which is shown to describe
well the uniaxial hysteretic behavior of concrete material.

A.1 Beta Distribution

Figure A.1 plots the damage variable d if the original CDF of the beta distribution is
used to describe the damage evolution.

d = FB

(
ψ̂, β1, β2

)
(A.1)

where FB is the CDF of the beta distribution, ψ̂ is the normalized energy variable in (2.10),
and β1 and β2 are the shape parameters of the CDF.

Figure A.1(a) demonstrates the effect of β1 for β2 = 1 and Figure A.1(b) showcases the
effect of β2 for β1 = 1. Similar to the damage evolution adopted in Chapter 2, β1 = β2 = 1
describes a linear damage evolution with the energy variable. β1 < 1 gives faster deterioration
rate in the early stage of the energy dissipation whereas β1 > 1 concentrates the damage
growth in the later stage. The effect of β2 shows a similar behavior, with β2 > 1 corresponding
to faster deterioration rate in the early stage of the energy dissipation whereas β2 < 1
representing more damage growth in the later stage.

It is noteworthy that since there exists a one-to-one conversion of the parameters in
the two functions, both can describe exactly the same damage evolution. However, the
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Figure A.1: Effect of β1 and β2 on the beta CDF

transformation in the modified CDF in Equations (2.12)−(2.13) allow the paramaters dp1 and
dp2 to have distinct effects on the deterioration rate. Therefore, the parameter identification
in the modified CDF is more convenient.

A.2 Lognormal distribution

The CDF of the lognormal distribution, or lognormal CDF for short, has two parameters,
the location parameter µ and scale parameter σ. In contrast to the beta distribution, the
domain of the lognormal CDF is (0,+∞), and thus, the normalized energy variable ψ̂ is
modified as follows:

ψ̂ =
ψ − ψd0
ψd0

(A.2)

It is clear that ψ̂ is positive but does not have an upperbound as when the beta distri-
bution is utilized. The damage variable d is evaluated from the lognormal CDF, FL, the
normalized energy ψ̂ in Equation (A.2), and the two parameters µ and σ.

d = FL

(
ψ̂, µ, σ

)
(A.3)

Figure A.2 illustrates the effect of µ and σ on the force-deformation relation and the
damage evolution. With σ remains fixed, at the same deformation value, a higher µ gives
a smaller damage value d, and as a result, a higher force value. On the other hand, for a
fixed µ value, a higher σ concentrates more damage during the earlier stage and less damage
during the later stage. Consequently, a higher σ leads to a smaller peak strength attained
at a higher deformation value.
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(c) Effect of σ on force-deformation
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(d) Effect of σ on damage

Figure A.2: Effect of µ and σ on the lognormal CDF

It is noteworthy that the effect of parameters µ and σ of the lognormal CDF on the dam-
age evolution resembles the parameters dp1 and dp2 in Figure 2.5. An attractive feature of
the lognormal CDF is the ability to describe the ’skewness’ in the force-deformation relation.
This property is particularly powerful to represent the stress-strain relation in concrete ma-
terial in compression. As an illustration,Figure A.3 compares the numerical response using
the lognormal CDF for the damage evolution function against the experimental response of
concrete in uniaxial tension [32] and in uniaxial compression [45].

The preliminary work shows excellent promise in the lognormal CDF for the response
simulations of reinforced concrete structures. Further studies are necessary to calibrate
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Figure A.3: Simulation of concrete uniaxial response

the parameters µ and σ for various unique characteristics of concrete material, such as, the
compressive strength and the respective strain value, the ductility, the strength and ductility
variation due to confinement effect, among others.



215

Appendix B

Mathematical Derivations

B.1 Plastic Consistency Parameter

This section derives the plastic consistency parameter β in the return-mapping algo-
rithm of the series beam element model state determination in Section 3.1.3. In the plastic
correction at step n, the yield function n can be expressed in the following form:

fn = nT (bpqn − qb,n)− (Mp + Hiαn)

= nT
[
bp
(
qtr − keb

T
p nβ

)
−
(
qtrb + Hknβ

)]
−
[
Mp + Hi

(
αtr + β

)]
=
[
nT (bpq

tr
n − qtrb )− (Mp + Hiα

tr)
]
−
[
nT
(
bpkeb

T
p + Hk

)
n + Hi

]
β (B.1)

(B.2)

Similar to the return-mapping algorithm in classical plasticity, the normals in the trial
and the correction step are equal n = ntr. Consequently, the term in the square bracket in
Equation (B.2) gives the value of the trial yield function f tr. Finally, set the yield function
n to its target value 0:

0 = f tr −
[
nT
(
bpkeb

T
p + Hk

)
n + Hi

]
β (B.3)

one obtains the expression of the plastic consistency parameter β in Equation (3.38).

B.2 Algorithmic Tangent

This section derives the tangent stiffness of the series beam element and the NMYS
column element.

B.2.1 Series beam model

This subsection presents the derivation of the tangent stiffness of the series beam model
given in Equation (3.22). Starting with the final form of the element forces qn in Equa-
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tion (3.42), the tangent kt is evaluated as follows:

kt =
∂qn
∂vn

=
∂qtr

vn
− keb

T
p n

∂β

∂vn
(B.4)

The partial derivative of the trial force qtr with respect to the deformation vn gives the
elastic stiffness ke due to the assumption of a trial elastic step:

∂qtr

vn
= ke (B.5)

Using the expression of the plastic consistency parameter β in Equation (3.38) and note
that:

∂f tr

vn
= nTbp

∂qtr

vn
= nTbpke (B.6)

the partial derivative of β with respect to the deformation vn is:

∂β

∂vn
=
[
nT
(
bpkeb

T
p + Hk

)
n + Hi

]−1
nTbpke (B.7)

The partial derivatives in Equations (B.5) and (B.7) are subtituted into (B.4), and the
expression in Equation (3.22) for the tangent stiffness can be recovered.

B.2.2 NMYS column model

Diffentiating the residuals in Equation (4.28) to arrive at the following system of equa-
tions: 

dv

0

0

0


=



∂Rv

∂q

∂Rv

∂∆β

∂Rv

∂α

∂Rv

∂qb

∂Rα

∂q

∂Rα

∂∆β

∂Rα

∂α

∂Rα

∂qb

∂Rb

∂q

∂Rb

∂∆β

∂Rb

∂α

∂Rb

∂qb

∂f

∂q

∂f

∂∆β

∂f

∂α

∂f

∂qb





dq

d∆β

dα

dqb


(B.8)

The Jacobian matrix can be partitioned into four submatrices:

J =

[
Frr Frc

Fcr Fcc

]
(B.9)
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where the block matrices are:

Frr =
∂Rv

∂q
Frc =

[
∂Rv

∂∆β
,
∂Rv

∂α
,
∂Rv

∂qb

]
(B.10)

Fcr =

[
∂Rα

∂q
,
∂Rb

∂q
,
∂f

∂q

]T
Fcc =



∂Rα

∂∆β

∂Rα

∂α

∂Rα

∂qb

∂Rb

∂∆β

∂Rb

∂α

∂Rb

∂qb

∂f

∂∆β

∂f

∂α

∂f

∂qb

 (B.11)

One approach to obtain the tangent stiffness kt is to first find the flexibility matrix
f = ∂v/∂q and then invert the flexibility for the stiffness. The flexibility f is derived from
static condensation of Equation (B.8):

f =
∂v

∂q
=
(
Frr − FrcFcc

−1Fcr

)−1
(B.12)

One drawback of this apprroach, however, is the issue of inverting a singular matrix
during static condensation. For instance, in case of an elasto-plastic response with Hip = 0
and Hkr = 0, then Fcc becomes singular.

An alternative to find the tangent stiffness without directly using static condensation is
to adopt the Woodbury formula:

(A + UCV)−1 = A−1 −A−1U
(
C−1 + VA−1U

)−1
VA−1 (B.13)

The expression of the tangent stiffness matrix becomes:

k =
∂q

∂v
= Frr

−1 + Frr
−1Frc

(
Fcc − FcrFrr

−1Frc

)−1
FcrFrr

−1 (B.14)
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Appendix C

Thermodynamics Framework

A free energy potential per unit volume, Φ, can be defined as a function of the elastic
deformation ee, the plastic deformation ep, the damage variable d, and some hardening
variables γ. The free energy potential is assumed to be decomposed into the elastic potential
Φe, the plastic potential Φp, and the hardening potential Ω. The elastic potential Φe depends
on the elastic deformation ee and damage index d, while the plastic potential Φp is a function
of the plastic deformation ep and damage index d. The hardening potential Ω is dependent
on the hardening variables γ. The elastic and plastic potentials are proportional to their
counterparts in the effective space, Φ̄e and Φ̄p.

Φ(ee, ep, d, γ) = Φe(ee, d) + Φp(ep, d) + Ω(γ)

= (1− d)Φ̄e(ee) + (1− d)Φ̄p(ep) + Ω(γ) (C.1)

According to the second principle of thermodynamics, any irreversible process shall pro-
duce non-negative energy dissipation. The condition applies for all admisible process and is
given by the Clausius-Dulhem inequality:

sė− Φ̇ ≥ 0 (C.2)

The inequality in Equation (C.2) can be rewritten as:

sė−
(
∂Φ

∂e
ė+

∂Φ

∂d
ḋ+

∂Φ

∂γ
γ̇

)
≥ 0 (C.3)

Rearranging the terms in Equation (C.3) gives:(
s− ∂Φ

∂e

)
ė− ∂Φ

∂d
ḋ− ∂φ

∂γ
γ̇ ≥ 0 (C.4)

Imposing a constraint on the deformation field, the first term in equation (C.4) leads to
the constitutive relation:

s =
∂Φ

∂e
(C.5)
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The second and third terms in equation (C.4) invoke the nonnegativity of the energy
dissipation:

−∂Φ

∂d
ḋ ≥ 0 (C.6)

−∂Φ

∂γ
γ̇ ≥ 0 (C.7)

In Equation (C.6), define ψ as the conjugate to the damage index d as:

ψ = −∂Φ

∂d
= Φ̄e + Φ̄p (C.8)

Equation (C.8) suggests that ψ is an energy variable and is related to the energy dissipa-
tion in the effective space. The damage conjugate ψ, usually referred to as the energy release
rate in the literature, is the key variable that governs the damage evolution. This observation
is consistent with the formulation in Chapter 2, in which the energy variable is evaluated in
Equations (2.2)−(2.3). Therefore, the proposed damage formulation is thermodynamically
consistent.
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