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Abstract

Advances in the Use of Microdata for Modeling Urban Systems: Application to Causal
Analysis, Regional Forecasting, and Population Synthesis

by

Max A. Gardner

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Paul Waddell, Co-chair

Professor Joan Walker, Co-chair

The research contained herein is comprised of three studies, each of which utilizes a unique
set of population-wide microdata to address a few of the many challenges that arise when
statistical models are used to study the complex dynamics that govern the function and
evolution of urban systems. These challenges range from the technical to the political, but
they are all highly relevant to the management of the modern metropolis in which “data-
driven” decision-making is increasingly the norm. Taken together, these studies draw upon
relevant literature from the fields of urban geography, behavioral economics, and computa-
tional statistics, among others, to synthesize a body of work that questions what can and
cannot be achieved through urban systems modeling while simultaneously making several
contributions to its study and its practice.

The first study demonstrates how thoughtful model design can be harnessed to make powerful
inferences about the policy origins of an economic phenomenon which places many of the
most vulnerable inhabitants of our cities at greater risk of displacement. Specifically, this
study identifies the first causal estimate of the effect of rent control status on eviction filing
rates in the scientific literature. A 10-year dataset of eviction notices (n=21,806) is combined
with a complete history of property tax records (n=1,978,687) in a regression discontinuity
design to estimate a local average treatment effect of 0.013 evictions per residential unit per
year conditioned on positive rent control status. Compared to the baseline rate of eviction
notices over this same period, this translates to a 240% increase in the likelihood of eviction
for tenants living in controlled units. I argue that this finding is best understood not as
an inherent inefficiency of rent control policy in general, but rather as the result of specific
state-wide laws, passed in the years following the adoption of rent control in San Francisco,
which granted rent controlled property owners an economic incentive to evict and the legal
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means to do so. The chapter concludes by making specific policy recommendations that city
officials can enact today in order to protect its most vulnerable residents.

In the chapter that follows I address the issue of simulation error due to sampling of al-
ternatives in discrete choice models. The issue of is an important one, not only because it
represents a longstanding criticism of the statistical validity of many state-of-the-art fore-
casting models, but also because it points to a significant disconnect in the development of
methods for estimation and for simulation. This disconnect reflects a larger rift that exists
between theory and practice in urban systems modeling. The purpose of this chapter is to
help bridge that gap by defining a novel measure of forecast error and using it to quantify
the extent of the problem as it manifests in a disaggregate model of discretionary location
choice, typical of those that are commonly found in use today. The definition of this metric
is itself a valuable contribution to a discipline which is often maligned for its inability to
assess the accuracy of its methods. In addition, I use this metric to identify two key findings.
First, I show that the proportion of aggregate demand that is misallocated due to sampling
of alternatives is actually reduced as the size of the universe of alternatives increases (i.e.
becomes more disaggregate). Second, I find that in most scenarios, simple random sampling
actually outperforms an approach based on importance sampling. Both results contradict
the traditional wisdom about best practices in microscopic models of travel and land use
demand.

The final study included here presents a method designed to make it easier for researchers and
practitioners alike to acquire the kinds of data required to perform microscopic urban mod-
eling. Unlike households and persons, no public repository of establishment-level microdata
currently exists for businesses in the United States. Work in this domain has therefore been
primarily limited to those with the resources to purchase expensive commercial datasets. As
a result, the development of disaggregate models of business and firm dynamics has lagged
behind their person- and household-based counterparts, hindering the development of fully
integrated transportation and land use microsimulation systems as a whole. Drawing on
recent advances in the application of Bayesian networks to population synthesis and data
privacy preservation, I estimate a series of probabilistic models on a dataset of proprietary
business establishment listings and use them to generate synthetic populations which match
the joint distributions of key characteristics from the original data but contain none of the
original records themselves. In a second analysis I show how aggregate Census data can be
used as control totals for sampling from the fitted models to create synthetic populations
that match the aggregate Census counts but have a much richer set of features than what is
made publicly available by the Census. In theory, these data, along with the fitted models
themselves, can be shared freely among collaborators without fear of copyright violation or
disclosure of private data. These results demonstrate the great potential of Bayesian net-
works, and probabilistic models in general, to democratize access to microdata and facilitate
greater scientific collaboration in the field of disaggregate urban systems modeling.

I conclude with a brief summary of these findings and discuss their relation to current issues
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in urban systems modeling. I identify several opportunities to improve and build on the
work presented here, while also addressing the inherent limitations of model-based research
to meet the most pressing needs of our urban communities at this particular moment in
history.
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Chapter 1

Introduction

1.1 Background

Long before the purveyors of the “smart city” arrived on the scene offering algorithmic so-
lutions to all of our civic woes, researchers, planners, and engineers have relied on statistical
models to improve our understanding of the dynamics which govern the evolution of urban
systems. For example, since the 1960s many urban areas in the United States have been
required to produce long-range forecasts of travel and land use demand in order to receive
state and federal funds for the construction and maintenance of transportation infrastruc-
ture. These models have not all been useful, and many of them have been used to justify
wrongheaded policies and decisions whose effects are still negatively impacting the quality
of life for communities today, particularly those that have historically been marginalized in
other ways as well. While the purpose of the research presented here is neither to defend
nor denounce this legacy, it is important to recognize the historical context from which it
emerges.

1.2 The Canonical Urban Modeling Workflow

Urban modelers, like many practitioners in disciplines that traffic in statistical models, often
conceive of their work as occurring in two distinct phases: estimation and simulation. During
the estimation phase, a sample of observations are used to fit or “train” models that attempt
to quantify the relationship between a dependent variable (i.e. an “outcome”) and one or
more exogenous factors that are assumed to influence that outcome in some way. These
models are often parametric in nature, and the specification and design of these parameters
allow the modeler to make different kinds of analytic inferences about the relative influence of
each exogenous variable on the outcome of interest. The usefulness of a model, however, does
not end here. A model, once estimated, can also be used to predict outcomes for different sets
of input data which may or may not correspond to actual observations. This second phase
goes by many names including simulation, prediction, forecasting, or projection. Although
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there are semantic differences which distinguish these concepts from one another, in practice
this phase involves some kind of scenario analysis which is performed to help decision-makers
evaluate policy alternatives or allocate resources according to anticipated needs.

In recent years, disaggregate urban modeling techniques have begun to supplant more
traditional approaches in which analysis is conducted at the level of aggregate zonal geogra-
phies. Disaggregate models instead take individual “agents” or “choosers” (e.g. persons,
households, or firms) as their fundamental units of analysis. This means that in order to
simulate system-wide conditions, population-scale datasets of disaggregate entities are re-
quired. As a result, population synthesis has emerged as a third and often requisite step in
the modeling workflow that occurs after a model is estimated but before it can be used to
perform simulation.

Estimation
Survey
Data

Model(s)

Population
Synthesis

Synthetic
Data

time = t

Simulation

Synthetic
Data

time = t+ 1

Figure 1.1: The canonical workflow for disaggregate urban modeling.

Together these three phases constitute what I call the “canonical workflow for disaggre-
gate urban modeling” (Fig. 1.1). Incidentally, this three-phase structure also loosely defines
the structure of the research presented below. In each of the following chapters I utilize a
unique set of population-wide microdata to address an issue pertaining to a different phase
of the canonical workflow: first estimation, then simulation, and finally population synthesis.

1.3 Motivation and Contributions

The first of the three studies collected here stands out for a number of reasons. First, it is
the only one that relies on historic, observational data to make inferences about the present.
It is also, therefore, the only study whose chief contribution is policy-related rather than
methodological. However, the most unique aspect of this work is that it is the only study
which was inspired by real events in the life of the author. In 2011, I was served with an
eviction notice at the rent-controlled apartment in San Francisco that I shared with two
friends. Although we ultimately succeeded in fighting the eviction, it was clear that the
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process could have played out much differently had we not been a trio of white young men
equipped with the spare time and educational backgrounds to study the San Francisco Rent
Ordinance and convincingly argue in a written petition to the Rent Board that our eviction
notice had been filed in bad faith. Around the same time, I became aware of efforts by
local tenant advocacy groups to document the widespread use of eviction by landlords as
a means of bypassing rent control1 [1]. This important work provided me with valuable
context about what I had experienced firsthand, and led directly to the research I present in
the Chapter 2. Although the phenomenon of rent control-induced eviction is well understood
by those who have lived with rent control in California, evidence of its existence has been
primarily anecdotal, making it very difficult to quantify the extent of the problem. However,
by drawing upon my own experience, along with the work of local organizers and a relatively
recent literature on the design of regression discontinuity models for causal inference, I was
able to estimate a model that, provides strong evidence of a significant causal effect of rent
control on eviction rates. The magnitude of this effect suggests that, all else being equal,
rent controlled tenants in San Francisco are more than twice as likely to be served with
an eviction notice than their non-rent controlled counterparts. By recentering tenants in a
scientific debate on rent control, Chapter 2 also calls attention to what urban models can
achieve when they are taken out of the hands of neutral technicians and employed in the
fight for more just and equitable cities.

In the second study I turn my attention to one of the challenges that arise in the sim-
ulation phase of the workflow, when a model having already been estimated, is used to
make inferences about the future rather than the past. The issue of simulation error due
to sampling of alternatives in discrete choice models is an important one, not only because
it represents a longstanding criticism of the statistical validity of many state-of-the-art mi-
crosimulation models, but also because it points to a significant disconnect that exists in
urban systems modeling between best practices for estimation and simulation. Although I
have described these two phases as complementary components of a holistic process, their
representation in the scientific literature is extremely lopsided in favor of the former. No
doubt this imbalance reflects the fact that simulation is sometimes dismissed as the domain
of practitioners and technicians rather than scholars. But it also speaks to the difficulty of
assessing the accuracy of predictions for scenarios which have not and may never come to
pass [2]. Both of these factors have contributed to the increasing suspicion with which the
practice of regional demand forecasting is viewed [3]. And yet, the demands for cost-benefit
analyses and impact assessments in transportation and land use planning remains. This
study aims to help bridge the gap between theory and practice in urban modeling by defin-
ing a novel measure of forecast error and using it to quantify the extent of the problem as it
manifests in models of disaggregate location choice. Two key findings are identified which
contradict the prevailing wisdom about best practices in microsimulation for travel and land
use demand. First, I show that the proportion of aggregate demand that is misallocated
due to sampling of alternatives is actually reduced as the size of the universe of alternatives

1See https://www.tenantstogether.org/ellisreport, http://www.antievictionmappingproject.net/ellis.html
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increases (i.e. becomes more disaggregate). Secondly, I find that in most scenarios, simple
random sampling actually outperforms an approach based on importance sampling. This
latter result, in particular, has important implications for practitioners of urban microsimu-
lation who on more than one occasion have been accused of mistaking complexity for validity
(e.g. [4, 5]).

As important as it is for practitioners of urban modeling to continuously interrogate the
accuracy of their own methods, it is just as important that we question who in society has
access to this technology and the resources to wield it. After all, even the most accurate
model is only as useful as the questions that are asked of it, and the character of these
questions is in turn heavily informed by whoever is doing the asking. In the context of
disaggregate urban modeling, access to reliable sources of microdata is often the limiting
factor. The United States Census Bureau, for example, maintains many databases of disag-
gregate records collected from various censuses and surveys, but access is typically restricted
in order to prevent the misuse of potentially sensitive or personally identifiable information.
While such privacy concerns are important, in the absence of legislation that prevents the
collection and dissemination of disaggregate data by other means it has merely shifted de-
mand to the commercial sector. As a result, researchers’ ability to participate in this field
of study is increasingly determined by the size of their budgets. Thus, Chapter 4 addresses
the competing needs of data democratization and data privacy in the realm of urban mod-
eling. Drawing on recent advances in the use of Bayesian networks for privacy-preserving
data publishing I demonstrate the potential of probabilistic models trained on proprietary
business establishment microdata to generate synthetic populations that can be distributed
freely among collaborators and beyond. As the state-of-the-art in urban systems modeling
continues to advance in the direction of data-hungry microscopic models, it is critical to the
continued integrity of the discipline that scientific discovery in this domain is not restricted
to those who can afford the price of entry.

Taken together, the research contained in the following three chapters synthesizes a body
of work which at once questions what can and cannot be achieved through urban systems
modeling while also making important contributions to the discipline. In doing so, it can also
be considered an attempt to embody an approach to practice for which it also advocates:
one that is scientifically rigorous, comprehensive in scope, and grounded in humility.
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Chapter 2

The Effect of Rent Control Status on
Eviction Filing Rates: Causal
Evidence from San Francisco

2.1 Introduction

In this chapter I present causal evidence of a significant, positive effect of rent control on
evictions rates in San Francisco. In order to identify a causal mechanism, two panel datasets
of 1) eviction notice filings and 2) tax assessor records are combined in a regression discon-
tinuity (RD) design to estimate the local average treatment effect (LATE) of building-level
rent control status on annual eviction filing rates per residential unit. Four models are spec-
ified with successively greater numbers of covariates, and each model identifies a statistically
significant LATE between 0.009 and 0.0141 eviction notices per unit per year. These results
correspond to a rate of eviction filings for rent controlled tenants that is approximately 2-3x
that of their non-rent-controlled counterparts.

At first glance this finding seems to contradict the academic consensus about the benefit
of rent control on tenant stability, as well as popular intuition about the outcomes that
rent control policy is designed [6]. However, the causal relationship identified in this study
makes perfect sense when considered in the context of certain provisions of San Francisco’s
Rent Ordinance that not only create an economic incentive for property owners to evict
their rent controlled tenants but also provide them with specific legal processes for doing
so. If in fact these provisions of San Francisco’s Rent Ordinance, described in greater detail
below, are to blame for the higher eviction rates observed at rent controlled properties rather
than the concept of Rent Control in general, then the pressing problem identified herein can
likely be remedied with policy-based solutions. I conclude this chapter by discussing a few
such potential solutions and identifying opportunities for future work that can address the
limitations inherent to this study.
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Policy Background

In 1979 the passage of the Residential Rent Stabilization and Arbitration Ordinance, also
known as the Rent Ordinance1, did two important things: 1) established rent control for
all existing multi-unit rental housing2; and 2) fully enumerated the “just causes” that are
grounds for lawful eviction. Although the term “rent control” is often used colloquially to
describe the San Francisco Rent Ordinance in its entirety, it is critical to this discussion
that we distinguish between the Rent Control, whose primary aim is to keep rental housing
affordable for incumbent tenants, and the tenant protections, which are designed to protect
tenants from unnecessary hardship due to landlords acting in bad faith. As such, a failure
of rent control policy to prevent evictions should not be mistaken for evidence of a failure of
rent control itself.

The rent control provisions of the Rent Ordinance are typical of second-generation con-
trols, which are often (and more accurately) described as rent stabilization rather than rent
control3 because they include explicit mechanisms by which rents can be increased over
time.Under second-generation controls, annual allowable rent increases are often pegged to
a macroeconomic indicator, which in the case of San Francisco is the Consumer Price In-
dex (CPI). Because the Ordinance stipulates that these provisions only apply to buildings
in existence at the time that the legislation was passed, it is possible to use the date of
construction (built-year) as a proxy for building-level rent control status. For the purposes
of this study, the most consequential change to the original San Francisco rent control law
occurred in 1995 when the State of California passed the Costa Hawkins Rental Housing
Act, which among other things imposed the policy of vacancy decontrol on all existing and
future rent control regimes in the state.

Vacancy decontrol is a common feature of second-generation rent regulations that allows
owners of controlled properties to return their rents to market rate at the start of each new
tenancy. Since the inception of vacancy decontrol in California, renters there have worried
about the incentive it creates for rent controlled landlords to keep tenant durations short
and tenant turnover high [7]. The issue has not gone unnoticed by academics, either. present
theoretical proof of a preference for shorter-duration tenants among landlords under vacancy
decontrol, while Asquith (2019) provides quantitative evidence that this preference could be
impacting displacement rates for rent controlled tenants. Thus far, however, no study has
been unable to disentangle this effect from other regional dynamics.

In addition to rules governing rent control, the Rent Ordinance also specifies certain
tenant protection measures. In particular, it fully enumerates the 16 circumstances under
which tenants can be lawfully evicted, known as “just causes”. The 16 just cause provisions
of the Ordinance are reproduced here in Appendix A and annotated with five columns
that provide additional information deemed relevant to this study. The first three of these

1San Francisco Administrative Code Chapter 37
2Owner-occupied buildings of four units or less were excluded until 1995. As this change predates any

of the eviction data used in this study, this fact is largely inconsequential to the results of the study.
3I will use both terms – “stabilization” and “control” – in reference to the San Francisco Rent Ordinance.
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columns describe the eviction type (“no-fault” vs. “breach of lease”), the eviction level
(“unit” vs. “whole building”), and whether or not a relocation payment is required. The
last two columns relate each eviction type to rent control, distinguishing between evictions
which result in a simple reset (vacancy decontrol) from those that result in full (permanent)
decontrol, and stipulating the duration of time before those changes are allowed to go into
effect.

One type of just cause eviction deserves special attention in the context of this study:
the Ellis Act eviction. The Ellis Act is a California state law which guarantees landlords the
right to “go out of business” by removing all units in a building from the rental market at
once. Ellis Act evictions are notable for three reasons: 1) the Ellis Act was not passed until
1985 and thus they had to be amended to the original list of just cause evictions; 2) they
are the only type of just cause eviction (apart from the exceedingly rare “Good Samaritan”
eviction) that is specific to the policy context of San Francisco and the state of California;
and 3) a body of evidence exists which indicates that Ellis Act evictions in particular have
been exploited by landlords seeking to circumvent rent control restrictions. In particular,
[1] report that 60% of Ellis Act evictions in San Francisco occur within the first year of
ownership, and 78% occur within the first five years. This is compelling evidence that the
Ellis Act is primarily being used for means other than long-term landlords exiting the rental
market.

Although incomplete data made it difficult to incorporate eviction type segmentation
into the analysis presented in this study, the Ellis Act, when considered in conjunction
with the vacancy decontrol provisions of Costa-Hawkins Act, provides important context for
understanding the ways in which specific California state laws, imposed after the adoption of
rent control by the City of San Francisco, paved the way for the causal relationship identified
herein.

Literature Review

Few policies in the realm of housing and urban economics occupy as prominent a position
in the popular consciousness as rent control. Yet until very recently, the number of new,
empirical findings on its effectiveness as a regulatory tool have been few and far between4.
Theoretical models proving rent control’s many inefficiencies formed the basis of a decades-
long consensus among economists who treated the science as not merely settled but self-
evident [18–20]. At the same time, and perhaps paradoxically, a lack of detailed data on
tenant and landlord outcomes made it very difficult to disentangle any of the empirical
effects of rent control, good or bad, from the other market forces operating in complex urban
systems.

The publication of [21] seems to mark a turning point in the academic literature on
rent control. In that paper Arnott argued that modern, “second-generation” rent controls
were so nuanced and malleable – compared to the hard-line rent freezes imposed by their

4Notable exceptions include [8–17]
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first-generation predecessors – that they defied a priori characterization as either good or
bad policy. Arnott instead advocated for the use of empirical evidence to evaluate the
effects of rent control on a case-by-case basis. Recently, as concerns over gentrification and
displacement in America’s “superstar cities” [22] have sparked renewed interest in the topic
of rent control, a new body of empirical research has emerged which takes Arnott’s call as
a common point of reference. Instead of asking whether or not rent control “works”, this
new literature is focused on more targeted assessments like how rent control affects commute
times in New Jersey [16], or how the supply of controlled rental housing changes in response
to local demand shocks in San Francisco [23]. This study asks a similarly targeted question
about one important aspect of rent regulation: does rent control contribute to higher rates of
eviction in San Francisco? The answer to this question, and the findings presented here, have
potentially far-reaching ramifications for how we think about a policy designed specifically
to increase housing stability for incumbent tenants.

The present study makes two significant contributions to the literature. First, despite the
fact that tenants are the presumptive beneficiaries of rent control, most quantitative studies
of the policy have tended to focus on diffuse, market-wide effects like housing quality, supply,
and affordability [17, 23–25]. Instead, I attempt to re-centre tenants and tenant outcomes
in the debate over rent control by providing the first causal estimate in the peer-reviewed
literature of its effect on eviction rates. Secondly, this study presents a novel approach for
studying the direct effects of rent control by employing a popular causal inference method –
the regression discontinuity (RD) – in an entirely new setting. Although the results of this
particular study are specific to eviction rates in San Francisco, the same methodology can
be used to investigate other effects of rent control in the many other jurisdictions where rent
control eligibility is determined by similar criteria.

The work presented here builds on two other recent studies of rent control in San Fran-
cisco, both of which employ quasi-experimental designs. The first is [26], which stands out
as one the first observational studies to focus explicitly on measuring outcomes for existing
tenants under rent control5. Despite the authors’ conclusion that rent control has likely
worsened the effects of gentrification by reducing the supply of affordable housing available
to future residents, they do find that incumbent tenants “benefit on net” as a result of re-
duced rates of displacement and below-market rents. This latter finding, however, does not
directly test for differential rates of forced displacement among controlled and uncontrolled
tenants, nor does it account for the potentially greater costs of a forced relocation relative
to one that is voluntary or economically induced. In contrast, in thus study I approach
rent control solely as a housing stability measure, and in doing so offers strong evidence
that any attempt to quantify the benefit of rent control must also take into account the
effect of rent control-induced eviction on incumbent tenants. Another significant difference
is that this study covers the entire stock of rent controlled properties in the city of San Fran-
cisco, whereas the identification strategy employed by [26]restricts their analysis to small

5[13], [13], [16], and [27] could be considered exceptions, but these rely on census data rather than
disaggregate tenant observations.
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multifamily properties (≤ 4 units). As such, the findings presented here are more general.
The paper most closely resembling this one methodologically is [23]. Asquith leverages

very similar datasets of eviction notices and tax assessor records, along with a selection-on-
unobservables design to show that landlords decrease the supply of rent-controlled housing
via evictions in response to local demand shocks. Rather than observing these shocks,
however, the author relies on a secondary model to estimate the hedonic price effects of
newly sited transit amenities targeted towards high-income knowledge workers. This two-
stage design makes the results of the primary instrumental variables (IV) model difficult
to interpret and limits their relevance to the context of local demand shocks. The results
of the IV model also depend heavily on the validity of the estimated shocks, which the
author concedes are implausibly large. The biggest factor distinguishing this study from
Asquith’s, however, is that the actual treatment variable of interest in Asquith’s study is
the demand shock, from which it impossible to disentangle the direct effect of rent control.
This design works well for the purposes of that study, which is primarily concerned with
evictions as a channel through which landlords can manipulate the supply of controlled
rental housing. In this sense, the findings of Asquith are not that dissimilar from previous
research demonstrating a depressive effect of rent control on housing supply [17, 24, 26]. In
contrast, this study treats eviction as a cost that is primarily borne by incumbent tenants
rather than a housing market. By centring tenant outcomes instead of market effects, my
findings are more relevant to an evaluation of rent control as tool for promoting housing
stability.

2.2 Data

The main data source is a database of eviction notices filed with the San Francisco Rent
Board between 2007 and 2016. These data (n=21,806) represent the full universe of eviction
filings by landlords against tenants in San Francisco during that ten-year period. The detailed
data used for this study are made available by written request from the San Francisco Rent
Board, but a geographically anonymized version of this dataset can be downloaded directly
from the city’s open data portal6. Most of the eviction records include the eviction type
(e.g. failure to pay rent, owner move-in, etc.) but many are not specified (see Table 2.2
for a summary of the eviction data). Although eviction notices do not necessarily result in
an eviction, the notice itself and the threat of eviction can be enough to cause tenants to
pre-emptively vacate their residences [28, 29]In this way, eviction notice filing rates might
actually be a better measure of forced displacement pressure than unlawful detainers or writs
of restitution7.

The dependent variable of interest in this study is eviction notices per residential unit per
year across the entire population of San Francisco properties with two or more residential

6In this case, the eviction records were graciously provided to the author, unaltered, courtesy of the
Anti-Eviction Mapping Project ([1]).

7In this chapter I use both “eviction” and “eviction notice” in reference to the Rent Board data.



CHAPTER 2. EFFECT OF RENT CONTROL STATUS ON EVICTION RATES 10

units8. The full dataset was assembled by matching eviction notice records against annual
parcel-level tax assessor records published by the City and County of San Francisco over
the same time period as the eviction notices. After cleaning and standardizing the assessor
data, 1,978,687 parcel records are aggregated by year and street address to arrive at a total
population of 1,553,397 unique year/address combinations. Unit/apartment numbers are
dropped (e.g. “123 Main St #4” becomes “123 Main St”), and the total units are aggregated
along with the eviction counts, square footage, and assessed value. After dropping four
eviction records due to incomplete or malformed data, I am able to find an exact match in
the assessor records for 92.4% of the eviction notices (n=20,136).

Next, the sample is further restricted to include only those addresses that can be reason-
ably identified as “rent control eligible” according to their assessor designated building class
codes. Table 2.1 describes these class codes and their inferred rent control eligibility, but in
general I deem any property with 2+ residential units to be eligible.

Table 2.1: San Francisco Assessor-Recorder Class Codes & Inferred Rent Control Eligibility.
Adapted from City and County of San Francisco Assessor-Recorder Secured Property Tax
Roll Data.

Use
Code

Use
Definition

Class
Code

Class
Definition

Rent Control
Eligibile

COMH Commercial Hotel H Hotel N
COMH Commercial Hotel H1 Hotel N
COMH Commercial Hotel H2 Hotels - Other N
COMH Commercial Hotel HC Hotel Commercial

(H2w/Com)
N

COMH Commercial Hotel M Motels N
COMH Commercial Hotel RH Residential Hotel &

SRO
Y

COMH Commercial Hotel RH1 Retail & Hotel N
COMM Commercial Misc AC Apartment & Com-

mercial Store
N

COMM Commercial Misc E Schools N
COMM Commercial Misc G Garages (Commer-

cial)
N

COMM Commercial Misc GC Golf Course N
COMM Commercial Misc GCU Golf Course N
COMM Commercial Misc GZ Garage Condominium N
COMM Commercial Misc MIX Mixed use N
COMM Commercial Misc N1 Hospitals N

8Properties with a tenancy-in-common (TIC) use code are excluded from the analysis.
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COMM Commercial Misc N2 Convalescent/Nursing
Homes

N

COMM Commercial Misc PD PUD (Planned Unit
Development)

N

COMM Commercial Misc PL Parking Lot N
COMM Commercial Misc PZ Parking Stall Condo-

minium
N

COMM Commercial Misc S Gas Station N
COMM Commercial Misc T Theatres N
COMM Commercial Misc TS Timeshare N
COMM Commercial Misc TSF Time Share Fractional N
COMM Commercial Misc TSU Time Share Unsegre-

gated
N

COMM Commercial Misc U Clubs,Lodges,Fraternal
Organizations

N

COMM Commercial Misc W Churches,Convents,Rectories N
COMO Commercial Office O Office N
COMO Commercial Office O35 Office Portion Leased

of 35 or More
N

COMO Commercial Office OAH Office - High Class A N
COMO Commercial Office OAL Office - Low Class A N
COMO Commercial Office OAT Office - ”Trophy”

Class A
N

COMO Commercial Office OBH Office - High Class B N
COMO Commercial Office OBM Office - Middle Class

B
N

COMO Commercial Office OCH Office - High Class C N
COMO Commercial Office OCL Office - Low Class C N
COMO Commercial Office OCM Office - Middle Class

C
N

COMO Commercial Office OMD Medical- dental Office
Building

N

COMO Commercial Office OZ Office - Condominium N
COMO imputed OZE imputed N
COMR Commercial Retail B Bank N
COMR Commercial Retail BZ Bank Condominium N
COMR Commercial Retail C Commercial Stores N
COMR Commercial Retail C1 Shopping Center N
COMR Commercial Retail CD Commercial Depart-

ment Stores
N

COMR Commercial Retail CM Commercial/Mixed
use

N
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COMR Commercial Retail CZ Commercial Store
Condo

N

COMR Commercial Retail EC Entertainment Com-
plex

N

COMR Commercial Retail OC Office with Major Re-
tail Units

N

GOVT Government CP City Property N
GOVT Government P Public Buildings

(Govt)
N

GOVT imputed RDA imputed N
GOVT Government RDAP Redevelopment

Agency Property
N

GOVT Government SP State of California
Property

N

GOVT Government UCP University of Califor-
nia Property

N

GOVT Government USP U.S. Government
Property

N

GOVT Government Y Port Commission
Property

N

IND Industrial I Industrial N
IND Industrial IDC Industrial Data Cen-

ter
N

IND Industrial IW Industial Warehouse N
IND Industrial IX Industrial

Mixed/Other Use
N

IND Industrial IZ Industrial Condo-
minium

N

MISC Miscellaneous/Mixed-Use MB Mission Bay N
MISC Miscellaneous/Mixed-Use UWL Under Water Lot N
MISC Miscellaneous/Mixed-Use V Vacant Lot N
MISC imputed VA1 imputed N
MISC Miscellaneous/Mixed-Use VA15 Vacant land- residen-

tial 15+ units
N

MISC Miscellaneous/Mixed-Use VCI Vacant Lot Comm
and Ind

N

MISC Miscellaneous/Mixed-Use VCIX Vacant Lot Comm
and Ind w/ Restric-
tion

N

MISC imputed VPU imputed N
MISC Miscellaneous/Mixed-Use VPUB Vacant Lot Public Use N
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MISC Miscellaneous/Mixed-Use VR Vacant Lot - Restric-
tions

N

MISC Miscellaneous/Mixed-Use VRX Vacant Lot Residen-
tial w/ Restriction

N

MISC Miscellaneous/Mixed-Use X Misc N
MRES Multi-Family Residential A Apartment Y
MRES Multi-Family Residential A15 Apartment 15 Units

or more
Y

MRES Multi-Family Residential A5 Apartment 5 to 14
Units

Y

MRES Multi-Family Residential CO Coop Units Unsegre-
gated

Y

MRES Multi-Family Residential DA Dwellings - Apart-
ments

Y

MRES imputed DA1 imputed Y
MRES Multi-Family Residential DA15 Dwellings - Apt 15

units or more
Y

MRES Multi-Family Residential DA5 Dwellings - Apt 5 to
14 units

Y

MRES imputed DCO imputed N
MRES Multi-Family Residential DCON Legal Multi-Family

Con to SFR
N

MRES Multi-Family Residential DD 2 Dwellings on One
Parcel

Y

MRES Multi-Family Residential DD5 2 Dwellings on 1 Par-
cel 5 to 14 units

Y

MRES Multi-Family Residential DF 1 Flat & Dwelling-1
Parcel

Y

MRES Multi-Family Residential F Flats & Duplex Y
MRES Multi-Family Residential F15 Flats 15 units + Y
MRES Multi-Family Residential F2 Flat & Store Y
MRES Multi-Family Residential F5 Flats 5 to 14 units Y
MRES Multi-Family Residential FA 1 Flat & 1 Apt Bldg-1

Parcel
Y

MRES Multi-Family Residential FA5 1 Flat & 1 Apt - 1 Par-
cel 5 to 14 units

Y

MRES Multi-Family Residential FS Flat & Store 4 units or
less

Y

MRES imputed FS1 imputed Y
MRES Multi-Family Residential FS15 Flat & Store 15 units

+
Y
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MRES Multi-Family Residential FS5 Flat & Store 5 to 14
units

Y

MRES Multi-Family Residential OA Office and Apart-
ments

Y

MRES imputed OA1 imputed Y
MRES Multi-Family Residential OA15 Office and Apart-

ments 15 units +
Y

MRES Multi-Family Residential OA5 Office and Apart-
ments 5 to 14 units

Y

MRES imputed TI1 imputed N
MRES Multi-Family Residential TI15 TIC Bldg 15 units + N
MRES Multi-Family Residential TIA TI Apartment N
MRES Multi-Family Residential TIC TIC Bldg 4 units or

less
N

MRES Multi-Family Residential TIC5 TIC Bldg 5 to 14 units N
MRES Multi-Family Residential TIF TI Flats & Duplex N
MRES Multi-Family Residential XV Single Struct on Multi

Lot(D & F’s only)
Y

SRES Single Family Residential COS Coop Units Segre-
gated

N

SRES Single Family Residential D Dwelling N
SRES Single Family Residential DBM Dwelling BMR N
SRES Single Family Residential LZ Live/Work Condo-

minium
N

SRES imputed LZB imputed N
SRES Single Family Residential LZBM Live/Work Condo-

minium BMR
N

SRES Single Family Residential OZEU Office Condo Eco-
nomic Unit

N

SRES Single Family Residential TH Town House N
SRES imputed THB imputed N
SRES Single Family Residential THBM Town House BMR N
SRES Single Family Residential Z Condominium N
SRES Single Family Residential ZBM Condominium BMR N
SRES Single Family Residential ZEU Condominium Eco-

nomic Unit
N

Of these (n=349,607) I drop an additional 5,094 parcel records (and their associated 296
evictions) due to inconsistent unit counts in the assessor records (e.g. 0 units for a parcel
with a multifamily class code). In the end, the sample of observations used for analysis
is comprised of 344,513 annual address records, which in total account for 13,963 eviction
notices. Table 2.3 provides descriptive statistics of this dataset, and Figure 2.1 shows their
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Figure 2.1: Map of San Francisco Eviction Notices (2007-2016). Only eviction notices
matched to assessor records are shown (n=13,969).

geographic distribution.
After restricting the sample to properties with rent control eligible use codes, rent control

status can be inferred solely by the year in which a property was built. Given that the Rent
Ordinance was passed on June 16, 1979 and that it applied only to structures in existence at
that time, rent control eligibility was (and continues to be) extended only to properties built
on or before that date9. In the following analysis, this arbitrary but well-known delineation
between “treated” (i.e. rent controlled) and “control” (i.e. market rate) groups of properties
forms the basis for a pseudo-natural experiment in which a treatment effect (i.e. change in
eviction rates) can be estimated and causality can be inferred.

9Since the assessor records only provide the property built year, and not month or day, I consider all
properties built in 1979 to be rent controlled. By potentially including uncontrolled properties in the sample
of controlled properties, it is possible that the estimated treatment effect is conservative in magnitude.
However, repeated tests of the models with and without properties built in 1979 did not significantly alter
the results.
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2.3 Methodology

To estimate the treatment effect of rent control, I use a regression discontinuity (RD) design,
exploiting the 1979 built-year cut-off eligibility requirement described above. The RD design
has the dual benefit of directly estimating the treatment effect of rent control on eviction
rates, and also making the identification of that treatment extremely transparent and easily
understood. The use of RD dates back to 1960 [30] but its popularity as a causal inference
method has gained significantly since the 1990s. Numerous studies comparing the statistical
power of the RD against randomized controlled trial (RCT) experimental designs have served
to bolster its reputation as an effective substitute in cases where true RCT designs are
infeasible, as is often the case in policy analysis. A 2018 meta-analysis of 15 “within-study
comparisons”, each of which compared causal estimates obtained from both RD and RCT
analysis conducted within the same study, found that the bias of the RD estimates was
distributed tightly and symmetrically around zero (within 0.07 standard deviations of the
RCT values in a given study on average), concluding that RD is “robustly internally valid
in research practice” [31]. RD also benefits from an extremely transparent identification
mechanism relative to other selection-on-unobservables designs like IV. Standard methods
of graphical analysis make interpretation of both the design and its results easily understood
by a wide variety of audiences [32].

The most significant shortcoming of RD relative to other causal inference methods is
perhaps the limited set of circumstances in which the design is appropriate. In particular,
RD requires a treatment assignment mechanism that depends either wholly or partially on
a characteristic threshold value that a participant either exceeds or does not. If treatment
Ri can be predicted based on whether a variable Yi lies above or below a threshold value c,
then the effect of Ri on the outcome Ei can be identified given that the relationship between
Yi and Ei is smooth and continuous for values of Yi above and below c. The premise of RD
is that if this latter assumption holds, then the causal effect of Ri on Ei can be estimated
by measuring the size of the “jump” or discontinuity in Ei at Yi − c.

In this study I implement the “sharp” RD design [32], where treatment assignment is
completely deterministic based on the threshold. The basic functional form is given in
Equation 2.1:

Ei = α + βRi + γ(Yi − c) + λ(Yi − c) ·Ri

given Ri = 1{Yi < c}, c− h < Yi < c+ h
(2.1)

where the dependent variable E is the annual evictions per unit for property i, Y is the
built-year of the property, also known as the “running variable” in RD parlance, c is the
threshold value (1980 in our case) along the dimension of the running variable, and R is a
rent-control “treatment” indicator that evaluates to one for properties built prior to 1980
and zero otherwise. The bandwidth parameter h identifies the maximum distance between
the running variable and the cut-off threshold, beyond which observations are excluded from
the sample. Many methods exist to identify an optimal bandwidth, but in repeated tests I
found that my estimates of the treatment effect were robust to variation of this value (see
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Figure 2.4). I ultimately settled on a bandwidth of 27 because this limits the sample to
buildings constructed between 1953 and 2007, which ensures that only buildings with a full
10 years of history over the period of observation (2007-2016) are included in the analysis.

2.4 Results

Empirical Analysis

Eviction Notices

Table 2.2 summarizes the eviction records (n=13,963) used in the main analysis after seg-
menting by eviction type category and their built-year relative to the 1980 cut-off. The left

Built-year < 1980 Built-year ≥ 1980

Eviction Category Count % Count %
Breach of Lease 6,432 46.7 124 65.6

No-fault 2,168 15.7 3 1.6
Unknown/Other 5,174 37.6 145 32.8

Total 13,774 189

Table 2.2: Eviction frequency (2007-2016) by category and built-year cut-off for rent control
eligible addresses

two columns represent eviction notices filed in rent-controlled properties, while the right two
columns represent those filed in uncontrolled properties. The first thing that stands out is
that there are nearly two orders of magnitude ( 73x) more notices filed in rent-controlled
properties. More than anything this number reflects the fact that of the 344,513 property
records used in the analysis only 14,132 (4.1%) were for properties built after 1979, a fact
which itself is explained by the diminishing construction rate of multifamily housing in San
Francisco over time (Figure 2.2).

More interesting, however, is the fact that No-fault evictions constitute a much higher
percentage of eviction notices at rent-controlled properties compared to the uncontrolled
sector10. These findings are consistent with [23], and support the idea that San Francisco’s
rent control laws may be incentivizing controlled landlords to evict law-abiding tenants.
Also of interest is the fact that Breach of Lease or At-fault evictions constitute a smaller
portion of evictions in rent controlled properties, which may suggest that rent control is

10Here I use “No-fault” to describe any of the following nine eviction types: owner move-in (OMI), capital
improvement, Ellis Act, condo conversion, substantial rehabilitation, lead remediation, good Samaritan
tenancy ends, development agreement, and demolition. All other evictions, except for those where the
eviction type was not indicated, are considered “At-fault” or “Breach of lease” evictions. See Appendix A
For a full enumeration of eviction types, categories, and observations.
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Figure 2.2: Histogram of unit counts in rent control-eligible buildings by year built. Con-
struction of multi-family housing has slowed considerably since the 1960s, but there is no
obvious discontinuity in 1980 when the rent control ordinance took effect.

actually achieving one of its primary objectives of keeping tenants from failing to pay their
rent. Unfortunately, there are too many uncategorized eviction notices in the dataset to say
anything more conclusive on the subject.

Mean Differences

Table 2.3 compares the counts and averages of the aggregate assessor records by rent control
eligibility and built-year threshold. The first two rows of the table correspond to uncontrolled
properties which can be identified as such based on their Assessor “Use Code” classification
alone. Conversely, all properties in the bottom two categories have use codes which make
them “eligible” for rent control. As such, their rent controlled status can be identified by
built-year alone. Only these properties from these two categories are included in the regres-
sion discontinuity models. By normalizing the data according to the number of observations
in each category, average outcomes can be compared between the treatment and control
groups to obtain a reliable first indication of what a more detailed model might reveal. The
results show a mean difference of +0.77% in the rate of eviction notices for rent controlled
addresses relative to their uncontrolled counterparts. Though small in magnitude, this dif-
ference corresponds to an eviction rate that is 2.4x higher for rent controlled addresses on
an annual, per-unit basis.
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Rent Control Eligible
N Y

Built before 1980 Built before 1980
N Y N Y

total addresses 70,104 1,020,259 14,132 330,381
total units 331,191 1,445,753 114,759 1,591,854

avg. units per address 4.72 1.42 8.12 4.82
total evictions 243 4,993 189 13,774

prob. 1+ eviction 0.0021 0.0031 0.0064 0.0194
avg. evictions per address 0.0035 0.0049 0.0134 0.0417
avg. evictions per unit 0.0016 0.0039 0.0055 0.0131

mean difference +0.0023 +0.0077

Table 2.3: A comparison of eviction rates by rent control eligibility and built-year cut-off.
Values in the third column correspond to properties that have a rent control-eligible use code
but are not rent controlled because they were built after 1979. The fourth column (bolded)
represents rent controlled properties. Only properties in the bottom two rows (n=344,513)
are included in the RD analysis. The mean difference in bold italics (+0.0077) should
roughly approximate the value of the local average treatment effect (LATE) estimated from
the regression discontinuity model.

Graphical Analysis

Figure 2.3 shows the traditional RD plot, comparing average observed outcomes on the Y-axis
across binned values of the running variable (built-year) on the X axis for the range defined
by the bandwidth parameter h. The data points on either side of the built-year threshold
are used to fit two linear models that highlight the discontinuous nature of this relationship.
Visual inspection shows the size of the discontinuity in Figure 2.3 closely approximates not
only the mean difference computed from Table 2.3 ( 0.77%), but also the size of treatment
effects estimated by the RD models below (0.09% - 1.41%). The data presented in Figure 2.3
also clearly show that a significant and unique discontinuity exists at the threshold, adding
substantive, visual evidence of a real causal effect. They also suggest that apart from the
discontinuity itself, there exists almost no correlation between eviction rates and built-year.
This lends additional credibility to a causal interpretation because it increases the likelihood
of treatment assignment (i.e. rent control status) being the only channel through which
systematic variation in eviction rates explains variation in the property built-year.

Model Results

Four RD models are fit according to the approach described above. Each of the four models
estimates a positive treatment effect on rent control significant at the 0.002 level or below.
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Figure 2.3: Eviction Rates by Property Built-Year (n=54,388). Only multi-family properties
with rent-control eligible use-codes built after 1953 and before 2008 are included. Only
eviction notices filed between 2007 and 2016 are counted.

After applying the bandwidth parameter and filtering out records with malformed or incom-
plete covariate data, a total of 53,493 observations are used to estimate these models. The
results are summarized in Table 2.4. Using the specification described in Equation 1, Model
1 estimates an average treatment effect of 0.9% (p=0.002). This estimate is slightly larger
than the mean difference-based estimate (0.77%), but still very much in line with the size of
the discontinuity observed in Figure 2.3.

Model 2 adds two property-level characteristics derived from the assessor records: 1) an
interaction term between the log of the assessed value and the log of the assessed square
footage of the property; and 2) the log of the total number of units at the property. [33, 34]
and others have demonstrated the relationship between The value-per-square-foot interaction
term is found to positively correlate with eviction rates, while the coefficient on total units
is negative, suggesting eviction rates are higher in more valuable properties with fewer units.
This result makes intuitive sense, as more valuable properties can likely fetch higher market
rate rents, and in buildings with fewer units the potential benefit of evicting one tenant
represents a higher proportion of a property’s total value to the landlord. Both of these
variables are found to be significant at the level of < 0.001. Their inclusion in the model
produces a larger treatment effect estimate of 1.36% and improves the significance level from
0.002 to < 0.001.

Model 3 adds Census tract-based demographic characteristics from the 2009-2013 5-year
American Community Survey. A positive coefficient (p ≤ 0.001) on the percent of occupied
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(1) (2) (3) (4)

Rent Control
0.0097** 0.0136*** 0.0135*** 0.0141***
(0.003) (0.003) (0.003) (0.003)

Property Characteristics: N Y Y Y

Log(total value) / Log(total area)
– 0.0010 0.0010 0.0010
– (< 0.001) (< 0.001) (< 0.001)

Log(total units)
– -0.0204 -0.0210 -0.0216
– (0.001) (0.001) (0.001)

Census Tract Demographics: N N Y Y

% Latino population
– – 0.0371 0.0406
– – (0.007) (0.015)

% housing units rental
– – 0.0184 0.0199
– – (0.005) (0.009)

Neighborhood Fixed Effects: N N N Y

R2 < 0.001 0.008 0.008 0.01

Table 2.4: Coefficient on rent control for four RD models (n=53,493). Standard errors in
parentheses. Significance codes indicate p-values as follows: ‘***’ < 0.001 < ‘**’ < 0.01 <
‘*’ < 0.05.

units that are rented rather (non-owner occupied) suggests that eviction rates are higher
in areas with lower rates of home ownership. Percent Latino also has a positive coefficient
(p ≤ 0.001), indicating a greater probability of eviction in areas with greater concentrations
of Latinos. The addition of these sociodemographic characteristics did not significantly
affect the estimated coefficient on rent control (1.35%) which remained significant at the
p < 0.001 level. Alternative model specifications were tested using other Census-based
covariates, including median household income and median move-in year. The latter term
was included in order to test for the potential effect of tenancy duration, which in the context
of vacancy decontrol means more heavily discounted rents and thus a greater incentive to
evict. I found no evidence to suggest that such an effect exists, although it is possible that
tract-level Census data is simply not granular enough to capture this relationship. It is
also possible that landlords may be less willing to initiate economically motivated evictions
against tenants with whom they have long-standing relationships.

Model 4 adds neighbourhood fixed effects to the equation according to the 72 assessor-
designated neighbourhoods that appear in the assessor records. These terms are a blunt
instrument designed to account for any other geographic variation not captured by the
Census-based sociodemographic variables. The addition of neighbourhood fixed effects in a
slightly higher estimated treatment effect of 1.41%, still significant at the < 0.001 level.
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2.5 Discussion

Limitations of the Data

Before drawing any conclusions from this study it is worth re-examining the distinction be-
tween eviction filings and actual evictions. As mentioned earlier, filings are, in some respects,
a better measure of displacement pressure than actual evictions due to the prevalence of in-
formal evictions. Recent work on the phenomenon of “serial filing”, however, has shown that
eviction filings are often issued repeatedly against the same tenants by landlords seeking to
achieve outcomes other than eviction, including the collection of rent and late payment fees
[28, 34]. The literature suggests that serial filing is more common in larger buildings owned
by larger-scale landlords, and higher rents, but also that its prevalence varies greatly from
state to state, with the lowest rates observed “in areas where legal and regulatory barriers
increase the cost of eviction” [35]. Although the models presented above do control for build-
ing size, rental price, and neighbourhood fixed effects, lack of tenant and landlord identifiers
makes it difficult to determine the degree to which serial filing could be influencing the re-
sults; little is known about the relationship between serial filing and rent control. Future
work should explore this issue by matching assessor records to property ownership data.

The other major weakness of the filings is that we do not observe disaggregate char-
acteristics of tenants or landlords. This makes it difficult to control for landlord property
owner types (e.g. “mom-and-pop” vs. property management companies). [33] shows that
larger, more professional landlords are more likely to begin eviction proceedings against
their tenants, but also that they are more likely to rent to tenants who go on to miss a rent
payment.

Internal Validity

Common tests of Validity for Regression Discontinuity

One of the biggest limitations of the RD design is that it is applicable under only a very
limited set of experimental conditions. Fortunately, because the identification strategy is so
transparent, there are many well-documented methods available for investigating the internal
validity of a given RD design. I will now briefly mention these, which in addition to the
small standard errors and p-values reported in the previous section suggest that this study
has avoided some of the biggest pitfalls of the RD method.

First, RD assumes that the treatment effect is the only discontinuity in an otherwise
smooth functional form describing the relationship between the running variable and the
outcome. Figure 2.3 demonstrates this fact visually. The strength of this assumption is
further supported by the fact that Figure 2.3 shows a nearly flat response in the y-axis, and
also that each of the four RD models fails to reject the null hypothesis that the coefficient
on year-built is zero. Together, these results suggest that apart from treatment effect itself,
the relationship between built-year and eviction rates is effectively random. Although RD
does not require that the running variable be uncorrelated with the outcome, the fact that
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in this study the treatment assignment itself seems to be the only channel through which
variation in eviction rates is related to the property built-year significantly strengthens the
case for a causal interpretation.

Another common source of bias in RD designs occurs when treatment assignment can
be manipulated by study participants. This occurs when subjects are aware of the cut-off
threshold that determines treatment assignment (e.g. policy eligibility), and are able to
nudge themselves past that threshold in the dimension of the running variable in order to
qualify for treatment. Manipulation of this kind would introduce a structural imbalance in
the sample population immediately above and below the threshold value, invalidating the
experimental design. Although neither landlord nor tenant has the means to change the
construction date as recorded by the county assessor’s office, it is reasonable to assume that
under normal circumstances both parties are aware of the rent control status of a property.
It is therefore worth considering whether landlord and/or tenant selection bias might be able
to explain our findings. We discuss this issue in greater detail below in the section entitled
“Selection Bias”.

Sensitivity to bandwidth selection is another common specification test used in RD anal-
ysis. Whereas overly narrow bandwidths might overestimate the significance of the variation
observed at the discontinuity, too-wide of a bandwidth might bias the results by including
observations that are irrelevant to behaviour at the discontinuity. Accordingly, RD estimates
that are robust to this somewhat-arbitrarily chosen parameter are much more credible than
those that are heavily dependent upon it [32]. The results of a bandwidth sensitivity anal-
ysis are presented in Figure 2.4, which shows that the treatment effect estimates of all four
models are largely insensitive to variation in bandwidth.

In the analysis, all four models were re-estimated at 13 different evenly spaced bandwidths
between 5 and 65. All four models consistently produced positive estimates of the LATE at
all bandwidths, the majority of which fall within one standard error of the LATEs reported
in Table 2.1. With the exception of those estimated with the smallest bandwidth (h=5),
all LATEs are statistically significant at the p <= 0.1 level. Smaller bandwidths mean
fewer observations are included in the model, likely contributing to the larger standard
errors observed for the smaller bandwidths. In fact, below h=20 the algorithm is effectively
discarding more than 50% of the observations. On the other hand, above h=20, all of the
LATE estimates in all four models are significant at p < 0.05. There does appear to be a
positive correlation between the size of the bandwidth and the size of the estimated LATE.
The fact that the models with more observations (larger bandwidths) produce larger and
more significant LATE estimates offers further evidence that the observed effect is real,
and also that the estimates reported in Table 2.1 are perhaps conservative. Above h=27,
however, data imbalance issues arise from 1) the inclusion of buildings with less than 10 years
of assessor records; and 2) an asymmetrical RD design that occurs above h=37 because based
on observations from the most recent tax assessor records included in the study (2017), there
is a maximum possible distance of 37 years above the 1980 threshold, while no such lower
limit exists.

In the context of an extremely contentious and highly visible policy like rent control, the
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Figure 2.4: The red dashed line and the area highlighted in pink represent the estimated
treatment effect and standard errors, respectively, of the results reported in Table 3.

importance of having a transparent identification strategy and easily interpreted experimen-
tal results cannot be overstated.

Selection Bias

Let us first consider selection bias due to landlord preference. While it is theoretically pos-
sible that higher rates of eviction for rent controlled tenants could reflect a preference of
rent controlled landlords for more vulnerable, easily evicted tenants, this is not what the
literature shows. Navarro [19], for example, cites evidence of rent controlled landlords in
Cambridge, Massachusetts discriminating against minority, low-income households to com-
pensate because rent control prevents them from implicitly discriminating based on price
alone. Other studies agree, including [36], who interprets landlords preference for smaller
households with older heads of household as evidence of landlords rationing controlled units
to keep out occupants they believe could lead to quicker depreciation of their units, and
[37], who along similar lines argues that rent control exacerbates economic segregation due
to landlord preference for higher income tenants. Similarly, there exists evidence to suggest
that due to vacancy decontrol landlords are actually able to target higher income tenants by
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leveraging the rent controlled status of a property to extract higher initial rents [12]. Indeed,
one of the most often cited weaknesses of rent control policy is its inefficient targeting of
benefits, and the resulting misallocation of rent controlled housing stock [15, 17, 19, 20, 38,
39]. If in fact rent controlled landlords were more likely to target more vulnerable tenants,
it is unlikely that evidence of such misallocation would be so widespread. It is worth men-
tioning here that recent work by [33] does show that certain types of landlords, specifically
larger-scale owners and property management companies, are more likely to rent to tenants
who go on to miss a rent payment. While there is no evidence to suggest such a pattern
exists among landlords of rent controlled properties, the results presented here would be
strengthened by additional analyses to control for the different tenant selection tendencies
between “mom-and-pop” landlords and property management firms.

But what about tenant self-selection? It is well documented that certain demographics
are associated with higher eviction rates, including women, particularly Black women, and
households with children [40–42]. Could the causal mechanism identified here perhaps ex-
plained by an overrepresentation of more “eviction-prone” tenants in rent controlled housing?
The evidence here is somewhat mixed. Studies show that low income, minority households
were overrepresented in rent controlled housing in New York City between 1965 and 1968
[38, 43]. In Cambridge, Massachusetts, however, [19], citing [44] and [45], found that the
distribution of household income, elderly population, students, and household size were not
meaningfully different between the controlled and uncontrolled housing sectors. More rele-
vant perhaps is [26] which shows no statistical difference between the age and tenure duration
of residents in controlled and uncontrolled properties in San Francisco (1993 – 2016), though
their study is limited to buildings with fewer than four units. Unfortunately, the eviction fil-
ing data used to conduct the analysis presented here do not contain disaggregate demographic
characteristics. Instead, Table 5 presents a supplemental comparative analysis of controlled
and uncontrolled renters using the Public Use Microdata Sample (PUMS) data from the
2012 American Community Survey. In general, the results suggest that the demographic
groups which are typically associated with higher eviction rates are not overrepresented in
rent controlled housing in San Francisco. In fact, the data show that black female tenants
are significantly less likely to be found living in controlled housing than uncontrolled, while
White and non-Hispanic renters are significantly overrepresented. Similarly, rent controlled
tenants have fewer children, especially young children. Most importantly, however, Table 5
shows that while rent controlled households do report lower incomes, they also benefit from
lower rents, and so the mean gross rent per household income is nearly the same for both
groups. This finding suggests that rent control policy in San Francisco has been at least
modestly successful in targeting its beneficiaries.
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Policy Implications (External Validity)

To the best of this author’s knowledge, the findings presented here constitute the first rigorous
estimate of the causal effect of rent control on eviction rates in the peer-reviewed literature.
That being said, it is important to understand the context in which these findings are most
relevant.

The treatment effect estimated via RD is a local average treatment effect (LATE), rather
than the more general average treatment effect (ATE) associated with a true RCT design.
In other words, the RD estimate is not guaranteed to be unbiased for observations outside of
the subpopulation where the treatment effect is measured (Yi = c). In the present study that
means one must be careful in extending the validity of the model results to properties built
in the 1920s, for example, which depends on the degree to which a homogeneous treatment
effect can be assumed. However, given the seemingly stochastic nature of the relationship
between built-year and eviction rates in this study, this does not seem like an unreasonable
assumption to make.

Additionally, recent research indicates that certain precautions can reduce the likelihood
that RD estimates are biased, many of which – including large sample sizes, the use of
non-parametric tests and estimators, and careful bandwidth selection – were implemented in
this study [31, 46]. It is also worth noting that regardless of whether or not the results are
relevant to very old or very new buildings in San Francisco, the estimated treatment effect
is clearly only valid for the city of San Francisco. That being said, the implications of these
findings are highly relevant to current and future policy in San Francisco and beyond.

In 2020 California voters had the chance to repeal the 1995 law restricting municipalities
from enacting rent control on residential units constructed after February 199511. Had it
passed, Proposition 21 would have been replaced the 1995 restriction with a rolling 15-year
window, allowing San Francisco legislators to expand rent control eligibility to buildings
built before 2006 by 2021, 2007 by 2022, and so on. Even though Prop 21 was ultimately
rejected by voters, the pressure to expand rent control in California does not appear to be
dissipating, as indicated most recently by the passage of Assembly Bill No. 148212, the
Tenant Protection Act of 2019. If and when the time comes for San Francisco to reassess its
rent control eligibility requirements, the results presented here will be directly applicable for
both policymakers, residents, and property owners wishing to evaluate the impact of such a
policy change.

Increased housing stability is one area in which experts typically agree that rent control
offers real benefits [15, 26]. In fact, a recent review of the rent control literature published by
the USC Equity Research Institute (ERI) found that “nearly every academic study finds that
rent stabilization [...] increases housing stability for rent-stabilized residents” [6]. However,
the findings presented here show that the effects of rent control on housing stability are
more heterogeneous than the current academic literature suggests. While the ERI review

11See California Civil Code 1954.50-1954.535
12Full text available at https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_

id=201920200AB1482

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB1482
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB1482
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offers strong evidence in favour of re-evaluating rent control as an anti-displacement measure
rather than anti-gentrification, the reality is that even under this more appropriately defined
rubric its effectiveness in San Francisco is unclear.

As we have seen, [26] were able to estimate a net benefit of $393 million per year for
incumbent rent controlled tenants in San Francisco, but failed to account for the cost of
rent control-induced evictions. And while it may seem unlikely that a 1-2% increase in the
rate of evictions would do much to offset such a large benefit, the severity of the impact of
an eviction must not be underestimated. Recent data from the City of San Francisco itself
suggests that eviction is the third-leading cause of homelessness there, representing 13% of
survey respondents (n=1,039), up from just 4% in 2011 [47]. Additionally, recent work by
Desmond and others has demonstrated the deleterious, sometimes trans-generational effects
of eviction on health outcomes, homelessness, and job retention [40–42]. Long term effects
like these make it a very difficult and fraught task to estimate the true cost of rent control-
induced eviction to rent controlled tenants.

Whatever those costs may be, it would be a mistake to interpret them as a failure that
is inherent to Rent Control as a policy. Instead, the causal effect of rent control on eviction
rates as measured in this study represents a failure of San Francisco’s Rent Ordinance to
adequately protect tenants from the incentive to evict that exists under vacancy decontrol.
Fortunately, a solution to this problem exists that does not require abolishing vacancy de-
control altogether, which would almost certainly be politically impossible in San Francisco
today. Instead, the city can enact targeted eviction protections aimed at decoupling the evic-
tion process from rent control avoidance. For example, breach-of-lease type evictions should
be treated as a disqualifying event, preventing a property owner from taking advantage of
vacancy decontrol at the start of their next lease. If the goal of an at-fault eviction is not,
in fact, to take advantage of vacancy decontrol, but to remove a problem tenant, then the
evicting landlord should be willing to continue to rent the unit in question at the same rate.
San Francisco policymakers have the ability to close these eviction-based rent control loop-
holes, and have previously made strides in this direction with respect to no-fault evictions in
particular [48]. With local and state-wide COVID-19 eviction moratoriums expiring soon, it
is now more important than ever that City officials re-examine the role that evictions play
in undermining the success of rent stabilization.
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Chapter 3

Numerical Analysis of Error due to
Sampling of Alternatives in
Logit-Based Demand Forecasting
Models with Massive Choice Sets

3.1 Introduction

Use of the multinomial logit (MNL) discrete choice model is widespread in transportation
and land use demand modeling, both in the research literature and in applied settings.
As the state-of-the-art continues to evolve away from aggregate forecasting and towards
activity-based models and microsimulation, MNL models are being asked to accommodate
increasingly large choice sets [49, 50]. Different strategies exist to address the challenge of
estimating models with very large choice sets, but perhaps none is as commonly employed
as sampling of alternatives. The effect of sampling of alternatives on model estimation has
received considerable attention in the scientific literature [51–53]. Yet comparatively little
quantitative research exists which examines the issues that arise when the same sampling
strategies are applied in the forecasting or simulation phase of the modeling process.

Despite a lack of empirical evidence, it is often assumed that sampling strategies which
improve parameter estimates must also improve the accuracy of demand forecasts as well.
This paper tests the validity of this assumption by defining a new empirical measure of
prediction error and using it to evaluate outcomes under different modeling scenarios and
sampling strategies. The mathematical definition of this prediction error metric is itself a
valuable contribution to the scientific literature on a topic which is rarely studied in part
because of how challenging it is to measuring model error without the benefit of observed
choices, as is almost always the case for forecasting. Just as important, however, are the
experimental results which can guide practitioners as they must navigate the tradeoff be-
tween sample rate and aggregation of alternatives due to limited computational resources.
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Of particular interest is quantifying the impact of sampling of alternatives for logit-based
forecasts at the scale of microsimulation, in which choice sets can number into the millions
of alternatives.

Literature Review

The use of sampling of alternatives in logit models with large choices dates back to McFadden
[54] who showed that one can obtain consistent MNL estimates of parameter vector β∗ using
only a sample of non-chosen alternatives and adding an alternative-specific correction term
to the standard logit choice model:

pn(i|Dn) =
eµβ

⊤Xin+lnπn(Dn|i)∑
j∈Dn

eµβ⊤Xjn+lnπn(Dn|j)
, ∀ Dn ⊂ C (3.1)

The term log πn(Dn|i) is called the correction factor and represents the likelihood of con-
structing a choice set conditional on chooser selecting alternative. Moreover, under simple
random sampling (SRS) it follows that

πn(Dn|i) = πn(Dn|j) ∀ i, j ∈ Dn (3.2)

which McFadden calls the “uniform conditioning property” of the logit model. This property
allows the correction factors in the numerator and denominator of Equation 3.1 to cancel
out, which means the original, simplified logit form can be used instead:

pn(i|Dn) =
eµβ

⊤Xin∑
j∈Dn

eµβ⊤Xjn
(3.3)

The simplicity of this model, and the fact that β̂ has a closed form solution under maximum
likelihood estimation, has led to its proliferation among practitioners of travel and land use
demand modeling.

Consistency of parameter estimates does not imply that they are also efficient, which, as
it relates to sampling of alternatives, depends on the size and composition of the sample.
As Train puts it, “Comparing a person’s chosen alternative with a group of undesirable
alternatives provides little information about the reason for a person’s choice” [55, p70]. As
such, considerable time and effort have been spent attempting to quantify the relationship
between sampling of alternatives and model error [51–53, 56]. Researchers have also found
success developing and applying alternative sampling strategies which are able to improve
parameter efficiency by oversampling alternatives deemed most relevant to a particular choice
context [51, 57–60].

Although the effect of sampling of alternatives in discrete choice models seems to be well
understood, the problem space is much murkier for practitioners who, having estimated a
model, must actually use it to perform scenario analyses or to generate regional forecasts
of demand. The key distinguishing factor is that in the context of prediction there are no
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“observed” choices. This fact has two important consequences which serve as the motivation
for this study. The first is that sampling of alternatives may produce choice sets composed
entirely of unattractive or “uninformative” alternatives, particularly in the case of SRS.
Moreover, the likelihood of generating such a sample increases with the size of the universe
of alternatives [51, 61]. The issue is therefore likely to be of increasing concern as the
trend towards microsimulation continues. Despite this, it is found that many such models
in practice rely on random sampling of alternatives [49, 62–64].

The second consequence is that there is no straightforward way to assess performance in
the forecasting phase of the modeling lifecycle. Intuitively, there can be no “ground truth” for
a model designed to predict outcomes under scenarios which have not yet come to pass. This
is especially true when the choices being modeled are those of a synthetic population, as is
often the case in microsimulation and activity-based models. As a result, the study of forecast
error in discrete choice models has rarely been treated separately from estimation. Two
exceptions are worth mentioning, even though neither is explicitly concerned with sampling
of alternatives. The first is [65] which studies the effect of aggregation of alternatives on
forecasting error for location choice models. In that study, the authors explicitly describe
the why variation in parameter estimates cannot reliably measure predictive performance in
the forecasting phase. The principal reason cited is that error in the individual parameter
estimates can balance itself out across parameters, and across alternatives, too. Furthermore,
if in practice a modeler is primarily concerned with the spatial distribution of demand, then
it is possible for this error to balance itself out across choosers as well. In this sense, the net
effect could therefore be significantly less than the estimation error would indicate.

The second study is by Guevara & Ben-Akiva [66] who investigate methods for reducing
forecasting error due to endogeneity bias. Of particular relevance is a passage in that study
in which the authors observe that “predictions at a disaggregated level are almost always
meaningless,” and advocate instead for microsimulation performance to be assessed at an
aggregate level. Although aggregating the results of a disaggregate model may, at first glance,
seem self-defeating, it is not. Since the inception of microsimulation for policy analysis
[67], practitioners have stressed that its value over aggregate modeling lies in its ability to
more accurately predict the distribution of demand across a population of individuals, not
chooser-level outcomes [68]. This is in large part due to the highly stochastic nature of
microsimulation, which, far from being a shortcoming of the approach, is actually one of
the features that allows it to incorporate the effects of population heterogeneity, emergent
behaviors, and other low probability outcomes. In practice, this stochastic variation (also
called Monte Carlo error [69]) is typically handled by running the model(s) multiple times
with different seeds supplied to the random number generators, and taking the average of
the results [50]. It follows, therefore, that any metric used to quantify forecasting error must
focus on aggregate demand for alternatives across a population, and must utilize the entire
distribution of choice probabilities for each chooser rather than just that of the highest utility
alternative or the alternative selected via Monte Carlo simulation.
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Figure 3.1: Graphical representation of dispersion error in a location choice model for an
idealized monocentric city with random sampling of alternatives for a single chooser. The
area of both the blue and red distributions is equal to one since each is a probability density
function. The theoretical upper limit of dispersion error is therefore two, which would occur
if the distributions had zero overlap.

Key Questions and Contributions of this Study

In addition to the definition of an error metric itself, the primary contributions of this
study are made by using the metric as means for investigating the following three research
questions: 1) How does error due to sampling of alternatives change as the size of the universe
of alternatives increases by orders of magnitude? 2) Does error due to random sampling of
alternatives balance itself out in terms of aggregate demand for alternatives across choosers?
3) Can forecast error be reduced by replacing simple random sampling is replaced with a
strategically weighted sampling approach?

In regards to the first question, I hypothesize that error will be largest at the most disag-
gregate scales, where choice sets can number in the millions of alternatives. This hypothesis
is informed by previous work that has shown that it is easier to sample “non-competitive
alternatives” when choice sets are largest [51]. In the estimation phase, this leads to greater
parameter error. In forecasting, however, I expect inefficient choice sets to result in over-
assignment of choosers to low-utility alternatives, and therefore an over-dispersion or diffu-
sion of aggregate probability across alternatives relative to the true distribution one would
obtain from a 100% sample. In a model of residential location choice, for example, this might
manifest as under-predicted population densities for the most attractive locations. Figure
3.1 illustrates an idealized version of this phenomenon which we term “dispersion error”.
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It is more difficult to speculate about the second question since it has no analogue in
the literature on model estimation. Research has shown that even with random sampling of
alternatives, discrete choice microsimulations can achieve greater predictive accuracy than
traditional aggregate models [70]. But no study until now has managed to isolate the effect of
sampling of alternatives on forecasting error in a way that can guide practitioners who must
navigate the trade-off between computation time and sample size. If in fact the sample error
that is associated with microsimulation is balanced out (i.e. mean zero) when aggregating
demand across choosers, then the marginal benefit of using larger and larger sample sizes
should decrease past a certain point. By using an aggregate metric like dispersion error to
compare the performance of a single disaggregate model at multiple sample rates, this study
is able to test the hypothesis and determine if such a threshold exists.

The expected outcome of the third research question follows from the first, in that im-
portance sampling is expected to increase the likelihood of constructing choice sets with
high-utility alternatives, thereby reducing dispersion error. I also hypothesize that the bene-
fit of importance sampling will be greatest for the largest choice set scenarios, since I expect
that strategic sampling can ameliorate the effect of the size of the universe of alternatives.

The rest of the paper is structured as follows. I first provide a mathematical definition of
dispersion error in multinomial logit predictions with sampling of alternatives. I next describe
the experimental design, including the generation of synthetic data from MNL models of my
own design, and the recent advances in GPU-based computing which have made this study
possible. The use of synthetic data means no model estimation is required, and the effect of
sampling of alternatives on parameter efficiency can be ignored. Instead, dispersion error is
measured by repeatedly simulating choice probabilities using different sample sizes between
2 and J−1, where J is the number of alternatives in the universal choice set, and comparing
the distribution of aggregate choice probabilities to that obtained from a 100% sample. I
also define the boundary conditions of the experiment through the use of three experimental
controls: 1) the size of J ; 2) the variance of the model error as defined in the data generation
process; and 3) sample rate. This procedure is then repeated using an important sampling
strategy to explore how alternative techniques to random sampling of alternatives can be
used to reduce dispersion error. Lastly, I contextualize these findings by estimating a location
choice model using real data taken from the California Household Travel Survey (CHTS).
This serves the dual purpose of both validating the experimental results, and demonstrating
how they can be used to guide modeling decisions in practice.



CHAPTER 3. NUMERICAL ANALYSIS OF SIMULATION ERROR 35

3.2 Methodology

Definition of Forecast Error Metric

Let us first define the probability of chooser n selecting alternative i from the universal choice
set C with J elements using the standard multinomial logit model formulation

pn(i) =
eµVin∑
j∈C eµVjn

=
eµβ

⊤Xin∑
j∈C eµβ⊤Xjn

, i = 1, . . . , J (3.4)

where Vin represents the structural component the utility function

Uin = Vin + ϵin, ϵ ∼ Gumbel(0, µ) (3.5)

and is itself defined as a linear combination of parameter vector Xin with a vector of fixed
coefficients β

Vin = β⊤Xin (3.6)

I define the aggregate demand for alternative i across the population of choosers N as the
probability massing :

PMi =
∑
n

pn(i), 0 ≤ PMi ≤ N (3.7)

An aggregate metric like this incorporates the total choice probability for each alternative
regardless of whether a chooser would be predicted to select it under Monte Carlo simulation.

From this perspective, it follows that the best outcome one can hope to achieve from
simulation with sampling of alternatives is to replicate the empirical distribution of aggregate
probability obtained when choosers have access to the full universe of alternatives. Therefore,
I define the probability massing error (PME) due to sampling of alternatives for alternative i
as the difference between the best-case-scenario probability massing (no sampling) and that
obtained from the conditional logit probabilities:

PM Errori =
∑
n

pn(i|Dn)−
∑
n

pn(i)

where pn(i|Dn) =

{
eµVin∑

j∈Dn
eµVjn

if i ∈ Dn

0 otherwise
, Dn ⊂ C

(3.8)

An additional benefit of aggregation is that by comparing demand across an entire popula-
tion, this metric avoids the issue of scale that arises at the chooser level, where

pn(i|Dn) > pn(i) ∀ i ∈ Dn (3.9)

for any given chooser due only to the fact that that denominator in the conditional logit is
necessarily smaller. This fact should be even more apparent when I sum across alternatives
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below, since the total probability mass of a population
∑J

i

∑
n pn(i) must always equal N ,

regardless of the sample size.
Equation 3.10 defines dispersion error (DE) as the sum of PMEi’s over the universe of

alternatives, normalized by twice the total probability mass (N). The absolute value of the
inner term is taken to prevent positive and negative PME values of different alternatives
from canceling each other out:

DE =
1

2N

∑
i∈C

∣∣∣∣∣∑
n

pn(i|Dn)− pn(i)

∣∣∣∣∣ , s.t. 0 ≤ DE ≤ 1 (3.10)

I call this metric “dispersion error” because it measures the degree to which the distribution
of aggregate demand for a set of choosers is under- or over-dispersed relative to the “true”
distribution that is observed when no sampling is performed (Figure 3.1). Equation 3.11
follows from the assumption that when sampling without replacement, Dn = C for any Dn

that is constructed using a 100% sample.

lim
J̃n→J

pn(i|Dn) = pn(i) (3.11)

By substituting Equation 3.11 into Equation 3.10, it can be shown that that dispersion error
should trend towards zero as the size of the sample (J̃n) approaches J :

lim
J̃n→J

DE = 0 (3.12)

Thus by varying the size of Dn and measuring the rate at which dispersion error approaches
zero, I am able to quantify the marginal benefit of using larger and larger sample rates. I
hypothesize that the magnitude of this benefit will depend on both the size of the universe
of alternatives (J) and the precision (error) of the model itself.

Data Generation

The data generation procedure used in this study builds on that of [52]. I modify both
the model specification and the scale of the simulated data in order to more accurately
approximate the form of a location choice model that one might encounter in a modern mi-
crosimulation platform like UrbanSim [71]. I describe the changes to the model specification
here, and address the scale of the data in the context of the experiment design in the section
that follows.

The model is structured as a linear-in-parameters MNL specification with five indepen-
dent variables and the coefficients of each fixed to one. Three of the five variables are
generated according to the procedure described in [52]: drawing values from the standard
univariate normal distribution using a mean value of 1.0 for the first half of the alternatives
and 0.5 for the second. For the fourth variable I introduce an interaction term between
an alternative-specific attribute and a chooser-level attribute drawn Lognormal(1, 0.5) and
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Lognormal(0, 0.5), respectively. Interaction terms are a common feature of location choice
models because they capture chooser preference heterogeneity that arises from real-world
relationships like rent-to-income ratio or home-to-work distance. The fifth independent vari-
able is sampled from the distribution Lognormal(0, 1) and is meant to approximate a spatial
measure like distance to a central business district.

Experiment Design

A series of simulations are performed in which I compute choice probabilities are generated
for synthetic datasets and dispersion error while approximating different modeling scenarios

along three experimental controls: 1) sample rate ( J̃n
J
); 2) the scale parameter µ of the logit

model; and 3) the scale of the data (N and J). A total of 1,750 scenarios are modeled
using 10 sample rates, seven scale parameters, and twenty-five dataset sizes. I aggregate the
results of each scenario over 10 runs for a total of 17,500 simulations.

For each chooser n in each dataset I construct ten choice sets. The first of these is
simply C, the universe of alternatives. The other nine choice sets Dn1 · · ·Dn9 are assembled
through simple random sampling (SRS) without replacement from C using nine equally

spaced sample rates on the interval from 10 to 90%. To construct each Dns of size J̃ns, I
first partition the alternatives in C into ten random subsets with J

10
elements each and then,

setting Dn1 equal to Sn1, reincorporate the remaining subsets one at a time:

Dns = Dns−1 ∪ Sns s = {1, . . . , 9} (3.13)

such that J̃ns = J
10

× s. Although this approach means that Dn1 · · ·Dn9 are not drawn
independently for a given chooser, it reduces the number of times I need to draw random
samples without replacement by a factor of 10. Given that the compute time of the sampling
algorithm I use is O(J+J log J), this was a necessary compromise to ensure I could simulate
over the largest choice sets (J = 2× 106) in a reasonable amount of time [72, 73].

The scale parameter (µ) of the logit equation is the second critical axis of inquiry in this
study. Since µ is confounded with the vector of coefficients β and all ϵin’s are assumed to
be distributed i.i.d., common practice is to simply set µ = 1 [74]. In this case, however, we
know a priori that each of the coefficients is 1. This creates a unique opportunity to use as
an experimental control for model precision. From Equation 3.1, it follows that as the model
becomes completely random with all alternatives having equal probability:

lim
µ→0

pn(i) =
1

J
∀ i = {1, . . . , J} (3.14)

Intuitively, sampling of alternatives should have no material impact on a truly random
model (i.e. a model with no explanatory power) and thus I expect DE to trend toward
zero in this case. Likewise, as µ → ∞, the model becomes completely deterministic, which
should produce the highest values of DE. Thus, to investigate the effect of model precision
on DE, I repeat each simulation for seven values of µ = {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}.
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This is analogous to the approaches of [51, 75] to assess the effect of noisy data on parameter
estimation.

Lastly, I generate 25 synthetic populations of N choosers and J alternatives representing
all possible combinations of N = {7.5× 102, . . . , 7.5× 106} and J = {2× 102, . . . , 2× 106}.
This makes it possible to assess the change in DE as the scale of the model approaches that
of microsimulation in terms of number of choosers and alternatives. All 25 datasets are
regenerated for every value of µ for each of the 10 runs for a grand total of 1750 distinct
datasets.

Importance Sampling

The final component of the analysis is an investigation of the benefits of alternatives sampling
strategies over SRS in terms of dispersion error. In theory, a strategic sampling strategy like
importance sampling should reduce the sample rate required to obtain choice sets with
relevant (i.e. high utility) alternatives. Since the experiment described above necessarily
involves computing the true, unconditional choice probabilities pn(i) for all choosers and
alternatives, I conduct a second set of simulation runs in which each choice set Dns is
constructed using the unconditional choice probabilities as sample weights. The use of
importance sampling means choice sets are no longer constructed from truly random draws.
As such, the uniform conditioning property (Equation 3.2) does not hold, and the more
generalized form of the conditional probability pn(i|Dn) defined in Equation 3.1 must be
used instead [74, p268].

Computation

The entirety of each simulation, from sampling of alternatives to the calculation of choice
probabilities, is performed on a single NVIDIA GeForce RTX 3090 graphics processing unit
(GPU). I leverage the open source JAX library to perform extremely fast linear algebra
operations on the GPU [72]. Although the duration of each simulation is still quite long for
the largest datasets (Figure 3.2), initial tests indicated that run times with a CPU-based
approach would have been prohibitively slow. It is possible that massive parallelization
across a sufficient number of CPU’s could achieve run times comparable to the GPU (choice
probabilities are computed independently across choosers) but such an approach was deter-
mined to be cost prohibitive given the number of processors required and the current cost
of on-demand cloud computing resources.

The use of a single GPU does impose strict limits on the amount of data that can be
processed at once. I experimentally determined that the full table of N × J probabilities
would exceed the 24GB memory capacity of the GPU for scenarios where N ×J ≥ 1.5×109.
In scenarios above this threshold, I compute choice probabilities in batches of choosers, with
larger datasets requiring more batches, and fewer choosers per batch as J increases. The
inefficiency of batched processing is reflected in Figure 3.2, which shows that the average and
per-chooser runtimes are essentially invariant to the number of choosers until the dataset
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Figure 3.2: Average runtime for each of the 1750 datasets by population size (N and J). A
single runtime represents the total duration to simulate probabilities and compute dispersion
error at all nine sample rates.
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sizes exceed the batching threshold. This means that although the analysis is quite slow to
run for the largest datasets, runtimes could be drastically reduced by processing batches si-
multaneously across a cluster of GPUs rather than in a queue on a single processor. However,
such optimization is not the intent of this research.

3.3 Results

Experimental Results

In general I find that dispersion error is highly correlated with lower sample rates, model
precision (larger µ), and smaller choice sets (J). Figures 3.3, 3.4, and 3.5 highlight these
relationships across each of the 25 dataset sizes. For almost every scenario, the highest
overall error is observed for the highest value of µ. The effect of sample rate aligns with
expectations, with dispersion error trending towards zero as sample rate approaches 100%.
In nearly every case we observe a trend of diminishing benefits for marginal increases in
sample rate, with the greatest reduction in dispersion error observed on the interval from 10
to 20%.

Lower model precision is consistently associated with lower levels of dispersion error,
lending support to the initial hypothesis about the attenuating effect of model noise on error
due to sampling of alternatives. Notably, in many cases the effect of model noise is found to
have a greater impact on dispersion error than sample rate. For example, Figure 3b shows
that that reducing the precision by a factor of two (µ = 1 to µ = .5) has a greater impact
than tripling the sample rate (10 to 30%). Obviously in practice a modeler does not have
the ability to exogenously define or even observe the scale parameter separately from the
parameter coefficients, but this finding is nevertheless significant. In particular, it suggests
that in low-precision models, there is less to be gained from using larger and larger sample
rates.

The size of the universe of alternatives (J) is also observed to have a significant effect on
dispersion error, albeit the opposite effect of what was anticipated, with the highest levels
of error observed for models with the fewest alternatives, and comparatively little dispersion
error observed for scenarios with the largest choice sets. For example, at J = 2e6, the range
of dispersion error observed for a 10% sample rate across all values of µ is reduced to that
of a 70-80% sample for the equivalent J = 200 scenario. Although the cause of this trend
is not immediately clear, it does align with results reported by both [51] and [52], though
neither paper makes explicit mention of it. This finding is discussed in greater detail in the
discussion section below.

Importance Sampling

The results of the importance sample simulation runs, summarized in Figure 3.6, show
that the benefit of importance sampling over SRS is limited only to those models with the
highest levels of precision (i.e. very low variance of error). More surprisingly, however, is
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Figure 3.3: Mean dispersion error across 10 runs for each of the 1,750 model scenarios.
Curves highlight the rate at which dispersion error decreases with larger sample rates.
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Figure 3.4: Detail view of the top left grid cell from Figure 3.3
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Figure 3.5: Heatmaps show differences in mean dispersion error across scenarios.
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that importance sampling actually performs worse than SRS for the majority of scenarios
tested here, particularly for large choice set (J ≤ 2000) scenarios and low precision models
(µ < 1). This represents an important and novel finding of the study, which challenges
traditional wisdom about best practices for sampling from large choice sets.

With respect to the size of the universe of alternatives, I find that dispersion error is
largely invariant to the scale of J under importance sampling. Meanwhile dispersion error
under SRS is shown to decrease dramatically as J increases. Comparatively, this means that
any advantage offered by importance sampling for small J scenarios is quickly lost as the size
of the universe of alternatives approaches the most disaggregate scales and the performance
of SRS improves. The performance of importance sampling is also found to vary with model
precision, with the most precise models demonstrating the greatest benefit. This makes
intuitive sense, since Equation 3.5 shows that when ϵin is smaller, the information contained
in the model Vin necessarily represents a greater portion of the total utility Uin for each choice.
Although Lemp & Kockelman [51] found a similar correlation between model precision and
benefit of strategic sampling, they are unable to identify this threshold beyond which SRS
is able to out-perform importance sampling, owing to the limited number of scenarios they
test and their explicit focus on parameter estimation instead of aggregate error.

Less intuitive is why importance sampling would actually exacerbate dispersion error for
low precision models. By examining the individual probability massings (Equation 3.7) for a
number of scenarios, I was able to determine that the vast majority of this error is actually
the result of underdispersion, a kind of statistical overfitting where so much of the aggregate
probability mass is allocated to the highest utility alternatives that the lowest probability
alternatives are essentially ignored. Figure 3.7 shows the results of this analysis for a scenario
with 750 choosers and 200 alternatives. One possible explanation as to why this phenomenon
has gone unnoticed until now is that underdispersion does not lead to choosers selecting
“bad” alternatives. This means that any metric which relies on the simulated choices of
individual choosers, such as those used in [52] and [51], rather than the full distribution of
choice probabilities, cannot capture this type of error.

Application to Real Data

In order to validate my experimental results, I estimate a location choice model with real
data from the 2012 California Household Travel Survey (CHTS). I limit this model to include
only in-region, out-of-home discretionary activities completed by residents of the nine County
San Francisco Bay Area during the survey period (n=28,880). I aggregate activity locations
to the Census Block Group (n=106,910), and estimate a model by randomly sampling 1,000
alternatives per chooser (Table 3.1). Given the already extremely small standard errors
obtained from this model, it was deemed unnecessary to use a larger sample size.

For the prediction phase I generate a synthetic population of choosers using the open
source SynthPop software [76]. From this I randomly sample 4e5 choosers such that the
ratio of choosers to alternatives is comparable to that of the original Nerella and Bhat [52]
experiment. I perform the same series of simulations that were carried out on the synthetic
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Description Coeff. Std. Err. z p > |z|
Log(% retail) 2.2708 0.032 71.36 0.000
Log(total jobs) 0.6120 0.003 233.45 0.000
Log(total pop.) 0.0377 0.002 15.92 0.000
jobs-to-housing ratio -0.0001 0.000 -11.06 0.000
Log(dist. to CBD) : household vehicles/person 0.1165 0.001 110.50 0.000

Log-likelihood: -167,200.577, Pseudo R2:, 0.160

Table 3.1: Multinomial logit model of discretionary activity location choice estimated from
California Household Travel Survey data (n=28,880)

data, varying the sample rate and scale parameter (J is fixed), and compute dispersion error
for each scenario. A comparison of these results against the experimental data shows that
the dispersion error in the CHTS model closely approximates the expected error of the low
precision (µ < 1) experimental models for a similarly sized dataset (Figure 3.8).

This pattern holds true for all nine sample rates, and suggests that the experimental
findings described above are more than just an artifact of the data generation process.
Importantly, it also provides contextual information about the relative precision of the CHTS
model, at least insofar as it relates to prediction error. I discuss the significance of this below.

3.4 Discussion

The results of this analysis raises several critical issues that to date have not been ade-
quately addressed in the scientific literature on sampling of alternatives in discrete choice
models. I will briefly describe each of these here, and then discuss their implications both
for practitioners and for future research.

The Inadequacy of Sample Rate Recommendations

The first two issues arise from the observation that in many scenarios, both model precision
and the size of the universe of alternatives are found to be more significant determinants of
the bounds of dispersion error than sample rate alone. This is significant because it suggests
that the validity of many commonly cited sample rate guidelines may be more limited than
previously thought. For example, the authors of [52] recommend a minimum sample rate
of one-eighth (12.5%) for MNL using SRS. They do not, however, test the robustness of
this result against varying levels of model precision, making it impossible to determine how
well their findings might generalize to a model estimated on real data. Furthermore, their
findings are based on experiments in which the total number of alternatives is fixed to 200,
which given the evidence presented here, would likely not hold for choice scenarios in which
the universe of alternatives is many orders of magnitude larger, such as those found in even
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modestly disaggregate travel or land use demand models. The good news for practitioners
is that larger choice scenarios are associated with smaller aggregate error due to sampling of
alternatives and thus the recommended 12.5% sample rate recommended is probably much
larger than necessary, particularly for the most disaggregate scenarios. This is made clear
from Figure 3.8, which shows that average dispersion error is reduced by approximately two
orders of magnitude as the size of the universe of alternatives increases from 200 to 2e6,
regardless of the scale parameter and sample rate.

The sensitivity of dispersion error to model precision is particularly problematic for es-
tablishing sampling guidelines because in practice one cannot explicitly observe the scale
parameter separately from estimated parameters. However, the simulation results from the
CHTS model described above make it possible to infer something about the expected range
of precision one might encounter in practice. Specifically, Figure 3.8 shows that the dis-
persion error observed in the CHTS model aligns quite nicely with the experimental results
for models in the low-precision regime (µ < 1). This is a strong indication that the CHTS
model, and other highly disaggregate location choice models like it, may have relatively low
levels of precision. If this is the case, then based on evidence presented here, practitioners
should expect only modest gains from the use of sample rates greater than 10% under sim-
ple random sampling (Figures 3.3, 3.4, 3.5). This is consistent with what we observe in the
CHTS model, in which dispersion error decreases from 0.004 to .0025 when doubling the
sample rate from 10 to 20%. A 40% reduction in error might seem significant, but in abso-
lute terms it corresponds to a mere 0.15% of the total probability mass of the population.
More work should be done to confirm these findings using other sources of estimation data
and simulated choices.

Compared to model precision, the fact that the size of the universe of alternatives is a
known quantity should make it easier for practitioners to incorporate its observed effect into
their modeling decisions. However, given the surprising finding that large J scenarios ac-
tually exhibit less overdispersion as a proportion of total probability mass, some additional
discussion is merited. Figure 3.9 shows the results of a secondary analysis in which we com-
pare the empirical distribution of true probability massings (100% sample) at two different
values of J . These results show that as J increases, the aggregate choice probabilities do
become more concentrated in the peak and tails of the distribution, as measured by higher
values of skewness and kurtosis, respectively. However, both the standard deviation and the
maximum value of probability mass for a given alternative are on average smaller. The net
effect of these dynamics is that the peak of the distribution of 1

N

∑
n pn(i) does not grow

as fast as the tail, meaning that the number of bad alternatives increases faster than the
aggregate probability that is concentrated in the good ones. In one sense, then, the initial
hypothesis about the effect of J was correct: as the size of the universe of alternatives in-
creases, simple random sampling is less likely to produce choice sets containing the highest
probability alternatives. So why then does error due to random sampling of alternatives
actually improve for larger values of J?

To answer this question one must recognize that the goals of model estimation and
forecasting are not the same. Specifically, in a choice scenario where alternatives are not
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subject to capacity constraints, forecast performance is not optimized by increasing the
within-sample variance among alternatives like it is for estimation. Rather, if the accuracy
of a forecast under sampling of alternatives is defined by the ability to replicate the aggre-
gate demand for alternatives obtained without sampling alternatives, it follows that optimal
results are obtained when sampled choice sets are representative of the universe of alterna-
tives. Thus, if the variance of 1

N

∑
n pn(i) shrinks for larger values of J , dispersion error

due to random sampling of alternatives should decrease as well. It is also worth noting that
even though we have artificially controlled for model precision in this secondary analysis,
in practice precision will be strongly correlated with the variance of the utility of alterna-
tives. This idea is supported by the results of the CHTS model, which showed that a typical
microsimulation-scale location choice model belongs to the regime of low-precision models
in which dispersion error is relatively small.

Simple Random Sampling: Not So Bad After All?

The distinction between estimation and forecasting also explains why the widely held belief
about the effect of importance sampling proved incorrect in the context of this study. As
shown in Figure 3.7, importance sampling does in fact produce distributions of aggregate
demand where a greater proportion of probability mass is allocated to the higher utility
alternatives. Since the utility functions themselves are unchanged between the sampling
strategies, this simply means that importance sampling is functioning as intended, with
high utility alternatives showing up in sampled choice sets more frequently. This is what
makes importance sampling beneficial for parameter estimation. However, the results shown
here suggest in the context of forecasting aggregate demand for alternatives which are not
capacity constrained (e.g. discretionary activity location or route choice), this very same
mechanism can actually lead to dispersion error of another kind: under-dispersion, or an
overallocation of probability mass to high-utility alternatives. For choice scenarios which are
capacity-constrained (e.g. building-level residential location choice), or models which treat
demand as a market-clearing process, over-selection of high-probability alternatives is not
possible and the effect of this under-dispersion is likely immaterial. However, if the choice
model design is not self-regulating in this way, then importance sampling may in fact produce
demand forecasts which are less accurate than what would be obtained with SRS, particularly
if model precision is low or the size of the universe of alternatives is large. It is possible that
a less precise importance sampling approach, one that is not based on the true probabilities
pn(i) for each alternative, would mitigate the under-dispersion effect observed here. Future
work should investigate whether heuristic-based importance sampling strategies, for example
one based on the distribution of observed trip distances, might perform better.
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3.5 Conclusions

The results of this study strongly suggest that forecast error due to sampling of alternatives
in discrete choice models is less significant than previously hypothesized. In many cases,
simple random sampling is shown to produce choice probabilities which match the true
distribution of aggregate demand quite well, particularly when model precision is low. Since
model precision is expected to decrease as the size of the universe of alternatives increases, it
follows that the impact of random sampling of alternatives should lessen as choice scenarios
approach the microsimulation-scale. Empirical evidence from a model estimated on real
survey data lent further support to the notion that microsimulation-scale models will tend
to have low levels of precision relative to the possible scenarios tested here. Additionally,
simple random sampling is found to outperform an importance sampling strategy for all
but the smallest, most precise choice scenarios. Although the validity of this finding is
limited to unconstrained choice problems, it is nonetheless significant in that it challenges
the prevailing belief that optimal sampling strategies for model estimation are necessarily
optimal for demand forecasting as well.

A secondary contribution of this study is that it has demonstrated of the potential of
GPU-based computing for simulation of discrete choice models with massive choice sets. It is
quite possible that as GPU technology becomes more pervasive and the costs of purchasing
or renting time on a cluster of GPUs becomes more affordable, sampling of alternatives may
no longer be necessary at all. In the meantime, land use and travel demand modelers would
do well to mind the differences between estimation and forecasting as it relates to sampling
of alternatives, and think twice before turning to importance sampling as a one-size-fits-all
solution.
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Figure 3.6: A comparison of mean dispersion error for 10 runs under simple random sampling
and importance sampling. Only 3 of the 252 (1.2%) of scenarios tested exhibit reduced
dispersion error under importance sampling, identified in the third row of heatmaps with
a “+”. Otherwise, SRS provides a much better fit to the true distribution of aggregate
demand.
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Figure 3.7: A comparison of the distribution of probability massings (PMi) for a population
of 750 choosers and 200 alternatives generated using a 10% sample rate with simple random
sampling (pink) and importance sampling (turquoise). Importance sampling produces a
more accurate distribution of aggregate choice probability when model precision is high (µ >
1.25) and the true distribution of probability mass is concentrated among fewer alternatives,
where SRS shows evidence of overdispersion. Conversely, when model precision is low,
importance sampling leads to underdispersion of aggregate choice probability relative to the
true distribution. In such cases SRS seems to produce a better fit.
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Figure 3.8: A comparison of experimental results to those obtained from a model estimated
on data from the California Household Travel Survey (CHTS). Each grid cell plots the
relationship between average dispersion error and the size of the universe of alternatives for
a given scale parameter (µ) and sample rate. The black ‘×’ represents the CHTS results in
which the true scale parameter is unknown.
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Figure 3.9: Descriptive statistics of the true distribution of probability mass by number of
alternatives J for 100 iterations with µ = 1 .
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Chapter 4

Population Synthesis of Business
Establishments with Bayesian
Networks

4.1 Introduction

One of the chief benefits of using microscopic models is the increased behavioral realism
that results when short- and long-term mobility decisions are determined at the level of
the individual chooser. However, the ability to construct models of this nature depends on
the availability of disaggregate data to feed into them. Thus, as the use of Activity-Based
Models (ABMs) and microsimulation has grown in recent years, so too has the need for highly
detailed datasets. For certain applications, like the estimation of behavioral models, sampled
population records of the kind found in the typical household travel survey are sufficient,
provided that the sample is representative (random) or that sample weights are well-known.
The simulation phase of the urban modeling workflow, however, is much more challenging in
this regard. In order to generate a forecast of regional demand, choices must be generated for
every chooser in the region, and thus a fully enumerated dataset of disaggregate population
records is required. Population synthesis is a well-established practice by which this can
be achieved through the use of algorithms or models to scale up a sample of disaggregate
observations.

In the case of business establishment data, even sample records can be difficult to acquire.
In the United States, this is due to the fact that most of these data are derived from tax
records, and federal law prohibits publishing even the fact that a business has filed [77]. A
lack of publicly available “firmographic” microdata has meant that the application of meth-
ods for population synthesis to the study of regional business dynamics has lagged behind.
As a result, some urban microsimulation systems do not characterize business establishment
populations with the same level of fidelity as persons or households counterparts, while oth-
ers simply treat businesses as static, supply-side amenities (e.g. jobs) that may attract trips
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but do not operate as agents within the system [78–80].
The purpose of this chapter is to describe two ways in which recent advances in prob-

abilistic modeling can make business establishments more accessible through population
synthesis. Both approaches outlined below use a set of proprietary business establishment
microdata to estimate Bayesian network-based models which encode the joint distributions
of all possible combinations of establishment attributes. In the first approach, the estimated
models are used to generate a replica of the original dataset comprised entirely of synthetic
records, thereby preventing the disclosure of confidential data. The second method shows
how the same models can be used to enrich publicly available aggregate data sources to
produce similarly detailed synthetic populations without the use of control totals based on
proprietary data. By helping democratize access to business establishment microdata these
efforts stand to improve the internal validity of many microsimulation systems in use today
while also advancing the field of study as a whole by encouraging scientific collaboration and
the adoption of these methods.

Population Synthesis for Households and Persons

Typically synthetic population data is created by oversampling a population of real micro-
data (e.g. from a survey or Public Use Microdata Sample (PUMS)) and then allocating
those records geographically to match known distributions of aggregate sociodemographic
characteristics [76]. A rich body of scientific literature exists which is dedicated to this type
of population synthesis, and methods are constantly being improved upon to generate more
accurate, representative synthetic populations. Because the requisite microdata inputs for
household and person populations are often publicly available at no cost, and because once
generated, synthetic records can be shared freely among collaborators without fear of dis-
closing personally identifiable information (PII) or illegally distributing proprietary data,
recent advances in population synthesis have dramatically lowered the barrier to entry for
demographic microsimulation. Although these data can typically be accessed remotely, re-
strictive data licensing agreements often make collaboration just as difficult, and may even
limit the types of findings that a researcher can publish.

According to a 2014 survey, most methods of population synthesis fall into one of two cat-
egories: analytic or combinatorial [81]. Analytic methods are typically based on some kind
of iterative balancing of marginal distributions of population attributes until the population
converges towards a known control. Because this control is often known only for a very high
level geography, spatial allocation or upsampling is often performed as a post-processing
step. Iterative proportional fitting (IPF), first proposed in 1940 [82], is the most commonly
employed analytic method, and many other popular techniques are based upon it, including
iterative proportional fitting for synthetic reconstruction (IPFSR) [83] and iterative propor-
tional updating (IPU) [76]. Combinatorial optimization (CO) methods, on the other hand,
refer to an approach in which an initial population is generated by oversampling a set of
microdata and then successively replacing individual records with new draws in order to
improve the fit [84]. These methods are less common, but recent studies have shown CO to
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perform better than analytic methods in a number of cases [85, 86]. More recently, Sun and
Erath [87] have proposed a third “alternative modeling paradigm” based on modeling causal-
ity and dependence among population attributes, which they demonstrate through the use
of Bayesian networks. The research presented here aims to contribute to the growing body
of literature on this new paradigm in population synthesis by evaluating its performance in
the context of business establishments.

The Need for Better Businesses Data

The vast majority of the scholarship on population synthesis for urban modeling focuses on
populations of persons and households rather than businesses or jobs. One major reason
for this discrepancy is the availability of data. In the United States, for example, there
is no publicly available set of national business listing microdata comparable to what the
American Community Survey PUMS data provides for person and household-based popula-
tions1. In the case of the United States, disaggregate business establishment data actually
is collected 2,3, but is typically only made available to the public in aggregate form4,5. Re-
searchers can apply for access to “restricted use” data6, but the process is cumbersome and
even successful applicants may be deterred by on-site access restrictions which preclude sci-
entific collaboration and can impose significant travel expenses[77]. As a result, commercial
products purporting to offer population-level coverage have become a popular alternative for
researchers with the funds to purchase these expensive datasets (e.g. [88]). Although these
data can typically be accessed remotely, restrictive data licensing agreements often make
collaboration just as difficult, and may even limit the types of findings that a researcher can
publish. Even more prohibitive, however, are the costs associated with actually purchasing
these data. Thus the refusal of the government to publish a PUMS product for business
establishments has not prevented the acquisition of these data by anyone with the means
to do so. Instead it has allowed the free market to determine who is able to contribute to
scientific discovery in this domain.

One recent development that is worth mentioning here is SynLBD7: a comprehensive ef-
fort by researchers from the United States Census Bureau and affiliated institutions to create
a synthetic version of the Longitudinal Business Database microdata deemed appropriate for
public consumption [77, 89]. Although this work should be applauded, in practice it seems
that access is still heavily restricted. Namely, an application process is still required, albeit
streamlined, and while data can be accessed remotely they cannot be downloaded . Even the

1See https://www.census.gov/programs-surveys/acs/microdata.html
2https://www.census.gov/programs-surveys/ces/data/restricted-use-data/longitudinal-business-

database.html
3https://www.census.gov/programs-surveys/ces/data/restricted-use-data/lehd-data.html
4https://www.census.gov/programs-surveys/cbp.html
5https://lehd.ces.census.gov/data/
6For example, see https://www.census.gov/about/adrm/ced/apply-for-access.html
7See https://www2.vrdc.cornell.edu/news/data/lbd-synthetic-data/
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results of analysis performed on the remote access server can only be retrieved by placing
additional requests for “specific files that are a result of their analyses”8.

Bayesian Networks

Bayesian networks, also known as Bayesian belief networks, refer to a class of models which
describe the joint distribution of random variables as a Directed Acyclic Graph (DAG) of
conditional independencies. In the graphical structure of a Bayesian network, each node
corresponds to a random variable and stores the probability distribution of the possible
values that it can take conditional on the values of other nodes upon which it depends. These
conditional independencies are encoded as the edges of the graph, connecting nodes where
such a relationship exists. Because the graph is directional, the edges imply a causal flow of
conditional independence, where the marginal probability of a given node depends only on
its parents. This means that each node is considered to be conditionally independent of all
other non-descendent nodes given its parents [90]. Thus in the example Bayesian network
in Figure 4.1, nodes b and c are conditionally independent given a, as are a and d given c.
Likewise, a node without parents is interpreted to be independent from all other variables
in the network.

a

b c

d

Figure 4.1: An example of a directed acyclic graph.

By storing information about conditional independencies in this way, the structure of a
Bayesian network allows for the extremely efficient computation of joint probabilities. An-
other advantage of the approach is that apriori knowledge can be encoded into the structure
of the graph, which significantly reduces the search space during the structural learning (i.e.
model estimation) phase. Bayesian networks also make it easy to leverage apriori knowlege
to perform evidence-based sampling on a model that has already been estimated.

Although the development of Bayesian networks dates back to the late 1970s [91], these
and other attractive features have contributed to the growth of their popularity across a

8https://www2.census.gov/ces/synlbd/SynLBDapplication.pdf
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number of fields of study. Recently, a number of studies have demonstrated the use of
Bayesian networks as a tool for privacy-preserving data publishing [92, 93]. In the present
study I draw upon this work as well as that of [87] to show how Bayesian networks afford
modelers the ability to strike a balance between data obfuscation for privacy preservation
and predictive accuracy for effective population synthesis.

4.2 Data

The primary data source used in this study is the National Establishment Time Series
(NETS) [94]. NETS is a longitudinal database of establishment-level observations designed
to track business starts, relocations, and dissolutions for the entire universe of businesses
in the United States. Business characteristics recorded in the database include the age,
sales, industry sector, number of employees, and geographic location over time. The NETS
database is one of the more popular sources of establishment-level data used by researchers
across a variety of disciplines [95–99].

NETS data is best understood as a combination of employer and nonemployer business
establishments. The union of Census County Business Patterns (CBP) and Nonemployer
Statistics (NES) thus provides the closest approximation of the population of businesses
covered by NETS in terms of publicly available Census data products9. Although the NETS
records fall short of the full universe of establishments one would expect from the union
of these two sub-universes (CBP + NES), numerous studies have shown that the NETS
microdata is reliable for detailed analysis of business activity [100, 101]. Below, Table 4.1
characterizes the different Census data products which offer (aggregate) establishment counts
and attributes.

Product Universe Geography Sector Size Age Sales Payroll

CBP Payroll County
√ √

– –
√

NES Nonemployer County
√ √

–
√

–
ZBP Payroll ZIP Code

√ √
– – –

BDS Payroll MSA
√

–
√

– –
BDS Payroll County – –

√
– –

BDS Payroll County
√

– – – –

Table 4.1: Summary of public establishment count data products from the US Census.

Figures 4.2-4.4 compare the frequency distributions of business attributes between the
NETS records and the CBP + NES universe by county and two-digit NAICS sector code.

9Because NETS does not distinguish between employer and nonemployer establishments, and because
every establishment in the database shows at least one employee, it is assumed that employment counts
include the business owner. Thus 1 is subtracted from each employment count in order to compare NETS
and Census totals, in line with the approaches of [100, 101]
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Figure 4.2: NETS vs. Census (CBP + NES): marginal distributions of establishments by
county, size, and sector

Because each population contains a different number of total business establishments, rates
are used to compare them instead of absolute counts. Figure 4.2 suggests that the marginal
distributions of establishments by county, sector, and size are quite similar between the two
data sets, while 4.3a shows that the joint distribution by county and sector is somewhat
noisier. However, most of this noise appears to be due to sector-level variation as shown in
Figure 4.3b.

Figure 4.4 presents a different view of the joint distribution of each attribute pair (county,
sector, and size) which suggests that the vast majority of the mismatch between the NETS
and Census data is being driven by sector-level discrepancies in smallest class business estab-
lishment sizes. This finding is consistent with the assessment of NETS data by Barnatchez
et al. [101] which identified the smallest class of establishments as the primary source of
error between NETS and official Census-based sources.
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(a)

(b)

Figure 4.3: Nets vs. Census (CBP + NES): Sector frequency rates by County
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Figure 4.4: NETS vs. Census (CBP + NES): Attribute pair frequency rates and error

4.3 Methodology

The general approach applied here follows that of a typical machine learning workflow. A set
of training data is first identified, prepared, and used to estimate a model, and that model is
then used to generate predictions. Below I describe the process of applying this approach to
generate synthetic populations of business establishments for the nine county San Francisco
Bay Area region.
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Data Extraction and Cleaning

The vast majority of NETS database is comprised of longitudinal data. And although
it may be desirable for certain analytic applications to synthesize longitudinal dynamics
[77], only single-year “snapshot” is necessary for the purposes of creating a set of base-year
population inputs for microsimulation. Thus the first step in the approach outlined here is
to extract from the NETS database only those records which correspond to establishments
not categorized as “OutOfBusiness” for the year in question. In this case 2017 is defined
as the base-year. Of these records, only a small subset of business attributes are used for
population synthesis. These attributes are as follows: COUNTY, TRACT, SECTOR, AGE,
SIZE, SALES. Table 4.3 describe each of these attributes as well as the schemes used for
binning continuous variables into discrete categories.

field description categories / breaks # classes

COUNTY 3-digit FIPS code
001, 013, 041, 055, 075, 081, 085, 095,
097

9

SECTOR 2-digit NAICS code
11, 21, 22, 23, 31-33, 42, 44-45, 48-49,
51, 52, 53, 54, 55, 56, 61, 62, 71, 72, 81

19

AGE Years since start [< 1, 5, 10, 15, 25+] 6
SIZE # employees [< 4, 9, 49, 99, 499+] 6
SALES Annual sales ($) [< 77300, 122200, 200000, 400000] 5

Table 4.3: Business attributes used for population synthesis.

While Bayesian networks are not theoretically limited to categorical variables, there are
few advantages offered by using continuous data in the context of population syntheses. For
example, if the behavioral models that comprise an urban microsimulation are estimated
from discrete data, any continuous variables in the synthetic population may wind up being
discretized anyways. Secondly, as previously mentioned, most potential sources of validation
data are only available in an aggregate, categorical format, thus making it difficult to assess
the validity of any additional precision offered by continuous variables. Lastly, restricting the
dataset to categorical variables makes it possible to leverage existing open-source software
solutions for estimating Bayesian networks.

The NETS database records a total of 619,047 unique business establishments that were
active as of the year 2017 across the nine counties included in this study. Of these, 15,253
observations (2.5%) have no SALES values recorded. However, one attractive feature of
Bayesian networks is that it is possible to estimate models from inconsistent or incomplete
data. The only records which are discarded for incompleteness are the 172 entries with ge-
ographic coordinates that position them outside of the study area. At this stage, 618,875
unique establishments remain. For the sake of comparison, Census County Business Pat-
terns and Nonemployer Statistics data identify 204,230 and 686,361 establishments for 2017,
respectively, for a total of 890,591 establishments across all nine counties. This finding is
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consistent with other studies that have suggested NETS data reflects a combination of em-
ployer and nonemployer businesses that is less comprehensive than the true union of these
two universes [101, 102]. Finally, observations with NAICS codes 92 (Public Administration
and Government) and 99 (Unclassifiable) are dropped, the former because none of the Cen-
sus data products used for validation contain establishments in this sector, and the latter
because these records are not useful for the purposes of constructing a synthetic population.
Thus, a total of 552,868 establishment records are used to train the models described below.

Model Estimation

Multiple estimation strategies are tested based on four levels of stratification and two ap-
proaches to structural learning. The four stratification levels tested are “pooled” (unstrat-
ified), County, Sector, and County-Sector. The two methods used for learning the opti-
mal structure of Bayesian networks are both based on the dynamic programming and A*
(DP/A*) algorithm as implemented in the pomegranate package for probabilistic program-
ming in Python [103]. The first method learns the structure of each network without any
user input, while the second method makes use of user-defined constraints.

The use of constraints is a feature of Bayesian network learning that encodes apriori
knowledge into the model specification. This has the dual benefit of drastically reducing the
search space over which a model is optimized, and also allowing the user to take advantage of
domain knowledge they may have about the relationships between variables in the network.
In this study, the only constraints that are imposed are the specification of the root node in
the model. Figure 4.5 shows the different network structures that result when constraints
such as these are imposed. See Table 4.2 for more detail.

For each of the models which include county-level stratification (County and County-
Sector levels) I estimate a secondary specification that includes an additional TRACT node
as a part of the network structure, whose possible values correspond to the Census Tracts in
each county. Including TRACT as a variable allows the Bayesian network models to perform
a kind of spatial allocation in the same step as population synthesis.

It is also worth noting that Bayesian networks make it easy to work with sparse datasets.
Because they are at their core simply a series of conditional probability tables, the “zero-
bin” issue that plagues other approaches to population synthesis can be avoided by adding
pseudocounts to each set of estimation data if there exist combinations of attributes for
which no observations are recorded. Pseudocounts can even be fractional in order to avoid
biasing data when the total number of observations is small. In the models below, I use a
pseudocount value of 1 unless stated otherwise.

Simulation

Synthetic populations are generated by drawing samples from each of the fitted Bayesian
networks according to two approaches. The two approaches differ only in the source of the
control totals which are used to constrain the sampling process, with the former relying on the
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(a) Constraints: NONE (b) Constraints: root=COUNTY

Figure 4.5: Learned network structures with and without constraints for pooled models (1)
and (2)

original NETS data, and latter using only publicly available Census data. The first approach
can be viewed as a technique for data obfuscation, where Bayesian networks are employed
to create extremely accurate synthetic representations of the original input data that can
be shared without the risk of disclosing proprietary data or PII. The second method, on the
other hand, is perhaps better described as a kind of data enrichment process or multiple
imputation [104], where the models are used to enhance the fidelity of an existing data
set by appending new attributes to it. Notably, this method also represents an even more
conservative approach in regards to data privacy since not even the control totals are based
on proprietary data.

In the synthetic populations that are described below, only COUNTY and SECTOR
variables have been employed as controls, while the rest of the variables are drawn proba-
bilistically from the fitted models. The way control totals are imposed depends on the level
of stratification that is used. With pooled models, for example, in which both COUNTY
and SECTOR are both represented as nodes in the Bayesian network, COUNTY and SEC-
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TOR values are assigned as “evidences”, and samples are drawn according to the number
of times each unique (COUNTY, SECTOR) tuple appears in the observed population of
record. When evidence for a variable is supplied to a model during sampling, the the cor-
responding node in network is temporarily fixed to that value. For county-level models,
however, there is no COUNTY node, so only SECTOR can used as evidence, and COUNTY
is instead controlled for by drawing samples from a given county-level model and appending
a value corresponding to that county for each sample that is drawn. Thus in the case of
county-sector level models, no evidence is passed to the model at all, and control totals are
instead enforced by the number of samples that are drawn from each county-sector model.

Lastly, I perform an auxiliary analysis to demonstrate how different combinations of
model design and Census-based control totals can be used to perform sub-County spatial
allocation of synthetic business establishment.

4.4 Validation

Assessing Goodness-of-fit

Each synthetic population is validated against the dataset from which the marginal distribu-
tions of establishment counts (control totals) were drawn to generate the records. In addition
to visual assessment, two common measures of goodness-of-fit for synthetic data are used.
The first is the Standard Root Mean Squared Error (SRMSE)

SRMSE =

√√√√ M1∑
m1=1

· · ·
MN∑

mN=1

(
fm1,...,mN

− f̂m1,...,mN

)2

(M1, . . . ,MN) (4.1)

whereMN is the number of categories in variable N , fm1,...,mN
and f̂m1,...,mN

are the frequency
counts for all possible attribute combinations in the observed and synthetic populations,
respectively [105]. The second metric is the Freeman-Tukey statistic (FT 2)

FT 2 = 4×
∑
i

∑
j

(√
Tij −

√
Eij

)2

(4.2)

where Tij and Eij represent the observed and synthetic frequency counts for the cell in
row i and column j in two-way contingency table of population attributes [106]. The FT 2

statistic is distributed χ2, with degrees of freedom equal to one less than the total number
of categories being matched between two populations. This makes it possible to compute
a critical value for rejecting the null hypothesis that two populations are drawn from the
same underlying distribution. All but two of the scores reported in Tables 4.4 and 4.5 allow
the null hypothesis to be rejected a 95% level of confidence or higher. Nevertheless, both
the SRMSE and FT2 metrics are useful for comparing relative levels of accuracy between
models.
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Population synthesis is repeated ten times for each of the twelve models and each source
of control totals. Tables 4.4 and 4.5 present the average metrics across each of these ten runs
for the NETS- and Census-based approaches, respectively. Because the magnitude of the
scores depends on the number of categories that are available in the reference data, I include
two sets of scores in Table 4.4: one for the full set of five variables (COUNTY, SECTOR,
SIZE, AGE, and SALES) and one for the subset (COUNTY, SECTOR, and SIZE) that
are available from the Census. The former (“All Vars.”) is used to assess the accuracy of
the NETS-based synthetic populations to the original NETS data, while the latter (“Census
Vars.”) makes it possible to compare the accuracy of the synthetic populations to those
generated from Census-based controls.

NETS-based control totals

Table 4.4 describes the results of population syntheses based on control totals taken from the
NETS data. Looking first at the “All Vars.” scores, the County-Sector level models appear
to perform the best, particularly as judged by mean SRMSE. The trend is less obvious for the
FT2 scores where there is little variation across models with the exception of all four sector-
level models which perform nearly 50% worse than the next worst performer. In almost every
case the unconstrained models appear to fit the data better, although the difference is not
large. Interestingly, model performance does not seem to suffer from the inclusion of a sixth
TRACT variable compared to the respective reference model (e.g. 5 vs 3, 6 vs 4). This could
indicate that the TRACT variables are being incorporated as descendent nodes rather than
parents, and therefore do not exert much influence over the conditional probabilities of the
other five variables. But even in the worst case scenario of a completely disconnected tract
node, the marginal distribution of establishments by tract will encode useful information for
the initial allocation of of synthetic businesses to tract geometries.

The last two columns of the table show goodness-of-fit metrics when only COUNTY,
SECTOR, and SIZE are considered. Since all but two of the models control for COUNTY
and SECTOR, either through stratification or evidence passing, this means that the scores
really only reflect variation in SIZE. In general the trends are not very different from the
scores computed using all five variables, but there is much greater variation between the
scores for the best- and worst-performing models. The County-level models are shown to
perform the worst, and by a significant margin. This holds true regardless of the metric
that is used, suggesting that important information is lost by removing COUNTY from the
structural learning process. Meanwhile the County-Sector scores are roughly 5x better. The
unconstrained models in particular (9 and 11) are the only two for which the FT2-based
null hypothesis cannot be rejected, suggesting that the difference between the synthetic and
reference distributions are not significantly different for these models, at least in regard to
COUNTY, SECTOR, and SIZE.

One additional observation worth noting is that for the pooled models, the absence of
COUNTY × SECTOR evidences does not seem to impact the fit of the synthetic popula-
tions that are generated. This is important because it means that the models can generate
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reasonably accurate synthetic populations without the use of any proprietary data apart
from the total count of businesses (and the models themselves). Figure 4.6 shows that the
distribution of fully joint frequency counts for one population generated in this way are
tightly correlated with the original NETS data, with an R2 value that is not significantly
worse than that of a population generated from the most highly stratified and best fitting
model (11). The synthetic population generated with Model (11) is itself shown to fit the
NETS data remarkably well (R2 = 0.994), and in Figure 4.7 a series of heatmaps shows very
low error in even the pairwise distributions of the three variables which are not explicitly
controlled for. Together these results demonstrate how both the design of Bayesian networks
and the protocol that is used to draw samples from them can be tailored by the modeler
depending on whether accuracy or data privacy is the priority.

Figure 4.6: Fully joint (COUNTY × SECTOR × SIZE × AGE × SALES) frequency count
comparisons for two synthetic populations generated from the best (right) and worst (left)
performing models with NETS-based controls.

Census-based control totals

The goodness-of-fit scores for the synthetic populations generated using Census-based control
totals are summarized in Table 4.5. The reference data in this case is created from the union
of the US Census CBP and NES data products. Because AGE and SALES controls are not
published by COUNTY, SECTOR, or SIZE across these data, only COUNTY, SECTOR,
and SIZE are used to compute the scores shown here. The first thing to notice is that the
SRMSEs are on average 5x greater than those in the “Census Vars.” column in Table 4.4,
while the FT2 are between one and two orders of magnitude larger in scale. Interestingly
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the pooled models here perform the best in terms of SRMSE, while the County-level models
perform best in terms of FT2. This likely reflects the fact that sector-level variation was
found to be the major source of disagreement between the NETS and Census reference
datasets (Fig. 4.3b). Thus, the models which impose external sector-level controls via
stratification (7-12) do not perform as well here compared to those which incorporate that
variation into the model structure itself (1-6) and thus avoid overfitting to the NETS data.
Overall, however, there is much less variation in goodness-of-fit between the various models
compared to what is observed when using the NETS-based control totals.

Two trends are notable in Figure 4.8, which shows the frequency count distribution plot
for a synthentic population generated using Model (3) and Census-based control totals. On
the one hand, it seems that the model is over-predicting many rare observations. At the
same time, the more common observations are underpredicted relative to the reference data,
resulting in the line of best fit which gradually trends below the line x = y. Whether the
counts are over- or under-predicted appears to depend quite heavily on the value of SIZE,
which in the figure is represented by the color of each dot. It is possible, of course, to improve
this fit by incorporating SIZE-based control totals as well, since both CBP and NES datasets
make this value available. But without AGE or SALES variables available in the reference
data to incorporate into the goodness-of-fit metrics, both SRMSE and FT2 scores would
go to zero and model fit could not be assessed. The reader will notice, however, that the
slope of the blue line of best fit in Figure 4.8 is very similar to the one seen in Figure 4.3a
comparing the NETS and Census frequency rates, which indicates that the bias observed in
the synthetic population here is likely attributable to the inherent differences between the
two datasets.

Figure 4.9 shows the joint frequency count distributions and error for every (SIZE ×
COUNTY) and (SIZE × SECTOR) tuple. Visually, the left and middle columns appear to
match quite well. The far right column shows the residual error, which again makes it clear
that size class is the variable which determines whether a particular establishment type is
over- or under-predicted. The vast majority of the error is generated by establishments in
the smallest three size classes, which mostly reflects the fact that there are relatively few
establishments in the largest three classes to begin with.

Sub-County spatial allocation with Census-based controls

Lastly, I examine how different model specifications can be combined with different sets
of control totals to allocate establishments to sub-County geographies during population
synthesis. The result is a kind of spatial “upsampling” which I achieve in three ways:
a) ZIP code-level control totals from Census ZIP Code Business Patterns (ZBP) data; b)
estimation of County-level Bayesian networks which include a Census Tract node; and c) the
combination of a) and b). Goodness-of-fit metrics are not particularly useful here since there
are no tract-level Census data to compare against. Instead, Figure 4.10 presents a series of
maps which allow for a more qualitative visual inspection of a subset of the results. In the
analyses that follow only “payroll” establishments (i.e. those with employees other than the
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Figure 4.7: Observed (left) and synthetic (middle) frequency counts and frequency count
error (right) for all pairs of non-control variables (SIZE, AGE, and SALES) in a synthetic
population generated from Model (11) with NETS-based controls.



CHAPTER 4. POPULATION SYNTHESIS OF BUSINESS ESTABLISHMENTS 71

Figure 4.8: Joint (COUNTY × SECTOR × SIZE) frequency count comparison for a syn-
thetic population generated from Model (3) with Census-based controls.
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Figure 4.9: Observed (left) and synthetic (middle) frequency counts and frequency count
error (right) for all pairs joint distribution of one uncontrolled variable (SIZE) with the two
controlled variables (COUNTY, SECTOR) in a synthetic population generated from Model
(3) with Census-based controls.
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owner) are included. This is another limitation of the reference data due to the fact that
the Census does not publish any nonemployer statistics at the ZIP code level. In order to
account for this discrepancy I estimate a second set of Bayesian network models using only
NETS records with non-zero employment.

In scenario a) a synthetic population is generated by drawing samples from a County-level
model using ZIP code control totals from ZBP data. This is accomplished by enumerating a
list of establishments by ZIP code and NAICS sector according to the ZBP totals and then
assigning each establishment to its county using a ZIP-to-County crosswalk table published
by the Census Longitudinal Employer-Household Dynamics (LEHD) program10. When a
given ZIP code is associated with multiple counties, I probabilistically assign a county ac-
cording to the percentage of the land area of the ZIP code contained in the county. I then
generate a new set of control totals and draw samples from the appropriate County-level
model according to the total count for each unique tuple of ZIP code, county, and sector
values. Scenario b) simply utilizes one of the County-Sector level Bayesian networks from
Table 4.5 which include Census Tract as an additional node. Thus, when samples are drawn
according to CBP-based control totals, a TRACT value is automatically assigned. The third
scenario incorporates both of these techniques, using ZIP-level control totals to draw samples
from a model which has a TRACT node.

A selection of the results from each approach are shown in Figure 4.10, which uses a series
of choropleth maps to compare the resulting distributions of construction sector businesses
with between one and four employees. Since both County and Sector are used as controls,
any discrepancy between the left and right columns is due to variation in Size alone. Tract-
level frequency rates are shown instead of raw counts in order to account for the difference
in total establishments between the NETS and Census datasets. The first row shows a very
similar spatial distribution of establishments between the Scenario a) synthetic population
and the ZIP-level data that were used as sample controls, although perhaps the large ZIP
code in the southeast quadrant of the city has usurped establishments from some of the
ZIP codes to the west. For Scenarios b) and c), however, there are no Census data to
compare against, and thus tract-level data from NETS is used as reference instead. Both
Scenarios b) and c) are both shown to match the NETS-based reference data quite well,
but Scenario c) appears to fit the ZIP-level reference data better as evidenced by the the
re-emergence of a high concentration of businesses on the western boundary of the city, and
a less pronounced cluster to the east. These observations are primarily qualitative in nature,
and not meant to serve as definitive characterizations of the methodologies described in
this section. Rather they are meant to demonstrate the immense flexibility that Bayesian
networks offer by allowing the modeler to generate reasonable population distributions at
varying geographic resolutions.

10https://lehd.ces.census.gov/data/lodes/LODES7/ca/
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4.5 Conclusions

Data access and privacy preservation are often competing goals when working with micro-
scopic urban models. In this chapter I have demonstrated how a probabilistic approach to
population synthesis can be used to resolve some of this tension. In particular, I showed how
Bayesian networks trained on proprietary data can be used to create realistic populations
of business establishment microdata which preserve much of the rich statistical information
contained the original records but none of the sensitive data. These synthetic populations,
as well as the underlying models themselves, can in theory be distributed among collabo-
rators without violating data use agreements or disclosing information that can be used to
re-identify individual establishments. The phrase “in theory” is emphasized here for two
reasons. First, certain data providers may explicitly prohibit a user from distributing any
derivatives of their proprietary data. Non-commercial endeavors like academic research are
often excluded from such provisions – or at least their enforcement – however such legal
questions are beyond the scope of this chapter.

The second reason is that in the approaches I have described above there is more work
that would need to be done in order to guarantee that that re-indentification is not possible.
The primary concern here is for business types which for certain geographies contain very few
observations. As the distributions in Figure 4.2 show, establishments with more than 500
employees are particularly susceptible to this type of disclosure. One potential solution is
further top-coding of the attribute classes that are used, for example combining the (99, 499]
and (500+,∞) size classes. The use of larger numbers of pseudocounts in the structural
learning phase of network estimation is another way that variable amounts of noise can be
injected into a model to meet the requirements of a particular use case. The authors of [92,
93] describe and implement a more sophisticated variation on this idea in which Laplace noise
is added to the conditional probability tables in a Bayesian network that has already been
estimated. More practical, perhaps, is an approach in which samples of business types with
small numbers of observations are generated separately from the primary data synthesis step
using less granular geographic controls. Bayesian networks give the modeler an enormous
amount of control in this regard as discussed above in the section on sub-County spatial
allocation.

In addition to refinements around privacy protection, there are opportunities to build on
the work I have described here in order to improve its usefulness. For example, the network
design can be expanded to jointly simulate populations of establishments and workers (jobs).
Sun and Erath [87] describe one way this can be implemented through the use of hierarchical
Bayesian networks, which they use to simultaneously synthesize a population of households
and persons. The Census LEHD Origin-Destination Employment Statistics (LODES) data
actually contains very detailed estimates of the distribution of jobs at the level of the Census
block which could be used to calibrate such a model and to validate its results.

It is worth questioning why in the United States public business establishment microdata
is so much more difficult to acquire than comparable datasets of persons and households.
Federal law related to the publication of tax records may be the practical explanation, but
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an ethical question remains. In the meantime I have attempted to outline a path by which
we can ensure that scientific discovery in this domain is not restricted to only those who can
afford the price of entry.
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(a)

(b)

(c)

Figure 4.10: Frequency rate distribution of construction sector (NAICS=23) business estab-
lishments with 1-4 employees in San Francisco County by ZIP code (top) and census tract
(middle, bottom).
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Chapter 5

Conclusion

“The future is not a single grand vision or an
inevitable consequence of trends, but rather an
object of manipulation, discussion, debate, and
eventually, perhaps, even consensus.”

— Martin Wachs

“Prediction and freedom are opposites: to the
extent we can predict your behavior, you are
not free.”

— Jarrett Walker

5.1 Summary

In the preceding collection of works, I have examined all three phases of the canonical work-
flow for disaggregate urban modeling, taking up issues that include rent control, simulation
error, and the democratization of disaggregate data itself. In Chapter 2, I showed how the
estimation of causal models can add much-needed evidence to the debate about a damaging
effects of vacancy-control induced eviction, an economic phenomenon which has long been
known to exist but has remained largely unexamined in the quantitative research. Chapter
3 calls attention to the significant gap between theory and practice in urban systems mod-
eling, a gap that it attempts to bridge by proposing a novel method for quantifying forecast
error due to sampling of alternatives and demonstrating its use. Lastly, Chapter 4 explores
the potential of probabilistic models to resolve the conflict that exists between access to
microdata and individuals’ right to privacy. Although broad in scope, each of these studies
shares a common purpose in contributing to the array of tools with which researchers, pub-
lic servants, and planners may study the complex dynamics which govern the function and
evolution of urban systems.
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5.2 Modeling (in) the future

In recent years much of the initial excitement over the promise of a data-driven urbanism
seems to have given way to skepticism about the ability of a system as complex as a city
to be quantified at all. In the United States, at least, this skepticism has been earned the
hard way. For example, in 2013 Edward Snowden’s revelations about the widespread use of
dragnet-style domestic surveillance programs by federal agencies caused many Americans,
some perhaps for the first time, to consider the civil liberties that might be sacrificed in order
to make a city quantifiable. Seven years later, the murder of George Floyd by Minneapolis
police served as a stark reminder that for many others, these civil liberties have already been
lost. What purpose can it possibly serve to build models of urban systems when the systems
themselves appear to be so fundamentally broken? We, as planners, engineers, academics,
and also community members, can no longer afford to avoid this question.

This means we must also grapple with the mounting evidence that suggests that in some
cases it is the models themselves, particularly those used to peer into the future, which are
to blame for our present dysfunction. As documented in [3, 5, 107–109] and elsewhere, our
increasing reliance on model-based forecasting for everything from local project approvals
to the procurement of federal dollars to build those projects has made them subject to
manipulation. When it occurs, this manipulation takes one of two forms: i) deliberate
deception by bureaucrats and corporate interests in search of “objective” data to muster
support for initiatives in which they are already heavily invested; and ii) complacent modelers
and technicians who encode their own cognitive biases into the models they design. Although
the identification of useful correctives will depend on the type of manipulation that is being
committed, both forms must be reckoned with if there is to be any place for this type of
expertise in the future.

As troublesome as these revelations may be, they do not threaten the integrity of the
planning-based professions so much as they provide an opportunity to re-establish that in-
tegrity moving forward. In fact, many positive developments have already begun to emerge
as a result, including renewed interest in the use of ex post analysis to assess forecast ac-
curacy [2, 110], reference class forecasting for reducing the influence of cognitive biases[111,
112], and the development of standards for quantifying and reporting uncertainty in fore-
casts [3, 113]. Emphasizing the role of uncertainty in forecasting is particularly important
because it forces stakeholders and even practitioners themselves to consider not only what
these models can do but also what they decidedly cannot. In the field of urban systems
modeling certain technical challenges do remain that can be solved with more sophisticated
methods, bigger datasets, and faster machines. Yet, at some point, we must also be willing
to consider that the problem we face may not be the accuracy of our models as much as
our refusal to accept that some things simply cannot be predicted. This is what Hartgen
[3] describes as the dichotomy between hubris and humility which in many ways represents
the choice faced by practitioners who must now decide for themselves which vision for the
future of demand forecasting to embrace.
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5.3 In uncertainty, possibility

Interesting things start to happen when planners allow themselves to consider an uncertain
future. Suddenly, a straight-line projection of the status quo onto a point-forecast future
becomes a branching network of emergent alternatives that could not have otherwise been
imagined (Fig. 5.1). Yes, the incorporation of uncertainty into urban modeling is useful for

Figure 5.1: A branching network of emergent futures.1

encouraging stakeholders to think about forecasts in distributional terms, and to temper their
expectations with caveats and confidence bands. But at a moment in history when the status
quo feels so untenable, one is tempted to look beyond the 95% confidence interval and instead
to the margins, and to find there possibility there rather than low-probability outcomes to
ignore. In other words, whereas yesterday’s planner may have viewed uncertainty with a
certain contempt, the planner of today may see a way out.

Perhaps, then, in modeling uncertainty, there is also an opportunity to envision alter-
native futures; and maybe, working backwards from the most desirable outcomes, we can
make inferences about the interventions we must make in order to achieve them. Instead of
dispassionately building models to tell us what our cities will look in the year 2050, let us
first ask ourselves what we want them to look like, and then use the quantitative tools at
our disposal to guide us there.

1Figure based on [114]
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Appendices

Appendix A

Table A1: “Just Causes” for Eviction Under the San Francisco Rent Ordinance.
Adapted from Asquith (2019), Chapter 37 of the San Francisco Administrative Code and
https://sfrb.org/topic-no-201-overview-just-cause-evictions.

Just Cause
Eviction
Category

Whole-
Building
Eviction

Relocation
Payment
Required

Change
in Rent
Control

Change
Takes
Effect

“Non-payment of rent, habit-
ual late payment of rent, or fre-
quent bounced checks”

Breach of
lease

No No Reset Next
lease

“Failure to cure a substantial
breach of a rental agreement or
lease”

Breach of
lease

No No Reset Next
lease

“Nuisance or substantial in-
terference with the comfort,
safety, or enjoyment of the
landlord or other tenants in the
building, the nature of which
must be severe, continuing or
reoccurring in nature”

Breach of
lease

No No Reset Next
lease

“Illegal use of a rental unit,
not including (a) the mere
occupancy of an unwarranted
rental unit or (b) a single vio-
lation of San Francisco’s short-
term rental law (Chapter 41A)
that is cured by the tenant
within 30 days of written no-
tice by the landlord”

Breach of
lease

No No Reset Next
lease
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“The tenant has refused, after
written request by the land-
lord, to execute a written ex-
tension or renewal of an ex-
pired rental agreement for a
further term of like duration
and under terms that are ma-
terially the same as the previ-
ous agreement”

Breach of
lease

No No Reset Next
lease

“The tenant has refused, after
written notice to cease, to al-
low the landlord access to the
rental unit as required by state
or local law”

Breach of
lease

No No Reset Next
lease

“The only tenant residing in
the unit at the end of the term
of the rental agreement is a
subtenant not approved by the
landlord. (Note that approval
need not be in writing and may
be implied from the landlord’s
conduct)”

Breach of
lease

No No Reset Next
lease

“Owner-occupancy (OMI) or,
in limited circumstances, oc-
cupancy by a member of the
landlord’s immediate family”

No-fault No Yes Reset 3 years

“The landlord seeks to recover
possession in good faith in or-
der to sell the unit in ac-
cordance with a condominium
conversion approved under the
San Francisco subdivision ordi-
nance”

No-fault Yes Yes Full de-
control

Immediate

Demolition No-fault Likely Yes Full de-
control

Immediate
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“To perform capital improve-
ments or rehabilitation work
that will make the unit tem-
porarily uninhabitable while
the work is performed – the
tenant must be allowed to re-
occupy the unit immediately
after the work is completed”

No-fault Likely Yes None –

“To perform substantial reha-
bilitation of a building that is
at least 50 years old and essen-
tially uninhabitable, provided
that the cost of the proposed
work is at least 75% of the cost
of new construction”

No-fault Yes Yes Full de-
control

Immediate

“To withdraw all rental units
in a building from the rental
market under the state Ellis
Act”

No-fault Yes Yes Reset 5 years

“To perform lead remedia-
tion/abatement work required
by San Francisco Health Code
Articles 11 or 26”

No-fault Likely Yes None –

“Demolition related to devel-
opment agreement entered into
by the City under Chapter 56
of the San Francisco Adminis-
trative Code”

No-fault Likely Yes Full de-
control

Immediate

“Expiration of ‘Good Samari-
tan’ occupancy agreement. A
‘Good Samaritan’ tenancy oc-
curs when a tenant is displaced
from a rental unit due to an
emergency or disaster and the
landlord agrees to provide the
tenant a temporary replace-
ment unit at a reduced rent”

No-fault No No Reset Next
lease
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Table A2: Eviction frequency by type and built-tear cut-off

Built-year < 1980

Eviction Type
Eviction
Category

Y N
count % count %

unknown unknown/other 5066 36.8 44 23.3
Breach of Lease Agreement Breach of lease 3031 22.0 66 34.9
Nuisance Breach of lease 1621 11.8 28 14.8
Owner Move-in (OMI) No-fault 1177 8.5 3 1.6
Capital Improvement No-fault 518 3.8 – –
Non-payment of Rent Breach of lease 487 3.5 11 5.8
Habitual Late Payment of Rent Breach of lease 399 2.9 4 2.1
ELLIS No fault 346 2.5 – –
Illegal Use of Unit Breach of lease 199 1.4 1 0.5
Breach of Lease Agreement Nuisance Breach of lease 182 1.3 3 1.6
Roommate Living in Same Unit Breach of lease 119 0.9 3 1.6
Unapproved Subtenant Breach of lease 110 0.8 1 0.5
Other unknown/other 108 0.8 18 9.5
Demolition No fault 94 0.7 – –
Denial of Access to Unit Breach of lease 54 0.4 2 1.1
Nuisance Illegal Use of Unit Breach of lease 46 0.3 – –
Breach of Lease Agreement Illegal Use of
Unit

Breach of lease 34 0.2 – –

Breach of Lease Agreement Nuisance Ille-
gal Use of Unit

Breach of lease 24 0.2 – –

Non-payment of Rent Breach of Lease
Agreement

Breach of lease 14 0.1 – –

Failure to Sign Lease Renewal Breach of lease 19 0.1 – –
Denial of Access to Unit Breach of Lease
Agreement

Breach of lease 10 0.1 – –

Condo Conversion No fault 17 0.1 – –
Habitual Late Payment of Rent Breach of
Lease Agreement

Breach of lease 11 0.1 – –

Non-payment of Rent Habitual Late Pay-
ment of Rent

Breach of lease 10 0.1 1 0.5

Unapproved Subtenant Breach of Lease
Agreement

Breach of lease 8 0.1 – –

Substantial Rehabilitation No fault 7 0.1 – –
Breach of Lease Agreement Roommate
Living in Same Unit

Breach of lease 1 0.0 – –

Breach of Lease Agreement Other Breach of lease 5 0.0 1 0.5
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Roommate Living in Same Unit Nuisance Breach of lease 6 0.0 – –
Development Agreement No fault 1 0.0 – –
Denial of Access to Unit Breach of Lease
Agreement Nuisance

Breach of lease 4 0.0 – –

Unapproved Subtenant Breach of Lease
Agreement Nuisance

Breach of lease 2 0.0 – –

Unapproved Subtenant Breach of Lease
Agreement Nuisance Illegal Use of Unit

Breach of lease 1 0.0 – –

Unapproved Subtenant Illegal Use of Unit Breach of lease 1 0.0 – –
Unapproved Subtenant Nuisance Breach of lease 1 0.0 – –
Unapproved Subtenant Nuisance Illegal
Use of Unit

Breach of lease 2 0.0 – –

Nuisance Capital Improvement Breach of lease 1 0.0 – –
Non-payment of Rent Nuisance Breach of lease 2 0.0 – –
Non-payment of Rent Unapproved Sub-
tenant

Breach of lease 1 0.0 – –

Non-payment of Rent Other Breach of lease 1 0.0 – –
Denial of Access to Unit Other Breach of lease 2 0.0 – –
Non-payment of Rent Habitual Late Pay-
ment of Rent Nuisance

Breach of lease 1 0.0 – –

Non-payment of Rent Habitual Late Pay-
ment of Rent Breach of Lease Agreement
Nuisance

Breach of lease 1 0.0 – –

Non-payment of Rent Denial of Access to
Unit

Breach of lease 1 0.0 – –

Non-payment of Rent Breach of Lease
Agreement Nuisance

Breach of lease 1 0.0 – –

Denial of Access to Unit Breach of Lease
Agreement Nuisance Illegal Use of Unit

Breach of lease 3 0.0 – –

Breach of Lease Agreement Failure to Sign
Lease Renewal

Breach of lease 3 0.0 – –

Denial of Access to Unit Breach of Lease
Agreement Other

Breach of lease 1 0.0 – –

Habitual Late Payment of Rent Nuisance Breach of lease 4 0.0 – –
Habitual Late Payment of Rent Breach of
Lease Agreement Nuisance

Breach of lease 6 0.0 – –

Habitual Late Payment of Rent Breach
of Lease Agreement Failure to Sign Lease
Renewal

Breach of lease 1 0.0 – –

Denial of Access to Unit Nuisance Breach of lease 2 0.0 – –
Good Samaritan Tenancy Ends No fault 2 0.0 – –
Lead Remediation No fault 6 0.0 – –
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Habitual Late Payment of Rent Other Breach of lease – – 1 0.5
Habitual Late Payment of Rent Room-
mate Living in Same Unit Nuisance

Breach of lease – – 1 0.5

Nuisance Other Breach of lease – – 1 0.5
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