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CONSPECTUS: The atmosphere−biosphere exchange of nitrogen
oxides plays a key role in determining the composition of reactive
nitrogen in terrestrial vegetated environments. The emission of
nitric oxide (NO) from soils is an important atmospheric source of
reactive nitrogen. NO is rapidly interconverted with NO2, making
up the chemical family NOx (NOx ≡ NO2 + NO). NOx further
reacts with the oxidation products of volatile organic compounds
(VOCs) to form the functionalized nitrogen oxide groups acyl
peroxynitrates (APNs = R(O)O2NO2) and alkyl nitrates (ANs =
RONO2). Both canopy-level field measurements and laboratory
studies suggest that the absorption of nitrogen dioxide NO2 and
APNs by vegetation is a significant sink of atmospheric NOx,
removing a large fraction of global soil-emitted NOx and providing
key control on the amounts and lifetimes of NOx and reactive nitrogen in the atmosphere. Nitrogen oxides influence the production
of surface O3 and secondary aerosols. The balance of the emission and uptake of nitrogen oxides thus provides a mechanism for the
regulation of regional air quality. The biosphere, via this biogeochemical cycling of nitrogen oxides, is becoming an increasingly
important determining factor for airborne pollutants as much of the world continues to reduce the amount of combustion-related
nitrogen oxide emissions. Understanding the function of the biosphere as a source and sink of reactive nitrogen is therefore ever
more critical in evaluating the effects of future and current emissions of nitrogen oxides on human and ecosystem health.
Laboratory measurements of the foliar deposition of NO2 and other reactive nitrogen species suggest that there is a substantial
diversity of uptake rates under varying environmental conditions and for different species of vegetation that is not currently reflected
in the widely utilized chemical transport models. Our branch chamber measurements on a wide variety of North American tree
species highlight the variability in the rates of both photosynthesis and nitrogen oxide deposition among several different nitrogen
oxide compounds. Box-modeling and satellite measurement approaches demonstrate how disparities between our understanding of
nitrogen oxide foliar exchange in the laboratory and what is represented in models can lead to misrepresentations of the net
ecosystem exchange of nitrogen. This has important implications for assumptions of in-canopy chemistry, soil emissions of NO,
canopy reductions of NOx, lifetimes of trace gases, and the impact of the biosphere on air quality.
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evidence that reactions within the leaf’s mesophyll slow PAN
stomatal uptake.

1. INTRODUCTION
The chemistry of atmospheric NOx (NOx ≡ NO + NO2) leads
to the formation of both toxic and phytotoxic atmospheric
products, including O3 and secondary aerosols. NOx chemistry
also controls the rates and pathways of atmospheric oxidation by
controlling the budgets of other important atmospheric oxidants
(i.e., O3, OH, HO2, and RO2).

4 NOx emissions impact sensitive
ecosystems through contributions of excess nitrogen.5−7 In the
U.S., emission controls have reduced NOx emissions from the
transportation and power generation sectors by more than half
over the last two decades, even as activity has increased.8,9 Other
parts of the world lag, but the increasing electrification of
transportation and of thermal control in buildings, along with
the growth of renewable electricity generation, put all countries
on a path toward much lower combustion-related NOx
emissions. It has recently been shown that, as a result of this
trend, air quality is increasingly sensitive to emissions of NO
from soils,10 particularly in agricultural regions where fertilizer
application leads to NOx soil emissions larger than in many
natural ecosystems. In light of this, a better understanding of the
role of the biosphere as a source and sink of NOx is needed to
assess the current and future roles that NOx emissions play in
affecting human health and ecosystems.
NO and NO2 are highly reactive molecules that occur at trace

levels (on the order of parts per billion or parts per trillion by
volume) in the atmosphere.11−13 Rapid photochemical
reactions driven by sunlight (hν) and other atmospheric
oxidants (i.e., O3, OH, HO2, and RO2) interconvert NO and
NO2 on the time scale of minutes in both urban and remote
atmospheres.4,11,12 The oxidation of NOx leads to the
production of nitric acid (HNO3), alkyl nitrates (ANs,
RONO2), and peroxy nitrates (PNs, RO2NO2) which results
in an atmospheric lifetime for NOx of ∼5 h.13−16 Removal of
NOx from active chemistry occurs primarily by the first two of

these pathways, via either the reaction of OH radicals with NO2
to form HNO3 or the reaction of NO with RO2 radicals to form
RONO2.

13−20 RO2 is a family of intermediates in the oxidation
of organic compounds. On short spatial scales, gas-phase HNO3
is nearly chemically inert, with a lifetime to chemical conversion
back to NOx of ∼50 h. This time scale is long compared to
typical time scales for removal by dry deposition (contact
removal with surfaces) or wet deposition (dissolution in
droplets and subsequent rainout).21 RONO2 is removed from
the atmosphere through reactions that reform NOx, reactions in
aerosols that result in heterogeneous hydrolysis to form HNO3,
and direct deposition.14,15,21 The relative importance of HNO3
and RONO2 production influences the lifetime of NOx, the
production of O3, and the formation of secondary organic
aerosol in a wide range of environments.13−20 RO2 can also react
with NO2 to form RO2NO2 at rates similar to that of the
formation of RONO2.

22 However, in the lower atmospheremost
RO2NO2 species thermally dissociate to reform NO2 on time
scales of seconds orminutes, making them a short-lived reservoir
of NOx with little effect on the overall rate of removal of NOx
from the atmosphere.15 During the night, in the absence of
photochemistry, NO2 reacts with O3 to form NO3, which then
reacts with NO2 to form N2O5. N2O5 is highly soluble and is
scavenged by aerosols to form HNO3 via heterogeneous
hydrolysis.23 At night, NO3 can also react with alkenes to form
RONO2.

23 The nitrogen oxides NOx along with the oxidation
products HNO3, ANs, and PNs make up the chemical family
NOy.
In addition to chemical processes and deposition, plants and

microbes can directly affect NOx. Figure 1 describes these
pathways within the atmosphere and the connections to the
biosphere. Microbes utilizing N in soils (including natural levels
of N and levels perturbed by long-term deposition or enhanced
levels from fertilizer application) contribute to emissions of NO
into the atmosphere.24−27 In a remote forested environment or
agricultural region, the primary source of NOx in the atmosphere
is the emission of NO from soil microbial activity.24−29 Soil NO

Figure 1. Atmosphere−biosphere exchange processes and chemical transformations of gas-phase atmospherically oxidized nitrogen.
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emissions increase with fertilizer applications in agricultural
areas24 and vary by region, soil type, soil temperature, and a
variety of other environmental factors.25 Plants can also remove
NOx from the atmosphere during photosynthesis as a result of
chemistry occurring within their stomata.26,28,29

Only a fraction of the soil-emitted NOx is ventilated into the
atmosphere above plant canopies.26,28,29 Some of this NOx is
chemically transformed to alkyl nitrates.30,31 The deposition of
soil-emitted NOx to trees and understory vegetation is also
considered to be an important, perhaps dominant, cause of this
canopy NOx reduction.

29 Laboratory studies have observed the
direct and rapid deposition of NOx to plants.1,2,32−35 Direct
deposition of the RO2NO2 species peroxyacetyl nitrate (PAN)
has also been observed, representing an additional biologically
mediated path for the permanent removal of NOx.

3,36,37

In this article, we synthesize our understanding of the role of
the biosphere as path for the removal of NOx from the
atmosphere. We review recent laboratory experiments on the
rates andmechanisms of removal of atmospheric nitrogen oxides
(NOy) by plants, discuss insights these experiments provide for
understanding emissions of NOx from soils, and describe a box
model that explores these effects in detail. Our working model
starts with a standard approximation to the flux of atmospheric
gases to surfaces, in this case, a plant with leaves

= · ·[ ]flux V NOLAId x (1)

where LAI is the leaf area index, which is the ratio of the total leaf
area in a region to the ground area, and Vd is the deposition
velocity.
The deposition velocity is represented using the resistance

model framework of Baldocchi et al.38 and Wesely et al.39

(Figure 2). An atmospheric trace gas, such as NO or NO2, must

pass through a series of “barriers”, analogous to resistors in an
electrical circuit, on its path to removal by deposition. Transfer
of the trace gas over each of these “barriers” is modeled as a
steady-state process. The first resistor is the aerodynamic
resistance (Ra), which describes the resistance associated with a
trace gas diffusing through a turbulently flowing parcel of air and
reaching the surface of a leaf. This parameter is dependent upon
the diffusivity of the gas in question and the wind speed. The
second resistor is the boundary layer resistance (Rb) and
represents the diffusion of a trace gas through a region of the

laminarly flowing air layer directly above a leaf surface. This
parameter is dependent upon microscopic surface properties of
the leaf and trace gas diffusivity. Once a trace gas reaches the leaf
surface, it can deposit directly onto the cuticles (i.e., leaf surface)
(with a resistance represented as Rcut) or diffuse through the
stomata, which are pores in the leaf through which CO2, O2, and
H2O are exchanged. Stomatal behavior is an essential feature of
our understanding of molecular exchange during photosyn-
thesis, respiration, and transpiration.40−43 The resistance to
deposition through the stomata (Rs) reflects the rate of physical
diffusion through these pores and is the inverse of the stomatal
conductance (gs), which represents the degree of stomatal
opening. Leaf stomata generally act to maximize CO2 uptake
while minimizing water loss,42 and the resulting gs is limited by
many factors, including light availability, vapor pressure deficit,
soil moisture, plant species, leaf age, and season, among others.
Once the trace gas enters the stomata, it can undergo hydrolysis
and enzymatic reactions within the leaf tissue. This latter step
determines the resistance of the mesophyll (Rm). If these
reactions are relatively rapid, then stomatal deposition is limited
primarily by diffusion through the stomata.
A variety of gases deposit onto leaves in this manner, including

CO2, VOCs, O3, H2O2, HNO3, peroxyacyl nitrate, and alkyl
nitrates. The exact chemical mechanism for the deposition of
many gases is not widely known. The relative contribution of
cuticular deposition vs stomatal deposition depends largely on
the gas solubility, reactivity of the gases with the leaf surface, and
enzymatic reactions within the leaf mesophyll. For example,
CO2 deposition is entirely stomatal and driven by enzymatic
reactions. The deposition of O3 includes contributions both
from deposition to cuticles and through stomates.44,45 Oxidized
VOCs (OVOCs) and nitrates may also exhibit both stomata and
nonstomatal (cuticular) deposition.21 HNO3 and H2O2 are
known to proceed at the turbulence rate, indicating that they
deposit onto any surface at a rate limited primarily by Rb and
Ra.

21

The cuticular deposition of gases, such as OVOCs, O3, H2O2,
and HNO3, is thought to proceed primarily through dissolution
of the gas to aqueous films on the leaf surface, with more rapid
cuticular deposition for gases with higher solubility. The rate of
cuticular deposition also depends on the reactivity of the gas
with the cuticle (particularly for O3), which is affected by
deposited aerosols, the cuticular wax itself, and compounds
secreted by the leaf.44 Stomatal deposition is thought to proceed
through much the same manner, with trace gases dissolving into
the aqueous phase and reacting with compounds within the leaf
mesophyll. NO2, for example, is thought to form nitrate and
nitrite in the aqueous phase of the apoplast and react with nitrate
reductase to form ammonium, which then becomes assimilated
into amino acids.46,47 The uptake of acyl peroxynitrates is likely
also facilitated by enzymatic reactions.3

The total deposition velocity for trace gas X to vegetation,
represented by the effects of all pathways shown in Figure 2, can
then be represented in eq 2.

=
+ + + +( )

V
R R

1
d

a b R R R
1 1

1

cut s m (2)

The parameters in eq 2 are not, in general, known, and
describing them for all atmospheric situations is challenging.
The simplification introduced byWesely et al.39 has been widely
adopted in global chemical transport models. In the Wesely
model, stomatal conductance is represented as a function of

Figure 2. Resistance model for the deposition of an atmospheric trace
gas to a leaf.
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temperature (T/°C) over relevant environmental temperatures
and solar radiation (SR):

= × + +
R R

SR(1 200( 0.1) )
s s min T T,

1 2

(40 )
400 (3)

Rs,min is the minimum stomatal resistance for a given vegetation
class. The additional surface resistances (Rm and Rc) are
functions of the Henry’s law constant (H*) and a reactivity
parameter f 0
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= * +R R H f(10 )c lu
5

0
1

(5)

where a specific value for Rlu is chosen for each ecosystem
classification.
The deposition of NOx and its oxidation products

(particularly RO2NO2) can proceed at rates that are comparable
to the production of HNO3 or RONO2, thus influencing the
concentration of NOx in the atmosphere.48 This Account
focuses on some of our recent research investigating the
deposition of NOx, RONO2, and RO2NO2 and the role of these
deposition pathways in controlling NOx loss and lifetimes. For
the purposes of this Account, we define “deposition” as the
physical removal process due to the deposition onto leaf
surfaces.

2. FLUX MEASUREMENT APPROACHES
Observing the exchange flux between the atmosphere and the
biosphere is considerably more challenging than collecting
concentration measurements. Flux measurements typically
occur on the leaf, branch, or ecosystem scale. Fluxes can also
be inferred through coupling concentration measurements to
chemical transport models. Each approach has its own
corresponding set of benefits and difficulties. It is our opinion
that a combination of these approaches is necessary for
continued advancements in understanding atmosphere−bio-
sphere interactions.
Many approaches exist for measuring the concentrations of

relevant gas species. Concentration measurements can be
coupled with atmospheric chemical transport models to derive
estimates of the biosphere fluxes of NOy.

24,49,50 Many
atmospheric models have employed a “canopy reduction factor”
to account for the loss of NOx within the canopy.24,26,27,50

However, this parameter is nonphysical and includes loss due to
both chemical transformations and deposition, thus misrepre-
senting the chemical system. Other inferences rely on
complicated assumptions for model parametrization, leading
to inaccuracies. Nevertheless, concentration measurements,
especially those derived from operational networks and satellite
observations, provide temporal and spatial coverage that allows
for the assessment of effects over multiple years and across
multiple ecosystems. Such comparisons are essential to
observing sufficient variation in the controlling parameters to
test whether our ideas represent the physical process governing
the biosphere−atmosphere exchange. Satellites have also shown
promise for estimating the rate of some plant physiological
processes, such as in our recent reports.51−53

Ecosystem-scale flux towers provide a more localized
representation than observations from space. Such flux tower
observations incorporate differences between species, individual

plants, and individual leaves and can be used to infer
atmosphere−biosphere exchange rates.31,54−57 However, de-
convoluting chemistry, deposition, and emission processes
beneath a canopy can be challenging. Efforts to do so are
confounded by uncertainties in soil NO emission rates and the
rates of chemical transformations. This complicates our ability
to elucidate the actual deposition fluxes of individual reactive
nitrogen oxides from the above-canopy observations and
distinguish them from chemical losses. Furthermore, the
measurements and flux processes identified at a single ecosystem
flux tower site are not necessarily interchangeable with other
sites (different soil conditions, sunlight availability, etc., can
affect plant physiology). Recent investigations have also shown
the potential for aircraft flux measurements of NOx.

58 Such
advancements in airborne measurements of NOx fluxes can
allow for the evaluation of fluxes over larger spatial scales and
across multiple ecosystems.
Leaf-level flux measurements typically consist of a small

controlled environmental chamber enclosing a leaf.35,59,60

Branch-level flux measurements are similar but utilize larger
chambers that can enclose multiple leaves on a
branch.1−3,32,33,61 Trace gas exchange in these chambers is
calculated by measuring either the concentration difference
between the inlet and outlet to a single chamber1−3,36,35,60 or the
difference between a chamber enclosing a leaf or branch and an
empty reference chamber.32,37,59,61−63 The latter method is
typically used when conductingmeasurements in the field, as the
dual chamber method can simplify accounting for photo-
chemical reactions that can occur upon exposure to ambient UV
light. Leaf-level measurements are made easier by the existence
of commercially available leaf chambers that provide accurate
measurements of stomatal conductance and leaf area (e.g., the
Licor-6800 environmental chamber). However, individual
leaves can behave differently than the aggregate plant; therefore,
leaf chamber measurements typically require repeated measure-
ments over a statistical representation of leaves on a given plant.
Fluxes can also be small and close to the limit of detection of the
trace gas detector. Branch measurements benefit from larger
total exchange rates and are more representative of the aggregate
plant, but obtaining accurate measurements of leaf area and
stomatal conductance is more challenging. However, research in
our group and in other groups has led to approaches that reliably
calculate both the enclosed leaf area and the stomatal
conductance from measured water vapor fluxes.1−3,64 Labo-
ratory experiments have the benefit of being able to quantify the
dependence of NOx deposition on the temperature, light
intensity, humidity, soil water content, and other environmental
factors by varying these terms individually.

3. LEAF- AND BRANCH-LEVEL FLUX OBSERVATIONS
Numerous studies havemeasured leaf- and branch-level fluxes of
NOy, particularly of NO2, NO, and peroxyacetyl nitrate (PAN,
C2H3NO5). One study to date has directly measured the
deposition of an additional RO2NO2 species,

3 and two have
investigated the deposition of alkyl nitrates.60,64 Here we
provide an overview of the findings from leaf- and branch-level
NOx, AN, and PN deposition measurements since the year 2000
and highlight the recent contributions from our group.
3.1. NO and NO2

Understanding the leaf-level deposition of NOx has remained
elusive. Experiments have resulted in a wide range of deposition
velocities for similar tree species (i.e., evergreen needleleaf,
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evergreen broadleaf, deciduous broadleaf, etc.) (Figure 3, Table
S1). These broad classifications are used in global chemical

transport models for representing foliar deposition.65 Discrep-
ancies exist in the degree of mesophilic influence on the total
uptake rate. Some studies32 have found that deposition rates are
controlled primarily by stomatal conductance, while
others33,35,61 have observed lower deposition rates due to
substantial additional barriers. Many direct leaf-level laboratory
measurements have observed the emission, rather than the
deposition, of NO2 and NO at the low NOx mixing ratios
relevant to remote forested environments. This would imply that
vegetation acts as a large additional source of NOx for the
atmosphere, with a source strength on the order of 1010
molecules cm−2 s−1, contrary to field observations suggesting
that the biosphere sink of NOx is roughly of the same
magnitude.29 The ambient NOx concentration at which
vegetation crosses from serving as a sink to a source of NOx is
known as the compensation point. Compensation points of NO2
in laboratory experiments have been sometimes ob-
served35,59,66−68 and sometimes not.1,2,32,33,61 There has,
however, been more agreement in measurements of NO fluxes,
with researchers generally finding negligible foliar uptake1,35,61

and slight emissions below 1 ppb NO.1,35

In Delaria et al.,2 we conducted the most comprehensive NO2
deposition study to date on three to six individuals of six
different conifer and four broadleaf tree species.We used a single

laboratory dynamic branch chamber with direct laser-induced
fluorescence (LIF) detection of NO2 and the simultaneous
measurement of the stomatal conductance of the enclosed
branch. This study concluded that NO2 deposition to 10 tree
species scaled directly with stomatal conductance, with minimal
contribution from the mesophilic resistance. We found no
evidence of NO2 emission from any of the tree species examined,
in agreement with all other direct NO2 flux studies over the past
decade (Table S4). We concluded that the existence of an NO2
compensation point is improbable and that earlier findings of
NO2 emission were likely due to experimental detection
interference. The findings described in Delaria et al.2 also
support the small to negligible cuticular deposition observed by
most other NO2 deposition studies (Table S5), with no
significant deposition occurring in the absence of light and/or
when gs was near zero.

32,33,59,61 We also observed significant
nighttime NO2 deposition that could be explained by stomates
remaining slightly open in the dark, as has been observed in
numerous other studies.69−71 This effect is not represented by
the Wesely model as embedded in CTMs.
The largest inconsistencies remaining across NO2 deposition

studies are the degree to which mesophilic processes limit
deposition, the range of stomatal conductance gs, and the
resultant deposition velocities (Figures 3 and 4, Table S1). The
rates of stomatal uptake (Rs and Rm) depend on both the rate of
diffusion through stomata and the rate of reaction within the
mesophyll. For species with fast mesophilic reactions (e.g., O3),

Figure 3. Maximum deposition velocities of NO2, peroxyacyl nitrate
(PAN), peroxypropionic nitrate (PPN), isopropyl nitrate (IPN),
ethylhexyl nitrate (EHN), and methylbutyl nitrate (MBN) as reported
in the literature. Different marker colors represent data from different
investigations, with data from the three key references (refs 1−3)
shown in black. Error bars associated with black markers are one
standard deviation. Each marker represents a different tree species, as
detailed in Tables S1−S3. Conifer, broadleaf, and herbaceous species
are represented as circles, diamonds, and squares, respectively. Error
bars associated with these markers are one standard deviation.
Associated error bars are the errors in the measurements when
reported. Red crosses represent the maximum leaf-level Vd prescribed
by the Wesely model for evergreen forests as implemented in GEOS-
Chem. Red asterisks represent the maximum leaf-level Vd prescribed by
theWeslely model for all other plant species, as implemented in GEOS-
Chem.

Figure 4. Ratios of the deposition velocity to the stomatal conductance
for NO2, peroxyacyl nitrate (PAN), peroxypropionic nitrate (PPN),
isopropyl nitrate (IPN), ethylhexyl nitrate (EHN), and methylbutyl
nitrate (MBN). Box and whiskers represent the aggregated data from all
individuals of the different plant species as reported in refs 1−3.
Different marker colors represent data from different investigations,
with data from the three key references (refs 1−3) shown in black. Error
bars associated with black markers are one standard deviation. Each
marker represents the average of data for a different tree species, as
detailed in Tables S1−S3. Conifer, broadleaf, and herbaceous species
are represented as circles, diamonds, and squares, respectively. Vd/gs
ratios were calculated from available Vd and gs data and were not
explicitly reported. Red asterisks represent the values prescribed by the
Wesely model for all vegetation species.
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the rate of stomatal deposition is limited primarily by the rate of
diffusion through the stomata (gs). In Table S1, we represent the
mesophilic effect by the parameter Vd/gs, where gs is the stomatal
conductance to the given gaseous species. We have calculated
this parameter from stomatal conductance and trace gas flux data
presented when it was not explicitly reported (Table S1).
Although Delaria et al.2 found only minimal mesophilic
resistances across the 10 species studied (Vd/gs = 0.79�0.99),
Wang et al.61 found larger mesophilic effects in the broadleaf
deciduous tree Acer rubrum and the coniferous species Pinus
strobus. A range of Vd/gs ratios have been observed from 0.65
(Pinus strobus, Wang et al.61) to 0.99 (Pinus contorta, Delaria et
al.2 and Pinus sylvestris, Chaparro-Suarez et al.32) among
coniferous species and 0.65 (Quercus rubra, Wang et al.61) to
0.93 (Arbutus menziesii, Delaria et al.2) among broadleaf species.
Despite the range in reported Vd/gs ratios, the Wesley model for
NO2 assumes negligible mesophilic resistance, with a reactivity
parameter ( f 0) of 0.1. It is possible that variations in the
reactivity of NO2 within the leaf mesophyll between different
plant species (i.e., variations in f 0) are partially responsible for
the observed differences in Vd/gs.
Leaf- and branch-level NO2 deposition experiments also

observed a wide range of deposition velocities. Different light
and humidity conditions among these studies may contribute to
the range of observed deposition velocities and stomatal
responses. Different tree species have also been found to have
different stomatal conductance under similar field conditions,
which would clearly play a role in creating the observed
disparities between the stomatal deposition rates on different
tree species.72−74 Observed maximum deposition velocities
range from 0.042 cm s−1 (Picea abies, Breuninger et al.33) to 0.51
cm s−1 (Pinus sabiniana, Delaria et al.2) among coniferous trees
and 0.11 cm s−1 (Acer rubrum, Wang et al.61) to 0.47 cm s−1
(Acer macrophyllum, Delaria et al.2) among broadleaf trees.
Some of the variability in Vd/gs may be explained by this spread
in observed deposition velocities, as mesophilic resistances
become relatively more important at a larger stomatal
conductance. The range of observed deposition velocities
reflects a large range of stomatal conductance, likely influenced
by species variation and differences in the experimental
conditions. This variability in deposition velocities and in the
stomatal conductance among species of the same ecosystem
class is not represented in most atmospheric CTMs. Modeling
the diversity of stomatal responses not only has important
implications for representing nitrogen oxide deposition but also
for many other species exchanged with stomata, including many
biogenic volatile organic compounds, ozone, and CO2. Accurate
representations of leaf-level exchange necessitate experimental
and observational data on the dominant vegetation in an area.
3.2. Peroxy Nitrates

Several, but considerably fewer, studies have investigated the
deposition of peroxy nitrates to stomata. By far the most studied
RO2NO2 species is peroxy acetyl nitrate (PAN). Like that of
NO2, a wide variety of deposition velocities have been observed.
Teklemariam and Sparks63 and Sparks et al.36 identified rapid
deposition velocities of PAN to herbaceous species of 0.23�
0.55 cm s−1, but with considerable mesophilic resistances and
Vd/gs ratios of 0.12−0.48. (These values were recalculated from
those originally reported in these studies to be consistent with
models and more recent treatments of deposition veloc-
ities.36,63) More recent studies have been unable to reproduce
these rapid uptake rates. Place et al.3 conducted an exhaustive

investigation of the uptake rates of 10 tree species and observed
deposition velocities ranging from 0.09 cm s−1 (Quercus
agrifolia) to 0.21 cm s−1 (Acer macrophyllum) for broadleaf
species and from 0.11 cm s−1 (Pinus ponderosa, Pseudotsuga
menziesii) to 0.3 cm s−1 (Pinus sabiniana) for conifer trees. Place
et al.3 also identified Vd/gs ratios ranging from 0.66 to 0.76. Sun
et al.37 recently calculated a similar deposition velocity of
approximately 0.15 cm s−1 and aVd/gs of 0.64 for a broadleaf tree
species (Quercus ilex). Although all four of these studies have
identified mesophilic limits to the PAN uptake rate, the Wesely
model representation predicts negligible mesophilic effects.
Additionally, Sun et al.62 suggested that over 20% of PAN foliar
deposition is nonstomatal, while Place et al.3 found no evidence
for cuticular PAN deposition. As with NO2, all observed
nighttime PAN deposition was attributed to nontotal stomatal
closure in the latter study. This may indicate a noncuticular
component to the nighttime deposition of PAN that has been
observed in several field studies (i.e., deposition to other surfaces
such as soils or below-canopy chemical loss).75,76 More direct
uptake experiments on a wider variety of plant species using
updated sensitive trace gas detection methods are needed to
resolve the rates of potential nonstomatal deposition and allow
for more comprehensive treatments of PAN foliar exchange.
Place et al.3 was the first investigation of the deposition rate of

an additional peroxy nitrate, peroxypropionic nitrate (PPN).We
found deposition velocities of 0.19 and 0.12 cm s−1 for two
different broadleaf tree species�Acer macrophyllum andQuercus
douglasii, respectively�and minimal mesophilic dependence on
uptake rates across experimental conditions. Additional experi-
ments should, however, be conducted to test the applicability of
these findings to different plant species and to other atmospheri-
cally relevant peroxy nitrates.
3.3. Alkyl Nitrates

Lockwood et al.60 observed the deposition of RONO2 to
quaking aspen leaves by dosing the tree leaves with high
concentrations of methylbutyl nitrate (MBN).60 In this study, all
methylbutyl nitrate deposition occurred through stomatal
uptake with a deposition velocity of 0.056 cm s−1, and the
mesophilic resistance (Rm) was rate-limiting. Order of
magnitude slower deposition velocities were identified by
Place et al.64 for MBN to Pinus sabiniana trees. Place et al.64

also measured the deposition velocities of 0.0019 and 0.047 cm
s−1 for isopropyl nitrate (IPN) and ethylhexyl nitrate (EHN),
respectively, finding that themesophilic processing rate was rate-
limiting. Clearly, the structure of the R functional group changes
the deposition behavior.
Nighttime flux tower measurements of C1−C5 alkyl nitrates in

Colorado and New Hampshire revealed moderate nighttime
deposition velocities for these compounds.50,51 These deposi-
tion velocities were attributed to uptake on tree/soil surfaces,
assuming that leaf stomata are closed at night. Measurements of
multifunctional alkyl nitrates during the Southern Oxidant and
Aerosol Study (SOAS) have shown that highly functionalized
nitrates deposit rapidly from the atmosphere, some at rates
similar to that for nitric acid.21 These findings have yet to be
validated by controlled leaf-, soil-, and branch-level experiments.
Developments in experimental methods are needed to assess the
deposition fluxes of a wider variety of RONO2 species.

4. IMPLICATIONS
In Delaria et al.,51 we extrapolated the laboratory observations to
derive NO2 and PAN fluxes over the continental United States
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from solar-induced fluorescence (SIF) estimations of the
aggregated canopy stomatal conductance, using the scaling
factors (Vd/gs ratios) determined in Delaria et al.

2 and Place et
al.3 Midday NO2 fluxes were calculated with SIF and NO2
products from the TROPOspheric Monitoring Instrument
(TROPOMI) and compared to midday NO2 fluxes predicted
by GEOS-Chem for April, June, and August. These comparisons
reveal inconsistencies in the magnitude and spatial distribution
of fluxes during April and August (Figure 5). The over-
simplification of deposition parameters in standard model
representations likely fails to capture the diversity of plant
physiology and results in the misrepresentation of regional
variations in NO2 and PAN fluxes.

Our findings suggest strong spatial and temporal variations in
stomatal-driven NOx fluxes. To explore the impact of stomatal
NOx fluxes on the NOx cycle, we constructed a simple model of
PAN and NO2 stomatal deposition and thermochemical and
chemical losses. Chemical losses of PAN and NO2 are
represented in reactions R1�R3. PAN deposition and
chemistry in R1 are treated as representative of all RO2NO2
for simplicity.

+CH C(O)O NO H C(O)O NO3 2 2 3 2 2 (R.1)

+ + +RO NO (1 )RO (1 )NO RONO2 2 2
(R.2)

Figure 5. NO2 fluxes as calculated from GEOS-Chem using a Wesely deposition scheme or as inferred from TROPOMI NO2 and SIF. Adapted with
permission from ref 51. Copyright 2021 American Chemical Society.

Figure 6. Fraction of total NOx that is lost to the deposition for NO2, PAN, AN formation, or HNO3 formation as a function of (left) the NOxmixing
ratio, (middle) temperature, and (right) LAI. For this figure, PAN is considered to be an element of NOx according to ref 15. For all runs, α = 0.1, VOC
reactivity is 8 s−1, LAI = 5m2m−2, theHOx production rate is 2× 106molecules cm−3 s−1, and theNO2 and PANdeposition velocities are themedian of
what was measured in refs 2 and 3. In the left and right panels, the temperature is set to 298 K, and in the middle and right panels, the NOxmixing ratio
is 500 ppt.
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+OH NO HNO2 3 (R.3)

The simple 0D box model is identical to that presented in
Perring et al.,14 with added PAN chemistry and deposition
parameters. The model was set as follows: α = 0.1, VOC
reactivity (VOCR) = 8 s−1, leaf area index (LAI) = 5m2m−2, and
HOx production rate (PHOx) = 2 × 106 molecules cm−3 s−1. In
Figure 6, the NO2 and PAN deposition velocities are the median
of what we measured and reported in Delaria et al.2 and Place et
al.3 Because it is a short-lived reservoir during the daytime, PAN
is included in this model representation as a member of the
chemical NOx family, as in Romer et al.

15 We conclude from this
simple model that the deposition of PAN and NO2 can be
responsible for over 20% of the total NOx loss at NOx mixing
ratios of between 100 ppt and 50 ppb and for temperatures of
between 10 and 30 °C in forested environments (Figures 6 and
7). This should be taken as an upper limit under these
conditions, as the simple model does not consider aerodynamic
or boundary resistances. In areas with less-dense foliage (such as
in crop fields and grasslands), the NOx loss to dry deposition
may be considerably lower due to a reduced LAI, while in more
dense tropical forests, NOx deposition would likely be larger
(Figures 6c and 7c). The effect of a lower LAI in certain
agricultural and near-urban grasslands would, however, likely
also be offset by highermixing ratios of NOx (1�10 ppb) than is
typically found in remote forested areas (Figures 6a and 7a).2,51

This simple model result is similar to conclusions presented in
Delaria et al.,1 Delaria and Cohen,48 and Place et al.3 based on
other modeling.
Under the Wesely model as implemented in the current

version of GEOS-Chem (v13.3.4), maximal leaf-level deposition
velocities, which govern the rate of NOx deposition, are
prescribed as uniform for almost all plant and ecosystem
types, except for conifers, which are treated as a distinct but
uniform class. To compare, we applied the box model described
above over the range of deposition velocities for PAN and NO2
as measured in Place et al.3 and Delaria et al.,2 respectively. At all
NOx mixing ratios and temperatures, the fraction of NOx loss
due to deposition (rather than due to chemical formation of ANs
and HNO3) is high, with median values in the range of 20−60%

(Figure 7). Any value in the observed range indicates an
important role for NOx deposition as a pathway to removal from
the atmosphere. The leaf- and branch-level flux observations of
reactive nitrogen oxide deposition collectively emphasize the
role of dry deposition in influencing chemical lifetimes and loss
pathways.

5. CONCLUDING REMARKS
Above-canopy NOx fluxes represent the sum of all sources and
sinks, including soil emission, below-canopy chemistry, and
foliar deposition. Our laboratory experiments confirm the
essential role of stomatal deposition in the removal of NOx
from the atmosphere. Over a wide range of relevant atmospheric
conditions, we show that the uptake of stomata is responsible for
20−60% of total NOx loss in forests and agricultural regions.
This uptake renders the deployment of the ad hoc canopy
reduction factor, used to limit soil N emissions from reaching the
atmosphere, an incomplete representation of canopy reduction.
Canopy reduction factors inherently do not treat the
atmosphere explicitly, making model-measurement compar-
isons used to interpret atmospheric processes incongruous.
Explicit calculations of soil emission losses using deposition
velocities and in-canopy chemistry should be favored over
canopy reduction factors in most modeling schemes, given that
the necessary parameters for doing so (e.g., stomatal
conductance) are already estimated. Canopy reduction factors
may be appropriate only in instances where they can be explicitly
estimated using simplified representations of chemistry and
direct deposition that is specific to the vegetation in a particular
region.
Accurate representations of the processes contributing to net

canopy fluxes are required to interpret spatial and temporal
variations in canopy NOx fluxes as well as to understand the
biosphere’s contribution to ambient NOx mixing ratios. To
represent the soil−plant−atmosphere system more accurately,
we recommend updating global CTMs to reflect our improved
understanding of foliar processes. In particular, parameter Rm in
the resistance framework should reflect laboratory findings on
the role of the mesophyll in reactive nitrogen foliar uptake. The

Figure 7. Fraction of total NOx that is lost to deposition as a function of (left) the NOx mixing ratio, (middle) temperature, and (right) LAI. For this
figure, PAN is considered to be an element of NOx according to ref 15. Black solid and dashed lines are calculated using the maximum and minimum
deposition velocities, respectively, measured in the literature since 2000 (Tables S1 and S2 and Figure 3). Gray shaded regions are the range
represented in the literature. Blue solid and dashed lines are calculated using the Wesley model maximum deposition velocity for all nonconifer
vegetation and conifer forests, respectively. For all runs, α = 0.1, VOC reactivity is 8 s−1, LAI = 5 m2 m−2, and the HOx production rate is 2 × 106
molecules c−3 s−1. In the left and right panels, the temperature is set to 298 K, and in the middle and right panels, the NOx mixing ratio is 500 ppt.
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representation of stomatal conductance should also reflect the
observed diversity of plant physiology. Semiempirical dry
deposition schemes that couple stomatal conductance with net
photosynthesis have shown some promise, particularly when
tuned with ecosystem-scale measurements, as discussed in
several recent works.45,77,78

Due to the importance of soil NO to regional air quality,
ozone, and aerosol production, inconsistencies in the treatment
of nitrogen fluxes should be addressed. As combustion related
NOx emissions are reduced, the role of the biosphere as a control
over atmospheric NOx has increased importance for the
chemistry of the atmosphere.
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