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Abstract 

Seismic Response Assessment of Thin Boundary Elements of Special Concrete Shear Walls 

 

by 

Carlos Alberto Arteta 

Doctor of Philosophy 

in 

Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Jack P. Moehle, Chair 

 

Damage observed near the base of shear walls of reinforced concrete buildings after the Chile 

(2010) and New Zealand (2011) earthquakes are signs of shortcomings in the design of walls that 

need to be addressed. This investigation presents results of an experimental test program on ten 

reinforced concrete rectangular prisms representative of the flexural compression zone of flanged 

shear walls. The tested elements have transverse reinforcement detailing that matches or exceeds 

modern code requirements for special boundary elements. The main test variables were the 

amount and spacing (both vertical and horizontal) of the hoop and crosstie reinforcement. The 

elements were subjected to monotonically increasing axial compression until failure. Effects of 

strain gradient (both through the wall length and along the wall height) and effects of wall shear 

are not represented in the present tests. Nonetheless, the axial compression tests provide insights 

into the behavioral characteristics of actual wall boundaries. The global force shortening 

behavior of the specimens was commanded by a thin core which integrity was heavily 

compromised due to cover spalling, rebar buckling and out-of-plane instability. Measured load-

displacement relations did not exhibit an acceptable ductile behavior suggesting that current 

building code requirements for special boundary elements do not necessarily achieve effective 

confinement to be protected against brittle axial failure. Enhanced detailing (increasing the 

volumetric ratio of confinement reinforcement and decreasing its horizontal spacing) improved 

behavior but did not produce ductile response in all cases. Reported damage extension 

concentrated over length corresponding to two-and-half times the thickness of the specimens. 

Compressive strain limits for stable behavior are proposed to be function of the gage length over 

which they are measured.  

Bar buckling reduced the load carrying capacity of the reinforced concrete prisms 

because of the strength loss suffered by the longitudinal reinforcement, but also because it 

prevented the effective confinement of the concrete core. An experimental campaign comprising 

48 analytical specimens allowed studying the relationship between tie spacing and stiffness, and 

the diameter of the longitudinal bars, that influenced their response when undergoing lateral 

instability (inelastic buckling). The behavior of tied bars undergoing lateral instability in the 

inelastic range is highly influenced by the relative restrictive tie spacing over which bar buckling 

is forced into, and the relative stiffness of the transverse ties and the longitudinal bar. The 
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experiments assume a rigid contact between the bar and the tie, therefore hook opening is not 

modeled. For the range of tie stiffness and bar geometries tested, the results indicate that the tie 

spacing has to be smaller than 4.5 times the bar diameter to prevent bar buckling over a large 

range of plastic axial strains. 

Empirical core stress strain curves, accounting for bar buckling, are reported for point 

wise strain measurements, as well as for average axial strains recorded within the damaged 

region. The results show that usable strain limits, to guarantee a stable core response in pure 

compression, are between 1.1 and 2.0%. Average empirical core stress strain curves are proposed 

for modeling purposes. Implication of the compressive strain limits observed are evaluated in a 

hazard-consistent manner by means of the Conditional Scenario Spectra (CSS). The CSS is a set 

of realistic earthquake spectra with assigned rates of occurrence that reproduce the hazard at a 

site. Structural responses are obtained by means of numerical analysis of a multistory shear wall 

under the seismic demand of more than eight-hundred ground motions consistent with the CSS. 

The case study allows estimating risk curves to evaluate the likelihood of exceeding certain 

threshold compressive strains in the boundary of the cross section. The single case numerical 

model showed that the limited strain capacity of these elements is only likely to negatively 

impact the behavior of the wall system at risk levels beyond the code-based expectations of good 

behavior. 
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Introduction 

 

Reinforced concrete shear walls are widely used in earthquake-resistant building construction 

because, in addition to being economical, they are capable of providing required stiffness, 

strength, and ductility capacity to protect building systems against strong earthquake shaking. 

Where earthquake shaking will result in inelastic response including compressive yielding of the 

boundary elements of the wall, special boundary elements are required. Such boundary elements 

generally have closely spaced transverse reinforcement to confine the core concrete and provide 

lateral support for longitudinal reinforcement. The intent is to provide a capability for stable 

compressive yielding. Building codes around the world prescribe reinforcing steel detailing 

requirements with the purpose of enabling the boundary element to achieve the anticipated 

performance. As wall boundary element geometries have evolved over past decades, however, 

questions have arisen about the effectiveness of some of these building codes to achieve the 

desired performance. Resent field and laboratory experiences have demonstrated that certain wall 

geometries are prone to failure of their flexural compression zone at intermediate level of seismic 

shaking. This dissertation presents laboratory test results, along with mathematical models, and a 

seismic hazard-consistent methodology to evaluate the response in compression of boundary 

elements of code-compliant multistory thin walls.  

 

Scope 

This research discusses the subject of limited compressive strain capacity and damage 

localization of thin reinforced concrete boundary elements, with the aim of having a better 

understanding of it causes and implications. The discussion is opened with recent field 

observations of damaged wall boundaries of multistory reinforced concrete building, and ends 

with a risk-based assessment of their expected behavior. The discussion is fed by a 

comprehensive experimental campaign, complemented with structural modeling. The intent is to 

provide the engineering community with a set of tools to analyze and design special boundary 

elements of thin wall with updated information. 

 

Objectives 

The general objective of this investigation is to assess the effectiveness of different transverse 

reinforcement layouts to achieve ductile behavior of relatively thin wall boundaries under pure 

compression. Three specific objectives are: (i) to evaluate the adequacy of ACI 318 provisions 

for special boundary elements; (ii) to estimate confined concrete empirical constitutive relations 

consistent with the response of modern thin wall boundaries; and (iii) to investigate the 

implications of the ductility capacity of special boundary elements in the response of multistory 

shear walls. 
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Organization 

The dissertation comprises five chapters describing recent field and laboratory observations of 

the response of thin reinforced concrete walls subjected to seismic shaking. It presents new 

laboratory results on the response of thin reinforced concrete prisms under pure compression, 

and introduces a methodology to assess the implications of the experimental findings in a hazard-

consistent manner.  

Chapter 1 provides observed evidence of structural wall damage during a recent 

earthquake, along with a contextualization on the mechanics describing wall deformations at the 

local and at the critical section levels. It also presents a literature review on reported ultimate 

strains of reinforced concrete prism in compression, recent studies on thin walls under lateral 

loading, as well as cyclic response of rectangular reinforced concrete prisms with intermediate 

and special detailing. 

Chapter 2 presents a laboratory experimental campaign on ten reinforced concrete 

prisms. The specimens can be considered to approximately represent the extreme flexural 

compression zone of the stem of a flanged wall, having transverse reinforcement detailing that 

matches or exceeds current code requirements for special boundary elements. The specimens 

were subjected to monotonically increasing axial compression until failure. The axial 

compression tests provide insights into the behavioral characteristics of actual wall boundaries. 

Usable compressive strain limits for the type of elements tested are proposed as a function of 

different gage lengths over which the strains are measured. 

Chapter 3 provides results from analytical experiments evaluating the inelastic buckling 

of bars restrained by evenly spaced ties. The experiment, comprising 48 analytical specimens 

allows the development of a simple empirical model that offers the complete average axial 

stress-strain curve of tied longitudinal bars undergoing lateral instability (buckling), in terms of a 

few input parameters such as the tie spacing, and the diameter of the longitudinal and transverse 

bars.  

Chapter 4 presents the empirical stress-strain relationships of the confined concrete of 

the specimens tested, including bar buckling. Average monotonic confined concrete stress-strain 

curves, representative of the materials tested are proposed for various gage lengths. 

Chapter 5 presents a methodology to assess the experimental results of the previous 

chapters with a hazard-consistent basis. The Conditional Scenario Spectra concept is introduced 

to estimate the risk of structural responses. A numerical evaluation of a reinforced concrete wall 

model, with constitutive materials and expected plastic zone geometry as those observed in the 

field, helps understand the implication of the results. 

Finally, Chapter 6 summarizes the investigation and provides additional concluding 

remarks. 

 

Research Significance 

The tests reported here comprise full-scale reinforced concrete rectangular prism in compression 

which are scarce in the literature. They significantly increase the number of available data points 

for large cross section aspect ratio. The test results provide insight on the expected spread of the 

plasticity in rectangular prisms with large height-to-thickness ratio. Instrumentation of the 
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specimens allowed estimating the level of strain at which longitudinal bar buckling is triggered; 

and the loading and relaxation patterns along the specimens length. 
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Chapter 1 - Field Observations and 

Motivation 

 

Damage observed near the base of shear walls of reinforced concrete buildings after the Chile 

(2010) and New Zealand (2011) earthquakes are signs of shortcomings in the design of walls that 

need to be addressed (Figure 1.1). Of particular interest is the damage at the edges (boundary 

elements) of the cross sections, which is characterized by longitudinal bar buckling, hoops 

opening, and large volumetric reduction of the concrete cores (Sritharan et al., 2014; Wallace et 

al., 2012). The appearance of the crushed boundaries and the observation that the damage 

extended over short distances along the wall height suggest that these failures were relatively 

brittle. Wallace et al. (2012) report the damage height to be one to three times the wall thickness 

for buildings damaged during the Chile 2010 earthquake. The occurrence of brittle failure can be 

explained, in part, by the sparse and poorly detailed transverse reinforcement in the buildings. 

An open question that still remains is whether thin walls with improved boundary element 

detailing would behave in a more ductile manner. 

 
Figure 1.1 - Observed damage in multistory reinforced concrete shear wall buildings during the 2010 Maule 

Earthquake in Chile [center: 10-story building in Viña del Mar (photo by Patricio Bonelli); right: 19-story building 

in Santiago (left and right photos by Jack Moehle)] 

 

To answer this question, a series of laboratory tests was carried out and reported here. 

The laboratory test program comprised ten prismatic reinforced concrete specimens that were 

subjected to monotonically increasing axial compression until failure. The test specimens can be 

considered to approximately represent the extreme flexural compression zone of the stem of a 

flanged wall (for example, a T-, L- or U-shaped wall). That region of a structural wall is 

subjected to high axial compressive strains due to combined axial force and moment. Effects of 

strain gradient (both through the wall length and along the wall height) and effects of wall shear 

are not represented by the tests. Nonetheless, the axial compression tests provide insights into the 

behavioral characteristics of actual wall boundaries. The general objective of the experimental 

campaign was to assess the effectiveness of different transverse reinforcement layouts to achieve 

ductile behavior of relatively thin wall boundaries under pure compression. Specific objectives 

were: (i) to evaluate the adequacy of ACI 318 (2011, 2014) provisions for special boundary 

localization of damage

over short heigths
bar buckling

damage extension toward the

interior of the wall
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elements (SBE); (ii) to evaluate the effect of crosstie spacing (both vertical and horizontal); (iii) 

to assess the relative effectiveness of 135-degree seismic hooks versus 90-degree standard hooks 

as the method for anchoring crossties; and (iv) to estimate the spread of plastic deformation in 

slender rectangular prisms under compressive loading. The effects of these variations are 

reported, with an aim of better understanding the detailing requirements necessary to achieve 

ductile response.  

 

1.1 Problem Contextualization 

Figure 1.2 shows a plastic hinge model of a T-shaped reinforced concrete shear wall cantilever. 

The kinematics of the simple model assumes all the roof lateral displacement is due to plastic 

rotation at the plastic hinge, neglecting any elastic contribution outside the plastic hinge. In this 

manner, demand parameters at a local level, such as the curvature at the base cross section, can 

be related to global demand parameters such as the roof displacement with relatively simple 

expressions. The tip displacement of the wall, pivoting at the base, is given by 

𝛿𝑢 = 𝜃𝑝,𝑢𝐻𝑤 (1.1) 

where 𝜃𝑝,𝑢 is the plastic rotation at the hinge and 𝐻𝑤 is the height of the wall. Assuming a 

uniform curvature distribution along the expected plastic hinge length (𝐿𝑤/2), the plastic 

rotation in terms of the curvature ∅𝑢 of the cross section and the maximum fiber compressive 

strain 휀𝑐𝑢 is 

𝜃𝑝,𝑢ℎ = ∅𝑢 (
𝐿𝑤
2
) = (

휀𝑐𝑢
𝑐
) (
𝐿𝑤
2
) (1.2) 

where 𝐿𝑤 is the length of the wall and 𝑐 is the neutral axis depth from the maximum fiber in 

compression. 

 
Figure 1.2 - Plastic hinge model relating global to local demand parameters on test specimens. 

 

Combining Equations (1.1) and (1.2) allows estimating the demand imposed at the cross 

section level by a given roof drift ratio 𝛿𝑢/𝐻𝑤 as 

∅𝑢 = (
𝛿𝑢
𝐻𝑤
) (
2

𝐿𝑤
) (1.3) 
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Figure 1.3a shows moment-curvature relations of the wall cross section at its base. Two 

curves shown are for moments either compressing the flange or the stem of the wall. Moment 

capacities for the direction compressing the narrow stem are larger because of the large area of 

steel yielding in the flange. This direction of loading produces a relatively deep neutral axis 

because the thin compression zone requires extending further into the wall to equilibrate the 

large tensile force in the longitudinal steel of the flange. The deeper neutral axis results in 

relatively large concrete compressive strains for a given curvature, such that the curvature 

capacity is exhausted at relatively lower values. The strain profile shown in Figure 1.3b depicts 

the axial strain demand on the boundary element of the wall for a relatively low axial load 

(0.1𝐴𝑔𝑓′𝑐), where 𝐴𝑔 is the gross cross section area of the wall and 𝑓′𝑐 is the unconfined 

concrete strength), and for a roof drift ratio of 1.5% (a value that might be expected under strong 

earthquake ground motion) in the direction that compresses the stem. Even though a gradient of 

strains is apparent, for this example, the average strain demand on the boundary element is 

higher than the crushing strain of the concrete, enough as to require concrete confinement to 

ensure a ductile behavior of the concrete in compression. This strain demand could become 

higher if the axial load demand on the wall is increased (which is not uncommon due to 

architectural planning and construction practices in many countries around the world). 

 
Figure 1.3 - Moment-curvature relations of the cross section and corresponding strain profile for roof drift ratio of 

1.5% and flange in tension. 

 

In ACI-318-11, one of two provisions defining the need for SBE follows a displacement-

based approach stating that the compression zone of special structural walls requires SBE 

detailing if  
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derived by combining Equations (1.1) and (1.2), and by selecting a limiting compressive strain 

cu equal to 0.3% (with additional number rounding). 

Figure 1.4a is adapted from (Moehle et al., 2011) and presents approximate values of the 

neutral axis depth for rectangular cantilever walls, accounting for different levels of ultimate 

axial load. Walls with C-, L-, or T-shapes under lateral demand that compresses the stem can be 

represented by the positive values of the horizontal axis in this figure. Values to the right hand 

side of the figure indicate that the longitudinal reinforcement ratio of the compression zone 

(A’s/(Lwb)) is smaller than the opposite site (the flange) in tension. The neutral axis depth grows 

with increments in the tension steel and with increasing axial load. This is consistent with the 

description above regarding the correlation of high axial loads with larger expected uniaxial 

deformation of the extreme fiber in compression. Given the relatively shallow slopes of the 

curves presented, the neutral axis depth scales more with small variations of axial load than with 

large differences between the tension and compression steel ratios. The relations in Figure 1.4b 

are estimated by combining the curves in Figure 1.4a with the expression for c/Lw in Equation 

(1.4). These are approximate relations between axial load, provided longitudinal steel 

reinforcement area, and minimum roof drift ratios that trigger the requirement for SBE detailing 

at the edges of the walls. High values of axial load (for example Pu = 0.3Agfc’), make the drift 

demand that triggers the SBE requisite invariant to the longitudinal reinforcement provided (flat 

bottom curve). This is because of the large pre-compression under pure axial load, prior to any 

additional flexural-compression demand associated to lateral shaking. It is also apparent that 

under the same level of axial load demand, C-,L-, or T-shaped walls would require SBE detailing 

under smaller roof drift ratios, as compared to rectangular symmetric cross sections (for 

example, As-A’s = 0 ). 

 
Figure 1.4 - Approximate relationships between axial load, steel reinforcement at the boundaries, neutral axis depth 

of the compression zone, and roof drift of cantilever walls. (a) approximate neutral axis depth (adapted from 

(Moehle et al., 2011)); (b) approximate roof drift values that trigger SBE detailing requirements. Note: the values in 

the chart were estimated for f’c = 4 ksi [28MPa] and fy = 60 ksi [420MPa]. 

 

From the latter discussions it is concluded that a good design practice accounts for all the 

tension steel in the flange of wall with composite cross section. This is specifically specified in 

ACI 318-14§18.10.5 which contains seismic provisions for the design of special structural walls. 

The examples described above are idealizations of some common cases in which the geometric 
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characteristic of the cross section, combined with intermediate flexural and axial demand, results 

in exacerbated compressive demand at the edges of a reinforced concrete shear wall. The 

research reported here is designed to evaluate weather thin wall boundary elements are able to 

perform in a ductile manner under pure compressive loads, to ensure a global stable response of 

special reinforced concrete shear walls. 

 

1.2 Reported Core Compressive Strains in the Literature 

Laboratory tests of full-scale rectangular prisms in compression are scarce in the literature. 

Reported experiments of reinforced concrete prisms in compression (Mander et al., 1988a; 

Moehle & Cavanagh, 1985; B. D. Scott et al., 1982; Sheikh & Uzumeri, 1980) mainly focus on 

testing confinement effectiveness of different layouts of longitudinal and transverse 

reinforcement. These experiments provide stress-strain relationships of confined concrete with 

strains estimated over a predefined length where damage is expected. 

While circular and square cross sections are typical for these studies, Mander et al. 

(1988a) report tests on 16 one half-scale rectangular wall units, with cross section 5.9 x 27.6 in. 

[150 x 700 mm] and aspect ratio (height-to-thickness ratio) of 8. These tests represent the 

behavior of the flanges of prototype hollow columns under seismic action; hence, they were 

laterally restrained at the edges to avoid out-of-plane displacement. Some of the tested specimens 

are considered heavily reinforced, with transverse reinforcement ratio1 ranging from 0.68% to 

2.92%, in the through-thickness direction of the cross section (y). The ratio between transverse 

reinforcement spacing (s) and the longitudinal bar diameter (db) was in the range 1.6 ≤ s/db ≤ 6.0. 

Core strains reported in this study are inferred from displacements measured over 15.7 in. [400 

mm] (2.7 times the wall thickness) of length within a predefined damaged zone monitored with 

several displacement transducers. Measuring the shortening of this plastic zone proved to be 

challenging due to the formation of inclined failure planes. For this reason, after the peak load 

was attained, a critical transducer was identified to estimate the strains in the descending branch 

of the force-shortening relationship. This critical transducer had to fully cover the damage zone 

and its measured displacement had to approximately coincide with the stroke displacement. 

Reported ultimate confined core stains (at first hoop fracture) are in the range 2.5% to 5.5%. 

Most compression tests reported for rectangular columns have been configured such that 

all longitudinal bars are engaged by a hoop leg or a crosstie. Moehle and Cavanagh (1985) 

performed compression tests on 8 one-half scale reinforced concrete prisms of square cross 

sections (12 x 12 in. [305 x 305 mm]). Two of these specimens are of particular interest because 

their internal longitudinal bars are only restrained by the flexural stiffness of the perimeter 

hoops. Their response showed poor ductility because they were not able to regain strength after 

the onset of concrete cover spalling. This behavior could be attributed to the combination of 

unsupported longitudinal bars and poorer confinement effectiveness due to use of only a 

perimeter hoop without crossties. For all specimens, s/db was 2.0 and the transverse steel ratio in 

one direction ranged from 0.61 to 1.04%. Analogous to what Vallenas et al. (1977) reported, 

plastic post-peak-load strains were estimated indirectly, and not from direct shortening 

measurements of the testing region. Core strains were inferred from overall shortening 

                                                 
1 For a given direction, the transverse reinforcement ratio is defined as the area of transverse steel divided by the area bounded by 

the core width and the spacing between adjacent layers of transverse reinforcement. 
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measurements, assuming that beyond the strain at peak load, all the plastic displacement is 

accommodated within a damage zone length of 15 in. [381 mm] (1.25 time the depth of the cross 

section). Ultimate strains at first hoop fracture were in the range 4.8 to 9.5%. 

B. D. Scott et al. (1982) reported on the response of 20 full-scale 17.7 x 17.7 in. (450 x 

450 mm) reinforced concrete columns, having two different layouts of longitudinal and 

transverse steel. One had eight longitudinal bars tied by squared perimeter hoops and diamond-

shape internal hoops. The other had had twelve longitudinal bars tied by a squared perimeter 

hoops and octagonal internal hoops. Transverse reinforcement ratio in one direction was between 

0.67 and 1.55% and s/db ranged from 2.7 to 4.9. For these tests, strains were also estimated from 

shortening of a region where damage was constrained by adding additional transverse 

reinforcement outside that region. The gauge length for this strain estimation was 15.7 in. (400 

mm) (approximately equal to the core width) and was monitored by four displacement 

transducers, one on each face. Average concrete strains at first hoop rupture were in the range 

1.7% to 3.8%.  

The post-peak strain softening nature of reinforced concrete prisms in compression 

requires that estimated plastic strains have an associated gage length over which they are 

measured. This is required because the strain distribution is not uniform along the specimen 

length due to damage localization (Markeset & Hillerborg, 1995). The limiting core strains 

reported in the literature are calculated from displacement measurements over a wide range of 

gage lengths. These gage lengths are usually associated to the extent of a monitored area where 

damaged is constrained to occur. For the aforementioned tests, the monitoring length ranged 

between 1 and 2.7 times the smallest cross section dimension. As described before, direct 

measurement of the shortening of this damage zone is challenging because interaction between 

the specimen and the instrumentation is unavoidable. This is especially true close to the most 

heavily deformed portions of the specimen where concrete spalls-off, diagonal cracks form, bar 

bucking and tie opening takes place, and deformation of the rods, where the transducer are 

mounted, may occur. The tests described report maximum core compressive strain capacity at 

first hoop rupture between 1.7 and 9.5%. Values in this wide range are mainly controlled by the 

layout and amount of transverse reinforcement provided, but it should be recognized that they 

are also associated to the specific gage length over which they were measured (Bazant, 1989; 

Shah & Sankar, 1987).  

A similar data set as the one described above is summarized in Figure 1.5. The figure 

shows strain cu at first transverse steel fracture for column under monotonic compressive 

loading, as a function of the minimum confining stress, normalized by the unconfined concrete 

strength (fle,min/f’c). The data was collected by (Moehle, 2014) from tests by (Mander et al., 

1988a; Moehle & Cavanagh, 1985; B. D. Scott et al., 1982) on columns under concentric or 

moderately eccentric loading. As an example, diamond markers correspond to Series B 

containing results of similar cross sections gathered by two different authors (Moehle & 

Cavanagh, 1985; B. D. Scott et al., 1982). For this case, scatter in the domain of ccu is apparent 

over the short range 0.07  fle,min/f’c  0.09, where minimum and maximum cu differ by factor 

3.3.  
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Figure 1.5 - Strain at fracture of transverse steel. (Data source, (Mander et al., 1988a; Moehle & Cavanagh, 1985; 

B. D. Scott et al., 1982), after Moehle (2014)) 

 

An example of inconsistent post peak response for identical specimens is presented in 

Figure 1.6. B. D. Scott et al. (1982) and Mander et al. (1988a) independently reported force 

versus average strain response of the test on Units 6 and 13 performed by (B. D. Scott et al., 

1982). Both authors report strains from displacements measured over the same gauge length. As 

described before, while Mander et al. (1988a) used the critical transducer to ensure 

measurements within the most damage zone, B. D. Scott et al. (1982) reports average strain of 

transducers on the four faces of the columns. Differences in the post peak response reported are 

apparent, with first hoop rupture strain differing by factor 1.7. 

 
Figure 1.6 - Force versus average strain on identical specimens reported by two different authors. (Data source, 

(Mander et al., 1988a; B. D. Scott et al., 1982)). (Note: 1 mm = 0.0394 in; 1 MN = 224.8 kips) 

 

1.3 Recent Studies on Thin Walls  

The large Mw 8.8, 2010 Chile Earthquake, exposed problems in multistory reinforced concrete 

shear wall buildings, triggering the initiation of several research projects to study the response of 

thin walls under earthquake loading. Hube et al. (2014) and Alarcon et al. (2014) studied the 

response of nine one-half scale specimens, representative of prototype slender thin walls with 
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thicknesses of 5.9 in. [150 mm] and 7.9 in [200 mm]. The specimens were designed following 

typical Chilean practice, using distributed longitudinal web reinforcement with additional 

boundary steel at the edges. The objective of this set of tests was to replicate the behavior of 

walls damaged during the 2010 Chile earthquake. One of the specimens had crossties restraining 

the web distributed steel, and another had enhanced boundary transverse reinforcement 

comprising closed hoops at the edges of the wall. For this specimen, ratio of hoop spacing to bar 

diameter, s/db, was 9 for the longitudinal bars in the boundary. The specimens were tested under 

different levels of axial load, ranging from typically 0.15f’cAg up to 0.35f’cAg, where Ag is the 

gross area of the concrete section and f’c is the specified unconfined concrete compressive 

strength. The specimens lost their load-carrying capacity due to flexural compression failure, 

followed by lateral instability of the bottom portion, along the entire length of the specimen. 

Overall, the force-displacement response was similar among the specimens with the thicker web, 

with small differences in their displacement ductility capacity promoted by the variation of the 

testing variables. The maximum drift ratio capacity, sustained in two consecutive cycles without 

loss of lateral load resistance, ranged from approximately 1.2 to 2.0%. The specimen with 

crossties along the web length and with boundary elements at the edges showed a slightly 

improved ductility capacity with respect to the rest of the specimens. Additionally, the inclusion 

of closed hoop at the edges reduced the out-of-plane instability after boundary crushing. On the 

other hand, the wall with the thinnest web showed a limited displacement capacity as compared 

to the rest of the specimens. The authors attributed this to the largest cover-to-core thickness 

ratio, which resulted in larger compressive stress on the core after concrete cover spalls off. It is 

also reported, that ductility capacity of the specimens decreased with increasing axial load. The 

vertical extent of damage was measured as the vertical extent of concrete cover spalling, with a 

reported mean value of 2.63 times the wall thickness (tw). It is believed that the small thickness 

of the specimens is the main variable dominating the response. 

Takahashi et al. (2013) discuss the drift capacity of structural walls with poor detailing at 

the wall boundaries. The objective of that paper was to propose displacement predictive equation 

based on plastic hinge length equal to 2.5tw. For this purpose, ten reinforced concrete wall 

specimens with asymmetric cross section, comprising a boundary column at one end, and either a 

thin rectangular boundary element or an L-shaped boundary element on the opposite side. This 

design ensures high compressive strain demand on the weaker edge (opposite to the column) 

under ultimate lateral force. Web thickness of the specimens ranged from 3.5 in. [90 mm] to 5.5 

in. [140 mm]; ratios of the neutral axis depth to the wall thickness were in the range 2  c/tw  6; 

and the neutral axis depth to wall length ratio were in the range 0.1  c/lw  0.35. Transverse 

reinforcement of the weaker boundaries is not compliant with ACI 318-08 (2008) seismic 

requirement, and comprised various layouts of crossties to restrain the longitudinal bars. The 

typical crosstie layout includes a checkerboard pattern, where each bar in the boundary is tied at 

every other layer of transverse reinforcement (for example, every 2.8 in. [70 mm]). Other 

specimens had all the longitudinal bars tied at every layer of transverse reinforcement (every 1.4 

in. [35 mm]), while one of the specimens did not have crossties. The longitudinal bar diameter in 

the boundary of all specimens was the same; therefore, ratio s/db was either 3.5 or 7. The extent 

of the boundary element transverse reinforcement along the length of the web was larger than 

half the neutral axis depth in most cases. The specimens were tested under different levels of 

axial load, ranging from 0.03f’cAg to 0.08f’cAg. The flexural drift capacity reported, measured at 

the instant when the lateral strength drops to 80% of the peak (for example at 0.8Vmax), was in the 

range 0.4 to 1.05%.  This drift capacity is measured in the direction that compresses the weak 
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boundary, and does not include contribution to the displacement from shear deformations and/or 

horizontal slip along flexural cracks. The ultimate compressive strain in the extreme fiber in 

compression at 0.8Vmax was in the range 0.66 to 0.84%. This strain was measured at the bottom 

of the specimens over gage length extending between 2.9 and 4.0 times the wall thickness. 

Damage in the weak boundary extended over height equal to 2.5tw. This value is used as the 

plastic hinge length in a two-dimensional model proposed to estimate the plastic flexural drift of 

walls dominated by flexural compression, offering good correlation with the experimental 

results. This model is explained further in Chapter 2. 

Lowes et al. (2012) tested four one-third scale reinforced concrete wall models, 

representative of a 10-story prototype of modern construction in the Western United States. The 

prototype wall length was 30 ft [9.1 m], with thickness of 18 in. [460 mm] and height of 100 ft 

[30 m]. The specimens were tested under relatively large shear demand, as compared with their 

capacities, with moderate axial load ranging from 0.095f’cAg to 0.13f’cAg. Three of the specimens 

had longitudinal reinforcement splices at the base. For these specimens, the limiting drift 

capacity at the effective height of the model ranged from 0.75 to 1.9%. The following discussion 

focuses on the fourth specimen, which is one of particular interest because it did not have splices 

of the longitudinal steel, and resulted in flexural-compression failure at relatively low 

displacements. This specimen was detailed with distributed vertical and transverse steel, and had 

edge boundary elements that were compliant with seismic detailing of ACI-318-11. The 

boundary element transverse reinforcement ratio in the through-thickness direction, was y = 

0.88%, with s/db equal to 4 and longitudinal steel ratio equal to 3.4%. The following damage 

states are reported, along with corresponding effective drift ratio: (i) appearance of horizontal 

and diagonal cracks occurred at 0.10%; (ii) compression yielding occurred at approximately 

0.30%; (iii) cover spalling was observed at 0.64% and concentrated over a small height of 

approximately 1 wall thickness (actual spread of damage is not reported); (iv) bar exposure and 

onset of core crushing occurred at 0.88%; (v) bar buckling occurred at 0.91%. At larger drift, the 

damage extended over the whole length of the boundary element, resulting in loss of lateral load 

resisting capacity. It is reported that compressive damage of boundary elements is the most 

commonly observed damage following earthquakes, and this is confirmed by 60% of the 

specimens in a database of rectangular wall tests presented. According to the authors, the set of 

experimental results presented evidence of the low drift capacity of modern code compliant 

slender structural walls subjected to high seismic shear demand. 

Although it is convenient to relate wall damage states to global engineering demand 

parameters, such as drift demand, it is important to recognize that the drift ratio definition is not 

consistent among the tests summarized above, nor is the pattern of the applied seismic load, 

which results in different gradients of moment demand along the tested specimens. This is 

believed to add scatter in the results presented, and even produce some “false positive” 

acceptable responses. 

 

1.4  Cyclic Test on Rectangular Reinforced Concrete Specimens  

Experimental test on reinforced concrete rectangular prisms subjected to axial tensile strain 

excursions, prior to compression, have been reported by (Acevedo et al., 2010; Chai & Elayer, 

1999; Creagh et al., 2010; Welt et al., 2016). Chai and Elayer (1999) report on axial reversed 

cyclic tension and compression tests on fourteen slender reinforced concrete prisms, 
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representative of the end regions of a ductile multistory shear wall. The specimens have cross 

section 4 x 8 in. [102 x 203 mm], width of 8 in [203 mm] and height-to-thickness ratio ranging 

from 11.75 to 17.75. Longitudinal reinforcement ratio of the specimens was 2.1 or 3.8%, and 

transverse reinforcement spacing was such that s/db = 6. The main objective of the test program 

was to get an understanding of the mechanism involved in the lateral instability of the plastic 

hinge region of a wall when subjected to large-amplitude tension and compression cycles. The 

testing protocol comprised half cycles of axial tensile strain, followed by a half cycle in 

compression to a target of 1/5 or 1/7 of the previous tensile strain. In subsequent cycles, the 

tensile and corresponding target compressive stains were increased until a large out-of-plane 

displacement was detected. An important variable of the test program was the largest tensile 

strain (sm) under which the specimen was still stable. This value corresponds to the maximum 

tensile strain recorded one cycle prior to the one in which lateral instability in compression 

(global buckling) occurred. Recorded maximum tensile strain reduces with increasing height-to-

thickness ratio, with approximate reported average values of sm,ave = 1.00%, 1.20%, and 1.90% 

(corresponding to 5.2, 5.9 and 9.7 times the yield strain) for specimens with height-to-thickness 

ratio of 17.75, 14.75 and 11.75, respectively. These values are considered conservative because 

of two main reasons: (i) they were obtained under a uniform strain field along the element 

length, which does not represent the actual strain gradient along the height of boundary elements 

in the critical section of multistory shear wall; additionally, (ii) the restraint of the web along the 

length of the wall is not represented in the test, nor are the boundary conditions at the extremes 

of the tested specimens, which were pinned. 

Following the 2010 Chile Earthquake, Acevedo et al. (2010) and Creagh et al. (2010), 

each tested two reinforced concrete prisms, constructed following ACI 318-08 (2008) provisions 

for ordinary (OBE) and special boundary (SBE) elements, respectively. The specimens represent 

the end region of the critical section of a shear wall, and were 6 x 12 in. [152 x 305 mm] 

rectangular in cross section, with height-to-thickness ratio of 6. Longitudinal reinforcement ratio 

of the specimens was 3.7%, and transverse reinforcement spacing was such that ratio s/db was 

10.7 for the OBEs and 2.7 for the SBEs. For each detail, one of the specimens was tested under 

pure compression, while the other was pulled to a tensile strain of 4%, and then subjected to 

compressive loading. The compression-only test resulted in sudden loss of load carrying capacity 

after the peak load was attained, just after the onset of concrete cover spalling. This sudden 

failure was unexpected for the SBE, given the large volumetric transverse reinforcement ratio 

provided. In the other tests, cracked planes developed perpendicular to the specimen axis during 

the tensile excursion, with some crack closure due to relaxation when the specimens were 

unloaded, before proceeding to the compression phase. Failure due to lateral instability of the 

specimens was observed during the subsequent compression cycle, at approximately 20% (for 

the OBE) and 33% (for the SBE) of the maximum load attained by the specimens that were 

tested only in compression. For each specimen global buckling occurred while the prisms were 

still elongated but under compressive stress. This is attributed to the asymmetric nature of the 

crack-closure process, in which at low compressive loads, only the two curtains of longitudinal 

steel (which have previously yielded in tension) contribute to the internal resistance of the cross 

section. As expected, each curtain is not equidistant from the axis of the applied load, resulting in 

a moment acting out of the plane of the test specimen, causing out-of-plane lateral displacement. 

As the out-of-plane moment exceeded the moment capacity, lateral instability failure occurred. 
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Also motivated by field observations of crushed boundaries in multistory reinforced 

concrete walls following the 2010 Chile Earthquake, Welt et al. (2016) conducted two 

independent test programs on 33 rectangular prisms, with the main focus of assessing the impact 

of different transverse reinforcement layouts on the response of boundary elements under cyclic 

axial loading. The specimens are classified according to their compliance with ACI 318-14 for 

boundary elements as: non-compliant (NBE), ordinary boundary elements (OBE), special 

boundary elements (SBE), and enhanced special boundary elements (xSBE). Specimens with 

various geometries were tested at two different sites: the first set of specimens, tested at the 

University of Chile (UoC) had length equal to 11.8 in. [300 mm] with thicknesses of 5.1 in. [130 

mm], 7.1 in. [180 mm]  and 9.8 in. [250 mm], and resulting height-to-thickness ratios ranging 

from 4 to 8.9; the second set was tested at the U.S. Army Corps of Engineers Construction 

Engineering Research Laboratory (CERL), and comprised specimens with rectangular cross 

section of 7.9 x 15.0 in. [200 x 380 mm], with height-to-thickness ratio of 5.0. Longitudinal 

reinforcement ratio of the specimens ranged from 2.0 to 3.9%, with some specimens having no 

longitudinal reinforcement. Transverse reinforcement spacing was such that ratio s/db ranged 

between 4.0 and 8.3. Transverse reinforcement ratio in the through-thickness direction of the 

specimens was in the range 0.34  y  1.76%. Of special interest are the SBE and the xSBE 

specimens because of the expected large compressive strain demand they would see under 

seismic action. The SBE set comprised 8 specimens with s/db = 4.0, transverse reinforcement 

ratio in the range 0.88  y  1.76%, with every other internal longitudinal bar restrained by a 

hoop leg or a crosstie. The xSBE set comprised 5 specimens with s/db = 4.0, transverse 

reinforcement ratio in the range 1.47  y  1.76%, with all internal bars tied by either 

overlapping closed hoops and/or crossties with seismic hooks. It is reported from the 

compression tests that only the xSBE specimens were able to sustain the peak load over 

increasing compressive strains, with limiting average strain capacity, at 30% strength loss, of 

approximately 3.5%. Additionally, longitudinal bar buckling was found to be a trigger for rapid 

loss of axial load carrying capacity. Reported average strain at which this occurred was 

approximately 2.0 and 3.5% for an SBE and xSBE specimen, respectively. For the SBE 

specimens, tensile strain excursions of 0.5, 2.0, and 5.0%, prior to compression, resulted in a 

reduction of the confined concrete strength of 5, 20, and 50%, with respect to specimens under 

monotonic compression. It was concluded that crossties do not provide significant restraint 

against longitudinal bar buckling and do not contribute sufficiently to achieving ductile behavior 

in compression. Hoops and crossties might not be interchangeable for providing restraint against 

lateral instability of the longitudinal bars. 

The set of tests summarized above lead to the conclusion that specimens that meet the 

minimum requirements for OBE and SBE per ACI-318-14 do not necessarily achieve the 

intended deformation capacities in compression. The investigation presented in the following 

chapters explores some of the causes of this behavior. 
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Chapter 2 - Experimental Investigation 

 

This chapter presents laboratory test results of the response of thin boundary element test 

specimens subjected to pure compression. The tested elements have transverse reinforcement 

detailing that matches or exceeds modern code requirements for special boundary elements. The 

test program comprised ten prismatic reinforced concrete specimens that were subjected to 

monotonically increasing axial compression until failure. The specimens can be considered to 

approximately represent the extreme flexural compression zone of the stem of a flanged wall. 

That region of a structural wall is subjected to high axial compressive strains due to combined 

axial force and moment. Effects of strain gradient (both through the wall length and along the 

wall height) and effects of wall shear are not represented in the present tests. Nonetheless, the 

axial compression tests are expected to provide insights into the behavioral characteristics of 

actual wall boundaries. 

 

2.1 Test Specimens 

A set of ten rectangular prismatic reinforced concrete specimens with aspect ratio (height-to-

thickness ratio) of 6 were tested at the nees@berkeley laboratory. Figure 2.1 depicts general 

geometric characteristics of the specimens. The set comprises specimens with cross section of 

dimensions 12.0 x 36.0 in. [305 x 914 mm] and clear height hw = 72.0 in. [1,830 mm]. The 

specimens are considered full-scale and the cover thickness, measured to the outside edges of the 

perimeter hoop, was fixed at 1.5 in. [38 mm]. This thickness is larger than the 3/4 in. [19 mm] 

required as a minimum by ACI-318 (2014) for walls that are not exposed to weather or in contact 

with the ground, but is considered typical in practice because it avoids constructability issues that 

may arise when smaller cover thickness values are adopted. To more closely study the force-

shortening response of the core, one of the specimens had a reduced cross section of 9 x 33 in. 

[229 x 838 mm], with no cover, located at mid height, with length equal to 30 in. [762 mm] 

(which corresponds to 2.5 times the thickness of the other specimens).  

 

2.2 Design 

The test program was conceived while the ACI-318-11 code was the latest approved 

version of ACI 318, but after field observations following the Chile (2010) earthquake showed 

that response of poorly detailed reinforced concrete wall boundaries was not satisfactory. To test 

the adequacy of the code provisions in use at that time, the transverse reinforcement of the 

specimens was detailed following ACI-318-11 provisions for special boundary elements (SBEs). 

The need for SBEs at the edge of walls with aspect ratio (quotient of the wall height and 

its length) of at least 2, is defined in ACI-318 using two separate set of provisions: one uses a 

displacement-based approach, while the other uses a limiting stress-based approach. The first 

alternative applies to walls that are effectively continuous from the base to the top of the 

structure, with a single critical section for flexure and axial load. The compression zone of these 

elements require SBE detailing if  
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where c is the neutral axis depth, estimated under nominal moment strength and factored axial 

loads in the direction of the design displacement u; coefficient  is 1.0 in ACI-318-11 and 1.5 in 

ACI-318-14; Lw and Hw are the length and height of the wall, respectively. The second 

alternative requires SBE-type of detailing in walls where the stress demand in the extreme fiber 

in compression exceeds 20% of the nominal compressive strength of the concrete (for example, 

u ≥ 0.2f’c). This stress demand is estimated by means of a linear elastic model, using load 

combinations that include earthquake effects, and using gross cross section properties. 

 
Figure 2.1 - Specimens global geometry (a), global view of test setup for specimen W5 (b), and cross section 

geometry and variables of interest (c). [Note: 1 in. = 25.4 mm]. 

 

Equations (2.2) and (2.3), correspond to equations 21-4 and 21-5 of ACI 318-11 

respectively, and define the minimum amount of transverse reinforcement required in the two 

orthogonal directions of a confined concrete column cross section.  











 13.0

'

ch

g

yt

c

c

sh

A

A

f

f

sb

A
 (2.2) 

yt

c

c

sh

f

f

sb

A '

09.0  (2.3) 

24 in.

72 in.

24 in.

20 in.

48 in.

36 in.
12 in.

lw = 36.0 in.
[914 mm]

tw = 12.0 in.
 [305 mm]

bc2 = 9.0 in.
 [229 mm]

1.5 in.
 [38 mm]

hx'

bc1 = 33.0 in.
[838 mm]

hx'

Asy

1.5 in.
 [38 mm]

Asx

(a) (b)

(c)



14 

 

where s [in.] is the center-to-center spacing of transverse reinforcement; bc [in.] is the cross-

sectional dimension of the core measured to the outside edges of the transverse reinforcement; 

Ash [in.2] is the total provided cross-sectional area of transverse reinforcement within spacing s, 

and perpendicular to dimension bc; Ag is the gross area of the concrete section; Ach is the cross-

sectional area of the core measured to the outside edge of the perimeter hoop; f’c is the specified 

unconfined concrete compressive strength; and fyt is the specified yield strength of the transverse 

reinforcement.  For special wall boundary elements, ACI 318-11 requires compliance with both, 

Equation (2.3), while ACI 318-14 requires compliance with both, Equations (2.2) and (2.3). 

Equation (2.3) can be understood as a lower limit to Equation (2.2), to prevent having under 

reinforced cross sections whenever quotient Ag/Ach tends to 1. This is likely for a cross section 

with a small cover thickness relative to outer dimensions of the boundary element. 

 

2.3 Materials  

Design nominal concrete strength was 4.0 ksi [28 MPa] at 28 days and reinforcing steel yield 

strength was 60.0 ksi [414 MPa] for all specimens. Actual unconfined concrete strength at the 

day of the test was estimated as the average strength of three 6 x 12 in. [152 x 304 mm] cylinders 

tested under standard ASTM-C39/C39M-12a (2012). All reinforcing steel is compliant with 

standard ASTM-A706/A706M-9b (2009). Table 2.1 contains the material properties of the 

specimens as tested. Additionally, stress strain curves were obtained experimentally for some of 

the cylinders at the day of the test. Figure 2.2a contains a scattergram relating concrete strength 

f’c with corresponding strain co, measured over an 8 in. [203 mm] gauge length.  Mean concrete 

strain at peak strength was 0030.0co  with coefficient of variation COV = 5.3%. Figure 2.2b 

depicts typical stress strain curve for a 7/8 in. [22 mm] diameter longitudinal bar. 

 
Figure 2.2 – Material properties: (a) unconfined concrete strength versus corresponding strain at the day of test; (b) 

experimental stress-strain curve for an A706 #7 longitudinal bar. 

 

2.4 Variables of Investigation 

It was of interest to validate whether compliance with either of the above equations have positive 

repercussions in the ductile behavior of boundary elements under pure compression.; hence, the 

design of specimens W3 through W14 complied with Equation (2.3) and specimens W9 and 

W12 also complied with Equation (2.2). To study the impact of the distance between 

longitudinal bars engaged by crossties, the variable (hx'∙s) is also studied. This variable represents 

the area of the “window” bounded vertically by the distance s between sets of hoops and 

crossties, and horizontally by the distance hx' between longitudinal bars that are supported by 
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hoops and crossties (Figure 2.3). ACI-318-11 allows the maximum center-to-center distance 

between crossties or hoop legs of the boundary elements to be as large as 14 in. [356 mm], while 

ACI 318-14 allows the lesser of 14 in. [356 mm] and 2/3 tw. It was hypothesized that the ratio 

hx'∙s / Ach in some code-compliant designs is too large to achieve effective confinement. 

Therefore, in this project the largest distance hx' (measured center-to-center of tied bars) selected 

for the design of any of the specimens was 10.3 in. [262 mm] (approximately 0.85tw), while the 

shortest selected value for hx' was 7.7 in. [196 mm] (approximately 0.65tw). This distance was 

selected as a minimum because it is believed that smaller values might hinder the concrete 

placement process in practice. Specimens W6 through W14 were designed using this value. 

 
Figure 2.3 - Transverse reinforcement in wall specimens: (a) plan view of transverse reinforcement layer; (b) 

geometry of the “window” bounded by hx’ and s. 

 

To review the relative capability of 90-degree hooks and 135-degree hooks to restrain 

longitudinal bars adequately, two pairs of specimens where constructed with identical transverse 

and longitudinal steel configuration, differing only in the configuration of their crossties: (i) W3 

with W5 and (ii) W6 with W7. Specimens W3 and W6 had alternating 90- and 135-degree hooks 

at the crosstie ends, while specimens W5 and W7 only had 135-degree crosstie hooks. 

The layout of ties along the height of specimen W8 was different from the rest of the 

specimens. This specimen has the same longitudinal reinforcement layout and nominal material 

properties as those of specimen W7, but a checkerboard pattern for the location of the crossties 

in plan and elevation was employed. With this design, each internal bar in the cross section is 

restrained by a tie at every other layer of transverse reinforcement. This can be contrasted with 

the design of specimens W3 through W7 and specimen W9, in which every other internal bar in 

the cross section is only restrained by the longer leg of the perimeter hoops. Table 2.1 contains a 

summary of the characteristics mentioned above for all the specimens. 
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Table 2.1 - As tested material properties and reinforcement detailing 
ID 

 

 

Cross section 

 

 

f’c 

ksi  

(MPa) 

fy 

ksi 

(MPa) 

fyt 

ksi 

(MPa) 

db 

in. 

(mm) 

l  

% 

s 

in. 

(mm) 

s / db 

 

h’x 

in. 

(mm) 

dbt 

in. 

(mm) 

tx 

% 

ty 

% 

t,ACI1 

% 

t,ACI2 

% 

3 
 

3.8 

(26) 

68.8 

(474) 

72.2 

(498) 

1 

(25) 
2.6 

4.0 

(102) 
4.0 

10.3 

(262) 

1/2 

(13) 
1.10 0.60 0.71 0.47 

5 
 

4.0 

(28) 

69.6 

(480) 

65.0 

(448) 

1 

(25) 
2.6 

4.0 

(102) 
4.0 

10.3 

(262) 

1/2 

(13) 
1.10 0.60 0.85 0.56 

6 
 

4.2 

(29) 

67.9 

(468) 

65.0 

(448) 

7/8 

(22) 
2.5 

4.0 

(102) 
4.6 

7.7 

(196) 

1/2 

(13) 
1.10 0.75 0.89 0.58 

7 
 

4.4 

(30) 

67.9 

(468) 

65.0 

(448) 

7/8 

(22) 
2.5 

4.0 

(102) 
4.6 

7.7 

(196) 

1/2 

(13) 
1.10 0.75 0.91 0.60 

8† 
 

4.4 

(30) 

76.4 

(527) 

71.5 

(493) 

7/8 

(22) 
2.5 

4.0 

(102) 

4.6 

9.2+ 

7.7 

(196) 

1/2 

(13) 
1.10 0.82++ 0.84 0.56 

9 
 

4.6 

(32) 

76.4 

(527) 

70.3 

(485) 

7/8 

(22) 
2.5 

4.0 

(102) 
4.6 

7.7 

(196) 

5/8 

(16) 
1.70 1.16 0.90 0.59 

10 
 

4.7 

(32) 

76.4 

(527) 

71.5 

(493) 

7/8 

(22) 
1.4 

4.0 

(102) 
4.6 

7.7 

(196) 

1/2 

(13) 
1.10 0.75 0.90 0.59 

11 
 

5.1 

(35) 

77.6 

(535) 

71.5 

(493) 

1 1/4 

(32) 
2.9 

4.0 

(102) 
3.2 

7.7 

(196) 

1/2 

(13) 
1.10 0.75 0.97 0.64 

12 
 

4.4 

(30) 

77.6 

(535) 

70.3 

(485) 

1 1/4 

(32) 
2.9 

4.0 

(102) 
3.2 

7.7 

(196) 

5/8 

(16) 
1.70 1.16 0.85 0.56 

14* 
 

4.7 

(32) 

69.3 

(478) 

74.8 

(516) 

7/8 

(22) 
2.5 

4.0 

(102) 
4.6 

7.7 

(196) 

1/2 

(13) 
1.10 0.75 ** 0.57 

 
+ Bars tied by a crosstie are restrained at every other layer of transverse reinforcement. 

†Cross section with ties placed on a checkerboard pattern. 
++ Average of two adjacent layers due to the checkerboard pattern used for laying out the ties. 
*Calculated values are for the reduced section portion of the specimen where Ag = Ach. 
** Does not apply because (Ag / Ach -1) = 0. 

Ashx: total cross-sectional area of transverse reinforcement within spacing s, in the long direction of the 

section. 

Ashy: total cross-sectional area of transverse reinforcement within spacing s, in the short direction of the 

section. 

bc1: dimension of the long direction of the section core. 

bc2: dimension of the short direction of the section core. 

hx’: center-to-center horizontal spacing of tied bars in the long direction of the section.  

tx = Ashx/(bc2∙s) and ty = Ashy/(bc1∙s) are the provided transverse reinforcement ratios in the two principal 

directions of the cross section. 

t,ACI1 = 0.3f’c /fyt (Ag / Ach -1) and t,ACI2 = 0.09 f’c /fyt are estimated using “as tested” materials properties. 

 

2.5 Instrumentation and Test Setup 

Tests were performed using the Southwark-Emery Universal Testing Machine of the Pacific 

Earthquake Engineering Research Center (PEER). This machine, capable of applying monotonic 

load up to 4,000 kips [17,778 kN] in compression, is part of the nees@berkeley laboratory 

facility of the University of California, Berkeley. The load is applied by a variable axial piston 

pumping unit, which is able to control the load rate. Figure 2.4 shows instrumentation and test 

setup of the experiments. Axial load was applied monotonically at a rate of 150,000 to 200,000 

lb/min [667 to 890 kN/min]. Tests were terminated when the applied load dropped below 

approximately 30% of the maximum applied force. Applied load was measured by a built-in 

pressure capsule (PC) on top of the loading yoke. Average shortening of the specimen was 
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measured by the relative displacement of the top and bottom head using potentiometric 

displacement transducers (PDT) in the North and South sides of the specimens. String 

potentiometric displacement transducers (“wirepots”) were mounted on a distant reference wall 

to measure out-of-plane displacement at each load increment. 

 
Figure 2.4 - Instrumentation setup. 

 

For specimens W3 reinforcement strains were measured at specimen mid height, with 

one gauge on a longitudinal bar (LbSG), one on a hoop short leg, and one on a crosstie (TbSG). 

Specimens W5 through W7 had strain gages (LbSG) glued at mid height of the four corner 

longitudinal bars. These specimens also had strain gages in one tie and one hoop short leg (TbSG) 

at three different locations along the height. Wire strain gauges for the concrete surface (CovSG) 

were used to measure cover deformations in the vertical direction at various locations along the 

height of specimens W5 through W14.  

To detect the onset of longitudinal bar buckling and the strain distribution in the bars, 

specimens W8 through W14 had strain gages (LbSG) glued at discrete locations (every 5 in. [127 

mm]) along longitudinal bars on the West and East faces. Strain gages were also glued in one tie 

(TbSG) at every other layer of transverse reinforcement to measure transverse deformations in the 

through-thickness direction of the specimens. Additionally, to measure longitudinal strains (in 

the vertical direction) of the core of specimens W8 through W14, plastic strain gages (CoSG) 

were embedded in the middle of the cross section at six discrete locations along the height. 

Gauge length for concrete (CovSG and CoSG) and steel (LbSG and TbSG) strain gauges was 2.4 in. 

[60 mm] and 0.2 in. [5 mm], respectively. For all specimens, except W5, digital images were 

taken during the evolution of the test using a high resolution camera facing the West surface of 

the specimen. This side of the element had a random speckle pattern which changed with the 

evolution of the loading. This variation on the pattern is correlated to a corresponding 

displacement and strain field by means of the digital image correlation (DIC) technique (Chu et 

E
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al., 1985). Appendix A contains a description of the DIC technique and presents its application 

for the estimation of the strain field of specimen W7. 

 

2.6 Test Results 

2.6.1 General global response 

The maximum initial load that a specimen can attain is limited by concrete cover spalling. A 

typical load-displacement relation, along with evolution of strains at discrete portions of the 

concrete cover, as well as damage evolution of the West face of specimen W7, is shown in 

Figure 2.5. Three instances of the test evolution are highlighted: (i) at peak load, (ii) at the onset 

of concrete cover spalling, and (iii) when the load carrying capacity drops to 30% of the 

maximum attained load, close to the test conclusion. Figure 2.5a shows the applied load versus 

shortening relation of the specimen. The initial theoretical stiffness is shown as well, and is 

estimated using the actual material properties at the moment of the test as

  sssgcw AEAAEhK  /10
, where Ec is the concrete modulus of elasticity (

'000,57 cc fE  , 

psi). The parabolic nature of the ascending branch of the force-shortening relation shows an 

apparent deviation from the linear behavior at load levels close to 60% of the maximum load. 

The maximum load is limited by the onset of concrete cover crushing, after which there is an 

instantaneous small drop in load carrying capacity. For larger shortening values, the load 

carrying capacity of the specimen follows a steep descending branch, because plastic demand 

starts developing in a localized region of the length of the specimen. The localization of damage 

is explained by the occurrence of several fragile phenomena such as longitudinal bar buckling, 

tie hook opening and expulsion of core concrete. Out-of-plane displacement of the specimen also 

takes places due to the asymmetric nature of concrete cover spalling, which is facilitated by the 

large aspect ratio (height-to-thickness quotient) of the specimen. To further study the initiation of 

the cover spalling phenomenon, Figure 2.5b shows the axial strain distribution of the concrete 

cover of the West face, where the first sign of cover spalling was detected. The limiting strain of 

unconfined concrete is approximately 0.3% (Figure 2.2a), which coincides with the maximum 

strain values recorded by the lower two cover strain gages. Picture (ii) in Figure 2.5c, confirms 

that cover concrete crushing starts within the bottom third of the specimen and spreads upward 

with the evolution of the force-shortening relationship. After the first observed concrete 

crushing, the cover strains unload in different manners, depending on their location within the 

localized damaged zone. In the particular case of specimen W7, the strains in the gage at mid 

height reduce to zero because of the complete detachment of the cover at that location, which 

corresponds to the area of concentrated plastic deformation where bar buckling took place 

(Figure 2.6). The strain demand reduction in the upper two strain gages is explained by the 

relaxation of the undamaged portion of the specimen, which expands over the region of 

concentrated damage. It is worth mentioning that the bottom two strain gages are showing some 

compressive strains because threaded rods placed in the trough-thickness direction of the 

specimen prevented the large cover pieces from falling free and away. Therefore, they did not 

fully relax after their detachment from the core.  



19 

 

 
Figure 2.5 - Response evolution of Wall 7: (a) load-axial shortening relationship; (b) cover concrete axial strains 

evolution; (c) specimen damage evolution. 

 

Figure 2.6 shows pictures of all specimens after each test was concluded and the 

specimens were cleaned up by removal of loose concrete. For all specimens, damage 

concentrated over a length of around two to three wall thicknesses along their height. Due to 

asymmetric concrete cover crushing and resulting out-of-plane displacements, the length over 

which spalling extended is different for the East and the West faces. This is expected because the 

eccentricity between the applied axial load and the centroid of the spalled-off cross section 

generates an over-turning moment that forces additional compressive stresses over one of the 

faces. The spalled-off zone includes a smaller portion of length equal to four hoops spacing (16 

in. [406 mm]) approximately, over which bar buckling develops. 

 

2.6.2 Response of specimen W14: onset of bar buckling 

Specimen W14 was tested to study the force-shortening relationship of the confined core of the 

specimens. To force the damage to occur over a predefined zone, the specimen was constructed 

with no cover over a length of 30 in. [762 mm] centered at mid height. This selected length is 

equal to 2.5 times the thickness of the other specimens (W3 through W12) and approximately 

corresponds to damaged lengths observed in walls in the field after the 2010 Chile Earthquake 

(Wallace et al., 2012), as well as in laboratory tests on thin wall specimen that replicate the 

Chilean construction typology (Hube et al., 2014).  
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Figure 2.6 - Damage localization on the West (left hand side of each pair) and East face of the specimens. 

 

Figure 2.7a shows the axial force versus average strain in the damage zone of specimen 

W14. The force is normalized by the nominal maximum load2 Po = f’c (Ag - As) + fyAs and the 

average compressive strain is estimated with two concrete stain gages placed in the middle of the 

cross section at one-thirds and two-thirds of the length of the reduced section zone. The onset of 

longitudinal and transverse bars yielding is marked at average axial strains of 0.0021 and 0.0045, 

respectively. The onset of tie yielding is related to expansion of the cross section and demarcates 

the start of a gentle softening slope after the peak load is attained. Yielding of the transverse 

reinforcement, in the absence of significant strain-hardening, can generally be expected to result 

in softening because, as the “plastic concrete” material expands outward it will become 

progressively less stable unless the out-of-plane resistance increases, which cannot occur for 

yielding transverse reinforcement. Horizontal cracks in the thin skin that covers the 

reinforcement are evidence of flexural deformations of the perimeter hoops, which is also 

associated with lateral instability of the longitudinal reinforcement. The failure sequence was 

recorded every 1/15 of a second and shows sudden expulsion of core concrete, which is triggered 

                                                 
2 In the estimation of Po, the concrete capacity is typically reduced by factor 0.85, to account for differences between standard 

cylinder and in-situ strength. This difference arises mainly due to water migration promoted by capillarity action in the early 

hardening stages of the concrete. This increases the water-to-cement ratio of the upper parts of the specimens, which results in 

reduced compressive strength of those areas. The specimens of this research were casted horizontally (West or East face facing 

down), therefore factor 0.85 is not used in the estimation of Po throughout this investigation. 
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by the onset of bar buckling at an average compressive strain of 0.0086. The test was concluded 

when the rapid loss of load carrying capacity was detected. This allowed studying the geometry 

and states of the material immediately after the onset of failure, avoiding excessive crushing of 

the core and additional deformation of the buckled bars. Concrete expulsion resulted in a 

reduction of the core cross-sectional area. The evaluation of the damage zone after the test 

conclusion shows evidence of bar buckling of non-tied as well as tied bars (Figure 2.7b). For the 

former, observed buckling length is three to four hoops spacing (14db to 18db), depending on the 

location of the bar along the perimeter. The larger buckling length is for those bars closer to the 

center of the long hoop leg where its flexural stiffness offers less resistance against lateral 

displacement. Buckling length for the tied bars was approximately two tie spacings (9db), and 

included the opening of the 135-degree hook of the restraining tie. 

 
Figure 2.7 - Test evolution of specimen W14: (a) force versus average strain relationship and failure sequence of the 

damage zone; (b) details of the damaged zone. 
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Tensile strains in ties along the height of the reduced section are shown in Figure 2.8a at 

three different stages of the response of specimen W14: (i) at the first observed longitudinal bar 

yielding (diamond markers); (ii) at the first measured tie yielding (square markers); and (iii) at 

the onset of the sudden loss of load carrying capacity (circular markers). Tensile tie strain versus 

average compressive strain of the reduce section is depicted in Figure 2.8b for the two most 

demanded ties (TbSG6 y TbSG7) located above mid-height of the reduced section zone. Location 

of the critical tie (TbSG6) approximately coincides with the top portion of the buckling length of 

a bar in the East face, and the bottom portion of a juxtaposed buckled bar on the West face. 

Before transverse reinforcement yielding, the transverse-to-average-axial strain ratio is 

approximately 0.55. This is larger than typical values of Poisson ratio for plain concrete but it is 

comparable to values reported by Mander (1984) for Wall 11, which was reinforced with ties and 

had a similar transverse reinforcement ratio in the through-thickness direction of the specimen. 

After yielding, the transverse-to-average-axial strain ratio further increases due to lateral 

expansion of the core and lateral displacement of the longitudinal bars. The onset of failure 

occurs for strains in the critical tie of approximately 1.5%. 

 
Figure 2.8 - Tensile tie strains of specimen W14: (a) tie strain distribution along the height of the reduced section 

zone at three instance of the test evolution; (b) critical ties strain versus average vertical strain in the reduced section 

zone. 

 

Onset of loss of load carrying capacity of specimen W14 was triggered by lateral 

instability of the longitudinal reinforcement. Figure 2.9a and Figure 2.9c show the strain 

distribution along the height of both a tied and a non-tied bar on the East face of the specimen. 

The plots depict the same three stages of the response described for the ties above (that is, at first 

longitudinal bar yielding, at first tie yielding and at the onset of failure). It is observed that up to 

longitudinal bar yielding, the strain distribution is uniform along the entire length of the bars. 

After the first tie yielding, and up to the onset of failure, strains concentration is observed over 

three critical stain gages (LbSG6, LbSG7 y TbSG8) on the tied bar and four critical gages (LbSG5, 

LbSG6, LbSG7 y TbSG8) on the non-tied bar. To further understand the strain evolution, close and 

within the buckling length of the longitudinal bars, Figure 2.9b and Figure 2.9d show bar 

compressive strains at discrete locations versus the average compressive strain of the reduced 

section. Prior to first longitudinal bar yielding, the longitudinal bar-to-average-strain ratio is 

close to 1.0. This ratio increases for larger strains of the reduced section until strains in some 

portions of the bars start plateauing at different instants, depending on their location along the 
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buckling length. This is explained by the fact that strain gages are adhered facing the core, and 

outward lateral displacement of the bars will exacerbate their compressive strains until, due to 

bar buckling, three distinct plastic hinges form at the top, at the bottom, and at mid height of the 

buckling length (Dhakal & Maekawa, 2002). Once these concentrated plasticity zones develop, 

compressive strains in the gages closer to mid height of the buckling length will further increase 

while strains in other locations will relax. It is worth noticing, that prior to buckling, bar axial 

compressive strain rate increases at lower core average strains for the non-tied bars as compared 

to the tied bar. 

 
Figure 2.9 - Compressive strain evolution in longitudinal reinforcement on the East face of specimen W14: (a) tied 

bar strain distribution along the height; (b) tied bar longitudinal strain along the buckling length, versus average 

strain of damage zone; (c) non-tied bar strain distribution along the height; (d) non-tied bar longitudinal strain along 

the buckling length, versus average strain of damage zone. 

 

2.6.3 Response of specimens W3, W5, W6 and W7: effect of the confining window size 

and crosstie hooks 

Four specimens are considered to test the influence of the distance hx' between tied bars, on the 

behavior of the prismatic elements. Specimens W6 and W7 had the same nominal material 

properties, gross geometry, separation s between transverse reinforcement layers and similar area 

of longitudinal reinforcement as W3 and W5, but the distance hx' is 25% shorter (resulting in a 

25% increase in the transverse steel ratio in the through-thickness direction, ty). In order to 

review the relative capability of 90-degree hooks and 135-degree hooks to restrain longitudinal 

bars adequately, the responses of specimens W3 and W6 are contrasted with that of specimens 
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W5 and W7, respectively. Specimens W3 and W6 had alternating ties with 90-degree hooks at 

one end and 135-degree hooks at the other, while ties on specimens W5 and W7 had two 135-

degree hooks anchored into the core at both ends.  

During the test, specimens W3, W5 and W6 experienced sudden drop of load-carrying 

capacity after very small plastic deformation was sustained past the peak applied force. This 

reduction of force occurred when the specimens achieved average strains in the order of 0.3%, 

after which loss of cover concrete occurred in an abrupt manner. Figure 2.10a shows force-

displacement relations for these four specimens. Average strains were calculated as the ratio 

between the shortening of the wall (calculated from the relative displacements of the top and 

bottom heads) and its original clear height between heads. The applied load is normalized to the 

maximum nominal load Po. It is observed that the response of the specimens was similar in terms 

of load carrying capacity and average plastic deformation. Even though specimen W7 did not 

suffer a sudden decrease in load carrying capacity after spalling, and its post-test inspection 

showed evidence of larger spread of plasticity, the slope of the softening branch for this 

specimen is very similar to that of the rest of test specimens. 

 
Figure 2.10 - Normalized force versus average strain relation for all specimens (gage length = 72 in. [1829 mm]). 
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To analyze the spread of plasticity along the length of the specimens, damage was 

measured in two ways: (i) as the length of the spalled-off portion on the face where the first sign 

of concrete crushing was; and (ii) as the average of the spalled-off length of the East and West 

faces of the specimens. Figure 2.11 summarizes these values normalized by thickness, tw, for all 

specimens. For specimens W3, W4, W5, and W7, the plastic deformations concentrated over 

portions comprising 24 to 56% of the clear height (hw), corresponding to 1.4 to 3.3 times the 

specimen thickness. Results show that there is a slight improvement, in terms of the average 

spread of plasticity, promoted by the use of 135-degree seismic hooks in specimens W5 and W7 

as compared to W3 and W6, respectively. Additionally, the smallest confining window size, 

hx'·s, in specimens W6 and W7 as compared to W3 and W5, improved the spread of plasticity in 

the face where additional compression took place due to out-of-plane actions. All specimens with 

the smaller confining window show a slight improvement in spread of plasticity with respect to 

specimens W3 and W5. This is also explained in part by the larger amount of transverse 

reinforcement ratio in the through-thickness direction and by tighter mesh of vertical and 

horizontal reinforcement, which may tend to hold the concrete core concrete together. 

 
Figure 2.11 - Spread of plasticity. 
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longitudinal bars in the corners, a major difference introduced with the checkerboard pattern is 

that the ratio s/db is 9.2 for all internal bars in specimen W8. On the other hand, for specimen 

W7, this ratio is 4.6 for the tied bars, while the rest of the bars are only restrained by the flexural 

stiffness of the longer legs of the perimeter hoops. 

Specimen W9 also had the same geometry, nominal material properties, and vertical and 

horizontal reinforcement layouts as specimen W7 but the diameter of the transverse steel bars 

was increased from dbt = 1/2 in. [12.7 mm] to 5/8 in. [15.9 mm]. With this variation, the 

specimen transverse reinforcement ratio increases by 55% with respect to specimen W7 and, 

additionally, the long hoop leg that provides restraint against lateral displacement of the non-tied 

longitudinal bars has bigger flexural stiffness. With the larger transverse reinforcement ratio, 

specimen W9 complies with the requirements of Equations (2.2) and (2.3) above. Figure 2.10b 

presents the normalized force versus average shortening relationship for specimens W8 and W9. 

Their force-average shortening response is similar to that of specimen W7, showing very limited 

ductility capacity after the peak load is attained. The average spread of plasticity of specimen W9 

was approximately equal to three wall thicknesses (3tw), while that of specimen W8 was close to 

2.5tw.  

To help understand the reason of the load resisting capacity reduction after the peak load 

is attained, Figure 2.12a depicts out of plane displacement profiles of specimen W9, normalized 

by its thickness, tw. Out-of-plane response of specimens W3 to W8 is similar to that of specimen 

W9 but is not shown for the sake of briefness. Three instances of the response are highlighted: (i) 

at maximum load, which coincides with the onset of concrete cover crushing, (ii) at 90 percent of 

maximum load after the peak load is attained, and (iii) at 80 percent of maximum load after the 

peak load is attained. Out-of-plane instability is triggered by the asymmetric nature of concrete 

cover spalling, in which one face of the specimen crushes before crushing occurs on the opposite 

side. This behavior promotes an out-of-plane moment generated by the eccentricity of the 

applied axial load and the migrated centroid of the cross section. The double-curvature deformed 

shape developed is consistent with the observed damage in the upper portion of the East face and 

bottom part of the West face of the specimen (Figure 2.6). A rapid increase of lateral 

displacement can be observed after the maximum load is attained, even for small decrements of 

load carrying capacity. The largest out-of-plane displacement is observed at the location of the 

third wirepot from the top (WP7), and is directed toward the West. This is identified as a critical 

section worthy of further analysis. 

An empirical axial force – moment interaction diagram for the test evolution of specimen 

W9 is constructed and compared with the theoretical PM failure surfaces in Figure 2.12b. The 

PM interaction surfaces are constructed assuming actual material properties at the moment of the 

test for two cases of cross section geometry: the outer orbit assumes the full cross section is 

available to sustain flexural compression demands and the inner one assumes half of the concrete 

cover has spalled off. The moment in the empirical PM curve is approximated as the applied 

axial load times the out-of-plane displacement at the critical section. It is observed that the 

maximum axial load is attained with relatively small lateral displacement. After the onset of 

concrete cover spalling, the out-of-plane moment grows rapidly and the empirical PM curve 

transitions from the outer orbit to the inner one, before a pronounced drop in axial load carrying 

capacity occurs. 
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Figure 2.12 - Out-of-plane response of specimen W9: (a) normalized out-of-plane displacement profile; (b) Axial 

force – moment interaction relationship during the test evolution of specimen. 
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longitudinal bars occurred over 4.5 bar diameters (4.5db) and that of the non-tied bars occurred 
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internal bars in specimen W8 buckled over a length equal to 9db, which corresponds to 2 tie 
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the force versus localized core axial strain response of each specimen is plotted along with the 
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Figure 2.13 - Strain evolution in a buckled bar in specimens W8 and W9. 
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between 1 to 1.5%, which is consistent with the observations for specimen W14.  

An estimate of the relative load carrying capacity loss due to longitudinal bar buckling is 

given by Equation (2.4): 

  sbyb AfP  1  (2.4) 

where Asb is the area of those bars that buckle and  is a modifier of their yield strength. 

According to Monti and Nuti (1992), for the case of bars in the air under pure compression, a 

lower bound of the factor  can be estimated as: 

D

L

6
  

(2.5) 

where L is the unsupported bar length and D its diameter. Unsupported length L can be 

approximated by the buckling length of the bars, which results in  factors of 0.65 for the 

internal bars of specimen W8 and 0.33 for the non-tied bars of specimen W9. Assuming an  
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factor of 1 for the four corner bars of each specimen, which were adequately restrained by the 

short hoop legs, and 1 for the tied bars of specimen W9, which buckled over length 4.5db, it is 

estimated that buckling of the internal bars of specimens W8 and W9 results in a 8.5% reduction 

in their theoretical maximum load carrying capacity (Po). This is a small reduction that only 

explains in part the loss of axial force capacity observed after the peak load is attained, for local 

core strains on the order of 1.2% and 0.6% for specimens W8 and W9, respectively.  

In addition to the loss in load carrying capacity, two other important effects of 

longitudinal bar buckling impact the post peak response of the specimens: (i) it reduce the 

effective confinement of the core, limiting its gain in strength, and (ii) it facilitates expulsion of 

concrete core material, thereby further reducing the effective available cross-sectional area. 

 

2.6.5 Response of specimens W10, W11 and W12: cross sections with all bars tied 

Specimen W10 was nominally identical to specimen W7, except the unsupported longitudinal 

bars of specimen W7 were not included in specimen W10. This resulted in a 56% reduction in 

the longitudinal steel ratio (l). This specimen was constructed to test the hypothesis that the 

non-tied bars in the cross section could have an unfavorable impact in the global response of the 

specimens due to their proclivity to buckle under low plastic strain demand. Specimens W11 and 

W12 had the same longitudinal reinforcement layout as specimen W10, but the longitudinal 

reinforcement ratio was increased to 2.9% by using 10/8 in. [32.3 mm] diameter bars. The 

resulting s/db ratio for these two specimens is 3.2. Nominal transverse reinforcement of 

specimens W11 and W12 was identical to that of specimens W7 and W9, respectively. Figure 

2.10c and Figure 2.11 depict normalized force versus average shortening relationships and 

extent of cover spalling for specimens W10, W11 and W12. 

Specimen W10 suffered from an abrupt loss of load carrying capacity instants after the 

peak load was attained. Loss of cover area for this specimen did not progress gradually. On the 

contrary, a large cover slate of approximately 38% the specimen height detached from the core at 

average strain of around 0.3%, limiting the load carrying capacity of the specimen. The lower 

longitudinal steel ratio in this specimen resulted in reduced bending moment capacity, offering 

low resistance to the out-of-plane moment.  

The force versus average shortening response of specimen W11 is similar to that of 

specimens W7, showing reduced average ductility capacity after the peak load is attained. 

Buckling of the internal longitudinal bars developed over 3 tie spacings (approximately 9.5db) 

and forced the opening of the 135-degree hooks of two adjacent ties. Post-test analysis, however, 

showed limited lateral outward displacement of these buckled bars as compared to those in 

specimens W3 to W10. This is explained by the reduced s/db ratio resulting from the large 

diameter bars used as longitudinal reinforcement.  

Specimen W12 showed an improved average force-shortening response with respect to 

the rest of the specimens. Longitudinal bar buckling was completely inhibited by the larger 

diameter bars used for the transverse reinforcement, as compared to specimen W11. The 

specimen failed due to global out-of-plane lateral instability at an average axial strain of 

approximately 1.8%. 

To further study the post peak response of the specimens, Figure 2.14 presents plots of 

normalized force versus axial core strains for specimens W8, W9, W11, and W12. These strains 
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were measured with the embedded plastic strain gages (CoSG) at six discrete locations along the 

length of the prisms. Normalized force versus average axial strain relationships are also 

presented for the sake of comparing local and global deformation demand. Three instants of the 

response are highlighted and denoted 100 (circular markers), 90 (diamond markers), and 80 

(squared markers). These define, respectively, the local strain per level at which the peak load is 

attained, and the strains at which the load carrying capacity of the specimen dropped to 90% and 

80% of the maximum. This facilitates understanding features related to the localization of 

strains, and relaxation response, and offers another perspective on the spread of plastic 

deformation. It is observed that as loading progresses past the peak load, a single gage is exposed 

to the largest compressive strain demands, while adjacent gages, and those farther apart, only 

develop some limited strains before unloading. In some locations, relaxation occurs with a slope 

close to the initial elastic stiffness, exactly after the peak load is reached. 

 
Note: average strain gage length = 72 in. [1829 mm]; core strain gage length = 2.4 in. [60 

mm]; +Bars tied by a crosstie are restrained at every other layer of transverse reinforcement; 

++Average of two adjacent layers due to the checkerboard pattern used for laying out the ties. 

 

Figure 2.14 - Force versus core deformation response at various levels along the length of the specimen  
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2.7 Implications of the Results 

2.7.1 Usable strain limits  

Axial strain limits of the prismatic elements tested are proposed next. Where flexural 

compression yielding is expected, these strain limits are useful for estimating usable curvature 

values of multistory shear walls, with comparable boundary elements at the extreme of their 

critical section. The proposed limits are based on strains measured at the 90 and 80 strength 

levels. The value 80 is selected as an upper limit of strain capacity, because at larger strains, the 

reduction of load carrying capacity is associated to global lateral instability, longitudinal rebar 

buckling, and loss of core area, which might occur abruptly. Only data for specimens W8, W9, 

W11, and W12 are presented because those had embedded core strain gages, and did not suffer 

from sudden loss of load carrying capacity. 

Axial strains must be associated to the gage length they are measured over. For this, the 

mean strain from contiguous gages is estimated taking into account 1 to 6 of the gage 

measurements at the various levels along the length of the wall. The span covered by the set of 

transducers involved in this estimation is assigned as gage length (GL). In order to specify 

maximum usable strain capacity associated with different gages lengths, Figure 2.15 shows plots 

of 90 and 80 values versus gage length normalized by the wall thickness (GL/tw). The Power 

regression curves shown are estimated according to 

  )/(1max twGL  (2.6) 

where max is the maximum usable strain, and coefficients 1 and , are summarized in Table 2.2. 

The drop in load carrying capacity observed shortly after the peak load is attained in 

specimen W9 explains the lower limiting strain at the 90 strength level. Strain limits at the 80 

strength level are similar among specimens W8, W9, and W11. Larger ultimate strain capacities 

are apparent for specimen W12 at both the 90 and 80 strength levels. Since point-wise strain 

tends to infinity in theory (for example, for zero gage length), a minimum gage length of one 

wall thickness is recommended, and to be consistent with the spread of plasticity data presented 

in Figure 2.11, a preferred range is between 2 and 3.5tw. 

 
Figure 2.15 - Usable strain limits versus normalized gage length for specimens W8, W9, W11 and W12. 
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Table 2.2 - Regression coefficients for strain limits calculations 

ID 1,90 ,90 1,80 ,80 

W8 0.0074 0.231 0.0087 0.265 

W9 0.0046 0.042 0.0100 0.210 

W11 0.0069 0.188 0.0093 0.284 

W12 0.0098 0.124 0.0144 0.151 

 

2.7.2 Global displacement and local strains relationship 

To contextualize the implications of the proposed strain limits in terms of a gage length, the 

lateral force resisting mechanism of the reinforced concrete shear wall presented in Chapter 1 is 

repeated in the following for the sake of clarity. With the main objective of relating global 

displacement demand with local deformation capacity at the section level, Figure 2.16 shows a 

four-stories T-shape structural wall with a single critical section at the base. The wall is subjected 

to lateral load Fx, at the roof, and axial load P, near the base. The prisms studied in this paper are 

also depicted in natural scale (1:1) for the sake of contextualizing their proportions. Under the 

action of lateral force Fx, the roof of the wall displaces laterally u, pushing the system into the 

inelastic range of response. Under the action of this point load, the moment distribution along the 

height of the wall is linear. For adequately reinforced cross sections with typical yield-to-

cracking moment ratio, the curvature distribution along the height of the wall can be approximate 

by an elasto-plastic model (M. J. N. Priestley & Park, 1987). This model decomposes the 

curvature distribution into an approximate linear elastic part, with yielding curvature y, and 

another plastic portion with ultimate curvature u (Figure 2.16c). It is common practice to 

assume that this ultimate curvature is uniform, equal to that of the critical section (for example, 

at the base), and that it extends a plastic hinge length equal to Lp. With this curvature 

distribution, the roof displacement can be estimated by the Principle of Virtual Work as: 
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(2.7) 

where Hw is the height of the wall. The first term of Equation (2.7) is the elastic contribution to 

the roof displacement, while the second term is the plastic contribution, which occurs as an 

additional rigid body rotation pivoting at mid height of the plastic hinge length. This model 

describes well the displacement due to the distribution of deformation along the element length, 

and with proper selection of length Lp, indirectly accounts for other mechanisms contributing to 

displacement such as bar slippage and tension shift (Moehle, 2014).  

Alternatively, a simpler phenomenological plastic hinge model that allows direct 

estimation of roof displacement from ultimate plastic curvature capacity at the critical section is 

presented in Figure 2.16d. This model is useful to compare the impact of the strain limits 

proposed in this paper, by relating local level capacity such as limiting strains in the boundaries 

of a wall, and global level demand such as roof drift ratio (u/hw). This simple model has been 

extensively used in the literature (Moehle, 1992; M.J.N. Priestley et al., 2007; Wallace & 

Orakcal, 2002), and is the basis of provision in ACI-318-14§18.10.6.2, that evaluate the need for 

special boundary elements in structural walls with a single critical section at the base. The model 

assumes that the plastic hinge is centered at the base of the wall, and that the totality of the roof 

displacement is due to plastic rotation, pu. This implies a rigid body motion of the cantilever 

wall, pivoting at the base, hence the roof displacement is given by: 
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wpuu H   (2.8) 

Assuming the curvature is uniform along the selected plastic hinge length, it is possible to 

estimate the plastic rotation in terms of the ultimate unit deformation of the fiber under 

maximum compression, cu: 
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(2.9) 

where u is the ultimate curvature, and c is the depth of the neutral axis measured from the fiber 

under maximum compression. The impact of the results of the compression tests described above 

can be evaluated from a displacement-based perspective, by making plastic hinge length, Lp, 

equal to gage length, GL, and ultimate compressive strain, cu, equal to max (Equation (2.6)). 

Consequently, the plastic rotation in Equation (2.9) becomes: 
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(2.10) 

Combining Equations (2.8) and (2.10), the roof drift ratio can be estimated in terms of a 

normalized plastic hinge length (Lp/tw), the wall thickness tw, and a set of coefficients associated 

to strain levels 90 or 80: 
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and coefficients 1 and  can be found in Table 2.2. 

 
Figure 2.16 - Plastic hinge model: (a) wall under lateral and vertical loading; (b) wall global and local deformation 

profiles; (c) idealized elastic and plastic curvature distribution; (d) plastic hinge model. 

 

Figure 2.17 compares the response of a hypothetical reinforced concrete wall of total 

height Hw, which boundary elements at the critical section have similar reinforcement 

characteristics, and assumed axial deformation capabilities, as those in specimens W8, W9 and 

W12. Response of specimen W11 is similar to that of specimen W8; therefore, its results are not 

presented for brevity. Given a selected plastic hinge length, the y-axis values in Figure 16 are 

associated to a conservative roof drift ratio capacity because of the strain gradient present in 
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actual boundary element of walls subjected to lateral displacements, which was not accounted for 

in the experimental campaign presented here. 

It is observed that although the maximum usable compressive strain, max, decreases 

rapidly (in a Power fashion) with increasing plastic hinge length, the displacement capacity of 

the wall increases in an approximately linearly manner with increasing plastic hinge length.  

 
Figure 2.17 - Limiting normalized roof drift ratio versus selected plastic hinge length. 

 

Another alternative to measure the implications of the proposed strain limits is based on 

the plastic hinge model presented by Takahashi et al. (2013) (Figure 2.18). As summarized in 

Chapter 1 above, this model is based on the experimental data of ten reinforced concrete walls, 

designed to ensure flexural compression yielding of one of the boundaries. The model assumes 

that plastic compressive strain (p) is uniform and concentrates near the bottom of the wall, over 

a small area bounded horizontally, by neutral axis depth c, and vertically, by plastic high length 

Lp. On the other hand, the area in tension is trapezoidal, extending over the whole height of the 

specimen. The reminder area is assumed to rotate as a rigid body, pivoting around the neutral 

axis (N.A.), on a plane located at Lp from the base. For loading direction compressing the weak 

boundary, the plastic component of the flexural drift (Rp) is defined as the rotation of this rigid 

area according to Equation (2.12): 

p

p

p
c

L
R   

(2.12) 

and the plastic strain (p) of the compressed edge is the component of the ultimate strain (cu), in 

addition to the strain at yield. For the specimens with ties at the boundaries, the strain at yield 

was estimated as 0.1%; therefore the plastic strain can be approximated as 001.0 cup  . 

To introduce the experimental results presented in this paper, the maximum compressive 

strain cu is equated to max from Equation (2.6), and gage length GL is replaced by Lp, to 

estimate the plastic rotation Rp, in terms of a relative plastic hinge length as presented in 

Equation (2.13).  
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Figure 2.18 - Two-dimensional plastic hinge model (adapted from Takahashi et al. (2013)). 

 

Eight of the specimens presented in (Takahashi et al., 2013) are selected, and their plastic 

flexural drift Rp is estimated (with Equation (2.13)) and contrasted with the experimental results. 

For this purpose, values for tw/c are obtained from the experimental data of the aforementioned 

article. Coefficients 1 and  are selected at the 80 strength level from specimens W8 and W11 

(of this study) to estimate, respectively, the maximum strain capacity of specimens with 

staggered ties and specimens with crossties restraining every bar at every layer of transverse 

reinforcement in the weak boundary. The specimen without crossties and another with very low 

axial load (P < 0.03Agf’c), which resulted in a shallow neutral axis depth, shorter than the 

extension of the boundary element, are not evaluated. Table 2.3 contains the normalized axial 

load of each specimen and the set of variables required by Equation (2.13). Figure 2.19a 

compares the experimental results with estimations of Rp using Lp/tw = 2.5, as assumed by 

Takahashi et al. (2013), and Lp/tw = 3.5, which is an upper limit observed in the experimental 

results presented above (Figure 2.11).  

 

Table 2.3 - Selected specimens and input variables for estimating plastic flexural drift Rp. 

Specimen ID tw/c P/Agf’c 1,80 ,80 

NM4 0.25 0.084 0.0093 0.284 

NM5 0.20 0.062 0.0093 0.284 

NS3† 0.33 0.080 0.0087 0.265 

NM3† 0.33 0.054 0.0087 0.265 

NM2† 0.50 0.044 0.0087 0.265 

PL6† 0.17 0.059 0.0087 0.265 

PM5† 0.20 0.066 0.0087 0.265 

PM3† 0.33 0.049 0.0087 0.265 

†Specimen with staggered ties 

 

An acceptable representation of the experimental results is observed; the absolute value 

of the relative error for estimations using the shorter plastic hinge length Lp/tw = 2.5, ranges from 

1% to 35%, with mean error of 19% and coefficient of variation of 79%. For estimations using 

Lp/tw = 3.5, the relative error ranges from 13 to 31%, with mean error equal to 19% and 

coefficient of variation of 34%. The residuals between the observed and the estimated data (Rp 
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= Rp,observed - Rp,estimated) were compared with all the relevant variables of the experiment. A weak 

correlation with the applied load was observed, in which the residuals grow with increasing 

applied load. A correction factor of the form Rp,c = 1(P/Agf’c)+2 was applied to the 

estimations in Figure 2.19a, and the results are presented in Figure 2.19b. The parameters of the 

correction are 1 = 6 and 2 = -0.33, and the resulting mean relative error reduced to 15% for the 

two plastic hinge length used. 

 
Figure 2.19 - Comparison between estimated and observed plastic flexural drift. 

 

2.8 Further Research 

In reinforced concrete thin cross sections, crossties might not adequately prevent lateral 

instability of longitudinal bars under relatively low plastic strain demand. Seismic hooks do not 

offer effective restrain to the longitudinal bars because the hooks open at the onset of lateral 

displacement of the bars. Future investigations should explore the effectiveness of hoops instead 

of crossties as internal transverse reinforcement. This will inhibit hook opening and will add 

additional flexural stiffness to restrain bar that are not engaged by a hoop leg (non-tied bars). 

 

2.9 Final Comments 

Results from compression tests of ten full-scale reinforced concrete prisms, representative of the 

boundaries of thin shear walls in seismic zones, were described. The specimens are compliant 

with ACI-318-11 and -14 seismic provisions for detailing of special boundary elements. Two 

main objectives of the tests were (i) to evaluate different layouts of transverse reinforcement 

using crossties to support longitudinal bars and confine the concrete core, and (ii) to estimate the 

axial deformation capabilities and associated spread of plasticity in slender rectangular prisms 

under compressive loading. Outcomes of this investigation suggest that current building code 

requirements for special boundary elements do not necessarily guarantee the achievement of 

effective confinement to protect their sections against brittle axial failure. The global force-

shortening behavior of the specimens was controlled by a thin core whose integrity can be 

compromised due to cover spalling, longitudinal reinforcement buckling, and out-of-plane 

instability. Enhanced detailing (increasing the volumetric ratio of confinement reinforcement and 

decreasing its horizontal spacing) improved behavior but did not produce ductile response in all 

cases. Based on the experimental and analytical results, the following conclusions are obtained: 
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i. Analysis of the deformation capacity of the confined core of specimen W14, with crossties 

only restraining every other internal longitudinal bar in the cross section, showed that the 

flexural stiffness of the long leg of rectangular hoops is insufficient to restrain longitudinal 

reinforcement from buckling. Recorded average strain of the confined core at the onset of bar 

buckling was approximately 0.9%. This value seemed limited by early lateral instability 

(buckling) of the non-tied longitudinal bars, which was triggered under small plastic 

deformation after yielding. Bar buckling was accompanied by expulsion of concrete core 

material, further reducing the resisting area, resulting in rapid loss of axial load carrying 

capacity. 

ii. The behavior of slender prismatic elements under pure compression is highly influenced by 

the asymmetric nature of concrete cover spalling. Asymmetric spalling leads to eccentricity 

between external forces and internal resistance, producing an out-of-plane moment that leads 

to additional out-of-plane displacement and, potentially, to instability in the through-

thickness direction of the specimen. Walls with large cover-to-core thickness, as in the case 

of the test specimens, are especially prone to this type of behavior. 

iii. Cover spalling was observed over an average height comprising between 2 to 3 times the 

wall thickness. Additional damage localization occurred over lengths where bar buckling 

took place, which typically occurred over 3 to 4 hoop spacings (approximately 1 to 1.3 times 

the specimen thickness). This impacted the average strain ductility capacity of the specimens 

because portions of the prisms outside the damage zone did not develop plastic strain demand 

after the peak load was attained, but instead unloaded and relaxed with an unloading slope 

comparable to the initial elastic stiffness. 

iv. Buckling of the longitudinal reinforcement was observed at local plastic strains between 0.9 

and 1.5%. This phenomenon had two consequences: (a) it reduced the post-spalling axial 

capacity of the longitudinal bars and (b) it reduced the post-spalling axial capacity of the 

confined core. These two effects led to post-spalling strength that was substantially less than 

the spalling load, such that plasticity did not spread along the test specimen height. 

v. Recorded buckling length for tied bars extended between 4.5 and 9.5 longitudinal bar 

diameters (4.5  db  9.5), and included, in most cases, the opening of the 90- and/or 135-

degree hooks of the restraining crosstie. For non-tied bars, that is, those only restrained by 

the long leg of the perimeter hoop, buckling length extended between 14 and 18db. 

vi. The measured average force-shortening relationship for specimens W3 through W11 was 

similar, developing a steep post peak descending branch at average strains ranging from 0.3 

to approximately 0.5%. Response of specimen W12 showed an improved response with 

respect to the rest of the specimens. For this specimen longitudinal bar buckling was 

inhibited thanks to the larger diameter bars, the elimination of non-tied bars within the cross 

section, and the increase of volumetric ratio of confinement reinforcement. The specimen 

failed due to global out-of-plane lateral instability at an average axial strain of approximately 

1.8%. 

vii. Acceptable concrete core axial strain ductility capacities only developed over small length of 

the specimen height due to damage localization. Usable strain limits are proposed to be a 

function of the gage lengths over which they are applicable, in the form max=1(GL/tw)-

where GL/tw is the gage length normalized by the wall thickness and 1 and are Power 

regression coefficients. To ensure stability in compression, these limits are proposed at 

strength levels where the load carrying capacity has only dropped 10 or 20% (90 and 80 
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strengths levels, respectively). For gage length of 2.5 times the wall thickness (2.5tw) the 

usable strain capacities range from 0.68 to 1.25% at the 80 strength level. 

viii. Although strain capacity decays rapidly with larger gage lengths, a simple plastic hinge 

model of a cantilever wall showed that longer hinge lengths are associated with larger global 

displacement capacities, albeit the reduction in usable strains. The dependence of the strain 

limits on gage length was introduced because of the softening nature of the response 

observed. For example, the deformation limiting the stable behavior of the specimens are set 

at strains values past that at peak strength, and lay on a softening branch (with negative 

slope) of the force-strain curves. Additionally, the strain limit versus gage length relationship 

proposed was used in the estimation of the plastic flexural drift of a set of eight reinforced 

concrete wall specimens found in the literature, obtaining good correlation with the observed 

data.  
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Chapter 3 - Analytical Investigation Part I: 

Buckling Models 

 

Bar buckling reduces the load-carrying capacity of reinforced concrete prisms in compression in 

part because of the strength loss suffered by the longitudinal reinforcement but also because it 

reduced the effective confinement of the concrete core, which is prone to rushing. This chapter 

presents a modeling scheme with the purpose of understanding the mechanics of inelastic bar 

buckling, which affected the response of the specimens presented in Chapter 2. To mimic the 

results obtained in the laboratory, a model of longitudinal reinforcement buckling under 

monotonic axial compression is introduced and its response is contrasted against those found in 

the literature. An extension of this model is then presented to replicate the inelastic buckling of 

tied longitudinal bars, unilaterally restrained by concrete. An experiment comprising 48 

analytical specimens allows the development of a simple empirical model that offers the 

complete average axial stress-strain curve of tied longitudinal bars undergoing lateral instability 

(buckling), given a few input parameters such as the tie spacing and the diameter of the 

longitudinal and transverse bars. This model will be used later in the document, as part of a more 

comprehensive model that estimates concrete core empirical stress strain relationships from the 

available data summarized above. 

 

3.1 Previous Studies on Reinforcing Bar Buckling 

Inelastic bar buckling has been studied by many authors in the laboratory (Bae et al., 2005; 

Bayrak & Sheikh, 2001; Mander, 1984; Monti & Nuti, 1992; Rodriguez et al., 1999). The 

laboratory experiments typically focus on testing bare reinforcing bars (in the air), with fixed 

boundary conditions to obtain average axial stress versus average axial strain relationships. 

Typical relevant variables of the experiments are the diameter of the bar (D), the unsupported 

length (L), the type of steel (defined by yield strength fy), and initial imperfections. A main 

observation in these tests is that ductility and strength increase as the ratio L/D decreases. 

Inelastic buckling is delayed to strains larger than the yield strain only if the unsupported length 

is small compared to the bar diameter, and typically a value of around L/D = 6 is reported as a 

minimum to ensure stability. Given the laboratory setup, the buckling length is typically equal to 

the unsupported length in these experiments.  

The analytical research has focused on different aspects of the inelastic bar buckling 

phenomena. Investigations by Gomes and Appleton (1997) and Kunnath et al. (2009) focus on 

formulating material constitutive models for cyclic stress-strain relationships of steel including 

buckling. These constitutive rules use the Menegotto-Pinto model as platform, with some 

modifications to include triggering and the post buckling response of longitudinal reinforcement. 

This type of model have been implemented in nonlinear analysis platforms such as OpenSees 

(McKenna et al., 2000), and is available for public use. Finite element formulation of the 

inelastic bar buckling problem is also part of the literature. Mau and Elmabsout (1989) focused 

on the formulation, while Dhakal and Maekawa (2002) focused on the implementation of 

mathematical models comprising beam-columns elements to represent the buckling mechanism 
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of bare bars. The latter authors used displacement-based beam column elements with distributed 

fibers to simulate the results of Mander (1984) and Monti and Nuti (1992), offering good 

agreement with the laboratory test data. A main conclusion of Dhakal and Maekawa (2002) is 

that the average stress strain curve of bars undergoing lateral instability is solely dependent on 

the product of the slenderness ratio and the square root of the yield strength of the longitudinal 

bar (
yfDL / ). 

One of the first works reporting the requirements for a stable response of tied longitudinal 

bars embedded in concrete was presented by Bresler and Gilbert (1961). The article reports on tie 

stiffness requirements to promote longitudinal bar buckling between two layers of transverse 

reinforcement. For moderate transverse reinforcement spacing, an important conclusion of this 

work is that the relative tie-to-longitudinal bar diameter required to provide effective transverse 

restraint is small. On the other hand, the restraint provided by the flexural stiffness of a hoop leg 

is relatively ineffective, unless impractically large hoop bar diameters are used. Two 

mathematical expressions used to support the aforementioned conclusion are rewritten as 

Equation (3.1) and (3.2), in terms of the variables used in this document.  
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(3.2) 

Variables in Equation (3.1) are the diameter dbt and length lt of a tie; db for the longitudinal bar 

diameter; and s for the spacing between transverse reinforcement layers. Additional variables in 

Equation (3.2) are dbh for the diameter and lh for the length of the leg of a hoop, respectively. 

These two equations help investigating the axial tie and flexural hoop stiffness requirement for 

the experiments presented in Chapter 2. Equation (3.1) is used for the analysis of longitudinal 

bars engaged by a tie, assuming lt = 9 in. [229 mm]. Equation (3.2) is used for the analysis of 

non-tied longitudinal bar, assuming lh = 33 in. [838 mm]. For the first case, it is assumed that a 

single tie (of length lt) per layer is restraining the longitudinal bar by means of its axial stiffness; 

and that hook unwinding (opening) is not likely. The second case is representative of an internal 

longitudinal bar located at midspan of the long leg of the perimeter hoop. Lateral displacement of 

this bar is restrained by the flexural stiffness of this leg (of length lh), which is assumed to be 

fixed at both ends. Table 3.1 compares provided (as built) versus required (per Equation (3.1) or 

(3.2)) tie or hoop diameter for the reinforced concrete prism experiments in Chapter 2. Given 

the tie spacing used in the laboratory specimens, two main observations are that (i) hoop 

diameter necessary to effectively restrain longitudinal bars against lateral instability are 

impractical, requiring dbh ≥ 3.3 in. [83.8 mm]; also, that (ii) only specimens W8 and W9 comply 

with the tie requirement, which is consistent with the reported buckling length of one tie spacing 

for their tied bar, as described in Section 2.6. 
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Table 3.1 - Tie and hoop diameter requirements for specimens W5 to W12 according to Bresler and Gilbert (1961). 

[Note: 1 in. = 25.4 mm]. 

Specimen 

ID 
db [in.] s [in.] 

Provided 

dbt and dbh 

[in.] 

Required 

dbt [in.] 

[ Eq. (3.1)] 

Required 

dbh [in.] 

[ Eq.(3.2)] 

dbt,prov/dbt,req dbh,prov/dbh,req 

W5 1.000 4 0.500 0.8 3.8 0.6 0.1 

W7 0.875 4 0.500 0.6 3.3 0.8 0.1 

W8 0.875 8 0.500 0.2 -- 2.3 -- 

W9 0.875 4 0.625 0.6 3.3 1.0 0.2 

W11 1.270 4 0.500 1.3 -- 0.4 -- 

W12 1.270 4 0.625 1.3 -- 0.5 -- 

 

More recently, other authors (Pantazopoulou, 1998; Papia & Russo, 1989; Papia et al., 

1988) have also explored the stability of bars in reinforced concrete elements. Pantazopoulou 

(1998) presents an investigation showing that reinforcement stability depends on the interaction 

between the transverse reinforcement layout, core deformation capacity and bar diameters, and 

not only on the ratio between the restraining length and the longitudinal bar diameter. The idea 

that the layout and geometric properties of restraining ties play and important role in the 

response of longitudinal bar undergoing inelastic buckling is the main topic of this chapter, and 

is explored in detail by means of finite elements models in Section 3.3 and 3.4 below. 

 

3.2 Experimental Observation of Longitudinal Steel Buckling  

Longitudinal steel buckling was observed in the damage zones of the specimens presented in 

Chapter 2.The damage zone observed had approximate length equal to 2 to 3 wall thicknesses, 

and included a smaller portion where additional plastic deformation concentrated, and where bar 

buckling developed. Figure 3.1 presents a close-up view of specimens W5, W7 and W11 in the 

region where localization of damage took place. All other specimens experienced similar 

behavior, except specimen W12. Tied bar buckling length extended between 4.5 and 9.5 

longitudinal bar diameters (4.5  db  9.5), and included, in most cases, the opening of the 90- 

and/or 135-degree hook of the restraining tie. Unrestrained bars buckled over approximately 

three to four hoop sets (for example, between 14 and 18db). Corner bars buckled in higher 

modes, apparently because of the restraint and the force excerted by the perimeter hoops when 

elongating due to buckling of the internal bars.  

 

3.3 Inelastic Buckling Model of Isolated Bars 

In the following, a nonlinear bar buckling model under monotonic compressive loading is 

developed in the software package OpenSees (McKenna et al., 2000) and its results are 

contrasted with those of (Monti & Nuti, 1992). This model will serve as the basis for a more 

complex model, described later in this document, which includes lateral restraint by transverse 

ties and the core concrete. 
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Figure 3.1 - Buckling of different diameter bars appearance. 

 

3.3.1 Force-based beam-column element formulation 

The basic force system of a two dimensional Bernoulli beam-column element is depicted in 

Figure 3.2. The basic force system, 𝒒 = [𝑞 𝑞2 𝑞3]T, comprises an axial load and two end 

moments. The shear forces in the basic system are dependent on the end moments and provide 

the required force balance to equilibrate the element in rotation and translation in the local y-

direction. The basic deformations, 𝒗 = [𝑣 𝑣2 𝑣3]T, associated with the basic forces, 

comprise one axial deformation and two rotations of the end nodes. These flexural deformations 

are the result of the relative transverse displacement and rotation of the end nodes, and are 

measured relative to the chord joining them in the deformed configuration.  

 
Figure 3.2 - (a) Element basic force system; (b) basic deformation system; (c) forces at the section level 

 

Sectional forces (within the element length) are defined by the end forces and internal 

applied loads in the form 

𝐬(𝑥) = 𝒃(𝑥)𝒒 + 𝒔𝑝(𝑥) (3.3) 
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where 𝒔𝑝(𝑥) are the internal element loads which are set to zero for this study, and the sectional 

forces of interest comprise an axial force and a moment: 𝐬(𝑥) = [𝑁(𝑥) 𝑀(𝑥)]𝑇which can be 

coupled (e.g., PM interaction) with a fiber section model. The shear force along the element is 

constant and will not consider inelastic effects for this study. 

Interpolation matrix 𝒃(𝑥), relates the end forces to the section forces in a linear manner: 

𝒃(𝑥) = [
1 0 0
0 𝑥

𝐿⁄ − 1 𝑥/𝐿] (3.4) 

At the section level the deformation vector, 𝒆(𝑥) = [휀𝑎(𝑥) 𝜅(𝑥)]𝑇, comprises an axial strain at 

the centroid of the cross section and its curvature. These two parameters are sufficient to describe 

the uniaxial strain of any particle in the cross section. Figure 3.3 shows the parameters that 

define a fiber section along with a representation of section deformations assuming plane 

sections remain plane before and after the deformation. Also shown are the parameters defining 

the geometry of each fiber, its uniaxial strain, and its constitutive material model. 

 
Figure 3.3 - Fiber section geometry, deformations and material constitutive model parameters. 

 

The principle of virtual forces allows formulating compatibility relations between the 

section deformations, e, and the element deformation, v according to 

𝐯 = ∫ 𝒃𝑻(𝑥)𝐞(𝑥) 𝑑𝑥
𝑳

𝟎

 (3.5) 

The derivative of Equation (3.5) with respect to the basic force system defines the 

element flexibility matrix, f: 

𝐟 =
𝜕𝒗

𝜕𝒒
= ∫ 𝒃𝑻(𝑥)𝐟𝒔(𝑥)𝒃(𝑥) 𝑑𝑥

𝑳

𝟎

 (3.6) 

where 𝐟𝒔 is the section flexibility matrix estimated as the inverse of the section stiffness matrix, 

𝒌𝒔
 𝟏. The section stiffness matrix can be formed by integration as follows 

𝐤𝒔 =
𝜕𝒔

𝜕𝒆
=  [

𝜕𝑁 𝜕𝑒𝑎⁄ 𝜕𝑁 𝜕𝜅⁄

𝜕𝑀 𝜕𝑒𝑎⁄ 𝜕𝑀 𝜕𝜅⁄
] = ∫𝐸𝑡 [

1 −𝑦

−𝑦 𝑦2
] 𝑑𝐴 ≅ ∑ 𝐸𝑡,𝑖 [

1 −𝑦𝑖
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where Et represents the tangent modulus of the assigned material and y the location of the 

material points across the section. In the discrete version of this equation, the integral is replaced 

by a summation over all the fibers of the cross section, with each fiber having area 𝑨𝒊 = 𝒃𝒊𝒘𝒊 
(Figure 3.3). 

 

3.3.2 Force-based and displacement-based beam-column element formulation comparison 

Distributed plasticity formulation of beam-column elements offers a flexible platform for 

modeling structural elements when a critical section location, where inelastic deformations might 

occur, cannot be predicted prior to the analysis. Three main formulations of distributed plasticity 

elements are: the force-based, the displacement-based, and the mixed formulation (M. H. Scott & 

Hamutçuoğlu, 2008). This section focuses on the force-formulation of beam-column elements to 

model inelastic bar buckling.  

The force-based formulation (FBF) of beam column elements (Ciampi & Carlesimo, 

1986; Spacone et al., 1996) makes use of the integral form of the compatibility relations between 

the element end deformations v, and the section deformation e within the element (Equation 

(3.5)). This is advantageous because a non-uniform deformation field along the element length 

can be properly modeled. It is important to note that compatibility in the integral form is only 

satisfied at the element ends and not at every section. This is a main difference with respect to 

the displacement-based element formulation (DBF), which is based on standard finite element 

approach where section deformations are estimated as the derivatives of an imposed 

displacement field. The FBF also uses the available exact static equilibrium equations between 

the end nodal forces, q, and the internal forces, s (Equation (3.3)). This results in constant axial 

force and linear bending moment distribution along the element length. On the other hand, the 

DBF uses the principle of virtual displacements to formulate “weak” equilibrium between these 

two sets of forces, resulting in an error where the internal forces at each section are not in 

equilibrium with the element basic force if fine meshes are not implemented. Due to the enforced 

displacement field along the element length, the displacement-based element has constant axial 

deformation and linear curvature distribution. To properly model nonlinear behavior of 

nonprismatic elements, the displacement based approach requires mesh refinement (i.e., using 

more elements) to overcome the restrictions in the axial deformation and curvature distribution, 

while the force-based approach requires the addition of more integration points but still using 

fewer elements. For a cantilever structural element with transverse lateral loading, the curvature 

distribution modeled by a single force-based element (FBE) is compared to that of a set of 

displacement based elements (DBE) in Figure 3.4. 

 

3.3.3 Force-based and displacement-based element state determination 

In structural analysis problems, a main task is to obtain basic element forces when the model is 

subjected to nodal displacements. The idea is to estimate the internal resisting forces that are in 

equilibrium with the applied external forces. For nonlinear models, this is an iterative process, 

because element stiffness is not constant and is a function of the element deformations (this is 

explained in detail later). For a displaced structure, element deformations are computed by 

means of a compatibility matrix relating the global degrees-of-freedom (DOF), u, and the basic 
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element deformations, v. This kinematic relation can account for large displacement with a 

corotational formulation (Filippou & Fenves, 2004). 

 

 
Figure 3.4 - Curvature distribution comparison between a force-based and a displacement-based beam-column 

element. 

 

Figure 3.5 shows a flow chart where the DBE state determination is depicted. In the 

DBF, calculation of the basic forces, q, follows a straight non-iterative path, where, given the 

element deformations, the section deformations, can be estimated with a function of the from 

𝒆(𝑥) = 𝑩(𝑥)𝒗; here 𝑩(𝑥) is an interpolation matrix that relates end flexural deformations (v2, 

v3) with a linear curvature distribution ((x)) and the element axial deformation (v1) with a 

constant axial strain at the centroid of the cross section (a(x) = a). At a section level, this allows 

calculating a uniaxial strain and stress field ([(y,x), (y,x)], by means of a material uniaxial 

constitutive model), which can be integrated to estimate section forces s and finally end basis 

forces q. 

A complication of the FBF is that there is not a direct relation between the element 

deformations, v, and the basic forces, q, because the compatibility relation between element 

deformations and section deformations is in integral form (Equation (3.5)). Given the element 

deformations, the resolution of the end basic forces requires nested Newton iterative procedures 

to find equilibrium between the end deformations and the section deformations. The flow chart 

on Figure 3.6 shows some steps of the process for one non-converged iteration at the element 

level and one converged iteration at the section level. 

Even though the FBE formulation is computationally more expensive (due to the required 

nested iterations at the element level), it is considered more robust because (i) it guarantees exact 

equilibrium between the end forces of the element and those at the section level, (ii) it allows 

modeling non-uniform curvature field along the element length, and (iii) its implementation (De 

Souza, 2000) in OpenSees is simpler since it requires fewer elements to converge to the same 

solution as the DBE formulation. 
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Figure 3.5 - Displacement-based element state determination flow chart. 

 

 
Figure 3.6 - Force-based element state determination flow chart. 

 

3.3.4 Quadrature rule for distributed plasticity beam-column elements 

For the computational implementation of the FBE, numerical integration of Equations (3.5) and 

(3.6) are required. In a discrete form, these equations are rewritten as 

𝐯 ≅∑𝒃𝑻(𝑥𝑖)𝐞(𝑥𝑖)𝑤𝑖

𝑵𝒑

𝒊=𝟏

 (3.8) 
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 (3.9) 
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where 𝑁𝑝 is the number of integration points (IP) along the element length, 𝑥𝑖 is the location of 

each IP within the element length, and 𝑤𝑖 is its associated weight.  

 

Gauss-Lobatto quadrature 

One integration rule relevant to this study is the Gauss-Lobatto quadrature. This rule defines 

values of 𝑥𝑖 and 𝑤𝑖 and guarantee certain level of accuracy according to the selected number of 

IPs. The Gauss-Lobatto integration rule is the default rule in OpenSees and places two 

integration points at the end of the beam-column element. This is convenient for the analysis of 

frame elements where maximum bending moment demands are generally expected at the 

extremes (M.H. Scott, 2011). The order of accuracy is 2𝑁𝑝-3. In Equation (3.9), the term 

𝒃𝑻(𝑥)𝒃(𝑥) contains a second order polynomial; hence, at least 3 IPs (𝑁𝑝 =3) are required to 

estimate the flexibility matrix adequately, with a linear distribution of  𝒔(𝑥). With the same 

number of IPs, a quadratic distribution of 𝒆(𝑥) can be integrated accurately (Equation (3.8)). 

Figure 3.7 shows the Gauss-Lobatto integration point locations and weights for 3 and 4 IPs. 

 
Figure 3.7 - Integration points locations and weights for the Gauss-Lobatto quadrature rule. 

 

3.3.5 Nonlinear geometric formulation 

Reinforcement buckling modeling requires a formulation that accounts for significant structural 

geometry changes during the evolution of the phenomenon. The model should be able to account 

for the change of axial force of the discrete structural component (frame element) due to 

overturning effects promoted by increasing axial shortening and large lateral displacement. It is 

also desirable to model nonlinear intra-element geometric effects (P- effect) arising from the 

eccentricity of the axial force, aligned in the direction of the chord of the deformed element, 

relative to the deformed shape of the element between the end nodes. For the reason that the 

observed bar buckling occurs after the reinforcement yields in compression, the formulation of 

the model should also account for material nonlinearities.  

In order to account for nonlinear geometry due to the expected large displacements and 

rotations, a corotational formulation is necessary (Filippou, 2014). This formulation allows 

writing the equilibrium equations between the basic resisting forces (always aligned with the 

chord of the deformed element) and the nodal applied forces (in the global coordinate system) in 

the deformed configuration. Figure 3.8 shows a frame element in the deformed configuration 

depicting the basic force and nodal force systems. The nonlinear equilibrium relation between 

the basic forces q and the applied end global forces P is given by 

Np x i / L w i

3 0.000 0.167

0.500 0.665

1.000 0.167

Np x i / L w i

4 0.000 0.084

0.277 0.417

0.723 0.417

1.000 0.084

Gauss-Lobatto IP Locations and Weights
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(3.10) 

where X and Y define the rotation of frame element in the undeformed configuration, with 

respect to the global reference system; Ln is the deformed element length; ux and uy are the 

relative horizontal and vertical components of nodal displacement which generate elongation 

(i.e. without rigid body motion displacements). As it is apparent from the appearance of the 

displacements ux and uy (which are also involved in the calculation of Ln) in Equation (3.10), 

the statics of the problem is nonlinear and will require an iterative strategy for its solution 

because the global stiffness matrix of the system will include these displacements as well. 

 
Figure 3.8 - Frame element nonlinear statics under corotational formulation (adapted from (Filippou, 2014)). 

 

As mentioned before, accounting for the influence of the axial force q1 on the flexural 

response of the frame element requires the inclusion of the P- effect in the formulation of the 

element stiffness matrix in the basic system. This will create a dependency of the basic end 

moments q2 and q3 on the axial force and, consequently, another nonlinear relation between the 

basic forces and the end node applied forces will arise. This formulation is computationally 

expensive, only exact for linear elastic material behavior, and not available in many analysis 

software packages, including OpenSees.  
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Considering that the P- effect plays an important role when modeling the buckling 

behavior of a prismatic bar, an alternative procedure, consisting in the subdivision of the member 

into smaller elements, is required. To show the latter, Figure 3.9 presents two bars under axial 

load at the same tip vertical displacement U and lateral displacement w at midspan. It can be 

assumed that the deformed configuration shown is representative of an axially loaded bar 

undergoing buckling with fixed boundary conditions. It is apparent that for the model with fewer 

elements (Figure 3.9a) the maximum deviation of the element deformation relative to the chord 

is larger than that of the more discretized one (i.e., '). Furthermore, it can be observed that 

this deviation is almost negligible for some elements (for example, element b’) and the P- effect 

could be neglected. In summary, the discretization of the axially loaded bar promotes the 

deformed shape of each element to be close to its unloaded state, hence allowing for the use of 

element stiffness formulations under linear geometry. 

 
Figure 3.9 - Basic axial force acting on the deformed shaped of the members of a buckled bar: (a) for a two-node 

discretization; (b) for a six-node discretization. 

 

3.3.6 Nonlinear incremental analysis 

The selected finite element model to simulate the inelastic buckling of a longitudinal 

reinforcement bar under compression is depicted in Figure 3.10. The model accounts for the 

nonlinear geometry considerations described above by proper discretization into smaller 

elements and by the implementation of a corotational formulation to transform element stiffness 

and resisting force from the local coordinate system to the global coordinate system. It comprises 

force-based nonlinear frame elements with distributed plasticity and fiber sections at five 

integration points (Spacone et al., 1996). The fiber sections can account for cyclic, uniaxial 

stress-strain relationships of the materials assigned to it. The selected steel stress-strain behavior 

is assumed to be bilinear with isotropic strain hardening (Filippou et al., 1983) but other material 
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models were also tested, as described below. This implementation allows approximating the 

moment-curvature relationships of the elements at different levels of axial force.  

Pushover analyses were performed in OpenSees to estimate the response of the prismatic 

bar under pure compression. To solve for the nonlinear equilibrium equations, a Modified 

Newton-Raphson algorithm, alternated (when convergence problems were found) with an 

accelerated Newton algorithm based on Krylov subspaces (M. H. Scott & Fenves, 2010) was 

utilized. To advance in subsequent states of the response, load factor increments (or decrements) 

were controlled by specified vertical displacements of the top node of the bar (i.e., displacement 

control of load factor) or using an Arch-Length algorithm (Crisfield, 1981). The convergence 

criterion at each iteration is based on work increment. 

 
Figure 3.10 - Finite element model to simulate inelastic bar buckling. 

 

Figure 3.11 shows the calibration process to select an appropriate number of fibers and 

their configuration in the circular section to achieve a stable solution. For this purpose, the bar 

was modeled with only one element, of length Lo, to inhibit any buckling response and focus on 

the response given different fiber distributions. The results are contrasted against the stress-strain 

relationship of the A706 steel model. It is worth noting, that although this very simple case of 

pure axial demand should give the same results for any fiber configuration because there is no 

flexure involved, it was found that the circular fiber section coding might not be properly 

implemented in OpenSees3. Specifically the calculation of the area is not correct as can be seen 

from the lower axial strength attained by models with a reduced number of sections (e.g., C4R4, 

C8R8). For this case a stable solution was found for 120 fibers under a discretization of the cross 

section comprising 6 radial and 20 circular subdivisions. The later also shows that the error in the 

code is related to the circular subdivision because section C20R6 has less than half the number of 

fibers of section C16R16 and it did achieve the expected axial capacity. Section C20R10 was 

found to be optimal by Berry and Eberhard (2008) under combined axial and flexural response 

and will be used as the selected discretization scheme to overcome any coding problem in 

OpenSees. 

                                                 
3 This finding was reported to Frank McKenna, the initial developer of OpenSees, who confirmed the error in the code. It was 

fixed in version 2.4.3 of OpenSees. 
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Figure 3.11 - Fiber configuration sensitibity analysis. 

 

Response sensitivity to different element discretization (represented by N = the number of 

subdivisions), to approximate the intra-element nonlinear geometry, is shown in Figure 3.12. 

The bar shown has both ends restrained against rotation and lateral displacement and depicted is 

the applied axial load divided by the original area of the bar versus the displacement of top node 

normalized to the original length of the bar. Slenderness ratio is Lo/db = 11, where db is the 

diameter of the cross section. Given the large Lo/db ratio, inelastic buckling was expected (Monti 

& Nuti, 1992), therefore, to test the effect of a yield plateau in the material stress-strain relation, 

the buckling response under two different material models was estimated: (a) model with bilinear 

steel material (Filippou et al., 1983) and (b) model with a trilinear steel material with yield 

plateau4. To promote buckling of the bar, an initial imperfection, defined as a lateral 

displacement wo = Lo/10,000 at midspan was introduced. 

It is observed that for either material used, the solution converges to a stable response for 

subdivisions of the bar of at least 6 elements. It is found that these responses are not affected by 

the presence of a yield plateau and only show minor variations of the softening behavior branch. 

Though not shown here, this was also confirmed for different number of integration points for 

each element and different values of the initial lateral imperfection. For N = 4 and bilinear steel 

material, the response of the bar is close to those with larger N; for the case of trilinear steel 

material, the onset of buckling occurred at larger strains on the yield plateau. Even though this 

response is acceptable, the displaced shaped for N = 4 shows that the triple curvature 

                                                 
4 Implemented by Scott and Filippou. Online <http://opensees.berkeley.edu/wiki/index.php/Hysteretic_Material>. 
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deformation of the buckling phenomena is hard to model with as few elements. The hardening 

behavior of the model with N = 2 elements and trilinear material suggests that the approximation 

of the intra-element nonlinear geometry by proper discretization of the bar has an important 

effect on the response of the bar. Since the behavior for N = 6 is close to that of N = 32, which is 

thought of as a subdivision upper bound, the results presented herein will only consider a bilinear 

steel bar comprising 6 elements, each with 5 integration points with a circular fiber section of 20 

circular and 10 radial subdivisions (N6C20R10). 

 

 
Figure 3.12 - Buckling response comparison for different element discretization and two different steel materials: 

(a) bilinear steel material; (b) trilinear steel material with yield plateau. 

 

The selected model global response, defined as the applied load normalized by the yield 

force (AsFy) versus the average shortening of the bar normalized by the initial length, is shown in 

Figure 3.13a. Onset of buckling occurs once the material reaches its yield strain. Maximum 

sustained load is equal to the yield force and at large deformations it approaches asymptotically 

to approximately 35% of that value. Also shown are four different stages of the response: one in 

the elastic range, another at the onset of buckling, and two more in the plastic range. The 

displaced shape of the chords of the elements is depicted in Figure 3.13b for these stages. The 

triple curvature of the buckling shape is modeled accurately by the selected discretization. 
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Distribution of centroidal normal strains (positive in this case for compression) along the height 

of the bar is shown in Figure 3.13c. Strain values for the central and extreme integration points 

of each element are plotted. The formation of three plastic hinges is apparent. It is interesting to 

notice that the elements between the plastic hinges (i.e., elements 2 and 5) are almost unstressed 

and just serve the purpose of transitioning the deformed shaped between the changes in the 

curvature of the bar. This result is also confirmed by (Dhakal & Maekawa, 2002) with a Lo/db 

ratio of 10 and a greater element discretization (e.g., N = 12). 

 
Figure 3.13 - Global and local response of the select model (N6C20R10). (a) Normalized applied axial load versus 

average shortening of the bar; (b) deformed shape; (c) normal strain distribution at the centroid. 

 

Further analysis at a local level, such as the response of individual fibers at an integration 

point at midspan, is depicted in Figure 3.14. Figure 3.14a shows the response of a fiber that 

only sees compressive strains because is on the concave side of the buckling bar (i.e., to the left 

of the displaced shape shown in Figure 3.13b). Figure 3.14b shows the stress-strain response of 

a centroidal fiber. Figure 3.14c shows the response of a fiber that is in compression during the 

elastic response of the bar and, at the onset of buckling, its strains reverse toward the tensile side 

due to the overturning moment induced by the buckling phenomena. This result suggests that a 

given stage, the model deals with different portions of the section having different moduli which 

is an expected result as suggested by (Papia & Russo, 1989) and (Pantazopoulou, 1998). Section 
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3.4.1.1 presents a more detailed analysis of the modulus variation across the critical section of a 

bar undergoing lateral instability. 

 
Figure 3.14 - Response at the fiber level at midspan: (a) extreme fiber under compression only; (b) centroidal fiber; 

(c) extreme fiber under strain reversal after buckling initiates [Note: 1 ksi = 6.9 MPa]. 

 

Figure 3.15 presents a comparison of the N6C20R10 model with test results by (Monti & 

Nuti, 1992). Both cases have comparable geometric characteristics only differing in the material 

properties (e.g., bilinear model of A706 steel for the analytical curve and FeB44 steel for the 

experimental data). Also shown is the monotonic A706 steel tensile stress-strain relation. The 

analytical results obtained are in good agreement with those in the literature and the model is 

deemed acceptable for use in a larger model with other components of the boundary elements 

subject of study in this document. 

 

3.4 Modeling Inelastic Buckling of Tied Longitudinal Bars Embedded in Concrete 

With the idea of including some of the particularities of the boundary conditions present around 

a longitudinal bar embedded in concrete, the model presented in Section 3.3 is extended in this 

section. For this purpose, transverse truss elements are added to the model to mimic the restraint 

imposed by a hoop leg or a tie. This restraint assumes perfect contact between the transverse and 

the longitudinal reinforcement; therefore, tie opening is not accounted for. Additionally, zero-

length contact elements are included to mimic the presence of the concrete core, which 

effectively constrains the lateral instability of the bar to a single direction only. This in turn, 

prevents higher-mode buckling, which might arise due to the restrictions imposed by the ties 

along the length of the bar. The model gives insight into the impact of the transverse 

reinforcement geometric characteristics on the inelastic buckling response of longitudinal bars. 

Specifically, the relative post yield stiffness (mh) of the average stress–average strain relation is 
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studied, along with the plastic strain at the onset of buckling b and the corresponding softening 

branch slopes. 

 
Figure 3.15 - Response comparison with (Monti & Nuti, 1992). 

 

Figure 3.16 presents the general layout of the buckling models used, which have two 

different configurations of tie layout; in one model (Tie Setup 1), the ties are placed at s = 8 in. 

[203.2 mm] center-to-center and the other (Tie Setup 2) has them placed every 4 in. [101.6 mm] 

along the length of the longitudinal bar. The longitudinal bars have initial length Lo = 24 in. 

[609.6 mm], corresponding to twice the thickness of the specimens tested in Chapter 2. This 

initial length is longer than the typical buckling length of the bars tested because it is of interest 

to obtain an average-axial-stress versus average-axial-strain relationship that also includes some 

elastic portions of the bar. This is to be consistent with the observations reported in Section 2.6.1 

and Section 2.6.4, in which the recorded spalling lengths (Figure 2.11) contain a smaller portion 

where bar buckling develops. This will be useful later when the buckling model is used to 

obtained experimental concrete core stress-strain relationships for different gage lengths. The tie 

length for the analytical experiment is set to lt = 6 in. [152.4 mm], which corresponds to half the 

thickness of the specimens. The analytical experiment matrix is developed by varying the 

longitudinal bar diameter from db = 3/4 in. [19 mm] to 1 1/4 in. [32 mm], as wells as the 

transverse tie diameter from dbt = 0 to 7/8 in. [22 mm]. 

Table 3.2 contains the experimental variables of interest with some resulting 

nondimensional quantities such as ratio s/db, which represents a relative restrictive tie spacing 

over which bar buckling is forced into (except for the cases of smaller tie diameters) and ratio 

(dbt
2/lt )/(dbl

2/Lo), which represents the relative stiffness of a single transverse tie with respect to 

the longitudinal bar stiffness. These ratios will be used later as explanatory variables for the 

model developed in Section 3.4.2.1. 
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Figure 3.16 – Inelastic buckling models of tied embedded bars. 

 

Table 3.2 – Inelastic buckling analytical experiment matrix [Note: 1 in. = 25.4 mm]. 
Test 

ID 

s 

[in.] 

db 

[in.] 

dbt 

[in.] 
s/db dbt /db (dbt

2 /lt )/( db
2 /Lo) 

1 8 3/4 0 10.7 0.0 0.0 

2 8 3/4 1/4 10.7 0.3 0.4 

3 8 3/4 3/8 10.7 0.5 1.0 

4 8 3/4 1/2 10.7 0.7 1.8 

5 8 3/4 5/8 10.7 0.8 2.8 

6 8 7/8 0 9.1 0.0 0.0 

7 8 7/8 1/4 9.1 0.3 0.3 

8 8 7/8 3/8 9.1 0.4 0.7 

9 8 7/8 1/2 9.1 0.6 1.3 

10 8 7/8 5/8 9.1 0.7 2.0 

11 8 1 0 8.0 0.0 0.0 

12 8 1 1/4 8.0 0.3 0.3 

13 8 1 3/8 8.0 0.4 0.6 

14 8 1 1/2 8.0 0.5 1.0 

15 8 1 5/8 8.0 0.6 1.6 

16 8 1 1/4 0 6.4 0.0 0.0 

17 8 1 1/4 1/4 6.4 0.2 0.2 

18 8 1 1/4 3/8 6.4 0.3 0.4 

19 8 1 1/4 1/2 6.4 0.4 0.6 

20 8 1 1/4 5/8 6.4 0.5 1.0 

21 4 3/4 0 5.3 0.0 0.0 

22 4 3/4 1/4 5.3 0.3 0.4 

23 4 3/4 3/8 5.3 0.5 1.0 

24 4 3/4 1/2 5.3 0.7 1.8 

25 4 3/4 5/8 5.3 0.8 2.8 

26 4 3/4 3/4 5.3 1.0 4.0 

27 4 3/4 7/8 5.3 1.2 5.4 

28 4 7/8 0 4.6 0.0 0.0 
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Test 

ID 

s 

[in.] 

db 

[in.] 

dbt 

[in.] 
s/db dbt /db (dbt

2 /lt )/( db
2 /Lo) 

29 4 7/8 1/4 4.6 0.3 0.3 

30 4 7/8 3/8 4.6 0.4 0.7 

31 4 7/8 1/2 4.6 0.6 1.3 

32 4 7/8 5/8 4.6 0.7 2.0 

33 4 7/8 3/4 4.6 0.9 2.9 

34 4 7/8 7/8 4.6 1.0 4.0 

35 4 1 0 4.0 0.0 0.0 

36 4 1 1/4 4.0 0.3 0.3 

37 4 1 3/8 4.0 0.4 0.6 

38 4 1 1/2 4.0 0.5 1.0 

39 4 1 5/8 4.0 0.6 1.6 

40 4 1 3/4 4.0 0.8 2.3 

41 4 1 7/8 4.0 0.9 3.1 

42 4 1 1/4 0 3.2 0.0 0.0 

43 4 1 1/4 1/4 3.2 0.2 0.2 

44 4 1 1/4 3/8 3.2 0.3 0.4 

45 4 1 1/4 1/2 3.2 0.4 0.6 

46 4 1 1/4 5/8 3.2 0.5 1.0 

47 4 1 1/4 3/4 3.2 0.6 1.4 

48 4 1 1/4 7/8 3.2 0.7 2.0 

 

3.4.1 Typical response 

This section presents typical response of a tied bar undergoing inelastic lateral instability. 

Interaction of the different components during the evolution of Test 29 (Table 3.2) is presented 

in Figure 3.17. This test comprises a 7/8 in. [22 mm] longitudinal bar, modeled under Tie Setup 

2 (s = 4 in. [101.6 mm]), with 1/4 in. [6.4 mm] diameter transverse ties. Figure 3.17a presents 

the relationship between the average-axial-stress, that is, the quotient between applied force, P, 

and the cross-sectional yield strength, Asfy, and the average-axial-strain, which is defined as the 

downward displacement U divided by the initial length Lo. The response shows a linear elastic 

trend up to yielding, followed by a strain hardening portion with a post yield slope smaller than 

the monotonic one for tension, and a softening branch that develops after the onset of bar 

buckling. For the sake of contextualizing all the response presented, four instances highlighted 

correspond to average-axial-strain (U/Lo) equal to 2, 5, 10 and 30 times the longitudinal bar yield 

strain. Figure 3.17b shows the evolution of the cross-sectional tangent flexural stiffness EtI 

normalized by initial stiffness EoI, where Eo corresponds to the initial elastic Young’s modulus 

of the steel and I is the inertia of the longitudinal bar. Extracted from the formulation in 

Equation (3.7), the cross-sectional tangent flexural stiffness is estimated as 

ifib

nFiber

i

iitt AyEIE
k

M
,

1

2

,






 (3.11) 

where ifibA , is the area of the ith fiber (see Section 3.3.1 and Figure 3.3 for the variables 

definition). 
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Figure 3.17 - Buckling response of Test 29 (db =7/8 in. , Tie Setup 2, dbt = 1/4 in.): (a) average stress versus average 

axial strain relationship; (b) normalized tangent moduli evolution with average axial strain; (c) deformed shape; (d) 

stress strain relationship of the tie adjacent to mid height.  

 

It is observed that bar yielding is associated with an approximate 82% reduction in 

flexural tangent stiffness, and bar buckling further reduces this value to 1% of the initial stiffness 

(which is the post yield slope of the material model, relative to Eo). Figure 3.17c depicts the 

deformed shaped of the longitudinal bar at the aforementioned levels of average axial strain. The 

lateral displacement w shown is normalized by bar diameter, db. Figure 3.17d shows the 

demand, in terms of the axial stress-strain relationship, of the restraining tie close to mid height. 

Bar yielding is apparent, and the strain level demand is likely to surpass the rupture strain in this 

case.  

 

3.4.1.1 Double modulus analysis 
Before the onset of bar buckling, all sections along the length of the bar are under uniform 

compressive strain. After inelastic buckling is triggered, lateral displacement of the bar also 

requires that flexural deformations develop, specifically in sections within the plastic hinges (see 

Section 3.3.6). For portions of the bar near the central plastic hinge, this flexural deformation 

promotes unloading (toward the tensile side) of those material points in the convex part of the 

cross section (see Figure 3.14). For this reason, the material in some areas of the cross section is 

in the strain hardening portion of the stress-strain curve, with tangent modulus Et and others start 

unloading with the initial modulus Eo. This behavior is described by the Double Modulus Theory, 

first presented by Engesser in 1895 and von Karman in 1908 (Chakrabarty, 2006; Papia et al., 
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1988), which is also recognized as the so-called “double modulus approach” (Pantazopoulou, 

1998; Papia & Russo, 1989).  

To illustrate the fact that different moduli coexist within the critical cross section of a bar 

undergoing later instability, Figure 3.18 and Figure 3.19 show the strain field and tangent 

modulus distribution of the fibers in the critical section of Test 29. To create the images 

presented, a linear interpolation process is implemented to fill the gaps between the centroids of 

the fibers, which are the monitoring points (see top left corner of Figure 3.19) where the strains 

and tangent moduli are estimated. The images are created at the four instances described above 

(for example, at U/Lo = 2, 5, 10 and 30y) and at yielding (U/Lo = 1y). Figure 3.18 shows the 

evolution of the strain field with average axial strain. It is observed that the strain field evolved 

from a purely compressive state at yielding (U/Lo = 1y) to a flexural-compression state 

developing large curvatures at intermediate average axial strain demand (for example, at U/Lo ≥ 

10y). The onset of bar buckling occurs for average axial strain in excess of 5y; at this instant, 

the cross section is mostly under compressive strains, but it is already showing signs of 

unloading in the concave part of the bar (right hand side). After bar buckling occurs, the neutral 

axis migrates toward the centroid of the bar (from right to left) leaving larger portions of the 

cross section under tensile strains.  

 
Figure 3.18 - Strains in the midspan cross section at different levels of average axial strain (Test29). 

 

Given the large curvature developed for average axial strain larger than 2y, most of the 

material points of the cross section are in the strain hardening portion of the constitutive stress-

strain curve. This is evident in Figure 3.19, which presents instantaneous tangent modulus of the 

material points of the section. This figure also shows the flexural stiffness of the section, as 

calculated with Equation (3.11), normalized to EoI. It is observed that even at low levels of 

plastic axial strain demand only a few material points of the section have tangent modulus equal 

to the elastic one Eo. This results in a reduced section tangent flexural stiffness equal to 18% of 

the elastic, for axial strains along the strain hardening portion of the response (at U/Lo = 2y and 

U/Lo = 5y). The onset of buckling forces the unloading of additional material points, as the 

neutral axis moves toward the centroid. At large average axial strain demand, only a narrow band 



60 

 

of a few material points having the modulus Eo is observed. It is worth mentioning that the 

constitutive material model accounts for early yielding on strain reversal (to approximate the 

Bauschinger effect), therefore, the tangent modulus can actually have several values other than 

the strain hardening modulus Eh or the initial modulus Eo. Figure 3.20 illustrates this idea by 

showing the history of the stress-strain relationship in the fibers of the section. The fibers that 

show strain reversal correspond to those close to the concave portion of the bar (to the right of 

centroid of the cross section). It is apparent that some material points see diverse tangent moduli 

along the evolution of the test, which reveals the complexity of the problem. 

 
Figure 3.19 - Normalized tangent moduli distribution within the critical cross section at different levels of average 

axial strain (Test 29) 

 

 
Figure 3.20 – Evolution of the stress-strain relationship of the fibers in the critical section of Test 29. 
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For the analysis of the response in the vicinity of the onset of bar buckling, Test 28 is 

studied next. This test is appropriate because the lack of transverse ties promoted bar buckling as 

the yield strength was reached. The average response of Test 28 is presented on the top left part 

of Figure 3.23. It is characterized by a linear portion followed by a sharp transition to the 

softening branch for strains larger than y. A rapid loss of strength for small increments of strain 

after the onset of buckling is observed. Of particular interest is the evolution of the test in the 

vicinity of the onset of buckling. The complexity of the load deflection path is apparent in 

Figure 3.21a, which presents the average axial stress-strain curve in a region close to buckling 

initiation. Figure 3.21b shows the evolution of section flexural stiffness EtI with increasing 

average strain. The response is linear up to point i, where a first deviation from the elastic slope 

is observed, mainly a product of the lateral imperfection imposed in the unstressed state. The 

section stiffness is reduced to approximately 65% of the initial stiffness at the strain level of 

point j, and it further reduces until the maximum (yield) strength is reached at point k. A small 

plateau develops up to point l, and “snap-back buckling” is properly modeled from this point, 

thanks to the Arch Length algorithm (Clarke & Hancock, 1990; Crisfield, 1981) employed in the 

solution strategy of the inelastic mathematical model. Unloading is initiated with a strain reversal 

up to point m. Stiffening of the cross section is apparent from point k to point m. This occurs 

because the increased curvature promotes strain reversal in some material points, which unload 

with tangent modulus Eo from a strain hardening state in compression, where they had tangent 

modulus Eh = 0.01Eo. At point n the softening branch is already stabilized. Comparison of points 

l and n is interesting because they are under the same average axial strain demand, have 

approximately equal section flexural stiffness (Figure 3.21d) but their load carrying capacity 

differs by 25%. This difference is because, although the curvature remains essentially constant 

from point l to point n, reduction of the centroidal strain, along with migration of the neutral axis 

toward the center of the section (Figure 3.21c), occur. This in turn, creates internal tensile 

stresses that counteract the compressive stresses that were equilibrating the larger force. 

The Euler equation for buckling of slender columns gives the critical stress at buckling 

according to 

AL

EI
fcr 2

2
  (3.12) 

where L = 0.5Lo = 12 in. [304.8 mm] for the bar of Test 28, which is under fixed-end; A and I are 

the area and inertia of the 7/8 in. [22 mm] diameter bar; and E is the modulus of elasticity. By 

making E = Eo, solution of Equation (3.12) gives fcr = 95 ksi [655 MPa] > fy, therefore inelastic 

buckling is expected. A main interest is finding the appropriate reduced modulus of elasticity 

that agrees with the inelastic solution presented in this section. By making fcr = fy, a reduced 

modulus of elasticity is found to be Er = 0.74Eo, which approximately coincides with reduction 

in section flexural stiffness reported for point j in Figure 3.21b, where the first sign of deviation 

from the linear elastic trend was observed. For point j reported EtI/EoI = 0.65. This is not always 

applicable for the case of tied bars, where reduction of the tangent modulus is also observed 

without apparent lateral instability. 
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Figure 3.21- Response of Test 28 close to the onset of buckling (db =7/8 in. [22 mm], Tie Setup 2, dbt = 0): (a) 

average stress versus average axial strain relationship; (b) normalized section flexural stiffness evolution with 

average axial strain; (c) strain field evolution of the critical section; (d) tangent modulus distribution. 
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3.4.1.2 Local versus global average axial strains 
Response of the Test 29 bar undergoing inelastic lateral instability is further studied in Figure 

3.22. The displaced shape of the bar and the axial strain per element are shown in Figure 3.22a 

and Figure 3.22b, respectively, for the instance where U/Lo = 10y. The locations where the tie 

restrains acts along the length of the bar are highlighted with black markers, along with the 

identification of some elements of interest. For the case shown, the tie diameter is relatively 

small (dbt = 1/4 in. [6.4 mm]), therefore the buckling process provokes their extension. For larger 

tie diameter, lateral displacement at the location of all ties is restricted to small values and the 

buckling length is restricted to s. The axial strain field is not uniform, showing strain 

concentration in locations within the buckling length. Figure 3.22c shows axial-strain at the 

element level versus the average axial strain, U/Lo. Element 18 is part of the central plastic hinge 

as described in Section 3.3.6 and develops the largest axial strain demand compared to the 

adjacent elements. This element develops a maximum axial strain of approximately 9% at an 

approximate average axial strain of 6%. Elements 17 and 16 develop axial strain at a lower rate, 

plateauing at approximately 1/4 to 1/3 of the maximum strain developed by Element 18. 

Relaxation of Element 16 is apparent for average strain larger than 1.5% approximately. In all 

cases, element strains deviate from the average strain after the yield strain is attained. The results 

shown in Figure 3.22c support the experimental observations presented in Section 2.6.2 and 

Section 2.6.4 (Figure 2.9 and Figure 2.13). 

 
Figure 3.22 – Deformed shape and local strains of Test 29: (a) normalized lateral displacement at U/Lo = 10y; (b) 

distribution of element axial strains at U/Lo = 10y; (c) element axial strain versus average axial strain relationship 

for three elements (16, 17 and 18) within the buckling length of the bar. 

 

Appendix B contains plots similar to those in Figure 3.17 to Figure 3.22, describing the 

series of tests 28 to 34, comprising a 7/8 in. [22 mm] longitudinal bar under Tie Setup 2, an 

various diameters of cross ties (0  dbt  7/8). 
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3.4.1.3 Effect of crosstie diameter 
Crosstie diameter dbt has an impact on the response of the longitudinal bars undergoing lateral 

instability. Three tests in Table 3.2 are selected to demonstrate this: Tests 28, 30, and 33. While 

the bar in Test 28 has no lateral restraint, transverse tie diameter in Tests 30 and 33 are 3/8 in. 

[10 mm] and 3/4 in. [19 mm], respectively.  

 
Figure 3.23 – Buckling response variation with transverse tie diameter (from left to right, Test 28, 30 & 33). 

 

The central row in Figure 3.23 depicts the normalized average stress (P/Asfy) versus average 

strain (U/Lo) relationship for the 7/8 in. [22 mm] diameter bars in the tests. Additionally, for the 

cases with transverse restraint, the bottom row shows the demand on the tie adjacent to mid 

height (where the maximum lateral displacement occurs), which is presented in terms of its 

average stress-strain relationship. Four instances highlighted with circular markers correspond to 

U/Lo equal to 2, 5, 10, and 30 times the longitudinal bar yield strain, as before. It is observed that 

the bar with no crossties buckles as it reaches its yield strength, with a large loss of load carrying 

capacity for small increments of strain past yielding. On the other hand, the bars with ties 

develop a post yield strain hardening branch, as well as a strain softening portion after bar 

buckling is triggered. While the slope of the strain hardening portion does not seem to be 

influenced by the tie diameter, its extension, as well as the slope of the softening branch does. 

Tie yielding is apparent for the smaller tie diameter case, while the tie with the larger diameter 

remains elastic up to the average axial strain level at which the test was concluded (8%). The top 
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row in Figure 3.22 shows that tie elongation defines the buckling length of the specimens 

because the nodes adjacent to them may or may not displace laterally depending on the stiffness 

of the restrain. For the cases presented, buckling length was 27.0, 7.6 and 4.6 db for dbt = 0, 3/8in. 

[10 mm] and 3/4 in. [19 mm], respectively. Tie yielding prevention is a factor to consider when 

proper lateral restrain of longitudinal bars is required. 

 

3.4.2 Inelastic buckling model of tied bars 

The inelastic buckling of tied bars is a complex structural problem, highly nonlinear in geometry 

and material response, involving intricate load-deflection relationships. Many components are 

involved in the model, which makes it computationally intensive and prone to convergence 

problems. Additionally, bifurcation problems and stiffness matrix singularities have to be sorted 

out to find the proper solution for each variation of the experimental variables. This is a time 

consuming process requiring careful consideration, one at a time, of the solutions corresponding 

of each test.  

A simple model describing the complete stress-strain curve of the tests in Table 3.2 is 

proposed in this section. Given that minimum db = 3/4 in. [19 mm] and Lo = 24 in. [610 mm], all 

the experiments resulted in inelastic buckling, which is expected according to Equation (3.12). 

Figure 3.24 presents the proposed model of tied longitudinal bars, with a graphical 

representation of the variables of interest. From the descriptions in the previous section, it is 

concluded that the response of the bars is characterized by an initial linear elastic portion, up to 

yielding. Bars not buckling at yielding develop a strain hardening branch with slope mhEo, up to 

the buckling strain b. In the proposed model, the strain hardening branch is represented by a 

straight line and b is defined as the strain at which the maximum load is attained. The post 

buckling softening branch is described by the relative load carrying capacity at discrete strain 

increments p past the buckling strain. For example, frpindicates the strength capacity with 

respect to the buckling strength fb at a strain increment of p past b: 

b

pp

pr
f

f
f

)(
)(


   (3.13) 

where )( ppf   is the strength at strain  = b + p. Given mh and b, buckling strength fb is 

estimated by 

 ybohyb Emff    (3.14) 

Variables b, mh and frp are estimated in the following sections from statistical analysis of the 

models in Table 3.2. 
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Figure 3.24 – Model describing the average axial stress – strain response of tied bars undergoing inelastic buckling. 

 

3.4.2.1 Average axial stress-strain curves 
The average axial stress-strain curves of the buckling tests are the main data source for the 

purpose of statistical analysis of the variables of interest. An example of these curves is shown in 

Figure 3.25 for the experiments with db = 1 in. [25 mm], under Tie Setup 1 and Tie Setup 2. 

Also shown are the relationships between the average stress and the mid span displacement 

(wmax). Additionally, the displaced shape at U/Lo = 20y, which might or might not include 

buckling, depending on the tie diameter and spacing, is presented as well. Similar plots for the 

tests with other longitudinal bar diameters are presented in Appendix B. It was found that for 

any db, Tie Setup 1 did not promote inelastic buckling past the yield strength. This is an expected 

result explained by the fact that minimum s/db was 6.4. The main response variation for this tie 

setup is observed in the post buckling slope, which becomes stiffer as s/db decreases. On the 

other hand, under Tie Setup 2, the response is highly dependent on s/db. Buckling strain b and 

the post buckling stiffness parameter mh increase as s/db decreases. The average stress versus 

lateral displacement wmax is also highly affected by ratio s/db.  

Isolation of the post buckling branch of the response is convenient for the development of 

the simpler buckling model. Figure 3.26a and Figure 3.26b present plots of fr versus p for Tie 

Setup 1 and 2, respectively. Except for the cases where dbt = 0, the post buckling response under 

Tie Setup 2 is noticeable stiffer than the response under Tie Setup 1. Under Tie Setup 2, lines not 

reaching limit strain p = 0.06 correspond to specimens that buckled at large plastic strains, hence 

their post buckling strain history ended early because all analyses were finished at  = U/Lo = 

0.08. It is important to clarify that the softening branch slopes observed in Figure 3.26 are a 

function of the specimen length Lo. This is due to the relaxation of the elements adjacent to the 

buckling length, which elongate toward the buckled portion forced by the end axial restrictions. 

This results in steeper slopes of the softening branches for larger lengths of the elastic portion of 

the bar (for example, those outside the buckling length). The subject of non-objectivity of the 

softening response in material constitutive models has been discussed in detail in Section 1.2 and 

Section 2.6.5 of this document. Regularization of the softening portion of the model is left for 

further research. 
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Figure 3.25 - Response of Tests 11 to 15 (Tie Setup 1) and Tests 35 to 41 (Tie Setup 2) (db =1 in. [25mm]). 

 

 
Figure 3.26 – Post buckling response in terms of fr and p for: (a) Tie Setup 1 and (b) Tie Setup 2. 
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3.4.2.2 Inelastic model variables 
Variables b, mh and fr(p) were extracted from the average stress-strain curves described above 

for the 48 cases in Table 3.2. Three-dimensional surfaces were then interpolated from these 

discrete data points in terms of two explanatory variables: (i) s/db, which represents a relative 

restrictive tie spacing over which bar buckling is forced into (except for the cases of smaller tie 

diameters) and (ii) (dbt
2/lt )/(dbl

2/Lo), which represents the relative stiffness of a single transverse 

tie with respect to the longitudinal bar stiffness. In order to tabulate the variables of interest in 

term of the explanatory variables, the three-dimensional surfaces were intersected at discrete 

values of s/db, generating marginal relationships between the response variables and (dbt
2/lt 

)/(dbl
2/Lo). In this manner, one only has to estimate (dbt

2/lt )/(dbl
2/Lo) and intersect the proper s/db 

value to obtain b, mh and fr(p).  

Figure 3.27 to Figure 3.29 present the described joint and marginal distributions of s/db 

and (dbt
2/lt )/(dbl

2/Lo) that explain b, mh and fr.. This latter is presented at p=0.02 as an example 

but was estimated at 12 incremental strains in the range 0.001  p  0.06 for the sake of 

providing a good resolution to describe the softening branch of the model. Variables b and mh 

increase monotonically with increments of the explanatory variables, resulting in a smooth three-

dimensional surface. Table 3.3 and Table 3.4 give smoothed-out values of these variable for the 

range 0  (dbt
2/lt )/(dbl

2/Lo)  3 and s/db = 3.5, 4.0, 4.5, 5.0, 5.5 and 6.5. Tests with larger values 

of s/db did not show a strain hardening portion, therefore, b = y and mh = 0 for s/db ≥ 6. The 

results suggest that due to flexibility of the restraints (ties), s/db has to be as small as 4.5 to 

effectively prevent buckling up to U/Lo=0.08, strain at which the tests were concluded. 

Nonetheless, if proper tie stiffness is provided, inelastic buckling can be delayed up to 10 y for 

s/db as large as 5.0. 

 
Figure 3.27 – Normalized buckling strain in terms of s/db and (dbt

2/lt )/(dbl
2/Lo). (Note: 1 in. [25mm]). 

 

Portions of the domain of fr showed to be complex (non-smooth) in the range close to s/db=6.4 

and (dbt
2/lt )/(dbl

2/Lo)<1. This discontinuity is mainly influenced by the response of the 1 1/4 in. 

[32 mm] diameter bars under Tie Setup 2, which buckled with a stiffer softening slope with 

respect to the neighboring tests. Since the ideas was to estimate fr using only the two variables 

discussed, this discontinuity proposed some difficulties for the tabulation of fr because the 

resulting post yield slopes lost their shape after the interpolation and intersection process, 
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showing trends not corresponding to the physical phenomenon (as the ones in Figure 3.26). This 

problem was overcome by fitting rational polynomials to the discrete slope points, and assigning 

weights to each data point according to their quality (0 for bad quality or 1 for good quality). 

Resulting smoothed values of fr as presented in Table 3.5 to Table 3.7. 

 

 
Figure 3.28 - Post yield slope coefficient in terms of s/db and (dbt

2/lt )/(dbl
2/Lo). (Note: 1 in. [25mm]). 

 

 
Figure 3.29 - Post buckling relative strength fr at ep=0.02 in terms of s/db and (dbt

2/lt )/(dbl
2/Lo). (Note: 1 in. 

[25mm]). 
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Table 3.3 - Buckling strain b normalized to yield strain. 

(dbt
2 /lt )/( db

2 /Lo) 
b / y 

s/db=3.5 s/db=4 s/db=4.5 s/db=5 s/db=5.5 s/db=6 

0.00 1.0 1.0 1.0 1.0 1.0 1.0 

0.25 11.8 7.6 5.6 3.4 1.0 1.0 

0.50 22.6 14.2 10.2 5.8 1.0 1.0 

0.75 28.0 20.8 14.5 7.0 2.1 1.0 

1.00 29.9 27.2 15.8 8.1 3.0 1.0 

1.25 31.9 29.8 17.2 8.8 3.3 1.0 

1.50 33.0 32.4 18.1 9.2 3.7 1.0 

1.75 DNB 33.0 18.8 9.6 3.8 1.0 

2.00 DNB DNB 19.2 9.8 3.8 1.0 

2.25 DNB DNB 19.2 9.8 3.8 1.0 

2.50 DNB DNB 19.2 9.8 3.8 1.0 

2.75 DNB DNB 19.2 9.8 3.8 1.0 

3.00 DNB DNB 19.2 9.8 3.8 1.0 

DNB= do not buckle in the range 0  U/Lo  0.08. 

 

Table 3.4 – Post yield slope mh. 

(dbt
2 /lt )/( db

2 /Lo) 
mh [%] 

s/db=3.5 s/db=4 s/db=4.5 s/db=5 s/db=5.5 s/db=6 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.25 0.74 0.47 0.40 0.22 0.00 0.00 

0.50 0.76 0.58 0.52 0.23 0.00 0.00 

0.75 0.78 0.63 0.53 0.25 0.00 0.00 

1.00 0.80 0.68 0.54 0.26 0.00 0.00 

1.25 0.82 0.69 0.54 0.27 0.03 0.00 

1.50 0.82 0.69 0.54 0.28 0.06 0.00 

1.75 0.82 0.69 0.54 0.29 0.09 0.00 

2.00 0.82 0.69 0.54 0.29 0.09 0.00 

2.25 0.82 0.69 0.54 0.29 0.09 0.00 

2.50 0.82 0.69 0.54 0.29 0.09 0.00 

2.75 0.82 0.69 0.54 0.29 0.09 0.00 

3.00 0.82 0.69 0.54 0.29 0.09 0.00 

Values of 0 mean that no strain hardening portion is developed. 
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Table 3.5 – Post buckling strength coefficients fr for ep = 0.001, 0.0025, 0.005, 0.0075. 

fr(p = 0.001) 

 
fr(p = 0.0025) 

)/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

 )/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

3.5 5 6.5 8 9.5 

 
3.5 5 6.5 8 9.5 

0 0.80 0.71 0.74 0.65 0.52 

 
0 0.60 0.55 0.57 0.48 0.40 

0.25 1.00 0.96 0.96 0.93 0.88 

 
0.25 1.00 0.91 0.91 0.85 0.77 

0.5 1.00 1.00 0.99 0.97 0.94 

 
0.5 1.00 0.99 0.97 0.92 0.86 

0.75 1.00 1.00 0.99 0.97 0.94 

 
0.75 1.00 0.99 0.98 0.92 0.86 

1 1.00 1.00 0.99 0.97 0.94 

 
1 1.00 1.00 0.98 0.93 0.86 

1.25 1.00 1.00 0.99 0.97 0.94 

 
1.25 1.00 1.00 0.98 0.92 0.86 

1.5 1.00 1.00 0.99 0.97 0.94 

 
1.5 1.00 1.00 0.98 0.92 0.86 

1.75 1.00 1.00 0.99 0.97 0.94 

 
1.75 1.00 1.00 0.98 0.92 0.86 

2 1.00 1.00 0.99 0.97 0.94 

 
2 1.00 1.00 0.98 0.92 0.86 

2.25 1.00 1.00 0.99 0.97 0.94 

 
2.25 1.00 1.00 0.98 0.92 0.86 

2.5 1.00 1.00 0.99 0.97 0.94 

 
2.5 1.00 1.00 0.98 0.92 0.86 

2.75 1.00 1.00 0.99 0.97 0.94 

 
2.75 1.00 1.00 0.98 0.92 0.86 

3 1.00 1.00 0.99 0.97 0.94 

 
3 1.00 1.00 0.98 0.92 0.86 

             
fr(p = 0.005) 

 
fr(p = 0.0075) 

)/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

 )/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

3.5 5 6.5 8 9.5 

 
3.5 5 6.5 8 9.5 

0 0.50 0.43 0.43 0.38 0.32 

 
0 0.41 0.38 0.37 0.33 0.27 

0.25 0.97 0.83 0.84 0.75 0.64 

 
0.25 0.92 0.77 0.78 0.67 0.57 

0.5 1.00 0.96 0.93 0.84 0.74 

 
0.5 1.00 0.93 0.90 0.77 0.65 

0.75 1.00 0.97 0.95 0.85 0.75 

 
0.75 1.00 0.95 0.91 0.79 0.66 

1 1.00 0.98 0.95 0.86 0.75 

 
1 1.00 0.96 0.92 0.80 0.67 

1.25 1.00 0.99 0.96 0.86 0.75 

 
1.25 1.00 0.97 0.93 0.80 0.67 

1.5 1.00 0.99 0.96 0.86 0.75 

 
1.5 1.00 0.97 0.93 0.80 0.67 

1.75 1.00 0.99 0.96 0.86 0.75 

 
1.75 1.00 0.97 0.93 0.80 0.67 

2 1.00 0.99 0.96 0.86 0.75 

 
2 1.00 0.98 0.93 0.80 0.67 

2.25 1.00 0.99 0.96 0.86 0.75 

 
2.25 1.00 0.98 0.93 0.80 0.67 

2.5 1.00 0.99 0.96 0.86 0.75 

 
2.5 1.00 0.98 0.93 0.80 0.67 

2.75 1.00 0.99 0.96 0.86 0.75 

 
2.75 1.00 0.98 0.93 0.80 0.67 

3 1.00 0.99 0.96 0.86 0.75 

 
3 1.00 0.98 0.93 0.80 0.67 

 

 

 

 

 

 

 



72 

 

Table 3.6 – Post buckling strength coefficients fr for ep = 0.01, 0.015, 0.02, 0.025. 

fr(p = 0.01) 

 
fr(p = 0.015) 

)/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

 )/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

3.5 5 6.5 8 9.5 

 
3.5 5 6.5 8 9.5 

0 0.38 0.34 0.32 0.30 0.24 

 
0 0.32 0.30 0.28 0.26 0.20 

0.25 0.87 0.72 0.73 0.61 0.51 

 
0.25 0.79 0.64 0.64 0.52 0.43 

0.5 0.99 0.90 0.86 0.71 0.59 

 
0.5 0.96 0.83 0.80 0.62 0.49 

0.75 1.00 0.92 0.88 0.74 0.60 

 
0.75 1.00 0.85 0.82 0.65 0.51 

1 1.00 0.93 0.90 0.75 0.61 

 
1 1.00 0.87 0.84 0.67 0.52 

1.25 1.00 0.95 0.90 0.75 0.61 

 
1.25 1.00 0.89 0.84 0.67 0.52 

1.5 1.00 0.95 0.90 0.75 0.61 

 
1.5 1.00 0.90 0.84 0.67 0.52 

1.75 1.00 0.95 0.90 0.75 0.61 

 
1.75 1.00 0.91 0.84 0.67 0.52 

2 1.00 0.96 0.90 0.75 0.61 

 
2 1.00 0.91 0.84 0.67 0.52 

2.25 1.00 0.96 0.90 0.75 0.61 

 
2.25 1.00 0.92 0.84 0.67 0.52 

2.5 1.00 0.96 0.90 0.75 0.61 

 
2.5 1.00 0.92 0.84 0.67 0.52 

2.75 1.00 0.96 0.90 0.75 0.61 

 
2.75 1.00 0.92 0.84 0.67 0.52 

3 1.00 0.96 0.90 0.75 0.61 

 
3 1.00 0.92 0.84 0.67 0.52 

             
fr(p = 0.02) 

 
fr(p = 0.025) 

)/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

 )/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

3.5 5 6.5 8 9.5 

 
3.5 5 6.5 8 9.5 

0 0.29 0.27 0.25 0.23 0.18 

 
0 0.27 0.24 0.23 0.21 0.16 

0.25 0.71 0.58 0.58 0.47 0.39 

 
0.25 0.66 0.53 0.53 0.42 0.35 

0.5 0.93 0.76 0.74 0.56 0.44 

 
0.5 0.90 0.71 0.68 0.50 0.40 

0.75 1.00 0.79 0.76 0.59 0.46 

 
0.75 1.00 0.74 0.70 0.54 0.42 

1 1.00 0.82 0.78 0.60 0.47 

 
1 1.00 0.76 0.73 0.55 0.43 

1.25 1.00 0.84 0.79 0.61 0.47 

 
1.25 1.00 0.79 0.73 0.56 0.43 

1.5 1.00 0.85 0.79 0.61 0.47 

 
1.5 1.00 0.80 0.73 0.56 0.43 

1.75 1.00 0.86 0.79 0.61 0.47 

 
1.75 1.00 0.82 0.73 0.56 0.43 

2 1.00 0.87 0.79 0.61 0.47 

 
2 1.00 0.83 0.73 0.56 0.43 

2.25 1.00 0.88 0.79 0.61 0.47 

 
2.25 1.00 0.84 0.73 0.56 0.43 

2.5 1.00 0.88 0.79 0.61 0.47 

 
2.5 1.00 0.85 0.73 0.56 0.43 

2.75 1.00 0.88 0.79 0.61 0.47 

 
2.75 1.00 0.86 0.73 0.56 0.43 

3 1.00 0.88 0.79 0.61 0.47 

 
3 1.00 0.86 0.73 0.56 0.43 
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Table 3.7 – Post buckling strength coefficients fr for ep = 0.03, 0.04, 0.05, 0.06. 

fr(p = 0.03) 

 
fr(p = 0.04) 

)/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

 )/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

3.5 5 6.5 8 9.5 

 
3.5 5 6.5 8 9.5 

0 0.25 0.23 0.22 0.19 0.15 

 
0 0.23 0.20 0.20 0.16 0.14 

0.25 0.61 0.49 0.49 0.39 0.32 

 
0.25 0.54 0.44 0.44 0.34 0.29 

0.5 0.88 0.66 0.63 0.46 0.38 

 
0.5 0.83 0.59 0.56 0.40 0.34 

0.75 1.00 0.69 0.66 0.50 0.40 

 
0.75 1.00 0.63 0.59 0.44 0.36 

1 1.00 0.72 0.68 0.51 0.41 

 
1 1.00 0.66 0.61 0.46 0.37 

1.25 1.00 0.75 0.69 0.52 0.41 

 
1.25 1.00 0.69 0.62 0.46 0.37 

1.5 1.00 0.77 0.69 0.52 0.41 

 
1.5 1.00 0.71 0.62 0.46 0.37 

1.75 1.00 0.79 0.69 0.52 0.41 

 
1.75 1.00 0.75 0.62 0.46 0.37 

2 1.00 0.80 0.69 0.52 0.41 

 
2 1.00 0.78 0.62 0.46 0.37 

2.25 1.00 0.82 0.69 0.52 0.41 

 
2.25 1.00 0.79 0.62 0.46 0.37 

2.5 1.00 0.83 0.69 0.52 0.41 

 
2.5 1.00 0.81 0.62 0.46 0.37 

2.75 1.00 0.83 0.69 0.52 0.41 

 
2.75 1.00 0.82 0.62 0.46 0.37 

3 1.00 0.84 0.69 0.52 0.41 

 
3 1.00 0.82 0.62 0.46 0.37 

             
fr(p = 0.05) 

 
fr(p = 0.06) 

)/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

 )/(

)/(
2

2

ob

tbt

Ld

ld
 s/db 

3.5 5 6.5 8 9.5 

 
3.5 5 6.5 8 9.5 

0 0.22 0.18 0.18 0.14 0.13 

 
0 0.21 0.16 0.17 0.13 0.11 

0.25 0.49 0.40 0.40 0.31 0.26 

 
0.25 0.46 0.37 0.37 0.28 0.24 

0.5 0.79 0.55 0.50 0.37 0.32 

 
0.5 0.76 0.51 0.47 0.35 0.29 

0.75 1.00 0.59 0.54 0.40 0.33 

 
0.75 1.00 0.55 0.51 0.37 0.31 

1 1.00 0.62 0.56 0.42 0.34 

 
1 1.00 0.59 0.54 0.40 0.32 

1.25 1.00 0.66 0.57 0.43 0.34 

 
1.25 1.00 0.63 0.54 0.41 0.32 

1.5 1.00 0.70 0.57 0.43 0.34 

 
1.5 1.00 0.67 0.54 0.41 0.32 

1.75 1.00 0.74 0.57 0.43 0.34 

 
1.75 1.00 0.71 0.54 0.41 0.32 

2 1.00 0.77 0.57 0.43 0.34 

 
2 1.00 0.76 0.54 0.41 0.32 

2.25 1.00 0.79 0.57 0.43 0.34 

 
2.25 1.00 0.79 0.54 0.41 0.32 

2.5 1.00 0.81 0.57 0.43 0.34 

 
2.5 1.00 0.81 0.54 0.41 0.32 

2.75 1.00 0.82 0.57 0.43 0.34 

 
2.75 1.00 0.82 0.54 0.41 0.32 

3 1.00 0.82 0.57 0.43 0.34 

 
3 1.00 0.82 0.54 0.41 0.32 

 

Bilinear interpolation may be required to estimate specific values of the variables of 

interest r = f (s/db, (dbt
2/lt )/(dbl

2/Lo))= b, mh or fr(p). Given the pair [s/db, (dbt
2/lt )/(dbl

2/Lo)], the 

interpolation is done by selecting from the available tables, four values rij neighboring the one of 

interest. The variable of interest r is then estimated as 

2222212112121111

22 )]//()/(),/[( rbrbrbrbLdlddsr obtbtb   (3.15) 

and coefficients bij are estimated according to 
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[
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1
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]

  

)
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1
(𝑠/𝑑𝑏)

[(𝑑𝑏𝑡
2 / 𝑡)/(𝑑𝑏

2/𝐿𝑜)]

(𝑠/𝑑𝑏)[(𝑑𝑏𝑡
2 / 𝑡)/(𝑑𝑏

2/𝐿𝑜)]]
 
 
 
 (3.16) 

where xi and yj represent respectively, which are explanatory variables of rij (which are actually 

contained in the tables). Appendix B contains a MATLAB® algorithm that uses this 

interpolation process for obtaining b, mh or fr(p) given s/db and (dbt
2/lt )/(dbl

2/Lo). 

 

3.4.2.3 Inelastic buckling model verifaction 
Tests contained in Table 3.8 are used to verify the complete average axial stress-strain curves 

predicted by the buckling model. The selected tests are of interest because their geometry is close 

to that of specimens W5 to W12 in Chapter 2. It is observed in Figure 3.30 that the model 

adequately predicts whether a post yield strain hardening portion develops and its slope. The 

buckling strain and corresponding stress are also properly estimated. The softening branch of the 

models seems to be stiffer than the experiments for those cases of inelastic buckling developing 

in the strain hardening portion. This was an expected result due to the non-smooth nature of fr(p) 

but the observed difference is within tolerable limits. 

 
Figure 3.30 - Model prediction versus analytical experiment. 
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Table 3.8 – Tests selected [Note: 1 in. = 25.4 mm]. 
Test 

ID 

s 

[in.] 

db 

[in.] 

dbt 

[in.] 
s/db (dbt

2 /lt )/( db
2 /Lo) 

9 8 7/8 1/2 9.1 1.3 

31 4 7/8 1/2 4.6 1.3 

32 4 7/8 5/8 4.6 2.0 

38 4 1 1/2 4.0 1.0 

45 4 1 1/4 1/2 3.2 0.6 

46 4 1 1/4 5/8 3.2 1.0 

 

Figure 3.31 presents a comparison of the observed and the estimated values of b and mh 

for all the tests. Observations for the small sample presented above are confirmed in this figure. 

The model estimation is in good agreement with the experimental data observations, except in a 

few cases. To explain this mismatch, Figure 3.32 shows residuals of b and mh (in terms of the 

relative error) versus s/db and (dbt
2/lt )/(dbl

2/Lo). In general, the residuals behave in an acceptable 

manner with respect to the explanatory variable but for the data points corresponding to the 3/4 

in. [19 mm] diameter longitudinal bar under Tie Setup 2. For these points the model predicts 

larger buckling strains. The larger error is explained because these data points lay on the sharp 

transition of the three dimensional surface (Figure 3.27) at around s/db = 5.3; therefore the 

interpolation process is done between two discrete s/db-curves (for example, s/db =5 and 5.5) 

between which b does not vary linearly. 

 
Figure 3.31 - Estimated versus observed values of b and mh. 

 

3.5 Final Comments 

A finite element based model was presented to describe the inelastic buckling process of tied 

longitudinal bars embedded in concrete, subjected to compressive stresses. The model 

implements the force-based formulation of beam-column elements with distributed plasticity, 

adequately replicating laboratory tests of bare bars undergoing inelastic buckling. An extension 

of the model was proposed to include lateral restraining actions, such as that offered by crossties 

and the concrete core on one side of a longitudinal bar embedded in a reinforced concrete 

element. The model does not account for: (i) external restrictions such as concrete cover that may 

impact the onset of the buckling phenomenon depending on its crushing strain; or (ii) tie hook 

opening which reduces the tie effective stiffness. Regardless, the finite element setup offers a 
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flexible platform to conduct numerical experimentation of inelastic buckling, offering insight 

into the interaction of its different components. For example, analysis of the distribution of local 

versus average axial strains within the buckling length confirmed some of the experimental 

observations of longitudinal bar buckling presented in Chapter 2. 

 
Figure 3.32 - Analysis of residuals for b and mh. 
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(ii) (dbt
2/lt )/(dbl

2/Lo), which represents the relative stiffness of a transverse tie with respect 

to the longitudinal bar stiffness. 

ii. Study of the evolution of the strain field and distribution of the tangent modulus of the 

material points within the critical cross section demonstrated the complexity of the inelastic 

buckling phenomenon. The tangent flexural stiffness EtI of the critical cross section (at mid 

span) is highly unstable when transitioning from the elastic to the strain hardening portion 

of the average stress-strain curves. Additionally, a stiffening effect is observed at the onset 

of lateral instability, which might discard attempts to select a specific reduced tangent 

modulus to plug into the standard Euler buckling formulation for predicting inelastic 

buckling. Depending on the strain level at which inelastic buckling is triggered, the 

material of the critical cross section may have several tangent moduli at a specific state of 

average strain. This is because the strain history of individual fibers differs among the 

various fibers, in such manner that some material points are in the strain hardening portion 

of the constitutive material relationship with tangent modulus Eh, while others are 

unloading with slope Eo or reloading toward the tensile side with an intermediate tangent 

modulus Eh  Et  Eo. 

iii. The numerical experiments showed that due to flexibility of the restrains (ties), s/db has to 

be as small as 4.5 to effectively prevent buckling in the range U/Lo  0.08, strain at which 

the tests were concluded. Nonetheless, if proper tie stiffness is provided, inelastic buckling 

can be delayed up to 10 y for s/db as larger as 5.0. For s/db  6, the buckling strain 

estimated with the models did not surpass the yield strain. 

iv. An average axial stress-strain constitutive relationship for tied A706 bars embedded in 

concrete, subjected to compressive strains, is proposed. The model comprises a linear 

portion offering the possibility of linear strain hardening up to the buckling strain, given a 

proper tie layout is provided. The post buckling branch is described discretely, at twelve 

strain values past the buckling strain. Model coefficients are tabulated for ease of use at 

discrete values of s/db and (dbt
2/lt )/(dbl

2/Lo). The simple model results are in good 

agreement with the analytical experiments by adequately predicting buckling strain b and 

strength fb.  

v. For the cases where buckling occurs in the strain hardening region, the softening portion of 

the model seems to be stiffer than those of the analytical experiments. This is explained by 

the none-smooth nature of the surfaces describing the post buckling loss of strength in term 

of s/db and (dbt
2/lt )/(dbl

2/Lo). This mismatch could be overcome if a more complex model 

with additional descriptive variables is used, but that would defeat the simplicity purpose. 

Additionally, the softening branches of the model proposed are particular to the initial 

length used, and may need to be regularized for other lengths. 

vi. Restriction of tie stiffness to force inelastic bar buckling over one tie spacing is an 

interesting subject that requires further research, specifically for the cases of small s/db 

ratios. Results presented here showed that, assuming that hook opening is not likely, tie 

diameters required to fully restrain buckling within one hoop spacing might be larger than 

those used in practice.  
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Chapter 4 - Analytical Investigation Part II: 

R/C Sections 

 

Two models of the expected and the observed response of the reinforced concrete prisms tests 

described in Chapter 2 are presented herein. The first one is an analytical “blind” prediction 

model corresponding based on the assumption that plasticity spreads along the entire height of 

the elements. Its results are contrasted with the empirical force-average strain curves obtained in 

the laboratory. The second model comprises a hybrid formulation, that uses the empirical force-

shortening relationships at the global and the local level of deformation, along with the rebar 

buckling model in Chapter 3, to estimate semi-empirical core concrete stress-strain 

relationships. Summary statistics of the confined concrete strain limits are proposed at different 

levels of post peak strength based on different gage lengths. Three average monotonic stress-

strain curves proposed are representative of the confined core concrete material of the specimens 

tested. These constitutive models are described for different gage lengths over which strains are 

measured. 

 

4.1 Confined Concrete Models in the Literature 

Concrete confinement is a subjected that has been extensively studied for more than one hundred 

years. According to Richart et al. (1929), an early report on the effects of steel confinement in 

the axial load capacity of reinforced concrete prisms was presented by Considère (1903). 

Considère stated “certain principles regarding the effect of lateral restraint in raising the 

ultimate strength of concrete…One of these is that the strength of hooped concrete may be 

considered as being the sum of two essentially unlike quantities: a resistance proportional to the 

strength of the concrete itself, and an added strength which is a function of the lateral restraint 

applied by the hooping” (Richart et al., 1929). At the present day, the same principle is still valid. 

As described in Chapter 1, more recent studies of reinforced concrete prisms in 

compression have focused on testing confinement effectiveness of various layouts of 

longitudinal and transverse reinforcement (Mander et al., 1988a; Moehle & Cavanagh, 1985; B. 

D. Scott et al., 1982; Sheikh & Uzumeri, 1980; Vallenas et al., 1977). Some of these tests 

resulted in well-known analytical models to predict the stress-strain response of confined 

concrete (Mander et al., 1988b; Sheikh & Uzumeri, 1982). These enlarged the already ample 

library of confinement models described in (Sheikh, 1982), of which, the Kent and Park (1971) 

and the Roy and Sozen (1965) models are two of the most reknown ones. Other popular models 

among the engineering community comprise the Saatcioglu and Razvi (1992) model, as well as 

the Paultre and Legeron (2008) model. More recently Moehle (2014) proposed a hybrid approach 

that accounts for the formulations in (Mander et al., 1988b; Paultre & Legeron, 2008; Razvi & 

Saatcioglu, 1999; Sheikh & Uzumeri, 1982) and is simpler to implement.  

The Mander et al. (1988b) and the Saatcioglu and Razvi (1992) models are of interest 

because have been specifically validated with rectangular cross sections. The Mander et al. 

(1988b) analytical model is supported by the experimental work on thirty-one reinforced 

concrete columns, of circular, square and recangular cross section contained in (Mander et al., 



79 

 

1988a; B. D. Scott et al., 1982). The test decription of the rectangular walls is presented with 

some detail in Section 1.2 of this document. The analytical model by Saatcioglu and Razvi 

(1992) is based on the data collected in the experimental work of several researchers (Mander et 

al., 1988a; Razvi & Saatcioglu, 1989; B. D. Scott et al., 1982; Sheikh & Uzumeri, 1980), 

including eighty-five primatic specimens of rectangular, circular, and square cross sections. The 

models propose expressions for the increase of the confined concrete strength f’cc as a function of 

the confining pressure provided by the trasnverse reinforcement. Estimation of the confining 

pressure accounts for differences in geometry and confinement characteristics in the two 

orthogonal directions of rectangular sections. The expression proposed in (Saatcioglu & Razvi, 

1992) is simple and has the form 

83.0'' 7.6 leccc fff   (4.1) 

where f’c is the unconfined concrete strength and fle [MPa] is the equivalent uniform pressure, 

which is a function of the transverse reinforcement ratio and the confinement steel strength. The 

analogous expression for f’cc in (Mander et al., 1988b) also involves f’’c and a form of fle. Both 

models account for arching action and confinement effectiveness by treating the confining 

pressure as a three dimensional entity, highly effective near the ties or hoop legs and reduced 

away from them in the horizontal (along distance h’
x between ties or hoop legs), as well as in the 

vertical direction (along distance s; see Figure 2.3). The strain cc0 at peak strength of the 

confined concrete is estimated the same way in both models, and is known to have a good 

correlation with experimental results (Moehle, 2014): 























 151

'

'

00

co

cc
ccc

f

f
  (4.2) 

where c0 is the strain corresponding to peak strength of unconfined concrete.  

Both models propose algebraic expressions to describe the stress-strain curve of the 

confined concrete. In (Saatcioglu & Razvi, 1992) a parabolic ascending branch is defined up to 

cc0 with a linear descending branch that flattens at 0.2f’cc residual strength. The following 

expression defines the stress-strain relation of the initial parabola. 
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The slope of the descending branch is controlled by parameter cc85, which is the strain 

corresponding to a 15% drop in the confined concrete strength. For example, the descending 

branch starts at point (cc, f’cc), passes through (cc85, 0.85f’cc) until it reaches 0.2f’cc. Parameter 

cc85 is estimated as 

  8585 260 coco

cycx

st

cc
bbs

A
 




  (4.4) 

where Ast is the total area of transverse reinforcement provided in both direction within distance 

s; bcx and bcy are the length and width of the core; and co85 is the strain corresponding to 0.85f’c 

in the empirical unconfined concrete stress-strain curve. The stress-strain curve proposed in 

(Mander et al., 1988b) is continuous for the entire range of the confined concrete strains: 
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𝑓𝑐𝑐(휀𝑐𝑐) =
𝑓′𝑐𝑐 (

휀𝑐𝑐
휀𝑐𝑐 

) 𝑟

𝑟 − 1 + (
휀𝑐𝑐
휀𝑐𝑐 

)
𝑟 (4.5) 

where parameter r controls the pre- and post-peak slopes of the curve  

𝑟 =
𝐸𝑐

𝐸𝑐 −
𝑓′𝑐𝑐
휀𝑐𝑐 

 
(4.6) 

The modulus of elasticity of the concrete can be estimated as 𝐸𝑐 = 57,000√𝑓′𝑐  [psi], following 

ACI-318 recommendations. Equations (4.5) to (4.6) can be appropriately modified to describe 

the behavior of the unconfined concrete using the equivalences in Table 4.1.  

 

Table 4.1 - Parameter substitution for modeling unconfined concrete. 

Confined concrete 

parameters 

 

 

 

Unconfined concrete 

parameters 

𝑓𝑐𝑐 𝑓𝑐 

휀𝑐𝑐 휀𝑐 

𝑓′𝑐𝑐 𝑓′𝑐 

휀𝑐𝑐  휀𝑐  

 

A main difference in the models in discussion is the definition of the ultimate 

compressive strain ccu of the confined concrete. While (Saatcioglu & Razvi, 1992) limit their 

recommendation to the projection of the post peak branch down to 0.2f’cc, the confined concrete 

ultimate strain in (Mander et al., 1988b) is defined as that where the first fracture of transverse 

reinforcement is expected. The formulation presented in the latter is based on an energy-balance 

model requiring cumbersome numerical integration for the estimation of ccu. As described in 

Section 1.2, limiting compressive strains reported for prismatic reinforced concrete elements in 

compression expand over a large range. The scatter is believed to be mainly due to differences in 

the confinement reinforcement layouts under study, but the softening nature of the post peak 

response also plays an important part in dispersing the data. Bias introduced by different gage 

lengths over which strains are estimated is hard to quantify; in addition to this, exact definition of 

the portion where damage localizes is not always feasible before the tests are concluded. 

Recording of undisturbed measurements of displacement in the most damage zone also offers 

additional difficulties, especially after the peak load is attained because concrete cover spalls off 

an interact with the instruments, or because inclined failure planes, not covered by the 

instrumentation, may form. 

The latter discussion calls for the use of a simple expression for the estimation of ccu. 

The one adopted here is developed by Moehle (2014) by fitting the lower bound of the strain 

limits reported in (Mander et al., 1988b; Moehle & Cavanagh, 1985; B. D. Scott et al., 1982) (see 

Figure 1.5 in Section 1.2) to a straight line that is a function of the minimum confining stress: 

'

min,
25.0004.0

c

le

ccu
f

f
  (4.7) 
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where fle,min is the minimum effective confining stress (pressure) of the two orthogonal directions 

in a rectangular section. For the case of interest here, fle,min is the confining stress in the through-

thickness direction of the boundary element specimens described in Chapter 2. As tested values 

of fle,min are contained in Table 4.3. 

Specimen W7 is selected to compare the confined concrete models described above using 

the in-situ material characteristics (see Table 2.1). The effective confining stress calculations 

needed for the models are not presented here for the sake of brevity, but the reader is referred to 

the sources cited above. Figure 4.1 presents the confined concrete stress-strain curves for 

Specimen W7. Expected limiting strain at first fracture of transverse reinforcement is ccu = 

0.019, although it is worth mentioning that tie or hoop fracture was not observed in the 

experiments described in Chapter 2. For comparison, strength at cc85 is also shown for the 

(Saatcioglu & Razvi, 1992) model. Both models predict virtually the same confined concrete 

strength of around 1.45f’c but the (Saatcioglu & Razvi, 1992) model is evidently softer over most 

of the range of strains shown. It is important to recognize that none of the models is based on 

experiments comprising sections with bars solely restrained by the flexural stiffness of hoops, as 

are almost half the longitudinal bars in Specimen W7. 

Given the similarities in the constitutive stress-strain relations provided, in the reminder 

of the chapter the Mander et al. (1988b) model will be the preferred one, along with the simpler 

ultimate strain estimation proposed in (Moehle, 2014). 

 
Figure 4.1 – Comparison of the (Mander et al., 1988b) and (Saatcioglu & Razvi, 1992) confined concrete models 

for the geometry of specimen W7. 

 

4.2 Equilibrium Requirements for Ductile Behavior in Compression 

One of the requisites for a reinforced concrete element in pure compression to behave in a ductile 

manner is that, after spalling, the confined core axial strength is larger than that of the 

unconfined gross cross section. Strain-hardening of the core after initial spalling produces a 

spread of plasticity in which undamaged sections lose their cover progressively avoiding the 

concentration of deformation in a single location. Figure 4.2 helps present this idea with two 

different equilibrium situations just before and after the concrete cover has spalled off the critical 

section: 
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(i) Figure 4.2a and Equations (4.8) and (4.9) present stresses and forces acting on the 

unconfined gross cross section (at the onset of spalling) and the confined core (after 

spalling) without anticipating longitudinal reinforcement buckling: 

  = 𝑓
′
𝑐
(𝐴𝑔 − 𝐴𝑠) + 𝐴𝑠𝑓𝑦 (4.8) 

   = 𝑓
′
𝑐𝑐
(𝐴𝑐ℎ − 𝐴𝑠) + 𝐴𝑠𝑓𝑦 (4.9) 

where    is the axial strength of the column at the onset of spalling;     is the post-

spalling strength for strain just beyond the spalling strain. 

(ii) Figure 4.2b and Equations (4.8) and (4.10) present stresses and forces acting on the 

unconfined gross cross section and the confined core (after spalling) accounting for some 

loss of capacity in part of the longitudinal steel due to buckling: 

 𝑏  = 𝑓
′
𝑐𝑐
(𝐴𝑐ℎ − 𝐴𝑠) + 𝐴𝑠𝑟𝑓𝑦 + 𝐴𝑠𝑏(𝛼𝑓𝑦) (4.10) 

where  𝑏   is the post-spalling strength accounting for partial reinforcement buckling for 

strain just beyond the spalling strain; 𝐴𝑠𝑟 and  𝐴𝑠𝑏 are the areas of restrained (by a tie or 

hoop leg) and buckled longitudinal bars in the critical section, respectively; 𝛼 is a factor 

between zero and one to account for smaller stress capacity in the buckled portion of the 

reinforcement (see Equation (2.5) in Section 2.6.4). 

Equation (4.11) presents the condition for ductile behavior for both situations: 

   >    (4.11a) 

 𝑏  >    (4.11b) 

Manipulation of Equations (4.8), (4.9) and (4.11a) results in the following requirement to 

achieve a ductile behavior for the case of non-buckled reinforcement after spalling takes place: 

𝑓′
𝑐𝑐
>
(𝐴𝑔 − 𝐴𝑠)

(𝐴𝑐ℎ − 𝐴𝑠)
𝑓′
𝑐
≈
𝐴𝑔
𝐴𝑐ℎ

𝑓′
𝑐
 (4.12) 

Similarly, for the case presented in Figure 4.2b, manipulation of Equations (4.8), (4.10) and 

(4.11a), and assuming 𝐴𝑠𝑟 = 𝐴𝑠𝑏 = 1/2𝐴𝑠, leads to the following expression to ensure a ductile 

behavior: 

𝑓′
𝑐𝑐
>
𝐴𝑔
𝐴𝑐ℎ

(𝑓′
𝑐
+ 𝜌𝑓𝑦 (

1 − 𝛼

2
)) (4.13) 

where 𝝆 is the ratio of area of steel to gross area of concrete cross section. 

According to this formulation, compliance with Equation (2.2) (ACI318-11-Eq.21-4) 

will lead to satisfaction of Equation (4.12) to achieve a ductile behavior under the assumption 

that no bar will buckle after spalling takes place, while compliance with Equation (2.3) will only 

do so if the gross area to core area ratio (𝐴𝑔/𝐴𝑐ℎ) is smaller than 1.3 (which is harder to 

accomplish by smaller sections and typical reinforcement cover). For this to happen, given the 

geometries of the specimens studied, the in-situ confined concrete strength must reach 1.9 times 

the unconfined concrete strength. These properties of the confined concrete are achievable with 

the addition of transverse reinforcement in sufficient quantities, as demonstrated by (Mander et 

al., 1988a) where values of 𝑓𝑐𝑐
′ 𝑓𝑐

′⁄  in the range of 1.35 to 2.15 are reported. 
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Figure 4.2 Stresses and forces acting on the critical cross section: (a) non-buckling rebar case; (b) case of partial 

buckling in rebar of the confined core. 

 

Fulfilling Equation (4.13) is more challenging because the confined concrete would need 

to achieve even higher strengths to compensate for bar buckling strength loss. As an example, for 

the geometries of the specimens W3 to W7, in a hypothetical case where the stress capacity of 

the buckled rebar is 40% of the non-buckled one (α=0.40), which is a lower bound for non-

restrained bars under pure compression (Monti & Nuti, 1992) and consistent with Equation (2.5) 
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in Section 2.6.4 for the buckling lengths observed in Chapter 2, satisfying Equation (4.13) 

would have required the confined concrete strength to achieve values in the range of 1.7 to 2.0 

times that of the unconfined concrete. Even obtaining these confined concrete strengths may be 

insufficient for ductile behavior because buckling of the longitudinal bars typically results in loss 

of additional concrete from the core, thereby further reducing the effective core area. The 

inability for sustaining load with increasing deformation is due in part to initiation of buckling of 

the non-tied longitudinal bars which is also associated with the onset of concrete cover 

separation from the core. This behavior introduces a weakening mechanism on the exposed core 

section, forcing all the deformation into a small region, resulting in low overall displacement 

capacity. 

 

4.3 Parallel Model for Prediction of Responses 

A simple procedure to estimate the inelastic response of reinforced concrete members in 

compression is presented by (Moehle, 2014). An extension of this model was developed prior to 

the laboratory test program, with the idea of providing blind predictions of the prism tests. The 

model corresponds to a simple system that treats all the materials providing axial strength in the 

boundary element as springs in parallel. The following assumptions apply: (i) there is no 

localization of damage; (ii) the longitudinal steel remains straight and does not buckle; (iii) there 

is no interaction of the materials in the transverse direction (i.e. the expected expansion of the 

core does not promote cover spalling nor buckling of the reinforcement). Figure 4.3 depicts the 

geometry of the parallel model with a representation of the uniaxial materials assigned to each 

one of the three springs used.  

 
Figure 4.3 Parallel model geometry and materials definition. 

 

4.3.1 Geometry and materials constitutive description 

All elements have the same initial length L. The materials constitutive description is solely based 

on monotonic compressive loading without strain reversals. The core spring has area Ach while 

the cover spring area is (Ag-Ach). Their material uniaxial stress-strain relationship follows the 

(Mander et al., 1988b) formulae for monotonic compressive loading describe in Equations (4.5) 
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and (4.6). To account for a gradual effective confinement achievement, the confined concrete 

uniaxial model is slightly modified and three portions are defined: (i) from zero strain up to 휀𝑐 ,  

the material behaves as unconfined concrete; (ii) from 휀𝑐𝑐  to 휀𝑐𝑐𝑢, the material follows the 

relationships in Equations (4.5) and (4.6); (iii) from 휀𝑐  to 휀𝑐𝑐 , the concrete stress follows a 

linear path from 𝑓′𝑐 to 𝑓′𝑐𝑐. 

The longitudinal reinforcement steel has area As and its material stress-strain relationship 

represents engineering properties of ASTM 706 Grade 60 steel5. For this material, the elastic 

stress is proportional to the strains according to 𝑓𝑠(휀𝑠) =  𝐸𝑠휀𝑠 for |휀𝑠|  휀𝑦, where 𝐸𝑠 =

29,000 𝑘𝑠𝑖 is the Young’s modulus of the material and 휀𝑦 the yield strain. The strain hardening 

portion under monotonic loading can be described algebraically by (Mander, 1984) 

𝑓𝑠(휀𝑠) = 𝑓𝑠𝑢 + (𝑓𝑦 − 𝑓𝑠𝑢) (
휀𝑠𝑢 − 휀𝑠
휀𝑠𝑢 − 휀𝑠ℎ

)
𝑞

        for     |휀𝑠| > 휀𝑠ℎ (4.14) 

where 𝑓𝑦 is the yield stress, 𝑓𝑠𝑢 is the tensile strength, 휀𝑠𝑢 is the corresponding strain, 휀𝑠ℎ is the 

strain at the onset of strain hardening and 

𝑞 = 𝐸𝑠ℎ (
휀𝑠𝑢 − 휀𝑠
𝑓𝑠𝑢 − 𝑓𝑦

) (4.15) 

where 𝐸𝑠ℎ is the strain hardening tangential modulus. The yield plateau is assumed to have stress 

equal to yield stress and is defined in the range 휀𝑦 < |휀𝑠|  휀𝑠ℎ. 

 

4.3.2 Parallel spring model description and state determination 

The response of a system of springs in parallel is governed by the kinematic relation between the 

individual element deformation vi and the global system deformation U according to 

𝑈 = 𝑣𝑖 = 𝑣 (4.16) 

where U can be thought of as the shortening of the boundary element under pure compression. 

At the element level, the deformations in each spring can be transformed to strains by dividing 

by length L. In this manner, the relation between global shortening of the system and average 

strains in the material of each spring is 

휀 =  휀𝑐 = 휀𝑐𝑐 = 휀𝑠 =
𝑣
𝐿⁄ =  𝑈 𝐿⁄  (4.17) 

where subscript c, cc and s correspond to the cover concrete, the core concrete and the steel 

spring, respectively. 

The static equilibrium relation of the system states that the total resisting force P of the 

system is equal to the sum of the resisting forces of its components 

 =  𝑞𝑐 + 𝑞𝑐𝑐 + 𝑞𝑠 = ∑𝑓𝑖𝐴𝑖

3

𝑖= 

 (4.18) 

                                                 
5 Even though the reinforcing steel material is subjected to compression, an engineering stress-strain relation definition based on 

tensile tests will be used because of the availability of experimental parameters. This assumption will not have a major 

repercussion in the results because the expected compressive strains on the reinforcement are rather low.  
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where fi and Ai are the stress and area of the spring at a given level of deformation and the 

corresponding element resisting forces for the cover, core and steel springs are 𝑞𝑐, 𝑞𝑐𝑐, and 𝑞𝑠, 
respectively. To determine the resisting force of the system at each given value of strain (휀), the 

constitutive model of each material provides the corresponding stress (𝑓𝑖(휀)) and the total 

resisting force can be calculated with Equation (4.18). It is worth mentioning that for the 

purpose of modeling the elements of this document, the cover area is assumed to spall-off 

progressively (see Figure 4.3) in a linear manner according to 

                  𝐴𝑐(휀) =  𝐴𝑔 − 𝐴𝑐ℎ                                           if                           |휀|  휀𝑐 

= 
(𝐴𝑔 − 𝐴𝑐ℎ)

(휀𝑠𝑝 − 휀𝑐 )
 (휀𝑠𝑝 − 휀)                    if              휀𝑐 < |휀|  휀𝑠𝑝  

=  0                                                          if                           |휀| > 휀𝑠𝑝 

(4.19) 

The stiffness of the system is given by the sum of the individual element stiffness 

𝐾 = 𝑘𝑐 + 𝑘𝑐𝑐 + 𝑘𝑠 = ∑
𝐸𝑖𝐴𝑖
𝐿

3

𝑖= 

 (4.20) 

where Ei is the tangent modulus of the spring at a given level of deformation. 

 

4.3.3 Force-shortening response prediction 

As an example, Figure 4.4 depicts the global force-shortening response of specimen W7 

calculated with the procedure described above. Table 4.2 contains the geometric and material 

parameters for each spring. In this example, the state determination of the system is a simple 

process in which monotonic increasing average strains ( = 𝑼/𝑳) are given. The corresponding 

material strains are associated uniquely to stresses by means of the uniaxial constitutive models 

and areas per strain value are also calculated. Finally, resisting forces at the element and at the 

global level are calculated according to Equation (4.18). 

 

Table 4.2 - Spring parameter for modeling of specimen W7. 
Cover Core Reinforcement 

𝐴𝑔 432 in2 𝐴𝑐ℎ 297 in2 𝐴𝑠 10.8 in2 

휀𝑐  0.003* 𝑓𝑙𝑒,𝑚𝑖𝑛 0.26 ksi 𝑓𝑦 69.6 ksi* 

𝑓′𝑐 4.35 ksi* 휀𝑐𝑐  0.01 휀𝑠ℎ 0.005* 

휀𝑠𝑝 0.005 𝑓′𝑐𝑐 6.31 ksi 휀𝑠𝑢 0.14* 

  휀𝑐𝑐𝑢 0.019 𝑓𝑠𝑢 95.0 ksi* 

*correspond to measured values. 
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Figure 4.4 Example of the state determination of the springs-in-paralell model. (a) given strains and corresponding 

stresses of each spring; (b) resisting force-average strain relation of each spring and the system. 

 

Comparison of the predictive models and actual response is presented in Figure 4.5 for 

specimens W3 to W12. The average strain of the experimental curves is estimated from the 

shortening of the portions between the loading heads, using a gage length equal to the specimen 

height hw = 72 in. [1828 mm]. The models were developed using actual material properties of the 

unconfined concrete and reinforcing steel. The maximum reported strains are based on 

estimations using the actual confining stress fle,min (in the through-thickness direction of the 

prims, see Table 4.3) and Equation (4.7). The models estimate reasonably well the maximum 
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load attained by the specimens. The difference in the ascending branch of the curves, being 

softer for the test curves, is explained by the fact that the shortening of the wall was measured at 

the edge of the top and bottom heads and not in the main body of the specimens. Although not 

shown here, average strains measured from strain gages on the longitudinal reinforcement give a 

closer matching for the ascending branch of the curves. 

 
Figure 4.5 Experimental and “blind” prediction of axial load versus average strain relations. (Note: gage length for 

the experimental curves is 72 in. [1828 mm]). 
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Table 4.3 – Confined concrete model parameters. 

ID LDZ/tw 
fle,min/f’c 

(model) 
f’cc/f’c 

(model) 
cc0 

(model) 
ccu 

(model) 

W3 1.81 0.076 1.48 0.010 0.023 

W5 2.29 0.048 1.40 0.009 0.016 

W6 2.08 0.062 1.45 0.010 0.019 

W7 2.75 0.059 1.45 0.010 0.019 

W8 2.50 0.070 1.48 0.010 0.022 

W9 3.06 0.093 1.60 0.012 0.027 

W10 2.71 0.068 1.48 0.010 0.021 

W11 2.83 0.061 1.45 0.010 0.019 

W12 2.71 0.107 1.75 0.014 0.031 

 

After cover spalling, the longitudinal reinforcement model carries approximately one-

third of the total load, while the core carries the rest. As described in Chapter 2, due to the 

localization of damage, bar buckling and the out-of-plane displacement observed in the tests, the 

post-peak behavior of the model misses completely the actual behavior of the boundary 

elements. This is recognized in Section 4.4, where an attempt to recover the force-shortening 

relationship of the most damaged zone is presented. This will be consistent with the 

experimentals procedures that form the basis for the empirical confined concrete models 

proposed. 

 

4.4 Local Force-Shortening Relationship Estimation 

4.4.1 Force-shortening relationship within the damage zone 

An approximation of the force-shortening relationship of the damaged zone (DZ) of specimens 

W3 to W12 is presented here. The DZ is the portion of the specimen where cover spalling was 

observed, which includes the smaller length where bar buckling developed. The force-shortening 

relationship of the DZ is recovered using a hybrid model which assumes that the specimens 

behave as a system of two springs in series. One spring represents the DZ, while the other 

represents the undamaged zone (UDZ) where no cover spalling was observed (Figure 4.6a). 

Supported by the response described in Section 2.6.5 and Figure 2.14, it is also assumed that the 

UDZ spring unloads after the maximum load is attained, with initial stiffness equal to 

  sssgcDZwDZ AEAAELhK  )/(10
 (4.21) 

where LDZ is the average length of the damaged zone (see Table 4.3).  

To recover the force-shortening relationship of the DZ, the deformation (shortening 

displacement) in the springs is estimated as follows, using the empirical global force-shortening 

relationships: (i) up to the peak load, the deformation in each spring is distributed proportionally 

to its initial stiffness; (ii) for deformations larger than that corresponding to the peak load, the 

displacements in the DZ spring are estimated by subtracting, the displacements of the UDZ 

spring (which is in a unloading state) from the empirical displacements (Figure 4.6b). An 

example of the resulting force-average strain relationship of the damaged zone, the un-damaged 

zone and the whole specimen is presented in Figure 4.6c. The average strains of the DZ spring 

are estimated using gage length LDZ, which corresponds to the average spalling length in Figure 

2.11 and are summarized in Table 4.3. 
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Given tie spacing s, longitudinal bar diameter db, and transverse tie diameter dbt, it is a 

straight-forward process to include the inelastic buckling model of Chapter 3, to modify the 

predictive model presented in Section 4.3.3. Figure 4.7 shows a comparison of the semi-

empirical force-average strain relationships of the DZ with such modified model. It is worth 

mentioning that the inelastic buckling model was conceived for a gage length of 2tw, which 

approximately coincides with the values of LZD used to recover the average-strains in the DZ. 

This is of relevance because the softening nature of the postbuckling slopes of the steel is 

dependent on the modeling gage length. The buckling model is slightly modified to delay 

buckling of the rebar after spalling is initiated (for example at average strains larger than 0.003). 

While this effectively varies the b/y ratio, the post buckling response is kept unmodified.  

 
Figure 4.6 - Model to estimate the force-shortening response of the most damage zone:(a) spring in series 

representation of the specimen; (b) force-shortening relationship of the different portions of the wall; (b) force-

average strain relationships (Note: average strains of the DZ spring are estimated using gage length LDZ equal to the 

average spalling lengths in Figure 2.11). 

 

Given the relatively small s/db ratio of the tied longitudinal bars, the inelastic bar 

buckling model implemented predicts that buckling strains are larger than the range of strains of 

interest in Figure 4.7 for the DZ curves. On the other hand, for the non-tied bars, and for those 

of specimen W8 (which has double the spacing of the ties), the buckling strain is equal to that of 

the onset of cover spalling. For the sections with non-tied bars (W3 to W9), the steel contribution 

to the DZ model shows a gentle softening slope after the onset of buckling. This is explained by 

the fact that the force carried by the steel has two contributions with different responses: (i) one 

that buckles at the onset of cover spalling (for example, the non-tied bars), and (ii) other that 

strain hardens past the strains shown (for example, the tied bars). Although the DZ semi-

empirical curves presented in Figure 4.7 show a shallower post peak response as compared to 
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the global average strain curves presented in Figure 4.5, the post peak load carrying capacity is 

still over predicted.  

 
Figure 4.7 Semi-empirical and prediction of axial load versus average strain relations for the damage zone (DZ). 

(Note: average strains of the DZ curves are estimated using gage length LDZ equal to the average spalling lengths in 

Table 4.3). 

 

4.4.2 Point wise force-average shortening relationship 

The force versus core strain relationships presented in Figure 2.14 are used as a third source of 

empirical response in this section. For this purpose, the most demanded core strain gages (COSG) 

are selected to compare their response with the force-average strain relationship at the global 
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level (over the entire height hw), as well as at the DZ level (Figure 4.8). The core strain gages 

selected are COSG3, COSG3, COSG4, and COSG3 for specimens W8, W9, W11, and W12, 

respectively. It worth recalling that those specimens had embedded core strain gages, and did not 

suffer from sudden loss of load carrying capacity. Figure 4.8 also presents the model for the DZ. 

The average strains are estimated over gage lengths equal to 2.4 in. [60 mm] and 72 in. [1828 

mm], for the core strain and the global levels of deformation, respectively. Gage lengths for the 

DZ are 30.0, 36.8, 34, and 32.5 in. [762, 933, 864, 826 mm], for specimens W8, W9, W11 and 

W12, respectively. 

 
Figure 4.8 Experimental and predictive model of axial load versus average strain relations for different gage 

lengths. (Note: average strains gage lengths are: 72 in. [1828 mm] for the Global curves; LDZ equal to the average 

spalling lengths in Table 4.3 for the DZ curves; and 2.2 in. [60mm] for the core strain gages COSG curves). 

 

It is observed that the core strains curves are closer to the models, as compared to the 

global and the DZ curves. This is expected because the point wise core strains are measured at 

locations close to the most damage region (for example within the bucking length of the 

longitudinal bars), while the other two gage lengths include portions of the specimen that relax 

(expand) over this zone of excessive deformation, therefore, resulting in steeper post peak 

responses. Specimens W8, W9 and W11 exhibit a point wise response closer to the prediction 

models, with respect to their global and DZ levels of response. The post peak strength of the 

latter two are not as close to the predictive model. Specimen W12 exhibits the most ductile 

response among all specimens, showing the smallest variation in response from the global to the 

point wise level of strain demand. This means that a large portion of the specimen was strained 
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uniformly. As described in Chapter 2, bar buckling was inhibited for this specimen, and global 

buckling was the failure mechanism. The fact that the maximum predicted load was not reached 

by this specimen, leads to the hypothesis that some out-of-plane displacement may have affected 

its response, perhaps also impacting its ductility capacity due to flexural action. 

 

4.5 Empirical Core Stress-strain Curves 

4.5.1 Confined concrete response in the damage zone 

Assuming the damaged zone (DZ) spring is an inelastic system composed of three springs in 

parallel, analogous to the description in Figure 4.3, the recovery of the empirical stresses in the 

confined core can be achieved by subtraction of the force carried by the longitudinal steel and the 

cover from the total recorded force. The stresses are derived through the following process for 

each strain data point: (i) at each strain increment, the forces in the cover concrete and the 

longitudinal reinforcement are estimated using analytical models for the stress-strain relations 

(including buckling) and known areas for the cover and reinforcement (see Figure 4.3); (ii) 

forces in the cover concrete and longitudinal reinforcement are subtracted from the total force to 

obtain the core concrete force; and (iii) the core concrete force is divided by the core area taken 

to the outside of the hoop. Figure 4.9 summarizes this process for the estimation of the core 

stress in the DZ of specimen W7. 

 
Figure 4.9 - Core empirical stress-strain relationship estimation for the DZ: (a) constitutive model for the steel and 

cover (unconfined) concrete; (b) recovered force-average shortening relation for the confined core; (c) recovered 

confined core stress-average strain relationship for the DZ. (Note: average strains gage length is equal to LDZ in 

Table 4.3 for specimen W7). 
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Figure 4.9a presents the constitutive relationships used to model the materials 

representing the unconfined concrete, the tied longitudinal reinforcement, as well as the non-tied 

bars, which are allowed to buckle. Figure 4.9b shows the recovered force of the confined core. 

The forces in the core, along with those carried by the steel and the cover models, add up to the 

force of the DZ at each strain level. Figure 4.9c shows the recovered (experimental) confined 

core stress versus average stain relationship in comparison with the model by (Mander et al., 

1988b), as modified by (Moehle, 2014). Also shown are three levels of strain denoted cc100 

(circular markers), cc90 (diamond markers) and cc80 (squared markers). These define, 

respectively, the confined core strain at which the maximum confined core strength f’cc is 

attained, and the strain at which the core strength drops to 90% and 80% of the maximum. 

Figure 4.10 shows results of confined core concrete stress versus average strain derived 

for the damaged zones of specimens W3 to W12. Derived stress-strain relations are compared 

with the  theoretical models by (Mander et al., 1988b), with a variation to represent gradual 

confinement achievement of the confined concrete, and to include limiting strain ccu from 

Equation (4.7). The empirical curves are normalized by ratio Pmax/P0, to reduce the PM-

interaction effects on the maximum strength. Consistent with the results presented in Section 

4.4.1, it is observed that albeit reaching in most cases at least 90% of the strength predicted by 

the model, the deformation ductility capacity prediction is not comparable to the experimental 

data. It is hypothesized that buckling of non-restrained rebar prevented the confined core section 

from achieving effective confinement through large strains.  

Specimens W9 and W12 show an apparent discrepancy in strength with the models. 

These two specimens are compliant with ACI 318-14 and have the largest effective confining 

strength fle (see Table 4.3), which greatly impacts the analytical confined core strength f’cc 

estimation. Effective confining strength is a function of the volume of transverse steel provided, 

relative to the volume of the confined core within spacing s; it is also proportional to the 

expected stress demand fs in the transverse reinforcement. In estimating fle, it was assumed fs was 

equal to the yield strength fyt, which might not be accurate according to the experimental tie 

strain demand recorded at different levels along the specimen height. The empirical data showed 

that tie strains were approximately half the yield strain when the peak load was attained; hence, it 

is believed that such large confining stresses were not as effective to increase the core capacity in 

such a large manner. Figure 4.11 presents this information for three stages of the response of 

specimens W9 and W12. 
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Figure 4.10 Empirical stress-strain relations of the confined core from the damaged zone of specimens W3 and 

W12. 

0

1

2

3

4

5

6

7

8

0.000 0.010 0.020

C
o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W7

0

1

2

3

4

5

6

7

8

0.000 0.010 0.020

C
o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W3

0

1

2

3

4

5

6

7

8

0.000 0.010 0.020

C
o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W5

0

1

2

3

4

5

6

7

8

0.000 0.020

C
o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W6

0

1

2

3

4

5

6

7

8

0.000 0.020

C
o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W8

0

1

2

3

4

5

6

7

8

0.000 0.020
C

o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W9

0

1

2

3

4

5

6

7

8

0.000 0.010 0.020

C
o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W10

0

1

2

3

4

5

6

7

8

0.000 0.020

C
o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W12

0

1

2

3

4

5

6

7

8

0.000 0.010 0.020

C
o
re

 s
tr

es
s 

[k
si

]

DZ average strain

W11

Modified 

Mander et al. 1988 model

Experimental 

DZ



96 

 

 
Figure 4.11 Strain demand distribution in ties of specimens W9 and W12: (a) normalized force versus average axial 

strain in the DZ; (b) transverse strain demand on the central tie of specimen W9 and W12 at three stages of the 

force-shortening relationship. 

 

4.5.2 Statistics of the empirical confined core stress-strain relationship in the damage 

zone (DZ) 

Recovered confined-to-unconfined-strength ratio are in the range 1. 1  𝑓’𝑐𝑐/𝑓′𝑐  1.58 

(Figure 4.12). Mean f’cc/f’c is 1.42 with COV=7%. Experimental values of cc100, cc90 and cc80 

are plotted against the corresponding damage zone length in Figure 4.13a. Empirical values of 

cc80 are considered as ultimate limiting strain of stable core behavior. Mean values for the 

instants of interest are 휀𝑐𝑐   ̂ = 0.56%, 휀𝑐𝑐9 ̂ = 0.89% and 휀𝑐𝑐8 ̂ = 1.10%. It is observed that 

the dispersion increases as the strength loss, at which the strains are recorded, increases. This is 

due to the highly variable post peak response observed in the confined concrete empirical stress-

strain relationships. 

 
Figure 4.12 Model and empirical core strength comparison. 

 

Figure 4.13b summarizes the statistics corresponding to the median, 1st and 3rd quartiles, 

and maximum and minimum values of the laboratory data. These are compared with the statistics 

of the analytical estimates of cc0 and ccu, obtained using Equation (4.2) and (4.7), respectively, 
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calculated using as-tested material properties. While the ratio between the average analytical 

strain at peak strength cc0, and the average strain at peak strength of the unconfined concrete c0, 

(see Figure 2.2) is 3.5, the ratio cc100/c0 is 1.9, showing a smaller migration of the empirical 

confined strain at peak. The scatter of cc100 is also much smaller supporting the observation that 

the specimens were not able to recover the load carrying capacity past the onset of concrete 

cover spalling. Although it is recognized that the definition of ccu differs from that of cc80, at the 

mean level, analytical ultimate strains approximately double those of the experiments. The 

minimum and maximum experimental strains in stable response are cc80,min = 0.008 and cc80,max 

= 0.018. 

 
Figure 4.13 Confined core strains at different levels of strength loss. (a) scatter of recorded values of strain and 

corresponding damage zone length for specimens W3 to W12; (b) box plots comparing the dispersion of the 

empirical data and models for different confinement strain measures. 

 

4.5.3 Statistics of pointwise empirical confined core stress strain relationships 

A similar approach to that exposed in Section 4.5.1 was followed to estimate empirical confined 

concrete stress-strain relationships using the pointwise force-strain curves presented in Section 

4.4.2. With this motivation, the most demanded core strain gage of specimens W8, W9, W11 and 

W12 were selected: COSG3, COSG3, COSG4, and COSG3, respectively. In addition to this, the same 

procedure was followed using the two adjacent most demanded strain gages. For this purpose, 

the following core strain gages were averaged with the latter set: COSG4, COSG4, COSG5, and 

COSG2, for specimens W8, W9, W11, and W12, respectively. Gage length for the single gage set, 

denoted 1COSG, is 0.2tw = 2.4 in. [60 mm], and it is assumed to be 1.2 tw = 14.4 in. [366 mm] for 

the 2COSG set, since that is the length that two adjacent core strain gages bridge. Figure 4.14 

presents comparison of the core strength estimation from the 1COSG and 2COSG sets. As 

expected, the core concrete strength measurement is almost invariant to the gage length over 

which it is measured, because of the non-decreasing nature of the force-average strain curves up 

to peak load. Both sets produce similar results with mean f’cc/f’c equal to 1.42 and 1.40, 

respectively. Mean value for the DZ set of the corresponding specimens and that of the 

predictive model are 1.40 and 1.57, respectively.  
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Figure 4.14 Confined core strength for two strain gage lengths. 

 

Mean values of strain at different strength levels are presented in Figure 4.15 for the 

1COSG and 2COSG datasets. Data for the DZ of the same four specimens (W8, W9, W11 and 

W12) is shown as well, along with mean analytical values of cc0 and ccu. Although not shown 

here, the DZ semi-empirical curves agree with the empirical curves corresponding to the average 

of the three adjacent core strains gages with the largest strain demand; these have gage lengths 

that approximate those of the DZs. It is observed that the smaller the gage length, the larger the 

strain measured at any given strength level. This confirms the conclusion that plasticity does not 

spread over a large portion of the specimens. Although pointwise empirical values are closer to 

the analytical estimates, the model still over predicts the strain a peak strength by 69% for the 

smallest gage length data set. While maximum stable mean core strain is cc80 = 0.02 for gage 

length of 0.2tw, this number reduces 65% for length comparable to the specimen width (for 

example, 1.2tw). 

 
Figure 4.15 Mean confined core strains at different levels of strength loss for specimens W8, W9, W11 and W12 

(Note: gage length for the 1COSG and 2COSG are 0.2tw = 2.4 in. [60 mm] and 1.2 tw = 14.4 in. [366 mm], 

respectively; mean gage length for the DZ series is 2.5tw = 30 in. [762 mm]). 

 

4.5.4 Confined concrete stress strain relationships for modeling 

Modeling the response of the rectangular prisms tested, as part of a shear wall prototype under 

seismic action, requires the definition of material models that represent their observed behavior. 

For this purpose, confined concrete stress-strain curves are constructed in Figure 4.16 using 

mean values of the empirical confined concrete strength 𝑓′𝑐𝑐�̂�, and strains 휀𝑐𝑐   ̂, 휀𝑐𝑐9 ̂, and 

휀𝑐𝑐8 ̂, for the three gage lengths: 0.2tw = 2.4 in. [60 mm], 1.2 tw = 14.4 in. [366 mm], and 2.5tw = 

0.0

0.4

0.8

1.2

1.6

2.0

W8 W9 W11 W12

f'
cc

/f
' c

1COSG 2COSG

0.0071

0.013

0.020

0.0063

0.011
0.013

0.0056

0.0094
0.0110.012

0.0220.022

0

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0.024

0.027

e100 e90 e80

M
e
a

n
 

cc
,i

1COSG 2COSG DZ Mean ecc0 Mean eccu

cc100 cc90 cc80

Mean cc0 ccu1COSG 2COSG DZ Mean ccu

Mean cc0

Mean ccu



99 

 

30 in. [762 mm]. The data used for the two smaller gage lengths comprises that of specimens 

W8, W9, W11, and W12, while the data for the largest gage length is more robust, summarizing 

the response of all specimens.  

 
Figure 4.16 - Proposed confined concrete stress-strain relationships for different gage lengths. (Note: gage length 

for the 1COSG and 2COSG are 0.2tw = 2.4 in. [60 mm] and 1.2 tw = 14.4 in. [366 mm], respectively; mean gage length 

for the DZ series is 2.5tw = 30 in. [762 mm]). 

 

The model describes the relationship between the normalized confined concrete stress 

f’cc/f’c, and the confined concrete strain cc. It is a hybrid function comprising an ascending 

branch that follows the mathematical expression of (Mander et al., 1988b) up to peak strength, 

and a linear portion to model the post peak behavior. The post peak branch passes through points 

(휀𝑐𝑐   ̂, 𝑓′𝑐𝑐�̂�/𝑓′𝑐) and its slope mcc is estimated from a linear fit of the data points (휀𝑐𝑐   ̂, 𝑓′𝑐𝑐�̂�/

𝑓′𝑐), (휀𝑐𝑐9 ̂, 0.9𝑓′𝑐𝑐�̂�/𝑓′𝑐), and (휀𝑐𝑐8 ̂, 0.8𝑓′𝑐𝑐�̂�/𝑓′𝑐). Equation (4.22) defines the model and 

Table 4.4 contains its parameters. The shape of the ascending branch for the three gage lengths 

is set to be unique, and is controlled by parameter re = 1.38, which is estimated using the mean 
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value of 𝐸𝑐 from the empirical data. This works well for unconfined compressive strengths in the 

range of those of the tests, that is  .8𝑘𝑠𝑖[26𝑀 𝑎]  𝑓′
𝑐
 5.1𝑘𝑠𝑖[ 5𝑀 𝑎].  

𝑓𝑐𝑐(휀𝑐𝑐)

𝑓′𝑐
=
𝑓′𝑐𝑐�̂�/𝑓′𝑐 (

휀𝑐𝑐
휀𝑐𝑐   ̂

) 𝑟𝑒

𝑟𝑒 − 1 + (
휀𝑐𝑐
휀𝑐𝑐   ̂

)
𝑟𝑒
                                                        0  휀𝑐𝑐  휀𝑐𝑐   ̂ 

𝑓𝑐𝑐(휀𝑐𝑐)

𝑓′𝑐
= 𝑓′𝑐𝑐�̂�/𝑓′𝑐 − 𝑚𝑐𝑐(휀𝑐𝑐 − 휀𝑐𝑐   ̂)                                      휀𝑐𝑐   ̂ < 휀𝑐𝑐  휀𝑐𝑐8 ̂ 

(4.22) 

Table 4.4 – Confined concrete stress-strain model parameters. 
Gage 

Length 
 ′
  𝒆

̂/ ′  
Strain at peak 

   𝟏𝟎�̂� 

Parameter 

re 

Post peak slope 

mcc 

Ultimate strain 

    �̂� 

Ultimate strain 

    �̂� 

0.2tw 

1.42 0.006 1.38 

20.3 0.013 0.020 

1.2tw 40.3 0.011 0.013 

2.5tw 56.7 0.009 0.011 

 

The approximate curves proposed are not an average model of the empirical confined concrete 

stress-strain curves, mainly because of the dispersion of cc90 and cc80, but constitute a simple 

approximation that allows the definition of backbone constitutive models for analysis purposes. 

The initial stiffness and the strain at peak of the models, represent well the empirical data for any 

gage length. The increase in the post peak slope, and the reduction in the ultimate strain capacity 

휀𝑐𝑐8 ̂ are apparent for increasing gage lengths. 

 

4.6 Final Comments 

Experimental and predictive models of the confined concrete response showed a discrepancy, 

mainly after the peak strength was attained. Stability of the steel cage surrounding the concrete 

was not guaranteed because of two main factors: (i) the low stiffness of the long leg of the 

perimeter hoops did not provide effective restraint to the non-tied bars; and (ii) the 90- and 135-

degree tie hooks opened due to the pressure excerpted by the longitudinal bars undergoing lateral 

instability. Therefore, at small strain increments past the peak load, the confined concrete core 

lost it restraining mechanism, facilitating rapid loss of load carrying area. Additionally, out-of-

plane instability of the specimens after the onset of cover concrete crushing played an important 

role in their response by preventing a uniform compressive strain demand through the thickness 

of the specimens.  

Three confined concrete stress-strain relationship are proposed. These are constitutive 

models which are a function of the gage length over which their strains are measured. The 

estimation of the curves utilized cover concrete and steel models that represented the as-tested 

properties of the materials. Additionally, bar buckling effects were accounted for the estimation 

of the confined core strengths. The simple models are close to those in the literature, only if 

empirical point wise strain measurements are utilized. The peak confined concrete strength 

proposed is 1.42 times the unconfined concrete strength. The strain at peak strength is set to 

0.6%, and the ultimate strains for stable core responses are 0.20, 0.013 and 0.011 for gage 

lengths equal to 0.2tw = 2.4 in. [60 mm], 1.2 tw = 14.4 in. [366 mm], and 2.5tw = 30 in. [762 mm], 

respectively.  
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Chapter 5 - Implications of Results 

 

This chapter presents a methodology to evaluate the implications of the results described in 

Chapter 2 through Chapter 4 with a hazard consistent basis. The methodology is based on the 

Conditional Scenario Spectra (CSS) to estimate the risk of structural response quantities. The 

CSS are a set of realistic earthquake spectra with assigned rates of occurrence that reproduce the 

hazard at a site over 10-2 to 10-5 annual exceedance for periods of 0.1 to 4 seconds. A numerical 

example of a prototype code-compliant special structural wall under seismic shaking is presented 

to show an implementation of the hazard-consistent response assessment methodology. The 

impact of the reinforced concrete material behavior described throughout this document is 

discussed in terms of its risk. The example is utilized to describe the implication of the strain 

limits proposed in previous chapters in a hazard-consistent manner. 

 

5.1 Engineering Demand Parameter (EDP) Risk 

The PEER methodology for performance based earthquake engineering (PBEE) offers a robust 

framework to assess the expected performance of civil structures subjected to seismic hazard 

(Moehle & Deierlein, 2004). It decomposes the development of PBEE into separate tasks such 

as:  

 Seismic hazard analysis to determine IM(im), which is the mean annual rate of 

exceedance of certain ground motion intensity (or intensity measure, IM). Typically, 

selected IM include spectral accelerations Sa(Ti) at several periods, and their rate (hazard) 

is estimated by means of a Probabilistic Seismic Hazard Analysis (PSHA). 

 Structural demand analysis to determine GEDP(edp│im), which is the probability of 

exceeding certain structural response given different levels of IM. The structural demand 

responses of interest are also called engineering demand parameters (EDP), and typically 

include drift ratios and accelerations because these can be related to damage measures of 

structural and non-structural components. This task is generally done by means of 

computer models simulating structural responses under several different ground motions 

of increasing intensity. 

 Damage modeling to determine GDM(dm│edp), which is the probability of exceeding 

certain damage state (or damage measures, DM), given different levels of EDP. For 

structural components, this may include levels of cracking, fracture, and buckling, among 

others. This task is typically done in the laboratory, where a robust EDP, that is, one that 

can be modeled accurately in the structural demand analysis phase, is selected to be 

correlated to different DMs. In this manner, for example, a column element can be tested 

under increasing cyclic lateral displacement, which represents the drift EDP, and 

different damage states (for example, crack width, cover spalling, bar fracture, and 

collapse) are recorded during the evolution of that EDP. 

 Loss analysis to determine GDV(dv│dm), which is the probability of exceeding certain 

decision variable (DV) limit, given different damage states. The decision variable may 

include economic losses, down time for repairs, and life loss, among others. This task 
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requires information relating the aforementioned DVs to the DMs. For example, how 

much money costs and how long it takes to repair certain reinforced concrete beam with a 

specific level of cracks width. 

With these definitions, the PEER PBEE framework defines the mean annual rate with which the 

decision variable is exceeded as 

𝜆(𝑑𝑣) =∭ 𝐷𝑉⟨𝑑𝑣|𝑑𝑚⟩|𝑑 𝐷𝑀⟨𝑑𝑚|𝑒𝑑𝑝⟩||𝑑 𝐸𝐷𝑃⟨𝑒𝑑𝑝|𝑖𝑚⟩||𝑑𝜆(𝑖𝑚)| (5.1) 

where im (or IM), edp (or EDP), dm (or DM) and dv (or DV) are the intensity measure, 

engineering demand parameter, damage measure and decision variable, respectively. The 

conditional complementary cumulative density functions  𝑋⟨𝑥|𝑦⟩ are of the following form: 

 𝑟(𝑥 < 𝑋|𝑌 = 𝑦) = 1 −  𝑟(𝑋  𝑥|𝑌 = 𝑦). For example, if one selects the roof drift ratio 

(RDR) of a cantilever wall as the EDP of interest, and the spectral acceleration at the 

fundamental period of the wall Sa(T1), as the intensity measure, GEDP(edp│im) has the form 

 𝑟(𝑒𝑑𝑝  𝑅𝐷𝑅|𝑆𝑎(𝑇 ) = 𝑖𝑚). Specifically one could be interested in the probability that the 

roof drift ratio is equal to or larger than 2% given Sa(T1) = 0.5g, thus  𝐸𝐷𝑃(𝑒𝑑𝑝│𝑖𝑚) ≡
 𝑟(𝑅𝐷𝑅 ≥ 2%|𝑆𝑎(𝑇 ) = 0.5𝑔). 

 

5.1.1 Seismic hazard estimation 

The seismic hazard at a site, influenced by k sources (e.g. faults), can be estimated by the integral 

in Equation (5.2). 

 

𝜆(𝑖𝑚) ≡ 𝜈(𝑆𝑎(𝑇) > 𝑧) = 

∑ 𝑁𝑘(𝑀𝑚𝑖𝑛)∬𝑓𝑀,𝑘(𝑚)𝑓𝑅|𝑀,𝑘(𝑟|𝑚) (𝑆𝑎(𝑇) > 𝑧|𝑀, 𝑅)𝑑𝑟𝑑𝑚
#𝐹𝑎𝑢𝑙𝑡𝑠

𝑘= 
 

(5.2) 

where 𝜈(𝑆𝑎 > 𝑧) is the annual frequency with which spectral acceleration (at a given period) 𝑧 is 

exceeded; 𝑀 is the earthquake magnitude, and 𝑅 is the distance from the source to the site; 

𝑁(𝑀𝑚𝑖𝑛) is the annual rate of earthquakes with magnitude greater than or equal to 𝑀𝑚𝑖𝑛; 𝑓(𝑚) 
and 𝑓(𝑟|𝑚) are probability density functions expressing the relative change of occurrence of 

different earthquake scenarios;  (𝑆𝑎(𝑇) > 𝑧|𝑀, 𝑅) is the conditional probability of observing a 

ground motion parameter, such as spectral acceleration (𝑆𝑎) (at a given period) greater than 𝑧, 

for a given earthquake magnitude and distance. Typically this conditional probability is 

estimated using available empirical Ground Motion Prediction Equations (GMPEs) 

(Abrahamson et al., 2014; Boore et al., 2014; Campbell & Bozorgnia, 2014; Chiou & Youngs, 

2014; Idriss, 2014), but could also be estimated by scenario-based simulations of seismic wave 

propagation. 

As an example, Yerba Buena Island in California, United States is selected as a site of 

interest for the purpose of estimating the seismic hazard and code-based seismic demand for the 

design of a reinforced concrete structure. The site is located in the San Francisco Bay Area with 

coordinates (37.810491°N, 122.368317°W). This area is known to be an active crustal region of 

high seismicity; specifically, the San Andreas and Hayward faults flank the selected site and are 

the two main sources of seismic hazard. Hazard curves from a PSHA for the site are depicted in 
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Figure 5.1a for different periods. The hazard deaggregation gives the fractional contribution of 

different scenario pairs (e.g. earthquake magnitude and distance) to the total hazard. For the 

Yerba Buena Island site, contribution to a selected hazard level of 4 x 10-4, corresponding to a 

return period of TR = 2,500 years is dictated by earthquake scenarios with distance to seismic 

source R = 5 to 30 km, and Moment Magnitude Mw = 6.0 to 8.5. The selected NEHRP soil class 

is C with Vs30 in the range 360 to 760 m/s. Figure 5.2 describes the contribution of the (M,R) 

pairs to the seismic hazard at two different spectral periods.  

Following conventional practice using ASCE 7 (2010), Maximum Considered 

Earthquake (MCE) seismic demand parameters are obtained at the short period, and at the one-

second period. These are adjusted for site effects, and then further adjusted to the design level by 

factor 2/3. The resulting design spectral acceleration parameters are SDS = 1.00 and SD1 = 0.52. 

Assuming the structure of interest is Risk Category I, and has (0.50 ≤ SDS ) and (0.20 ≤ SD1 ), it 

is assigned to Seismic Design Category D. For design, the elastic design response spectrum will 

be reduced by response modification factor R to account for the expected inelastic behavior. 

Figure 5.1b shows the MCE and design (DBE) level code-based response spectra, along with an 

estimated Uniform Hazard Spectrum (UHS) for a return period of 2,500 years. The UHS is a 

spectrum constructed by selecting a hazard level (return period), and intersecting the hazard 

curves of different periods to select corresponding Sa values. These (T, Sa) pairs conform the 

UHS, which spectral coordinates have the same rate of exceedance, and do not correspond to the 

response spectrum of any particular ground motion, as it is the envelope of all possible ground 

motions that went into the calculation of the hazard at a given period. 

 
Figure 5.1 – Seismic hazard: (a) hazard curves for several structural periods for the Yerba Buena Island site; (b) 

uniform hazard spectrum for 2,500 years return period and code-based response spectra (5% damped). 
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Figure 5.2 - Deaggregation of the seismic hazard for PE 2 % / 50yrs. 

 

5.1.2 EDP risk per PEER PBEE framework 

The reminder of this chapter will focus on the EDP - IM relationship, specifically on the EDP 

risk, which is a function of IM. The term “risk” will be used for the rate of exceedance of a 

consequence. For example, the annual rate of exceedance of an EDP is the inverse of the return 

period of a given structural response. This information is useful to evaluate structural behavior 

with a hazard-consistent basis.  

According to the PEER PBEE framework, the EDP risk is defined as 

𝜆(𝑒𝑑𝑝) ≡ 𝜆(𝐸𝐷 > 𝑒𝑑𝑝) = ∫ 𝐸𝐷𝑃⟨𝑒𝑑𝑝|𝑖𝑚⟩|𝑑𝜆(𝑖𝑚)| (5.3) 

where 𝜆(𝐸𝐷 > 𝑒𝑑𝑝) is a non-increasing function defined as the annual rate with which EDP 

level edp is exceeded; 𝑑𝜆(𝑖𝑚) is the rate of occurrence of the IM, which is the slope of the 

hazard curve. Fragility curves are plots of GEDP(edp│im) versus im. They describe the 

probability of a consequence as a function of the ground motion intensity level. Typically, the 

consequence is stated in a discrete manner; for example, three different fragility curves for the 

roof drift ratio have to be estimated if the chance of exceeding RDR equal to 0.5%, 2%, and 6%, 

given IM, needs to be evaluated. Their construction requires relating increasing values of IM 

with the EDP. Since GEDP is a strictly increasing function, it is required that structural responses 

increase with increasing values of IM. This is not always the case, since IM are usually elastic 

response spectrum values that might not necessarily correlate positively with inelastic structural 

responses. In other words, the IM is a variable describing a single characteristic of the ground 

motion (for example, the elastic spectral shape) and the EDP of interest may also depend on 

other descriptive variables such as duration, or inelastic response spectrum shape, among others.  

One way of avoiding the lack of correlation between EDP and IM, is by performing 

Incremental Dynamic Analysis (IDA) (Vamvatsikos & Cornell, 2002). This analysis 

methodology uses a set of seed ground motions which are scaled progressively to perform 

response history analyses of the structural model in consideration. Per scaling factor, each 

ground motion has an associated im value, and a corresponding peak structural response of 

interest (edp value). The ground motions scaling factor are incremented until a response 

threshold is surpassed for each ground motion. At the end of the analysis process, each EDP 

level of interest is associated to a distribution of IM values. Figure 5.3 shows an example of the 
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IDA results, along with the estimation of two points of the corresponding fragility curve of 

certain EDP level. The process consists of counting the proportion of IM realizations of ground 

motion that result in the EDP level under consideration. A lognormal distribution is usually fitted 

to the empirical probability function estimated (Baker, 2015). A main disadvantage of the IDA 

methodology is that the structural responses will vary, depending on the seed ground motions 

used. Also, the scaling factors used to increase the intensity of each ground motion may produce 

unrealistic spectral shapes, because the shapes are constant, but they should depend on the hazard 

level (e.g., spectra are more peaked at the low probability levels). This may produce unlikely 

structural responses, that are not necessarily consistent with the estimated hazard. Additionally, 

assigning rates of occurrence to the scaled ground motions is difficult.  

 
Figure 5.3 - IDA results and corresponding fragility curve estimation (adapted from (Haindl et al., 2015)) 

 

With the fragility curve in terms of the spectral acceleration, and the slopes of the hazard 

available (dv/dz), rate 𝜆(𝐸𝐷 > 𝑒𝑑𝑝) can be estimated as 

𝜆(𝐸𝐷 ≥ 𝑒𝑑𝑝) = ∫
−𝑑 𝜈(𝑆𝑎(𝑇) > 𝑧)

𝑑𝑧
 𝑟(𝐸𝐷 ≥ 𝑒𝑑𝑝|𝑆𝑎(𝑇) = 𝑧)𝑑𝑧 (5.4) 

where a minus sign is included to correct for the negative slope of the hazard curve. The negative 

sign arises because the hazard is a complementary cumulative distribution where rate of 

exceedance are used. 

 

5.1.3 Conditional scenario spectra (CSS) for EDP risk estimation 

As an alternative to the procedure shown in Section 5.1.2, this section presents a methodology 

that allows estimating the resulting risk of engineering demand parameters (EDP). As mentioned 

before, these may comprise structural responses at the global level such as maximum story drift, 

base shear force, and partial or total collapse. In this study, another EDP of interest at the local 

structural level of response, is the uniaxial strain demand at the critical section of structural 

walls. The EDP risk is estimated by means of nonlinear dynamic analyses under a large suite of 

ground motions selected and scaled based on the so-called Conditional Spectra (CS) (Lin, 

Harmsen, et al., 2013; Lin, Haselton, et al., 2013). The Conditional Spectra Scenario (CSS) are a 

set of realistic earthquake spectra with assigned rates of occurrence based on their spectral shape 
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and intensity. To ensure that each spectrum has the correct shape, the CSS ground motion 

selection procedure makes use of estimated Conditional Mean Spectra (CMS) (Baker, 2011), 

anchored at a conditioning period, at different hazard levels. Given the occurrence of the spectral 

acceleration of a UHS at a conditioning period, the CMS provides the geometric mean response 

spectrum at all periods of interest. Ground motion time series are selected based on the hazard 

deaggregation at the site, and are scaled to account for the peak and trough variability around a 

CMS at various hazard levels. The initial assigned rate of occurrence for each time series is 

based on the hazard level of the Uniform Hazard Spectrum (UHS) at the conditioning period of 

the aforementioned CMS. The assigned rates to each time series are then numerically optimized 

such that their calculated hazard matches the target hazard curves for a range of hazard levels 

and frequencies of interest. The hazard estimated with the CSS is given by 

𝜆(𝑖𝑚) ≡ 𝜈(𝑆𝑎(𝑇) > 𝑧) =∑ 𝑅𝑎 𝑒𝐶𝑆,𝑖𝐻(𝑆𝑎,𝑖(𝑇) − 𝑧)
#𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠

𝑖= 
 (5.5) 

where 𝑆𝑎,𝑖(𝑇) is the spectral acceleration of the ith recording, z is a test level, and H is the 

Heavyside function (for example, H(x) =1 for x > 0 and H(x)=0 for x  0). For a given period, 

only the recordings with spectral acceleration larger than test level z (for example, larger than 

certain value of Sa) will contribute to the hazard. 

The step by step procedure to estimate the CSS set is as follows: 

1. Select candidate spectra (recordings) from hazard deaggregation based on (M,R) and 

spectral shape at conditioning period To, for a specific hazard level (for example, 10-4). 

For a careful ground motion selection, the CSS is not too sensitive to the conditioning 

period, because the distribution of response spectra (of the selected recordings) are 

consistent with the ground motion hazard curves of the site at all relevant periods (Lin, 

Haselton, et al., 2013). Figure 5.4 shows 118 unique sets of 2-horizontal-component 

records from scenarios that are consistent with the hazard at the Yerba Buena site. This 

set was originally selected by Professor Norm Abrahamson, from the University of 

California, Berkeley, for the analyses presented in Appendix C. 

 
Figure 5.4 - Magnitude-distance pairs for selected seed ground motions (unique scenario spectra). 

 

2. Estimate target UHS with several rates of exceedance, representative of the hazard levels 
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for a proper recording selection at various levels (Figure 5.5). For the selected set, the 

hazard discretization comprises 9 levels. 

 
Figure 5.5 – Target UHS spectra for different hazard levels. 

 

3. Estimate target CMS’s with spectral coordinates that matches the midpoint between two 

consecutive UHS’s at the anchoring period To. Account for the peak-to-trough variability 

by estimating spectra with a range of +/-2.5 standard deviations around the CMS. The 

procedure to estimate the CMS and variability around it, is described in detailed by Baker 

(2011). Figure 5.6 summarizes this process, which requires the estimation of (a) the 

mean spectrum 𝑆�̃�(𝑇𝑖|𝑀, 𝑅) and corresponding standard deviation 𝜎(𝑇𝑖) = 𝜎(𝑇𝑖|𝑀, 𝑅) 
(in log units) at all periods, for the commanding scenario (M, R), from the GMPEs 

employed in the hazard estimation. (b) Parameter epsilon at the conditioning period(To) 

is the “spectral distance” in terms of the number of standard deviations separating the 

UHS (at the hazard level of interest) and the mean spectrum 𝑆�̃�(𝑇𝑜) 

휀(𝑇𝑜) =
ln 𝑆𝑎,𝑈𝐻𝑆(𝑇𝑜) − ln𝑆�̃�(𝑇𝑜|𝑀, 𝑅)

𝜎(𝑇𝑜)
 (5.6) 

(c) Estimate correlation coefficient 𝜌(𝑇𝑖|𝑇𝑜) (Baker & Jayaram, 2008) that relates epsilon 

at To and epsilons at different periods (Ti). Estimate the CMS for each hazard level as 

𝐶𝑀𝑆𝑇𝑜(𝑇𝑖) = 𝑆�̃�(𝑇𝑖)𝑒𝑥𝑝(𝜌(𝑇𝑖|𝑇𝑜)휀(𝑇𝑜)𝜎(𝑇𝑖)) (5.7) 

(d) Compute the standard deviation 𝜎𝐶𝑀𝑆,𝑇𝑜(𝑇𝑖) for the CMS as 

𝜎𝐶𝑀𝑆,𝑇𝑜(𝑇𝑖) = 𝜎(𝑇𝑖)√1 − 𝜌
2(𝑇𝑖|𝑇𝑜) (5.8) 

(e) Finally, estimate the spectra that expands the variability around the CMS by a selected 

number of epsilons 휀𝐶𝑀𝑆,𝑇𝑜 

𝐶𝑀𝑆𝑇𝑜(𝑇𝑖)𝑒𝑥𝑝(±휀𝐶𝑀𝑆,𝑇𝑜𝜎𝐶𝑀𝑆,𝑇𝑜(𝑇𝑖)) (5.9) 
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Figure 5.6 – CMS construction. 

 

4. Select a subset of N recording pairs per hazard level. Estimate their geometric mean 

spectra and scale them to match the midpoint between UHS at Hazard Level (i) and UHS 

at Hazard Level (i+1) at To. Keep those ground motions that fall within the +/- 2.5 epsilon 

range around the CMS. These are the conditional scenario spectra per hazard level. They 

have the correct spectral shape accounting for the peak-to-trough variability of the ground 

motions. 

 

Figure 5.7 – Scenario spectra for hazard levels 2x10-3, 1x10-3 and 2.5x10-4. 

 

5. Assign initial rate of occurrence to the selected subset per hazard level 

𝑅𝑎 𝑒𝐶𝑆,𝑖 =
𝐻𝑎𝑧𝐿𝑒𝑣𝑖 − 𝐻𝑎𝑧𝐿𝑒𝑣𝑖+ 

𝑁
 (5.10) 

6. Numerically optimized the rates until the estimated hazard (using Equation (5.6)) 

matches the target hazard for a range of frequencies and hazard levels of interest. 

0.01

0.1

1

10

0.01 0.1 1

S
p

ec
tr

a
l 
a
cc

el
er

a
ti

o
n

, [
g
]

Period, [sec]

UHS between 

HazLevi and HazLevi+1

   𝑻 𝑻𝒊 =   ̃ 𝑻𝒊 𝒆 𝒑(𝝆 𝑻𝒊 𝑻  𝑻  (𝑻𝒊))

  ̃ 𝑻𝒊  , from GMPE

To)

To

    ,𝑻 𝑻𝒊 =  (𝑻𝒊) 𝟏 − 𝝆 𝑻𝒊 𝑻 

   𝑻 𝑻𝒊 𝒆 𝒑(±    ,𝑻     ,𝑻 𝑻𝒊 )

Variability around CMS

0.01

0.1

1

0.01 0.1 1

G
eo

m
ea

n
 s

p
ec

tr
a

l 
a

cc
el

er
a

ti
o
n

, [
g

]

Period, [s]

Hazard: 2.5 x 10-4 

(TR=4,000yrs)

0.01

0.1

1

0.01 0.1 1

G
eo

m
ea

n
sp

ec
tr

a
l 
a

cc
el

er
a

ti
o
n

, [
g

]

Period, [s]

Hazard: 2 x 10-3

(TR=500yrs)

0.01

0.1

1

0.01 0.1 1

G
eo

m
ea

n
 s

p
ec

tr
a

l 
a

cc
el

er
a

ti
o
n

, [
g

]

Period, [s]

Hazard: 10-3 

(TR=1,000yrs)



109 

 

Figure 5.8a presents the set of 402 ground motion spectra used for this study along with 

their final assigned rates of occurrence (Figure 5.8b). As mentioned before, the main feature of 

the CSS is that the suite of records used, and their assigned rates, allow recovering the hazard at 

a site over a range of periods. The hazard recovered from the CSS is estimated by means of 

Equation (5.5), and is contrasted with the target hazard curves of Yerba Buena Island (estimated 

in a PSHA, see Figure 5.1a) in Figure 5.9. The target and recovered hazard curves are shown 

for hazard levels from 10-2 to 10-5 at three different periods. Recovered hazard curves are in good 

agreement with the target seismic hazard curves for the Yerba Buena Island site, being closer for 

periods adjacent to the conditioning period To = 1.5s. 

 
Figure 5.8 - Scenario spectra: (a) 402 scenario spectra (5% damped); (b) assigned rate of occurrence for each 

spectrum of the CSS 

 

 
Figure 5.9 - Hazard curves at different periods recovered from the conditional scenario spectra. 

 

5.1.3.1 EDP risk curves from CSS 
An example of the dataset obtained by means of structural demand analyses, using the CSS set 

described above, is presented in Figure 5.10. The EDPs shown correspond to the maximum roof 

drift ratio (RDR) and maximum base shear normalized by seismic weight (Vb,max/W) of an 

10
-2

10
0

10
-2

10
-1

10
0

10
1

Period, [s]

S
p
ec

tr
al

 a
cc

el
er

at
io

n
, 
[g

]

0 200 400
10

-10

10
-8

10
-6

10
-4

10
-2

Spectrum index

R
at

e 
o
f 

o
cc

u
rr

en
ce

Period, [s] Spectrum index

S
p

ec
tr

a
l 

a
cc

el
er

a
ti

o
n

, 
[g

]

R
a
te

 o
f 

o
cc

u
rr

en
ce

(a) (b)

0.00001

0.0001

0.001

0.01

0.01 0.1 1

A
n

n
u

a
l 
ra

te
 o

f 
b

ei
n

g
 e

x
ce

e
d

ed

Spectral acceleration, [g]

T=1.7sT=2.5s T=0.55s

u=2.5x10-4

u=1x10-3

Target  (Y.B. site)

Recovered from CSS



110 

 

inelastic reinforced concrete frame model described in Appendix C. The CSS set covers a wide 

range of ground motion intensities which allows assessing the response of the structure in the 

elastic range, and well within the inelastic range of response, up to collapse. Once the responses 

from the CSS runs are gathered, proper statistical treatment of the data allows estimating EDP 

fragility curves with ease, which can be plugged-in Equation (5.4) to estimate EDP rates of 

exceedance. More importantly, the structural responses from the CSS, along with the assigned 

rates of each time series, allow direct estimation of the EDP risk using Equation (5.11). 

𝜆(𝑒𝑑𝑝) ≡ 𝜈(𝐸𝐷 > 𝑑) =∑ 𝑅𝑎 𝑒𝐶𝑆,𝑖𝐻(𝐸𝐷 − 𝑑)
#𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠

𝑖= 
 (5.11) 

where 𝜈𝐸𝐷𝑃(𝐸𝐷 > 𝑑) is the annual frequency with which demand level d is exceeded; and as 

before, 𝐻(𝐸𝐷 − 𝑑) is either 1 or 0, per the Heaviside function H, depending on whether or not 

the EDP from time series i exceeds level d. 

 
Figure 5.10 – Global EDPs from CSS runs of models in Appendix C: (a) maximum roof drif ratio (RDR) versus 

spectral displacement Sd; (b) maximum base shear versus spectral acceleration Sa. 

 

Figure 5.11 shows risk curves examples estimated with Equation (5.11), for the 

maximum RDR and the normalized maximum base shear of the structure described in Appendix 

C. Useful information readily available from these curves is the return period of certain EDP 

level. This, for example, may help evaluate if the code-based design philosophy is met or simply, 

if the risk associate to demand level d is acceptable or not.  

The following section will present other uses of the EDP risk-estimation methodology 

presented above. Another interesting application is presented in Appendix C, in which the risk 

that is achieved by two ground motion modification procedures is compared with that from the 

CSS. This allows grading the simplified method for ground motion selection. 
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Figure 5.11 – Structural responses (EDP) risk curves example. 

 

 

5.2 Risk-based Implications of Limited Strain Capacity in Boundary Elements 

A distributed plasticity force-based finite element model of a shear wall is constructed to test the 

implications of the strain limits proposed in Sections 4.5.4 with a hazard-consistent basis. The 

results presented serve also as an application example to the methodology developed in the 

previous section. A 7-story cantilever T-wall prototype is designed such that its critical section 

comprises a special boundary element (SBE) consistent with those tested in Chapter 2. The 

prototype was defined from a one-half scale section designed by a team of researchers led by 

Doctor John Wallace at the University of California, Los Angeles, who is one of the principal 

investigator of the prism tests in Chapter 2. Figure 5.12 presents the geometry of the wall in 

elevation, the details of the cross section reinforcement, as well as some modeling details. 

 

5.2.1 Prototype analysis and design 

The prototype wall is 7.5 ft [2.30 m] long, with web and flange thickness of 12 in. [305 mm]. 

The 84 ft [25.5 m] bearing wall is the lateral load resisting system of 2100 ft2 [190 m2] of 

surrounding floor area. The special reinforced concrete shear wall was analysed for combined 

gravity and lateral seismic loads following ASCE-7. The expected axial load on the wall is 

0.10Agf’c, this was kept invariant for elastic and inelastic analyses purposes. For drift 

calculations, the effective inertia was set to 35% of the gross inertia. A response modification 

factor R = 5, and a deflection amplification factor Cd = 5, were selected. The concrete was 

assumed normal weight (c = 150 lb/ft3 [24 kN/m3]) with nominal strength f’c = 4.5 ksi, which is 

close to the average strength of the tests (Table 2.1). The elastic modulus of the reinforced 

concrete structural elements was computed as 57000√(f'c) [psi]. Reinforcing steel was assumed 

ASTM A706 with nominal yielding strength of fy = 60 ksi [420 MPa]. Seismic load effects on 

the structural members were calculated by means of the Equivalent Lateral Force Analysis 

described in ASCE 7. The seismic forces are defined based on the design spectrum depicted in 

Figure 5.1 after reducing it by R. The approximate period used for this purpose was estimated as 

CuTa = 0.78s. Design base shear including response modification factor R was V = 315 kip [1390 
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kN] which is 13% of the seismic weight. Design maximum roof drift ratio was 0.98%. The 

maximum story drift ratio was kept below the 2% code limit. The design was performed in 

accordance with provisions for special structural walls in ACI-318 (2011). The SBE on the stem 

has longitudinal steel ratio SBE = 2.9%, and transverse reinforcement ratio Ash/(sbc) equal to 

1.1% in the through-thickness direction of the wall. The flange side of the wall is reinforced as a 

SBE as well, with longitudinal steel ratio of 3.5%, which includes a protected area within the 

web. The longitudinal and transverse steel ratio of the web is h =t = 0.0046, providing 

protection against shear failure in case the flexural capacity of the wall is reached. 

 
Figure 5.12 – Geometry, reinforcement and model of the T-wall studied. 

 

5.2.2 Inelastic modeling 

Two models of the wall are constructed to show the effects of the softening response of the 

confined concrete in the boundary element region, on the global displacement capacity. The one 

model that accounts for softening response of the SBE, as the one observed in the tests, is 

denoted SoM (soft-model). The other model does not degrade with large compressive strains and 

is denoted DuM (ductile-model). The cantilever wall geometry, material characteristics and 
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reinforcement were programmed in OpenSees. The centerline of the elements representing the 

wall coincides with the centroid of the cross section and does not migrate with the neutral axis 

location. This means that rotations at the base pivot around a non-zero elongation point (the 

centroid), which might not be accurate, but is not considered a fundamental flaw. The structural 

elements were modeled to include axial and flexural deformations only. Shear deformations and 

nonlinear shear responses were not modeled. The force-based formulation described in Section 

3.3.1 through Section 3.3.6 was employed for the construction of the model. Two quadrature 

schemes were used in this case: (i) Gauss-Lobatto with three integration points (IP) for the first 

story element, and (ii) Gauss-Legendre with 2IP for the rest (Figure 5.12). A physical 

interpretation often given to the weights of the quadrature rules used in the formulation of 

distributed plasticity elements is related to the spread of plasticity within the element. For 

softening behavior, it is expected that the inelastic demand over the element concentrates on a 

single integration point. In flexure, this result in high curvature demand at the section level, 

which in turns reduces the total deformation capacity of the system.  

For the reasons exposed across this document, it is always desirable to have integration 

point weights representative of the expected size over which plasticity concentrates, and that are 

consistent with the gage lengths used to define the constitutive material models. Given the 

geometric constraints imposed by the first story height of typical walls, and the fact that cross 

section geometries may have wide range of dimensions, these two requirements are difficult to 

conciliate with a single strategy. This is so, because plastic hinge region extension is usually 

defined in terms of the wall length. To produce objective displacement results, that is, a response 

not dependent on the number of integration points, material regularization (Coleman & Spacone, 

2001; M. H. Scott & Fenves, 2006) is typically required to accommodate the available 

integration point weight at the critical section (which is associated to the number of IP and 

quadrature rule selected). This procedure effectively modifies the softening slopes of the material 

constitutive model to produce global displacement responses that are independent from the 

integration scheme, at the expense of producing unrealistic deformations at the section level (for 

example, curvature or uniaxial strains). Here, the integration scheme selected for the wall results 

in a first IP weight which has an associated length equivalent to 2tw. This corresponds to a lower 

bound of the mean damage zone length reported in Chapter 2, and is considered appropriate for 

the sake of the analysis presented without requiring material regularization. This will ensure that 

the global displacements and the local strain measurements are consistent. 

 

5.2.2.1 Materials 
The confined concrete constitutive model implemented for the SoM corresponds to that of the 

damage zone (DZ) in Section 4.5.4 (see Figure 4.16). Gage length for this model is 

approximately equal to the integration point length at the critical section. This ensures that the 

local uniaxial strains obtained from the analysis adequately represent the physical phenomenon. 

The model implemented for the DuM has the same ascending branch as that of the SoM but the 

post peak response holds the strength in a ductile manner up to ultimate strain cu = 2.2%, which 

is the mean ultimate strain estimate for specimen W3 to W12 from Section 4.3.3. Concrete was 

modeled as confined or unconfined, depending on the location within the cross section, using the 

stress-strain relationship proposed in (Kent & Park, 1971), as modified by B. D. Scott et al. 

(1982) to include the tensile behavior of concrete. For the SoM model, the OpenSees material 

model Concrete02 was calibrated to mimic the stress strain curve of the DZ with the parameters 
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contained in Table 4.4. On the other hand, for the DuM model, the strength degradation at cu 

was set to 5% of the peak, which matches well the stress-strain curve estimation using the 

Mander et al. (1988b) model for the geometry, materials and reinforcement layout of the stem 

SBE in the wall. Due to the material model capabilities in OpenSees, it is not expected that the 

DuM model reproduces the actual behavior at the section level for large compressive strains 

because it does not degrade in strength. The hysteretic behavior of the concrete under stress 

reversal is modeled according to Mohd Yassin (1994), including gradual degradation of stiffness 

under unloading and reloading in compression (Spacone et al., 1996). Figure 5.13 depicts the 

compression region of the constitutive model backbones for the SoM and DuM models. The 

longitudinal reinforcing steel stress-strain behavior was assumed to be bilinear with isotropic 

strain hardening (Filippou et al., 1983). It was modeled with material model Steel02 in 

OpenSees, except for the stem of the SoM model. There, a hysteretic material, as implemented 

by M.H. Scott and Filippou in OpenSees, was used to approximate the rebar buckling 

phenomena under compressive strains larger than a threshold value consistent with the 

observations in Chapter 3. It does not account for buckling under tensile strains due to previous 

large tensile excursions.  

 

Figure 5.13 – Compression quadrant of the concrete models for nonlinear analysis. 

 

5.2.2.2 Cyclic pushovers: static response 
Cyclic pushover analyses were conducted over the aforementioned models using an inverted 

triangular load pattern with horizontal forces proportional to the height of each floor. The models 

account for P-Delta effect, which effectively reduces the tangent stiffness of the system by 

accounting for the action of the axial loading on the laterally deformed shape of the model. 

Figure 5.14 and Figure 5.15 show a summary of the SoM and DuM models response. Plot (a) 

shows the normalized base shear versus roof drift ratio (RDR) relationship, along with the code 

base shear demand. Up to 2.7% RDR, minimum over strength factor is 1.1 for the direction 

compressing the flange, and approximately 2.0 for the direction compressing the narrow stem. 

The minimum over strength factor for the DuM model is expected to grow if larger RDR values 

are used, but the softening behavior of the SoM model response commanded the limit present. It 

is worth noting that the proposed code-based over strength factor for special shear walls is  = 

2.5, per ASCE 7. As expected, the static response of both models differ for the direction 

compressing the narrow stem because the confined concrete model on the SoM model is allowed 

to soften. For the SoM model, the RDR at the onset of load carrying capacity loss is 

approximately 1.7%.  
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Figure 5.14 – Cyclic “pushover” analysis results for the SoM model: (a) base shear versus roof drift; (b) force 

versus average strain in the stem boundary element; (c) cyclic response of the steel model; (d) force versus average 

shortening in the stem boundary element. 

 

The average force in the boundary at each step of analysis is estimated by the summation 

of the product of the area of each fiber and the corresponding instantaneous stress from the 

assigned constitutive model. This force is normalized by the maximum load, and is plotted 

against the average strain and average shortening of the boundary element in box (b) and (c), 

respectively. The average shortening is estimated as the average strain times the plastic hinge 

length (associated to the first IP weight). Experimental data gathered from the DZ of specimens 

W7 and W12 is also presented. The DuM model shows a ductile behavior with no strength loss 

in either direction. On the other hand, given the selected plastic hinge length, combined with the 
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fact that the material model was estimated using a similar gage length, the SoM response at the 

section level shows a softening behavior that approximates well the experimental data. The steel 

model response is shown in plot (d) of the aforementioned figures. Steel buckling is simulated 

for the SoM model, which softens at certain levels of compressive strain, and degrades the 

strength capacity for further cycles. This behavior is just an approximation of the actual expected 

buckling response in which tensile excursions of the reinforcing steel highly influence the onset 

of bar buckling (Gomes & Appleton, 1997; Monti & Nuti, 1992; Rodriguez et al., 1999), but it is 

considered adequate to study the response of the boundary element in the stem the wall.  

 
Figure 5.15 – Cyclic “pushover” analysis results for the DuM model: (a) base shear versus roof drift; (b) force 

versus average strain in the stem boundary element; (c) cyclic response of the steel model; (d) force versus average 

shortening in the stem boundary element. 
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The cyclic moment-curvature relations at the integration point locations of the first story 

element are presented in Figure 5.16. Two main conclusions can be stated from these responses 

up to RDR = 2.7%: (i) at the critical section level, the curvature ductility demand of the non-

ductile model (SoM) grows rapidly after the onset of load carrying capacity, reaching demands 

that are approximately three times larger than those in the DuM; and (ii) while for both models 

the plastic demand spreads between the first and second IP for the direction that compresses the 

flange, it concentrates in the first integration point for the SoM model when the stem is 

compressed. 

 
Figure 5.16 – Cyclic moment-curvature relationships at the integration point locations of the first story element. 

 

It is concluded that the response at the section and at the global level, under static 

inverted triangular loading, is similar for both models in the direction compressing the flange, 

but it is evidently different when the SBE on the narrow stem is compressed. While flexural 

compression of the flange offers a large area where the concrete stresses remain low, flexural 

compression of the stem requires large compressive strain demands to develop stresses that 

equilibrate the large tensile forces on the opposite side. This results in early exhaustion of 

concrete strength capacity of the material model implemented for the SoM model. The remaining 

sections of this chapter use nonlinear dynamic analysis to obtain a broader understanding of the 

impact of the material characteristics on the response of the wall. 

 

5.2.2.3 Response history analysis (RHA): dynamic behavior 
Dynamic nonlinear analyses were performed on the models to compare their response under 

increasing intensity of seismic shaking. This section contains some typical responses to 

contextualize the discussion in Section 5.2.3 regarding the hazard-consistent response evaluation 

using the CSS set. The global and local response history of the SoM and DuM models are 

compared under three different accelerograms, selected from the CSS set at different hazard 

levels. For nonlinear dynamic analyses, mass and stiffness-proportional Rayleigh damping was 

used to simulate the energy dissipation characteristics of the building that is not accounted for by 
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the nonlinear behavior of the structural elements. The Rayleigh damping coefficients were 

established to achieve a damping ratio of  = 2.5% at periods corresponding to the first and third 

translational vibration modes of the linear model. Calculated periods for the nonlinear models 

were obtained after applying the vertical load, therefore some initial service level cracking is 

accounted for. The first and second periods of the nonlinear model are: T1NL = 1.08s and T2NL = 

0.17s, which are larger than the approximate elastic period CuTa = 0.78s, used to estimate the 

code-based forces. The selected accelerograms with their corresponding elastic response 

spectrum, 5% damped, are present in Figure 5.17. Also shown are the conditioning period T0 of 

the CSS set, and T1NL and T2NL. It is worth commenting that the pulse-type accelerograms 

selected from the HazLev6 and HazLev8 bin are consistent with the expected demand at the 

Yerba Buena Island site. 

 
Figure 5.17 – Seismic demand corresponding to three different hazard level, for nonlinear dynamic analyses 

purpose (Note: the spectra are constructed for a 5% damping ratio). 
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The spectral acceleration of the selected motions increase with hazard level for the 

conditioning period, as it does for the fundamental period of the inelastic model. The same trend 

is expected for values of degraded structural periods. Four EDPs are selected to depict the 

difference in response between the SoM and DuM models: (i) roof drift ratio (RDR) (Figure 

5.18); (ii) base shear normalized by seismic weight (Vb/W) (Figure 5.19); (iii) uniaxial strain 

demand in the centroid of the flange of the wall (Figure 5.20); and (iv) uniaxial strain demand in 

the centroid of the stem SBE (Figure 5.21). Before the apparent instability, the displacement 

response of both models is identical, matching the peaks and trough of the wave form. While the 

DuM model response is stable at all levels of demand, only showing a minor permanent drift in 

the free vibration portion of the run under the HazLev8 ground motion, that of the SoM model 

exhibits permanent drifts for the two ground motion with the largest intensity. It is observed that 

both models vibrated with an approximate period of 1.5T1NL under the lower intensity ground 

motion. This number migrates to approximately 2T1NL for the larger demand under pulse-type 

seismic shaking. Due to confined concrete crushing and bar buckling, the permanent 

displacements in the SoM model occurs for the direction compressing the wall stem. The base 

shear demand is similar in both models, showing slightly larger values for the non-degrading 

model (DuM) after concrete crushing in the SoM model is observed. The higher mode effects 

push the resultant of inertial forces downward, generating larger base shear demand than the 

capacity exhibited in the pushover analyses under inverted triangular load pattern. The flange 

strain response is relatively stable for both model, and shows a low flexural compressive demand 

for all ground motion intensities. This is consistent with the expected lower compressive stress 

that is required to equilibrate the forces in the section when the stem boundary element is 

stretched. On the other hand, the stem SBE strain history of the SoM model shows an apparent 

instability for the two ground motions with larger intensity. This occurs for compressive strain 

values in excess of 0.6%, which is the strain at the onset of the post peak descending branch in 

the confined concrete (Figure 5.13). Figure 5.22 shows a detailed version of the compression 

strain history at the centroid of the SBE in the stem of the wall for the HazLev6 and HazLev8 

ground motions. The EDPs response of the DuM model are stable for the intensity levels shown, 

exhibiting only minor residual deformations for HazLev8. Although this is considered an 

unrealistic behavior promoted by the non-degrading nature of its constitutive material models, it 

serves as a basis for comparison with the non-ductile model.  

 
Figure 5.18 – Roof drift ratio response comparison. 
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Figure 5.19 – Base shear response comparison. 

 
Figure 5.20 – Strain response history in the centroid of the flange. 

 
Figure 5.21 – Strain response history in the centroid of the SBE of the stem. 
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Figure 5.22 – Compressive strain response history in the centroid of the SBE of the stem. 

 

5.2.3 Hazard-consistent structural response assessment with the CSS methodology 

This section presents results of the structural response (or EDP) assessment of the SoM model by 

means of the Conditional Scenario Spectra (CSS) methodology presented in Section 5.1.3. 

Response of the SoM model is of interest because its plastic region geometry is calibrated to 

represent the average response of the specimens tested; specifically, for the case where flexural 

compression softening is expected. Additionally, its material model has been defined in such a 
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integration point containing the critical section. This methodology eliminates the need for 

material regularization, while maintaining global displacement and section level deformations 

within reasonable limits, representative of the expected behavior. Although only a single case 

prototype structure is studied by means of numerical analysis, the findings will serve two main 

purposes: (i) to give an insight into the implication of the compression strain limits proposed in 

previous chapters, and (ii) to present a complete example of EDP risk estimation by mean of the 

CSS methodology. Appendix C contains a second example in which the CSS is used for the 

hazard-consistent evaluation of two ground motion modification procedures. 

 

5.2.3.1 CSS ground motion set description 
Construction of the CSS required matching the geometrical mean spectrum of two horizontal 

ground motion record components to CMS’s with the same spectral coordinate as nine UHS’s 

with increasing return period. For the analyses presented in this section, the two components of 

the aforementioned geomean spectra are utilized. This effectively maintains the component-to-

component variability of the ground motion, providing a total of 804 accelerograms to perform 

inelastic RHAs. To avoid double-counting the rate of occurrence, each component is assigned 

one-half the rate of the corresponding spectrum in the CSS. This does not affect the hazard 

recovery estimation, as is evidenced in Figure 5.9, which was constructed with the 804 

aforementioned spectra. Furthermore, it does have the benefit of preventing the pinching at the 

conditioning period, which also helps reducing the result dependence on its selection. Figure 

5.23 shows examples of the individual component spectra at various hazard levels (from a TR 

=100 to 100,000 years), along with the corresponding variability of the set, which shows an 

apparent reduction close to the condition period T0 = 1.5s.  
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Figure 5.23 – Individual record spectra, variability and comparison with code-based response spectra. 
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Also shown in Figure 5.23 are the mean of each set per hazard level is compared with the code-

based spectra at the MCE and DBE hazard levels for the Yerba Buena site. Mean spectral 

coordinates are larger than the MCE spectrum for Hazard Levels 7 through 9. Table  D.1.1 in 

Appendix D contains the metadata to the selected set of 402 ground motions. 

 

5.2.3.2 SoM model EDP analysis 
Response history analysis (RHA) of the SoM and the DuM models were performed with the 804 

ground motion set. This section focuses on the results of the SoM model because are of most 

interest, given the softening nature of its response. The DuM model responses are used for 

comparison later in Section 5.2.3.3. Figure 5.24 presents maximum roof drift ratio (RDRmax) 

versus spectral acceleration relationships. The spectral acceleration Sa(T1) is estimated at the 

fundamental period of the nonlinear model. Figure 5.24a depicts a scattergram of the data, 

showing increasing dispersion with increments of Sa(T1) and/or RDRmax. This indicates that 

elastic spectral acceleration might not be the best predictor for the response in mention. 

Nevertheless, the empirical data are binned by Sa(T1) level and lognormal fragility functions are 

estimated in Figure 5.24b using the methodology in (Baker, 2015). The fragility functions are 

cumulative distribution functions defined by two parameter: the mean (Sa) and the standard 

deviation of the natural logarithm of the intensity measure (ln,Sa). Three curves shown are for 

RDRmax > 0.5%, 2.0% and 4.0%. For RDRmax > 4%, the available empirical data are more 

scattered which impacts the slope of the fragility curve. This slope is a function of the variance 

estimator of the lognormal fit. According to the data in the fragilities, given that the spectral 

acceleration corresponding to the design value (Sa = 0.68 g) occurs at the Yerba Buena site, there 

is a 100%, 30% and 5% probability that the maximum roof drift ratio exceeds 0.5%, 2% and 4%, 

respectively. Per code definition, this acceleration value has a return period close to 475 years. 

 
Figure 5.24 – Roof drift ratio versus spectral acceleration relationships: (a) scattergram of RDRmax and Sa(T1); (b) 

fragility curves for different levels of RDRmax. 

 

Scatter plots relating the logarithm of the RDRmax, the maximum compressive strain 

c,max, and maximum tensile strain t,max in the centroid of the SBE at the edge of the stem, are 

constructed in Figure 5.25. Colors in the markers are used to differentiate the hazard level bin of 

the corresponding accelerograms. Only responses from Hazard Levels 1 through 6 are shown 

because they demand the structural system, and its constitutive materials to the usable limits. 
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Dotted lines mark the tensile yield strain of the steel in the model, and the strain at maximum 

strength of the confined concrete. Plot (a) shows a tri-linear trend between t,max and RDRmax. 

The changes in slope of the hypothetical lines are demarked by the yielding strain limit of the 

steel, and by RDRmax close to 1%. Figure 5.25b shows the c,max versus RDRmax relationship, 

where the 1% RDRmax limit seems to intersect the strain c,max = 0.006, defining the limits of 

stable behavior of the confined core of the SBE. Larger values of c,max are in the downward 

slope off the confined concrete stress-strain relationship; therefore, an unstable behavior of the 

member is evidenced by the gap of the vertical-axis data-points. Figure 5.25c shows the t,max 

versus c,max relationship, where a linear trend (shown with dashed lines) with slopes between 2 

and 36, in the log-log space, seem to fit the data well up to the compressive strain limit of 0.006. 

In Figure 5.25a, a slope of 3/2 is reasonable to approximate t,max from RDRmax for the whole 

range shown, accepting some over prediction for tensile strains below yielding. For the 

compressive strain, the data are heteroscedastic, that it, variability of c,max depends on the 

predictive parameter. 

 
Figure 5.25 – Relationships of roof drift ratio, tensile and compressive strains in the centroid of the SBE at the edge 

of the stem: (a) scattergram of maximum tensile strains t,max and RDRmax; (b) scattergram of maximum compressive 

strains c,max and RDRmax; (c)t,max versus c,max relationship. 

                                                 
6 In the log-log space, slope = ln(y2/y1)/ln(x2/x1). 

0.0001

0.001

0.01

0.1

0.0001 0.001 0.01 0.1

S
B

E
 M

a
x

 T
en

si
le

 S
tr

a
in

, 
 t

,m
a
x

SBE Max Compressive Strain c,max

0.0001

0.001

0.01

0.1

0.1 1 10

S
B

E
 M

a
x

 T
en

si
le

 S
tr

a
in

, 
 t

,m
a
x

RDRmax [%]

0.0001

0.001

0.01

0.1

0.1 1 10

S
B

E
 M

a
x

 C
o

m
p

re
ss

iv
e
 S

tr
a

in
 

c,
m

a
x

RDRmax [%]

(a) (b)

(c)

y=fy/Es

   𝟏𝟎�̂�=0.006

y=fy/Es

 
 
 
𝟏
𝟎
�̂�

=
0

.0
0

6

HazLev2HazLev1 HazLev3 HazLev4 HazLev5 HazLev6

compressive strain

instability

compressive strain

instability



125 

 

An alternative evaluation of the c,max - RDRmax relationship is presented in Figure 5.26. 

Fragility functions, based on a cumulative lognormal distribution, estimate the probability of 

exceeding certain compressive strain levels given RDRmax are estimated for c,max = 0.003 and 

0.006. These strain limits correspond to the strain at the onset of cover spalling and the strain at 

peak strength of the confined concrete model. The lognormal fit approximates moderately well 

the empirical data, showing some misfit for the lower portion of the curves. The median RDRmax 

likely to produce cover crushing is 1.15%, and that to compress the SBE beyond its stable 

capacity is 1.78%. This value is consistent with the roof drift ratio at which the wall prototype 

loses its lateral load carrying capacity, according to the inelastic static analysis described in 

Section 5.2.2.2. 

 
Figure 5.26 – Lognormal fragility curves of c,max in terms of RDRmax. 

 

5.2.3.3 EDP risk comparison 
The structural response assessments presented above are conditioned to certain ground motion 

intensities for which rates of occurrence are not always available if, for example, alternative 

analysis methodologies such as IDA are used to evaluate the EDPs at increasing levels of seismic 

shaking. This section presents an innovative approach to study structural responses from a 

hazard-consistent point of view. The assessment is based on the methodology described in 

Section 5.1.3 for EDP risk estimation by means of the Conditional Scenario Spectra (CSS). The 

methodology offers a robust alternative to evaluate structural response by answering questions 

such as, “when does certain EDP level observed matter” or “what is the return period of a certain 

structural response value”. The results of this section use the same 804 data-points per EDP as 

the analyses in the previous section, to evaluate the behavior of the SoM and DuM models. To 

offer the alternative point of view, the same rate of occurrence is assigned to the EDP and the 

ground motion generating it (see Figure 5.8). This allows estimating the annual frequency with 

which demand level d is exceeded 𝜈𝐸𝐷𝑃(𝐸𝐷 > 𝑑) using Equation (5.11). The return period of 

the EDP is the inverse of 𝜈𝐸𝐷𝑃. 

Figure 5.27 shows scatter plots relating three EDPs of interest with the corresponding 

rate of occurrence of the geomean spectra, which is effectively twice the final rate assigned to 

each EDP data point. The RDRmax rate cloud is continuous, showing a small number of outliers. 
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associated with lower intensity values. Figure 5.27a shows an example where a large rate is 

detected at a large RDRmax value. This will produce “jumps” in the corresponding risk curve, 

depending on the discretization level of the hazard. Again, this is another sign that elastic 

spectral accelerations might not be the best predictor of inelastic structural responses. A vector of 

parameters may be a better approach that would lead to smoother scaling with the ground motion 

levels. For example, a vector containing the spectral acceleration at different structural periods, 

and the duration of the ground motion, may improve the correlation between the predictors and 

the structural responses (Raghunandan & Liel, 2013). A discontinuity in the c,max cloud is 

apparent (Figure 5.27b) for strain values in excess of that at which the peak strength in the SBE 

is attained. This affects the EDP risk curve by flattening it, making the risk invariant to 

increasing levels of strain demand beyond the instability point. Analogous data are presented in 

Appendix D for the non-degrading model (DuM). 

 
Figure 5.27 – Rate versus EDP level: (a) rates of occurrence for maximum roof drift ratio; (b) rates of occurrence 

for maximum compressive strain in the stem SBE; (c) rates of occurrence for maximum tensile strain in the stem 

SBE. 
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tensile and maximum compressive strain in a bar. Brown and Kunnath (2004) propose an 

expression for a in terms of the number of half-cycles Nf , to attain low-cycle fatigue rupture. 

For a #9 bar, this expression is expressed as: a = 0.07(2Nf)-0.31. Amplitude a reduces for larger 

diameter bars such as those in the SBE in the stem of the prototype wall (for example, #10 bars). 

Assuming that the maximum tensile-to-maximum compressive strain relationship in the SBE is 

t,max = e2c,max (see Figure 5.25 and corresponding discussion) one can estimate the risk of low-

cycle fatigue fracture from the t,max risk curve by making a = (t,max+c,max)/2 = t,max(1+1/ e2)/2. 

Bounding the number of half cycles between 1 and 10, the maximum tensile strain the SBE may 

attain to avoid bar fracture is 0.1 and 0.05, respectively. The risk associated with the larger 

number of cycles is found by intersecting the SoM curve from below. The associated return 

period is approximately 13,500 years, therefore, bar rupture is not likely. The risk corresponding 

to Nf = 1 is very small, outside the chart presented. It is also observed that the risk of exceeding 

the yield strain is below the design return period, as it is expected for tension-controlled 

reinforced concrete sections. 

 
Figure 5.28 –Maximum SBE tensile strain risk for the SoM and DuM models. 
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recovered from the damaged zone (for example, for gage length 2.5tw in Table 4.4) are: 휀𝑐𝑐   ̂ 

=0.006 and 휀𝑐𝑐8 ̂ =0.011. These strain values intersect the SoM risk curve at TR = 19,400 and 

36,800 years, respectively. In general, strain values in excess of 0.003 have a low associated risk, 

therefore, it is concluded that unstable flexural-compression behavior of the boundary element is 

not likely. 

 
Figure 5.29 – Maximum SBE compressive strain risk for the SoM and DuM models. 
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Figure 5.30 – Maximum roof drift ratio risk for the SoM and DuM models. 

 

 

5.3 Final Comments 

This closure chapter was conceived to give a real application significance to the results obtained 

in the laboratory. A methodology to estimate the risk of several structural responses was 

presented. The methodology is based on the Conditional Scenario Spectra (CSS), which is a set 

of realistic earthquake spectra with assigned rates of occurrence that reproduce the hazard at a 

site. A procedure to estimate the CSS set is presented, which involves the selection of a large set 

of ground motions with spectral shape consistent with the hazard at a site. A numerical example 

of a code-compliant special structural wall is used to show the implementation of a hazard-

consistent response assessment methodology. The example is utilized to describe the implication 

of the strain limits proposed in previous chapters. For this purpose, programming of the model 

involved careful selection of the quadrature scheme to fulfill two main requirements: (i) the 

number of integration points was sufficient to ensure an adequate level of accuracy for the 

numerical integration at the element level; and (ii) the integration point weight of the element at 

the critical section was representative of the extension of the damage observed in the field and in 

the laboratory. Additionally, to ensure consistency between the global displacements and the 

deformations at the section level, the constitutive relations of the material models were measured 

over gage length that approximates well the aforementioned plastic hinge extension. Although a 

single numerical case is studied, the findings gave an insight into the implication of the 

compression strain limits proposed with a hazard-consistent basis. For the model studied, the 

poor ductility capacity of the confined concrete material, which represents the laboratory 

observations, is only likely to negatively impact the behavior of the system at risk levels beyond 

the code-based expectations. This conclusion is applicable to the case study presented. It may not 

apply in other building designs.  
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Chapter 6 – Summary and Conclusion 

 

Field observations during the 2010 Maule Earthquake in Chile concluded that a large number of 

multistory shear wall buildings suffered from damage at the extreme portion of their walls, near 

their base. The crushed boundaries presented buckled rebar, with damage localized over a small 

height, and with apparent failure of their unconfined core. All these suggested the occurrence of 

a relatively brittle failure that was thought to be, at least in part, due to the poor detailing of the 

extreme portions of the wall. A study founded in laboratory tests and numerical analysis was 

undertaken to answer the question of whether thin walls with improved boundary element 

detailing would behave in a ductile manner. Ten full-scale reinforced concrete boundary element 

specimens where tested in the laboratory under pure compression. The chapters in this 

dissertation revolve around this experimental program. 

In Chapter 1 field observations of damaged walls after the Chile (2010) and New 

Zealand (2011) earthquakes were introduced as the main motivation to undertake this 

investigation. A simple plastic hinge model describing the compatibility relations of a cantilever 

multistory shear wall allowed relating global drift capacity with strains at the critical section. 

This permitted concluding that some cross section geometries, in association with intermediate 

axial load demand, may result in excessive strain demand in the flexural compression zone of 

walls. A literature review of well-known compression tests of reinforced concrete prisms 

described the difficulties in measuring objective values of strain capacity when softening 

behavior controls the response of structural elements. The reported limiting strain values at first 

rupture of transverse reinforcement are in the range 1.7 to 7.3%, with mean value of 4.1%, and 

coefficient of variation of 38%. The dispersion is mainly due to differences in transverse 

reinforcement layouts, but also strongly affected by the measuring technique. It is concluded that 

reported strain capacities are inconsistent among researchers, because of the different gage 

length used to measure the shortening of a damage zone that softens under moderate compressive 

strains, and because the differences in the procedures utilized for this purpose. A literature 

review of the response of three sets of tests on thin walls was also presented. The tests were 

performed on specimens having a wide range of longitudinal and transverse reinforcement 

detailing, and axial load varying from 3% to 35% of Agf’c. One set of experiments mimicked the 

walls damaged in the Chile (2010) earthquake. Another set comprised non-symmetric specimens 

with a ductile column on one edge, and a poorly detailed boundary element on the other; this was 

done to force the damage into the non-ductile edge to study it compressive strain capacity. The 

third set of experiments was representative of modern construction in the Western United States. 

It was concluded that average damage extension was approximately two-and-a-half times the 

wall thickness (tw) for the asymmetric set with poor detailing at one edge, and for those 

mimicking the Chilean practice. Reported drift capacity was in the range 0.7 to 2.0%, and was 

highly impacted by the axial load. For thin wall specimens under comparable axial load and 

moment gradient, the addition of crossties along the web length and at the boundary elements at 

the edges, only offered a slight ductility capacity improvement with respect to specimens with 

poor detailing at the edges. It was concluded that the small thickness of the specimens was the 

most important variable commanding their response. The specimens with poor detailing reached 

their flexural drift capacity (0.4 to 1.05%) with ultimate compressive strain in the extreme fiber 

in the range 0.66 to 0.84%. A specimen with detailing of modern seismic walls in the United 
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States, with no splices at the base, showed limited drift capacity as low as 0.9%, promoted by 

crushing of the boundary region. It is important to recall that the drift ratio definition was not 

consistent among the tests summarized, nor was the pattern of the applied seismic load, which 

results in different gradients of moment demand along the tested specimens. This is likely to add 

bias to the results reported. Lastly, a discussion of the impact in the compression capacity of 

rectangular prisms with ordinary (OBE) and special (SBE) detailing, subjected to prior 

monotonic and cyclic tensile excursions, was presented. The results of these tests led to the 

conclusion that specimens that meet the minimum requirement for OBE and SBE per ACI-318-14, 

do not necessarily achieve expected deformation capacities in compression. 

Chapter 2 presented the results of laboratory experiments involving ten reinforced 

concrete rectangular prisms, representative of special boundary elements of relatively thin, 

multistory reinforced concrete shear walls. Results from the tests suggest that ductile behavior of 

thin boundary elements of special structural walls under pure compression is not achievable by 

only complying with ACI 318 detailing provisions. The global force shortening behavior of the 

specimens was controlled by a thin core whose integrity can be compromised due to cover 

spalling, rebar buckling, and out-of-plane instability. Enhanced detailing (increasing the 

volumetric ratio of confinement reinforcement and decreasing its horizontal spacing) improved 

behavior but did not produce ductile response. Buckling of the longitudinal reinforcement both 

(a) reduced post-spalling axial capacity of the longitudinal bars and (b) reduced post-spalling 

axial capacity of the confined core. These two effects led to post-spalling strength that was 

substantially less than the spalling load, such that plasticity did not spread along the test 

specimen height. For a reinforced concrete shear wall, the repercussions of the flexural-

compression zone not achieving a desired ductility level are associated with localization of 

damage, which may lead to local instability of the edges, and lower overall displacement 

capacity. This could also exacerbate the demand on other structural elements with possible 

negative repercussions. Detailed conclusions of the experiments were presented at the end of the 

chapter, some of which are restated here: 

i. Cover spalling was observed over average length comprising between 2 to 3 times the 

specimen thickness.  

ii. Buckling of the longitudinal reinforcement was observed at low levels of local plastic axial 

strain, between 0.9 and 1.5%.  

iii. Recorded buckling length for tied bars extended between 4.5 and 9.5 longitudinal bar 

diameters (4.5  db  9.5), and included, in most cases, the opening of the 90- and/or 135-

degree hooks of the restraining tie. For non-tied bars, that is, those only restrained by the 

long leg of the perimeter hoop, buckling length extended between 14 and 18db. 

iv. Usable strain limits were proposed to be a function of the gage lengths over which they are 

applicable. The dependence of the strain limits on gage length was introduced because of 

the softening nature of the response observed. For example, the deformation limiting the 

stable behavior of the specimens were set at strains values past that at peak strength, and 

lay on a softening branch (with negative slope) of the force-strain curves. For gage length 

equal to 2.5 times the wall thickness, the usable strain capacities range from 0.68 to 1.25% 

at strength level for which the load carrying capacity has dropped 20% after the maximum 

load is attained. 

Bar buckling reduced the load carrying capacity of the reinforced concrete prisms 

because of the strength loss suffered by the longitudinal reinforcement, and also because it 



132 

 

prevented the effective confinement of the concrete core. Chapter 3 presented a finite element-

based model to describe the inelastic buckling process of tied longitudinal bars embedded in 

concrete, subjected to compressive stresses. A numerical experiment comprising 48 analytical 

specimens allowed studying the relationship between (a) tie spacing and stiffness and (b) the 

diameter and length of the longitudinal bars. The behavior of tied bars undergoing lateral 

instability in the inelastic range is highly influenced by (i) s/db, which represents the relative tie 

spacing over which bar buckling is forced, and (ii) (dbt
2/lt )/(dbl

2/Lo), which represents the relative 

stiffness of a transverse tie with respect to the longitudinal bar stiffness. The numerical 

experiments showed that, due to flexibility of the restraints (ties), s/db has to be as small as 4.5 to 

effectively prevent buckling in the axial strain range of interest (for example, smaller than 8%). 

For large enough tie stiffness, inelastic buckling can be delayed up to 10y for s/db as large as 5. 

For s/db ≥ 6, the buckling strain estimated with the models did not surpass the yield strain. An 

average axial stress-strain constitutive relationship for tied A706 bars embedded in concrete, 

subjected to compressive strains, was proposed in terms of s/db and (dbt
2/lt )/(dbl

2/Lo). The simple 

model results are in good agreement with the analytical experiments by adequately predicting 

buckling strain b and the softening slopes after the onset of the lateral instability. 

Chapter 4 combined the empirical data from the previous two chapters to recover the 

stress-strain curves of the confined core concrete. Blind predictions of the test (conducted prior 

to testing) were introduced early in the chapter, and were compared with the force-average strain 

response of the tested elements. This comparison showed poor correlation for strains larger than 

that at peak load, due to damage concentration over a small height of the specimens. Several 

confined concrete stress-strain relationships were estimated based on different gage lengths: 0.2, 

1.2, and 2.5 times the wall thickness (approximately). For example, an average relationship for 

the most damage zone was estimated from the global force-average strain curves by means of a 

simple model of spring in series, which assumes that the plastic shortening is concentrated in the 

damaged region, while the rest relaxes. Others were estimated using the strains recorded by 

means of core strain gages embedded in the center of the cross section at different locations 

along the height of the specimens. To estimate the stress in the core, a model was used in which 

the force carried by the steel, including bar buckling, and the force carried by the cover, are 

subtracted from the total force. The resulting force is the divided by the core area to obtained the 

confined concrete stresses. Average confined concrete stress-strain curves representative of the 

specimens tested were proposed for the three gage lengths mentioned. The peak confined 

concrete strength proposed was 1.42 times the unconfined concrete strength. The strain at peak 

strength was set to 0.6% and the ultimate strains for stable core responses were 0.20, 0.013, and 

0.011 for gage lengths equal to 0.2tw, 1.2tw, and 2.5tw, respectively 

In Chapter 5, the implications of the results were evaluated in terms of the risk of several 

structural responses as impacted by the limited strain capacity observed in the prism tests. A 

numerical example of a reinforced concrete wall in cantilever, implanted in a high seismicity 

zone, was programmed in OpenSees for this purpose. The plastic hinge length of the model is 

consistent with the expected spread of plasticity at the bottom of the wall. Furthermore, the 

constitutive model representative of the confined concrete was estimated over a gage length 

which approximates well that of the plastic hinge. Using this approach, the global displacement 

and the strains at the critical section are consistent, without requiring material regularization. For 

the evaluation of the structural responses, the Conditional Scenario Spectra (CSS) methodology 

for the estimation of Engineering Demand Parameter (EDP) risk was introduced. The CSS is a 
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set of realistic earthquake spectra with assigned rates of occurrence that reproduce the hazard at a 

site. An example is presented for the construction of the CSS set at the site of the wall. The 

resulting 804 ground motions were used to perform inelastic dynamic analyses of the structural 

model. The rate of occurrence of the ground motions were assigned to the EDPs of interest to 

estimate their risk. An EDP of interest was the maximum compressive strain in the centroid of 

the boundary element of the wall. A case study of a single numerical model of a building showed 

that the limited strain capacity of these elements is only likely to negatively impact the behavior 

of the system at risk levels beyond the code-based expectations of good behavior. A broader set 

of building studies is required to more fully understand how risk is affected by the limited strain 

capacity of thin reinforced concrete boundary elements. The presented methodology is well 

suited to this type of study.   
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Appendix A - Digital Image Correlation  

 

The use of Digital Image Correlation (DIC) techniques in the field of structural testing is 

becoming popular among researchers. The main advantage of the technique is that it allows 

calculating complete surface displacement and strain fields of structural specimens under 

complex loading. These deformation fields might sometimes be difficult to infer from sensors 

positioned at discrete locations. For example, it would be cumbersome to reconstruct complete 

strain fields of a plate with a defect, under pure axial loading, from a discrete set of strains 

measurements recorded by means of adhered strain gauges. The fact that no sensors need to be 

attached to the specimen under testing is very convenient because avoids congestions and the 

possibility of instrument damage (or misreading) due to large deformations. One of the 

disadvantages of the DIC technique is that it might require complex camera setups with proper 

lightning conditions. These concepts are foreign to most structural engineering researchers and 

will require some trial-and-error for proper setup. Also, when the subject of testing deforms or 

moves out of a fixed plane (e.g. toward or away from a camera), an even more complex setup, 

with more than one camera, might be required to compensate for spurious displacement 

measurements due to apparent change in size of the object of interest. Real time estimations of 

strains and displacements using DIC are still under development because the algorithms used are 

based on iterative procedures that require some time to finish each calculation.  

In this project, three different estimations of strains fields of a prismatic reinforced 

concrete structural element under pure compression are presented and compared to assess the 

accuracy of the DIC technique. Errors in strains field measurements from DIC are estimated and 

an attempt to correct them is described. Results showed that compressive strains measurements 

from DIC are in average approximately 150 to 200  larger than those calculated with strains 

gages or inferred from localized displacement measurements. 

 

A.1 Brief Summary of DIC Basic Principles 

The DIC technique is performed using high resolution digital images taken during the loading 

evolution of a test specimen. For the pictures to be useful in a computer-aided deformation 

identification process, a random speckle pattern with high contrast (e.g. black speckles over 

white paint) has to be applied to the specimen. Evolution of this pattern, picture after picture, 

allows estimating displacements and strains on the specimen surface (Figure  A.1.1) by means of 

a computer algorithm 
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Figure  A.1.1 - Evolution of a speckle pattern with loading: (a) prismatic specimen under pure compression prior to 

loading; (b) evolution of a speckle pattern with increasing compressive loading.  

 

A.2 Displacement Field Estimation 

In two-dimensional DIC, two consecutive images, called the “reference” and the “deformed” 

image are analyzed following these 7 steps to calculate a displacement field: 

 

1. Capture gray scale, high resolution, properly focused, digital images of the specimen at 

two distinct instants for which deformations have occurred. 

2. Divide a previously selected region of interest (ROI), like the portion with speckles on 

Figure 1a, into subsets of typically squared shape (could be any shape with a center 

point). These subsets can overlap to enhance resolution of results (at the expense of 

noise). 

3. With an algorithm, measure and store discrete gray levels per pixel of each subset. This 

will assign a value from 0 to 255 to each pixel and the subset will be uniquely identified 

(Figure  A.2.1). 
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4. Fit a continuous gray-value surface (e.g. a polynomial fit) through the discrete values 

obtained in 3. This will allow achieving sub-pixel accuracy for displacement calculations 

(Figure  A.2.1). 

 

 
Figure  A.2.1 - Subset gray-level intensities, discretization and polynomial fit (adapted from (Chu et al., 

1985)). 

 

5. Track the points of each subset from the reference to the deformed image. To do so, the 

procedure described by Chu et al. (1985) could be followed. It is summarized here for the 

sake of clarity: 

As shown in Figure  A.2.2, consider the subset of interest centered at P in the reference 

image. In the deformed image, the subset center moves to P* and the subset also deforms 

(translates, rotates, deforms in shear and in the two normal directions). The gray-level 

intensity values at P and P* can be written as: 

𝑓( ) = 𝑓(𝑥, 𝑦) (A.1) 

𝑓∗( ∗) = 𝑓∗[𝑥 + 𝑢( ), 𝑦 + 𝑣( )] (A.2) 

Since the position of all points of the subset are of interest, for a point Q located in the 

reference image at (x + dx, y + dy), the intensities at Q and Q* can be written as: 

𝑓(𝑄) = 𝑓(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) (A.3) 

𝑓∗(𝑄∗) = 𝑓∗[𝑥 + 𝑢(𝑄) + 𝑑𝑥, 𝑦 + 𝑣(𝑄) + 𝑑𝑦] (A.4) 

where 𝑢 and 𝑣 are displacements in the 𝑥 and 𝑦 direction respectively. Now, assuming 

the intensity pattern deforms but does not change its local value (i.e. 𝑓(𝑄) = 𝑓∗(𝑄∗)): 

𝑓( ) = 𝑓[𝑥 + 𝑢( ), 𝑦 + 𝑣( )] (A.5) 

𝑓(𝑄) = 𝑓[𝑥 + 𝑢(𝑄) + 𝑑𝑥, 𝑦 + 𝑣(𝑄) + 𝑑𝑦] (A.6) 
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Figure  A.2.2 shows a subset centered at P before the deformation and centered a P* after 

it. Assuming the subset is sufficiently small and that straight lights remain straight after 

the deformation, the position of Q* can be described as: 

𝑄∗(𝑥∗∗, 𝑦∗∗) = (𝑥∗ + 𝑑𝑥∗, 𝑦∗ + 𝑑𝑦∗) = [𝑥 + 𝑢( ) + 𝑑𝑥∗, 𝑦 + 𝑣( ) + 𝑑𝑦∗] 

= [𝑥 + 𝑢( ) +
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 + 𝑑𝑥, 𝑦 + 𝑣( ) +

𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 +

𝑑𝑦]  

(A.7) 

With Equations (A.7) and (A.6), the intensity at Q* can be written as: 

𝑓∗[𝑄∗] = [𝑥 + 𝑢( ) +
𝜕𝑢

𝜕𝑥
( )𝑑𝑥 +

𝜕𝑢

𝜕𝑦
( )𝑑𝑦 + 𝑑𝑥, 𝑦 + 𝑣( ) +

𝜕𝑣

𝜕𝑥
( ) +

𝜕𝑣

𝜕𝑦
( )𝑑𝑦 + 𝑑𝑦]  

(A.8) 

 

 
Figure  A.2.2 - Reference subset before and after deformation ((a) adapted from Chu et al. (1985); (b) 

adapted from Pan et al. (2009)). 
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allows computing estimates of the position P* and all points Q*. The latter is the key for 
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done through an iterative process in which the SVI are estimated progressively. Different 

sets of the SIV are compared by using a cross-correlation coefficient, C (Equation 

(A.9)). The set of the SVI that maximize C, contains the local deformation values for a 

subset.  

𝐶 (𝑢, 𝑣,
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
) =

∫ 𝑓(𝑥, 𝑦)𝑓∗(𝑥 + 𝜉, 𝑦 + 𝜂)𝑑𝐴
.

∆𝑀∗

√∫ [𝑓(𝑥, 𝑦)]2𝑑𝐴∫ [𝑓∗(𝑥 + 𝜉, 𝑦 + 𝜂)]2𝑑𝐴
.

∆𝑀∗
.

ΔM

 
(A.9) 

where M = subset in undeformed image, M* = subset in deformed image, 𝜉 = 𝑢 +
𝜕𝑢

𝜕𝑥
Δ𝑥 +

𝜕𝑢

𝜕𝑦
Δy and 𝜂 = 𝑣 +

𝜕𝑣

𝜕𝑥
Δ𝑥 +

𝜕𝑣

𝜕𝑦
Δy. 

 

7. Selected another subset and repeat the whole process again until the whole ROI is 

assessed. 

 

A.3 Strain Field Estimation and Maximum Error 

Research work related to the accurate estimation of strain measurements is scarce, arguably 

because it is thought that strains are readily available once the displacement field is estimated 

with the procedure described above ((Pan et al., 2009)). A full-field strain distribution can be 

obtained by means of numerical differentiation of the displacement estimations but this operation 

could lead to amplification of the noise contained in the displacement field (also explained by the 

noisy nature of the differentiation process). A procedure where the displacement field is 

smoothed prior to differentiation may be needed.  

The latter can be justified with a simple example by defining strain as =(i+1-i)/x, 

where (i+1-i) is the difference in the displacement (in pixels) between two adjacent subsets (i 

and i+1) and x is the distance between these two adjacent subsets (in pixels). For the purpose of 

error calculation, x is a constant without uncertainty, hence the error in strain can be as high as 

Error( = [Error(i+1)+ Error(i)]/x where Error() is the absolute value of the estimated error 

in displacements. For i+1=i=/0.0pixels and x = 30 pixels, Error(= [0.02+0.02]/30= 

1333 .An error of this magnitude is around 45% of the maximum expected strain to be 

measured on the structural specimen of this apendix. 

 

A.4 Instrumentation and Data Set Description 

Available data sets for the test of specimen W7 (Chapter 2) are analyzed to attempt correcting 

problems in strain field calculations. Figure  A.4.1 shows instrumentation and test setup from 

the experiment. Applied load was measured by a built-in pressure capsule on top of a loading 

yoke. Average shortening of the specimen was measured by the relative displacement of the 

bottom and top head using potentiometric displacement transducers (PDT) in the North and 

South sides of the wall. In order to measure localized deformations, PDTs were mounted 

between threaded rods embedded in the test specimen and extending perpendicular to the East 

and West faces of the specimens, enabling measurement of relative displacements of different 

portions along the test specimen height. String potentiometric displacement transducers 
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(“wirepots”) were mounted on a distant reference wall in order to measure out-of-plane 

displacement at each load increment. Strains on the concrete surface on the West face were 

measured at five different locations along the height with concrete strain gauges (SGC). Digital 

images of the specimen were taken during the evolution of the test using a high resolution 

camera located. The camera faced the West surface of the specimen which had a random speckle 

pattern as shown in Figure  A.1.1. 

 
Figure  A.4.1 - Instrumentation setup for DIC. 

 

Figure  A.4.2 shows states of increasing loading in pure compression for the prismatic 

element. Displacement and strain fields were estimated over 204 images using the commercial 

computer program Vic-2D (Correlated Solutions, 2009) which applies a form of the procedure 

described in ApPendix Section A.2. Image 1 was taken at the state of zero loading while Image 

204 was taken just after the peak load was attained which also corresponds to the first 

observation of concrete cover crushing (see top of Figure  A.4.2). The images are synchronized 

with the rest of the measurements from the instruments described above to ensure accuracy of 

the comparisons as the test evolved.  

For the purpose of this project, DIC strain fields will be compared with two reference 

measurements of strains that are believed to represent the a more accurate state of strains on the 

specimen:  

 SGC-strains: strain fields extrapolated from five concrete strain gages adhered discretely 

along the surface of the specimen (Figure  A.4.3).  

 PDT-strains: average strains extrapolated from localized displacements measured at 

seven different levels along the height of the specimen (Figure  A.4.3). The strains 

calculated from PDTs on the first and seventh level (see Figure  A.4.1 for a reference) 

will be disregarded because they are biased high due to improper interaction with the 

boundaries. 
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Figure  A.4.2 - Test evolution and comparison of axial strains (yy) from displacement transducers, concrete strain 

gages and DIC. 
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Figure  A.4.3 - Load-strain relations for the PDT-strain data set (left) and the SGC-strain data set (right) 

(in this figures, positive strains are compression). 

 

A.5 DIC-strains and Out-of-plane Correction 

From Figure  A.4.2 it is apparent that DIC axial strains (yy) are smaller than those from SGC-

strains and PDT-strains. This strain error will be estimated and an attempt for its correction will 

be presented in the following sections of this document. Only strains in the axial direction will be 

analyzed because the reference discrete strains are measured in the vertical direction. It is 

believed that the source of error is, in part, due to out-of-plane displacement of the tested 

specimens which creates a false reduction of strains. The rest of the error will be analyzed using 

standard statistical practices.  

Figure  A.5.1a depicts out-of-plane displacements of the structural specimen for different 

loading values. Negative displacements (z) are in the direction away from the camera (to the 

East). Prior to analyzing the error between DIC strains and SGC-strains and/or PDT-strains, a 

correction for the DIC set will be introduced according to Equation (A.10) (Sutton et al., 2009): 

휀𝑦𝑦𝐷𝐼𝐶, = 휀𝑦𝑦𝐷𝐼𝐶, + ∆휀𝑦𝑦 

∆휀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
≈ − [

∆𝑧

𝑧
] 

(A.10) 

where 휀𝑦𝑦𝐷𝐼𝐶,  are the strains corrected for out-of-plane displacement and 휀𝑦𝑦𝐷𝐼𝐶,  are the 

original strains obtained from Vic-2D; z is the location of the face of the specimen with respect 

to the camera lens and z is the out-of-plane displacement of the specimen. Movements away 

from the camera are negative because, optically, these artificially shorten the specimen, 

generating spurious compressive normal strains yy. The negative sign in the expression is meant 

for correcting the error. 

The correction of Equation (A.10), depicted in Figure  A.5.1b, is applied to the DIC 

strain field at discrete levels (151 total) of the ROI because the field is stored in matrix format 

analogous to the geometry of the surface (i.e. the strain value stored at 1,1 correspond to the top 

left portion of the specimen). For the discrete DIC strains at each level, the correction is constant 

because the out-of-plane displacement is only measured along the axis of the specimen; 

therefore, extrapolations to the sides are equal to the recorded displacement. Figure  A.5.2 

presents the DIC-strain field before and after the correction due to out-of-plane displacements. 
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Though it is observed that the correction is only apparent at advanced stages of loading (e.g. 

Image No>190), the corrected DIC-strain set will be the one used in further calculations. 

Analyzing the strain field of an image at the verge of crushing, such as Image 203, one can 

observe that maximum average out-of-plane corrections are in the order of 430 (see Figure  

A.5.1b). This corresponds to approximately 13% of the median strain level of that picture. For 

early pictures, such as Image 010, the correction is negligible. 

 

 
Figure  A.5.1 – Out-of-plane evolution of specimen W7. (a) out-of-plane displacement at different loading 

values; (b) strain correction due to out-of-plane displacement. 

 

 
Figure  A.5.2 - Comparison of DIC-strains before and after out-of-plane corrections. 
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A.6 DIC-strains Error Estimation 

Errors in strain measurements are calculated for the two pairs of data sets of interest following 

Equations (A.11) and (A.12):  

𝛿𝐶𝑆𝐺 = 휀𝑦𝑦𝐷𝐼𝐶, − 휀𝑦𝑦𝐶𝑆𝐺  (A.11) 

𝛿𝑃𝐷𝑇 = 휀𝑦𝑦𝐷𝐼𝐶, − 휀𝑦𝑦𝑃𝐷𝑇 (A.12) 

where 휀𝑦𝑦𝐶𝑆𝐺 are the CSG-strains and 휀𝑦𝑦𝑃𝐷𝑇 are the PDT-strains; 𝛿𝐶𝑆𝐺 and 𝛿𝑃𝐷𝑇 are the errors 

from comparing the DIC-strains with CSG-strains and PDT-strains respectively. 

Strain field error estimations are presented in Figure  A.6.1 for the two data sets. For low 

to moderate levels of loading (e.g. 010 < Image No. < 190), the strain errors are constrained in 

the range +/- 500 . These values are considered high given that the maximum expected strain 

before crushing is around -3000 (average value obtained from uniaxial stress-strain tests on 

concrete cylinders). 

 
Figure  A.6.1 - DIC error estimation. 

 

Figure  A.6.2 presents absolute values of relative errors defined as 𝛿𝑟𝑒 𝑖 = |(휀𝑦𝑦𝐷𝐼𝐶, −

휀𝑦𝑦𝑖)/휀𝑦𝑦𝑖|, where the subscript i relates to CSG-strains or PDT-strains measurements. Figure  

A.6.3, depicts median level of relative errors as they evolve with the average shortening of the 

specimen. This median value is a statistic representing all strain values stored per image without 

regard of their spatial position. Median relative errors are as high as 150% at early loading states 

and as low as 16%. 
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Figure  A.6.2 - DIC relative error estimation.  

 

 

Figure  A.6.3 - Median relative error evolution with average shortening of the specimen.  
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sources of error in DIC strain estimation. Figure  A.7.1 shows the histograms and the empirical 

cumulative distribution functions (ECDF) of all the strain errors (per image and in time) 

estimated using Equations (A.11) and (A.12). Their median value is used as the best estimate of 

error correction. For the case of DIC-strains versus CSG-strains, adding 169  to the DIC 

estimates (after correcting for out-of-plane displacement) would be the simplest correction. 

Adding 179 , would be the correction for comparing DIC-strains versus PDT-strains. 

 

Figure  A.7.1 - Strain errors correction estimates.  

 

Figure  A.7.2 compares CSG-strain fields with DIC-strain fields after out-of-plane and 

median error correction. Though DIC corrected strains due not match exactly those from the 

CSG, the improvement in the strain field is apparent. Figure  A.7.3 depicts the overall reduction 

in error by showing lower values of median relative errors at intermediate levels of deformation. 
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Figure  A.7.2 - Comparison of original DIC-strain, corrected DIC-strains and CSG-strains..  
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Figure  A.7.3 - Median relative error evolution (after correction) with average shortening of the specimen.  

 

A.8 Conclusions 

Appendix A presented a case study of error estimation of the digital image correlation (DIC) 

technique used for structural testing of large specimens. Simple error assessment procedures 

indicate that median relative error between strain measurements recorded from standard 

instrumentation, such as concrete strain gages and displacement transducer, and those estimated 

via DIC can be as high as 150% and as low as 16% for low and intermediate levels of 

deformation respectively. A simple error correction procedure was presented showing low 

performance due to the complexity of error distribution in space. After the correction was 

applied to the DIC-strains set, relative errors at very low levels of deformation grew by 66% but 

at intermediate levels median relative errors were as low as 12%. More research is required in 

this area since it is believed that sharpness of the lenses and quality of the recording sensor might 

have an impact in the results obtained. 
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Appendix B - Inelastic bar buckling 

This Appendix contains figures further describing the series of Tests summarized in Table 3.2. 

Specifically, a complete graphical description of Tests 28 to 34 is presented with the idea of 

understanding how different components of the model respond during the test evolution and with 

variation of the variables of interest. The tests comprise a 7/8 in. [22 mm] longitudinal bar under 

Tie Setup 2 (Figure 3.16), and various diameters of cross ties (0  dbt  7/8). 

Section B.1 presents the relationship between the bar average-axial-stress and the 

average-axial-strain, along with the evolution of the critical section (at mid span) tangent flexural 

stiffness EtI normalized by initial stiffness EoI. The deformed shaped of the longitudinal bar at 

different levels of average axial strain (U/Lo = 2, 5, 10 and 30y) is shown as well. The lateral 

displacement w shown is normalized by bar diameter, db. The demand of the restraining tie close 

to mid height is shown in terms of its average axial stress-strain relationship. The bottom part of 

the figures of this section show distribution of response quantities along the length of the bar at 

U/Lo = 30y. At this point all the cases present are at a buckled state. The response quantities 

shown include the lateral displacement with location of the restraining ties, axial local stress 

distribution, moment distribution long the length of the bar and local axial strain. Section B.2 

presents the evolution of the strain field of cross section at mid span of the longitudinal bars. The 

information is presented at the instants where U/Lo = 1, 2, 5, 10 and 30y. Also shown is the 

tangent modulus distribution, along with the normalized section tangent flexural stiffness EtI/EoI 

at the aforementioned levels of average axial strain.Finally, Section B.3 shows the history of the 

stress-strain relationship in the fibers of the critical section. The fibers that show strain reversal 

correspond to those close to the concave portion of the bar (to the right of the centroid of the 

cross section). The average axial stress-strain curves of the buckling tests, along with the average 

stress versus displacement wmax at midspan are presented in Section B.4. These set of figures 

constitute the main data source of the statistical analysis of the variables of interest, presented in 

Section 3.4.  

  



155 

 

B.1 Average Response, Tangent Modulus Evolution, Displaced Shape, Tie Demand and 

Axial Strain Distribution. 

 
Figure  B.1.1 – Test 28: (a) average response; (b) section stiffness evolution; (c) displaced shape. Distribution at 

U/Lo = 30y of: (e) lateral displacement; (f) axial stress; (g) moment; and (h) axial strain. 
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Figure  B.1.2 – Test 30: (a) average response; (b) section stiffness evolution; (c) displaced shape; (d) tie response 

close to mid span. Distribution at U/Lo = 30y of: (e) lateral displacement; (f) axial stress; (g) moment; and (h) axial 

strain. 
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Figure  B.1.3 – Test 31: (a) average response; (b) section stiffness evolution; (c) displaced shape; (d) tie response 

close to mid span. Distribution at U/Lo = 30y of: (e) lateral displacement; (f) axial stress; (g) moment; and (h) axial 

strain. 
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Figure  B.1.4 – Test 32: (a) average response; (b) section stiffness evolution; (c) displaced shape; (d) tie response 

close to mid span. Distribution at U/Lo = 30y of: (e) lateral displacement; (f) axial stress; (g) moment; and (h) axial 

strain. 
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Figure  B.1.5 – Test 33: (a) average response; (b) section stiffness evolution; (c) displaced shape; (d) tie response 

close to mid span. Distribution at U/Lo = 30y of: (e) lateral displacement; (f) axial stress; (g) moment; and (h) axial 

strain. 
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Figure  B.1.6 – Test 34: (a) average response; (b) section stiffness evolution; (c) displaced shape; (d) tie response 

close to mid span. Distribution at U/Lo = 30y of: (e) lateral displacement; (f) axial stress; (g) moment; and (h) axial 

strain. 

  

dbt 3/4”

0 0.02 0.04 0.06 0.08
0

0.5

1

Ave. strain

A
x

ia
l 
av

e.
 s

tr
es

s 
/ 
fy

0 0.02 0.04 0.06 0.08
0

0.5

1

Ave. strain

E
tI

 /
 E

o
I 

0 0.5 1 1.5 2 2.5
0

0.5

1

Lateral disp. / db

V
er

ti
ca

l 
d

is
p

. 
/ 
L

o

 

 @2 y

@5 y

@10 y

@30 y

0 0.05 0.1 0.15
0

0.5

1

1.5

Strain

T
ie

 s
tr

es
s 

/ 
fy

E
tI

/ 
E

o
I

(a) (b)

(c) (d)

2y 5y 10y 30y

@2y   

@5y   

@10y   

@30y   

Strain

P
 /

 (
A

sf
y)

N
o
r
m

a
li

z
e
d

 v
e
r
ti

c
a

l 
d

is
p

l.

Normalized lateral displacement (w / db)

Average strain (U / Lo)

T
ie

 s
tr

e
ss

 /
 f

y

Average strain (U / Lo)

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lat.Disp. / db

N
o

rm
al

iz
ed

 b
ar

 l
en

g
th

0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Axial Force / (fyAs)

-0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Moment / (P)

0 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Axial strainw / db Moment / (P wmax) Axial strain

N
o
r
m

a
li

z
e
d

 b
a

r
 l

e
n

g
th

(e) (h)(f) (g)

tie 

locations

N
o
r
m

a
li

z
e
d

 v
e
r
ti

c
a
l 

d
is

p
la

c
e
m

e
n

t

P / (Asfy)



161 

 

 
Figure  B.1.7 – Test 35: (a) average response; (b) section stiffness evolution; (c) displaced shape; (d) tie response 

close to mid span. Distribution at U/Lo = 30y of: (e) lateral displacement; (f) axial stress; (g) moment; and (h) axial 

strain. 
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B.2 Strain Field Evolution and Tangent Modulus Distribution 

 
Figure  B.2.1 – Test 28: (a) strain field evolution; (b) tangent modulus distribution evolution. 
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Figure  B.2.2 – Test 29: (a) strain field evolution; (b) tangent modulus distribution evolution. 
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Figure  B.2.3 – Test 30: (a) strain field evolution; (b) tangent modulus distribution evolution. 
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Figure  B.2.4 – Test 31: (a) strain field evolution; (b) tangent modulus distribution evolution. 
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Figure  B.2.5 – Test 32: (a) strain field evolution; (b) tangent modulus distribution evolution. 
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Figure  B.2.6 – Test 33: (a) strain field evolution; (b) tangent modulus distribution evolution. 

  



168 

 

 
Figure  B.2.7 – Test 34: (a) strain field evolution; (b) tangent modulus distribution evolution. 
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B.3 Stress-strain Evolution of the Discrete Fiber 

 
Figure  B.3.1 – Tests 28 to 31:history of the fibers stress-strain relationship at the critical section, for different tie 

diameters. 
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Figure  B.3.2 – Tests 32 to 34:history of the fibers stress-strain relationship at the critical section, for different tie 

diameters. 
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B.4 Response of the Analytical Specimens of Bar Buckling Under Tie Setup 1 and 2. 

 
Figure  B.4.1 – Response of Tests 1 to 5 and 21 to 27 (db = 3/4 in. [19 mm]). 

 

 

Figure  B.4.2 – Response of Tests 6 to 10 and 28 to 34 (db = 7/8 in. [22 mm]). 
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Figure  B.4.3 – Response of Tests 11 to 15 and 35 to 41 (db = 1 in. [25 mm]). 

 

 

Figure  B.4.4 – Response of Tests 16 to 20 and 42 to 48 (db = 1 1/4 in. [32 mm]). 
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B.5 Algorithm for Estimating b, mh or fr(p) given s/db and (dbt
2/lt)/(dbl

2/Lo). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% InelasticBucklingFunction is function to estimate the average axial  

% stress-strain curve of the inelastic buckling model presented in 

% Chapter 3. The function has two input parameters: the relative restricion  

% s/db and the relative stiffnness (dbt2/lt)/(db2/Lo) 

% 

% By: Carlos Arteta 2015 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [eb_ey mh fb_fy fr_ep0_001 fr_ep0_0025 fr_ep0_005 fr_ep0_0075... 

            fr_ep0_01 fr_ep0_015 fr_ep0_02 fr_ep0_025 fr_ep0_03 fr_ep0_04... 

            fr_ep0_05 fr_ep0_06] = InelasticBucklingFunction(s_db, dbt2_db2) 

  

dbt2_db2T_y=0:.25:3; %(dbt2/lt)/(db2/Lo) 

s_dbT1_x=3.5:.5:6; %s/db for eb and mh 

s_dbT2_x=3.5:1.5:9.5; %s/db for fr 

  

if s_db<=3.5 

    s_db=3.50001 

end 

  

if s_db>=9.5 

    s_db=9.49999 

end 

  

if dbt2_db2<=0 

    dbt2_db2=0.00001 

end 

  

if dbt2_db2>=3 

    dbt2_db2=2.99999 

end 

 

x=s_db; 

y=dbt2_db2; 

 

if s_db>=6 

    eb_ey=1; 

    mh=0; 

  

else 

 

yMark2=find(dbt2_db2T_y>=dbt2_db2,1); 

xMark2=find(s_dbT1_x>=s_db,1); 

yMark1=yMark2-1; 

xMark1=xMark2-1; 

  

x1=s_dbT1_x(xMark1); 

x2=s_dbT1_x(xMark2); 

y1=dbt2_db2T_y(yMark1); 

y2=dbt2_db2T_y(yMark2); 

  

  

%% 

%Relative buckling strain 

 

eb_eyT=[1.0 1.0 1.0 1.0 1.0 1.0 

11.8    7.6 5.6 3.4 1.0 1.0 

22.6    14.2    10.2    5.8 1.0 1.0 

28.0    20.8    14.5    7.0 2.1 1.0 

29.9    27.2    15.8    8.1 3.0 1.0 

31.9    29.8    17.2    8.8 3.3 1.0 

33.0    32.4    18.1    9.2 3.7 1.0 

33.0    33.0    18.8    9.6 3.8 1.0 

33.0    33.0    19.2    9.8 3.8 1.0 

33.0    33.0    19.2    9.8 3.8 1.0 

33.0    33.0    19.2    9.8 3.8 1.0 

33.0    33.0    19.2    9.8 3.8 1.0 
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33.0    33.0    19.2    9.8 3.8 1.0 

]; 

 

%Bilinear interpolation process  

r11=eb_eyT(yMark1,xMark1); 

r21=eb_eyT(yMark1,xMark2); 

r12=eb_eyT(yMark2,xMark1); 

r22=eb_eyT(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

eb_ey=r; 

%% 

%Post yield slope parameter 

mhT=[0.00   0.00    0.00    0.00    0.00    0.00 

0.74    0.47    0.40    0.22    0.00    0.00 

0.76    0.58    0.52    0.23    0.00    0.00 

0.78    0.63    0.53    0.25    0.00    0.00 

0.80    0.68    0.54    0.26    0.00    0.00 

0.82    0.69    0.54    0.27    0.03    0.00 

0.82    0.69    0.54    0.28    0.06    0.00 

0.82    0.69    0.54    0.29    0.09    0.00 

0.82    0.69    0.54    0.29    0.09    0.00 

0.82    0.69    0.54    0.29    0.09    0.00 

0.82    0.69    0.54    0.29    0.09    0.00 

0.82    0.69    0.54    0.29    0.09    0.00 

0.82    0.69    0.54    0.29    0.09    0.00 

]; %mh Table [%] 

  

r11=mhT(yMark1,xMark1); 

r21=mhT(yMark1,xMark2); 

r12=mhT(yMark2,xMark1); 

r22=mhT(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

mh=r/100; 

end 

%% 

fb_fy=1+mh*(eb_ey-1); 

%% 

yMark2=find(dbt2_db2T_y>=dbt2_db2,1); 

xMark2=find(s_dbT2_x>=s_db,1); 

yMark1=yMark2-1; 

xMark1=xMark2-1; 

  

x1=s_dbT2_x(xMark1); 

x2=s_dbT2_x(xMark2); 

y1=dbt2_db2T_y(yMark1); 

y2=dbt2_db2T_y(yMark2); 

  

%% 

%Softening branch description 

fr_ep001=[0.80  0.71    0.74    0.65    0.52 

1.00    0.96    0.96    0.93    0.88 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

1.00    1.00    0.99    0.97    0.94 

]; 

  

r11=fr_ep001(yMark1,xMark1); 

r21=fr_ep001(yMark1,xMark2); 

r12=fr_ep001(yMark2,xMark1); 
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r22=fr_ep001(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_001=r; 

%% 

fr_ep0025=[0.60 0.55    0.57    0.48    0.40 

1.00    0.91    0.91    0.85    0.77 

1.00    0.99    0.97    0.92    0.86 

1.00    0.99    0.98    0.92    0.86 

1.00    1.00    0.98    0.93    0.86 

1.00    1.00    0.98    0.92    0.86 

1.00    1.00    0.98    0.92    0.86 

1.00    1.00    0.98    0.92    0.86 

1.00    1.00    0.98    0.92    0.86 

1.00    1.00    0.98    0.92    0.86 

1.00    1.00    0.98    0.92    0.86 

1.00    1.00    0.98    0.92    0.86 

1.00    1.00    0.98    0.92    0.86 

]; 

  

r11=fr_ep0025(yMark1,xMark1); 

r21=fr_ep0025(yMark1,xMark2); 

r12=fr_ep0025(yMark2,xMark1); 

r22=fr_ep0025(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_0025=r; 

%% 

fr_ep005=[0.50  0.43    0.43    0.38    0.32 

0.97    0.83    0.84    0.75    0.64 

1.00    0.96    0.93    0.84    0.74 

1.00    0.97    0.95    0.85    0.75 

1.00    0.98    0.95    0.86    0.75 

1.00    0.99    0.96    0.86    0.75 

1.00    0.99    0.96    0.86    0.75 

1.00    0.99    0.96    0.86    0.75 

1.00    0.99    0.96    0.86    0.75 

1.00    0.99    0.96    0.86    0.75 

1.00    0.99    0.96    0.86    0.75 

1.00    0.99    0.96    0.86    0.75 

1.00    0.99    0.96    0.86    0.75 

]; 

  

r11=fr_ep005(yMark1,xMark1); 

r21=fr_ep005(yMark1,xMark2); 

r12=fr_ep005(yMark2,xMark1); 

r22=fr_ep005(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_005=r; 

%% 

fr_ep0075=[0.41 0.38    0.37    0.33    0.27 

0.92    0.77    0.78    0.67    0.57 

1.00    0.93    0.90    0.77    0.65 

1.00    0.95    0.91    0.79    0.66 

1.00    0.96    0.92    0.80    0.67 

1.00    0.97    0.93    0.80    0.67 

1.00    0.97    0.93    0.80    0.67 

1.00    0.97    0.93    0.80    0.67 

1.00    0.98    0.93    0.80    0.67 

1.00    0.98    0.93    0.80    0.67 

1.00    0.98    0.93    0.80    0.67 

1.00    0.98    0.93    0.80    0.67 

1.00    0.98    0.93    0.80    0.67 

]; 

  

r11=fr_ep0075(yMark1,xMark1); 

r21=fr_ep0075(yMark1,xMark2); 
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r12=fr_ep0075(yMark2,xMark1); 

r22=fr_ep0075(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_0075=r; 

%% 

fr_ep01=[0.38   0.34    0.32    0.30    0.24 

0.87    0.72    0.73    0.61    0.51 

0.99    0.90    0.86    0.71    0.59 

1.00    0.92    0.88    0.74    0.60 

1.00    0.93    0.90    0.75    0.61 

1.00    0.95    0.90    0.75    0.61 

1.00    0.95    0.90    0.75    0.61 

1.00    0.95    0.90    0.75    0.61 

1.00    0.96    0.90    0.75    0.61 

1.00    0.96    0.90    0.75    0.61 

1.00    0.96    0.90    0.75    0.61 

1.00    0.96    0.90    0.75    0.61 

1.00    0.96    0.90    0.75    0.61 

]; 

  

r11=fr_ep01(yMark1,xMark1); 

r21=fr_ep01(yMark1,xMark2); 

r12=fr_ep01(yMark2,xMark1); 

r22=fr_ep01(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_01=r; 

%% 

fr_ep015=[0.32  0.30    0.28    0.26    0.20 

0.79    0.64    0.64    0.52    0.43 

0.96    0.83    0.80    0.62    0.49 

1.00    0.85    0.82    0.65    0.51 

1.00    0.87    0.84    0.67    0.52 

1.00    0.89    0.84    0.67    0.52 

1.00    0.90    0.84    0.67    0.52 

1.00    0.91    0.84    0.67    0.52 

1.00    0.91    0.84    0.67    0.52 

1.00    0.92    0.84    0.67    0.52 

1.00    0.92    0.84    0.67    0.52 

1.00    0.92    0.84    0.67    0.52 

1.00    0.92    0.84    0.67    0.52 

]; 

  

r11=fr_ep015(yMark1,xMark1); 

r21=fr_ep015(yMark1,xMark2); 

r12=fr_ep015(yMark2,xMark1); 

r22=fr_ep015(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_015=r; 

%% 

fr_ep015=[0.32  0.30    0.28    0.26    0.20 

0.79    0.64    0.64    0.52    0.43 

0.96    0.83    0.80    0.62    0.49 

1.00    0.85    0.82    0.65    0.51 

1.00    0.87    0.84    0.67    0.52 

1.00    0.89    0.84    0.67    0.52 

1.00    0.90    0.84    0.67    0.52 

1.00    0.91    0.84    0.67    0.52 

1.00    0.91    0.84    0.67    0.52 

1.00    0.92    0.84    0.67    0.52 

1.00    0.92    0.84    0.67    0.52 

1.00    0.92    0.84    0.67    0.52 

1.00    0.92    0.84    0.67    0.52 

]; 

  

r11=fr_ep015(yMark1,xMark1); 
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r21=fr_ep015(yMark1,xMark2); 

r12=fr_ep015(yMark2,xMark1); 

r22=fr_ep015(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_015=r; 

%% 

fr_ep02=[0.29   0.27    0.25    0.23    0.18 

0.71    0.58    0.58    0.47    0.39 

0.93    0.76    0.74    0.56    0.44 

1.00    0.79    0.76    0.59    0.46 

1.00    0.82    0.78    0.60    0.47 

1.00    0.84    0.79    0.61    0.47 

1.00    0.85    0.79    0.61    0.47 

1.00    0.86    0.79    0.61    0.47 

1.00    0.87    0.79    0.61    0.47 

1.00    0.88    0.79    0.61    0.47 

1.00    0.88    0.79    0.61    0.47 

1.00    0.88    0.79    0.61    0.47 

1.00    0.88    0.79    0.61    0.47 

]; 

  

r11=fr_ep02(yMark1,xMark1); 

r21=fr_ep02(yMark1,xMark2); 

r12=fr_ep02(yMark2,xMark1); 

r22=fr_ep02(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_02=r; 

%% 

fr_ep025=[0.27  0.24    0.23    0.21    0.16 

0.66    0.53    0.53    0.42    0.35 

0.90    0.71    0.68    0.50    0.40 

1.00    0.74    0.70    0.54    0.42 

1.00    0.76    0.73    0.55    0.43 

1.00    0.79    0.73    0.56    0.43 

1.00    0.80    0.73    0.56    0.43 

1.00    0.82    0.73    0.56    0.43 

1.00    0.83    0.73    0.56    0.43 

1.00    0.84    0.73    0.56    0.43 

1.00    0.85    0.73    0.56    0.43 

1.00    0.86    0.73    0.56    0.43 

1.00    0.86    0.73    0.56    0.43 

]; 

  

r11=fr_ep025(yMark1,xMark1); 

r21=fr_ep025(yMark1,xMark2); 

r12=fr_ep025(yMark2,xMark1); 

r22=fr_ep025(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_025=r; 

%% 

fr_ep03=[0.25   0.23    0.22    0.19    0.15 

0.61    0.49    0.49    0.39    0.32 

0.88    0.66    0.63    0.46    0.38 

1.00    0.69    0.66    0.50    0.40 

1.00    0.72    0.68    0.51    0.41 

1.00    0.75    0.69    0.52    0.41 

1.00    0.77    0.69    0.52    0.41 

1.00    0.79    0.69    0.52    0.41 

1.00    0.80    0.69    0.52    0.41 

1.00    0.82    0.69    0.52    0.41 

1.00    0.83    0.69    0.52    0.41 

1.00    0.83    0.69    0.52    0.41 

1.00    0.84    0.69    0.52    0.41 

]; 
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r11=fr_ep03(yMark1,xMark1); 

r21=fr_ep03(yMark1,xMark2); 

r12=fr_ep03(yMark2,xMark1); 

r22=fr_ep03(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_03=r; 

%% 

fr_ep04=[0.23   0.20    0.20    0.16    0.14 

0.54    0.44    0.44    0.34    0.29 

0.83    0.59    0.56    0.40    0.34 

1.00    0.63    0.59    0.44    0.36 

1.00    0.66    0.61    0.46    0.37 

1.00    0.69    0.62    0.46    0.37 

1.00    0.71    0.62    0.46    0.37 

1.00    0.75    0.62    0.46    0.37 

1.00    0.78    0.62    0.46    0.37 

1.00    0.79    0.62    0.46    0.37 

1.00    0.81    0.62    0.46    0.37 

1.00    0.82    0.62    0.46    0.37 

1.00    0.82    0.62    0.46    0.37 

]; 

  

r11=fr_ep04(yMark1,xMark1); 

r21=fr_ep04(yMark1,xMark2); 

r12=fr_ep04(yMark2,xMark1); 

r22=fr_ep04(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_04=r; 

%% 

fr_ep05=[0.22   0.18    0.18    0.14    0.13 

0.49    0.40    0.40    0.31    0.26 

0.79    0.55    0.50    0.37    0.32 

1.00    0.59    0.54    0.40    0.33 

1.00    0.62    0.56    0.42    0.34 

1.00    0.66    0.57    0.43    0.34 

1.00    0.70    0.57    0.43    0.34 

1.00    0.74    0.57    0.43    0.34 

1.00    0.77    0.57    0.43    0.34 

1.00    0.79    0.57    0.43    0.34 

1.00    0.81    0.57    0.43    0.34 

1.00    0.82    0.57    0.43    0.34 

1.00    0.82    0.57    0.43    0.34 

]; 

  

r11=fr_ep05(yMark1,xMark1); 

r21=fr_ep05(yMark1,xMark2); 

r12=fr_ep05(yMark2,xMark1); 

r22=fr_ep05(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_05=r; 

%% 

fr_ep06=[0.21   0.16    0.17    0.13    0.11 

0.46    0.37    0.37    0.28    0.24 

0.76    0.51    0.47    0.35    0.29 

1.00    0.55    0.51    0.37    0.31 

1.00    0.59    0.54    0.40    0.32 

1.00    0.63    0.54    0.41    0.32 

1.00    0.67    0.54    0.41    0.32 

1.00    0.71    0.54    0.41    0.32 

1.00    0.76    0.54    0.41    0.32 

1.00    0.79    0.54    0.41    0.32 

1.00    0.81    0.54    0.41    0.32 

1.00    0.82    0.54    0.41    0.32 

1.00    0.82    0.54    0.41    0.32 

]; 
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r11=fr_ep06(yMark1,xMark1); 

r21=fr_ep06(yMark1,xMark2); 

r12=fr_ep06(yMark2,xMark1); 

r22=fr_ep06(yMark2,xMark2); 

  

b=([1 x1 y1 x1*y1; 1 x1 y2 x1*y2; 1 x2 y1 x2*y1; 1 x2 y2 x2*y2]^-1)'*([1;x;y;x*y]); 

r=b(1)*r11+b(2)*r12+b(3)*r21+b(4)*r22; 

fr_ep0_06=r; 

end 
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Appendix C - Grading Ground Motion 

Modification Procedures for 

Structural Analysis Based on 

Conditional Scenario Spectra 

Ground motion selection and modification procedures have grown in number and complexity in 

the last ten years. This is in part, because once-intricate nonlinear dynamic analyses are now 

routine practice in structural engineering offices, hence increasing the demand for accelerograms 

with particular time-series properties. The primary reason for scaling and modifying these time 

series is to attain specific intensity and/or frequency content characteristics that allow running a 

small suite of recordings over a structural model while still gathering meaningful values and 

ranges of engineering demand parameters. This appendix presents the comparison between two 

ground-motion-modification procedures for structural analysis. The modification methods 

presented herein are based on matching a target spectrum where a Uniform Hazard Spectrum is 

used as target. Of the two ground motion modification methods used, one matches the target 

spectra tightly at all periods of interest, while the other does it in a weak manner by matching the 

target on the average while allowing for some variability in the spectra of the individual ground 

motions around the target. Suites of ground motions selected and modified with the methods in 

discussion were used to perform nonlinear dynamic analyses of a code-compliant reinforced 

concrete multistory frame with special detailing. The two methods were graded on the basis of 

the resulting risk of a set of structural engineering demand parameters. Results show that while 

both methods yield the same median response with known dispersion in the elastic domain, as 

represented by the response of elastic single-degree-of-freedom systems (e.g. pseudo 

acceleration for a given damping ratio at different periods), the response of nonlinear inelastic 

systems subjected to the ground-motion suites corresponding to both modification methods vary 

in the median level (e.g. differ in risk) as wells as in dispersion. It is shown that the ground 

motions of the tightly matched set produce median responses that are closer to their expected risk 

level. 

 

C.1 Motivation 

Selection and modification of earthquake ground motion records for geotechnical and structural 

response history analyses (RHA) is a subject of ongoing research (Baker, 2011; Baker & Cornell, 

2006; Hancock et al., 2008; Huang et al., 2011; Jayaram et al., 2011; Lin, Haselton, et al., 2013; 

Watson-Lamprey & Abrahamson, 2006). The primary reason for scaling and modifying these 

time series is to attain specific intensity and/or frequency content characteristics that allow 

running a small suite of recordings over a structural model while still gathering meaningful 

values and ranges of engineering demand parameters. For structural analyses one of the most 

renowned methods make use of a Conditional Mean Spectrum (CMS) (Baker, 2011) that serves 

as target to selected times series that follow a similar spectral shape. The target CMS matches a 

Uniform Hazard Spectrum (UHS) for a specific hazard level at one structural period, typically 

the fundamental one. One of the shortcomings of CMS as target at a single period is that 
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structures undergoing seismic shaking of high intensity might experience fundamental period 

lengthening and depending on their configuration, higher mode participation might have an 

important effect on several structural responses. To account for the latter, structural engineers 

sometimes face the problem of having to perform structural analyses runs with more than one set 

of ground motions corresponding to selections based on more than one CMS to account for the 

different relevant structural periods. Other methods for ground motion selection, which satisfy 

structural engineering desire to perform as few runs as possible, are focused on modifying time 

series in order to match an UHS. Theoretically, this is over conservative because no single 

ground motion response spectrum has as high spectral coordinates at all periods but with by 

using this method, the problem of having to run analyses with many ground motion sets is 

minimized.  

In this appendix, another application of the Conditional Scenario Spectra (CSS) 

methodology presented in Section 5.1.3 is used for the objective comparison between two 

ground-motion-modification procedures for structural analysis. The modification methods 

presented herein are based on matching a target UHS with a selected return period (or hazard 

level). Of the two ground motion modification methods used, one matches the target spectra 

tightly at all periods of interest, while the other does it in a weak manner by matching the target 

on the average, while allowing for some variability in the spectra of the individual ground 

motions around the target. Suites of ground motions selected and modified with the methods in 

discussion were used to perform nonlinear dynamic analyses of a code-compliant reinforced 

concrete multistory frame with special detailing. The two methods were graded on the basis of 

the resulting risk of the maximum roof displacement and the base shear force. This risk is 

calculated by comparing responses from the modification method sets to those from the CSS.  

 

C.2 Structural Design and Inelastic Modeling 

An 8-story reinforced concrete building was selected as the object of study to analyze the impact 

of two different ground motion selection methods in the response of the structures. Figure  C.2.1 

depicts the general geometric properties of the structure of analysis. Plan dimensions are 117 ft x 

97 ft and total height is 96 ft. The structural system comprises circular gravity load columns and 

external special moment resistant frames (SMF) to resist lateral loads due to seismic demand. 

Analyses for combined gravity and lateral seismic loads followed ASCE-7. A three-dimensional, 

linear structural model of the buildings was implemented in the computer software ETABS (CSI, 

2011). The model accounted for degraded stiffness of the structural elements due to seismic 

loading. The effective inertia of the beams was set to 35% of the gross inertia and those of the 

columns were set in the range 50% to 70% according to their gravitational axial loading. A 

response modification factor R = 8 was selected. Concrete was assumed normal weight (c = 150 

lb/ft3) with nominal strength f’c = 6 ksi for beams and columns of the SMFs. The elastic modulus 

of the reinforced concrete structural elements was computed as 57000√(f'c) [psi]. Reinforcing 

steel was assumed ASTM A706 with nominal yielding strength of fy = 60 ksi.  

Seismic load effects on the structural members were calculated by means of the 

Equivalent Lateral Force Analysis described in ASCE 7. The design spectrum depicted in Figure 

5.1 was used as the seismic demand after reducing it by R. A modal analysis was performed over 

the structure to calculate its dynamic properties. Since the nonlinear modeling was performed 

over a 2D-model representative of half the structure in the EW direction, in the following, the 
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mentioned values will only refer to that direction of analysis. The fundamental period was T1EW-

Dir = 1.75s and second and third translational modal periods were 0.53s and 0.27s respectively. 

Design base shears including response modification factor R=8 were VbEW = 721.5 kN (VbEW / W 

= 4.8%). Maximum inter-story drift ratio was 1.61% which is below the maximum allowed of 

2%.Design of the reinforced concrete structural elements (beams and columns) was performed in 

accordance with provision for special moment frames in ACI-318 (2011). Columns were 32 x 32 

in. with minimum longitudinal steel ratios (total area of steel to gross area ratio) min = 1.00% 

and transverse steel ratio with Av / bs > 0.87%, where Av is the total area of transverse 

reinforcement within distance s of two adjacent layers and b is the core dimension of column. 

Beams were 22 x 32 in. with longitudinal steel ratios (area of tension reinforcement divided by 

web width and effective depth) ranging from  = 0.39 to 0.54% and transverse steel ratios Av/bs 

> 0.63%. The slab was 8 in. thick at all floors.  

 
Figure  C.2.1 – General layout of structural elements: (a) plan; (b) elevation of Frame 1. 

 

To account for epistemic uncertainty in modeling, two planar inelastic mathematical 

models, representative of half the structure in the EW-direction, were constructed: (i) LC Model 

and (ii) NLC Model. The LC Model (leaning column model) accounts for P-Delta effects due to 

high axial load in the gravity load resisting system through a so-called leaning column which is a 

mathematical artifact that effectively reduces the tangent stiffness of the system at large 

displacements. NLC Model only accounts for P-Delta effect due to axial loading of the SMF. 

The software package OpenSees (McKenna et al., 2000) was selected as the modeling tool 

because its nonlinear analysis capabilities allow conducting a large number of simulations and its 

efficacy has been validated by the research community for many years. Static nonlinear analyses 

(“pushover”) and dynamic nonlinear analyses were performed on the structures.  

Force-based nonlinear beam-column elements with concentrated plasticity at the ends 

were used to model all structural elements (M. H. Scott & Fenves, 2006). Fiber sections assigned 

to the plastic hinge regions simulate material nonlinearities while accounting for moment-axial 

load interaction. For nonlinear dynamic analyses, mass and stiffness-proportional Rayleigh 

damping was used to simulate the energy dissipation characteristics of the building that is not 

accounted for by the nonlinear behavior of the structural elements. The Rayleigh damping 
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coefficients were established to achieve a damping ratio of  = 2.5% at periods corresponding to 

the first and third translational vibration modes of the linear model. Calculated periods for the 

nonlinear models were obtained after applying the vertical load, therefore some initial service 

level cracking is accounted for. The first, second and third periods of the nonlinear model are: 

T1EW-NL = 1.73s, T2EW-NL = 0.54s and T3EW-NL = 0.29s, which closely match those of the elastic 

model with cracked sections. Figure  C.2.2 shows pushover curves for the two OpenSees 

models. The influence of P-Delta effects is apparent on the LC Model. The design base shear and 

yielding base shear, from displacement based analysis (“by hand”) of the designed structure, are 

also presented. The minimum overstrength factor, defined as the ratio between the maximum 

base shear of LC Model and the design base shear is, approximately 1.12; the maximum 

overstrength factor, defined as the ratio between the maximum base shear of the NLC Model and 

the design base shear is, approximately 1.57. 

 
Figure  C.2.2 – Pushover curves. 

 

C.3 Ground Motion Selection and Modification Procedures 

Structural systems subjected to high intensity shaking undergo relatively large displacements and 

their period of vibration shifts toward larger values, product of stiffness degradation of the 

structural elements. For the system shown in Figure  C.2.1, the expected lengthening is, on 

average, approximately 1.5 times the elastic period of vibration. This suggests that to estimate 

the response of this inelastic multi-degree-of-freedom system (MDOFS) properly, the frequency 

content of the selected ground motions must be rich enough to properly excite the structural 

vibration modes that most contribute to the response. For the building in discussion, at least the 

first and second elastic modes should be excited with enough energy and the expected degraded 

period should also be covered by the frequency content range of the times series used as the 

uniform excitation at the base. The building code achieves this by requiring that the average 

spectrum of the ground motions does not fall below the target design spectrum for the site in a 

period range between 0.2 and 1.5 times the fundamental elastic period of the structure being 

analyzed. 

 

Loose Mean-Spectrum match (LM) set 

The LM set comprises twenty ground motions that were selected, scaled and their frequency 

content was modified such that their average spectrum matches the 4,000-year return period 
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UHS for the site (Figure  C.3.1a). This method of ground-motion modification allows for the 

variability around the mean which tight spectral matching removes (Mazzoni et al., 2012). In 

addition, the frequency-content modification removes the higher-mode amplification effects that 

results when records are simply scaled and not modified. 

 

Tight Component-Spectrum match (TM) set 

The TM set also comprises twenty ground motions as shown in (Figure  C.3.1b). The frequency 

content of these records, however, was modified such that the response spectrum of each 

component matched the target UHS for the site. This method is used in many structural-

engineering project because of it meets the design code requirements and is easy to implement 

and use. 

 
Figure  C.3.1 – Selected ground motion set and their variability: (a) LM set, with variability around the median; (b) 

TM set, without much variability; (c) variability (in log units) of the LM and TM sets for different periods. 

 

C.4 Structural Responses 

The inelastic mathematical models of the building were subjected to simulated seismic shaking 

using the two sets of ground motions described above. Excluding collapses, Figure  C.4.1 show 

two engineering demand parameters (EDP) for each run: (a) maximum roof drift ratio (RDR), 

defined as the lateral displacement of the roof divided by the total height of the building, versus 

the elastic spectral displacement at the elastic fundamental period (Sd(T1)); and (b) maximum base 

shear normalized by the weight of the building versus spectral acceleration at the fundamental 

period (Sa(T1)). Under each set of ground motions, the response of both mathematical models of 

the building (i.e. NLC and LC model) is included. It is apparent how both ground motion sets 

differ in dispersion of the elastic ground motion parameters (i.e. spectral coordinates of pseudo 

acceleration or displacement are concentrated around a single value for the TM set), while the 

structural response dispersion difference is not as obvious. 

Median values and dispersion estimates of the EDPs of interest are depicted in the 

boxplots of Figure  C.4.2. Median values, product of the TM set runs, are 3% to 13% larger than 

those from the LM set. The structural responses reported here follow a logNormal distribution 

with unbounded values on the upper tail of the distribution due to structural collapses. To 

(a) (b) (c)
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overcome the latter, the dispersion of the EDPs is calculated with a standard deviation estimate 

according to Equation ((C.1): 

𝜎  𝑔 ≈
ln𝑅𝑖𝑝84 − ln𝑅𝑖𝑝 6

2
 (C.1) 

where ln 𝑅𝑖𝑝 6 and  𝑛 𝑅𝑖𝑝84 are, respectively, the 16th and 84th percentile of the natural logarithm 

of the response of interest. The dispersion from the runs corresponding to the LM set is 2.3 to 2.9 

times larger than those from the TM set. For analyses under the TM set, it is important to notice 

how the response of the inelastic MDOFS dispersion is not as low as the dispersion of the input 

ground motions, represented by their elastic response spectra. This result supports the hypothesis 

that spectral shape is not the only relevant parameter of the input ground motions that drives the 

response of inelastic MDOFS. 

 
Figure  C.4.1 – Structural response under each set of ground motions: (a) maximum roof drift ratio versus elastic 

spectral displacement at the fundamental period; (b) normalized maximum base shear versus spectral acceleration at 

the fundamental period. 

 

 
Figure  C.4.2 – Boxplots of the structural responses. 

 

C.5 EDP risk curves from CSS 

Figure  C.5.1 shows EDPs estimated using the inelastic NLC model and the ground 

motion set associated with the CS described above. The same type of data was estimated with the 

LC model and the results were averaged with equal weights for each model. It is interesting to 
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notice that one of the depicted EDPs is bounded by the strength of the building while the other is 

practically unbounded and is related to the displacement of the framing system. It is also worth 

mentioning, that the CSS ground motion set covers low and very high levels of intensity that 

may drive the inelastic model into the collapse range. 

 
Figure  C.5.1 – Engineering demand parameter response from CS runs on the NLC model: (a) maximum roof drift 

ratio versus elastic spectral displacement at the fundamental period; (b) normalized maximum base shear versus 

spectral acceleration at the fundamental period. 

 

To construct an objective ground for comparison of the EDPs estimated with the LM and 

TM ground motion sets, product of the modification methods in study, the EDPs from the CSS 

set, along with the assigned rates of each time series, can be used to estimate a risk curves for 

EDPs using the formulation in Section 5.1.3.1 (see Equation (5.11)). Boxes (a) and (b) of 

Figure  C.5.2 and Figure  C.5.3 show risk curves for the maximum RDR and the normalized 

maximum base shear. Also shown are the responses from the TM and LM set runs, which are 

placed at the expected abscissa of 4,000 years return period (rate of 2.5 x 10-4). To compare the 

adequacy of the response estimates from both sets of ground motions, Figure  C.5.2c and Figure  

C.5.3c depict the median values of the EDPs of interest and their interpolated rate of being 

exceeded. It is observed that the interpolated rates for the TM set medians are closer to the 

expected hazard of 1/4,000 years. Furthermore, the median value of the normalized maximum 

base shear estimated with the TM set is almost on top the risk curve for return period 4,000 

years. On the other hand, due to the steep behavior of the aforementioned EDP, the rate of the 

median response from the LM set is deemed unconservative at 1/850 years approximately. 

 
Figure  C.5.2 – Hazard curves for maximum roof drift ratio: (a) with responses from the TM set; (b) with responses 

from the LM set; (c) interpolated rates for median values from runs with the TM and LM set. 
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Figure  C.5.3 – Hazard curves for normalized base shear: (a) with responses from the TM set; (b) with responses 

from the LM set; (c) interpolated rates for median values from runs with the TM and LM set. 

 

C.6 Final comments 

An application was presented in which Conditional Scenario Spectra (CSS) are utilized to 

construct risk curves for engineering demand parameters (EDPs). The rates of these demand 

parameters serve as basis to grade the adequacy of two sets of ground motions, product of two 

different modification procedures. The two sets are similar in that their mean response spectrum 

approximately matches a target UHS with return period 4,000 years. The two sets differ in that 

one had variability around the mean spectrum while the other is a set comprised of spectrally 

matched time series with low variability.  

The estimated median EDPs of each procedure are graded by interpolating their rate of being 

exceeded within their risk curves from the CSS. It was observed that median inelastic responses 

from the low variability ground motion set have rates closer to their matched target UHS. In 

addition to the value of the results of this comparison, the methodology used in this appendix is a 

valuable tool in evaluating any set of ground motions. 
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Appendix D - Conditional Scenario Spectra 

Metadata 

D.1 CSS Metadata 

Metadata related to the selected 402 ground motions used for the construction of the CSS in 

Chapter 5 is present in Table  D.1.1. Additionally, rate versus EDP scatter plot for the DuM 

model are shown in . 

 

Table  D.1.1 – Metadata of Conditional Scenario Spectra set. 
ID per 

Scenario 

Original 

Index 

Hazard 

Level RSN EqID 

Mag 

Mw 

Rrup 

[km] 

Vs30 

[m/s] 

Scale 

Factor Rate 

1 2 1 126 31 6.2 4.1 288.8 0.23 6.98E-04 

2 14 1 139 42 5.5 17.7 659.6 0.61 7.23E-04 

3 16 1 162 49 5.9 13.3 338.6 0.74 3.73E-04 

4 9 1 171 50 6.5 15.2 659.6 0.24 3.43E-04 

5 18 1 312 68 6.9 10.8 1000 1.95 2.11E-04 

6 10 1 457 90 6.2 3.3 488.8 1.17 6.99E-04 

7 6 1 741 116 6.5 18.2 192.1 0.45 8.29E-05 

8 8 1 767 118 6.9 24.6 239.7 0.40 7.75E-04 

9 13 1 983 125 7.3 23.6 353.6 0.22 8.58E-05 

10 19 1 1013 127 6.7 22.2 446 0.25 4.06E-05 

11 3 1 1039 127 6.7 5.4 525.8 0.68 5.47E-04 

12 4 1 1091 127 6.7 7 2016.1 1.10 3.85E-05 

13 17 1 1176 129 6.9 0.9 1043 0.26 1.62E-04 

14 1 1 1528 137 7.6 19 401.3 0.42 ####### 

15 7 1 1532 137 7.6 0.9 573 0.56 3.06E-04 

16 5 1 1549 137 7.6 6.1 494.1 0.33 2.04E-03 

17 11 1 2628 171 5.9 15.4 443 0.54 2.74E-04 

18 15 1 6886 175 6.3 24.7 433.6 0.72 6.31E-05 

19 12 1 8142 175 6.3 24.8 664.4 1.63 1.64E-04 

1 21 2 126 31 6.2 4.1 288.8 0.36 3.11E-04 

2 40 2 139 42 5.5 17.7 659.6 0.95 1.22E-04 

3 44 2 162 49 5.9 13.3 338.6 1.15 8.96E-05 

4 22 2 165 50 6.5 2.7 223 0.81 3.32E-07 

5 20 2 178 50 6.5 21.7 237.3 0.86 1.26E-04 

6 43 2 212 50 6.5 7.7 202.9 1.53 3.34E-04 

7 34 2 292 64 6.3 7.3 274.5 0.53 7.88E-05 

8 33 2 457 90 6.2 3.3 488.8 1.82 5.80E-04 

9 25 2 729 113 6 18.5 308.6 0.71 2.03E-07 

10 38 2 730 113 6 16.3 308.6 1.40 1.02E-07 

11 30 2 741 116 6.5 18.2 192.1 0.71 2.76E-06 

12 32 2 767 118 6.9 24.6 239.7 0.62 4.75E-04 

13 39 2 983 125 7.3 23.6 353.6 0.34 4.94E-05 
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ID per 

Scenario 

Original 

Index 

Hazard 

Level RSN EqID 

Mag 

Mw 

Rrup 

[km] 

Vs30 

[m/s] 

Scale 

Factor Rate 

14 41 2 995 127 6.7 17.1 355.8 0.87 8.96E-05 

15 26 2 1091 127 6.7 7 2016.1 1.71 1.12E-04 

16 23 2 1197 129 6.9 0.3 312 0.41 2.40E-05 

17 31 2 1510 137 7.6 10.5 440.2 0.66 9.59E-05 

18 29 2 1512 137 7.6 17.1 230.3 0.58 2.04E-07 

19 28 2 1521 137 7.6 0.6 433.6 0.70 1.32E-04 

20 27 2 1549 137 7.6 6.1 494.1 0.51 6.40E-04 

21 37 2 1550 137 7.6 12.9 543.8 0.92 2.70E-05 

22 45 2 1611 137 7.6 11.6 212.7 1.40 1.69E-04 

23 24 2 1752 145 5.6 13.2 370.8 1.02 4.36E-05 

24 35 2 2628 171 5.9 15.4 443 0.84 7.21E-05 

25 42 2 6886 175 6.3 24.7 433.6 1.12 5.14E-05 

26 36 2 8142 175 6.3 24.8 664.4 2.54 1.02E-07 

1 46 3 95 30 6.6 22.6 670.8 1.43 3.59E-05 

2 48 3 126 31 6.2 4.1 288.8 0.53 5.59E-05 

3 68 3 139 42 5.5 17.7 659.6 1.39 5.47E-05 

4 71 3 162 49 5.9 13.3 338.6 1.68 6.12E-08 

5 47 3 178 50 6.5 21.7 237.3 1.26 1.02E-04 

6 70 3 212 50 6.5 7.7 202.9 2.22 3.52E-05 

7 61 3 457 90 6.2 3.3 488.8 2.64 6.12E-05 

8 51 3 729 113 6 18.5 308.6 1.03 1.74E-05 

9 56 3 741 116 6.5 18.2 192.1 1.03 1.02E-05 

10 60 3 767 118 6.9 24.6 239.7 0.90 1.52E-04 

11 66 3 983 125 7.3 23.6 353.6 0.49 9.48E-05 

12 49 3 1039 127 6.7 5.4 525.8 1.54 2.26E-05 

13 62 3 1048 127 6.7 24 316.5 0.63 1.35E-05 

14 52 3 1091 127 6.7 7 2016.1 2.49 1.75E-05 

15 74 3 1113 127 6.7 5.3 440.5 2.04 2.64E-05 

16 72 3 1141 129 6.9 11.3 256 0.78 8.93E-06 

17 57 3 1510 137 7.6 10.5 440.2 0.96 1.05E-06 

18 59 3 1511 137 7.6 11.8 479.3 0.79 5.22E-05 

19 55 3 1512 137 7.6 17.1 230.3 0.84 3.42E-05 

20 54 3 1549 137 7.6 6.1 494.1 0.74 1.86E-04 

21 65 3 1550 137 7.6 12.9 543.8 1.34 9.82E-06 

22 73 3 1611 137 7.6 11.6 212.7 2.04 1.73E-05 

23 63 3 2628 171 5.9 15.4 443 1.23 5.91E-05 

24 50 3 2699 172 6.2 22.5 468.1 3.53 8.21E-06 

25 58 3 2893 172 6.2 7.6 443 2.76 1.40E-05 

26 67 3 4098 173 6.2 19.7 427.7 1.00 9.06E-05 

27 53 3 4117 173 6.2 17.7 542.6 1.57 4.18E-06 

28 69 3 6886 175 6.3 24.7 433.6 1.64 3.99E-06 

29 64 3 8142 175 6.3 24.8 664.4 3.69 8.01E-05 

1 106 4 97 30 6.6 1.8 2016.1 4.54 4.29E-05 
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ID per 

Scenario 

Original 

Index 

Hazard 

Level RSN EqID 

Mag 

Mw 

Rrup 

[km] 

Vs30 

[m/s] 

Scale 

Factor Rate 

2 77 4 126 31 6.2 4.1 288.8 0.69 2.99E-05 

3 100 4 139 42 5.5 17.7 659.6 1.82 3.22E-05 

4 110 4 161 49 5.9 4.6 659.6 1.58 3.86E-05 

5 104 4 162 49 5.9 13.3 338.6 2.20 1.07E-05 

6 75 4 178 50 6.5 21.7 237.3 1.65 3.06E-05 

7 86 4 182 50 6.5 22 249.9 0.76 2.75E-08 

8 103 4 212 50 6.5 7.7 202.9 2.92 9.12E-05 

9 76 4 284 61 5.9 12.4 338.5 6.09 1.09E-04 

10 111 4 286 61 5.9 16 345.4 2.57 2.39E-05 

11 94 4 292 64 6.3 7.3 274.5 1.00 1.99E-05 

12 93 4 457 90 6.2 3.3 488.8 3.47 2.82E-05 

13 80 4 553 102 5.8 24.5 338.5 4.58 5.11E-05 

14 83 4 729 113 6 18.5 308.6 1.35 7.09E-06 

15 98 4 730 113 6 16.3 308.6 2.68 1.25E-05 

16 88 4 741 116 6.5 18.2 192.1 1.35 5.18E-06 

17 92 4 767 118 6.9 24.6 239.7 1.18 8.28E-05 

18 78 4 850 118 6.9 14.7 671.8 1.96 4.60E-06 

19 101 4 995 127 6.7 17.1 355.8 1.66 3.46E-05 

20 79 4 1039 127 6.7 5.4 525.8 2.02 1.20E-06 

21 84 4 1091 127 6.7 7 2016.1 3.27 2.42E-06 

22 109 4 1113 127 6.7 5.3 440.5 2.68 5.73E-06 

23 105 4 1116 127 6.7 22.3 376.1 1.35 9.03E-06 

24 81 4 1197 129 6.9 0.3 312 0.79 2.02E-06 

25 89 4 1510 137 7.6 10.5 440.2 1.25 7.54E-06 

26 91 4 1511 137 7.6 11.8 479.3 1.04 3.07E-06 

27 107 4 1530 137 7.6 7 468.1 1.57 1.79E-05 

28 87 4 1549 137 7.6 6.1 494.1 0.97 6.16E-05 

29 97 4 1550 137 7.6 12.9 543.8 1.76 7.10E-06 

30 108 4 1611 137 7.6 11.6 212.7 2.68 4.14E-05 

31 82 4 1752 145 5.6 13.2 370.8 1.94 3.34E-05 

32 95 4 2628 171 5.9 15.4 443 1.61 5.69E-06 

33 112 4 2650 171 5.9 23.4 680 1.37 1.18E-05 

34 90 4 2893 172 6.2 7.6 443 3.63 2.48E-05 

35 99 4 4098 173 6.2 19.7 427.7 1.32 1.04E-05 

36 85 4 4117 173 6.2 17.7 542.6 2.07 6.92E-06 

37 102 4 6886 175 6.3 24.7 433.6 2.15 3.99E-06 

38 96 4 8142 175 6.3 24.8 664.4 4.85 1.11E-06 

1 114 5 95 30 6.6 22.6 670.8 2.99 3.42E-07 

2 153 5 97 30 6.6 1.8 2016.1 7.25 2.68E-06 

3 118 5 126 31 6.2 4.1 288.8 1.10 1.11E-06 

4 151 5 162 49 5.9 13.3 338.6 3.52 7.71E-06 

5 138 5 171 50 6.5 15.2 659.6 1.12 4.87E-06 

6 116 5 175 50 6.5 7.3 192.1 3.58 4.66E-08 



191 

 

ID per 

Scenario 

Original 

Index 

Hazard 

Level RSN EqID 

Mag 

Mw 

Rrup 

[km] 

Vs30 

[m/s] 

Scale 

Factor Rate 

7 115 5 178 50 6.5 21.7 237.3 2.63 8.10E-06 

8 150 5 212 50 6.5 7.7 202.9 4.66 1.78E-05 

9 139 5 266 60 5.7 15.9 345.4 2.77 2.87E-08 

10 117 5 284 61 5.9 12.4 338.5 9.72 2.29E-05 

11 160 5 286 61 5.9 16 345.4 4.10 3.73E-06 

12 157 5 312 68 6.9 10.8 1000 9.25 6.70E-07 

13 140 5 457 90 6.2 3.3 488.8 5.55 5.82E-06 

14 137 5 544 101 6.1 4 345.4 5.61 3.08E-07 

15 121 5 553 102 5.8 24.5 338.5 7.32 4.80E-06 

16 136 5 554 102 5.8 6.4 271.4 5.78 4.04E-05 

17 127 5 729 113 6 18.5 308.6 2.16 4.42E-06 

18 154 5 740 116 6.5 17 208.7 4.53 5.16E-06 

19 133 5 741 116 6.5 18.2 192.1 2.16 2.42E-07 

20 135 5 767 118 6.9 24.6 239.7 1.89 7.88E-06 

21 158 5 802 118 6.9 20.3 597.1 1.42 2.38E-08 

22 164 5 827 118 6.9 22.7 333.9 3.62 2.81E-06 

23 123 5 949 118 6.9 17.5 376.1 2.00 5.09E-06 

24 146 5 983 125 7.3 23.6 353.6 1.02 3.75E-06 

25 148 5 995 127 6.7 17.1 355.8 2.65 3.10E-06 

26 119 5 1039 127 6.7 5.4 525.8 3.23 7.25E-07 

27 141 5 1048 127 6.7 24 316.5 1.33 3.11E-06 

28 120 5 1082 127 6.7 24.8 405.2 1.96 1.86E-06 

29 128 5 1091 127 6.7 7 2016.1 5.22 3.71E-06 

30 161 5 1106 127 6.7 13.4 557.4 0.85 5.76E-07 

31 159 5 1113 127 6.7 5.3 440.5 4.28 7.21E-06 

32 167 5 1114 127 6.7 15.6 257.2 0.72 6.48E-09 

33 163 5 1165 129 6.9 22.5 312 2.28 1.09E-07 

34 145 5 1182 129 6.9 7.1 609 1.29 5.82E-06 

35 122 5 1197 129 6.9 0.3 312 1.26 1.75E-07 

36 147 5 1491 137 7.6 24.1 442.2 2.18 1.03E-06 

37 156 5 1493 137 7.6 10.8 553.4 3.14 1.75E-06 

38 162 5 1503 137 7.6 3.8 487.3 0.64 5.52E-06 

39 152 5 1505 137 7.6 7.7 467.5 0.68 7.77E-06 

40 134 5 1508 137 7.6 5.3 460.7 1.19 6.86E-07 

41 132 5 1512 137 7.6 17.1 230.3 1.77 1.31E-06 

42 131 5 1521 137 7.6 0.6 433.6 2.13 4.82E-08 

43 113 5 1528 137 7.6 19 401.3 2.01 1.22E-07 

44 166 5 1536 137 7.6 5.2 472.8 1.02 1.08E-06 

45 130 5 1549 137 7.6 6.1 494.1 1.55 1.20E-05 

46 144 5 1550 137 7.6 12.9 543.8 2.80 7.40E-07 

47 155 5 1611 137 7.6 11.6 212.7 4.28 5.06E-06 

48 126 5 1752 145 5.6 13.2 370.8 3.10 2.18E-06 

49 165 5 2114 145 5.6 10.4 821.7 0.86 1.07E-05 
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Level RSN EqID 
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Mw 

Rrup 

[km] 
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[m/s] 
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50 125 5 2461 152 5.7 24.7 659.6 3.16 8.86E-07 

51 142 5 2628 171 5.9 15.4 443 2.58 1.77E-06 

52 124 5 2699 172 6.2 22.5 468.1 7.40 2.66E-06 

53 129 5 4117 173 6.2 17.7 542.6 3.30 7.92E-07 

54 149 5 6886 175 6.3 24.7 433.6 3.43 3.08E-06 

55 143 5 8142 175 6.3 24.8 664.4 7.75 3.74E-06 

1 168 6 95 30 6.6 22.6 670.8 3.92 2.44E-07 

2 172 6 126 31 6.2 4.1 288.8 1.45 2.98E-09 

3 204 6 139 42 5.5 17.7 659.6 3.80 6.04E-07 

4 216 6 161 49 5.9 4.6 659.6 3.30 1.94E-06 

5 170 6 175 50 6.5 7.3 192.1 4.69 9.46E-09 

6 169 6 178 50 6.5 21.7 237.3 3.45 3.93E-06 

7 207 6 212 50 6.5 7.7 202.9 6.10 3.83E-06 

8 193 6 266 60 5.7 15.9 345.4 3.63 8.08E-09 

9 171 6 284 61 5.9 12.4 338.5 12.73 1.61E-05 

10 217 6 286 61 5.9 16 345.4 5.37 2.79E-06 

11 196 6 292 64 6.3 7.3 274.5 2.10 2.12E-07 

12 200 6 313 69 6.2 19.6 1000 2.71 4.09E-08 

13 192 6 544 101 6.1 4 345.4 7.34 2.43E-06 

14 175 6 553 102 5.8 24.5 338.5 9.58 2.05E-08 

15 191 6 554 102 5.8 6.4 271.4 7.57 9.59E-06 

16 182 6 558 103 6.2 21.9 271.4 2.13 2.54E-08 

17 194 6 568 103 6.2 21.1 345.4 1.64 1.15E-06 

18 219 6 721 113 6 17.3 370.8 2.16 2.28E-09 

19 179 6 729 113 6 18.5 308.6 2.83 2.20E-08 

20 199 6 730 113 6 16.3 308.6 5.61 8.35E-07 

21 210 6 740 116 6.5 17 208.7 5.93 8.21E-06 

22 185 6 741 116 6.5 18.2 192.1 2.83 1.97E-07 

23 190 6 767 118 6.9 24.6 239.7 2.47 1.58E-06 

24 213 6 802 118 6.9 20.3 597.1 1.86 4.11E-09 

25 206 6 821 118 6.9 14.3 221.8 1.18 9.17E-07 

26 173 6 850 118 6.9 14.7 671.8 4.10 2.00E-08 

27 212 6 864 118 6.9 8.5 370.8 2.09 9.23E-07 

28 177 6 949 118 6.9 17.5 376.1 2.62 1.19E-08 

29 202 6 983 125 7.3 23.6 353.6 1.34 7.07E-08 

30 205 6 995 127 6.7 17.1 355.8 3.47 1.42E-06 

31 220 6 1013 127 6.7 22.2 446 1.56 6.10E-08 

32 184 6 1044 127 6.7 23.4 278 1.08 2.70E-08 

33 195 6 1048 127 6.7 24 316.5 1.74 4.05E-07 

34 174 6 1082 127 6.7 24.8 405.2 2.57 3.75E-06 

35 201 6 1086 127 6.7 12.1 280.9 0.96 4.11E-09 

36 215 6 1113 127 6.7 5.3 440.5 5.60 6.52E-07 

37 214 6 1119 127 6.7 23.6 996.4 0.91 2.72E-09 
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38 208 6 1141 129 6.9 11.3 256 2.14 6.17E-07 

39 209 6 1176 129 6.9 0.9 1043 1.59 2.68E-07 

40 176 6 1197 129 6.9 0.3 312 1.65 1.76E-07 

41 186 6 1510 137 7.6 10.5 440.2 2.62 9.81E-07 

42 189 6 1511 137 7.6 11.8 479.3 2.18 4.09E-09 

43 183 6 1521 137 7.6 0.6 433.6 2.78 1.58E-06 

44 188 6 1532 137 7.6 0.9 573 3.49 8.33E-07 

45 181 6 1549 137 7.6 6.1 494.1 2.03 2.73E-06 

46 211 6 1611 137 7.6 11.6 212.7 5.60 4.46E-07 

47 221 6 2114 145 5.6 10.4 821.7 1.13 1.26E-06 

48 197 6 2628 171 5.9 15.4 443 3.37 4.34E-07 

49 178 6 2699 172 6.2 22.5 468.1 9.69 2.87E-06 

50 187 6 2893 172 6.2 7.6 443 7.59 3.24E-06 

51 203 6 4098 173 6.2 19.7 427.7 2.75 1.48E-06 

52 180 6 4117 173 6.2 17.7 542.6 4.32 5.17E-06 

53 218 6 6969 175 6.3 11.5 443 2.95 6.41E-07 

54 198 6 8142 175 6.3 24.8 664.4 10.15 8.90E-07 

1 273 7 97 30 6.6 1.8 2016.1 12.25 8.29E-07 

2 225 7 126 31 6.2 4.1 288.8 1.86 1.82E-07 

3 267 7 130 41 6.8 5.5 659.6 8.52 1.71E-09 

4 261 7 139 42 5.5 17.7 659.6 4.91 1.52E-07 

5 287 7 161 49 5.9 4.6 659.6 4.26 3.47E-09 

6 269 7 162 49 5.9 13.3 338.6 5.95 1.27E-06 

7 227 7 165 50 6.5 2.7 223 4.19 3.51E-07 

8 223 7 175 50 6.5 7.3 192.1 6.05 8.25E-09 

9 222 7 178 50 6.5 21.7 237.3 4.45 8.70E-07 

10 237 7 182 50 6.5 22 249.9 2.05 1.77E-09 

11 268 7 212 50 6.5 7.7 202.9 7.87 5.73E-07 

12 224 7 284 61 5.9 12.4 338.5 16.42 6.46E-06 

13 288 7 286 61 5.9 16 345.4 6.93 4.35E-07 

14 255 7 292 64 6.3 7.3 274.5 2.71 5.33E-07 

15 283 7 312 68 6.9 10.8 1000 15.63 6.09E-07 

16 272 7 316 69 6.2 22.7 530 3.90 8.01E-09 

17 253 7 457 90 6.2 3.3 488.8 9.37 1.76E-09 

18 251 7 544 101 6.1 4 345.4 9.48 3.52E-09 

19 230 7 553 102 5.8 24.5 338.5 12.36 4.44E-06 

20 250 7 554 102 5.8 6.4 271.4 9.77 4.95E-06 

21 239 7 558 103 6.2 21.9 271.4 2.75 4.69E-07 

22 252 7 568 103 6.2 21.1 345.4 2.12 3.13E-08 

23 281 7 722 113 6 18.1 969.1 4.50 5.26E-09 

24 285 7 723 113 6 17.3 370.8 1.16 3.14E-06 

25 234 7 729 113 6 18.5 308.6 3.65 8.42E-07 

26 259 7 730 113 6 16.3 308.6 7.23 2.25E-08 
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27 278 7 740 116 6.5 17 208.7 7.65 7.81E-07 

28 292 7 766 117 6.8 24 274.5 1.83 3.49E-09 

29 248 7 767 118 6.9 24.6 239.7 3.19 1.26E-07 

30 284 7 802 118 6.9 20.3 597.1 2.40 4.13E-09 

31 289 7 803 118 6.9 10 729.7 2.15 5.24E-09 

32 265 7 821 118 6.9 14.3 221.8 1.52 6.89E-09 

33 226 7 850 118 6.9 14.7 671.8 5.29 7.06E-09 

34 280 7 864 118 6.9 8.5 370.8 2.69 3.34E-07 

35 260 7 959 125 7.3 19.7 271.4 2.17 3.34E-07 

36 274 7 986 126 6.5 8.3 338.5 4.29 4.15E-09 

37 249 7 989 127 6.7 18.4 545.7 4.65 5.96E-07 

38 264 7 995 127 6.7 17.1 355.8 4.48 1.08E-07 

39 293 7 1045 127 6.7 20.5 740.1 1.38 8.79E-09 

40 254 7 1048 127 6.7 24 316.5 2.24 5.12E-08 

41 235 7 1091 127 6.7 7 2016.1 8.83 2.36E-07 

42 286 7 1119 127 6.7 23.6 996.4 1.18 1.72E-09 

43 228 7 1120 128 5.9 12.8 345.4 0.72 9.23E-09 

44 295 7 1165 129 6.9 22.5 312 3.85 5.66E-07 

45 277 7 1176 129 6.9 0.9 1043 2.05 3.52E-09 

46 231 7 1197 129 6.9 0.3 312 2.13 1.47E-07 

47 245 7 1208 136 7.5 10.9 792 5.09 8.23E-09 

48 263 7 1491 137 7.6 24.1 442.2 3.68 8.09E-09 

49 300 7 1492 137 7.6 24.1 291.9 0.89 4.60E-09 

50 297 7 1494 137 7.6 2.7 680 3.47 4.06E-09 

51 294 7 1503 137 7.6 3.8 487.3 1.08 4.20E-09 

52 270 7 1505 137 7.6 7.7 467.5 1.15 5.22E-07 

53 242 7 1508 137 7.6 5.3 460.7 2.01 4.99E-07 

54 243 7 1510 137 7.6 10.5 440.2 3.38 3.62E-08 

55 247 7 1511 137 7.6 11.8 479.3 2.81 4.02E-09 

56 241 7 1512 137 7.6 17.1 230.3 2.98 4.58E-07 

57 240 7 1521 137 7.6 0.6 433.6 3.59 1.75E-07 

58 275 7 1530 137 7.6 7 468.1 4.24 7.59E-08 

59 246 7 1532 137 7.6 0.9 573 4.50 1.24E-08 

60 301 7 1536 137 7.6 5.2 472.8 1.72 1.73E-09 

61 238 7 1549 137 7.6 6.1 494.1 2.61 1.62E-07 

62 258 7 1550 137 7.6 12.9 543.8 4.74 1.65E-07 

63 282 7 1551 137 7.6 17.2 575.5 2.87 1.79E-06 

64 229 7 1605 137 7.6 13.1 424.2 2.00 1.69E-07 

65 279 7 1611 137 7.6 11.6 212.7 7.23 2.56E-06 

66 233 7 1752 145 5.6 13.2 370.8 5.24 8.58E-09 

67 276 7 1787 145 5.6 22 684.9 2.35 3.52E-09 

68 299 7 2495 153 5.9 24.1 274.5 1.91 6.31E-07 

69 256 7 2628 171 5.9 15.4 443 4.35 8.29E-08 
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70 298 7 2650 171 5.9 23.4 680 3.69 3.45E-09 

71 262 7 2654 172 6.2 19.6 427.7 6.95 4.83E-09 

72 296 7 2661 172 6.2 16.5 624.9 4.30 1.76E-09 

73 232 7 2699 172 6.2 22.5 468.1 12.50 6.38E-08 

74 291 7 2734 172 6.2 16.6 549.4 2.64 1.78E-09 

75 244 7 2893 172 6.2 7.6 443 9.79 2.52E-06 

76 271 7 3548 172 6.2 12.8 664.4 1.56 6.94E-09 

77 236 7 4117 173 6.2 17.7 542.6 5.57 2.84E-07 

78 266 7 6886 175 6.3 24.7 433.6 5.80 4.56E-07 

79 290 7 6969 175 6.3 11.5 443 3.81 3.39E-07 

80 257 7 8142 175 6.3 24.8 664.4 13.09 1.47E-07 

1 304 8 126 31 6.2 4.1 288.8 2.90 9.91E-08 

2 335 8 139 42 5.5 17.7 659.6 7.65 1.94E-07 

3 352 8 161 49 5.9 4.6 659.6 6.64 2.99E-07 

4 305 8 165 50 6.5 2.7 223 6.52 1.23E-07 

5 323 8 171 50 6.5 15.2 659.6 2.95 7.92E-08 

6 302 8 178 50 6.5 21.7 237.3 6.93 1.42E-07 

7 324 8 266 60 5.7 15.9 345.4 7.30 3.47E-09 

8 303 8 284 61 5.9 12.4 338.5 25.58 7.99E-08 

9 341 8 285 61 5.9 12.4 338.5 5.28 7.94E-10 

10 327 8 292 64 6.3 7.3 274.5 4.22 3.21E-08 

11 339 8 316 69 6.2 22.7 530 6.07 3.49E-09 

12 326 8 457 90 6.2 3.3 488.8 14.59 1.22E-07 

13 322 8 554 102 5.8 6.4 271.4 15.21 1.16E-06 

14 325 8 568 103 6.2 21.1 345.4 3.30 2.27E-09 

15 333 8 569 103 6.2 21.1 345.4 3.44 1.38E-07 

16 346 8 722 113 6 18.1 969.1 7.01 7.45E-07 

17 348 8 723 113 6 17.3 370.8 1.81 6.75E-10 

18 311 8 729 113 6 18.5 308.6 5.69 2.67E-07 

19 330 8 730 113 6 16.3 308.6 11.27 5.83E-10 

20 343 8 740 116 6.5 17 208.7 11.91 4.65E-07 

21 321 8 767 118 6.9 24.6 239.7 4.96 1.26E-07 

22 320 8 779 118 6.9 3.8 462.2 1.78 2.52E-09 

23 337 8 821 118 6.9 14.3 221.8 2.37 1.11E-08 

24 355 8 827 118 6.9 22.7 333.9 9.52 5.84E-10 

25 345 8 864 118 6.9 8.5 370.8 4.19 6.66E-10 

26 308 8 949 118 6.9 17.5 376.1 5.26 1.55E-08 

27 316 8 1044 127 6.7 23.4 278 2.16 1.93E-09 

28 356 8 1045 127 6.7 20.5 740.1 2.15 4.18E-10 

29 332 8 1086 127 6.7 12.1 280.9 1.93 2.03E-07 

30 312 8 1091 127 6.7 7 2016.1 13.75 4.80E-08 

31 351 8 1113 127 6.7 5.3 440.5 11.25 9.53E-08 

32 340 8 1116 127 6.7 22.3 376.1 5.68 3.49E-09 
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33 349 8 1119 127 6.7 23.6 996.4 1.84 4.67E-08 

34 306 8 1120 128 5.9 12.8 345.4 1.12 1.25E-07 

35 342 8 1141 129 6.9 11.3 256 4.31 1.44E-08 

36 331 8 1182 129 6.9 7.1 609 3.39 4.83E-08 

37 313 8 1198 129 6.9 1.5 256 6.50 2.65E-08 

38 350 8 1227 136 7.5 4.8 297 4.73 2.12E-09 

39 317 8 1231 137 7.6 25 235.1 1.65 9.12E-08 

40 336 8 1491 137 7.6 24.1 442.2 5.73 6.86E-10 

41 360 8 1492 137 7.6 24.1 291.9 1.39 1.56E-07 

42 347 8 1493 137 7.6 10.8 553.4 8.25 4.09E-08 

43 357 8 1494 137 7.6 2.7 680 5.40 4.64E-09 

44 307 8 1495 137 7.6 22.7 253.7 4.65 1.99E-10 

45 354 8 1503 137 7.6 3.8 487.3 1.69 1.87E-08 

46 318 8 1510 137 7.6 10.5 440.2 5.27 1.81E-07 

47 315 8 1512 137 7.6 17.1 230.3 4.64 8.20E-08 

48 314 8 1521 137 7.6 0.6 433.6 5.59 6.42E-08 

49 361 8 1536 137 7.6 5.2 472.8 2.67 2.33E-10 

50 353 8 1541 137 7.6 18.2 680 4.19 1.66E-09 

51 329 8 1550 137 7.6 12.9 543.8 7.38 6.54E-09 

52 344 8 1611 137 7.6 11.6 212.7 11.26 4.10E-07 

53 358 8 2114 145 5.6 10.4 821.7 2.27 1.38E-08 

54 310 8 2461 152 5.7 24.7 659.6 8.32 2.50E-07 

55 359 8 2650 171 5.9 23.4 680 5.74 4.76E-07 

56 309 8 2699 172 6.2 22.5 468.1 19.47 1.10E-08 

57 319 8 2893 172 6.2 7.6 443 15.25 2.08E-08 

58 338 8 3548 172 6.2 12.8 664.4 2.43 2.69E-07 

59 334 8 4098 173 6.2 19.7 427.7 5.53 1.99E-10 

60 328 8 8142 175 6.3 24.8 664.4 20.40 7.52E-09 

1 362 9 175 50 6.5 7.3 192.1 13.79 1.56E-08 

2 384 9 212 50 6.5 7.7 202.9 17.94 5.32E-11 

3 386 9 285 61 5.9 12.4 338.5 7.73 4.84E-07 

4 393 9 286 61 5.9 16 345.4 15.79 4.22E-09 

5 377 9 292 64 6.3 7.3 274.5 6.17 4.38E-08 

6 399 9 297 68 6.9 8.2 1000 22.39 5.26E-11 

7 378 9 313 69 6.2 19.6 1000 7.98 2.61E-08 

8 385 9 316 69 6.2 22.7 530 8.88 5.06E-08 

9 375 9 544 101 6.1 4 345.4 21.59 9.98E-11 

10 363 9 553 102 5.8 24.5 338.5 28.17 4.88E-09 

11 374 9 554 102 5.8 6.4 271.4 22.25 1.26E-07 

12 376 9 568 103 6.2 21.1 345.4 4.83 5.20E-11 

13 395 9 721 113 6 17.3 370.8 6.36 1.69E-08 

14 389 9 722 113 6 18.1 969.1 10.25 1.01E-07 

15 390 9 724 113 6 17.3 370.8 11.99 1.06E-10 
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16 391 9 778 118 6.9 15.2 288.6 7.38 2.15E-10 

17 383 9 821 118 6.9 14.3 221.8 3.47 2.18E-09 

18 388 9 864 118 6.9 8.5 370.8 6.13 1.74E-09 

19 380 9 959 125 7.3 19.7 271.4 4.94 5.38E-11 

20 381 9 983 125 7.3 23.6 353.6 3.94 5.12E-11 

21 373 9 989 127 6.7 18.4 545.7 10.60 5.34E-11 

22 379 9 1086 127 6.7 12.1 280.9 2.83 5.24E-11 

23 392 9 1113 127 6.7 5.3 440.5 16.45 7.11E-08 

24 397 9 1165 129 6.9 22.5 312 8.76 8.36E-08 

25 372 9 1208 136 7.5 10.9 792 11.60 1.04E-10 

26 369 9 1231 137 7.6 25 235.1 2.42 5.15E-11 

27 382 9 1491 137 7.6 24.1 442.2 8.38 2.32E-08 

28 402 9 1492 137 7.6 24.1 291.9 2.03 1.82E-10 

29 396 9 1503 137 7.6 3.8 487.3 2.47 2.86E-09 

30 401 9 1504 137 7.6 9.5 470.7 3.34 5.20E-09 

31 368 9 1508 137 7.6 5.3 460.7 4.58 1.85E-08 

32 370 9 1510 137 7.6 10.5 440.2 7.71 1.96E-08 

33 367 9 1517 137 7.6 9.8 476.1 1.88 3.18E-10 

34 365 9 1752 145 5.6 13.2 370.8 11.94 5.29E-11 

35 387 9 1787 145 5.6 22 684.9 5.36 1.10E-10 

36 400 9 2650 171 5.9 23.4 680 8.40 1.24E-10 

37 398 9 2661 172 6.2 16.5 624.9 9.80 3.21E-08 

38 364 9 2699 172 6.2 22.5 468.1 28.48 1.02E-08 

39 394 9 2734 172 6.2 16.6 549.4 6.02 4.61E-10 

40 371 9 2893 172 6.2 7.6 443 22.30 5.26E-11 

41 366 9 4117 173 6.2 17.7 542.6 12.70 2.16E-08 
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Figure  D.1.1 – Rate versus EDP level, DuM model: (a) rates of occurrence for maximum roof drift ratio; (b) rates 

of occurrence for maximum compressive strain in the stem SBE; (c) rates of occurrence for maximum tensile strain 

in the stem SBE. 
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