
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Applying Effective Theories to Collider Phenomenology

Permalink
https://escholarship.org/uc/item/3rq3f98q

Author
Ovanesyan, Grigol

Publication Date
2010
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rq3f98q
https://escholarship.org
http://www.cdlib.org/


Applying Effective Theories to Collider Phenomenology

by

Grigol Gagikovich Ovanesyan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Christian Bauer, Co-Chair

Professor Yasunori Nomura, Co-Chair

Professor Hitoshi Murayama

Professor Nicolai Reshetikhin

Fall 2010



Applying Effective Theories to Collider Phenomenology

Copyright 2010

by

Grigol Gagikovich Ovanesyan



1

Abstract

Applying Effective Theories to Collider Phenomenology

by

Grigol Gagikovich Ovanesyan

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Christian Bauer, Co-Chair

Professor Yasunori Nomura, Co-Chair

Collinear fields in soft collinear effective theory (SCET) can be made invariant under collinear
gauge transformations by multiplying them with collinear Wilson lines. We discuss how we can
quantize SCET directly in terms of these gauge invariant fields, allowing to directly calculate S
matrix elements using the gauge invariant collinear fields. We also show how for each collinear
direction SCET can be written in terms of fields whose interactions are given by the usual QCD
Lagrangian, and how external operators coupling these different directions can be constructed.

Using SCET, which provides a unified framework for factorization, resummation of log-
arithms, and incorporation of universal nonperturbative functions in hard-scattering QCD cross-
sections, we present a new prediction of angularity distributions in e+e− annihilation. Angularities
τa are an infinite class of event shapes which vary in their sensitivity to the substructure of jets in
the final state, controlled by a continuous parameter a < 2. We calculate angularity distributions
for all a < 1 to first order in the strong coupling αs and resum large logarithms in these distribu-
tions to next-to-leading logarithmic (NLL) accuracy. Our expressions for the next-to-leading order
(NLO) O(αs) partonic jet and soft functions in the factorization theorem for angularity distribu-
tions are given for the first time. We employ a model for the nonperturbative soft function with a
gap parameter which cancels the renormalon ambiguity in the partonic soft function. We explore
the relation between the SCET approach to resummation and past approaches in QCD, and discuss
the advantages of the effective theory approach. In addition, we draw from the NLO calculations
of the jet and soft functions an intuitive lesson about how factorization breaks down in the effective
theory as a→ 1.

A matching calculation for SCET is performed using exotic external states, which mimic
the topology of Drell-Yan amplitude. It is found that for the consistency of effective theory, more
specifically for the fact that the matching coefficient C2 is independent of external states involved
in the matching, a new mode needs to be added to SCET, which is the Glauber mode. Connections
with Coleman-Norton theorem and Landau equations are discussed.
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over J0, and the resulting sum of näıve diagrams and zero-bin subtractions over the
region J . Integrals over J have only UV divergences as long as a < 1. For a = 1,
an IR divergent region remains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Scaling of SCET modes appropriate for angularities τa, a = 0, 1. For a = 0, the
collinear modes dominating the τa distribution have virtualities p2 ∼ (Qλ)2, para-
metrically separated from the soft scale p2 ∼ (Qλ2)2. These scalings correspond
to the effective theory known as SCETI . For a = 1, the collinear modes in the
distribution have typical p2 ∼ (Qλ2)2, coinciding with the soft scale. The collinear
and soft modes are no longer separated by virtuality but instead by rapidity. These
scalings correspond to SCETII . Collinear modes dominating angularity distributions
for other values of a between 0 and 1 live at scales intermediate between these limits. 37



v

3.6 Angularity soft functions with a gap parameter, at tree-level (solid gray) and at
one-loop with (solid blue) and without (dashed green) renormalon subtraction, for
Q = 100 GeV, for several values of a as labeled on each plot. The variation of
the soft functions with the scale µ is illustrated by first setting µmin

S = 1.0 GeV in
Eq. (3.132) and choosing µ to be (0.8, 1, 1.2) times the formula in Eq. (3.132), with
the plots for smaller values of µS peaking earlier in τa. For the model parameters we
take A = 2.5, B = −0.4,Λ = 0.55 GeV. In the renormalon subtraction Eq. (3.122),
we have chosen R = 200 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Angularity distributions at Q = 100 GeV for six values of a between −2 and 1/2.
The solid gray curves are the LO partonic distributions resummed to NLL and con-
voluted with the gapped soft model function. The dotted green curves are NLL/NLO
convoluted with the gapped soft function but without renormalon subtraction. The
dashed red curves are the same as the green but with renormalon subtraction, and the
solid blue curves are the same as the red but matched to fixed-order QCD at O(αs).
We choose the scales µ = Q,µmin

S = 1 GeV, and µmin
J given by Eq. (3.134). For the

gap parameter we take ∆̄0(1 GeV) = 100 MeV and in the renormalon subtraction
R = 200 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Angularity distributions atQ = 100 GeV. The full, NLL/NLO resummed, renormalon-
subtracted distributions in Fig. 3.7 are here shown all on the same scale. The pa-
rameters are chosen the same as in Fig. 3.7. From highest to lowest peak value, the
curves are for a = −2,−1,−1

2 , 0,
1
4 ,

1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity
distributions at Q = 100 GeV for a = −1, a = 0, a = 1/4, and a = 1/2. For the
hard scale variation, µH varied between Q/2 and 2Q and for the correlated scale
variation, µJ and µS are varied between half the values given in Eq. (3.133) and
twice these values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Factorization scale µ variation of the (unmatched, partonic) SCET NLL/LO (light
blue band) and the classic QCD NLL/LO (red band) resummed results for angularity
distributions. µ is varied over the range Q

2 ≤ µ ≤ 2Q with Q = 100 GeV for the
cases a = −1, a = 0, a = 1/4, and a = 1/2. To make a direct comparison to the
QCD results, the scales in the SCET results have been chosen as µ = µH = Q,
µJ = Qτ

1/(2−a)
a , and µS = Qτa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 One-loop examples of — Left: active-active interactions, Middle: spectator-active
interactions, Right: spectator-spectator interactions . . . . . . . . . . . . . . . . . . 60

4.2 Left: magnitude of pole locations as a function of l⊥. Dashed lines denote poles in
the lower half plane, while solid ones are in the upper half plane. Right: magnitude
of the residues of poles in the upper half plane. The color coding is identical to the
one on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Physical picture of both soft and glauber exchange between spectators. . . . . . . . . 67



vi

D.1 (A) Phase space for three-particle qq̄g final state. The energy fractions xi = 2Ei/Q
of the three particles satisfy x1 + x2 + x3 = 2. In region I, x1 > x2,3, in region II,
x2 > x1,3, and in region III, x3 > x1,2. The thrust axis is in the direction of the
particle with the largest energy. (B) Contours of constant τa = 1/10 for a = −1
(purple), a = 0 (gray), and a = 1 (pink). The differential cross-section dσ/dτa is
given by integrals over these contours in the x1,2 phase space. . . . . . . . . . . . . . 87

D.2 The local minimum (green line) and maximum (red line) of the function Fa(w)
over the range 0 < w < 1/2 coincide at the point a ≡ a1 ≈ −1.978. At a ≡
a2 ≈ −2.618, the value of angularity for the maximally symmetric three-jet case,
τsym(a) = 1/31−a/2 (blue line), intersects the local maximum and so for a < a2, the
value of maximum angularity for such a corresponds not to the maximally symmetric
case but to a more two-jet like event. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D.3 (A), (B), (C) Allowed regions for the parameter w as a function of fixed τa = c are
bounded by the curves Fa(w) and Fa(1− w). For (A), (D) a = −1, the integration
is over a single, continuous domain for all fixed τa = c but for (B), (E) a = −2.3 and
(C), (F) a = −4, there are multiple disjoint regions of integration for large enough
values of c. In (D), (E), and (F), the blue, red, and green curves represent contours
of integration for fixed τa = c, in order of increasing c, and correspond to integration
over a range of w given by the lines of constant τa = c in the regions of the same
color in (A), (B) and (C), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 89



vii

List of Tables

3.1 Γ0
F , γF and jF for the jet and soft functions. . . . . . . . . . . . . . . . . . . . . . . . 52



viii

Acknowledgments

I want to thank all my collaborators at UC Berkeley which include Christian Bauer, Oscar Cata,
Marat Freytsis, Andrew Hornig, Björn Lange, Chris Lee, and Jesse Thaler. My views and approach
to physics have been influenced by these people. Especially I want to thank my advisor Christian
Bauer for always being helpful and for being a great advisor.

Also I want to thank the entire Department of Physics of UC Berkeley for being so
supportive all five years that I have spent here. Special thanks to Anne Takizawa and Donna
Sakima for their help and for having answers to all my numerous questions that I had for them.

I want to thank my fiance Olga Serafimova, brother Zaven Ovanesyan and my mother
Rita Bagdasarova for their constant encouragement. I also want to say a special thanks to my
grandmother Zina Galustyan for everything that she has done for me.



1

Chapter 1

Introduction

The Standard Model (SM) has proven to be a very successful theory, withstanding all
experimental tests over the past forty years. One of the most important tasks in the modern stage
of Particle Physics is finding New Physics (NP), especially since the Large Hadron Collider (LHC)
is already running and gathering data. Consequently, it is extremely important to work on strate-
gies to identify which one, if any, of the Beyond the Standard Model (BSM) theories is the right
description of Nature. In order to discover a BSM theory in a high energy experiment, one should
have a thorough understanding of the SM backgrounds. Gaining such an understanding is a chal-
lenge because most backgrounds are dominated by strong interactions, for which the Perturbation
Theory (PT) is poorly convergent.

Nevertheless, powerful tools have been developed to make reliable predictions for QCD
cross-sections at high energies. There are three key concepts for such predictions: asymptotic
freedom, factorization, and universality of non-perturbative physics. The basic idea is that at
high energies the cross-section factorizes into long distance (non-perturbative) and short distance
(perturbative) parts. The latter is pertubatively calculable due to asymptotic freedom, whereas
the former is often universal and can be extracted from one process and used in another.

Historically, first proofs of factorization used pinch analysis of Feynman diagrams. In this
approach one finds all the infrared singularities of an amplitude to all orders in PT. This can be
done for example via use of Landau Equations [117]. Then the leading behavior of an amplitude
is studied by approximating it with contributions coming from pinched surfaces. All such leading
contributions are shown to factorize order by order in PT. This is the famous Collins-Soper-Sterman
type approach to factorization (see for example [142] and the references therein).

More recently the ideas of factorization have been revisited from the point of view of
Effective Field Theory (EFT). The simplest effective theory is the four-Fermi theory, where one
integrates out the heavy particle, in this case the W−boson. However, to prove factorization
theorems more complex effective theories are used, such as Non-Relativistic QCD (NRQCD), Heavy
Quark Effective Theory (HQET) and Soft Collinear Effective Theory (SCET). In such theories one
integrates out of the QCD Lagrangian kinematically suppressed modes for a certain process, and
constructs an effective Lagrangian, including only the relevant long-distance modes. Factorization
arises in a natural and intuitive way in the language of EFT.

Another benefit coming from the use of Effective field theories is clean resummation of
large logarithms which can be achieved for all ratios of physical energy scales in the problem. These
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are the famous Sudakov logarithms of the ratios of the physical energy scales. Such logarithms arise
at any order in PT and need to be resummed in order to have a reliable prediction. Here we describe
how the EFT allows the resummation of large logarithms. EFT approach relies on the hierarchy of
physical scales in the problem: Q1 >> Q2.... Then one matches the full theory above the scale Q1

onto effective theory below the scale Q1. At this step all other scales are set to zero. If the effective
theory correctly reproduces the infrared physics of the full theory, then the matching coefficient
contains only ultraviolet divergences which one obtains as a result of the matching calculation.
This UV terms should be renormalized into counterterms and they define the anomalous dimension
of the matching coefficient. This allows to run down using RGE to the scale Q2 and calculate the
matching coefficient there. And then again integrate out the scale Q2 in the similar fashion. Thus
the final cross-section becomes a product of matching coefficients and matrix elements of effective
theory operators, which we can all evaluate at some common IR scale, at which we know the
matrix elements of the operators and where all the large logarithms are resummed in the kernels
of RGE from running between the energy scales. In other words the flexibility of EFT to have
multiple renormalization scales as opposed to the traditional approach, where you have just one
renormalization scale, allows the EFT approach to achieve resummation of all Large logarithms.

Among other advantages of the EFT approach is the straightforward way to incorporate
power-suppressed processes, enhanced symmetries because of the power counting, absence of spu-
rious Landau poles in the final expression for the resummed cross-section [126, 31, 101], which are
inevitable in the traditional approach.

SCET is an effective theory for QCD [12, 14, 25, 21] which describes interactions of highly
energetic particles. In this effective theory one integrates out of the full theory all the modes except
the ones that are collinear quarks, gluons and soft gluons. These are the important low energy
modes that carry all the infrared dynamics of QCD at high energies. In Chapter 2 we explicitly
derive the effective Lagrangian of SCET as a result of integrating out the hard modes in QCD at
the functional integral method. With the advance of SCET many processes have been recalculated
in this approach and in many cases the theory prediction has improved significantly compared to
the old ways of classical QCD approach. The best example is the extraction of the strong coupling
αs from the combined LEP data on event shape observable Thrust. The recent analysis [1] of this
data comparing it to SCET higher order prediction leads to one of the best extractions of αs, which
is even competitive with the combined world average from Particle Data Group. Another example
is the prediction for Angularities cross-section [101], which is some generalization of Thrust, and
we describe this calculation in Chapter 3.

While for e+e− annihilation into hadrons the SCET predictions for Event shapes (thrust,
angularities, etc) are well known in the literature, similar predictions for pp are in the development
stage. Of course with the LHC running and producing data it is extremely important to have
a reliable control over QCD cross-sections of hadron collisions. In this paragraph we discuss the
main complications which we face as we go from a lepton to hadron collider. There are three
such complications. First, unlike the lepton collider, where the initial state colliding particles
fully annihilate, in the hadronic collider there are unmeasurable remnants of the protons. This
fact makes usual event shapes, like Thrust, which are fully inclusive, not the best candidates for
hadronic event shape observables. Consequently, inventing new hadronic event shape observables
is of great importance. Since in hadronic collision the initial states are strongly interacting, new
soft functions are needed in the SCET factorization formula. This leads to new non-perturbative
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effects in the cross-section. This problem can be solved by introducing a model for non-perturbative
physics, using a technique called “Shape Function”. The basic idea is to fix the first few moments
of the unknown function and to extract their values from the fit to data. The third complication
is the fact that initial state radiation of the colliding protons plays an important role for certain
observables. A first step in treating this physics has recently been introduced through so-called
“Beam Function”, which essentially describes the initial state radiation by treating active parton
inside the proton as an initial state jet. Thus, in hadron collisions we have to deal for certain
observables with two additional jets in the initial state, in addition to jets in the final state.

This Thesis is based on the following work: Chapter 2 is based on [9], Chapter 3 on
[102, 101], and Chapter 4 on work in progress [16]. In Chapter 2 we consider three different
formulations of SCET: with gauge non-invariant fields ξn, An, with gauge invariant quark field and
non gauge invariant gluon field χn, An and finally with both gauge invariant fields χn,Bn.1 The
difference between different formulations is trivial via field redefinition in the Lagrangian. However
it is instructive to know how exactly the equivalence works in terms of the Feynman rules. The
non-trivial part of our analysis is in the gauge sector of QCD. We find that the calculations with
the gauge invariant collinear gluon field Bn are equivalent to that of the non-gauge invariant field
An but in one particular gauge: in the light cone gauge.

In Chapter 3 we perform complete phenomenology of event shapes in e+e− annihilation to
hadrons using SCET. The event shape that we consider is called Angularity, and it has a continuous
real parameter. By varying this parameter one changes the sensitivity of the observable to narrower
or wider jets. Thus makes Angularities a powerful tool to study the substructure of the jets. We
work at fixed next-to-leading order(NLO) in Perturbation Theory and resum large logarithms to
next-to-leading logarithmic order (NLL). In the peak region where the angularity value goes to
zero, we are in the region of back to back jets. In this limit the effective theory reproduces the
full theory, however physical scales(hard, jet and soft) become widely separated. Resummation of
large logarithms is thus essential to have a reliable prediction. Besides large logarithms in the peak
region, there is also non-perturbative physics affecting this region of the parameter space. This
physics can be conveniently incorporated into effective theory analysis using “Shape Function”
described above. We generalize the Shape Function used for thrust to all angularities, using the
proven universality of non-perturbative corrections for Angularities [119].

In Chapter 4 we switch to hadron collisions, namely the Exclusive Drell-Yan process. The
question we ask is: are we sure that we have all the necessary low energy modes incorporated in
SCET to properly describe the infrared behavior of Drell-Yan amplitude? The reason we should
worry is buried in the original analysis of all order factorization of the Drell-Yan cross-section,
where it is shown that in addition to soft and collinear pinch surfaces, for this amplitude additional
Glauber pinch is present, which breaks the factorization of the exclusive(in the sense that we
measure the transverse momentum of the lepton pair) Drell-Yan process. This Glauber mode has
large transverse momentum and small longitudinal ones, it arises in the interaction between the
spectators of the colliding hadrons [44, 65]. We perform a consistency check on SCET by doing
a matching calculation for two back to back jet operator O2 with special external states, namely
〈γγ| and |qq̄〉. This choice of external states involves Drell-Yan like amplitudes in the calculation.
A consistency check on effective theory is that the matching coefficient C2 is independent from
the choice of the external states. We find that this is not true for SCET without Glauber modes,

1We mean collinear gauge invariance here.
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while in effective theory which is SCET expanded with a Glauber mode this cross-check is satisfied.
We conclude that for correct description of the Infrared physics of Drell-Yan amplitude one needs
to expand SCET with a Glauber mode. We further discuss the reconciliation of the apparently
off-shell Glauber mode with Coleman-Norton theorem and Landau Equations.
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Chapter 2

Different Formulations of SCET

1 Introduction

Soft collinear effective theory (SCET) [12, 14, 25, 21] is by now a rather mature effec-
tive field theory with wide applications in B physics and collider physics. SCET describes QCD
in the kinematic regime where the energy of particles is far in excess of their (invariant) mass.
Short distance physics is contained in Wilson coefficients which are determined order by order in
perturbation theory. Long distance physics on the other hand is described by separate collinear
fields for each light-like direction, together with Wilson lines Yn describing the usoft physics inter-
actions between the different collinear directions. Since there are no direct interactions between
collinear fields in different directions, gauge invariance requires the presence of Wilson lines to
render collinear fermions and gauge bosons gauge invariant.

There are several equivalent versions of SCET used in the literature. The original formu-
lation of SCET [12, 14] described the interactions between the gauge dependent collinear quark ξn
and gluon An fields, with the leading order Lagrangian given by1

LnI (ξn, An) = ξ̄n

[
in·Dn + iD/⊥n

1
in̄·Dn

iD/⊥n

]
n̄/

2
ξn

−1
2

TrFnµνF
µν
n , (2.1)

with the standard definition of the covariant derivative and the field strength tensor

iDµ
n = i∂µn + gsA

µ
n , Fµνn =

i

gs
[Dµ

n, D
ν
n] , (2.2)

where the partial derivative ∂n is given in terms of the label operator introduced in [25]

i∂µn = n̄·P n
µ

2
+ Pµ⊥ + in·∂ n̄

µ

2
. (2.3)

In order to construct gauge invariant operators containing collinear fermions, these fermions are
required to appear in the gauge invariant combination

χn = W †nξn , (2.4)
1We here omit any reference to gauge-fixing and potential ghost terms. We will address the quantization of gauge

fields later on.
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where Wn is the collinear Wilson line [25]

Wn = P exp
[
−igs

∫ ∞
0

ds n̄·An(n̄s+ x)
]
. (2.5)

Using a simple field redefinition, one can easily obtain the collinear Lagrangian in terms of these
gauge invariant combinations

LnII(χn, An) = χ̄nW
†
n

[
in·Dn + iD/⊥n

1
in̄·Dn

iD/⊥n

]
n̄/

2
Wnχn

−1
2

TrFnµνF
µν
n . (2.6)

Since the fields χn are gauge invariant, the combination W †nD
µ
nWn has to be gauge invariant as

well. Thus, we can define [4]
Dµn = W †nD

µ
nWn . (2.7)

The gauge invariant derivative operator Dµn can be written in terms of the partial derivative and a
gauge invariant gluon field Bµn

iDµn = i∂µn + gsBµn , (2.8)

where

Bµn =
[

1
n̄·∂ [in̄·Dn, iDµn]

]
=

1
gs

[
W †niD

µ
nWn

]
, (2.9)

and the derivatives only act within the square brackets. In terms of these fields, the Lagrangian
reads

LnIII(χn,Bn) = χ̄n

[
in·Dn + iD/⊥n

1
in̄·∂ iD/

⊥
n

]
n̄/

2
χn

−1
2

TrFnµνFµνn , (2.10)

where we have defined
Fµνn =

i

gs
[Dµn,Dνn] . (2.11)

A sample of Feyman rules for the three different formulations of SCET is shown in Fig. 2.1.
It is well known that the dynamics of SCET with a single collinear direction is identical

to full QCD. This is of course expected, since one can perform a simple Lorentz boost along the
direction n to make all momentum components of the collinear field similar in magnitude. Since
this eliminates any large ratio of scales, the interactions have to be those of full QCD. This implies
that for example the wave function renormalization in SCET is equivalent to that of full QCD, as
was first shown in [12, 14]. This equivalence has been used in the literature in order to simplify
perturbative calculations in SCET (vid., for instance, [28]).

It is the purpose of this Chapter to study the relationship between different formulations
of SCET. We work out the relationship between SCET using gauge dependent and gauge invariant
degrees of freedom, as well as the relationship between full QCD and collinear fields in a single
direction further. One of the features of the original formulation of SCET is that collinear gluons
are coupled to the quark fields in a non-linear way. This means that there are an infinite number of
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V
(1)
LI =

p p!

! , A = igTA
[
nµ + γµ⊥p/⊥

n̄·p + p/′⊥γ
µ
⊥

n̄·p′ −
p/′⊥p/⊥
n̄·p′n̄·p n̄

µ
]
n̄/
2

V
(2)
LI =

p p!

! , A " , B

q = ig2
[
TATB

n̄·(p−q)γ
µ
⊥γ

ν
⊥ + TBTA

n̄·(q+p′)γ
ν
⊥γ

µ
⊥

]
n̄/
2 + (. . .)

V
(1)
LII =

p p!

! , A = V
(1)
LI + igTA

[
1

n̄·(p−p′)

(
p2

n̄·p −
p′2

n̄·p′
)
n̄µ
]
n̄/
2

V
(2)
LII =

p p!

! , A " , B

q = V
(2)
LI + (. . .)

V
(1)
LIII =

p p!

! , A = igTA
[
nµ + γµ⊥p/⊥

n̄·p + p/′⊥γ
µ
⊥

n̄·p′
]
n̄/
2

V
(2)
LIII =

p p!

! , A " , B

q = ig2
[
TATB

n̄·(p−q)γ
µ
⊥γ

ν
⊥ + TBTA

n̄·(q+p′)γ
ν
⊥γ

µ
⊥

]
n̄/
2

∆LIII = A, B, !µ = −i δAB
k2+iε

(
gµν − n̄µkν+n̄νkµ

n̄·k

)

Figure 2.1: A subset of Feynman rules for the three different formulations of SCET. The (...) denote
terms which do not contribute to the tadpole diagram of Fig. 2.2b) in Feynman gauge.

vertices consisting of quark-antiquark and an arbitrary number of collinear gluons, whose Feynman
rules get increasingly complicated. This makes the theory particularly unfriendly for computations
beyond the one-loop order.

We will show how to quantize SCET directly in terms of the gauge invariant degrees of
freedom, and write the theory as a path integral over these gauge invariant fields. We will also
discuss how to re-express the theory using only the interactions of full QCD. This first gives a
precise field theoretical understanding of the well known property of SCET that the dynamics
in a given collinear direction are equivalent to that of full QCD. Our formulation using directly
the generating functional will extend this result to include interactions between different collinear
directions through local operators. One can hope that these results will simplify the perturbative
calculation of matching coefficients in the future, since much of the SCET calculations are now
identical to the corresponding QCD results. It will prove instructive, however, to first illustrate
this equivalence between different formulations of SCET using a simple one-loop calculation. We
do it in the next section.

2 One loop jet function in three different formulations

Consider the two point correlator of two gauge invariant fermion fields

〈0|Tχn(x)χ̄n(y)|0〉 = 〈0|TW †n(x)ξn(x)ξ̄n(y)Wn(y)|0〉 . (2.12)
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a) b) c) d)

Figure 2.2: Diagrams contributing to the gauge invariant jet function at one loop.

The Fourier transform of this correlator is what is known in the literature as the jet function, and
plays a crucial role in any process containing external collinear particles. In the original formulation
of SCET in terms of ξn and An fields there are four diagrams contributing at one loop, which are
shown in Fig. 2.2. The first two diagrams are entirely built out of interactions contained in the
Lagrangian of the theory, while in the last two diagrams one of the gluon couplings comes from the
Wilson lines Wn or W †n. Using the Feynman rules given in Fig. 2.1, one can easily obtain the result

DI,a = g2
s

∂/n

2
n̄·p
p2

CF (2−D)
∫

dDk

(2π)D

[
1
2

1
(k2 + iε)((k + p)2 + iε)

− n̄·p
p2

1
(k2 + iε)n̄·(k + p)

]
,

(2.13)

DI,b = g2
s

∂/n

2

(
n̄·p
p2

)2

CF (2−D)
∫

dDk

(2π)D
1

(k2 + iε)n̄·(k + p)
, (2.14)

DI,c = DI,d = g2
s

∂/n

2
n̄·p
p2

CF (n·n̄)
∫

dDk

(2π)D
n̄·(k + p)

(k2 + iε)((k + p)2 + iε)n̄·k . (2.15)

Note that the tadpole diagram is canceled exactly against the second term in the first diagram. Per-
forming the remaining integrals and summing the diagrams one obtains the well known result [126]

DI = i
αsCF

4π
∂/n

2
n̄·p
p2

(
µ2

−p2

)ε [ 4
ε2

+
3
ε

+ 7− π2

3

]
. (2.16)

We can repeat this calculation using the formulation of SCET in terms of χn and An fields.
This removes the last two diagrams of Fig. 2.2, since there are no Wilson lines in the definition of
the correlator when written in terms of χn fields. However, the extra Wilson lines in the collinear
Lagrangian change the Feynman rules in the way shown in Fig. 2.1. While this does not change
the result for the second diagram, the first diagram is now

DII,a = g2
s

∂/n

2
n̄·p
p2

CF

∫
dDk

(2π)D

[
(2−D)

(
1
2

1
(k2 + iε)((k + p)2 + iε)

− n̄·p
p2

1
(k2 + iε)n̄·(k + p)

)

+2n·n̄ n̄·(k + p)
(k2 + iε)((k + p)2 + iε)n̄·k − (n·n̄)2 n̄·p

p2

1
(k2 + iε)n̄·k

]
. (2.17)

The first two terms reproduce the result for DI,a, and the third reproduces DI,c + DI,d. Finally,
the fourth term in DII,a vanishes, since it is odd as k → −k. Thus, the sum of all diagrams is
identical in both versions of the theory.

Showing that we can reproduce this result using the fully gauge invariant χn and Bn fields
is a little more tricky. This is because now there are no Wilson lines whatsoever, neither in the
definition of the correlator nor in the Lagrangian of Eq. (2.10). Thus, it is not immediately obvious
how the contributions from diagrams Dc and Dd are reproduced in this case. However, care has to
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be taken when deriving the gluon propagator. The Bn field is by construction explicitly invariant
under collinear gauge transformations, and the usual procedure of adding an arbitrary gauge-fixing
term to the Lagrangian is not valid. However, from the definition of Bµn in Eq. (2.9) one easily
verifies the constraint n̄·Bn = 0 (see Eqs. (2.29) and (2.30) below). Thus, the propagator of a Bn
field has to satisfy the condition n̄µ∆µν

B = 0. As we will discuss in more detail later, the propagator
takes the form [8, 147]

(∆B)abµν(k) =
−iδab
k2 + iε

(
gµν −

n̄µkν + n̄νkµ
n̄·k

)
. (2.18)

Using this propagator for the gauge invariant gluon field one can easily verify that

DIII,a = DII,a , DIII,b = DII,b . (2.19)

Thus, the three formulations of SCET give identical results to one another for the two point
correlator of two gauge invariant collinear fermion fields.

3 Path integral derivation of SCET Lagrangian from QCD

In order to generalize this discussion to any matrix element, we quantize the theory directly
in terms of the various fields. This is achieved by using the path integral formulation, working
directly with the generating functional of the theory

Z[J ] =
∫
Dξ̄nDξnDAµn exp

[
i

∫
d4xSI(ξn, Aµn, Jn)

]
, (2.20)

where we have defined

SI =
∑
n

[
LnI + J̄ξnξn + ξ̄nJ

ξ
n + J̄χnW

†
nξn + ξ̄nWnJ

χ
n

+JAnµA
µ
n + JBnµBµn(An)

+
∑
k

JkOk
(
W †nξn,Bµn(An)

)
. (2.21)

A few comments are in order to understand our notation. First, the integration in Eq. (2.20) is over
all fields with different directions n. Second, the subscripts I, II, III indicate which version of SCET
we are using, with Lagrangians given in Eqs. (2.1), (2.6) and (2.10) above. Third, we have added
separate currents for the gauge invariant fields χn = W †nξn and Bµn = Bµn(An) = 1

gs
[W †niD

µ
nWn], as

well as for the gauge dependent fields ξn and An. This allows us to calculate correlators with gauge
invariant fields, such as the jet function, as well as those with gauge dependent fields, as is often
done in matching calculations to QCD. Finally, we have indicated currents Jk for any local operator
in SCET. Such operators are typically written in terms of the gauge invariant fields, and an example
would be the production current for two collinear fields in opposite directions, O2 = χ̄nΓχn̄.

In order to obtain the generating functional with the Lagrangian written in terms of χn
fields, we make the field redefinition given in Eq. (2.4), which just amounts to a change in the
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integration variable in the generating functional. Since W †nWn = 1, one can easily show that the
integration measure is the same when written in terms of the χn fields

DξnDξ̄nDAµn = DχnDχ̄nDAµn . (2.22)

Thus, the generating functional can be written as

Z[J ] =
∫
Dχ̄nDχnDAµn exp

[
i

∫
d4xSII(χn, Aµn, Jn)

]
, (2.23)

with

SII =
∑
n

[
LnII + J̄ξnWnχn + χ̄nW

†
nJ

ξ
n + J̄χnχn + χ̄nJ

χ
n

+JAnµA
µ
n + JBnµBµn(An)

]
+
∑
k

JkOk(χn,Bn(An)) . (2.24)

In other words, any matrix element written in terms of ξn and An fields is identical to the matrix
element written in terms of χn and An fields, as long as the interactions between the fields are
given by the Lagrangian LII instead of LI .

4 Relation between An and Bn and gauge fixing

Next, we discuss the relation between the gauge dependent gluon field An and the gauge
invariant field Bn. The Yang Mills action is given by

ZYM =
∫
DAµn eiSYM[An] , (2.25)

where
SYM[A] = −1

2

∫
d4x

∑
n

TrFnµνF
µν
n . (2.26)

Recall that the relation between these two fields is given by

Bµn =
1
gs

[
W †niD

µ
nWn

]
, (2.27)

where ∂µn acts only within the square brakets. Since the Wilson lines Wn are unitary, the Yang-Mills
action can be written in terms of the Bµn fields as

SYM[B] = −1
2

∫
d4x

∑
n

TrFnµνFµνn , (2.28)

where Fµνn is given in Eq. (2.11). However, in order to write the generating functional in terms of
the fields Bn requires changing the integration measure as well, and that is where additional care
has to be taken. From the definition of the Bn field we can immediately see that

n̄·Bn = 0 , (2.29)
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which follows from the well known relation of Wilson lines

n̄·DnWn = Wn n̄·∂n . (2.30)

Thus, while there are four components of the Aµn field, there are only three components for the Bµn
field, making the Jacobian for the change in the integration measure singular.

Of course, the fact that the Bµn field has less independent components than the Aµn field
is not unexpected, given that the former is gauge independent, while the latter contains all the
gauge redundancy. The only way one can obtain a meaningful definition of a Jacobian factor is by
removing the gauge redundancy and thus considering only three of the four components of the Aµn
field. This can be achieved using the usual Faddeev-Popov procedure, by inserting a representation
of unity into the path integral (2.25) in the following form

1 =
∫
Dα(x) δ[G(Aαn)] det

(
δG(Aαn)
δα

)
, (2.31)

where G(Aαn) is some gauge-fixing function linear in the gauge field. Here α(x) defines a specific
gauge transformation and Aαn denotes the (infinitesimally) gauge transformed field

(Aµn)α = Aµn +
1
gs
Dµ
nα . (2.32)

Note that for infinitesimal gauge transformations (from which all finite transformations can be
constructed), the determinant of δG/δα is in general a function of (Aµn)α but independent of α.

Following the standard treatment, the gauge invariance of both the action and the inte-
gration measure allows one to write

ZYM =
∫
Dα

∫
DAµn δ[G(An)]EG[An] , (2.33)

where we have defined

EG[An] = det
(
δG(Aαn)
δα

)
[An] eiSYM[An] . (2.34)

One should remember that the determinant det(δG/δα) is independent of α and therefore the
integral over the gauge freedom is just a global factor that can be safely ignored. The important
feature of this way of writing the path integral is that the integration measure DAµn δ[G(An)]
contains only three components of the Aµn field, and can thus be related to the integration measure
of the Bµn field. This allows us to formally write

DAµn δ[G(An)] = JG[Bn]DBµn δ[n̄·Bn] , (2.35)

where the Jacobian factor for the change of the integration measure JG[Bn] depends on the choice
of the gauge-fixing condition G. Combining these results together we find

ZYM =
∫
DBµn δ[n̄·Bn] JG[Bn]EG[An(Bn)] . (2.36)

Everything in this generating functional is known, except for the explicit form of the Jacobian
JG[Bn] and the determinant inside EG[An(Bn)]. Due to the non-linear nature of Eq. (2.27), their
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expressions for a general gauge-fixing condition G are very difficult to derive. However, from the
Faddeev-Popov procedure it is obvious that the generating functional is identical for all choices of
the gauge-fixing condition G, since it was introduced as an arbitrary function in Eq. (2.31). Thus,
any choice of G(An) will do, and the easiest choice is light-cone gauge, which uses

G(An) ≡ GLC(An) = n̄·An . (2.37)

In this case, we have n̄·An = 0, which immediately implies Wn = 1, making the relation between
the Aµn and Bµn fields trivial:

Bµn = Aµn . (2.38)

Thus, in this particular gauge we find

JGLC
[Bn] = 1 , EGLC

[Bn] = det(n̄·∂) eiSYM[Bn] , (2.39)

and we obtain the final form of the generating fuctional in terms of Bµn fields as

ZYM =
∫
DBµn δ[n̄·Bn] det(n̄·∂) eiSYM[Bn] . (2.40)

In other words, the Yang-Mills action in terms of the gauge invariant gluon field Bµn is identical
to the one in terms of the field Aµn in the light-cone gauge. Therefore, all Feynman rules for the
Bµn fields are identical to Feynman rules for the Aµn fields in the light-cone gauge. In particular,
this justifies Eq. (2.18) as the right form of the gluon propagator for the Bµn fields. Incidentally,
notice also that the determinant in Eq. (2.40) is independent of the gauge field and therefore can
be ignored, meaning that the formulation with Bµn fields is ghost-free. This obviously complies with
the well known fact that the light-cone gauge is unitary and ghost fields decouple (see, for instance,
[144]).

5 External operators in SCET

Having worked out how one can quantize SCET directly in terms of the gauge invariant
degrees of freedom, we next ask whether it is possible to write the generating functional of SCET
in terms of fields, whose interactions are given by the interactions of full QCD. As we will show,
this is indeed possible if we restrict ourselves to leading order in the power counting, but requires
separate fields for each different collinear direction. We will also show how to construct external
operators coupling these different fields to one another, such that any leading order correlation
function in SCET can be reproduced using only fields whose coupling to other fields is described by
the Lagrangian of full QCD. We do want to emphasize that this by no means implies that SCET
as an effective theory is useless. The power of SCET comes from understanding the interactions
between fields in different directions, and while we can reproduce any leading order operator using
fields that resemble full QCD, we can neither easily implement power corrections, nor can we derive
the form of the leading order operators without the construction of SCET. However, we can use
this equivalence to calculate matrix elements in SCET using the familiar Feynman rules of QCD,
which will in general simplify the required calculations at higher orders in perturbation theory.
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We start by making the Ansatz

Z[J ] =
∫
Dψ̄nDψnDAµnexp

[
i

∫
d4xSQCD(ψn, An, J)

]
, (2.41)

where SQCD is defined by

SQCD =
∑
n

[
LQCD
n + J̄ξnMξ

nψn + ψ̄nM̄ξ
nJ

ξ
n + J̄χnMχ

nψn

+ψ̄nM̄χ
nJ

χ
n + JAnµA

µ
n + JBnµBµn(An)

]
+
∑
k

JkQk(ψn, An) , (2.42)

with
LQCD
n = ψ̄n iD/ψn . (2.43)

The set of operators Qk couple k fields in different directions n1, ..., nk. Our goal is to find ex-
pressions for Mn and Qk, such that the generating functional in Eq. (2.41) is equivalent to the
generating functional of SCET.

Let’s begin by setting all currents in the action to zero, leaving only the Lagrangian LQCD
n .

One can write
ψn(x) = (Pn + Pn̄)ψn(x) , (2.44)

with the projection operators Pn and Pn̄ defined by

Pn =
n/n̄/

4
, Pn̄ =

n̄/n/

4
, (2.45)

and define
ξn ≡ Pnψn , φn ≡ Pn̄ψn . (2.46)

This allows us to write

Z[J = 0] =
∫
Dξ̄nDξnDφ̄nDφnDAµn (2.47)

×exp

[∑
n

i

∫
d4x (ξ̄n + φ̄n)iD/ (ξn + φn)

]
.

Using the well-known formula for Gaussian integration,∫
DφDφ̄ exp

[
i

∫
d4x(φ̄Mφ+ J̄φ+ φ̄J)

]
= det(−iM) exp

[
−i
∫
d4xJ̄

1
M
J

]
, (2.48)

it is straightforward to perform the integrals over φn explicitly. We find

Z[J = 0] =
∫
Dξ̄nDξnDAµnexp

[
i

∫
d4x

∑
n

LSCET
n

]
, (2.49)
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where

LSCET
n = ξ̄n

[
in·D + iD/⊥

1
in̄·DiD/⊥

]
n̄/

2
ξn . (2.50)

Note that in getting to Eqs. (2.49) and (2.50) no expansion has been made, only integration of
modes in the generating functional. Also note that in Eq.(2.49) we have omitted the determinant
factor in Eq. (2.48). Indeed it is easy to show that

det
(
n/

2
n̄·D

)
=
∫
DηnDη̄n exp

[
−
∫
d4x η̄n

(
n/

2
n̄·D

)
ηn

]
=
∫
Dη′nDη̄′n exp

[
−
∫
d4x η̄′n

(
n/

2
W †nn̄·DWn

)
η′n

]
= det

(
n/

2
n̄·∂
)
, (2.51)

where we have defined η′n = W †nηn. Thus the determinant is just an overall constant and can be
ignored.

We can now move on and consider the addition of current terms in the action. Keeping
the currents J̄nMn and M̄nJn for the fields ψn and ψ̄n, but still neglecting the currents Jk for the
local operators Qk, and again performing the integrals over φn and φ̄n gives

Z[Jk = 0] =
∫
Dξ̄nDξnDAµn exp

[
i

∫
d4xSSCET(Jk = 0)

]
,

(2.52)

with

SSCET(Jk = 0) =
∑
n

LnI + J̄ξnMξ
nRnξn + ξ̄nR̄nM̄ξ

nJ
ξ
n + J̄χnMχ

nRnξn + ξ̄nR̄nM̄χ
nJ

χ
n + JAnµA

µ
n + JBnµBµn(An)

−
(
J̄ξnMξ

n + J̄χnMχ
n

) 1
in̄·D

n̄/

2

(
M̄ξ

nJ
ξ
n + M̄χ

nJ
χ
n

)
. (2.53)

Here we have defined

Rn =
[
1 +

1
in̄·DiD/⊥

n̄/

2

]
. (2.54)

In order for this action to be equal to the action of SCET given in Eq. (2.21) (still with
Jk = 0), requires

Mξ
nRnξn ≡ ξn , Mχ

nRnχn ≡W †nξn , (2.55)

in addition to having the second line in Eq. (2.53), corresponding to contact terms arising when
taking two derivatives of the generating functional with respect to the currents Jξ/χn , vanish. There
are two possible solutions for each of the Mξ

n and Mχ
n to satisfy Eq. (2.55), namely

Mξ
n = R−1

n or Mξ
n = Pn ,

Mχ
n = W †nR−1

n or Mχ
n = W †nPn . (2.56)
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While both of these solutions for Mn give the same answer, the second choice is in practice much
easier to use. This is because choosing Mξ

n = R−1
n in Eq. (2.42) adds couplings between fermions

and gluons to the current terms, complicating perturbative calculations significantly. Furthermore,
for the second solution the second line in Eq. (2.53) vanishes as desired. Therefore, for Mξ

n = Pn
and Mχ

n = W †nPn we obtain for Jk = 0 the desired result SSCET = SI , where SI is defined in
Eq. (2.21).

Finally, we add the currents for the local operators Qk back to the action. Since these
operators couple fields with different n’s to one another, integrating out the φn fields is very
complicated. However, there is a simple choice for the operators Qk that will directly reproduce
the form

∑
k JkOk present in the final answer, Eq. (2.21). This is achieved by taking

Qk(ψn, An) = Ok(W †nPnψn,Bn(An)) , (2.57)

with Pn defined in Eq. (2.45). Since Pnψn = ξn, this choice eliminates any dependence on φn in
Qk. Thus, the integrals over φn can be performed as before and we therefore find

Qk(ψn, An) = Ok(W †nξn,Bn(An)) . (2.58)

In conclusion, the generating functional in terms of QCD fields

Z[J ] =
∫
Dψ̄nDψnDAµnexp

[
i

∫
d4xSQCD(ψn, An, J)

]
, (2.59)

with SQCD defined by

SQCD =
∑
n

[
LQCD
n + J̄ξnPnψn + ψ̄nPn̄J

ξ
n + J̄χnW

†
nPnψn

+ψ̄nPn̄WnJ
χ
n + JAnµA

µ
n + JBnµBµn(An)

]
+
∑
k

JkOk(W †nPnψn,Bn(An)) , (2.60)

is identical to the generating functional defined in Eqs. (2.20) and (2.21) in terms of SCET fields.
This proves that the collinear sector of SCET is equivalent to a theory containing multiple copies
of QCD, where the only interactions between them are contained in the local operators Ok.

So far we have only considered the collinear sector of SCET, but of course it is well known
that usoft degrees of freedom are required in order to reproduce the long distance dynamics of QCD.
On the other hand, it is also well known that at leading order in the effective theory the interactions
between usoft and collinear particles can be removed to all orders in perturbation theory by using
the field redefinition [21]

ξn → Ynξn , (2.61)

where

Yn = P exp
[
ig

∫ ∞
0

ds n·A(ns+ x)
]
. (2.62)

Thus, we can include the interactions with the usoft gluons by making a similar field redefinition
on the fields ψn. This implies that the action given in Eq. (2.42), but now with

LQCD
n = ψ̄n

(
iD/+ gn·Aus

n̄/

2

)
ψn (2.63)

reproduces both the collinear and usoft interactions of the collinear fields.
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6 Conclusions

We have shown how SCET can be quantized either in terms of gauge dependent or gauge
invariant fields. In practice, most calculations in the literature are performed using the gauge
dependent degrees of freedom, whereas the external operators have to depend on the gauge invariant
fields. Using our results, one can perform the calculations directly in terms of the gauge invariant
fields, reducing the number of Feynman diagrams significantly. We have then moved on to show
how the collinear sector of SCET is equivalent to a theory constructed out of multiple decoupled
copies of full QCD, in the sense that each copy describes the interactions of fields in a given direction
and the different copies do not interact with one another. We have also shown in detail how to
construct the local operators describing precisely the interactions between the different copies of
QCD, such that any SCET correlator at leading order can be reproduced.



17

Chapter 3

Event Shapes(Angularities) in e+e−
annihilation

1 Introduction

Event shapes probe the hadronic final states produced in hard scattering processes for jet-
like structure [71]. Two-jet event shapes e in hadronic e+e− annihilations are constructed so that
one of the kinematic endpoints corresponds to the limit of two back-to-back perfectly collimated
jets. Different event shapes vary in their sensitivity to particles close to or far away from the jet
axis and thus used in tandem probe the substructure of jets [3, 2]. Some examples of two-jet event
shapes are the familiar thrust [47, 86], jet masses [58, 53, 59], and jet broadening [49], and the
more recently introduced angularities [37]. The shape of the distributions in these variables depend
on several energy scales, namely, the scale Q of the hard scattering, the scale of the invariant
mass or typical transverse momentum of the jet µJ , and the scale ΛQCD of soft radiation from the
jets involved in color recombination occurring during hadronization. Event shapes thus probe the
behavior of QCD over a large range of energy scales, and indeed have been the source of some of
the most precise extractions of the strong coupling constant αs [32, 76, 42].

Dependence on strong interactions at soft scales near ΛQCD where QCD is nonperturbative
would render predictive calculations impossible, without the use of factorization. Factorization
separates an observable into pieces depending on each individual relevant energy scale. Those pieces
depending on large scales can be calculated perturbatively, while those depending on soft scales
remain nonperturbative. If these soft functions are, however, universal among different observables
or physical processes, then calculations of the factorized observables become predictive. A large
number of two-jet event shape distributions in e+e− annihilation can be factorized into hard, jet,
and soft functions:

1
σtot

dσ
de

= H(Q;µ)
∫

de1 de2 des J1(e1;µ)J2(e2;µ)S(es;µ)δ(e− e1 − e2 − es) , (3.1)

where H(Q;µ) is the hard coefficient dependent only on the hard scattering e+e− → qq̄ at center-of-
mass energy Q, J1,2 are jet functions describing the perturbative evolution of the initially produced
partons q, q̄ into collimated jets of lower-energy partons, and finally S(es;µ) is the soft function
describing the color exchange between the two jets leading to the hadronization of their constituent
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partons. This description introduces dependence on a factorization scale µ, at which the cross-
section is factorized, into each of the individual functions. This dependence must cancel in the
whole combination in Eq. (3.1). The full distribution and the individual jet and soft functions
contain terms of the form (1/e)αns lnm e which become large in the two-jet limit e → 0. The
dependence of the hard, jet, and soft functions on the factorization scale µ can be determined from
renormalization group equations, which can be used to resum the large logarithms [69].

The formidable achievements of proofs of factorization theorems for hard scattering cross-
sections in QCD span a long and monumental history [63, 142]. More recently many of these
theorems were reformulated in the language of soft-collinear effective theory (SCET) [12, 14, 25, 21].
This was done for two-jet event shapes for light quark jets in the series of papers [19, 17, 119, 11]
and for top quark jets in [88, 87]. Some of the relations between the full and effective theory
formulations of factorization were explored in [119, 11]. Equivalent results can be formulated
in either language, although our discussion below will be in the context of SCET, which we find
advantageous for its intuitive framework for separating physics at hard, collinear, and soft scales and
its explicit Lagrangian for interactions between collinear and soft modes. These features facilitate
the implementation of factorization and resummation of logarithms of ratios of all the relevant
energy scales. At the same time that the effective theory provides us an intuitive framework in which
to analyze the behavior of event shape distributions, the properties of the angularities themselves
will in turn illuminate properties of the effective theory, and in particular, the conditions under
which it is valid for the observables under consideration.

To describe the conditions under which the distribution in a particular event shape fac-
torizes as in Eq. (3.1), it is useful to write event shapes in a generic form. Many event shapes can
be written in the form,

e(X) =
1
Q

∑
i∈X

∣∣pi⊥∣∣ fe(ηi) , (3.2)

where the sum is over all particles i in the final state X, pi⊥ is the transverse momentum of the
ith particle and ηi its rapidity relative to the thrust axis. Each choice of the weight function fe
determines a different event shape. For example, for the thrust and jet broadening, f1−T (η) = e−|η|

and fB(η) = 1. A continuous set of event shapes which generalize the thrust and jet broadening
are the angularities τa [37], corresponding to the choice

fτa(η) = e−|η|(1−a) , (3.3)

where a is any real number a < 2. For a ≥ 2, the function in Eq. (3.3) weights particles collinear
to the thrust axis too strongly and makes the quantity Eq. (3.2) sensitive to collinear splitting, and
thus not infrared-safe. The factorization theorem Eq. (3.1), however, is valid only for a < 1. At
a = 1, the distribution of events in τ1 is dominated by jets with invariant mass of order ΛQCD. Thus,
the jet and soft scales coincide, and the distribution cannot be divided into separately infrared-safe
jet and soft functions, at least in the traditional form of the factorization theorem. This breakdown
can be seen in the uncontrollable growth of a number of nonperturbative power corrections as a→ 1
[37, 119], or in the failure to cancel infrared divergences in the perturbative calculation of the jet
or soft functions in the same limit, as we have recently explored in Ref. [102]. We review this
breakdown of factorization in the explicit perturbative calculations we perform below. Any choice
of weight function fe that sets a jet scale at or lower than the soft scale will ruin the factorization
Eq. (3.1).
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The distributions for which the factorization in Eq. (3.1) breaks down might still factorize
in a different form, by distinguishing collinear and soft modes not by their invariant mass, but by
their rapidity, as proposed in [129]. We do not, however, pursue such a strategy here, and focus
only on angularities with strictly a < 1.1

The soft function evaluated at a scale µs ∼ ΛQCD is nonperturbative. Evaluated at a
higher scale, however, it can be calculated in perturbation theory. An appropriate model for the
soft function should interpolate between these two regimes. In our analysis we adopt a model like
that proposed for hemisphere jet masses in [100] and for b-quark distributions in [121], in which
the soft function is a convolution,

S(es;µ) =
∫

de′s S
PT(es − e′s;µ)f exp(e′s −∆e) , (3.4)

where SPT is the partonic soft function calculated in perturbation theory, and f exp is a nonper-
turbative model function. The gap parameter ∆e, proposed in Ref. [100], enters f exp through a
theta function θ(es − ∆e) so that the minimum possible value of an event shape e of final states
is ∆e, which is zero in the partonic distribution, but is nonzero due to hadronization in the actual
distribution. The full soft function S(es;µ) inherits its scale dependence from SPT(es;µ) and thus
has a well-defined running with the scale µ.

The partonic soft function SPT(es;µ) contains a renormalon ambiguity due to the behavior
of the perturbative series at high orders. This ambiguity should not be present in the full physical
distribution or the soft function, so the ambiguity in SPT is canceled by a corresponding ambiguity
in ∆e. Shifting from ∆e to a renormalon-free gap parameter ∆̄e(µ) = ∆e − δe(µ) removes the
ambiguity from the entire soft function Eq. (3.4). This greatly reduces the uncertainty in the
predicted distribution due to such renormalon ambiguities. These features were demonstrated in
[100] for jet mass and thrust distributions. In this Chapter, we extend the soft function model and
demonstrate that a similar cancellation occurs for angularities τa.

Many studies of nonperturbative soft power corrections in event shape distributions have
been based on the behavior of the perturbative expansions of the distributions, either the behavior
of their renormalon ambiguities [130, 34] or their dependence on a postulated “infrared” effective
coupling αs at low scales [79, 80, 81]. In particular, they led to the proposal of a universal soft
power correction to the mean values of event shape distributions in the form [80, 81]

〈e〉 = 〈e〉PT +
ceA
Q

, (3.5)

where 〈e〉PT is the mean value of the partonic distribution, and the coefficient of the 1/Q power
correction is an exactly-calculable number ce dependent on the choice of event shape multiplied by
an unknown nonperturbative parameter A which is universal for numerous event shape distribu-
tions. In [119] the operator definition of the soft function in the factorization theorem Eq. (3.1)
was used to prove the relation Eq. (3.5) to all orders in αs. For angularities, cτa = 2/(1− a). This
scaling of the power correction with a was observed in [40] based on the behavior of the resummed
perturbative series for angularity distributions after imposing an IR cutoff on the scale in αs(µ)
and in [39] based on analysis of the distributions using dressed gluon exponentiation [91]. Below

1Even though traditional factorization breaks down for a = 1 (jet broadening), the resummation of jet broadening
in QCD was performed in [49, 77] and nonperturbative effects were discussed in [78].
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we will review the proof of the scaling in [119] based on the operator definition of the soft func-
tion independently of its perturbative expansion, and later use the scaling rule to constrain the
nonperturbative model we adopt for the soft function in angularity distributions.

The history of calculating event shape distributions using perturbation theory in QCD
goes all the way back to QCD’s earliest years. The thrust distribution for light quark jets to
O(αs) was calculated in [74], to which our fixed-order results for dσ/dτa reduce at a = 0. The
resummation of the thrust distribution to NLL was performed in QCD in [48, 50] and to LL in
SCET in [24, 140] (and later extended to N3LL in [32]). Our results are consistent with these
SCET results at the appropriate orders for a = 0. The jet mass distribution for top quark jets
was calculated and resummed to the same order in [87], with which we agree on the SCET jet
and soft functions for a = 0 in the limit mt = 0. The jet and soft functions for thrust or jet
mass distributions can be derived easily from the “ordinary” SCET jet function J(k+), and the
hemisphere soft function S(k+, k−), because the thrust and jet mass depend only on a single light-
cone component of the total four-momentum in each hemisphere (cf. [48]). These standard jet
and soft functions were calculated to two-loop order in [29, 28, 98]. Angularities for arbitrary a,
however, depend on both light-cone components k± in each hemisphere, thus requiring the new
calculations we perform below.

In the original introduction of the angularities τa [37] the resummation of logarithms was
achieved to the same next-to-leading-logarithmic (NLL) order that we achieve below, but without
full inclusion of next-to-leading-order (NLO) jet and soft functions for the τa-distribution, which
we calculate explicitly here for the first time. This improves the accuracy of our result for small
τa. Our result is also improved in this region by adopting the soft function model Eq. (3.4) which
cures unphysical behavior of the point-by-point distribution dσ/dτa as τa → 0 due to renormalon
ambiguities. The results of [37] converted to the traditional form of an NLL resummed event
shape distribution [48] were subsequently matched to fixed-order QCD at O(α2

s) numerically in
[40], improving the accuracy of the large-τa region. We perform this fixed-order matching only at
O(α1

s).
Comparing our result to those of [37, 40] elucidates the relation between SCET and tra-

ditional QCD-based approaches to resumming logarithms more generally. While the advantages
of SCET in achieving factorization or resummation of logarithms through renormalization group
evolution can of course be formulated without the explicit language of the effective theory (see,
e.g., [37, 69]), the effective theory nevertheless unifies these concepts and methods in an intuitive
framework that, we have found, allows us greater facility in improving the precision and reliability
of our predictions of event shape distributions. Even though we do not go beyond the existing NLL
resummation of logarithms of τa [37, 40], the flexibility in the effective theory to vary the scales
µH,J,S , where logarithms in the hard, jet, and soft functions are small and from which we run each
function to the factorization scale µ, allows additional improvements. For example, we are able to
avoid any spurious Landau pole singularities which the traditional approaches usually encounter.
(For previous discussions on how the effective theory avoids spurious Landau poles present in the
traditional approach, see Refs. [126, 27, 30].)

The plan of the Chapter is as follows. In Sec. 2, we review the demonstration of factor-
ization of event shape distributions in the formalism of SCET that was presented in [11], recalling
the introduction of the event shape operator ê that returns the value of an event shape e of a final
state X, constructed from the energy-momentum tensor. In Sec. 3, we calculate the jet and soft
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functions appearing in the factorization theorem for angularity distributions for a < 1 to one-loop
order in αs. We recall the observations of [102] about how the breakdown of factorization as a→ 1
is observed in the infrared behavior of these functions in perturbation theory. In Sec. 4 we solve the
renormalization group equations obeyed by the hard, jet, and soft functions and resum leading and
next-to-leading logarithms of τa in the perturbative expansions of these functions, and explain how
we match the resummed distributions onto the fixed-order prediction of QCD at O(αs). In Sec. 5
we construct a model for the soft function in angularity distributions for all a < 1, based on existing
models for hemisphere and thrust soft functions which contain a nonperturbative gap parameter
introduced in [100], which cancels the renormalon ambiguity in the perturbative series for the soft
function. In Sec. 6 we present plots of our final predictions of angularity distributions using all the
results of Secs. 3–5. In Sec. 7 we compare and contrast the SCET approach to predicting resummed
angularity distributions to those based on factorization and RG evolution in full QCD [37] and to
the traditional approach to resummation [40, 48]. In Sec. 8 we present our conclusions, and in the
Appendices, we verify a consistency relation among the hard, jet, and soft anomalous dimensions
for arbitrary a, provide some technical details necessary for the solution of the RG equations for
the jet and soft functions, and explain our procedure to calculate angularity distributions at fixed-
order in QCD at O(αs), noting the hitherto unnoticed property of the angularities that they fail
to separate two- and three-jet-like events for values of a . −2, and so cease to behave exactly as
“two-jet” event shapes.

2 Review of Factorization of Event Shape Distributions

We begin by reviewing the factorization of event shape distributions in the formalism of
SCET, presented in [11].

2.1 Event shape distributions in full QCD

The full QCD distribution of events in e+e− → hadrons in an event shape variable e is
given, to leading-order in electroweak couplings, by

dσ
de

=
1

2Q2

∑
X

∫
d4x eiq·x

∑
i=V,A

Liµν 〈0| jµ†i (x) |X〉 〈X| jνi (0) |0〉 δ(e− e(X)) , (3.6)

where q = (Q,0) is the total four-momentum in the center-of-mass frame, the sum is over final
states X, and e(X) is the value of the event shape e of the state X. The final state is produced by
the vector and axial currents,

jµi =
∑
f,a

q̄afΓµi q
a
f , (3.7)

where ΓµV = γµ and ΓµA = γµγ5 and the sum is over quark flavors f and colors a. The leptonic
tensor, which includes contributions from an intermediate photon and Z boson, is given by

LVµν = − e4

3Q2

(
gµν −

qµqν
Q2

)[
Q2
f −

2Q2vevfQf
Q2 −M2

Z

+
Q4(v2

e + a2
e)v

2
f

(Q2 −M2
Z)2

]
(3.8a)

LAµν = − e4

3Q2

(
gµν −

qµqν
Q2

)
Q4(v2

e + a2
e)a

2
f

(Q2 −M2
Z)2

, (3.8b)
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where Qf is the electric charge of f in units of e, and vf , af are the vector and axial charges of f ,

vf =
1

2 sin θW cos θW
(T 3
f − 2Qf sin2 θW ) , af =

1
2 sin θW cos θW

T 3
f . (3.9)

As shown in [11], the sum over hadronic final states remaining in Eq. (3.6) can be performed by
introducing an operator ê that gives the event shape e(X) of a final state X. This operator can
be constructed from a momentum flow operator, which in turn is constructed from the energy-
momentum tensor. That is,

ê |X〉 ≡ e(X) |X〉 =
1
Q

∫ ∞
−∞

dη fe(η)ET (η; t̂) |X〉 , (3.10)

where t̂ is the operator yielding the thrust axis of final state X, and ET (η; t̂) is the transverse
momentum flow operator, yielding the total transverse momentum flow in the direction given by
rapidity η, measured with respect to the thrust axis, in a final state X,

ET (η; t̂) |X〉 ≡ 1
cosh3 η

∫ 2π

0
dφ lim

R→∞
R2

∫ ∞
0

dt n̂iT0i(t, Rn̂) |X〉 =
∑
i∈X

∣∣pi⊥∣∣ δ(η − ηi) |X〉 , (3.11)

which is closely related to the energy flow operator proposed in [114]. The thrust axis operator t̂
can be constructed explicitly, as shown in [11]. After matching onto SCET, however, an explicit
construction is not necessary, as the thrust axis is simply given by the jet axis n labeling the
two-jet current. The difference between the two axes introduces power corrections in λ which are
subleading, as long as a < 1 [37, 11]. Using the operator ê, we perform the sum over X in Eq. (3.6),
leaving

dσ
de

=
1

2Q2

∫
d4x eiq·x

∑
i=V,A

Liµν 〈0| jµ†i (x)δ(e− ê)jνi (0) |0〉 . (3.12)

2.2 Factorization of event shape distributions in SCET

To proceed to a factorized form of the distribution Eq. (3.12), we match the current jµ

and the operator ê onto operators in SCET. To reproduce the endpoint region of the two-jet event
shape distribution, we match the QCD currents jµi onto SCET operators containing fields in just
two back-to-back collinear directions,

jµi (x) =
∑
n

∑
p̃n,p̃n̄

Cnn̄(p̃n, p̃n̄;µ)Onn̄(x; p̃n, p̃n̄) , (3.13)

summing over the direction n of the light-cone vectors n, n̄ = (1,±n), and label momenta p̃n, p̃n̄.
The two-jet operators [17, 13], after the BPS field redefinition [21] with soft Wilson lines, are

Onn̄(x; p̃n, p̃n̄) = ei(p̃n−p̃n̄)·xχ̄n,pn(x)Yn(x)Γµi Y n̄(x)χn̄,pn̄(x) , (3.14)

where ΓµV = γµ⊥ and ΓµA = γµ⊥γ5. The soft Wilson lines are the path-ordered exponentials of soft
gluons,

Yn(x) = P exp
[
ig

∫ ∞
0

n ·As(ns+ x)
]
, Y n̄(x) = P exp

[
ig

∫ ∞
0

n̄ · Ās(n̄s+ x)
]
, (3.15)
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with As, Ās respectively in the fundamental or anti-fundamental representation. The jet fields
χn = W †nξn and χn̄ = W †n̄ξn̄ are combinations of collinear quark fields made invariant under
collinear gauge transformations by Wilson lines of collinear gluons [14, 25], where

Wn(x) =
∑

perms

exp
[
−g 1
P̄ n̄ ·An,q(x)

]
, (3.16)

where q is the label momentum of the collinear gluon field An, and P̄ is a label momentum operator
which acts as P̄An,q = (n̄ · q)An,q [25]. Recall that, in SCET, collinear momenta pµc = p̃µ + kµ are
divided into a large label piece, p̃µ = (n̄ · p̃)nµ/2 + p̃µ⊥, and a residual piece, kµ, where n̄ · p̃ is O(Q),
p̃⊥ is O(Qλ), and k is O(Qλ2). The residual momenta are the same size as soft momenta, ks, of
O(Qλ2). Below, however, we will see how the natural scaling of the collinear modes varies with the
choice of observable τa. The integral over x in Eq. (3.12) enforces that the label momenta of the
jet fields in the two-jet operator satisfy n̄ · p̃n = −n · p̃n̄ = Q and p̃⊥n = p̃⊥n̄ = 0.

We must also match the operator ê in full QCD onto SCET. To do so we simply replace
the QCD energy-momentum tensor Tµν appearing in the definition Eq. (3.11) with the energy-
momentum tensor in SCET, and, as noted above, set the thrust axis equal to the jet axis n in the
two-jet operator Onn̄. After the BPS field redefinition, to leading order in λ the SCET energy-
momentum tensor is a direct sum over contributions from fields in the n, n̄ collinear and soft
sectors, since the Lagrangian splits into these separate sectors with no interactions between them.
(Beyond leading order in λ, there are power-suppressed terms in the SCET Lagrangian in which
interactions between collinear and soft fields do not decouple following the BPS field redefintion
[20, 54, 136, 22].) Then the event shape operator ê splits into separate collinear and soft operators,

ê = ên + ên̄ + ês , (3.17)

where each êi is constructed only from the energy-momentum tensor of sector i of the effective
theory. So, finally, the event shape distribution in SCET factorizes into purely hard, collinear and
soft functions,

1
σ0

dσ
de

= H(Q;µ)
∫

den den̄ des δ(e− en − en̄ − es)Jn(en;µ)Jn̄(en̄;µ)S(es;µ) , (3.18)

where the hard coefficient is the squared amplitude of the two-jet matching coefficient,

H(Q;µ) = |Cnn̄(Qn/2,−Qn̄/2;µ)|2 , (3.19)

and the jet and soft functions are given by the matrix elements of collinear and soft operators,

S(es;µ) =
1
NC

Tr 〈0|Y †n̄(0)Y †n (0)δ(es − ês)Yn(0)Y n̄(0) |0〉 , (3.20)

and

Jn(en;µ) =
∫

dl+

2π
Jn(en, l+;µ) , Jn̄(en̄;µ) =

∫
dk−

2π
Jn̄(en̄, k−;µ) , (3.21)

where

Jn(en, l+;µ)
(
n/

2

)
αβ

=
1
NC

Tr
∫

d4x eil·x 〈0|χn,Q(x)αδ(en − ên)χ̄n,Q(0)β |0〉 (3.22a)

Jn̄(en̄, k−;µ)
(
n̄/

2

)
αβ

=
1
NC

Tr
∫

d4x eik·x 〈0| χ̄n̄,−Q(x)βδ(en̄ − ên̄)χn̄,−Q(0)α |0〉 . (3.22b)
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In Eqs. (3.20), (3.22a), and (3.22b), the traces are over colors. Also, in Eq. (3.18), we have divided
the distribution by the total Born cross-section for e+e− → qq̄,

σ0 =
4πα2NC

3Q2

∑
f

[
Q2
f −

2Q2vevfQf
Q2 −M2

Z

+
Q4(v2

e + a2
e)(v

2
f + a2

f )

(Q2 −M2
Z)2

]
. (3.23)

The n-collinear jet function Jn depends only on the l+ ≡ n ·l component of the residual momentum,
and Jn̄ on k− ≡ n̄ · k, as only the n ·∂ derivative appears in the n-collinear Lagrangian, and n̄ ·∂ in
the n̄-collinear Lagrangian, at leading order in λ [14]. In angularity distributions, the jet functions
are independent of the residual transverse momenta k⊥, l⊥ as long as a < 1 [11].

In Secs. 3 and 4 we calculate the above hard, jet, and soft functions for angularity distribu-
tions to next-to-leading order in αs, and solve for their dependence on µ through the renormalization
group equations, which will allow us to sum large logarithms of τa.

2.3 Universal first moment of the soft function

As shown in [119], the behavior of the soft function Eq. (3.20) under Lorentz boosts in
the n direction implies a universal form for its first moment. The vacuum |0〉 and the Wilson lines
Yn,n̄(0), Y n,n̄(0) are all invariant under such boosts, while the transverse momentum flow operator
ET (η) appearing in the definition of ês transforms as ET (η) → ET (η′) under a boost by rapidity
η′ − η. These properties imply that the first moment of S(es;µ) is given by∫

des es S(es;µ) =
ceA(µ)
Q

, (3.24)

where

ce =
1
Q

∫ ∞
−∞

dη fe(η) (3.25)

A(µ) =
1
NC

Tr 〈0|Y †n̄(0)Y †n (0)ET (0)Yn(0)Y n̄(0) |0〉 . (3.26)

The coefficient ce is exactly calculable from the definition of the event shape e in Eq. (3.2) while
A(µ) is not fully calculable due to the contribution of nonperturbative effects, but is completely
independent of the choice of variable e. The first moment Eq. (3.24) is universal for all event shapes
of the form Eq. (3.2) in this sense. For angularities, using Eq. (3.3) and Eq. (3.25),

ca =
∫ ∞
−∞

dη e−|η|(1−a) =
2

1− a . (3.27)

This scaling of the first moment of the soft function for angularities will constrain the parameteri-
zation of the nonperturbative model for the soft function that we introduce in Sec. 5.

3 Fixed-order Perturbative Calculations of Hard, Jet, and Soft
Functions

In this section we calculate at next-to-leading order, that is, O(αs), in perturbation theory
the hard, jet, and soft functions, H(Q;µ), Jn,n̄a (τn,n̄a ;µ), and Sa(τ sa ;µ), in the factorization theorem
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for angularity distributions, which is given by Eq. (3.18) with e = τa.2

3.1 Hard function at NLO

The hard function H(Q;µ), given by Eq. (3.19), is the squared amplitude of the two-jet
matching coefficient Cnn̄(Q,−Q;µ). This matching coefficient was calculated, for example, in [126]
in the context of DIS and in [17] for e+e− annihilation, to NLO. It is found by calculating a matrix
element of the QCD current Eq. (3.7) and SCET current Eq. (3.13) (for example, 〈q(pq)q̄(pq̄)| jµi |0〉),
and requiring that the two match. Since the matching of the currents is independent of the observ-
able being calculated, we do not need to repeat the matching calculation here, and simply quote
the result. The matching coefficient Cnn̄(p̃n, p̃n̄;µ) in the SCET current Eq. (3.13) is given by

Cnn̄(p̃n, p̃n̄;µ) = 1− αsCF
4π

[
8− π2

6
+ ln2

(
µ2

2p̃n · p̃n̄

)
+ 3 ln

(
µ2

2p̃n · p̃n̄

)]
. (3.28)

Here and in the remainder of this section, αs ≡ αs(µ). The hard function H(Q;µ) in Eq. (3.19) is
thus

H(Q;µ) = 1− αsCF
2π

(
8− 7π2

6
+ ln2 µ

2

Q2
+ 3 ln

µ2

Q2

)
. (3.29)

The additional contribution to the coefficient of π2 in going from Eq. (3.28) to Eq. (3.29) is due to
the sign of 2p̃n · p̃n̄ = −Q2, following the conventions of [25].

The bare SCET two-jet operators in Eq. (3.14) are renormalized by the relation

O(0)
nn̄ (x; p̃n, p̃n̄) = ZO(p̃n, p̃n̄;µ)Onn̄(x; p̃n, p̃n̄) , (3.30)

where the renormalization constant, calculated using dimensional regularization to regulate the UV
divergences in d = 4− 2ε dimensions, is given by

ZO(p̃n, p̃n̄;µ) = 1 +
αsCF

4π

[
2
ε2

+
2
ε

ln
(

µ2

2p̃n · p̃n̄

)
+

3
ε

]
. (3.31)

Matching the QCD current Eq. (3.7) onto only two-jet operators in SCET is sufficient
to describe accurately the two-jet region near τa = 0 of angularity distributions. To calculate
accurately also the tail region to O(αs), where the jets broaden and an additional jet begins to
form, we would need to include a basis of three-jet operators in Eq. (3.13) as well [24, 133]. But
since we are mainly interested in obtaining the correct shape of the two-jet region, we do not
pursue this approach here. We will simply calculate the whole distribution in SCET with only
two-jet operators, and then match the tail region numerically onto the fixed-order prediction of full
QCD. This will be described more precisely in Sec. 4.4.

3.2 Cutting rules for weighted matrix elements

The jet and soft functions that typically appear in factorizations of hard cross-sections in
SCET are defined in terms of matrix elements of the products of collinear and soft fields, which

2Note that here and below a superscript n on a quantity is not a power but denotes “n-collinear” just as n̄ denotes
“n̄-collinear” and s denotes “soft”.
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Figure 3.1: The (A), (B) real and (C), (D) virtual contributions to the soft function. The gluons
all have momentum k.

are related to the imaginary part of the matrix element of a time-ordered product of the fields
according to the optical theorem,∫

d4x eiq·x
〈
0
∣∣φ(x)φ†(0)

∣∣0〉 = Disc
[∫

d4x eiq·x
〈
0
∣∣Tφ(x)φ†(0)

∣∣0〉] . (3.32)

The right-hand side is then related to the sum of all cuts of the relevant Feynman diagrams using
the standard Cutkosky cutting rules.

However, for more generic jet observables such as angularities for a 6= 0, the jet and soft
functions that appear in factorization proofs contain matrix elements in which additional operators
are inserted between the collinear and soft fields in the definition of the traditional jet and soft
functions [15]. For the matrix elements involving the extra insertion of such operators, we need to
generalize the cutting rules for calculating these matrix elements from Feynman diagrams.

For the case of angularities, the jet and soft functions given in Eqs. (3.20), (3.22a), and
(3.22b) differ from the traditional jet and soft functions by the insertion of the delta function oper-
ator δ(τa − τ̂a). We denote the appropriate generalized prescription for calculating the new matrix
element from the Feynman diagrams of time-ordered perturbation theory as the “τa-discontinuity,”∫

d4x eiq·x
〈
0
∣∣φ(x) δ(τa − τ̂a)φ†(0)

∣∣0〉 ≡ Discτa

[∫
d4x eiq·x

〈
0
∣∣Tφ(x)φ†(0)

∣∣0〉] . (3.33)

The Discτa prescription is to cut the diagrams contributing to the matrix element of time-ordered
operators just as for the usual matrix elements in Eq. (3.32) but to insert an additional factor
of δ(τa − τa(X)) for each cut, where X is the final state created by the cut.3 This prescription
corresponds to reinserting a sum over a complete set of final states between the delta function
operator and φ†(0) in Eq. (3.33), and is precisely how we would calculate the full differential cross-
section as written in Eq. (3.6). In the next two subsections we illustrate extensively the use of the
Discτa prescription.

3.3 Calculation of the soft function to NLO

The diagrams that contribute to the soft function are shown in Fig. 3.1. From Eqs. (3.3),
(3.10), and (3.11), the contribution to the angularity from an on-shell soft gluon with momentum

3The operator-based method that was developed in [135] for calculating weighted cross-sections can be used to
relate matrix elements such as in the left-hand side of Eq. (3.33) directly to the ordinary discontinuity of matrix
elements of time-ordered products of fields. However, for the scope of this paper, we choose simply to apply the
prescription Eq. (3.33).
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k is

τ sa =
|k⊥|
Q

e
− 1−a

2

˛̨̨
ln k+

k−

˛̨̨
=

{
1
Q |k+|1−

a
2 |k−|

a
2 for k− ≥ k+

1
Q |k−|

1−a
2 |k+|

a
2 for k+ ≥ k−

. (3.34)

Since cutting a gluon puts it on shell, the operator τ̂ sa returns these values when acting on a cut
soft gluon. When no gluon is in the final state cut, the operator τ̂ sa simply returns zero. The real
and virtual diagrams then contain delta functions, which we denote δR and δV , respectively,

δR ≡ δR(τ sa , k) = θ(k− − k+) δ
(
τ sa −

1
Q

∣∣k+
∣∣1−a2 ∣∣k−∣∣a2) (3.35a)

+ θ(k+ − k−) δ
(
τ sa −

1
Q

∣∣k−∣∣1−a2 ∣∣k+
∣∣a2) ,

δV ≡ δV (τ sa) = δ(τ sa) . (3.35b)

In terms of these delta functions, the (bare) perturbative soft function can be written

SPT(0)
a (τ sa ;µ) = δ(τ sa) + 2 δR + 2 δV , (3.36)

where we used that the tree-level contribution is just δ(τ sa) and that the two real and the two virtual
diagrams in Fig. 3.1 give identical contributions.

In pure dimensional regularization, the virtual contributions are scaleless and hence vanish
so we only need to evaluate the real diagrams. They add to

2 δR = 2g2µ2εCF n·n̄
∫

ddk
(2π)d

1
k−

1
k+

2πδ(k−k+ − |k⊥|2) θ(k−)δR(τ sa , k) . (3.37)

Performing the k integrals gives

SPT(0)
a (τ sa ;µ) = δ(τ sa) + θ(τ sa)

αsCF n·n̄
π(1− a)

(
4πµ2

Q2

)ε 1
Γ(1− ε)

1
ε

(
1
τ sa

)1+2ε

. (3.38)

Nonzero values of τ sa regulate the IR divergences, and so here the 1/ε pole is of UV origin, ε = εUV.
Applying the distribution relation (valid for ε < 0)

θ(x)
x1+2ε

= −δ(x)
2ε

+
[
θ(x)
x

]
+

− 2ε
[
θ(x) lnx

x

]
+

+O(ε2) , (3.39)

where [
θ(x) lnn(x)

x

]
+

≡ lim
β→0

[
θ(x− β) lnn(x)

x
+

lnn+1 β

n+ 1
δ(x− β)

]
, (3.40)

to Eq. (3.38) we obtain the final result for the (bare) angularity soft function,

SPT(0)
a (τ sa ;µ) =

∫
dτ s

′
a ZS(τ sa − τ s

′
a ;µ)Sa(τ s

′
a ;µ) , (3.41)
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where to NLO the renormalized soft function, SPT
a , is given by

SPT
a (τ sa ;µ) = δ(τ sa)

[
1− αsCF

π(1− a)

(
1
2

ln2 µ
2

Q2
− π2

12

)]
+

2αsCF
π(1− a)

[
θ(τ sa)
τ sa

ln
µ2

(Qτ sa)2

]
+

, (3.42)

and the renormalization factor, ZS , is given by

ZS(τ sa ;µ) = δ(τ sa)
[
1− αsCF

π(1− a)

(
1
ε2

+
1
ε

ln
µ2

Q2

)]
+

1
ε

2αsCF
π(1− a)

[
θ(τ sa)
τ sa

]
+

. (3.43)

3.4 IR structure of the soft function

While the mathematical identity in Eq. (3.39) allowed us to arrive at our final result,
Eq. (3.42), the origin of the 1/ε poles became obscured through its use. In fact, the use of Eq. (3.39)
is only valid for ε < 0 which suggests that the 1/ε pole on the right-hand side of Eq. (3.39) is of
IR origin. The virtual diagrams, while formally zero in pure dimensional regularization, play the
role of converting this IR divergence into a UV divergence by adding a quantity proportional to
(1/εUV−1/εIR) to the coefficient of δ(τ sa), if the final result is in fact free of IR divergences. Näıvely
it seems that this conversion cannot possibly occur for arbitrary a, because the 1/ε poles in the
real diagrams have a-dependent coefficients (see Eq. (3.43)), while the virtual diagrams contain
no apparent a dependence. Nevertheless, by carefully examining the contribution of both the real
and virtual diagrams, we will show that, for a < 1, the virtual diagrams play precisely this role
and convert each IR divergence in the real graphs into UV, but that for a ≥ 1, this cancellation is
incomplete. This is accomplished through an analysis of integration regions in the loop momentum
integrals that avoids the use of explicit IR regulators. Our presentation here complements our
discussion of these issues in [102].

Using that
∫ 1

0 dx [lnn(x)/x]+ = 0, the contribution to the coefficient of δ(τ sa) can be isolated
by integrating the diagrams over τ sa from 0 to 1. We find that the contribution from the real
diagrams can be written as

∫ 1

0
dτ sa

[
2 δR

]
=
αsCF n·n̄

2π

(
4πµ2

)ε
Γ(1− ε)

∫
R

dk+dk−(k+k−)−1−ε , (3.44)

where R is given by the region of positive k+ and k− such that

(k−)
a
2 (k+)1−a

2 < Q for k− ≥ k+

(k+)
a
2 (k−)1−a

2 < Q for k− ≤ k+ . (3.45)

This region is plotted in Fig. 3.2A for various values of a.
The contribution of the virtual diagrams to the coefficient of δ(τ sa) sums to

∫ 1

0
dτ sa

[
2 δV

]
= 2g2µ2εCF n·n̄

∫
ddk

(2π)d
1

k− − i0+

1
k+ + i0+

i

k+k− − |k⊥|2 − i0+

= −αsCF n·n̄
2π

(
4πµ2

)ε
Γ(1− ε)

∫
V

dk+dk−(k+k−)−1−ε , (3.46)
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Figure 3.2: The regions of integration for the coefficent of δ(τ sa) in S
(0)
a (τ sa) in the (A), (B), (C)

k−, k+ and (D) k−,k2
⊥ planes. The regions of integration for both (A) the real contribution R and

(B) the virtual contribution V contain both UV and IR divergences. Since the integrands for the
two contributions differ only by an overall minus sign, (C) the region resulting in their sum S, is the
complement of R and contains only UV divergences for a < 1. The dashed line in (C) represents
the line of constant k+k− = Q2.

where V is the entire positive k+, k− quadrant, plotted in Fig. 3.2B.
The two contributions to δ(τ sa), Eqs. (3.44) and (3.46), are each both UV and IR divergent,

but as we will show, their sum is convergent for ε > 0 and so is only UV divergent. Since the form
of the integrand is the same and the virtual contribution differs only by an overall minus sign, it
converts the region of integration of the real contribution, R, into the complementary part of the
positive k+, k− quadrant (see Fig. 3.2) which does not include the IR divergent regions k± → 0.
Note that as a→ 1, the boundary of the region of integration R approaches the curve of constant
k+k− = Q2. With this boundary, the integral over the region S does not converge for either positive
or negative ε, implying that both IR and UV divergences are present.

That the region S has only UV divergence for a < 1 and has both UV and IR divergence
for a = 1 is perhaps more clearly seen in the k−,k2

⊥ plane. The integral of the soft diagrams over
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τ sa in terms of these variables is given by

∫ 1

0
dτ sa

[
2 δR + 2 δV

]
= −αsCF n·n̄

2π

(
4πµ2

)ε
Γ(1− ε)

∫
S

dk−dk2
⊥

k−(k2
⊥)1+ε

,

and the resulting region S in terms of k− and k2
⊥ for a ≤ 1 is(

k2
⊥
Q2

)− a
2(1−a)

<

(
k−

Q

)
<

(
k2
⊥
Q2

) 2−a
2(1−a)

with k2
⊥ > Q2 . (3.47)

The region S is plotted for several values of a in Fig. 3.2D. The limiting case a = 1 clearly includes
the IR divergent region k− → 0 for all k2

⊥ > Q2.
Performing the integral over S we obtain∫ 1

0
dτ sa S

(0)
a (τ sa ;µ) = 1− αsCF n·n̄

2π(1− a)

(
4πµ2

Q2

)ε 1
ε2 Γ(1− ε) . (3.48)

After expanding Eq. (3.48) in ε, we find that the coefficient of δ(τ sa) in Eq. (3.42) is unchanged,
except that for a < 1 all the 1/ε poles are unambiguously of UV origin.

A lesson from this analysis is that in pure dimensional regularization, the coefficient of
(1/εUV − 1/εIR) in a virtual diagram cannot be determined from the virtual diagram alone, but
only together with the real diagram whose IR divergence it is supposed to cancel. The reason that
the virtual subtraction can depend on a even though by itself it is independent of a is that the area
of overlap between the integration regions of real and virtual diagrams depends on a.

3.5 Calculation of the jet functions to NLO

Now we proceed to calculate the jet functions given by Eqs. (3.21) and (3.22). The
diagrams that contribute to Jna are shown in Fig. 3.3, and the Feynman rules necessary to calculate
these diagrams are found in [14]. The total momentum flowing through each diagram is Qn/2 + l,
with the label component Qn/2 specified by the labels on the jet fields in the matrix elements in
Eq. (3.22a), and l the residual momentum. The total momentum of the gluon in each loop is q,
which has both label and residual components. All results for the anti-quark jet function J n̄a can
be found from those for the quark jet function Jna with the replacement n↔ n̄ and so we calculate
explicitly only Jna .

Cutting the diagrams in Fig. 3.3 in all possible places, we can cut through the gluon loops
or through one of the individual quark propagators connected to a current. We naturally call these
classes of cut diagrams “real” and “virtual” respectively. The real and virtual diagrams contain
the delta functions,

δR ≡ δR(τna , q, l
+) ≡ δ

(
τna −

1
Q

[
(q−)

a
2 (q+)1−a

2 + (Q− q−)
a
2 (l+ − q+)1−a

2

] )
,

δV ≡ δV (τna , l
+) ≡ δ

(
τna −

(
l+/Q

)1−a
2

)
, (3.49)

which are obtained using Eq. (3.34). In this case we simply consider the contribution to τa from
a final state with a single on-shell collinear quark of momentum l for δV and from a final state
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(B)(A) (D)(C)(A) (A)
Figure 3.3: Diagrams contributing to the angularity jet function J na (τna , l

+) with incoming momen-
tum l = n

2Q+ n̄
2 l

+ and gluon momentum q: (A) Wilson line emission diagram and (B) its mirror;
(C) sunset and (D) tadpole QCD-like diagrams. The contributions to the jet function Jna (τna )
are given by the integrals of these diagrams over the + component of the incoming momentum,∫

dl+J na (τna , l
+) = 2πJna (τna ).

consisting of an on-shell collinear gluon of momentum q together with an on-shell collinear quark
of momentum l− q for δR, and use that the ‘−’ component of momentum is always larger than the
‘+’ component for on-shell collinear particles. The momentum l flowing through the diagrams in
Fig. 3.3 has a label component which is fixed to be Qn/2 by the labels on the collinear fields in the
matrix element in Eq. (3.22a).

Before turning to evaluate the diagrams in Fig. 3.3, we first perform a few simplifications
to facilitate the computation. First, we note that the Wilson line emission diagram, Fig. 3.3A, and
its mirror, Fig. 3.3B, give identical contributions. Second, we employ the fact that the number
and complexity of jet function diagrams needed in loop calculations is reduced by noticing that
the QCD-like diagrams can be computed using ordinary QCD Feynman rules with appropriate
insertions of the projection operators Pn = n/n̄//4 and Pn̄ = n̄/n//4 [28, 9]. In particular, for our
one-loop example we use that the sum of Fig. 3.3C and Fig. 3.3D reduces to

+ = Pn Pn̄ . (3.50)

Next, we relate the τna -discontinuity to the ordinary discontinuity,

Disc τna
[
2 + Pn Pn̄

]
(3.51)

≡
[
2 + Pn Pn̄

]
δR +

[
2 + 2Pn Pn̄

]
δV

= Disc
[
2 + Pn Pn̄

]
δV +

[
2 + Pn Pn̄

](
δR − δV

)
,

where in the third line the we used that the real diagrams induced by taking the discontinuity in
the first term cancel the coefficient of δV in the second term.

Now, since δV (τna , l
+) has no dependence on the loop momentum q, it factors out of

the ddq integrand. This implies that, after adding the tree-level contribution to the one-loop τna -
discontinuity in Eq. (3.51), we can write the NLO jet function as

J n(0)
a (τna , l

+;µ)
n/

2
= 2πδ(l+)δ(τna )

n/

2
+ Disc τna

[
2 + Pn Pn̄

]
(3.52)

= Jn(0)(l+;µ)
n/

2
δV +

[
2 + Pn Pn̄

](
δR − δV

)
,
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where J (0)
n (l+;µ) is the standard jet function [21],

Jn(0)(l+;µ)
n/

2
≡ 1
NC

Disc
[∫

d4x eil·x Tr
〈
0
∣∣Tχn,Q(x) χ̄n,Q(0)

∣∣0〉]
= 2πδ(l+)

n/

2
+ Disc

[
2 + Pn Pn̄

]
+O(α2

s) , (3.53)

containing no additional operator insertions. Each term on the second line of Eq. (3.52) is then well-
defined4 and straightforwardly calculable. In fact, Jn(l+;µ) has been calculated to two loops [28],
and we expect that the techniques we employed above are the most practical way to extend our
results to two loops. The additional term on the second line of Eq. (3.52) is a sum of real emission
diagrams containing a difference of the delta functions δR and δV . Note that for the special case
a = 0, δV (τna , l

+) = δR(τna , q, l
+) and this additional term vanishes, so Jn = Jna=0. This is why only

the standard jet function is needed when a = 0.
To find the angularity jet function Jna (τna ;µ), we must integrate Eq. (3.52) over l+ as in

Eq. (3.21),

Jn(0)
a (τna ;µ) =

∫
dl+

2π
J n(0)
a (τna , l

+;µ) . (3.54)

By integrating the known one-loop expression for J (0)
n (l+;µ) (see, e.g., [18, 45]), we find that the

contribution of the first term in Eq. (3.52) is∫
dl+

2π
Jn(0)(l+;µ) δV = δ(τna )

{
1 +

αsCF
4π

[
4
ε2

+
3
ε

+
4
ε

ln
µ2

Q2
+ 2 ln2 µ

2

Q2

+ 3 ln
µ2

Q2
+ 7− π2

]}
− 1

1− a/2

[(
4
ε

+ 3 + 8 ln
µ

Q(τna )1/(2−a)

)(
θ(τna )
τna

)]
+

. (3.55)

It is well known that all 1/ε poles in this expression are of UV origin.
4By this we mean that had we evaluated the individual cut virtual QCD-like diagrams contained in the first line

of Eq. (3.52) directly, we would have encountered the complication of cutting one lone quark propagator and thus
putting the second lone, uncut quark propagator on shell also.
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We find that the term involving the real QCD-like diagram in Eq. (3.52) is∫
dl+

2π

[
Pn Pn̄

](
δR − δV

)
(3.56)

= −g2µ2εCF (d− 2)
n/

2

∫
dl+

2π

(
1
l+

)2 ∫ ddq
(2π)d

(l+ − q+)

×
(

(−2πi)δ(q+q− − |q⊥|2)θ(q−)
) 1
q−

(
δR(τna , q, l

+)− δV (τna , l
+)
)

×
(

(−2πi)δ
(
(Q− q−)(l+ − q+)− |q⊥|2

)
θ(Q− q−)

)
=

αsCF
2π(2− a)

n/

2

(
4πµ2

Q2

)ε 2(1− ε)
Γ(1− ε)

(
1
τna

)1+ ε
1−a/2

×
∫ 1

0
dxx

[(
xa−1 + (1− x)a−1

) ε
1−a/2 − (x(1− x))−ε

]
,

where we defined x ≡ q−/Q. This expression is finite as ε→ 0.
For the term involving the real Wilson line diagram, we find∫

dl+

2π

[ ](
δR − δV

)
(3.57)

= −g2µ2εCF n·n̄
n/

2

∫
dl+

2π
1
l+

∫
ddq

(2π)d
1
q−

(
(−2πi)δ(q+q− − |q⊥|2)θ(q−)

)
×
[
(Q− q−)

(
(−2πi)δ

(
(Q− q−)(l+ − q+)− |q⊥|2

)
θ(Q− q−)

)
−Q

(
(−2πi)δ

(
Q(l+ − q+)

))](
δR(τna , q, l

+)− δV (τna , l
+)
)
.

The piece with δR can be written as∫
dl+

2π

[ ]
δR = θ(τ sa)

αsCFn·n̄
2π(2− a)

n/

2

(
4πµ2

Q2

)ε 1
Γ(1− ε)

(
1
τna

)1+ ε
1−a/2

(3.58)

×
[∫ 1

0

dx
x

(1− x)
(
xa−1 + (1− x)a−1

) ε
1−a/2 −

∫ ∞
0

dx
x
x
−ε 1−a

1−a/2

]
,

and the piece with δV is∫
dl+

2π

[ ]
δV = θ(τ sa)

αsCFn·n̄
2π(2− a)

n/

2

(
4πµ2

Q2

)ε 1
Γ(1− ε)

(
1
τna

)1+ ε
1−a/2

×
[∫ 1

0

dx
x

(1− x) (x(1− x))−ε −
∫ ∞

0

dx
x
x−ε
]
. (3.59)

The second term in brackets in each of Eqs. (3.57), (3.58), and (3.59) corresponds to the zero-bin
subraction [129] needed to avoid the double counting of soft modes [119, 105, 104]. Note that from
the expressions in both Eqs. (3.58) and (3.59), the zero-bin contributions are scaleless and hence
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formally zero. Their role is to convert the IR divergence (q− → 0) in each integrand into a UV
divergence (q− →∞) for a < 1. After this subtraction, both of the integrals over x in brackets are
convergent for ε > 0.

Subtracting Eq. (3.59) from Eq. (3.58) and performing the integral over x we find that∫
dl+

2π
Disc

[
2 + Pn Pn̄

](
δR − δV

)
(3.60)

= − αsCF
2π(2− a)

n/

2

(
4πµ2

Q2

)ε 1
Γ(1− ε)

1
ε

(
1
τna

)1+ ε
1−a/2

[
2a

1− a + ε2
2a(π2 − 9)
3(2− a)

− ε2 4
1− a/2

∫ 1

0
dx

1− x+ x2/2
x

ln[(1− x)1−a + x1−a] +O(ε3)
]
,

where the overall 1/ε pole is of UV origin from the discussion above.
Applying the relation Eq. (3.39) to Eq. (3.60) and adding the result to Eq. (3.55), we

arrive at our final expression for the (bare) NLO angularity jet function,

Jn(0)
a (τna ;µ) =

∫
dτna

′ ZJ(τna − τna ′;µ)Jna (τna
′;µ) , (3.61)

where the renormalized jet function, Jna , is

Jna (τna ;µ) = δ(τna )
{

1 +
αsCF
π

[
1− a/2
2(1− a)

ln2 µ
2

Q2
+

3
4

ln
µ2

Q2
+ f(a)

]}
− αsCF

π

[(
3
4

1
1− a/2 +

2
1− a ln

µ

Q(τna )1/(2−a)

)(
θ(τna )
τna

)]
+

, (3.62)

where we defined

f(a) ≡ 1
1− a/2

(
7− 13a/2

4
− π2

12
3− 5a+ 9a2/4

1− a

−
∫ 1

0
dx

1− x+ x2/2
x

ln[(1− x)1−a + x1−a]
)
, (3.63)

and the Z-factor is given by

ZJ(τna ;µ) = δ(τna )
[
1 +

αsCF
π

(
1− a/2
1− a

(
1
ε2

+
1
ε

ln
µ2

Q2

)
+

3
4ε

)]
− 1
ε

αsCF
π(1− a)

[
θ(τna )
τna

]
+

. (3.64)

3.6 IR structure of the jet functions

As we showed in Sec. 3.5, the 1/ε pole in front of the plus-distribution corresponds to a
UV divergence. However, as we discussed for the case of the soft function in Sec. 3.4, the use of
Eq. (3.39) means that we can not immediately make the same claim for the poles in the coefficient
of δ(τna ). We now perform an analysis similar to that in Sec. 3.4 by integrating over 0 < τna < 1 to
isolate this coefficient and study its divergent structure in the resulting q−, q2

⊥ integration regions,
complementing our discussion in [102].
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The diagrams (C) and (D) in Fig. 3.3, being equivalent to diagrams in full QCD as
noted above, are manifestly infrared-finite and do not need to be analyzed in further detail. The
Wilson line graphs (A) and (B) potentially contain infrared divergences that we must identify more
carefully.

If the jet function is infrared-safe, infrared divergences in virtual and real diagrams, with
proper zero-bin subtractions taken, should cancel and leave purely UV divergent integrals. The
contribution of the sum of the real and virtual Wilson line diagrams to the coefficient of δ(τna ) in
the jet function J

n(0)
a (τna ) is

2
∫ 1

0
dτa

∫
dl+

2π

[
δV + δR

]
(3.65)

= −αsCF
π

(4πµ2)ε

Γ(1− ε)

[∫
J̃

dq−dq2
⊥

1
(q2
⊥)1+ε

(
1
q−
− 1
Q

)
−
∫
J0

dq−dq2
⊥

1
(q2
⊥)1+ε

1
q−

]
,

where the last integral is the zero-bin subtraction of the näıve collinear integral in the first term.
The näıve integration region J̃ is shown in Fig. 3.4 and is given by 0 < q− < Q and

q2
⊥ >

{
Q

[
1

(Q− q−)1−a +
1

(q−)1−a

]−1
} 1

1−a/2

. (3.66)

The zero-bin region J0 is given by q− > 0 and

q2
⊥ >

[
Q(q−)1−a] 1

1−a/2 . (3.67)

The resulting integral for the total contribution of the zero-bin-subtracted Wilson line diagrams to
the coefficient of δ(τna ) in the jet function is

2
∫ 1

0
dτa

∫
dl+

2π

[
δV + δR

]
(3.68)

= −αsCF
π

(4πµ2)ε

Γ(1− ε)

[∫
J

dq−dq2
⊥

1
(q2
⊥)1+ε

sgn(q− −Q)
q−

−
∫
J̃

dq−dq2
⊥

1
(q2
⊥)1+ε

1
Q

]
,

where the region J resulting from combining J̃ and J0, with a relative minus sign in the integrands,
is also shown in Fig. 3.4.

The shape of the final integration region J in Fig. 3.4 demonstrates that the scaleless
virtual and zero-bin integrals succeed in converting IR divergences in the real diagram contributions
into UV divergences for all a < 1. The integral over J in Eq. (3.68) converges for ε > 0 if and
only if a < 1. The result of performing this integration, after including the contributions of the
QCD-like diagrams in Fig. 3.3C and D, agrees with the coefficient of δ(τna ) that is obtained by
(näıvely) using the relation Eq. (3.39) in Eq. (3.60).

3.7 Infrared safety, factorizability, and the effective theory

In the one-loop calculations of soft and jet functions above, we observed that infrared
safety of these functions, and, thus, factorizability of the angularity distributions, required a < 1.



36

Q2

4

Q2

Q2

4

Q2

Q2

4

Q2

Q

Q2

4

Q2

Q Q q−

q2
⊥

a = −2

a = 0

a = 0.9

a = 1

+

+

+

+

=

=

=

=

J (total)

IR

UV

IR

IR

IR

IR

IR

IR

IR/UV

UV UV

UV UV

UV UV

UV

UV

UV

IR

UV
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Figure 3.4: Regions of integration for the coefficient of δ(τna ) in the jet function J
n(0)
a (τna ). The

sum of näıve real and virtual Wilson line diagrams are integrated over the region J̃ in the q−,q2
⊥

plane. The sum of real and virtual zero-bin subtractions are integrated over J0, and the resulting
sum of näıve diagrams and zero-bin subtractions over the region J . Integrals over J have only UV
divergences as long as a < 1. For a = 1, an IR divergent region remains.

By analyzing explicitly the regions of integration over loop momenta in real and virtual graphs,
we were able to identify when the loop integrals contained infrared or ultraviolet divergences.
Cancellations of regions in real gluon diagrams sensitive to IR divergences relied crucially not only
on the addition of virtual diagrams but also on zero-bin subtractions from collinear diagrams (see
also examples in [129, 105, 104, 57]).

The shape of the momentum regions contributing to the one-loop soft function in Fig. 3.2
suggest a simple physical interpretation of the breakdown of factorization as a → 1. In the k±

plane, the region of integration in the sum of real and virtual graphs for a = 1 is the region above
the line k+k− = Q2. For angularity soft functions with a < 1, as k± → ∞, the loop integral goes
over a region with k+k− strictly greater than Q2, and in fact, k+k− → ∞, while for a > 1, the
loop integral enters the region with k+k− < Q2, and in fact, k+k− → 0. But this latter region,
k+ →∞ while k− → 0 or vice versa, is the region where collinear modes live, illustrated in Fig. 3.5.
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Figure 3.5: Scaling of SCET modes appropriate for angularities τa, a = 0, 1. For a = 0, the collinear
modes dominating the τa distribution have virtualities p2 ∼ (Qλ)2, parametrically separated from
the soft scale p2 ∼ (Qλ2)2. These scalings correspond to the effective theory known as SCETI . For
a = 1, the collinear modes in the distribution have typical p2 ∼ (Qλ2)2, coinciding with the soft
scale. The collinear and soft modes are no longer separated by virtuality but instead by rapidity.
These scalings correspond to SCETII . Collinear modes dominating angularity distributions for
other values of a between 0 and 1 live at scales intermediate between these limits.

This means that collinear modes still contribute to the soft function even after the attempted
factorization.

This suggests that for a ≥ 1, the contributions of SCETI soft and collinear modes to the
angularity distribution have not actually been separated. In SCETI , soft, collinear, and hard modes
can be distingushed by their well-separated virtualities, namely, p2

S ∼ (Qλ2)2, p2
J ∼ (Qλ1/(1−a/2))2,

and p2
H ∼ Q2. At a = 1, the virtualities of soft and collinear modes contributing to the τa

distribution coincide, and SCETI must be matched onto SCETII where collinear and soft modes
both have virtualities p2 ∼ (Qλ2)2. In this case, the modes are no longer distinguished by their
virtuality, but instead by their rapidity, as illustrated in Fig. 3.5. Ref. [129] suggested a modified
version of the factorization theorem Eq. (3.1) in which soft and jet functions are defined either with
cutoffs on rapidity or in dimensional regularization with the scale µ separated into two light-cone
scales µ±, which must satisfy µ+µ− = µ2, with each of the two jet functions depending on one
of these scales, and the soft function on both. However, in the present paper we do not pursue
such a strategy and limit our analysis to angularities with strictly a < 1. For arbitrary values of
a, the virtuality of collinear modes p2

J ∼ (Qλ1/(1−a/2))2 suggests an interpretation as the modes
of an effective theory “SCET1+a.”5 Since our analysis and calculations utilize the framework of
SCETI , we may expect non-negligible corrections to our results to arise for values of a less than
but approaching 1, and for reasonable criteria for when corrections are negligible, our analysis is
reliable for values of a . 1/2 [119].

5We would like to thank M. Strassler for suggesting this terminology to CL.
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4 NLL Resummation of Logarithms and Fixed-order Matching to
QCD

The fixed-order NLO cross-section, obtained by using the fixed-order expressions for the
hard, jet, and soft functions in Eqs. (3.29), (3.42), and (3.62) in the factorization formula Eq. (3.18),
contain logarithms of µ divided by the scales Q, Qτa, and the intermediate scale Qτ1/(2−a)

a . This
means that there is no single choice for the scale µ that will simultaneously set all of the logarithms
in the NLO cross-section to zero. For small τa, these scales become widely separated and the
logarithms of ratios of these scales become large, which causes the perturbative series to break
down. In Sec. 4.1 and Sec. 4.2, we take advantage of the effective theory framework separating the
hard, jet, and soft contributions by evolving each of them separately through renormalization-group
(RG) evolution which resums these logarithms. We then combine these RG-evolved functions into
the full cross-section accurate to NLO at fixed order in αs and resummed to NLL accuracy in
Sec. 4.3.

Since our final result for the NLL/NLO resummed distribution is derived using an effective
theory which is valid only in the small-τa limit, it does not get the larger-τa region as accurately as
QCD at O(αs). To arrive at a result that retains NLL/NLO accuracy in the small-τa region while
retaining the accuracy of QCD at O(αs) in the larger-τa region, we need to match our distribution
onto QCD. This matching is constructed such that if we turn off the resummation, the distributions
should agree with full QCD to O(αs). We perform this matching in Sec. 4.4.

4.1 Hard function at NLL

The anomalous dimension of the hard function in Eq. (3.29) can be found by requiring
that matrix elements of the bare two-jet operator in Eq. (3.30) are independent of the scale µ, and
is given by

γH(µ) = −γO(Qn/2,−Qn̄/2;µ)− γ∗O(Qn/2,−Qn̄/2;µ) , (3.69)

where

γO(p̃n, p̃n̄;µ) = −Z−1
O (p̃n, p̃n̄;µ)µ

d
dµ
ZO(p̃n, p̃n̄;µ) =

αsCF
2π

(
2 ln

µ2

2p̃n · p̃n̄
+ 3
)
, (3.70)

so that

γH(µ) = −αsCF
π

(
2 ln

µ2

Q2
+ 3
)
, (3.71)

which is the first term in the expansion of the anomalous dimension to all orders in αs,

γH(µ) = ΓH [αs] ln
µ2

Q2
+ γH [αs] . (3.72)

Solving the RG equation,

µ
d

dµ
H(Q;µ) = γH(µ)H(Q;µ) , (3.73)
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for H(Q;µ) gives

H(Q;µ) = H(Q;µ0)eKH
(
µ0

Q

)ωH
, (3.74)

where ωH and KH are defined as

ωH ≡ ωH(µ, µ0) ≡ 8CF
β0

[
ln r +

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
(3.75a)

KH ≡ KH(µ, µ0) ≡ 6CF
β0

ln r +
16πCF
(β0)2

[
r − 1− r ln r

αs(µ)
(3.75b)

+

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
1− r + ln r

4π
+

β1

8πβ0
ln2 r

]
.

Here r = αs(µ)
αs(µ0) , and β0, β1 are the one-loop and two-loop coefficients of the beta function,

β[αs] = µ
dαs
dµ

= −2αs

[
β0

(αs
4π

)
+ β1

(αs
4π

)2
+ · · ·

]
, (3.76)

where

β0 =
11CA

3
− 2nf

3
and β1 =

34C2
A

3
− 10CAnf

3
− 2CFnf . (3.77)

The two-loop running coupling αs(µ) at any scale is given by

1
αs(µ)

=
1

αs(MZ)
+
β0

2π
ln
(

µ

MZ

)
+

β1

4πβ0
ln
[
1 +

β0

2π
αs(MZ) ln

(
µ

MZ

)]
. (3.78)

In Eq. (3.74), we have used the fact that to all orders in perturbation theory, ΓH [αs] is proportional
to Γcusp[αs], where

Γcusp[αs] =
(αs

4π

)
Γ0

cusp +
(αs

4π

)2
Γ1

cusp + · · · . (3.79)

The ratio of the one-loop and two-loop coefficients of Γcusp is [111]

Γ1
cusp

Γ0
cusp

=
(

67
9
− π2

3

)
CA −

10nf
9

. (3.80)

Γ1
cusp and β1 are needed in the expressions of ωH and KH for complete NLL resummation since we

formally take α2
s ln τa ∼ O(αs).

4.2 Jet and soft functions at NLL

The jet and soft functions obey the RG equation

µ
d

dµ
F (τ ;µ) =

∫ +∞

−∞
dτ ′ γF (τ − τ ′;µ)F (τ ′;µ) , (3.81)
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where F = J, S. The anomalous dimensions γF can be found from the Z-factors (given in Eqs. (3.43)
and (3.64)) via the relation

γF (τ − τ ′;µ) = −
∫

dτ ′′ Z−1
F (τ − τ ′′;µ)µ

d
dµ
ZF (τ ′′ − τ ′;µ) . (3.82)

We find that

γJ(τ − τ ′;µ) =
2αsCF
π

{
δ(τ − τ ′)

(
1− a/2
1− a ln

µ2

Q2
+

3
4

)
− 1

1− a

[
θ(τ − τ ′)
τ − τ ′

]
+

}
, (3.83)

and

γS(τ − τ ′;µ) =
2αsCF
π(1− a)

{
−δ(τ − τ ′) ln

µ2

Q2
+ 2

[
θ(τ − τ ′)
τ − τ ′

]
+

}
. (3.84)

Both anomalous dimensions are the first terms in the perturbative expansion of the general form
to all orders in αs [87, 95],

γF (τ − τ ′;µ) = −ΓF [αs]
(

2
jF

[
θ(τ − τ ′)
(τ − τ ′)

]
+

− ln
µ2

Q2
δ(τ − τ ′)

)
+ γF [αs]δ(τ − τ ′) , (3.85)

where the coefficients ΓF [αs], γF [αs] have the expansions

ΓF [αs] =
(αs

4π

)
Γ0
F +

(αs
4π

)2
Γ1
F + · · · (3.86)

and

γF [αs] =
(αs

4π

)
γ0
F +

(αs
4π

)2
γ1
F + · · · . (3.87)

We summarize the coefficients Γ0
F and γ0

F and the jF -values for the jet and soft functions in Table 3.1.
The solution of the RG equation Eq. (3.81) with the anomalous dimension γF of the form

given in Eq. (3.85) with particular values of jF was developed in the series of papers [30, 110, 5, 134].
Later, it was solved for arbitrary jF in [87] using a convolution variable t = Qjτ with mass dimension
j = jF . The resulting evolution equation for F is

F (τ ;µ) =
∫

dτ ′ UF (τ − τ ′;µ, µ0)F (τ ′;µ0) , (3.88)

where the evolution kernel UF is given to all orders in αs by the expression

UF (τ − τ ′;µ, µ0) =
eK̃F+γE ω̃F

Γ(−ω̃F )

(
µ0

Q

)jF ω̃F [ θ(τ − τ ′)
(τ − τ ′)1+ω̃F

]
+

, (3.89)

where γE is the Euler constant and where ω̃F and K̃F are defined as

ω̃F (µ, µ0) ≡ 2
jF

∫ αs(µ)

αs(µ0)

dα

β[α]
ΓF [α] , (3.90a)

K̃F (µ, µ0) ≡
∫ αs(µ)

αs(µ0)

dα

β[α]
γF [α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
ΓF [α]

∫ α

αs(µ0)

dα′

β[α′]
. (3.90b)
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The plus function in Eq. (3.89) for all ω < 1 and ω 6= 0 is defined as6[
θ(x)
x1+ω

]
+

≡ lim
β→0

[
θ(x− β)
x1+ω

− β−ω

ω
δ(x− β)

]
= −δ(x)

ω
+
∞∑
n=0

(−ω)n
[
θ(x) lnn x

x

]
+

, (3.91)

with the latter plus functions defined in Eq. (3.40).
For the NLL parameters of the evolution kernel UF , Eq. (3.90) gives

ωF (µ, µ0) = − Γ0
F

jF β0

[
ln r +

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
, (3.92a)

KF (µ,µ0) = − γ
0
F

2β0
ln r +

−2πΓ0
F

(β0)2

[
r − 1− r ln r

αs(µ)

+

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
1− r + ln r

4π
+

β1

8πβ0
ln2 r

]
, (3.92b)

where we have used the fact that ΓF ∝ Γcusp. This proportionality is well known for the a = 0 jet
and soft functions. In Appendix B we verify that it remains true for all a < 1.

From Eq. (3.88) we can write explicit formulas for the resummed jet and soft functions
at any scale µ. Details of evaluating the integral over the convolution variable τ ′ are given in
Appendix C. For the soft function, we plug the fixed-order NLO result Eq. (3.42) at the scale µ0

into Eq. (3.88), and obtain at the scale µ,

Sa(τa;µ) =
eKS+γEωS

Γ(−ωS)

(
µ0

Q

)jSωS
×
[{

1− αs(µ0)CF
2π

1
1− a

(
ln2 µ2

0

(Qτa)2
+ 4H(−1− ωS) ln

µ2
0

(Qτa)2

+
π2

2
+ 4
[
[H(−1− ωS)]2 − ψ(1)(−ωS)

])}( θ(τa)
τ1+ωS
a

)]
+

,

(3.93)

and for the jet function, plug in the fixed-order NLO result Eq. (3.62) at µ0 into Eq. (3.88), and
obtain at µ,

Jna (τa;µ) =
eKJ+γEωJ

Γ(−ωJ)

(
µ0

Q

)jJωJ
(3.94)

×
[{

1 +
αs(µ0)CF

4π

(
2− a
1− a ln2 µ2

0

Q2τ
2

2−a
a

+
(

3 +
4H(−1− ωJ)

1− a
)

ln
µ2

0

Q2τ
2

2−a
a

+ 4f(a) +
4

(1− a)(2− a)

[π2

6
+ [H(−1− ωJ)]2 − ψ(1)(−ωJ)

])}( θ(τa)
τ1+ωJ
a

)]
+

,

where in the above two equations KF ≡ KF (µ, µ0), ωF ≡ ωF (µ, µ0), H(z) is the harmonic number
function, and ψ(ν)(z) is the polygamma function.

6Note that from the definition in Eq. (3.91), for ω < 0 the ‘+’ label can be dropped and so Eq. (3.91) is consistent
with the distribution relation Eq. (3.39).
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4.3 Full distribution at NLL

By running the hard, jet, and soft functions from the scales µ0 = µH , µJ , and µS ,
respectively, to the common factorization scale µ and performing the convolution in Eq. (3.18)
(see Appendix C for details), we find for the final resummed expression for the two-jet angularity
distribution with NLL/NLO perturbative accuracy

1
σ0

dσ2

dτa

PT
∣∣∣∣
NLL/NLO

=
[(

1 + fH + 2fJ + fS

)
Uσa (τa;µ, µH , µJ , µS)

]
+

, (3.95)

where we defined

Uσa (τa;µ, µH , µJ , µS) ≡ eK+γEΩ

Γ(−Ω)

(
µH
Q

)ωH(µJ
Q

)2jJωJ
(
µS
Q

)jSωS ( θ(τa)
τa1+Ω

)
, (3.96)

where

Ω ≡ 2ωJ(µ, µJ) + ωS(µ, µS) (3.97)
K ≡ KH(µ, µH) + 2KJ(µ, µJ) +KS(µ, µS) , (3.98)

with ωH ,KH given by Eq. (3.75) and ωJ,S and KJ,S given by Eq. (3.92) and

fH =
αs(µH)CF

π

(
−4 +

7π2

12
− 2 ln2 µH

Q
− 3 ln

µH
Q

)
(3.99a)

fJ =
αs(µJ)CF

π

[
f(a) +

3/4
1− a/2H(−1− Ω) +

π2

6 +H(−1− Ω)2 − ψ(1)(−Ω)
2(1− a)(1− a/2)

(3.99b)

+
2− a
1− a ln2 µJ

Qτa1/(2−a)
+
(

3
2

+
2

1− aH(−1− Ω)
)

ln
µJ

Qτa1/(2−a)

]
fS =

αs(µS)CF
π

[
1

1− a

(
−π

2

4
− 2H(−1− Ω)2 + 2ψ(1)(−Ω)

)
(3.99c)

− 2 ln2 µS
Qτa

− 4H(−1− Ω) ln
µS
Qτa

]
,

and f(a) was defined in Eq. (3.63).
From these expressions, it is clear that the logarithms are minimized by choosing µH , µJ ,

and µS of order Q, Qτa1/(2−a), and Qτa, respectively. We will describe in more detail precisely
which values we choose for these scales when we plot the full distributions in Sec. 6.

4.4 Matching to QCD

One way to achieve matching onto QCD is to include three-jet operators in the matching
of the QCD current onto the SCET operators in Eq. (3.13) [24, 133]. For the scope of this paper,
however, we simply adopt the matching procedure described by [48], as implemented in [32].

To O(αs) the full QCD distribution will take the form

1
σ0

dσ
dτa

= δ(τa) +
(αs

2π

)
Aa(τa) +O(α2

s) . (3.100)
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In Appendix D we describe how to calculate Aa(τa) numerically. Meanwhile, the fixed-order two-jet
angularity distribution in SCET at O(αs) is given by the convolution Eq. (3.18) of the fixed-order
hard, jet, and soft functions Eqs. (3.29), (3.42), and (3.62). The result is independent of µ (except
through αs ≡ αs(µ)), and is given by

1
σ0

dσ2

dτa
= δ(τa)Dδ

a +
αs
2π

[Da(τa)]+ , (3.101)

where

Dδ
a = 1− αsCF

2π
1

2− a

{
2 + 5a− π2

3
(2 + a)

+ 4
∫ 1

0
dx
x2 − 2x+ 2

x
ln[x1−a + (1− x)1−a]

}
(3.102)

Da(τa) = − 2CF
2− a

θ(τa)(3 + 4 ln τa)
τa

. (3.103)

The two-jet fixed-order SCET distribution Eq. (3.101) reproduces the most singular parts
of the full QCD distribution7 Eq. (3.100), that is, the coefficient of the δ(τa), 1/τa and (1/τa) ln τa
pieces. The expression for Da(τa) in Eq. (3.103) makes explicit that the angularities are not
infrared-safe for a = 2.

The difference of the two fixed-order distributions Eq. (3.100) and Eq. (3.101) away from
τa = 0 is a purely integrable function,

ra(τa) ≡
1
σ0

(
dσ
dτa
− dσ2

dτa

)
=
(αs

2π

)
[Aa(τa)−Da(τa)] . (3.104)

By adding this remainder function to the NLL resummed SCET distribution, we obtain a result
which both agrees with QCD to O(αs) and resums large logarithmic terms in the entire perturbative
series with NLL/NLO accuracy. The matched distributions are thus defined as

1
σ0

dσ
dτa

PT
∣∣∣∣
NLL/NLO

=
1
σ0

dσ2

dτa

PT
∣∣∣∣
NLL/NLO

+ ra(τa) . (3.105)

To find ra(τa), we numerically obtain Aa(τa) from an analysis of the full QCD distributions away
from τa = 0 using the procedure described in Appendix D, and then subtract out the expression
for Da(τa) given in Eq. (3.103).

For the case a = 0 (thrust), the analytic form of dσPT/dτ0 is known [74], with which
our formula Eq. (D.10) for A0(τ0) agrees. Using Eqs. (D.10) and (3.103), we obtain the remainder
function

r0(τ0) =
αsCF

2π

[
2(2− 3τ0 + 3τ2

0 )
1− τ0

ln(1− 2τ0)
τ0

− 2(1− 3τ0)
1− τ0

ln τ0 + 6 + 9τ0

]
, (3.106)

which we see is integrable down to τ0 = 0.
7Technically, we mean that the difference of the two distributions integrated from 0 to ε vanishes as ε→ 0.
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As a consistency check of this matching technique, we calculated the total integral8 of our
fixed-order result,

σtotal =
∫ τmax

a

0
dτa

(
1
σ0

dσ2

dτa

PT

+ ra(τa)
)
, (3.107)

and compared with the total inclusive cross-section, σ(e+e− → X) = σ0(1 +αs/π). We found that
our results agreed to any arbitrary precision which could be achieved by our numerical computation.

5 Nonperturbative Model for the Soft Function

In this section we adapt the model for the soft function used in jet mass and thrust dis-
tributions as constructed in [100] to work for all angularities with a < 1. This model is designed
to describe the small-τa region where perturbation theory breaks down, while leaving the pertur-
batively reliable large- and intermediate-τa regions unaffected. The gap parameter in this model is
designed to turn off the soft function at energies below a minimum hadronic threshold. Such a pa-
rameter is known to have renormalon ambiguities [100], which must cancel those in the perturbative
soft function (which we denote in this section as SPT) to yield a renormalon-free total soft func-
tion S. To ensure perturbative stability, a scheme is needed to explicitly enforce this cancellation
order-by-order in perturbation theory. Recently, the position-mass scheme developed in Ref. [106]
was used to define a renormalon-free gap parameter for hemisphere jet masses in Ref. [98]. This
gap parameter obeys transitive RG evolution and has a well-behaved perturbative expansion. We
implement this scheme generalized to arbitrary angularity.

5.1 Review of hemisphere and thrust soft function models

To motivate the functional form of the model function that we will use for all angularity
distributions, we begin with the model hemisphere soft function constructed in [113]. This model is
a function of two variables which can be chosen to be l+ and l−, defined as the + and − components
of the momentum in the n and n̄ hemispheres, respectively. It takes the form

f exp(l+, l−) = θ(l+)θ(l−)
N (A,B)

Λ2

(
l+l−

Λ2

)A−1

exp
(−(l+)2 − (l−)2 − 2Bl+l−

Λ2

)
. (3.108)

The parameter A controls how steeply the soft function falls as l± → 0, and B contains information
about the cross-correlation of the soft particles in the two hemispheres. f exp is normalizable for
A > 0 and B > −1. Λ is an O(ΛQCD) parameter that describes the range that hadronic effects
can smear the soft function around a given l+, l−. Finally, N (A,B) is chosen such that f exp is
normalized to unity,

∫ +∞
−∞ dl+dl−f exp(l+, l−) = 1.

In Ref. [87], this model was used to relate the total hemisphere soft function Shemi(l+, l−)
to the perturbative hemisphere soft function SPT

hemi(l
+, l−) via the convolution

Shemi(l+, l−;µ) =
∫ +∞

−∞
dl̃+dl̃−SPT

hemi(l
+ − l̃+, l− − l̃−;µ)f exp(l̃+ −∆, l̃− −∆) . (3.109)

8The upper limit on τa in Eq. (3.107), τmax
a , is that of the maximally symmetric three-jet configuration, τsym(a) =

1/31−a/2 [40], but only for a & −2.6 (see Appendix D).
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where ∆ is the gap parameter. This method of implementing the model function ensures a smooth
continuation between the nonperturbative, model-dominated and the perturbative regions of the
cross-section.

To use this expression in our formalism, we first relate the a = 0 soft function, S0(τ0, µ),
and the hemisphere soft function, Shemi(l+, l−, µ). Using that τ0 = (l+ + l−)/Q, we find

S0(τ0;µ) =
∫

dl+dl−Shemi(l+, l−;µ) δ
(
τ0 −

l+ + l−

Q

)
= Q

∫
dl Shemi(l, Qτ0 − l;µ) . (3.110)

This gives the model function convolution for S0(τ0;µ) as

S0(τ0;µ) = Q

∫
dl
∫

dl+dl− SPT
hemi(l − l+, Qτ0 − l − l−;µ)f exp(l+ −∆, l− −∆)

=
∫

dτ ′0 S
PT
0 (τ0 − τ ′0;µ)f exp

(
τ ′0 −

2∆
Q

)
, (3.111)

where (absorbing A and B dependent constants into the normalization N )

f exp(τ) ≡ Q2

∫
dτ ′ f exp(Qτ −Qτ ′, Qτ ′)

= θ(τ)N (A,B)
Q

Λ

(
Qτ

Λ

)2A−1

1F1

(
1
2
,
1
2

+A, (B − 1)
(Qτ)2

2Λ2

)
e−(B+1)

(Qτ)2

2Λ2 . (3.112)

f exp(τ) inherits its normalization from f exp(l+, l−),
∫∞
−∞dτf exp(τ) = 1.

5.2 Adaptation to all angularities

For nonzero a, we still want to use a convolution of the form

Sa(τa;µ) =
∫

dτ ′a S
PT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆a

Q

)
. (3.113)

Moreover, we would like to retain the functional form of f exp since it has had relatively good success
in describing different event shapes with the same values of A and B [113]. However, we must at
a minimum modify f exp so that the first moment of Sa(τa;µ) satisfies the scaling relation given in
Eqs. (3.24) and (3.27). In terms of the first moment of SPT

a (τa;µ) and f exp
a , the first moment of

Sa(τa;µ) is ∫
dτa τa Sa(τa;µ) =

∫
dτa τa

∫
dτ ′a S

PT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆a

Q

)
= SPT[1]

a (µ) +
[ ∫

dτa SPT
a (τa;µ)

](
2∆a

Q
+ f exp[1]

a

)
= SPT[1]

a (µ) +
2∆a

Q
+ f exp[1]

a , (3.114)
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where here SPT[1]
a (µ) and f exp[1]

a are the first moments of SPT
a (τa;µ) and f exp

a (τa), respectively, and
in the third line we dropped αs corrections to the O(ΛQCD/Q) power corrections ∆a/Q and f exp[1]

a .
Since the first moment of the perturbative soft function, SPT[1]

a , already obeys the proper
scaling (cf. Eq. (3.42)) we simply rescale the gap parameter,

∆a =
∆

1− a , (3.115)

and require that the parameters of f exp
a vary from those in f exp such that

f exp[1]
a ≡

∫
dτa τa f exp

a (τa) =
1

1− a

∫
dτ τ f exp (τ) =

1
1− af

exp[1] . (3.116)

This latter condition is most easily satisfied by fixing A and B to their value at a = 0 and allowing
Λ → Λa to vary accordingly. Note from the definition of f exp, Eq. (3.112), Λf exp(Λτ/Q) is inde-
pendent of Λ and hence Λaf

exp
a (Λaτ/Q) = Λf exp(Λτ/Q) when A and B are fixed. This implies

that

f exp[1]
a =

(
Λa
Q

)2 ∫
dτa τa f exp

a

(
Λa
Q
τa

)
=
(

ΛaΛ
Q2

)∫
dτ τ f exp

(
Λ
Q
τ

)
=
(

Λa
Λ

)
f exp[1] , (3.117)

and so to satisfy Eq. (3.116) we take f exp
a to be defined as in Eq. (3.112) but with Λ replaced with

Λa where

Λa =
Λ

1− a . (3.118)

5.3 Renormalon cancellation

We want to ensure that the 1/Q renormalon ambiguity in SPT(τa;µ) is cancelled order-
by-order in perturbation theory. To implement the position-mass renormalon cancellation scheme
defined in Ref. [106] for jet-masses and applied to the a = 0 gap parameter in Ref. [98], we first
take the Fourier transform of Sa(τa;µ) with respect to Qτa,

Sa(xa;µ) ≡
∫

dτa e−iQτaxaSa(τa;µ)

=
∫

dτa e−iQτaxa
∫

dτ ′a S
PT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆a

Q

)
= SPT

a (xa;µ) f exp(xa)e−2i∆axa

=
[
SPT
a (xa;µ)e−2iδa(µ)xa

][
f exp
a (xa)e−2i∆̄a(µ)xa

]
, (3.119)

where in the second line we used Eq. (3.113) and in fourth line we split ∆a into two µ dependent
pieces, ∆a = ∆̄a(µ) + δa(µ). Note that since ∆a is µ-independent, SPT

a and Sa obey the same RG
equation.

Next, we demand that for some value R, the term in the first pair of brackets in the last
line of Eq. (3.119) satisfies

d
d(ixa)

ln[SPT
a (xa;µ)e−2iδa(µ)xa ]ixa=(ReγE )−1 = 0 , (3.120)
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a condition which guarantees no ambiguity in SPT
a at order 1/Q. This gives δa(µ) to all orders in

terms of SPT
a (τa;µ) as

δa(µ) = −Q
2

∫
dτa τa e−Qτa/(Re

γE )SPT
a (τa;µ)∫

dτa e−Qτa/(Re
γE )SPT

a (τa;µ)
, (3.121)

which to leading order is given by the expression

δ1
a(µ) = −ReγE 8CF

1− a

(
αs(µ)

4π

)
ln
µ

R
. (3.122)

Since ∆a = ∆̄a(µ) + δa(µ) is µ-independent we find that to O(αs),

µ
d

dµ
∆̄a(µ) = −µ d

dµ
δa(µ) = ReγE

[
8CF
1− a

(
αs(µ)

4π

)]
≡ −ReγE

[
Γ0
S

(
αs(µ)

4π

)]
. (3.123)

Using that Γ∆̄[αs] ∝ ΓS [αs] (cf. Refs. [98, 106]) to all orders, we find that the NLL expression for
µd∆̄a/dµ is and that, for arbitrary a, ΓS [αs] ∝ Γcusp[αs] (cf. App. B)

µ
d

dµ
∆̄a(µ) = −ReγE

[
Γ0
S

(
αs(µ)

4π

)(
1 +

Γ1
cusp

Γ0
cusp

αs(µ)
4π

)]
, (3.124)

which has the solution

∆̄a(µ) = ∆̄a(µ0)− ReγE

2
ωS(µ, µ0) , (3.125)

where ωS(µ, µ0) is given in Eq. (3.92). Note that since δ1
a(µ) and ∆̄a(µ)− ∆̄a(µ0) are proportional

to 1/(1− a), Eq. (3.115) suggests that we should choose ∆̄a(µ0) to be ∆̄(µ0)/(1− a), where ∆̄(µ0)
is the best choice for a = 0.

Expanding Eq. (3.113) in powers of αs to O(αs) gives

Sa(τa;µ) =
∫

dτ ′a

[
SPT
a (τa − τ ′a;µ) +

2δ1
a(µ)
Q

d
dτ ′a

SPT
a (τa − τ ′a;µ)

]
f exp

(
τ ′a −

2∆̄a(µ)
Q

)
, (3.126)

where SPT
a at NLO in the first term in brackets and at LO in the second term should be used since

δ1
a is O(αs). Using the fixed-order expression SPT

a (τa;µ) = δ(τa) + O(αs) in the second term and
integrating this term by parts gives

Sa(τa;µ) =
∫

dτ ′a

[
SPT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆̄a(µ)
Q

)]
− 2δ1

a(µ)
Q

d
dτa

f exp
a

(
τa −

2∆̄a(µ)
Q

)
.

(3.127)

Evolving Sa(τa;µS) to the scale µ with US(τa − τ ′a;µ, µS) as in Eq. (3.88) gives

Sa(τa;µ) =
∫

dτ ′a

[
SPT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆̄a(µS)
Q

)
− 2δ1

a(µS)
Q

US(τa − τ ′a;µ, µS)
d

dτ ′a
f exp
a

(
τ ′a −

2∆̄a(µS)
Q

)]
. (3.128)
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Here we keep ∆̄a and δa at the scale µS which is needed to achieve the 1/Q renormalon cancellation
[99].

Finally, Eq. (3.128) implies that the total resummed distribution at NLL convoluted with
the model function f exp

a is

1
σ0

dσ
dτa

∣∣∣∣
NLL/NLO

=
∫

dτ ′a

{
1
σ0

dσ
dτa

PT

(τa − τ ′a;µ)
∣∣∣∣
NLL/NLO

f exp
a

(
τ ′a −

2∆̄a(µS)
Q

)
− 2δ1

a(µS)
Q

[
Uσa (τa − τ ′a;µ, µH , µJ , µS)

]
+

d
dτ ′a

f exp
a

(
τ ′a −

2∆̄a(µS)
Q

)}
,

(3.129)

where the resummed two-jet distribution matched to QCD, dσPT/dτa|NLL/NLO, is given in Eq. (3.105)
and Uσa is given in Eq. (3.96).

5.4 Numerical results for the soft function

By plugging the partonic soft function Eq. (3.42) into the model Eq. (3.127), we obtain
for the full convoluted model soft function to O(αs),

Sa(τa;µ) =
{

1− αsCF
2π

1
1− a

[
ln2

(
µ2

Q2(τ∆
a )2

)
− π2

6

]}
f exp
a

(
τ∆
a

)
− 2δa1(µ)

Q

d
dτa

f exp(τ∆
a )

+
2αsCF
π

1
1− a

∫ τ∆
a

0
dτ ′

1
τ ′

ln
(

µ2

Q2τ ′2

)[
f exp
a

(
τ∆
a − τ ′

)
− f exp

a

(
τ∆
a

)]
,

(3.130)

where τ∆
a ≡ τa − 2∆̄a(µ)/Q. To integrate against the plus distributions in Eq. (3.42), we used the

prescription ∫ a

0
dx
[
θ(x)
x

]
+

f(x) =
∫ a

0
dx
θ(x)
x

[f(x)− f(0)] + f(0) ln a (3.131a)∫ a

0
dx
[
θ(x) lnx

x

]
+

f(x) =
∫ a

0
dx
θ(x) lnx

x
[f(x)− f(0)] +

1
2
f(0) ln2 a , (3.131b)

which correspond to the definition of plus-functions given in Eq. (3.40). To minimize the logarithms
in the peak region of the soft function while also avoiding the Landau pole in αs, it is natural to
choose the scale to be of order µ & ΛQCD. To minimize the logarithms for larger values of τa, it is
natural to choose µ ∼ Qτa. A scale choice that interpolates between these two regions is

µ =
√
θ(Qτa − µmin

S )(Qτa − µmin
S )2 + (µmin

S )2 , (3.132)

where the minimum scale is µmin
S & ΛQCD.

In Fig. 3.6, we plot Sa(τa;µ) for six values of a between −2 and 1/2. In each plot, we
show the tree-level (LO) soft function with a gap parameter (solid gray), the one-loop (NLO)
soft function with a gap parameter but without renormalon subtraction (dashed green), and the
one-loop soft function with a gap and renormalon subtraction (solid blue). For the parameters in
the model function Eq. (3.112) we take A = 2.5, B = −0.4,Λ = 0.55 GeV, as extracted from a
fit to the jet mass distribution [113]. For the scale dependence of the gap parameter, we choose
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Sa(τa;µ)
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Figure 3.6: Angularity soft functions with a gap parameter, at tree-level (solid gray) and at one-
loop with (solid blue) and without (dashed green) renormalon subtraction, for Q = 100 GeV, for
several values of a as labeled on each plot. The variation of the soft functions with the scale µ is
illustrated by first setting µmin

S = 1.0 GeV in Eq. (3.132) and choosing µ to be (0.8, 1, 1.2) times the
formula in Eq. (3.132), with the plots for smaller values of µS peaking earlier in τa. For the model
parameters we take A = 2.5, B = −0.4,Λ = 0.55 GeV. In the renormalon subtraction Eq. (3.122),
we have chosen R = 200 MeV.
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∆̄0(1 GeV) = 100 MeV and use Eq. (3.125) to evolve to other scales. We choose R = 200 MeV in
the renormalon subtraction Eq. (3.122) and the minimum value of the scale in Eq. (3.132) to be
µmin
S = 1 GeV. We illustrate the variation of Sa(τa;µ) with the scale µ by varying it between 0.8

and 1.2 times the formula in Eq. (3.132). The tree-level soft functions depend on µ only through
the gap parameter ∆̄a(µ) and thus artificially have smaller scale variation than the one-loop soft
functions, at which order the nontrivial µ dependence is first probed.

The one-loop soft functions in Fig. 3.6 display unphysical behavior near τa = 0 by taking
negative values, due to the renormalon ambiguity in the perturbative series for the partonic soft
function. By cancelling the renormalon ambiguity between the partonic soft function and the
nonperturbative gap parameter ∆a through Eq. (3.127), we obtain the renormalon-free one-loop
soft functions. One of the plots of the soft function for a = 1/2 still exhibits a small negative dip
after renormalon subtraction, but it is nevertheless much smaller than the original negative dip,
and from its size may be expected to an effect of higher-order power corrections. The dip does not
appear in the total cross-section calculated below in Sec. 6.

6 Numerical Results for the Full Distribution

In this section we plot the angularity distributions dσ/dτa which include LO and NLO
perturbative hard, jet, and soft function contributions, resummation of large logarithmic terms to
NLL accuracy, matching to QCD at O(αs), and the effects of the nonperturbative gapped soft
functions.

In Fig. 3.7 we plot the angularity distributions given by Eq. (3.129), plugging in the NLL
resummed partonic distribution given by Eq. (3.95) and matched according to Eq. (3.105). We
keep the same soft model function parameters as in the previous section. As noted earlier, the
logarithms in the hard, jet, and soft functions are minimized by choosing µH = Q, µJ ∼ Qτ1/(2−a)

a ,
and µS ∼ Qτa. In order to avoid the Landau pole in αs as τa → 0, we choose the scales as in
Eq. (3.132) ,

µS =
√
θ(Qτa − µmin

S )(Qτa − µmin
S )2 + (µmin

S )2 (3.133a)

µJ =
√
θ(Qτ1/(2−a)

a − µmin
J )(Qτ1/(2−a)

a − µmin
J )2 + (µmin

J )2 . (3.133b)

We may vary µmin
S,J independently, or choose them in a correlated fashion suggested by their natural

scaling µS ∼ Qλ, µJ ∼ Qλ1/(2−a), that is,

µmin
J = Q(1−a)/(2−a)(µmin

S )1/(2−a) . (3.134)

In Fig. 3.7 we have done the latter. The NLL/NLO distributions exhibit negative values for small
τa as a result of the renormalon ambiguity. Performing the renormalon subtraction in the soft
function removes this pathology.
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Figure 3.7: Angularity distributions at Q = 100 GeV for six values of a between −2 and 1/2. The
solid gray curves are the LO partonic distributions resummed to NLL and convoluted with the
gapped soft model function. The dotted green curves are NLL/NLO convoluted with the gapped
soft function but without renormalon subtraction. The dashed red curves are the same as the
green but with renormalon subtraction, and the solid blue curves are the same as the red but
matched to fixed-order QCD at O(αs). We choose the scales µ = Q,µmin

S = 1 GeV, and µmin
J given

by Eq. (3.134). For the gap parameter we take ∆̄0(1 GeV) = 100 MeV and in the renormalon
subtraction R = 200 MeV.
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Figure 3.8: Angularity distributions at Q = 100 GeV. The full, NLL/NLO resummed, renormalon-
subtracted distributions in Fig. 3.7 are here shown all on the same scale. The parameters are chosen
the same as in Fig. 3.7. From highest to lowest peak value, the curves are for a = −2,−1,−1

2 , 0,
1
4 ,

1
2 .

F = S F = J

jF 1 2− a
Γ0
F −8CF 1

1−a 8CF
1−a/2
1−a

γ0
F 0 6CF

Table 3.1: Γ0
F , γF and jF for the jet and soft functions.
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Figure 3.9: Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity distributions at
Q = 100 GeV for a = −1, a = 0, a = 1/4, and a = 1/2. For the hard scale variation, µH varied
between Q/2 and 2Q and for the correlated scale variation, µJ and µS are varied between half the
values given in Eq. (3.133) and twice these values.
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In Fig. 3.8 we plot angularity distributions for the values of a used in Fig. 3.7 on the same
figure to illustrate clearly how they change with a. The range of τa populated by two-jet-like events
grows with increasing a, so that the peak regions are populated by jets of increasing narrowness
with increasing a. This is reflected in the scales µJ,S in Eq. (3.133) drawing closer as a grows to 1.

In Fig. 3.9 we vary the hard, jet, and soft scales and plot the resulting variation of our final
predictions for the distributions. First we vary the hard scale µH between Q/2 and 2Q, plotting
the result in the dark green band. Then we vary the collinear and soft scales µJ,S between half and
twice the values we chose in Eq. (3.133) and plot the result in the light blue band.

Although published data on e+e− angularity distributions for a 6= 0 are not yet available,
data for the a = 0 (thrust) distribution are of course plentiful. The remaining difference between
our prediction in Fig. 3.7 and existing measurements of the a = 0 distribution can be accounted
for by higher-order perturbative corrections (see, for example, Fig. 6 in Ref. [32]), which are known
but have not been included here, since we calculated the other angularity distributions only to
NLL/NLO. For a sufficiently smaller than 1, we expect our predictions of all angularity distributions
to agree with data to the same accuracy that the NLL/NLO a = 0 prediction agrees with the thrust
data.

7 Comparison to Previous Results and Classic Resummation

To compare to previous predictions of angularity distributions [37, 40] and focus more
generally on the differences between SCET and alternative approaches to factorization and re-
summation, in this section we restrict our attention to the perturbative distribution both before
matching, Eq. (3.95), and after matching, Eq. (3.105), leaving out the nonperturbative model of
Sec. 5.

Our result for the unmatched NLL resummed distribution Eq. (3.95) involves an evolution
factor Uσa , which resums all leading and next-to-leading logarithms (for example the (1/τa) ln τa and
1/τa terms in the fixed-order Da(τ) of Eq. (3.103)), and a multiplicative NLO prefactor 1 + fH +
2fJ + fS = 1 +O(αs). Both the evolution factor and the NLO prefactor are sensitive to physics at
the three distinct scales µH , µJ , and µS . Keeping these scales arbitrary until after solving the RG
equations in Sec. 4 and retaining the freedom to choose them only at the end provides a flexibility
which is indispensable in achieving reliable predictions in the SCET approach. This approach has
significant advantages over what we refer to as the classic approach to resummation in QCD [48].

To illustrate these advantages, we compare our results for angularity distributions to
those obtained in full QCD [37, 40]. The analysis in Ref. [37] used a formalism of factorization and
resummation of logarithms through renormalization-group evolution paralleling that of SCET, in
principle containing all the advantages that we emphasize here, but which were not fully realized.
Before arriving at the explicit prediction for the NLL resummed distribution dσ/dτa given in
Ref. [40], the factorized result of Ref. [37] was first converted into the form of a resummed event
shape distribution that would be obtained using the classic approach (and has been for a = 0).

One major advantage of the SCET approach over the classic approach is the presence of
Landau pole singularities in the results of the classic approach that are not in the results from
SCET, as also found in the cases of DIS and Drell-Yan [126, 27, 30]. We can illustrate why SCET
avoids this for the case of angularities by returning to our results for the resummed jet and soft
functions and for the final resummed distribution. From the expressions for the resummed soft
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Figure 3.10: Factorization scale µ variation of the (unmatched, partonic) SCET NLL/LO (light
blue band) and the classic QCD NLL/LO (red band) resummed results for angularity distributions.
µ is varied over the range Q

2 ≤ µ ≤ 2Q with Q = 100 GeV for the cases a = −1, a = 0, a = 1/4,
and a = 1/2. To make a direct comparison to the QCD results, the scales in the SCET results have
been chosen as µ = µH = Q, µJ = Qτ

1/(2−a)
a , and µS = Qτa.

function Sa(τ sa), Eq. (3.93), and for the resummed jet function Jna (τna ), Eq. (3.94), one might be
tempted to set µS = Qτ sa and µJ = Q(τna )1/(2−a), since the logarithms in Eqs. (3.93) and (3.94) are
minimized for these choices. The problem with this choice is that the soft and jet functions still
enter the convolution in the factorization theorem Eq. (3.1) and thus the scales in αs(µJ/S) run
below τn,sa = ΛQCD/Q even for τa > ΛQCD/Q (where τa = τna + τ n̄a + τ sa) if these τn,sa -dependent
scales are chosen. However, for a τ sa -independent choice of µS in the case of the soft function, for
instance, the full functional dependence of the resummed S(τ sa ;µ) on τ sa and µS is such that after
the integrals over τ sa , τna , and τ n̄a needed to get to the final resummed distribution, Eq. (3.95), are
performed, the resulting dependence on µS only comes in the combination µS/Qτa in logarithms
(and similarly for the jet functions). The proper choice is thus µS ∼ Qτa (and µJ ∼ Qτ1/(2−a)

a ) and
not µS ∼ Qτ sa . With this choice, Landau pole singularites never affect our result for τa > ΛQCD/Q.
Setting µS = Qτ sa before doing the convolution Eq. (3.1) is equivalent to setting µS = Q/ν in the
Laplace transform with respect to ν of the distribution, which is the scale choice made in Ref. [37]
needed to reproduce the classic result for a = 0. Thus, when transforming back to get dσ/dτa,
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one inevitably runs into spurious Landau pole singularities with this scale choice9, confirming the
similar observation of [30].

Another difference between the explicit results we give and those given in [37] is that
while both achieved resummation of logarithms to NLL accuracy, the latter does not include a
full NLO calculation of the jet and soft functions in the distribution dσ/dτa, that is, effectively
does not have the prefactors fH,J,S . As with our SCET results, the results of [37] are not as
accurate as fixed-order QCD in the large-τa region and need to be matched. This matching was
subsequently performed numerically to at O(α2

s) in Ref. [40]. We summarize this by saying that we
have resummed logarithms of τa to NLL/NLO with O(αs) matching and Ref. [40] has resummed
to NLL/LO with O(α2

s) matching.
The explicit dependence of the NLO prefactor on the separate scales µH,J,S makes it

distinct from what is obtained by NLO matching to QCD in the large-τa region where the three
scales are comparable. Specifically, it improves the accuracy in the smaller-τa region where the
distribution depends on physics at the three widely disparate scales separately, as revealed by
the factorization theorem. We emphasize that even though the effects of including this NLO
piece are formally of next-to-next-to-leading logarithmic (NNLL) accuracy (using the counting
αs ln τa ∼ O(1)), it is natural to include it in our NLL resummed result since the dependence on
the arbitrary scales µH,J,S is cancelled to order αs in our NLL/NLO calculation.10

Finally, we point out that while SCET can incorporate O(α2
s) matching with, for example,

an O(α2
s) QCD calculation or an event generator, the classic approach by itself is less easily gen-

eralized to achieve full NLL/NLO accuracy. The reason for this difference is that SCET predicts
the evolution boundary conditions for the hard, jet, and soft functions, H(Q;µH) and F (τa;µF )
(F = J, S) in Eq. (3.88), for arbitrary scales µH,J,S order by order in perturbation theory. On
the other hand, as discussed in Ref. [140], the classic approach in contrast must effectively use the
evolution boundary conditions F (τa;µ0) = δ(τa), which are LO in the SCET point of view. An
implication of this difference is that, since our NLO prefactor is formally part of the NNLL series,
full NNLL resummation is a nontrivial task in the classic approach (e.g. [46, 73]) whereas it is
straightforward in SCET, using no new techniques additional to the ones described above.

In Fig. 3.10, we compare our result with the classic result obtained in [37]. To make
this comparison, we truncate our result to NLL/LO accuracy and make the scale choices that are
equivalent to those that were made in Ref. [37] for the purpose of arriving at the classic resummed
form. Namely, we run the jet and soft functions from their respective natural scales, µJ = Qτ

1/(2−a)
a

and µS = Qτa, to the hard scale set to µH = Q. In addition, in Ref. [37] the factorization scale µ
was also chosen to be µ = µH , effectively turning off running between µH and µ. Thus, to make a
genuine comparison, we vary µ both in the classic result given in [40] and in our result Eq. (3.95)
over the range Q/2 to 2Q, fixing µH = µ in our result. Notice from the plots that the peak position
appears to be more stable in the SCET results relative to the classic results and that there is a
discrepancy in the overall normalization in the peak region, both of which may be attributed to

9There are also inherent Landau pole singularities in the classic approach before transforming back to τa-space and
thus not associated with making ν-dependent scale choices for µJ,S . In the classic approach, a prescription to avoid
both types of Landau pole singularities is employed, but at the expense of introducing unphysical power corrections
[48, 52]. The results of [40] plotted in Fig. 3.10 used the prescription of [48].

10More generally, in an NnLL/NmLO calculation, the dependence on µH,J,S cancels up to order α
min{n,m}
s , as the

µH,J,S derivative of the logarithm of the distribution receives contributions from the prefactor at order αms and from
the anomalous dimension at order αns .
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power corrections arising from the spurious Landau poles present in the classic result.

8 Conclusions

We have calculated angularity distributions in e+e− collisions for a < 1 to O(αs) in fixed-
order accuracy, resummed leading and next-to-leading large logarithms in the perturbative series,
incorporated the effects of a nonperturbative model for the soft function with a gap parameter,
and cancelled the leading renormalon ambiguities in the perturbative expansion of the distribution
and the gap parameter. Our new results for the one-loop jet and soft functions for all a < 1 and
the NLL resummation of logarithms of τa with explicit analytical dependence on the scales µH,J,S
made possible what we believe are the most precise predictions of angularity distributions to date.

These predictions, especially after extension to higher orders in perturbation theory and
resummation of logarithms, can prove useful in improving extraction of the strong coupling αs or
the parameters of nonperturbative models for the soft function. At the present time, in the absence
of a new linear collider, such extractions would require the re-analysis of LEP data to extract the
angularity distributions.

We also gain insight into the steps that will be required to predict jet observables in
hadronic collisions, a broad range of which have been studied in [7, 6] using the classic approach.
An SCET-based framework to factorize jet observables in this environment was developed in [15].
Our analysis of angularities suggests that the study of any set of jet observables which vary in their
sensitivity to narrower or wider jets or which depend on a jet algorithm picking out narrower or
wider jets should be scrutinized in the same way as we did for angularities to determine whether
the contributions of collinear and soft modes to each observable can be clearly separated. Also, our
calculations of light quark angularity distributions in e+e− collisions can be extended to calculating
individual jet shapes for jets of various origins to higher accuracy, contributing to strategies to use
such jet shapes to distinguish experimentally different types of jets [3, 2].

While we have used SCET to calculate and explore the behavior of angularity distributions,
the variation in behavior of the angularities has in turn shed light on the behavior and applicability
of the effective theory. Varying a essentially varies the collinear scale of SCET, in effect interpolating
between (and extrapolating beyond) SCETI and SCETII , and so angularities provide an ideal
testing ground for the behavior of these effective theories.

It is natural and straightforward to consider further improvement of our predictions to
higher perturbative accuracy and reduced nonperturbative uncertainty. We believe by using the cut
diagram methods described above to obtain the angularity distributions to O(αs) we can extend
our results to O(α2

s) in a straightforward manner. Also, all of the ingredients necessary for NNLL
resummation at a = 0 are already known [32], and we would only need to calculate those pieces
which change with a. The three-loop ΓJ,S part of the jet and soft anomalous dimensions for
arbitrary a can be obtained from the known three-loop Γcusp [30] and the all-orders proportionality
ΓJ,S ∝ Γcusp which we verified in Appendix B. The only unknown ingredients are the two-loop
non-cusp part of the jet and soft anomalous dimensions. These can be obtained solely from the UV
divergences of the two-loop graphs, and would immediately extend our results to NNLL accuracy.
As for nonperturbative effects in the angularity distributions, we have treated these effects in the
soft function in the simplest manner possible, adapting the a = 0 soft model function to all a by
rescaling its first moment. Comparison of these predictions to e+e− data can shed light on the
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reliability of this choice.
Angularities and other event shapes have proven to be powerful probes of QCD and its

effective theories, and promise to play a key role in the new era of collider physics searching for
signals of new physics amid a sea of jets and strong interactions.
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Chapter 4

On Glauber Gluons in SCET

1 Introduction

Factorization of QCD hard scattering cross-sections into calculable high-energy and universal non-
perturbative parts plays vital role in our theoretical understanding of strong interactions. In prac-
tice one should derive a factorization formula on a process by process basis. Then, one could extract
the hadron Parton-Distribution Function (PDF) say from the Deeply Inelastic Scattering (DIS) and
use it in the factorized Drell-Yan (DY) [82] cross-section as an input to make theoretical prediction
that can be compared to data.

Glauber gluons play special role in DY like processes where they threaten Factorization
[44, 65]. They are low-energy momentum exchanges involving remnants in hadronic collisions,
where the transferred momentum is almost entirely in the direction perpendicular to the beam
axis. The presence of this transverse interaction causes the factorization to be broken in the usual
sense of PDF’s and the generalized Transverse Momentum Dependant PDF’s (TMDPDF) should
be introduced for the exclusive in QT DY cross-section [67]. However, in the inclusive cross-section,
i.e. after integrating over the QT, the effects from Glauber gluons cancel, and Factorization holds
[43, 66].

The modern approach to Factorization proofs, which has the advantage of straightforward
resummation of large logarithms of multiple physical scales, is using one or more effective field
theories. In this approach the ingredients of a Factorization formula are identified with Wilson
coefficients and matrix elements of operators in these field theories, see e.g. [124].

Soft-collinear effective theory (SCET) [12, 14, 25, 21] plays an important role and has
been employed in proofs of Factorization for many jet-involving processes. It is thus of particular
interest how Glauber gluons can be accounted for in SCET. The straightforward approach is to
assign a momentum scaling of (λ2, λ2, λ) for the (+,−,⊥) light-cone components and treat them
as propagating fields, at least for book-keeping purposes. Since these fields are off-shell and cannot
appear as external particles in perturbation theory, they may be integrated out of the effective
theory, leading to a potential between pairs of collinear fields in opposite directions.

An attempt to include Glauber gluons into SCET was done in [122], where the factorization
of DY cross-section in the presence of Glauber mode was reconsidered. However in this attempt
the overlaps between modes which we find to play a very important role is completely ignored.

Inclusion of Glauber gluons into SCET lagrangian has been phenomenologically suitable
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for description of jet broadening in dense QCD matter [103, 75].
The purpose of the present Chapter is to motivate the inclusion of Glauber gluons into

SCET to have a consistent effective theory for the DY cross-section. The proven cancelation [43, 66]
of Glauber interactions in the inclusive DY cross-section needs to be understood from the effective
theory point of view.

The plan of the Chapter is as follows. In Section 2 we perform a one-loop matching
calculation within SCET involving DY amplitude topologies and show that the effective theory
breaks down, while in SCET+Glauber mode we get the consistency back into effective theory. In
Section 3 we perform the pinch analysis of DY amplitudes at one loop and identify the right modes
for the effective theory for each topology. In Section 4 we discuss the reconciliation of having an
off-shell Glauber pinch and the Coleman and Norton theorem, and finally we conclude in Section
5.

2 Setting up the playground

, ,

ts

p + p̄ −p̄

q + q̄ q

Figure 4.1: One-loop examples of — Left: active-active interactions, Middle: spectator-active
interactions, Right: spectator-spectator interactions

The goal of this Chapter is to study interactions that are mediated by a momentum
configuration with Glauber scaling, i.e. l ∼ (λ2, λ2, λ). It is well known that such modes are
present between spectators at the amplitude level for Drell-Yan type processes [Collins, Soper,
Sterman]. It is helpful to construct an example in SCET in which the conditions that lead to
Glauber gluon exchanges are present. To this end we reconsider the well-studied SCET current
O2 = χ̄n̄Γχn, for which the Wilson coefficient C2 and its anomalous dimension γ2 are known to
high precision [Pecjak et. al.] by explicit calculation using partonic external states of free quarks
〈q̄q|O2|0〉. However, since our aim is directed toward spectator interactions, we intentionally choose
more complicated external states, namely 〈γ∗γ∗ → q̄qq̄q|O2|q̄q〉, which must yield the same results
for C2 and γ2 as they are independent of the choice of external states. Examples of Feynman
diagrams to consider are depicted in Figure 4.1.

Since we will work backwards from a known result, we may formulate our expectations as
follows. Interactions between particles participating in the hard scattering process, called ”active”
particles, will reproduce the previous results, while the new type of topologies where an active
particle interacts with a spectator or purely between spectators will not contribute to C2 or γ2 in
the matching calculation. In other words, the sum of the full theory graphs in the new topologies
must be reproduced in its entirety within SCET.

In the next subsection we will match the full (scalar) theory to SCET at one-loop order,
where the field content of the effective theory is given by soft, collinear and anti-collinear momentum
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modes. We assign momenta p + p̄ and q + q̄ to the two inital virtual photons, and p̄ and q to the
two outgoing partons. Note that the tree-level amplitude is simply given by the 1/(p2q̄2),

〈γ∗γ∗|O2 |q̄q〉tree =
1

p2q̄2
. (4.1)

At one loop order, the full theory amplitude of the matrix element of our interest is equal to sum
of three topologies, which we write as I3, I4, I5, namely a triangle graph in the active-active, box
graphs in the spectator-active and a pentagon graph in the spectator-spectator topology,

〈γ∗γ∗|O2 |q̄q〉FT =
1

p2q̄2
I3 +

1
q̄2
I

(nn̄)
4 +

1
p2
I

(n̄n)
4 + I5 , (4.2)

where the prefactors of 1/p2, 1/q̄2 take into account the propagators that are independent of the
loop-momenta. The notation I(nn̄)

4 and the one with n, n̄ reversed takes into account two spectator-
active graphs: firs one with spectator in the n direction and the active quark in the n̄ direction,
and the second one vise verse.

In the the first effective theory that we consider, which is the usual, unmodified SCETI,
we consider only collinear and ultrasoft modes (which we for brevity call soft everywhere below).
The one loop amplitude for this effective theory equals to

〈γ∗γ∗|O2 |q̄q〉EFT1
=

1
p2q̄2

(Ic3 + I c̄3 + Is3) +
1
q̄2

(I(nn̄)c
4 + I

(nn̄)s
4 ) +

1
p2

(I(n̄n)c̄
4 + I

(n̄n)s
4 ) + Is5 . (4.3)

Here we have already used the fact that some graphs, i.e. I(nn̄)c̄
4 , I(n̄n)c

4 , Ic5, I c̄5, are power-suppressed.
Finally we will repeat the same calculation in another effective theory in which one addi-

tional (Glauber gluon) mode is included, which has momentum scaling (λ2, λ2, λ). In this effective
theory our matrix element equals

〈γ∗γ∗|O2 |q̄q〉EFT2
=

1
p2q̄2

(Ic
′

3 + I c̄
′

3 + Ig3 + Is3) +
1
q̄2

(I(nn̄)c′

4 + I
(nn̄)g
4 + I

(nn̄)s
4 )

+
1
p2

(I(n̄n)c̄′

4 + I
(n̄n)g
4 + I

(n̄n)s
4 ) + Ig5 + Is5 . (4.4)

The primed integrals differ from the unprimed ones pricipally in their “zero-bin subtraction”,
i.e. their overlap with the other modes present in the theory. For example, the collinear contribution
in EFT1 are given by subtracting the overlap with the soft mode,

Ick = Ĩck − (Ick)0s , (4.5)

while in EFT2 all three modes overlap with each other: collinear, Glauber and the soft. The
following subtractions avoid the double counting:

Ic
′
k = Ĩc

′
k − ((Ic

′
k )0g − (Ic

′
k )0g0s + (Ic

′
k )0s) , (4.6)

Igk = Ĩgk − (Igk)0s . (4.7)

For completeness we perform below the one-loop analysis of all the integrals in both effective theories
and compare the resulting matching coefficient to the one with simple external states, 〈q̄q|O2 |0〉.
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In that case we have

〈q̄q|O2 |0〉FT = I3 , (4.8)
〈q̄q|O2 |0〉EFT1

= Ic3 + I c̄3 + Is3 , (4.9)

〈q̄q|O2 |0〉EFT2
= Ic

′
3 + I c̄

′
3 + Ig3 + Is3 . (4.10)

The consistency check on the either of the effective theories is that the matching coefficient is
independent of the external states and can be written as follows:

(C2)EFTi =
〈q̄q|O2 |0〉FT − 〈q̄q|O2 |0〉EFTi

〈q̄q|O2 |0〉tree

=
〈γ∗γ∗|O2 |q̄q〉FT − 〈γ∗γ∗|O2 |q̄q〉EFTi

〈γ∗γ∗|O2 |q̄q〉tree

, (4.11)

where i = 1, 2 for two effective theories under consideration.
We will explicitly show below that one of the effective theories, EFT1, does not satisfies

this consistency check, while EFT2 does.

2.1 Full Theory one loop calculation

The active-active topology in the full theory is simply a standard scalar triangle integral:

I3 = µ4−D
∫

dDl
(2π)D

1
[l2 + i0][(l + p)2 + i0][(l − q̄)2 + i0]

(4.12)

=
i

16π2
· 1
p+q̄−

(
π2

3
+ ln

p2

p+q̄−
·ln q̄2

p+q̄−

)
+O

(
ε, λ2

)
. (4.13)

The spectator-active topology is the scalar box integral:

I
(nn̄)
4 = µ4−D

∫
dDl

(2π)D
1

[l2 + i0][(l − p̄)2 + i0][(l + p)2 + i0][(l − q̄)2 + i0]
(4.14)

=
i

16π2
· 1
q̄−
· 1
p̄2p+ + p2p̄+

(
π2

3
− 2 Li2

(
−p

2p̄+

p̄2p+

)
+
(

ln
(
p̄2p+

p2p̄+

)
− i π

)
ln

(
q̄−
(
p+p̄2 + p̄+p2

)2
q̄2(p+ p̄)2p+p̄2

))
+

O
(
ε, λ0

)
. (4.15)

Similar expression is valid for for the second spectator-active integral I(n̄n)
4 .

The spectator-spectator topology in the full theory can be calculated via a pentagon
integral which by standard procedures can be reduced to sum of five box integrals. The result is:

I5 = µ4−D
∫

dDl
(2π)D

1
[l2 + i0][(l − p̄)2 + i0][(l + p)2 + i0][(l − q̄)2 + i0][(l + q)2 + i0]

(4.16)

=
i

16π2

[
M+M−

p+p̄+(p+ p̄)2q−q̄−(q + q̄)2

(
ln
(
p̄+p2

p+p̄2

)
ln
(
q−q̄2

q̄−q2

)
+ iπ ln

(
p̄2p2q̄2q2

p̄+p+q̄−q−(M+M−)2

)
+ π2

)
+

2πiM+M−

p+p̄+(p+ p̄)2(M−)2 − q−q̄−(q + q̄)2(M+)2

(M−)2 ln
(
M+(M−)3

q−q̄−(q+q̄)2

)
q−q̄−(q + q̄)2

−
(M+)2 ln

(
(M+)3M−

p+p̄+(p+p̄)2

)
p+p̄+(p+ p̄)2

]+

O
(
ε,

1
λ2

)
.
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2.2 EFT-1: Soft and collinear gluon exchanges

The loop integrals for the effective theory modes in each topology can be found trivially
by expanding the corresponding full theory integrals I3, I4, I5 with the appropriate scaling of the
gluon momenta.1 The zero-bin subtraction integrals can be found similarly by expanding the
effective theory loop integrals with the scaling of the overlap mode. All zero-bin integrals are zero
in this effective theory, so they behave as a pool up mechanism, converting infrared poles into the
ultraviolet ones.

The results for all modes in EFT1 are given below:

Ic3 =
i

16π2
· 1
p+q̄−

− 1
ε2
−

ln µ2

p2 + iπ

ε
− 1

2

(
ln
µ2

p2
+ iπ

)2

+
π2

12

 , (4.17)

I c̄3 =
i

16π2
· 1
p+q̄−

− 1
ε2
−

ln µ2

q̄2 + iπ

ε
− 1

2

(
ln
µ2

q̄2
+ iπ

)2

+
π2

12

 , (4.18)

Is3 =
i

16π2
· 1
p+q̄−

(
1
ε2

+
1
ε

ln
µ2p+q̄−

p2q̄2
+
i π

ε
+

1
2

ln2 µ
2p+q̄−

p2q̄2
+ i π ln

µ2p+q̄−

p2q̄2
− π2

4

)
, (4.19)

I
(nn̄)c
4 =

i

16π2
· 1
q̄−
· 1
p̄2p+ + p2p̄+

(
ln p2p̄+

p̄2p+ + iπ

ε
− 7π2

6
− 2 Li2

(
−p

2p̄+

p̄2p+

)
+ iπ ln

µ2p2(p+ p̄)2(p̄+)2

(p̄2p+ + p2p̄+)2p̄2
+,

ln
p̄2p+

p2p̄+

(
ln

(p̄2p+ + p2p̄+)2

(p+ p̄)2p+p̄+p̄2
− 1

2
ln

µ4p+

p2p̄2p̄+

))
, (4.20)

I
(nn̄)s
4 =

i

16π2
· 1
q̄−
· 1
p̄2p+ + p2p̄+

(
−

ln p2p̄+

p̄2p+ + iπ

ε
+

1
2

ln
p̄2p+

p2p̄+
ln
µ4p+p̄+(q̄−)2

p2p̄2(q̄2)2
− iπ ln

µ2p2(p̄+)2q̄−

q̄2(p̄2)2p+
+

3
2
π2

)
,

Is5 =
i

16π2

M+M−

p+p̄+(p+ p̄)2q−q̄−(q + q̄)2

[
−2 iπ

ε
+ ln

(
p̄+p2

p+p̄2

)
ln
(
q−q̄2

q̄−q2

)
+ iπ ln

(
p̄2p2q̄2q2

p̄+p+q̄−q−µ4

)
+ 3π2

]
.

The contribution to the Wilson coefficient C2 can be written as sum of three topologies,
where the active-active topology gives the same contribution as the final result for C2, so for the
consistency the remaining two topologies should give contributions to C2 that add up to zero. For
the different Wilson coefficient contributions we get:

1In the collinear integrals the power counting requires to set the off-shellness regulator to zero when shrinking the
propagator to a point. This has one disadvantage, which is that after doing so, the off-shellness does not properly
regularize all the infrared physics, and some of the 1/ε poles in the dimensional regularization will correspond to
infrared origin. If one ignores the power counting and leaves the off-shellness in the shrinked to a point propagator,
then the off-shellness regularizes all of the infrared properly. We repeated the calculation for this case too, and all
of the conclusions of this section, namely the matching coefficient is identical to the case, which we present below,
in which we respect the power counting. We thank Thomas Becher for suggesting to us to do the calculation both
ways.
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∆(C2)(AA)
EFT1

= I3 − Is3 − Ic3 − I c̄3 =
1
ε2

+
ln µ2

p+q̄− + iπ

ε
+

1
2

ln2 µ2

p+q̄−
+ iπ ln

µ2

p+q̄−
− 7

12
π2,(4.21)

∆(C2)(SA)
EFT1

= p2
(
I4 − I(nn̄)s

4 − I(nn̄)c
4

)
= 0, (4.22)

∆(C2)(SS)
EFT1

= p2q̄2 (I5 − Is5) =
1
εUV

+
1
εIR

+ finite. (4.23)

(4.24)

We see that EFT1 breaks down since it fails to reproduce the IR of QCD.

2.3 EFT-2: EFT-1 + Glauber gluons

Having found a serious problem in the EFT1 we go ahead and do the similar matching
calculation to check the consistency for the EFT2.

In this effective theory the only non vanishing zero-bin subtraction integral turns out to
be the overlap between collinear and Glauber modes in the spectator-active topology: (I(nn̄)c′

4 )0g.
All the rest zero-bin subtractions are scaleless in dimensional regularization.

The explicit results for all the mode contributions in EFT2 are presented below:

Ic
′

3 = Ic3 (4.25)
I c̄
′

3 = I c̄3 (4.26)
Ig3 = 0 (4.27)

I
(nn̄)c′

4 = I
(nn̄)c
4 − (I(nn̄)c′

4 )0g (4.28)

I
(nn̄)g
4 = write down explicit formula (4.29)

Ig5 =
i

16π2

[
M+M−

p+p̄+(p+ p̄)2q−q̄−(q + q)2

(
2πi
ε
− 2π2 + 2π i ln

(
µ2

M+M−

))
+ (4.30)

2πiM+M−

p+p̄+(p+ p̄)2(M−)2 − q−q̄−(q + q̄)2(M+)2

(M−)2
ln
(

(M−)3M+

q−q̄−(q+q̄)2

)
q−q̄−(q + q̄)2

− (M+)2
ln
(

(M+)3M−

p+p̄+(p+p̄)2

)
p+p̄+(p+ p̄)2

].
where the only non-zero zero-bin integral (I(nn̄)c′

4 )0g is identically equal to the Glauber integral in
the spectator-active topology:

(I(nn̄)c′

4 )0g = I
(nn̄)g
4 . (4.31)

The corresponding contributions to the Wilson coefficient C2 from different topologies are
equal to:
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∆(C2)(AA)
EFT2

= I3 − Ic3 − I c̄3 − Ig3 − Is3 = ∆(C2)(AA)
EFT1

, (4.32)

∆(C2)(SA)
EFT2

= p2
(
I4 − I(nn̄)c

4 − I(nn̄)g
4 − I(nn̄)s

4

)
= 0, (4.33)

∆(C2)(SS)
EFT2

= p2q̄2 (I5 − Ig5 − Is5) = 0, (4.34)
(4.35)

We observe that EFT2 successfully reproduces the IR of QCD and leads to the correct
matching coefficient for C2 given by active-active topology only.

3 Pinch analysis and power counting

In this section we will identify the correct effective theory modes, needed to describe the
infrared behavior of the spectator-spectator loop integral:

Dfull
(SS) =

∫
d4l

(2π)4

1
l2 + i0

1
(l + p)2 + i0

1
(l − p̄)2 + i0

1
(l + q)2 + i0

1
(l − q̄)2 + i0

. (4.36)

Decomposing the loop momentum l into its light-cone components we arrive at the following form,
which is suitable for first integrating over the + component by contours and leaving the ⊥ compo-
nents as a final integration:

Dfull
(SS) =

1
2

∫
d2l⊥
(2π)2

∫
dl−

2π
N−(l−)

∫
dl+

2π

4∏
i=0

1
l+ − zi(l−, l⊥)

, (4.37)

where 1/N−(l−) = l−(l− + p−)(l− − p̄−)(l− + q−)(l− − q̄−). The singularities in the complex l+

plane are functions of l− and l⊥, as well as the external momentum components. Explicitly they
are given by

z0(l−, l⊥) =
l2⊥ − i0
l−

, (4.38)

z1(l−, l⊥) =
(l⊥ + p⊥)2 − i0

l− + p−
− p+ , z3(l−, l⊥) =

(l⊥ + q⊥)2 − i0
l− + q−

− q+ , (4.39)

z2(l−, l⊥) =
(l⊥ − p̄⊥)2 − i0

l− − p̄− + p̄+ , z4(l−, l⊥) =
(l⊥ − q̄⊥)2 − i0

l− − q̄− + q̄+ . (4.40)

Note that the locations of the poles above or below the real axis changes during the integration
over l− at the transitions l− = −q− ∼ O(1), q̄− ∼ O(1), −p− ∼ O(λ2), p̄− ∼ O(λ2) and l− = 0.

In order to identify which modes one should put into the effective theory, we must find
all the momentum regions that contain a pinch singularity and which also are of leading power.
One way of finding that out is to expand the integrand in equation (4.37) and count the measures
and propagators in the appropriate powers of λ. Also one could analyze the pinch structure of the
expanded integrals. In our explicit matching calculation we basically did exactly that.
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Figure 4.2: Left: magnitude of pole locations as a function of l⊥. Dashed lines denote poles in the
lower half plane, while solid ones are in the upper half plane. Right: magnitude of the residues of
poles in the upper half plane. The color coding is identical to the one on the left.

Alternatively, it is instructive to choose a countour of integration for l+, e.g. closing the
loop in the upper half plane, and plotting the residues and measures for each of the poles. To that
end we define

λn
Res
j (n⊥,n

−) = λ2n⊥+n−

∣∣∣∣∣∣N−(λn
−

)
∏
i 6=j

1
zj(λn

− , λn⊥)− zi(λn− , λn⊥)

∣∣∣∣∣∣ . (4.41)

In other words, nRes
j (n⊥, n−) is the power of the jth residual term in the integral (4.37) for a given

assignment of l− ∼ λn− and l⊥ ∼ λn⊥ .
Now we can answer the question which pinched surfaces are leading order in power count-

ing for the loop integral under consideration, by explicitly plotting the poles in Eq. (4.38)-Eq. (4.40)
and the residues in Eq. (4.41). In order to have a two-dimensional visualized picture we have to fix
the value for l−, which we take for both figures to be l− ∼ λ2, i.e. n− = 2. This choice limits us to
considering only soft, glauber and collinear modes, but not the anti-collinear one. However in our
case the anti-collinear is equivalent to collinear under substitutions p, p̄ ↔ q, q̄. Thus this choice
n− = 2 will still allow us to find all the relevant modes.

In Figure 4.2 we plot the sufficient information needed to identify the set of effective
theory modes to describe the spectator-spectator interaction topology. The left graph represents
five lines, one for each pole in l+, given in Eq. (4.38)-Eq. (4.40), which show the dependance of
the

∣∣zj(λ2, l⊥)
∣∣ on l⊥. The colors are: green(z0), orange(z1), red(z2), purple(z3),blue(z4). Solid

lines correspond to poles in the upper complex plane, while the dashed ones to the lower one, thus
whenever the solid and dashed lines come close to each other we have a pinched pole. On the
right graph of Figure 4.2 we plot the value of the residue λn

Res
j (n⊥,n

−) including the loop integral
measure, according to Eq. (4.41).

The analysis of both graphs in Figure 4.2 in conjunction gives information about the
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effective theory modes. Indeed, we can see from the graph on the right that the leading in power
counting contribution, which is λ−4 in this case, comes from the region where l⊥ ∼

(
λ2...λ

)
and

comes from the residues of the poles z0 (green) and z4 (blue). On the other hand, the graph on the
left shows that this entire region is pinched, and the value of l+ is l+ ∼ λ2. This means that the
general pinched leading order region in the spectator-spectator topology looks like:

(
λ2, λ2, λp

)
,

and where p ∈ [1...2].
We see that choosing p = 1 and p = 2 in our general pinched leading region obtained

above, we observe that the soft and the glauber modes are pinched and leading order, thus should
be included into the effective theory.

Another observation that can be made from the left figure above is that there is a pinched
pole at l ∼ (λ0, λ2, λ), which corresponds to the collinear gluon mode. However according to the
right figure this mode is contributing at sub-leading order, λ−2, since it is contained exactly in the
residues of one of the poles z0 (green) or z2(red). Of course the anti-collinear mode, even though
it’s beyond our consideration because of our choice for l−, is analogously power suppressed.

Finally we note that it is not wrong to introduce even more modes into the effective
theory, for example one with the scaling l ∼ (λ2, λ2, λ3/2), as it passes the test of coming from a
pinch singularity and contributing at leading power. This will lead to a scaleless integral again,
and the overlap with the soft and glauber modes will subtract its contribution again. This ”new”
contribution is therefore zero, and the mode not useful. Another way of stating this is that the full
theory integrand displays no feature for this momentum scaling. Same is true for all other modes
with 1 < p < 2 in the general leading pinched region that we have found using Figure 4.2.

4 Coleman-Norton theorem and off-shell modes

We established in Section 2 that SCET should be expanded by a Glauber mode in order to
consistently describe the exclusive Drell-Yan cross-section. However as it follows from the scaling
of the Glauber mode pg ∼

(
λ2, λ2, λ

)
, it cannot be made exactly on-shell, since p2

g ∼ −p2
⊥ 6= 0.

This seems to contradict to the famous Coleman-Norton Theorem (CNT) [60].
The CNT is essentially a physical interpretation of Landau equations [117], see also [137]

for a review of this subject. The Landau equations are the necessary conditions for the appearance
of a pinch singularity in the arbitrary loop integral. One additional element of the theorem is the
proof that Landau equations are also a sufficient conditions for the pinch, if one assumes that the
Gram matrix of external loop momenta does not have more than one zero eigenvalue.

Under these rather general assumptions the CNT states that the infrared singularities of
any amplitude to any order in perturbation theory come from the configurations of the momentum
in the loops such that all intermediate propagators are on-shell, or they are shrinked to a point. Of

Figure 4.3: Physical picture of both soft and glauber exchange between spectators.
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course in that limit the process described by the amplitude becomes a physically observable process
with real on-shell particles created and annihilated at the intermediate level.

In our case of three different topologies we showed explicitly that the Glauber region is
pinched only in the spectator-spectator topology, while in the remaining topologies usual soft and
collinear pinches only occur, which have no problem with the CN interpretation since they can be
easily made on-shell because of their momentum scaling.

Let us focus on the spectator-spectator case. The sufficient condition of the CN theorem
breaks down for this topology, as the Gram matrix has two additional zero eigenvalues. This can be
trivially checked, and the reason for such degeneracy is that most of the products are collinear to
each other and thus vanish in the strictly collinear limit λ→ 0. However, even though formally CN
theorem fails for the spectator-spectator graph, the Glauber mode should still satisfy the Landau
equations. One of these equations states that the propagating degrees of freedom should be exactly
on-shell. Yet, still the Glauber gluon is off-shell, so what is the contradiction that we are facing?

The point is that in the Landau formulation of necessary conditions for the pinch there
is no power counting associated. Indeed the goal of the Landau analysis was to identify the cases
of the external kinematics when the integral becomes singular. Examples of results from analysis
of Landau equations are: finding the threshold singularities in the triangle, box, etc diagrams, also
see an interesting application in Higgs physics. Thus the result of solving Landau equations is what
external momenta of the given loop integral lead to a singularity. Since these equations involve
the loop momentum, they also address the question where in the loop momenta the singularity
is located. As an example one can see that both Soft and Collinear pinch for the active-active
topology can be found by solving Landau equations (see Sterman’s Tasi lectures). However in
order to distinguish between Glauber and Soft singularities, one would need to go beyond Landau
Equations, and include power counting into the singular region.

Thus the original Landau equations fail to distinguish between Soft pinch and Glauber
pinch since both in the limit λ → 0 go to the gluon momentum lµ → 0. In this limit of course
the Glauber gluon becomes on-shell, so if one views the Landau equation in this limit there is no
problem with off-shellness, since it goes to zero.

It would be interesting to reformulate the Landau equations in the effective theory friendly
language with power counting, i.e. instead of writing down a condition when you get a true pinch
singularity, assign off-shellness to external legs and find a condition for pinched poles to occur at
distance of say order λ2 from each other. It should be the case that one would be able to tell the
difference between the soft and Glauber pinches in the spectator-spectator diagram, through such
Relaxed Landau equations. This is beyond the scope of the present work.

As argued above the formal proof of Coleman and Norton theorem fails for the Glauber
diagram, because of the fact that sufficient condition for the pinch is not true. However, since we
know from direct pinch analysis and also from the figures above that the Glauber pinch is really
there, for this particular case we know that the theorem is still true, and thus Glauber contribution
should fit into the CN spacetime picture. If one writes the Landau equations for this case, it is
easy to see that solution should satisfy (same for the soft pinch):

α2 p
+ − α3 p̄

+ = 0, (4.42)
α4 q̄

− − α5 q
− = 0, (4.43)

αi = O(1), i = 1, 2, .., 5. (4.44)
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Equations (4.42) and (4.43) have physical meaning that the active-active collisions occur at the
same time and point (along the collision axis) as the interaction of spectators. It makes sense if
you think about space-time picture of particles moving at the speed of light and splitting in two
and colliding.

5 Conclusions

Our matching calculation shows the necessity of inclusion of Glauber gluons into the SCET
lagrangian in order to describe the full infrared physics of Drell-Yan amplitude at one loop order.

Indeed we observed that in SCET (which is same as EFT1) the consistency check on the
effective theory, that the matching coefficient C2 of the operator O2 is independent of the external
states, failed. However in EFT2, where we included the contribution of the Glauber mode, the
consistency check perfectly works. Even though we didn’t directly consider the Drell-Yan process,
our choice of external states was such, that contributions of spectator-active and spectator-spectator
interactions in addition to active-active one allowed us to make parallels between our conclusion
about the consistency of matching and the correct modes for the Drell-Yan amplitude.

For our analysis it was important to avoid double counting between the modes by per-
forming zero-bin subtractions [129] from the collinear and Glauber modes. Especially we want to
emphasize the spectator-active case for EFT2, since in this topology there is an interesting example
of non-vanishing in dimensional regularization zero-bin subtraction from the naive collinear mode
(I(nn̄)c′

4 )0g 6= 0, which makes sure that the inclusion of the Glauber mode for this topology doesn’t
change the effective theory one loop result compared to EFT1, which is of course expected from
the pinch analyses as explained in section 3.

We explained why the presence of an off-shell mode is in no conflict with the Coleman-
Norton theorem for infrared singularities of scattering amplitudes. Our result is that Landau
Equations are insensitive in distinguishing Glauber pinch from the Soft one, since they are valid in
the limit of strict singularity, when λ = 0, in which case both regions collapse to lµ = 0, in which
the off-shellness of Glauber gluon becomes exactly zero.

The next important step would be to include Glauber gluons into the SCET lagrangian
and study their expected cancelation in the Drell-Yan inclusive in transverse momentum of the
lepton pair cross-section. The main challenge in doing so is that the Glauber mode scaling is such
that the corresponding particle is always off-shell. One might interpret this mode conveniently as
an effective potential, similar to the one in NRQCD.



70

Bibliography

[1] Riccardo Abbate, Michael Fickinger, Andre H. Hoang, Vicent Mateu, and Iain W. Stewart.
Thrust at N3LL with Power Corrections and a Precision Global Fit for alphas(mZ). 2010.

[2] Leandro G. Almeida et al. Substructure of high-pT Jets at the LHC. Phys. Rev., D79:074017,
2009.

[3] Leandro G. Almeida, Seung J. Lee, Gilad Perez, Ilmo Sung, and Joseph Virzi. Top Jets at
the LHC. Phys. Rev., D79:074012, 2009.

[4] Christian M. Arnesen, Joydip Kundu, and Iain W. Stewart. Constraint equations for heavy-
to-light currents in SCET. Phys. Rev., D72:114002, 2005.

[5] Christopher Balzereit, Thomas Mannel, and Wolfgang Kilian. Evolution of the light-cone
distribution function for a heavy quark. Phys. Rev., D58:114029, 1998.

[6] Andrea Banfi, Gavin P. Salam, and Giulia Zanderighi. Resummed event shapes at hadron -
hadron colliders. JHEP, 08:062, 2004.

[7] Andrea Banfi, Gavin P. Salam, and Giulia Zanderighi. Principles of general final-state re-
summation and automated implementation. JHEP, 03:073, 2005.

[8] A. Bassetto, M. Dalbosco, I. Lazzizzera, and R. Soldati. Yang-Mills Theories in the Light
Cone Gauge. Phys. Rev., D31:2012, 1985.

[9] Christian W. Bauer, Oscar Cata, and Grigory Ovanesyan. On different ways to quantize
Soft-Collinear Effective Theory. 2008.

[10] Christian W. Bauer, Matthew P. Dorsten, and Michael P. Salem. Infrared regulators and
SCET(II). Phys. Rev., D69:114011, 2004.

[11] Christian W. Bauer, Sean Fleming, Christopher Lee, and George Sterman. Factorization
of e+e- Event Shape Distributions with Hadronic Final States in Soft Collinear Effective
Theory. Phys. Rev., D78:034027, 2008.

[12] Christian W. Bauer, Sean Fleming, and Michael E. Luke. Summing Sudakov logarithms in
B → Xs gamma in effective field theory. Phys. Rev., D63:014006, 2000.

[13] Christian W. Bauer, Sean Fleming, Dan Pirjol, Ira Z. Rothstein, and Iain W. Stewart. Hard
scattering factorization from effective field theory. Phys. Rev., D66:014017, 2002.



71

[14] Christian W. Bauer, Sean Fleming, Dan Pirjol, and Iain W. Stewart. An effective field theory
for collinear and soft gluons: Heavy to light decays. Phys. Rev., D63:114020, 2001.

[15] Christian W. Bauer, Andrew Hornig, and Frank J. Tackmann. Factorization for generic jet
production. 2008.

[16] Christian W. Bauer, Bjorn O. Lange, and Grigory Ovanesyan. On glauber gluons in scet. in
preparation, 2010.

[17] Christian W. Bauer, Christopher Lee, Aneesh V. Manohar, and Mark B. Wise. Enhanced
nonperturbative effects in z decays to hadrons. Phys. Rev., D70:034014, 2004.

[18] Christian W. Bauer and Aneesh V. Manohar. Shape function effects in b → x/s gamma and
b → x/u l nu decays. Phys. Rev., D70:034024, 2004.

[19] Christian W. Bauer, Aneesh V. Manohar, and Mark B. Wise. Enhanced nonperturbative
effects in jet distributions. Phys. Rev. Lett., 91:122001, 2003.

[20] Christian W. Bauer, Dan Pirjol, and Iain W. Stewart. Power counting in the soft-collinear
effective theory. Phys. Rev., D66:054005, 2002.

[21] Christian W. Bauer, Dan Pirjol, and Iain W. Stewart. Soft-Collinear Factorization in Effective
Field Theory. Phys. Rev., D65:054022, 2002.

[22] Christian W. Bauer, Dan Pirjol, and Iain W. Stewart. On power suppressed operators and
gauge invariance in scet. Phys. Rev., D68:034021, 2003.

[23] Christian W. Bauer and Matthew D. Schwartz. Improving jet distributions with effective
field theory. Phys. Rev. Lett., 97:142001, 2006.

[24] Christian W. Bauer and Matthew D. Schwartz. Event generation from effective field theory.
Phys. Rev., D76:074004, 2007.

[25] Christian W. Bauer and Iain W. Stewart. Invariant operators in collinear effective theory.
Phys. Lett., B516:134–142, 2001.

[26] Thomas Becher, Richard J. Hill, and Matthias Neubert. Soft-collinear messengers: A new
mode in soft-collinear effective theory. Phys. Rev., D69:054017, 2004.

[27] Thomas Becher and Matthias Neubert. Threshold resummation in momentum space from
effective field theory. Phys. Rev. Lett., 97:082001, 2006.

[28] Thomas Becher and Matthias Neubert. Toward a NNLO calculation of the anti-B → Xs+
gamma decay rate with a cut on photon energy. II: Two-loop result for the jet function. Phys.
Lett., B637:251–259, 2006.

[29] Thomas Becher and Matthias Neubert. Toward a NNLO calculation of the anti-B → Xs

gamma decay rate with a cut on photon energy. I: Two-loop result for the soft function.
Phys. Lett., B633:739–747, 2006.



72

[30] Thomas Becher, Matthias Neubert, and Ben D. Pecjak. Factorization and momentum-space
resummation in deep- inelastic scattering. JHEP, 01:076, 2007.

[31] Thomas Becher, Matthias Neubert, and Gang Xu. Dynamical Threshold Enhancement and
Resummation in Drell- Yan Production. JHEP, 07:030, 2008.

[32] Thomas Becher and Matthew D. Schwartz. A Precise determination of αs from LEP thrust
data using effective field theory. JHEP, 07:034, 2008.

[33] Andrei V. Belitsky, G. P. Korchemsky, and G. Sterman. Energy flow in qcd and event shape
functions. Phys. Lett., B515:297–307, 2001.

[34] M. Beneke and Vladimir M. Braun. Renormalons and power corrections. 2000.

[35] Carola F. Berger. Higher orders in a(alpha(s))/(1-x)+ of non-singlet partonic splitting func-
tions. Phys. Rev., D66:116002, 2002.

[36] Carola F. Berger, Tibor Kucs, and George Sterman. Energy flow in interjet radiation. Phys.
Rev., D65:094031, 2002.

[37] Carola F. Berger, Tibor Kucs, and George Sterman. Event shape / energy flow correlations.
Phys. Rev., D68:014012, 2003.

[38] Carola F. Berger, Tibor Kucs, and George Sterman. Interjet energy flow / event shape
correlations. Int. J. Mod. Phys., A18:4159–4168, 2003.

[39] Carola F. Berger and Lorenzo Magnea. Scaling of power corrections for angularities from
dressed gluon exponentiation. Phys. Rev., D70:094010, 2004.

[40] Carola F. Berger and George Sterman. Scaling rule for nonperturbative radiation in a class
of event shapes. JHEP, 09:058, 2003.

[41] Carola F. Berger and George Sterman. Power corrections to e+ e- dijet event shapes. Eur.
Phys. J., C33:s407–s409, 2004.

[42] Siegfried Bethke. Experimental Tests of Asymptotic Freedom. Prog. Part. Nucl. Phys.,
58:351–386, 2007.

[43] Geoffrey T. Bodwin. Factorization of the Drell-Yan Cross-Section in Perturbation Theory.
Phys. Rev., D31:2616, 1985.

[44] Geoffrey T. Bodwin, Stanley J. Brodsky, and G. Peter Lepage. Initial State Interactions and
the Drell-Yan Process. Phys. Rev. Lett., 47:1799, 1981.

[45] S. W. Bosch, B. O. Lange, M. Neubert, and Gil Paz. Factorization and shape-function effects
in inclusive B- meson decays. Nucl. Phys., B699:335–386, 2004.

[46] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini. The q(T) spectrum of the Higgs boson
at the LHC in QCD perturbation theory. Phys. Lett., B564:65–72, 2003.



73

[47] S. Brandt, C. Peyrou, R. Sosnowski, and A. Wroblewski. The principal axis of jets. an attempt
to analyze high- energy collisions as two-body processes. Phys. Lett., 12:57–61, 1964.

[48] S. Catani, L. Trentadue, G. Turnock, and B. R. Webber. Resummation of large logarithms
in e+ e- event shape distributions. Nucl. Phys., B407:3–42, 1993.

[49] S. Catani, G. Turnock, and B. R. Webber. Jet broadening measures in e+ e- annihilation.
Phys. Lett., B295:269–276, 1992.

[50] S. Catani, G. Turnock, B. R. Webber, and L. Trentadue. Thrust distribution in e+ e-
annihilation. Phys. Lett., B263:491–497, 1991.

[51] S. Catani and B. R. Webber. Resummed c-parameter distribution in e+ e- annihilation. Phys.
Lett., B427:377–384, 1998.

[52] Stefano Catani, Michelangelo L. Mangano, Paolo Nason, and Luca Trentadue. The Resum-
mation of Soft Gluon in Hadronic Collisions. Nucl. Phys., B478:273–310, 1996.

[53] T. Chandramohan and L. Clavelli. Consequences of second order qcd for jet structure in e+
e- annihilation. Nucl. Phys., B184:365, 1981.

[54] Junegone Chay and Chul Kim. Collinear effective theory at subleading order and its appli-
cation to heavy-light currents. Phys. Rev., D65:114016, 2002.

[55] Junegone Chay, Chul Kim, Yeong Gyun Kim, and Jong-Phil Lee. Soft wilson lines in soft-
collinear effective theory. Phys. Rev., D71:056001, 2005.

[56] P. S. Cherzor and N. A. Sveshnikov. Jet observables and energy-momentum tensor. 1997.

[57] Jui-yu Chiu, Andreas Fuhrer, Andre H. Hoang, Randall Kelley, and Aneesh V. Manohar.
Soft-Collinear Factorization and Zero-Bin Subtractions. Phys. Rev., D79:053007, 2009.

[58] L. Clavelli. Jet invariant mass in quantum chromodynamics. Phys. Lett., B85:111, 1979.

[59] L. Clavelli and D. Wyler. Kinematical bounds on jet variables and the heavy jet mass
distribution. Phys. Lett., B103:383, 1981.

[60] S. Coleman and R. E. Norton. Singularities in the physical region. Nuovo Cim., 38:438–442,
1965.

[61] John C. Collins, Davison E. Soper, and George Sterman. FACTORIZATION FOR ONE
LOOP CORRECTIONS IN THE DRELL-YAN PROCESS. Nucl. Phys., B223:381, 1983.

[62] John C. Collins, Davison E. Soper, and George Sterman. ALL ORDER FACTORIZATION
FOR DRELL-YAN CROSS-SECTIONS. Phys. Lett., B134:263, 1984.

[63] John C. Collins, Davison E. Soper, and George Sterman. Factorization of Hard Processes in
QCD. Adv. Ser. Direct. High Energy Phys., 5:1–91, 1988.

[64] John C. Collins, Davison E. Soper, and George Sterman. Soft gluons and factorization. Nucl.
Phys., B308:833, 1988.



74

[65] John C. Collins, Davison E. Soper, and George F. Sterman. DOES THE DRELL-YAN
CROSS-SECTION FACTORIZE? Phys. Lett., B109:388, 1982.

[66] John C. Collins, Davison E. Soper, and George F. Sterman. Factorization for Short Distance
Hadron - Hadron Scattering. Nucl. Phys., B261:104, 1985.

[67] John C. Collins, Davison E. Soper, and George F. Sterman. Transverse Momentum Distri-
bution in Drell-Yan Pair and W and Z Boson Production. Nucl. Phys., B250:199, 1985.

[68] John C. Collins and George Sterman. Soft partons in qcd. Nucl. Phys., B185:172, 1981.

[69] Harry Contopanagos, Eric Laenen, and George Sterman. Sudakov factorization and resum-
mation. Nucl. Phys., B484:303–330, 1997.

[70] M. Dasgupta and G. P. Salam. Resummation of non-global qcd observables. Phys. Lett.,
B512:323–330, 2001.

[71] Mrinal Dasgupta and Gavin P. Salam. Event shapes in e+ e- annihilation and deep inelastic
scattering. J. Phys., G30:R143, 2004.

[72] R. A. Davison and B. R. Webber. Non-Perturbative Contribution to the Thrust Distribution
in e+e− Annihilation. Eur. Phys. J., C59:13–25, 2009.

[73] Daniel de Florian and Massimiliano Grazzini. The back-to-back region in e+ e- energy energy
correlation. Nucl. Phys., B704:387–403, 2005.

[74] A. De Rujula, John R. Ellis, E. G. Floratos, and M. K. Gaillard. QCD Predictions for
Hadronic Final States in e+ e- Annihilation. Nucl. Phys., B138:387, 1978.

[75] Francesco D’Eramo, Hong Liu, and Krishna Rajagopal. Transverse Momentum Broadening
and the Jet Quenching Parameter, Redux. 2010.

[76] G. Dissertori et al. First determination of the strong coupling constant using NNLO predic-
tions for hadronic event shapes in e+e- annihilations. JHEP, 02:040, 2008.

[77] Yuri L. Dokshitzer, A. Lucenti, G. Marchesini, and G. P. Salam. On the QCD analysis of jet
broadening. JHEP, 01:011, 1998.

[78] Yuri L. Dokshitzer, G. Marchesini, and G. P. Salam. Revisiting non-perturbative effects in
the jet broadenings. Eur. Phys. J. direct, C1:3, 1999.

[79] Yuri L. Dokshitzer, G. Marchesini, and B. R. Webber. Dispersive Approach to Power-Behaved
Contributions in QCD Hard Processes. Nucl. Phys., B469:93–142, 1996.

[80] Yuri L. Dokshitzer and B. R. Webber. Calculation of power corrections to hadronic event
shapes. Phys. Lett., B352:451–455, 1995.

[81] Yuri L. Dokshitzer and B. R. Webber. Power corrections to event shape distributions. Phys.
Lett., B404:321–327, 1997.



75

[82] S. D. Drell and Tung-Mow Yan. Massive Lepton Pair Production in Hadron-Hadron Collisions
at High-Energies. Phys. Rev. Lett., 25:316–320, 1970.

[83] G. Duplancic and B. Nizic. IR finite one-loop box scalar integral with massless internal lines.
Eur. Phys. J., C24:385–391, 2002.

[84] G. Duplancic and B. Nizic. Reduction method for dimensionally regulated one-loop N- point
Feynman integrals. Eur. Phys. J., C35:105–118, 2004.

[85] R. Keith Ellis, D. A. Ross, and A. E. Terrano. The perturbative calculation of jet structure
in e+ e- annihilation. Nucl. Phys., B178:421, 1981.

[86] Edward Farhi. A qcd test for jets. Phys. Rev. Lett., 39:1587–1588, 1977.

[87] Sean Fleming, Andre H. Hoang, Sonny Mantry, and Iain W. Stewart. Top Jets in the Peak
Region: Factorization Analysis with NLL Resummation. 2007.

[88] Sean Fleming, Andre H. Hoang, Sonny Mantry, and Iain W. Stewart. Jets from Massive
Unstable Particles: Top-Mass Determination. Phys. Rev., D77:074010, 2008.

[89] J. Frenkel and J. C. Taylor. Nonabelian eikonal exponentiation. Nucl. Phys., B246:231, 1984.

[90] Einan Gardi. Suppressed power corrections for moments of event-shape variables in e+ e-
annihilation. JHEP, 04:030, 2000.

[91] Einan Gardi. Dressed gluon exponentiation. Nucl. Phys., B622:365–392, 2002.

[92] Einan Gardi and Lorenzo Magnea. The c parameter distribution in e+ e- annihilation. JHEP,
08:030, 2003.

[93] Einan Gardi and Johan Rathsman. Renormalon resummation and exponentiation of soft and
collinear gluon radiation in the thrust distribution. Nucl. Phys., B609:123–182, 2001.

[94] J. G. M. Gatheral. Exponentiation of eikonal cross-sections in nonabelian gauge theories.
Phys. Lett., B133:90, 1983.

[95] A. G. Grozin and G. P. Korchemsky. Renormalized sum rules for structure functions of heavy
mesons decays. Phys. Rev., D53:1378–1390, 1996.

[96] Richard J. Hill and Matthias Neubert. Spectator interactions in soft-collinear effective theory.
((U)). Nucl. Phys., B657:229–256, 2003.

[97] Andre H. Hoang, Ambar Jain, Ignazio Scimemi, and Iain W. Stewart. Infrared Renormaliza-
tion Group Flow for Heavy Quark Masses. Phys. Rev. Lett., 101:151602, 2008.

[98] Andre H. Hoang and Stefan Kluth. Hemisphere Soft Function at O(α2
s) for Dijet Production

in e+e- Annihilation. 2008.

[99] Andre H. Hoang and Aneesh V. Manohar. Charm Quark Mass from Inclusive Semileptonic
B Decays. Phys. Lett., B633:526–532, 2006.



76

[100] Andre H. Hoang and Iain W. Stewart. Designing Gapped Soft Functions for Jet Production.
Phys. Lett., B660:483–493, 2008.

[101] Andrew Hornig, Christopher Lee, and Grigory Ovanesyan. Effective Predictions of Event
Shapes: Factorized, Resummed, and Gapped Angularity Distributions. JHEP, 05:122, 2009.

[102] Andrew Hornig, Christopher Lee, and Grigory Ovanesyan. Infrared safety in factorized hard
scattering cross-sections. Phys. Lett., B:doi:10.1016/j.physletb.2009.05.039, 2009.

[103] Ahmad Idilbi and Abhijit Majumder. Extending Soft-Collinear-Effective-Theory to describe
hard jets in dense QCD media. Phys. Rev., D80:054022, 2009.

[104] Ahmad Idilbi and Thomas Mehen. Demonstration of the Equivalence of Soft and Zero-Bin
Subtractions. Phys. Rev., D76:094015, 2007.

[105] Ahmad Idilbi and Thomas Mehen. On the equivalence of soft and zero-bin subtractions.
Phys. Rev., D75:114017, 2007.

[106] Ambar Jain, Ignazio Scimemi, and Iain W. Stewart. Two-loop Jet-Function and Jet-Mass for
Top Quarks. Phys. Rev., D77:094008, 2008.

[107] Nikolaos Kidonakis, Gianluca Oderda, and George Sterman. Nll resummation for dijet pro-
duction. 1998.

[108] Nikolaos Kidonakis, Gianluca Oderda, and George Sterman. Threshold resummation for dijet
cross sections. Nucl. Phys., B525:299–332, 1998.

[109] G. P. Korchemsky. Shape functions and power corrections to the event shapes. 1998.

[110] G. P. Korchemsky and G. Marchesini. Resummation of large infrared corrections using wilson
loops. Phys. Lett., B313:433–440, 1993.

[111] G. P. Korchemsky and A. V. Radyushkin. Renormalization of the wilson loops beyond the
leading order. Nucl. Phys., B283:342–364, 1987.

[112] G. P. Korchemsky and A. V. Radyushkin. Infrared factorization, wilson lines and the heavy
quark limit. Phys. Lett., B279:359–366, 1992.

[113] G. P. Korchemsky and S. Tafat. On power corrections to the event shape distributions in
QCD. JHEP, 10:010, 2000.

[114] Gregory P. Korchemsky, Gianluca Oderda, and George Sterman. Power corrections and
nonlocal operators. 1997.

[115] Gregory P. Korchemsky and George Sterman. Nonperturbative corrections in resummed
cross-sections. Nucl. Phys., B437:415–432, 1995.

[116] Gregory P. Korchemsky and George Sterman. Power corrections to event shapes and factor-
ization. Nucl. Phys., B555:335–351, 1999.



77

[117] L. D. Landau. On analytic properties of vertex parts in quantum field theory. Nucl. Phys.,
13:181–192, 1959.

[118] Bjorn O. Lange and Matthias Neubert. Factorization and the soft overlap contribution to
heavy- to-light form factors. Nucl. Phys., B690:249–278, 2004.

[119] Christopher Lee and George Sterman. Momentum flow correlations from event shapes: Fac-
torized soft gluons and soft-collinear effective theory. Phys. Rev., D75:014022, 2007.

[120] Adam K. Leibovich, Zoltan Ligeti, and Mark B. Wise. Comment on quark masses in scet.
Phys. Lett., B564:231–234, 2003.

[121] Zoltan Ligeti, Iain W. Stewart, and Frank J. Tackmann. Treating the b quark distribution
function with reliable uncertainties. Phys. Rev., D78:114014, 2008.

[122] F. Liu and J. P. Ma. Glauber Gluons in Soft Collinear Effective Theory and Factorization of
Drell-Yan Processes. 2008.

[123] Michael E. Luke, Aneesh V. Manohar, and Ira Z. Rothstein. Renormalization group scaling
in nonrelativistic qcd. Phys. Rev., D61:074025, 2000.

[124] Aneesh V. Manohar. Effective field theories. 1996.

[125] Aneesh V. Manohar. The HQET/NRQCD Lagrangian to order alpha/m**3. Phys. Rev.,
D56:230–237, 1997.

[126] Aneesh V. Manohar. Deep inelastic scattering as x→ 1 using soft-collinear effective theory.
Phys. Rev., D68:114019, 2003.

[127] Aneesh V. Manohar, Thomas Mehen, Dan Pirjol, and Iain W. Stewart. Reparameterization
invariance for collinear operators. Phys. Lett., B539:59–66, 2002.

[128] Aneesh V. Manohar and Iain W. Stewart. Renormalization group analysis of the qcd quark
potential to order v**2. Phys. Rev., D62:014033, 2000.

[129] Aneesh V. Manohar and Iain W. Stewart. The zero-bin and mode factorization in quantum
field theory. Phys. Rev., D76:074002, 2007.

[130] Aneesh V. Manohar and Mark B. Wise. Power suppressed corrections to hadronic event
shapes. Phys. Lett., B344:407–412, 1995.

[131] Aneesh V. Manohar and Mark B. Wise. Heavy quark physics. Camb. Monogr. Part. Phys.
Nucl. Phys. Cosmol., 10:1–191, 2000.

[132] C. Marcantonini. 2007.

[133] Claudio Marcantonini and Iain W. Stewart. Reparameterization Invariant Collinear Opera-
tors. Phys. Rev., D79:065028, 2009.

[134] Matthias Neubert. Advanced predictions for moments of the B → X/s gamma photon spec-
trum. Phys. Rev., D72:074025, 2005.



78

[135] F. R. Ore, Jr. and George Sterman. An Operator Approach to Weighted Cross-Sections.
Nucl. Phys., B165:93, 1980.

[136] Dan Pirjol and Iain W. Stewart. A complete basis for power suppressed collinear-ultrasoft
operators. Phys. Rev., D67:094005, 2003.

[137] D.I. Olive R.J. Eden, P.V. Landshoff and J.C. Polkinghorne. The Analytic S-Matrix. Reading,
Great Britain: Cambridge (1966) pp 39-57.

[138] Ira Z. Rothstein. Factorization, power corrections, and the pion form factor. Phys. Rev.,
D70:054024, 2004.

[139] L. H. Ryder. QUANTUM FIELD THEORY. Cambridge, Uk: Univ. Pr. ( 1985) 443p.

[140] Matthew D. Schwartz. Resummation and NLO Matching of Event Shapes with Effective
Field Theory. Phys. Rev., D77:014026, 2008.

[141] G. Sterman. Infrared divergences in perturbative qcd. (talk). 1981. In *Tallahassee 1981,
Proceedings, Perturbative Quantum Chromodynamics*, 22-40.

[142] George Sterman. Partons, factorization and resummation. . 1995.

[143] N. A. Sveshnikov and F. V. Tkachov. Jets and quantum field theory. Phys. Lett., B382:403–
408, 1996.

[144] Gerard t Hooft. A Two-Dimensional Model for Mesons. Nucl. Phys., B75:461, 1974.

[145] Michael Trott. Jets in effective theory: Summing phase space logs. Phys. Rev., D75:054011,
2007.

[146] Andre van Hameren, Jens Vollinga, and Stefan Weinzierl. Automated computation of one-
loop integrals in massless theories. Eur. Phys. J., C41:361–375, 2005.

[147] E. V. Veliev. Obtaining gluon propagator with Leibbrandt-Mandelstam prescription. Phys.
Lett., B498:199–202, 2001.

[148] Bryan R. Webber. QCD power corrections from a simple model for the running coupling.
JHEP, 10:012, 1998.



79

Appendix A

Diagrammatic proof of the
equivalence of QCD and SCET with
one collinear direction

In the main body of Chapter 2 we have shown that any collinear SCET diagram can be
obtained using a gener- ating functional in which the interactions between the fields are equivalent
to full QCD, but the external cur- rents are modified to contain projection operators. This relation
was first discussed in [14] and used in [28] to calculate jet functions in SCET. In this appendix we
want to prove this identity diagrammatically for the correlator containing two collinear fermions
and N collinear gluons.

We will accomplish this by working out in both theories the Feynman diagrams for N
gluons coupled to a fermion line, from which the correlator can be constructed. Using this result
we will then show that both of these calculations lead to equivalent answers. Note that there are
N ! possible color structures, and for each of them the QCD result has to equal the SCET result.
We begin by showing this equivalence for the color structure T a1 T a2 . . . T aN , and then discuss how
the result can be modified to include the other color structures as well.

Define Q(N) and S(N) to be the QCD and SCET cor- relators for this color structure in
momentum space, multiplied by a factor of p2

i for each internal propagator and with the factor gNs
removed. This gives

Q(N) = Pn∂/p0γ
µ1∂/p1 . . . γ

µN∂/pNPn̄ , (A.1)

S(N) =
N∑
k=1

S(N−k)Lk . (A.2)

The first equation follows simply from the QCD Feynman rules, while the SCET equation is a
recurrence formula, that takes into account all the possibilities of having k out of the N gluons
being emitted from a single vertex. Lk is therefore the Feynman rule for k-gluon emissions from a
single vertex, multiplied by a factor of

∏
i p

2
i /gs to account for the removal of the factors p2

i and gs,
as discussed above:

Lk
n̄/

2
= i(n̄·pN )

p2
N−k+1 · · · p2

N−1

(−g)k
Vk , (A.3)
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with

Vk =
i(−g)kn̄µN−k+2 . . . n̄µN−1

n̄·pN−k+1 . . . n̄·pN−1

∂/n̄

2
× (A.4)

×
(
γ
µN−k+1

⊥ γµN⊥ − n̄µNγ
µN−k+1

⊥
∂/p⊥N
n̄·pN

+

+
∂/p⊥N−k∂/p

⊥
N

n̄·pN−kn̄·pN
n̄µN−k+1 n̄µN − n̄µN−k+1

∂/p⊥N−kγ
µN
⊥

n̄·pN−k

)
.

We will show the equivalence Q(N) = S(N) by induction. For N = 0 it is straightforward:

Q(0) = Pn∂/p0Pn̄ =
∂/n

2
n̄·p0, (A.5)

S(0) =
∂/n

2
n̄p0 = Q(0) . (A.6)

Next, we assume that the statement Q = S holds for 0, 1, . . . N − 1 to show that this leads to
Q(N) = S(N). This implies

Q(N) =
N∑
k=1

Q(N−k)Lk . (A.7)

To prove Eq. (A.7) we rewrite the general QCD correlator Q(N) by pushing the projection operator
Pn in Eq. (A.1) through the ∂/pn and γµn , to obtain

Q(N) =
∂/n

2

N∑
m=0

C2m
2N+1∑
l=1

χ2m,2N+1
i1...i2m

, (A.8)

where

χ2m,2N+1
i1...i2m

= (−1)i1+···+i2m−(1+···+2m) ⊥i1 · · · ⊥i2m
× (n̄j1nj2 n̄j3 . . . nj2N−2m n̄j2N+1−2m) . (A.9)

Here C lk denotes the binomial coefficient for l choose k, and we have used a shorthand notation in
which n̄j corresponds to n̄·p for even j and to n̄µ for odd j and accordingly ⊥j corresponds to ∂/p⊥
for even j, while γµ⊥ for odd j.

We would like to comment on how we obtained this result. Expanding each γ matrix on
the right hand side of the Eq. (A.1) according to γα = n̄α ∂/n2 + nα ∂/n̄2 + γα⊥ will result in terms with
fixed number 0 ≤ N⊥ ≤ 2N + 1 of γ⊥’s, together with (2N + 1 −N⊥) of ∂/n or ∂/n̄. Since the ∂/n
and ∂/n̄ terms have to alternate, and the projection operator forces the first and last term to be ∂/n,
N⊥ has to be an even number.

As a next step, we work out the sum on the right hand side of Eq. (A.7). Note that
the term Lk contains factors of p2

i in the numerators, while there are no such terms on the left
hand side of Eq. (A.7). However, both Q(N−k) and Lk contain terms with ∂/p⊥, which can lead to
p2
⊥ = p2 − n·p n̄·p. After a straightforward, but lengthy calculation, one can show that

N∑
k=1

Q(N−k)Lk =
∂/n

2

N∑
m=0

C2m
2N+1∑
l=1

χ2m,2N+1
i1...i2m

. (A.10)
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Thus, both sides of Eq. (A.7) are equal and we have thus shown that Q(N) = S(N) for all values of
N .

So far we have only dealt with the term with color structure T a1 . . . T aN . Keeping the
general color structure allows us to write

Q(N) →
N !∑
l=1

Q
(N)
i1...iN

T ai1 . . . T aiN , (A.11)

S(N) →
N !∑
l=1

S
(N)
i1...iN

T ai1 . . . T aiN . (A.12)

What we have shown so far is that Q(N)
1,2,...,N = S

(N)
1,2,...,N . However, it is clear that the proof goes

through for any color permutation, with obvious replacements to account for the different orderings
of the gluons. Finally, notice that triple or quartic gluon vertices do not change the result, since
they are the same in QCD and SCET. This completes the proof.
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Appendix B

Relation Among Hard, Jet, Soft, and
Cusp Anomalous Dimensions

In Eq. (3.92) we used that the ΓF [αs] part of the jet or soft function anomalous dimension,
defined in Eq. (3.85), is proportional to the cusp anomalous dimension Γcusp to all orders in αs. This
fact is well known for the standard a = 0 jet function and soft functions. In this section we verify
that this relation remains true for all a. Our strategy will be to show that ΓJ,S [αs] must always
remain proportional to ΓH [αs], which is independent of a and is already known to be proportional
to Γcusp.

The consistency of the factorization theorem Eq. (3.18) requires a relation among the hard,
jet, and soft function renormalization counterterms, and, thus, among the anomalous dimensions
(see, e.g., [37, 87]). This relation can be derived by requiring that Eq. (3.18) remain true when
written in terms of either the bare or renormalized hard, jet, and soft functions on the right-hand
side. This requires that

Z−1
H (µ)δ(τJ − τS) =

∫
dτ ′
∫

dτ ′′ZJ(τJ − τ ′;µ)ZJ(τ ′ − τ ′′;µ)ZS(τ ′′ − τS ;µ) , (B.1)

to all orders in αs. To O(αs), we can easily verify this relation using Eqs. (3.31), (3.43), and
(3.64) with ZH(µ) = |ZO(µ)|−2. This relation amongst the counterterms requires in turn that the
anomalous dimensions satisfy

−γH(µ)δ(τ) = 2γJ(τ ;µ) + γS(τ ;µ) . (B.2)

To all orders in αs the hard anomalous dimension takes the form of Eq. (3.72) and the jet
and soft anomalous dimensions take the general form of Eq. (3.85) [95] , where the constant jF is
jJ = 1/(2− a) for the jet function and jS = 1 for the soft function. The constraint Eq. (B.2) then
requires the three independent relations

0 =
4
jJ

ΓJ [αs] +
2
jS

ΓS [αs] , (B.3)

−ΓH [αs] = 2ΓJ [αs] + ΓS [αs] , (B.4)
−γH [αs] = 2γJ [αs] + γS [αs] , (B.5)
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to all orders in αs. These relations can be verified to O(αs) from Eq. (3.71) and Table 3.1. The
first two relations Eqs. (B.3) and (B.4) taken together imply that

ΓS [αs] =
1

1− aΓH [αs] , ΓJ [αs] = −1− a/2
1− a ΓH [αs] , (B.6)

to all orders in αs and for all a < 1. Since ΓH [αs] ∝ Γcusp and is independent of a, both ΓS,J [αs] ∝
Γcusp as well.
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Appendix C

Evaluation of Resummed Jet and Soft
Functions and Full Distribution

To evaluate the resummed jet and soft functions, we used the following method. First,
note that from the expressions for the evolution equation, Eq. (3.88), the form of the evolution
kernel, Eq. (3.89), and the generic form of the NLO jet and soft functions,

F (τ ;µ0) = c1δ(τ) + c2

(
1
τ

)
+

+ c3

(
ln τ
τ

)
+

, (C.1)

the resummed jet and soft functions are proportional to

F (τ ;µ) ∝
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

F (τ ′;µ0) = c1W1 + c2W2 + c3W3 , (C.2)

where

W1 =
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

δ(τ ′) ,

W2 =
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

[
θ(τ ′)
τ ′

]
+

,

W3 =
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

[
θ(τ ′) ln(τ ′)

τ ′

]
+

. (C.3)

Next, note that from the definitions of the plus functions, Eqs. (3.40) and (3.91), we can find Wi

as the coefficient of δi in the Taylor series of W (δ), where W (δ) is defined as

W (δ) ≡
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

[
θ(τ ′)
τ ′1+δ

]
+

=
Γ(−ω)Γ(−δ)
Γ(−ω − δ)

[
θ(τ)
τ1+ω+δ

]
+

. (C.4)

Eq. (C.4) follows from the fact that∫
dτ ′′

[
θ(τ − τ ′′)

(τ − τ ′′)1+ω1

]
+

[
θ(τ ′′ − τ ′)

(τ ′′ − τ ′)1+ω2

]
+

=
Γ(−ω1)Γ(−ω2)
Γ(−ω1 − ω2)

[
θ(τ − τ ′)

(τ − τ ′)1+ω1+ω2

]
+

. (C.5)
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By expanding both sides of Eq. (C.4) in δ and comparing like powers of δ, we find that

W1 =
[
θ(τ)
τ1+ω

]
+

, W2 =
[(

ln(τ)−H(−1− ω)
)(

θ(τ)
τ1+ω

)]
+

,

W3 =
[(

1
2

ln2(τ)− ln(τ)H(−1− ω) +
π2

12

+
1
2
H(−1− ω)2 − 1

2
ψ(1)(−ω)

)(
θ(τ)
τ1+ω

)]
+

. (C.6)

Here, H(z) is the harmonic number function and ψ(ν)(z) is the polygamma function.
The same technique can be used to analytically calculate the fully resummed cross-section,

Eq. (3.18), directly from the unresummed jet and soft functions. The resummed cross-section is of
the form

1
σ0

dσ
dτ

PT

∝
3∏
i=1

(∫
dτi dτ ′i Fi(τ

′
i ;µi)

[
θ(τi − τ ′i)

(τi − τ ′i)1+ωi

]
+

)
δ(τ − τ1 − τ2 − τ3) . (C.7)

where the jet and soft functions Fi(τi, µi) are all of the form given in Eq. (C.1). These inte-
grals can be done most easily by replacing the Fi(τi;µi) on the right-hand side of Eq. (C.7) with[
θ(τ)/τ1+δi

]
+

, expanding in δi before and after combining all the plus distributions using Eq. (C.5),
and comparing like powers of the δi. The result for the resummed cross-section Eq. (3.95) then
follows.
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Appendix D

Angularity Distribution in QCD to
O(αs)

In Sec. 6 we matched the NLL resummed two-jet angularity distributions in SCET onto
the O(αs) fixed-order distributions in full QCD using the remainder function ra(τa), defined in
Eq. (3.104). In this section we provide some details of how we calculate the QCD contribution
to ra(τa) away from τa = 0, Aa(τa). In the process, we show that for a . −1.9 the angularities
of events with more two-jet like kinematics become degenerate with those of more three-jet like
events and contribute to the same τa, and that for a . −2.6 the maximally symmetric three-jet
event contributes to a smaller τa then some more two-jet like events. Thus, for small enough a,
angularities fail to separate two-jet and three-jet like events.

Both the one loop qq̄ and tree-level qq̄g final states contribute to dσ/dτa at O(αs). How-
ever, the qq̄ final states’ contribution is proportional to δ(τa) and hence only contributes to Aδa.
Thus to find Aa(τa) we only need to consider the tree-level qq̄g final states. Their contribution can
be writtten as

1
σ0

dσ
dτa

qq̄g

=
(αs

2π

)
Aa(τa) , (D.1)

where

Aa(τa) = CF

∫
dx1 dx2

x2
1 + x2

2

(1− x1)(1− x2)
δ
(
τa − τa(x1, x2)

)
, (D.2)

and where x1,2 ≡ 2E1,2/Q are the energy fractions of any two of the three final-state partons. By
momentum conservation, x1 + x2 + x3 = 2. For a three-particle final state, the thrust axis is given
by the direction of the particle with the largest energy. The x1,2 phase space can be divided into
three regions, as illustrated in Fig. D.1A, according to which parton has the largest energy. In the
region in which xi is larger than xj,k, the angularity τa(x1, x2) is given by

τa(x1, x2)
∣∣∣
xi>xj,k

=
1
xi

(1− xi)1−a/2
[
(1− xj)1−a/2(1− xk)a/2 + (1− xj)a/2(1− xk)1−a/2

]
. (D.3)

At each fixed value of τa = c in the distribution Eq. (D.1), the delta function restricts the integral
over x1,2 to a linear contour determined by the equation τa(x1, x2) = c, where τa(x1, x2) is given
by Eq. (D.3). Examples of these integration contours are shown in Fig. D.1B.
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Figure D.1: (A) Phase space for three-particle qq̄g final state. The energy fractions xi = 2Ei/Q
of the three particles satisfy x1 + x2 + x3 = 2. In region I, x1 > x2,3, in region II, x2 > x1,3, and
in region III, x3 > x1,2. The thrust axis is in the direction of the particle with the largest energy.
(B) Contours of constant τa = 1/10 for a = −1 (purple), a = 0 (gray), and a = 1 (pink). The
differential cross-section dσ/dτa is given by integrals over these contours in the x1,2 phase space.

It is sufficient to consider the part of the phase space corresponding to region III shown
in Fig. D.1, where x3 > x1,2. Integration over the remaining two regions can be related to the
integration over region III by a trivial shift of variables of integration. Thus we need to solve

c =
1

2− x1 − x2
(x1 + x2 − 1)1−a/2

[
(1− x1)1−a/2(1− x2)a/2 + (1− x1)a/2(1− x2)1−a/2

]
, (D.4)

where x1,2 lie in region III. To find an explicit one-variable parameterization for x1,2(w) which
satisfies Eq. (D.4), we first absorb the factor 1/(2− x1 − x2) inside the brackets and define

w ≡ 1− x1

2− x1 − x2
. (D.5)

In terms of w, Eq. (D.4) can be written as

c = (x1 + x2 − 1)1−a/2
[
w1−a/2(1− w)a/2 + wa/2(1− w)1−a/2

]
. (D.6)

Solving Eqs. (D.5, D.6) for x1, x2 gives:

x1(w) = 1− w + w

(
c

w1−a/2(1− w)a/2 + wa/2(1− w)1−a/2

) 1
1−a/2

,

x2(w) = x1(1− w). (D.7)
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Figure D.2: The local minimum (green line) and maximum (red line) of the function Fa(w) over
the range 0 < w < 1/2 coincide at the point a ≡ a1 ≈ −1.978. At a ≡ a2 ≈ −2.618, the value of
angularity for the maximally symmetric three-jet case, τsym(a) = 1/31−a/2 (blue line), intersects
the local maximum and so for a < a2, the value of maximum angularity for such a corresponds not
to the maximally symmetric case but to a more two-jet like event.

Clearly from Eq. (D.5), w lies in the interval 0 ≤ w ≤ 1. The precise range of values for
w is determined from the conditions x1(w) ≤ 2 − x1(w) − x2(w) and x2(w) ≤ 2 − x1(w) − x2(w).
These inequalities can be simplified to

c ≤ min {Fa(w), Fa(1− w)} =

{
Fa(w) for 0 ≤ w ≤ 1/2
Fa(1− w) for 1/2 ≤ w ≤ 1

, (D.8)

where

Fa(w) ≡ w(1− w)a/2

(1 + w)1−a/2 (w1−a + (1− w)1−a) . (D.9)

The function Fa(w) is monotonically increasing over the range 0 < w < 1/2 only for
2 > a ≥ a1 ≈ −1.978, but for a < a1 turns out to have exactly one local maximum, τmax(a),
and one local minimum, τmin(a). At a = a2 ≈ −2.618, τmax(a) is equal to the angularity of the
symmetric three-jet configuration x1 = x2 = x3 (where w = 1/2), τsym(a) = 1/31−a/2. Thus, the
global maximum of τa over the whole range 0 ≤ w ≤ 1, defined as τmax

a , is τmax(a) for a ≤ a2 and
is τsym(a) for a ≥ a2.

In Fig. D.2, we show how the maximum and minimum of the function Fa(w) depend on a,
along with the a dependence of the symmetric three-jet configuration, and plot the special points
a1 and a2.

In Fig. D.3 we plot the boundary of τa (Fa(w) for 0 ≤ w ≤ 1/2 and Fa(1 − w) for
1/2 ≤ w ≤ 1) together with the contours of constant τa(x1, x2) = c for different values of c in the
full x1-x2 plane for the cases a = −1, a = −2.3, and a = −4, which qualitatively represent the
three cases a > a1, a1 > a > a2, and a2 > a, respectively. From this analysis we conclude that for
a < a1 and especially a < a2 angularities fail to separate two-jet like and three-jet like events.

To obtain Aa(τa), we evaluate the integral in Eq. (D.1) over the appropriate contours
in the x1,2 phase space numerically, except for a = 0, for which the integral can be evaluated
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Figure D.3: (A), (B), (C) Allowed regions for the parameter w as a function of fixed τa = c are
bounded by the curves Fa(w) and Fa(1−w). For (A), (D) a = −1, the integration is over a single,
continuous domain for all fixed τa = c but for (B), (E) a = −2.3 and (C), (F) a = −4, there are
multiple disjoint regions of integration for large enough values of c. In (D), (E), and (F), the blue,
red, and green curves represent contours of integration for fixed τa = c, in order of increasing c,
and correspond to integration over a range of w given by the lines of constant τa = c in the regions
of the same color in (A), (B) and (C), respectively.

analytically, giving (cf. [74])

A0(τ0) = CF

[
2(2− 3τ0 + 3τ2

0 )
τ0(1− τ0)

ln
(

1− 2τ0

τ0

)
− 3(1− 3τ0)(1 + τ0)

τ0

]
. (D.10)




