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ABSTRACT	OF	THE	DISSERTATION	

 

The Effect of Grading in School Accountability Systems:  

An Investigation Using Propensity Scores In  

Second-order Growth Models 

 

by 

 

Jason Tsui 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2018 

Professor Michael H. Seltzer, Co-chair 

Professor Noreen M. Webb, Co-chair 

	

The development and implementation of school-level accountability systems has been 

mandated by recent federal law. However, there is a dearth of research into the construct validity 

of such measurement systems. This project adopts a latent factor perspective to assess the 

validity of a unidimensional definition of School Quality and estimate the impact of 

implementing a school accountability system using A-F grades for one application: The New 

York City Progress Report. A novel combination of propensity score matching and second-order 

latent growth modeling with adjusted error estimates is used. Results show receipt of a failing 

grade increases School Quality in the second year by 0.167 standard units compared with similar 

schools. The unidimensional definition of School Quality exhibits extremely poor model fit 



	iii	

however, but model-based grades exhibit better consistency with other external measures of 

schools compared with the original formulation. 
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Chapter 1.  Introduction 

Recent trends in educational policy have been characterized by an increased focus on 

accountability at all levels. Since the passage of The No Child Left Behind of 2001 (NCLB), 

school-level accountability systems have increasingly been used to pressure schools labeled as 

failing with mandated interventions, sanctions, or even closure (Hanushek & Raymond, 2005). 

Several studies have investigated the effect of implementing such systems, both positive and 

negative (e.g. Carnoy & Loeb, 2002; Dee & Jacob, 2011; Grissmer, Flanagan, Kawata, & 

Williamson, 2000; Koretz, 2009).  But the validity of these measurements remains an issue, 

making them tenuous bases for decisions at best (e.g. Chay, McEwan, & Urquiola, 2005; Kane & 

Staiger, 2002).  This is especially worrisome as there is evidence that the negative effects of such 

systems may disproportionately fall on high-poverty schools with diverse student enrollments 

(Kim & Sunderman, 2005).   

Given these findings, the central role of accountability systems in determining 

pedagogical, financial and personnel outcomes in school is under more and more debate (e.g. 

Mintrop & Sunderman, 2009).  Even so, their development and implementation has been 

mandated at the state level by the recent update to NCLB, the Every Student Succeeds Act of 

2016 (ESSA). Under the current legislation, the bottom 5% of schools identified by each state’s 

system is mandated for a range of interventions (Darling-Hammond et al., 2016). 

The purpose of this study is to investigate the efficacy of school interventions based on 

such measurement systems, especially in light of the diversity of contexts schools may face. 

Toward this end, I apply statistical techniques to estimate the effect of labeling schools as failing, 

independent of the influence of demographics. There are three questions guiding this research:  
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Q1: How accurate are characterizations of school quality? 

Q2: How effective is labeling a school as failing at improving school quality?  

Q3: Are there demographic differences in school quality? 

 

In order to address these questions, a combination of second-order latent factor growth 

modeling and propensity score matching provides the statistical framework for the development 

and comparison of different measurement schema such as might be used in school accountability 

systems, as well as tools to assess their validity. Data from the New York City Progress Report 

provide the opportunity to investigate the questions above by adopting this framework. 

First implemented in 2006, the New York City Progress Report (NYCPR) is one of the 

earliest examples of accountability systems that assign grades to every school, based on an array 

of measurements.  Failing grades for schools carry both official consequences—such as school 

closings and increased scrutiny—and also unofficial consequences, as the results are widely 

publicized and distributed to parents. Grading systems thus attempt to isolate the targeted 

sanctions to failing to improve student performance, while also reducing these negative 

externalities for schools that are doing well.   

As a district serving over one million students, the New York City public schools provide 

a rich and diverse context but also a difficult measurement challenge. Whether this system as 

specified accurately classifies failing schools is unclear.  Very little research has been done into 

the validity of such systems (Murray & Howe, 2017). Moreover, ascertaining how to answer this 

question is not straightforward.  One difficulty is that there do not exist alternative, objective 

measures of school quality by which we can assess misclassification rates.  There is an analogous 
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debate occurring around teacher value-added models where, to address such issues, more 

sophisticated statistical models are being explored (see Glazerman et al., 2010 for a useful 

discussion on classification errors). 

 What follows in Chapter 2.  is an overview of the trends in educational policy in the 

United States as pertains to measurement systems for accountability—and in particular, how this 

movement is rooted in the recognition that the public education system provides inequitable 

opportunities for students of different backgrounds. Chapter 3 then summarizes the statistical 

literature pertaining to the proposed methodology.  
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Chapter 2.  A Historical Policy Overview 

 School evaluation systems in the United States have been growing increasingly common 

since the late 20th century. In 1983, a report by the National Commission on Excellence entitled 

A Nation at Risk: The Imperative for Educational Reform, painted a dramatic picture of a public 

education system on the brink of disaster, incapable of neither addressing the changing needs of 

the nation in a globalizing world nor ameliorating the racial inequality highlighted in the 

landmark Brown v. Board of Education decision of 1954 and the Civil Rights Act of 1964. As 

one of the recommendations for how to address this crisis, the commission recommended, 

“[s]tandardized tests of achievement … should be administered at major transition points from 

one level of schooling to another… The tests should be administered as part of a nationwide (but 

not Federal) system of State and local standardized tests” (Denning, 1983, p. 125). This was one 

of the earliest calls for the implementation of standardized testing as a means to provide 

accountability and remediation to perceived problems within public education. 

The prevalence and popularity of standardized tests within accountability systems has 

only grown since then. Hanushek and Raymond (2005) report that, from 1993 to 2002, the 

percentage of states with school-level report cards based on standardized test scores grew from 

less than 10% to nearly 90%. Of these, almost 60% of states had “consequential accountability” 

systems, defined as systems that attach “consequences such as monetary awards or takeover 

threats to school performance,” reliant almost exclusively on standardized test results. These 

types of tests became known as “high-stakes,” due to the associated consequences. The No Child 

Left Behind Act (NCLB), signed into law in January of 2002, then enshrined such consequential 

systems in federal legislation. States now were required to set annual performance goals for each 
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school; each successive year a school did not “make adequate yearly progress” (AYP) resulted in 

increasingly invasive interventions. A school that continually failed make AYP faced 

“restructuring,” essentially the equivalent to being shut down. Performance, according to these 

goals, was defined in terms of “annual measurable objectives” based on proficiency ratings on 

standardized tests in reading and mathematics. This prioritization of standardized test scores 

solidified their central role as accountability systems grew in importance and prevalence. 

 The implementation of NCLB had profound impacts on the educational landscape in the 

United States. One stated purpose of the legislation was to “ensure that all children have a fair, 

equal, and significant opportunity to obtain a high-quality education” (No Child Left Behind Act 

of 2001, §§1001). This was accomplished through newly-mandated disaggregation of results by 

a variety of subgroups, including minority racial and ethnic groups, and students with special 

educational needs. By highlighting the disparities between different groups of students in stark 

relief, NCLB forced many educational communities to confront in a public way disparities in 

educational opportunities and outcomes in their midst. 

 There were several common criticisms of NCLB, however. The law measured student 

success by English and math—and eventually science—standardized test scores, as well as high 

school graduation rates. This set of measures was often decried as too limited, in both breadth 

and depth, resulting in negative unintended consequences. (For a more in-depth discussion of 

criticisms of NCLB, see e.g. Darling-Hammond (2007).) A review of the literature suggests 

some common but unintended consequences of relying primarily on math and English 

standardized tests, such as a re-distribution of resources and attention away from non-tested 

subjects such as art (e.g. Klein, Hamilton, McCaffrey, & Stecher, 2000; Ladd & Zelli, 2002; 

Stecher, Barron, Chun, & Ross, 2000). 
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Another oft-criticized provision of NCLB required all students to be proficient in 

mathematics and English by 2014. As results began being reported from districts all over the 

country, a consensus grew that this expectation was unrealistic. In the interim while Congress 

worked on an update to NCLB to address such issues, a stop-gap measure called Race To The 

Top was included in the American Recovery and Reinvestment Act of 2009. This program 

created a competition for additional funding to individual states in exchange for specific types of 

policy reforms. At stake were $4.35 billion in additional funding, to be awarded to states based 

on voluntary applications proposing changes to educational policies. The merit of each 

application was weighed according to a point system that focused on adoption of common 

standards and assessments; improvements in performance evaluations for teachers and 

principals; expansion of charter school opportunities; and interventions for low-performing 

schools. These reforms sped the development of accountability systems and associated 

consequences, reinforcing their ascendancy in the educational policy landscape. 

The successor and reauthorization to NCLB, The Every Student Succeeds Act (ESSA), 

was passed in December of 2015, with many of the previous concerns in mind. Of particular 

relevance to this project, ESSA creates the opportunity and challenge for each state to design its 

own system for measuring school and student success. The law requires that such systems 

include multiple measures—alleviating the over-reliance on math and English standardized 

testing—allowing flexibility in which measures are used and the relative weights with which 

they are counted. Additionally, for primary and middle schools, the law requires the inclusion of 

at least one non-traditional measure, for example: student engagement, educator engagement, 

access to and completion of advanced coursework, post-secondary readiness, or school 

climate/safety. The law also designates three categories of schools specially mandated for 
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intervention, the criteria for which require identifying the bottom 5% of schools according to 

each state’s measurement system. The specifics of each system are up to each state to design, 

which means the problem of how to combine an increasingly diverse selection of measurements 

is of increasing importance under this new legislative regime. Thus, providing statistical tools to 

use in the design of such systems meets a timely need, especially to provide feedback regarding 

their precision and equitability across subgroups. (For a more detailed discussion of the 

implications of ESSA on school accountability systems and design, see Darling-Hammond et al. 

(2016).) 

2.1. Impact of School Accountability Systems 

Beyond the consequences due to legislation, school accountability systems have been 

shown to have many additional effects—both intended and unintended. Several studies link the 

use of school accountability systems to increases in student achievement (Carnoy & Loeb, 2002; 

Dee & Jacob, 2011; Grissmer et al., 2000; Hanushek & Raymond, 2005). While it is difficult to 

isolate the causal effects of implementing school grading systems on student outcomes, the 

general consensus is optimistic.  Many studies have found statistically significant increases in 

standardized test scores associated with implementation of school accountability grades 

(Hanushek & Raymond, 2005; Jacob, 2005; Springer, 2008).  Although there is concern that 

such improvement may be due to undesirable behavior, such as “teaching to the test” (Koretz, 

2009) or even blatant cheating (Booher-Jennings, 2005; Jacob & Levitt, 2003), studies have also 

found corresponding increases in low-stakes test scores where such negative behavior is not 

incentivized (Dee & Jacob, 2011; Figlio & Rouse, 2006; Grissmer et al., 2000; Jacob, 2005; 

Klein et al., 2000). 
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 The underlying argument for these grading systems is that by allowing interventions to be 

targeted to failing schools, students in those schools will be better served. There is evidence to 

support the claim that there is in fact differential improvement for the lowest-graded schools. 

Florida implemented an accountability system that provided monetary assistance and training for 

schools that received an “F” grade.  (However, a second “F” within four years resulted in 

sanctions such as allowing student transfers with vouchers and principal replacement.) Chiang 

(2009) found that receiving the first “F” was associated with gains in the high-stakes math and 

reading scores, although not in low-stakes test scores.  There was also an increased use of 

assessments to guide instruction, hiring of subject specialists, implementation of after-school or 

weekend supplemental instruction, and emphasis on conflict resolution and behavioral 

interventions.  Similarly, by comparing schools on the cusp of receiving failing grades, Rouse, 

Hannaway, Goldhaber, and Figlio (Rouse, Hannaway, Goldhaber, & Figlio, 2013) estimated 

receiving an “F” to be associated with at least 15% of test gains in reading and 44% of test gains 

in math. Rockoff and Turner (2010), in examining the accountability system in New York City, 

also found that receiving an “F” correlated with a 0.05 to 0.1 standard deviation increase in math 

and reading scores and a 0.4 standard deviation increase in math and reading score growth. 

In contrast, other research has found evidence of unintended negative consequences to 

accountability systems that may disproportionately affect minority or low-income students. 

Figlio and Lucas (2004) found that a school receiving high grades tended to attract more wealthy 

families to its neighborhood, raising housing prices.  The implication is that children from 

economically mobile families had greater access to higher quality education.  This would also 

suggest the converse is true: children from high-poverty families would have more restricted 

access to higher quality education. Figlio and Kenny (2009) also found that school grades were 



	9	

correlated with community financial support.  Receiving a “D” or “F” dropped contributions by 

2/3 or more, with schools serving predominantly poor or minority families especially sensitive to 

these effects.  This reduction in financial support would make it even more difficult for a 

struggling school to institute reforms.  The sanctions associated with failing grades—school 

closure or student transfers—are also shown to be correlated with negative effects for students. 

Hanushek, Kain, and Rivkin (2004) found transfers within district—the type caused by 

sanctions—incur significant short-run academic costs, particularly for poor and minority 

students. Engberg, Gill, Zamarro, and Zimmer (2012) also found persistent negative effects on 

academic outcomes for students transferred due to school closings. 

These issues all highlight the importance of accurately identifying excellent and low-

performing schools in such accountability systems.  At their most benign, these grades attempt to 

define “best practices” and are used as exemplars and resources for improvement in struggling 

schools.  At the opposite end, failing grades bring financial repercussions and school closures 

that often disproportionately affect already disadvantaged families.  

2.2. Accountability System Design and Validity 

This trend of increased emphasis placed on “accountability systems” poses a significant 

measurement challenge: What is school quality? This question is especially thorny due to the 

myriad interests represented by the wide variety of stakeholders. Such systems are expected to be 

accurate enough to reliably identify quality or low-performing schools, yet transparent and 

understandable enough to engage non-experts; precise enough to allow improvements to be 

tracked over time, yet not too onerous to implement for districts, educators, and students; and in 

all of this to fully encapsulate the elusive meaning of “quality education” in a way that is 
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comparable and fair to both an urban school in a low socioeconomic environment and a suburban 

school with mostly professional parents. 

In a review of state accountability systems, Murray and Howe (2017) find common 

themes for the sixteen states that have implemented systems that assign schools letter grades A-F 

to denote quality. The authors classify the mechanisms by which these systems are assumed to 

work into two categories: “bureaucratic accountability” and “market accountability.” Most often, 

the justifications given for these systems are reliant on arguments based in market accountability: 

letter grades are clear and easy-to-understand, which empowers parents and students to make 

better decisions. The calculations of these grades are entirely or almost entirely determined by 

some weighted average of standardized test current-year performance and standardized test score 

growth. The authors note, however, that they could find no peer-reviewed studies of the internal 

(construct) validity of such systems. 

Figlio and Rouse (2006) find two mechanisms, which would fall into the “market 

accountability” category, by which receiving a failing grade within such systems can improve the 

educational output of schools.  One is that increased competition—the particular system they 

describe gave students vouchers to transfer out of low-rated schools to higher-rated schools—

forced schools to improve or go out of business.  They also suggested that the social stigma 

attached to a failing grade motivated schools to improve.  Based on an examination of 

performance gains in Florida in response to accountability pressures, they conclude that the 

stigmatizing effect is the primary motivator for increased performance in failing schools. 

This project focuses specifically on one such accountability system for illustration: the 

New York City School Progress Report (NYCPR).  In many ways this particular system pre-

emptively implemented the changes now mandated by the ESSA. The NYCPR assigns every 
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school an A-F grade, based on a panel of measurements. This system was first piloted in 2006 

under Chancellor Joel Klein, and implemented city-wide in 2007.  The Progress Report has 

evolved from its initial conception in 2003, and in many ways presaged the changes included in 

the ESSA. Included are not only measures based on standardized test scores, but also survey 

results from parents, students and teachers about the subjective aspects of the learning 

environment.  There are also adjustments to account for differences in school contexts—the idea 

being, in a district as diverse as New York City, the fairest comparison of school quality is 

among demographically-similar schools.  The system is also in a state of constant change, as 

each year modifications are piloted and tested. 

 However, a common criticism of the Klein administration was that there was little space 

for public input during the development process of policy. Gyurko and Henig (2010) describe 

how “working groups made decisions behind closed doors in a manner reminiscent of nineteenth 

century progressive reformers designing a system ‘for the people but not by the people’” (p. 95).  

In fact, Hill (2011) notes that this may have been an intentional strategy to avoid the “politics of 

paralysis.” Peck (2014) compares the efforts of the Klein administration with an earlier, failed 

implementation of an accountability system in New York in the 1970s, and points to this 

emphasis on speed and reliance on a small group of experts as one of the key reasons for the 

success of this current iteration. 

 In the current political environment, validity of an accountability system often seems 

synonymous with palatability.  As the development of the Progress Report occurred “behind 

closed doors,” there has been little public examination on its educational successfulness; that is, 

the correctly identification of failing and exemplary schools.  This may be an example of a 

problem of circular definitions—there was no standard way of measuring failing or exemplary 
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schools before this system existed.  This does not mean, however, that there is no alternative but 

to accept the system in its entirety.  In fact, there has been much debate over the merits of the 

Progress Reports, but mostly in non-research settings such as the pages of The New York Times 

(e.g. Gootman & Medina, 2007). It is into the midst of these tensions that this project aims to 

propose an additional tool in the arsenal to be used in the development in such systems. By 

providing a statistical framework within which a school quality measurement system can be 

developed, it allows for the assessment of these varied demands. This work, then, proposes to 

inject a statistical perspective into the conversation on school accountability system design, by 

creating a statistical parallel to the Progress Report and using this as a basis for evaluation. 
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Chapter 3.  Statistical Background 

 The methods in this proposal are at the intersection of several strands within the statistical 

literature common to social science research. This chapter provides background for three 

methodologies: propensity score matching, second-order latent factor growth modeling, and 

Bayesian estimation. But before discussing the statistical methodologies, an important distinction 

in modeling approaches is presented. 

3.1. Emergent Factors and Latent Factors 

This project proposes a methodology that is appropriate for examining the effect of an 

intervention on a construct that is not directly observable but changing over time. Because such a 

construct is not directly observable, its value is inferred through the observation of other 

observable or manifest variables. However, it is critical to define the nature of this construct. 

There are two different types of constructs that cannot be directly observed, and the distinction 

between the two has important technical and theoretical implications. 

The first type is an “emergent factor,” a simple example of which would be “net wealth.” 

The net wealth of an individual cannot be directly observed. Instead, it is determined by the sum 

of a set of observed assets—e.g. bank account balances, home equity, investment holdings—and 

less a set of observed deficits—e.g. credit card debt, mortgage balances, auto loans. A change in 

any of these observed variables corresponds to an exact change in net wealth. Net wealth as an 

“emergent factor” then can be viewed as an effect completely determined by these observed 

variables. 

The second type is a “latent factor,” the classic example of which is general intelligence 

or IQ. Intelligence cannot be directly observed; instead it is often measured through a series 
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items on a test. These items attempt to give insight into the intelligence of the subject through 

assessing a variety of domains, such as problem solving, synthesis, visualization, etc. However, 

the intelligence of the subject is not determined by the number of items correctly answered on 

the test through any means. That is, if the test-taker were given all the correct answers, a perfect 

score might indicate the ability to copy accurately, but it would not make the test-taker a genius. 

Thus, intelligence is viewed as a cause of the number of items answered correctly on the test—

potentially one among many—and not an effect. 

This distinction between emergent and latent factors is subtle but important. The 

direction of causality has implications on statistical modeling and its misspecification can lead to 

errors in estimates and inference (e.g. Bollen, 2002; Bollen & Lennox, 1991; Cohen, Cohen, 

Teresi, Marchi, & Velez, 1990). Undergirding this project is the argument that School Quality is 

more appropriately viewed as a latent factor, rather than an emergent factor. This can best be 

understood by a thought experiment: if a school artificially inflated its students’ test scores by 

cheating, would it be of higher “quality?” If School Quality is similar to net wealth, it is 

determined by the value of the outcome, not the method by which those outcomes are achieved. 

Currently this is the perspective taken by almost every school accountability system. However, if 

it is more similar to intelligence—that is, a latent factor—then similar methodologies used to 

measure such unobservable constructs can be leveraged here to design better School Quality 

measures. Some applicable statistical methodologies are described in the following sections. 

3.2. Propensity Scores 

At their core, school accountability systems are interventions aimed at accomplishing one 

thing: improving school quality. In many social science fields, estimating the effectiveness of an 

intervention is difficult because one of the most common methods—using randomized controlled 



	15	

trials to adjust for pre-existing differences between groups—is infeasible. Propensity score 

methods, a set of statistical techniques that approximate equivalent groups across all measured 

covariates, have grown in popularity as a way to account for such differences in non-

experimental, observational settings. Propensity scores were initially proposed in a seminal paper 

by Rosenbaum and Rubin (1983b) as a way to approximate a randomized control trial using 

observational data. Since then, their use has grown increasingly popular in social science 

research (Thoemmes & Kim, 2011).  

Originally, Rosenbaum and Rubin proposed propensity scores for binary treatments in a 

regression context. Many researchers have built upon and extended this framework into other 

contexts.  Propensity-based methods have been generalized to multivalued, ordinal, and 

continuous-type treatments (Hirano, Imbens, & Ridder, 2003; Imai & van Dyk, 2004; Robins, 

Hernán, & Brumback, 2000); or to frameworks such as structural equation modeling (Hoshino, 

Kurata, & Shigemasu, 2006).  This allows for more sophisticated models that can better reflect 

complex theories. 

The propensity score is a function of the observed covariates—a “balancing score”—such 

that, conditional on this score, treatment assignment is independent of these covariates. The 

propensity score is defined within the context of the Neyman-Rubin model for potential 

outcomes (Rubin, 1974; Splawa-Neyman, Dabrowska, & Speed, 1990). This states that for any 

individual 𝑖, there exists a value of the observation 𝑌! 𝑖  of the outcome in the treatment 

condition and 𝑌!(𝑖) of the outcome in the control condition. Only one of these two outcomes is 

actually observable; the other is a theoretical counterfactual—what the observed outcome would 

have been under the opposite assignment. Thus, given treatment 𝑇 𝑖 = 1 if assigned to the 
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treatment condition and 𝑇(𝑖) = 0 if assigned to the control condition, the realized outcome can 

be given by the equation: 

𝑌(𝑖) = 𝑇 𝑖 𝑌!(𝑖)+ 1− 𝑇 𝑖 𝑌!(𝑖). 

Using this definition, the average effect of the treatment is given by: 

𝐴𝑇𝐸 = 𝐸 𝑌! − 𝑌!  

which measures the expected impact of the treatment in the population. 

However, changing the location of the estimate may be appropriate depending on the 

research question. For example, instead of the average effect in the entire population, an 

investigator might be interested in the impact of treatment on units similar to those which 

received treatment. This effect is termed the average effect on the treated (ATT), given by 

𝐴𝑇𝑇 = 𝐸 𝑌! 𝑇 = 1 − 𝐸 𝑌! 𝑇 = 1 . 

Alternately, the average effect on the untreated (ATU) measures the impact of treatment if it had 

been given to those units which did not receive treatment, given by 

𝐴𝑇𝑈 = 𝐸 𝑌! 𝑇 = 0 − 𝐸 𝑌! 𝑇 = 0 . 

 In a randomized control trial, these expectations could be directly calculated because 

there is no expected difference in confounding characteristics, by nature of the randomization. 

However, in an observational setting, the two groups could differ on a variety of covariates that 

may cause confounding effects. The challenge is that, in a typical observational setting, there are 

myriad covariates that could potentially affect treatment assignment. The difficulty of creating 

similar comparison groups increases exponentially with the number of dimensions. Propensity 

scores offer a way to reduce the dimensionality of the problem, by collapsing the covariates into 

a single dimension.  
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The propensity score models the probability of each individual having been assigned to 

the treatment or control condition, based on these covariates. That is,  

𝑒 𝑧! = 𝑃 𝑇! = 1 𝑧!  , 

where 𝑧! is the set of covariates that influence group assignment for individual i. Rosenbaum and 

Rubin show that, conditional on estimates of this score, the assignment to treatment is 

theoretically independent of the covariates. That is, 

𝑇 ⊥ 𝑧|𝑒(𝑧). 

 

Rosenbaum and Rubin also show that, conditioned on such a balancing score, the 

outcomes are conditionally independent of covariates, thus addressing the concern for 

confounding, at least due to measured covariates. The treatment effects can then be calculated 

according to the following equations: 

𝐴𝑇𝐸 = 𝐸 𝑌! − 𝑌! = 𝐸! ! 𝐸 𝑌! 𝑒(𝑧) − 𝐸(𝑌!|𝑒(𝑧)) , 

where the outer expectation is over the distribution of 𝑒(𝑧). Similarly, 

𝐴𝑇𝑇 = 𝐸! ! |!!! 𝐸 𝑌! 𝑒(𝑧) − 𝐸(𝑌!|𝑒(𝑧)) , and 

𝐴𝑇𝑈 = 𝐸! ! |!!! 𝐸 𝑌! 𝑒(𝑧) − 𝐸(𝑌!|𝑒(𝑧))  

 

 Once the propensity score is estimated, usually in a logit-type regression model, there are 

three common ways in which the conditioning is accomplished: matching, stratification and 

weighting. Matching draws samples from each treatment condition by selecting based on 

similarity in propensity score. There are a variety of methods by which this selection can be 

performed, but this project focuses on optimal matching (Rosenbaum, 1989). The optimal 

matching algorithm creates the two samples by minimizing the total difference in propensity 
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score between matched pairs. That is, the two subsamples will have the property that each 

treatment unit will have a corresponding control unit, and the sum of absolute differences 

between the propensity scores of each pair will be the minimum possible while using the 

maximum number of pairs possible. Within this algorithm there are additional nuances that can 

be tweaked. A “caliper” can be defined, which is an upper limit on the acceptable distance 

between propensity scores of matches. This disallows the matching of a treatment unit with a 

control unit that is too dissimilar. Additionally, each treatment unit can be matched to multiple 

control units; or multiple treatment units can be matched to the same control unit, in order to 

improve utilization of the available data.  

 While matching is the focus of this study, a short description of the other two methods is 

given here for completeness. Weighting—often referred to as inverse propensity score weighting 

or covariance adjustment—also creates two balanced groups. However, instead of selecting only 

a subset from each condition, the full set of available units is included. During estimation, units 

are weighted to create comparable groups by accounting for each unit’s relative contribution. 

The third method, stratification, separates the propensity score into ranges, that then divide the 

entire sample into segments, or strata. These strata are assessed for covariate balance. The model 

is then estimated within each strata, and the results combined as a weighted average to produce 

the final effect estimates. 

There are several assumptions made in using propensity scores. The first is given by: 

𝑻 ⊥ (𝒀𝑪,𝒀𝑻)|𝒁 

This assumption, commonly known as the Stable Unit Treatment Value Assumption or SUTVA 

(Cox, 1958; Rubin, 1978), requires that the treatment assignment and the potential outcomes are 
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conditionally independent on the measured covariates. That is, the response of a unit is 

conditionally independent on the treatment of other units. The second assumption is given by: 

0 < Pr 𝑻 = 𝑡 𝒁 < 1 

This assumes that there is a non-zero probability of either treatment condition for any given set 

of values of covariates. These two assumptions together are known as strongly ignorable 

treatment assignment. Given these, Rosenbaum and Rubin show that the propensity score can act 

as a balancing score, providing unbiased estimates of average treatment effects. 

 Before any treatment estimates are done, however, checks should be done for assumption 

violations. The balancing property of the propensity score can be checked by examining 

differences in distributions of covariates between the resultant treatment and control groups (e.g. 

Hansen, 2004; Hansen & Bowers, 2008; Rosenbaum & Rubin, 1983a). The requirement of non-

zero probability for either treatment or control can be checked by examining the distributions of 

propensity scores in the resultant treatment and control groups, to ensure that they share regions 

of common support; that is, to check that there are no selected units whose propensity score is far 

outside the distribution of the opposite group (Imai, King, & Stuart, 2008; King & Zeng, 2006). 

3.3. Second-order Growth Modeling 

Structural equation modeling (SEM) provides a framework to model substantive theories 

that involve variables that cannot be directly measured, such as intelligence or curiosity. It has 

become increasingly popular for applications in fields as wide-ranging as education and 

economics to medicine and psychology, as it allows the researcher to explicitly model and test 

causal theories. The framework itself is also flexible enough to emcompass common statistical 

techniques such as ANOVA or ANCOVA and also more complex techniques such as item 

response theory modeling or mediation analysis. 
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This project focuses on one specific application: second-order growth models (SGM), 

also known as “curve-of-factors” models (McArdle, 1988). These are an extension of first-order 

latent growth models (FGMs), more commonly referred to as latent growth models or latent 

growth curve models (McArdle & Epstein, 1987; Meredith & Tisak, 1990), widely used within 

longitudinal research. This makes it a natural framework to investigate questions in a wide 

variety of fields (see Duncan & Duncan, 2009 for an overview). 

SGMs and FGMs both represent and measure change over time; but as opposed to the 

more common FGMs, which examine change in a single manifest variable or a single composite 

based on multiple manifest variables, SGMs examine change in a theoretical latent factor that is 

not directly observable. This latent factor is measured through multiple repeatedly-measured 

manifest variables, as in a factor analysis. A SGM then models the change in this latent construct 

as a second-order factor. Although both models were proposed around the same time, the FGM 

has become increasingly common whereas the SGM is still relatively obscure. However, there 

have been a number of authors recently who have advocated for the adoption of SGMs over 

FGMs (e.g. Chen, Sousa, & West, 2009; Leite, 2007; von Oertzen, Hertzog, Lindenberger, & 

Ghisletta, 2010). 

Geiser, Keller and Lockhart (2013) provide a useful comparison of these two techniques. 

The authors note that a FGM assumes that the observed score consists of trait and measurement 

error influences only and that the variance of situation or person-situation interactions is assumed 

to be zero; the occasion-specific influences are confounded with time-specific random error. In 

contrast, SGMs explicitly model occasion-specific errors and time-specific errors separately. 

This disaggregation of error sources should provide more accurate regression coefficients and 

smaller standard errors (Ferrer, Balluerka, & Widaman, 2008). 
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The advantages of SGMs over FGMs are not only technical. In treating the construct of 

interest as a latent factor, Hancock, Kuo and Lawrence (2001) argue that SGMs are more 

theoretically defensible. FGMs assume the construct to be an emergent factor, which is 

inappropriate for many applications, including School Quality as argued in Section 3.1. . 

The estimation of a SGM can present challenges because of the increasing complexity 

with the number of freely-estimated parameters. However, several assumptions regarding 

measurement invariance can drastically reduce the number of free parameters, as well as improve 

the interpretability of the results. Stoel, van den Wittenboer and Hox (2004) summarize the 

hierarchy of invariance definitions, with each definition adding an additional set of constraints on 

the parameters across measurement occasions. Weak factorial invariance assumes only that the 

factor loadings are invariant over time. Strong factorial invariance also assumes that the 

intercepts for indicators are also invariant over time. Strict factorial invariance assumes that, in 

addition to factor loadings and intercepts, the residual errors are invariant.  

Measurement invariance ensures that the same construct is being measured over time by 

fixing the definition of the construct. There is some debate whether all these invariance 

assumptions are necessary for interpretability (Meredith & Horn, 2001; Oort, 2001). In the case 

where a subset of the constraints is relaxed, this results in “partial measurement invariance.” This 

may be appropriate when there are substantive reasons to suspect that a particular aspect of the 

construct may not be constant over time. Because the addition of these constraints results in 

nested models, another advantage to SGMs is that these assumptions are directly testable through 

𝜒! difference tests (Bishop, Geiser, & Cole, 2015; Chan & Bentler, 1998; Ferrer et al., 2008). 

Hancock, Kuo and Lawrence (2001) extend the SGM to a multisample setting, by setting 

an additional set of constraints on the parameters within each group. The factor loadings and 
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intercepts for all indicators are set to be equal, maintaining the construct invariance across 

groups. The invariance assumptions can again be tested by relaxing the constraints and testing 

the 𝜒! difference for significance. 

3.4. Propensity Score Matching In Structural Equation Modeling 

 Pearl (2000) argues that SEM is a natural framework for investigating causal claims and 

can be viewed as an extension of the Neyman-Rubin causal framework. This makes the 

application of propensity score methods within a SEM model a theoretically compatible 

combination. In fact, there has recently been more work investigating this overlap (Hoshino et 

al., 2006; e.g. Kaplan, 1999; Leite, Sandbach, Jin, MacInnes, & Jackman, 2012; Saarela, 

Stephens, Moodie, & Klein, 2015). However, considering the wide range of applications for 

SEM, very little of this potential area has been explored. 

The intersection of these two methodologies presents a unique difficultly in properly 

accounting for uncertainty. In the traditional frequentist regime, uncertainty due to matching 

techniques is often misstated because the propensity score is treated as a fixed quantity in the 

outcome stage (Gelman & Hill, 2007). Adjusted standard errors are most commonly estimated 

through bootstrap methods, but even this is rare. Thoemmes and Kim (2011), in a systematic 

review of techniques used in propensity score literature, found “no explicit mentioning of 

standard errors that were adjusted for the matched nature of the data… However, we found 

several studies (12; 14.0%) that reported using bootstrap standard error” (pg. 108), despite few 

recommendations in the literature (e.g. Tu & Zhou, 2002). However, Abadie and Imbens (2008) 

found that bootstrap standard errors may not be valid for many common methods for selecting 

propensity score matched samples. 
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3.5. Frequentist versus Bayesian Estimation 

Moving from a frequentist perspective to a Bayesian perspective offers a natural way to 

model and propagate forward uncertainty due to multiple sources—from prior knowledge in the 

literature or expert input regarding distributions of variables or variable selection for models, and 

also, as specifically regards this project, from propensity scores. 

The estimation of propensity scores in a Bayesian framework is motivated by the need to 

properly account for uncertainty. This improved accounting of uncertainty can provide a more 

realistic picture of the reliability of model estimates. Rubin, in a 1984 paper arguing for the 

adoption of Bayesian frameworks in general, notes that “consumers of statistical answers… 

almost uniformly interpret them Bayesianly, that is as probability statements about the likely 

values of parameters” (Rubin, 1984, p. 1156). He argues that modeling in a Bayesian perspective 

better matches the way in which we talk, think, and apply the results of research, and thus is a 

more intellectually consistent framework. 

Bayesian inference does not just provide philosophical comfort, however; there are also 

significant substantive benefits in the context of policy decisions. Because in a practical sense, 

every parameter and variable is treated as an unknown quantity within Bayesian inference, a 

researcher is forced to explicitly state assumptions about sources of error at every step in model 

estimation. This provides a natural avenue for prior knowledge or other research to be integrated 

into the estimation of error itself. Uncertainty from all different sources is carried through the 

whole process. Thus it provides more realistic quantifications of uncertainty, which are important 

when providing context and nuance to policymakers and stakeholders. 

Moving to a Bayesian perspective gives credibility intervals that are 10% wider and 

slightly more efficient (McCandless, Gustafson, & Austin, 2009) and standard error estimates 
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that are more reliable in small samples (An, 2010) compared to traditional frequentist methods. 

Uncertainty from other aspects of propensity score usage can also be modeled in the Bayesian 

framework. For example, Kaplan and Chen (2014) show how to use Bayesian model averaging 

to account for uncertainty in propensity score model selection, improving propensity score 

prediction and increasing uncertainty estimates. 

One criticism of using Bayesian estimation with propensity score methods is that it does 

not accurately reflect the design of a true experimental study (Rubin, 2008). Because the joint 

likelihood is estimated simultaneously in the Bayesian framework, “feedback” can pass from the 

observed outcomes to the treatment assignment through the estimated propensity scores. This 

violates the intended use of propensity scores as originally postulated, which was to approximate 

a randomized control trial from observed data. The “feedback” does not only violate the design 

principles, but it can also introduce bias into estimates (Zigler et al., 2013). As a response to 

these concerns, two-step “quasi” Bayesian estimation methods have been developed (Alvarez & 

Levin, 2014; Hoshino, 2008; Kaplan & Chen, 2012; McCandless, Douglas, Evans, & Smeeth, 

2010). These remove the potential for problematic feedback by severing the estimation process 

into two parts. 

Providing measures of uncertainty that are realistic and intuitive is of tremendous 

importance for educational research. Perhaps more than most other fields, stakeholders in 

education have an extremely diverse range of statistical expertise. As more and more high-stakes 

decisions are being made on the basis of school quality measures, providing context in the form 

of credibility intervals allows non-statisticians to have informed opinions as to the wisdom of 

such decisions. 
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Although this paradigm is not new—Bayes’ Theorem has been known since at least 

1812—modern advances in computational methods and power have made Bayesian estimation 

more accessible. As the computing barrier continues to fall, Bayesian methodologies are 

becoming more prevalent. However, as they are still less familiar especially within educational 

policy, there is a trade-off in transparency to the non-expert. This is a non-negligible 

consideration, recognizing that in order for educational research to be translated into actionable 

policy, it needs to have both validity and understandability to myriad stakeholders. The 

improvements in realistic error quantification, then, must be paired with an effort to translate the 

findings to be accessible to the non-statistician.  
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Chapter 4.  Propensity Score Adjusted Second-Order Latent Growth Models 

(PS-SGM) 

 This chapter describes the method proposed for incorporating propensity score matching 

in second-order latent growth models (PS-SGM). 

4.1. Notation 

Multi-group Second-order Growth Model 

The notation here is an expansion of the LISREL parameterization (Jöreskog & Sörbom, 

1993; Song & Lee, 2006; Song, Lee, & Hser, 2008). Consider G independent groups measured at 

J time points. In the following notation, the superscript g indicates group membership, where 

𝑔 = 1,… ,𝐺; and the subscript j indicates the time point, where 𝑗 = 0,… , 𝐽 − 1.  The observed 

responses or outcomes are represented by 𝒀!
! , endogenous latent variables by 𝛈𝐣

𝒈 , and the 

exogenous latent variables by 𝛏𝒈. For clarity, the superscript is assumed, except where explicitly 

stated. These relationships 1  between these variables are then specified by the following 

equations: 

𝒀𝟎
⋮
𝒀𝒋

= 𝐝𝐢𝐚𝐠 𝜦𝒚𝟎⋯𝜦𝒚𝒋

𝜼𝟎
⋮
𝜼𝒋

+ 𝝐 

𝜼𝒋 = 𝚩𝐣𝛈𝐣 + 𝚪𝐣𝛏+ 𝛇𝐣 

The exogenous latent factors are separated into two parts: one part modeling the latent growth, 

and the other any other exogenous factors. 

																																																								
	
1 Latent growth modeling can include both time-varying and time-invariant covariates, as well as 
non-linear growth. However, these are not within the scope of this project; so to simplify the 
notation, the model is limited. 
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𝛏 =
α
β
𝛏′

, 

where here α represents the initial latent factor and β represents the growth latent factor, and 𝛏′ 

represents any remaining exogenous factors. This also separates the loading matrix into 

corresponding parts: 

𝚪𝐣 =
𝚪𝛂
j𝚪𝛃
𝚪′

 

Specifications of the error terms are given by:  

𝛜~𝒩
𝝂𝟎
⋮
𝝂𝒋

,
𝚯𝟎𝟎 ⋯ 𝚯𝟎𝐣
⋮ ⋱ ⋮
𝚯𝟎𝐣 ⋯ 𝚯𝐣𝐣

, 

𝛏~𝒩 𝛋,𝚽 , and 

𝛇𝐣~𝒩 𝟎,𝚿𝐣 . 

  

Assumptions 

 The following assumptions of the model are expressed as constraints on the parameters 

listed above. 

(1) Weak factorial invariance. Weak factorial invariance states that loadings are static. This 

is given by the constraints: 

𝚩𝟎 = ⋯ = 𝚩𝐣 = 𝚩 

𝚪𝛂 = 𝚪𝛃 

𝚲𝐲𝟎 = ⋯ = 𝚲𝐲𝐣 = 𝚲𝐲 
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(2) Strong factorial invariance. Strong factorial invariance assumes weak factorial 

invariance, and also states that manifest variable intercepts are static. This is given by the 

constraints: 

𝛎𝟎 = ⋯ = 𝛎𝐣 = 𝛎 

(3) Strict factorial invariance. Strict factorial invariance assumes strong factorial invariance, 

and also states that unique variances are static. This is given by the constraints: 

𝚯𝟎𝟎 = ⋯ = 𝚯𝐣𝐣 = 𝚯𝛜 

𝚿𝟎 = ⋯ = 𝚿𝐣 = 𝚿 

(4) Group invariance. The construct definitions are consistent between groups. Only unique 

error variances are allowed to differ. 

𝐁𝐠 = 𝐁 

𝚪𝐠 = 𝚪 

𝛎𝐠 = 𝛎 

𝚲𝐲
𝐠 = 𝚲𝐲 

(5) Uncorrelated residuals. The unique error variances are all independent; the exception 

being that errors between the same manifest variable across adjacent time points are 

allowed to co-vary. 

𝛉𝐢𝐣
is diagonal , for all 𝑖 = 𝑗
is diagonal and equal to 𝛉𝐣𝐢 , for all 𝑖 − 𝑗 = 1
is 𝟎 , for all 𝑖 − 𝑗 > 1

 

(6) Uncorrelated factors. Endogenous and exogenous latent factors are all uncorrelated; the 

exception being the initial and growth latent factors, which are allowed to co-vary. 

𝚿 is diagonal. 

𝚽 is diagonal; except 𝜙!,! is allowed to be non-zero. 
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Propensity Scores  

To use propensity scores to estimate this model, let T indicate the treatment (t = 1 for 

intervention, or 0 for control) for each unit. This treatment variable is used as the grouping 

variable above. Finally, Z is the vector of all measured covariates. The propensity score, e(z), is 

defined as, 

𝑒(𝒛) ≡ Pr (𝑻 = 1|𝒁 = 𝒛). 

The propensity score is modeled by a logistic regression, given by the equation: 

𝑙𝑜𝑔𝑖𝑡 𝑒 𝒛 = 𝒂+ 𝒃𝒛, 

where a is the vector of intercepts and b is the vector of slopes for the given covariates. The 

group assignment then is determined by the treatment assignment: 𝐺! = 𝑇!. 

 

Optimal Matching 

 Propensity scores are used to select two subsamples, one for each treatment condition, 

which have the theoretical property of approximating a random control trial. These samples are 

selected by identifying “similar” comparison control units for each treatment unit, based on 

absolute difference in propensity score. The total absolute difference is minimized across all 

matched pairs without replacement. 

Because the original pool of treatment and control units are usually of different size, 

which treatment effect is estimated can vary depending on which units are used to select. As 

often the treatment pool is smaller, by selecting the entire treatment pool and finding nearest 

matches means that the estimated treatment effect will be an estimate of the average treatment 

effect on the treated (ATT), rather than an estimate of the average treatment effect (ATE). 
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4.2. Two-step Estimation Method 

The estimation method proposed here is a two-step method that propagates the 

measurement error from the propensity score into the estimation of the second-order growth 

model. It is an extension of the methodology proposed by Kaplan and Chen (2012), which was 

applied in the simple regression context. 

 

Bayesian Method 

 The first method is similar to what Kaplan and Chen denote BPSA-2, which applies a 

Bayesian approach to both propensity score estimation and measurement model estimation. The 

logic of this method is as follows. 

1) The propensity score model is estimated within the Bayesian framework. 

2) From the posterior distribution, 𝑚 = 1,… ,𝑀 propensity score estimates are drawn for 

each of the N units. 

3) Each of the M sets of propensity scores is used to create M matched control and 

treatment sets, using optimal matching without replacement. 

4) The M matched sets are then used to estimate the multi-group second-order latent 

growth model within the Bayesian framework. 

5) For a given parameter, 𝛾, from set m, 𝑗 = 1,… , 𝐽 estimates are drawn from its 

posterior distribution. Each estimate is denoted 𝛾!,!. 

6) The final estimate 𝛾 is given by the following equations: 

𝛾 = 𝐸 𝛾 𝑇,𝑦, 𝑧 = 𝑀!!𝐽!! 𝛾!,!

!

!!!

!

!!!

 

𝜎! 𝛾 = 𝑉𝑎𝑟 𝛾 𝑇,𝑦, 𝑧  
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= 𝑀!! 𝜎! 𝛾! + 𝑀 − 1 !! 𝜇 𝛾! −𝑀!! 𝜇 𝛾!

!

!!!

!

!!!

!

!!!

!

 

where 𝜇 𝛾! = 𝐽!! 𝛾!,!
!
!!!  

 

Maximum Likelihood Method 

 The second method uses fully ML estimation methods. Although Kaplan and Chen 

suggest an intermediate Bayesian approach, where the propensity score is estimated in a 

Bayesian framework, and then the measurement model is estimated in a ML framework, this 

mixture of perspectives may be too complicated for the average practitioner. Thus, in order to 

maximize accessibility, a fully ML version is proposed here, with the logic as follows. 

1) From the full dataset, 𝑚 = 1,… ,𝑀 bootstrap samples are drawn, maintaining the 

same proportion of treatment and control units. 

2) On each of the M bootstrap samples, the propensity score model is estimated in the 

ML framework. 

3) Using each of the M sets of propensity score model parameters, M propensity scores 

are estimated for each unit in the original full dataset. 

4) Each of the M sets of propensity scores is used to create M matched control and 

treatment sets from the original dataset, using optimal matching without replacement. 

5) The M matched sets are then used to estimate the multi-group second-order latent 

growth model within the ML framework. 

6) For a given parameter, 𝛾, the final estimate 𝛾 is given by the following equations: 

𝛾 = 𝑀!! 𝛾!

!

!!!
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𝜎! 𝛾 = 𝑀!! 𝑀!! 𝜎!! (𝛾)+ 𝑀 − 1 !! 𝛾! −𝑀!! 𝛾!

!

!!!

!!

!!!

!

!!!

 

where	𝛾!	and	𝜎!! (𝛾)	are	the	traditional	ML	mean	and	variance	estimates	from	the	𝑚!!	

model	estimation.	
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Chapter 5.  Simulation Design 

The goal of the simulation study is to explore the efficacy of the proposed model: the propensity-

score adjusted second-order growth model (PS-SGM). In particular, the parameter of interest is 

the treatment effect, here defined as the difference between the latent growth intercept estimates 

for treatment and control groups. 

5.1. Data Generation 

We explore the performance of the PS-SGM under several different conditions, following 

Kaplan and Chen (2012). The simulation parameters are specified to have values similar to those 

found in the real data application. The data generation is accomplished in four steps. 

 

Step 1) Outcome generation 

A pool of 107 observations is generated as a population using the R packages lavaan 

(Rosseel, 2012) and simsem (Jorgensen, Pornprasertmanit, Miller, & Schoemann, 2017), with 

five indicators across two years of data 𝑦!,!,… ,𝑦!,!,𝑦!,!
! ,… ,𝑦!,!

! , where g is a binary indicator of 

treatment or control. In the second year, both observed and treatment outcomes are generated for 

all units. The data generation follows the model: 

 

η!
η!
! = 1 0

1 1
α
β! +Ψ 

α
β!  ~ 𝒩 0

0.5+ Δ! , 1 −0.1
−0.1 0.5  

Ψ~𝒩 𝟎,𝟏  
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𝒚𝟎
𝒚𝟏
𝒈 =

𝚲𝐲 𝟎
𝟎 𝚲𝐲

η!
η!
! + 𝚲𝐱

𝚲𝐱
𝑿+𝚽 

𝚲 =

0.5
0.7
1
1
1.3

 

𝚲𝐱 =

−0.4 −0.3 −0.2
−0.2 0.1 −0.2
0 −0.1 −0.1

−0.2 −0.2 0.1
−0.2 −0.3 −0.3

 

𝚽 ~ 𝒩 𝟎, 𝜮𝟎𝟎 𝚺𝟏𝟎
𝜮𝟎𝟏 𝚺𝟏𝟏

 

𝜮𝟏𝟎 = 𝜮𝟎𝟏 = 𝑑𝑖𝑎𝑔(0.6,−0.2,0.05,0.1,0.4) 

𝚺𝟎𝟎 = 𝚺𝟏𝟏 =  

1.0 0.1 0.2 0.05 0.3
0.1 0.6 0.15 0.1 0.2
0.2 0.15 0.3 0.1 0.2
0.05 0.1 0.1 1.1 0.05
0.3 0.2 0.2 0.05 0.8

 

 

Here, Δ! = 0 for the control group, and one of the four conditions for the treatment group: 

Δ! ∈ {−1,−0.25,0.5,1}.  

 

Step 2) Propensity score generation 

Three covariates z1, z2, and z3 are independently generated with sample size n according 

to the following distributions. 

𝑧!~ 𝒩(1,1) 

𝑧!~ Poisson 2  

𝑧!~ Bernoulli(0.5) 
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The true propensity scores are obtained according to  

𝑒 𝑧 =
1

1+ exp −(𝑒! + 0.2𝑧! + 0.3𝑧! − 0.2𝑧! − 0.4η!)
 

 

In this case, an intercept of 𝑒! = −2 was added to the model to shift the expected odds to 

approximately 1:4, similar to what is observed in school accountability systems. Note that the 

true propensity score is explicitly dependent on the initial latent factor value, to mimic the 

process seen in school accountability systems. 

 

Step 3) Treatment assignment and outcome selection 

The treatment assignment vector T is then assigned by generating  

Ui ~ Unif(0,1) 

𝑇!  = {𝑈! ≤ 𝑒! 𝑧 } 

 

Given the treatment assignment, the final observed values of the corresponding treatment group 

are retained, according to: 

 𝒚𝟏 𝒊  = 𝒚𝟏𝑻 𝒊
∗ 𝑇! = 1 + 𝒚𝟏𝑪 𝒊

∗ (𝑇! = 0) 

 

Step 4) Simulation sample generation 

For each of K=1,000 simulation runs, samples are randomly selected from this population 

pool. Each sample includes 200 treatment units and 600 control units. 
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Figure 5.1. Model diagram for estimated PS-SGM.  

Note: Omitted from this diagram for clarity are the intercepts and residual variances for each 
manifest variable. Parameters with the same label are constrained to be equal. The subscript g 
indicates that the parameter is estimated freely for each group. Fixed parameters are displayed 
as the fixed value. 
 

5.2.  Estimation Models 

The four estimation regimes compared here all use the same structural model, shown in 

Figure 5.1. The first regime uses standard ML estimation as implemented in the lavaan R 

package, from here on referred to as model ML-full. The second adds ML-based propensity score 

matching, using the optmatch R package (Hansen & Klopfer, 2006), referred to as model ML-

match. The estimated propensity scores are calculated using a binomial GLS regression 

according to the equation: 
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 𝑒 𝒛 = 𝑙𝑜𝑔𝑖𝑡(𝒃×𝒛) 

 

Note that this estimated propensity score is mis-specified, as the latent factor score at the initial 

time point is not available. Matching is then performed on these estimated propensity scores 

using one-to-one full matching, with no caliper. 

 

The third estimation, model ML-boot, maintains the ML estimation regime, but creates a two-

step process to account for uncertainty in the propensity score, by drawing j=1,..,J bootstrapped 

estimates of 𝜷, with J=1,000. The resulting estimated propensity scores, 𝑒!,!, are used in the same 

one-to-one full matching scheme. These J matched sets are then used to estimate J sets of model 

parameters, 𝛤!,… ,𝛤!. These estimates are combined according to Kaplan and Chen to give the 

following mean and variance estimates: 

 

𝛾 =
𝛾!

!
!!!  
𝐽  

 

𝑉𝑎𝑟 𝛾 =
𝐽!! 𝜎!!

!
!!! + 𝐽 − 1 !! 𝛾! − 𝐽!! 𝛾!

!
!!!

!!
!!!

𝐽  

 

where 𝜎!! is the variance estimate of 𝛾 from the jth bootstrapped propensity score and matched 

sample. 

The last estimation, model Bayes-match, is a fully Bayesian regime. The estimation 

follows a two-step process. First, the 𝐽 = 1,000 estimates of the propensity score are achieved 

through 𝐽 posterior draws using MCMCpack (Martin, Quinn, & Park, 2011). The subsequent 
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matched sets are then estimated using JAGS using blavaan (Merkle & Rosseel, 2015) and 

runjags (Denwood, 2016) in R. Each MCMC run has a burn-in phase of 5,000 iterations and an 

adaptation phase of 1,000 iterations. Then 𝑚 = 1,000 posterior samples are drawn. The final 

posterior sample mean and variance estimates then are calculated by the following: 

𝐸(𝛾|𝑇,𝑦, 𝑧) = 𝑚!!𝐽!! 𝛾!(𝒃!)
!

!!!

!

!!!

 

𝑉𝑎𝑟 𝛾 𝑇,𝑦, 𝑧 = 𝑚!! 𝜎! 𝒃!
!

!

!!!

+ 𝑚 − 1 !! 𝜇! 𝒃! −𝑚
!! 𝜇! 𝒃!

!

!!!

!!

!!!

 

where 𝛾! 𝒃!  represents the jth posterior draw of the parameter 𝛾 from the model using the 

matched sample from the ith posterior draw of the propensity score parameters 𝒃. 
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Chapter 6.  Simulation Results 

Table	6.1-Table	6.4 show the results of the simulations under the four different treatment 

effect conditions. The primary constructs of interest here are the Initial and Growth latent factors, 

𝛼 and 𝛽, under both control and treatment conditions, as well as the factor loadings. The results 

show comparisons of biases in estimates and coverage rates under the four estimation methods: 

ML-full, ML-match, ML-boot, and Bayes-match. Note that the variance of the Initial factor in the 

control group is fixed to unity and the intercept fixed to zero in all methods for the purpose of 

model identification. 

 Overall, the estimate biases and coverage rates exhibit a similar pattern across all 

conditions. Between the ML-full and ML-match results, the magnitudes in bias either are constant 

or slightly decrease. At the same time, the coverage rates show marked improvement. Between 

the ML-match and ML-boot results, the magnitudes in bias are steady, whereas the coverage rates 

continue to improve to nearly nominal levels, particularly for the latent factor parameters. 

  

  

	

Figure 6.1. Treatment estimates for 𝛥! = 0.5 with 95% confidence intervals. 

Note: Green points indicate that the true value lies within the confidence interval, whereas red 
points indicate that the true value is outside the confidence interval. 
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Table 6.1 
Simulation mean bias and coverage rates for model parameters with treatment effect 𝛥! = −1. 

Parameter ML-naïve ML-match ML-boot Bayes-match 
𝛥!   0.019 (90%) 0.077 (87.9%) 0.079 (91.6%) 0.025 (95.5%) 
𝜅!   -0.037 (88.6%) 0.057 (90.4%) 0.05 (97.8%) 0.09 (96.3%) 
𝜙!!!   0.387 (74%) -0.02 (89.5%) -0.001 (94.7%) -0.066 (91.8%) 
𝜙!!!   0.218 (77.9%) 0.116 (89.5%) 0.102 (97.6%) -0.019 (99.9%) 
𝜙!!!   0.372 (81.7%) 0.143 (90.8%) 0.113 (95.3%) -0.025 (100%) 
𝜙!"!    -0.106 (65.5%) -0.093 (91.1%) -0.079 (93.9%) -0.01 (99.2%) 
𝜙!!!   -0.317 (70.6%) -0.082 (91.1%) -0.07 (94.2%) 0.041 (99.1%) 
𝜆! 0.121 (12.2%) 0.106 (58.8%) 0.111 (52.7%) 0.12 (79.4%) 
𝜆! -0.02 (90.2%) 0.025 (94.8%) 0.024 (98.5%) 0.04 (98.7%) 
𝜆! 0.032 (88.7%) 0.067 (87.9%) 0.064 (94.7%) 0.063 (98.5%) 
𝜆! 0.096 (51.6%) 0.105 (77.7%) 0.101 (82.8%) 0.03 (99.6%) 
𝜆! 0.118 (37.7%) 0.133 (71.6%) 0.135 (75.4%) 0.092 (97.8%) 

 

Table 6.2 
Simulation mean bias and coverage rates for model parameters with treatment effect 𝛥! = −0.25.  

Parameter ML-naïve ML-match ML-boot Bayes-match 
𝛥!   -0.034 (90.9%) 0.02 (92.2%) 0.024 (96.9%) -0.01 (96.1%) 
𝜅!   -0.042 (87.4%) 0.042 (90.4%) 0.035 (97.8%) 0.091 (96.2%) 
𝜙!!!   0.334 (80.7%) -0.02 (89.3%) 0.001 (94.7%) -0.06 (92.6%) 
𝜙!!!   0.199 (78%) 0.124 (89.2%) 0.111 (97.6%) -0.022 (100%) 
𝜙!!!   0.308 (83.4%) 0.149 (89.9%) 0.12 (95.8%) -0.029 (99.9%) 
𝜙!"!    -0.095 (71.2%) -0.099 (89.2%) -0.085 (92.9%) -0.006 (99.2%) 
𝜙!!!   -0.258 (76.2%) -0.088 (89.2%) -0.077 (93.4%) 0.044 (98.3%) 
𝜆! 0.118 (20.5%) 0.115 (55%) 0.113 (54.7%) 0.117 (80.6%) 
𝜆! -0.016 (91.4%) 0.012 (94.2%) 0.013 (98.2%) 0.037 (98.9%) 
𝜆! 0.029 (89.4%) 0.063 (88.6%) 0.06 (95.4%) 0.059 (98.9%) 
𝜆! 0.093 (56%) 0.114 (74.1%) 0.106 (82.3%) 0.022 (99.7%) 
𝜆! 0.123 (34.6%) 0.148 (63.9%) 0.153 (64.3%) 0.089 (98.7%) 
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Table 6.3 
Simulation mean bias and coverage rates for model parameters with treatment effect 𝛥! = 0.5. 

Parameter ML-naïve ML-match ML-boot Bayes-match 
𝛥!   -0.091 (82.3%) -0.054 (91.1%) -0.047 (95.4%) -0.042 (95.9%) 
𝜅!   -0.031 (90.1%) 0.048 (91.7%) 0.038 (98.2%) 0.088 (96.1%) 
𝜙!!!   0.353 (77.1%) -0.022 (90.6%) 0 (95.1%) -0.067 (91.6%) 
𝜙!!!   0.242 (71.3%) 0.164 (88.6%) 0.153 (96.8%) -0.017 (100%) 
𝜙!!!   0.392 (78.5%) 0.188 (89.2%) 0.159 (95.4%) -0.026 (99.9%) 
𝜙!"!    -0.115 (61.9%) -0.12 (88.9%) -0.108 (89.1%) -0.012 (99.1%) 
𝜙!!!   -0.312 (69.3%) -0.108 (88.9%) -0.099 (92.9%) 0.041 (99.3%) 
𝜆! 0.075 (47.1%) 0.079 (65.9%) 0.074 (72.2%) 0.105 (84%) 
𝜆! 0.01 (91.2%) 0.035 (92.7%) 0.035 (96.3%) 0.041 (98.5%) 
𝜆! 0.049 (75.1%) 0.088 (79.8%) 0.084 (84.6%) 0.065 (98.2%) 
𝜆! 0.085 (61%) 0.118 (70%) 0.11 (78.5%) 0.029 (99.4%) 
𝜆! 0.117 (40.4%) 0.15 (61.2%) 0.154 (61%) 0.095 (97.8%) 

 

Table 6.4 
Simulation mean bias and coverage rates for model parameters with treatment effect 𝛥! = 1. 

Parameter ML-naïve ML-match ML-boot Bayes-match 
𝛥!   -0.115 (79.7%) -0.092 (87.8%) -0.097 (91.6%) -0.067 (94.8%) 
𝜅!   -0.035 (91.1%) 0.04 (93.3%) 0.037 (98.3%) 0.085 (96.5%) 
𝜙!!!   0.287 (84.1%) -0.002 (91.2%) -0.002 (95.2%) -0.072 (92.4%) 
𝜙!!!   0.272 (61.8%) 0.191 (86.9%) 0.178 (95.6%) -0.016 (100%) 
𝜙!!!   0.366 (74.6%) 0.189 (88.6%) 0.181 (94.8%) -0.023 (100%) 
𝜙!"!    -0.133 (51%) -0.134 (88.9%) -0.123 (86.3%) -0.016 (98.9%) 
𝜙!!!   -0.278 (71.4%) -0.121 (88.9%) -0.112 (92.1%) 0.038 (99.1%) 
𝜆! 0.057 (53.8%) 0.064 (71.3%) 0.064 (74.7%) 0.096 (89%) 
𝜆! 0.04 (76.7%) 0.049 (89.6%) 0.05 (92.9%) 0.045 (98.2%) 
𝜆! 0.073 (52.8%) 0.098 (72.6%) 0.098 (76%) 0.07 (97.8%) 
𝜆! 0.09 (52.3%) 0.112 (71%) 0.113 (74%) 0.036 (99.6%) 
𝜆! 0.127 (29%) 0.152 (59.3%) 0.154 (58.1%) 0.1 (98%) 
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Comparing ML-match and Bayes-match results, the magnitudes in bias again tend to decrease, 

and coverage rates increase. However, with Bayes-match the coverage rates are often above 

nominal levels, suggesting an over-estimation of error variance. 

 Of particular note is the recovery of the primary parameter of interest, the difference in 

treatment effects 𝛥!. Figure	6.1 shows the treatment estimates with confidence intervals. Both 

ML-boot and Bayes-match show better true value recovery rates than the unmatched ML-full or 

single-sample ML-match methods. In every case, the coverage rates improve from ML-full to the 

ML-matching methods to Bayes-match, which exhibits near-nominal levels of coverage. The 

magnitude in bias also decreases similarly, except for the case where 𝛥! = −1. In this case, it is 

unclear why ML-full outperforms the other methods in bias. 

 Beyond the benefits in accuracy and coverage, Bayes-match offers another advantage 

over ML-match and ML-boot. The ML methods occasionally produced Heywood or ultra-

Heywood cases—results with zero or negative residual variance estimates. Table	6.5 shows the 

rates of incidence of such cases. The incidence rates are 3.5% to 5% for both ML-match and ML-

boot, compared to nearly 0% for ML-full. The Bayesian estimation eliminates this possibility 

through the appropriate specification of priors. 

  

Table 6.5 
Heywood or ultra-Heywood cases 

 Treatment Effect 
Model -1 -0.25 0.5 1 
ML-full 0.0% 0.2% 0.0% 0.1% 

ML-match 5.5% 5.0% 3.6% 3.3% 
ML-boot 5.6% 5.0% 3.5% 3.0% 

Note: ML-boot percentages represent the average across bootstrapped estimates and across simulations. 
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  Bayes-match is much more computationally expensive, however. Table	6.6 shows the 

average CPU time required for each simulation. Note that the computational cost of Bayes-match 

is nearly four times that of ML-boot, even though only 1/100th the number of propensity score 

draws are used. Although the estimation was not optimized—blavaan and JAGS prioritize 

flexibility over efficiency—this suggests this difference in computational requirement will be 

significant. 

6.1.  Simulation Discussion 

The results suggest that propensity score matching methods more accurately recover 

model parameters for second order latent growth models. The two-step estimation methods, in 

which the uncertainty due to propensity score estimation is incorporated, achieve near-nominal 

levels of coverage.  

There is not a clear advantage in the choice between Bayesian and ML approaches. The 

ML approach here offers the benefit of lower computational cost, as well as more established 

algorithms that provide ease of implementation. The ML-based results, however, exhibit slightly 

more bias and lower coverage rates than those from the Bayesian approach—potentially related 

to the Heywood-like cases. The Heywood cases do not appear to be due primarily to model 

misspecification, as ML-full shows almost no such problems. Both ML-match and ML-boot have 

Table 6.6 
Comparison of average CPU times. 

Estimation Method CPU time 
ML-full 2.6s 
ML-match 2.7s 
ML-boot  1h, 35m, 40s 
Bayes-match 5h, 41m, 9s 
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similar rates, suggesting that the cause may be related to the restricted sample due to matching 

selection. 

The Bayesian method is not susceptible to Heywood cases, as they are disallowed by 

prior specification. However, Bayesian techniques require much more technical expertise, from 

prior setting to testing for convergence, as well as a much higher computational cost. Bayes-

match also appears to over-estimate the error variance, leading to higher-than- nominal levels of 

coverage. Further research is required to investigate whether this can be alleviated by alternate 

prior specifications. However, this also may be due to the data being generated under a 

frequentist approach (Kaplan & Chen, 2012; Yuan & MacKinnon, 2009). 

Overall, the propensity score methods achieve their purpose to more accurately estimate 

model parameters, accounting for the impact of exogenous covariates. This is even in the 

presence of misspecification of the treatment assignment probability. An additional advantage of 

the propensity score approach is parsimony. In this case, high levels of accuracy and coverage 

are achieved, despite not explicitly modeling the regressions between the manifest variables and 

covariates. If these regressions were to be included, the number of additional estimated 

parameters would increase dramatically as models become more complex. Propensity score 

matching alleviates the additional associated computational costs and also complexity that might 

lead to lack of estimation convergence. 
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Chapter 7.  New York City Progress Report Application 

 The next chapter turns to focus on an application of the proposed framework using 

propensity score matching within latent factor growth modeling. 

7.1. Data 

7.1.1. The New York City School Report Card 

The New York City Department of Education (NYCDOE) issues an annual Progress 

Report for every school, as one of three reports used for accountability in New York City 

schools.  These are published by the NYCDOE for each of the over 1,000 schools in New York 

City serving more than one million students. Here I focus on the 2006-07 and 2007-08 

Elementary/Middle School New York City Progress Reports (NYCPR), covering 987 schools. 

Of these, 893 have complete reported data. Each school is assigned a grade A through F, 

determined by a weighted average of fifteen measures, intended to capture the complexity of 

school quality. This project implements the PS-SGM method to provide an alternative to this 

weighting scheme. 

These two years were chosen for several reasons. Firstly, the set of indicators used is 

consistent across these two years; in subsequent years, the set of indicators is changed. This 

would violate the assumption of construct invariance, obscuring the interpretation of results. 

Secondly, the effect of receiving a D or F—the treatment in this model—can be isolated by 

limiting the analysis to two years. Increasing the number of years analyzed would introduce 

multiple treatment effects as schools could receive the “treatment” in each year, complicating the 

isolation of one effect. 
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7.1.2. School Measures 

The fifteen measures used by the NYCPR to calculate the Overall Score are divided into 

three broad categories:  Student Performance, Student Progress, and School Environment.  

The Student Performance category comprises four measures.  These measures reflect the 

current-year achievement level of students on the annual New York State standardized exams in 

Mathematics and English Language Arts (ELA).  The first measure is calculated as the 

percentage of students rated at or above proficient level in ELA.  The second is calculated as the 

median proficiency level of students in ELA.  The other two measures are the corresponding 

calculations for mathematics. 

The next category, Student Progress, comprises six measures, based on two-year 

comparisons of scores from these same tests.  The first pair measure the percentage of students 

making “one year of progress” from the previous year, for mathematics and ELA. The second 

pair is a similar calculation, limited to students in the lowest-scoring third in each school. The 

last two measure the average change in proficiency.  

The final five measures are within the School Environment category.  Four composite 

scores are based on annual student, parent, and teacher surveys: academic expectations, 

communication, engagement, and safety and respect.  The fifth indicator is the average 

attendance rate.  The aim of these five measures is to capture the essence of school quality not 

directly associated with standardized test scores.   

Note that the details given here are summaries of these measures in order to provide a 

sense of their substantive meanings. Additional adjustments are performed on each measure to 

produce a percentile rank city-wide as well as within a demographically similar peer group. The 
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entire process is diagrammed in Figure	7.1. For complete details on these calculations and the 

additional adjustments, see New York City Department of Education (2007).	

This preliminary investigation focuses specifically on steps 2 and 3, which calculate a 

weighted average of the fifteen measures to produce an overall quality score.  Adopting an SEM 

framework derives an alternative weighting scheme for this step of calculating this overall 

quality score. The tools of SEM can thus investigate the validity of this score. In particular, 

model fit assessments can give insight into the internal validity of the resultant school quality 

measures. 

7.1.3.  Data Transformation 

	
 In order to improve algorithmic performance regarding model convergence, the data are 

normalized according to the following formula, where 𝑖 ∈ {1,… ,15} indicates which measure 

and 𝑗 ∈ {1,2} indicates which year. Here, the ′ mark indicates the untransformed measure. 

𝑦!,! =
𝑦!,!! − 𝑦!,!!

𝜎(𝑦!,!! )
 

Figure 7.1. The process for calculating the original NYCPR. 
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7.1.4. School Characteristics 

Figure	7.2 shows the density of several demographic characteristics, categorized by the 

grade received. These four demographics—the percentages of students in each school who are 

classified as English Language Learners (ELLs), as Black or Hispanic, as qualifying for the Title 

I Free Lunch program, and as qualifying for special education services—are included here for 

comparison because they are used in the “peer group index” under the original NYCPR in Step 2 

(Figure	 7.1). This “peer group” process is intended to facilitate comparisons across similar 

schools, thus ideally attenuating the influence of demographic differences in measuring school 

quality. 

The distributions of the percentage of ELLs are fairly parallel for schools assigned 

passing grades versus failing grades. However schools receiving lower grades have noticeably 

higher concentrations of Black or Hispanic students, of students qualifying for the Title I Free 

Lunch program, and students receiving special education services. Table	 7.1 summarizes the 

differences between demographics for schools receiving Ds or Fs versus schools receiving As, 

Bs or Cs in 2006-07. 

	

Figure 7.2. Comparisons of demographic distributions between schools assigned passing grades 
versus failing grades according to the New York City School Progress Report. 
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The percentages of students who are Black or Hispanic; students qualified for Title I; and 

students receiving special education services are all higher among schools receiving Ds or Fs, 

compared with schools receiving As, Bs or Cs. These differences between these two subgroups 

are statistically significant, according to one-sided Kolmogorov-Smirnov tests. (The difference in 

percentages of ELLs is the opposite direction, but also not statistically significant.) This suggests 

that schools that are labeled failing in 2006-07 by the NYCPR are more likely to have higher 

concentrations of students with these three demographic characteristics. 

7.2. Methods 

7.2.1. SGM Development 

A confirmatory factor analysis was performed using the R package lavaan to investigate 

the model as specified in the original NYCPR. The initial model specifies a pattern of loadings to 

match the three subdomains in the NYCPR: School Environment, Student Performance, and 

Student Progress. These three subdomains are then modeled as resulting from a single second-

order factor, School Quality. For model identification purposes, loadings were fixed to unity as 

indicated in Figure	7.3. 

 

Table 7.1 
Median percentages of demographics 

 Citywide As, Bs or Cs Ds or Fs K-S p-value 
ELL 11.7% 12.1% 9.5% 0.1135 

Black or Hispanic 91.6% 89.7% 96.4% 0.0000 
Title I 74.9% 73.7% 80.3% 0.0004 

Special Education 16.6% 16.2% 18.5% 0.0002 
Note: Results are given citywide (n=987) and subdivided into schools receiving As, Bs or Cs 
(n=857) and schools receiving Ds or Fs (n=130). Resulting p-values from one-sided 
Kolmogorov-Smirnov tests between the two subgroups are shown. 
 



	50	

 

	

Figure 7.3. CFA model representing the original New York City Progress Report structure.  

Note: Loadings without labels are set equal to 1 for model identification. Parameters with the 
same label are constrained to be equal. For clarity, intercepts and unique variances for manifest 
variables here are omitted. 
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Figure 7.4. Final CFA model.  

Note: 𝜂!, 𝜂!, and 𝜂! were successively added. Loadings without labels are set equal to 1 for 
model identification. Parameters with the same label are constrained to be equal. For clarity, 
intercepts and unique variances for manifest variables here are omitted. 
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Figure 7.5. Growth model specification.  

Note: Loadings without labels are set equal to 1 for model identification. Parameters with the 
same label are constrained to be equal. For clarity, intercepts and unique variances for manifest 
variables here are omitted. 
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Additional method factors are added sequentially to account for the common sources of 

data collection: the annual student, parent, and teacher surveys; the New York State Mathematics 

exam; and the New York State English Language Arts exam. The addition of a method factor 

results in a nested model, which allows the change in model fit to be directly tested. The 

resulting second-order factor model is shown in Figure	7.4. 

The model is then expanded to the SGM shown in Figure	7.5, to incorporate change over 

time. Strict factorial invariance is assumed, constraining loadings, intercepts, and unique 

variances for each manifest variable across time, following Ferrer, Balluerka, and Widaman 

(2008). However, for the two measures measuring the progress of the lowest third of students, 

there was much criticism during these two years regarding changes to the New York State exams 

that made it easier for students to score proficient (see, e.g., Kolodner, 2010). The equality 

constraints between years on the intercepts and unique variances for these two variables are 

sequentially relaxed, and the change in model fit is assessed. 

In order to provide meaningful comparison to the original weighting scheme, correlations 

between the latent School Quality factor and each measure are reported, re-normalized to sum to 

unity within each subdomain as well as across the three sub-domains. The re-normalized values 

indicate the relative importance of each indicator and sub-domain.  

7.2.2. Propensity Score Matching Methods 

 The aim of propensity score matching is the same as that of the peer grouping method 

used in the NYCPR: to compare schools of similar educational contexts. Because the purpose of 

this study is to compare the results of the original NYCPR with those from a PS-SGM, the same 

demographic indices used in the peer index calculation are used here for propensity score 

estimation. These four indices are described in the Data section. 
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 The propensity score model and matching follow the parameterization and methodology 

discussed in Chapter 4. The estimation model is given by 

𝑒 𝑧 = 𝑙𝑜𝑔𝑖𝑡(𝑏!""𝐸𝐿𝐿 + 𝑏!"#$%&𝑇𝑖𝑡𝑙𝑒𝐼 + 𝑏!"#$%&𝑆𝑝𝑒𝑐𝐸𝑑 + 𝑏!"  𝐵𝑙𝑎𝑐𝑘/𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐) 

 

7.2.3. Bayesian Estimation 

 The Bayesian estimation was performed using several R packages: blavaan (Merkle & 

Rosseel, 2018), runjags (Denwood, 2016), rjags (Plummer, 2016), and MCMCpack (Martin, 

Quinn, & Park, 2011); as well as the Bayesian estimation software JAGS (Plummer, 2015). The 

estimation was performed using four MCMC chains, with a 25,000 iteration burn-in phase and a 

5,000 iteration adaptation phase. Each chain was then sampled 250 times, with a thinning of 400. 

These values were chosen to minimize autocorrelation and ensure convergence in every sample. 

Initial values were chosen using the prior setting for blavaan. 

 Prior specification can impact the convergence of the MCMC chains. In this case, the 

priors were used to bound the probability space away from singularities. The priors for all 

parameters were the default priors set by blavaan, with the exception that the priors on 𝛹!!, the 

precisions of the latent variables, were constrained to be greater than 0.05. This prevents the 

MCMC chains from wandering into flat probability space where the variance estimates are 

poorly defined. The ranges for each manifest variable are also constrained; the lower and upper 

bounds are calculated by transforming the maximum and minimum allowable untransformed 

values for each measure using the same data transformation in Section 7.1.3. 
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7.2.4. Grade Calculation 

 To calculate the model-implied grades, first latent factor scores are estimated. This 

investigation is limited to the ML bootstrap matching model due to computational constraints. 

However, since the parameter estimates between the ML bootstrap and Bayesian matching 

models are consistent, the results are expected to be comparable. The process for this calculation 

is detailed below. 

 As the aim of this project was to replace the peer-group and weighting steps in the 

NYCPR (Steps 2 and 3, Figure	7.1), the remainder of the original process is maintained. The 

estimated latent factor scores for the final Overall Quality in year 2 are calculated in each ML 

bootstrapped model. Each model is re-estimated using the full dataset, but constrained to the 

same model parameters and used to predict latent factor scores. The factor scores are then 

averaged across the replications. These final scores are re-scaled to the [0,1] interval. Then, 

additional extra credit score points are added as originally calculated in the NYCPR, and schools 

ranked according to this resulting score. The grades are assigned according to the same 

distribution as in the original 2007-08 scores, shown in Table	7.2. Note that the number of 

schools for which scores are estimated under ML-boot is smaller than the number of 2007-08 

scores, as only schools with both years of complete data are included here. 

Table	7.2	
Distribution	of	2007-08	NYCPR	Grades	

	
Elementary	 K-8	 Middle	School	

A	 10	 3	 7	
B	 16	 3	 6	
C	 74	 23	 48	
D	 220	 49	 110	
F	 265	 61	 147	

Total	 585	 139	 318	
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Chapter 8.  NYCDOE Results 

8.1. SGM Development Results 

The resulting changes in model fit from each sequential model change are reported in 

Table	8.1. A 𝜒!-difference test directly evaluates the statistical significance in improvement; 

RMSEA, TLI and CCFI values are also reported. One overall observation is that the model fit in 

all cases is very poor (RMSEA ranging from 0.27 in the original second order factor model to 

0.20 in the final latent growth model). However, each subsequent nested model shows 

statistically significant improvement in model fit. Because the purpose of this investigation is to 

provide a statistical model directly comparable to the existing NYCPR system, other possible 

avenues of model fit improvement are not explored here. Possible alternatives are discussed in 

the next chapter. 

The initial second order factor model, with a loading pattern derived from the NYCPR, 

exhibits extremely poor model fit (RMSEA = 0.27; TLI = 0.38). This suggests that the factor 

structure does not explain the data well. By examining the correlations (Table	8.2), it becomes 

immediately obvious that while the School Environment and Student Performance factors are 

strongly associated with overall School Quality, Student Progress is almost completely 

uncorrelated. This suggests that School Quality may not be adequately defined as a single factor, 

but rather may be multidimensional in nature.  

An alternate explanation, however, is that the correlations are masked due to the 

covariance among indicators due to being derived from the same or similar measurement 

instruments. To investigate this, I sequentially add additional factors to account for the common 

methods of data collection discussed in the Data section: the Survey, ELA, and Math factors. 

With each additional factor, the indices of model fit improve, and the change in 𝜒! is statistically 
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significant, suggesting that the additional factors are significantly improving the explanatory 

power of the model. With all three method factors, the model fit improves (RMSEA = 0.25; TLI 

= 0.47). This model is then used as the basis for the second order latent growth model. 

Because of the assumption of strict factorial invariance, the CFA model is nested within 

the SGM. This allows the use of the 𝜒! likelihood ratio test to evaluate model improvement. 

Directly modeling the change over time in a latent growth model leads to an improvement in 

model fit (RMSEA = 0.24; TLI = 0.51) and a statistically significant change in 𝜒!. 

 This assumption of strict factorial invariance may be untenable for two indicators: the 

percentages of students in the lowest third of each school with one year of growth in ELA and 

math. To test the validity of these assumptions, the equality constraints on the intercepts and then 

the unique variances of the two manifest variables are sequentially relaxed. The relaxation of the  

Table 8.1 
Fit statistics for each successive nested model 

    RMSEA CFI TLI NNFI DF 𝛥𝜒!   
CFA Models 

       
 

Second order factor model 0.27 0.36 0.38 0.38 447 
  

 
w/ Survey factor 0.27 0.39 0.40 0.40 443 1263.68 * 

 
w/ ELA factor 0.25 0.46 0.46 0.46 438 3156.81 * 

 
w/ Math factor 0.25 0.48 0.47 0.47 433 825.88 * 

Latent Growth Models 
       

 
Strict factorial invariance 0.24 0.51 0.51 0.51 430 1642.46 * 

 
Relaxed intercepts 0.20 0.66 0.65 0.65 428 6797.34 * 

  Relaxed errors 0.20 0.66 0.65 0.65 426 87.29 * 
Note:	The	changes	in	𝜒!	are	also	reported,	with	*	indicating	a	statistically	significant	change	(p	<	
0.001).	
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intercept constraints leads to the largest 𝜒! change per degree of freedom and improvement in 

model fit (RMSEA = 0.20; TLI = 0.65). The relaxation of the unique variance constraints leads 

to a much smaller 𝜒! change—although still statistically significant—and no change in model fit 

statistics (RMSEA = 0.20; TLI = 0.65). 

 The patterns of correlations in the latent growth model results (Table	8.3) offer some 

insight into what is driving this change in model fit. As previously noted, the CFA model 

suggested that the Student Progress factor may not fit well with the unidimensional definition of 

Table 8.2 
CFA results 

      Confirmatory Factor Model 

Indicator NYCPR 
Second 
Order 

w/ 
Survey 

w/  
ELA 

w/  
Math 

School Environment           

 
Attendance 33.3% 8.7% 15.0% 13.7% 15.0% 

 
Academics 16.7% 23.9% 21.6% 21.9% 21.6% 

 
Communication 16.7% 22.5% 20.5% 21.2% 20.4% 

 
Engagement 16.7% 24.8% 22.1% 22.5% 22.0% 

 
Safety and Respect 16.7% 20.0% 20.8% 20.8% 20.8% 

       Performance 
     

 
% Proficient: ELA 25.0% 27.1% 27.1% 24.2% 26.7% 

 
Median: ELA 25.0% 24.7% 24.7% 21.6% 24.4% 

 
% Proficient: Math 25.0% 24.1% 24.1% 27.4% 24.4% 

 
Median: Math 25.0% 24.1% 24.1% 26.8% 24.5% 

       Progress 
     

 
% with 1 Year Growth: ELA 12.5% 8.6% 8.6% 8.6% 6.6% 

 
% in lowest 3rd with 1 yr Growth: ELA 12.5% 39.8% 39.8% 40.1% 39.7% 

 
% with 1 Year Growth: Math 12.5% 10.7% 10.7% 10.6% 11.1% 

 
% in lowest 3rd with 1 yr Growth: Math 12.5% 29.3% 29.3% 29.2% 31.3% 

 
Average Change: ELA 25.0% 7.0% 7.0% 6.9% 6.1% 

 
Average Change: Math 25.0% 4.7% 4.7% 4.6% 5.1% 

       Overall 
     

 
School Environment 15.0% 40.9% 58.0% 57.9% 57.2% 

 
Performance 25.0% 63.3% 45.0% 42.5% 45.5% 

 
Progress 60.0% -4.2% -3.0% -0.3% -2.6% 
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School Quality. Moving to the latent growth framework, however, increases the relative 

importance of Student Progress to 14.4%. When the intercept constraints are relaxed, however, 

this importance falls back to 1.7%. This suggests that much of the increase in relative importance 

is due to the artificial inflation of the two indicators in question in the second year.  

This is supported by the large improvement in model fit and the reversion of the relative 

importance of Student Progress after these two constraints are released. A similar change is not 

observed with the relaxation of the constraints on the unique variances. The relative importance 

Table 8.3 
Latent Growth Model results 

      Latent Growth Model 

Indicator 
CFA 

Model 
Strict 

Invariance 
Relaxed 

Intercepts 
Relaxed 
Errors 

School Environment 
    

 
Attendance 15.0% 13.5% 13.5% 13.5% 

 
Academics 21.6% 22.2% 22.2% 22.2% 

 
Communication 20.4% 21.1% 21.1% 21.1% 

 
Engagement 22.0% 22.7% 22.7% 22.7% 

 
Safety and Respect 20.8% 20.5% 20.5% 20.5% 

      Performance 
    

 
% Proficient: ELA 26.7% 24.0% 24.0% 24.0% 

 
Median: ELA 24.4% 21.2% 21.1% 21.1% 

 
% Proficient: Math 24.4% 27.9% 27.8% 27.8% 

 
Median: Math 24.5% 26.9% 27.1% 27.1% 

      Progress 
    

 
% with 1 Year Growth: ELA 6.6% 9.3% 27.5% 27.7% 

 
% in lowest 3rd with 1 yr Growth: ELA 39.7% 42.1% 17.3% 16.9% 

 
% with 1 Year Growth: Math 11.1% 9.2% 12.8% 12.9% 

 
% in lowest 3rd with 1 yr Growth: Math 31.3% 28.7% 6.9% 7.1% 

 
Average Change: ELA 6.1% 7.6% 26.5% 26.4% 

 
Average Change: Math 5.1% 3.1% 9.1% 9.0% 

      Overall 
    

 
School Environment 57.2% 52.2% 59.8% 59.7% 

 
Performance 45.5% 33.4% 38.4% 38.3% 

  Progress -2.6% 14.4% 1.7% 2.0% 
 



	60	

of indicators and factors—as well as model fit indices—barely change. Thus, although the 𝜒! 

test is statistically significant, these constraints are re-imposed to maintain parsimony. Thus the 

SGM, with partial strict invariance except for the two relaxed intercept constraints, is the basis 

for estimation in the next step: incorporating propensity score matching. 

8.2. Propensity Score Analysis 

  The results of the assumption checks are shown here. Figure	8.1 shows the propensity 

score estimates estimated using each bootstrapped sample or posterior draw of the propensity 

model parameters. The scores show strong overlap between the treatment and control subgroups, 

suggesting that there is sufficient common support. 

 

	
Figure 8.1. Propensity score estimates. 

Note: Each set of propensity score estimates, plotted in vertical lines, are based on separate 
draws of propensity score parameters. 
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The demographic distributions for the resulting matched samples are shown in Figure	8.2 

(for maximum likelihood) and Figure	8.3(for Bayesian estimation). Along all the demographics, 

the treatment and control groups have similar densities, again suggesting that the propensity 

score matching has accomplished covariate balance between the two groups. 

 

	

Figure	8.3.	Comparison	of	demographics	between	Bayes	matched	sets. 
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Figure 8.2. Comparison of demographics between ML matched sets. 
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Table 8.4 
PS-SGM Results 

Indicator NYCPR ML full ML match ML boot Bayes Match 
School Environment 

	 	 	 	 	

	

Attendance 33.3% 13.5% 10.0% 11.8% 11.4% 
(12.9%, 14.2%) (8.6%, 11.3%) (11.0%, 13.4%) (10.4%, 12.5%) 

	

Academics 16.7% 22.1% 24.1% 23.2% 23.3% 
(21.7%, 22.6%) (23.2%, 25%) (22.1%, 24%) (21%, 25.8%) 

	

Communication 16.7% 21.1% 22.0% 21.6% 21.8% 
(20.6%, 21.6%) (21.0%, 22.9%) (20.5%, 22.5%) (19.8%, 23.8%) 

	

Engagement 16.7% 22.7% 25.1% 23.5% 23.5% 
(22.1%, 23.2%) (24.0%, 26.3%) (22.1%, 24.4%) (20.4%, 26.5%) 

	

Safety and Respect 16.7% 20.6% 18.8% 19.9% 19.9% 
(20.3%, 20.8%) (18.3%, 19.3%) (19.6%, 20.5%) (18.9%, 21.0%) 

Performance 	 	 	 	
	

% Proficient: ELA 25.0% 24.0% 23.1% 23.7% 24.3% 

	
(23.7%, 24.2%) (22.7%, 23.5%) (23.3%, 24.2%) (24.1%, 24.6%) 

	

Median: ELA 25.0% 21.1% 20.0% 20.6% 20.9% 
(20.7%, 21.4%) (19.4%, 20.6%) (20.0%, 21.3%) (20.6%, 21.2%) 

	

% Proficient: Math 25.0% 27.9% 29.9% 29.1% 29.0% 
(27.4%, 28.4%) (28.9%, 30.8%) (28.0%, 30.1%) (28.4%, 29.5%) 

	

Median: Math 25.0% 27.1% 27.0% 26.6% 25.8% 
(26.6%, 27.6%) (26.1%, 27.9%) (25.5%, 27.5%) (25.3%, 26.3%) 

Progress 	 	 	 	
	

% with 1 Year 
Growth: ELA 12.5% 28.5% 24.1% 23.7% 23.8% 

	
(25.8%, 30.9%) (21.6%, 26.5%) (21.2%, 26%) (22.1%, 25.5%) 

	

% in lowest 3rd with 
1 yr Growth: ELA 12.5% 17.7% 16.0% 16.0% 16.7% 

(15.8%, 19.8%) (14%, 18%) (13.8%, 18.1%) (15.4%, 18.0%) 

	

% with 1 Year 
Growth: Math 12.5% 12.0% 15.6% 15.7% 15.4% 

(11.4%, 12.6%) (14.8%, 16.4%) (14.8%, 16.5%) (14.8%, 15.9%) 

	

% in lowest 3rd with 
1 yr Growth: Math 12.5% 6.4% 8.3% 9.1% 9.0% 

(5.2%, 7.6%) (6.7%, 9.9%) (7.4%, 11.0%) (8%, 9.9%) 

	

Average Change: 
ELA 25.0% 27.3% 23.1% 22.9% 22.9% 

(24.9%, 29.8%) (20.9%, 25.5%) (20.4%, 25.3%) (21.1%, 24.6%) 

	

Average Change: 
Math 25.0% 8.1% 12.9% 12.7% 12.2% 

(6.8%, 9.3%) (10.9%, 14.9%) (11.0%, 14.6%) (11.4%, 13.0%) 

Overall 	 	 	 	
	

School Environment 15.0% 59.9% 51.6% 57.0% 55.0% 

	
(58.2%, 61.6%) (47.7%, 55.6%) (53.4%, 61.7%) (47.6%, 61.5%) 

	

Performance 25.0% 38.4% 39.5% 34.6% 35.6% 
(37.1%, 39.7%) (36.3%, 42.6%) (31.9%, 37.5%) (30.4%, 41.3%) 

	

Progress 60.0% 1.8% 8.9% 8.4% 9.4% 
(-0.4%, 3.8%) (3.4%, 14.4%) (2.5%, 13.1%) (6.2%, 13.1%) 

Note: 95% confidence intervals shown in parentheses. 
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8.3. PS-SGM Results 

 The results of the model estimates based on matched samples are shown in Table	8.4. 

Five models are reported here for comparison: the original NYCPR; ML estimation on the full 

dataset (ML-full); ML estimation on a single matched dataset (ML-match); ML estimation on 

1,000 matched samples from bootstrapped propensity score estimates (ML-boot); and Bayes 

estimation on 10 matched samples from posterior propensity score draws (Bayes-match). The 

95% confidence intervals are also shown, using the adjusted standard errors. Note that the 

Bayesian intervals are not true credibility intervals, as they were not drawn from the posterior 

distribution. Instead, they are calculated using normality assumptions, following Kaplan and 

Chen (2012). I highlight some specific patterns here. 

 The relative loadings on the three subdomains are markedly different in the PS-SGM 

models, compared to the NYCPR. As previously noted, the latent growth modeling approach 

suggests that the original NYCPR vastly overweighted the Progress domain in calculating School 

Quality. In fact, the loading for the Progress domain is not statistically significant in full dataset. 

In the matching regimes, however, the loadings are all now significantly non-zero. The relative 

importance of the Progress domain increases from 1.8% in the full dataset to 8.9% in the 

matched sample. Both the ML and Bayes PS-SGM estimates give similar results, at 8.4% and  

Table 8.5 
PS-SGM parameter estimates 

Unstandardized Estimates ML full data ML matched ML boot Bayes match 
Initial Variance, Control 0.581 (0.033) 0.486 (0.069) 0.515 (0.074) 0.662 (0.077) 
Initial Variance, Treatment 0.756 (0.102) 0.493 (0.072) 0.572 (0.081) 0.701 (0.018) 
Initial/Growth Covariance, Control -0.066 (0.007) -0.043 (0.017) -0.042 (0.017) -0.122 (0.015) 
Initial/Growth Covariance, Treatment -0.093 (0.023) -0.042 (0.019) -0.058 (0.021) -0.111 (0.009) 
Growth Variance, Control 0.007 (0.004) -0.037 (0.012) -0.015 (0.011) 0.034 (0.001) 
Growth Variance, Treatment 0.028 (0.009) -0.022 (0.013) 0.004 (0.013) 0.049 (0.002) 
Growth intercept 0.331 (0.008) 0.379 (0.019) 0.367 (0.019) 0.395 (0.010) 
Treatment effect 0.107 (0.021) 0.101 (0.026) 0.120 (0.027) 0.089 (0.010) 
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 9.4% respectively. This suggests that Progress is still relatively more important to schools at the 

lowest end of the School Quality distribution. The results also suggest that School Environment 

is much more strongly associated with School Quality than assumed under the NYCPR. Under 

all SGMs, the relative importance of School Environment is highest among the three 

subdomains.  

Within each subdomain the patterns of loadings are also informative. Within School 

Environment, attendance is less important while the measures based on student, teacher and 

parent feedback are more important. Student Performance remains relatively untouched, 

although the emphasis on students scoring proficient in math is slightly increased and the median 

ELA score is slightly de-emphasized. The loadings within Student Progress see the most change. 

The contribution from the percentage of students showing a year of growth in ELA nearly 

doubles, whereas the contribution from the average change in math is halved. In general, the 

estimates between matching methods are consistent, with overlapping confidence intervals.  

The estimates of the PS-SGM parameters are shown in Table	8.5. There are several items 

to note here. The ML estimates on the full dataset exhibit problems characteristic of Heywood 

cases. The correlation between the initial and growth factors, given by 𝑟!" =
!!"
!!!!!!

, is -1.024 

for the control group. Similarly for the ML matched samples estimates, the estimated variances 

of the growth factor are negative for both treatment and control for single-sample matching, and 

for control for multi-sample matching. Indeed, Heywood-type errors in estimation occur in 

Table 8.6 
Model estimation errors 

Bootstrapped ML-propensity score estimation errors 
 Heywood or Ultra-Heywood cases 93.4% 

Non-positive definite model-implied covariance matrix 5.4% 
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almost every bootstrapped sample (Table	8.6). The Bayesian estimates avoid this issue a priori 

by constraints on the prior. However, the presence of these Heywood cases may be another 

indication of model misidentification—this will be further discussed in the next chapter. 

The estimates of the magnitude of average growth for the control group are 

approximately half of the standard deviation in Initial School Quality for both ML-boot  

( !.!"#
!.!"!

= 0.511𝜎) and Bayes ( !.!"#
!.!!"

= 0.485𝜎) matching methods. For the treatment group, the 

growth in School Quality shows a statistically significant additional increase of !.!"#
!.!"!

= 0.167𝜎 

for ML-boot and !.!"#
!.!!"

= 0.110𝜎 for Bayes. This suggests that on average, schools improved in 

School Quality between the 2006-07 and 2007-08 school years; and schools identified as failing 

in 2006-07 showed larger improvement than those not. 

 Because the model has the Initial Quality intercept constrained equal to zero in both 

groups, the estimates of growth are point estimate comparisons for changes in School Quality for 

	

Figure 8.4. Comparisons of estimated densities for imputed initial school quality.  

Note:	The	scores	are	imputed	for	treatment	and	control	groups,	using	the	ML-boot	model.	
The	left	panel	shows	the	densities	for	all	schools,	whereas	the	right	panel	shows	trace	lines	
for	each	matched	sample.	
 

−3 −2 −1 0 1 2 3

All Schools

Estimated Initial School Quality

D
en

si
ty

Control
Treatment

−3 −2 −1 0 1 2 3

Matched Schools

Estimated Initial School Quality

D
en

si
ty

Control
Treatment



	66	

a school with an estimated Initial School Quality value of zero, analogous to controlling for 

Initial School Quality in a regression context. It is important, then, to ensure there is sufficient 

coverage at this point for both groups. Figure	8.4 shows the distributions for the imputed values 

of the Initial School Quality, based on ML-boot. Although the distributions are not identical, 

there is significant overlap at all points, with the maximum of each distribution near zero for 

both control and treatment groups. Compared to the estimated density of all control schools, the 

estimated densities for the matched control schools in each bootstrapped propensity score model 

appear to overlap more with that of the treatment schools. Considering the simulation results—

where mis-specifying the propensity score model by omitting the influence of the initial latent 

factor still resulted in nominal recovery rates of treatment effect estimates—these provide 

support for the interpretation of the difference in the Growth intercepts as a causal treatment 

effect. 

8.3.1. Comparison of Resulting School Quality Grades 

 Table	8.7 shows the distribution of School Quality Grades, compared between those 

given by the original NYCPR and those derived using ML-boot. Fewer than half !"#
!"#

= 41.8%  

of schools are assigned the same grade, and quite a few !!"
!"#

= 11.9%  are assigned grades two 

Table 8.7 
Comparison of grades from NYCPR and ML-boot. 

    ML-boot 
    A B C D F 
  A 195 142 24 1 0 

 
B 140 164 72 22 5 

NYCPR C 33 64 37 12 3 

 
D 2 15 12 10 8 

  F 2 8 1 1 2 
Note: Kendall’s rank correlation coefficient 𝑟! = 0.319, 𝑝 < 0.001 
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or more letter grades apart. The Kendall’s rank coefficient 𝑟! = 0.319,𝑝 < 0.001  suggests 

that, while related, the two grading systems are not interchangeable. 

One of the fundamental issues at hand is that there does not exist a pre-defined theory of 

what constitutes School Quality. To examine external validity, therefore, I compare these grades 

with two other scales designed to accomplish a similar purpose in identifying schools in need of 

improvement: the Federal Accountability Status and the New York City Quality Review Score. 

The Federal Accountability Status of a school is determined by its achievement of Annual Yearly 

Progress (AYP), the benchmark as defined under the No Child Left Behind Act. A school that 

falls short of its designated target in successive years moves down through the levels, from being 

identified as Needs Improvement, to mandated Corrective Action, until finally it is put in the 

process of Restructuring. Thus, those schools that continually do not achieve their targets 

progressively face harsher and harsher sanctions.  

Table 8.8 
Comparison with Federal Accountability ratings 

 Federal 
Accountability  

    NYCPR     
A B C D F 

Good Standing 263 265 100 21 12 
Needs Improvement 50 47 16 6 0 
Corrective Action 11 25 14 6 0 
Restructuring 38 66 19 14 2 

      Federal 
Accountability 

    ML-boot     
A B C D F 

Good Standing 327 240 70 16 8 
Needs Improvement 20 64 24 7 4 
Corrective Action 18 26 6 5 1 
Restructuring 7 63 46 18 5 

Note: Kendall’s rank correlation coefficients for NYCPR (𝑟! = 0.087, 𝑝 = 0.002) and ML-boot 
𝑟! = 0.340, 𝑝 < 0.001 . 
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Table	8.8 compares the two sets of grades with the Federal Accountability Status for 

each school. Neither of the two grades is strongly correlated with the Federal Accountability 

Status. But it is notable to compare the schools that are assigned As, yet have been designated for 

Restructuring under the Federal Accountability system. To reach this point, a school has missed 

AYP for at least 5 years. Of the schools in Restructuring, the NYCPR rates 38 as As—10% of all 

As. This highlights the lack of agreement the NYCPR has with the Federal Accountability 

System. Although the two scores are significantly correlated, the Kendall’s rank correlation 

coefficient is practically-speaking negligible (𝑟! = 0.087,𝑝 = 0.002). By contrast, the ML-

bootstrap-derived grades assign only 7 of these schools As, or less than 2%. The ML-bootstrap 

grades are much more strongly associated with the Federal Accountability scores 𝑟! =

0.340,𝑝 < 0.001 .  

 

Table 8.9 
Comparison with School Quality Review scores 

      NYCPR     
 School Quality score A B C D F 
Outstanding 13 2 0 0 0 
Well Developed 268 249 83 15 7 
Proficient 80 146 58 32 6 
Underdeveloped with Proficient Features 1 6 6 0 1 
Underdeveloped 0 0 1 0 0 
            

 
ML-boot 

School Quality score A B C D F 
Outstanding 11 3 1 0 0 
Well Developed 291 250 63 14 4 
Proficient 69 131 80 28 14 
Underdeveloped with Proficient Features 1 7 2 4 0 
Underdeveloped 0 1 0 0 0 

Note: Kendall’s rank correlation coefficients for NYCPR (𝑟! = 0.225, 𝑝 < 0.001) and ML-boot 
(𝑟! = 0.308, 𝑝 < 0.001). 
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 A similar but less-pronounced pattern occurs with the NYC Quality Review ratings 

(Table	8.9). These ratings given by expert reviewers after a two-day in-person visit that included 

classroom observations and interviews with students, staff, and parents. They are often discussed 

as a qualitative counterbalance to the standardized-test-heavy focus of the Federal Accountability 

System. Both grading systems showed significant correlations with the Quality Review ratings, 

with the NYCPR (𝑟! = 0.225,𝑝 < 0.001) slightly lower than the ML-boot (𝑟! = 0.308,𝑝 <

0.001).  

Figure	8.5 compares the distributions across the four demographics, between passing and 

failing schools according to the new grades based on the ML-bootstrap latent factor score 

estimates. In comparison with Figure	7.2, which shows the same plots based on NYCPR scores, 

the ML-bootstrap grades show larger differences between the distributions. In particular, the 

schools labeled failing here now tend to be have higher concentrations of students who receive 

Special Education services, who are Black or Hispanic, or who count toward Title I qualification. 

The equity implications of this will be discussed in the next section. 

 

	

Figure 8.5. Comparisons of demographic distributions by ML-bootstrap estimates 
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Chapter 9.   Summary and Further Directions 

9.1. Summary 

 This study examined the impact of being rated a “failing” school, here defined as 

receiving a “D” or “F” on the New York City Progress Report (NYCPR) in the 2006-07 school 

year, on school quality. There are three primary research questions investigated here: 

 

Q1: How accurate are characterizations of school quality? 

Q2: How effective are school rating systems at improving school quality?  

Q3: Are there demographic differences in school quality? 

 

To this end, a methodology for incorporating propensity score matching within a second-order 

growth model (PS-SGM) is proposed. Simulations indicate that this methodology exhibits 

improved coverage rates and reduced bias across a range of treatment effect sizes. The results of 

the PS-SGM estimated under a maximum likelihood regime are discussed here. 

 This study compares the School Quality grades under the original NYCPR formulation 

with those resulting from a PS-SGM. In calculating School Quality grades, the NYCPR used 15 

measurements, grouped into three subdomains: School Environment, Student Performance, and 

Student Progress. Of these three, Student Progress was by far the most central, accounting for 

60% of the final score; Student Performance coming in second, at 25%; and School Environment 

comprising the final 15%. These weights reflect the best judgment of stakeholders as the 

Progress Report system was developed over years and in response to various stakeholder 

feedback. It is an aspirational determination of what, collectively, stakeholders would like a 



	71	

quality school to be: a school that takes students and helps them learn as much as possible, with a 

special focus on incoming students with the lowest starting performance. 

 However, this definition of presumes School Quality to be an emergent construct—

completely determined by and only by the included measures—which is an untenable 

assumption. Switching to a latent construct perspective is more theoretically defensible (Hancock 

et al., 2001). The proposed PS-SGM does just that, and the results give a much different picture 

of School Quality. Here we see Student Progress as marginally associated with School Quality 

(8%). Instead, School Environment is the most associated with School Quality (57%), followed 

by Student Performance (35%). Compared with two other indicators of school quality, the PS-

SGM scores show improved consistency with the Federal Accountability scores 

𝑟! = 0.340,𝑝 < 0.001  and the New York City Quality Review (𝑟! = 0.308,𝑝 < 0.001). The 

NYCPR scores exhibit lower consistency with the Federal Accountability scores 𝑟! =

0.087,𝑝 = 0.002  and the New York City Quality Review 𝑟! = 0.225,𝑝 < 0.001 . 

Of particular note is the low correlation between the NYCPR scores and the Federal 

Accountability scores. One possible explanation for this is hinted at by the pattern of loadings 

suggested by the PS-SGM. The near-zero loading of School Progress on the overall School 

Quality suggests that a unidimensional definition of School Quality may be inappropriate. This is 

also reflected in the model fit. The factor structure that reflected the original NYCPR design 

exhibits extremely poor model fit (RMSEA = 0.27; TLI = 0.38). With the addition of method 

factors and relaxing of strict factor invariance assumptions, the model fit improves but continues 

to be poor (RMSEA = 0.20; TLI = 0.65). The large percentage of Heywood or ultra-Heywood 

cases in ML-boot results—much larger than would be expected based on simulation results—
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adds to the evidence that a unidimensional model of School Quality is a structural 

misspecification (Kolenikov & Bollen, 2012). 

These results support the argument that identifying failing schools by a single summary 

statistic is inappropriate. The ability to educate students performing at grade-level and the ability 

to educate students performing below grade-level may be separate dimensions. The stated goal of 

the NYCPR in weighting Student Progress so heavily was to “reflect each school’s contribution 

to student academic progress, no matter where each child begins his or her journey to proficiency 

and beyond” (p. 2, NYCDOE). Toward this end, Student Progress was described as a way to 

value schools in which the incoming student body was below grade-level but by the end of the 

year had made significant gains. As previously discussed, the results here may indicate that this 

concept of a quality school may be a separate, orthogonal factor from a definition of School 

Quality that relies on current-year student performance. In fact, capturing this alternate 

dimension of quality may be exactly the aim of the NYCPR grades. By collapsing all the 

indicators into a unidimensional metric, however, this nuance is lost from both the measurement 

perspective and from the public accountability perspective. 

 This is of particular importance in the current regulatory environment. As Darling-

Hammond notes,  

“[t]he law requires states to develop processes for identifying and supporting the lowest 

performing schools (the ‘bottom 5 percent’ of Title I schools) and those with sustained 

equity gaps. Although ESSA states that the set of academic measures must have greater 

weight than other non-academic measures in making the determination, this does not 

mean that a unidimensional index or grading scheme must be used as the foundation of 

the accountability system” (Darling-hammond et al., 2016, p. 24).  
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The authors continue on to offer two potential approaches to make such determinations: a 

weighted measures approach or the use of decision rules. If School Quality is truly a multi-

dimensional construct, this would be a strong argument in favor of the use of decision rules. 

Even the best-designed weighted measures approach cannot accurately reflect the complexity of 

school quality. 

  The labeling of schools has important consequences. The results here estimate that 

schools identified for intervention by the NYCPR showed an additional increase in growth of 

0.167 standard units, based on ML estimates. This is 33% of the size of the growth experienced 

by the control group. This suggests that, at least in this first year of the program, the receipt of a 

D or F was associated with a marked increase in growth. These impact sizes are consistent with 

other findings on the impact of failing grades on standardized test scores in the same data 

(Rockoff & Turner, 2010; Winters & Cowen, 2012).  

The mechanism by which this change occurred is an avenue for further investigation, 

although it is likely it is “market accountability” (Murray & Howe, 2017) through the negative 

publicity and stigma associated with the failing grades, as specific consequences had not yet 

been attached to these first year scores (Figlio & Winicki, 2005; Rouse et al., 2013). However, 

principals at schools receiving a D or F were required to create written action plans for 

improvement, which also could have had a direct impact. 

 The lack of an established operational definition of School Quality makes the task of 

examining bias challenging. For example, a lack of differences across demographics could be 

due to either a true equality of outcomes; or a mis-specification of school quality that obscures 

differences in reality. Without a theoretical framework, it is difficult to know which is more 

applicable to a given situation. The approach taken here is to apply a methodological solution—
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propensity score matching—that theoretically removes the confounding influence of covariates, 

by selecting comparable samples for comparison. The distributions of demographics in the 

matched control and treatment groups suggest that the matching process has accomplished this 

task, by averaging over multiple samples based on separate estimates of the propensity score. 

Thus, the estimates based on this matching process are, in principle, controlled for the influence 

of these demographic contexts. 

 The demographic patterns of the resultant grades, then, suggest a more dramatic 

difference in School Quality than the original NYCPR grades. This can be seen in the 

demographic characteristics of the median school receiving a passing grade versus a failing 

grade. For the original NYCPR grades, the differences between the demographic distributions for 

schools receiving passing grades versus those receiving failing grades are statistically significant 

at the 𝛼 = 0.05 level for Special Education students (median = 16.4% for passing schools; 

median = 18.7% for failing schools); for Black or Hispanic students (median = 89.9% for passing 

schools; 96.6% for failing schools); and for Title I status (median = 74.4% for passing schools; 

81.1% for failing schools); but not for English Language Learners (median = 11.8% for passing 

schools; 11.1% for failing schools). The same pattern of statistically significant differences exists 

for the demographics under the PS-SGM grades. However, the differences between the median 

schools grow wider: for Special Education (16.2% for passing vs. 21.8% for failing); for Black 

or Hispanic (88.6% vs. 97.7%); and for Title I (73.3% vs. 85.8%); and for English Language 

Learners (11.4% vs. 14.0%). This suggests that the “educational gaps” are wider along these 

dimensions than is measured by the original NYCPR grades; and that the mis-specification of 

weights under the NYCPR may be obscuring the actual differences in school quality for students 

of different demographics. 
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9.2. Limitations 

Caution should be used in over-interpreting these results. The model here is knowingly 

mis-specified, as the impact of Initial Quality on the treatment assignment (a failing grade) is not 

included in the propensity score model. However, the imputed Initial Quality distributions 

between the treatment and control groups were comparable (Figure	8.4). The simulation results 

also suggest that this mis-specification of the treatment assignment mechanism may not impact 

the accuracy of the treatment effect estimates. In order to explicitly include this dependence in 

the model, the estimation of the measurement model would have to be separated between years, 

in order to first impute the estimated factor scores prior to the propensity scores. This would 

impact the standard error estimates in unpredictable ways, potentially undermining any 

inferences based on these standard error estimates. In light of this, the trade-off was to allow the 

propensity model to be knowingly mis-specified, relying on the simulation results to assume that 

the treatment effect estimates are not dramatically impacted.  

Indeed, the effect size estimates are consistent with those from previous studies that used 

regression discontinuity approaches. This study applies propensity scores to accomplish the same 

purpose as the regression discontinuity approach in these previous studies: to create similar 

groups for comparison to estimate causal effects. The consistency of the effect size estimates 

across multiple methodologies provides further evidence that there is in fact a positive impact on 

student outcomes due to school accountability systems.   

Another source of concern regarding the reliability of the model are the extremely poor 

model fit statistics. However, the model fit statistics also suggest these results are an 
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improvement over the original formulation which is consistent with comparisons with the 

Federal Accountability ratings and Quality Review scores. 

These results should not be taken as definitive evidence on the efficacy of school 

accountability measures. Instead, the primary message here is that adopting a latent factor 

perspective of School Quality can provide insight into the validity of these systems that is 

currently lacking. Using the statistical tools here can provide insight into the development of 

improved measures of School Quality. 

The whole-sale adoption of a latent factor approach is not required for these findings to 

be useful in the development of school accountability systems. Rather, these methodologies 

provide insight into the nature of the underlying structures of School Quality. These insights can 

insert a different perspective into the conversation as a counterpoint to other sources of expert 

judgment. For example, the extremely low factor loadings for the Student Progress measures 

suggest that these indicators are unreliable measures of School Quality. Having highly unreliable 

indicators account for over half of a school’s total rating, when these ratings have such high-

stakes consequences, results in a set of ratings that may themselves be unreliable. If the goal is to 

reward schools that make large gains with their students, then this provides strong evidence that 

heavily weighting Student Progress metrics in a unidimensional measure of School Quality is not 

a reliable way to accomplish that goal. 

 There were also some constraints in the design and implementation of this study that 

should also be kept in mind. Although the methodology proposed here is flexible enough to 

incorporate many time points, the data analyzed were limited to the 2006-07 and 2007-08 school 

years for several reasons. One of the primary research questions is to investigate the impact of 

the school rating systems on school quality, and in particular the impact of receiving a poor 
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rating. By limiting the investigation to two years, the interactivity of effects is minimized; for 

example, if the range had been expanded to include a third year, receiving a low grade the 

second year would be a separate treatment, making the effects on the third year a mixture of the 

treatment in the first year and the treatment in the second year. It is not reasonable to assume that 

these treatments are merely linearly additive and independent. Thus, the complexity of the 

modeling task would increase more than exponentially with additional years. 

 Beyond the increase in modeling complexity, expanding the time window also creates 

challenges for causal inference. The underlying assumption of SUTVA, which states that the 

treatment of one unit does not affect the outcome of another unit, becomes untenable. Schools 

are not receiving their grades in isolation, but rather as part of a larger educational ecosystem. 

One of the consequences in publishing and disseminating school grades is that it leads to a 

migration of students from low-scoring schools to higher-scoring schools. This migration would 

suggest that a school’s student population is directly impacted by not only its own grade, but the 

grade of other schools. By limiting this analysis to two years, this threat is minimized because 

the grades are published in the middle of the next school year, too late for most students to 

transfer schools. 

9.3. Further Research 

Since the initiation of this research project, the context in New York City has changed. 

With a change in mayoral administration, the New York City Department of Education has 

undergone a change in leadership. The unidimensional School Progress Report has been replaced 

with an informational dashboard, reporting a variety of metrics in several subdomains, without 

the calculation of a single School Quality rating. This transition highlights the importance of 

further investigation into the multi-dimensional nature of School Quality. 
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The type of indicators used in measuring School Quality here are limited to those used in 

the original NYCPR, in order to provide a more direct comparison with an existing model. 

However, as the current legislative regime requires states to include a larger array of indicators, 

latent factor methodologies—as opposed to the emergent construct perspective most often 

currently used—can be an invaluable in designing school accountability models with validity in 

mind.  

Adopting a latent factor perspective provides a way to investigate how an increasingly 

complex set of indicators are interrelated and correspond to our ideas of what constitutes a good 

school. Although this study aimed to estimate the impact of an intervention in comparison to a 

pre-existent system, the results lay bare the insufficiency of a unidimensional definition for 

School Quality. There is need for more research into the basic factor structure of School Quality. 

The methodologies explored here can easily be expanded to investigate the potential multi-

dimensional nature of School Quality. A second-order latent growth model is especially 

appropriate for this, as not only can quality be modeled across years, but also assumptions 

regarding the static or evolving character of School Quality could be tested. 

 In addition, the incorporation of student-level data and explicit modeling of individual 

student growth over time in a multi-level model would obviate the need to rely on aggregate 

measures derived from the same sources. Current systems all include student current-year 

performance and student growth as two separate sets of indicators, which are aggregated at the 

school level. If instead the data were modeled at the student level, changes in performance and 

growth could be modeled as a single quadratic latent factor growth model. 

 On the technical side, there are also several avenues for further development. Other 

propensity score methodologies—such as stratification or weighting—could also be applied, 
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especially to estimate treatment effects at different points. Also, as the simulation here only 

explored a limited set of simulation parameters, the performance of such models still needs be 

explored with a larger array of covariates, different misspecifications of propensity score models, 

direct covariate effects on outcomes, or varying sample sizes for example. 

 There are also avenues for investigation in the areas of Bayesian prior setting. One of the 

advantages of a Bayesian approach is the ability to incorporate expert knowledge through the 

appropriate prior definitions. In the absence of strong expert knowledge, however, often default 

non-informative priors are used. The impact of different non-informative prior specifications on 

the resulting model parameter estimates and model convergence is an important area of 

exploration. 

 Another area of development that could be particularly useful in the policy context is the 

development of robust estimate errors for school factor scores. Within the Bayesian regime, 

these standard errors would be a natural result of the posterior distribution. However, as was the 

case in this study, computational resources may be a limiting factor in utilizing this approach for 

Bayesian factor scores. 

 The methodology proposed here is also broadly applicable to a variety of other contexts. 

The PS-SGM model can be applied to any situation where there is an intervention that aims to 

effect change in an unobservable latent construct. These types of situations arise often in 

educational or psychological contexts. From individual student learning or teacher quality to 

neuroticism or self-esteem, many educational or psychological theories are built on models for 

constructs that cannot be directly observed. This approach then provides a powerful tool to 

investigate the efficacy of a broad array of interventions. 
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