
UC Berkeley
UC Berkeley Previously Published Works

Title
AUC-Maximizing Ensembles through Metalearning.

Permalink
https://escholarship.org/uc/item/3pn6s6zg

Journal
The international journal of biostatistics, 12(1)

ISSN
2194-573X

Authors
LeDell, Erin
van der Laan, Mark J
Petersen, Maya

Publication Date
2016-05-01

DOI
10.1515/ijb-2015-0035

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3pn6s6zg
https://escholarship.org
http://www.cdlib.org/

AUC-Maximizing Ensembles through Metalearning

Erin LeDell*,
University of California Berkeley, Division of Biostatistics, Berkeley, CA 94720, USA

Mark J. van der Laan, and
University of California Berkeley, Division of Biostatistics, Berkeley, CA 94720, USA

Maya Peterson
University of California Berkeley, Division of Biostatistics, Berkeley, CA 94720, USA

Abstract

Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in

binary classification problems. An AUC-maximizing classifier can have significant advantages in

cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble,

maximization of the AUC can be achieved by the use of an AUC-maximining metalearning

algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as

a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different

nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The

results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-

AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also

demonstrate that as the level of imbalance in the training data increases, the Super Learner

ensemble outperforms the top base algorithm by a larger degree.

Keywords

AUC; binary classifiation; class imbalance; ensemble learning; machine learning

1 Introduction

In the field of biostatistics, binary classification problems arise in many applications, for

example, in diagnostic testing. There are also many problems for which the outcome is rare,

or imbalanced, meaning the number of positive cases far outweighs the number of negative

cases (or vice versa). In this type of prediction problem, the Area Under the ROC Curve

(AUC) is frequently used to measure the performance of an estimator (i. e., model fit) due to

its robustness against prior class probabilities. When AUC maximization is the goal, a

classifier that aims to specifically maximize AUC can have significant advantages in these

types of problems.

*Corresponding author: Erin LeDell, University of California Berkeley, Division of Biostatistics, Berkeley, CA 94720, USA,
ledell@berkeley.edu.

HHS Public Access
Author manuscript
Int J Biostat. Author manuscript; available in PMC 2016 August 01.

Published in final edited form as:
Int J Biostat. 2016 May 1; 12(1): 203–218. doi:10.1515/ijb-2015-0035.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

However, most commonly used classification algorithms work by optimizing an objective

function that is unrelated to AUC – for example, accuracy (or error rate). If the training

dataset has an imbalanced outcome, this can lead to classifiers where the majority class has

close to 100 % accuracy, while the minority class has an accuracy of closer to 0–10 % [1]. In

practice, the accuracy of the minority class is often more important than the accuracy of the

majority class. Therefore, unless some type of intervention (e. g., under-sampling, over-

sampling) is used to help alleviate this issue, or AUC maximization is inherent to the

algorithm, class imbalance may negatively impact the performance of a binary classification

algorithm.

In this paper, we introduce an ensemble approach to AUC maximization for binary

classification problems. Ensemble methods are algorithms that combine the output from a

group of base learning algorithms, with the goal of creating an estimator that has predictive

performance over the individual algorithms that make up the ensemble. The Super Learner

algorithm [2] is an ensemble algorithm which generalizes stacking [3–5], by allowing for

more general loss functions and hence a broader range of estimator combinations. The Super

Learner is built on the theory of cross-validation and has been proven to represent an

asymptotically optimal system for learning [2].

Super Learner, described in further detail in Section 2, estimates the optimal combination of

the base learning algorithms in the ensemble, with respect to a user-defined loss function.

The “metalearning step” in the Super Learner algorithm is the process of data-adaptively

determining the optimal combination a specific group of base learner fits via a second-level

metalearning algorithm. With respect to model performance, this leads to estimators that

have superior (or at worst, equal) performance to the top base algorithm in the ensemble.

Even if none of the base learners specifically maximize AUC, it is possible to inject AUC-

maximization directly into imbalanced data problems via the metalearning step of the Super

Learner algorithm.

Any type of parametric or nonparametric algorithm (which is associated with a bounded loss

function) can be used in the metalearning step, although in practice, it is common to estimate

the optimal linear combination of the base learners. Since the Super Learner framework

allows for any loss function (and corresponding risk function), to be used in the

metalearning step, it is possible to create ensemble learners that specifically aim minimize a

user-defined loss function of interest.

The loss function associated with AUC, also called “rank loss,” measures the bipartite

ranking error, or disagreement between pairs of examples. The associated risk is calculated

as 1.0 – AUC. In the Super Learner algorithm, minimization of the rank loss or, equivalently,

maximization of the AUC, can be approached directly by using an AUC-maximining

metalearning algorithm. In Section 3, we discuss how AUC maximization can be formulated

as a nonlinear optimization problem. We have implemented the AUC-maximizing

metalearning algorithm as an update to the SuperLearner R package and demonstrate its

usage with a code example.

LeDell et al. Page 2

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In Section 4, we evaluate the effectiveness of a large number of nonlinear optimization

algorithms to maximize the cross-validated (CV) AUC of a Super Learner fit. We compare

the cross-validated AUC of the AUC-optimized ensemble fits to the cross-validated AUC of

the ensembles that do not attempt to optimize AUC. Super Learner fits using various

metalearning algorithms are benchmarked using training sets with varying levels of class

imbalance. The results provide evidence that “AUC-maximizing” metalearners can, and

often do, out-perform non-“AUC-maximizing” metalearning methods (e. g. non-negative

least squares), with respect to cross-validated AUC of the ensemble. The results also

demonstrate that, on certain datasets, as the level of class imbalance increases in the

response variable of the training set, the Super Learner ensemble out-performs the top base

algorithm by a larger degree. This suggests that datasets with greater class imbalance in the

outcome variable might benefit from Super Learner ensembles with direct AUC-

maximization in the metalearning step.

2 Ensemble metalearning

The Super Learner prediction is the optimal combination of the predicted values from the

base learners, which is the motivation behind the name, “Super Learner.” The optimal way

of combining the base learning algorithms is precisely what is estimated in the metalearning

step of the Super Learner algorithm. The output from the base learners, also called “level-

one” data in the stacking literature [5], serves as input to the metalearner algorithm. Super

Learner theory requires cross-validation to generate the level-one dataset, and in practice, k-

fold cross-validation is often used.

The following describes how to construct the level-one dataset. Assume that the training set

is comprised of n independent and identically distributed observations, {O1,..., On}, where

Oi = (Xi, Yi) and is a vector of covariate or feature values and Yi ∈ R is the

outcome. Consider an ensemble comprised of a set of L base learning algorithms, {ψ1,...,

ψL}, each of which is indexed by an algorithm class, as well as a specific set of model

parameters. Then, the process of constructing the level-one dataset will involve generating

an n × L matrix, Z, of k-fold cross-validated predicted values as follows:

1. The original training set, X, is divided randomly into V roughly-equal pieces

(validation folds), X(1),...,X(V).

2. For each base learner in the ensemble, ψl, k-fold cross-validation is used to

generate n cross-validated predicted values associated with the lth learner.

These n-dimensional vectors of cross-validated predicted values become the L
columns of Z.

The level-one design matrix, Z, along with the original outcome vector, ,

is then used to train the metalearning algorithm, Φ.

2.1 Base learner library

Super Learner theory does not require any specific level of diversity among the set of base

learners, however, a diverse set of base learners (e. g., Linear Model, Support Vector

Machine, Random Forest, Neural Net) is encouraged. The more diverse the library is, the

LeDell et al. Page 3

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

greater the ability of the ensemble to approximate the true prediction function. The “base

learner library” may also include copies of the same algorithm, indexed by different sets of

model parameters. For example, the user can specify multiple Random Forests [6], each with

a different splitting criterion, tree depth or “mtry” value.

The base learner prediction functions, , are trained by fitting each of the base

learning algorithms, {ψ1,...,ψL}, on the training set. The base learners can be any parametric

or nonparametric supervised machine learning algorithm. Once the level-one dataset is

generated by cross-validating the base learners, the optimal combination of these fits is

estimated by applying the metalearning algorithm, Φ, to these data.

2.2 Metalearning algorithms

In the context of Super Learning, the metalearning algorithm is a method that minimizes the

cross-validated risk associated with some loss function of interest. For example, if the goal is

to minimize mean squared prediction error, the ordinary least squares (OLS) algorithm can

be used to solve for α = (α1,..., αL), the weight vector that minimizes the following:

In the equation above, zil represents the (i, l) element of the n × L level-one design matrix, Z.

If desired, a non-negativity restriction i. e., αl ≥ 0, can be imposed on the weights. There is

evidence that this type of regularization increases the predictive accuracy of the ensemble

[4]. In this case, the Non-Negative Least Squares (NNLS) algorithm [7] can be used as a

metalearner. Both OLS and NNLS are suitable metalearner choices to use when the goal is

to minimize squared prediction error. In the SuperLearner R package [8], there are five pre-

existing metalearning methods available by default, and these are listed in Table 1.

However, in many prediction problems, the goal is to optimize some objective function other

than the objective function associated with ordinary or nonnegative least squares. For

example, in a binary classification problem, if the goal is to maximize the AUC of the

model, then an AUC-maximizing algorithm can be used in the metalearning step. Unlike the

accuracy metric for classification problems, AUC is a performance measure that is

unaffected by the prior class distributions [9]. Accuracy-based performance measures

implicitly assume that the class distribution of the dataset is approximately balanced and the

misclassification costs are equal [10]. However, for many real world problems, this is not the

case. Therefore, AUC may be a suitable performance metric to use when the training set has

an imbalanced, or rare, binary outcome. Multi-class versions of AUC exist [11, 12],

however, we will discuss AUC in the context of binary classification problems.

Although we use AUC-maximization as the primary, motivating example, the technique of

targeting a user-defined loss function in the metalearning step can be applied to any bounded

loss function, L(ψ). It is worth noting that the loss function, L(ψ), not just risk, E0L(ψ), must

be bounded. The AUC-maximizing metalearning algorithm that we have contributed to the

LeDell et al. Page 4

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SuperLearner package can be reconfigured so that the Super Learner minimizes any loss

function that is possible to implement in code. For binary classification, other performance

measures of interest may be F1-Score (or Fβ) [13], Partial AUC [14, 15], or H-measure [10].

A Super Learner ensemble that optimizes any of these metrics can be constructed following

the same procedure that we present for AUC-maximization.

3 AUC maximization

Given a set of base learning algorithms, the linear combination of the base learners that

maximizes the cross-validated AUC of the Super Learner ensemble can be found using

nonlinear optimization.

3.1 Nonlinear optimization

A nonlinear optimization problem is an optimization problem that seeks to minimize (or

maximize) some objective function, f (α), where , and the solution

space is subject various constraints. To be called “nonlinear,” either the function to be

maximized or minimized, or at least one of the functions whose value is constrained, must

be nonlinear.

Box constraints enforce an upper or lower bound on each of the d optimization parameters.

In other words, upper and/or lower bound vectors, lb = (lb1,...,lbd) and ub = (ub1,...,ubd), can

be defined, such that lbj ≤ aj ≤ ubj for j = {1,...,d}. In partially constrained, or unconstrained,

optimization problems, one or both of these bounds may be ± ∞. There may also exist m
separate nonlinear inequality constraints, fcj(α) ≤ 0 for j = 1,...,m, for constraint functions,

fcj(α). Lastly, a handful of algorithms are capable of supporting one or more nonlinear

equality constraints, which take the form, h(α) = 0.

3.1.1 Nonlinear optimization in R—The default optimization methods available in base

R (via the optim function), as well as algorithms from the nloptr package [16], can be used

to approximate the linear combination of the base learners that maximizes the AUC of the

ensemble. The default optimization methods in R do not allow for equality constraints such

as Σjαj = 1, therefore normalization of the weights can be performed as an additional step

after the optimal weights are determined. Since AUC is a ranking-based measure,

normalization of the weights will not change the AUC value. Since normalized weights are

more easily interpretable, we normalized the weights as a post-processing step. There are

some methods in the nloptr package that allow for equality constraints as part of the

optimization routine, however, this technique for weight normalization was not used.

The optim function supports general-purpose optimization based on Nelder-Mead [17],

quasi-Newton and conjugate-gradient algorithms. There is also a simulated annealing

method, i. e., “SANN,” [18] however, since this method is quite slow, we did not consider its

use as metalearning method to be practical. With the optim function, there is only one

method, L-BFGS-B [19, 20], that allows for box-constraints on the weights.

The nloptr package is an R interface to the NLopt [21] software project from MIT. NLopt
is an open-source library for nonlinear optimization, which provides a common interface for

LeDell et al. Page 5

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a number of different optimization routines. We evaluated 16 different global and local

optimization algorithms from NLopt for the purpose of metalearning. The complete list of

NLopt-based algorithms is documented in Table 2. A lower bound of 0 is imposed for the

weights using the NLopt methods to avoid learning negative weights for the base learner

contribution. We also evaluated the effect of adding an upper bound of 1 in comparison to

leaving the upper bound undefined, i. e., ∞.

3.2 AUC-maximizing ensembles

The SuperLearner R package was used to evaluate various metalearning methods. The five

pre-existing methods, described in Table 1, were compared against a new set of AUC-

maximizing metalearning methods. As part of this exercise, we implemented a new

metalearning function, method.AUC, for the SuperLearner package. In the method.AUC

function, the weights are initialized as , where L is the number of base

learners. The function will execute an optimization method that maximizes AUC, and will

return the optimal weights found by the algorithm.

The method.AUC function currently supports four optim-based and sixteen nloptr-based

optimization algorithms by default. Many of these algorithms support box-constraints, so

additional configurations of the existing methods can also be specified using our software.

An example of how to specify a custom metalearning function by wrapping the

method.AUC function is shown in Figure 1. In the example, we specify the metalearner to

use the unbounded, optim-based, BFGS method [22–25], with post-optimization

normalization of the weights.

A complete list of the default SuperLearner metalearning methods plus the new optim and

nloptr-based AUC-maximizing metalearning methods are listed in Table 2. A total of 37

new AUC-maximizing metalearning functions were evaluated. The AUC_nlopt.X (where X

is an integer between 1 and 20) functions implement global optimization routines and the

remainder (21–32) are local, derivative-free, methods. The AUC_optim.X (where X is an

integer between 1 and 5) functions implement the variations of the optim-based methods.

To reduce the computational burden of evaluating a large number of metalearners, we

implemented two functions for the SuperLearner package which simplify the processes of

re-combining the base learner fits using a new metalearning algorithm. These functions,

recombineSL and recombineCVSL, take as input an existing “SuperLearner” or

“CV.SuperLearner” fit, and a new metalearning function. They re-use the existing level-one

dataset and base learner fits stored in the model object, re-run the metalearning step and

return the updated fit. A simple example of how to use the recombineSL function is shown

in Figure 3.

4 Benchmark results

This section contains the results from the benchmarks of various metalearning methods in a

binary classification problem. The purpose of these benchmarks is twofold. We evaluate

whether AUC-maximizing metalearners, compared to other methods such as NNLS, actually

maximize the cross-validated AUC of the Super Learner ensemble. We also investigate the

LeDell et al. Page 6

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

training set characteristics that lead to the greatest performance gain of the ensemble (over

the best individual model), as measured by cross-validated AUC. In particular, we measure

the effect that class imbalance, as well as training size, has on the performance of Super

Learner, under various metalearning methods.

After computing the performance of Super Learner using the 42 metalearners under

consideration on a dataset, we identify which metalearning algorithm yields the best cross-

validated ensemble AUC. The remaining metalearners are compared by calculating the

offset, in terms of cross-validated AUC, between the Super Learner utilizing the top

metalearing method and the other methods. For example, if the top method produced a

model with a CV AUC of 0.75, the offset between the top method and a model with 0.73 CV

AUC would be 0.02. The AUC offsets for each dataset-metalearner combination are

displayed in a grid-format using heatmaps.

For each training set, we contrast the performance of the best individual model, as

determined by a cross-validated grid-search, with the cross-validated AUC of the Super

Learner. In the grid search method, the estimator with the best cross-validated performance

(as measured by a given loss criterion), is selected as the winning algorithm, and the other

algorithms are discarded. In the Super Learning, or stacking, context, the process of

generating the level-one dataset using crossvalidation is equivalent to a cross-validated grid-

search of the base learners. Moreover, in the Super Learner literature, the grid-search

technique is referred to as the Discrete Super Learner algorithm [26].

It is quite common for machine learning practitioners to use a grid-search to evaluate the

performance of a set of unique candidate learning algorithms, or unique sets of model

parameters within a single algorithm class, as a means to select the best model from those

under consideration. Since the metalearning step requires a only small amount of

computation as compared to the computation involved in generating level-one data,

executing a grid-search and training the Super Learner algorithm are computationally

commensurate tasks. Although grid-search and Super Learning require a similar amount of

work, the Super Learner ensemble, by optimally combining the set of candidate estimators,

can provide a boost in performance over the top base model. For context, we also provide

the cross-validated AUC for each of the base models in the ensemble.

In the benchmarks, we use a single, diverse base learner library which contains the following

five algorithms: Lasso Regression, Generalized Additive Models, Random Forest (with

1,000 trees), Polynomial Spline Regression and K-Nearest Neighbor (k = 10). The R

packages that were used for each these methods are listed in Table 3.

4.1 Training datasets

We evaluated twenty different training sets from two sources of data, one from the physics

research domain and the other from the medical domain. The first set of datasets have a mid-

range cross-validated ensemble AUC (0.72–0.80) and the second group has a lower range of

ensemble AUC, (0.60–0.67).

LeDell et al. Page 7

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.1.1 HIGGS dataset—This set of benchmarks use training sets derived from the HIGGS

dataset [27], a publicly available training set that has been produced using Monte Carlo

simulations. The original dataset contains 11 million training examples, 28 numeric features

and a binary outcome variable. The associated binary classification task is to distinguish

between a background process (Y = 0) and a process where new theoretical Higgs bosons

are produced (Y = 1).

Although this simulated dataset is meant to represent a data generating distribution with a

rare outcome (i. e., evidence of the Higgs particle), the class distribution of the outcome

variable in the simulated data is approximately balanced, with P(Y = 1) ≈ 0.53. Two groups

of subsets of the HIGGS dataset where created, one with n = 10,000 observations and the

other with n = 100,000 observations. Within each group, ten datasets of fixed size, n, but

varying levels of class imbalance, were constructed from the original HIGGS dataset. The

following levels of outcome imbalance, P(Y = 1), were evaluated: 1–5 %, 10 %, 20 %, 30 %,

40 % and 50 %.

The SuperLearner [8] and cvAUC [28] R packages were used to train and cross-validate

the AUC of the Super Learner fits. For the n = 10,000 sized training sets, 10-fold cross-

validation was used to estimate the cross-validated AUC values. Within the Super Learner

algorithm, 10-fold cross-validation was used to generate the level-one data, where the folds

were stratified by the outcome variable. For the n = 100,000 training sets, 2-fold cross-

validation was used to estimate cross-validated AUC, and 2-fold, stratified, cross-validation

was also used to generate the level-one data.

4.1.2 Diabetes dataset—The second set of benchmarks use training sets derived from the

publicly available Diabetes Hospital Readmission dataset [29], sourced from 130 U.S.

hospitals during the years, 1999–2008. The original dataset contains 100,000 training

examples, 55 predictor columns (a mixture of numeric and categorical features) and a binary

outcome variable with P(Y = 1) ≈ 0.46. The associated binary classification task is to

predict hospital readmission among patients known to have diabetes.

In order to simplify the benchmarking process, we used a random subset of the rows and

restricted the predictor columns to the numeric columns only. The subset of 8 predictors that

were used in our sample is:

– time_in_hospital

– num_lab_procedures

– num_procedures

– num_medications

– number_outpatient

– number_emergency

– number_inpatient

– number_diagnoses

LeDell et al. Page 8

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The outcome variable, called “readmitted”, originally had three outcomes: “< 30”, “> 30”

and “NO”. We recoded the outcome to represent readmission vs no readmission, assigning

both the “< 30” and “> 30” examples as the positive response class and “NO” as the negative

response class. As compared to the HIGGS dataset, the Diabetes dataset we used contained a

relatively weak signal, with cross-validated ensemble AUC values starting around 0.6.

As in the HIGGS example, we created ten datasets of fixed size, n = 10,000, but varying

levels of class imbalance introduced artificially, by randomly subsampling the original

dataset in a stratified fashion. The following levels of outcome imbalance, P(Y = 1), were

evaluated: 1–5 %, 10 %, 20 %, 30 %, 40 % and 50 %. A second set of larger datasets were

also evaluated, with n = 50,000. 10-fold cross-validation was used to estimate AUC of all of

the ensembles.

4.2 Ensemble performance by metalearner

For the HIGGS datasets, the results shown in Tables 4 and 5 suggest that AUC-maximizing

metalearners and the negative log-likelihood method typically perform best among all

reviewed metalearning algorithms, as measured by cross-validated AUC. Although the

AUC-based metalearners often perform better than the non-AUC methods for the HIGGS

datasets, there are some examples where using the loss function associated with the negative

log-likelihood (of the binomial distribution) yields the top Super Learner ensemble. Unlike

the AUC-based methods, the log-likelihood-based metalearning methods in the

SuperLearner package, such as method.NNloglik and method.CC_nloglik, use radient

information in the optimization process, which can be helpful.

4.2.1 HIGGS results

4.2.2 Diabetes results—The Diabetes 10,000-row dataset had slightly different results

than the HIGGS datasets, however the 50,000-row Diabetes datasets had results consistent

with the HIGGS datasets.

In the smaller (n = 10,000) set, four of the ten datasets (with different levels of imbalance)

that were evaluated achieved top performance among all metalearners using a least-squares

based metalearner. This is an interesting and perhaps unexpected result, considering the

assumption that AUC-maximization leads to the best results. As shown in Table 6, the

dataset with highest level of class imbalance (1 %), the CC_LS and NNLS metalearners

performed the best and the log-likihood based metalearner came in next, still offering benefit

to using an ensemble over the top single model. As for the remaining AUC-maxiziming

metalearning methods, the ensemble did not perform well on any of these – the ensemble

performance was actually slightly lower than the performance of GAM. This ensmeble may

not represent a typical scenario in terms of performance of the base learners – the range of

CV AUCs in the base learner library was 0.5 (Polynomial Spline Regression) – 0.594

(GAM), which are very low AUC values. The rest of the ensembles in the small Diabetes

datasets were found to be maximized by the log-likelihood based metalearner. Overall, the

cross-validated AUC values for the base learners and the ensemble are relatively low, the

highest among all ten datasets being 0.651. As there is a s very low signal in the data, that

may be the cause of the contrary results.

LeDell et al. Page 9

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the larger (n = 50,000) datasets, the AUC-maximization metalearners dominate among

other methods. As shown in Table 7, the Super Learner trained on the dataset with the

highest imbalance (1 %) benefitted most from the log-likelihood based metalearning

method, however all other datasets benefitted most from AUC-maximizing metalearners.

There is not one single metalearning method that performs best across all datasets, so it's

recommended to evaluate as many metalearners as possible. Since the metalearning step is

rather fast in comparison to any of the L base learning steps, evaluating a large number of

metalearners is a reasonable approach to creating the highest performing Super Learner

using the available training dataset. Two utility functions were created to facilitate easy re-

training of the metalearning step, without having to re-train all the base learners. The

functions, now available in the SuperLearner package are called recombineSL and

recombineCVSL (Figure 4).

4.3 Effect of class imbalance

By creating a sequence of training sets of increasing class imbalance, we evaluated the

ability of the Super Learner to outperform individual models. Specifically, we measured the

gain, in terms of cross-validated AUC of the ensemble, that the Super Learner provides over

the top base model (i. e., the grid-search winner).

What the HIGGS results demonstrate in Table 4, Table 5 and Figure 6 is that the AUC gain

achieved by using a Super Learner (SL) ensemble versus choosing the best base algorithm,

as selected by grid-search (GS), is highest in the P(Y = 1) ≤ 10 % range. In particular, for the

P(Y = 1) = 4 % dataset in Table 4, there is nearly a 0.04 gain in cross-validated AUC

achieved from using an AUC-maximizing Super Learner, as opposed to selecting the top

base learning algorithm, which in this case is a Generalized Additive Model (GAM). For

completeness, the cross-validated grid search performance of each of the base algorithms are

provided in Table 8 and Table 9 in the Appendix.

Figure 6 is a plot of the Super Learner AUC gain versus the value for P(Y = 1) for both

HIGGS datasets, along with a Loess fit for each group of points. With both datasets, the

general trend is that the Super Learner AUC gain increases as the value of P(Y = 1)

decreases. However, with the n = 10,000 training set, there is a sharp decrease in AUC gain

near P(Y = 1) = 1 %. This trend is not present in the n = 100,000 dataset, so it may be a an

artifact of the n = 10,000 dataset, due to the global rarity of minority class examples in the

training set (there are only 100 minority class observations in total). Future investigation

could include examining the level of imbalance with higher granularity, and in particular, in

the P(Y = 1) ≤ 1 % range, using larger n.

The Diabetes results in Table 6, Table 7 and Figure 7 show a similar, though slightly less

pronounced, trend. For simple comparison, Figures 6 and 7 are shown on the same scale.

4.4 Effect of regularization on the base learner weights

The odd-numbered NLopt-based AUC-maximizing metalearning methods enforce box

constraints – weights are bounded below by 0 and above by 1. As shown in Table 2, the

even-numbered NLopt-based methods are the partially unconstrained counterparts of the

LeDell et al. Page 10

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

odd methods, where the upper bound is ∞. The top metalearner offset heatmap in Figure 4

shows that all of partially unconstrained AUC-maximizing meta-learning methods do poorly

in comparison to their fully constrained counterparts.

5 Concluding remarks

In this article, we describe a novel implementation an AUC-maximizing Super Learner

algorithm. The new AUC-maximizing metalearning functionality, as well as utility functions

for efficient re-estimation of the metalearning algorithm in an existing Super Learner fit,

have been contributed to the SuperLearner R package.

We benchmarked the AUC-maximizing metalearning algorithms against various existing

metalearners that do not target AUC. The results suggest that the use of an AUC-maximizing

metalearner in the Super Learner algorithm can, and often does, lead to higher performance,

with respect to cross-validated AUC of the ensemble. The benchmarks indicate that Super

Learning (which includes the AUC-maximizing meta-learners) is most effective when the

outcome is imbalanced – in particular, in the P(Y = 1) ≤ 15 % range. The benchmarks also

show that NNLS, which has been widely used as a metalearning method in stacking

algorithms since it was first suggested by Breiman, often performs worse than AUC-

maximizing andlog-likelihood based metalearners.

In the current implementation of method.AUC, the weights are initialized as

, where L is the number of base learners. In future work, we may

investigate the effect of initializing the weights using existing information about the

problem, for example, let αinit = (0,...,0,1,0,...,0), where the 1 is located at the index of the

top base learner, as determined by cross-validation. Further, it may increase performance to

use the global optimum as input for a local optimization algorithm, although this technique

for chaining algorithms together was not evaluated in our study.

Appendix

Table 8

CV AUC for HIGGS datasets (n = 10,000; CV = 10 × 10).

No. P(Y = 1) SL glmnet gam randomForest polymars knn

1 0.01 0.721 0.675 0.718 0.600 0.504 0.487

2 0.02 0.739 0.667 0.723 0.671 0.530 0.490

3 0.03 0.764 0.692 0.741 0.717 0.500 0.508

4 0.04 0.770 0.686 0.732 0.731 0.579 0.540

5 0.05 0.759 0.675 0.723 0.727 0.569 0.540

6 0.10 0.768 0.672 0.720 0.744 0.750 0.554

7 0.20 0.778 0.679 0.720 0.764 0.760 0.579

8 0.30 0.783 0.679 0.721 0.775 0.757 0.593

9 0.40 0.788 0.682 0.722 0.783 0.763 0.595

10 0.50 0.787 0.683 0.722 0.783 0.756 0.600

LeDell et al. Page 11

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Table 9

CV AUC for HIGGS datasets (n = 100,000; CV = 2 × 2).

No. P(Y = 1) SL glmnet gam randomForest polymars knn

1 0.01 0.754 0.679 0.727 0.708 0.500 0.530

2 0.02 0.766 0.683 0.724 0.729 0.745 0.537

3 0.03 0.772 0.684 0.728 0.742 0.748 0.544

4 0.04 0.777 0.684 0.724 0.749 0.758 0.554

5 0.05 0.779 0.687 0.729 0.759 0.753 0.563

6 0.10 0.786 0.689 0.728 0.772 0.771 0.588

7 0.20 0.793 0.684 0.725 0.786 0.776 0.607

8 0.30 0.795 0.682 0.722 0.792 0.767 0.617

9 0.40 0.798 0.680 0.720 0.796 0.769 0.627

10 0.50 0.800 0.682 0.721 0.798 0.771 0.624

Table 10

CV AUC for diabetes datasets (n = 10,000; CV = 10 × 10).

No. P(Y = 1) SL glmnet gam randomForest polymars knn

1 0.01 0.597 0.527 0.594 0.517 0.500 0.485

2 0.02 0.608 0.593 0.606 0.562 0.500 0.480

3 0.03 0.615 0.597 0.603 0.580 0.500 0.530

4 0.04 0.615 0.581 0.599 0.588 0.500 0.541

5 0.05 0.620 0.588 0.603 0.596 0.500 0.544

6 0.10 0.630 0.603 0.619 0.600 0.500 0.582

7 0.20 0.632 0.615 0.625 0.601 0.533 0.584

8 0.30 0.629 0.616 0.625 0.600 0.581 0.578

9 0.40 0.637 0.623 0.633 0.621 0.609 0.579

10 0.50 0.651 0.641 0.649 0.639 0.616 0.591

Table 11

CV AUC for diabetes datasets (n = 50,000; CV = 10 × 10).

No. P(Y = 1) SL glmnet gam randomForest polymars knn

1 0.01 0.679 0.664 0.673 0.590 0.500 0.543

2 0.02 0.686 0.669 0.684 0.607 0.500 0.549

3 0.03 0.699 0.681 0.696 0.615 0.500 0.561

4 0.04 0.685 0.666 0.681 0.614 0.500 0.567

5 0.05 0.680 0.657 0.672 0.612 0.500 0.571

6 0.10 0.677 0.642 0.658 0.628 0.500 0.596

7 0.20 0.678 0.639 0.655 0.650 0.629 0.617

8 0.30 0.658 0.639 0.649 0.639 0.623 0.603

LeDell et al. Page 12

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

No. P(Y = 1) SL glmnet gam randomForest polymars knn

9 0.40 0.646 0.638 0.644 0.633 0.632 0.584

10 0.50 0.668 0.656 0.660 0.662 0.644 0.609

References

1. Woods K, Doss C, Bowyer K, Solka J, Priebe C, Kegelmeyer W. Comparative evaluation of pattern
recognition techniques for detection of microcalcifications in mammography. Int J Pattern Recognit
Artif Intell. 1993; 7:1417–36.

2. van der Laan M-J, Polley E-C, Hubbard A-E. Super learner. Stat Appl Genet Mol Biol. 2007:6.

3. LeBlanc M, Tibshirani R. Combining estimates in regression and classification, Technical report. J
Am Stat Ass. 1993

4. Breiman L. Stacked regressions. Mach Learn. 1996; 24:49–64.

5. Wolpert D-H. Stacked generalization. Neural Networks. 1992; 5:241–59.

6. Breiman L. Random forests. Mach Learn. 2001; 45:5–32.

7. Lawson CL, Hanson RJ. Solving least squares problems. SIAM. 1974

8. Polley, E.; van der Laan, M. SuperLearner: super learner prediction. r package version 2.0–9. 2010.
Available at: http://CRAN.R-project.org/package=SuperLearner

9. Bradley AP. The use of the area under the roc curve in the evaluation of machine learning
algorithms. Pattern Recognit. 1997; 30:1145–59.

10. Hand D. Measuring classifier performance: a coherent alternative to the area under the roc curve.
Mach Learn. 2009; 77:103–23.

11. Hand D, Till R. A simple generalisation of the area under the roc curve for multiple class
classification problems. Mach Learn. 2001; 45:171–86.

12. Provost, F.; Domingos, P. Well-trained pets: improving probability estimation trees. Stern School of
Business, New York Univ; 2000. CeDER Working Paper: IS-00-04

13. Rijsbergen, CJV. Information Retrieval. 2 ed.. Butterworth; London, UK: 1979.

14. McClish DK. Analyzing a portion of the roc curve. Med Decis Making. 1989; 9:190–5. [PubMed:
2668680]

15. Jiang Y, Metz CE, Nishikawa RM. A receiver operating characteristic partial area index for highly
sensitive diagnostic tests. Radiology. 1996; 201:745–50. [PubMed: 8939225]

16. Ypma, J.; Borchers, H-W.; Eddelbuettel, D. R interface to NLopt. version 1.0.4. 2014. Available at:
http://cran.r-project.org/web/packages/nloptr/index.html

17. Nelder JA, Mead R. A simplex method for function minimization. The Computer Journal. 1965;
4:308–13.

18. Belsie CJP. Convergence theorems for a class of simulated annealing algorithms on rd. J Appl
Probab. 1992; 29:885–92.

19. Byrd RH, Lu P, Nocedal J. A limited-memory algorithm for bound-constrained optimization. 1995

20. Zhu C, Byrd R-H, Lu P, Nocedal J. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale
bound-constrained optimization. ACM Trans Math Softw. 1997; 23:550–60. Available at: http://
doi.acm.org/10.1145/279232.279236.

21. Johnson, SG. The NLopt nonlinear-optimization package. 2014. Available at: http://ab-
initio.mit.edu/nlopt

22. Broyden CG. The convergence of a class of double-rank minimization algorithms. J Inst Math
Appl. 1970; 6:76–90.

23. Fletcher R. A new approach to variable metric algorithms. Comput J. 1970; 13:317–22.

24. Goldfarb D. A family of variable metric updates derived by variational means. Math Comput.
1970; 24:23–6.

25. Shanno DF. Conditioning of quasi-newton methods for function minimization. Math Comput.
1970; 24:647–56.

LeDell et al. Page 13

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://CRAN.R-project.org/package=SuperLearner
http://cran.r-project.org/web/packages/nloptr/index.html
http://doi.acm.org/10.1145/279232.279236
http://doi.acm.org/10.1145/279232.279236
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

26. van der Laan, M-J.; Polley, E-C. Super learner in prediction, U.C. Berkeley Division of
Biostatistics Working Paper Series. 2010. Available at: http://biostats.bepress.com/ucbbiostat/
paper266

27. Baldi, P.; Sadowski, P.; Whiteson, D. Searching for exotic particles in high-energy physics with
deep learning.; Nat Commun. 2014. p. 5Available at: http://archive.ics.uci.edu/ml/datasets/HIGGS

28. LeDell E, Petersen M, van der Laan M. cvAUC: Cross-validated area under the ROC curve
confidence intervals. r package version 1.1. 0:2015. Available at: http://CRAN.R-project.org/
package=cvAUC.

29. Strack, B.; DeShazo, JP.; Gennings, C.; Olmo, JL.; Ventura, S.; Cios, KJ., et al. Impact of hba1c
measurement on hospital readmission rates: Analysis of 70,000 clinical database patient records..
BioMed Res Int. 2014. Available at: http://archive.ics.uci.edu/ml/datasets/Diabetes + 130-US +
hospitals + for + years + 1999-2008

LeDell et al. Page 14

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://biostats.bepress.com/ucbbiostat/paper266
http://biostats.bepress.com/ucbbiostat/paper266
http://archive.ics.uci.edu/ml/datasets/HIGGS
http://CRAN.R-project.org/package=cvAUC
http://CRAN.R-project.org/package=cvAUC
http://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
http://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008

Figure 1.
Example of how to use the method. AUC function to create customized AUC-maximizing

metalearning functions.

LeDell et al. Page 15

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Example of how to use the custom method. AUC_optim.4 metalearning function with the

SuperLearner function.

LeDell et al. Page 16

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Example of how to update an existing “SuperLearner” fit by re-training the metalearner with

a new method.

LeDell et al. Page 17

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Model CV AUC offset from the best Super Learner model for different metalearning

methods. (No color = = top metalearner).

LeDell et al. Page 18

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Model CV AUC offset from the best Super Learner model for a subset of the metalearning

methods. The partially unconstrained NLopt methods are removed in order to more clearly

demonstrate the differences between the box-constrained methods. (No color == top

metalearner).

LeDell et al. Page 19

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
CV AUC gain by super learner (with top metalearner) over grid-search winning model on

HIGGS datasets. Loess fit overlays actual points.

LeDell et al. Page 20

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
CV AUC gain by super learner (with top metalearner) over grid-search winning model in

diabetes datasets. Loess fit overlays actual points.

LeDell et al. Page 21

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LeDell et al. Page 22

Table 1

Default metalearning methods in SuperLearner R package.

Method Description R Package

NNLS Non-negative least squares nnls

NNLS2 Non-negative least squares quadprog

CC_LS Non-negative least squares nloptr

NNloglik Negative log-likelihood (Binomial) Base R

CC_nloglik Negative log-likelihood (Binomial) nloptr

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LeDell et al. Page 23

Table 2

Metalearning methods evaluated.

Method Description min{αj) max{αj}

NNLS Non-negative least squares (nnls) 0 Inf

NNLS2 Non-negative least squares (quadprog) 0 Inf

CC_LS Non-negative least squares (nloptr) 0 1

NNloglik Negative log-likelihood (Binomial) (optim) 0 Inf

CC_nloglik Negative log-likelihood (Binomial) (nloptr) 0 1

AUC_nlopt.1 DIRECT 0 1

AUC_nlopt.2 DIRECT 0 Inf

AUC_nlopt.3 DIRECT-L 0 1

AUC_nlopt.4 DIRECT-L 0 Inf

AUC_nlopt.5 DIRECT-L RAND 0 1

AUC_nlopt.6 DIRECT-L RAND 0 Inf

AUC_nlopt.7 DIRECT NOSCAL 0 1

AUC_nlopt.8 DIRECT NOSCAL 0 Inf

AUC_nlopt.9 DIRECT-L NOSCAL 0 1

AUC_nlopt.10 DIRECT-L NOSCAL 0 Inf

AUC_nlopt.11 DIRECT-L RAND NOSCAL 0 1

AUC_nlopt.12 DIRECT-L RAND NOSCAL 0 Inf

AUC_nlopt.13 ORIG DIRECT 0 1

AUC_nlopt.14 ORIG DIRECT 0 Inf

AUC_nlopt.15 ORIG DIRECT-L 0 1

AUC_nlopt.16 ORIG DIRECT-L 0 Inf

AUC_nlopt.17 Controlled Random Search with Local Mutation 0 1

AUC_nlopt.18 Controlled Random Search with Local Mutation 0 Inf

AUC_nlopt.19 Improved Stochastic Ranking Evolution Strategy 0 1

AUC_nlopt.20 Improved Stochastic Ranking Evolution Strategy 0 Inf

AUC_nlopt.21 Principal Axis (PRAXIS) 0 1

AUC_nlopt.22 Principal Axis (PRAXIS) 0 Inf

AUC_nlopt.23 Constrained Opt. by Linear Approximations 0 1

AUC_nlopt.24 Constrained Opt. by Linear Approximations 0 Inf

AUC_nlopt.25 Bounded NEWUOA 0 1

AUC_nlopt.26 Bounded NEWUOA 0 Inf

AUC_nlopt.27 Nelder-Mead 0 1

AUC_nlopt.28 Nelder-Mead 0 Inf

AUC_nlopt.29 Sbplex 0 1

AUC_nlopt.30 Sbplex 0 Inf

AUC_nlopt.31 BOBYQA 0 1

AUC_nlopt.32 BOBYQA 0 Inf

AUC_optim.1 L-BFGS-B 0 1

AUC_optim.2 L-BFGS-B 0 Inf

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LeDell et al. Page 24

Method Description min{αj) max{αj}

AUC_optim.3 Nelder-Mead –Inf Inf

AUC_optim.4 BFGS –Inf Inf

AUC_optim.5 Conjugate Gradient (CG) –Inf Inf

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LeDell et al. Page 25

Table 3

Example base learner library representing a small, yet diverse, collection of algorithm classes. Default model

parameters were used.

Algorithm R Package Function

ψ 1 Lasso regression glmnet glmnet

ψ 2 Generalized additive model gam gam

ψ 3 Random forest (1,000 trees) random Forest randomForest

ψ 4 Polynomial spline regression polyspline polymars

ψ 5 K-Nearest neighbor (k = 10) class knn

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LeDell et al. Page 26

Table 4

Top Metalearner performance for HIGGS Datasets, as measured by cross-validated AUC (n = 10,000; CV =

10 × 10).

No. P(Y = 1) Metalearner SL AUC Gain SL AUC GS AUC GS Model

1 0.01 CC_nloglik 0.003 0.721 0.718 gam

2 0.02 AUC_optim.4 0.016 0.739 0.723 gam

3 0.03 NNloglik 0.023 0.764 0.741 gam

4 0.04 AUC_optim.4 0.038 0.770 0.732 gam

5 0.05 AUC_optim.4 0.032 0.759 0.727 randomForest

6 0.10 NNloglik 0.018 0.768 0.750 polymars

7 0.20 AUC_nlopt.11 0.014 0.778 0.764 randomForest

8 0.30 AUC_optim.4 0.007 0.783 0.775 randomForest

9 0.40 AUC_nlopt.23 0.005 0.788 0.783 randomForest

10 0.50 NNloglik 0.003 0.787 0.783 randomForest

SL = “Super Learner” and GS = “Grid Search.”

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LeDell et al. Page 27

Table 5

Top Metalearner performance for HIGGS datasets, as measured by cross-validated AUC (n = 100,000; CV = 2

× 2).

No. P(Y = 1) Metalearner SL AUC Gain SL AUC GS AUC GS Model

1 0.01 NNloglik 0.027 0.754 0.727 gam

2 0.02 AUC_nlopt.19 0.021 0.766 0.745 polymars

3 0.03 AUC_optim.5 0.024 0.772 0.748 polymars

4 0.04 AUC_optim.4 0.019 0.777 0.758 polymars

5 0.05 AUC_optim.3 0.020 0.779 0.759 randomForest

6 0.10 AUC_nlopt.13 0.014 0.786 0.772 randomForest

7 0.20 AUC_nlopt.5 0.007 0.793 0.786 randomForest

8 0.30 AUC_nlopt.13 0.003 0.795 0.792 randomForest

9 0.40 AUC_nlopt.21 0.002 0.798 0.796 randomForest

10 0.50 AUC_nlopt.11 0.001 0.800 0.798 randomForest

SL = “Super Learner” and GS = “Grid Search.”

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LeDell et al. Page 28

Table 6

Top Metalearner performance for diabetes datasets, as measured by cross-validated AUC (n = 10,000; CV =

10 × 10).

No. P(Y = 1) Metalearner SL AUC Gain SL AUC GS AUC GS Model

1 0.01 CC_LS 0.003 0.597 0.594 gam

2 0.02 AUC_optim.3 0.001 0.608 0.606 gam

3 0.03 NNloglik 0.012 0.615 0.603 gam

4 0.04 NNloglik 0.017 0.615 0.599 gam

5 0.05 NNloglik 0.017 0.620 0.603 gam

6 0.10 NNLS 0.011 0.630 0.619 gam

7 0.20 NNLS 0.007 0.632 0.625 gam

8 0.30 NNLS 0.004 0.629 0.625 gam

9 0.40 NNloglik 0.004 0.637 0.633 gam

10 0.50 NNloglik 0.002 0.651 0.649 gam

SL = “Super Learner” and GS = “Grid Search.”

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LeDell et al. Page 29

Table 7

Top Metalearner performance for diabetes datasets, as measured by cross-validated AUC (n = 50,000; CV =

10 × 10).

No. P(Y = 1) Metalearner SL AUC Gain SL AUC GS AUC GS Model

1 0.01 NNloglik 0.006 0.679 0.673 gam

2 0.02 AUC_optim.5 0.002 0.686 0.684 gam

3 0.03 AUC_optim.5 0.003 0.699 0.696 gam

4 0.04 AUC_optim.3 0.004 0.685 0.681 gam

5 0.05 AUC_optim.3 0.008 0.680 0.672 gam

6 0.10 AUC_optim.4 0.019 0.677 0.658 gam

7 0.20 AUC_optim.4 0.023 0.678 0.655 gam

8 0.30 AUC_optim.4 0.009 0.658 0.649 gam

9 0.40 AUC_optim.4 0.002 0.646 0.644 gam

10 0.50 AUC_optim.4 0.008 0.668 0.660 gam

SL = “Super Learner” and GS = “Grid Search.”

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

	Abstract
	1 Introduction
	2 Ensemble metalearning
	2.1 Base learner library
	2.2 Metalearning algorithms

	3 AUC maximization
	3.1 Nonlinear optimization
	3.1.1 Nonlinear optimization in R

	3.2 AUC-maximizing ensembles

	4 Benchmark results
	4.1 Training datasets
	4.1.1 HIGGS dataset
	4.1.2 Diabetes dataset

	4.2 Ensemble performance by metalearner
	4.2.1 HIGGS results
	4.2.2 Diabetes results

	4.3 Effect of class imbalance
	4.4 Effect of regularization on the base learner weights

	5 Concluding remarks
	Appendix
	Table 8
	Table 9
	Table 10
	Table 11
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

