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AUC-Maximizing Ensembles through Metalearning
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University of California Berkeley, Division of Biostatistics, Berkeley, CA 94720, USA
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Maya Peterson
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Abstract

Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in 

binary classification problems. An AUC-maximizing classifier can have significant advantages in 

cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, 

maximization of the AUC can be achieved by the use of an AUC-maximining metalearning 

algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as 

a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different 

nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The 

results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-

AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also 

demonstrate that as the level of imbalance in the training data increases, the Super Learner 

ensemble outperforms the top base algorithm by a larger degree.
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1 Introduction

In the field of biostatistics, binary classification problems arise in many applications, for 

example, in diagnostic testing. There are also many problems for which the outcome is rare, 

or imbalanced, meaning the number of positive cases far outweighs the number of negative 

cases (or vice versa). In this type of prediction problem, the Area Under the ROC Curve 

(AUC) is frequently used to measure the performance of an estimator (i. e., model fit) due to 

its robustness against prior class probabilities. When AUC maximization is the goal, a 

classifier that aims to specifically maximize AUC can have significant advantages in these 

types of problems.
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However, most commonly used classification algorithms work by optimizing an objective 

function that is unrelated to AUC – for example, accuracy (or error rate). If the training 

dataset has an imbalanced outcome, this can lead to classifiers where the majority class has 

close to 100 % accuracy, while the minority class has an accuracy of closer to 0–10 % [1]. In 

practice, the accuracy of the minority class is often more important than the accuracy of the 

majority class. Therefore, unless some type of intervention (e. g., under-sampling, over-

sampling) is used to help alleviate this issue, or AUC maximization is inherent to the 

algorithm, class imbalance may negatively impact the performance of a binary classification 

algorithm.

In this paper, we introduce an ensemble approach to AUC maximization for binary 

classification problems. Ensemble methods are algorithms that combine the output from a 

group of base learning algorithms, with the goal of creating an estimator that has predictive 

performance over the individual algorithms that make up the ensemble. The Super Learner 

algorithm [2] is an ensemble algorithm which generalizes stacking [3–5], by allowing for 

more general loss functions and hence a broader range of estimator combinations. The Super 

Learner is built on the theory of cross-validation and has been proven to represent an 

asymptotically optimal system for learning [2].

Super Learner, described in further detail in Section 2, estimates the optimal combination of 

the base learning algorithms in the ensemble, with respect to a user-defined loss function. 

The “metalearning step” in the Super Learner algorithm is the process of data-adaptively 

determining the optimal combination a specific group of base learner fits via a second-level 

metalearning algorithm. With respect to model performance, this leads to estimators that 

have superior (or at worst, equal) performance to the top base algorithm in the ensemble. 

Even if none of the base learners specifically maximize AUC, it is possible to inject AUC-

maximization directly into imbalanced data problems via the metalearning step of the Super 

Learner algorithm.

Any type of parametric or nonparametric algorithm (which is associated with a bounded loss 

function) can be used in the metalearning step, although in practice, it is common to estimate 

the optimal linear combination of the base learners. Since the Super Learner framework 

allows for any loss function (and corresponding risk function), to be used in the 

metalearning step, it is possible to create ensemble learners that specifically aim minimize a 

user-defined loss function of interest.

The loss function associated with AUC, also called “rank loss,” measures the bipartite 

ranking error, or disagreement between pairs of examples. The associated risk is calculated 

as 1.0 – AUC. In the Super Learner algorithm, minimization of the rank loss or, equivalently, 

maximization of the AUC, can be approached directly by using an AUC-maximining 

metalearning algorithm. In Section 3, we discuss how AUC maximization can be formulated 

as a nonlinear optimization problem. We have implemented the AUC-maximizing 

metalearning algorithm as an update to the SuperLearner R package and demonstrate its 

usage with a code example.
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In Section 4, we evaluate the effectiveness of a large number of nonlinear optimization 

algorithms to maximize the cross-validated (CV) AUC of a Super Learner fit. We compare 

the cross-validated AUC of the AUC-optimized ensemble fits to the cross-validated AUC of 

the ensembles that do not attempt to optimize AUC. Super Learner fits using various 

metalearning algorithms are benchmarked using training sets with varying levels of class 

imbalance. The results provide evidence that “AUC-maximizing” metalearners can, and 

often do, out-perform non-“AUC-maximizing” metalearning methods (e. g. non-negative 

least squares), with respect to cross-validated AUC of the ensemble. The results also 

demonstrate that, on certain datasets, as the level of class imbalance increases in the 

response variable of the training set, the Super Learner ensemble out-performs the top base 

algorithm by a larger degree. This suggests that datasets with greater class imbalance in the 

outcome variable might benefit from Super Learner ensembles with direct AUC-

maximization in the metalearning step.

2 Ensemble metalearning

The Super Learner prediction is the optimal combination of the predicted values from the 

base learners, which is the motivation behind the name, “Super Learner.” The optimal way 

of combining the base learning algorithms is precisely what is estimated in the metalearning 

step of the Super Learner algorithm. The output from the base learners, also called “level-

one” data in the stacking literature [5], serves as input to the metalearner algorithm. Super 

Learner theory requires cross-validation to generate the level-one dataset, and in practice, k-

fold cross-validation is often used.

The following describes how to construct the level-one dataset. Assume that the training set 

is comprised of n independent and identically distributed observations, {O1,..., On}, where 

Oi = (Xi, Yi) and  is a vector of covariate or feature values and Yi ∈ R is the 

outcome. Consider an ensemble comprised of a set of L base learning algorithms, {ψ1,..., 

ψL}, each of which is indexed by an algorithm class, as well as a specific set of model 

parameters. Then, the process of constructing the level-one dataset will involve generating 

an n × L matrix, Z, of k-fold cross-validated predicted values as follows:

1. The original training set, X, is divided randomly into V roughly-equal pieces 

(validation folds), X(1),...,X(V).

2. For each base learner in the ensemble, ψl, k-fold cross-validation is used to 

generate n cross-validated predicted values associated with the lth learner. 

These n-dimensional vectors of cross-validated predicted values become the L 
columns of Z.

The level-one design matrix, Z, along with the original outcome vector, , 

is then used to train the metalearning algorithm, Φ.

2.1 Base learner library

Super Learner theory does not require any specific level of diversity among the set of base 

learners, however, a diverse set of base learners (e. g., Linear Model, Support Vector 

Machine, Random Forest, Neural Net) is encouraged. The more diverse the library is, the 

LeDell et al. Page 3

Int J Biostat. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



greater the ability of the ensemble to approximate the true prediction function. The “base 

learner library” may also include copies of the same algorithm, indexed by different sets of 

model parameters. For example, the user can specify multiple Random Forests [6], each with 

a different splitting criterion, tree depth or “mtry” value.

The base learner prediction functions, , are trained by fitting each of the base 

learning algorithms, {ψ1,...,ψL}, on the training set. The base learners can be any parametric 

or nonparametric supervised machine learning algorithm. Once the level-one dataset is 

generated by cross-validating the base learners, the optimal combination of these fits is 

estimated by applying the metalearning algorithm, Φ, to these data.

2.2 Metalearning algorithms

In the context of Super Learning, the metalearning algorithm is a method that minimizes the 

cross-validated risk associated with some loss function of interest. For example, if the goal is 

to minimize mean squared prediction error, the ordinary least squares (OLS) algorithm can 

be used to solve for α = (α1,..., αL), the weight vector that minimizes the following:

In the equation above, zil represents the (i, l) element of the n × L level-one design matrix, Z. 

If desired, a non-negativity restriction i. e., αl ≥ 0, can be imposed on the weights. There is 

evidence that this type of regularization increases the predictive accuracy of the ensemble 

[4]. In this case, the Non-Negative Least Squares (NNLS) algorithm [7] can be used as a 

metalearner. Both OLS and NNLS are suitable metalearner choices to use when the goal is 

to minimize squared prediction error. In the SuperLearner R package [8], there are five pre-

existing metalearning methods available by default, and these are listed in Table 1.

However, in many prediction problems, the goal is to optimize some objective function other 

than the objective function associated with ordinary or nonnegative least squares. For 

example, in a binary classification problem, if the goal is to maximize the AUC of the 

model, then an AUC-maximizing algorithm can be used in the metalearning step. Unlike the 

accuracy metric for classification problems, AUC is a performance measure that is 

unaffected by the prior class distributions [9]. Accuracy-based performance measures 

implicitly assume that the class distribution of the dataset is approximately balanced and the 

misclassification costs are equal [10]. However, for many real world problems, this is not the 

case. Therefore, AUC may be a suitable performance metric to use when the training set has 

an imbalanced, or rare, binary outcome. Multi-class versions of AUC exist [11, 12], 

however, we will discuss AUC in the context of binary classification problems.

Although we use AUC-maximization as the primary, motivating example, the technique of 

targeting a user-defined loss function in the metalearning step can be applied to any bounded 

loss function, L(ψ). It is worth noting that the loss function, L(ψ), not just risk, E0L(ψ), must 

be bounded. The AUC-maximizing metalearning algorithm that we have contributed to the 
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SuperLearner package can be reconfigured so that the Super Learner minimizes any loss 

function that is possible to implement in code. For binary classification, other performance 

measures of interest may be F1-Score (or Fβ) [13], Partial AUC [14, 15], or H-measure [10]. 

A Super Learner ensemble that optimizes any of these metrics can be constructed following 

the same procedure that we present for AUC-maximization.

3 AUC maximization

Given a set of base learning algorithms, the linear combination of the base learners that 

maximizes the cross-validated AUC of the Super Learner ensemble can be found using 

nonlinear optimization.

3.1 Nonlinear optimization

A nonlinear optimization problem is an optimization problem that seeks to minimize (or 

maximize) some objective function, f (α), where , and the solution 

space is subject various constraints. To be called “nonlinear,” either the function to be 

maximized or minimized, or at least one of the functions whose value is constrained, must 

be nonlinear.

Box constraints enforce an upper or lower bound on each of the d optimization parameters. 

In other words, upper and/or lower bound vectors, lb = (lb1,...,lbd) and ub = (ub1,...,ubd), can 

be defined, such that lbj ≤ aj ≤ ubj for j = {1,...,d}. In partially constrained, or unconstrained, 

optimization problems, one or both of these bounds may be ± ∞. There may also exist m 
separate nonlinear inequality constraints, fcj(α) ≤ 0 for j = 1,...,m, for constraint functions, 

fcj(α). Lastly, a handful of algorithms are capable of supporting one or more nonlinear 

equality constraints, which take the form, h(α) = 0.

3.1.1 Nonlinear optimization in R—The default optimization methods available in base 

R (via the optim function), as well as algorithms from the nloptr package [16], can be used 

to approximate the linear combination of the base learners that maximizes the AUC of the 

ensemble. The default optimization methods in R do not allow for equality constraints such 

as Σjαj = 1, therefore normalization of the weights can be performed as an additional step 

after the optimal weights are determined. Since AUC is a ranking-based measure, 

normalization of the weights will not change the AUC value. Since normalized weights are 

more easily interpretable, we normalized the weights as a post-processing step. There are 

some methods in the nloptr package that allow for equality constraints as part of the 

optimization routine, however, this technique for weight normalization was not used.

The optim function supports general-purpose optimization based on Nelder-Mead [17], 

quasi-Newton and conjugate-gradient algorithms. There is also a simulated annealing 

method, i. e., “SANN,” [18] however, since this method is quite slow, we did not consider its 

use as metalearning method to be practical. With the optim function, there is only one 

method, L-BFGS-B [19, 20], that allows for box-constraints on the weights.

The nloptr package is an R interface to the NLopt [21] software project from MIT. NLopt 
is an open-source library for nonlinear optimization, which provides a common interface for 
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a number of different optimization routines. We evaluated 16 different global and local 

optimization algorithms from NLopt for the purpose of metalearning. The complete list of 

NLopt-based algorithms is documented in Table 2. A lower bound of 0 is imposed for the 

weights using the NLopt methods to avoid learning negative weights for the base learner 

contribution. We also evaluated the effect of adding an upper bound of 1 in comparison to 

leaving the upper bound undefined, i. e., ∞.

3.2 AUC-maximizing ensembles

The SuperLearner R package was used to evaluate various metalearning methods. The five 

pre-existing methods, described in Table 1, were compared against a new set of AUC-

maximizing metalearning methods. As part of this exercise, we implemented a new 

metalearning function, method.AUC, for the SuperLearner package. In the method.AUC 

function, the weights are initialized as , where L is the number of base 

learners. The function will execute an optimization method that maximizes AUC, and will 

return the optimal weights found by the algorithm.

The method.AUC function currently supports four optim-based and sixteen nloptr-based 

optimization algorithms by default. Many of these algorithms support box-constraints, so 

additional configurations of the existing methods can also be specified using our software. 

An example of how to specify a custom metalearning function by wrapping the 

method.AUC function is shown in Figure 1. In the example, we specify the metalearner to 

use the unbounded, optim-based, BFGS method [22–25], with post-optimization 

normalization of the weights.

A complete list of the default SuperLearner metalearning methods plus the new optim and 

nloptr-based AUC-maximizing metalearning methods are listed in Table 2. A total of 37 

new AUC-maximizing metalearning functions were evaluated. The AUC_nlopt.X (where X 

is an integer between 1 and 20) functions implement global optimization routines and the 

remainder (21–32) are local, derivative-free, methods. The AUC_optim.X (where X is an 

integer between 1 and 5) functions implement the variations of the optim-based methods.

To reduce the computational burden of evaluating a large number of metalearners, we 

implemented two functions for the SuperLearner package which simplify the processes of 

re-combining the base learner fits using a new metalearning algorithm. These functions, 

recombineSL and recombineCVSL, take as input an existing “SuperLearner” or 

“CV.SuperLearner” fit, and a new metalearning function. They re-use the existing level-one 

dataset and base learner fits stored in the model object, re-run the metalearning step and 

return the updated fit. A simple example of how to use the recombineSL function is shown 

in Figure 3.

4 Benchmark results

This section contains the results from the benchmarks of various metalearning methods in a 

binary classification problem. The purpose of these benchmarks is twofold. We evaluate 

whether AUC-maximizing metalearners, compared to other methods such as NNLS, actually 

maximize the cross-validated AUC of the Super Learner ensemble. We also investigate the 
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training set characteristics that lead to the greatest performance gain of the ensemble (over 

the best individual model), as measured by cross-validated AUC. In particular, we measure 

the effect that class imbalance, as well as training size, has on the performance of Super 

Learner, under various metalearning methods.

After computing the performance of Super Learner using the 42 metalearners under 

consideration on a dataset, we identify which metalearning algorithm yields the best cross-

validated ensemble AUC. The remaining metalearners are compared by calculating the 

offset, in terms of cross-validated AUC, between the Super Learner utilizing the top 

metalearing method and the other methods. For example, if the top method produced a 

model with a CV AUC of 0.75, the offset between the top method and a model with 0.73 CV 

AUC would be 0.02. The AUC offsets for each dataset-metalearner combination are 

displayed in a grid-format using heatmaps.

For each training set, we contrast the performance of the best individual model, as 

determined by a cross-validated grid-search, with the cross-validated AUC of the Super 

Learner. In the grid search method, the estimator with the best cross-validated performance 

(as measured by a given loss criterion), is selected as the winning algorithm, and the other 

algorithms are discarded. In the Super Learning, or stacking, context, the process of 

generating the level-one dataset using crossvalidation is equivalent to a cross-validated grid-

search of the base learners. Moreover, in the Super Learner literature, the grid-search 

technique is referred to as the Discrete Super Learner algorithm [26].

It is quite common for machine learning practitioners to use a grid-search to evaluate the 

performance of a set of unique candidate learning algorithms, or unique sets of model 

parameters within a single algorithm class, as a means to select the best model from those 

under consideration. Since the metalearning step requires a only small amount of 

computation as compared to the computation involved in generating level-one data, 

executing a grid-search and training the Super Learner algorithm are computationally 

commensurate tasks. Although grid-search and Super Learning require a similar amount of 

work, the Super Learner ensemble, by optimally combining the set of candidate estimators, 

can provide a boost in performance over the top base model. For context, we also provide 

the cross-validated AUC for each of the base models in the ensemble.

In the benchmarks, we use a single, diverse base learner library which contains the following 

five algorithms: Lasso Regression, Generalized Additive Models, Random Forest (with 

1,000 trees), Polynomial Spline Regression and K-Nearest Neighbor (k = 10). The R 

packages that were used for each these methods are listed in Table 3.

4.1 Training datasets

We evaluated twenty different training sets from two sources of data, one from the physics 

research domain and the other from the medical domain. The first set of datasets have a mid-

range cross-validated ensemble AUC (0.72–0.80) and the second group has a lower range of 

ensemble AUC, (0.60–0.67).
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4.1.1 HIGGS dataset—This set of benchmarks use training sets derived from the HIGGS 

dataset [27], a publicly available training set that has been produced using Monte Carlo 

simulations. The original dataset contains 11 million training examples, 28 numeric features 

and a binary outcome variable. The associated binary classification task is to distinguish 

between a background process (Y = 0) and a process where new theoretical Higgs bosons 

are produced (Y = 1).

Although this simulated dataset is meant to represent a data generating distribution with a 

rare outcome (i. e., evidence of the Higgs particle), the class distribution of the outcome 

variable in the simulated data is approximately balanced, with P(Y = 1) ≈ 0.53. Two groups 

of subsets of the HIGGS dataset where created, one with n = 10,000 observations and the 

other with n = 100,000 observations. Within each group, ten datasets of fixed size, n, but 

varying levels of class imbalance, were constructed from the original HIGGS dataset. The 

following levels of outcome imbalance, P(Y = 1), were evaluated: 1–5 %, 10 %, 20 %, 30 %, 

40 % and 50 %.

The SuperLearner [8] and cvAUC [28] R packages were used to train and cross-validate 

the AUC of the Super Learner fits. For the n = 10,000 sized training sets, 10-fold cross-

validation was used to estimate the cross-validated AUC values. Within the Super Learner 

algorithm, 10-fold cross-validation was used to generate the level-one data, where the folds 

were stratified by the outcome variable. For the n = 100,000 training sets, 2-fold cross-

validation was used to estimate cross-validated AUC, and 2-fold, stratified, cross-validation 

was also used to generate the level-one data.

4.1.2 Diabetes dataset—The second set of benchmarks use training sets derived from the 

publicly available Diabetes Hospital Readmission dataset [29], sourced from 130 U.S. 

hospitals during the years, 1999–2008. The original dataset contains 100,000 training 

examples, 55 predictor columns (a mixture of numeric and categorical features) and a binary 

outcome variable with P(Y = 1) ≈ 0.46. The associated binary classification task is to 

predict hospital readmission among patients known to have diabetes.

In order to simplify the benchmarking process, we used a random subset of the rows and 

restricted the predictor columns to the numeric columns only. The subset of 8 predictors that 

were used in our sample is:

– time_in_hospital

– num_lab_procedures

– num_procedures

– num_medications

– number_outpatient

– number_emergency

– number_inpatient

– number_diagnoses
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The outcome variable, called “readmitted”, originally had three outcomes: “< 30”, “> 30” 

and “NO”. We recoded the outcome to represent readmission vs no readmission, assigning 

both the “< 30” and “> 30” examples as the positive response class and “NO” as the negative 

response class. As compared to the HIGGS dataset, the Diabetes dataset we used contained a 

relatively weak signal, with cross-validated ensemble AUC values starting around 0.6.

As in the HIGGS example, we created ten datasets of fixed size, n = 10,000, but varying 

levels of class imbalance introduced artificially, by randomly subsampling the original 

dataset in a stratified fashion. The following levels of outcome imbalance, P(Y = 1), were 

evaluated: 1–5 %, 10 %, 20 %, 30 %, 40 % and 50 %. A second set of larger datasets were 

also evaluated, with n = 50,000. 10-fold cross-validation was used to estimate AUC of all of 

the ensembles.

4.2 Ensemble performance by metalearner

For the HIGGS datasets, the results shown in Tables 4 and 5 suggest that AUC-maximizing 

metalearners and the negative log-likelihood method typically perform best among all 

reviewed metalearning algorithms, as measured by cross-validated AUC. Although the 

AUC-based metalearners often perform better than the non-AUC methods for the HIGGS 

datasets, there are some examples where using the loss function associated with the negative 

log-likelihood (of the binomial distribution) yields the top Super Learner ensemble. Unlike 

the AUC-based methods, the log-likelihood-based metalearning methods in the 

SuperLearner package, such as method.NNloglik and method.CC_nloglik, use radient 

information in the optimization process, which can be helpful.

4.2.1 HIGGS results

4.2.2 Diabetes results—The Diabetes 10,000-row dataset had slightly different results 

than the HIGGS datasets, however the 50,000-row Diabetes datasets had results consistent 

with the HIGGS datasets.

In the smaller (n = 10,000) set, four of the ten datasets (with different levels of imbalance) 

that were evaluated achieved top performance among all metalearners using a least-squares 

based metalearner. This is an interesting and perhaps unexpected result, considering the 

assumption that AUC-maximization leads to the best results. As shown in Table 6, the 

dataset with highest level of class imbalance (1 %), the CC_LS and NNLS metalearners 

performed the best and the log-likihood based metalearner came in next, still offering benefit 

to using an ensemble over the top single model. As for the remaining AUC-maxiziming 

metalearning methods, the ensemble did not perform well on any of these – the ensemble 

performance was actually slightly lower than the performance of GAM. This ensmeble may 

not represent a typical scenario in terms of performance of the base learners – the range of 

CV AUCs in the base learner library was 0.5 (Polynomial Spline Regression) – 0.594 

(GAM), which are very low AUC values. The rest of the ensembles in the small Diabetes 

datasets were found to be maximized by the log-likelihood based metalearner. Overall, the 

cross-validated AUC values for the base learners and the ensemble are relatively low, the 

highest among all ten datasets being 0.651. As there is a s very low signal in the data, that 

may be the cause of the contrary results.
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In the larger (n = 50,000) datasets, the AUC-maximization metalearners dominate among 

other methods. As shown in Table 7, the Super Learner trained on the dataset with the 

highest imbalance (1 %) benefitted most from the log-likelihood based metalearning 

method, however all other datasets benefitted most from AUC-maximizing metalearners.

There is not one single metalearning method that performs best across all datasets, so it's 

recommended to evaluate as many metalearners as possible. Since the metalearning step is 

rather fast in comparison to any of the L base learning steps, evaluating a large number of 

metalearners is a reasonable approach to creating the highest performing Super Learner 

using the available training dataset. Two utility functions were created to facilitate easy re-

training of the metalearning step, without having to re-train all the base learners. The 

functions, now available in the SuperLearner package are called recombineSL and 

recombineCVSL (Figure 4).

4.3 Effect of class imbalance

By creating a sequence of training sets of increasing class imbalance, we evaluated the 

ability of the Super Learner to outperform individual models. Specifically, we measured the 

gain, in terms of cross-validated AUC of the ensemble, that the Super Learner provides over 

the top base model (i. e., the grid-search winner).

What the HIGGS results demonstrate in Table 4, Table 5 and Figure 6 is that the AUC gain 

achieved by using a Super Learner (SL) ensemble versus choosing the best base algorithm, 

as selected by grid-search (GS), is highest in the P(Y = 1) ≤ 10 % range. In particular, for the 

P(Y = 1) = 4 % dataset in Table 4, there is nearly a 0.04 gain in cross-validated AUC 

achieved from using an AUC-maximizing Super Learner, as opposed to selecting the top 

base learning algorithm, which in this case is a Generalized Additive Model (GAM). For 

completeness, the cross-validated grid search performance of each of the base algorithms are 

provided in Table 8 and Table 9 in the Appendix.

Figure 6 is a plot of the Super Learner AUC gain versus the value for P(Y = 1) for both 

HIGGS datasets, along with a Loess fit for each group of points. With both datasets, the 

general trend is that the Super Learner AUC gain increases as the value of P(Y = 1) 

decreases. However, with the n = 10,000 training set, there is a sharp decrease in AUC gain 

near P(Y = 1) = 1 %. This trend is not present in the n = 100,000 dataset, so it may be a an 

artifact of the n = 10,000 dataset, due to the global rarity of minority class examples in the 

training set (there are only 100 minority class observations in total). Future investigation 

could include examining the level of imbalance with higher granularity, and in particular, in 

the P(Y = 1) ≤ 1 % range, using larger n.

The Diabetes results in Table 6, Table 7 and Figure 7 show a similar, though slightly less 

pronounced, trend. For simple comparison, Figures 6 and 7 are shown on the same scale.

4.4 Effect of regularization on the base learner weights

The odd-numbered NLopt-based AUC-maximizing metalearning methods enforce box 

constraints – weights are bounded below by 0 and above by 1. As shown in Table 2, the 

even-numbered NLopt-based methods are the partially unconstrained counterparts of the 
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odd methods, where the upper bound is ∞. The top metalearner offset heatmap in Figure 4 

shows that all of partially unconstrained AUC-maximizing meta-learning methods do poorly 

in comparison to their fully constrained counterparts.

5 Concluding remarks

In this article, we describe a novel implementation an AUC-maximizing Super Learner 

algorithm. The new AUC-maximizing metalearning functionality, as well as utility functions 

for efficient re-estimation of the metalearning algorithm in an existing Super Learner fit, 

have been contributed to the SuperLearner R package.

We benchmarked the AUC-maximizing metalearning algorithms against various existing 

metalearners that do not target AUC. The results suggest that the use of an AUC-maximizing 

metalearner in the Super Learner algorithm can, and often does, lead to higher performance, 

with respect to cross-validated AUC of the ensemble. The benchmarks indicate that Super 

Learning (which includes the AUC-maximizing meta-learners) is most effective when the 

outcome is imbalanced – in particular, in the P(Y = 1) ≤ 15 % range. The benchmarks also 

show that NNLS, which has been widely used as a metalearning method in stacking 

algorithms since it was first suggested by Breiman, often performs worse than AUC-

maximizing andlog-likelihood based metalearners.

In the current implementation of method.AUC, the weights are initialized as 

, where L is the number of base learners. In future work, we may 

investigate the effect of initializing the weights using existing information about the 

problem, for example, let αinit = (0,...,0,1,0,...,0), where the 1 is located at the index of the 

top base learner, as determined by cross-validation. Further, it may increase performance to 

use the global optimum as input for a local optimization algorithm, although this technique 

for chaining algorithms together was not evaluated in our study.

Appendix

Table 8

CV AUC for HIGGS datasets (n = 10,000; CV = 10 × 10).

No. P(Y = 1) SL glmnet gam randomForest polymars knn

1 0.01 0.721 0.675 0.718 0.600 0.504 0.487

2 0.02 0.739 0.667 0.723 0.671 0.530 0.490

3 0.03 0.764 0.692 0.741 0.717 0.500 0.508

4 0.04 0.770 0.686 0.732 0.731 0.579 0.540

5 0.05 0.759 0.675 0.723 0.727 0.569 0.540

6 0.10 0.768 0.672 0.720 0.744 0.750 0.554

7 0.20 0.778 0.679 0.720 0.764 0.760 0.579

8 0.30 0.783 0.679 0.721 0.775 0.757 0.593

9 0.40 0.788 0.682 0.722 0.783 0.763 0.595

10 0.50 0.787 0.683 0.722 0.783 0.756 0.600
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Table 9

CV AUC for HIGGS datasets (n = 100,000; CV = 2 × 2).

No. P(Y = 1) SL glmnet gam randomForest polymars knn

1 0.01 0.754 0.679 0.727 0.708 0.500 0.530

2 0.02 0.766 0.683 0.724 0.729 0.745 0.537

3 0.03 0.772 0.684 0.728 0.742 0.748 0.544

4 0.04 0.777 0.684 0.724 0.749 0.758 0.554

5 0.05 0.779 0.687 0.729 0.759 0.753 0.563

6 0.10 0.786 0.689 0.728 0.772 0.771 0.588

7 0.20 0.793 0.684 0.725 0.786 0.776 0.607

8 0.30 0.795 0.682 0.722 0.792 0.767 0.617

9 0.40 0.798 0.680 0.720 0.796 0.769 0.627

10 0.50 0.800 0.682 0.721 0.798 0.771 0.624

Table 10

CV AUC for diabetes datasets (n = 10,000; CV = 10 × 10).

No. P(Y = 1) SL glmnet gam randomForest polymars knn

1 0.01 0.597 0.527 0.594 0.517 0.500 0.485

2 0.02 0.608 0.593 0.606 0.562 0.500 0.480

3 0.03 0.615 0.597 0.603 0.580 0.500 0.530

4 0.04 0.615 0.581 0.599 0.588 0.500 0.541

5 0.05 0.620 0.588 0.603 0.596 0.500 0.544

6 0.10 0.630 0.603 0.619 0.600 0.500 0.582

7 0.20 0.632 0.615 0.625 0.601 0.533 0.584

8 0.30 0.629 0.616 0.625 0.600 0.581 0.578

9 0.40 0.637 0.623 0.633 0.621 0.609 0.579

10 0.50 0.651 0.641 0.649 0.639 0.616 0.591

Table 11

CV AUC for diabetes datasets (n = 50,000; CV = 10 × 10).

No. P(Y = 1) SL glmnet gam randomForest polymars knn

1 0.01 0.679 0.664 0.673 0.590 0.500 0.543

2 0.02 0.686 0.669 0.684 0.607 0.500 0.549

3 0.03 0.699 0.681 0.696 0.615 0.500 0.561

4 0.04 0.685 0.666 0.681 0.614 0.500 0.567

5 0.05 0.680 0.657 0.672 0.612 0.500 0.571

6 0.10 0.677 0.642 0.658 0.628 0.500 0.596

7 0.20 0.678 0.639 0.655 0.650 0.629 0.617

8 0.30 0.658 0.639 0.649 0.639 0.623 0.603
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No. P(Y = 1) SL glmnet gam randomForest polymars knn

9 0.40 0.646 0.638 0.644 0.633 0.632 0.584

10 0.50 0.668 0.656 0.660 0.662 0.644 0.609
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Figure 1. 
Example of how to use the method. AUC function to create customized AUC-maximizing 

metalearning functions.
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Figure 2. 
Example of how to use the custom method. AUC_optim.4 metalearning function with the 

SuperLearner function.
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Figure 3. 
Example of how to update an existing “SuperLearner” fit by re-training the metalearner with 

a new method.
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Figure 4. 
Model CV AUC offset from the best Super Learner model for different metalearning 

methods. (No color = = top metalearner).
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Figure 5. 
Model CV AUC offset from the best Super Learner model for a subset of the metalearning 

methods. The partially unconstrained NLopt methods are removed in order to more clearly 

demonstrate the differences between the box-constrained methods. (No color == top 

metalearner).
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Figure 6. 
CV AUC gain by super learner (with top metalearner) over grid-search winning model on 

HIGGS datasets. Loess fit overlays actual points.
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Figure 7. 
CV AUC gain by super learner (with top metalearner) over grid-search winning model in 

diabetes datasets. Loess fit overlays actual points.
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Table 1

Default metalearning methods in SuperLearner R package.

Method Description R Package

NNLS Non-negative least squares nnls

NNLS2 Non-negative least squares quadprog

CC_LS Non-negative least squares nloptr

NNloglik Negative log-likelihood (Binomial) Base R

CC_nloglik Negative log-likelihood (Binomial) nloptr
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Table 2

Metalearning methods evaluated.

Method Description min{αj) max{αj}

NNLS Non-negative least squares (nnls) 0 Inf

NNLS2 Non-negative least squares (quadprog) 0 Inf

CC_LS Non-negative least squares (nloptr) 0 1

NNloglik Negative log-likelihood (Binomial) (optim) 0 Inf

CC_nloglik Negative log-likelihood (Binomial) (nloptr) 0 1

AUC_nlopt.1 DIRECT 0 1

AUC_nlopt.2 DIRECT 0 Inf

AUC_nlopt.3 DIRECT-L 0 1

AUC_nlopt.4 DIRECT-L 0 Inf

AUC_nlopt.5 DIRECT-L RAND 0 1

AUC_nlopt.6 DIRECT-L RAND 0 Inf

AUC_nlopt.7 DIRECT NOSCAL 0 1

AUC_nlopt.8 DIRECT NOSCAL 0 Inf

AUC_nlopt.9 DIRECT-L NOSCAL 0 1

AUC_nlopt.10 DIRECT-L NOSCAL 0 Inf

AUC_nlopt.11 DIRECT-L RAND NOSCAL 0 1

AUC_nlopt.12 DIRECT-L RAND NOSCAL 0 Inf

AUC_nlopt.13 ORIG DIRECT 0 1

AUC_nlopt.14 ORIG DIRECT 0 Inf

AUC_nlopt.15 ORIG DIRECT-L 0 1

AUC_nlopt.16 ORIG DIRECT-L 0 Inf

AUC_nlopt.17 Controlled Random Search with Local Mutation 0 1

AUC_nlopt.18 Controlled Random Search with Local Mutation 0 Inf

AUC_nlopt.19 Improved Stochastic Ranking Evolution Strategy 0 1

AUC_nlopt.20 Improved Stochastic Ranking Evolution Strategy 0 Inf

AUC_nlopt.21 Principal Axis (PRAXIS) 0 1

AUC_nlopt.22 Principal Axis (PRAXIS) 0 Inf

AUC_nlopt.23 Constrained Opt. by Linear Approximations 0 1

AUC_nlopt.24 Constrained Opt. by Linear Approximations 0 Inf

AUC_nlopt.25 Bounded NEWUOA 0 1

AUC_nlopt.26 Bounded NEWUOA 0 Inf

AUC_nlopt.27 Nelder-Mead 0 1

AUC_nlopt.28 Nelder-Mead 0 Inf

AUC_nlopt.29 Sbplex 0 1

AUC_nlopt.30 Sbplex 0 Inf

AUC_nlopt.31 BOBYQA 0 1

AUC_nlopt.32 BOBYQA 0 Inf

AUC_optim.1 L-BFGS-B 0 1

AUC_optim.2 L-BFGS-B 0 Inf
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Method Description min{αj) max{αj}

AUC_optim.3 Nelder-Mead –Inf Inf

AUC_optim.4 BFGS –Inf Inf

AUC_optim.5 Conjugate Gradient (CG) –Inf Inf
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Table 3

Example base learner library representing a small, yet diverse, collection of algorithm classes. Default model 

parameters were used.

Algorithm R Package Function

ψ 1 Lasso regression glmnet glmnet

ψ 2 Generalized additive model gam gam

ψ 3 Random forest (1,000 trees) random Forest randomForest

ψ 4 Polynomial spline regression polyspline polymars

ψ 5 K-Nearest neighbor (k = 10) class knn
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Table 4

Top Metalearner performance for HIGGS Datasets, as measured by cross-validated AUC (n = 10,000; CV = 

10 × 10).

No. P(Y = 1) Metalearner SL AUC Gain SL AUC GS AUC GS Model

1 0.01 CC_nloglik 0.003 0.721 0.718 gam

2 0.02 AUC_optim.4 0.016 0.739 0.723 gam

3 0.03 NNloglik 0.023 0.764 0.741 gam

4 0.04 AUC_optim.4 0.038 0.770 0.732 gam

5 0.05 AUC_optim.4 0.032 0.759 0.727 randomForest

6 0.10 NNloglik 0.018 0.768 0.750 polymars

7 0.20 AUC_nlopt.11 0.014 0.778 0.764 randomForest

8 0.30 AUC_optim.4 0.007 0.783 0.775 randomForest

9 0.40 AUC_nlopt.23 0.005 0.788 0.783 randomForest

10 0.50 NNloglik 0.003 0.787 0.783 randomForest

SL = “Super Learner” and GS = “Grid Search.”
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Table 5

Top Metalearner performance for HIGGS datasets, as measured by cross-validated AUC (n = 100,000; CV = 2 

× 2).

No. P(Y = 1) Metalearner SL AUC Gain SL AUC GS AUC GS Model

1 0.01 NNloglik 0.027 0.754 0.727 gam

2 0.02 AUC_nlopt.19 0.021 0.766 0.745 polymars

3 0.03 AUC_optim.5 0.024 0.772 0.748 polymars

4 0.04 AUC_optim.4 0.019 0.777 0.758 polymars

5 0.05 AUC_optim.3 0.020 0.779 0.759 randomForest

6 0.10 AUC_nlopt.13 0.014 0.786 0.772 randomForest

7 0.20 AUC_nlopt.5 0.007 0.793 0.786 randomForest

8 0.30 AUC_nlopt.13 0.003 0.795 0.792 randomForest

9 0.40 AUC_nlopt.21 0.002 0.798 0.796 randomForest

10 0.50 AUC_nlopt.11 0.001 0.800 0.798 randomForest

SL = “Super Learner” and GS = “Grid Search.”
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Table 6

Top Metalearner performance for diabetes datasets, as measured by cross-validated AUC (n = 10,000; CV = 

10 × 10).

No. P(Y = 1) Metalearner SL AUC Gain SL AUC GS AUC GS Model

1 0.01 CC_LS 0.003 0.597 0.594 gam

2 0.02 AUC_optim.3 0.001 0.608 0.606 gam

3 0.03 NNloglik 0.012 0.615 0.603 gam

4 0.04 NNloglik 0.017 0.615 0.599 gam

5 0.05 NNloglik 0.017 0.620 0.603 gam

6 0.10 NNLS 0.011 0.630 0.619 gam

7 0.20 NNLS 0.007 0.632 0.625 gam

8 0.30 NNLS 0.004 0.629 0.625 gam

9 0.40 NNloglik 0.004 0.637 0.633 gam

10 0.50 NNloglik 0.002 0.651 0.649 gam

SL = “Super Learner” and GS = “Grid Search.”
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Table 7

Top Metalearner performance for diabetes datasets, as measured by cross-validated AUC (n = 50,000; CV = 

10 × 10).

No. P(Y = 1) Metalearner SL AUC Gain SL AUC GS AUC GS Model

1 0.01 NNloglik 0.006 0.679 0.673 gam

2 0.02 AUC_optim.5 0.002 0.686 0.684 gam

3 0.03 AUC_optim.5 0.003 0.699 0.696 gam

4 0.04 AUC_optim.3 0.004 0.685 0.681 gam

5 0.05 AUC_optim.3 0.008 0.680 0.672 gam

6 0.10 AUC_optim.4 0.019 0.677 0.658 gam

7 0.20 AUC_optim.4 0.023 0.678 0.655 gam

8 0.30 AUC_optim.4 0.009 0.658 0.649 gam

9 0.40 AUC_optim.4 0.002 0.646 0.644 gam

10 0.50 AUC_optim.4 0.008 0.668 0.660 gam

SL = “Super Learner” and GS = “Grid Search.”
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