
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Real-time decoding of perceived and produced speech from human cortical activity

Permalink
https://escholarship.org/uc/item/3sn3080p

Author
Moses, David Aaron

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3sn3080p
https://escholarship.org
http://www.cdlib.org/

Real-time decoding of perceived and produced
from human cortical activity

by-

David Moses

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Bioengineering

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

ii

Copyright 2018

by

David Moses

iii

Acknowledgments

First and foremost, I want to thank my mother Carol and father Moshe for their unwavering

support throughout my entire life, including my graduate studies. Ever since I was a

child, they have always placed a high priority on my education and have always encouraged

challenging but rewarding pursuits of knowledge. I hope that receiving this doctorate degree

can at least partially honor their commitment to foster my intellectual growth throughout

my upbringing and the sacrifices that they have made on my behalf.

I also want to thank my brother Daniel, who has been an irreplaceable friend to me

over the years. Even though we lived in different cities during my graduate studies, he

consistently made time to chat and play online games whenever I wanted to unwind after

particularly stressful days. These sessions often made a world of difference for me, and it was

extremely comforting to know that he would support me in whatever ways he could despite

the distance.

A big thanks goes out to my research advisor and committee chair, Dr. Edward Chang.

Before joining his lab, I struggled to determine what kind of research I wanted to do during

my graduate studies. During my time in his lab, he was a constant source of motivation and

guidance, steering me towards projects that he knew I would excel at. I am indebted to him

for all of the opportunities and support that he has provided me throughout my time in his

lab.

I would also like to thank my other committee members, Dr. Jack Gallant, Dr. Nelson

Morgan, and Dr. Kristofer Bouchard, for their useful feedback and guidance as well as their

iv

availability despite their busy schedules.

I also want to thank all of the other members of Dr. Chang’s lab for making my workplace

friendly and intellectually stimulating. I will cherish all of the interesting and sometimes

polarizing conversations that we had during our lunch outings. A special thanks goes out to

Dr. Matthew Leonard, who has been a limitless source of wisdom and mentorship ever since

the first day of my rotation in the lab.

I also want to acknowledge and thank all of the patients who volunteered to participate

in all of the research I have been a part of since joining the lab. Despite being in an

uncomfortable and stressful situation, these patients gave their time to participate in our

(often repetitive) tasks out of pure kindness and desire to contribute to the collection of

human scientific knowledge.

Ever since moving to California to start graduate school, I have made truly special and

incredible friends that I am very grateful for. However, I must give an extremely special

shoutout to the other members of a friend group known only as The Crunkmen: Charles

(Travis) Howell, Jesus Cortez, Ryan Oringer, Steven Boswell, and Stephen Haff. It was

one of the greatest fortunes of my time in undergraduate school to become friends with

these fantastic individuals, and I cannot imagine my time in graduate school without their

continued friendship. I also want to thank Ahsan Niazi for being a close friend and source

of motivation ever since we first met in high school.

In addition to these people who I have relied on for personal and professional support,

I would also like to thank the creators and maintainers of various open source software

packages that I have relied on throughout my graduate career, including Python, Ubuntu,

LaTeX, Inkscape, and LibreOffice. Finally, I would like to thank the various musical artists

whose works have been mentally and emotionally stimulating during my time in graduate

school, including Steven Wilson, Jim Grey, Maynard James Keenan, and Nicholas Thorburn.

v

Note from research advisor concerning previously published materials

This thesis contains material from the following publications:

D. A. Moses, N. Mesgarani, M. K. Leonard, and E. F. Chang, 2016. Neural speech

recognition: Continuous phoneme decoding using spatiotemporal representations of hu-

man cortical activity. Journal of Neural Engineering, 13(5):056004. doi: 10.1088/1741-

2560/13/5/056004.

D. A. Moses, M. K. Leonard, and E. F. Chang, 2018. Real-time classification of audi-

tory sentences using evoked cortical activity in humans. Journal of Neural Engineering,

15(3). doi: 10.1088/1741-2552/aaab6f.

This thesis is comparable a standard thesis because the chapters represent a sequential

progression of closely related research topics. David performed the majority of the work

for the projects described in each chapter.

vi

Real-time decoding of

perceived and produced speech

from human cortical activity

David A. Moses

Recent research has explored the functional role of the human auditory and sensorimotor

cortices in perceiving and producing speech. One key finding from these studies was the

characterization of how phonetic features and phonemes, which are fundamental units

of speech, are represented in the brain. In this thesis, I examine how these neural

representations of speech can be used as the basis for decoding what individuals hear and say

in real-time. This work leverages recent advances in human neurophysiology with epilepsy

patients that have high-density electrocorticography arrays implanted on the surface of

their brains as part of their clinical treatment, enabling collection of cortical activity at

unprecedented spatiotemporal resolutions. Using these signals, I show that spatiotemporal

feature vectors containing cortical activity in the high gamma frequency band can be used

to decode speech sounds that listeners perceive by employing techniques from automatic

speech recognition, contributing to an emerging field of research referred to as neural

speech recognition (NSR). Next, I design and evaluate a real-time system capable of reliably

vii

classifying aurally presented sentences using phoneme-level models and spatiotemporal high

gamma features. Finally, I demonstrate state-of-the-art real-time decoding of perceived and

produced words and sentences in a naturalistic question-and-answer paradigm, illustrating

the utility of NSR in a real-world interactive application. In addition to characterizing

properties of speech that can be decoded from the human brain in real-time, these findings

have practical implications for the design of speech neuroprostheses to aid patients who are

unable to communicate due to paralysis.

viii

Contents

1 Introduction 1

2 Decoding perceived phonemes 10

2.1 Abstract . 11

2.2 Introduction . 11

2.3 Materials and methods . 15

2.3.1 Data collection and manipulation . 15

2.3.2 NSR system design . 25

2.4 Results . 32

2.4.1 Evaluation metrics . 33

2.4.2 System performance . 37

2.4.3 Phoneme time position effects . 40

2.4.4 Speaker gender effects . 42

ix

2.5 Discussion . 43

3 Real-time perceived speech classification 49

3.1 Abstract . 50

3.2 Introduction . 50

3.3 Methods . 52

3.3.1 Subjects . 52

3.3.2 Speech stimuli . 52

3.3.3 Real-time processing setup . 53

3.3.4 rtNSR design . 55

3.3.5 Experimental task blocks . 56

3.3.6 Stimulus classification schemes . 56

3.3.7 Evaluation methods . 60

3.4 Results . 61

3.5 Discussion . 62

3.6 Supplementary data . 69

4 Real-time question-and-answer speech decoding 71

4.1 Abstract . 72

4.2 Introduction . 73

x

4.3 Results . 74

4.3.1 Real-time decoding system overview 74

4.3.2 Question and answer decoding performance 77

4.3.3 Classifier sensitivity to data limitations, hyperparameter selection, and

cortical coverage . 79

4.3.4 Viterbi classification and phonetic modeling 83

4.4 Discussion . 88

4.5 Methods . 93

4.5.1 Subjects . 93

4.5.2 Neural data acquisition . 93

4.5.3 High gamma feature extraction . 94

4.5.4 Experimental task design . 95

4.5.5 Phonetic transcription . 98

4.5.6 Modeling . 98

4.5.7 Hyperparameter optimization . 107

4.5.8 Evaluation methods . 111

4.5.9 Statistical testing . 119

4.5.10 Real-time processing setup . 123

4.6 Supplementary data . 125

xi

4.6.1 Supplementary notes . 125

4.6.2 Supplementary figures . 132

References 139

xii

List of Tables

2.1 Amount of collected data for phoneme decoding 14

2.2 Phonemes and phonemic categories used during phoneme decoding 17

2.3 Grid search results for high gamma window parameterizations used during

phoneme decoding . 23

2.4 Grid search results for Viterbi decoding of perceived phonemes 32

2.5 Full performance evaluation results for the phoneme decoding system 38

3.1 Stimulus information for real-time speech classification 53

3.2 Phonemes and phonemic categories used during real-time speech classification 53

4.1 Significance testing statistics for question and answer decoding 81

4.2 Significance testing results for region-limited question and answer classification 85

4.3 Question/answer sets . 96

4.4 Hyperparameter description and search spaces for question and answer

decoding . 110

xiii

List of Figures

2.1 Schematic depiction of the phoneme decoding approach 14

2.2 MRI brain reconstructions with electrodes for phoneme decoding subjects . . 18

2.3 Sample task data for phoneme decoding experiments 21

2.4 Evoked spatiotemporal neural response patterns to different perceived phonemes 24

2.5 Phonemic language model comparison . 28

2.6 Decoded phoneme posteriograms . 35

2.7 Decoded phoneme confusion matrices . 36

2.8 Performance evaluation results for the phoneme decoding system 37

2.9 Effect of phoneme time position on phoneme decoding 41

3.1 Schematic depiction of the real-time auditory sentence classification system . 54

3.2 Schematic depiction of the real-time sentence classification software pipeline 57

3.3 Real-time sentence classification accuracies 63

xiv

3.4 Effect of stimulus durations on sentence classification accuracy 64

3.5 MRI brain reconstructions with electrodes for real-time classification subjects 69

3.6 Classified sentence confusion matrices . 70

4.1 Schematic depiction of the real-time speech decoding approach 75

4.2 Perceived and produced speech decoding results for a single subject 80

4.3 Speech classification sensitivity to data limitations, hyperparameter selection,

and cortical coverage for a single subject . 84

4.4 Temporal characteristics and phone-based performance of produced speech

classification models . 86

4.5 Perceived and produced speech decoding results for other subjects 132

4.6 Speech classification sensitivity to data limitations, hyperparameter selection,

and cortical coverage for other subjects . 133

4.7 Real-time neural signal preprocessing during speech decoding 134

4.8 Spatiotemporal neural feature vectors used during speech decoding 135

4.9 Speech event detection during real-time speech decoding 136

4.10 Phone-level Viterbi decoding during real-time speech decoding 137

4.11 Schematic depiction of the real-time speech decoding software pipeline 138

1

Chapter 1

Introduction

Speech is one of the most complicated behaviors that humans naturally and effortlessly

engage in on a daily basis. Even without considering the intricate coordination of movements

required to produce speech, our ability to rapidly and robustly process acoustic speech

input to extract semantic meanings is remarkable. During this biological process of speech

perception, an acoustic speech waveform evokes neuronal firing patterns in cochlear hair cells

that convey information through the central nervous system, eventually reaching the auditory

cortex (Brugge, 1992). Although a complete description of acoustic speech processing

in the human auditory cortex is not available, many studies have characterized aspects

of various steps in the processing pathway. Broadly, information entering the auditory

cortex is transmitted neurally to neuronal populations in the primary auditory cortex (A1)

that encode low-level acoustic features, such as frequency and sound intensity (Linden and

Schreiner, 2003; Moerel et al., 2014). Then, information flows from A1 to other parts of the

superior temporal gyrus (STG) that are known to encode higher-level speech-related aspects

of the acoustics, such as phonetic and spectrotemporal features (Hickok and Poeppel, 2007).

Afterwards, lexical and semantic processing occurs in the STG, in nearby cortical areas

(including the middle temporal gyrus and superior temporal sulcus), and in many other

2

brain regions (Hickok and Poeppel, 2007; Mitchell et al., 2008; Huth et al., 2012).

The theory that the STG performs speech-related processing of acoustic inputs has

evolved from research findings during the recent decades. It has been shown that cortical

stimulation to the posterior STG during perception of speech sounds and tones can interrupt

speech processing without significantly affecting tone discrimination (Boatman et al., 1997).

Other studies have shown that the STG is more significantly modulated by speech sounds,

such as syllables or words, than non-speech sounds, such as tones or even unintelligible

nonwords that resembled speech (Binder et al., 2000; Canolty et al., 2007; Cibelli et al.,

2015). During investigations of how speech information is encoded in the STG, the activity in

this and neighboring brain regions has been shown to correlate with many high-level speech

features, including lexical statistics (Cibelli et al., 2015), speech-related spectrotemporal

fluctuations (Pasley et al., 2012), speaker-normalized pitch (Tang et al., 2017), and sentence

onsets (Hamilton et al., 2018). Among the various types of speech processing in the STG,

the type that is arguably the most fundamental to understanding speech is the encoding

of phonetic features throughout this region. Phonetic features describe the ways in which

speech sounds, including descriptions of the manner of articulation (for example, plosive

vs. fricative) and place of articulation (for example, labial vs. dental) (Chomsky and Halle,

1968). At a more abstract level, combinations of certain phonetic features result in phonemes,

which are the smallest contrastive speech units that can alter the meaning of a word, such

as the /m/ sound in “mat” or the /p/ sound in “pat”. From brain activity in the STG,

researchers have found categorical encoding of phoneme categories (Chang et al., 2010),

localized and distributed phonetic feature encoding (Mesgarani et al., 2014), and phonotactic

information encoding (Leonard et al., 2016). Overall, these results suggest that the human

STG naturally extracts phonetic information from acoustic speech signals to facilitate speech

comprehension.

Interestingly, many successful applications in the field of automatic speech recognition

3

(ASR) also use phonemes as an intermediate step during conversion of acoustic signals

into words and sentences (BenZeghiba et al., 2007; Hinton et al., 2012; Kurian, 2014).

In many of these applications, large datasets of acoustic speech signals were transcribed

phonetically and used to train probabilistic models to yield phoneme likelihoods given unseen

acoustic samples. The time series of predicted phoneme likelihoods could then be used with

pre-trained language models (which describe the probabilities of observing certain speech

elements given the previous elements in the sequence) to decode words and sentences. If a

system was capable of inferring phoneme likelihoods from neural signals, the remainder of

this decoding pipelining could be adapted to decode speech from brain activity.

In chapter 2, I describe the application of ASR techniques to decode phoneme sequences

from brain activity and identification of effective neural features to use during decoding

(Moses et al., 2016). In this work, human participants listened to aurally presented sentences

while neural activity was collected from high-density electrocorticography (ECoG) grids.

These ECoG grids, which were implanted over the cortical surface of epilepsy patients to aid

clinicians in localizing seizure foci, enabled acquisition of neural activity at high spatial and

temporal resolutions (Ball et al., 2009). The recordings sampled from multiple speech-related

cortical areas, including the STG.

A major goal of this work was to determine how to extract relevant features from the

collected ECoG activity that could be used during phoneme decoding. Previous studies

with ECoG have identified that power in the high gamma frequency band (70–150 Hz) was

strongly correlated with multi-unit spiking patterns (Crone et al., 1998) and neuronal firing

synchrony (Ray et al., 2008). Furthermore, high gamma activity from the STG is significantly

modulated by the presence of acoustic speech stimuli (Pasley et al., 2012; Mesgarani et al.,

2014). However, it is known that auditory speech stimuli can evoke cortical responses that

are both spatially complex (varying across electrodes) and temporally complex (varying in

time) (Engineer et al., 2008; Buonomano and Maass, 2009). In this work I decided to use high

4

gamma activity to represent the neural data, but I also investigated how using spatiotemporal

feature vectors of high gamma activity would affect the ability to decode phonemes at each

time point. After training and testing phoneme likelihood estimation models with either

purely spatial or spatiotemporal features, I observed significantly higher phoneme decoding

accuracies when using spatiotemporal features as opposed to spatial features, confirming that

explicitly modeling the spatiotemporal dynamics of neural activity can be beneficial during

discrimination tasks. This finding also resembles an approach used to improve performance

in some ASR systems that involves including information about how the feature vectors

change over time in the feature vectors themselves (Gold et al., 2011).

I also assessed whether or not performance could be improved by incorporating decoding

techniques from related ASR systems. Separate from the neural analyses, I trained a

phonemic language model (which described the probabilities of observing certain phoneme

sequences) on a corpus of over 75 million phonemes. Given a time series of neural activity

evoked during perception of a sentence, I implemented Viterbi decoding to predict phoneme

sequences using phoneme likelihoods predicted from the neural activity and phoneme

transition probabilities from the phonemic language model (Viterbi, 1967; Jurafsky and

Martin, 2009). I demonstrated that standard ASR techniques could be used to increase

accuracy when decoding phonemes from neural activity.

Additionally, I examined how the gender of the speaker of the acoustic stimuli affected

decoding performance. In ASR research, it has been shown that speaker gender can affect

the performance of a system designed to decode speech from acoustic signals (Abdulla and

Kasabov, 2001). Given the findings that implicate the STG in high-level speech feature

processing, it was unclear whether or not speaker gender would have a similar effect when

decoding speech from STG activity. After varying which speaker genders were used during

model training and testing, I did not find that speaker gender significantly affected phoneme

decoding accuracies. This supports previous theories of STG processing, including the ability

5

of the STG to remain invariant to certain speaker-specific acoustic properties, such as pitch

(Tang et al., 2017).

This work represented one of the first research efforts in the emerging field of neural

speech recognition (NSR), which is a term I use to denote performing speech recognition using

neural responses. Other NSR research efforts include the decoding of produced speech from

neural activity with a restricted vocabulary (Herff et al., 2015) and the decoding of perceived

speech from neural activity in a multi-speaker setting (Chang et al., 2015). A primary goal of

NSR research is the development of an advanced speech neuroprosthesis designed to restore

the ability to naturally and efficiently communicate to impaired individuals. For example,

patients with locked-in syndrome are typically conscious and aware of their surroundings but

have little to no voluntary muscle control (American Congress of Rehabilitation Medicine,

1995; Laureys et al., 2005; Bruno et al., 2011; Rousseau et al., 2015; Vansteensel et al.,

2016). Assistive speech devices for patients with locked-in syndrome or other forms of

paralysis do exist and seem to improve patient quality of life (Bruno et al., 2011; Sellers

et al., 2014; Rousseau et al., 2015; Vansteensel et al., 2016), but these devices are slow and

unnatural, relying on evoked visual activity and requiring intended messages to be spelled

out character-by-character at rates often less than 2 characters per minute. Ideally, patients

would have access to a speech prosthesis capable of reliably and efficiently decoding intended

speech directly from neural activity with low latency. Although there is likely a multitude of

unknown obstacles to overcome before NSR research can produce such a device, the ability to

perform real-time, single-trial speech decoding from neural activity is a known requirement.

Some research efforts have already demonstrated the ability to process speech-related neural

activity in real-time (Leuthardt et al., 2011; Kanas et al., 2014; Cheung and Chang, 2012;

Khalighinejad et al., 2017), but no study had shown real-time decoding of words or sentences

from neural activity.

In chapter 3, I demonstrate classification of aurally presented sentences in real-time

6

from cortical activity (Moses et al., 2018). In this work, I introduced a real-time Neural

Speech Recognition (rtNSR) software package, which I created as a platform for performing

real-time NSR research. I used this package to present multiple repetitions of ten sentences

to human subjects while collecting and analyzing ECoG activity. Based on the findings

described in chapter 2, I used spatiotemporal feature vectors containing high gamma activity

acquired from the STG and neighboring brain regions to fit sentence-level and phoneme-level

probabilistic models. During real-time testing with the phoneme-level models, the acquired

neural activity was restructured into spatiotemporal feature vectors and used to compute

phoneme probabilities at each time point. The time series of predicted phoneme probabilities

were then used to compute the probability of each sentence. I demonstrated single-trial

sentence classification accuracies of 90% or higher in real-time for both of the subjects that

participated in the work (chance accuracy was 10%).

These results show that phoneme representations in the STG could be used to identify

which sentence someone heard in real-time. It also validated our rtNSR system as a

potential platform for future speech prostheses. However, it remains unclear whether or not

representations of perceived speech will be useful for future speech prosthetic applications;

it seems much more likely that representations of imagined speech will be more relevant for

these applications. Some studies have attempted to decode vowels and consonants (Pei et al.,

2011) and reconstruct speech spectrograms (Martin et al., 2014) from neural activity evoked

during covert speech production (while a subject imagined saying something), and another

study has attempted to characterize evoked responses during covert speech perception (while

a subject imagined hearing something) and production (Tian and Poeppel, 2010). Although

these efforts provided useful insights for imagined speech paradigms, the signal-to-noise ratio

of the evoked activity during imagery tasks were typically much lower than the ratios for

overt tasks. Whether or not imagined speech can be decoded with existing methods and

neural data acquisition technologies remains unknown.

7

Although additional research into covert speech decoding is warranted, overt speech

production remains a viable speech modality for future NSR research. Even though a

paralyzed patient might not be able to actually produce speech, investigations of the

neural mechanisms of overt speech productions are still relevant because of the volitional,

spontaneous nature of overt speech communication. Additionally, the neural correlates of

speech articulator control could inform the design of an efficient control algorithm for a

speech prosthetic that closely mimics the human articulatory system.

Based on recent findings, the ventral sensorimotor cortex (vSMC) has been shown to have

a major role in overt speech production. Enabled by the high spatiotemporal resolution of

ECoG signals, one study was able to characterize the spatial and temporal dynamics of

phonetic and articulatory representations in the vSMC during speech production (Bouchard

et al., 2013). The results of this study suggest that phonetic feature encoding in the vSMC

is organized spatially based on articulatory speech features. Later studies expanded on

these findings, describing the distributed spatial representations of place of articulation

features throughout the sensorimotor cortex using ECoG (Lotte et al., 2015) and functional

magnetic resonance imaging (Carey et al., 2017). Other works have demonstrated that

high gamma activity recorded from cortical electrodes in the human sensorimotor cortex

encode the kinematics of coordinated articulatory movements during production of isolated

vowels (Conant et al., 2018) and natural speech (Chartier et al., 2018), including laryngeal

movements required for vocal pitch control during production of speech and non-speech

vocalizations (Dichter et al., 2018).

Although many of these findings support the theory that neural activity in the

sensorimotor cortex encodes articulatory kinematics more strongly than phonetic features

(Lotte et al., 2015; Chartier et al., 2018), it has been shown that activity in this region

could be used to discriminate between different phonemes during isolated word production

(Mugler et al., 2014). When attempting to decode produced speech from brain activity,

8

one advantage of using phonemes instead of articulatory kinematics as a representation of

speech is that standard ASR techniques, such as the language modeling and Viterbi decoding

techniques described in chapter 2, can included in the decoding approach (well-established

techniques to convert articulatory kinematics to text do not currently exist). This phoneme-

based approach has been used to decode words from neural activity collected during sentence

production (Herff et al., 2015). However, no study has demonstrated the ability to use

activity in the vSMC (or other regions) to decode produced words or phrases in real-time.

In chapter 4, I demonstrate real-time decoding of perceived and produced speech from

cortical activity. After further developing the rtNSR system introduced in chapter 3, I

used it to collect ECoG activity from the STG, vSMC, and other brain regions while

human participants listened to pre-recorded questions and overtly produced answer responses

multiple times. Similar to what was done in chapter 2 and chapter 3, I fit phone likelihood

models using spatiotemporal neural feature vectors constructed from evoked high gamma

activity and time-aligned phonetic transcriptions of the recorded acoustics. Here, phones

are similar to phonemes but can indicate additional information about the related speech

sound, such as how the vowel was stressed in the word that contained it. During testing,

each subject listened to questions and was asked to respond aloud with volitionally chosen

answers while their neural activity was collected. High gamma features were extracted from

the neural signals in real-time and used to detect when the subject was hearing a question

or producing an answer. Each time a speech perception or production event was detected,

my rtNSR system computed the probability of each question or answer by performing a

simplified form of Viterbi decoding using phone likelihoods predicted from the related time

segment of high gamma features. Through this approach, I demonstrated reliable decoding

of both perceived and produced utterances in real-time.

In addition to separately predicting the question and answer utterances, I was able to use

the predicted question likelihoods to inform the answer predictions. Because I designed the

9

task such that certain answers were only reasonable responses to certain questions, I could

use the predicted question probabilities to dynamically update the prior probabilities of the

answer choices. These answer priors were combined with the predicted answer likelihoods to

obtain answer posterior probabilities, which I showed to be more reliable than just the answer

likelihoods for each subject. This approach of using the question predictions as context for

answer predictions can be relevant for future speech prosthetic applications; it demonstrates

that information about the current state of a patient, inferred from neural signals or other

sources (such as cameras, microphones, etc.), can be used to improve the decoding of speech

from neural activity.

Overall, in this work I focused on using phonetic representations of speech in the high

gamma frequency band of evoked cortical activity to decode perceived and produced speech

in real-time. I hope that the details provided in the remaining chapters provide a significant

contribution to the fields of speech neuroscience, neural engineering, and neural speech

recognition. These results are a promising step towards the eventual goal of developing

an advanced assistive speech application for many patients suffering from debilitating

impairments.

10

Chapter 2

Neural speech recognition:

Continuous phoneme decoding using

spatiotemporal representations of

human cortical activity

Disclaimer: This chapter is a direct adaptation of the following article:

D. A. Moses, N. Mesgarani, M. K. Leonard, and E. F. Chang, 2016. Neural speech

recognition: Continuous phoneme decoding using spatiotemporal representations of hu-

man cortical activity. Journal of Neural Engineering, 13(5):056004. doi: 10.1088/1741-

2560/13/5/056004.

Personal contributions: I developed and tested the decoding system, performed all

analyses, and wrote the original draft of the manuscript.

Note: The supplementary material from this article was not included here.

11

2.1 Abstract

The superior temporal gyrus (STG) and neighboring brain regions play a key role in human

language processing. Previous studies have attempted to reconstruct speech information

from brain activity in the STG, but few of them incorporate the probabilistic framework

and engineering methodology used in modern speech recognition systems. In this work, we

describe the initial efforts toward the design of a neural speech recognition (NSR) system

that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary

sizes using the high gamma band power of local field potentials in the STG and neighboring

cortical areas obtained via electrocorticography. The system implements a Viterbi decoder

that incorporates phoneme likelihood estimates from a linear discriminant analysis model

and transition probabilities from an n-gram phonemic language model. Grid searches were

used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi

decoder. The performance of the system was significantly improved by using spatiotemporal

representations of the neural activity (as opposed to purely spatial representations) and

by including language modeling and Viterbi decoding in the NSR system. These results

emphasize the importance of modeling the temporal dynamics of neural responses when

analyzing their variations with respect to varying stimuli and demonstrate that speech

recognition techniques can be successfully leveraged when decoding speech from neural

signals. Guided by the results detailed in this work, further development of the NSR system

could have applications in the fields of automatic speech recognition and neural prosthetics.

2.2 Introduction

A region of the human auditory cortex called the superior temporal gyrus (STG) is essential

for understanding spoken language (Boatman et al., 1997; Binder et al., 2000; Canolty et al.,

12

2007; Rauschecker and Scott, 2009; Pasley et al., 2012; Mesgarani et al., 2014). Previous

studies have attempted to reconstruct the acoustics of speech using STG activity (Pasley

et al., 2012) and to understand how phonetic features, which are building blocks of spoken

language, are encoded in this high-level region of auditory cortex (Mesgarani et al., 2014).

A major focus in the field of automatic speech recognition (ASR) is to develop systems

that replicate the human brain’s ability to convert acoustic signals into words and sentences.

These systems, which have been successfully implemented in multiple industries (BenZeghiba

et al., 2007; Kurian, 2014), typically involve the use of probabilistic frameworks and language

modeling to decode speech from acoustic signals. Many of the well-established algorithms

commonly used in ASR research are reasonably suited for continuous speech decoding tasks

using non-acoustic speech-related time series data, such as neural response time series.

A few studies have attempted to use these approaches to decode continuous speech from

cortical activity. One group used neural activity recorded during speech production tasks

to perform speech decoding with a restricted vocabulary (Herff et al., 2015). Another group

focused primarily on decoding speech in a multi-speaker setting using neural activity during

speech perception tasks (Chang et al., 2015). Both of these works are examples of an

emerging field of study we refer to as neural speech recognition (NSR). We use the term

NSR to denote performing continuous speech recognition using neural responses as features.

However, to the best of our knowledge, no published work has described the potential benefits

of using ASR techniques to decode perceived continuous speech from neural signals in a

single-speaker environment. This research direction could add to the field of NSR research by

informing the development of a speech decoder that uses neural activity in auditory cortical

areas (including the STG) and providing insight on effective representations of neural activity

for the purpose of speech decoding.

For these reasons, we developed an initial version of a new NSR system. In its

current state, our NSR system uses electrocorticography (ECoG) arrays to decode phoneme

13

sequences from neural populations that respond to perceived speech. Compared to

many state-of-the-art ASR systems, which typically incorporate neural network modeling

techniques (Hinton et al., 2012; Graves et al., 2013), we designed our NSR system using

simple modeling approaches. Relative to the acoustic features typically used in ASR, neural

signals that encode speech information are poorly understood, noisy, and available in limited

amounts. These factors influenced our decision to use models that are easier to train and

interpret and involve fewer tunable parameters. Similarly, our decision to use phoneme-level

(as opposed to word-level) decoding in this study, which is a commonly used approach in ASR

research, was made for simplicity and in an attempt to gain a better understanding of the

limitations of our system. Our primary goal is to help establish an informative foundation for

future NSR research by contributing to existing literature in this field. By using optimization

techniques to determine effective spatiotemporal feature representations and assessing the

impact that individual model components have on the overall performance of the system, we

provide novel insights to guide the development of more sophisticated NSR systems.

Future work involving the decoding of speech from neural activity could lead to the

development of a speech prosthetic that restores communicative capabilities to impaired

individuals, such as those with locked-in syndrome. Locked-in patients are awake and aware

of their surroundings but are unable to communicate verbally due to paralysis (Laureys et al.,

2005), and only a few methods exist to restore basic communicative functions to locked-in

patients (Sellers et al., 2014). These patients could benefit substantially from a device

that interprets intended speech based on neural activity and, perhaps through a coupled

speech synthesis system, allows more natural communication with others. Although the

ideal control paradigm for a successful speech prosthetic is currently unknown, it could rely

on covert speech production (Pei et al., 2011; Martin et al., 2014), covert speech perception

(Tian and Poeppel, 2010), or an alternative method that has not been described yet.

However, because such a device would almost certainly involve processing of neural response

time series and probabilistic decoding of speech, we are confident that the approaches and

14

Figure 2.1: A schematic depiction of the NSR system (similar to Figure 9.3 in (Jurafsky and Martin,
2009)). The rectangles signify processing steps and model components, and the circles signify data
and computed probability distributions.

Table 2.1: The amount of neural data collected from each subject during perception of the
stimuli from the TIMIT and Gump sets. The TIMIT and Gump sets comprised of 499 and 382
unique stimuli, respectively. The table specifies both durations excluding silence samples and total
durations in minutes (after rounding). In addition, the total number of stimulus presentations and
the mean number of presentations per unique stimulus for each set and each subject are given.

Non-silence Total Total stimulus Mean presentations
Data set Subject duration (min) duration (min) presentations per stimulus

A 29 54 1092 2.19
TIMIT B 31 59 1197 2.40

C 11 21 412 0.83

A 47 87 847 2.22
Gump B 50 92 868 2.27

C 50 92 867 2.27

results described in this work would be relevant to its design.

An overview of the current NSR system is depicted in Fig. 2.1. First, cortical local field

potentials recorded from electrodes over the cortex of multiple subjects (which all include

STG coverage) are preprocessed and restructured into high gamma window (HGW) feature

vectors, which are spatiotemporal representations of the cortical responses. A phoneme

likelihood model, trained using HGWs in conjunction with phonemic class labels, estimates,

for each phoneme, the probability of observing an HGW given that it represents a neural

response evoked during perception of that phoneme. A separately trained phonemic language

model (LM) describes the a priori probabilities of different phoneme sequences. Finally, a

Viterbi decoder, implementing the well-known hidden Markov model (HMM) architecture,

incorporates probabilities from both of these models to yield the maximum a posteriori

(MAP) phoneme sequence estimate given the input features.

15

2.3 Materials and methods

2.3.1 Data collection and manipulation

Subjects

The three volunteer subjects (subjects A-C) who participated in this study were human

epilepsy patients undergoing treatment at the UCSF Medical Center. ECoG arrays (Ad-

Tech, Corp.) were surgically implanted on the cortical surface of each subject for the

clinical purpose of localizing seizure foci. Each subject exhibited left hemisphere language

dominance, which was determined by clinicians using either the Wada test or fMRI analysis.

Prior to surgery, each of these patients gave their informed consent to be a subject for this

research. The research protocol was approved by the UCSF Committee on Human Research.

Speech stimuli

For the experimental tasks, each subject listened to multiple speech stimuli. All stimuli were

sampled at 16 kHz and presented aurally via loudspeakers at the subject’s bedside. Each

stimulus contained a speech sample from a single speaker, and the stimuli were separated

from each other by at least 500 ms of silence during presentation to each subject. We

computed 39-element mel-frequency cepstral coefficient (MFCC) vectors (including energy,

velocity, and acceleration features) for each stimulus (Davis and Mermelstein, 1980; Huang

et al., 2001; Gold et al., 2011). We used two sets of speech stimuli: the TIMIT set and the

Gump set. Information about the number of stimuli presented to and the amount of neural

data collected from each subject is given in Table 2.1.

The TIMIT set consisted of phonetically transcribed stimuli from the Texas Instruments

/ Massachusetts Institute of Technology (TIMIT) database (Garofolo et al., 1993). It

16

contained 499 samples (1.9–3.6 s duration) that had a combined length of approximately

25 minutes and consisted of utterances from 402 different speakers. 354 of the stimuli were

each generated by one of the 286 male speakers, and the remaining 145 stimuli were each

generated by one of the 116 female speakers. The full stimulus set was not presented to

subject C due to external constraints associated with experimentation in a clinical setting

(such as clinical interventions and subject fatigue). Most stimuli were presented to each

subject multiple times, although the number of presentations of each stimulus varied by

subject due to these external constraints. As described in later sections, we used this data

set to perform parameter optimization for various components of the NSR system.

The Gump set consisted of re-enacted natural speech samples from Robert Zemeckis’s

Forrest Gump by two speakers (one male and one female). It contained 91 single word

(0.3–1 s duration), 175 phrase (0.4–2.4 s duration), and 116 dialog (4.5–19.9 s duration)

speech samples, with each speaker producing 191 of the samples. The combined length

across all 382 samples was approximately 43 minutes, with a total of only about 24 minutes

when ignoring silence sample points. Each stimulus was presented at least one time to each

subject, although the number of presentations of each stimulus varied by subject due to the

aforementioned external constraints. We obtained a phonetic transcription for each sample

via forced alignment, which was performed using the Penn Phonetics Lab Forced Aligner

(Yuan and Liberman, 2008), followed by manual segmentation, which was done in Praat

(Boersma, 2001). As explained in Section 2.4, we primarily used this data set to evaluate

the performance of the system.

We used a set of 39 phonemic labels in both data sets: 38 phonemes from the Arpabet

and /sp/, a “silence phoneme” used to label non-speech data points (Rabiner and Juang,

1993). Some phonetic labels from the TIMIT transcriptions were converted into one of the

39 phonemic labels used in this work. For example, we converted all three of the different

silence tokens used in TIMIT transcriptions (“pau”, “epi”, and “h#”) to /sp/. We also

17

Table 2.2: The phonemes used in this work and their respective categorizations. For visual
convenience, the coloring and ordering of the phonemes in this table are used in later figures.

Category Phoneme

Silence sp
Stop b d g p t k
Affricate ch jh
Fricative f v s z sh th dh hh
Nasal m n ng
Approximant w y l r
Monophthong iy aa ae eh ah uw ao ih uh er
Diphthong ey ay ow aw oy

converted each occurrence of /zh/ in the TIMIT set to /sh/ due to its low occurrence rate

in the TIMIT set (fewer than 0.15% of time points) and its absence from the Gump set. For

analytical purposes, we separated these phonemes into 8 disjoint phonemic categories using

descriptive phonetic features (Davenport and Hannahs, 2010). The 39 phonemes and their

respective categorizations are shown in Table 2.2.

Neural recordings

Each implanted ECoG array contained 256 disc electrodes with exposure diameters of 1.17

mm arranged in a square lattice formation with a center-to-center electrode spacing of 4 mm.

We used these arrays to record cortical local field potentials at multiple cortical sites from

each subject during the speech perception tasks. The analog ECoG signals were amplified

and quantized using a pre-amplifier (PZ2, Tucker-Davis Technologies), preprocessed using

a digital signal processor (RZ2, Tucker-Davis Technologies), and streamed to a separate

computer for storage. We acquired and stored the data at a sampling rate of approximately

3052 Hz. Each subject’s 3-D pial reconstruction, extracted from T1-weighted MRI data using

FreeSurfer (Dale et al., 1999), was co-registered to his or her post-operative computerized

tomography scan to determine the ECoG electrode positions on the cortical surface (Hermes

et al., 2010). All subjects had unilateral coverage that included the STG; subjects A

and B had left hemisphere coverage and subject C had right hemisphere coverage. The

reconstruction and electrode positions for each subject appear in Fig. 2.2.

18

Figure 2.2: MRI reconstructions for each subject with electrode positions superimposed as dots.
The sizes of the dots represent the relative sizes of the electrode contacts with respect to the brain.
The STG is outlined in orange for each subject. Electrodes that were not deemed relevant appear as
circular outlines (electrode relevance is discussed in Section 2.3.1). Relevant electrodes are colored
according to their estimated discriminative power (described in Section 2.3.2), depicting the relative
importance of each electrode for phoneme discrimination.

Preprocessing

We used MATLAB for preprocessing (The MathWorks Inc., 2013) and Python for all

subsequent analyses (unless otherwise specified) (Python Software Foundation, 2010). After

data collection, we first down-sampled the raw neural signals to 400 Hz and implemented

notch filtering to reduce the mains hum noise at 60 Hz and its harmonics. Next,

we qualitatively identified (via visual inspection) channels with severe artifacts and/or

19

significant noise and rejected them. These rejected channels contained time segments

that differed greatly in magnitude from the channels that were deemed normal, which is

often caused by non-physiological factors (poor electrode contact with the cortical surface,

electromagnetic interference from hospital equipment, defective electrodes or wires, etc.). We

performed common average referencing on the remaining channels in an attempt to obtain

a more favorable spatial representation of the ECoG data (Crone et al., 2001; Ludwig et al.,

2009).

Previous research has shown that high gamma band activity (70–150 Hz) correlates

strongly with multi-unit firing processes in the brain (Crone et al., 1998) and is an effective

representation of brain activity during speech processing (Pasley et al., 2012; Bouchard

et al., 2013; Martin et al., 2014; Mesgarani et al., 2014). For these reasons, we applied

eight bandpass Gaussian filters with logarithmically increasing center frequencies between

70–150 Hz and semi-logarithmically increasing bandwidths to the neural responses from each

electrode channel (Bouchard et al., 2013). These center frequencies, rounded to the nearest

decimal place and given in Hz, were 73.0, 79.5, 87.8, 96.9, 107.0, 118.1, 130.4, and 144.0. We

then used the Hilbert transform to extract the time-varying analytic amplitudes from each

of these eight filtered signals (Marple and Lawrence Marple, 1999; Oppenheim et al., 1999).

We down-sampled these eight analytic amplitude signals to 100 Hz and individually z-scored

each channel across each experimental session. We used a hyperbolic tangent function to

perform soft de-spiking (similar to the methodology used in AFNI’s 3dDespike program)

on each analytic amplitude signal, which reduced the magnitude of data points more than

10 standard deviations from the mean. We performed singular value decomposition on all

eight analytic amplitude signals simultaneously (treating each signal as a single feature) and

extracted the first principal component, which we then used to project the eight signals into

a one-dimensional space. We used the resulting projection as the representation of high

gamma activity in all subsequent analyses.

20

Since many electrodes for each subject recorded from areas of the cortex that are not

associated with speech processing, we decided to only use activity from relevant electrodes

during development and testing of the NSR system. Guided by a previously used method to

find speech-responsive electrodes (Mesgarani and Chang, 2012), we divided each subject’s

high gamma activity during perception of the Gump set into speech and silence subsets

using the phonemic transcriptions of the stimuli. For each channel, we conducted a t-test

that compared all of the samples from each of these two subsets. We considered a channel

relevant if the magnitude of the resulting t-value was greater than 2.54, which indicated that

the channel was significantly modulated by the presence of a speech stimulus. This threshold

value was qualitatively chosen after visual inspection of the high gamma activities for each

channel. After these steps, subjects A, B, and C had 95, 89, and 74 relevant channels,

respectively. The fewer number of relevant channels for subject C could be a result of

electrode coverage over the language non-dominant hemisphere, although existing literature

indicates that phonetic processing occurs bilaterally (Hickok and Poeppel, 2007). Over 50%

of the relevant channels for each subject were located in the STG. In Fig. 2.2, the relevant

electrode locations for each subject are depicted as colored dots and the remaining electrode

locations are depicted as circular outlines.

Data reorganization

After preprocessing, a phonemic transcription and associated time sequences of high gamma

activity from the relevant electrodes for each subject were available for each acoustic stimulus.

An example of one such set of experimental task data is given in Fig. 2.3. This figure

includes a visual representation of the phonemic transcription, which is referred to as an

“actual posteriogram”.

We created 10-fold cross-validation folds for the Gump and TIMIT sets. Each fold

contained approximately 90% of the stimuli from the corresponding data set as training

21

Figure 2.3: Sample task data associated with the utterance “No temptation, no virtue” from the
TIMIT set. Some of the silence data points at the start and end of the stimulus were excluded
from the visualizations. (a) The acoustic waveform along with the associated word transcription.
(b) The actual posteriogram, which is a visualization of the phonemic transcription associated with
this stimulus that depicts which phoneme is specified at each time point in the task. The ordering
and coloring of the phoneme labels on the vertical axis are consistent with what was presented
in Table 2.2. (c) The preprocessed high gamma activity at each of the 95 relevant electrodes for
subject A during perception of a single presentation of the stimulus. The electrodes are sorted from
top to bottom in ascending peak activity time (i.e. the time at which the electrode exhibited its
highest value during this task).

data and the remainder as test data. Each stimulus appeared in the test data for exactly

one of the folds. In an attempt to increase homogeneity between folds, we constructed the

folds for each of the two data sets such that the numbers of each type of stimuli present

in the test data of each fold were approximately equal across all folds. For the 10 TIMIT

folds, the two types of stimuli were characterized as being generated by either a male or

female speaker. For the 10 Gump folds, the six types of stimuli were characterized as either

22

a word, phrase, or dialog speech sample generated by either the male or female speaker. We

performed the majority of our analyses using one or more of these folds.

Feature selection

Auditory speech stimuli evoke complex spatiotemporal cortical responses that can start tens

of milliseconds after the acoustic onset and last hundreds of milliseconds after the acoustic

offset (Canolty et al., 2007; Engineer et al., 2008; Buonomano and Maass, 2009; Chang et al.,

2010; Mesgarani et al., 2014). In an attempt to more accurately model these activation

patterns in our NSR system, we used high gamma windows (HGWs) as feature vectors.

Each HGW contains multiple data points of high gamma activity within a pre-specified

time window across all of the relevant electrodes. Thus, HGWs represent the responses

both spatially (by using multiple electrodes) and temporally (by including multiple points

in time). Using HGWs as features contradicts a key conditional independence assumption of

the HMM architecture utilized by the Viterbi decoder which states that yt ⊥⊥ yt−1 | qt, where

qt and yt are the phonemic label and feature vector, respectively, at time t. Despite this,

we hypothesized that our NSR system would benefit by using these spatiotemporal feature

vectors, similar to how performance gains are observed in some ASR systems when velocity

and acceleration components are included in the feature vectors (Gold et al., 2011).

The HGWs are parameterized by three values: (1) initial delay, which is the amount of

time between the phoneme time point and the first HGW data point, (2) duration, which is

the time length of the HGW, and (3) size, which is the number of evenly spaced time points

within the time window specified by the first two parameters to include. For example, an

HGW parameterized by an initial delay of 50 ms, a duration of 60 ms, and a size of 4

would consist of the data points occurring 50, 70, 90, and 110 ms after the corresponding

phoneme time point. We performed grid searches to choose the optimal values for these

parameters for each subject. The search included initial delay values between 0–490 ms,

23

Table 2.3: The results of the feature selection grid searches for each subject. The optimal values
for the three HGW parameters found in each grid search are given along with the time offsets
calculated from these parameters. The optimal HGS time offset value found in each search is also
given.

High Gamma Window (HGW) High Gamma Slice (HGS)

Subject Initial delay (ms) Duration (ms) Size (points) Time offsets (ms) Time offset (ms)

A 70 180 4 {70, 130, 190, 250} 100
B 10 230 6 {10, 60, 100, 150, 190, 240} 90
C 0 210 5 {0, 50, 100, 160, 210} 120

durations between 0–490 ms, and sizes between 1–25 points. Because the sampling rate of

the high gamma activity was 100 Hz, we evaluated the initial delay and duration parameters

in 10 ms increments and used rounding when necessary to find indices within the data

sequences that most closely corresponded to their related time values. We ignored invalid

parameterizations, such as those that used sizes above 4 when the duration was 30 ms. We

also ignored parameterizations that included data points occurring 500 ms or more after the

corresponding phoneme time point. Any parameterization in which the size was 1 point,

which results in a spatial feature vector using the activity at each electrode for a single time

point, is referred to as a high gamma slice (HGS). Phoneme likelihood models, which are

discussed in Section 2.3.2, were trained and tested with feature vectors constructed using each

parameterization. For each subject, we performed a grid search using the neural responses

recorded from that subject during each stimulus presentation specified by one arbitrarily-

chosen TIMIT cross-validation fold. The performance metric used in each grid search was

the average posteriogram accuracy computed from the estimated posteriograms generated

for the test data, which is a measure of the frame-by-frame prediction accuracy (see Section

2.4.1 for more details).

The results of these grid searches are given in Table 2.3. The time offsets represent

which time points are used when constructing each feature vector. For example, the grid

search results for subject A indicate that the optimal HGW for a phoneme occurring at

time t contains the high gamma activity values for each relevant electrode at the time points

24

Figure 2.4: A depiction of evoked spatiotemporal response patterns and the computed optimal
HGW and HGS parameterizations. At each time point in the TIMIT set specifying one of seven
hand-selected phonemes, the high gamma activities recorded from the relevant electrodes for subject
A during the succeeding 490 ms were obtained, resulting in approximately 3400 time series per
phoneme (on average). From these, the mean response time series for each electrode and phoneme
was computed. Each plot contains, for one phoneme, the mean time series for the five electrodes
that exhibited the highest estimated discriminative power (as described in Section 2.3.2), depicted
as colored curves (the coloring is consistent across the individual plots). One standard error of the
mean above and below each electrode curve is included. This subset of seven phonemes contains
at least one phoneme from each of the non-silence phonemic categories, and the coloring of the
phoneme labels is consistent with the phonemic category coloring introduced in Table 2.2. The
optimal HGW contains the values for each electrode at each time point marked with a blue vertical
dashed line, and the optimal HGS contains the value for each electrode at the time point marked
with a red vertical dashed line at t = 100 ms. These plots illustrate the complex spatiotemporal
dynamics exhibited by the evoked responses and how these response patterns vary across the
phonemes, suggesting that modeling these dynamics (by using HGWs, for example) is beneficial
during discrimination tasks.

occurring 70, 130, 190, and 250 milliseconds after t. For later comparison against the system’s

performance when using the optimal HGW, we also determined the optimal HGS for each

subject. For subject A, this occurred at a delay of 100 ms, meaning that the optimal HGS

25

for a phoneme at time t contains the high gamma values for each relevant electrode at t+100

ms. Although the optimal HGS time offsets were relatively consistent across subjects, the

optimal HGW parameterizations were more varied. This observation could be explained by

differences in one or more subject-specific factors, such as electrode coverage, number of

relevant electrodes, and cortical structure. The optimal parameterizations for subject A are

depicted in Fig. 2.4 along with sample neural response patterns. The results of these grid

searches resemble findings reported in related literature (Steinschneider et al., 2011).

2.3.2 NSR system design

Phoneme likelihood model

The phoneme likelihood model used in this NSR system implemented the linear discriminant

analysis (LDA) method (Hastie et al., 2009). Although LDA is commonly used as a

dimensionality reduction technique, we used it as a classifier trained on the continuous-valued

feature vectors (y) and the associated phonemic classes (q). The model fits multivariate

Gaussian densities to each class using labeled training data. It assumes that the feature

data are normally distributed and that the covariance matrix used to parameterize each

class’s Gaussian distribution is equal across all classes. An LDA model was chosen due to

its simplicity (it has a closed-form solution and no parameters to tune) and its performance

in early ASR systems (Haeb-Umbach and Ney, 1992). Additionally, previous work has

shown that the STG linearly encodes some phonetic features in the high gamma band

(Mesgarani et al., 2014), which helps to motivate the choice of a linear model such as LDA.

We implemented this model using the scikit-learn Python package (Pedregosa et al., 2011).

For an unseen feature vector yt at some time t, the trained LDA model computes

likelihood estimates p (yt|qt = k) using the fitted Gaussian density associated with each

class (phoneme) k. From this, we can use Bayes’ rule to compute the phoneme posteriors

26

p (qt = k|yt):

p (qt = k|yt) ∝ p (yt|qt = k) p (qt = k) , (2.1)

where p (qt = k) is the prior probability distribution over the phonemic classes. We computed

these priors from the relative frequency of each phonemic class in the training data. Note

that these priors do not change over time within a single task, but they can change between

cross-validation folds. To obtain phoneme posterior probability distributions that sum to

one at each time point, we used the following formula:

p (qt = k|yt) =
p (yt|qt = k) p (qt = k)∑
l∈Q p (yt|qt = l) p (qt = l)

, (2.2)

where Q is the set of all possible phonemic classes.

We also used the LDA model to estimate the discriminative power provided by each

electrode channel. For each subject, we trained an LDA model using HGWs and all of the

data in the Gump set. Then, for each feature in the LDA model, we computed the variance of

the class means, representing a measure of between-class variance for that feature. The values

along the diagonal of the shared covariance matrix represented a measure of the within-class

variances for each feature (this is only an approximation of within-class variance because we

did not force diagonal covariance matrices in the LDA model). The discriminative power for

each feature was estimated using the following formula:

r2
i = 1−

σ2
w,i

σ2
w,i + σ2

b,i

, (2.3)

where r2
i , σ2

w,i, and σ2
b,i are the estimated discriminative power, within-class variance,

and between-class variance, respectively, for the ith feature. For each electrode, the r2

values for each feature that specified a time point for that electrode in the HGW were

averaged, yielding an estimated discriminative power for that electrode. For each subject,

27

the relevant electrodes in the STG accounted for more than two-thirds of the total estimated

discriminative power across all relevant electrodes. The r2 values for each relevant electrode

for each subject are depicted in Fig. 2.2.

Phonemic language model

The language model (LM) used in the NSR system provides estimates for the a priori

probabilities of phonemic sequences. Phoneme LMs are typically trained on large corpora

containing phoneme sequences. We decided to construct a phoneme corpus by phonemically

transcribing English sentences contained in the SUBTLEX-US corpus, which was created

using the subtitles from many American films and television series (Brysbaert and New,

2009). The Festival speech synthesis system was used to convert the sentences into phoneme

sequences (Black et al., 1997). Some sentences were excluded, such as short sentences with

fewer than 6 phonemes and sentences that the Festival system was not able to phonetize.

All /ax/ and /zh/ phoneme tokens were converted to /ah/ and /sh/ tokens, respectively.

Any phoneme sequence which exactly matched the phoneme sequence associated with any

of the Gump stimuli was excluded in an effort to keep the LM more generalized. A silence

phoneme (/sp/) token was inserted at the end of the phoneme sequence transcribed from

each sentence so that the sequences could be combined into one large corpus. Approximately

4.3 million sentences were included, resulting in a phoneme corpus with about 76.9 million

non-silence phonemes (a total of about 81.2 million phoneme tokens when /sp/ is included).

Because of the relatively simple implementation and robust performance of n-gram LMs,

we decided to choose between one of two different types of interpolated n-gram LMs for use

in the NSR system: a basic n-gram LM using additive smoothing (Lidstone, 1920; Chen

and Goodman, 1998) and a modified Kneser-Ney n-gram LM (Kneser and Ney, 1995; Chen

and Goodman, 1998). Although the modified Kneser-Ney n-gram LM typically outperforms

other n-gram LMs when used in word-level ASR systems, it might not be as suitable for

28

Figure 2.5: A comparison of the basic and modified Kneser-Ney n-gram phonemic language models
using multiple orders. The labels “Basic” and “ModKN” refer to the basic additive smoothing and
modified Kneser-Ney n-gram LMs, respectively. The same training and testing corpora were used
for each LM. A lower perplexity value indicates better performance. The basic additive smoothing
4-gram model (marked with an asterisk) exhibited the best performance, with a perplexity of 20.33.

phoneme-level decoding because of the relatively small number of tokens (the 39 phoneme

tokens) we use in our NSR system. We compared the performance of these two types of LMs

using orders of n ∈ {1, 2, 3, 4, 5}. Each LM was trained using the aforementioned corpus and

tested on a phoneme corpus constructed by concatenating the phonemic transcriptions of the

499 stimuli in the TIMIT set (including a silence phoneme between stimuli). We used the

perplexity of the LM on the test corpus as the evaluation metric (a lower perplexity indicates

better performance) (Chen and Goodman, 1998). Given the results of this analysis, which

are depicted in Fig. 2.5, we decided to use the basic 4-gram LM (trained on the previously

described phoneme corpus) in our NSR system.

For a given sequence of phonemes, the basic 4-gram LM provides conditional probability

estimates of p
(
qi = k|qi−1

i−3

)
for each phonemic class k at each index i within the sequence,

where the notation qba denotes the ath through the bth phonemes in the sequence. The

phonemic sequences used in LMs contain no information about phoneme durations; a

29

phoneme that spans any number of time points will be represented as a phoneme at a single

index in these phonemic sequences. For notational simplicity, these conditional probabilities

are sometimes represented as p (qt), which suppresses their implicit dependence on the three

distinct phonemes that precede the phoneme at time t. These probabilities should not be

confused with the priors discussed in the previous section.

In general, the conditional probabilities for a basic additive smoothing n-gram LM are

computed recursively using the following formula (Chen and Goodman, 1998):

p
(
qi = k|qi−1

i−n+1

)
=

λn

[
δ+c(qii−n+1)

δ|Q|+c(qi−1
i−n+1)

]
+ (1− λn) p

(
qi = k|qi−1

i−n+2

)
for n > 1

δ+c(qi)
δ|Q| for n = 1.

(2.4)

Here, c
(
qba
)

is the count of the number of times the n-gram qba occurs in the corpus, δ is the

additive smoothing factor that is added to the count of each n-gram (typically 0 ≤ δ ≤ 1),

Q is the set of all possible phonemes, and λn is the interpolation weight for the order n. In

our NSR system, we used n = 4, δ = 0.1, and [λ4, λ3, λ2] =
[

5
9
, 4

7
, 3

5

]
.

Viterbi decoder

We implemented a Viterbi decoding algorithm to provide MAP phoneme sequence estimates

given a sequence of likelihood estimates (from the likelihood model) and phoneme transition

probabilities (from the LM) (Viterbi, 1967; Jurafsky and Martin, 2009). The algorithm uses

Viterbi path probabilities, which are computed recursively using the following formula:

vt (j) = vt−1 (i) + log p (yt|qt) + L log p (qt) + Pnt. (2.5)

Here, vt (j) is the jth Viterbi path’s log probability at time t, vt−1 (i) is the ith Viterbi path’s

log probability at time t−1, p (yt|qt) is the likelihood of observing the feature vector yt given

30

qt (provided by the phoneme likelihood model), p (qt) is the prior probability of observing

phoneme qt at time t (provided by the LM), L is the language model scaling factor (LMSF),

P is the phoneme insertion penalty, and nt is an indicator variable that is 1 if and only if qt

for path j is not equal to qt−1 for path i. At every time point, the likelihoods p (yt|qt) are

normalized such that they sum to one across all phonemes.

Paths are computed for each combination of i ∈ {1, 2, . . . , It−1} and qt ∈ Q, where It−1

is the total number of paths at time t− 1 and Q is the set of all possible phonemic classes.

This results in a new path for each j ∈ {1, 2, . . . , |Q| It−1} at time t. For example, if there

are 12 paths at time t − 1 and 39 phonemes, then there will be 468 paths at time t (prior

to pruning). We used log probabilities for computational efficiency and numerical stability.

To initialize the recursion, we forced each decoding to start at time t = 0 with q0 = /sp/

and a possible Viterbi path set of {v0 (1) = 0}. After computation of all of the vt (j) log

probabilities for each t, we performed two steps of pruning. First, we performed a beam

search to prune unlikely paths between iterations by discarding paths that did not satisfy

vt (j) ≥
[
max
z
vt (z)

]
− c. (2.6)

Here, z indexes over all paths available at time t and c is the beam search criterion, which

we set equal to 50. Afterwards, we only retained a maximum of 100 of the most likely paths

between iterations. The decoded MAP phoneme sequence is specified by the path at index

m at time T , where m = argmax
u

vT (u), T is the final time point, and u indexes over all

paths available at time T .

The three main tunable parameters of this Viterbi decoding algorithm are the LMSF,

the phoneme insertion penalty, and the self-transition probabilities. The LMSF controls the

relative strength of the LM (as compared to the strength of the phoneme likelihood model).

Because the normalized likelihoods p (yt|qt) and LM probabilities p (qt) each sum to one at

31

every time point, the LMSF represents the ratio of the strength of the LM to the strength of

the likelihood model. The phoneme insertion penalty (P) controls the preference for decoding

short vs. long phoneme sequences. The self-transition probability (s) specifies the probability

at each time point that a self-transition will occur, which is important because phonemes

typically last for more than one time point. This probability replaces the probabilities given

by the LM for p (qt) when qt = qt−1. Note that in the context of phoneme-level decoding

(as opposed to word-level decoding), the self-transition probability is similar to the phoneme

insertion penalty in that it also controls the preference for decoding short vs. long phoneme

sequences.

We used grid searches to determine the optimal values for these three parameters.

For each subject, we obtained likelihood estimates at each time point for each TIMIT

stimulus presentation. These likelihoods were obtained from likelihood models trained

with HGW feature vectors using the TIMIT cross-validation scheme. We also obtained

likelihood estimates using feature vectors from all subjects simultaneously (as described

in Section 2.4) and using MFCC features. Using these likelihood estimates, we evaluated

the performance of the decoder when parameterized by all possible combinations of L ∈{
0, 1

5
, 1

4
, 1

3
, 1

2
, 1, 2, 3, 4, 5

}
, P ∈ {−7,−6, . . . , 0, 1, 2}, and s ∈ {0, 0.1, . . . , 0.8, 0.9}. The

performance metric used was the value of the expression (1− ε) + γ, where ε and γ are the

average phoneme error rate and posteriogram accuracy, respectively, across all of the results

for a given parameterization (these metrics are explained in Section 2.4.1). The results of

this grid search for each subject, for all subjects simultaneously, and for the acoustic features

are given in Table 2.4.

32

Table 2.4: The optimal values for the three Viterbi parameters found by the grid searches using
MFCC features, neural features for each subject, and neural features for all subjects simultaneously.

LMSF Phoneme insertion Self-transition
Subject (L) penalty (P) probability (s)

MFCC 2 -1 0.4

A 2 -1 0.3
B 2 -1 0.9
C 3 -1 0.1
All 2 -2 0.4

2.4 Results

We evaluated the performance of the NSR system using multiple feature sets and metrics.

Each evaluation used all 10 of the Gump cross-validation folds. We conducted evaluations

using either HGSs or HGWs as feature vectors. For each subject, we performed

evaluations with single-trial data (using high gamma activity from each stimulus presentation

individually) and averaged data (using high gamma activity averaged across all of the

presentations of each stimulus). In addition to these analyses using responses from individual

subjects, we also performed evaluations using concatenated feature vectors from all of the

subjects; because the neural response data are time-aligned to the stimuli and the stimuli

are identical across subjects, we were able to generate feature vector time sequences using

data from all of the subjects simultaneously for each stimulus by concatenating the feature

vectors (averaged across stimulus presentations) from each subject during perception of the

stimulus.

For each evaluation, we obtained results using two types of predictions: “estimations” and

“decodings”. Here, estimations refer to the phoneme sequences constructed by choosing the

most likely phoneme at each time point from the phoneme posterior probabilities provided

by the LDA model, and decodings refer to the MAP phoneme sequences provided by the

Viterbi decoder. Continuing with the notation introduced in Section 2.3.2, we computed the

estimated phoneme sequences using q̂t = argmax
k

p (qt = k|yt) at each time point, where q̂t

is the estimated phoneme at time t in one of the stimuli. By comparing the estimation and

33

decoding results, it is possible to measure the impact that language modeling and Viterbi

decoding had on the performance of the system.

We performed a separate evaluation that used MFCCs as features to assess how well a

similarly-designed ASR system would perform on the stimuli. Additionally, we evaluated

chance performance by decoding the non-silence phoneme with the most time points in

the training set, which was always /s/, at each time point. When considering frame-by-

frame accuracy, this is a more conservative method of chance performance than simply using

1 divided by the number of classes (which would be about 2.6% for the 38 non-silence

phonemes). We assessed the performance of the NSR system using three evaluation metrics

to measure the similarities between the predicted and actual phoneme sequences: phoneme

error rate, posteriogram accuracy, and confusion accuracy.

2.4.1 Evaluation metrics

Phoneme error rate

In ASR research, the word error rate evaluation metric is commonly used to assess the

performance of a speech recognition system (BenZeghiba et al., 2007). One of the main

advantages of using this metric is that it evaluates performance by directly using predicted

word sequences, which are what end users of many ASR systems interact with. The analog

of this metric when used in the context of phoneme-level recognition is the phoneme error

rate (PER), which is a measure of the Levenshtein distance between actual and predicted

phoneme sequences. The PER for a predicted phoneme sequence can be computed using the

following formula:

PER =
S +D + I

N
(2.7)

34

Here, S, D, and I specify the minimum number of substitutions, deletions, and insertions

(respectively) required to transform the predicted phoneme sequence into the reference

(actual) sequence, and N denotes the number of phonemes in the reference sequence. A

lower PER value signifies better performance. Note that it is possible for PER values to

exceed 1.0; for example, if the predicted sequence was /ay n ow/ and the reference sequence

was /ay/, the PER value would be 2.0, with S = I = 0, D = 2, and N = 1.

The PER metric uses sequences that have been “compressed” by removing all silence

phonemes from the sequences and then traversing each sequence in order and removing

any phoneme that occurs immediately after an identical phoneme. Therefore, compressed

sequences do not contain information about the time durations of any item in the sequence,

which is typically not relevant for the end users of ASR systems. Note that the PERs for

estimation results tend to be relatively large and are primarily included in the results for

completeness; typically, PERs are only informative for decoding results.

Posteriogram accuracy

We constructed estimated and decoded posteriograms, which use estimated and decoded

phoneme sequences, respectively, to visually represent predicted phoneme sequences. Sample

posteriograms, along with the related time sequence of phoneme posteriors, are given in

Fig. 2.6. The posteriogram accuracy is a measure of the frame-by-frame accuracy of a

predicted posteriogram; it represents the fraction of time points within a given stimulus

for which the predicted phoneme was equal to the actual phoneme. This metric does not

use compressed sequences and is sensitive to the time durations of the predicted phonemes.

For this metric, we excluded any data points for which the actual phoneme was the silence

phoneme; although detecting the absence of speech will likely be an important aspect of

an applied NSR system, including these points led to performance overestimation due to

increased posteriogram accuracy for each prediction.

35

Figure 2.6: A sample set of results obtained using HGWs from subject A during perception of the
utterance “What is the address?” by a female speaker in the Gump set. In all four visualizations,
the ordering and coloring of the phoneme labels given in Table 2.2 are used. Some of the data points
specifying silence at the start and end of the stimulus were excluded from the visualizations. (a) The
actual posteriogram showing the phonemic transcription of the stimulus. (b) The phoneme posterior
probability distribution at each time point during the task. (c) The estimated posteriogram
constructed by classifying the phoneme posteriors in (b) using the most likely phoneme at each
time point. Here, the green and pink points signify classifications that were considered correct and
incorrect, respectively. Dark gray points signify data that were excluded from the calculation of
the posteriogram accuracy. (d) The decoded posteriogram computed by the Viterbi decoder, which
is represented using the same coloring scheme as the estimated posteriogram. For this specific
decoding result, the posteriogram accuracy is 48.6% and the phoneme error rate is 50.0%.

Confusion accuracy

We computed phoneme confusion matrices, such as the ones shown in Fig. 2.7, for each

evaluation using the confusions between the actual and predicted phonemes for each time

point in each stimulus. We normalized the confusion matrices by row such that the confusion

values for any actual phoneme would sum to 1 across all of the predicted phonemes. The

values along the diagonal of the matrix are measures of the model’s ability to correctly

classify each phoneme. The confusion accuracy is defined as the mean of these values,

36

Figure 2.7: A sample set of confusion matrices computed using the performance evaluation results.
The top row contains results using averaged HGWs from subject A and the bottom row contains
results using MFCCs. The left column contains estimation results and the right column contains
decoding results. The color-value mapping is identical across all matrices and uses row-normalized
confusion values. The colored square outlines signify phonemic categories and correspond to the
ordering and coloring of the phonemes on both axes (which match what was given in Table 2.2).
Confusion accuracies were computed by taking the mean value along the diagonal (excluding the
silence phoneme value).

37

Estimation Decoding

Prediction type

0

50

100

150

200

E
rr

or
ra

te
(%

)
Phoneme error rate

Chance
A - Single-trial - HGS
A - Single-trial - HGW
A - Averaged - HGS
A - Averaged - HGW
All - Averaged - HGS
All - Averaged - HGW

Estimation Decoding
0

5

10

15

20

25

30

A
cc

ur
ac

y
(%

)

Posteriogram accuracy

Estimation Decoding
0

5

10

15

20

25

30

A
cc

ur
ac

y
(%

)

Confusion accuracy

Figure 2.8: Visualization of the performance evaluation of the NSR system on the stimuli within the
Gump set using single-trial and averaged HGSs and HGWs from subject A and concatenated feature
vectors across all subjects. Chance performance is also included. Error bars indicate standard error
of the mean. The results for all of the subjects with standard deviations are given in Table 2.5.

which is effectively a re-scaled measure of the matrix’s trace. Consequently, this metric does

not directly depend on the number of available time points for each phoneme; it weighs the

classification accuracy for each phoneme equally. This metric can be used to identify whether

or not the system only successfully predicts common phonemes, which would negatively affect

the confusion accuracy more drastically than posteriogram accuracy. We also excluded the

value along the diagonal for the silence phoneme when computing this metric to prevent

performance overestimation.

2.4.2 System performance

The performance of the NSR system for subject A and for the concatenated feature vectors is

depicted in Fig. 2.8. The results of the system’s full performance evaluation are summarized

in Table 2.5.

In the figure and the table, the statistics for the phoneme error rate and posteriogram

accuracy metrics are computed using the individual results from each stimulus, and the

statistics for the confusion accuracy metric are computed using the values along the diagonal

38

Table 2.5: Performance evaluation of the NSR system on the stimuli within the Gump set using
three different types of feature vectors (MFCCs, HGSs, and HGWs) across four different subject sets
(the three individual subjects and one combination of all subjects). Both single-trial and averaged
neural response feature vectors were evaluated. Chance performance, which involves predicting the
most likely phoneme /s/ at each time point, is also included. The phoneme error rate, posteriogram
accuracy, and confusion accuracy metrics are used to assess the estimation and decoding results.
All results are given as percentages in the following form: mean ± standard deviation.

Results

Feature set Estimation Decoding

Feature Subject Phoneme Posteriogram Confusion Phoneme Posteriogram Confusion
type (or all) error rate (%) accuracy (%) accuracy (%) error rate (%) accuracy (%) accuracy (%)

Chance - 97.12± 5.34 7.06± 9.77 2.63± 16.01 97.12± 5.34 7.06± 9.77 2.63± 16.01

MFCC - 208.16± 67.45 40.45± 10.76 34.51± 16.15 60.60± 25.16 41.88± 17.30 36.30± 10.86

Single-
trial
HGS

A 188.73± 90.28 11.74± 7.98 7.67± 10.03 90.84± 25.00 11.79± 10.88 11.49± 7.94
B 176.91± 114.31 7.72± 6.02 4.79± 4.96 92.31± 26.43 10.23± 11.06 9.63± 5.52
C 173.83± 92.48 9.00± 6.76 4.80± 7.22 87.67± 17.36 10.70± 11.58 8.16± 6.23

Single-
trial
HGW

A 169.68± 84.89 15.62± 9.21 12.76± 10.12 86.34± 22.07 15.06± 11.73 14.89± 9.01
B 151.70± 78.01 12.69± 8.18 9.58± 5.89 90.63± 26.28 12.71± 11.49 11.80± 5.96
C 152.48± 75.98 12.93± 8.77 8.09± 8.22 85.71± 17.30 12.62± 12.10 9.84± 6.40

A 182.53± 89.81 14.68± 8.87 10.81± 10.80 86.37± 20.83 14.03± 11.72 14.07± 9.28
Averaged
HGS

B 182.80± 99.75 11.95± 7.82 8.21± 6.92 87.13± 18.01 13.51± 11.30 12.59± 7.26
C 181.75± 78.74 12.22± 8.01 7.08± 9.01 85.36± 13.67 12.41± 11.45 10.01± 6.56
All 180.87± 84.47 22.34± 9.94 18.14± 10.47 76.68± 15.82 23.41± 13.85 21.39± 9.12

A 158.00± 69.86 18.93± 10.39 16.49± 10.99 81.39± 18.85 18.79± 12.57 18.49± 10.30
Averaged
HGW

B 149.66± 65.27 17.35± 9.46 13.80± 7.30 82.84± 21.02 17.64± 13.31 15.30± 6.99
C 157.35± 73.80 16.42± 9.84 11.20± 8.79 83.65± 19.18 15.36± 13.02 12.27± 7.99
All 142.96± 61.31 28.36± 10.47 24.02± 10.99 70.47± 16.77 29.26± 14.88 25.03± 10.69

of the overall confusion matrix.

We performed a variety of statistical significance tests on these results, using the one-

tailed Wilcoxon signed-rank test (abbreviated to Wilcoxon) for paired comparisons and

the one-tailed Welch’s t-test (abbreviated to Welch’s) for unpaired comparisons. We use

a significance level of α = 0.01 during assessment of our results.

All of the HGW decoding results were significantly better than the HGS estimation

results for all subject sets (each individual subject and the concatenated features) and metrics

(Wilcoxon, p < 10−6).

39

All of the HGW results were significantly better than the HGS results for all subject sets

and metrics (Wilcoxon, p < 0.005).

The decoding results were significantly better than the estimation results when evaluated

with the PER metric for all subject sets (Wilcoxon, p < 10−11). Similarly, confusion

accuracies were significantly better for decoding results than for estimation results (Wilcoxon,

p < 0.01) for all evaluations except the ones using averaged HGWs from subject C and

concatenated HGWs. However, significant improvements were not observed for many of the

evaluations when using the posteriogram accuracy metric, and in some instances the mean

decoding posteriogram accuracies were lower than the estimation posteriogram accuracies.

Averaged neural feature vectors outperformed their single-trial counterparts for each

subject when using the posteriogram accuracy metric (Welch’s, p < 0.01). Except when

HGWs from subject C are used, this was also observed for comparisons involving decoding

PERs (Welch’s, p < 0.01). This was not observed for the majority of the confusion accuracy

or estimation PER comparisons.

The concatenated feature vectors performed significantly better than individual subject

feature vectors when evaluated with each metric other than the estimation PER metric

(Wilcoxon for averaged results, Welch’s for unaveraged results, p < 10−5).

MFCC features significantly outperformed neural features when evaluated with each

metric other than the estimation PER metric (Wilcoxon for averaged results, Welch’s for

unaveraged results, p < 10−5).

Neural features performed better than chance in most situations (Wilcoxon for averaged

results, Welch’s for unaveraged results, p < 0.01). The exceptions comprised of all estimation

PER comparisons, a subset of the single-trial confusion accuracy results, and the single-trial

estimation posteriogram accuracy result with HGSs for subject B.

40

2.4.3 Phoneme time position effects

Previous research has shown that transient responses to the onset of an acoustic stimulus are

exhibited by some neurons in the auditory cortex of rats (DeWeese et al., 2003; Ogawa et al.,

2011) and humans (Tiitinen et al., 2012; Okamoto and Kakigi, 2014). If similar response

patterns are present in our ECoG data, we can expect the performance of our phoneme

likelihood estimator to vary throughout the duration any given utterance. Specifically, we

hypothesize that NSR performance degrades over the course of an utterance due to temporal

complexities present in the evoked neural response patterns, such as sensitivity to stimulus

onsets. Additionally, we expect that these same effects are not present in the acoustic

features.

To assess this hypothesis, we analyzed the impact that phoneme time position had on

posteriogram accuracy for both acoustic and neural features. Here, the time position of

a phoneme is equal to the amount of elapsed time between the utterance onset and the

phoneme time point. We defined the onset of an utterance to be the onset of any non-silence

phoneme that occurs immediately after a period of silence lasting 500 ms or longer (we did

not simply use the first non-silence phoneme in each stimulus because some of the longer

Gump stimuli contained multiple sentences). For each feature type, we used the estimated

posteriograms generated for the 382 Gump stimuli to constructed a data set using each time

point in the corresponding actual posteriograms specifying a non-silence phoneme. Each

datum in this new data set specified the stimulus identity, the phoneme time position, and

a binary indicator that was 1 if that time point was correctly classified in the estimated

posteriogram and 0 otherwise. A depiction of these data sets for MFCCs and averaged

HGWs from subject B is provided in Fig. 2.9.

For each feature type, we used the lme4 package within the R programming language

(R Core Team, 2015; Bates et al., 2015) to fit a mixed effects logistic regression model with

41

Figure 2.9: The effect of phoneme time position on posteriogram accuracy. Utterance onsets
occur when a non-silence phoneme occurs after a silence duration lasting 500 ms or longer. The
mean posteriogram accuracies were computed using estimated posteriograms associated with each
stimulus in the Gump set generated with MFCCs (left) and averaged HGWs from subject B (right).
Each dot represents the mean posteriogram accuracy associated with a phoneme time position, and
the color of the dot indicates how many utterances contained a non-silence phoneme at that position.
Phoneme time positions that were present in fewer than 20 of the stimuli and all silence phonemes
were excluded from the figure. The horizontal dashed line in each plot depicts chance posteriogram
accuracy. The apparent heteroscedasticity in each plot is most likely caused by the decreased
number of occurrences of non-silence phonemes in the latter part of the utterances (because the
utterances differ in duration), which led to less confident predictions of the mean accuracy at those
time points. Testing with mixed effects logistic regression models revealed statistically significant
negative relationships between phoneme time position and classification accuracy for neural features
but not for MFCC features.

the associated data set to assess the effect that phoneme time position had on classification

accuracy (Baayen et al., 2008; Jaeger, 2008). In addition to the fixed effect of phoneme time

position, random intercepts and slopes were utilized for each stimulus (Barr et al., 2013),

which allowed the fits for each stimulus to vary in terms of overall classification accuracy

and extent to which accuracy changes as a function of phoneme time position.

For MFCC features, we did not find evidence that phoneme time position influenced

classification accuracy (β = 0.051, p = 0.225). Here, β is the regression coefficient for the

42

phoneme time position variable. However, for averaged HGWs from subject B, the analysis

revealed a significant effect in which accuracy diminished as a function of phoneme time

position (β = −0.792, p < 10−10). After performing this analysis using the remaining feature

types described in Section 2.4.2, we observed a similar negative effect for every evaluation

involving neural features (each β < −0.4, p < 10−5) and no statistically significant effect for

the chance evaluation (β = −0.589, p = 0.085).

2.4.4 Speaker gender effects

In ASR research, it has been shown that the gender of a speaker affects the features used

to train a speech recognition system, which can ultimately affect the system’s ability to

decode speech from speakers of the opposite gender (Abdulla and Kasabov, 2001). Because

of this, we assessed the effect that speaker gender had on the performance of our NSR

system. We performed separate evaluations on the 191 Gump stimuli produced by the male

speaker and the 191 produced by the female speaker. We also performed an evaluation using

191 Gump stimuli chosen from both genders. These three evaluations used 10-fold cross-

validation schemes with attempts to maintain homogeneity between folds (as described in

Section 2.3.1). We performed two additional evaluations by training on 90% of the stimuli

from the male speaker and testing on all of the stimuli from the female speaker and then

repeating this evaluation with the gender roles (training versus testing) swapped. All of

these evaluations were performed using single-trial and averaged HGWs for each subject,

concatenated HGWs, and MFCCs.

For MFCC features, this analysis revealed significant differences between evaluations for

each metric (Welch’s ANOVA, p < 0.01). For each metric other than the estimation PER

metric, post-hoc analyses revealed that the two evaluations involving training on the stimuli

from one speaker and testing on the stimuli from the other speaker performed significantly

43

worse than the other three evaluations (Welch’s t-test with Bonferonni correction, p < 0.001).

For the neural features, most analyses revealed no significant differences between

evaluations for each metric (Welch’s ANOVA, p > 0.01). There were three exceptions:

(1) the estimation PER for single-trial HGWs from subject A (Welch’s ANOVA, p =

8.28× 10−3), (2) the estimation PER for averaged HGWs from subject A (Welch’s ANOVA,

p = 1.30× 10−3), and (3) the estimation posteriogram accuracy for single-trial HGWs from

subject B (Welch’s ANOVA, p = 6.57× 10−3). Overall, the differences between evaluations

for each neural feature were negligible compared to the differences observed for acoustic

features.

2.5 Discussion

Using relatively simple feature extraction techniques and model components, our NSR system

was able to perform, to a limited extent, continuous speech decoding using neural signals.

The novel results presented in this work quantitatively indicate that spatiotemporal modeling

and ASR techniques, specifically language modeling and Viterbi decoding, can be used to

improve phoneme recognition when using neural response features and continuous speech

stimuli.

Feature selection had a significant impact on the performance of our NSR system. Unlike

ASR, which contains well-established representations of audio waveforms such as MFCC

vectors, the ideal representations of cortical surface recordings for the purpose of decoding

speech remain unknown. We used HGWs as a relatively simple way to explore this realm

of potential representations, guided by our hypothesis that including temporal information

in the feature vectors would improve decoding in our system. The results of the feature

window grid searches suggested using information contained in the neural responses occurring

44

between 0–250 ms after an acoustic stimulus (within a continuous context) for maximum

discriminative ability. However, the certainty of this conclusion is limited by the HGW

parameterization constraints, the linearity assumption implicit in the LDA model used to

evaluate the HGWs, and the relatively small amount of data used during the grid search.

One reason why the HGW parameterization constraints are particularly troublesome arises

from the fact that previous research has shown that different sub-populations of cortical

neurons in the STG have different response properties (Steinschneider et al., 2011), which

suggests that forcing the same HGW parameters to be used for each electrode restricts

the capability of HGWs to accurately represent the neural activity. It is also possible

that the temporal dynamics are better represented implicitly within the models, through

techniques such as sub-phone modeling (Jurafsky and Martin, 2009; Gold et al., 2011)

or recurrent neural network (RNN) modeling (Elman, 1990), than explicitly in feature

vectors. Additionally, despite the fact that power in the high gamma band has been used

effectively in related research, the results of other research efforts indicate that it might

be beneficial to evaluate the efficacy of using measures of the raw ECoG signal, power in

other frequency bands, and phase information in feature vectors (Luo and Poeppel, 2007).

Furthermore, previous research suggests that speech sequence statistics are encoded in the

human temporal cortex (Leonard et al., 2015), suggesting that modeling the phonotactic

information encoded directly in the neural signals can potentially be incorporated into an

NSR system to improve performance. Although representations that are more powerful

than these simple HGWs could be uncovered in future research, our results emphasize the

importance of modeling spatiotemporal dynamics of neural activity when attempting to

discriminate between responses evoked by varying continuous stimuli (at least within the

context of speech perception analysis).

As described in Section 2.4.2, the use of HGWs over HGSs and the use of language

modeling and decoding tended to improve performance. HGWs consistently provided

improvements when compared to HGSs, but the use of a phonemic LM and Viterbi decoding

45

typically provided improvements only for the PER and confusion accuracy metrics and not

for the posteriogram accuracy metric. The similarity in the posteriogram accuracy values for

estimation and decoding results suggest that the basic phoneme priors used in the estimation

results (as described in Section 2.3.2) were as effective at frame-by-frame classification as the

phonemic LM used in the decoding results. Altogether, these results indicate that temporal

smoothing of the phoneme likelihoods is the primary benefit of incorporating a phoneme-level

LM and performing Viterbi decoding. This claim is also supported by the sensitivity of the

PER metric to temporal jitter in the predicted phoneme sequence (and the fact that decoding

PERs were more favorable than estimation PERs), the apparent smoothing in many of the

decoded posteriograms (such as the one depicted in Fig. 2.6), and the similarity between the

estimation and decoding confusion matrices (such as the ones depicted in Fig. 2.7). From

comparisons between the estimated and decoding confusion matrices in Fig. 2.7, the decoding

techniques also seem to reduce the confusability of non-silence phonemes with /sp/. This is

most likely a result of the impact that the high occurrence frequency of /sp/ had on the priors

described in Section 2.3.2 used when computing the phoneme posteriors. We anticipate that

the use of a word-level LM would have a much more significant impact on the differences

between estimation and decoding results because predicted phoneme sequences would be

restricted to those that comprise word sequences. Additionally, future research could assess

the effect that stimulus length has on decoding performance; because the Viterbi parameters

affect decoded sequence length, decoding performance could be improved if stimuli of similar

lengths were used throughout the development of an NSR system.

Averaging across stimulus presentations typically lessened the negative impact that large

trial-by-trial variabilities in the neural responses had on our LDA model. Also, performance

was improved using combined features across multiple subjects, which implies that the system

could be limited by the spatial resolution of the ECoG arrays, the cortical response properties

of individual subjects, or the inherent noise present in recorded ECoG signals. The results

using concatenated feature vectors illustrate the upper limits on system performance and

46

the amount of information available in recorded neural signals given the current physical and

methodological limitations of our system. However, averaging and combining features across

multiple subjects are relatively infeasible approaches for a speech prosthetic application.

Future research efforts could explore alternative modeling and preprocessing techniques to

obtain more accurate and less variable results using single-trial data from a single subject.

As expected, the MFCC features proved more effective than any of the neural features.

However, we were able to observe similarities between the confusion matrices generated using

neural and acoustic data (as shown in Fig. 2.7). In both cases, confusions typically occurred

amongst stops, affricates, and fricatives or amongst the vowels, although for neural data the

vowels were more confusable with the nasals and approximants than for acoustic data. These

confusion matrices also suggest that prediction accuracy for stops was similar for neural and

acoustic features. Additionally, for both feature types, our system was extremely effective at

predicting silence, as made evident by the large phoneme confusion values for /sp/ in these

confusion matrices.

We found a negative correlation between the time position of a phoneme in an utterance

and our system’s ability to correctly predict that phoneme when neural (and not acoustic)

features are used (as discussed in Section 2.4.3). One factor that could be contributing to this

observation is the existence of transient neural responses to acoustic onsets that might encode

phonetic information in fundamentally different ways than sustained responses (Tiitinen

et al., 2012; Okamoto and Kakigi, 2014). This correlation could also indicate that response

patterns evoked by a phoneme, which can last hundreds of milliseconds, are overlapping

with response patterns of subsequent phonemes, resulting in observed responses that grow

increasingly complex as an utterance progresses. Another possibility is that the cortical

responses used in our analyses also contain representations of higher-order information

related to the perceived speech, such as word identity (Cibelli et al., 2015) or phonotactic

information (Leonard et al., 2015), which could affect the accuracy of the phoneme likelihood

47

model. Because the observed degradation of prediction quality over time is particularly

problematic for continuous speech decoding approaches, attempts to directly model these

effects could lead to performance improvements in future iterations of our NSR system.

As described in Section 2.4.4, we showed that the gender of the speakers that generated

the stimuli typically had no effect on the performance of our system when using neural

features. As expected, speaker gender did have a significant effect on the system’s

performance when using MFCCs. Because gender is one of the most influential sources

of speaker-attributed acoustic variability during speech production (Abdulla and Kasabov,

2001), we conclude that speaker identity does not significantly affect our system when using

neural features. This conclusion is consistent with the theory that phonetic information is

encoded more strongly in the STG than other information that is more variable between

genders (such as fundamental frequency) (Mesgarani et al., 2014) and suggests that data

from multiple speakers can be used to effectively train an NSR system.

To further assess the potential of using our NSR system in a speech prosthetic

application, we can repeat our analyses using neural signals recorded during covert speech.

Research groups have shown that covert and overt speech share partially overlapping

neural representations in the auditory cortex and that it is feasible to reconstruct

continuous auditory speech features from ECoG data recorded during a covert speech task

(Tian and Poeppel, 2010; Martin et al., 2014). A future NSR system capable of intelligibly

decoding covert speech could lead to the development of a speech prosthetic that allows

impaired individuals to communicate more naturally with others. In addition, it could

be beneficial to repeat our analyses using speech production tasks and neural activity

from motor areas. Two research groups have reported favorable results by decoding

produced speech using ECoG signals recorded in the motor cortex, although these groups

did not perform continuous speech decoding (Kellis et al., 2010; Mugler et al., 2014). Also,

by expanding on the approaches described in this work, stimuli containing speech from

48

multiple speakers simultaneously could be used to add to the current knowledge of how

the brain handles encoding of speech information in a multi-speaker setting (Mesgarani and

Chang, 2012) and to further ongoing research efforts aimed at gaining insights applicable

to ASR systems that operate in multi-speaker environments (Chang et al., 2015). Future

NSR research should also include comparisons that address whether or not a discrete-state

decoder (such as our system) that predicts sequences of speech tokens can effectively leverage

language modeling and probabilistic decoding to increase performance over continuous-

valued reconstruction methods that predict acoustics (such as spectrograms) (Pasley et al.,

2012).

The progress described in this work is primarily a proof-of-concept and should provide

useful insights for future research in the field of NSR. The relatively simple model components

and feature representations used in our system leave much room for improvement. For

example, one of many recent advances in the ASR field has shown that modeling the

spatiotemporal dynamics of the feature space non-linearly using deep recurrent neural

network models can significantly improve decoding performance over more traditional

methods (Graves et al., 2013). The PERs reported in these studies are much lower than

what we achieved with our system when using acoustic features, which implies that the

incorporation of more sophisticated models from modern ASR systems could improve the

performance of our NSR system. In addition, we intend to use word-level language modeling

and decoding in future iterations of our system to make it more suitable for speech prosthetic

applications.

49

Chapter 3

Real-time classification of auditory

sentences using evoked cortical

activity in humans

Disclaimer: This chapter is a direct adaptation of the following article:

D. A. Moses, M. K. Leonard, and E. F. Chang, 2018. Real-time classification of audi-

tory sentences using evoked cortical activity in humans. Journal of Neural Engineering,

15(3). doi: 10.1088/1741-2552/aaab6f.

Personal contributions: I developed and tested the real-time system, performed all

data collection and analyses, and wrote the original draft of the manuscript.

Note: A supplementary video from this article was not included here.

50

3.1 Abstract

Recent research has characterized the anatomical and functional basis of speech perception

in the human auditory cortex. These advances have made it possible to decode speech

information from activity in brain regions like the superior temporal gyrus, but no published

work has demonstrated this ability in real-time, which is necessary for neuroprosthetic

brain-computer interfaces. Here, we introduce a real-time Neural Speech Recognition

(rtNSR) software package, which was used to classify spoken input from high-resolution

electrocorticography signals in real-time. We tested the system with two human subjects

implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple

repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural

activity patterns using direct sentence-level and HMM-based phoneme-level classification

schemes. We observed single-trial sentence classification accuracies of 90% or higher for each

subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use

cortical recordings to perform accurate real-time speech decoding in a limited vocabulary

setting. Further development and testing of the package with different speech paradigms

could influence the design of future speech neuroprosthetic applications.

3.2 Introduction

Recent work has characterized the specific functional roles of the human superior temporal

gyrus (STG) and neighboring brain areas in speech perception and language understanding

(Boatman et al., 1997; Binder et al., 2000; Canolty et al., 2007; Hickok and Poeppel, 2007;

Rauschecker and Scott, 2009; Mesgarani et al., 2014). While subjects are listening to

spoken speech, neural activity in this region can be used to decode and reconstruct speech

information, including spectrotemporal acoustic properties (Pasley et al., 2012; Yang et al.,

51

2015; Leonard et al., 2016) and phoneme sequences (Moses et al., 2016). Previous work has

implemented real-time systems capable of mapping sensorimotor activations using spectral

decomposition of neural signals (Cheung and Chang, 2012), using transcribed stimuli to

generate neural encoding models (as opposed to decoding models) of segmental speech (e.g.

phonemes) (Khalighinejad et al., 2017), decoding isolated phonemes from brain activity

(Leuthardt et al., 2011), and detecting speech production onsets and offsets from cortical

responses (Kanas et al., 2014). However, to the best of our knowledge no published work has

demonstrated real-time classification of phoneme sequences or entire sentences from neural

signals, which would have practical applications in speech neuroprostheses.

In this work, we developed and tested a real-time Neural Speech Recognition (rtNSR)

software package. As defined in our previous work, we use the term neural speech recognition

to refer to performing speech decoding using neural responses as features (Moses et al., 2016).

The rtNSR package contains real-time code capable of presenting visual and acoustic stimuli,

processing acquired neural signals, training probabilistic models, performing classification

and decoding, and storing data and metadata. Our primary goal in this work was to

perform an initial assessment of the capabilities of rtNSR using a relatively simple sentence

prediction task. In this task, subjects listened to multiple presentations of ten pre-recorded

spoken sentences. During these stimulus presentations, cortical activity is obtained in real-

time via electrocorticography (ECoG) arrays and used in one of two classification schemes

to predict the identity of the stimulus that the subject just heard. The results of this study

indicate that rtNSR is capable of accurately decoding single-trial speech events in real-time,

demonstrating its viability as a platform for an assistive speech application.

52

3.3 Methods

3.3.1 Subjects

The two subjects (A and B) who participated in this study were human epilepsy patients

undergoing treatment at the UCSF Medical Center. To aid clinicians in localizing seizure

foci, two 128-channel ECoG arrays with 4 mm center-to-center electrode spacing (PMT corp.)

were surgically implanted on the cortical surface of each subject. Both subjects had unilateral

coverage over the right hemisphere that included the STG. MRI brain reconstructions with

electrode locations were generated for each subject using the open source img pipe package

(see Fig. 3.5) (Hamilton et al., 2017).

Both patients gave their informed consent to be a subject for this research prior to surgery.

The research protocol was approved by the UCSF Committee on Human Research.

3.3.2 Speech stimuli

In each experimental task, the subject listened to multiple repetitions of ten phonetically

transcribed speech stimuli from the Texas Instruments/Massachusetts Institute of Technol-

ogy (TIMIT) dataset (Garofolo et al., 1993). In each stimulus, a single speaker produces

a single sentence. We trimmed silence from each end of each stimulus sound file prior to

running the tasks. The TIMIT label, sentence transcription, and duration of each stimulus

are provided in Table 3.1.

We converted each speech sound label specified in the phonetic transcriptions to one of

the 37 phonemic labels used in this work. This set of phonemic labels, which is provided in

Table 3.2, is comprised of 36 phonemes from the ARPABET and /sp/, a silence phoneme

used to label non-speech data points.

53

Table 3.1: Information about each stimulus.

TIMIT label Sentence transcription Duration (s)

fcaj0 si1479 Have you got enough blankets? 1.108
fcaj0 si1804 It had gone like clockwork. 1.540
fdfb0 si1948 He moistened his lips uneasily. 1.527
fdxw0 si2141 It was nobody’s fault. 1.161
fisb0 si2209 “A bullet,” she answered. 1.508
mbbr0 si2315 Junior, what on earth’s the matter with you? 1.679
mdlc2 si2244 Nobody likes snakes. 1.301
mdls0 si998 Yet they thrived on it. 1.000
mjdh0 si1984 And what eyes they were. 1.048
mjmm0 si625 A tiny handful never did make the concert. 2.106

Table 3.2: The phonemic labels used in this work and their respective categorizations.

Category Phoneme

Silence sp
Stop b d g p t k
Affricate jh
Fricative f v s z sh th dh hh
Nasal m n ng
Approximant w y l r
Monophthong iy aa ae eh ah uw ao ih uh er
Diphthong ey ay ow oy

3.3.3 Real-time processing setup

An overview of the real-time stimulus prediction system is depicted in Fig. 3.1. The capital

letter labels in this figure correspond to the data flow steps during each stimulus presentation

(each trial) in each task block. At the start of each trial, a Linux workstation (64-bit Ubuntu

14.04, Intel Core i7-4790K processor, 32 GB of RAM) implementing rtNSR plays one of the

stimuli to the subject (A-B). Simultaneously, the implanted ECoG arrays record cortical local

field potentials at 256 cortical sites, which are processed in the data acquisition (DAQ) rig

(C). Within the DAQ rig, the ECoG signals are amplified and quantized at 3051.76 Hz using

a pre-amplifier (PZ2, Tucker-Davis Technologies) and preprocessed using a digital signal

processor (RZ2, Tucker-Davis Technologies). Before the ECoG signals are preprocessed, they

are stored on the rig along with the time-aligned audio waveform. During preprocessing, the

signals are notch filtered at 60, 120, and 180 Hz to reduce line noise. Next, each channel

is band-passed at 70–150 Hz, squared, and smoothed using a low-pass filter at 10 Hz to

extract power in the high gamma band. High gamma power was used because previous

54

Linux

workstation

Real-time

interface card

ArtNSR

software

Sentence audio data

DAQ

rig

Speakers or

headphones
Sound

B

Raw

ECoG

C

Preprocessed

ECoG

D

E

Predicted

sentence F

Computer

monitor

Figure 3.1: A schematic depiction of the real-time stimulus prediction system with the letters A-F
denoting the flow of information through the system. A Linux workstation implementing rtNSR
plays the stimuli to the subject during ECoG data collection (A-B). The raw ECoG signals are
amplified, preprocessed, and synchronized with the audio data in the data acquisition (DAQ) rig
(C). The preprocessed ECoG signals are streamed to the workstation through a real-time interface
card (D). The rtNSR software acquires the signals from the card, processes them, and uses them
to perform sentence classification (E). Sentence predictions are displayed on a computer monitor
(F). The MRI brain reconstruction for subject A is shown here with electrode locations depicted
as blue dots. Electrode coverage was similar for subject B (see Fig. 3.5).

research has shown that activity in this band strongly correlates with multi-unit activity

(Crone et al., 1998) and is associated with important speech features (Pasley et al., 2012;

Mesgarani et al., 2014; Moses et al., 2016). These high gamma signals are then decimated

to 98.44 Hz and streamed to the Linux workstation using a real-time interface card (PO8e,

Tucker-Davis Technologies) where they are processed in rtNSR and saved to disk for offline

analyses (D-E). Further discussion of preprocessing considerations and feature extraction are

available in Section 3.5.

Within rtNSR, the signals acquired from the real-time card are normalized by z-scoring

the data for each channel using a 30-second sliding window. These z-score values are clipped

to lie within the range of [−2, 2] to mitigate signal artifacts caused by epileptic activity,

channel noise, or other factors. If a trained model is available, then, immediately after the

stimulus presentation, signals from relevant channels are used as features in this model to

predict which stimulus was just presented to the subject (detailed descriptions of the channel

55

selection and modeling procedures are given in Section 3.3.6). The stimulus prediction and

updated running classification accuracy measures are displayed on a monitor (F).

3.3.4 rtNSR design

Our rtNSR system is implemented in the Python programming language (Python Software

Foundation, 2010) and is designed for flexible and efficient real-time neural signal modeling

and speech decoding. Based on the software pipelining implementation technique (Lam,

1988), rtNSR uses multiple data processing elements that run in parallel as individual

processes. Typically, each of these processes obtains inputs from one or more separate

processes (via software pipes or shared memory buffers), performs a specific task with or

manipulation on the inputs, and sends outputs to one or more other processes. Each process

is defined as a sub-class of a parent real-time process class implementing general methods for

real-time processing (including data sharing and process setup methods). rtNSR contains

many of these single-purpose process classes, such as a process that reads streaming data

from the real-time interface card and a process that performs sliding window normalization.

This highly modularized software architecture allows for individual steps in the real-time

processing workflow to be interchanged and rearranged with relative ease while leveraging

the computational efficiency associated with pipelining and parallelization. For example,

during real-time simulations performed offline for debugging and system evaluation, we

simply replaced the real-time card reader process in the data processing workflow with a

process that loads and streams out pre-recorded neural data. A block diagram depicting the

rtNSR components and data flow used during the real-time experiments is provided in Fig.

3.2.

56

3.3.5 Experimental task blocks

For subject A, we collected a total of 300 stimulus presentations (30 for each stimulus) across

a total of 4 task blocks. For subject B, we collected a total of 250 stimulus presentations

(25 for each stimulus) across a total of 3 task blocks. At the start of each block, a 1-second

beep is played to signal the start of the task. This sound triggers an audio onset detector

in the preprocessor to inject a start token into an arbitrarily chosen recording channel.

The sentences are then presented with a constant onset-to-onset time interval. As a result,

rtNSR can easily keep track of which neural data points are associated with each stimulus

presentation (see Section 3.5 for further discussion on stimulus timing). Within each block,

we randomized the stimulus presentations while ensuring that each stimulus was presented

an equal number of times.

In each task block, the onset-to-onset interval was approximately 2.57 seconds, the stimuli

were presented aurally via loudspeakers, and the subject was not able to see the real-time

stimulus classifications. However, in the final block for subject A, the onset-to-onset interval

was approximately 5.14 seconds, the stimuli were presented using headphones, and the

subject was instructed to view the real-time sentence classifications and respond with either

a “thumbs up” or a “thumbs down” to indicate if the prediction matched what was heard

through the headphones. The extra time in the onset-to-onset interval for this block was

not used during modeling and was only included to allow the subject to respond before the

onset of a new sentence.

3.3.6 Stimulus classification schemes

Stimulus classification models were trained for each subject using data collected during

experimentation. Each time a model was trained, the collected data were first analyzed

to identify which channels should be considered relevant to speech perception processing

57

Real-time interface card reader

Behavioral onset detector

rtNSR software

package

Neural

data

Neural data

Subject stimulus GUI

Auditory stimulus data

Data normalizer

Neural data

Trained models

Online classification model trainer

Sentence classifier

Normalized

neural data

Predicted sentences

Sentence probabilities

Progress and results GUI

Figure 3.2: A schematic depiction of the rtNSR implementation used during experimentation. The
solid rectangles represent real-time process classes and the arrows represent data that is passed
between processes. The Real-time interface card reader process reads neural data streamed from
the real-time interface card. These data points are passed to the Behavioral onset detector process,
which detects a one-time injected onset token that signifies the start of the task (see Section 3.3.5).
The neural data are then passed to the Data normalizer process, which performs sliding window
normalization and magnitude clipping. The normalized neural data are passed to the Sentence
classifier process, where the data are used to perform sentence classification. This process outputs
sentence probabilities to the Progress and results GUI process, which extracts the most likely
sentence from each of these sentence probability vectors and displays each predicted sentence on
a monitor. When using the direct classification scheme, the Online classification model trainer
process also obtains the normalized neural data, performs model training and relevant electrode
selection in real-time, and passes trained models (with relevant electrode numbers) to the sentence
classification process (see Section 3.3.6). Throughout the task, the Subject stimulus GUI process
controls auditory presentation of the sentence stimuli to the subject.

(Moses et al., 2016). A simple bad channel detector was used to exclude any channels for

which 75% or more of the acquired data points had a z-score of 0.25 or less. Afterwards,

two data subsets were created: one subset comprised of neural data sampled during sentence

perception of each stimulus presentation (30 time points per stimulus presentation) and

another similarly constructed subset containing data points sampled during the silence after

each sentence. Two-tailed Welch’s t-tests were then performed for each channel between the

two data subsets. Channels that exhibited a p-value less than 0.001 were considered relevant

(significantly modulated by the presence of auditory speech stimuli) and the remaining

58

channels were excluded during modeling. Applying these procedures to the data acquired

before the final testing block resulted in 79 and 122 relevant electrode channels for subjects

A and B, respectively (see Fig. 3.5).

We used two types of real-time stimulus classification schemes in our tasks: a “Direct”

classification scheme during testing with subject A and an “HMM-based” classification

scheme during testing with subject B. As described in Section 3.3.4, we were able to slightly

modify the experimentation setup to simulate stored neural data as if it were being obtained

in real-time without altering the classification scheme functionality. This enabled us to

compute results for each subject using the classification scheme that was not used during

real-time testing for that subject. After data collection and these offline simulations, results

using both schemes were available for each subject. We used the scikit-learn Python package

to implement the models employed in both schemes (Pedregosa et al., 2011).

Direct classification scheme

In the direct classification scheme, each stimulus (sentence) was treated as one of ten classes.

The feature vectors used during classification were each constructed by concatenating the

z-scored high gamma power values for each relevant channel at each time point during a

stimulus presentation. Because the stimuli varied in duration, some of the neural data

obtained during the silence periods after a stimulus presentation were included in the feature

vector associated with that stimulus presentation. The feature vector for each stimulus

presentation contained the neural data at each of the T = 253 time points associated with

that presentation (which spans the 2.57 second time window allotted for each presentation, as

described in Section 3.3.5). For example, a stimulus presentation that began at time index t

would be associated with a feature vector containing the neural data points for each relevant

channel at time indices {t, t+ 1, . . . , t+ T − 1} (with a length of T times the number of

relevant channels) and with a target label equal to the identity of that stimulus.

59

During model training, we use principal component analysis (PCA) to reduce the

dimensionality of the feature vectors to the minimum number of features required to

explain at least 99% of the variance. The resulting feature vectors have lengths that

are typically around 100 elements (less than 1% of the lengths of the original vectors).

These new feature vectors are used to train a linear discriminant analysis (LDA) model

implementing the least-squares solution with automatic shrinkage using the Ledoit-Wolf

lemma (Ledoit and Wolf, 2004). Once trained, we used these combination PCA-LDA models

to classify previously unseen neural responses into one of the ten stimulus labels in real-time.

Model training, which typically took 2–5 seconds, was first performed in real-time using all

available data for a subject when at least 2 repetitions of each stimulus were presented and

subsequently performed prior to starting a new task block and in real-time whenever 10

stimulus presentations had occurred since the most recent training.

HMM-based classification scheme

In the HMM-based classification scheme, each stimulus is represented as a hidden Markov

model (HMM), where each hidden state qt is the phoneme that occurs at time index t for

that stimulus and each observed state yt is the neural feature vector associated with time

index t. This classification scheme was inspired by the phoneme decoding results described

in (Moses et al., 2016).

For a normal HMM, the joint probability would be

p (q, y) = p (q0)
T−2∏
t=0

p (qt+1|qt)
T−1∏
t=0

p (yt|qt) , (3.1)

where q = {q0, . . . , qT−1}, y = {y0, . . . , yT−1}, and T = 253 (as defined in Section 3.3.6).

However, because each presentation of a stimulus uses the exact same audio waveform,

the values of q are already known for each stimulus from the phonetic transcriptions of

60

the stimuli. This simplifies the HMM for each stimulus because the values of the hidden

states are known. In this scenario, Bayes’ theorem can be used to express the conditional

probability associated with each simplified HMM as

p (y|q) =
p (q, y)

p (q)
=

T−1∏
t=0

p (yt|qt) . (3.2)

For each stimulus presentation, our HMM-based classification scheme uses Eq. 3.2 to

estimate p (y|q) for each of the ten competing simplified HMMs (one per stimulus) and

predicts the stimulus that yielded the largest p (y|q) value. This can be formally expressed

as

ŝ = argmax
s∈S

T−1∏
t=0

p (yt|qt,s) = argmax
s∈S

T−1∑
t=0

log p (yt|qt,s), (3.3)

where ŝ is the predicted stimulus, S is the set of possible stimuli, and qt,s is the phoneme at

time index t for stimulus s. We use log probabilities as expressed in the latter part of (Eq.

3.3) for computational efficiency and numerical stability.

Each feature vector yt contains the z-scored high gamma power values for each relevant

channel at the following time indices: t + {0, 2, . . . , 38, 40}. This parameterization of the

feature vectors resembles the high gamma windows described in previous research (Moses

et al., 2016). We used PCA-LDA modeling (as described in Section 3.3.6) to obtain the

p (yt|qt) values at each time point. Model training, which typically took 10–20 seconds,

was performed using all available data for a subject prior to starting each new task block

(classifications were not performed in the first block).

3.3.7 Evaluation methods

We primarily used classification accuracy (the percent of classification attempts that resulted

in correct classifications) to evaluate rtNSR. We computed classification accuracies for each

61

task block and in a sliding window fashion across the blocks to measure how the accuracy

changed over time.

Because duration was highly variable across sentences and could have been used by the

classification schemes for improved sentence discrimination, we also assessed how varying T ,

the number of time points used during modeling of each stimulus presentation (described

in Section 3.3.6), affected classification accuracy. We performed offline testing with 21

different values for T that were (roughly) equally-spaced within the range of [1, 253]. For

both classification schemes, 10-fold stratified cross-validation was used on all the available

data for each subject.

To assess the speed of our real-time classification schemes, we measured the amount of

time each classification scheme took to perform classifications during offline simulations. For

the direct classification scheme, we measured the amount of time required to make each

sentence prediction from a concatenated neural feature vector, which was performed every

T = 253 time points. For the HMM-based classification scheme, we measured the amount of

time required to compute the phoneme likelihood values p (yt|qt) at each time point and the

amount of time required to perform a sentence classification using the associated phoneme

likelihoods every T = 253 time points.

3.4 Results

For subject A, we achieved stimulus prediction accuracies of 90% with the direct classification

scheme in real-time and 98% with the HMM-based classification scheme during offline

simulation after training on 250 stimulus presentations (approximately 11 minutes of training

data). For subject B, we achieved accuracies of 90% with the direct classification scheme

during offline simulation and 91% with the HMM-based classification scheme in real-time

62

after training on 150 stimulus presentations (approximately 6.5 minutes of training data).

Confusion matrices for these results are provided in Fig. 3.6. All observed classification

accuracies are depicted in Fig. 3.3.

Fig. 3.4 depicts the effect that varying the number of time points used during

classification had on accuracy. When only the first 89 time points (approximately 0.9

seconds) for each trial were used, which is less than the number of time points associated

with the shortest sentence, the classification accuracies plateaued at 90% or higher. These

results indicate that the classification schemes are relying on more than just sentence length

when performing classifications and that highly accurate classification can be performed

using neural responses collected during perception of the first 2− 3 words of the sentences.

During offline simulation of the HMM-based classification scheme with subject A,

computing the phoneme likelihoods at each time point took on average 2.64 ms (σ = 0.61 ms,

N = 12650) and each sentence classification (using the pre-computed phoneme likelihoods)

took on average 0.07 ms (σ = 0.01 ms, N = 50). During offline simulation of the direct

classification scheme with subject B, each sentence classification took on average 10.23 ms

(σ = 3.99 ms, N = 100).

3.5 Discussion

In this work, we have introduced a real-time Neural Speech Recognition (rtNSR) software

package and demonstrated its ability to perform real-time, single-trial stimulus classification

using cortical responses evoked during speech perception. We achieved high classification

accuracies after short training intervals using both direct (sentence-level) and HMM-based

(phoneme-level) classification schemes. The HMM-based classification scheme exhibited the

highest observed accuracy in a single block (98% accuracy with subject A).

63

0 50 100 150 200 250 300
0

50

100

xxxxxxxxxxx x xxxxxx x xxx xxxxx x x x x xx x xx xx x xx x x

B1 128 s B2 385 s B3 642 s B4 771 s

xx x x xxxxx xxxxx xxxxxxxx xx xxxx x xxxx x x x x x x x x x

B1 128 s B2 385 s B3 642 s B4 771 s

Subject A

RT direct
Simulated
HMM-based
Chance

0 50 100 150 200 250
Stimulus presentation number

0

50

100

xxxxxxxxxxxxxxxx xxx xx x xxxxx x x x xx x xx x xx xx xx x

B1 128 s B2 385 s B3 642 s

x x x xxxx x xx xxx xxxxxxxx xxxxxx x xx xx xx x xxx x

B1 128 s B2 385 s B3 642 s

R
ec

en
tc

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

(%
)

Subject B

Simulated
direct
RT HMM-based
Chance

Figure 3.3: Stimulus classification accuracies for each subject, task block, and classification scheme.
The colored curves depict, for each stimulus presentation, the percentage of the 10 most recent
classification attempts (including the current attempt) that were correct. The blue and red curves
represent testing with the direct and HMM-based classification schemes, respectively. Results
obtained from real-time testing contain “RT” in the label and those obtained from offline simulations
contain “Simulated” in the label. A colored x marker indicates a trial that was incorrectly classified
with the associated classification scheme. The task blocks are labeled (with “B” followed by the
block number) and separated by vertical lines. The total duration of recorded data at the end of
each block is given above these vertical lines (rounded to the nearest second). Chance accuracy
(10%) is depicted as a horizontal dashed line. These plots exhibit that rtNSR is able to achieve
high real-time classification accuracies after short training intervals.

64

0.0 0.5 1.0 1.5 2.0 2.5
Duration of stimulus considered during classification (s)

0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
(%

)

Yet they thrived on it

And what eyes they were

Have you got enough blankets

It was nobody’s fault

Nobody likes snakes

A bullet she answered

He moistened his lips uneasily

It had gone like clockwork

Junior what on earth’s the matter with you

Atiny handful never did make the concert

Subject A
direct
Subject A
HMM-based
Subject B
direct
Subject B
HMM-based
Chance

Figure 3.4: The effects of varying the duration of each stimulus presentation used during
classification. For each subject and classification scheme, the corresponding colored dots or
squares and dashed line depict the classification accuracies associated with the considered stimulus
durations. The transcriptions for each sentence are shown above the plot. The left boundary of
each word is aligned to the time at which that word begins within the sentence audio files. The
light green rectangles and vertical lines indicate the full time span and offset time, respectively,
for each sentence. Chance accuracy (10%) is depicted as a horizontal dashed line. These accuracy
curves indicate that both classification schemes are able to leverage information in the neural signals
during perception of the initial 0.75 seconds of each sentence to accurately discriminate between
sentences.

We showed that neural activity collected during perception of naturally spoken sentences

could be used directly for classification without including acoustic, phonetic, or any other

stimulus information (other than sentence identity) during modeling (with the direct

classification scheme). We also showed that similar performance could be achieved with a

more sophisticated classification approach that involved modeling the neural representations

65

of phonemes (with the HMM-based classification scheme). Additionally, we demonstrated

that the performance of our system did not rely on sentence length, a trivial stimulus feature,

since peak classification accuracies were obtained using only a subset of time points associated

with each trial that was smaller than the duration of the shortest sentence in the task. Finally,

we showed that rtNSR was able to perform real-time classifications quickly; on average, the

direct classification scheme only required 10 ms every 2.57 seconds (the stimulus time window

duration) to perform a classification and the HMM-based classification scheme only required

less than 3 ms every 10.16 ms (the sampling interval) to compute phoneme likelihoods at

each time point and a negligible amount of time to make a sentence prediction from the

phoneme likelihoods.

Our results serve as a proof-of-concept that rtNSR is capable of performing speech

classification from neural signals in real-time. We built the rtNSR system to have a modular

architecture in which individual components can be improved or replaced with task-specific

and optimized implementations for future applications. For example, the high gamma power

estimation algorithm implemented on the DAQ rig can be replaced with digital filters in

rtNSR that directly approximate the high gamma analytic amplitude, a representation of

high gamma activity that has been used in previous speech-related research (Canolty et al.,

2007; Pasley et al., 2012; Moses et al., 2016). Also, the sentence classification process can

be replaced by a process implementing a more sophisticated classification model, such as

a recurrent neural network classifier. In addition, the software’s robust task design and

execution capabilities make it amenable to a variety of task paradigms, including isolated

word or continuous speech production or perception tasks, visual stimulus presentation tasks,

and covert speech tasks. Through augmentation of the system’s data acquisition and feature

extraction functionality, it can also be deployed in applications involving alternative types

of neural signal acquisition, such as via electroencephalography or microelectrode arrays.

For an initial evaluation of our system, we used a relatively simple sentence classification

66

task with only 10 unique stimuli. Although the observed classification accuracies were

very high in this example task, demonstrating our ability to learn the relationship between

auditory speech stimulus features and neural activity recorded with ECoG in real-time,

further testing is needed to determine how well the classification schemes scale as the number

of stimuli increases. We expect the HMM-based classification scheme to scale more favorably

than the direct classification scheme because it can take advantage of shared phonemic

content across the stimuli and can predict stimuli that were not presented during training.

However, it is also possible that an increase in the variety of coarticulation contexts and other

sources of variability in the stimuli will negatively affect accuracy if they are not explicitly

considered during modeling.

We established that one trivial stimulus feature (duration) did not drive classification

performance, but there are other potential features that may have impacted accuracy. In

this task, nine speakers produced the ten stimuli, resulting in a large degree of variability in

the speaker-dependent acoustic properties of the stimuli that may have been leveraged by the

classification schemes. When analyzing the sentence confusions observed during classification

(see Fig. 3.6), we did not find evidence that speaker identity was driving our classifiers in

this task. However, it is possible that in experiments involving a larger set of sentences

from relatively few speakers the direct classification scheme would be more susceptible to

relying on speaker identity than the HMM-based classification scheme, since the latter uses

phoneme models that do not incorporate stimulus identity information while being trained to

discriminate between phonemes. Future work using a wider variety of stimuli with multiple

speech samples produced by each speaker could address the effects of this type of information

on classification performance.

In future work, we plan to expand the HMM-based classification scheme into a real-

time continuous speech decoder that uses language modeling and Viterbi decoding (similar

to a real-time version of the system described in (Moses et al., 2016)). The performance

67

achieved in this work using phoneme modeling with naturally spoken sentences (as opposed to

isolated words or syllables) is a promising proof-of-concept for potential continuous decoding

applications. Unlike our task, a real-time continuous decoding application should not rely

on explicit stimulus timing, although precise transcriptions of the stimuli would still be

required for model training. The methods described in this work could also be applied to

real-time experimental paradigms in overt and covert speech production tasks guided by

existing offline speech decoding research efforts (Kellis et al., 2010; Pei et al., 2011; Denby

et al., 2010; Martin et al., 2014; Mugler et al., 2014; Herff et al., 2015; Martin et al., 2016).

After further development of rtNSR, our goal is to deploy the system as part of a speech

prosthesis that restores communicative capabilities to individuals diagnosed with locked-in

syndrome or other impairments. Locked-in patients typically have little to no voluntary

muscle control but retain cognition and awareness (American Congress of Rehabilitation

Medicine, 1995; Laureys et al., 2005; Bruno et al., 2011; Rousseau et al., 2015; Vansteensel

et al., 2016). Although methods exist to provide basic communicative capabilities to locked-

in patients (Spüler et al., 2012; Sellers et al., 2014; Mainsah et al., 2015; Vansteensel et al.,

2016) and are associated with increases in patient-reported quality of life (Bruno et al., 2011;

Rousseau et al., 2015), these approaches often involve tedious and difficult to learn procedures

such as selecting characters one at a time at rates less than 10 characters per minute (typing

rates are typically more than 175 characters per minute in healthy individuals). Development

of a device capable of directly interpreting intended speech from neural activity could result

in significant improvements to the speed and naturalness of assistive speech technology and,

as a result, the quality of life for impaired patients. Existing brain-computer interface

(BCI) research has shown that ECoG signals can be successfully used in real-time motor

control applications (Leuthardt et al., 2006; Hotson et al., 2016), and the classification

accuracies observed in this task using ECoG are similar to or higher than those exhibited

in these approaches (although direct performance comparisons may not be possible due

to fundamental differences in task designs and constraints). Our system’s modular real-

68

time framework allows for incorporation of feedback and subject adaptation, important

components in closed-loop BCIs that will most likely be beneficial in future speech prostheses.

Given the performance exhibited by rtNSR in this work and its capacity for expansion, we

are confident in its ability to serve as a platform for the design and implementation of the

proposed speech prosthetic device.

69

3.6 Supplementary data

Subject A Subject B

Figure 3.5: 3-D MRI brain reconstruction, electrode coverage (white and red dots), and relevant
electrodes (red dots) for each subject. The depicted relevant electrodes were determined using the
data acquired prior to the final testing block for each subject.

70

1 2 3 4 5 6 7 8 9 10

Direct

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

HMM-based

Predicted class

A
ct

ua
lc

la
ss

1

2

3

4

5

6

7

8

9

10

0.0 0.2 0.4 0.6 0.8 1.0
Confusion value (normalized by row)

A
B

S
ub

je
ct

Classification scheme

Figure 3.6: Confusion matrices computed using the final task block for each subject and
classification scheme. Each row depicts results for a single subject (A or B) and each column
depicts results for a single classification scheme (direct or HMM-based). The class numbers 1-10
correspond to the stimulus order given in Table 3.1. The color-value mapping is identical across
all confusion matrices and uses row-normalized confusion values. The red outline signifies the two
stimuli (classes 1 and 2) that were produced by the same speaker (all other stimuli were produced
by unique speakers). In general, these two stimuli were not confused with each other, suggesting
that the classifiers were not relying on speaker identity to make predictions. During HMM-based
classification with subject B, class 1 was confused with class 2 20% of the time, but it was also
confused with classes 7 and 9 20% and 10% of the time, respectively.

71

Chapter 4

Real-time decoding of

question-and-answer speech dialogue

using human cortical activity

Disclaimer: This chapter contains material from work that is currently unpublished.

The contents of this chapter are a direct adaptation of a manuscript that is currently

being prepared for submission to a scientific journal. Before reading this chapter, I

recommend searching for the related publication if it is available at that time. The

publication may contain revised and/or additional results that are not available in this

chapter. If the publication is available, its title should be very similar to the title of this

chapter, I should be the first author, and the year of publication is expected to be 2018

or 2019.

Personal contributions: I developed real-time decoding system, performed all data

collection and analyses, and wrote the current draft of the manuscript.

72

4.1 Abstract

The development of an advanced speech prosthesis relies on real-time decoding of speech

from high-resolution neural signals. Previous work has demonstrated that it is possible to

decode perceived or produced speech with some success in relatively constrained contexts.

However, to our knowledge, no work has utilized a naturalistic task where perceived and

produced speech are integrated, which could have practical applications for patients who are

unable to communicate. Here, we demonstrate real-time decoding of perceived and produced

speech from high-density electrocorticography (ECoG) activity in humans using a custom

real-time neural speech recognition (rtNSR) software package. In our task, three human

subjects each listened to questions (e.g., “When would you like me to check back on you?”)

and verbally produced answers (e.g., “Tomorrow”). The rtNSR system used high gamma

activity (70–150 Hz) extracted from the ECoG signals to reliably detect when subjects

were listening or speaking and then performed phone-level Viterbi decoding to predict the

identity of each speech utterance. We leveraged the fact that certain answers were only

plausible responses to certain questions to dynamically update the prior probabilities of

each answer using the preceding question likelihoods predicted from ECoG activity. Our

system was able to reliably decode speech utterances for each subject, with accuracy rates

as high as 61% for produced answers and 75% for perceived questions (chance rates were

7% and 20%, respectively). Furthermore, integration of the decoded question likelihoods as

context significantly improved answer decoding. We also show that high accuracy rates are

achievable using only 15–20 minutes of training data, suggesting that this paradigm can be

used practically in limited data settings. These results demonstrate that neural activity in

speech perception and production regions can be used for real-time decoding of speech in

natural, conversational settings.

73

4.2 Introduction

Multiple regions of the human cortex have been implicated in processing of perceived and

produced speech (Boatman et al., 1997; Binder et al., 2000; Canolty et al., 2007; Mesgarani

et al., 2014; Lotte et al., 2015; Carey et al., 2017; Conant et al., 2018; Chartier et al., 2018).

Previous studies have successfully decoded acoustic (Pasley et al., 2012; Yang et al., 2015;

Leonard et al., 2016) and phonemic (Mesgarani et al., 2014; Moses et al., 2016; Moses et al.,

2018) representations of speech heard by human listeners directly from neural activity in

the superior temporal gyrus (STG). Other work has characterized the functional role of the

ventral sensorimotor cortex (vSMC) during speech production (Bouchard et al., 2013; Mugler

et al., 2014; Lotte et al., 2015; Carey et al., 2017; Conant et al., 2018; Chartier et al., 2018). A

few studies have demonstrated processing of speech-related neural activity from these regions

in real-time, including the ability to map speech-evoked sensorimotor activations (Cheung

and Chang, 2012), generate neural encoding models of perceived phonemes (Khalighinejad

et al., 2017), decode produced isolated phonemes (Leuthardt et al., 2011), detect voice

activity (Kanas et al., 2014), and classify perceived sentences (Moses et al., 2018). However,

to the best of our knowledge no existing work has attempted to decode both perceived

and produced speech simultaneously in real-time using an experimental task that mimics

natural communication, which could have practical implications for the development of future

assistive speech applications.

In this work, we demonstrate real-time decoding of perceived and produced speech from

high-density electrocorticography (ECoG) activity in humans using a real-time neural speech

recognition (rtNSR) software package that we developed (Moses et al., 2018). As described

in our previous work, we use the term neural speech recognition to denote the decoding of

speech using neural responses as features (Moses et al., 2016; Moses et al., 2018). In our

task, human subjects first listen to a finite set of pre-recorded questions multiple times and

verbally produce a finite set of answer responses multiple times while we collected time-

74

aligned ECoG signals. After using this data for offline model fitting, we tested our rtNSR

system by having the subjects listen to questions and respond aloud with answers while

decoding the perceived questions and produced answers directly from neural activity in real-

time (Fig. 4.1). From the neural signals, our system was able to detect when subjects were

listening or speaking and predict the identity of each detected utterance using phone-level

Viterbi decoding. Because certain answers were only valid responses to certain questions,

we were able to integrate the question and answer predictions by dynamically updating the

prior probabilities of each answer using the preceding predicted question likelihoods. We

observed reliable decoding of both perceived and produced utterances in real-time, further

validating our rtNSR system as a potential platform for speech neuroprostheses.

4.3 Results

4.3.1 Real-time decoding system overview

While human subjects performed a question-and-answer natural speech perception (Fig.

4.1a) and production (Fig. 4.1b) task, we recorded, processed, and analyzed concurrent

neural activity from high-density ECoG arrays that covered auditory and sensorimotor

cortical regions. In real-time, neural activity was filtered to extract signals in the high

gamma frequency range (70–150 Hz; Fig. 4.1c, Fig. 4.7), which correlate with multiunit

activity (Crone et al., 1998) and have been previously used to decode speech signals from

auditory (Pasley et al., 2012; Mesgarani et al., 2014; Moses et al., 2016; Moses et al., 2018)

and sensorimotor (Bouchard et al., 2013; Mugler et al., 2014; Lotte et al., 2015; Chartier et al.,

2018; Conant et al., 2018) brain regions. We used these high-gamma signals to perform real-

time speech event detection, predicting which time segments of the neural activity occurred

during question perception (Fig. 4.1d, blue curve), answer production (Fig. 4.1d, red curve),

75

Figure 4.1: Schematic of real-time speech decoding during a question (blue) and answer (red) task.
(a) For each trial, subjects hear a question, and a set of possible answer choices are presented on a
computer monitor. (b) Subjects are instructed to choose and verbally produce one of the answers
when a green response cue appears on the screen. (c) Cortical activity is acquired simultaneously
from ECoG electrodes implanted across temporal and frontal cortex and is filtered in real-time
to extract high gamma activity. (d) A speech detection model uses the high gamma signal across
electrodes to estimate event probabilities that predict whether a question is being heard or an answer
is being produced (or neither) at each time point. (e) When the speech detection model detects
a question event, the associated time window of neural activity is passed to a question classifier
that uses phone-level Viterbi decoding to compute question utterance likelihoods. (f) The question
with the highest likelihood is output as the decoded question. (g) To integrate questions and
answers, the stimulus set was designed such that each answer response was only valid for certain
questions (context priors). (h) These context priors are combined with the predicted question
likelihoods to obtain answer priors. (i) When the speech detection model detects an answer event,
the associated time window of neural activity is passed to an answer classifier that uses phone-
level Viterbi decoding to compute answer utterance likelihoods. (j) The context integration model
combines these answer likelihoods with the answer priors to yield answer posterior probabilities
(purple). (k) The answer with the highest posterior probability is output as the decoded answer.

76

or silence (curve not shown; see Fig. 4.9 and Section 4.5.6 for more details on the event

detection procedure).

For each time segment associated with a detected question event, a question classification

model processed the high gamma activity in this time segment to compute question

likelihoods (Fig. 4.1e) using phone-level Viterbi decoding (Viterbi, 1967). In this approach,

each question utterance was represented as a hidden Markov model (HMM) that modeled the

probability of observing a time segment of high gamma activity assuming that the subject

was hearing the sequence of phones that comprise the utterance. The most likely question

was output as the decoded question (Fig. 4.1f).

To enhance answer decoding performance, we designed this question-and-answer task

such that specific answer responses were only valid for certain questions (Table 4.3). For

example, if a subject heard the question “How is your room currently?”, there were only

five answers (“Bright”, “Dark”, “Hot”, “Cold”, and “Fine”) that he or she could respond

with that would be reasonable given the context of this particular question. We used this

relationship between each question and the valid answer responses for that question to define

context priors (Fig. 4.1g). A context integration model combined these context priors with

decoded question likelihoods to compute answer prior probabilities (Fig. 4.1h).

As with question decoding, for time segments associated with a detected answer event, an

answer classification model processed the high gamma activity in this segment to compute

answer likelihoods (Fig. 4.1i) using phone-level Viterbi decoding. The context integration

model combined these answer likelihoods with the answer priors to obtain answer posterior

probabilities (Fig. 4.1j), and the answer with the highest posterior probability was output

as the decoded answer (Fig. 4.1k). The answer likelihoods (without context integration)

were also stored for later offline comparisons.

Prior to testing, models were fit using data collected during separate training task blocks.

77

The question classification models were fit using data collected while subjects listened to

multiple repetitions of each of the question stimuli they would hear in the testing blocks,

and the answer classification models were fit using data collected while subjects read each

answer response aloud multiple times (see Section 4.5.4). The speech detection models were

fit using the available data from both of these types of training task blocks.

4.3.2 Question and answer decoding performance

In offline simulations of the real-time decoding procedure, we evaluated how well our

system decoded questions, answers without context integration, and answers with context

integration. The results for subject 1 are given in Fig. 4.2, and Fig. 4.5 contains the results

for the other subjects. Precise significance testing statistics for all subjects are given in Table

4.1.

The primary performance evaluation metric was decoding accuracy rate for each test

block, which was defined as 1 minus the utterance error rate using the actual and predicted

utterances for each prediction type. Here, the utterance error rate in a test block was equal

to the edit (Levenshtein) distance between the actual and predicted utterance sequences.

Because the error rate measures the amount of deletions, insertions, and substitutions

required to convert the predicted sequence of detected and classified utterances into the

actual utterance sequence, we can use the decoding accuracy rate metric to describe the full

performance of the system, incorporating contributions from the speech detection, utterance

classification, and context integration models. For all subjects, accuracy rates for decoding

of each prediction type (questions, answers without context, and answers with context)

were significantly above chance (P < 0.05, one-tailed bootstrap test, P -values combined

across test blocks using Fisher’s method; Fig. 4.2a, Fig. 4.5a). Chance accuracy rate

was computed using bootstrapped sequences of randomly-sampled utterances (see Section

78

4.5.9). Importantly, we also observed a significant increase in decoding accuracy rate during

answer decoding when context was integrated compared to when it was not integrated

(P = 3.4× 10−3, P = 3.4× 10−4, P = 0.025 for subjects 1–3, one-tailed permutation

test, P -values combined across test blocks using Fisher’s method). Overall, these accuracy

rates for questions (2.9, 3.7, and 2.5 times the chance levels for subjects 1–3) and answers

with context (8.8, 5.0, and 5.0 times the chance levels for subjects 1–3) were promising,

demonstrating the efficacy of the various components of our decoding approach.

To evaluate the performance of the separate components of the full system, we also

measured the performance of the utterance classification and context integration models

(separately from the speech detection model) by performing predictions using the true

event times determined from the acoustic transcriptions of the test blocks. For each

subject, we calculated question and answer classification accuracy (the fraction of utterance

classifications that were correct) using each trial across the test blocks for that subject. For

all subjects, classification accuracies were above chance for each prediction type (P < 0.05,

one-tailed bootstrapped Welch’s t-test; Fig. 4.2b, Fig. 4.5b). As with the decoding accuracy

rates, answer classification accuracies were higher when integrating context (P = 0.033,

P = 1.9× 10−6, P = 9.2× 10−4 for subjects 1–3, one-tailed exact McNemar’s test).

We also assessed classification performance using cross entropy, a metric that compares

the predicted utterance likelihoods and the actual utterance identities for each trial across

all test blocks for a subject. Here, cross entropy measures the average number of bits

required to correctly identify the utterance label for a trial given utterance log likelihoods

predicted by a classification model. These values provide further insight into the performance

of the utterance classification and context integration models by considering the predicted

probabilities of the utterances (not just which utterance was most likely in each trial). Lower

cross entropy indicates better performance. For all subjects, cross entropies were below

chance (P < 0.05, one-tailed bootstrap test) and were significantly lower for the answer

79

predictions when integrating context (P = 7.6× 10−6, P = 2.6× 10−17, P = 3.1× 10−11 for

subjects 1–3, one-tailed Wilcoxon signed-rank test; Fig. 4.2c, Fig. 4.5c).

To evaluate the performance of the event detector, we computed a detection score that

incorporates frame-by-frame detection accuracy and a comparison between the number of

detected and actual utterances (Fig. 4.2d, Fig. 4.5d). For all subjects, detection scores for

questions and answers were high (above 85%), consistent with the similar decoding accuracy

rates and classification accuracies observed during testing.

Finally, to understand which brain regions contributed to the performance of each of

these models, we calculated the discriminative power of each ECoG electrode (see Section

4.5.8). We found that for question decoding, discriminative power was highest primarily in

STG (Fig. 4.2e, Fig. 4.5e), consistent with auditory responses to heard speech observed in

this region. The electrodes that contributed most to answer decoding were located in both

the vSMC and STG (Fig. 4.2f, Fig. 4.5f), reflecting responses both to speech production and

perception of self-produced speech. Lastly, electrodes that contributed to speech detection

were distributed throughout sensorimotor and auditory regions (Fig. 4.2g, Fig. 4.5g).

4.3.3 Classifier sensitivity to data limitations, hyperparameter

selection, and cortical coverage

The results reported in this work depended on the particular circumstances of the three

patients who participated in this study. To understand the limitations of the utterance

classification models used in this task, we assessed their performance as a function of the

amount of training data, the specific hyperparameters used during training and testing, and

the functional-anatomical coverage of the ECoG electrodes. The results of these analyses for

subject 3 are given in Fig. 4.3, and Fig. 4.6 contains the results for the other subjects.

80

Figure 4.2: Decoding and classification results for questions, answers, and answers after integration
of the decoded context for a single subject. (a) Decoding accuracy rates, which measure the full
performance of the system, are significantly above chance for questions and answers (with and
without context). Accuracy is significantly higher with context compared to without context.
(b) Classification accuracies (the percent of speech events in which the system correctly classified
the utterance) mirror decoding accuracy rates. (c) Cross entropies for utterance classification
exhibit similar significant differences (lower values indicate better performance). (d) Question
and answer detection scores demonstrate near-ceiling performance of the speech detection model
for both questions and answers. (e–g) MRI brain reconstructions with electrode locations and
discriminative power for each electrode used by e question phone, f answer phone, and g speech
event discriminative models. Electrodes that were not relevant for the current model are depicted
as small black dots. In a–d, data are mean ± SEM. *P < 0.05.

First, we analyzed how the amount of neural data used during training affected

classification performance. For each subject, we fit utterance classification models with

neural data recorded during perception and production of a certain number of samples of

each utterance (drawn randomly from the available training data). We then evaluated these

models on all of the trials in the test blocks for that subject. In general, we found that

classification accuracy and cross entropy improved over the first 10–11 training samples (Fig.

4.3a, Fig. 4.6a). Beyond 11 samples, performance began to improve more slowly, although

performance never completely plateaued (except for the answer classifier for subject 2, Fig.

4.6a). These findings suggest that only 5–10 training samples of each utterance are required

81

Table 4.1: Significance testing statistics for question and answer decoding performance.

Number of Other
Metric Test Subject Prediction type P -value samples information

Decoding One-tailed 1 Question ≈ 0 2 (test blocks)
accuracy bootstrap test, Answer without context ≈ 0
rate performance Answer with context ≈ 0

vs. chance, 2 Question ≈ 0 4 (test blocks)
combined across Answer without context 8.3× 10−12

blocks with Answer with context ≈ 0
Fisher’s method 3 Question ≈ 0 3 (test blocks)

Answer without context ≈ 0
Answer with context ≈ 0

One-tailed 1 Answer (with vs. 3.4× 10−3 2 (test blocks)
permutation without context)
test, with vs. 2 Answer (with vs. 3.4× 10−4 4 (test blocks)
without context, without context)
combined across 3 Answer (with vs. 0.025 3 (test blocks)
blocks with without context)
Fisher’s method

Classification One-tailed 1 Question 1.7× 10−10 52 (trials) t = 7.8, df = 51
accuracy bootstrapped Answer without context 5.9× 10−7 t = 5.5, df = 51

Welch’s t-test, Answer with context 5.9× 10−10 t = 7.4, df = 51
performance vs. 2 Question ≈ 0 101 (trials) t = 23, df = 100
chance Answer without context 4.1× 10−7 t = 5.3, df = 100

Answer with context 9.7× 10−14 t = 8.5, df = 100
3 Question 4.0× 10−14 75 (trials) t = 9.2, df = 74

Answer without context 2.3× 10−8 t = 6.1, df = 74
Answer with context 2.7× 10−13 t = 8.7, df = 74

One-tailed 1 Answer (with vs. 0.033 52 (trials)
exact McNemar’s without context)
test, with vs. 2 Answer (with vs. 1.9× 10−6 101 (trials)
without context without context)

3 Answer (with vs. 9.2× 10−4 75 (trials)
without context)

Cross One-tailed 1 Question 5.6× 10−16 52 (trials)
entropy bootstrap test, Answer without context 3.3× 10−3

performance vs. Answer with context 1.3× 10−5

chance 2 Question ≈ 0 101 (trials)
Answer without context 1.0× 10−5

Answer with context ≈ 0
3 Question ≈ 0 75 (trials)

Answer without context 3.7× 10−11

Answer with context ≈ 0

One-tailed 1 Answer (with vs. 7.6× 10−6 52 (trials)
Wilcoxon without context)
signed-rank test, 2 Answer (with vs. 2.6× 10−17 101 (trials)
with vs. without context)
without context 3 Answer (with vs. 3.1× 10−11 75 (trials)

without context)

to achieve high performance, but it remains unclear how many training samples would be

required before performance no longer improves.

82

Next, we investigated the impact that hyperparameter selection had on classification

performance. The classifiers we used in this work contained parameters that were not

learned directly from the training data (such as the parameters that controlled how the

neural data was structured into feature vectors during training and testing). Due to clinical

time constraints, we were unable to methodically set these values before online testing at

the patient’s bedside. Instead, prior to evaluating the performance of our system with real-

time offline simulations, we performed cross-validated hyperparameter optimization on the

models used during decoding (see Section 4.5.7). Using an iterative optimization algorithm,

we evaluated 250 different sets of hyperparameter values for each test block using a leave-

one-block-out cross-validation scheme. The hyperparameter values used during the primary

performance evaluations for a test block were the values that exhibited the best performance

on the held-out validation set for that block. To better understand how hyperparameter

selection affected performance, we obtained all 250 of the hyperparameter sets that were

considered during optimization for one of the test blocks for each subject, and we then

evaluated these hyperparameter values on that test block itself (instead of on the validation

set). For each subject, we observed large variabilities in classification accuracy and cross

entropy across the different hyperparameter sets, suggesting that hyperparameter values can

have a large impact on performance (Fig. 4.3b, Fig. 4.6b). For each subject and metric,

we also found that the hyperparameters that were deemed optimal on the validation set

were always better than the median performance observed across all hyperparameter sets,

demonstrating that the optimizer was able to choose reasonable hyperparameter values to

use during testing.

Finally, we assessed the effect that limiting cortical coverage had on the classification

models. We separated the electrodes for each subject into two functional-anatomical subsets

using the Sylvian fissure as the dividing line (Fig. 4.3c, Fig. 4.6c). Neural activity

recorded from the infra-Sylvian electrodes, which sampled from cortical regions associated

with auditory processing (including the STG), were used to fit question classification models.

83

Neural activity from the supra-Sylvian electrodes, which sampled from cortical regions

associated with speech motor processing (including the sensorimotor cortex), were used to fit

answer classification models. The context integration model combined question likelihoods

from the infra-Sylvian model and answer likelihoods from the supra-Sylvian model to predict

answers with context integration. For each subject, we evaluated these models on all test

blocks using the classification accuracy and cross entropy metrics. Classification accuracies

were above chance for all subjects and prediction types (P < 0.05, one-tailed bootstrapped

Welch’s t-test; Fig. 4.3d, Fig. 4.6d; precise significance testing statistics given in Table

4.2) and were improved for answer predictions when integrating context for subjects 2

and 3 but not for subject 1 (P = 0.25390625, P = 3.8× 10−6, P = 2.4× 10−4 for

subjects 1–3, one-tailed exact McNemar’s test). Cross entropies were below chance for all

subjects and prediction types except for the answer predictions without context for subject

1 (P = 1.2× 10−11, P = 0.065, P = 1.2× 10−5 for questions, answers without context, and

answers with context for subject 1, P < 0.03 for subject 2, P < 10−6 for subject 3, one-tailed

bootstrap test). For all subjects, cross entropies were lower for the answer predictions when

integrating context (P = 1.4× 10−8, P = 1.3× 10−18, P = 1.3× 10−7 for subjects 1–3,

one-tailed Wilcoxon signed-rank test). Overall, these results demonstrate that utterance

classification is possible when only auditory or only sensorimotor cortical areas are used, but

having access to both regions improves performance.

4.3.4 Viterbi classification and phonetic modeling

To gain a more intuitive understanding of the neural and stimulus-dependent features used

by the decoder, we examined the specific phonetic decisions the model made during answer

classification (Fig. 4.4). The classifiers were trained by fitting phone likelihood estimation

models using neural data collected during training blocks along with time-aligned phonetic

transcriptions of the acoustics (see Section 4.5.6). These phone models computed likelihoods

84

Figure 4.3: Data limitations, hyperparameter optimization, and functional anatomy of speech
classification for a single subject. (a) Classification accuracy and cross entropy as a function of the
amount of training data. The performance improvements appear to slow down slightly once 10–11
samples of each utterance are used, but performance does not seem to ever plateau completely
for this subject. (b) Variability in classification performance across hyperparameter optimization
epochs for one test block. Each blue and red dot shows the performance on the test block using a
single set of hyperparameters chosen for one epoch during optimization on a separate validation set.
Each boxplot depicts a line marking the median value, box heights representing the interquartile
range, and whiskers extending beyond the box edges by 1.5 times the interquartile range. Each
green dot marks the performance on the test block using the hyperparameters that minimized cross
entropy on the validation set. This demonstrates that hyperparameter selection has a large impact
on performance and that the optimizer is able to choose hyperparameter values effectively. (c,d)
Contributions of distinct brain regions on classification performance. c MRI reconstruction with
electrode locations, separated by the Sylvian fissure into infra-Sylvian (auditory) and supra-Sylvian
(motor) cortical regions. In this analysis, we fit question classification models using only infra-
Sylvian electrodes and answer classification models using only supra-Sylvian electrodes. Answer
predictions with context were computed using a combined model that integrated the question
likelihoods from the infra-Sylvian model with the answer likelihoods from the supra-Sylvian model.
The phone discriminative powers estimated for each relevant electrode are shown as large colored
circles, and the electrodes that were not relevant are depicted as small black dots. d Classification
performance using these region-of-interest classification models. Here, all models performed above
chance (?P < 0.05), and performance was significantly improved when integrating context using the
combined model (∗P < 0.05). These results demonstrate that reliable performance can be achieved
from the classification models in scenarios involving limited cortical coverage from a particular
subject. In (a,d), data are mean ± SEM.

for each phone at individual time points using neural features. The classifiers represented

each utterance as a hidden Markov model (HMM), with phones as hidden states and neural

85

Table 4.2: Significance testing statistics for the region-limited analysis.

Number of Other
Metric Test Subject Prediction type P -value samples information

Classification One-tailed 1 Question (infra-Sylvian) 4.1× 10−13 52 (trials) t = 9.5, df = 51
accuracy bootstrapped Answer (supra-Sylvian) 7.1× 10−5 t = 4.1, df = 51

Welch’s t-test, Answer (combined) 7.1× 10−6 t = 4.8, df = 51
performance vs. 2 Question (infra-Sylvian) ≈ 0 101 (trials) t = 19, df = 100
chance Answer (supra-Sylvian) 5.4× 10−3 t = 2.6, df = 100

Answer (combined) 4.8× 10−8 t = 5.8, df = 100
3 Question (infra-Sylvian) 1.5× 10−10 75 (trials) t = 7.3, df = 74

Answer (supra-Sylvian) 7.4× 10−10 t = 6.9, df = 74
Answer (combined) 2.6× 10−15 t = 9.8, df = 74

One-tailed 1 Answer (combined vs. 0.25 52 (trials)
exact McNemar’s supra-Sylvian only)
test, with vs. 2 Answer (combined vs. 3.8× 10−6 101 (trials)
without context supra-Sylvian only)

3 Answer (combined vs. 2.4× 10−4 75 (trials)
supra-Sylvian only)

Cross One-tailed 1 Question (infra-Sylvian) 1.2× 10−11 52 (trials)
entropy bootstrap test, Answer (supra-Sylvian) 0.065

performance vs. Answer (combined) 1.2× 10−5

chance 2 Question (infra-Sylvian) ≈ 0 101 (trials)
Answer (supra-Sylvian) 0.021
Answer (combined) ≈ 0

3 Question (infra-Sylvian) 1.1× 10−7 75 (trials)
Answer (supra-Sylvian) ≈ 0
Answer (combined) ≈ 0

One-tailed 1 Answer (with vs. 1.4× 10−8 52 (trials)
Wilcoxon supra-Sylvian only)
signed-rank test, 2 Answer (with vs. 1.3× 10−18 101 (trials)
with vs. supra-Sylvian only)
without context 3 Answer (with vs. 1.3× 10−7 75 (trials)

supra-Sylvian only)

data as observed states. During testing, we performed Viterbi decoding on the HMM

associated with each utterance to compute the most likely path through the hidden states

(phones) given the observed sequence of neural data. The resulting log probabilities of these

Viterbi paths from each HMM were used to compute the likelihood of each utterance.

With these utterance classifiers, we examined how phone likelihood estimates affected the

probability of each utterance across time. For example, when a subject produced the answer

“Fine” (in response to the question “How is your room currently?”), an answer classifier

used the sequence of phone likelihood estimates (predicted from neural data) to update the

predicted probabilities of each possible answer at each time point during the utterance (Fig.

4.4a). The pattern of utterance probabilities illustrates how utterances with phonetic content

86

Figure 4.4: Temporal characteristics and phone-based performance of the answer (speech
production) classification model. (a) Example Viterbi path probabilities during production of the
utterance “Fine” during a test block demonstrate how the classifier uses phone-level information
to predict answers as speech unfolds over time. Each curve tracks the probability of each answer
utterance as the classifier receives additional neural data. The probability values at the final time
point represent the answer likelihoods that are passed to the context integration model. Only
the seven most likely utterances are labeled and colored for visualization purposes. The time at
which the correct utterance becomes more likely than the other utterances (and remains more
likely throughout the remainder of the decoding window) is marked as the “Decision finalization”
time. (b) Phone confusion matrix using the answer phone likelihood model for every time point
in each test block across all subjects. This matrix demonstrates reliable discrimination between
the majority of the phones and intuitive confusions within articulatory classes (e.g., /s/ vs. /z/).
(c) Decision finalization times for the answer classifications using neural data and the phonetic
transcriptions across all subjects and test blocks. Each red dot represents the decision finalization
time for a correctly-predicted trial (plotted as percent of the length of the utterance relative
to the actual speech onset and offset for that trial). Each boxplot depicts a line marking the
median value, box heights representing the interquartile range, and whiskers extending beyond
the box edges by 1.5 times the interquartile range. The observed finalization times occurred
before speech offset, indicating that the classifiers were able to predict the identity of an utterance
before processing the latter time points in the neural (or phonetic) time window associated with
an utterance (?P < 10−14). This characteristic is only partially explained by the stimuli and
transcribed vocalizations (∗P < 10−9).

87

similar to that of the actual utterance were assigned higher likelihoods during time segments

of phonetic overlap. For example, the utterances “Fine” and “Five” remain equally likely

until the neural activity collected during production of the /n/ phone is seen (at which time

“Fine” becomes the most likely utterance).

Across all utterances and all phones, we found that the answer phone likelihood

models were able to reliably classify most of the phones (Fig. 4.4b). Where there were

phone confusions, these confusions typically clustered according to interpretable articulatory

classes. For example, /t/ and /d/ were confused because they are both alveolar stops that

differ only in voice onset time.

Finally, to understand how much phonetic information the answer classifiers needed each

trial before finalizing the utterance prediction, we assessed the earliest time point during the

Viterbi decodings for each HMM at which the utterance that ends up being most likely at

the end of decodings becomes and remains more likely than the other utterances. We defined

the decision finalization time as the fraction of the utterance that had been uttered when this

time point was reached (using the actual speech onset and offset times). We computed these

decision finalization times for each trial in which the answer classification models correctly

predicted the answer response (94 trials total across all subjects and test blocks). We found

that the classifiers were typically able to finalize their decisions before all of the neural data

from an utterance was seen (P = 2.1× 10−15, one-tailed single-sample Wilcoxon signed-rank

test; Fig. 4.4c). Because some utterances begin with the same phones (e.g., the phones /s

"I/ at the start of “Six” and “Synthesizer”), we expected the lower bound for the finalization

times to occur after speech onset even if the actual phone identity at each time point were

known. To compute this lower bound, we re-calculated the finalization times for these trials

using phone likelihoods constructed directly from the phonetic transcriptions. Because no

two utterances had the same phonetic content, these transcription-based finalization times

always occurred before the speech offset (P = 1.6× 10−16, one-tailed single-sample Wilcoxon

88

signed-rank test). The neural-based finalization times were significantly higher than the

transcription-based finalization times (P = 1.2× 10−10, one-tailed Wilcoxon signed-rank

test), which can be attributed to imperfect phone likelihood estimation (if phone likelihood

estimation were perfect, the neural-based and transcription-based finalization times would

be identical). Overall, these results demonstrate that the answer classifiers were able to

finalize classification decisions before the offset of speech using estimated phone likelihoods.

Furthermore, this observation cannot be explained entirely by the phonetic separability of

the utterances themselves.

4.4 Discussion

Overall, these results demonstrate that perceived and produced speech can be reliably

decoded from human cortical activity in real-time using a naturalistic question-and-answer

task paradigm. For each subject, we showed that the high gamma activity collected

during the task can be used to detect when a subject was hearing or producing speech,

predict what a subject heard or said, and improve the predictions of what was said using

contextual information inferred from the predictions of what was heard. We observed

decoding accuracy rates as high as 61% for produced speech and 75% for perceived speech,

which were both significantly above chance levels. These findings represent an important

step towards development of advanced speech neuroprostheses, exhibiting for the first time

that volitionally-chosen spoken speech responses can be decoded in real-time from neural

signals after integration of the predicted contextual state of the speaker.

Although the ability to detect produced speech from neural activity has been previously

demonstrated (Kanas et al., 2014), the speech detector used in this work is the first to

demonstrate reliable discrimination between perceived speech, produced speech, and silence

in real-time from neural signals. Our speech detector was relatively simple, relying on

89

speech event probabilities from linear models of neural activity, but also flexible, using

hyperparameters that could be set via optimization to determine how to use the predicted

speech event probabilities to determine speech onsets and offsets. Instead of providing

the model with task-relevant information to improve performance (for example, we could

have forced the detector to expect an answer event after detecting a question event), we

decided to keep the detector more generalized, allowing it to detect questions and answers

independently of previous detections. Because of its general and flexible implementation,

the detector should be able to perform similarly in tasks involving production of continuous,

large-vocabulary, and natural speech sentences. Future research could also investigate how

well this approach could be applied towards detection of imagined speech events, which

would have major implications for speech neuroprosthetic applications.

Our utterance classification models were successfully able to model the relationship

between neural activity and phones and leverage that ability to discriminate between

utterances. By using HMMs to represent the utterances and Viterbi decoding to compute

utterance likelihoods, both the question and answer classifiers were robust to slight

inaccuracies in the detected speech onsets and offsets, and the answer classifiers were robust

to variability in the exact pronunciations of the answer responses. Although previous

studies have provided significant evidence supporting the encoding of phonemes in STG

activity during speech perception (Mesgarani et al., 2014; Leonard et al., 2016), other

studies suggest that articulator kinematics (e.g., lip and tongue movements) explain more

variance in vSMC activity than phonemes (Chartier et al., 2018). This suggests that, despite

reliable phone discrimination, our answer phone likelihood models were merely learning the

phonetic correlations with the true underlying articulatory representations, meaning that

more powerful answer classifiers could be designed that rely on prediction of articulator

kinematics as opposed to phones.

For all subjects, we observed that predicted question likelihoods could be used as context

90

to improve subsequent answer predictions. When using the question likelihoods as context,

it was only important that the questions in the correct question/answer (QA) set received a

large total amount of the predicted probability mass, not that the correct question itself had

a high likelihood value. Because of this, we designed the question stimuli such that the initial

part of each question utterance within a QA set was identical to the other questions in that

set but different from questions in the other QA sets. We also hypothesized that we would

observe accurate question decoding based on the well-established phonemic representations

in the STG (Mesgarani et al., 2014), our previous work involving classification and decoding

of perceived phonemes (Moses et al., 2016; Moses et al., 2018), and the small number of

question utterances used in this task. These factors were all considered when deciding

to use question decodings as contextual information and all most likely contributed to

the success of the question classification and context integration models. Although there

were few contextual states (QA sets) and target outputs (answer utterances), this context

integration approach could be extended to incorporate various input sources as context for

large-vocabulary decoding. For example, in an assistive speech application for a patient

with limited communicative capabilities, it could be possible to apply standard automatic

speech recognition techniques to decode questions directly from acoustics (which should

be more accurate than decoding from neural activity). Additionally, information inferred

from camera inputs (e.g., objects or people near the patient), location inputs (e.g., whether

the patient is at home or in a hospital), or direct computer inputs (e.g., the program or

website that the patient is trying to interact with) could all be used as context to impose

situationally-relevant priors during decoding of intended speech or actions.

The design of the task used in this work was largely dependent on our goals for decoding

multiple speech modalities and assessing context integration efficacy. We also wanted our

task to mimic natural conversation by having subjects decide which answer to respond

with in each trial. Even though the choices were limited, subjects were not simply reading

from prompts during testing, suggesting that our approach is viable for more complicated

91

spontaneous speech tasks. The stimuli used in the task were designed with the decoding and

context integration goals in mind, but were also qualitatively chosen to be colloquial and

clinically relevant. Overall, subjects seemed engaged and responsive during data collection,

with less than 0.5% of answer trials containing no utterance or an incorrect utterance.

All of our testing was dependent on the clinical constraints of the patients who

participated in this study. These constraints, including clinical schedules, ECoG grid

placement, fatigue, and medication, affected the amount of data we could collect during

each experimental session, the number of sessions we could have with each subject, and

the cortical regions that we could use for decoding. Even though we were able to get

reliable classifications after about 10 samples of each utterance, our findings suggested that

performance could have been further improved if we were able to collect more data from

each subject. Similarly, the number of sessions that we had with each subject prevented

us from using optimized models during online testing, which, based on our findings, would

have led to improved decoding during these tests. Although we cannot definitively describe

how the cortical coverage that we had with each subject affected performance, we typically

observed better accuracy when having access to all of the electrodes instead of being limited

to electrodes from functionally-relevant regions. In future applications of this approach in

dedicated settings, with the ability to control ECoG grid placement and collect data more

liberally over multiple days before optimization and testing, we are confident that these

techniques would exhibit even better speech decoding performance.

In future work, we intend to continue augmenting the capabilities of the rtNSR system

to further improve performance and expand the range of testing paradigms that it is

compatible with. For example, future iterations of the system could include automated

bad channel and time segment rejection, which would help to maintain the quality of

the signals that are used during model training. Although abnormal activity (caused by

epileptic spiking, faulty electrode contacts, or other factors) might have been present in the

92

signals we collected for this work, it would be more likely to negatively affect performance

than to improve it, meaning that reliable rejection of these abnormalities should lead to

increases in decoding accuracy. Additionally, the HMM-based classifiers could be replaced

by recurrent neural network classifiers, which should be able to learn the temporal structure

of the neural representations of speech without being limited to linear modeling or explicit

assumptions about the underlying representations (given sufficient training data). We can

also explore feedback and subject adaptation methodologies, which would be useful in closed-

loop experiments and practical applications.

Eventually, we hope to deploy the rtNSR system as part of an assistive speech application

aimed at restoring communicative capabilities to patients that are unable to communicate.

For some impaired individuals, such as patients with locked-in syndrome who are conscious

but unable to communicate naturally due to paralysis (American Congress of Rehabilitation

Medicine, 1995; Laureys et al., 2005; Bruno et al., 2011; Rousseau et al., 2015), restoration

of limited communicative capability is associated with significant increases in self-reported

quality of life (Bruno et al., 2011; Rousseau et al., 2015). Although the current state-of-the-art

speech prostheses are already beneficial to patients, they are slow and unnatural, requiring

patients to spell out intended messages slowly at rates less than 2 characters per minute

(Sellers et al., 2014; Vansteensel et al., 2016). An ideal speech prosthesis would be capable of

decoding spontaneous, natural speech controlled by a patient’s volition. The results of this

work are a promising step towards this goal, demonstrating that produced speech can be

detected and decoded from neural activity in real-time while integrating dynamic information

from other modalities.

93

4.5 Methods

4.5.1 Subjects

The three subjects who participated in this study were human epilepsy patients undergoing

treatment at the UCSF Medical Center. For the clinical purpose of localizing seizure foci,

ECoG arrays were surgically implanted on the cortical surface of each subject. All subjects

were right-handed and determined to have left hemisphere language dominance by their

clinicians.

The research protocol was approved by the UCSF Committee on Human Research. Prior

to surgery, each patient gave his or her informed consent to be a subject for this research.

4.5.2 Neural data acquisition

Subjects 1 and 2 were each implanted with two 128-channel ECoG arrays (PMT corp.) and

subject 3 was implanted with a 256-channel ECoG array (Ad-Tech, Corp.). Subjects 1 and 3

had left hemisphere coverage and subject 2 had right hemisphere coverage. Each implanted

array contained disc electrodes with 1.17 mm exposure diameters arranged in a square lattice

formation with a 4 mm center-to-center electrode spacing. We used the open source img pipe

package (Hamilton et al., 2017) to generate MRI brain reconstruction images with electrode

locations for each subject (Fig. 4.2, Fig. 4.5).

We used a data acquisition (DAQ) rig to process the local field potentials recorded from

these arrays at multiple cortical sites from each subject during experimentation. These

analog ECoG signals were amplified and quantized using a pre-amplifier (PZ5, Tucker-Davis

Technologies). We then performed anti-aliasing (low-pass filtering at 1500 Hz) and line noise

removal (notch filtering at 60, 120, and 180 Hz) on a digital signal processor (RZ2, Tucker-

94

Davis Technologies). On the DAQ rig, we stored these neural data (at 3051.76 Hz) along

with the time-aligned microphone and speaker audio channels (at 24414.06 Hz). These neural

data were anti-aliased again (low-pass filtered at 190 Hz) and streamed at a sampling rate

of 381.47 Hz to our real-time computer, which was a Linux machine implementing rtNSR

(64-bit Ubuntu 14.04, Intel Core i7-4790K processor, 32 GB of RAM).

4.5.3 High gamma feature extraction

Within rtNSR, we implemented a filter chain comprised of three processes to measure high

gamma activity in real-time (Fig. 4.7). We used high gamma band activity (70–150 Hz) in

this work because previous research has shown that activity in this band is correlated with

multi-unit firing processes in the cortex (Crone et al., 1998) and can be used as an effective

representation of cortical activity during speech processing (Pasley et al., 2012; Bouchard

et al., 2013; Mesgarani et al., 2014; Moses et al., 2016; Moses et al., 2018).

The first of these three processes applied eight band-pass finite impulse response (FIR)

filters to the ECoG signals acquired from the DAQ rig (at 381.47 Hz). These filters were

designed to approximate the offline high gamma band-pass filtering approach used in our

lab’s previous work (Bouchard et al., 2013; Moses et al., 2016). The logarithmically increasing

center frequencies of these filters were 72.0, 79.5, 87.8, 96.9, 107.0, 118.1, 130.4, and 144.0

(in Hz, rounded to the nearest decimal place). The filters each had an order of 150 and were

designed using the Parks-McClellan algorithm (Parks and McClellan, 1972).

The second process in the filter chain estimated the analytic amplitude values for each

band and channel using the signals obtained from the band-passing process. An 80th-order

FIR filter was designed using the Parks-McClellan algorithm to approximate the Hilbert

transform. For each band and channel, this process estimated the analytic signal using

the original signal (delayed by 40 samples, which was half of the filter order) as the real

95

component and the FIR Hilbert transform approximation of the original signal as the

imaginary component (Romero and Jovanovic, 2012). The analytic amplitudes were then

computed as the magnitudes of these analytic signals. This filtering approach was only

applied to every fourth sample of the received signals, effectively decimating the signals to

95.37 Hz.

The final process in the filter chain averaged analytic amplitude values across the eight

bands, yielding a single high gamma analytic amplitude measure for each channel.

After filtering, the high gamma signals were then z-scored using a 30-second sliding

window. For online, real-time speech decoding, it is not possible to do hand-labeled artifact

rejection. Therefore, to mitigate signal artifacts and outliers caused by channel noise,

epileptic activity, or other factors, the z-score values were clipped to lie within the range

of [−3.5, 3.5]. We used the resulting z-scores as the representation of high gamma activity

in all subsequent analyses and real-time testing.

4.5.4 Experimental task design

The overall goal of this task was to demonstrate real-time decoding of perceived and produced

speech while leveraging predicted contextual information. To achieve this, we designed a

question-and-answer task paradigm that involved a subject listening to question stimuli and

responding verbally to each question with an answer. In total, we used 9 pre-recorded

acoustic question stimuli and 24 visual answer stimulus prompts (Table 4.3). All question

stimuli were recorded from the same female speaker at 44.1 kHz and were presented to the

subject aurally via loudspeakers during the task blocks. Each visual answer stimulus was

represented as a small rectangle containing the text prompt and a small image depicting the

text (Fig. 4.1b; images were only included to improve subject engagement). The questions

and answers were divided into four distinct question/answer sets (QA sets 1–4). The answers

96

Table 4.3: The question/answer sets.

QA set number Question Answer

1 Which musical instrument do you like listening to? Piano
Which musical instrument do you dislike hearing? Violin

Electric guitar
Drums
Synthesizer
None of these

2 How is your room currently? Bright
Dark
Hot
Cold
Fine

3 From 0 to 10, how much pain are you in? Zero
From 0 to 10, how nauseous are you? One
From 0 to 10, how happy do you feel? Two
From 0 to 10, how stressed are you? Three
From 0 to 10, how comfortable are you? Four

Five
Six
Seven
Eight
Nine
Ten

4 When do you want me to check back on you? Today
Tomorrow

in each QA set represented the valid answer choices for each of the questions in that set.

We used three different types of task blocks during experimentation: question (percep-

tion) training, answer (production) training, and testing task blocks in which subjects heard

questions and responded verbally with answers. During each task block, time-aligned behav-

ioral and neural data were collected and stored. The data collected during training blocks

were used to fit the decoding models. The data collected during testing blocks were used in

real-time to decode the perceived questions and produced answers and were also used offline

during hyperparameter optimization.

Question (perception) training task block

In the question training block, subjects were presented with 10 repetitions of each question

stimulus. Subjects were instructed to remain alert while listening to the questions without

97

responding. Each question was between 1.38 and 2.42 seconds long and was presented with

a constant onset-to-onset interval of 3 seconds.

Answer (production) training task block

Two different answer training blocks were used during training: one block containing answers

from QA sets 1–2 and another block containing answers from QA sets 3–4. In each answer

training block, subjects were presented with 10 repetitions of each answer choice. During

each trial, one of the visual answer stimuli appeared on a screen in front of the subject with

a gray background for 0.5 seconds. Afterward, the background of the stimulus changed to

green for 1.5 seconds. Subjects were instructed to speak the text contained in the visual

stimulus when the background of the stimulus changed to green. At the end of each trial,

the screen was cleared and remained blank for 0.5 seconds before the start of the next trial.

Testing block

After collecting the training blocks and performing offline transcriptions and modeling,

subjects participated in testing blocks to evaluate our real-time decoding system. At the

start of each trial, a question was played to the subject while the valid answer stimuli from

that QA set were presented visually to the subject in a circular outline arrangement on

the screen. After 2.5–4.5 seconds from the start of the question, a green circle appeared in

the middle of the screen (in the center of the presented answer choices) for 1.5–2 seconds.

Subjects were instructed to say one of the answer choices when this green circle appeared.

Subjects were encouraged (but not required) to choose answer choices freely without trying

to answer the questions based on his or her current mood and to choose a variety of answer

choices instead of saying the same answer choice in each trial. At the end of each trial, the

screen was cleared and remained blank for 2–3 seconds before the start of the next trial.

98

The times given above were constant throughout any single testing block but were

sometimes adjusted between blocks and between subjects depending on the subject’s ability

to choose and verbalize an answer choice in the allotted time. In each block, the questions

played to the subject were chosen based on how many questions and answers are in each

QA set (questions with more valid answers have a greater chance of being played in each

trial). Any trial in which the subject failed to respond or responded with an invalid choice

was excluded from further analysis. There were 26 question-and-answer trials in each testing

block.

4.5.5 Phonetic transcription

After data collection, we phonetically transcribed the recorded acoustics using the p2fa

package (Yuan and Liberman, 2008), which relies on the Hidden Markov Model Toolkit

(HTK) and the CMU pronunciation dictionary (Young et al., 2002; Weide, 2014). The

phone boundaries were manually fine-tuned within the Praat software package (Boersma,

2001). The phones were transcribed with ARPABET labels and then stored as International

Phonetic Alphabet (IPA) labels. We included a silence phone token /sp/ to represent silence

time points.

4.5.6 Modeling

After collecting training data for a subject, we fit models using the time-aligned high gamma

z-score values and phonetic transcriptions. Model fitting was performed offline, and the

trained models were saved to the real-time computer so that they could be used during online

testing. As described later in Section 4.5.7, the values for many model parameters that were

not learned directly from the training data were set using hyperparameter optimization.

We used three types of models in this work: speech detection, utterance classification, and

99

context integration models.

Speech detection

For each subject, we created speech detection models that processed neural activity and

predicted which time segments occurred while the subject was perceiving a question or

producing an answer. Each of these detection models analyzed the high gamma z-score

values at every time point in real-time and determined the time points associated with

the onsets and offsets of speech events. The primary goal of these detection models was to

provide the utterance classification models (described in the next section) with time segments

of neural data to use during prediction.

Before using the neural data to train speech detection models, we analyzed the collected

data to identify which electrode channels should be considered relevant to detecting speech

events (Moses et al., 2016; Moses et al., 2018). Using the phonetic transcriptions, we

split the available high gamma z-score data into three subsets, each comprised of neural

data that occurred during speech perception, speech production, or silence. We then

performed Welch’s analysis of variance (ANOVA) on each electrode channel individually

to determine which channels were significantly modulated by the different types of speech

events. Channels that had a Welch’s ANOVA P -value less than a threshold hyperparameter

were considered relevant and included in the feature vectors used during subsequent speech

detection modeling.

A main component of each detection model was a speech event probability model capable

of yielding p (ht|yt) probabilities at every time point t during testing. Here, ht represents the

speech event at time t and is one of the values in the class set {perception, production, silence},

and yt is the spatiotemporal neural feature vector at time t. The ht labels were determined

from the phonetic transcriptions: for any given time index t, ht was production if the subject

100

was producing a phone at time t, perception if the subject was listening to a phone at

time t, or silence otherwise. Similar to the features used during modeling in our previous

works (Moses et al., 2016; Moses et al., 2018), each of these feature vectors was constructed

by concatenating high gamma z-score values for relevant electrodes across all of the time

points in a time window relative to the target time point, capturing both spatial (multiple

electrodes) and temporal (multiple time points) dynamics of the cortical activity (Fig. 4.8).

For example, a feature vector associated with the speech event label at some time index t

might consist of the neural data at time indices {t− 10, t− 9, . . . , t+ 19, t+ 20}. These time

windows were parameterized by the shift of the first time point relative to the time index

t that it is associated with and by the duration of the time window (both were treated as

hyperparameters). Prior to model fitting, all of the collected training data were restructured

such that a spatiotemporal neural feature vector yt and a speech event label ht were available

for every valid time point t.

To compute the speech event probabilities p (ht|qt) at each time point, each speech

event detection model applied linear discriminant analysis (LDA) to the leading principal

components of the neural features. Using all of the available spatiotemporal neural feature

vectors, we fit a principal component analysis (PCA) model with the constraint that the

dimensionality of the projected feature vectors would be reduced to the minimum number of

principal components required to explain a certain fraction of the variance across the features

(this fraction was a hyperparameter determined during optimization). We then used these

new projected feature vectors and the speech event labels to fit an LDA model implementing

the least-squares solution with automatic shrinkage described by the Ledoit-Wolf lemma

(Ledoit and Wolf, 2004). After training, these PCA-LDA models were capable of extracting

the principal components from a previously unseen spatiotemporal feature vector and using

the resulting projection to predict speech event probabilities (the LDA model assumed flat

class priors when computing these probabilities). We used the Python package scikit-learn

to implement the PCA and LDA models (Pedregosa et al., 2011).

101

During testing, the predicted speech event probabilities from these trained PCA-LDA

models were used to detect the onsets and offsets of speech events (Fig. 4.9). For every

time point t during neural data acquisition, the p (ht|yt) probabilities were computed from

the speech event probability model (Fig. 4.9a). For perception and production, these

probabilities were smoothed using a sliding window average (Fig. 4.9b). Next, these

smoothed probabilities were thresholded to either be 1 if the detection model suspected

that the associated speech event type was occurring and 0 otherwise (Fig. 4.9c). These

probability-thresholded binary values were then thresholded in time (debounced); a speech

onset (or offset) was only detected if this binary value changed from 0 to 1 and remained 1 (or

the opposite for offsets) for a pre-determined number of time points (Fig. 4.9d). Whenever a

speech event offset was detected (which could only occur after an onset had been detected),

the neural data segmented by the onset and offset were passed to the appropriate utterance

classification model (question classification for perception events and answer classification

for production events; Fig. 4.9e). The number of recent time points used during probability

averaging, probability threshold value, time threshold duration, and onset and offset index

shifts (integers added to the predicted onset and offset time indices before segmenting the

neural data) were all treated as hyperparameters and set via optimization (with separate

parameters for perception and production).

Utterance classification

For each subject and utterance type (questions and answers), we used utterance classification

models to predict the likelihood of each utterance given a time segment of neural activity from

the speech detector. For each utterance, we constructed an HMM to represent that utterance,

with the phones comprising the utterance as hidden states and neural feature vectors as

observed states. Given a time series of high gamma z-score values, each of these HMMs

yielded the likelihood of observing those neural features during perception or production of

102

the underlying phone sequence. These likelihoods are robust to natural variabilities in the

durations of the phones in the sequence, which is a key motivation for using HMMs in this

approach (even with a single speaker producing the same utterance multiple times, there will

be small phone duration variabilities). We smoothed and normalized these phone sequence

likelihoods to obtain the likelihood of each utterance given the neural features.

In each HMM, each hidden state qt represented the phone that occurred at time index

t within the corresponding utterance and each observation yt was the neural feature vector

associated with time index t. To construct each HMM, the representative phone sequence for

the associated utterance was determined from the phonetic transcriptions. The transition

matrix for that HMM, which specified the transition probabilities p (qt+1|qt), was defined

such that each hidden state was one of the phones in this sequence and could only self-

transition (with some probability pself) or transition to the next phone in the sequence (with

probability 1− pself). A self-transition probability of 1 was used for the final state. We used

the silence phone token /sp/ as the initial and final states for each HMM. For example, the

utterance “Cold” could be represented by a phone sequence of /sp k "oU l d sp/, and if the

hidden state of the associated HMM was /l/ at some time index t, the hidden state could

only be /l/ or /d/ at time index t+ 1.

Similar to the relevant electrode channel selection used for the speech detection models

(described in the previous section), we identified which channels should be considered

relevant to the type of speech processing associated with each utterance type (perception

processing for question utterances and production processing for answer utterances). Using

the three previously described data subsets (one during production, one during perception,

and one during silence), we performed two-tailed Welch’s t-tests for each channel between

the appropriate subsets for each utterance type (perception vs. silence for questions and

production vs. silence for answers). Channels with a P -value less than a threshold

hyperparameter value were considered relevant for the current utterance type and were used

103

during subsequent phone likelihood modeling.

Also resembling the speech event modeling approach described in the previous section,

PCA-LDA models were trained to compute the phone emission likelihoods p (yt|qt) at each

time point, with yt denoting a spatiotemporal neural feature vector at time index t. The

hyperparameters associated with these models, including the feature time window parameters

and the PCA minimum variance fraction, were optimized separately from the parameters in

the speech event model.

During testing, we used Viterbi decoding on each HMM to determine the likelihood of

each utterance given a detected time segment of high gamma z-score values (Viterbi, 1967;

Moses et al., 2016; Martin, 2017; Moses et al., 2018) (Fig. 4.10). Formally, we computed the

log likelihood of each utterance using the following recursive formula:

v(t,s) = we log p (yt|s) + max
i∈S

[
v(t−1,i) + log p (s|i)

]
, (4.1)

where v(t,s) is the log probability of the most likely Viterbi path that ends in phone (state)

s at time t, p (yt|s) is the phone emission likelihood (the probability of observing the neural

feature vector yt if the current phone is s), p (s|i) is the phone transition probability (the

probability of transitioning from phone i to phone s), we is an emission probability scaling

factor (a model hyperparameter) to control the weight of the emission probabilities relative

to the transition probabilities (see Section 4.6.1), and S is the set of all possible phones. To

initialize the recursion, we forced each decoding to start with a Viterbi path log probability

of zero for the first state (the initial silence phone /sp/) and negative infinity for every

other state. After decoding for each HMM, the Viterbi path log probability at the final

state and time point for that HMM represented the log likelihood `u of the corresponding

utterance u given the neural data. Log probabilities are used here and in later computations

for numerical stability and computational efficiency.

104

The computed log likelihoods for each utterance were then smoothed and normalized

using the following formula:

`∗u := ν`u − log

[∑
j∈U

exp (ν`j)

]
, (4.2)

where `∗u is the smoothed and normalized log likelihood for utterance u, ν is the smoothing

hyperparameter, and U is the set of all valid utterances (for the current utterance type).

Because differences in utterance log likelihoods can be large (e.g., in the hundreds), the

smoothing hyperparameter, which lay in the range [0, 1], was included to allow the model to

control how confident its likelihood predictions were. The closer ν was to zero, the smoother

the log likelihoods were (less sample variance among the log likelihoods). The final log term

in Eq. 4.2 represents the LogSumExp function and was used to compute the normalization

constant for the current smoothed log likelihood values. After computing this constant and

subtracting it from the smoothed log likelihoods, the `∗u values satisfied the following equality:

∑
j∈U

exp
(
`∗j
)

= 1. (4.3)

These `∗u values were used as the utterance classification model’s estimate of the utterance

log likelihoods given the corresponding neural data.

Context integration

Because of the stimulus selection (each answer response was only valid for some of the

questions) and task design (an answer response always followed a question presentation

during testing) used in this work, we were able to design a context integration model that

used predicted question likelihoods to update the predicted answer probabilities. Based on

our previous demonstration of predicting auditory sentences from neural activity (Moses

et al., 2018), we hypothesized that we could use reliable decoding of the questions in this

105

task to improve the answer predictions, which was confirmed through our evaluations.

Prior to testing, we mathematically defined the relationship between the question and

answer utterances in the form of conditional probabilities. These probabilities, referred to

as the context priors, were computed using the following formula:

p (ua|uq) =

1

NA,q
if ua and uq are in same QA set

0 otherwise,

(4.4)

where p (ua|uq) is the context prior specifying the probability of responding to the question

utterance uq with the answer utterance ua and NA,q is the number of answer utterances in

the same QA set as uq (the number of valid answer responses to uq). The QA sets are given

in Table 4.3. These context priors assume that the valid answer responses to any question

are equally likely given the question.

During testing, the context integration model receives predicted utterance log likelihoods

from both the question and answer classification models. Each time the model received

predicted question log likelihoods (denoted `∗UQ
, containing the log likelihoods `∗uq for each

question utterance uq), it computed prior log probabilities for the answer utterances from

these question likelihoods and the pre-defined context priors using the following formula:

log p
Q

(ua) = log

 ∑
uq∈UQ

exp
[
log p (ua |uq) + `∗uq

]+ c, (4.5)

where p
Q

(ua) is defined as the prior probability of the answer utterance ua computed using

`∗UQ
, UQ is the set of all question utterances, and c is some real-valued constant. Each time

the model received predicted answer log likelihoods (the `∗ua values for each answer utterance

ua), it computed posterior log probabilities for the answer utterances from these answer

likelihoods and the answer priors. The unnormalized log posterior probabilities φua were

106

computed for each answer utterance ua using the following formula:

φua := m log p
Q

(ua) + `∗ua + d, (4.6)

where m is the contextual prior scaling factor and d is some real-valued constant. Here,

m is a hyperparameter that controls the weight of the answer priors relative to the answer

likelihoods (a larger m causes the context to have a larger impact on the answer posteriors).

We can then normalize these answer log posterior values using the following formula:

φ∗ua := φua − log

[∑
j∈UA

exp (φj)

]
, (4.7)

where φ∗ua is the normalized log posterior probability of ua and UA is the set of all answer

utterances. The constants c and d do not need to be computed in practice because they are

canceled out during the normalization step in Eq. 4.7. These φ∗ua values satisfy the following

equality: ∑
j∈UA

exp
(
φ∗j
)

= 1. (4.8)

Finally, the utterance identities predicted by our system are computed as:

ûq = argmax
uq∈UQ

`∗uq , (4.9)

ûa− = argmax
ua∈UA

`∗ua , (4.10)

ûa+ = argmax
ua∈UA

φ∗ua , (4.11)

where ûq, ûa−, and ûa+ are the system’s predictions for questions, answers without context,

and answers with context, respectively. The ûq and ûa+ predictions are the system outputs

during decoding, and the ûa− predictions are used in offline analyses. For a more thorough

mathematical description of the context integration approach, see Section 4.6.1.

107

Although an answer response trial followed each question trial during testing, it was

possible for the speech detector to fail to detect question or answer events (or to detect false

positives). Because of this, we did not force the context integration model to always expect

answer likelihoods after receiving question likelihoods or vice versa. Instead, during each

test block, we maintained a set of values for the answer priors that were only updated when

a new set of question likelihoods was received. When a new set of answer likelihoods was

received, the current answer prior values were used to compute the posteriors. If answer

likelihoods were received before receiving any question likelihoods, answer posteriors and

answer with context predictions would not be computed from those likelihoods (although

this did not occur in any of our test blocks).

4.5.7 Hyperparameter optimization

Each type of model (speech detection, utterance classification, and context integration)

had one or more parameters that could not be learned directly from the training data.

Instead of manually selecting values for these hyperparameters, we performed cross-validated

hyperparameter optimization using the hyperopt Python package (Bergstra et al., 2011,

2013). This package uses a Bayesian-based optimization algorithm called the Tree-structured

Parzen Estimator (sometimes referred to as the Tree of Parzen Estimators or abbreviated

as TPE) to explore a hyperparameter space across multiple testing epochs. Although the

full details of the algorithm are beyond the scope of this text, it operates by sampling

hyperparameter values from pre-defined prior distributions, using a loss function to evaluate

the current hyperparameters, and repeating these steps using knowledge gained from the

evaluations it has performed. After a desired number of epochs, the hyperparameter

set associated with the minimal loss value across all epochs is deemed the optimal

hyperparameter set.

108

In this work, we performed hyperparameter optimization for each subject, model type,

and test block. We used a leave-one-block-out cross-validation scheme for each test block.

Specifically, during an optimization run for any given test block, the hyperparameters were

evaluated on a held-out validation set comprised of all of the other test blocks available

for the current subject. After optimization, we assessed the performance of our system

using separate models for each test block with the corresponding optimal hyperparameters

found during optimization. We used 250 epochs for each optimization run. All of the

hyperparameters that were set via optimization are described in Table 4.4.

For each subject, we first performed optimization for the speech detection models. During

each optimization epoch, the speech event probability model was trained using all of the

available training data and tested on each block in the validation set. As described in

Section 4.5.8, we used a custom speech detection score to evaluate the performance of the

speech detector (a higher speech detection score signified better performance). The loss

function used during speech detection optimization was defined as:

Ldetection :=
∑

β∈B,ψ∈{question,answer}

(
1− s2

detection,β,ψ

)
, (4.12)

where Ldetection is the detection loss, β signifies one of the blocks in the validation set B, ψ

signifies one of the utterance types (either question or answer), and sdetection,β,ψ is the speech

detection score associated with validation block β and utterance type ψ. Thus, the optimal

hyperparameters for the speech detection model associated with each test block were the

hyperparameters that best detected the question and answer events in the validation blocks.

Next, we performed optimization for the utterance classification models. Separate

optimizations were performed for the question and answer classifiers. During each

optimization epoch, the phone likelihood models were trained using all of the available

training data. Afterwards, the utterance classifiers predicted the utterance labels of the

109

speech events that were detected by the optimized speech detection models in each validation

block. We used cross entropy on the validation set as the loss function during optimization.

Although the true speech event times were used during cross entropy calculations in other

analyses, we chose to optimize the classifiers using the detected times to increase the

robustness of the classifiers to imperfect speech event detection. To compute cross entropy

on the decoded utterances from the detected events, we had to first convert the decoded

sequence to classification trials. We performed this conversion by iterating through the actual

utterances in chronological order and pairing each actual utterance label with the detected

utterance label that had the closest detected speech offset time to the actual speech offset

time (pairing a detected utterance label with more than one actual label was prevented).

The optimal hyperparameters for each utterance classification model associated with each

test block were the hyperparameters that resulted in the lowest cross entropy on the detected

speech events in the validation blocks.

Finally, we optimized the context integration models. The only goal of this optimization

process was to choose a value for the context prior scaling factor m. For each test

block, we decoded utterance sequences in the validation blocks using the optimized speech

detection and utterance classification models. During each optimization epoch, the answer

with context predictions were computed using the decoded question and answer (without

context) sequences and the current value of the hyperparameter m. Similar to the utterance

classifier optimization, we used cross entropy on the validation set as the loss function during

optimization. The decoded answer with context sequences were converted to classification

trials so that the cross entropy could be computed. The optimal value of m for the context

integration model associated with each test block was the value that resulted in the lowest

cross entropy of the answer with context predictions using the detected speech events in the

validation blocks.

110

Table 4.4: The description and optimization search space for each hyperparameter.

Optimization Hyperparameter description Search space type Value range or choices

Speech Electrode relevance P -value threshold Logarithmically
[
10−50, 10−3

]
Detection uniform

Duration before t to include in the spatiotemporal Uniform [1, 300]
neural feature vector yt (in ms)
Duration after t to include in the spatiotemporal Uniform [1, 300]
neural feature vector yt (in ms)
Minimum amount of variance the principal components Uniform [0.01, 0.99]
should explain when fitting the PCA model
Question perception averaging window size (in samples) Uniform (integer) [80, 160]
Question perception probability threshold Uniform [0.4, 0.9]
Question perception time threshold (in samples) Uniform (integer) [5, 60]
Question perception onset index shift (in samples) Uniform (integer) [−100, 100]
Question perception offset index shift (in samples) Uniform (integer) [−100, 300]
Answer production averaging window size (in samples) Uniform (integer) [20, 80]
Answer production probability threshold Uniform [0.4, 0.9]
Answer production time threshold (in samples) Uniform (integer) [2, 10]
Answer production onset index shift (in samples) Uniform (integer) [−100, 0]
Answer production offset index shift (in samples) Uniform (integer) [−100, 50]

Utterance Electrode relevance P -value threshold Logarithmically
[
10−50, 10−3

]
classification uniform
(for questions Set of hidden states for the HMMs (S) Choice Phones or phonemes1

and answers) HMM self-transition probability (pself) Uniform [0.1, 0.9]
Shift relative to t specifying the first data point in Uniform [−200, 200]
the spatiotemporal neural feature vector yt (in ms)
Duration of each spatiotemporal neural feature vector Uniform [10, 400]
(in ms)
Minimum amount of variance the principal components Uniform [0.01, 0.99]
should explain when fitting the PCA model
Number of samples of each phone to include when Uniform (integer) [50, 3000]
training the phone likelihood models
HMM emission probability scaling factor (we) Uniform [0.1, 5.0]
Log likelihood smoothing factor (ν) Uniform [0.0001, 1.0]

Context Contextual prior scaling factor (m) Logarithmically [0.1, 10]
integration uniform

1 Phoneme labels were simply the phone labels without stress markings. Across all test blocks and subjects, phoneme
labels were only deemed optimal for one question classifier and one answer classifier.

111

4.5.8 Evaluation methods

Primary evaluation metrics

We used the following metrics during the primary evaluations of our system: decoding

accuracy rate, classification accuracy, cross entropy, speech detection score, and electrode

discriminative power (Fig. 4.2). The decoding accuracy rate metric represented the full

performance of the system (the combined performance of the speech detection, utterance

classification, and context integration models). When computing the accuracy rates, we first

computed the utterance error rate for each prediction type and each test block. The utterance

error rate, an analog of the commonly-used word error rate metric, is a measure of the edit

(Levenshtein) distance between the actual and decoded utterance label sequences in a given

test block. The accuracy rate was then computed as max [0, 1− (utterance error rate)]. For

each subject and prediction type, the mean and variance of the accuracy rate was calculated

using the accuracy rates for each test block.

To compute the classification accuracy and cross entropy metrics on a set of results for

any subject, we obtained utterance classification results by re-evaluating our system using

only the utterance classification and context integration models (and not the speech detection

models). In this approach, we performed decoding on the test blocks using the actual speech

event times and the previously trained utterance classification models. This was equivalent

to performing decoding with a speech detection model that perfectly detected each speech

event. We decremented each speech onset time and incremented each speech offset time by

300 ms to include silence time points before and after the utterance in each speech-related

time window of neural data passed to the classifiers. We then performed context integration

model optimization with these new classification results and applied the optimized context

integration models to these results. After this step, we then pooled all of the pairs of actual

and predicted utterance labels for each prediction type (questions, answers without context,

112

and answers with context) across all of the test blocks for each subject.

The classification accuracy measured the fraction of these classification trials in which the

utterance classification model correctly predicted the identity of the utterance. To compute

the classification accuracy for a given subject and prediction type, we created an array of

indicator variables that contained 1 for each classification trial in which the predicted and

actual labels were equal and 0 for the remaining trials. We then calculated the mean and

variance of the classification accuracy as the mean and variance of this indicator variable

array.

The cross entropy metric quantified the amount of predictive information provided by the

utterance classification and context integration models during testing and hyperparameter

optimization. We computed the cross entropy values using the surprisal values for each

classification trial, prediction type, and subject. For a given trial and prediction type, the

relevant surprisal value for that trial is equal to the negative of the predicted log probability

associated with the actual utterance label. The cross entropy is equal to the mean of these

surprisals, and we also used the variance of these surprisals as a proxy for the variance of

the cross entropy. Lower cross entropy indicates better performance.

We used a custom speech detection score metric to measure the performance of the speech

detection model during testing and hyperparameter optimization. This metric was computed

as a weighted combination of a frame-by-frame accuracy value aframe and a general event

detection accuracy value aevent. The frame-by-frame accuracy measured the performance

of the speech detector using the detected presence or absence of a speech event at each

time point. This measure resembles sensitivity and specificity analyses used commonly for

screening test evaluations involving true/false positives/negatives. For any test block and

utterance type, true positives were time points (frames) in that test block during which the

speech detector correctly predicted that a speech event was occurring, true negatives were

time points during which the speech detector correctly predicted that silence was occurring,

113

and false positives and negatives were time points in which the speech detector made an

incorrect prediction. The phonetic transcriptions were used to determine the actual times of

the speech events. When using these transcribed speech times, we decremented each speech

onset time and incremented each speech offset time by 300 ms to label some silence time

points before and after each utterance as positive frames. We performed this modification

to encourage the optimizer to select hyperparameters that would include silence before and

after each utterance in the detected neural feature time windows, which is useful during

utterance classification. We calculated the frame-by-frame accuracy measure using the

following formula:

aframe =
wPNTP + (1− wP)NTN

wPNP + (1− wP)NN

, (4.13)

where wP is the positive weight fraction, NTP is the number of true positives detected, NTN

is the number of true negatives detected, NP is the total number of positive frames in the test

data, and NN is the total number of negative frames in the test data. The positive weight

fraction was included to allow control over how important true positive detection was relevant

to true negative detection. In practice, we used wP = 0.75, meaning that correctly detecting

positive frames was three times as important as correctly detecting negative frames. We

used this value to encourage the optimizer to select hyperparameters that would prefer to

make false positive errors than false negative errors, since the performance of the utterance

classifiers should diminish more heavily if a few speech-relevant time points were excluded

from the detected time window than if a few extra silence time points were included. The

general event detection accuracy measured how well the speech events were detected without

considering which time points were associated with each event. For any test block and

utterance type, the general event detection accuracy value was computed using the following

formula:

aevent = 1−min

(
1,
|NDE −NAE|

NAE

)
, (4.14)

where NDE and NAE are the number of detected and actual speech events in the current

114

test block, respectively. To compute the speech detection score sdetection, these two measures

were combined using the following formula:

sdetection = wFaframe + (1− wF) aevent, (4.15)

where wF is the frame-by-frame accuracy weight fraction, which allows control over how much

impact the frame-by-frame accuracy measure has on the speech detection score relative to

the general event detection accuracy. In practice, we let wF = 0.5 for an equal weighting

between the two measures.

To assess the importance of each electrode during phone and speech event likelihood

modeling, we estimated the discriminative power of each electrode within the trained PCA-

LDA models (Moses et al., 2016). To compute these discriminative powers, we first arbitrarily

selected a test block for each subject and obtained the trained and optimized utterance

classification and speech detection models associated with that test block. For each of these

models, we examined the learned parameters within the internal LDA model. For each

feature in the LDA model (which is a principal component value from the PCA model),

we measured the between-class variance for that feature by computing the variance of the

corresponding class means. We used the values along the diagonal of the shared covariance

matrix as a measure of the within-class variance of each feature (because we did not force

diagonal covariance matrices in the LDA models, this is only an approximation of the true

within-class variances). We then estimated the discriminative power for each LDA feature

using the following formula (which resembles a coefficient of determination calculation):

ηi = 1−
σ2

w,i

σ2
w,i + σ2

b,i

, (4.16)

where ηi, σ
2
w,i, and σ2

b,i are the estimated discriminative power, within-class variance, and

between-class variance, respectively, for the ith LDA feature. To obtain the discriminative

115

powers for each original feature in the spatiotemporal neural feature vectors (the inputs to

the PCA model), the absolute values of the PCA component weights were used to project

the LDA feature discriminative powers back into the original feature space. Finally, the

discriminative power for each electrode was set equal to the maximum discriminative power

value observed among the original features associated with that electrode (that is, the

maximum function was used to aggregate the discriminative powers across time for each

electrode within the spatiotemporal feature vectors). The resulting discriminative power

values can be used to quantify the relative contributions made by each electrode during

phone or speech event discrimination.

Utterance classifier sensitivity analyses

We investigated the sensitivity of the utterance classifiers to limited data availability and

sub-optimal hyperparameter configurations (Fig. 4.3). To assess how the amount of available

training data affected classification performance, we evaluated classifiers that were trained

on varying amounts of data. For each subject and utterance type, we first randomly selected

n = 1 samples of each utterance from the available training data. For each utterance selected

this way, we obtained the neural feature vectors and phone labels that occurred between 150

ms before the speech onset and 150 ms after the speech offset. The onset and offset times

were determined from the phonetic transcriptions, and the time points before and after each

utterance were included so that the classifiers would have sufficient samples of the silence

phone /sp/. Utterance classification models were trained using these features and labels

associated with the selected utterances (separate models were trained for each test block

using the optimized hyperparameter values for that block). We then evaluated the classifiers

(and the context integration models) across all of the test blocks using the classification

accuracy and cross entropy metrics. We repeated this process 15 times, each time drawing a

new random selection of n samples of each utterance to use during training. Afterwards, we

116

then performed all of these steps for every integer value of n in the range [2, Nmax], where

Nmax denotes the total number of samples of each utterance available across the training

blocks for the subject (Nmax = 10, 30, 20 for subjects 1–3). All random selections of the

utterances to use during training were sampled without replacement. We plotted the mean

and SEM of the classification accuracy and cross entropy values across the 15 repeats for

each value of n to visualize how classification was affected by the amount of training data.

To better understand the effect that hyperparameter selection had on classifier perfor-

mance, we evaluated classifiers with many different hyperparameter configurations. For each

subject, we arbitrarily selected one of the test blocks for that subject and obtained each of

the 250 hyperparameter configurations that were evaluated (on a separate validation set)

during optimization of the question and answer classifiers for that test block. For each of

these hyperparameter configurations, we trained the utterance classifiers with the configu-

ration using all of the training data available for that subject, and we then evaluated the

classifier performance on the chosen test block using the classification accuracy and cross

entropy metrics. We plotted the resulting accuracies and cross entropies for each of these

hyperparameter configurations (which also included the configuration that was deemed op-

timal).

We also characterized the performance of the utterance classification and context

integration models while limiting the cortical regions that each model had access to during

training and testing. For each subject, we separated all of the available electrodes for that

subject into two subsets: electrodes below the Sylvian fissure (infra-Sylvian) and electrodes

above the Sylvian fissure (supra-Sylvian). We then fit question classification models using

only the neural data recorded from infra-Sylvian electrodes and answer classification models

using only the neural data recorded from supra-Sylvian electrodes. For each of these models,

the relevant channel selection, hyperparameter optimization, electrode discriminative power

calculation, and training and testing procedures were similar to the approaches used for

117

the standard utterance classification models (with the only meaningful difference being the

electrode subsets used for each model). The context integration model used the question

likelihoods from the infra-Sylvian model and the answer likelihoods (without context) from

the supra-Sylvian model to compute the answer posteriors. We plotted the performance of

these models across all of the test blocks for each subject using the classification accuracy

and cross entropy metrics.

Utterance classifier characterization

To better understand how the utterance classifiers made their predictions, we performed

additional analyses on the Viterbi decoding and phone likelihood modeling approaches used

by the answer classifiers (Fig. 4.4). To visualize the process by which the classifiers used

Viterbi decoding to update the predicted likelihood of each utterance as it received additional

neural data, we examined how the utterance likelihoods changed over time during a correctly

predicted answer utterance for one of the subjects. Using the time window of neural activity

associated with that utterance and the trained phone likelihood model for the test block

containing the selected trial, we performed Viterbi decoding on the HMM for each answer

utterance. At each time index t during the Viterbi decoding with each HMM, we stored the

log likelihood of the most likely Viterbi path through the HMM at that time index given the

neural feature vectors {y0, y1, . . . , yt} (where y0 is the first feature vector in the time window).

Afterwards, the path likelihoods at each time point were smoothed (using ν, the smoothing

hyperparameter from the classifier) and normalized (to sum to 1) across all utterances. The

resulting values were plotted as the probability of each utterance at each time point during

Viterbi decoding.

To assess how well the answer phone likelihood models were able to discriminate between

the phonetic classes, we computed phone confusions across all of the test blocks and subjects.

For each test block, we used the phone likelihood model within the associated answer

118

classification model to predict the phone label at each time point. We compared the predicted

and actual phone labels at each time point across all test blocks to compute the plotted phone

confusion matrix. We excluded one test block for subject 2 from this analysis because the

answer classification model associated with that test block used phonemic labels (labels

without stress markers) instead of the phonetic labels used in all of the other test blocks (see

Table 4.4).

We also used these path probabilities to measure the amount of time points required

before each classifier finalized its prediction of which utterance was most likely during each

trial. Across all test blocks and subjects, we computed the Viterbi path probabilities at

each time point during classification of each answer trial. For each trial, we used these path

probabilities to find the earliest time index at which the predicted utterance (the utterance

with the highest path probability at the final time index) became and remained more likely

than all of the other utterances (denoted tfinalization). We computed the decision finalization

time for a trial using the following formula:

τ =
tfinalization − tonset

toffset − tonset

, (4.17)

where τ is the decision finalization time and tonset and toffset are the speech onset and

offset time indices of the utterance (obtained from the phonetic transcriptions). To assess

how well these decision finalization times could be explained by the phonetic content and

pronunciation of the stimuli, we also computed these decision finalization times using phone

likelihoods constructed directly from the phonetic transcriptions (without using neural data

to infer the phone likelihoods). For each trial, we provided as input to the Viterbi decoder for

each HMM a time series of phone likelihoods in which, at each time point, the probability of

the phone that was actually occurring (according to the phonetic transcriptions) was equal

to 0.9 and the remaining 0.1 probability mass was divided evenly among the other phones.

During Viterbi decoding, all of the non-zero phone transition probabilities p (qt+1|qt) for each

119

HMM were set equal to 0.5. To compare the finalization times between the neural-based and

transcription-based analyses, we restricted the trials that were considered to only contain

trials in which the neural-based classifier correctly predicted the utterance identity (we did

not find a significant difference in finalization times between the correct and incorrect trials,

P = 0.37, two-tailed Welch’s t-test). In the decision finalization time plot, trials in which

the finalization time was negative for the neural-based model were excluded (5 trials were

excluded from and 89 trials were included in the figure).

4.5.9 Statistical testing

The statistical tests used during evaluation of our results are described in this section. For

all tests, we considered P -values less than 0.05 as significant.

When comparing the decoding accuracy rates to chance (Fig. 4.2a, Fig. 4.5a), we

used one-tailed bootstrap tests on individual test blocks and then combined the test results

across these blocks. First, for each subject, test block, and prediction type (questions,

answers without context, and answers with context), we determined the number of actual

utterance labels in the current block. We then created a sequence with length equal to this

number and with elements randomly sampled from the set of possible utterance labels for the

current prediction type (sampling was done with replacement and with a uniform probability

distribution across the possible labels). Next, we computed the decoding accuracy rate by

comparing this random sequence with the actual sequence. We performed this process of

creating a random sequence and computing its accuracy rate one million times. Afterwards,

we created a normal distribution parameterized by the mean and standard deviation of the

accuracy rates observed during this process. We determined the value of the cumulative

distribution function (CDF) of this distribution at the value equal to the decoding accuracy

rate associated with the current test block and prediction type. The one-tailed P -value for

120

the null hypothesis that the decoded accuracy rate was not above chance was equal to 1

minus this CDF value. After computing these P -values for each test block for a subject,

the final P -value for the subject was computed by combining the individual P -values across

blocks using Fisher’s method (sometimes referred to as Fisher’s combined probability test)

(Fisher, 1932). Our method of measuring chance performance was arguably an overestimate

of the true chance performance because it uses the exact same sequence length as the actual

utterance sequence within a test block (this is equivalent to assuming that the speech detector

always detected the correct number of events).

When comparing the answer with context and answer without context decoding accuracy

rates (Fig. 4.2a, Fig. 4.5a), we used one-tailed permutation tests on individual test blocks

and then combined the test results across these blocks. First, for each subject and test

block, we obtained the decoded with context and without context answer sequences. These

sequences were always the same length (each of these types of predictions were made every

time an answer event was detected during testing). We then created a mixture predicted

sequence of the same length as these sequences in which the value at any index i in this

sequence was randomly selected as either the utterance label at index i in the without context

decoded sequence or the label at index i in the with context decoded sequence (with an equal

probability of choosing from either). Next, we computed the decoding accuracy rate for this

mixture sequence. We performed this process of randomly creating a mixture sequence and

computing its accuracy rate one million times. Afterwards, we created a normal distribution

parameterized by the mean and standard deviation of the accuracy rates observed during

this process. We determined the value of the CDF of this distribution at the value equal

to the decoding accuracy rate associated with the answer with context predictions in the

current test block. The one-tailed P -value for the null hypothesis that the accuracy rate

of the answer predictions with context was not above the predictions without context was

equal to 1 minus this CDF value. After computing these P -values for each test block for

a subject, we used Fisher’s method to combine these individual P -values across blocks and

121

obtain the final P -value for the subject.

When comparing the classification accuracies to chance (Fig. 4.2b, Fig. 4.3d, Fig.

4.5b, Fig. 4.6d), we used a one-tailed bootstrapped Welch’s t-test. First, for each subject

and prediction type, we computed an indicator variable array that contained 1 for each

classification trial (across all test blocks) in which the predicted and actual labels were equal

and 0 for the remaining trials. Then, we created an array with length equal to the actual

number of trials across all test blocks. Each element in this array was randomly sampled

from the set of possible utterance labels for the current prediction type (sampling was done

with replacement and with a uniform probability distribution across the possible labels).

We the computed the chance classification accuracy by comparing these random labels to

the actual labels, generating an indicator variable array similar to the ones created for the

predictions. We performed this process of creating a random label array and computing

its classification accuracy one million times. Afterwards, we performed a one-tailed Welch’s

t-test between the predicted and chance indicator arrays (with the sample size equal to the

number of trials for the predictions and equal to one million times the number of trials for

chance). The resulting P -value was the probability of the null hypothesis that the predicted

classification accuracies were not higher than chance.

When comparing the answer with context and answer without context classification

accuracies (Fig. 4.2b, Fig. 4.3d, Fig. 4.5b, Fig. 4.6d), we used a one-tailed exact McNemar’s

test. First, for each subject, we obtained the indicator variable arrays described earlier for

the with context and without context answer predictions. We then used a one-tailed exact

McNemar’s test to compare these two arrays (McNemar, 1947). McNemar’s test is suited for

comparing two paired binary sequences. In this application of McNemar’s test, the number

of trials that were correctly predicted when using context but incorrect without context are

compared to the number of trials that were correctly predicted without using context but

incorrect with context. The resulting P -value from this test was the probability of the null

122

hypothesis that the classification accuracy was not higher for answer predictions with context

than those without context.

When comparing cross entropies to chance (Fig. 4.2c, Fig. 4.3d, Fig. 4.5c, Fig. 4.6d), we

used a one-tailed bootstrap test. First, for each subject and prediction type, we computed the

negative predicted log probability values associated with the actual utterance label within

each classification trial (across all test blocks). These negative log probability values are

referred to as surprisals. Then, we created a new array with length equal to the number of

trials across all test blocks. Each element in this array was randomly sampled from the array

of surprisal values associated with the predictions (sampling was done with replacement and

with a uniform probability distribution across all of the surprisals). We then computed

the chance cross entropy by taking the mean of these randomly-sampled surprisals. We

performed this process of randomly sampling the surprisals and computing the cross entropy

one million times. Afterwards, we created a normal distribution parameterized by the mean

and standard deviation of the chance cross entropy values. We determined the value of the

CDF of this distribution at the value equal to the chance cross entropy value, which was

computed as the negative log of 1 divided by the number of possible labels for the current

prediction type. The one-tailed P -value for the null hypothesis that the predicted cross

entropy was not lower than chance was equal to 1 minus this CDF value (lower cross entropy

indicates better performance).

When comparing the answer with context and answer without context cross entropies

(Fig. 4.2c, Fig. 4.3d, Fig. 4.5c, Fig. 4.6d), we used a one-tailed Wilcoxon signed-rank

test. First, for each subject, we obtained the surprisal arrays described earlier for the with

context and without context answer predictions. We then used a one-tailed Wilcoxon signed-

rank test to compare these paired samples. The resulting P -value from this test was the

probability of the null hypothesis that the cross entropy was not lower for answer predictions

with context than those without context.

123

When comparing the decision finalization times for the answer classifiers to the speech

offset time (Fig. 4.4c), we used a one-tailed single-sample Wilcoxon signed-rank test. This

test was performed on an array created by subtracting each decision finalization time (scaled

such that 0 was the speech onset time and 1 was the speech offset time) from the speech

offset time (which was 1 due to this scaling). The resulting P -value from this test was the

probability of the null hypothesis that the decision finalization times for the answer classifiers

did not occur before the speech offset.

When comparing the neural-based and transcription-based decision finalization times

(Fig. 4.4c), we used a two-tailed Wilcoxon signed-rank test. This test was performed

using the paired decision finalization time samples (a neural-based and transcription-based

finalization time was available for each trial used in this test). The resulting P -value from this

test was the probability of the null hypothesis that the neural-based and transcription-based

finalization times were both sampled from the same underlying distribution.

4.5.10 Real-time processing setup

In our previous work, we introduced the rtNSR software package and used it to classify

perceived sentences using human cortical activity in real-time (Moses et al., 2018). Written

in Python (Python Software Foundation, 2016), this package is flexible and efficient due

to its modular structure and utilization of software pipelining (Lam, 1988). After further

development of the package, we used it in this work to present the audio and visual stimuli,

process the neural signals, and perform speech decoding in real-time. We also used it for

offline model training and data analysis.

An overview of the rtNSR processing flow used during real-time testing is given in Fig.

4.11. Signals from the DAQ rig were streamed into the Linux machine running rtNSR using a

real-time interface card (PO8e, Tucker-Davis Technologies). These signals were then passed

124

through the previously described digital filter chain to extract a measure of the high gamma

analytic amplitude from each channel at 95.37 Hz. After another process normalizes the

analytic amplitudes, a separate process obtains the high gamma z-score values and performs

speech event detection on the signals in a sliding window fashion. Whenever an event is

detected, the neural data associated with that event is passed to the appropriate (either

question or answer) classifier process, which uses phone-level Viterbi decoding to output

likelihoods over the corresponding utterances. An utterance predictor process obtains these

likelihoods and uses them to update the answer priors, perform context integration, and

output the decoded utterances to a separate process that displays the results. Throughout

all of these steps, a GUI process handles the presentation of visual and acoustic stimuli to

the subject. The behavioral metadata (e.g., stimulus times) are stored along with the high

gamma signals (prior to normalization) to disk on the real-time computer.

Due to clinical time constraints, we were not able to perform hyperparameter optimization

prior to real-time testing with the subjects. All of the results reported in this work were

computed using offline simulations of the data with the rtNSR system, a process that we

described in our previous work. During the offline simulations, the real-time process that

reads samples from the real-time interface card is replaced with a process that simulates

input samples from a dataset on disk. The remainder of the decoding pipeline remains the

same. During online testing at the patient’s bedside, the system performed decoding without

experiencing systematic/runtime errors and with negligible latency using hyperparameter

values chosen via trial and error on datasets that were previously collected. Therefore, we

can reasonably expect that the decoding results we observe in our offline simulations would

have been identical to those in the online setting with the patients, since the only differences

between the online and offline tests were the specific values of the hyperparameters.

125

4.6 Supplementary data

4.6.1 Supplementary notes

Supplementary note 1. Likelihood normalization and the emission probability

scaling factor we.

In theory, the HMMs used in the utterance classification models require the likelihood values

p (yt|qt). In practice, however, we obtained phone posteriors p (qt|yt) from the LDA models

and used these in place of the likelihoods. Because we used flat (uniform) priors over the

phone classes in these models, these posteriors were simply equal to the likelihoods after

being scaled by an unknown normalization constant. This can be shown via Bayes’ rule:

p (qt|yt) =
p (yt|qt) p (qt)

p (yt)
= Zp (yt|qt) , (4.18)

where p (qt) is a constant because flat priors were used and Z is the unknown constant caused

by the presence of the p (yt) term and the p (qt) constant.

This discrepancy is addressed by the emission probability scaling factor we. By including

this hyperparameter, the contribution of the emission probabilities during each iteration of

Viterbi decoding (in Eq. 4.1 in the main text) becomes weZp (yt|qt). Because the value

of we is set through hyperparameter optimization, the impact that this constant Z has on

decoding is mitigated. This assumes that the optimizer is capable of finding a satisfactory

value of this hyperparameter within its pre-defined range of possible values, which we have

observed in practice.

126

Supplementary note 2. Mathematical formulation of the context integration

model.

During testing, the utterance classification models receive (from the speech detection model)

the high gamma features associated with detected question (γQ) and detected answer (γA)

events. A primary goal of these classifiers and the context integration model is to predict

the most likely answer utterance ûa+ given the neural features γQ and γA. This goal can be

expressed as:

ûa+ = argmax
ua∈UA

p (ua | γQ, γA) , (4.19)

where ua is one of the answer utterances and UA is the set of all answer utterances.

This conditional probability p (ua | γQ, γA) represents the posterior probability of ua given

the question-related and answer-related neural features. We can refactor this posterior

probability using the following steps (a description of each step is provided after the

equations):

127

p (ua | γQ, γA) =
∑
uq∈UQ

p (ua, uq | γA, γQ) (4.20)

=
∑
uq∈UQ

p (ua |uq, γA, γQ) p (uq | γA, γQ) (4.21)

=
∑
uq∈UQ

p (ua |uq, γA) p (uq | γA, γQ) (4.22)

=
∑
uq∈UQ

p (γA |ua, uq) p (ua |uq)
p (γA |uq)

p (uq | γQ, γA) (4.23)

=
∑
uq∈UQ

p (γA |ua) p (ua |uq)
p (γA |uq)

p (uq | γQ, γA) (4.24)

=
∑
uq∈UQ

p (γA |ua) p (ua |uq)
p (γA |uq)

p (γA, γQ |uq) p (uq)

p (γA, γQ)
(4.25)

=
∑
uq∈UQ

p (γA |ua) p (ua |uq)
p (γA |uq)

p (γA |uq) p (γQ |uq) p (uq)

p (γA, γQ)
(4.26)

=
∑
uq∈UQ

p (γA |ua) p (ua |uq)
p (γQ |uq) p (uq)

p (γA, γQ)
(4.27)

=
1

p (γA, γQ)

∑
uq∈UQ

p (γA |ua) p (ua |uq) p (γQ |uq) p (uq) (4.28)

=
1

p (γA, γQ) |UQ|
∑
uq∈UQ

p (γA |ua) p (ua |uq) p (γQ |uq) (4.29)

=
p (γA |ua)

p (γA, γQ) |UQ|
∑
uq∈UQ

p (ua |uq) p (γQ |uq) (4.30)

∝ p (γA |ua)
∑
uq∈UQ

p (ua |uq) p (γQ |uq) (4.31)

Each step in the above formulation is described below:

• 4.20: The posterior probability can be expressed as the sum of the joint probability of the

answer utterance ua and question utterance uq for each question utterance in the set

of all question utterances UQ (while still conditioned on the neural responses).

• 4.21: The probability can be refactored using the chain rule of probability.

128

• 4.22: ua is independent of γQ given uq.

• 4.23: The first probability term is refactored using Bayes’ theorem.

• 4.24: γA is independent of uq given ua.

• 4.25: The second probability term is refactored using Bayes’ theorem.

• 4.26: One of the terms is refactored into two terms using the fact that γA and γQ are

conditionally independent given uq.

• 4.27: A term in the numerator of one fraction cancels the identical term in the denominator

of the other fraction.

• 4.28: The term in the denominator of the remaining fraction can be moved outside of the

sum because it does not depend on uq.

• 4.29: Because we assume a uniform prior over the question utterances, the p (uq) term is a

constant value equal to 1 divided by the total number of question utterances and can

be moved outside of the sum because it does not depend on uq.

• 4.30: The first term in the sum is moved outside of the sum since it does not depend on uq.

• 4.31: The denominator of the fraction outside of the sum does not depend on ua, so the

posterior probability can be expressed as being proportional to the remaining terms.

The terms in Eq. 4.31 are defined below:

� p (γA |ua) represents the answer likelihoods obtained from the answer classifier.

� p (γQ |uq) represents the question likelihoods obtained from the question classifier.

� p (ua |uq) represents the pre-defined context priors.

�

∑
uq∈UQ

p (ua |uq) p (γQ |uq) represents the answer priors.

129

In practice, we performed the calculations using log probabilities, and we used a

contextual prior scaling factor m to control the weight of the answer priors relative to the

answer likelihoods when computing the answer posteriors. With these modifications, the

following formulas can be used to define the unnormalized answer log posterior probabilities:

p (ua | γQ, γA) ∝ p (γA |ua)

 ∑
uq∈UQ

p (ua |uq) p (γQ |uq)

m , (4.32)

φua := log p (ua | γA, γQ) (4.33)

= log p (γA |ua) +m log

 ∑
uq∈UQ

exp [log p (ua |uq) + log p (γQ |uq)]

+ κ (4.34)

= `∗ua +m log

 ∑
uq∈UQ

exp
[
log p (ua |uq) + `∗uq

]+ κ, (4.35)

Each of these additional formula are described below:

• 4.32: In practice, the formula representing the answer posteriors includes the contextual

prior scaling factor m.

• 4.33: φua is defined as the unnormalized log posterior probability of answer utterance ua

given the neural data γQ and γA.

• 4.34: When re-factoring a proportionality equation to an equality using log, a constant scalar

value κ is introduced.

• 4.35: Using notation introduced in the main text (in Eq. 4.2), we use `∗ua to denote the log

likelihood of utterance ua obtained from the answer classifier and `∗uq to denote the log

likelihood of utterance uq obtained from the question classifier.

In practice, we do not compute the value of κ. We can define a variable to represent the

130

unnormalized log posterior values without κ:

φ′ua = φua − κ = `∗ua +m log

 ∑
uq∈UQ

exp
[
log p (ua |uq) + `∗uq

] (4.36)

We can then predict the most likely answer utterance ûa+ directly from these φ′ua values:

ûa+ = argmax
ua∈UA

φ′ua . (4.37)

Here, κ does not need to be included because it will not affect which answer utterance was

most likely.

Although we did not need to normalize the answer log posteriors to predict the most

likely answer utterance, we still require normalized log posteriors (normalized to sum to 1

across all answer utterances) when calculating the cross entropy of the answer with context

predictions. We compute normalized answer log posteriors using the following formulation:

φ∗ua :=φua − log

[∑
j∈UA

exp (φj)

]
(4.38)

= φ′ua + κ− log

[∑
j∈UA

exp
(
φ′j + κ

)]
(4.39)

= φ′ua + κ− log

[
exp (κ)

∑
j∈UA

exp
(
φ′j
)]

(4.40)

= φ′ua + κ− log [exp (κ)]− log

[∑
j∈UA

exp
(
φ′j
)]

(4.41)

= φ′ua − log

[∑
j∈UA

exp
(
φ′j
)]

(4.42)

Each of these steps is described below:

• 4.38: φ∗ua is defined as the normalized log posterior probability of answer utterance ua given

the neural data γQ and γA (the term on the right represents the LogSumExp function

131

used to normalize log probabilities).

• 4.39: We can replace the φua terms using our definition of φ′ua .

• 4.40: Because of the associativity of multiplication, we can express exp
(
φ′j + κ

)
as the

product of exp (κ) and exp (φj) and then move exp (κ) out of the sum because it

does not depend on j.

• 4.41: From the logarithmic identity for the logarithm of a product, we can separate the terms

in the log function into the sum of the logarithms of the individual terms.

• 4.42: The − log [exp (κ)] term simplifies to −κ, which cancels out the κ term.

132

4.6.2 Supplementary figures

Subject 2

Subject 3

Figure 4.5: Decoding and classification results for questions, answers, and answers after integration
of the decoded context for subjects 2 and 3. (a) Decoding accuracy rates, which measure the full
performance of the system, are significantly above chance for questions and answers (with and
without context). Accuracy is significantly higher with context compared to without context.
(b) Classification accuracies (the percent of speech events in which the system correctly classified
the utterance) mirror decoding accuracy rates. (c) Cross entropies for utterance classification
exhibit similar significant differences (lower values indicate better performance). (d) Question
and answer detection scores demonstrate near-ceiling performance of the speech detection model
for both questions and answers. (e–g) MRI brain reconstructions with electrode locations and
discriminative power for each electrode used by e question phone, f answer phone, and g speech
event discriminative models. Electrodes that were not relevant for the current model are depicted
as small black dots. In a–d, data are mean ± SEM. *P < 0.05.

133

Subject 1

Subject 2

Figure 4.6: Data limitations, hyperparameter optimization, and functional anatomy of speech
classification for subjects 1 and 2 (see Fig. 4.3 for full descriptions of each panel). (a) Classification
performance as a function of the amount of training data. Performance does not seem to plateau
for subject 1 (all prediction types) and for question classification with subject 2. (b) Variability
in classification performance across hyperparameter optimization epochs for one test block. For
each subject, hyperparameter selection has a large impact on performance, and each optimizer
is able to choose hyperparameter values effectively. (c,d) Contributions of distinct brain regions
on classification performance. c MRI reconstruction with electrode locations, relevant electrodes,
and electrode phone discriminative powers. In this analysis, question classification models were
fit and tested using infra-Sylvian electrodes, answer classification models were fit and tested using
supra-Sylvian electrodes, and a combined model used likelihoods from both of these models to
compute answer predictions with context. d Classification performance using these region-of-
interest classification models. All models performed above chance except when assessing cross
entropy for answer classifications with subject 1 (?P < 0.05), and performance was significantly
improved when integrating context using the combined model except when assessing classification
accuracy with subject 1 (∗P < 0.05). Overall, the classifiers exhibited reliable performance when
limiting cortical coverage. In (a,d), data are mean ± SEM.

134

Noise removal and
anti-aliasing decimation

Data acquisition (DAQ) rig

High gamma 8-band
FIR band-pass filtering

Decimated analytic amplitude
estimation with FIR Hilbert filter

Real-time computer

Multi-band
averaging

Human
subject Raw analog

ECoG signals

Sampling and
amplification

~3052 Hz

Raw digital
ECoG signals

Down-sampled ECoG signals
~381 Hz

Multi-band
ECoG signals

~381 Hz

Multi-band
analytic amplitudes

~95 Hz

High gamma
analytic amplitudes

~95 Hz

Figure 4.7: Real-time neural signal preprocessing with the rtNSR system. In the DAQ rig, ECoG
signals are sampled from the subject’s brain at 3052 Hz, quantized, notch filtered at 60, 120, and
180 Hz, and decimated (with anti-aliasing) to 381 Hz. The resulting signals are streamed into the
real-time computer and, within rtNSR, band-passed using eight FIR filters with center frequencies
in the high gamma band (filter responses shown in the bottom-left plot). The analytic amplitude
is then estimated for each of the eight band-passed signals for each channel at 95 Hz using an
FIR filter designed to approximate the Hilbert transform. The analytic amplitudes for the eight
bands associated with each channel are averaged to yield high gamma analytic amplitudes for each
channel. All of the sampling rates given in this figure and caption were rounded to the nearest
whole number.

135

Ph
on

es

Ne
ur

al
 a

ct
ivi

ty

Feature time window

Spatiotem
poral feature vector...

...

...
...

Ti
m

e
in

di
ce

s
High gamma

z-score

Re
le

va
nt

 e
le

ct
ro

de
s

Ta
rg

et
 la

be
ls

Sp
ee

ch
 e

ve
nt

s

Figure 4.8: Spatiotemporal neural feature vectors and associated target labels during training of
the speech detection and utterance classification models. In the depicted example, a subject starts
to produce the answer utterance “Hot” (with phonetic transcription /h "A t/). The speech onset
occurs at time index t − 1. The phone labels qt at each time point t are obtained from phonetic
transcriptions. The speech event labels ht, which are either silence, perception, or production at
every time point, are determined directly from these phonetic transcriptions. The feature vector
at time t contains the high gamma z-score value at every relevant electrode for every time point
within some feature time window relative to t, representing the neural activity both spatially and
temporally. The feature vector and target label for each time index are used to train the speech
event probability and phone likelihood models. During testing, the neural feature vectors yt are
constructed in a similar fashion and used within the speech detection model to compute the speech
event probabilities p (ht|yt) and within the utterance classification models to compute the phone
likelihoods p (yt|qt).

136

Figure 4.9: Speech event detection during real-time decoding. (a) First, speech event probabilities
are computed by the speech event probability model for each time point. The plotted curve depicts
example event probabilities for one of the utterance types (either questions or answers). (b) The
speech event probabilities are smoothed using a sliding window average. (c) These smoothed
probabilities are thresholded to either be 1 if the detection model suspects that a speech event is
occurring or 0 otherwise. (d) The probability-thresholded binary values are then thresholded in
time. Sometimes referred to as debouncing, this step prevents the binary values from switching
rapidly between 0 and 1. A transition from 0 to 1 in the time-thresholded values signifies a speech
onset, and a transition from 1 to 0 signifies a speech offset. (e) The neural data segmented by the
detected speech onset and offset, including some time points before and after the detected window
(controlled by hyperparameters), are then passed to the appropriate utterance classification model.

137

Violin Eight

States (phones)

Time point

Cold

0 1 ... T

0

-

-

-

-

-

-

-

-2.2

-1.8

-

-

-

-

-

- -464...

...

...

...

...

...

...

...

-489

-501

-510

-544

-561

-586

-612

2

-

-

-

-

-

-5.8

-4.6

-6.2

0 1 ... T

0

-

-

-

-

-

-2.2

-2.8

-

-

-

- -512...

...

...

...

...

...

-533

-549

-588

-598

-612

2

-

-

-

-5.8

-6.1

-8.5

0 1 ... T

0

-

-

-

-2.2

-4.8

-

- -565...

...

...

...

-590

-601

-612

2

-8.1

-

-5.8

-7.5

Utterance
likelihoods

Vi
ol

in
Co

ld
Ei

gh
t

Figure 4.10: Use of Viterbi decoding in the utterance classification models to compute utterance
log likelihoods. In this example, a classification model computes the likelihoods of the utterances
“Violin” (/v aI 2 l "I n/), “Cold” (/k "oU l d/), and “Eight” (/"eI t/). Each utterance is
represented as an HMM with phones (obtained from the phonetic transcriptions) as hidden states
and spatiotemporal neural feature vectors as observations. Each HMM is forced to have /sp/ as
the first and last states. The transition matrix of each HMM is defined such that a phone state
can only transition to itself or the next phone in the sequence (if it is not the last phone). Given
feature vectors for time indices t ∈ {0, 1, . . . , T}, Viterbi decoding is performed on each HMM,
updating the values in the Viterbi trellis for each HMM (shown here as tables of log likelihoods) at
each time index. The log likelihood of the most likely Viterbi path at the final state of each HMM
(the value for the final /sp/ state at time T) is used as the log likelihood of that utterance. The
classifier then smooths and normalizes these log likelihood values to obtain a final estimate for the
utterance likelihoods associated with the provided feature vectors.

138

Real-time interface card reader

Neural data

from DAQ rig

Neural data

Subject stimulus GUI

Auditory and

visual stimuli

Decoded

utterances

Prediction GUI

Multi-band band-pass FIR �lter

Analytic amplitude FIR �lter

Multi-band averager

F
ilte

r c
h

a
in

High gamma data

rtNSR

software package

Software

input/output

Real-time

process

Sample-by-sample

neural data pipe

Shared memory

array

Data storer

Metadata pipe

Data normalizer

High gamma z-scores

Event detector

Question classi�er

Answer classi�er

Event-related high gamma z-scores

Utterance predictor

Utterance

likelihoods

Decoded

utterances

Figure 4.11: Schematic depiction of the rtNSR implementation used during real-time decoding.
The solid rectangles represent real-time process classes and arrows represent the passing of
information between the processes. The Real-time interface card reader process reads neural data
acquired from the DAQ rig and streamed through the real-time interface card. The neural data are
processed in a filter chain comprised of three processes: the Multi-band band-pass FIR filter process
that band-passes the signals for each channel in eight different sub-bands in the high gamma band
range (between 70–150 Hz), the Analytic amplitude FIR filter process that extracts the analytic
amplitude for each band and each channel, and the Multi-band averager process that averages
the analytic amplitude values across the bands for each channel to obtain that channel’s high
gamma activity. These high gamma signals are written to disk in the Data storage process (along
with metadata from other processes, not depicted here) and normalized and clipped in the Data
normalizer process. The normalized neural data are piped to the Event detector process, which
analyzes the data at each time point to predict the onsets and offsets of speech events. When
an event is detected, the high gamma z-scores are stored in a shared memory array that can be
accessed by either the Question classifier or Answer classifier process to predict the utterance
likelihoods associated with that event. The Utterance predictor process uses these likelihoods to
update the answer priors and predict which question was heard or which answer was said by the
subject. The Prediction GUI process displays the decoded utterances on a screen. Throughout the
task, the Subject stimulus GUI process presents the auditory and visual stimuli to the subject.

139

References

W. H. Abdulla and N. K. Kasabov, 2001. Improving speech recognition performance through

gender separation. Artificial Neural Networks and Expert Systems, pages 218–222.

American Congress of Rehabilitation Medicine, 1995. Recommendations for use of uniform

nomenclature pertinent to patients with severe alterations in consciousness. Archives of

Physical Medicine and Rehabilitation, 76(2):205–209. doi: 10.1016/S0003-9993(95)80031-

X.

R. H. Baayen, D. J. Davidson, and D. M. Bates, 2008. Mixed-effects modeling with crossed

random effects for subjects and items. Journal of Memory and Language, 59(4):390–412.

doi: 10.1016/j.jml.2007.12.005.

T. Ball, M. Kern, I. Mutschler, A. Aertsen, and A. Schulze-Bonhage, 2009. Signal quality of

simultaneously recorded invasive and non-invasive EEG. NeuroImage, 46(3):708–716. doi:

10.1016/j.neuroimage.2009.02.028.

D. J. Barr, R. Levy, C. Scheepers, and H. J. Tily, 2013. Random effects structure for

confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68

(3):255–278. doi: 10.1016/j.jml.2012.11.001.

D. Bates, M. Mächler, B. Bolker, and S. Walker, 2015. Fitting linear mixed-effects models

using lme4. Journal of Statistical Software, 67(1):1–48. doi: 10.18637/jss.v067.i01.

140

M. F. BenZeghiba, R. De Mori, O. Deroo, S. Dupont, T. Erbes, D. Jouvet, L. Fissore,

P. Laface, A. Mertins, C. Ris, R. C. Rose, V. M. Tyagi, and C. J. Wellekens, oct 2007.

Automatic speech recognition and speech variability: a review. Speech Communication,

49(10-11):763–786. doi: 10.1016/j.specom.2007.02.006.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, 2011. Algorithms for Hyper-Parameter

Optimization. Advances in Neural Information Processing Systems (NIPS), pages 2546–

2554. doi: 2012arXiv1206.2944S.

J. Bergstra, D. L. K. Yamins, and D. D. Cox, 2013. Making a Science of Model Search:

Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. Icml,

pages 115–123.

J. R. J. Binder, J. A. F. Bellgowan, T. A. Hammeke, P. Bellgowan, J. Springer, and

J. N. Kaufman, 2000. Human temporal lobe activation by speech and nonspeech sounds.

Cerebral Cortex, 10(5):512–528. doi: 10.1093/cercor/10.5.512.

A. W. Black, P. Taylor, and R. Caley, 1997. Festival Speech Synthesis System: System

Documentation Edition 1.1. Technical report, Human Communciation Research Centre,

University of Edinburgh, Scotland, UK.

D. F. Boatman, C. B. Hall, M. H. Goldstein, R. P. Lesser, and B. J. Gordon, mar 1997.

Neuroperceptual differences in consonant and vowel discrimination: As revealed by direct

cortical electrical interference. Cortex, 33(1):83–98. doi: 10.1016/S0010-9452(97)80006-8.

P. Boersma, 2001. Praat, a system for doing phonetics by computer. Glot International, 5

(9/10):341–345. doi: 10.1097/AUD.0b013e31821473f7.

K. E. Bouchard, N. Mesgarani, K. Johnson, and E. F. Chang, mar 2013. Functional

organization of human sensorimotor cortex for speech articulation. Nature, 495(7441):

327–332. doi: 10.1038/nature11911.

141

J. F. Brugge, 1992. An overview of central auditory processing. In R. R. Fay and A. N.

Popper, editors, The mammalian auditory pathway: Neurophysiology, chapter 1, pages

1–33. Springer-Verlag, New York, NY.

M.-A. Bruno, J. L. Bernheim, D. Ledoux, F. Pellas, A. Demertzi, and S. Laureys, 2011.

A survey on self-assessed well-being in a cohort of chronic locked-in syndrome patients:

happy majority, miserable minority. BMJ open, 1(1):e000039. doi: 10.1136/bmjopen-

2010-000039.

M. Brysbaert and B. New, 2009. Moving beyond Kučera and Francis: A critical evaluation

of current word frequency norms and the introduction of a new and improved word

frequency measure for American English. Behavior Research Methods, 41(4):977–990.

doi: 10.3758/BRM.41.4.977.

D. V. Buonomano and W. Maass, feb 2009. State-dependent computations: spatiotemporal

processing in cortical networks. Nature reviews Neuroscience, 10:113–125. doi: 10.1038/

nrn2558.

R. T. Canolty, M. Soltani, S. S. Dalal, E. Edwards, N. F. Dronkers, S. S. Nagarajan,

H. E. Kirsch, N. M. Barbaro, and R. T. Knight, 2007. Spatiotemporal dynamics of word

processing in the human brain. Frontiers in Neuroscience, 1(1):185–196.

D. Carey, S. Krishnan, M. F. Callaghan, M. I. Sereno, and F. Dick, 2017. Functional and

Quantitative MRI Mapping of Somatomotor Representations of Human Supralaryngeal

Vocal Tract. Cerebral cortex, 27(1):265–278. doi: 10.1093/cercor/bhw393.

E. F. Chang, J. W. Rieger, K. Johnson, M. S. Berger, N. M. Barbaro, and R. T. Knight,

nov 2010. Categorical speech representation in human superior temporal gyrus. Nature

neuroscience, 13(11):1428–32. doi: 10.1038/nn.2641.

S.-y. Chang, E. Edwards, N. Morgan, D. Ellis, N. Mesgarani, and E. Chang, 2015. Phone

142

Recognition for Mixed Speech Signals : Comparison of Human Auditory Cortex and

Machine Performance. TR-15-002.

J. Chartier, G. K. Anumanchipalli, K. Johnson, and E. F. Chang, 2018. Encoding of

Articulatory Kinematic Trajectories in Human Speech Sensorimotor Cortex. Neuron, 98

(5):1042–1054.e4. doi: 10.1016/j.neuron.2018.04.031.

S. F. Chen and J. Goodman, 1998. An empirical study of smoothing techniques for language

modeling. Technical Report August, Computer Science Group, Harvard University.

C. Cheung and E. F. Chang, aug 2012. Real-time, time-frequency mapping of event-

related cortical activation. Journal of neural engineering, 9(4):046018. doi: 10.1088/1741-

2560/9/4/046018.

N. Chomsky and M. Halle, 1968. The sound pattern of English. Harper & Row, New York.

E. S. Cibelli, M. K. Leonard, K. Johnson, and E. F. Chang, 2015. The influence of lexical

statistics on temporal lobe cortical dynamics during spoken word listening. Brain and

Language, 147:66–75. doi: http://dx.doi.org/10.1016/j.bandl.2015.05.005.

D. F. Conant, K. E. Bouchard, M. K. Leonard, and E. F. Chang, 2018. Human sensorimotor

cortex control of directly-measured vocal tract movements during vowel production. The

Journal of Neuroscience, 38(12):2382–17. doi: 10.1523/JNEUROSCI.2382-17.2018.

N. E. Crone, D. L. Miglioretti, B. Gordon, and R. P. Lesser, 1998. Functional mapping of

human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related

synchronization in the gamma band. Brain, 121(12):2301–2315. doi: 10.1093/brain/121.

12.2301.

N. E. Crone, D. Boatman, B. Gordon, and L. Hao, apr 2001. Induced electrocorticographic

gamma activity during auditory perception. Clinical Neurophysiology, 112(4):565–582.

doi: 10.1016/S1388-2457(00)00545-9.

143

A. M. Dale, B. Fischl, and M. I. Sereno, 1999. Cortical surface-based analysis. NeuroImage,

9:179–194.

M. Davenport and S. Hannahs, 2010. Introducing phonetics and phonology. Routledge, New

York, NY.

S. B. Davis and P. Mermelstein, 1980. Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. IEEE Transactions

on Acoustics, Speech, and Signal Processing, 28(4):357–366. doi: 10.1109/TASSP.1980.

1163420.

B. Denby, T. Schultz, K. Honda, T. Hueber, J. M. Gilbert, and J. S. Brumberg, 2010. Silent

speech interfaces. Speech Communication, 52(4):270–287. doi: 10.1016/j.specom.2009.08.

002.

M. R. DeWeese, M. Wehr, and A. M. Zador, 2003. Binary spiking in auditory cortex. Journal

of Neuroscience, 23(21):7940–7949. doi: 23/21/7940[pii].

B. K. Dichter, J. D. Breshears, M. K. Leonard, and E. F. Chang, 2018. The Control of Vocal

Pitch in Human Laryngeal Motor Cortex. Cell, 174(1):21–31.e9. doi: 10.1016/j.cell.2018.

05.016.

J. L. Elman, 1990. Finding structure in time. Cognitive science, 14(2):179–211. doi:

10.1207/s15516709cog1402 1.

C. T. Engineer, C. A. Perez, Y. H. Chen, R. S. Carraway, A. C. Reed, A. Shetake,

V. Jakkamsetti, K. Q. Chang, and M. P. Kilgard, 2008. Cortical activity patterns predict

speech discrimination ability. Nature Neuroscience, 11(5):603–608. doi: 10.1038/nn.2109.

Cortical.

R. A. Fisher, 1932. Statistical methods for research workers. Oliver & Boyd, Edinburgh,

Scotland, 4th editio edition.

144

J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and V. Zue, 1993. TIMIT

Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Linguistic Data Consortium,

page 1.

B. Gold, N. Morgan, and D. Ellis, 2011. Speech and audio signal processing: processing

and perception of speech and music. John Wiley & Sons, Inc., Hoboken, New Jersey, 2nd

edition.

A. Graves, A.-r. Mohamed, and G. Hinton, 2013. Speech recognition with deep recurrent

neural networks. In International Conference on Acoustics, Speech, and Signal Processing,

number 3, pages 6645–6649. doi: 10.1109/ICASSP.2013.6638947.

R. Haeb-Umbach and H. J. Ney, 1992. Linear discriminant analysis for improved large

vocabulary continuous speech recognition. In IEEE International Conference on Acoustics,

Speech, and Signal Processing, pages 13–16. doi: 10.1109/ICASSP.1992.225984.

L. S. Hamilton, D. L. Chang, M. B. Lee, and E. F. Chang, 2017. Semi-automated

Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording

Electrodes in Electrocorticography. Frontiers in Neuroinformatics, 11(October):62. doi:

10.3389/fninf.2017.00062.

L. S. Hamilton, E. Edwards, and E. F. Chang, 2018. A Spatial Map of Onset and Sustained

Responses to Speech in the Human Superior Temporal Gyrus. Current Biology, 28(12):

1860–1871.e4. doi: 10.1016/j.cub.2018.04.033.

T. Hastie, R. Tibshirani, and J. Friedman, 2009. The elements of statistical learning: Data

mining, inference, and prediction. Springer, New York, NY, 2nd edition.

C. Herff, D. Heger, A. de Pesters, D. Telaar, P. Brunner, G. Schalk, and T. Schultz, 2015.

Brain-to-text: decoding spoken phrases from phone representations in the brain. Frontiers

in Neuroscience, 9(June):1–11. doi: 10.3389/fnins.2015.00217.

145

D. Hermes, K. J. Miller, H. J. Noordmans, M. J. Vansteensel, and N. F. Ramsey, 2010.

Automated electrocorticographic electrode localization on individually rendered brain

surfaces. Neuroscience Methods, 185(2):293–298.

G. Hickok and D. Poeppel, 2007. The cortical organization of speech processing. Nature

Reviews Neuroscience, 8(May):393–402. doi: 10.1038/nrn2113.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, T. Sainath, and B. Kingsbury, 2012. Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups. IEEE Signal

Processing Magazine, 29(6):82–97. doi: 10.1109/MSP.2012.2205597.

G. Hotson, D. P. McMullen, M. S. Fifer, M. S. Johannes, K. D. Katyal, M. P. Para,

R. Armiger, W. S. Anderson, N. V. Thakor, B. A. Wester, and N. E. Crone, 2016. Indi-

vidual finger control of a modular prosthetic limb using high-density electrocorticography

in a human subject. Journal of Neural Engineering, 13(2):026017. doi: 10.1088/1741-

2560/13/2/026017.

X. Huang, A. Acero, and H.-W. Hon, 2001. Spoken language processing: a guide to theory,

algorithm and system development. Prentice-Hall, Upper Saddle River, New Jersey, 1st

edition.

A. G. Huth, S. Nishimoto, A. T. Vu, and J. L. Gallant, 2012. A Continuous Semantic Space

Describes the Representation of Thousands of Object and Action Categories across the

Human Brain. Neuron, 76(6):1210–1224. doi: 10.1016/j.neuron.2012.10.014.

T. F. Jaeger, 2008. Categorical data analysis: Away from ANOVAs (transformation or not)

and towards logit mixed models. Journal of Memory and Language, 59(4):434–446. doi:

10.1016/j.jml.2007.11.007.

D. Jurafsky and J. H. Martin, 2009. Speech and language processing: an introduction to

146

natural language processing, computational linguistics, and speech recognition. Pearson

Education, Inc., Upper Saddle River, New Jersey, 2nd edition.

V. G. Kanas, I. Mporas, H. L. Benz, K. N. Sgarbas, A. Bezerianos, and N. E. Crone,

2014. Real-time voice activity detection for ECoG-based speech brain machine interfaces.

International Conference on Digital Signal Processing, DSP, 2014-Janua(August):862–865.

doi: 10.1109/ICDSP.2014.6900790.

S. Kellis, K. Miller, K. Thomson, R. Brown, P. House, and B. Greger, 2010. Decoding

spoken words using local field potentials recorded from the cortical surface. Journal of

neural engineering, 7(5):056007. doi: 10.1088/1741-2560/7/5/056007.

B. Khalighinejad, T. Nagamine, A. Mehta, and N. Mesgarani, 2017. NAPLib: An open

source toolbox for real-time and offline Neural Acoustic Processing. In IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, pages 846–850. doi:

10.1109/ICASSP.2017.7952275.

R. Kneser and H. Ney, 1995. Improved backing-off for m-gram language modeling. In

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 1, pages 181–184. doi: 10.1109/ICASSP.1995.479394.

C. Kurian, 2014. A review on technological development of automatic speech recognition.

International Journal of Soft Computing and Engineering, 4(4):80–86.

M. Lam, 1988. Software pipelining: an effective scheduling technique for VLIW machines.

ACM SIGPLAN Notices, 23(7):318–328. doi: 10.1145/960116.54022.

S. Laureys, F. Pellas, P. Van Eeckhout, S. Ghorbel, C. Schnakers, F. Perrin, J. Berré, M. E.

Faymonville, K. H. Pantke, F. Damas, M. Lamy, G. Moonen, and S. Goldman, jan 2005.

The locked-in syndrome: What is it like to be conscious but paralyzed and voiceless?

Progress in Brain Research, 150(5):495–511. doi: 10.1016/S0079-6123(05)50034-7.

147

O. Ledoit and M. Wolf, 2004. Honey, I Shrunk the Sample Covariance Matrix. The Journal

of Portfolio Management, 30(4):110–119. doi: 10.3905/jpm.2004.110.

M. K. Leonard, K. E. Bouchard, C. Tang, and E. F. Chang, 2015. Dynamic encoding of

speech sequence probability in human temporal cortex. Journal of Neuroscience, 35(18):

7203–7214. doi: 10.1523/JNEUROSCI.4100-14.2015.

M. K. Leonard, M. O. Baud, M. J. Sjerps, and E. F. Chang, 2016. Perceptual restoration

of masked speech in human cortex. Nature Communications, 7:13619. doi: 10.1038/

ncomms13619.

E. C. Leuthardt, K. J. Miller, G. Schalk, R. P. Rao, and J. G. Ojemann, 2006.

Electrocorticography-based brain computer interface - The seattle experience. IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 14(2):194–198. doi:

10.1109/TNSRE.2006.875536.

E. C. Leuthardt, C. Gaona, M. Sharma, N. Szrama, J. Roland, Z. Freudenberg, J. Solis,

J. Breshears, and G. Schalk, 2011. Using the electrocorticographic speech network to

control a brain-computer interface in humans. Journal of Neural Engineering, 8(3):036004.

doi: 10.1088/1741-2560/8/3/036004.

G. J. Lidstone, 1920. Note on the general case of the Bayes-Laplace formula for inductive

or a posteriori probabilities. In Transactions of the Faculty Actuaries, volume 8, pages

182–192.

J. F. Linden and C. E. Schreiner, 2003. Columnar transformations in auditory cortex?

A comparison to visual and somatosensory cortices. Cerebral cortex (New York, N.Y. :

1991), 13(1):83–89. doi: 10.1093/cercor/13.1.83.

F. Lotte, J. S. Brumberg, P. Brunner, A. Gunduz, A. L. Ritaccio, C. Guan, and G. Schalk,

2015. Electrocorticographic representations of segmental features in continuous speech.

Frontiers in Human Neuroscience, 09(February):1–13. doi: 10.3389/fnhum.2015.00097.

148

K. A. Ludwig, R. M. Miriani, N. B. Langhals, M. D. Joseph, D. J. Anderson, and

D. R. Kipke, mar 2009. Using a common average reference to improve cortical neuron

recordings from microelectrode arrays. Journal of neurophysiology, 101(3):1679–89. doi:

10.1152/jn.90989.2008.

H. Luo and D. Poeppel, 2007. Phase patterns of neuronal responses reliably discriminate

speech in human auditory cortex. Neuron, 54(6):1001–1010. doi: 10.1016/j.neuron.2007.

06.004.

B. O. Mainsah, L. M. Collins, K. a. Colwell, E. W. Sellers, D. B. Ryan, K. Caves, and

C. S. Throckmorton, 2015. Increasing BCI communication rates with dynamic stopping

towards more practical use: An ALS study. Journal of Neural Engineering, 12(1):016013.

doi: 10.1088/1741-2560/12/1/016013.

S. L. Marple and S. Lawrence Marple, 1999. Computing the discrete-time analytic signal via

fft. IEEE Transactions on Signal Processing, 47(9):2600–2603. doi: 10.1109/78.782222.

S. Martin, 2017. Understanding and Decoding Imagined Speech using Electrocorticographic

Recordings in Humans. PhD thesis, EPFL.

S. Martin, P. Brunner, C. Holdgraf, H.-J. Heinze, N. E. Crone, J. Rieger, G. Schalk,

R. T. Knight, and B. N. Pasley, 2014. Decoding spectrotemporal features of overt and

covert speech from the human cortex. Frontiers in neuroengineering, 7(May):14. doi:

10.3389/fneng.2014.00014.

S. S. Martin, P. Brunner, I. Iturrate, J. d. R. Millán, G. Schalk, R. T. Knight, and B. N.

Pasley, 2016. Word pair classification during imagined speech using direct brain recordings.

Scientific Reports, 6(1):25803. doi: 10.1038/srep25803.

Q. McNemar, 1947. Note on the sampling error of the difference between correlated

proportions or percentages. Psychometrika, 12(2):153–157. doi: 10.1007/BF02295996.

149

N. Mesgarani and E. F. Chang, may 2012. Selective cortical representation of attended

speaker in multi-talker speech perception. Nature, 485(7397):233–6. doi: 10.1038/

nature11020.

N. Mesgarani, C. Cheung, K. Johnson, and E. F. Chang, feb 2014. Phonetic feature encoding

in human superior temporal gyrus. Science, 343(6174):1006–1010. doi: 10.1126/science.

1245994.

T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. M. Chang, V. L. Malave, R. A. Mason,

and M. A. Just, may 2008. Predicting human brain activity associated with the meanings

of nouns. Science, 320(5880):1191–1195. doi: 10.1126/science.1152876.

M. Moerel, F. De Martino, and E. Formisano, 2014. An anatomical and functional

topography of human auditory cortical areas. Frontiers in Neuroscience, 8(8 JUL):1–14.

doi: 10.3389/fnins.2014.00225.

D. A. Moses, N. Mesgarani, M. K. Leonard, and E. F. Chang, 2016. Neural speech

recognition: Continuous phoneme decoding using spatiotemporal representations of human

cortical activity. Journal of Neural Engineering, 13(5):056004. doi: 10.1088/1741-

2560/13/5/056004.

D. A. Moses, M. K. Leonard, and E. F. Chang, 2018. Real-time classification of auditory

sentences using evoked cortical activity in humans. Journal of Neural Engineering, 15(3).

doi: 10.1088/1741-2552/aaab6f.

E. M. Mugler, J. L. Patton, R. D. Flint, Z. a. Wright, S. U. Schuele, J. Rosenow, J. J.

Shih, D. J. Krusienski, and M. W. Slutzky, 2014. Direct classification of all American

English phonemes using signals from functional speech motor cortex. Journal of neural

engineering, 11(3):035015. doi: 10.1088/1741-2560/11/3/035015.

T. Ogawa, J. Riera, T. Goto, A. Sumiyoshi, H. Nonaka, K. Jerbi, O. Bertrand, and

R. Kawashima, 2011. Large-scale heterogeneous representation of sound attributes in

150

rat primary auditory cortex: from unit activity to population dynamics. Journal of

Neuroscience, 31(41):14639–14653. doi: 10.1523/JNEUROSCI.0086-11.2011.

H. Okamoto and R. Kakigi, 2014. Neural adaptation to silence in the human auditory

cortex: a magnetoencephalographic study. Brain and Behavior, 4(6):858–866. doi:

10.1002/brb3.290.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, 1999. Discrete-time signal processing.

Prentice-Hall, Upper Saddle River, New Jersey, 2nd edition.

T. W. Parks and J. H. McClellan, 1972. Chebyshev Approximation for Nonrecursive Digital

Filters with Linear Phase. IEEE Transactions on Circuit Theory, 19(2):189–194. doi:

10.1109/TCT.1972.1083419.

B. N. Pasley, S. V. David, N. Mesgarani, A. Flinker, S. A. Shamma, N. E. Crone, R. T.

Knight, and E. F. Chang, jan 2012. Reconstructing speech from human auditory cortex.

PLoS Biology, 10(1):e1001251. doi: 10.1371/journal.pbio.1001251.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, and V. Dubourg, 2011. Scikit-learn: Machine learning in

Python. Journal of machine learning research, 12:2825–2830. doi: 10.1007/s13398-014-

0173-7.2.

X. Pei, D. L. Barbour, E. C. Leuthardt, and G. Schalk, 2011. Decoding vowels and consonants

in spoken and imagined words using electrocorticographic signals in humans. Journal of

Neural Engineering, 8(4):046028. doi: 10.1088/1741-2560/8/4/046028.

Python Software Foundation. Python Language Reference, 2010.

Python Software Foundation. Python programming language, 2016.

R Core Team. R: A language and environment for statistical computing, 2015.

151

L. R. Rabiner and B.-H. Juang, 1993. Fundamentals of speech recognition. Prentice-Hall,

Upper Saddle River, New Jersey.

J. P. Rauschecker and S. K. Scott, jun 2009. Maps and streams in the auditory cortex:

nonhuman primates illuminate human speech processing. Nature neuroscience, 12(6):

718–724. doi: 10.1038/nn.2331.

S. Ray, N. E. Crone, E. Niebur, P. J. Franaszczuk, and S. S. Hsiao, 2008. Neural correlates of

high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential

implications in electrocorticography. The Journal of neuroscience : the official journal

of the Society for Neuroscience, 28(45):11526–11536. doi: 10.1523/JNEUROSCI.2848-

08.2008.

D. E. T. Romero and G. Jovanovic, 2012. Digital FIR Hilbert Transformers: Fundamentals

and Efficient Design Methods. In MATLAB - A Fundamental Tool for Scientific

Computing and Engineering Applications - Volume 1, chapter 19, pages 445–482. doi:

10.5772/46451.

M.-C. Rousseau, K. Baumstarck, M. Alessandrini, V. Blandin, T. Billette de Villemeur, and

P. Auquier, 2015. Quality of life in patients with locked-in syndrome: Evolution over a

6-year period. Orphanet journal of rare diseases, 10:88. doi: 10.1186/s13023-015-0304-z.

E. W. Sellers, D. B. Ryan, and C. K. Hauser, oct 2014. Noninvasive brain-computer interface

enables communication after brainstem stroke. Science translational medicine, 6(257):

257re7. doi: 10.1126/scitranslmed.3007801.

M. Spüler, W. Rosenstiel, and M. Bogdan, 2012. Online Adaptation of a c-VEP Brain-

Computer Interface(BCI) Based on Error-Related Potentials and Unsupervised Learning.

PLoS ONE, 7(12). doi: 10.1371/journal.pone.0051077.

M. Steinschneider, K. V. Nourski, H. Kawasaki, H. Oya, J. F. Brugge, and M. a. Howard,

152

2011. Intracranial study of speech-elicited activity on the human posterolateral superior

temporal gyrus. Cerebral Cortex, 21(10):2332–2347. doi: 10.1093/cercor/bhr014.

C. Tang, L. S. Hamilton, and E. F. Chang, 2017. Intonational speech prosody encoding

in the human auditory cortex. Science (New York, N.Y.), 357(August):797–801. doi:

10.1126/science.aam8577.

The MathWorks Inc. MATLAB, version 8.1.0, 2013.

X. Tian and D. Poeppel, 2010. Mental imagery of speech and movement implicates

the dynamics of internal forward models. Frontiers in Psychology, 1(OCT):1–23. doi:

10.3389/fpsyg.2010.00166.

H. Tiitinen, I. Miettinen, P. Alku, and P. J. C. May, 2012. Transient and sustained cortical

activity elicited by connected speech of varying intelligibility. BMC neuroscience, 13(1):

157. doi: 10.1186/1471-2202-13-157.

M. J. Vansteensel, E. G. Pels, M. G. Bleichner, M. P. Branco, T. Denison, Z. V. Freudenburg,

P. Gosselaar, S. Leinders, T. H. Ottens, M. A. Van Den Boom, P. C. Van Rijen, E. J.

Aarnoutse, and N. F. Ramsey, 2016. Fully Implanted Brain–Computer Interface in a

Locked-In Patient with ALS. New England Journal of Medicine, 375(21):NEJMoa1608085.

doi: 10.1056/NEJMoa1608085.

A. J. Viterbi, 1967. Error Bounds for Convolutional Codes and an Asymptotically Optimum

Decoding Algorithm. IEEE Transactions on Information Theory, 13(2):260–269. doi:

10.1109/TIT.1967.1054010.

R. Weide. The {CMU} pronunciation dictionary, release 0.7a, 2014.

M. Yang, S. A. Sheth, C. A. Schevon, G. M. Mckhann Ii, N. Mesgarani, G. M. M. Ii, and

N. Mesgarani, 2015. Speech reconstruction from human auditory cortex with deep neural

153

networks. In Sixteenth Annual Conference of the International Speech Communication

Association, pages 1121–1125.

S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason, V. Valtchev, and

P. Woodland, 2002. The HTK book, volume 3. doi: 10.1.1.124.3972.

J. Yuan and M. Liberman, 2008. Speaker identification on the SCOTUS corpus. The Journal

of the Acoustical Society of America, 123(5):3878–3878. doi: 10.1121/1.2935783.

154

	List of Tables
	List of Figures
	Introduction
	Decoding perceived phonemes
	Abstract
	Introduction
	Materials and methods
	Data collection and manipulation
	NSR system design

	Results
	Evaluation metrics
	System performance
	Phoneme time position effects
	Speaker gender effects

	Discussion

	Real-time perceived speech classification
	Abstract
	Introduction
	Methods
	Subjects
	Speech stimuli
	Real-time processing setup
	rtNSR design
	Experimental task blocks
	Stimulus classification schemes
	Evaluation methods

	Results
	Discussion
	Supplementary data

	Real-time question-and-answer speech decoding
	Abstract
	Introduction
	Results
	Real-time decoding system overview
	Question and answer decoding performance
	Classifier sensitivity to data limitations, hyperparameter selection, and cortical coverage
	Viterbi classification and phonetic modeling

	Discussion
	Methods
	Subjects
	Neural data acquisition
	High gamma feature extraction
	Experimental task design
	Phonetic transcription
	Modeling
	Hyperparameter optimization
	Evaluation methods
	Statistical testing
	Real-time processing setup

	Supplementary data
	Supplementary notes
	Supplementary figures

	References

