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ABSTRACT OF THE DISSERTATION

Stronger Round-Optimal Secure Protocols without Setup

by

Rex Fernando

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Amit Sahai, Chair

In this dissertation, we study the round complexity of cryptographic protocols, giving special

attention to secure multi-party computation (MPC), which allows a group of mutually

distrusting parties P1, . . . , Pn, each with private input xi, to compute the evaluation of some

function f(x1, . . . , xn) without revealing their inputs to each other. We study this question

via a recent new strong version of MPC, identified by a recent work by Benhamouda and

Lin [BL20] and termed Multiparty reusable Non-Interactive Secure Computation (MrNISC).

MrNISC requires the following general structure:

1. Input encoding : at any time, a party can publish an encoding of its input noninteractively,

independent of the number of parties.

2. Computation encoding : At any time, any subset I of parties can jointly compute a

function f on their inputs xI = {xi}i∈I by broadcasting a single public message. Each

party’s message is only dependent on the input encodings of the parties in I.

Parties are allowed to join the system at any time by publishing their input encoding,

even after an arbitrary number of computation sessions have occurred. MrNISC achieves
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essentially the best-possible form of non-interactivity for MPC protocols without running

into known impossibility results on non-interactive MPC. MrNISC is a strict generalization

of two-round concurrent-secure MPC.

We give the first construction of MrNISC which satisfies the full definition of malicious

security in the plain model. By doing so, we also give the first construction of concurrent-

secure two-round MPC. Security is given in the super-polynomial-simulation regime, and

relies on the existence of an indistinguishability obfuscation scheme along with other standard

assumptions.

During the course of obtaining our main result, we also obtain new results in the areas of

zero-knowledge arguments and non-malleable commitments.

First, we give a two-round zero-knowledge argument which satisfies a weak form of

statistical soundness, which we call sometimes-statistical soundness. Previously, no two-round

zero knowledge protocols satisfied any form of statistical soundness. We also are able to

give such a protocol which simultaneously satisfies statistical zero-knowledge and is highly

reusable.

Second, we give a new one-round non-malleable commitment which satisfies full non-

malleability with respect to commitment. Our construction works in the simultaneous-message

model and is based heavily on the work of (Khurana, EUROCRYPT 2021), and is notable

for not relying on the “multi-collision-resistant” hash function. All previous one-round

non-malleable commitments with full security have relied on this assumption.
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CHAPTER 1

Introduction

One fundamental measure of cryptographic protocols, such as zero knowledge arguments,

non-malleable commitments, and secure multi-party computation, is the amount of interaction

they require. The importance of this measure is strongly grounded in practice: while the

bandwidth of modern networks has constantly been increasing, there is a physical lower

bound on their latency, imposed by distance and the speed of light. For instance, since the

distance from Los Angeles to Paris is over 9, 000 km, and the speed of light is approximately

300 km/ms, it is impossible to achieve better than approximately 30 ms latency between

these two cities. The round complexity of a protocol can also affect its security properties.

One very useful property of fully non-interactive and quasi-non-interactive1 arguments is

that proofs can be posted to some public bulletin board, like a blockchain, and then any

party can later independently verify its validity, even if the original prover is offline. This

enables arguments to be recursively composed, which has been used to achieve fundamental

new results in the areas of succinct arguments [BCC13], and also to achieve new space and

communication efficient secure multi-party computation protocols [FGK22]. It is also crucial

in enabling anonymous cryptocurrency protocols such as in [BCG14], since non-mining parties

would otherwise be forced to always remain online in order to enable the system to work.

In this dissertation, we study the round complexity of cryptographic protocols, giving

special attention to secure multi-party computation (MPC), which allows a group of mutually

distrusting parties P1, . . . , Pn, each with private input xi, to compute the evaluation of some

1By quasi-non-interactive we refer to “non-interactive” protocols that require a trusted setup such as a
common reference string.
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function f(x1, . . . , xn) without revealing their inputs to each other. Security is shown via

the notion of simulation, which compares the behavior of the system in the “real world” to

its behavior in an “ideal world.” This ideal world is defined with respect to a trusted party,

which receives xi from each party Pi, and computes and delivers f(x1, . . . , xn) to all the

parties. Since the parties do not interact with each other directly, security holds in this world

by definition. An MPC protocol is then said to be secure if for any efficient adversary in the

real world which learns something after an execution of the protocol, there exists an efficient

simulator who can learn the same thing.

The round complexity of MPC protocols has been well-studied over the last few decades.

The original MPC construction of [GMW87] was highly round-inefficient, taking a number

of rounds proportional to the depth of the circuit for the functionality being computed.

Since then, a long line of work [BMR90, KOS03, KO04, Wee10, GMP16, ACJ17, BHP17,

COS17b, CCG20] has made dramatic improvements, with recent works finally achieving four

rounds [COS17b, CCG20, ACJ17, BHP17]. This was shown to be optimal by the works

of [KO04, GMP16], which showed that achieving secure computation in three rounds within

the standard regime of black-box polynomial-time simulation is impossible.

In the classical definition of simulation security for MPC protocols, the parties are

assumed to run the protocol in an isolated environment, separate from other parties and

other executions of protocols. While this definition is simple and elegant, the ubiquity of the

internet means that this assumption is not very realistic. The notion of concurrent security

fixes this by allowing an adversary to spawn an arbitrary number of parties and executions of

a protocol. Unfortunately, the work of [BPS06] showed that concurrent security is impossible

in any number of rounds within the standard regime of black-box polynomial-time simulation.

The exciting work of [Pas03] introduced a very useful relaxation of standard polynomial-

time simulation, called super-polynomial-time simulation. In this new definition, the simulator

is allowed to run for slightly longer than polynomial-time. This has been used, among

other things, to achieve concurrent security for MPC protocols by the works of [CLP10,
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GGJ12, KMO14], sidestepping the impossibility result of [KO04, GMP16]. In 2017, the work

of [BGJ17] constructed a concurrent MPC protocol in three rounds, thus bypassing both the

lower bounds of [KO04, GMP16] and [BPS06] at once. For several years, this has been the

state of the art in terms of the round complexity of both MPC and concurrent-secure MPC

in the plain model.

An important question, then, is whether concurrent-secure MPC, or even standalone

MPC, can be achieved in two rounds in the plain model, without setup. In this dissertation,

we study this question.

It is natural to ask whether MPC can be done in one round, with each party sending a

single simultaneous message. However, one can very easily show that this is impossible, via

the following argument, commonly referred to as the residual function attack. Consider the

case of two parties P1 and P2, and say that P1 sends its message m1. Then P2 should be able

to compute and send her message m2, so that both parties learn f(x1, x2). However, this

means that P2 can compute m′2 for any other x′2 in her head, and learn f(x1, x2) as well. She

can do this for arbitrarily many x′2. This means that parties are able to learn much more

than is allowed by a secure MPC protocol. This simple argument also extends to the case of

protocols with trusted setup, showing that one-round protocols are also impossible in this

case.

This raises the question, how close can we get to a non-interactive protocol without

running into this impossibility?

We study this question via a recent new strong version of MPC, identified by a recent

work by Benhamouda and Lin [BL20] and termed Multiparty reusable Non-Interactive Secure

Computation (MrNISC). MrNISC requires the following general structure:

1. Input encoding : at any time, a party can publish an encoding of its input noninteractively,

independent of the number of parties.

2. Computation encoding : At any time, any subset I of parties can jointly compute a

3



function f on their inputs xI = {xi}i∈I by broadcasting a single public message. Each

party’s message is only dependent on the input encodings of the parties in I.

Parties are allowed to join the system at any time by publishing their input encoding,

even after an arbitrary number of computation sessions have occurred.

In this way, MrNISC achieves essentially the best-possible form of non-interactivity for

MPC protocols without running into the aforementioned impossibility: once parties have

committed to their input, any subset of parties can compute an arbitrary function on their

committed inputs via a single round. Note that MrNISC is a strict generalization of two-round

concurrent-secure MPC.

Several MrNISC protocols have been constructed in the semi-malicious regime, where

security only holds for adversaries who follow the protocol specification.2 Benhamouda and

Lin [BL20] constructed such a protocol for all efficiently computable functionalities relying

on the SXDH assumption in asymmetric bilinear groups. In two concurrent follow-up works,

Ananth et al. [AJJ21] and Benhamouda et al. [BJK21] obtained MrNISC protocols relying on

Learning With Errors (LWE). However, it was unknown whether it is possible to construct

MrNISC in the plain model which satisfies the full malicious version of security, where

adversaries can deviate arbitrarily from the protocol specification.

1.0.1 Our Results

In this dissertation, we give the first affirmative answer to the above question. Specifically,

relying on well-founded assumptions, we obtain a maliciously secure SPS MrNISC in the

plain model, without any trusted setup. Our result is obtained via a generic transformation

from any semi-malicious secure MrNISC. Security of the construction relies on the existence

of a subexponentially-secure indistinguishability obfuscator

2Semi-malicious security allows the adversary to choose arbitrary randomness for the parties, but otherwise
requires honest behavior.
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Theorem 1 (Main Result). Assume there exists subexponentially-secure variants of the

following:

• a semi-malicious-secure MrNISC,

• an indistinguishability obfuscation scheme,

• a non-interactive witness indistinguishable argument,

• a one-way permutation in NC1,

• a time-lock puzzle,

• either the DDH assumption or hardness of factoring, and

• quantum hardness of the learning-with-errors (LWE) assumption

Then there exists a malicious-secure MrNISC in the plain model, with a super-polynomial

simulator.

On the assumptions. Our work relies heavily on the idea of multiple axes of hard-

ness [LPS17], where there are multiple ways to measure the hardness of a problem, such as

circuit size and circuit depth. This allows one to define pairs of problems (A,B) where A is

simultaneously harder than B (with respect to one axis) and easier than B (with respect

to the other). Time-lock puzzles are a well-known way to achieve such scenarios based on

circuit size and depth. In the course of our construction, we require an additional axis of

hardness, and for this we use quantum hardness. Note that both DDH and factoring are

solvable in quantum polynomial time, whereas LWE is thought to be computationally hard

for quantum computers. Thus by setting appropriate security parameters, we can have a

quantum machine which can break an instance of DDH or factoring in polynomial time but

cannot break a LWE instance, and at the same time a classical machine which can break the

LWE instance but not the DDH or factoring instance.
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Implications for (Classical) MPC. We note that it is possible to view our main result

via several different lenses in terms of classical MPC:

• Our MrNISC implies the first 2-round maliciously secure SPS MPC based on well-

founded falsifiable assumptions.

• Our MrNISC implies the first 2-round maliciously secure SPS MPC with a short and

reusable first message, based on any assumption. Namely, the first round message is

not only independent of the function to be computed (which is necessary for reusability),

but it is actually generated independently of the number of participating parties. All

prior MPC protocols with this property only satisfy semi-malicious security in the plain

model [BGM20, BL20, AJJ21, BGS21, BJK21].

• Our MrNISC implies the first concurrent two-round maliciously secure SPS MPC.

Indeed, at any point in time, parties can join the protocol by publishing their input

encodings and even start evaluation phases. This could happen even after some of the

other parties published their input encodings and participated in several evaluation

phases. The only previously known malicious (SPS) concurrent MPC required three

rounds [BGJ17].

Other results. In the course of obtaining our main result, we achieve two intermediate

results, in the areas of zero-knowledge and non-malleable commitments.

First, we give a new definition of two-round zero knowledge, called reusable statistical

zero-knowledge with sometimes-statistical soundness. This new type of argument satisfies

both statistical zero knowledge and a weakened form of statistical soundness. (Note that it is

well-known that achieving both statistical zero knowledge and full statistical soundness is

impossible for all statements in NP unless the polynomial-time hierarchy collapses [SV97].)

We also require a strong form of reusability. We show the following theorem in Chapter 4:

Theorem 2. Assume that the following assumptions hold:
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• A subexponentially secure indistinguishability obfuscator exists,

• A time lock puzzle as in Definition 4 exist,

• a subexponentially-secure NIWI exists,

• subexponential hardness of the LWE assumption, and

• a subexponentially-secure OWP computable in NC1 exists,

then there exists a reusable statistical ZK argument with sometimes statistical soundness as

defined in Definition 20.

Second, we give a new one-round non-malleable commitment in the simultaneous-message

model under better assumptions than were previously known. This commitment satisfies a

strong definition of security called CCA-non-malleability. We prove the following theorem

in Chapter 3:

Theorem 3. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• A subexponentially secure non-interactive witness-indistinguishable argument exists,

• Subexponential hardness of the DDH or factoring assumption,

• LWE is subexponentially secure against quantum adversaries of subexponential size.

Then, there exists a subexponentially-secure one-round CCA commitment scheme support-

ing a super-polynomial number of tags.

Non-interactive non-malleable commitments were first constructed by the work of [PPV08],

using very strong and non-standard, non-falsifiable assumptions. The works of [BL18, GKL21]

were able to obtain constructions based on falsifiable assumptions, namely (among other things)
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an assumption called keyless multi-collision-resistant hash functions, which are described in

more detail below. This assumption was first introduced in the work of [BKP18a, BDR18],

so it is less than five years old, and is still not well-studied. In contrast, our commitment

scheme relies solely on assumptions which have a long history of study.

Our construction is based heavily on the work of [Khu21], which achieves a weakened

version of one-round non-malleable commitments. In order to achieve our main result, we

need full CCA-non-malleable commitments, so the construction of [Khu21] will not suffice

as-is. We elaborate on this in Section 1.1 and Chapter 3.

1.0.2 Related work

A recent work of Agarwal, Bartusek, Goyal, Khurana, and Malavolta [ABG21] gave the first

two-round standalone maliciously secure MPC in the plain model. Although an exciting

first step, the result is nonstandard in several ways. First, they require the existence of

several primitives (including semi-malicious MPC) which are exponentially secure in the

number of parties. Their construction also a special type of non-interactive non-malleable

commitment. Unfortunately, the only known instantiations of the latter rely on strong and

non-standard assumptions. One instantiation relies on factoring-based adaptive one-way

functions [PPV08],3 a non-falsifiable assumption that incorporates a strong non-malleability

flavor. Another instantiation relies on keyless multi-collision resistant hash functions [BKP18b]

and an exponential variant of the “hardness amplifiability” assumption of [BL18]. While both

of these assumptions are (sub-exponentially) falsifiable, they are still highly non-standard:

1. A keyless multi-collision resistant hash function is a single publicly known function

for which (roughly) collisions are “incompressible”, namely, it is impossible to encode

significantly more than k collisions using only k bits of information. While keyless

3An adaptive one-way function is a non-falsifiable hardness assumption postulating the existence of a
one-way function f that is hard to invert on a random point y = f(x) even if you get access to an inversion
oracle that inverts it on every other point y′ 6= y.
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hash functions are formally a plain-model assumption, there is no known plain-model

instantiation based on standard assumptions. The only known instantiation is either in

the random oracle model, or by heuristically assuming that some cryptographic hash

function, like SHA-256, is such.

2. Hardness amplification assumptions postulate (roughly) that the XOR of independently

committed random bits cannot be predicted with sufficiently large advantage. There

are concrete (contrived) counter examples for this type of assumptions showing that

they are generically false [DJM12], although they certainly might hold for specific

constructions.

The specific variant used by Agarwal et al. is novel to their work. It assumes exponential

hardness amplification against PPT adversaries, i.e., that there exists a constant δ > 0

such that for large enough `, the XOR of ` independently committed random bits cannot

be predicted by a PPT adversary with advantage better than 2−`δ. This assumption

(similarly to [PPV08]’s adaptive one-way functions) also incorporates a non-malleability

flavor.

Because of this, there is no way to instantiate the protocol of [ABG21] relying on any

well-studied assumptions, or even on assumptions not specifically formulated in order to

achieve non-malleable commitments. Our work strictly generalizes their work, and does not

use ad-hoc assumptions.

1.1 Technical Overview

In this section, we give an overview of our constructions and the main ideas needed to prove

their security. Let us start by reviewing the syntax of MrNISC, as defined by Benhamouda

and Lin [BL20].
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Model and syntax. A MrNISC consists of an input encoding phase done without coor-

dination with other parties in the system (i.e., without even knowing they exist), and an

evaluation phase in which only relevant parties participate by publishing exactly one message

each. In other words, MrNISC is a strict generalization of 2-round MPC with the following

properties:

- there is no bound on the number of parties;

- multiple evaluation phases can take place with the same input encodings;

- parties can join at any point in time and publish their input encoding, even after

multiple evaluation phases occurred.

We assume all parties have access to a broadcast channel that parties use to transmit

messages to all other parties. The formal syntax of an MrNISC consists of three polynomial-

time algorithms (Encode,Eval,Output), where Encode and Eval are probabilistic, and Output

is deterministic. The allowed operations for a party Pi are:

• Input Encoding phase: each party Pi computes mi,1, σi,1 ← Encode(1λ, xi), where xi

is Pi’s private input, mi,1 is Pi’s round 1 message, and σi,1 is Pi’s round 1 private state.

It broadcasts mi,1 to all other parties.

• Function Evaluation phase: any set of parties I can compute an arity-|I| function

f on their respective inputs as follows. Each party Pi for i ∈ I computes mi,2 ←

Eval(f, σi,1, I, {mj,1}j∈I), where f is the function to compute, xi is Pi’s private input,

σi,1 is the private state of Pi’s input encoding, {mj,1}j∈I are the input encodings of

all parties in I, and the output mi,2 is Pi’s round 2 message. It broadcasts mi,2 to all

parties in I

• Output phase: upon completion of the evaluation phase by each of the participating

parties, anyone can compute y ← Output({mi,1,mi,2}i∈I) which should be equal to

f({xj}j∈I).
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Security. For security, we require that an attacker does not learn any information beyond

what is absolutely necessary, which is the outputs of the computations. Formally, for every

“real-world” adversary that corrupts the evaluator and a subset of parties, we design an

“ideal world” adversary (called a simulator) that can simulate the view of the real-world

adversary using just the outputs of the computations. As in all previous works on MrNISC

(including [BL20, AJJ21, BJK21]), we assume static corruptions, namely that the adversary

commits on the corrupted set of parties at the very beginning of the game. However, all

previous works only achieved semi-malicious security (unless trusted setup assumptions are

introduced). This notion of security, introduced by Asharov et al. [AJL12], only considers

corrupted parties that follow the protocol specification, except letting them choose their inputs

and randomness arbitrarily. In contrast, we consider the much stronger and more standard

notion of malicious security, which allows the attacker to deviate from the specification of

the protocol arbitrarily.

More precisely, in malicious security, the adversary can behave arbitrarily in the name

of the corrupted parties. Specifically, after the adversary commits on the corrupted set of

parties, it can send an arbitrary round 1 message for a corrupted party, ask for a round 1

message of any honest party (with associated private input), ask an honest party to send

the round 2 message corresponding to an evaluation of an arbitrary function on the round 1

message of an arbitrary set of parties, and send an arbitrary round 2 message of a malicious

party corresponding to an evaluation of an arbitrary function on the round 1 message of

an arbitrary set of parties. The simulator needs to simulate the adversary’s view with the

assistance of an ideal functionality that can provide only the outputs of the computations

that are being performed throughout the adversary’s interaction.

Typically, protocols are called maliciously secure if for every polynomial-time adversary,

there is a polynomial-time simulator for which the real-world experiment and the ideal-world

experiment from above are indistinguishable. However, as mentioned, it is impossible to

achieve such a notion of malicious security for MPC (let alone MrNISC) in merely two rounds
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unless trusted setup assumptions are introduced. Therefore, we settle for super-polynomial

time simulation (SPS), which means that the simulator can run in super-polynomial time. In

contrast, the adversary is still assumed to run in polynomial time.

We refer to Section 5.1 for the precise definition.

Terminology. For the sake of brevity, we will sometimes refer to the input encoding phase

as round 1, and the function evaluation phase as round 2.

1.1.1 The MrNISC Protocol

To obtain our main result, we will start with a semi-malicious-secure MrNISC protocol [BL20,

BJK21] and introduce modifications to achieve malicious security. Recall that semi-malicious

security only guarantees security when the adversary follows the honest protocol specification

exactly, except that it can arbitrarily choose corrupted parties’ randomness. We would like to

use the following high-level approach used by many classical MPC protocols. During the input

encoding phase, we require each party to commit to its input and randomness in addition

to publishing a semi-malicious input encoding, and then to prove using zero-knowledge

that all of its semi-malicious MrNISC messages were generated by following the prescribed

protocol using that committed input and randomness. However, a problem arises when using

this strategy with 2-round protocols. (Note that MrNISC requires that evaluation can be

carried out in two rounds; in this way, it is a strict generalization of 2-round MPC.) This

problem comes from the fact that zero-knowledge in the plain model requires at least two

rounds. Assuming we use such a 2-round ZK scheme, honest parties would need to send

their second-round MrNISC messages before finding out whether the first-round MrNISC

messages were honest. This completely breaks security—if any party publishes semi-malicious

messages based on a non-honest transcript, the semi-malicious protocol can make no security

guarantees about these messages.

We need some way of overcoming this problem. That is, we need a way to publish
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second-round messages so that they are only revealed if the first round is honest. To this

end, we are going to use witness encryption as a locking mechanism: we “lock” the round 2

message of the underlying (semi-malicious) MrNISC and make sure that it can be unlocked

only if all involved parties’ proofs verify. More precisely, party i does:

1. Round 1 message: Commit to its input and randomness and publish a round 1 message

using the underlying MrNISC with the committed input/randomness pair. At the same

time, generate a verifier’s first-round ZK message for the other parties.

2. Round 2 message: Compute a round 2 message using the underlying MrNISC with

randomness derived from the secret state. Generate a zero-knowledge proof that this was

done correctly. Publish a witness encryption hiding the aforementioned round 2 message

that could be recovered by supplying valid proofs that all other parties’ first-round

messages were created correctly.

With this template in mind, even before starting to think about what a security proof

will look, it is already evident that there are significant challenges in realizing the building

blocks. Here are the three main challenges.

Challenge 1: The ZK argument system. The first challenge arises from trying to use

ZK arguments as witnesses for the witness encryption scheme. Recall that witness encryption

allows an encryptor to encrypt a message with respect to some statement Φ, and only if Φ

is false, then the message is hidden. Witness encryption (WE) crucially only can provide

security when Φ is false; in particular, if Φ is true, even if it is computationally hard to

find a witness for Φ, no guarantees are made about the encrypted message being hidden.

Thus, it seems like we would need a statistically-sound ZK argument, i.e., a ZK proof: if

the verifier’s first-round message is honest, with high probability, there should not exist an

accepting second-round ZK message.

It is well-known that to achieve ZK in two rounds, it is necessary to have a simulator
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that runs in super-polynomial time (i.e., an SPS simulator). In every such known two-round

ZK, the simulator works by brute-forcing some trapdoor provided in round 1, and giving

proof that “either the statement is true or I found the trapdoor.” Because of the existence

of this trapdoor, it would be impossible to make any such ZK argument statistically sound:

an unbounded-time machine can always find the trapdoor and prove false statements. So it

seems like the ZK scheme needs to satisfy two contradictory requirements: be statistically

sound, and be a two-round scheme (which appears to preclude statistical soundness).

Challenge 2: Non-malleability attacks. Since the security of the underlying semi-

malicious MrNISC holds only if the adversary knows some randomness for its messages,

we need all parties to prove that they know the input and randomness corresponding to

their messages. We are aiming for a protocol that can be evaluated in two rounds, so this

necessitates using a non-malleable commitment (to prevent an attacker from, say copying the

round 1 message of some other party). Unfortunately, as mentioned before, non-interactive

non-malleable commitments without setup are only known from very strong non-standard

assumptions, such as adaptive one-way functions [PPV08], hardness amplifiability [BL18,

ABG21], and/or keyless hash functions [BKP18b, LPS20, BL18]. These are very strong and

non-standard assumptions, for some of which we have no plain-model instantiation, except

heuristic ones. Thus, we want to achieve a secure MrNISC protocol (in the plain model)

without such strong assumptions.

Challenge 3: Adaptive reusability of the primitives. We emphasize that we are

building an MrNISC protocol, which significantly strengthens standalone two-round MPC.

Because of this, our ZK argument and commitment schemes must satisfy strong forms of

reusability. There are several challenges in ensuring both the ZK argument and non-malleable

commitment scheme satisfy the types of reusability that we need, and we introduce several

new ideas to solve these challenges. We will elaborate on this challenge below after we

describe our ideas for solving challenges 1 and 2.
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1.1.1.1 Solving Challenge 1: How do we get a “statistically-sound” SPS ZK?

We now discuss how to achieve the seemingly contradictory requirements of getting a 2-round

SPS ZK argument which has a statistical soundness property that would allow it to be a

witness for the WE scheme. Our key idea is to relax the notion of statistical soundness to

one that is obtainable in two rounds but still sufficient to use with WE.

Imagine we have a WE scheme where the distinguishing advantage of an adversary is tiny

(say, subexponential in λ). It would then suffice to have a ZK protocol that is statistically

sound a negligible fraction of the time, as long as it is quite a bit larger than the distinguishing

advantage of the WE. In more detail, consider a hypothetical zero-knowledge protocol with

the following properties:

• The first round between a computationally-bounded verifier and a prover fully specifies

one of the two possible “modes”: a statistical ZK mode and a perfectly sound mode.

• The perfectly sound mode occurs with some negligible probability ε, and in this mode,

no accepting round 2 message exists for any false statement

• In the statistical ZK mode (which occurs with overwhelming probability 1−ε), the second

message is simulatable by an SPS machine and a simulated transcript is statistically

indistinguishable from a normal transcript.

• Furthermore, it is computationally difficult for a malicious prover to distinguish between

the two modes.

If we had such a ZK protocol, it would enable us to argue hiding of the witness encryption

scheme whenever the first round of the protocol is not honest. The idea of this argument is

as follows. Suppose an adversary could learn something about the second-round messages

from their witness encryptions in some world where the first round was not honest. In that

case, it should also be able to do so even in the perfectly-sound mode (otherwise, it would
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distinguish the modes). But in this mode, proofs for false statements do not exist; thus, the

witness encryption provides full security. Even though this mode happens with negligible

probability, it is still enough to contradict witness encryption security, whose advantage is

much smaller.

To construct this new ZK scheme, we use ideas that are inspired by the extractable

commitment scheme of Kalai, Khurana, and Sahai [KKS18]. This commitment scheme

has the property that it is extractable with some negligible tunable probability but is also

statistically hiding. This commitment was used in the works of [BFJ20] to get a two-round

statistical zero-knowledge argument with super-polynomial simulation. To instantiate our

new “sometimes perfectly-sound” ZK argument, we use the protocol of [BFJ20] as a starting

point, but we will need to make significant modifications. Namely, to force a well-defined

perfect soundness mode, we will make the first round of this protocol a “simultaneous-message”

round, where both the prover and the verifier send a message. We elaborate further on this

and other key ideas used in our construction in Chapter 4.

We note an important subtlety in this new definition and our construction. Namely, the

statistical ZK and perfect soundness properties only hold with respect to the second round. If

the verifier is unbounded-time, then after seeing a first-round prover’s message, it can send a

first-round verifier’s message that forces perfect soundness all the time and thus disallows any

prover from giving a simulated proof. On the other hand, if the prover is unbounded-time,

then after seeing a first-round verifier’s message, it can send a first-round prover’s message,

which causes the probability ε of the perfect soundness mode to be 0. Thus the frequency of

perfect soundness mode and the ability of the simulator to give a simulated proof depend on

the first round being generated by computationally bounded machines.

1.1.1.2 Solving Challenge 2: How do we avoid non-interactive non-malleability?

To solve challenge two, we must somehow get a non-malleable commitment (NMC) scheme

which can be executed in the first round without using strong assumptions such as keyless hash
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Figure 1.1: The diagram on the left depicts the communication pattern of Khurana’s [Khu21]

commitment scheme, whereas the diagram on the right depicts ours. The key difference is that

in our scheme, the receiver’s message and the sender’s messages can be sent simultaneously,

while in [Khu21] the receiver’s message must be sent after the sender’s message.

functions, hardness amlifiability, or adaptive one-way functions. Recall that unfortunately,

all known instantiations of non-interactive NMCs (for a super-polynomial number of tags)

currently require the use of (some combination of) these strong assumptions.

Our approach to solving this problem is inspired by the exciting work of Khurana [Khu21],

which builds a new type of commitment that works as follows. The commitment phase is

similar to a non-interactive commitment in that the only communication from the committer

is a first-round message C. The role of the receiver is slightly different: The receiver chooses a

random string τ internally, and it is both C and τ together that truly defines the commitment

(and, correspondingly, the underlying value being committed to). Consequently, to compute

an opening, the committer must receive a τ from the receiver. Non-malleability (and binding)

hinges upon the fact that the τ chosen by the receiver is chosen after seeing the commitment.

(See the left diagram below for an illustration of this scheme.) Crucially, this commitment can

be constructed from well-founded assumptions (indistinguishability obfuscation, time-lock

puzzles, and OWPs), bypassing the need for the strong assumptions discussed earlier.

We would like to use this commitment scheme in our protocol. There are two main issues

that arise.
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• First, to use this scheme, we would need the commitment phase to happen entirely in

the first round. Namely, the receiver must publish τ simultaneously while the committer

is publishing C. (See the right-hand diagram above.) In particular, in the security proof,

we need to handle the case of malicious committers who publish C after seeing the

round-1 τ . More formally, we must turn the commitment of [Khu21] into a one-round

simultaneous-message CCA-non-malleable commitment.

• Second, our goal is to have every party use this commitment to commit to their input

and randomness for the protocol. However, for security to hold, party Pi’s committing

message Ci must be used in conjunction with each party Pj ’s τj . Although for an honest

committer, the committed value will be consistent across all possible pairs in the set

{(Ci, τj)}j 6=i, it is possible for a malicious committer to generate a Ci where this is not

true.

Solving the first issue involves identifying some technical challenges in the security proof

of [Khu21] and making changes to the protocol to avoid these issues. Roughly, we replace

an encryption given in the first round with a quantum-extractable commitment scheme.

This allows us to carefully set the complexity hierarchy and thereby get security even if the

τ ’s are chosen before C. We describe this in detail in Chapter 3. For the second issue, by

adding a standard (malleable) perfectly binding commitment (e.g., Blum’s commitment) at

the MrNISC protocol level, we can force every party Pi to act consistently across all pairs

{(Ci, τj)}j 6=i.

1.1.1.3 Solving Challenge 3: How do we get reusability?

We now describe the challenges which arise when trying to get the type of reusability required

by MrNISC. The main problem is to ensure that all of the building blocks we use (i.e., the

ZK scheme and the NMC scheme) support the reuse of their first-round message. It turns

out that the non-malleable commitment we described in the previous section can be adapted
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to this reusable setting without much modification. However, several challenges arise when

adapting the sometimes-statistically-sound ZK scheme, which we discussed earlier, to the

reusable setting. We focus on these challenges here.

Recall that the ZK scheme is a simultaneous message protocol, so a transcript consists

of three messages of the form (zk1,P , zk1,V , zk2,P ), a round-1 message of the prover and the

verifier, and a round-2 message of the prover. What we need is for any prover to be able to

publish a single zk1,P in round 1, which can be used in many different sessions with respect

to many different zk1,V messages. In addition, we require a very strong form of reusability:

even if a malicious verifier sees an entire transcript (zk1,P , zk1,V , zk2,P ), and then chooses a

new verifier’s first-round message zk′1,V , zero-knowledge should still hold when the prover

publishes a proof with respect to zk′1,V and the prover’s original message zk1,P . Similarly, a

verifier should be able to publish a single zk1,V which can be used in many different sessions

with respect to many different zk1,P messages, and the soundness properties of the ZK scheme

should still hold.

Note that it is not immediately clear whether this reusability for ZK arguments are implied

by a corresponding non-reusable version of ZK arguments. This turns out not to be the

case. To satisfy reusability, we end up having to make several changes to our (non-reusable)

sometimes-perfectly-sound ZK scheme. We describe this in more detail in Section 4.4.

1.1.1.4 Putting things together

We now have the main pieces that we will use to construct a malicious-secure MrNISC: the

two-round sometimes-statistically-sound ZK, one-round simultaneous-message CCA-secure

commitment, and the underlying semi-malicious MrNISC. Significant challenges arise when

attempting to combine these pieces in the way described earlier to get a malicious MrNISC

protocol. To see this, it will be convenient to briefly mention the approach we take for the

security proof.
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A simplified version of the sequence of hybrids we use is as follows. First, we extract the

value underlying the commitments and check if anyone acted dishonestly. If so, we switch

the honest parties’ witness encryptions to encrypt 0 rather than the actual round 2 messages

(this is hybrid 1). Second, we simulate the ZK proof (this is hybrid 2). Third, we switch

the underlying value in the commitment to 0 (this is hybrid 3). Once the commitments are

independent of the true input, we can use the simulator of the underlying MrNISC (this is

hybrid 4). The last hybrid is identical to our simulator.

To make the transitions between the hybrids possible, we need to set the hardness of

every primitive carefully. Each hybrid indistinguishability induces some hardness inequality

for the involved primitives. Unfortunately, the inequalities seem to be in contradiction to

each other. Observe that for the first indistinguishability (between hybrid 0 and hybrid 1),

we need our ZK argument’s soundness properties to hold against adversaries who can run

the CCA extractor. That is,

Textractor � Tsound.

For the transition between hybrid 2 to 3, we need to guarantee that the security of the

commitment scheme holds even against an adversary that can run the ZK simulator. That is,

TZKSim � Textractor.

Together, the above two inequalities imply that it is necessary to have TZKSim � Tsound.

But this is impossible, at least using the techniques we use in constructing the ZK argument.

Our simulator works by brute-forcing the verifier’s zk1,V message to obtain some secret and

produces proofs with this knowledge. In other words, whoever has the secret can produce

accepting proofs without knowing a witness—this is essentially an upper bound on the

soundness of the scheme, i.e., Tsound � TZKSim, which means that our inequalities cannot be

satisfied at the same time.

To solve this problem, we introduce another axis of hardness, namely, circuit depth. In

particular, assume that it is possible to run the ZK simulator in some super-polynomial
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depth d. To do this, we would have to construct a ZK argument where the secret embedded

in zk1,V is extractable in depth d. Further, assume that in polynomial depth, it is extremely

hard to extract the secret from zk1,V (much harder than size d). We can use such a ZK

argument to solve the problem above. Namely, we can restrict the reduction for hybrids 0

and 1 to run in polynomial depth, and in this complexity class, it holds that Textractor � Tsound.

For the reduction for hybrids 2 and 3, we will allow the depth to be d, in which case the

inequality TZKSim � Textractor is satisfied.

So we have reduced this problem to constructing a ZK argument which is simulatable in

some super-polynomial depth d and whose soundness holds against size much larger than d

as long as the depth is restricted to be polynomial. It turns out that it is possible to modify

our original ZK argument to satisfy this property; we describe this in Section 4.4, where we

explain the ZK argument in detail.

Several more minor technical issues arise when putting things together. One such problem

is that of “simulation soundness,” that is, we need to guarantee that the adversary cannot

give valid ZK arguments for false statements even if it sees simulated arguments from the

honest parties. We solve this issue using techniques from the work of [BGJ17]. At a very

high level, if we use a ZK argument where the simulated proofs are indistinguishable from

normal proofs even to an adversary who is powerful enough to run the simulator itself, and

if we commit to the witnesses using a non-malleable commitment, it is possible to design a

sequence of hybrids that guarantees simulation soundness.

This and other minor technical details result in a construction and sequence of hybrids

that are slightly more involved than the simplified version presented in this overview. We

refer the reader to Chapter 5 for details.
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CHAPTER 2

Preliminaries

In this chapter, we collect the standard cryptographic definitions and notation which will be

used in the rest of the book.

2.1 Miscellaneous Notation

For any distribution X , we denote by x ← X the process of sampling a value x from the

distribution X . For a set X we denote by x ← X the process of sampling x from the

uniform distribution over X. For an integer n ∈ N we denote by [n] the set {1, .., n}. A

function negl : N→ R is negligible if for every constant c > 0 there exists an integer Nc such

that negl(λ) < λ−c for all λ > Nc. Throughout, when we refer to polynomials in security

parameter, we mean constant degree polynomials that take positive value on non-negative

inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying the above requirements

of non-negativity.

Throughout this dissertation, all machines are assumed to be non-uniform. We will use

λ to denote the security. We will use PPT as an acronym for “probabilistic (non-uniform)

polynomial-time”. In addition, we use the notation T1 � T2 (or T2 � T1) if for all polynomials

p, p(T1) < T2 asymptotically.

The statistical distance between two distributions X and Y over a discrete domain Ω is

defined as ∆(X, Y ) = (1/2) ·
∑

ω∈Ω |Pr[X = ω]− Pr[Y = ω]|.
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(C, ε)-indistinguishability. By C we denote an abstract class of adversaries, where each

adversary A ∈ C grows in some complexity measure (i.e. size, depth, etc) based on the

security parameter λ. Security definitions will always hold with respect to some class of

adversaries which we will specify.

Definition 1 ((C, ε)-Indistinguishability). Let ε : N→ (0, 1) be a function. We say that two

distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are (C, ε)-indistinguishable if for any

adversary A ∈ C, for any polynomial poly, and any λ ∈ N,∣∣∣∣ Pr
x←Xλ

[
A
(
1λ, x

)]
− Pr

y←Yλ

[
A
(
1λ, y

)]∣∣∣∣ ≤ ε(λ).

We use the shorthand X ≈(C,ε) Y to denote this. If A is unbounded time then we say that Y

and X are statistically indistinguishable and we write X ≈(∞,ε) Y, or alternately ∆(X ,Y) ≤ ε.

(This corresponds to the standard definition of statistical distance.)

2.2 Witness Encryption

Here, we recall the definition of witness encryption, originally due to Garg et al. [GGS13].

Definition 2. A witness encryption scheme for an NP language L (with corresponding

relation R) consists of the following two polynomial-time algorithms:

WE.Enc(1λ, x,M): The encryption algorithm takes as input the security parameter λ, a

string x ∈ {0, 1}∗, and a message M ∈ {0, 1}∗. It outputs a ciphertext CT. This

procedure is probabilistic.

WE.Dec(CT, w): The decryption algorithm takes as input a ciphertext CT along with a

witness w ∈ {0, 1}∗. It outputs a string M ∈ {0, 1}∗ or the symbol ⊥. This procedure is

deterministic.

These algorithms satisfy the following properties:
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Correctness: For any security parameter λ, for any message M ∈ {0, 1}∗, any x ∈ {0, 1}∗

such that R(x,w) = 1 for w ∈ {0, 1}∗, we have that:

Pr[WE.Dec(WE.Enc(1λ, x,M), w) = M ] = 1.

(C, ε)-Security: Fix any ensemble Xλ of polynomial length strings such that every x ∈ Xλ

satisfies x /∈ L, and any ensemble of messagesMλ of polynomial length. For every λ ∈ N, x ∈

Xλ, and M ∈Mλ, it holds that

WE.Enc(1λ, x,M) ≈(C,ε) WE.Enc(1λ, x, 0|M |).

It is well known that witness encryption can be obtained directly from indistinguishability

obfuscation by ofuscating a circuit that has the instance x and the message M hardwired,

gets as input a witness, and outputs M if the instance-witness pair verify.

Theorem 4. Assuming a (C, ε)-indistinguishability obfuscator for all polynomial-size circuits,

then there is a (C, ε)-witness encryption scheme for all NP.

2.3 Indistinguishability Obfuscation

In this section, we define the notion of an indistinguishability Obfuscation.

Definition 3 (Indistinguishability Obfuscator (iO) for Circuits [BGI01, BGI12]). A prob-

abilistic polynomial-time algorithm iO is called a secure indistinguishability obfuscator for

polynomial-sized circuits if the following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input

x ∈ {0, 1}n, we have that

Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1 .
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• (C, ε)-Indistinguishability: For every two ensembles {C0,λ}λ∈Z+ and {C1,λ}λ∈Z+ of

polynomial-sized circuits that have the same size, input length, and output length, and

are functionally equivalent, that is, ∀λ ∈ Z+, C0,λ(x) = C1,λ(x) for every input x, the

distributions iO(1λ, C0,λ) and iO(1λ, C1,λ) are (C, ε) indistinguishable.

In this work, we require that iO is actually subexponentially secure against adversaries

of subexponential size. As shown in [JLS21b, JLS21a] this can be instantiated assuming

subexponential security of well studied hardness assumptions.

2.4 Time Lock Puzzles

We recall the notion of a time-lock puzzle scheme, originally due to [RSW96]. We adapt the

definition from [BGJ16].

Definition 4. A D-secure time lock puzzle TLP is a tuple of two algorithms (PGen, Solve)

that satisfies the following properties.

Syntax:

• PGen(1λ, 1t, x) : The puzzle generation algorithm is a randomized polynomial time

algorithm takes as input a security parameter λ and a hardness parameter t. It also

takes as input a solution x ∈ {0, 1}λ. It outputs a puzzle Z.

• Solve(Z) The puzzle solving algorithm takes as input a puzzle Z. It outputs x ∈

⊥ ∪ {0, 1}∗.

Completeness: For every λ, t ∈ N and every x ∈ {0, 1}λ, Pr[Solve(PGen(1λ, 1t, x)) = x] = 1.

Efficiency: PGen is a polynomial time algorithm in its input length, and Solve(Z) runs in

time poly(2t, λ) for every Z in support of PGen(1λ, 1t, ·).
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D-security: Let λ ∈ N, t = t(λ) ∈ λΩ(1/ log log λ) ∩ λO(1) and x ∈ {0, 1}λΘ(1)
. Then, it holds that

for every Boolean circuit A with depth D(t) and total size bounded by any polynomial in 2λ

it holds that: ∣∣∣∣Pr[A(PGen(1λ, 1t, x)) = 1]− Pr[A(PGen(1λ, 1t, 0|x|)) = 1]

∣∣∣∣ ≤ 2−λ.

Note that we require security against sub-exponential size attackers and with sub-

exponential distinguishing advantage. Specifically, we require that sub-exponential-size

attackers (that are in depth at most D(t)) will not have advantage better than inverse

sub-exponential. Sub-exponential size assumptions on the repeated squaring assumption

were already made before, e.g., in [LPS20, DKP21, EFK20]).

The first and most popular instantiation of time-lock puzzles was proposed by Rivest,

Shamir, and Wagner [RSW96]. It is based on the “inherently sequential” nature of ex-

ponentiation modulo an RSA integer. That is, that t repeated squarings mod N , where

N = pq is a product of two secret primes, require “roughly” t depth. More than twenty

years after their proposal, there still does not exist a (parallelizable) strategy that can solve

such puzzles of difficulty parameter t in depth D(t) which is significantly less than 2t, with

any non-trivial advantage. This is true even for the decision problem variant, rather than

the search problem. (Note that the decision version is the one that is typically defined and

assumed in constructions, e.g., [BN00, BGJ16, LPS20, DKP21, EFK20]).

Another construction of time-lock puzzles, due to Bitansky et al. [BGJ16], based on

indistinguishability obfuscation and (worst-case) non-parallelizing languages, is also an

instantiation of the above definition, as long as the underlying are assumed to be sub-

exponentially hard.

2.5 Correlation Intractable Hash Functions

We adapt definitions of a correlation intractable hash function family from [PS19a, CCH19].
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Definition 5. For any polynomials k, (·), s(·) = ω(k(·)) and any λ ∈ N, let Fλ,s(λ) denote

the class of NC1 circuits of size s(λ) that on input k(λ) bits output λ bits. Namely, f :

{0, 1}k(λ) → {0, 1}λ is in Fλ,s if it has size s(λ) and depth bounded by O(log λ).

We require the following property from such a function.

Definition 6 ((C, ε)-Somewhere-Statistical Correlation Intractable Hash Function Family).

A hash function family H = (FakeGen,Eval) is (C, ε)-somewhere-statistically correlation

intractable (CI) with respect to F = {Fλ,s(λ)}λ∈N as defined in Definition 5, if the following

two properties hold:

• Perfect Correlation Intractability: For every f ∈ Fλ,s and every polynomial s,

Pr
K←H.FakeGen(1λ,f)

[
∃x such that (x,H.Eval(K, x)) = (x, f(x))

]
= 0.

• Computational Indistinguishability of Hash Keys: Moreover, for every f ∈ Fλ,s,

for every A ∈ C, and every large enough λ ∈ N,∣∣∣ Pr
K←H.FakeGen(1λ,f)

[A(K) = 1]− Pr
K←{0,1}`

[A(K) = 1]
∣∣∣ < ε(λ),

where ` denotes the size of the output of H.Setup(1λ, f).

The work of [PS19a] gives a construction of correlation intractable hash functions with

respect to F = {Fλ,s(λ)}λ∈N, based on polynomial LWE with polynomial approximation

factors. We observe that their construction also satisfies Definition 6, assuming LWE with an

explicit efficiently computable advantage upper bound.

2.6 Sender Equivocal Oblivious Transfer

Definition 7 (Oblivious Transfer). An Sender-Equivocal Oblivious Transfer (OT) protocol

consists of three randomized polynomial time algorithms:
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• OT1(1λ, b; r1)→ ot1 : The OT1 algorithm takes as input a bit b ∈ {0, 1} and randomness

r, and outputs the “receiver” message ot1.

• OT2(ot1,m0,m1; r2)→ ot2 : The OT2 algorithm takes as input a receiver message ot1,

two messages m0,m1, and randomness r2, and it outputs the sender message ot2.

• OT3(ot2, b, r1)→ z : The OT3 algorithm takes as input the sender message along with

a bit b ∈ {0, 1} and randomness r1. It outputs z ∈ ⊥ ∪ {0, 1}∗.

We require a number of basic properties.

Correctness: Let λ ∈ N, b ∈ {0, 1} and (m0,m1) ∈ {0, 1}∗ with |m0| = |m1|. Then, it holds

that:

Pr[OT3(ot2, b, r1) = mb] = 1,

where ot2 = OT2(ot1,m0,m1; r2), ot1 = OT1(1λ, b; r1) and probability is taken over the coins

of r1, r2.

(C, ε)-Receiver Security: Let λ ∈ N be the security parameter. Then, it holds that:

OT1(1λ, 0) ≈(C,ε) OT1(1λ, 1).

Equivocation: There exist a polynomial time algorithm Equiv such that the following property

is satisfied. For every λ ∈ N b ∈ {0, 1}, m0,m1 ∈ {0, 1}∗ with length `, with probability 1 over

the coins r1 of ot1 ← OT1(1λ, b; r1), the following two distributions are identically distributed.

Let v = (v0, v1) where vb = mb and v1−b = 0`.

• Distribution 1: Compute ot2 ← OT2(ot1,m0,m1; r2). Output (b, r1, ot2,m0,m1, r2).

• Distribution 2: Compute ot2 ← OT2(ot1, v0, v1; r′2) and r2 ← Equiv(b, r1, ot2, r
′
2,m0,m1).

Output (b, r1, ot2,m0,m1, r2).
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2.7 Equivocal Garbled Circuits for NC1

Another primitive that we use is a an information theoretic variant of Yao’s Garbled Cir-

cuits [Yao86] for NC1 circuits. This variant allows one to to efficiently “invert” the randomness

used for garbling.

Definition 8 (Syntax). An information theoretic garbling scheme Gb = (Garble,Eval) for

circuit class F = {Fλ}λ (looking ahead, we will work with poly(λ) sized circuits with λ input

bits, and depth O(log λ)) consists of the following algorithm.

• Garble(1λ, C; r) → (Γ, {Labb,i}b∈{0,1},i∈[λ]) : The garbling algorithm takes as input a

circuit C ∈ F , and it outputs a garbled circuit Γ and input labels {Labb,i}b∈{0,1},i∈[λ].

For any input x, we denote by Labx the shorthand for {Labxi,i}i∈[λ] and Lab as the

shorthand for {Labb,i}b∈{0,1}.

• Eval(Γ, {Labxi,i}i∈[λ])→ z : The evaluation algorithm takes as input a garbled circuit Γ,

and labels {Labxi,i}i∈[λ] for some input x ∈ {0, 1}λ. It outputs z ∈ {0, 1}∗ ∪ ⊥.

We require that such a scheme satisfies the following properties:

Correctness: Let λ ∈ N, C ∈ F and x ∈ {0, 1}λ, then it holds that:

Pr
Garble(1λ,C)→Γ,{Labb,i}b∈{0,1},i∈[λ]

[Eval(Γ, {Labxi,i}i∈[λ]) = C(~x)] = 1

Equivocation: Let λ ∈ N, C0, C1 ∈ F and x ∈ {0, 1}λ such that C0(x) = C1(x), then the

following two distributions are identical.

• Distribution 1: Compute (Γ, Lab)← Garble(1λ, C1; r). Output (C1,Γ, Lab, r).

• Distribution 2: Compute (Γ, Lab)← Garble(1λ, C0; r). Compute

GbEquiv(Γ, Labx, C1,x)→ Lab′, r′

such that Lab′xi,i = Labxi,i for i ∈ [λ]. Output (C1,Γ, Lab
′, r′).
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Instantiation: To instantiate this, one can rely on the folklore instantiation of information-

theoretic version of Yao’s garbling scheme [Yao86] for NC1 circuits, and in particular the

point-of-permute formulation of the scheme [Yao86, BMR90].
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CHAPTER 3

Non-Malleable Commitments

The goal of this chapter is to give a self-contained treatment of the state-of-the art in

round-optimal non-malleable commitments (NMCs). We begin by briefly discussing some

motivation for such commitments, along with some history of study of the topic. We then give

a formal definition of CCA-non-malleable commitments, and a high-level explanation of how

recent works achieve such commitments, giving special focus to the work of [Khu21]. Finally,

we describe and prove security for our construction of NMCs, thus proving the following

theorem.

Theorem 5. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• A subexponentially secure non-interactive witness-indistinguishable argument exists,

• A subexponentially secure quantum polynomial-time breakable non-interactive perfectly-

binding commitment exists, and

• LWE is subexponentially secure against quantum adversaries of subexponential size.

Then, there exists a one-round CCA commitment scheme (as in Definition 13) supporting a

super-polynomial number of tags. The scheme is secure against adversaries of size polynomial

in 2λ
c(log log λ)−1

for some c > 0.

Since subexponentially secure quantum polynomial-time breakable non-interactive perfect-

binding commitments are known from subexponential DDH or factoring, we achieve Theorem 3
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from Chapter 1 as a corollary.

As a review, a commitment scheme is a protocol between two parties, a committer and a

receiver. After the protocol, the committer can “open” the commitment by specifying the

randomness used along with the committed value x. Commitment schemes are classically

required to have two properties. The first property, called hiding, states that x should be

hidden from the receiver before the opening is revealed. The second property, called binding,

states that no committer should be able to compute openings to two different values for x. It

is possible to have a commitment scheme which satisfies statistical (or perfect) hiding, or

statistical (or perfect) binding, but not both. In this chapter, we focus on commitments for

which perfect binding holds, or in other words, for any commitment transcript τ , there should

exist a unique value xτ which can be opened with respect to τ . In addition, we focus on

commitment schemes which are secure in the plain model, without any form of trusted setup.

Consider the problem of implementing a blind auction [DDN91], where different parties

must bid for an item without knowing the other parties’ bids. A natural idea would be

to have all parties simultaneously broadcast a commitment to their bid, and then once all

commitments have been received by all parties, have all parties broadcast openings. Say

Alice and Bob are carrying out this protocol, and imagine the following scenario. Bob wants

to win the auction, but wants to pay as little as possible: he would prefer not to make an

inflated bid just in order to outbid Alice. To do this, Bob waits for Alice’s commitment,

which is to some unknown value $x . (In other words, Bob is a rushing adversary, as

defined in Chapter 1). Then, without knowing x, Bob “mauls” Alice’s commitment to get

a commitment to $x + 1, and publishes this commitment. Since Bob has not learned x,

this does not contradict hiding of the commitment scheme. Finally, once Alice reveals a

decommitment, Bob somehow uses the decommitment to $x to compute a decommitment

of his mauled commitment to $x + 1. He then publishes the decommitment, winning the

auction with minimal cost. Such a scenario should clearly be avoided by any secure blind

auction protocol, however the standard properties of commitment schemes do not rule it
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out.1 In fact, many classical commitment schemes are easily malleable. Take for instance

the non-interactive commitment scheme from one-way permutations [Blu81, GL89]. Given a

one-way permutation f , such commitments have the form (y, r, c), where y = f(x) for some

random x
$←− {0, 1}λ, r

$←− {0, 1}λ is randomly chosen, and c = 〈r, x〉 ⊕m, where m is the bit

committed to, and 〈r, x〉 is the dot product of r and x in Zλ2 . Perfect binding follows from the

fact that that f is a permutation, and computational hiding follows from the Goldreich-Levin

theorem [GL89]. Given such a commitment, choose r′ by flipping the first bit of r. Then

with probability 1/2 over the choice of x, the commitment (y, r′, c) commits to the opposite

bit of (y, r, c).

Defining non-malleable commitments. Non-malleable commitments are formulated

explicitly to prevent such scenarios as the one above. In general, given a NMC c to a value

x, an adversary should not be able to produce a new commitment c′ to any value related

to x. Of course, we must specify what “related to” means, since an adversary could simply

produce a new commitment c′ which is a verbatim copy of c. We deal with this definitional

issue in the following way. In every NMC we consider, each party must commit with respect

to some particular identity, which in the literature is commonly called a tag, and which is

inextricably linked to the commitment. Each party must use its own tag. With this in mind,

the intuitive guarantee that a NMC should provide is the following: given a commitment c

which commits to x with respect to some tag tag, an adversary should not be able to produce

a new commitment c′ with tag tag′ 6= tag to x or to any value related to x.

There are many definitions of non-malleable commitments in the literature which capture

this intuition formally in various ways. One simple definition is as follows. We first fix some

notation. A commitment scheme consists of a probabilistic polynomial-time (PPT) committer

1This problem is solvable via normal (malleable) commitment schemes, at the expense of rounds: let the
parties commit to their bids in lexicographic order, one per round. Once all parties have committed, have the
parties open their commitments one per round, in reverse lexicographic order. This strategy is used in the
classical coin-flipping protocol of [Blu81] and takes 2n rounds, where n is the number of parties.
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Figure 3.1: The non-malleability security experiment. Note that A may interleave messages

in an arbitrary manner; the interleaving illustrated is one possible (trivial) interleaving.

C, a PPT receiver R, and a family of tag spaces {T }λ. At the beginning of the protocol, the

committer takes as input the security parameter 1λ, a message x, an identity tag ∈ Tλ, and

randomness r. The receiver takes as input the security parameter 1λ, the identity tag, and

randomness r′. Denote by

〈C(1λ, tag, x; r), R(1λ, tag; r′)〉 = 〈C,R〉(1λ, tag, x; r, r′) = τ

the transcript of the protocol with the inputs specified. To open the commitment, the

committer publishes its randomness r. Recall that we are restricting ourselves to commitments

which satisfy perfect binding; as such, there must exist some inefficient algorithm Extract

which, on input a commitment transcript τ , identity tag, and receiver randomness r′ outputs

either the unique value x which can be opened with respect to τ , tag and r′, or ⊥ if no such

value exists. In other words,

Extract(τ, tag, r′) = x 6= ⊥ ⇔ ∃r, 〈C,R〉(1λ, tag, x; r, r′).

Security is defined with respect to a so-called man-in-the-middle adversary A, which

is a PPT interactive algorithm. A is initialized with input 1λ and x. It interacts with an

honest committer C, who either commits to x or 0|x|. A plays the role of the receiver in this

interaction. It also interacts with an honest receiver R, playing the role of the committer.

A is allowed to schedule the messages of both sessions in an arbitrary interleaved manner,

and may deviate arbitrarily from the protocol in both sessions. Figure 3.1 illustrates the
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interaction of A with C and R. The interaction with the committer is often referred to as the

left session, and similarly the interaction with the receiver is referred to as the right session.

At the end of the interaction, A outputs an arbitrary function of its view. Letting tag be the

identity used in the left session and tag′ the identity used in the right session, and assuming

tag 6= tag′, define a random variable exptnmc(1
λ, x, tag, tag′) to be the pair (viewA, x

′), where

viewA is the output of A at the end of the interaction, and x′ = Extract(τ ′, tag′, r′), where

τ ′ is the transcript of the right session, tag′ is the identity of the right session, and r′

is the randomness used by R. For all x and for all {tagλ, tag′λ}λ, where tagλ 6= tag′λ, it

must be the case that {exptnmc(1
λ, x, tagλ, tag

′
λ)}λ is computationally indistinguishable from

{exptnmc(1
λ, 0|x|, tagλ, tag

′
λ)}λ.

In the above security experiment, the adversary A participates in one left session as the

receiver and one right session as the committer. This is called one-one non-malleability. A

stronger definition, called many-many non-malleability, or concurrent non-malleability, has A

interacting with an unspecified polynomial number of committers on the left and another

unspecified polynomial number of receivers on the right, with a unique tag for each session.

It is shown in [DDN91] that one-one NMCs also satisfy many-one non-malleability, and

in [LPV08] that one-many NMCs also satisfy many-many non-malleability.

We consider one final definition, which is even stronger than many-many non-malleability,

called CCA-non-malleability [CLP10]. In this definition, unlike the previous definitions, the

adversaryA interacts with a single challenger, with respect to some identity tag. The adversary

chooses a message x, and plays the part of a receiver R in a session of {C,R}(1λ, tag, . . . ),

either receiving a commitment to x or 0|x|. A also has access to a committed value oracle

O, which behaves as follows. At any time during the execution, A can initialize a session

{C,R}(1λ, tag′, . . . ) with O, where tag′ 6= tag, and where A plays the part of C. O behaves

the same as the honest receiver R with some randomness r′, and then at the end of the

session returns the result of Extract(τ, tag′, r′) to A. A may choose x adaptively based on

the result of interactions with O. Since this is the type of security we target for our NMC
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construction, we will give a more formal definition in Section 3.1.

History of study. Non-malleable commitments were first introduced by Dolev, Dwork

and Naor in their seminal work of [DDN91], which gave the first such construction, requiring

O(log λ) rounds, where λ is the security parameter. Subsequently, [PR05a] gave the first

construction which satisfies concurrent non-malleability, where the adversary can participate

in many simultaneous sessions both as sender and receiver. Since then, much effort has

been spent in understanding how many rounds are required for NMCs [Bar02, PR03, PR05b,

LPV09, PW10, Wee10, LP11, Goy11, GLO12, Pas13, COS17a], resulting in four-round fully-

concurrent protocols from one-way functions [COS17a] and three-round fully-concurrent

protocols from subexponential one-way permutations [COS16], or from polynomial-secure

zaps and various polynomial number-theoretic assumptions [Khu17]. In addition, the work

of [PPV08] showed how to achieve non-interactive NMCs, however they relied on the existence

of a very strong and unstudied primitive called an adaptive injective one-way function.

We briefly describe this assumption. The task is similar to that in normal one-way

functions: given y = f(x) for a randomly-chosen preimage x, an adversary must x. However,

an adaptive one-way function additionally provides the adversary with an inversion oracle,

which given any y′ 6= y, inverts y′. Because of this oracle, this assumption is unfalsifiable:

given an adversary A which claims to break the assumption for some given f , there is

no way to efficiently test A, because implementing the inversion oracle is by assumption

computationally hard. In addition, the assumption itself already essentially incorporates

non-malleability, so it is unsurprising that such a strong non-malleable hardness assumption

yields a non-malleable commitment. For a long time, an important open question remained

whether one or two-round NMCs were possible from more standard, falsifiable assumptions.

The work of [Pas13] seemed to answer this question, showing that it is impossible to

construct two-round NMCs based on black-box reductions to polynomial-time falsifiable

hardness assumptions. [Pas13] also seemingly ruled out NMCs even based on (black-box
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reductions to) sub-exponential hardness assumptions.

In 2017, two exciting works [KS17, LPS17] bypassed this lower bound, achieving two-round

NMCs from sub-exponential hardness assumptions. They did so by exploiting two different

implicit assumptions. The work of [KS17] took advantage of the fact that the [Pas13] lower

bound requires that the security reduction, which has black-box access to the NMC adversary,

only queries the adversary polynomially many times. In contrast, the security proof in [KS17]

invokes the adversary a sub-exponential number of times, and achieves security assuming

sub-exponential Zaps, sub-exponential decisional diffie hellman, and sub-exponential one-

way functions. The work of [LPS17] took advantage of the fact that [Pas13] assumes that

regardless of what tags are being used in the left and right session, the reduction has one

fixed complexity. In contrast, the [LPS17] construction uses two different axes of hardness,

namely circuit size and depth, and the reduction runs in a different size and depth depending

on the tag used in the right session. Security of [LPS17] is achieved assuming sub-exponential

time-lock puzzles, sub-exponential zaps, sub-exponential collision-resistant hash functions,

and sub-exponential non-interactive commitments.

Several subsequent results have built on the techniques of [KS17, LPS17] to improve the

round complexity of NMCs even further [BL18, KK19, GKL21], albeit relying on stronger,

less-standard assumptions. Notably, the work of [BL18] achieved the first construction of

non-interactive NMCs based on falsifiable assumptions, relying on multi-collision-resistant

keyless hash functions (among other more standard assumptions). As discussed in Chapter 1,

this assumption, while falsifiable, is non-standard: it was first proposed within the last five

years by the work of [BDR18], and has not had much history of study. Thus it is an important

goal to achieve non-interactive NMCs using better assumptions.

The recent work of [Khu21] makes progress on this goal, constructing a special type of

NMC relying on indistinguishability obfuscation (iO) along with other standard assumptions.

The committer’s message is an obfuscated program P , and the receiver obtains the “true”

commitment by choosing a random string τ as input and then running the obfuscated program
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with input τ . In this way, the committed value is determined by the pair (P, τ). Importantly,

for non-malleability to hold, the receiver’s τ must be chosen independently of the committer’s

message P ; if the committer is allowed to see τ before choosing P then the proof fails.

Because of this, there are two possible ways to use this commitment. One option is that

the receiver can publish its τ after receiving P . This achieves the full NMC security definition,

however it takes two rounds. The other option is to have the receiver silently choose a τ

without publishing it. When used in this way the NMC only takes one round, however it

suffers from a problem known as “over-extraction” [LPS17], where the Extract algorithm

sometimes outputs a non-⊥ value even though the commitment is invalid and has no opening.

Because of this, it is only possible to achieve a weaker definition of security, which is called

non-malleability with respect to extraction.

Our contribution. Our NMC construction is an improvement of [Khu21] which solves

the problem above. Our construction takes the same form as that of [Khu21], namely, the

committer publishes a message P , and the receiver publishes a random τ . We change the

internals of the construction, though, to allow the receiver to publish τ during the first round,

simultaneously while the committer is publishing P . We show that with our modifications,

even a rushing committer who chooses P based on τ cannot break security. Thus we achieve

a (simultaneous-message) one-round NMC which satisfies full CCA security, relying on iO

and other standard assumptions.

The rest of the chapter is devoted to constructing and proving security of this NMC.

3.1 A Formal Definition of One-Round CCA-Non-Malleablility

We define the notion of one-round simultaneous-message CCA-non-malleable commitments

which we aim to construct. For reference, we start with a formal statement of the standard

definition of CCA security for non-interactive commitments. Afterwards, we state the
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definition which we achieve, with some small differences in order to take advantage of the

simultaneous-message model.

3.1.1 Non-Interactive CCA-Non-Malleable Commitments

Let T = {Tλ}λ∈N be the tag space which is [T (λ)], where T = 2poly(λ).

Definition 9 (Syntax of Non-Interactive CCA-Non-Malleable Commitment). A noninter-

active CCA-non-malleable commitment scheme for tag space T consists of the following

algorithms.

CCACommit(1λ, tag,m; r) : The probabilistic polynomial time commitment algorithm takes

as input the security parameter λ, a tag tag ∈ Tλ, a message m ∈ {0, 1}∗ and it outputs

a commitment c.

ComputeOpening(τ, tag, c,m, r) : The polynomial time deterministic algorithm

ComputeOpening takes as input a string τ ∈ {0, 1}`t, a tag tag ∈ Tλ, a commitment c, a

message m ∈ {0, 1}∗, and the randomness r used to generate c = CCACommit(1λ, tag,m; r).

It outputs the randomness r of the commit algorithm as the opening.

VerifyOpening(tag, c,m, r) : The polynomial time deterministic algorithm VerifyOpening takes

a tag tag ∈ Tλ, a commitment c, a message m ∈ {0, 1}∗, and an opening r. It outputs

a value in {0, 1}.

Note that although this algorithm is trivial in the fully non-interactive setting, we will

need a nontrivial ComputeOpening algorithm later in the one-round simultaneous-message

setting, and thus it is useful to define it explicitly.

Such a scheme is said to be a noninteractive CCA-non-malleable commitment if it satisfies

the following properties:
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Definition 10 (Correctness of Opening). Let λ ∈ N be the security parameter, and consider

any tag ∈ Tλ, any message m ∈ {0, 1}∗, and any c← CCACommit(1λ, tag,m; r). Then,

Pr[VerifyOpening(tag, c,m, r) = 1] = 1.

Definition 11 (Extraction). There exists an (inefficient) algorithm CCAVal with the following

properties. For any λ ∈ N and any message m ∈ {0, 1}∗, tag tag ∈ Tλ, and commitment c it

holds that (
∃r : VerifyOpening(tag, c,m, r) = 1

)
⇐⇒ CCAVal(tag, c) = m.

In addition, CCAVal runs in time 2poly(λ) for some fixed polynomial poly.

We now specify the CCA security property. Note that as in the rest of this dissertation,

security properties are parameterized by a class C of circuits against which this property

holds, and an advantage ε.

Definition 12 ((C, ε)-CCA security). We define the following security game played between

the adversary A ∈ C and the challenger. We denote it by exptA,CCA(1λ):

1. The adversary sends a challenge tag tag∗ ∈ Tλ.

2. The adversary can submit arbitrary polynomially many queries (tag, c), for commitment

c and tag ∈ Tλ. The challenger computes CCAVal(tag, c) and sends the result to the

adversary.

3. The adversary submits two messages m0,m1 ∈ {0, 1}∗. The challenger samples b ←

{0, 1}, and computes c∗ ← CCACommit(1λ, tag∗,mb). The adversary gets c∗ from the

challenger.

4. The adversary repeats Step 2.

5. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1 if b′ = b

and 0 otherwise.
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A non-interactive CCA-NMC scheme satisfies (C, ε)-CCA security if for all adversaries

A ∈ C, it holds that ∣∣∣∣∣Pr[exptA,CCA(1λ) = 1]− 1

2

∣∣∣∣∣ ≤ ε.

In the above security game, steps 2 and 4 implement the committed value oracle discussed

in the introduction to this chapter.

3.1.2 One-Round Simultaneous-Message CCA-Non-Malleable Commitments

We now make some small modifications to the definition. First, we change the commitment to

be a simultaneous-message one-round commitment, where both committer and receiver send

a message during the single round. The receiver’s message is a uniform random string τ , and,

as mentioned in the introduction, the committer’s message is some obfuscated program P.

Second, ComputeOpening, VerifyOpening, and CCAVal now take both the committer’s message

P and the receiver’s message τ as input. This reflects the fact that the committed value

is only fixed when both P and τ are fixed. Finally, we change the CCA security game to

take these changes into account. More specifically, we change the steps that implement the

committed value oracle in order to handle the interactive nature of the protocol.

Let T = {Tλ}λ∈N be the tag space which is [T (λ)], where T = 2poly(λ). The modified

syntax is as follows.

Definition 13 (Syntax of one-round simultaneous-message CCA-non-malleable commit-

ments). With respect to the tag space T , the NMC consists of the following algorithms.

CCACommit(1λ, tag,m; r) : The probabilistic polynomial time commitment algorithm takes

as input the security parameter λ, a tag tag ∈ Tλ, and a message m ∈ {0, 1}∗, and

outputs a commitment P.

ComputeOpening(τ, tag,P,m, r) : The polynomial time deterministic algorithm

ComputeOpening takes as input a string τ ∈ {0, 1}`t, a tag tag ∈ Tλ, a commitment P,
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a message m ∈ {0, 1}∗, and the randomness r used to commit. It outputs an opening

σ ∈ {0, 1}∗. Above `t = `t(λ, n) is a polynomial associated with the scheme.

VerifyOpening(τ, tag,P,m, σ) : The polynomial-time deterministic algorithm VerifyOpening

takes a string τ ∈ {0, 1}`t, a tag tag ∈ Tλ, a commitment P, a message m ∈ {0, 1}∗,

and an opening σ. It outputs a value in {0, 1}.

Such a scheme is said to be a one-round simultaneous-message CCA-non-malleable

commitment if it satisfies the following properties:

Definition 14 (Correctness of Opening). Let λ ∈ N be the security parameter, and consider

any tag ∈ Tλ, any message m ∈ {0, 1}∗, any τ ∈ {0, 1}`t, any P← CCACommit(1λ, tag,m; r).

Then,

Pr[VerifyOpening(τ, tag,P,m, σ) = 1] = 1,

where σ = ComputeOpening(τ, tag,P,m, r).

Definition 15 (Extraction). There exists an (inefficient) algorithm CCAVal with the following

properties. For any λ ∈ N and any message m ∈ {0, 1}∗, tag tag ∈ Tλ, commitment P, and

τ ∈ {0, 1}`t(λ), it holds that

(
∃σ : VerifyOpening(τ, tag,P,m, σ) = 1

)
⇐⇒ CCAVal(τ, tag,P) = m.

In addition, CCAVal runs in time 2poly(λ) for some fixed polynomial poly.

We now specify the CCA security property.

Definition 16 ((C, ε)-CCA security). We define the following security game played between

the adversary A ∈ C and the challenger. We denote it by exptA,CCA(1λ):

1. The challenger manages a list L that is initially empty. The contents of the list are

visible to the adversary at all stages.
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2. The adversary sends a challenge tag tag∗ ∈ Tλ.

3. The adversary submits queries of the following kind in an adaptive manner:

(a) Adversary can ask for arbitrary polynomially many τ -queries. Challenger samples

τ ′ ← {0, 1}`t and appends τ ′ to L.

(b) Adversary can ask for an arbitrary polynomially many (τ, tag,P)-queries for any

τ ∈ L, any tag 6= tag∗, and any commitment P. The challenger computes

CCAVal(τ, tag,P) and sends the result to the adversary.

4. The adversary submits two messages m0,m1 ∈ Mλ. The challenger samples b ←

{0, 1}, and computes P∗ ← CCACommit(1λ, tag∗,mb). The adversary gets P∗ from the

challenger.

5. The adversary repeats Step 3.

6. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1 if b′ = b

and 0 otherwise.

The one-round (simultaneous-message) CCA-secure commitment scheme CCA scheme satisfies

(C, ε)-CCA security if for all adversaries A ∈ C:∣∣∣∣∣Pr[exptA,CCA(1λ) = 1]− 1

2

∣∣∣∣∣ ≤ ε.

3.2 An Overview of the Construction

The NMCs of [LPS17, KS17, BL18, Khu21] all follow the same overall outline, first introduced

by [LPS17] and [KS17]. We will follow the same general strategy, and so we introduce it here.

There are three steps in this outline, which we describe below.
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3.2.1 A small-tag commitment scheme

We first focus our attention on the number of tags which a commitment scheme supports. So

far in our discussion of non-malleable commitments, we have ignored the size of the tag space

Tλ; however, this size is an important measure for how non-malleable a scheme is. Ideally, we

want a commitment scheme to allow for a Tλ whose size is super-polynomial in λ, so that

any unbounded polynomial number of tags are supported. For now, though, we focus on the

weaker goal of constructing a scheme for which |Tλ| is much smaller than λ.

Let’s assume we have a non-interactive commitment scheme Com(1λ,m; r), such as the

one mentioned in the introduction based on one-way permutations. If we assume that this

commitment satisfies security against subexponentially-secure adversaries, then a very simple

complexity-leveraging trick allows us to achieve “one-sided” non-malleable commitments.

Consider the case of two tags. Choose λ1 and λ2 such that Com(1λ2 , ·; ·) is hiding against 2λ1-

sized adversaries, and define commitments under tag 1 to be Com(1λ1 , ·; ·), and commitments

under tag 2 to be Com(1λ2 , ·; ·). Then given commitments c1 and c2, where c1 is under tag

1 and c2 is under tag 2, any circuit C of size poly(2λ1) can completely break c1 and extract

the committed value, but c2 still satisfies hiding against C. Thus, given a polynomial-time

adversary A, we can run the CCA security game for challenge tag 2 in poly(2λ1) time, where

we brute-force extract the committed value for any oracle queries c1 submitted by A with

respect to tag 1. If A successfully wins the CCA game, then we have a poly(2λ1)-size circuit

which breaks hiding of Com(1λ2 , ·; ·). This extends to multiple tags as well, satisfying CCA

security against tag i as long as the adversary only queries the committed value oracle on

tags i′ < i.

Before going on, it is useful to think about how many tags are possible with this scheme.

If we have t tags, then there must be a complexity hierarchy S1 � B1 = S2 � B2 � . . .�

St � Bt, where Si means the commitment for tag i is secure against circuits of this size, and

Bi means that the commitment for tag i is broken in this size. Assume that Bi = 2λ, or

44



in other words, the commitment scheme for tag i takes security parameter equal to λ, the

security parameter for the overall NMC scheme.

Because we are assuming subexponential security, it must be the case that if Bi = 2λi ,

then Si = 2λ
ε
i for some small constant ε < 1. If we assume that this holds for a fixed ε for all

i, then we have that

St = 2λ
( 1
ε )
t−1

1

and thus, assuming Com(1λ, ·; ·) is hiding against 2λ
ε
-sized adversaries, it must be the case

that

λt ≥ λ
( 1
ε )
t

1 . (3.1)

Since λt must be polynomial in the security parameter λ for the NMC, it is clear that t

cannot even be anywhere close to linear in λ, let alone super-polynomial in λ. It is possible

to set t to be super-constant, as follows. Given a security parameter λ for the NMC, set λ1

to be λ(1/ log log λ). Then by (3.1), we have that

λt ≥ λ
( 1
ε )
t

1 = λ
( 1
ε )
t

log log λ .

Setting t = c′ log log log λ means that
( 1
ε )
t

log log λ
≤ c for some constant c, and thus λt can be set

to be polynomial in λ. Thus it is possible to have t = O(log log log λ).

Of course, our goal is to have a full non-malleable commitment, not just a one-directional

one. The work of [LPS17] introduced a clever and elegant idea for obtaining two-sided

non-malleability. Their main idea is to use two separate axes of hardness. To explain this,

we must introduce the idea of a time-lock puzzle introduced by [RSW96].

The authors of [RSW96] introduced the following specific computational problem: given

some large semiprime N = pq, a group element g ∈ Z∗N , and some number d, compute

y = g22d

(mod N).

[RSW96] conjectured that, if λ is the number of bits required to represent N ,any circuit

which can recover y given (N, g, d) must have depth approximately 2γd, for some fixed γ < 1,
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Figure 3.2: Two axes of hardness

or must be large enough to factor N . In other words, if we rule out trivial brute-force

attacks, the problem is inherently sequential and non-parallelizeable. Time-lock puzzles are

computational problems which follow this pattern: they are instantiated with two separate

security parameters λ and d, with d � λ, where λ specifies the instance size (in other

words, brute forcing the problem should take close to 2λ) and d is the depth parameter. The

assumption is that no circuit with depth less than 2γd can solve the problem, unless it is

large enough to brute force the problem.

Assume that we have a commitment scheme DCom(1λ, 1d,m; r), which is based on time-

lock-puzzles and which is “depth-robust,” as described above. It is then possible to create

two commitments c′1 and c′2 as before with Com, except now using depth: we can guarantee

that c′1 is extractable in depth d1, whereas c′2 hides the committed value for adversaries of

depth poly(d1), and is extractable in depth d2. Using the two commitments Com and DCom

for two different axes of hardness, size and depth, we can now specify a set of tags for which

any two tags i and j, i is harder than j with respect to one axis, but j is harder than i with

respect to another axis.

We do this as follows, as an example using three tags. Choose three depth parameters d1,
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d2, and d3, and three size parameters s1, s2, and s3, such that d1 � d2 � d3 � s3 � s2 � s1

(see Figure 3.2). To compute a commitment for tag i and message m, compute random m1,

m2 such that m1 ⊕m2 = m, and then use DCom to give a commitment cdi to m1 which is

extractable in depth di, and use Com to compute a commitment csi to m2 which is extractable

in size si, and return (cdi , c
s
i ). It is clear that to extract m, we must extract both cdi and

csi . Thus, for any tags i < j, it is possible to run the CCA game for an adversary who give

challenge tag i and runs the oracle on commitments of tag j, by using a size poly(sj) and

depth poly(dj) machine which can extract tag j but for which tag i commitments are hiding

since si � sj. On the other hand, if the adversary gives j as the challenge tag and queries

tag i, a size si and depth dj machine can extract tag i without breaking hiding of tag j, since

dj � di. Thus we have achieved two-sided non-malleability.

We now have a non-interactive non-malleable commitment with a small tag space, assuming

the existence of time-lock puzzles and any perfectly-binding non-interactive commitment.

This scheme has two problems, though. The first problem is that the argument above only

works if the adversary only runs the committed value oracle for commitments with respect

to one tag. This corresponds to a CCA version of one-one non-malleability, called same-tag

CCA non-malleability. Note that if the adversary gives challenge tag 2 and queries the oracle

for both tag 1 and 3, the extractor must run in size s1 and d3, and thus can also extract tag

2 as well.

The second problem is that for all known time-lock puzzles [RSW96, BGJ16] it is not

possible to efficiently verify that a puzzle has been generated honestly. Because of this,

the commitment DCom suffers from the problem of over-extraction which was discussed

in the introduction. Namely, it can be possible for the extractor to extract a value even

when the commitment is invalid and no opening to any value exists. In other words, the

commitment above satisfies the requirements for a one-one CCA non-malleable commitment,

except that in Definition 11, the implication is only in the forward direction. This is called

non-malleability with respect to extraction.
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So we need a transformation which achieves a larger tag space, which removes the same-tag

restriction, and which solves the over-extraction problem. We dedicate the rest of the section

to explaining how to do this.

3.2.2 Tag amplification

Our main contribution comes in the form of a tag-amplification construction, which compiles

a commitment scheme with tag space T , |T | = t, into one with

 t

t/2

 tags. At a very high

level, we do the following. In the resulting commitment scheme, each tag T is of the form

{s1, . . . , st/2}, where si ∈ T is a tag in the original scheme. A commitment ({csi}i∈[t/2], π)

under tag T consists of commitments csi under each tag si, along with a privacy-preserving

proof π that all commitments are to the same underlying message. We call the commitments

{csi}i∈[t/2] the inner-tag commitments. Let us think about how we would reduce security of

this scheme to security of the underlying inner-tag scheme. Intuitively, since we have a proof

that all commitments are to the same value, during the CCA game we are not required to

extract all the commitments, rather we only need to extract one csi for each commitment

({csi}i∈[t/2], π). If the challenge tag is T ∗, we can find an inner tag si for each query tag T such

that si /∈ T ∗, and extract the corresponding commitment csi when queried on tag T . Since

we are not extracting any commitments with inner tags s∗ ∈ T ∗, we should be able to switch

the challenge inner-tag commitments from m0 to m1 one by one, relying on CCA security of

the inner-tag scheme. This strategy also happens to fix the problem of over-extraction: even

if the inner scheme suffers from over-extraction, the resulting outer scheme does not, because

soundness of the proofs guarantees that all inner commitments are well-formed.

This high-level approach was introduced in [KS17] and was additionally used in [BL18,

Khu21]. The challenge with this strategy is to find a proof that has the privacy and round

complexity requirements we need. Ideally, we want a zero-knowledge argument, so that we

can simulate when switching each inner-tag commitment from m0 to m1. It is well-known
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that non-interactive zero knowledge does not exist in the plain model; the main technical

contributions of [BL18] and [Khu21] are in finding a way to get around this.

In the following, we describe the techniques of [Khu21], the issues in these techniques

mentioned earlier, and how we solve them.

3.2.3 Khurana’s Construction and Our Modifications

As stated before, the main technical contribution of [Khu21] is a tag-amplification procedure.

Starting from a one-round CCA commitment scheme for small tags (say tags lie in [T ′] where

T ′ = log log λ), they build an “almost-one-round” scheme scheme with a much larger tag

space (say supporting tags in [T ] where T = T ′Ω(T ′)). This transformation can be applied

once again on top of the resulting scheme to get a scheme supporting a super-polynomial

number of tags. Thus, a constant number of applications suffice to construct a scheme

for 2Ω(λ) tags. At the base level, we can use the scheme supporting log log log λ which was

explained in Section 3.2.1, based on time-lock puzzles and perfectly-binding non-interactive

commitments. (We explain how to address the problems of over-extraction and same-tag

non-malleability in the inner commitment later.)

We first explain what is meant by “almost-one-round.” In the scheme of [Khu21], the

committer’s message is an obfuscated program P . The receiver’s message is a uniform random

string τ , which is used as input to P in order to verify the commitment. Importantly, the

committed value is only fixed once both P and τ are fixed; in particular, the committer’s

opening is computed based on τ as well as P . Also, for security to hold, P cannot be chosen

after seeing τ . Because of this, the receiver’s message must be sent in round 2. If one is

willing to accept a weaker security guarantee, it is possible to have the receiver compute τ

privately in her head, and to also carry out the verification of the commitment privately. The

committer’s opening can then be the randomness used to generate the obfuscation. However,
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using the commitment in this way introduces the possibility of over-extraction,2 because it is

impossible to test for a well-formed obfuscation based on a polynomial number of queries

to the obfuscated program. In this case, it is only possible to achieve the weaker notion of

non-malleability with respect to extraction which was discussed above.

We now describe the scheme of [Khu21] in more detail. The tag-amplification procedure

makes use of a base commitment scheme nmc = (CCACommit,CCAVal) for small tags in [T ′]

where T ′ = log log λ, an indistinguishability obfuscator iO, a public-key encryption scheme

PKE with dense public keys, a non-interactive witness indistinguishable proofs NIWI, a

puncturable PRF PPRF, and a one-way permutation OWP : {0, 1}`OWP → {0, 1}`OWP (actually

a one-way function with verifiable range suffices, but we describe using a permutation for

simplicity).

The scheme follows a variant of the general strategy for tag amplification given in Sec-

tion 3.2.2. The tag space of the resulting scheme consists of subsets of [T ′] of size exactly

T ′/2. Thus, T =
(
T ′

T ′/2

)
. The idea is the following: to commit to a message m with respect

to tag ∈ [T ], parse tag as (t1, . . . , tT ′/2) where each ti ∈ [T ′]. Then, the commitment simply

consists of an iO obfuscation of the program described in Figure 3.3, where pk and the

PPRF key KPPRF are freshly sampled by the committer and hardwired into the program.

When evaluated on a random input ρ, the obfuscated program returns a set of inner-tag

commitments along with a special “trapdoor commitment” c0 along with a proof either that

they are consistent or that c0 commits to OWP−1(ρ).

Recall that the strategy given in Section 3.2.2 seems to require a zero-knowledge argument

in order to work. Since one-message zero-knowledge does not exist, the hope is that generating

commitments this way can be useful to revive this approach. As explained above, a receiver

can evaluate the program on a randomly chosen input ρ to compute (c0, c1, . . . , cT ′/2, π). If π

verifies, then this means that unless c0 is an encryption of OWP−1(ρ), c1, . . . , cT ′/2 must be

2We note that over-extraction of this commitment used in this way is possible even if the inner commitment
does not suffer from over-extraction.
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The Circuit G[t1, . . . , tT ′/2,m,KPPRF, pk]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Message m and PPRF key KPPRF, public key pk,

Input: ρ ∈ {0, 1}`OWP

Computation:

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3). Compute:

• c0 = PKE.Enc(pk, 0`OWP ; r1),

• For i ∈ [T ′/2], compute ci = CCA′.CCACommit(ti,m; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W =

(m, {r2,i}i∈[T ′]) are so that (X,W ) ∈ LG for the language LG defined below.

2. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1 ∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x ∈ {0, 1}`OWP s.t. c0 = Enc(pk, x) ∧ OWP(x) = ρ
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = CCA′.CCACommit(ti,m)
}

Figure 3.3: The Circuit G[t1, . . . , tT ′/2,m, kPPRF]
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well-formed nmc commitments of the same message m. To switch the challenge commitment

from m0 to m1, one can go “input-by-input”. For α ∈ [0, 2`OWP − 1], we switch the obfuscated

circuit to commit to m1 as opposed to m0 when the input ρ ≤ α. To do so, we need

to hardwire non-uniformly β = OWP−1(α) into the reduction at each hybrid so that the

reduction can generate c0 by encrypting β and using it to prove NIWI. For the security

arguments to go through, it requires that the public-key encryption, NIWI and the base

commitments are more secure with an advantage of at least 2−`OWP .

This yields the following contradiction. On the one hand, public-key encryption needs

to be more secure than the OWP to argue security. On the other hand, we need OWP to

be secure against the time it takes to break c0 to extract a pre-image of ρ chosen by the

challenger to show that the adversary does not query the CCAVal algorithm on non-well

formed commitments.

Nevertheless, [Khu21] observed that if the receiver randomness ρ’s are chosen after

declaring the set of commitments that would be queried to the CCAVal oracle, this issue

can be handled via the following clever idea: the reduction can guess the secret-keys {ski}

associated with the public keys {pki} used in the commitment programs {Pi} chosen by the

adversary. If a program Pi produces “bad” outputs (c0, c1, . . . , cT ′/2, π) on a large fraction

of points ρ, then one can recover inverses of OWP−1(ρ) using a non-uniformly fixed secret

key sk. This gives a non-uniform reduction to the security of OWP.

There is another reason why the construction of [Khu21] only provides security if the

receiver randomness is chosen only after all commitments Pi for which CCAVal(?) may be

queried are displayed the adversary. The reason is that on the one hand, nmc needs to

be more secure than OWP to argue indistinguishability; on the other hand, OWP needs to

be secure against the circuit that can run nmc.CCAVal(?) to handle CCAVal queries in the

reduction which can be done in any order. This problem does not arise if adversary outputs

commitments Pi for which CCAVal is queried up front: the reduction never really has to run

CCAVal to recover inverses to OWP challenge as the commitments Pi are already revealed.
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In summary, the above idea only works in the setting where receiver randomness is

chosen after the adversary displays all commitments for which CCAVal may be queried. Still,

unfortunately, it fails in our setting, where receiver randomness can be sampled uniformly, at

any point, any number of times the adversary demands. Our main idea is to introduce a new

axis of hardness. We use quantum-classical tradeoffs. We replace the public key encryption

with a perfectly binding quantum polynomial-time breakable commitment scheme and rely

on nmc schemes where nmc.CCAVal runs in quantum polynomial time.

How does this help? Consider that the OWP is quantum secure, then if the adversary

submits a commitment P and a query CCAVal(ρ, tag, P ) such that P [ρ] = (c0, c1, . . . , cT ′/2, π)

where π verifies, and c1, . . . , cT ′/2 are not consistent and well-formed, then one can form an

efficient quantum adversary that runs in time polynomial in the time of the adversary that

breaks the OWP security. The idea is that for this to happen, c0 must be a commitment of

OWP−1(ρ) due to the perfect soundness of NIWI. Then, c0 can be simply inverted by running

a quantum polynomial-time extractor of the commitment. Note that the reduction also needs

to respond to CCAVal queries while interacting with the adversary, but those can also be run

in quantum polynomial time.

In the classical world, commitments to compute c0 and nmc, NIWI and other primitives

can be made to be more secure than OWP to go input by input and argue security of the

commitment scheme. This brings us to one last issue. Except we are not aware of a quantum

secure one-way permutation from well-studied assumptions. To deal with this issue, we

observe that we could have also used a quantum secure collision-resistant hash function,

where the keys are randomly chosen (such are known via the small-integer solution/LWE

problems). In this case, c0 will be used to commit to a collision in the hash function.

Technical Remarks. Before we describe our construction, we mention a technical issue.

The underlying non-malleable commitments such as [BL18, KK19] have two issues that we

have to deal with:
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• As mentioned before, they satisfy security with one-tag restriction, and,

• To support Ω(log log λ), assuming subexponential security of the underlying assumptions,

these schemes are only quasi-polynomially secure. Thus, our transformation should

work with those parameters.

Our transformation below actually works with a quasi-polynomially secure base com-

mitment. For the first problem, we follow as in [Khu21], and take a one-round nmc with

one-tag restriction and convert it to a (simultaneous-message) one-round scheme for the same

number of tags, but without this restriction. This transformation is extremely similar to our

tag-amplification, and we sketch this in Section 3.3.1. We now describe our construction.

3.3 The Formal Construction and Security Proof

Our construction is nearly identical to the construction provided by [Khu21] except for a

few important changes, which help us to address the shortcomings in the scheme of [Khu21],

mentioned above.

As a starting point, we make use of a one-round CCA commitment CCA′ with secu-

rity parameter λCCA′ for small tag space T ′(λCCA′). The tag-space T ′(λCCA′) is at least

log . . . log(λCCA′)︸ ︷︷ ︸
O(1) times

and at most λO(1). We now describe the circuit class against which security

holds and other properties involved:

• The scheme satisfies (CCCA′ , εCCA′)-security where CCCA′ consists of all circuits of size

polynomial in 1
εCCA′

where εacc′ = 2λ
c1(log log λCCA′ )

−1

where c1 > 0 is some constant.

• CCA′.CCAVal(?) runs in quantum polynomial time.

• Let `CCA′(λCCA′) be the length of the string τ chosen by the receiver,

At the end of a single step of this transformation, we will build the scheme CCA scheme

with security parameter λ. We set λCCA′ = λ. After a single step transformation, the resulting
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scheme will be secure against adversaries of size polynomial in sCCA = 2λ
c2(log log λ)−1

with

advantage bounded by εCCA = 2−λ
c2(log log λ)−1

for some other constant c2 > 0. CCA.CCAVal(?)

will also be quantum polynomial-time implementable. The resulting tag space will be T (λ)

where T = T ′Ω(T ′/2). As a result of applying the procedure a constant number of times, we

get a super-polynomial number of tags. At the base level, this can be instantiated by taking

the scheme of [LPS20, BL18], which satisfies CCA security with one-tag restriction, and

then applying the transformation as given in Section 3.3.1 to give a one round scheme CCA′

without this restriction. The scheme in [LPS20, BL18] can be instantiated using iterated

squaring assumption and the DDH (or SXDH over bilinear maps) assumptions, both of which

are polynomial-time quantum broken.

Required Primitives. We make use of the following primitives and instantiate them with

the following parameters. These instantiated parameters for the primitives we use are loose

for what we require.

• One-round CCA commitments : We require a one-round CCA commitment CCA′ with

security parameter λCCA′ for small tag space T ′(λCCA′), satisfying the properties described

above.

• Perfectly-Binding Quantum Extractable Commitment : We require a perfectly biding

commitment scheme NICom, which is extractable in quantum polynomial time. Further,

it takes as input λNICom, and guarantees 2−λNICom indistinguishability against adversaries

of size polynomial in 2λNICom . Such commitments can be built using e.g. subexponential

hardness of DDH or subexponential hardness of factoring.

• Quantum-Secure Collision Resistant Hash Functions with random keys: We require

a sub-exponentially secure family of hash functions {Hλh : K × X → Y}λh∈N, where

the key space is K = {0, 1}`hkey , input space is X = {0, 1}`hinp , and the output space is
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Y = {0, 1}`hout . Above `hinp , `hout , `hkey are polynomials in λh. We require the following

additional properties:

– For every key K ∈ K there exists unequal x, x′ ∈ X such that H(K, x) = H(K, x′).

– When K ← K, then for any quantum algorithm running in time polynomial in

2λh , the advantage in finding the collisions is bounded by 2−λh

We set λh as follows. Let λh be such that `hkey = λc3(log log λ)−1
where c3 = c1/100. This

means that λh = λc
′
3(log log λ)−1

for some c′3 < c3. In the resulting scheme, c2 can be

arbitrary constant less than c′3.

• Indistinguishability Obfuscation: We require an indistinguishability Obfuscator iO. This

scheme uses λiO as the security parameter and is secure against adversaries of size 2λiO

with advantage 2−λiO . Such a primitive can be built using well-studied assumptions as

shown in [JLS21b, JLS21a].

• Puncturable PRF : We require a puncturable PRF, PPRF = (Puncture,Eval). Assume

the length of the key is randomly chosen of length `PPRF(λPPRF) where λPPRF is its

security parameter. The length of the output is some polynomial implicit in the scheme.

We assume that the PPRF is secure against adversaries of size polynomial in 2λPPRF with

a maximum advantage of 2−λPPRF . This can be built from the subexponential hardness

of LWE.

• NIWI : We require a non-interactive witness indistinguishable proof NIWI for NP, that

is secure against adversaries of size polynomial in 2λNIWI with advantage bounded by

2−λNIWI . This primitive can be built assuming subexponentially hard SXDH over Bilinear

Maps.

We set λiO = λNIWI = λPPRF = λNICom as a large enough polynomial. In particular, setting

2λiO � Time(CCA′.CCAVal(?)) · 2λ suffices.

Note that all the primitives described above exist from the primitives listed in Theorem 5.
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The construction. We define the tag space T , as in [Khu21], to be the set T =
(
T ′

T ′/2

)
which is precisely equal to the number of unique subsets of [T ′] of size [T ′/2]. Let φ be a

polynomial time computable bijective map that takes as input tag ∈ [T ], and outputs a

unique subset {t1, . . . , tT ′/2} of [T ′] of size T ′/2. These subsets are unique upto permutation.

We assume that they are sorted in ascending order.

CCA.CCACommit(tag,m; r): Compute the following steps.

• Compute φ(tag) = (t1, . . . , tT ′/2). Sample a PPRF key KPPRF ← {0, 1}`PPRF ,

• Compute G̃← iO(G[t1, . . . , tT ′/2,m,KPPRF]) by obfuscating the circuit described

in Figure 3.4. Output G̃.

CCA.ComputeOpening(τ, tag, G̃,m, r): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`CCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2),

• Check if G̃ = CCA.CCACommit(tag,m; r). Abort if its not the case. Derive the

PPRF key KPPRF used in code of G described in Figure 3.4.

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π),

• From the code of Figure 3.4, use the PPRF key kPPRF to derive r′i as in the

code such that ci = CCA′.CCACommit(ti,m; r′i). Compute and output σi =

CCA′.ComputeOpening(ρ′, ti, ci,m, r
′
i) for i ∈ [T ′/2].

CCA.VerifyOpening(τ, tag, G̃,m, σ): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`CCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2) and σ = (σ1, . . . , σT ′/2),

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language

described in Figure 3.4. Abort if the proof does not verify,
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• Output 1 if for every i ∈ [T ′/2], CCA′.VerifyOpening(ρ′, ti, ci,m, σi). Output ⊥

otherwise.

The Circuit G[t1, . . . , tT ′/2,m,KPPRF]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Message m and PPRF key KPPRF,

Input: ρ ∈ {0, 1}`hkey

Computation:

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3). Compute:

• c0 = NICom(0
`hinp ; r1),

• For i ∈ [T ′/2], compute ci = CCA′.CCACommit(ti,m; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W =

(m, {r2,i}i∈[T ′]) are so that (X,W ) ∈ LG for the language LG defined below.

2. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1 ∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x 6= x′ ∈ {0, 1}`hin s.t. H(ρ, x) = H(ρ, x′) ∧ c0 = NICom(x, x′)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = CCA′.CCACommit(ti,m)
}

Figure 3.4: The Circuit G[t1, . . . , tT ′/2,m, kPPRF]

We now argue various properties involved. The correctness of opening is immediate due

to the correctness of opening of the underlying commitment scheme CCA′ and correctness

and completeness of other primitives involved. To argue the extraction property, we now
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describe the CCA.CCAVal algorithm.

CCA.CCAVal(τ, tag, G̃) : Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`CCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2),

• Compute G̃[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language

described in Figure 3.4. Abort if the proof does not verify.

• Assuming the proof verifies, break open c0 to recover x, x′. Check if H(ρ, x) = H(ρ, x′)

and that x 6= x′. If this is true, abort.

• Assuming we have not yet aborted, output m if m = CCA′.CCAVal(ρ′, t1, c1) = . . . =

CCA′.CCAVal(ρ′, tT ′/2, cT ′/2).

The extraction property then follows immediately from the extraction property of the under-

lying CCA′ scheme. The idea is that in the last step, if m = CCA′.CCAVal(ρ′, t1, c1) = . . . =

CCA′.CCAVal(ρ′, tT ′/2, cT ′/2), then there exists openings σ1, . . . , σT ′/2, that opens (c1, . . . , cT ′/2)

to m due to the extraction property of CCA′. Similarly, the reverse is also true. Note that

even if CCA′ suffers from over-extraction, CCA does not, because the NIWI proof guaran-

tees that the inner commitments are well-formed. Note that assuming CCA′.CCAVal is a

quantum-polynomial-time algorithm, CCA.CCAVal is as well, since c0 is quantum-polynomial-

time-broken.

We now move on to the security proof.

3.3.0.1 Security Proof

The security proof can be structured by giving indistinguishable hybrids. The first one

corresponds to the game where the challenger computes CCA.CCACommit(tag∗,mb) for a
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random b, whereas the last hybrid is independent of b. We describe the first hybrid elaborately,

and in later ones, we merely describe the change.

Hybrid0 : In this hybrid,

1. The challenger manages a list L that is initially empty. The contents of the list are

visible to the adversary at all stages.

2. The adversary sends a challenge tag tag∗ ∈ Tλ.

3. The adversary submits queries of the following kind in an adaptive manner:

(a) Adversary can ask for arbitrary polynomially many τ -query. Challenger samples

τ ′ ← {0, 1}`CCA and appends τ ′ to L.

(b) Adversary can ask for an abitrary polynomially many (τ, tag,P)-query for any

τ ∈ L, any tag 6= tag∗, and any commitment P. The challenger computes

CCAVal(τ, tag,P) and sends the result to the adversary.

4. The adversary submits two messages m0,m1 of equal length. The challenger samples

b ← {0, 1}, and computes P∗ ← CCA.CCACommit(tag∗,mb). The adversary gets P∗

from the challenger.

5. The adversary repeats Step 3.

6. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment outputs 1 if b′ = b

and 0 otherwise.

Hybrid1,j∈[0,Q] : This hybrid is the same as the previous hybrid, except that we modify

how the CCAVal queries corresponding to jth τ query is responded. Recall that the challenger

maintains a list L, and every time the adversary makes a τ query, a randomly sampled τ

is added to this list. In this hybrid, let τj be the sampled τ the jth τ−query made by the

adversary. In this hybrid we replace how CCAVal query is responded for CCAVal(τj, tag,P)

for tag 6= tag∗ and τj ∈ L. The new code is defined as follows.
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CCA.CCAVal∗(τj, tag,P) : Compute the following steps.

• Parse τj = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`CCA′ ,

• Compute φ(tag) = (t1, . . . , tT ′/2) and φ(tag∗) = (t∗1, . . . , t
∗
T ′/2),

• Since tag 6= tag′, there must exist a first index i ∈ [T ′/2] such that ti 6= {t∗1, . . . , t∗T ′/2}.

• Compute P[ρ] = (c0, c1, . . . , cT ′/2, π) and verify π using NIWI.Vf for the language

described in Figure 3.4. Abort if the proof does not verify,

• Otherwise output m where m = CCA′.CCAVal(ρ′, ti, ci).

Note that Hybrid1,0 is the same as Hybrid0. We now show that Hybrid1,j is indistinguishable

to Hybrid1,j+1. We show that if there is an adversary with size polynomial in 2λh that

distinguishes these hybrids with probability p, then there exists a (quantum) reduction that

is running in time polynomial in poly(2λh), and wins in the collision-resistant hash function

security game with probability p. Thus, showing that p < 2−λh . We show our reduction.

• Reduction proceeds by maintaining a list L honestly,

• It generates all τ queries honestly, except that it for the (j + 1)th query, it sets

τj+1 = (ρ, ρ′) where ρ is received from the challenger of the hash function and ρ′ is

sampled randomly by the challenger.

• It answers CCAVal queries for every τi for i ≤ j using CCAVal∗ (this is well defined

because adversary does not use tag∗). It can be answered in quantum polynomial time

as CCA′.CCAVal can be implemented in quantum polynomial time.

• It answers CCAVal queries for every τi for i > j + 1 using CCAVal. These queries can be

answered in quantum polynomial time.

• For τj+1 it does the following. Assume that the query is for CCAVal(τj+1, tag,P) for

tag 6= tag∗. Then, do the following:
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– Run P[ρ] = (c0, c1, . . . , cT ′/2, π).

– Output ⊥ if π does not verify. If it does, break open c0 in quantum polynomial

time to recover x, x′. Check if H(ρ, x) = H(ρ, x′) for x 6= x′. If this is true, output

x, x′ as the answer to the hash function challenger.

– Otherwise, output CCA′.CCAVal(ρ′, t1, c1) to the adversary.

Observe that because CCA′.CCAVal runs in quantum polynomial time, the reduction runs in

quantum time polynomial in sCCA. Further observe, ifA observes a difference between Hybrid1,j

and Hybrid1,j+1, then there must be a query of the form CCAVal(τj+1, tag,P) that produces

different outputs. Parsing τj+1 = (ρ, ρ′), and P[ρ] = (c0, c1, . . . , cT ′/2, π), this means that π

verifies, but in the least there exists two indices i1, i2 such that CCA′.CCAVal(ρ′, ti1 , ci1) 6=

CCA′.CCAVal(ρ′, ti2 , ci2). By soundness of NIWI, it means that c0 must be a commitment of a

collision for the hash key ρ. Thus, the reduction will succeed at that point.

Thus, we have the following claim.

Lemma 1. Assuming that H is a secure against poly(2λh) sized quantum circuits, NIWI

is sound, and CCA′ satisfies perfect correctness/extraction properties, we have that for any

adversary A of size poly(sCCA) and for j ∈ [0, Q− 1], it holds that

|Pr[A(Hybrid1,j) = 1]− Pr[A(Hybrid1,j+1) = 1]| ≤ 2−λh .

We now describe a series of hybrids. For α ∈ [0, 2`hkey ].

Hybrid2,α : This hybrid is the same as the previous hybrid, except that in order to gen-

erate P∗, we obfuscate the circuit in Figure 3.5. Namely, compute φ(tag∗) = (t∗1, . . . , t
∗
T ′/2).

Output P∗ = iO(G1) where G1 = G1[t∗1, . . . , t
∗
T ′/2,mb,m0, α,KPPRF].

Note that the only difference between Hybrid1,Q and Hybrid2,0 is how P∗ is generated. In

Hybrid1,Q, it is generated by obfuscating program G[t∗1, . . . , t
∗
T ′/2,mb, KPPRF], where is Hybrid2,0

it it generated by obfuscating program G1[t
∗
1, . . . , t

∗
T ′/2,mb,m0, 0, KPPRF]. These programs
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The Circuit G1[t1, . . . , tT ′/2,mb,m0, α,KPPRF]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Messages mb and m0, PPRF key KPPRF, and

α ∈ [0, 2
`hkey ].

Input: ρ ∈ {0, 1}`hkey .

Computation: The computation can be divided into two cases.

Case: ρ < α

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = NICom(0
`hinp ; r1) and for i ∈ [T ′/2], compute ci =

CCA′.CCACommit(ti,m0; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m0, {r2,i}i∈[T ′])

are so that (X,W ) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ ≥ α

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = NICom(0
`hinp ; r1) and for i ∈ [T ′/2], compute ci =

CCA′.CCACommit(ti,mb; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′])

are so that (X,W ) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Language LG = LG1 ∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x 6= x′ ∈ {0, 1}`hin s.t. H(ρ, x) = H(ρ, x′) ∧ c0 = NICom(x, x′)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = CCA′.CCACommit(ti,m)
}

Figure 3.5: The Circuit G1[t1, . . . , tT ′/2,mb,m0, α, kPPRF]
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have identical input-output behavior. Thus, if an adversary A distinguishes these hybrids

with probability p, we can build a reduction that distinguishes iO with probability p. The

reduction needs to invoke the code of A and answer polynomially many CCAVal queries.

Therefore, its time is polynomial in the time of A and the time of CCAVal. We set λiO large

enough to ensure the following claim.

Lemma 2. Assuming that iO is secure against circuits that run in time poly(2λiO), then for

any adversary A of size polynomial in poly(sCCA), it holds that:

|Pr[A(Hybrid1,Q) = 1]− |Pr[A(Hybrid2,α) = 1]| ≤ 2−λiO .

Hybrid3 : This hybrid is the same as the previous hybrid except to generate P∗, we obfuscate

the circuit in Figure 3.4 by committing to m0.

Note that the only difference between Hybrid
2,2

`hkey
and Hybrid3 is how P∗ is gener-

ated. In Hybrid
2,2

`hkey
, it is generated by obfuscating program G1[t

∗
1, . . . , t

∗
T ′/2,mb,m0, α =

2`hkey , KPPRF], where as in Hybrid3 it it generated by obfuscating program G[t∗1, . . . , t
∗
T ′/2,

m0, KPPRF]. These programs have identical input output behavior. Thus if there exists an

adversary A that distinguishes these hybrids with probability p, then we can build a reduction

that distinguishes iO with probability p. The reduction needs to invoke the code of A, and

answer polynomially many CCAVal queries. Therefore, its time is polynomial in time of A

and the time of CCAVal. We set λiO large enough to ensure the following claim.

Lemma 3. Assuming that iO is secure against circuits that run in time poly(2λiO), then for

any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid3) = 1]− |Pr[A(Hybrid
2,2

`hkey
) = 1]| ≤ 2−λiO .

Indistinguishability between Hybrid2,α and Hybrid2,α+1 To prove indistinguishability

between Hybrid2,α and Hybrid2,α+1 we introduce indistinguishable intermediate hybrids.

Hybrid′0 : This hybrid is the same as Hybrid2,α.
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Hybrid′1 : This hybrid is the same as Hybrid2,α except that we generate P∗ differently.

We puncture the PPRF key KPPRF at α, and hardwire the response at ρ = α. Namely,

compute the punctured key k∗PPRF at α. We compute a value v as follows. Compute

(r1, r2, r3)← PPRF.Eval(KPPRF, α). Then:

• Compute c0 = NICom(0`hinp ; r1) and for i ∈ [T ′/2], compute

ci = CCA′.CCACommit(t∗i ,mb; r2,i),

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′])

are so that (X,W ) ∈ LG.

• Set v = (c0, c1, . . . , cT ′/2, π).

Output P∗ = iO(G2) where G2 = G2[t
∗
1, . . . , t

∗
T ′/2,mb,m0, α,K

∗
PPRF, v] as described in Fig-

ure 3.6.

Note that the only difference between Hybrid′0 and Hybrid′1 is how P∗ is generated. In

Hybrid′0, it is generated by obfuscating program G1[t∗1, . . . , t
∗
T ′/2,mb,m0, α,KPPRF], where as

in Hybrid′1 it is generated by obfuscating G2[t
∗
1, . . . , t

∗
T ′/2,mb,m0, α,K

∗
PPRF, v] where the key

K∗PPRF is punctured at α. Note that if PPRF key is correct at unpunctured points, these

circuits have identical behavior on all inputs ρ 6= α. On input ρ = α, the outputs are made to

be identical by setting v = (c0, c1, . . . , cT ′/2, π) which is computed as described in the Hybrid′1

description. Thus, the security follows from the security of iO. We have that:

Lemma 4. Assuming that iO is secure against circuits that run in time poly(2λiO) and PPRF

is correct at unpunctured points, then for any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid3) = 1]− |Pr[A(Hybrid
2,2

`hkey
) = 1]| ≤ 2−λiO .

Hybrid′2 : This hybrid is the same as the previous hybrid except while computing the hardwired

value v, we replace r1, r2, r3 ← PPRF.Eval(KPPRF, α) to a truly random string.
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The Circuit G2[t1, . . . , tT ′/2,mb,m0, α,KPPRF, v]

Hardwired: Tags (t1, . . . , tT ′/2) ∈ [T ′]T
′/2, Messages mb and m0, PPRF key KPPRF, α ∈

[0, 2
`hkey ] and a value v.

Input: ρ ∈ {0, 1}`hkey

Computation: The computation can be divided into two cases.

Case: ρ < α

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = NICom(0
`hinp ; r1) and for i ∈ [T ′/2], compute ci =

CCA′.CCACommit(ti,m0; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (m0, {r2,i}i∈[T ′])

are so that (X,W ) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ > α

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′/2, r3).

2. Compute c0 = NICom(0
`hinp ; r1) and for i ∈ [T ′/2], compute ci =

CCA′.CCACommit(ti,mb; r2,i),

3. Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′/2) and W = (mb, {r2,i}i∈[T ′])

are so that (X,W ) ∈ LG for the language LG defined below.

4. Output (c0, c1, . . . , cT ′/2, π).

Case: ρ = α Output v.

Language LG = LG1 ∨ LG,2:

LG,1 =
{

(c0, c1, . . . , cT ′/2) |∃x 6= x′ ∈ {0, 1}`hin s.t. H(ρ, x) = H(ρ, x′) ∧ c0 = NICom(x, x′)
}

LG,2 =
{

(c0, c1, . . . , cT ′/2) |∃m s.t. ∀i ∈ [T ′/2], ci = CCA′.CCACommit(ti,m)
}

Figure 3.6: The Circuit G2[t1, . . . , tT ′/2,mb,m0, α, kPPRF, v]
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Thus, if an adversary A distinguishes these hybrids with probability p, we can build a

reduction that breaks the pseudorandomness at the punctured points property of PPRF with

probability p. The reduction needs to invoke the code of A and answer polynomially many

CCAVal queries. Therefore, its time is polynomial in the time of A and the time of CCAVal.

We set λPPRF large enough to ensure the following claim.

Note that the only difference between Hybrid′1 and Hybrid′2 is how r = (r1, r2, r3) is

generated. In Hybrid′1 it is generated by computing PPRF(KPPRF, α) where as in Hybrid′2 it is

generated r is sampled randomly. Note the in both the hybrids, the key appears in a punctured

form K∗PPRF, punctured at α. Thus if there exists an adversary A that distinguishes these

hybrids with probability p, then we can build a reduction that breaks the pseudorandomness at

the punctured points property of PPRF with probability p. The reduction needs to invoke the

code of A and answer polynomially many CCAVal queries. Therefore, its time is polynomial

in the time of A and the time of CCAVal. We set λPPRF large enough to ensure the following

claim.

Lemma 5. Assuming that PPRF is secure against circuits that run in time poly(2λPPRF), then

for any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid′1) = 1]− |Pr[A(Hybrid′2) = 1]| ≤ 2−λPPRF .

Hybrid′3 : This hybrid is the same as the previous hybrid except that while we compute the

hardwired value v = (c0, c1, . . . , cT ′/2, π), we switch the commitment as c0 = NICom(xα, x
′
α)

where (xα, x
′
α) ∈ ({0, 1}`hin )2, xα 6= x′α and H(α, xα) = H(α, xα).

Note that the only difference between Hybrid′2 and Hybrid′3 is how hardwiring v =

(c0, c1, . . . , cT ′/2, π) is generated. In particular, it is about how c0 is generated. In Hybrid′2

it is generated by computing c0 as an honest commitment of 02`hin , whereas in Hybrid′3 it is
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generated by committing to a collision xα, x
′
α for the hash key α. The openings for these

commitments are not used to compute π. Thus, if an adversary A distinguishes these hybrids

with probability p, we can build a reduction that breaks the security of the commitment with

probability p. The reduction is non-uniform and must know a collision for hash key α. The

reduction also needs to answer polynomially many CCAVal queries. Therefore, its time is

polynomial in time of A and the time of CCAVal. We set λNICom large enough to ensure the

following claim.

Lemma 6. Assuming that NICom is secure against circuits that run in time poly(2λNICom),

then for any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid′2) = 1]− |Pr[A(Hybrid′3) = 1]| ≤ 2−λNICom .

Hybrid′4 : This hybrid is the same as the previous hybrid except that while we compute

the hardwired value v = (c0, c1, . . . , cT ′/2, π), we replace π as π = NIWI.P(X,W ) where

X = (c0, . . . , cT ′/2) and W is consists of opening of c0 = NICom(xα, x
′
α).

Note that the only difference between Hybrid′3 and Hybrid′4 is how hardwiring v =

(c0, c1, . . . , cT ′/2, π) is generated. In particular, it is about how π is generated. In Hybrid′3 it

is generated by using openings of c1, . . . , cT ′/2, whereas in Hybrid′4 it is generated by using

opening of c0 as the witness. Thus, if an adversary A distinguishes between these hybrids with

probability p, we can build a reduction that breaks the security of the NIWI with probability

p. The reduction also needs to answer polynomially many CCAVal queries. Therefore, its

time is polynomial in the time of A and the time of CCAVal. We set λNIWI large enough to

ensure the following claim.

Lemma 7. Assuming that NIWI is secure against circuits that run in time poly(2λNIWI), then

for any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid′3) = 1]− |Pr[A(Hybrid′4) = 1]| ≤ 2−λNIWI .
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Hybrid′5 : This hybrid is the same as the previous hybrid except that while we compute the hard-

wired value v = (c0, c1, . . . , cT ′/2, π), we replace for i ∈ [T ′/2], ci = CCA′.CCACommit(t∗i ,m0).

Note that the only difference between Hybrid′4 and Hybrid′5 is how hardwiring v =

(c0, c1, . . . , cT ′/2, π) is generated. In particular, it is about how c1, . . . , cT ′/2 is generated.

In Hybrid′4 it is generated by computing each ci = CCA′.CCACommit(t∗i ,mb) for i ∈ [T ∗],

where as in Hybrid′4 it is generated by computing each ci = CCA′.CCACommit(t∗i ,m0) for

i ∈ [T ∗]. The openings of these commitments are not used in generating π. Note that in

these hybrids, the adversary gets an oracle to CCA′.CCAVal() oracle but it does not query

it on (t∗1, . . . , t
∗
T ′/2). Thus if there exists an adversary A that distinguishes these hybrids

with probability p, then we can build a reduction that breaks the security of the CCA′ with

probability p.

Lemma 8. Assuming that CCA′ is secure against circuits in CCCA′, then for any adversary A

of size poly(sCCA′), it holds that:

|Pr[A(Hybrid′4) = 1]− |Pr[A(Hybrid′5) = 1]| ≤ T ′ · εCCA′ .

Hybrid′6 : This hybrid is the same as the previous hybrid except that while we compute

the hardwired value v = (c0, c1, . . . , cT ′/2, π), we replace π as π = NIWI.P(X,W ) where

X = (c0, . . . , cT ′/2) and W is consists of opening of c1, . . . , cT ′/2 committing to m0.

Hybrid′5 and Hybrid′6 are indistinguishable due to the security of NIWI, and follow similarly as

in the indistinguishability between Hybrid′3 and Hybrid′4. Thus we have:

Lemma 9. Assuming that NIWI is secure against circuits that run in time poly(2λNIWI), then

for any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid′5) = 1]− |Pr[A(Hybrid′6) = 1]| ≤ 2−λNIWI .
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Hybrid′7 : This hybrid is the same as the previous hybrid except that while we compute the

hardwired value v = (c0, c1, . . . , cT ′/2, π), we switch the commitment c0 as c0 = NICom(02`hin ).

Hybrid′6 and Hybrid′7 are indistinguishable due to the security of NICom, and follow simi-

larly as in the indistinguishability between Hybrid′2 and Hybrid′3. Thus we have:

Lemma 10. Assuming that NICom is secure against circuits that run in time poly(2λNICom),

then for any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid′6) = 1]− |Pr[A(Hybrid′7) = 1]| ≤ 2−λNICom .

Hybrid′8 : This hybrid is the same as the previous hybrid except while computing the hard-

wired value v, we replace r1, r2, r3 from being truly random to be generated by (r1, r2, r3)←

PPRF.Eval(KPPRF, α).

Hybrid′7 and Hybrid′8 are indistinguishable due to the security of PPRF and follow similarly

as in the indistinguishability between Hybrid′1 and Hybrid′2. Thus we have:

Lemma 11. Assuming that PPRF is secure against circuits that run in time poly(2λPPRF),

then for any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid′7) = 1]− |Pr[A(Hybrid′8) = 1]| ≤ 2−λPPRF .

Hybrid′9 : This hybrid is the same as Hybrid2,α+1.

Hybrid′8 and Hybrid′9 are indistinguishable due to the security of iO and follow similarly as

in the indistinguishability between Hybrid′0 and Hybrid′1. Thus we have:

Lemma 12. Assuming that iO is secure against circuits that run in time poly(2λiO) and PPRF

is correct at unpunctured points, then for any adversary A of size poly(sCCA), it holds that:

|Pr[A(Hybrid′8) = 1]− |Pr[A(Hybrid′9) = 1]| ≤ 2−λPPRF .

70



Final Advantage. Summing up the advantage, and plugging in our parameters, we have

that the total advantage is bounded by:

2`hkeyO(2−λiO + 2−λNIWI + 2−λNICom + 2−λPPRF) + 2`hkeyO(T ′ · εCCA′) +O(2−λh)

≤ εCCA.

3.3.1 Removing One-Tag Restriction

To remove one tag restriction, [Khu21] suggested the following approach. We explain the

idea with the help of an ideal one-message zero-knowledge and standard one-round CCA

commitments. Let nmc′ be a commitment with tag space T ′(λ) = log . . . log λ︸ ︷︷ ︸
O(1) times

with one-tag

restriction. We can build a CCA scheme without this restriction as follows. Suppose we

want to commit to a message m with respect to a tag t ∈ [T ′], then we can output the new

commitment nmc.CCACommit(t,m) as: (c1, . . . , cT ′ , π) where:

• For i 6= t, ci = nmc.CCACommit(i,m) is a commitment of m with tag i,

• ct = ⊥,

• π is proof that the commitment is generated in the way described above.

The reason this gets around the issue of one-tag restriction is because for any tag t 6= t′, we

can run nmc.CCAVal(t′, ?), by accessing just nmc′.CCAVal(t, ?). This is because in the new

commitment to the message m, nmc.CCACommit(t,m) does not invoke nmc′.CCACommit()

with respect to tag t (but uses every other tag), where as nmc.CCACommit(t′, ?) will always

have a component generated by using nmc′.CCACommit(t, ?) as t′ 6= t. Further, the soundness

of π will ensure that all commitments that are queried are consistently generated as in the

procedure so that extraction using nmc′.CCAVal(t, ?) is correct. The security can then be

proven by first simulating π and then switching the commitments one by one.

While this is the idea relying on a one-message zero-knowledge, the above idea can

be formalized without such a zero-knowledge relying on the same techniques used in the
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tag-amplification. Let CCA′ be the underlying CCA scheme for tag space [T ′] above. We

build our scheme CCA without one-tag restriction for the same tag [T ′] following the same

approach as our tag amplification transformation, except that the obfuscation corresponds to

a slightly different program. The only change is that now, on input the receiver string τ it

will produce c0, c1, . . . , cT ′ , π where c1, . . . , cT ′ are generated in the way described above.

We now describe this transformation below. We use the same primitives, notation, and

parameters as our tag amplification transformation; the only change is that CCA′ suffers

from one-tag restriction and T = T ′. The security proof is essentially the same as in our tag

amplification construction.

CCA.CCACommit(tag,m; r): Compute the following steps.

• Sample a PPRF key KPPRF ← {0, 1}`PPRF ,

• Compute F̃ ← iO(F [tag,m,KPPRF]) by obfuscating the circuit described in Figure

3.7. Output F̃ .

CCA.ComputeOpening(τ, tag, G̃,m, r): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`CCA′ ,

• Check if F̃ = CCA.CCACommit(tag,m; r). Abort if its not the case. Derive the

PPRF key KPPRF used in code of F described in Figure 3.7.

• Compute F̃ [ρ] = (c0, c1, . . . , cT ′ , π),

• From the code of Figure 3.7, use the PPRF key kPPRF to derive r′t as in the code

so that ct = CCA′.CCACommit(t,m; r′i) for t ∈ [T ′] \ tag. Compute and output

σt = CCA′.ComputeOpening(ρ′, t, ct,m, r
′
t) for i ∈ [T ′] \ t.

CCA.VerifyOpening(τ, tag, F̃ ,m, σ): Compute the following steps.

• Parse τ = (ρ, ρ′) where ρ ∈ {0, 1}`hkey and ρ′ ∈ {0, 1}`CCA′ ,
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• Compute F̃ [ρ] = (c0, c1, . . . , cT ′ , π) and verify π using NIWI.Vf for the language

described in 3.7. Abort if the proof does not verify,

• Output 1 if for every t ∈ [T ′] \ tag, CCA′.VerifyOpening(ρ′, t, ct,m, σt). Output ⊥

otherwise.

Remark 1 (Opening algrorithm for base scheme with T ′ tags). For base commitments as

in [BL18, LPS20], the CCA′.ComputeOpening simply outputs the randomness to commit the

message.

73



The Circuit F [tag,m,KPPRF]

Hardwired: Tag tag ∈ [T ′], Message m and PPRF key KPPRF,

Input: ρ ∈ {0, 1}`hkey

Computation:

1. Compute r ← PPRF.Eval(KPPRF, ρ) and parse r = (r1, r2,1, . . . , r2,T ′ , r3). Compute:

• c0 = NICom(0
`hinp ; r1),

• For t ∈ [T ′], and t 6= tag, compute ct = CCA′.CCACommit(t,m; r2,i),

• Set ctag = ⊥,

• Compute π = NIWI.P(X,W ; r3) where X = (c0, c1, . . . , cT ′) and W =

(m, {r2,i}i∈[T ′]) are so that (X,W ) ∈ LF for the language LF defined below.

2. Output (c0, c1, . . . , cT ′ , π).

Language LG = LF1 ∨ LF,2:

LF,1 =
{

(c0, c1, . . . , cT ′) |∃x 6= x′ ∈ {0, 1}`hin s.t. H(ρ, x) = H(ρ, x′) ∧ c0 = NICom(x, x′)
}

LF,2 =
{

(c0, c1, . . . , cT ′) |∃m s.t. ∀t ∈ [T ′] \ tag, ct = CCA′.CCACommit(t,m) ∧ ctag = ⊥
}

Figure 3.7: The Circuit F [tag,m, kPPRF]
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CHAPTER 4

Zero Knowledge

This chapter is dedicated to defining and constructing our new notion of zero knowledge.

Our definition and construction, besides being useful in achieving our main result, aim to

answer two fundamental questions in this area.

Recall that zero-knowledge arguments are a form of privacy-preserving protocol between

a verifier, who has a statement x, and a prover, who has (x,w), and wants to convince the

verifier that (x,w) ∈ RL without revealing w. Here RL is an NP relation for some language

L. Such an argument must satisfy three properties. The first, called completeness, says

that if (x,w) ∈ RL, then the verifier should accept. The second, called soundness, says that

if x /∈ L, then even a malicious prover who can deviate arbitrarily from the protocol cannot

convince a verifier to accept with non-negligible probability. The third property, called zero

knowledge, says that there should exist a simulator which for any x ∈ L can interact with a

malicious verifier and produce an interaction which is indistinguishable from that of a real

prover who knows x and w. Crucially, the simulator should be able to do this only knowing x

and without knowing w. This guarantees that nothing is leaked about w to even a malicious

verifier.

The first question we aim to answer is whether statistical soundness is possible with a

two-round zero knowledge argument. In the context of two rounds, statistical soundness

means that if x /∈ L then with high probability over the verifier’s choice of the first-round

message, there should not exist an accepting second-round message. For soundness to hold,

the simulator should have some advantage which the prover does not have. Otherwise, the
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prover will be able to simply run the simulator in order to break soundness. In the case of

two-round zero knowledge, the only way known in the literature to achieve this is to give

the simulator a computational advantage, or in other words to allow the simulator to run in

super-polynomial time. (In fact, having a standard polynomial simulator in two-round zero

knowledge was shown to be impossible by the work of [GO94].) More specifically, every known

two-round zero knowledge works in the following way. The first-round verifier’s message

contains some sort of computational puzzle, which is guaranteed to have a solution, but

for which the solution is hard to find in polynomial time. The simulator, since it runs in

super-polynomial time, can brute force solve this puzzle, and by embedding a solution into its

second-round message it is able to simulate; the protocol is designed so that any such solution

is a “trapdoor” which allows construction of accepting second-round messages which are

indistinguishable from honest ones. This does not break soundness, since a polynomial-time

prover cannot find such solutions.

The structure described above means that all known two-round zero knowledge argument

systems are inherently not statistically sound. This is because no matter what the statement

x is, there always exist trapdoor accepting second-round messages which are obtained based

on solutions to the puzzle embedded in the verifier’s first-round message. Thus it is an

important open question whether any sort of statistical soundness is achievable in two rounds.

The second question we address has to do with arguments that are both statistically sound

and statistically zero-knowledge, in any number of rounds. There is a long line of well-known

classical results [GMR85, Kan90, GK90, GG98, For87, AH87, BHZ87] which study the class

SZK of languages which have zero-knowledge proofs that are both statistically sound and

statistically zero knowledge. This line of work established that SZK cannot contain NP,

otherwise the polynomial-time hierarchy collapses.

Thus, a natural question is, how close can one get to a statistically-sound, statistical zero

knowledge protocol for all languages in NP, without running into this impossibility?

To answer both these two questions, we give a new definition of two-round zero knowledge,
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which works in the following way. In the first round, both prover and verifier send a

message. The first round then fixes one of two modes which the protocol will work in: perfect

soundness mode, and statistical zero knowledge mode. In perfect soundness mode, there

exist no second-round messages for false statements. In statistical zero knowledge mode,

a super-polynomial machine can find simulated second-round messages for all statements,

which are statistically indistinguishable from an honest prover’s statements. Assuming both

the first-round messages are generated by computationally bounded machines, the perfect

soundness mode is guaranteed to happen with some fixed negligible, tunable probability ≈ µ,

and a computationally bounded prover cannot tell which mode the protocol is in.

The intuition behind this definition is that, although it does not satisfy standard statistical

soundness, it can provide an approximation of it which is useful when used in conjunction

with other primitives which require statistical soundness, such as witness encryption. This is

explained in detail in Chapter 5.

We call this definition statistical zero knowledge with sometimes-statistical soundness. To

show that this definition is meaningful, we give a construction which satisfies it, specifically

proving the following theorem.

Theorem 6. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• a time lock puzzle as in Definition 4 exist,

• a subexponentially-secure NIWI exists,

• a subexponentially-secure sender-equivocal oblivious transfer scheme exists,

• a subexponentially-secure OWP computable in NC1 exists, and

• a subexponentially-secure somewhere-statistical correlation-intractable hash function

exists,
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then there exists a reusable statistical ZK argument with sometimes statistical soundness as

defined in Definition 20. For this scheme, the complexity parameters are defined in Definition

28.

Since both the oblivious transfer protocol and the correlation-intractable hash function

are instantiable from subexponential hardness of LWE [BD18, PS19b], we achieve Theorem 2

in Chapter 1 as a corollary of Theorem 6.

Note that in order to use this scheme to achieve MrNISC, we also require a strong form

of reusability. If this reusability is not required, it is possible to construct statistical zero

knowledge with sometimes-statistical soundness from much simpler assumptions:

Theorem 7. Assume subexponential hardness of the LWE assumption. Then there exists a

(non-reusable) statistical ZK argument with sometimes statistical soundness.

The rest of the chapter is organized as follows. We start with a formal definition of reusable

statistical zero knowledge with sometimes-statistical soundness. We then give a high-level

overview of the techniques used in constructing this new type of zero knowledge. Finally,

we give a formal construction and security proof, thus finishing the proof of Theorem 6.

Although we do not separately prove Theorem 7, it is implicit in the proof of Theorem 6:

simply remove all the machinery used to achieve reusability, and instantiate the extractable

commitment scheme with one that is closer to the one used in [BFJ20].

4.1 A Formal Definition

We define statistical zero-knowledge arguments with a specific communication pattern. The

protocol that we need has a “simultaneous message” first round, where both the prover and

verifier will simultaneously send a message. The syntax is the following:

1. The (honest) prover P = (ZKProve1,ZKProve2) and verifier V = (ZKVerify1,ZKVerify2)

are each composed of two uniform PPT algorithms.
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2. ZKProve1 and ZKVerify1 get as input only the security parameter λ. ZKProve1 outputs

a message zk1,P and a state σP . ZKVerify1 outputs a message zk1,V and a state σV . The

first round transcript is denoted τ1 = (zk1,P , zk1,V ).

3. ZKProve2 gets σP , zk1,V , the instance x, and a witness w. It outputs a message zk2,P .

4. ZKVerify2 gets the instance x and τ = (τ1, zk2,P ), and outputs 0/1.

Looking ahead, we shall consider two-round ZK protocols as above with super-polynomial

simulation (SPS). Further, we will also require that for a given prover and a verifier, the first

message is reusable for proving multiple statements. We denote 〈P (w), V 〉(1λ, x) the output

of the interaction between P and V , where P gets as input the witness w, and both P and

V receive the instance x as a common input.

Definition 17 (Reusable Statistical Zero-Knowledge Arguments with Sometimes-Statistical

Soundness). Let L be a language in NP with a polynomial-time computable relation RL.

A protocol between P and V is a (Csound, CS , Czk, εsound,1, εsound,2, εS)-reusable statistical zero-

knowledge argument with sometimes-statistical soundness if it satisfies Definitions 18 to 20

below.

Definition 18 (Perfect Completeness). Let L be a language in NP with a polynomial-time

computable relation RL. A protocol between P and V satisfies perfect completeness if for

every security parameter 1λ and (x,w) ∈ RL, it holds that

Pr
[
〈P (w), V 〉(1λ, x) = 1

]
= 1,

where the probability is over the random coins of P and V .

Additionally, we need a refined soundness property, defined next.

Definition 19 ((Csound, εsound,1, εsound,2)-statistical soundness). Consider any prover P ∗ ∈

Csound and a polynomial p(·), where on input the security parameter 1λ, P ∗ outputs an
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instance x ∈ {0, 1}p \ L. We require that there exists a “soundness mode indicator” machine

E that on input (τ1, stateV ) outputs either 0 or 1 such that the following properties hold.

• Frequency of Soundness Mode. For every prover P ∗ ∈ Csound,

Pr [E(τ1, stateV ) = 1] ≥ εsound,1(λ),

where the probability is over the coins of the prover and the verifier in round 1.

• Perfect Soundness Holds During Soundness Mode. For every prover P ∗ ∈

Csound and every round-1 state (τ1, stateP ∗ , stateV ) of the protocol, if E(τ1, stateV ) = 1

then for all second-round messages zk2,P sent by the prover corresponding to some false

statement x 6∈ L, the verifier rejects on input (x, τ1, zk2,P , stateV ).

• Indistinguishability of Soundness Mode. For every prover P ∗ ∈ Csound, it holds

that

{(τ1, stateP ∗) | E(τ1, stateV ) = 1} ≈(Csound,εsound,2) {(τ1, stateP ∗) | E(τ1, stateV ) = 0}.

The full MrNISC protocol needs a powerful version of zero knowledge, as follows:

Definition 20 ((CS , Czk, εS)-Adaptive Reusable Statistical Zero-Knowledge ). We say a zero

knowledge scheme satisfies (CS , Czk, εS,1, εS,2)-adaptive reusable statistical zero-Knowledge if

there exists a (uniform) simulator ZKSim ∈ CS which takes as input the round-one transcript

τ1, the honest prover’s state σP , and a statement x such that the following holds. Consider

an adversary V ∗ ∈ Czk that takes as input 1λ and an honestly generated prover’s first round

message zk1,P , and plays the following game exptbV ∗,zk:

1. V ∗ may adaptively issue queries of the form (x,w, zk∗1,V ). The challenger responds as

follows:

• f (x,w) /∈ RL, the challenger responds with ⊥.
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• If (x,w) ∈ RL and b = 0, the challenger responds with the honest prover’s second

message ZKProve2(σp, zk
∗
1,V , x, w).

• If (x,w) ∈ RL and b = 1, the challenger responds with the simulated prover’s

message ZKSim(σp, zk
∗
1,V , x).

2. At the end of the game, V ∗ outputs an arbitrary function of its view, which is used as

the output of the experiment.

It must hold that

expt0V ∗,zk ≈(∞,εS) expt
1
V ∗,zk.

4.2 An Overview of the Construction

We now give an overview of the zk construction. Recall that we want to construct a two-round

(delayed instance) zk with SPS simulation. At the same time, the second message by the

prover is still subject to perfect soundness with some probability over the first round messages.

Further, the first round should be reusable across sessions.

Our starting point is the SPS ZK protocol/statistical ZAP arguments of [BFJ20, GJJ20].

The protocol relies on the following primitives:

• A correlation intractable hash function H(K, ?)→ {0, 1}` [CCH19, PS19a],

• A two-round statistically hiding sometimes extractable commitment

Com = (Com1,R,Com2,C) [KK19],

A (somewhere) statistically correlation intractable function is associated with an algorithm

FakeGen that takes as input a polynomial time computable function f : {0, 1}`in → {0, 1}`,

and outputs a key Kf , for which there does not exist in input x ∈ {0, 1}`in such that

H(Kf , x) = f(x). These functions can be built from LWE. Further, FakeGen produces

pseudorandom outputs, and thus the key Kf hides f computationally.
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A two-round statistically hiding sometimes extractable commitment scheme on the other

hand, has the following structure.

• In the first round, the receiver samples a bR ∈ {0, 1}µ and computes and outputs

com1,R = Com1,R(bR; rR).

• In the second round, the committer samples bC ∈ {0, 1}µ randomly, and outputs any

number of commitments bC , {com2,C,i = Com2,C(bC , com1,R,mi)}i∈[T ].

The protocol has the following property. If bR 6= bC (or if com1,R is not well-formed as per the

protocol), then, the honestly generated commitments com2,C , statistically hide the messages

{mi}i∈[T ]. On the other hand, if, bR = bC , then there exists an efficient algorithm Dec such

that: Dec(bR, rR, com2,C,i) = mi for i ∈ [T ] is binding for com2,C,i (Dec always output a

valid message; further this message is biding even when com2,C,i is ill formed). Further, an

honest receiver can ensure that bC = bR with probability at least Ω(2−µ). To an adversarial

polynomial-time committer, the view is indistinguishable from the view when bC 6= bR. The

works of [KKS18] showed that such commitments can be built from assumptions such as

LWE or DDH.

Once we have these primitives, then the SPS ZK protocol of [BFJ20], follows the following

template. Let (x,w) be the isntance witness pair.

• In the first round, the verifier chooses bV ← {0, 1}µ, and outputs zk1,P = (com1,R, K)

where com1,R = Com1,R(bV ) and K ← H.FakeGen(f) for some function f described

later,

• In the second round, the prover samples bP ← {0, 1}µ, and then computes com2,C,i =

Com2,C(bP , com1,R, ai; r
′
i) for i ∈ [N ] where (a1, . . . , aN) are the values committed to

during a special Σ protocol1 for proving x. Then,

1As an example, think of it as the Blum’s Hamiltonicity Protocol. As in the construction of NIZK from
LWE[CCH19, PS19a], it suffices to use a parallel repetion of a sigma protocol for NP with i) 1/2-special
soundness, ii) efficient BadChallenge computation.
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– The prover runs H(K, (x,bP , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N ] along with openings

com2,{ai, r′i}i∈Set where Set is the set dictated by the challenge e of the Σ protocol.

The statistical WI property follows from the fact that when bP 6= bV , then com2,C are

statistically hiding. One needs more work to prove that it is actually SPS ZK by using an

inefficient equivocator of com2,C with a simulator of the Σ protocol. For the soundness

property, observe that when bV = bP , then the commitments are binding to the value

computed by Dec(bV , rR, ?) where rR is used to compute com1,R. We exploit this to set

f as follows. We set f to be the function that computes e∗ = BadChallenge(x, a1, . . . , aN )

where (a1, . . . , aN) is recovered by running Dec(bV , rR, ?).

Perfect Soundness Mode. The protocol above does not have a perfect soundness mode.

However, it turns out that in the simultaneous message model, there is a straightforward

modification of the protocol above that gives us a perfect soundness mode. The modification

is described as follows.

• In the first round, the verifier outputs zk1,V = (com1,R, K) as before, but the prover

outputs zk1,P = bP in the clear.

• In the second round, the prover outputs as before, but using bP displayed in the first

round itself.

The reason why this protocol has a perfect soundness mode is that bP is displayed in the

first round itself, and so the first round already determines if the prover can cheat in the

second round or not. Unfortunately, this naive approach fails in our setting where the same

prover first message can be used repeatedly with multiple verifiers/receivers. In fact, it even

fails when an honest prover interacts with a rushing malicious verifier. If such a verifier sees

bP , then it can choose bV = bP , which will put the prover in the perfect soundness mode,

and its proofs will no longer be simulatable.
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Fixing Zero-Knowledge: A different criteria for soundness mode Imagine if

we could modify the criteria for the soundness mode as follows. In this model, zk1,P is

α = OWP(bP ) for a one-way permutation as opposed to bP in the clear, and zk1,V is as

before, com1,R = Com1,R(bV ). As before, perfect soundness must hold if bV = bP and perfect

zero-knowledge otherwise. This high-level approach appears to make sense, as intuitively a

verifier must compute com1,R = Com1,R(OWP−1(α)) to violate soundness.

To work this idea out in the reusable setting, we must tackle one more issue. We need to

make sure that zk2,P must not reveal information about bP as in the reusable setting, one

can choose zk′1,V after seeing a second message zk2,P used in some other session (which might

contain information about bP ). We make this intuition formal by this abstraction called

“Sometimes Extractable Equivocal Commitments” or SEE. For the rest of the section, assume

that the verifier’s first message is “well-formed,” and we expect the zero-knowledge property

to hold only when this is the case. We will fix this issue later.

Sometimes Extractable Equivocal Commitments. A SEE scheme consists of three

algrorithms (Com1,R,Com1,C ,Com2,C) and is a commitment scheme that captures the issues

pointed above in the simultaneous message model. In the first round,

• The receiver chooses bR and computes and outputs com1,R = Com1,R(bR; r),

• The committer chooses bC and computes and outputs com1,C = Com1,C(bR) determin-

istically. Further, the image of com1,C is verifiable in that it is essentially a one-way

permutation.

In the second round, the committer outputs Com2,C(com1,R, com1,C ,m; r′). We want mostly

similar properties as before (with a few additional properties): If bR = bC , then the

commitment is fully extractable and perfectly binding (even when com2,C is not well formed,

and even to an outside observer who does not know the r used to generate com1,R), where as
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when bR 6= bC , then com2,C is statistically hiding. In fact, when com1,R is well formed and

bR 6= bC , then the commitment com2,C should be efficiently equivocable.

To deal with the issues of reusability described above, it should be computationally hard

for an adversarial receiver to create a well-formed commitment of com1,R = Com1,R(bC) where

bC is chosen by the committer even, after seeing com1,C . Further, an honest receiver could

always ensure that bR = bC where bC is used in com1,C with a decent probability Ω(2−µ).

Plugging in this commitment scheme with a correlation intractable hash function gives

rise to the following zk protocol.

• In the first round, the verifier outputs zk1,V = (Com1,R(bV ; r), K) as before and the

prover outputs zk1,P = Com1,C(bP ).

• In the second round, the prover computes com2,C,i = Com2,C(com1,R, com1,C , ai; r
′
i) for

i ∈ [N ] where (a1, . . . , aN) are the values committed to during a special Σ protocol.

Then,

– The prover runs H(K, (x, com1,R, com1,C , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N ] along with openings

com2,{ai, r′i}i∈Set where Set is the set dictated by the challenge e of the Σ protocol.

Observe that now, the protocol has a perfect soundness mode, namely when bP = bV . Further,

the verifier message is reusable across multiple prover sessions as the soundness holds with

the same probability Ω(2−µ) across multiple sessions. On the other hand, the prover’s first

message zk1,V = Com1,C(bV ) is also reusable with different verifiers, as it is computationally

hard to produce com1,R = Com1,R(bV ) with the bP = bV . Assuming verifier’s messages

are well-formed, we can simulate the zk by equivocating the commitment. Two issues need

discussion. The first concerns with the required complexity hierarchy for our MrNISC and the

second, with the fact that in the arguments above, we did not show zero-knowledge against
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adversaries that output non-well formed first messages (because commitment equivocation

only works if com1,R is well-formed).

Issue with Complexity Hierarchy wrt MrNISC. In the bigger scheme of things with

other primitives in the MrNISC scheme, we are also using a one-round CCA commitment

(CCA), and that protocol is intimately tied with the zk we are trying to build. As pointed

out in Section 1.1.1.4, on the one hand, we need the zk to be sound against circuits that can

perform CCAVal; on the other hand, CCA commitments need to be secure against circuits

that are capable of running zk SPS simulator. This might feel like a deadlock, so we introduce

a new axis of hardness.

We will use commitments CCA which are secure against circuits of some quasipolynomial

size such that CCA.CCAVal runs in polynomial depth but size 2λ
c

for c > 0. In the zk we

build:

• Soundness holds against adversaries of poly(λ) depth and size 2λ
c2 for c2 > c.

• The zk simulator can be implemented by a circuit of quasipolynomial size/and depth

Tzk,S against which CCA security holds.

We incorporate time-lock puzzle-like properties in our commitment scheme and hence the zk

protocol. To do this, within zk1,V , we add a time-lock puzzle encrypting secret information

that allows one to equivocate com2,C generated with respect to com1,R in zk1,V .

Summing up. Summing up, as a first step we build an SEE scheme described above

with. Below we list all the properties. The only new addition to what was described

before is that com2,C can be equivocated in polynomial time given the opening bR, r of

com1,R = Com1,R(bR; r).

• Extractability: If com1,R = Com1,R(bR; r) and com1,C = Com1,C(bR; rR), then

com2,C = Com2,C(com1,R, com1,C ,m) is polynomial time extractable using Dec algorithm.
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The result of Dec(bR, rR, com2,C) must be a valid message string and should be binding

to an outside observer even when com2,C is not well-formed. This property is identical

to the one described before.

• Equivocability: If com1,R = Com1,R(bR; r) and com1,C = Com1,C(bC) where bC 6=

bR, then there exists a polynomial time algorithm SEE.S that takes as input bR, r,

com2,C ,m, r
′ where com2,C = Com2,C(com1,R, com1,C , 0, r

′) and outputs an opening s′

such that com2,C = Com2,C(com1,R, com1,C ,m; s′). Further, com2,C , s
′,m generated this

way is identical to the case when com2,C was a commitment of m and s′ was its opening.

This is stronger than statistical indistinguishability. This property is useful because

one can encrypt (bR, r) as a part of zk1,P using a time-lock puzzle, which will help the

zk simulator.

• Indistinguishability of bR: We require that an com1,R = Com1,R(bR) hides bR.

Further, for any computationally bounded committer bC = bR with a probability of

2−Ω(µ). We also require that the distribution of transcripts when this event happens

are indistinguishable from when this event does not happen.

• Hard to force bR = bC : We require that a computationally bounded adversarial

receiver given com1,C = Com1,C(bC) for a randomly chosen bC cannot come up with

com1,R = Com1,R(bC) with all but negligible probability.

We build such an SEE scheme relying on DDH assumption over Z∗p in Section 4.3.2.

Once we have such a commitment scheme, we can solve all problems, except we need to

control the circuit size that runs zk.S by a quasi-polynomial sized circuit. Our main idea

to get around this is to use a time-lock puzzle. We add Z = TLP(bV , r) to zk1,V . The TLP

parameters are set so that a quasipolynomial sized circuit breaks it, but it is secure against

all circuits of polynomial depth of size 2λ
c
.

Therefore in our modified protocol:
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• In the first round, the verifier outputs zk1,V = (Z = TLP(bV , r),Com1,R(bV ; r), K) and

the prover outputs zk1,P = Com1,C(bP ).

• In the second round, the prover computes com2,C,i = Com2,C(com1,R, com1,C , ai; r
′
i) for

i ∈ [N ] where (a1, . . . , aN) are the values committed to during a special Σ protocol.

Then,

– The prover runs H(K, (x, com1,R, com1,C , com2,C)) = e,

– Outputs commitments com2,C = {com2,C,i}i∈[N ] along with openings

com2,{ai, r′i}i∈Set where Set is the set dictated by the challenge e of the Σ protocol.

This is useful, and in particular, we can now simulate zk by first breaking Z to learn bV , r

and then using the equivocator of the commitments and the simulator of the Σ protocol to

simulate the second message.

In our construction, to make the construction mode modular, we incorporate the TLP

aspect in the SEE scheme (see Section 4.3.2) and not in our zk protocol. In our commitment

scheme, the equivocation property is required to hold only against a receiver which generates

com1,R using the honest algorithm (although with adversarial randomness). This brings us

to our last issue.

One Last Issue. This solves all the issues, except that the simulator fails if a verifier does

not generate com1,R as per the specification of the protocol. Indeed, Z may not be a time

lock puzzle and give the randomness needed by the simulator to equivocate com2,C . To fix

this issue, the verifier now supplies a simultaneous message non-interactive distributional

indistinguishability proof NIDI (see Section 4.3.3 for details about NIDI), proving that the

verifier messages are well-formed as in the protocol described above. This soundness property

of this proof system guarantees that the verifier messages are well-formed, which is helpful

for the simulator, and the distributional indistinguishability guarantees that zk1,V generated
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using bV is computationally indistinguishable from zk1,V , generated using 0µ. Analyzing the

protocol and setting up parameters requires some care, and we describe it formally next.

4.3 Some Tools

This section defines and constructs two tools that we will use to build our reusable statistical

ZK arguments with sometimes statistical soundness. We first give the definitions and then

the constructions. The first notion is that of a sometimes extractable equivocal commitments

(SEE), as explained informally in the previous section, which is new to this work. The

second notion is that of Non-interactive Distributional Indistinguishability (NIDI), due to

Khurana [Khu21]. Due to the reasons we explain below, we need to strengthen the definition

and construction for our purposes.

4.3.1 Sometimes Extractable Equivocal Commitments

This section defines the notion of sometimes extractable equivocal commitments SEE that

we use. These commitments are inspired by the ones used to build statistical ZAP argu-

ments [BFJ20, GJJ20].

Definition 21. An SEE is a tuple of three p.p.t. algorithms Com1,R,Com1,C ,Com2,C with the

following syntax:

• Com1,R(1λ, 1t, 1µ,bR; r)→ com1,R. The Com1,R denotes the first receiver message. It

takes as input three security parameters λ, t, µ along with a string bR ∈ {0, 1}` for some

polynomial ` = `(µ). It outputs com1,R.

• Com1,C(1λ, 1t, 1µ,bC)→ com1,C. The Com1,C denotes the first committer message. It

takes as input three security parameters λ, t, µ along with a string bC ∈ {0, 1}`. It

deterministically outputs com1,C.

• Com2,C(com1,R, com1,C ,m; r′) → com2,C. The Com2,C denotes the second committer
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message. It takes as input first committer and receiver messages com1,R, com1,C along

with a message m and outputs com2,C which is referred to as the commitment.

Such a scheme satisfies the following properties.

(CD, εD)-Indistinguishability of Com1,R. Let λ ∈ N and µ ∈ λO(1), t ∈ λΩ(1)(log log λ)−1 ∩

λO(1) and b ∈ {0, 1}`. Then, it holds that:

Com1,R(1λ, 1µ, 1t,b) ≈CD,εD Com1,R(1λ, 1µ, 1t, 0`).

Verifiability of Com1,C. There exists a deterministic polynomial time algorithm Vf that

takes as input 1λ, 1t, 1µ and com1,C and outputs 1 if and only if com1,C = Com1,C(1λ, 1t, 1µ,b)

for some b ∈ {0, 1}`.

Extraction when bR = bC There exists a deterministic polynomial time algorithm Dec∗

such that the following holds. Let λ ∈ N, µ = λO(1), t ∈ λΩ(1)(log log λ)−1 ∩ λO(1). Then, for any

b← {0, 1}` and any message m ∈ {0, 1}∗

Pr
r,r′

[Dec∗(b, r, com1,C , com1,R, com2,C) = m] = 1,

where, com1,C = Com1,C(1λ, 1µ, 1t,b), com1,R = Com1,R(1λ, 1µ, 1t,b; r) and com2,C = Com2,C(

com1,R, com1,C ,m; r′). We can define another deterministic algorithm Dec, that runs Dec∗ to

always compute the valid message v. It outputs a default string 0 if Dec∗ fails to produce

an output, otherwise it outputs the response of Dec∗. Observe that if com1,C and com2,R are

generated semi-maliciously using same bR = bC = b, then, this property means that the

value given by Dec is perfectly binding to the commitment com2,C even when this may not

be well formed. In addition, we require that when bR = bC = b, the commitment is perfectly

binding even to an outside observer who does not know r.
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Equivocation when bR 6= bC. We require that these exist an algorithm S such that

the following holds. Let λ ∈ N, µ = λΘ(1) and t = λΩ(1)(log log λ)−1 ∩ λO(1). Let b1 6= b2 be

both in {0, 1}`. Then, for any m ∈ {0, 1}∗, with probability 1 over the coins of Com1,R =

Com1(1λ, 1µ, 1t,b1) and Com1,C(1λ, 1µ, 1t,b2), the following distributions are identical:

• Distribution 1: com2,C = Com2,C(com1,R, com1,C ,m; r). Output (com1,R, com1,C , com2,C ,

m, r).

• Distribution 2: com2,C = Com2,C(com1,R, com1,C , 0
|m|; r′). Compute S(com1,R, com1,C ,

r′,m)→ r. Output (com1,R, com1,C , com2,C ,m, r).

Additionally, S(com1,R, com1,C , r
′,m) runs in time 2t · poly(λ, |m|).

Hard to force bR = bC by adversaries in CA. Let λ ∈ N, µ = λΘ(1) and t =

λΩ(1)(log log λ)−1 ∩ λO(1). Then, for any adversary A in class CA, the advantage of any ad-

versary in the following experiment is 2−µ.

• The challenger samples bC ← {0, 1}` and sends com1,C = Com1,C(1λ, 1µ, 1t,bC).

• Adversary sends out com1,R. Adversary wins if it outputs

com1,R = Com1,R(1λ, 1µ, 1t,bC ; r)

for some r ∈ {0, 1}∗.

4.3.2 Construction of Sometimes Extractable Equivocal Commitments

In this section, we present our construction of a sometimes extractable equivocal commitments.

More formally, we prove the following theorem:

Theorem 8. Assume that the following assumptions hold:

• A time lock puzzle as in Definition 4 exists,
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• a subexponentially-secure sender-equivocal OT exists, and

• a subexponentially-secure one-way permutation computable in NC1 exists,

then there exists a SEE with the properties listed in Definition 21 as per parameters described

in Definition 22.

First, we specify the various class of adversary that we will handle in this scheme. Refer

to Definition 21 for these notations. Let λ, µ, t be three parameters involved where λ ∈ N,

µ = λΘ(1) and t ∈ λΩ(1)(log log λ)−1
.

Definition 22 (Complexity Parameters for SEE). Consider the following complexity classes

as a function of λ, µ, t:

• CD : consists of all circuits of any polynomial depth and size polynomial in 2λ.

• εD : is set to 2−λ.

• CA will be set to all circuits of size 2µ.

Required Primitives. To build this primitive, we make use of the following primitives

and instantiate them with the following parameters. These instantiated parameters for the

primitives we use are loose for what we require.

• One-Way Permutation: We require a one way permutation OWP. We assume that

OWP is secure against adversaries of size polynomial in 2λOWP , with advantage bounded

by 2−λOWP , where λOWP is the security parameter of the one-way permutation. Let the

function be described as OWP : {0, 1}` → {0, 1}` where ` = `(λOWP) is some polynomial

in λOWP. We set λOWP = 2µ and ` = `(µ). We additionally require that this function is

computable in NC1. Such a function can be constructed assuming the subexponential

time hardness discrete log assumption over Z∗p.
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• Sender Equivocal Oblivious Transfer : We require a sender equivocal oblivious transfer

OT = (OT1,OT2,OT3) satisfying the properties in Definition 7. We will set λot = 2λ,

and assume that the receiver security holds against adversaries of size polynomial

in 2λot and with maximum advantage of 2−λot . Such an OT can be built assuming

subexponential time and advantage hardness of DDH.

• Time Lock Puzzle: We require a time lock puzzle as in Definition 4. The TLP satisfies

the following parameters.

– λTLP = 2λ,

– tTLP = min(t,
√
µ). Looking ahead, for our MrNISC, we use t = λΘ(1)(log log λ)−1

, in

which case tTLP = t.

– The function D(tTLP) = 2t
ε
TLP for some constant ε > 0.

Therefore, TLP with these parameters ensures the security against adversary of size

polynomial in 2λTLP and depth bounded by 2t
ε
TLP with the advantage bounded by 2−λTLP .

Further, Solve can be run by a circuit of depth poly(2tTLP , λTLP).

• Equivocal Garbled Circuits : We require a garbling scheme Gb = (Garble,Eval,GbEquiv)

as described in Definition 8 for NC1 satisfying the properties of correctness and equivo-

cation. The security parameter will be set as ` defined above.

Construction. We describe the construction next. In the construction, we omit the

security parameters. We also exhibit how by building a bit commitment. To commit to

longer messages, Com2,C described below is repeated in parallel.

Com1,R(bR ∈ {0, 1}`) : Parse bR = (b1, . . . , b`). Compute the following:

• Compute ot1,i ← OT1(bi; ri) for i ∈ [`] using independent randomness ri,

• Compute Z ← TLP.PGen(bR, r), where r = (r1, . . . , r`) used for generating ot1

messages above,
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• Output com1,R = (ot1,1, . . . , ot1,`, Z).

Com1,C(bC ∈ {0, 1}`) : Compute and output com1,C = OWP(bC).

Com2,C(com1,R, com1,C ,m ∈ {0, 1}; r′, {r′i}i∈[`]) : Parse com1,R = (ot1,1, . . . , ot1,`, Z). Let

H = H[com1,C ,m] : {0, 1}` → {0, 1} be the circuit that takes as input b ∈ {0, 1}`.

It checks that OWP(b) = com1,C and if so, it outputs m and 0 otherwise. Run the

following steps.

• Run Garble(H; r′)→ Γ, Lab,

• Compute ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r
′
i) for i ∈ [`].

• Output com2,C = Γ, {ot2,i}i∈[`].

Remark 2. The opening of com2,C consist of (m, r′, r′1, . . . , r
′
`).

We now argue the properties of the scheme.

Indistinguishability of com1,R: The indistinguishability property follows from the security

of TLP and OT. We show this by indistinguishable hybrids. The first hybrid corresponds to

the case when com1,R is generated using bR, whereas the last hybrid corresponds to the case

com1,R is generated using 0`.

Hybrid0 : In this hybrid, we compute com1,R = (ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(bi; ri)

for i ∈ [`] and Z = PGen((bR, r)).

Hybrid1 : This hybrid is the same as the previous one except that we compute com1,R =

(ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(bi; ri) for i ∈ [`] and Z = PGen((0`, r′)) where r′ is

independently sampled.

Claim 1. For any adversary A, of size polynomial in 2λ and depth bounded by any polynomial

poly(λ), it holds that:

|Pr[A(Hybrid0) = 1]− Pr[A(Hybrid1) = 1]| ≤ 2−(λTLP=2λ)
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This claim follows from the security of TLP. TLP is secure against adversaries of size

polynomial in 2λTLP , and depth D(tTLP) ≥ 2t
ε
TLP ∈ λω(1). Thus one can form a reduction,

distinguishing these two hybrids to breaking the security of TLP. Since λTLP = 2λ, the claim

holds.

Hybrid2 : This hybrid is the same as the previous one except that we compute com1,R =

(ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(0; ri) for i ∈ [`] and Z = PGen((0`, r′)) where r′ is

independently sampled.

Claim 2. For any adversary A, of size polynomial in 2λot, it holds that:

|Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1]| ≤ ` · 2−2λ

This claim follows from the security of OT. OT is secure against adversaries of size

polynomial in 2λot with an advantage 2−λot . We make ` intermediate hybrids in which we

switch one by one ot1,i to be computed using 0 instead of bi. Each intermediate hybrid is

indistinguishable with an advantage 2−λot . Since λot = 2λ, the claim holds.

Hybrid3 : This hybrid is the same as the previous one except that we compute com1,R =

(ot1,1, . . . , ot1,`, Z) where: ot1,i = OT1(0; ri) for i ∈ [`] and Z = PGen((0`, r)) where r is the

randomness to compute {ot1,i}i∈[`].

Claim 3. For any adversary A, of size polynomial in 22λ and depth bounded by any polynomial

poly(λ), it holds that:

|Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3) = 1]| ≤ 2−2λ

This claim follows from the security of TLP. TLP is secure against adversaries of size

2λTLP , and depth D(tTLP) ∈ λω(1). Thus one can form a reduction, distinguishing these two

hybrids to breaking the security of TLP. Since λTLP = 2λ, the claim holds.
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Summing up, these three hybrids prove the required claim.

Verifiability of com1,C: This property is straightforward to observe. Observe that

Com1,C(b) = OWP(b). Since OWP has verifiable range of {0, 1}`, therefore com1,C is verifi-

able.

Extraction when bR = bC: This property is also straightforward to observe and follows

from the perfect correctness of OT, and the garbling scheme Gb. We define the Dec∗

function. Dec∗(bR, r, com1,C , com1,R, com2,C) : This algorithm parses bR = (b1, . . . , b`),

com1,R = (ot1,1, . . . , ot1,`, Z), r = (r1, . . . , r`) and com2,C = (Γ, ot2,1, . . . , ot2,`). It does

the following:

• Run Lab′bi,i ← OT3(ot2,i, bi, ri) for i ∈ [`],

• Output m̂← Eval(Γ, {Lab′bR}).

The correctness is straightforward to observe. Parse r′ = (r′, r′1, . . . , r
′
`). Let Γ, Lab =

Garble(H; r′) where H[Com1,C(bR),m] for some message m. Let com1,R = (ot1,1, . . . , ot1,`, Z)

where ot1,i = OT1(bi, ri) and ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r
′
i) for i ∈ [`]. Our first ob-

servation is that Lab′bi,i = Labbi,i for all i ∈ [`] due to perfect correctness of OT. There-

fore m̂ = Eval(Γ, {LabbR}). Due to perfect correctness of garbled circuit we have that

Eval(Γ, {LabbR}) = H[Com1,C(bR),m](bR). This is equal to m, by definition of H. We also

note that when bR = bC , it is impossible to open the OT2 messages in any way other than

one that reveals m̂, even to an outside observer that does not know the private OT receiver

state. Thus we have that the commitment is binding even to an outside observer.

Hard to force bR = bC by adversaries in CA. This follows from the reduction to the

security of OWP and the fact that Solve runs in time polynomial in 2tTLP . Let A be an

adversary that wins in the security game for this property and is of the size polynomial in 2µ

96



with an advantage more than 2−µ. Then, we show how to build a reduction that runs in size

polynomial in 2λOWP and wins in breaking the security of OWP with the same advantage.

• The reduction receives as input com1,C = OWP(b) for a randomly chosen b← {0, 1}`.

• The reduction sends to the adversary A, com1,C and receives com1,R formatted as

ot1,1(b′1, r
′
1), . . . , ot1,`(b

′
`, r
′
`), Z = PGen(b′, r′).

• The reduction solves Z using a circuit size polynomial in poly(2tTLP) ≤ 2
µ
2 and recovers

b′, r′.

• It outputs b′ if com1,C = OWP(b′).

Note that the view of A is identical to the view in the required security property of Com.

If A produces com1,R using b′ that equals to the random challenge b, then the reduction

successfully recovers it by breaking TLP in time 2µ/2. If the size of the adversary A is

polynomial in 2µ, the size of the reduction is also polynomial in 2 · 2µ which is a contradiction

as λOWP = 2µ.

Equivocation with bR 6= bC. We describe our algorithm S and then prove that it runs in

time polynomial 2tTLP and satisfies the equivocation property.

S(com1,R, com1,C , r
′,m) : Parse com1,R = (ot1,1, . . . , ot1,`, Z), com1,C = Com1,C(bC) and

com2,C = Γ, {ot2,i}i∈[`]. Recall, how are each of the strings generated in the equivocation game.

com1,R is generated by computing: For i ∈ [`], ot1,i = OT1(bR,i; ri) using some randomness

ri and Z is generated by computing PGen(bR, r = (r1, . . . , r`)). Receiver’s randomness may

be arbitrarily chosen. For the committer, com2,C is generated honestly by committing to

0 using honestly generated randomness r′. Parse r′ = (r′, r′1, . . . , r
′
`). Γ, Lab is computed

as Garble(H[com1,C , 0]; r′). Then we compute ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r
′
i) for i ∈ [`].

Finally com2,C = (Γ, {ot2,i}i∈[`]). Thus to equivocate, compute the following steps:
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• Run Solve(Z) = (bR, r).

• Equivocate Garbled Circuit: Run

GbEquiv(Γ, LabbR , H[com1,C ,m],bR)→ (Lab′, s)

where Lab′ is the new set of labels and s is the randomness that explains

Garble(H[com1,C ,m]; s)→ Γ, Lab′

. Further Lab′bR = LabbR .

• Equivocate ot2: For i ∈ [`], compute si = OT.Equiv(bR,i, ri, ot2,i, r
′
i, Lab

′
0,i, Lab

′
1,i).

• Output (m, com1,R, com1,C , com2,C , s = (s, s1, . . . , s`)).

The run time of the simulator above is polynomial in 2tTLP which is polynomial in 2t as

per the setting of the parameters. The proof of security is immediate and follows from the

equivocation property of the garbled circuit and OT. We show this by identical hybrids. The

first hybrid corresponds to the case when m is committed, and the last hybrid corresponds

to the simulator, where 0 is committed first and then equivocated to m.

Hybrid0 : In this hybrid, compute com2,C(com1,R, com1,C ,m; r′). Output (m, com1,R, com1,C ,

com2,C , r
′).

Hybrid1 : In this hybrid, we use the equivocation of the garbled circuit property. First generate

Γ, Lab ← Garble(H[com1,C , 0]; r′). Observe that H[com1,C , 0](bR) = H[com1,C ,m](bR) =

0. Therefore, due to the equivocation property of the garbled circuits, we can com-

pute GbEquiv(Γ, LabbR , H[com1,C ,m],bR) → (Lab′, s). We set com2,C = Γ and {ot2,i =

OT2(ot1,i, Lab
′
0,i, Lab

′
1,i; r

′
i)}i∈[`]. Output (m, com1,R, com1,C , com2,C , (s, r

′
1, . . . , r

′
`)).

The two distributions above are identical due to the equivocation property of the garbled

circuits.
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Hybrid2 : In this hybrid, we use the equivocation property of OT. We first generate

ot2,i = OT2(ot1,i, Lab0,i, Lab1,i; r
′
i) for i ∈ [`]. Then, since com1,R consists of OT1 messages

corresponding to bR 6= bC , we can equivocate ot2,i as follows. We run

si = OT.Equiv(bR,i, ri, ot2,i, r
′
i, Lab

′
0,i, Lab

′
1,i).

This can be done because Lab′bR,i,i = LabbR,i,i. Thus at the end of this we have randomness

si such that ot2,i = OT2(ot1,i, Lab
′
0,i, Lab

′
1,i; si) = OT2(ot1,i, Lab0,i, Lab1,i; r

′
i). Output of this

hybrid is (m, com1,R, com1,C , com2,C , s) where s = (s, s1, . . . , s`).

This hybrid is identical to the previous hybrid due to the security of OT.

4.3.3 Non-Interactive Distributional Indistinguishability

This section defines the notion of Non-Interactive Distributional Indistinguishability arguments

(NIDI for short). The definitions below are strengthenings of analogous definitions given by

Khurana [Khu21], where the difference is that their definitions assume that the verifier’s

message comes after the prover’s message; see Remark 4 for details.

Definition 23 (Syntax of NIDI). A NIDI for an NP language L and its relation RL consists

of the following algorithms.

• P(1λS , 1λD ,D) : The prove algorithm takes as input two security parameters 1λS and

1λD (one for the soundness property, and one for the distribution indistinguishability

property), a polynomial time sampler D(·) that on input λD samples from (X ,W)

consisting of tuples that are in RL. It outputs a proof string π.

• V(τ, π) : The verification algorithm is a deterministic polynomial time algorithm that

takes as input a string τ ∈ {0, 1}`NIDI(λS) for some polynomial `NIDI, a proof π, and it

outputs a string in x ∈ ⊥ ∪ {0, 1}∗.

A NIDI scheme satisfies a number of different properties: completeness, soundness and

distributional indistinguishability.
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Definition 24 (Completeness). We require that for any poly-time samplable distribution

D = (X ,W) supported over instance-witness pairs in RL, we have that for every λS, λD ∈ N:

Pr
τ,π

[x ∈ L | V(τ, π) = x] = 1,

where π ← P(1λS , 1λD ,D) and τ ← {0, 1}`NIDI(λS).

Definition 25 ((CD, CDI , εD, εDI)- Distributional Indistinguishability). Let D0 = (X0,W0)

and D1 = (X1,W1) be two polynomial-time distribution samplers supported over tuples in RL.

Further, assume that X0 and X1 are (CD, εD) indistinguishable. Then, we require that:

P(1λS , 1λD ,D0) ≈CDI ,εDI P(1λS , 1λD ,D1).

Definition 26 (Completeness, Extraction). There exist a (possibly inefficient) algorithm

E : {0, 1}∗ → {0, 1} with the following properties. Let λS, λD ∈ N, τ ∈ {0, 1}`NIDI(λS) and π be

any proof string such that V(τ, π)→ x where x 6= ⊥. Then:

• E(τ, π) = 1 =⇒ x ∈ L.

• For any polynomial time samplable distribution D = (X ,W) supported over tuples in

RL, it holds that:

Pr

E(τ, π) = 1

∣∣∣∣∣∣ τ
$←− {0, 1}`NIDI(λS)

π ← P(1λS , 1λD ,D)

 = 1.

Definition 27 ((CS, εS)-Soundness). We define the following security game played between

the adversary A ∈ CS and the challenger. We denote it by exptA,NIDI,sound(1
λS , 1λD):

1. A is given 1λS , 1λD as the input.

2. The challenger manages a list List that is initially empty. The contents of the list are

visible to the adversary at all stages.

3. Adversary can ask adaptively a polynomial number of τ -query. If that happens, sample

τ ′ ← {0, 1}`NIDI(λS) and append τ ′ to List.
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4. Adversary outputs a proof string π and a τ ∈ List. The adversary wins if V(τ, π) = x

where x 6= ⊥ and E(τ, π) = 0.

The NIDI scheme satisfies (CS, εS)-soundness if for all adversaries A ∈ CS:

Pr[exptA,NIDI,sound(1
λS , 1λD) = 1] ≤ εS

Remark 3. Observe that the last two properties gives rise to a meaningful soundness property.

The extraction property (Definition 26) ensures that whenever x /∈ L, if V(τ, π) = x then

E(τ, π) 6= 1. The Soundness property (Definition 27) then says that for a computationally

bounded adversary it is hard to come up with a proof string π such that V(τ, π) = x and

E(τ, π) 6= 1. This rules out a computationally bounded adversary producing false instances.

Remark 4 (weaker soundness requirement). One could ask for a weaker soundness require-

ment where the proof string must be published before making any τ query. Such a NIDI will

not be sufficient for us. The protocol in [Khu21] satisfies this weaker property.

4.3.4 Construction of NIDI

In this section, we prove the following theorem:

Theorem 9. Assume that the following assumptions hold:

• A subexponentially secure indistinguishability obfuscator exists,

• A time lock puzzle as in Definition 4 exists,

• A subexponentially-secure NIWI exists,

then, there exist a NIDI scheme that satisfies security definitions in Definitions 24, 27, 25, 26,

and is secure against adversaries of subexponential size.

The only difference from the primitives used in the construction by [Khu21] is the usage

of a TLP as opposed to a public-key encryption scheme. This is the key component that

helps us argue security in the presence of adaptive τ queries.
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We start by giving a short overview of how we can construct a NIDI scheme satisfying

properties specified in Definitions 23 to 25 and 27.

4.3.4.1 Overview of NIDI

We now describe the intuitive ideas behind the construction of NIDI given by Khurana [Khu21]

and identify the reasons why the properties of the construction fall short of satisfying, and

then we will describe our change to the construction.

Intuitively speaking, a NIDI scheme allows a prover to prove with respect to efficiently

samplable distributions D supported over instance-witness pairs in some relation RL corre-

sponding to some NP language L. For example, the distribution can be the set of encryptions

of 1 with respect to some public key PK, and the language could be the set of all ciphertexts

with respect to public key PK.

The idea is that a prover can generate a proof Π using this distribution D. A verifier can

use this proof to sample from D. It simply chooses a random string τ , and runs x← V(τ, π).

The soundness guarantee of NIDI ensures that with high probability if τ is randomly chosen,

x sampled by the verifier must be in L. Further, the distributional indistinguishability

property guarantees that for computationally indistinguishable distributions D0 and D1

(such as encryptions of 0 vs. encryptions of 1) which are supported over RL, NIDI generated

using D0 is computationally indistinguishable to the proof generated using D1. Thus,

NIDI can be useful in protocols where we need to sample well-formed messages per some

specifications in one round (using a single message by a prover and a verifier) while maintaining

indistinguishability guarantees. The prover displays Π and the verifier displays τ , and this

let us sample x← V(τ, π).

The construction of Khurana [Khu21] uses iO, a public-key encryption PKE scheme with

verifiable public keys2 and perfect correctness, a non-interactive witness indistinguishable

2where given a string, it is efficiently checkable if it is a valid public key.
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argument NIWI, and a one-way permutation OWP. The prover obfuscates a program Π

that takes as input τ in the range of OWP. It derives using τ randomness r using a

PRF key K hardwired inside the program. Using this randomness, the program computes

c = PKE.Enc(pk, 0) using the public-key pk, sampled by the prover and hardwired in the

program. It also samples (x,w) by running sampler D and computes a NIWI proof π proving

either x ∈ L or c is an encryption of OWP−1(τ) (using w as its witness). The output of Π on

input τ is (c, x, π). The verifier evaluates Π at τ to get (c, x, π), and then it verifies the NIWI,

and if it succeeds, it outputs x.

To argue distributional indistinguishability, we go input by input as commonly done in

many iO proofs. Using hybrid arguments, we can go from obfuscating a program that uses

D0 to sample instance to a program that uses D1. We do this by changing the program’s

behavior undetectably one input at a time. For every input τ , we puncture the PRF key at

τ , and hardwire the circuit output (c, x, π) at input τ . Then, we switch the encryption c to

encrypt to OWP−1(τ) and then we generate NIWI π by using OWP−1(τ) as the witness for

the statement. At this point, we start sampling x from D1 (instead of D0). We apply the

same sequence of hybrids in reverse to reach a point where at input τ , the circuit’s behavior

is identical to the previous behavior except that it uses D1 to sample x when provided input

τ . For this to work out, we need PKE, PRF, iO, the distributions D0,D1 and NIWI to be

indistinguishable with an advantage lesser than 2−|τ |.

Soundness, on the other hand, is a bit more involved. For soundness, we want that if an

adversary outputs a program Π, that on input τ chosen by the verifier outputs (c, x, π) where

π verifies but x /∈ L, then it should somehow translate to recovering OWP−1(τ) efficiently.

This means that PKE must be breakable by an algorithm against which OWP is still secure.

Due to perfect soundness of NIWI, since x /∈ L it must mean that c encrypts OWP−1(τ).

Because of this, a reduction could invert c to recover OWP−1(τ). This seems to be at odds

with the requirement of PKE to be more secure than OWP as required in the distributional

indistinguishability property.
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To address this issue, Khurana observed that if Π is fixed first, and τ is chosen after, we

can build a non-uniform polynomial-time reduction that breaks OWP security. The idea is

that we can guess the secret key sk corresponding to the public key pk. This is independent of

the τ chosen by the verifier. Because of this, if an adversary exists that wins in the soundness

experiment, we can construct another circuit that wins in the OWP game.

Since we are working to construct round efficient MPC protocols, we cannot allow a

verifier to choose τ after seeing the proof Π. It must be done simultaneously in the same

round. As a result of this, the previous proof of Khurana breaks down for our security

requirement. We fix this by introducing a new axis of hardness. We use a time lock puzzle to

commit instead of a public key encryption. The commitment is secure against adversary of

size 2λ
c1 of depth polynomial in λ, but can be broken by a circuit of size 2λ

c2 where c2 � c1.

This ensures distributional indistinguishability against adversaries of polynomial depth and

2λc1 size. For soundness, we choose OWP, so that it is secure against adversaries of size 2λ
c2 .

Thus, we can show a reduction that breaks the commitment in size 2λ
c2 to invert OWP.

We now describe our construction of the NIDI scheme (for any NP language L with its

relation verifier R) satisfying all the properties described in Section 4.3.3. The scheme is

almost identical to the construction of [Khu21] except for one change which we highlight

below in red. Before we proceed, we describe the complexity classes involved.

Complexity Classes. We have the following:

• Initial Distribution Properties. We will consider distributions that are εD(λD) =

2−λD indistinguishable against adversaries in the class CD which consists of all circuits

of depth poly(λD) and size 2λD .

• Properties of the resulting NIDI Proofs. We will guarantee that the NIDI proofs for

such distributions are indistinguishable for CDI = CD described above (same circuit class).

The advantage of adversaries in the security game will be bounded by εDI = O(εD ·2`(λS))
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for some fixed polynomial ` described later.

• Soundness properties. We will ensure that the soundness holds against adversaries

in CS which consists of all adversaries of size 2λS . The advantage will be bounded by

εS = 2−λS .

Required Primitives. We make use of the following primitives and instantiate them with

the following parameters. These instantiated parameters for the primitives we use are loose

for what we require.

• OWP : We require a one way permutation OWP. We assume that OWP is secure

against adversaries of size 2λOWP, with advantage bounded by 2−λOWP, where λOWP is

the security parameter of the one-way permutation. Let the function be described as

OWP : {0, 1}`OWP → {0, 1}`OWP where `OWP = `OWP(λOWP) is some polynomial in λOWP.

We set λOWP = λS and ` = `OWP(λS). Such a function can be constructed assuming

the subexponential time and advantage hardness of DDH/SXDH assumption.

• Indistinguishability Obfuscation: We require an indistinguishability Obfuscator iO. This

scheme uses λiO as the security parameter and is secure against adversaries of size 2λiO

with advantage 2−λiO . Such a primitive can be built using well-studied assumptions as

shown in [JLS21b, JLS21a]. We set λiO as a large enough polynomial. In particular,

setting λiO = `OWPλD suffices.

• Time-Lock Puzzles : We require a time lock puzzle as in Definition 4. The TLP satisfies

the following parameters.

– λTLP = λD`OWP,

– tTLP = λρS for a small constant ρ > 0,

– The function D(t) = 2t
ε
TLP for some constant ε > 0.
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Therefore, TLP with these parameters ensures the security against adversary of size

2λTLP and depth bounded by 2t
ε
TLP with the advantage bounded by 2λTLP . Further, Solve

can be run by a circuit of depth poly(2tTLP).

• Puncturable PRF : We require a puncturable PRF, PPRF = (Puncture,Eval). Assume

the length of the key is randomly chosen of length `PPRF(λPPRF) where λPPRF is its

security parameter. The length of the output is some polynomial implicit in the scheme.

We assume that the PPRF is secure against adversaries of size 2λPPRF with a maximum

advantage of 2−λPPRF . We set λPPRF = λD · `.

• NIWI : We require a non-interactive witness indistinguishable proof NIWI for NP, that

is secure against adversaries of size 2λNIWI with advantage bounded by 2−λNIWI . We set

λNIWI = ` · λD. NIWIs can be instantiated assuming the subexponential time and

advantage security of the SXDH assumption over bilinear maps.

Construction. We now describe the construction.

NIDI.P(1λS , 1λD ,D) : Sample a PPRF key K ← {0, 1}`PPRF .

The proving algorithm outputs C̃ = iO(C[D, K]) where the program C[D, K] is described

in Figure 4.1.

NIDI.V(τ, C̃) : Run C̃(τ). If this evaluation outputs ⊥, output ⊥. Otherwise, parse the

output as (x, c, π). Run NIWI.V(x, c, π) for the language L′. If the verification fails

output ⊥. Otherwise, output x.

E(τ, C̃) : Run C̃(τ). Output 0 if this yields ⊥. Otherwise parse the output as (x, c, π).

Run NIWI.V(x, c, π). If the proof does not verify, output 0. Otherwise, check if

c = TLP.PGen(α) for some α. If this is not the case or OWP(α) 6= τ , then output 1.

Otherwise output 0.
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The Circuit C[D,K]

Hardwired: The PPRF key K, and the distribution sampled D.

Input: τ ∈ {0, 1}`

Computation:

1. Compute r ← PPRF.Eval(K, τ).

2. Parse r = (r1, r2, r3). Compute:

• (x,w) = D(r1),

• c = TLP.PGen(0`; r2),

3. For the statement (x, c) ∈ L′, compute π = NIWI.P((x, c), w; r3). We define the language

L′ =
{(
x′, c′

)
|∃w′ : R

(
x′, w′

)
= 1 ∨ ∃α :

(
c′ = TLP.PGen(α) ∧ OWP(α) = τ

)}
4. Output (x, c, π).

The code highlighted in red is the only difference from the construction proposed by [Khu21].

In their scheme, they generate c = Enc(pk, 0`) where pk is a public key for a dense cryptosystem,

which is sampled and hardwired in the program. Any adversary breaking the soundness must

commit/encrypt to an element in OWP−1(τ), and the reduction breaks open the encryption

to win in the OWP game. This breaking is done by non-uniformly choosing the secret key for

the public key pk. This only allows τ queries to come after the prover outputs a NIDI proof. A

TLP helps us to bypass this issue.

Figure 4.1: The Circuit C[D,K]
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Observe that the completeness property is immediate. Similarly, the distributional

indistinguishability property argument is also identical to the proof in [Khu21] because the

public key encryption is replaced with a time-lock puzzle. All we need for the proof is the

component c to satisfy the indistinguishability property.

Sketch of Indistinguishability: The idea for indistinguishability is to go input by input

as common in applications of iO. Consider two distributions D0 and D1 which yields instances

that are (CD, εD) indistinguishable. The proof will follow the following strategy. We will

define 2` hybrids where a typical hybrid (Hybridτ ′) is indexed by τ ′ ∈ [2`]. In Hybridτ ′ , we will

generate an obfuscation C̃ of program C[D0,D1, K, τ
′] described in Figure 4.2. Now to prove

indistinguishability, we need to prove that Hybridτ ′ and Hybridτ ′ are O(2−λD) indistinguishable

for circuits in CD. This will yield a total advantage of O(2−λD`). We can do this again by using

standard tricks. Observe that the only change in the C[D0,D1, K, τ
′] and C[D0,D1, K, τ

′+ 1]

is its behavior at the input τ ′ + 1. In this case, we take the following hybrids. The

indistinguishability between the hybrids are immediate and follow similarly to [Khu21].

• Hybrid′0 : This is the same as Hybridτ ′ .

• Hybrid′1 : In this hybrid the only is change is to puncture the PRF key K∗ at τ ′ + 1 and

use it to generate the circuit we obfuscate. To do so, we hardwire the output (x, c, π)

at input τ ′ + 1 generated from D0 as before using (r1, r2, r3) = PPRF.Eval(K, τ ′ + 1).

This hybrid is indistinguishable to the previous hybrid against adversaries in CD with

advantage O(2−λiO) due to the correctness property of the PPRF and the security of iO.

• Hybrid′2 : In this hybrid the only change from the previous hybrid is that we generate

(x, c, π) from D0 but now using true randomness (r1, r2, r3). This hybrid is indistin-

guishable from the previous hybrid against adversaries in CD with advantage O(2−λPPRF)

due to the security property of the PPRF.

• Hybrid′3 : In this hybrid the only change is to generate (x, c, π), where c is computed as
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TLP.PGen(α) where OWP(α) = τ ′ + 1. This hybrid is indistinguishable to the previous

hybrid against adversaries in CD with advantage O(2−λTLP) due to the security property

of the TLP.

• Hybrid′4 : In this hybrid, the only change is to generate (x, c, π) by using the opening of

c as a witness to generate π. This hybrid is indistinguishable from the previous hybrid

against adversaries in CD with advantage O(2−λNIWI) due to the security property of the

NIWI.

• Hybrid′5 : In this hybrid, the only change is to generate (x, c, π) by switching x to be

sampled from D1. This hybrid is indistinguishable from the previous hybrid against

adversaries in CD with advantage O(2−λD) due to the indistinguishability property of

D0 and D1.

• Hybrid′6 : In this hybrid, the only change is to generate (x, c, π) by using a witness of

x to generate π. This hybrid is indistinguishable from the previous hybrid against

adversaries in CD with advantage O(2−λNIWI) due to the security property of NIWI.

• Hybrid′7 : In this hybrid the only change is to generate (x, c, π) where c is computed

as TLP.PGen(0`). This hybrid is indistinguishable to the previous hybrid against

adversaries in CD with advantage O(2−λTLP) due to the security property of TLP.

• Hybrid′8 : In this hybrid the only change is to generate (x, c, π) by using (r1, r2, r3) =

PPRF.Eval(K, τ ′ + 1). This hybrid is indistinguishable to the previous hybrid against

adversaries in CD with advantage O(2−λPPRF) due to the security property of the PPRF.

• Hybrid′9 : This hybrid is the same as Hybridτ ′+1. This hybrid is indistinguishable from

the previous hybrid against adversaries in CD with advantage O(2−λiO) due to the

correctness property of the PPRF and the security of iO.

Observe that the parameters λiO, λNIWI, λPPRF are set to be larger than λD`. Thus, the

total advantage is bounded by O(2−λD + 2−`λD) = O(2−λD). This finishes the overview.

109



The Circuit C[D0,D1,K, τ
′]

Hardwired: The PPRF key K, and the distribution sampled D.

Input: τ ∈ {0, 1}`

Computation:

1. Compute r ← PPRF.Eval(K, τ).

2. Parse r = (r1, r2, r3). Compute:

• If τ ≤ τ ′, then (x,w) = D1(r1) otherwise (x,w) = D0(r1).

• c = TLP.PGen(0`; r2),

3. For the statement (x, c) ∈ L′, compute π = NIWI.P((x, c), w; r3). We define the language

L′ =
{(
x′, c′

)
|∃w′ : R

(
x′, w′

)
= 1 ∨ ∃α :

(
c′ = TLP.PGen(α) ∧ OWP(α) = τ

)}
4. Output (x, c, π).

Figure 4.2: The Circuit C[D0,D1,K, τ
′]
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We now focus on the soundness argument:

Sketch of Soundness. Consider a circuit A of size 2λS in the soundness security game.

Assume that the adversary wins in the soundness experiment with probability ε. We will

show that we can build a reduction of size O(2λS) winning in the OWP inversion game with

the ε/Q for some polynomial. Remember in the soundness game adversary is given a list

τ1, . . . , τQ of randomly chosen elements for some polynomial Q and it outputs C̃ and an index

i ∈ [Q]. For this C̃, it holds that C̃[τi] = (xi, ci, πi) such that πi verifies and E(τi, C̃) = 0.

This means that ci must be of the form TLP.PGen(αi) where OWP(αi) = τi. The reduction

simply runs TLP.Solve(ci) and outputs αi as a preimage of τi. This means that the reduction

succeeds with advantage at least ε/Q. Reduction needs to run A and then run TLP.Solve,

which runs in time polynomial in 2λ
ρ

for some small constant ρ. Thus, this takes O(2λS) time

as λS = λ.

4.4 The Formal Construction and Security Proof

In this section, we formally construct a reusable statistical ZK arguments with sometimes

statistical soundness (henceforth denoted by zk = (ZKProve1,ZKVerify1,ZKProve2,ZKVerify2))

as defined in Section 4.1. We now give the parameters associated with various adversary

classes that we will guarantee security for. We will then follow it up with the parameters for

the underlying primitives we use. Let λ be the security parameter for zk.

Definition 28 (Parameters of zk). We achieve zk for the following parameters.

• For the soundness property the parameters (Csound, εsound,1, εsound,2) we achieve will be

as follows. Csound consists of circuits with any poly(λ) depth Boolean circuits of size

bounded by any polynomial in 2λ. We will set εsound,1 = 2−` = Ω(2−`µ) for some

polynomial `(λ) and εsound,2 = 2−λ. `µ is defined when we define the parameters for

SEE scheme.
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• For the zero knowledge, CS , Czk, εS are set as follows. CS is the complexity class of the

simulator. CS consists of circuits of size 2λ
ρ

for some parameter ρ ∈ Θ(1) log log λ−1,

which can be chosen as a parameter to the scheme. We will also set Czk, which is the

class of the zero-knowledge verifier to be the same as Csound of poly(λ) depth circuits of

size polynomial in 2λ. εS will be set as 2−λ.

Used Primitives. We make use of the following primitives and instantiate them with the

following parameters. These instantiated parameters for the primitives we use are loose for

what we require.

• NIDI Arguments: We require a NIDI scheme (Definition 23) as per the following

specifications. Such a NIDI uses two security parameters λNIDI,S and λNIDI,D. We set

λNIDI,S = λ. We set CNIDI,S to consist of all adversaries of size polynomial in 2λNIDI,S . We

set εNIDI,S = 2−λNIDI,S . For this choice of λNIDI,S = λ, let `NIDI(λ) be the length of τ ’s

used in the scheme. We set λNIDI,D as a polynomial in λ. This polynomial will ensure

that the distributions we use, on input λNIDI,D satisfy the following parameters:

– CNIDI,D consists of all circuits of depth poly(λ) and size polynomial in 2λ.

– εNIDI,D = 2−`NIDI·`µλ. (`µ is defined along with the instantiation for the sometimes

extractable equivocal scheme).

Further, this setting will ensure that:

– CNIDI,DI = CNIDI,D.

– εNIDI,DI = O(εNIDI,D2`NIDI).

As shown in Theorem 9, this can be constructed assuming subexponential security of

iO, a time lock puzzle scheme (Definition 4), and subexponential time and advantage

security of the SXDH assumption.
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• Sometimes Extractable Equivocal Commitments : We use three parameters λcom, µcom,

and tcom, as follows.

– We set µcom = λ. This ensures that CA,com consists of all circuits of size polynomial

in 2λ. Let `µ(λ) be the length of the challenges bR to support this.

– We set tcom = λρ. This ensures the commitments are extractable in size polynomial

in 2tcom .

– We set λcom = `NIDI(λ)`µ(λ)λ. This choice ensures that Ccom,D consists of all

circuits of size polynomial in 2λcom and depth polynomial in λcom. This ensures

εcom,D = 2−λcom .

As shown in Theorem 8, can be constructed assuming subexponential security of iO, a

time lock puzzle scheme (Definition 4), and subexponential time and advantage security

of the DDH over Z∗p.

• Σ-protocol : We use a statistically sound Σ protocol for NP, which is a parallel repetition

of the following basic protocol. Assume that the length of the instance is a fixed

polynomial in λ. We will build our zk protocol for the same length instances.

– The first message Σ1(x,w) by the prover consists of non-interactive commitments

of some messages a1, . . . , aN ∈ {0, 1}N(λ). We define Σ.SampFirst to mean the

algorithm that outputs a1, . . . , aN .

– In the second round, the verifier outputs a bit e ∈ {0, 1}.

– In the third round, the prover outputs z which consists of opening of some subset

of the commitments based on the challenge bit e. Verifier accepts or rejects based

on the transcript.

The protocol satisfies several different properties. The first property is related to

soundness, and the second property is related to zero-knowledge.
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– Assuming we instantiate this protocol with a perfectly binding commitment, when

x is unsatisfiable, then given any a1 . . . , aN an accepting proof of at most one out

of two choices of e ∈ {0, 1} can exist. We call this the BadChallenge. We assume

that computing BadChallenge can be done by an NC1 function Bad that takes x

and a1, . . . , aN as the input.

– The protocol satisfies honest-verifier zero knowledge property. That is, given

e ∈ {0, 1}, for any x, one can efficiently sample Σ.S(e, x) → z′ = Set, {a′i}i∈Set.

The protocol ensures that the distribution of {a′i}i∈Set, e is identical to the case

when a1, . . . , aN were committed to using an honest proof and then the prover

gives out (z = Set, {ai}i∈Set, e).

Looking ahead, we will compile such a protocol to a zk. The commitment we will use is

sometimes extractable equivocal commitments.

• Correlation Intractability Hash Function: We require a CI hash function

H = (FakeGen,Eval)

(see Definition 6). We set λci = `NIDI ·`µλ. This ensures that the hash keys corresponding

to two functions are distinguishable to circuits of size polynomial in Cci = 2λci with

advantage at most εci = 2−λci . Finally, for this choice of parameters, there exists a

polynomial `ci(λci) such that the security holds for functions of bounded depth (say

λci) with `ci(λci) output bits. We use this as the parallel repetition parameter for the Σ

protocol.

This can be constructed assuming subexponential time, and advantage hardness of

LWE [PS19a].

• Distribution DbR : For bR ∈ {0, 1}`µ , we define the distribution DbR as follows.

– Sample com1,R ← Com1,R(bR; r).
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– Sample K ← H.FakeGen(f [bR, r]), where f : {0, 1}∗ → {0, 1}`ci is a function

described below.

Observe that for any two b1 and b2 in {0, 1}`µ , Db1 and Db2 are O(`µ ·(2−λci+2−λcom)) =

O(2−`µ·`NIDI·λ) indistinguishable to circuits of depth polynomial in λ but size 2λcom . Let

LNIDI denote the language supporting these distributions Db for all b.

• Function f : {0, 1}∗ → {0, 1}`ci : takes as input (x, com1,C , com1,R, com2,C), where

com2,C = (com2,C,1, . . . , com2,C,N ·`ci).

– It partitions com2,C into `ci chunks. Each chunk is (com2,C,j·N+1, . . . , com2,C,(j+1)N )

for j ∈ [0, `ci − 1].

– It decrypts each chunk using Com.Dec using its private state bR, r. Let us say

that each chunk decrypts to ajN+1, . . . a(j+1)N . If any of the decyption fails, we set

it to be the 0 string of required length.

– Then it computes Bad(x, ajN+1, . . . a(j+1)N) = ej+1.

– Finally it outputs e = (e1, . . . , e`ci).

We now describe our construction.

Construction:

ZKProve1(1λ) : Compute the following steps.

• Sample τ ← {0, 1}`NIDI and bP ← {0, 1}`µ .

• Compute com1,C = Com1,C(bP ).

• Output zk1,P = (τ, com1,C).

ZKVerify1(1λ) : Compute the following steps.

• Sample bV ← {0, 1}`µ .
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• Compute Π← NIDI.P(DbV ).

• Output zk1,V = Π.

ZKProve2(zk1,V , zk1,P , x, w) : Compute the following steps.

• Parse zk1,V = Π and zk1,P = (τ, com1,C).

• Run (com1,R, K) = NIDI.V(τ,Π). If the verification fails, output ⊥ and stop

proceeding. Otherwise, follow the next steps.

• Depending on x,w sample `ci repetitions of Σ.SampFirst. Namely, for j ∈ [`ci],

compute (a(j−1)N+1, . . . , ajN)← Σ.SampFirst.

• For k ∈ [N`ci], compute com2,C,k = Com2,C(com1,R, com1,C , ak; sk) for a freshly

chosen sk. Let com2,C = {com2,C,k}k∈[N`ci].

• Run e = H.Eval(K, (x, com1,C , com1,R, com2,C)).

• For j ∈ [`ci] determine Setj , the set of commitments to be opened for jth repetition,

as per challenge bit ej. Let Set be the union of these sets.

• Output com2,C along with e and openings z = {ak, sk}k∈Set.

ZKVerify2(zk1,V , zk1,P , zk2,P , x) : Compute the following steps.

• Parse zk1,V = Π, zk1,P = (τ, com1,C) and zk2,P = (com2,C , e, z = {ak, sk}k∈Set).

• Compute (com1,R, K) = NIDI.V(τ,Π) and check if

e = H.Eval(K, (x, com1,C , com1,R, com2,C)).

• Check if z = {ak, sk}k∈Set are valid openings of {com2,C,k}k∈Set.

• Finally verify that {ak}k∈Set as a valid third message of `ci parallel repetition of Σ

protocol according to e and instance x.

• Output 1 if every verification above succeeds, else output 0.
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Remark 5. We assume that the prover always outputs a valid first message zk1,P . This

can be ensured as follows. If the first message is either not given out, or if one of τ

and com1,C is not valid, then we interpret τ = 0`NIDI and com1,C = Com1,C(0`µ).

We now argue various properties involved.

Completeness. Completeness is straightforward to argue and follows from perfect com-

pleteness of NIDI, perfect correctness of the SEE, and perfect completeness of the Σ protocol.

4.4.1 Soundness

We now argue soundness. We first define the “soundness mode” and then argue all three

properties.

Perfect Soundness Mode. In order for a proof to verify, zk1,P = (τ, com1,C) needs to be

verifiable. In particular, there must exist bP such that com1,C = Com1,C(bP ) (where bP is as

chosen by the prover, or 0`µ if the prover aborts, or outputs a non-well formed message). In

the soundness game on the other hand, the verifier is honest and chooses bV ← {0, 1}`µ and

sets Π = NIDI.P(DbV ). We define the perfect soundness mode to be the mode when bP = bV .

Lemma 13. When bP = bV , then there does not exist an accepting proof of any x /∈ L.

Proof. When bP = bV , then consider any accepting proof say (com2,C , e, {ak, sk}Set). Observe

that e = H.Eval(K, x, com1,C , com1,R, com2,C). Note that K is generated by using FakeGen

algorithm with input the function f , which uses bV and randomness r to decrypt all the

commitments {com2,C,k}k∈[`ciN ]. Let us say that this decryption results in {a′k}k∈[`ciN ]. Due

to the correctness of the decryption/extraction of SEE, ak = a′k for every k ∈ Set as the

adversary opens it in the proof. Now, when x /∈ L, since the extractable commitment is

perfectly binding because bP = bV , the Σ protocol ensures that there is atmost one ebad such

that {a′k}k∈[`ciN ] can lead to a valid proof. This ebad is computed by the function f . The
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perfect CI property of H ensures that e 6= ebad. On the other hand, if the adversary gives a

valid proof for e, then e = ebad. This is a contradiction.

We now analyze the frequency of the perfect soundness mode.

Lemma 14. For any honest polynomial time verifier V , and a cheating prover P ∗ in Csound,

the soundness mode holds with probability at least Ω(2−`µ).

Proof. We prove this by a simple reduction to the security of distributional indistinguishability

of NIDI.P(DbV ). We show this using a hybrid argument.

Hybrid0 : In this hybrid, the challenger samples randomly bV and outputs zk1,V as NIDI.P(DbV ).

Then, the prover outputs zk1,P = τ, com1,C . The challenger outputs 1 if com1,C = Com1,C(bV ).

Hybrid1 : In this hybrid, the challenger samples randomly bV . It also samples randomly b′

and outputs zk1,V as NIDI.P(Db′). Then, the prover outputs zk1,P = τ, com1,C . The challenger

outputs 1 if com1,C = Com1,C(bV ).

To prove the claim, our first observation is that soundness mode holds when Hybrid0

outputs 1. Second, observe that the probability that Hybrid1 outputs 1 is exactly 2−`µ . Our

claim follows from the fact that for any adversary A ∈ Csound, it holds that these two hybrids

are indistinguishable with advantage bounded by εNIDI,DI . This is due to the security of NIDI

and the indistinguishability property of the distribution Db′ for a random b′ from DbV . Thus,

the claim holds.

We now argue indistinguishability of the soundness mode property.

Lemma 15. The construction of zk satisfies (Csound, εsound,2) indistinguishability of soundness

mode property with εsound,2 = O(εNIDI,DI2
`µ).

Proof. Let P ∗ be a cheating prover in Csound, and V be an honest verifier in the soundness

experiment. Let E be the distribution of the transcript. Let E1 denote the distribution of
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transcript when the soundness mode holds, and E0 denote the distribution of transcript when

the soundness mode does not hold. Let A be any adversary in Csound. Then, we want to

bound the following probability.

p =

∣∣∣∣∣Pr[A(e) = 1|e← E0]− Pr[A(e) = 1|e← E1]

∣∣∣∣∣
Every instance of e consists of zk1,V and zk1,P output by the cheating prover. Let S denote

the set of elements in the range of Com1,C(?). There are exactly 2`µ elements in this set. For

every s ∈ S, we define E0,s to be the collection of transcripts in E0 where the verifier submits

s as com1,C . Likewise, we define E1,s to be the collection of transcripts in E1 where the verifier

submits s as com1,C . Thus, due to triangle inequality we have that:

p <
∑
s∈S

∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s|e← E0,s]− Pr[A(e) = 1 ∧ zk1,P = s|e← E1,s]

∣∣∣∣∣.
To prove the claim it suffices to show that for every s ∈ S,∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s|e← E0,s]− Pr[A(e) = 1 ∧ zk1,P = s|e← E1,s]

∣∣∣∣∣ < O(εNIDI,DI).

To this end, assume towards contradiction that there exist s∗ such that.∣∣∣∣∣Pr[A(e) = 1 ∧ zk1,P = s∗|e← E0,s∗ ]− Pr[A(e) = 1 ∧ zk1,P = s∗|e← E1,s∗ ]

∣∣∣∣∣ = ε1.

We will use this to attack the indistinguishability of NIDI with the probability ε1. We will

show that if this happens, then we can build a reduction using A that is also in Csound, that

distinguishes NIDI.P(Db0) from NIDI.P(Db1) with an advantage ε1 where b1 = Com−1
1,C(s∗)

and b0 is uniformly sampled from {0, 1}`µ \ Com−1
1,C(s∗). The reduction works as follows.

• Obtain the challenge NIDI proof Π.

• Send Π to the prover P ∗. Prover outputs τ, s. If s = s∗, then output A(Π, τ, s),

otherwise output ⊥.
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If Π is generated using b0, then the transcript is not in the soundness mode when P ∗

outputs s∗, whereas if Π is generated using b1, then the transcript is in soundness mode when

P ∗ outputs s∗. Observe that the advantage of the reduction is exactly equal to ε1. Therefore,

ε1 ≤ εNIDI,DI as per the parameters set, which is a contradiction.

4.4.2 Zero-Knowledge

We now argue the zero-knowledge properties of the protocol. We begin by describing our

simulator, zk.S and then argue why the security holds. The simulator will run in time

polynomial in 2λ
ρ
.

zk.S(zk1,V , zk1,P , x): Compute the following steps.

• Parse zk1,V = Π and zk1,P = (τ, com1,C).

• Run (com1,R, K)← NIDI.V(τ,Π). If the verification fails, output ⊥. Else, continue.

• Compute com2,C by setting com2,C,k = Com2,C(com1,R, com1,C , 0; r′k) for k ∈ [N · `ci].

Then set com2,C = {com2,C,k}.

• Run e← H.Eval(K, (x, com1,C , com1,R, com2,C)).

• Run the simulator of Σ protocol on input x and e, and receive {ak}k∈Set.

• Equivocate com2,C,k for k ∈ Set. That is, compute SEE.S(com1,R, com1,C , r
′
k, ak)→ sk

for k ∈ Set. Output ⊥ if the equivocation fails.

• Set z = {ak, sk}k∈Set and output zk2,P = (com2,C , e, z).

We now argue why the security property holds. Our first observation is that there is a simple

criteria when the distribution zk.S(zk1,V , zk1,P , x) is identical to ZKProve2(zk1,V , zk1,P , x, w).

In the zero-knowledge game zk1,P is generated honestly containing (τ, com1,C = Com1,C(bP ))

for a randomly chosen bP . Now consider zk1,V consisting of a NIDI proof Π. Let (com1,R, K)←
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NIDI.V(τ,Π). Since the cheating verifier is of depth poly(λ) and size polynomial in 2λ and

NIDI is sound against such adversaries, it holds that one of the scenarios must happen:

• Either NIDI.V outputs ⊥,

• or, if NIDI.V outputs com1,R, K, it must happen that com1,R = Com1,R(bV ) for some

bV , or else the verifier violates soundness which is computationally hard.

We will show first that when Com1,C(bV ) 6= Com1,C(bP ) of if V outputs ⊥, then the simulator

above produces an identical distribution to the honest proving algorithm. When, this does

not happen, the verifier must either:

• Break soundness of NIDI, or,

• Force zk1,P = Com1,C(bV ) which is hard due to the security of SEE.

This will finish the analysis.

Lemma 16. Let (x,w) be a valid instance-witness pair. Let zk1,P = (τ, com1,C = Com1,C(bP )).

Let zk1,V = Π be such that either:

• NIDI.V(τ,Π) = ⊥, or,

• NIDI.V(τ,Π) = com1,R, K, where com1,R = Com1,R(bV ). for bV 6= bP .

Then, (zk1,V , zk1,P , zk2,P = zk.S(zk1,V , zk1,V , x)) is identically distributed to

(zk1,V , zk1,P , zk2,P ) = ZKProve2(zk1,V , zk1,V , x, w)

where the randomness is only over the generation of proof zk2,P .

The proof of this is immediate. If NIDI.V(τ,Π) = ⊥ then, both algorithms output ⊥,

which is identically distributed. In the case of the second criteria, the proof is also immediate.

It follows from the equivocation property of the commitment scheme and honest verifier

zero-knowledge of SEE. We show it by three hybrids where the first hybrid corresponds to
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the actual proof, and the last hybrid corresponds to the simulator.

Hybrid0: In this hybrid, run as in the honest algorithm to compute zk2,P : sample {ak}k∈[N`ci]

as in the Σ protocol and then commit them to compute com2,C . Apply H on com2,C to derive

e, and then open the commitments to {ak}k∈Set honestly.

Hybrid1: In this hybrid, we make the following change to generate zk2,P : we sample {ak}k∈[N`ci]

as in the Σ protocol but then commit 0′s instead of {ak} to compute com2,C . Then, we apply

H on com2,C to derive e. At the opening time, we open these commitments by using SEE.S

to equivocate these commitments to open to {ak}k∈Set.

Note that since com1,C 6= com1,R, the distribution of these two hybrids are identical due

to equivocation property of SEE.

Hybrid2: In this hybrid, we make the following change to generate zk2,P : we generate com2,C

by committing to 0′s. Then, we apply H on com2,C to derive e. At the opening time, we

first sample {ak}k∈Set using the honest verifier simulator of Σ protocol, and then open the

commitments of 0 by using SEE.S to {ak}k∈Set.

This hybrid corresponds to zk.S. Note that due to the security of the Σ protocol, the last

two hybrids are identical.

The lemma above solves our problems completely, except that we must ensure that the

conditions for when the distributions are not identical outlined above do not happen in the

zero-knowledge security game.

We show this using a hybrid argument. The first hybrid corresponds to the case of the

honest experiment. The last hybrid corresponds to the simulated experiment.

Hybrid0 : This hybrid corresponds to the experiment where the responses are made using the

honest ZKProve2 algorithm. Throughout, parse zk1,P = (τ, com1,C).
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Hybrid1 : This hybrid is the same as before, except that we abort if the cheating verifier queries

(xi, wi, zk1,V,i = Πi) such that NIDI.V(τ,Πi) = (com1,R,i, Ki) where com1,R,i = Com1,R(bV,i)

such that Com1,C(bV,i) = com1,C .

Note that the above two hybrids are statistically close. This is because V ∗ is an adversary

of polynomially bounded depth and size polynomial in 2λ. The commitment scheme SEE

ensures that any adversary of polynomial depth, and size bounded by 2λcom � 2λ cannot

produce com1,R with this property with advantage more than 2−λcom � 2−λ. Thus, probability

of abort is less than 2−λcom . We also make a note that the challenger for this hybrid can be

run in time polynomial in 2tcom = 2λ
ρ
. This is to break open com1,R.

Hybrid2 : This hybrid is the same as before, except that we abort if the cheating verifier queries

(xi, wi, zk1,V,i = Πi) such that NIDI.V(τ,Πi) = (com1,R,i, Ki) where com1,R,i 6= Com1,R(bV,i; ri).

Note that the above two hybrids are statistically close. This is because if there is a

cheating verifier V ∗ of depth poly(λ) and size polynomial in 2λ that produces distinguishable

hybrids, then we can build a reduction of size polynomial in 2λ that violates soundness of

NIDI. The reduction responds to the queries as in Hybrid1. It also needs to run to respond

to the queries to determine aborting conditions as in Hybrid1. It can do so, by brute-force

opening of com1,R,i, which can be done by a circuit of size 2tcom=λρ . Since NIDI is sound against

adversaries of size polynomial 2λNIDI � 2λ with advantage less than 2−λ, these two hybrids

are statistically close (unless the reduction wins in the soundness game).

Hybrid3 : This hybrid is the same as before, except that we simulate zk2,P responses.

These hybrids are identical due to Lemma 16.

123



CHAPTER 5

Malicious-Secure MrNISC

In this chapter, we prove Theorem 1. We start by giving a formal definition of MrNISC.

5.1 MrNISC Syntax and Security

We define the syntax of MrNISC and formalize security notions for malicious adversaries as

well as semi-malicious adversaries, following the general framework given by Benhamouda

and Lin [BL20].

We assume all parties have access to a broadcast channel, which any party can transmit a

message to all other parties. We consider protocols given in the form of three polynomial-time

algorithms (Encode,Eval,Output), where Encode and Eval are probabilistic, and Output is

deterministic, for which we define the syntax as follows:

• Input Encoding phase: each party Pi computes mi,1 ← Encode(1λ, xi; ri,1), where xi

is Pi’s private input, and the output mi,1 is Pi’s round 1 message.

• Function Evaluation phase: any set of parties I can compute an arity-|I| function

f on their respective inputs as follows. Each party Pi for i ∈ I computes mi,2 ←

Eval(f, xi, ri,1, I, {mi,1}i∈I ; ri,2), where f is the function to compute, xi is Pi’s private

input, ri,1 is the randomness which Pi used to generate its input encoding, {mi,1}i∈I

are the input encodings of all parties in I, and the output mi,2 is Pi’s round 2 message.

• Output phase: Anyone can compute y ← Output({mi,1,mi,2}i∈I).
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Malicious security. We follow the standard real/ideal paradigm in the following definition.

An MrNISC scheme is malicious-secure for every PPT adversary A in the real world there

exists an ideal-world adversary S (the “simulator”) such that the outputs of the following

two experiments ExptRealA (λ) and ExptIdealA,S (λ) are indistinguishable.

In the following, for ease of exposition, we assume that each party sends at most one

computation encoding for any (f, I) pair, and that parties ignore any subsequent computation

encodings.

Real experiment ExptRealA (λ, z). The experiment initializes the adversary A with security

parameter 1λ and auxiliary input z. In addition, the experiment initializes an empty list

honest outputs. A chooses the number of parties M and the set of honest parties H ⊆ [M ]. A

then submits queries to the experiment in an arbitrary number of iterations until it terminates.

In every iteration k, it can submit one query of one of the following four types.

• Corrupt Input Encoding: The adversary A can corrupt a party i /∈ H and send

an arbitrary first message m∗i,1 on its behalf.

• Honest Input Encoding: The adversary A can choose an input xi for honest party

i and ask a party i ∈ H to send its first message by running m∗i,1 ← Encode(1λ, xi; ri,1),

where ri,1 is freshly chosen randomness. This m∗i,1 is sent to the adversary.

• Honest Computation Encoding: The adversary A can ask an honest party i ∈ H to

evaluate a function f on the inputs of parties I. If all first messages of parties in I are al-

ready published, party i computes and publishes m∗i,2 ← Eval(f, xi, I, ri,1, {m∗i,1}i∈I ; ri,2).

Otherwise, the party instead publishes ⊥.

• Corrupt Computation Encoding: The adversary can send an arbitrary function

evaluation encoding m∗i,2 to the honest parties on behalf of some corrupted party i /∈ H

with respect to some function f and set I. If all parties in I have sent their Eval messages
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for (f, I), the experiment adds the honest parties’ output (f, I,Output({m∗i,1,m∗i,2}i∈I))

to the list honest outputs.

The output of the real experiment is defined to be (viewA, τ, honest outputs), where viewA

is the output of A at the end of the computation, i.e. an arbitrary function of its view, τ is

the transcript of queries sent by A along with the experiment’s responses, and honest outputs

is the list defined above.

Ideal experiment ExptIdealA,S (λ, z). The ideal experiment initializesA with security parameter

1λ and auxiliary input z. After A chooses the number of parties M and the set H ( [M ],

the experiment initializes S with 1λ, M , and H. In addition, the experiment initializes an

empty list honest outputs. Subsequently, the adversary can make the same queries as in the

real world, which are handled as follows:

• Corrupt Input Encoding: When A sends a first message m∗i,1 on behalf of some

party i /∈ H, the experiment forwards this encoding to S, who responds with an

extracted input xi. S also has the option to declare that Pi’s input is ⊥, which means

that S was not able to extract an input from m∗i,1 (for example, if the adversary sends

a bogus string as its message). The experiment then sends xi (if it is not ⊥) to the

ideal functionality to be used as the input for party i.

• Honest Input Encoding: When the adversary A chooses honest input xi and asks

party i ∈ H to send its first message, the experiment sends xi to the ideal functionality

to be used as the input for party i. The experiment then sends the index i (but not

xi) to the simulator S, who generates a simulated honest input encoding m̃i,1. This

encoding is forwarded back to A.

• Honest Computation Encoding: When the adversary A asks an honest party

i ∈ H for a function evaluation encoding with respect to function f and parties I,
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assuming all parties in I have published input encodings, the experiment forwards this

request to S. If this is the last honest computation encoding generated with respect to

f and I, and all corrupted parties in j ∈ I \H have sent first messages m∗j,1 from which

non-⊥ inputs have been extracted, then the experiment queries the ideal functionality

on (f, I) to obtain the output y, which it forwards to the simulator as well. The

simulator must then generate a simulated function evaluation encoding m̃i,2 on behalf

of party i, regardless of whether it receives y or not. This encoding is forwarded to A.

• Corrupt Computation Encoding: When the adversary sends a function evaluation

encoding m∗i,2 on behalf of some corrupted party corresponding to some (f, I), the

experiment forwards (f, I, i,m∗i,2) to the simulator. If all parties have sent computation

encodings, the simulator chooses whether to allow the honest parties to learn the output

corresponding to (f, I). If so, the experiment adds (f, I, y) to the list honest outputs;

otherwise, the experiment adds (f, I,⊥) to honest outputs.

The output of the ideal experiment is defined to be (v̂iew, τ, honest outputs), where v̂iew

is the output of A at the end of the experiment, τ is the transcript of queries made by

A along with the experiment’s responses, and honest outputs is the list defined above. In

addition, at any point in the experiment, S may choose to abort; in this case, the output of

the experiment is whatever S outputs at that point.

Definition 29 ((Cadv, Csim, ε)-Maliciously Secure MPC). We say that an MPC protocol Π is

(Cadv, Csim, ε)-maliciously secure if for every Cadv adversary (A,D) there exists a Csim ideal-world

adversary S (i.e., the simulator) such that for every string z,

∣∣∣Pr
[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣∣ < ε(λ).

The standard notion of security requires for every polynomial p(·) the existence of a

polynomial q(·) for which the protocol is (p, q, ε)-maliciously secure, where ε(·) is a negligible
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function. However, since we are interested in two-round MPC protocols, it is known that

the standard polynomial notion of security is impossible. Therefore, we focus on the relaxed

notion of super-polynomial security (SPS): there is a sub-exponential function q(·) such that

for all polynomials p(·), the protocol is (p, q, ε)-maliciously secure.

The semi-malicious case. We define a variant of the above security definition, which

closely mirrors the definition of semi-malicious secure multiparty computation [AJW11]. A

semi-malicious MrNISC adversary is modeled as an algorithm which, whenever it sends

a corrupted input or computation encoding on behalf of some party Pj, must also output

some pair (x, r) which explains its behavior. More specifically, all of the protocol messages

sent by the adversary on behalf of Pj up to that point, including the message just sent,

must exactly match the honest protocol specification for Pj when executed with input x and

randomness r. Note that the witnesses given in different rounds need not be consistent. We

also allow the adversary to “abort” a function evaluation in two different scenarios. First,

instead of sending a Corrupt Input Encoding message for Pj, the adversary can send

(j,⊥) to the experiment. In this case, the experiment will respond with ⊥ for all Honest

Computation Encoding requests for (f, I), and when all parties in I have been queried, it

will add (f, I,⊥) to honest outputs. Second, instead of sending a Corrupt Computation

Encoding message on behalf of Pj the adversary can again send (j, f, I,⊥). Again, after

receiving such a query, the experiment will respond with ⊥ for all Honest Computation

Encoding requests for (f, I), and when all parties in I have been queried, it will add (f, I,⊥)

to honest outputs.

I have published computation encodings for (f, I). In this sense, the adversary may

abort any individual function evaluation. Whenever an adversary aborts a Corrupt

Input Encoding message on behalf of party Pj, it must abort any subsequent Corrupt

Computation Encoding messages for Pj.

Definition 30 ((Cadv, Csim, ε)-Semi-Malicious Secure MPC). We say that an MPC protocol Π
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is (Cadv, Csim, ε)-semi-malicious secure if for every Cadv semi-malicious adversary (A,D) there

exists Csim ideal-world adversary S (i.e., the simulator) such that for every string z,

∣∣∣Pr
[
D(ExptRealA (λ, z)) = 1

]
− Pr

[
D(ExptIdealA,S (λ, z)) = 1

]∣∣∣ < ε(λ).

5.2 The Construction

Required Primitives and Parameters. We make use of the following primitives in our

construction.

• Commitment: A non-interactive perfectly binding commitment (NICommit).

• Pseudo-Random Function A pseudo-random function (PRF ).

• Witness Encryption: We use witness encryption as in Definition 2. We use circuit SAT

as our NP language.

• Reusable Statistical ZK Arguments with Sometimes-Statistical Soundness: We use the

SPS ZK argument (ZKProve1,ZKVerify1,ZKProve2,ZKVerify2) satisfying Definitions 17,

19 and 20 for circuit SAT constructed in Section 4.4.

• One-round CCA commitments: We use one-round (simultaneous-message) CCA com-

mitments as in Definitions 13 to 16.

• Semi-malicious MrNISC : We use an underlying semi-malicious MrNISC protocol

(SM.Encode, SM.Eval, SM.Output), satisfying the security notion given in Definition 30.

Complexity hierarchy. In order to argue security, we require that the primitives we use

are secure against adversaries of varying complexities. In particular, we require the following
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complexity hierarchy to hold with respect to the primitives. Let T1, T2, T3, T4, T5 be functions

over λ, such that

T1 � T2 � T3 � T4 � T5,

where T � T ′ means that p(T ) < T ′ asymptotically for all polynomials p. We require the

following:

• The ZK argument scheme satisfies (CS , Czk, εS)-adaptive reusable statistical zero knowl-

edge (Definition 20) where CS is the class of circuits of size poly(T1) and depth T1 (i.e.

the simulator runs in size poly(T1) and depth T1), and Czk is the class of circuits of

size p(T3) for all polynomials p, and εS is any negligible function (i.e. statistical zero

knowledge holds as long as the verifier’s first-round message is generated by a machine

in Czk.

• The CCA non-malleable commitment scheme satisfies (C, ε)-CCA security, where C is

the class of circuits of size p(T1) for all polynomials p, and ε is any negligible function.

• The CCA non-malleable commitment scheme’s extractor CCAVal is a circuit of size T2

and polynomial depth.

• The perfectly-binding commitment scheme is hiding against adversaries of size p(T2)

for all polynomials p, and is extractable by a circuit of size T3.

• The ZK argument scheme satisfies (Csound, εsound,1, εsound,2)-statistical soundness, where

Csound is the class of circuits of size p(T5) and polynomial depth for all polynomials p

(refer to Definition 19 for details on the meaning of Csound), and εsound,1 = 1/T4, and

εsound,2 is any negligible function.

• The witness encryption scheme satisfies (C, ε)-security, where C is the class of circuits

of size p(T5) for all polynomials p, and ε = 1/T5.

• The pseudo-random function is secure against adversaries of size p(T5) for all polynomials

p.
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• The semi-malicious MrNISC protocol is secure against adversaries of size p(T5) for all

polynomials p.

The Relation Φzk,i,j

Hardwired: The function f and the set I, Pi’s tag tagi, Pi’s CCA non-malleable commitment

nmci, Pi’s perfectly binding commitment comi, Pi’s first round semi-malicious MPC message

m̂i,1, Pj ’s string τj , Pi’s commitment comi,m̂i,2 to its semimalicious evaluation encoding m̂i,2,

and the transcript ρsm,1 of the semi-malicious input encodings of all parties from I.

Input/Witness: Wzk,i = (xi, ri,SM,1,Ki, ri,com, σi,j,CCA, m̂i,2).

Computation: Verify the following steps.

1. VerifyOpening(τj , tagi, nmci, (xi, ri,SM,1,Ki, ri,com), σi,j,CCA) = 1

2. comi = NICommit(1λ, (xi, ri,SM,1,Ki); ri,com)

3. m̂i,1 = SM.Encode(1λ, xi, ri,SM,1)

4. m̂i,2 = SM.Eval(f, xi, ri,SM,1, I, ρsm,1;PRFKi(f, I, 1))

5. comi,m̂i,2 = NICommit(1λ, m̂i,2;PRFKi(f, I, 2))

Output 1 if all the above checks succeed, otherwise output 0.

Figure 5.1: The Circuit Φzk,i,j

Protocol. We give the protocol below, described in terms of the behavior of party Pi

during the input encoding phase, the evaluation phase, and the output computation phase.

In particular, we give this behavior by implementing the Encode, Eval and Output algorithms
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The Relation ΦWE,i

Hardwired: The function f , the set I, the set of tags of all parties, Pi’s first-round verifier

zk messsage zk1,i,V , Pi’s string τi, the first-round prover zk messages, commitments and semi-

malicious encodings {zk1,j,P , m̂j,1, comj , nmcj}j∈I\{i} included in the input encodings of all other

parties in I.

Witness:

WWE,i = ({zk2,j→i,P , comj,m̂j,2}j 6=i).

Computation: For every j ∈ I \ {i},

1. Let

Φzk,j = Φzk,j [f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2 , ρsm,1]

be the circuit described in Figure 5.1, with the values

[f, I, tagj , nmcj , comj , m̂j,1, τi, comj,m̂j,2 , ρsm,1]

hardcoded.

2. Compute ZKVerify2(Φzk,j , zk1,i,V , zk1,j,P , zk2,j→i,P ).

Output 1 if all the above checks succeed, otherwise output 0.

Figure 5.2: The Relation ΦWE,i
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defined in Section 5.1. Assume that each party Pi has input xi and a public identity denoted

by tagi ∈ Tλ. Note that the Output algorithm is public and can be performed without Pi’s

private input or state. Throughout the protocol description, we deal with PPT algorithms

as follows. If a PPT algorithm P is invoked on some input x without any randomness

explicitly given (i.e., we write P (x)), we implicitly assume that it is supplied with freshly

chosen randomness. In some cases we will need to explicitly manipulate the randomness of

algorithms, in which case we will write P (x; r).

• Input Encoding Encode(1λ, tagi, xi): The input encoding algorithm takes as input 1λ,

where λ is the security parameter, along with Pi’s tag tagi and private input xi, and

does the following.

1. Compute the semi-malicious input encoding m̂i,1 ← SM.Encode(1λ, xi; ri,SM,1),

where ri,SM,1
$←− {0, 1}∗ is freshly chosen randomness.

2. Choose a PRF key Ki.

3. Compute a perfectly binding commitment

comi ← NICommit(1λ, (xi, ri,SM,1, Ki); ri,com)

of the input and the semi-malicious encoding randomness, where ri,com
$←− {0, 1}∗

is freshly chosen randomness.

4. Compute a CCA-non-malleable commitment

nmci ← CCACommit(1λ, tagi, (xi, ri,SM, Ki, ri,com); ri,CCA)

of the same values committed to in the perfectly binding commitment, along with

the randomness used for generating the perfectly binding commitment, where

ri,CCA
$←− {0, 1}∗ is freshly chosen randomness.

5. Compute a random string τi
$←− {0, 1}`.
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6. Compute the first round verifier’s message and state

(σzk,1,i,V , zk1,i,V )← ZKVerify1(1λ)

and the first round prover message and state

(σzk,1,i,P , zk1,i,P )← ZKProve1(1λ).

7. Output mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,V , zk1,i,P ).

• Function Evaluation Eval(f, tagi, xi, ri,1, I, ρ1): The function evaluation algorithm

takes as input the function f to be evaluated, the set I of participating parties, Pi’s

private input xi, the randomness ri,1 which Pi used to generate its input encoding, and

the input encoding transcript ρ1, and does the following:

1. Parse ρ1 = {m̂k,1, comk, nmck, τk, zk1,k,V , zk1,k,P}k∈[n] to obtain

(ri,SM,1, ri,com, ri,CCA, σzk,1,i,V , σzk,1,i,P )

from ri,1.

2. Compute the semi-malicious function evaluation encoding

m̂i,2 ← SM.Eval(f, xi, ri,SM,1, I, ρsm,1;PRFKi(f, I, 1))

of the underlying semi-malicious protocol, using the transcript ρsm,1 = {m̂k,1}k∈I

of the semi-malicious input encodings of all parties from I, where the randomness

is chosen using the PRF key committed to during the input encoding phase.

3. Compute a commitment comi,m̂i,2 ← NICommit(m̂i,2;PRFKi(f, I, 2)) of the encod-

ing m̂i,2 using randomness derived from the PRF key committed to during the

input encoding phase.

4. For each Pj, j ∈ I \ {i}:
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– Compute an opening

σi,j,CCA ← ComputeOpening(τj, tagi, nmci, (xi, ri,SM,1, Ki, ri,com), ri,CCA)

for the non-malleable-commitment nmci with respect to τj.

– Compute a round two ZK prover’s message zk2,i→j,P ← ZKProve2(Φzk,i,j,Wzk,i,

σzk,1,i,P , zk1,j,V ), where Φzk,i,j is the circuit SAT instance defined in Figure 5.1.

Here Wzk,i = (xi, ri,SM,1, Ki, ri,com, σi,j,CCA, m̂i,2) is the witness for generating

this prover message.

5. Compute a witness encryption WEi ← WE.Encrypt(1λ,ΦWE,i, rcom,i,m̂i,2) where the

circuit ΦWE,i is described in Figure 5.2, and the plaintext rcom,i,m̂i,2 = PRFKi(f, I, 2)

is the opening for comi,m̂i,2 .

6. Return mi,2 = (comi,m̂i,2 , {zk2,i→j,P}j∈I\{i},WEi).

• Output Computation Output({mj,1,mj,2}j∈I): The output computation algorithm

takes as input the input encoding mj,1 and the function evaluation encoding mj,2 of

every party Pj for j ∈ I and does the following:

1. Parse

mj,1 = (m̂j,1, comj, nmcj, τj, zk1,j,v, zk1,j,p)

and

mj,2 = (comj,m̂j,2 , {zk2,j→k,P}k∈I\{j},WEj)

for each j ∈ I.

2. For each j, k ∈ I, j 6= k:

– Run ZKVerify2(Φzk,j,k, zk1,k,v, zk1,j,p, zk2,j→k,p), where Φzk,j,k is described in Fig-

ure 5.1. If the verification fails, abort and output ⊥.

3. For each j ∈ I:
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– Compute the decryption rcom,j,m̂j,2 ← WE.Decrypt(WEj,WWE,j) of the opening

rcom,j,m̂j,2 to the commitment comj,m̂j,2 , using the witness

WWE,j = ({zk2,k→j,P , comj,m̂j,2}k 6=j).

If the decryption fails, abort and output ⊥.

– Open comj,m̂j,2 to Pj ’s semi-malicious function evaluation encoding m̂j,2 using

rcom,j,m̂j,2 .

4. Compute the output y ← Output({m̂j,1, m̂j,2}j∈I) using the values m̂j,2 obtained

from decrypting the witness encryptions along with the semi-malicious input

encodings m̂j,2.

5. Output y.

Correctness. Correctness of the protocol follows directly from correctness of the underlying

primitives.

5.3 Proof of Security

This section proves that the MrNISC protocol given above satisfies the definition of SPS

malicious security from Section 5.1.

Assume that there exists a real-world PPT adversary A for the MrNISC security game.

That is, A takes as input 1λ and some auxiliary input z, chooses the number of parties

M and the set of honest parties H ⊆ [M ], and then interacts with the experiment in an

execution of the protocol by submitting queries of the four types described in Section 5.1

(i.e., Corrupt Input Encoding, Honest Input Encoding, Honest Computation

Encoding, and Corrupt Computation Encoding). We prove security by exhibiting

an ideal world adversary S (referred to as the simulator) which runs in time TS = 2λ
ε
, and

interacts with the experiment as described in Section 5.1, such that the outputs of the
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corresponding experiments ExptRealA (λ) and ExptIdealA,S (λ) are indistinguishable.

5.3.0.1 The Simulator

Upon being initialized with the number of parties M and the set H ( [M ], the simulator S,

initializes the semi-malicious simulator with the same M and H. It then responds to the

environment’s queries in the following manner:

• Corrupt Input Encoding: Upon receiving a corrupt input encoding

mj,1 = (m̂j,1, comj, nmcj, τj, zk1,j,v, zk1,j,p)

on behalf of Pj , j ∈ C, the simulator S extracts comj to obtain (x̃j , r̃j,SM,1, K̃j), and

submits x̃j to the experiment to use as Pj’s input if m̂j,1 = SM.Encode(1λ, x̃j ; r̃j,SM,1).

Otherwise, it sends ⊥.

• Honest Input Encoding: Upon receiving a query from the experiment asking for

Pi’s simulated input encoding, S does the following:

1. Compute a perfectly binding commitment

comi = NICommit(1λ, 0|xi|+|ri,SM,1,|+|Ki|).

2. Compute a CCA-non-malleable commitment

nmci = CCACommit(1λ, tagi, 0
|xi|+|ri,SM,1,|+|Ki|+|ri,com|).

3. Compute a random string τi
$←− {0, 1}`.

4. Compute the first round verifier’s message and state

(σzk,1,i,V , zk1,i,V )← ZKVerify1(1λ)

and the first round prover message and state

(σzk,1,i,P , zk1,i,P )← ZKProve1(1λ).
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5. Ask the semi-malicious simulator to generate a semi-malicious input encoding m̂i,1

for party Pi.

6. Send mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,v, zk1,i,p) to A.

• Honest Computation Encoding: Upon receiving an honest computation encoding

query asking for honest party Pi’s encoding w.r.t f and I, the simulator does the

following.

1. Compute the extracted value (x̃j, r̃j,SM,1, K̃j, r̃j,com) ← CCAVal(τi, tagj, nmcj) of

Pj’s CCA-non-malleable commitment with respect to Pi’s τi, for each j ∈ I ∩ C.

2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j; r̃j,SM,1)

and

comj = NICommit(1λ, (x̃j, r̃j,SM,1, K̃j); r̃j,com),

where m̂j,1 is the semi-malicious input encoding sent by Pj, comj is the perfectly-

binding commitment sent by Pj, and x̃j, r̃j,SM,1, K̃j, r̃j,com are the extracted values

from before.

– If both equalities hold for all j ∈ I ∩ C, then the simulator does the following.

(a) Query the semimalicious simulator for Pi’s semi-malicious computation

encoding m̂i,2 with respect to (f, I). (If the experiment sent the func-

tion output y, forward this to the semi-malicious simulator to use when

generating m̂i,2.)

(b) Compute a commitment comi,m̂i,2 ← NICommit(m̂i,2; rcom,i,m̂i,2) obtained

in the previous step, where rcom,i,m̂i,2 is freshly chosen randomness.

(c) For each Pj, j ∈ I \ {i}:

∗ Compute a simulated prover’s second-round ZK message

zk2,i→j,P ← ZKSim(σzk,1,i,P ,Φzk,i,j, zk1,j,V ).
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(d) Compute a witness encryption WEi ← WE.Encrypt(1λ,ΦWE,i, rcom,i,m̂i,2)

where the circuit ΦWE,i is described in Figure 5.2, and the plaintext

rcom,i,m̂i,2 is the opening for comi,m̂i,2 .

(e) Respond with mi,2 = (comi,m̂i,2 , {zk2,i→j,P}j∈I\{i},WEi).

– If the equalities do not hold for some j ∈ I ∩ C, then the simulator instead

does the following:

(a) Compute a commitment comi,m̂i,2 ← NICommit(0|m̂i,2|).

(b) For each Pj, j ∈ I \ {i}:

∗ Compute a simulated prover’s second-round ZK message zk2,i→j,P ←

ZKSim(σzk,1,i,P ,Φzk,i,j, zk1,j,V ).

(c) Compute a witness encryption WE.CTi ← WE.Encrypt(1λ,ΦWE,i, 0
|ri,com|).

(d) Respond with mi,2 = (comi,m̂i,2 , {zk2,i→j,P}j∈I\{i},WEi).

• Corrupt Computation Encoding: On receiving a corrupt computation encoding

mj,2 = (comj,m̂j,2 , {zk2,j→i,P}i∈I\{j},WEj) from the experiment on behalf of corrupted

party Pj w.r.t. f and I, the simulator does the following:

1. Compute the extracted value (x̃j, r̃j,SM,1, K̃j, r̃j,com) ← CCAVal(τi, tagj, nmcj) of

Pj’s CCA-non-malleable commitment for each i ∈ I \ C.

2. For each i ∈ I \ C, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,i, zk1,i,V , zk1,j,P , zk2,j→i,P ) verifies, and

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j, r̃j,SM,1,

K̃j, r̃j,com and the input encoding phase of the protocol. Note that this is

checkable in polynomial time given the values x̃j, r̃j,SM,1, K̃j, r̃j,com.

3. If there does exist such a j, halt the experiment and output a special abort symbol

⊥∗.

139



4. Otherwise, if all parties in I have submitted function evaluation encodings for

f and if all parties’ ZK messages have verified correctly and if all parties’ WEs

decrypt correctly, the simulator instructs the experiment to deliver the output y

to the honest parties. If any ZK messages verify incorrectly or if any WE fails to

decrypt, the simulator instructs the experiment to deliver the output ⊥ to the

honest parties.

5.3.0.2 The Hybrids

We prove the indistinguishability between the real and ideal worlds via a sequence of hybrids

listed below. In each hybrid, we make changes to the behavior of the experiment, such that

the first hybrid Hybrid0 corresponds to the real world experiment, and the last hybrid Hybrid8

corresponds to the ideal world experiment with simulator S described above.

• Hybrid0: This hybrid performs the real-world experiment ExptRealA (λ) with A. That is,

the experiment responds to the queries of A as described in the real world defined

in Section 5.1. At the end of the execution, the output of the hybrid is defined to be

(viewA, τ, honest outputs).

• Hybrid1: The behavior of this hybrid is identical to the previous hybrid, except for the

following difference. Whenever A submits a Honest Computation Encoding query

asking for honest party Pi’s encoding w.r.t f and I, the experiment does the following:

1. Compute the extracted value (x̃j, r̃j,SM,1, K̃j, r̃j,com) ← CCAVal(τi, tagj, nmcj) of

Pj’s CCA-non-malleable commitment for each j ∈ I ∩ C.

2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j; r̃j,SM,1)

and

comj = NICommit(1λ, (x̃j, r̃j,SM,1, K̃j); r̃j,com),
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where m̂j,1 is the semi-malicious input encoding sent by Pj, comj is the perfectly-

binding commitment sent by Pj, and x̃j, r̃j,SM,1, K̃j, r̃j,com are the extracted values

from before.

– If both equalities hold for all j ∈ I ∩C, then the experiment generates WE.CTi

in the same way as in Hybrid0.

– If the equalities do not hold for some j ∈ I ∩ C, then the experiment instead

computes WE.CTi ← WE.Encrypt(1λ,ΦWE,i, 0
|ri,com|).

Because of the use of CCAVal, this hybrid runs in size O(T2) and polynomial depth.

• Hybrid2: This hybrid behaves identically to the previous hybrid, except for the following

difference. Whenever A submits a Corrupt Computation Encoding

mj,2 = (comj,m̂j,2 , {zk2,j→i,P }i∈I\{j},WEj)

on behalf of corrupted party Pj w.r.t. f and I, the experiment does the following:

1. Compute the extracted value (x̃j, r̃j,SM,1, K̃j, r̃j,com) ← CCAVal(τi, tagj, nmcj) of

Pj’s CCA-non-malleable commitment for each i ∈ I \ C.

2. For each i ∈ I \ C, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,k, zk1,i,V , zk1,j,P , zk2,j→i,P ) verifies, and

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j, r̃j,SM,1,

K̃j, r̃j,com and the input encoding phase of the protocol. Note that this is

checkable in polynomial time given the values x̃j, r̃j,SM,1, K̃j, r̃j,com.

3. If there does exist such a j, halt and output a special abort symbol ⊥∗.

Because of the use of CCAVal, this hybrid runs in size O(T2) and polynomial depth.

• Hybrid3: This hybrid behaves identically to the previous hybrid, except for the following

difference. Whenever A submits a Honest Computation Encoding query asking
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for honest party Pi’s encoding w.r.t f and I, the experiment computes Pi’s ZK prover’s

messages zk2,i→j,P ← ZKSim(Φzk, σP , zk1,j,V ) using the zero-knowledge simulator instead

of generating the message using the honest prover. This hybrid runs in size poly(T1 +

T2) = poly(T2) and depth T1 as we run the ZK Simulator and CCAVal.

• Hybrid4: This hybrid behaves identically to the previous hybrid, except for the following

difference. Whenever A submits a Honest Input Encoding query asking for

honest party Pi’s first message, the experiment generates nmci = CCACommit(1λ, tagi,

0|xi|+|ri,SM,1,|+|Ki|+|ri,com|). This hybrid runs in the same size and depth as the previous

hybrid.

• Hybrid5: This hybrid behaves identically to the previous hybrid, except for the following

difference. Whenever A submits a Honest Input Encoding query asking for honest

party Pi’s first message, the experiment generates comi = NICommit(1λ, 0|xi|+|ri,SM,1,|+|Ki|).

This hybrid runs in the same size and depth as the previous hybrid.

• Hybrid6: This hybrid behaves identically to the previous hybrid, except for the following

difference. Whenever A submits a Honest Computation Encoding query asking

for honest party Pi’s encoding w.r.t f and I, the experiment uses true random strings

when computing the semi-malicious function evaluation encoding and the perfectly

binding commitment, instead of using PRF evaluations. In other words, the experiment

computes mi,2 ← SM.Eval(f, xi, ri,SM,1, I, ρsm,1; r) and comi,m̂i,2 ← NICommit(m̂i,2; r
′),

where r and r′ are freshly chosen randomness.

• Hybrid7: This hybrid behaves identically to the previous hybrid, except for the following

difference. Whenever A submits a Honest Computation Encoding query asking

for honest party Pi’s encoding w.r.t f and I, the experiment computes comi,m̂i,2 ←

NICommit(0|m̂i,2|) whenever the equalities checked in the steps for Hybrid1 do not hold.

This hybrid runs in the same size and depth as the previous hybrid.
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• Hybrid8: This hybrid behaves identically to the previous hybrid, except for the following

differences. During the beginning of the protocol, the experiment initializes the semi-

malicious simulator with M and H. It then responds to the adversary’s queries in the

following manner.

– Whenever A submits an Honest Input Encoding query asking for honest party

Pi’s input encoding with respect to some input xi, the experiment forwards xi to

the ideal functionality as Pi’s input, and then queries the semi-malicious simulator

for a simulated input encoding m̂i,1, which it uses when constructing the message

mi,1 = (m̂i,1, comi, nmci, τi, zk1,i,v, zk1,i,p) to send to A.

– Whenever A submits a Corrupt Input Encoding query on behalf of Pj , j ∈ C,

the experiment extracts comj to obtain (x̃j, r̃j,SM,1, K̃j). If Pj’s m̂j,1 is honestly

generated, the experiment submits (j, x̃j) to the ideal functionality. Otherwise it

submits (j,⊥).

– Whenever A submits an Honest Computation Encoding query asking for

honest party Pi’s encoding w.r.t f and I, if the equalities checked in Hybrid1 hold,

do the following:

∗ If A has already received honest computation encodings with respect to (f, I)

for all other honest parties in I, and all corrupted parties in I have non-⊥

inputs, the experiment sends (f, I) to the ideal functionality, and receives

back the output y. It sends (f, I, i, y) to the semi-malicious simulator, which

replies with the semi-malicious computation encoding m̂i,2 for Pi.

∗ If A has not already received all other honest computation encodings, or if

some corrupted parties in I have ⊥ as their extracted input, the experiment

does not query the ideal functionality and sends (f, I, i) to the simulator,

which replies with the semi-malicious computation encoding m̂i,2 for Pi.
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The experiment then uses this m̂i,2 when constructing the message

mi,2 = (comi,m̂i,2 , {zk2,i→j,P}j∈I\{i},WEi)

to send to A. Note that if the equalities checked in Hybrid1 do not hold, the

experiment does not need to have a m̂i,2 message from Pi to respond to A, since

comi,m̂i,2 and WEi are a commitment and WE of 0, respectively.

– Whenever A submits a Corrupt Computation Encoding on behalf of cor-

rupted party Pj w.r.t. f and I, if all parties in I have submitted function evaluation

encodings for f , and if all parties’ ZK messages have verified correctly, their WEs

have decrypted correctly, and the special abort condition has not occurred, the

experiment instructs the ideal function to deliver the output y to the honest parties.

If any ZK messages verify incorrectly or if any WE fails to decrypt, the experiment

instructs the ideal functionality to deliver the output ⊥ to the honest parties.

This hybrid is identical to the behavior of the ideal-world experiment. Here the simulator

runs in size poly(T3) and depth T1.

We now describe indistinguishability between each pair of hybrids. The indistinguishability

between Hybrid0 and Hybrid1 follows from the soundness properties of the SPS ZK protocol

and the security of the Witness Encryption scheme. Because proving this indistinguishability

is the most involved, we dedicate a separate section to the proof.

5.3.0.3 Indistinguishability Between Hybrid0 and Hybrid1

Claim 4. Assuming:

• (CWE, ε)-security for the witness encryption scheme, where CWE is the class of circuits

of size p(T5) for all polynomials p and ε = 1/T5,
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• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound

is the class of circuits of size p(T5) and polynomial depth for all polynomials p, and

εsound,1 = 1/T4, and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a

circuit of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid0 is computationally indistinguishable from Hybrid1.

We prove this claim via a sequence of subhybrids, which we describe here. Let q = q(λ)

be a polynomial upper bound on the number of Honest Computation Encoding queries

made by A.

• Hybrid0,0,0 is the same as Hybrid0.

• Hybrid0,k,r is the same as Hybrid0,k,r−1, except for the following differences. Whenever

A submits its `-th Honest Computation Encoding query asking for honest party

Pi’s encoding w.r.t f and I, the simulator does the following:

1. Compute the extracted value (x̃j, r̃j,SM,1, K̃j, r̃j,com) ← CCAVal(τi, tagj, nmcj) of

Pj’s CCA-non-malleable commitment for each j ∈ I ∩ C.

2. For each j ∈ I ∩ C, check whether

m̂j,1 = SM.Encode(1λ, x̃j; r̃j,SM,1)

and

comj = NICommit(1λ, (x̃j, r̃j,SM,1, K̃j); r̃j,com),

where m̂j,1 is the semi-malicious input encoding sent by Pj, comj is the perfectly-

binding commitment sent by Pj, and x̃j, r̃j,SM,1, K̃j, r̃j,com are the extracted values

from before.
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– If both equalities hold for all j ∈ I ∩ C, then the simulator generates WE.CTi

in the same way as in Hybrid0.

– If the equalities do not hold for some j ∈ I∩C, then if i ≤ k ∈ [n]\C and if ` ≤ r,

the simulator instead computes WE.CTi ← WE.Encrypt(1λ,ΦWE,i, 0
|ri,com|).

• Hybrid0,n,q is the same as Hybrid1.

In the following, we denote with expt0,k,rA the output of the simulator during Hybrid0,k,r.

Note that for all k ∈ [n], Hybrid0,k,q = Hybrid0,k+1,0. Thus, to prove Claim 4, it is then

sufficient to prove the following claim.

Claim 5. For all k ∈ [n] and r ∈ [q], assuming: Assuming:

• (CWE, ε)-security for the witness encryption scheme, where CWE is the class of circuits

of size p(T5) for all polynomials p and ε = 1/T5,

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound

is the class of circuits of size p(T5) and polynomial depth for all polynomials p, and

εsound,1 = 1/T4, and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a

circuit of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid0,k,r is computationally indistinguishable from Hybrid0,k,r−1.

We will rely on several subclaims in order to prove Claim 5. First we introduce some

notation.

Assume for the sake of contradiction that there exists an adversary (A,D) and an index

(k, r) such that A distinguishes between Hybrid0,k,r−1 and Hybrid0,k,r with non-negligible
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probability. That is, assume that∣∣∣Pr
[
D(expt0,k,rA ) = 1

]
− Pr

[
D(expt0,k,r−1

A ) = 1
]∣∣∣ ≥ 1/p(λ),

for some polynomial p. Fix some j∗ ∈ C, and consider the event that during Hybrid0,k,r−1 or

Hybrid0,k,r:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, where either

m̂j,1 6= SM.Encode(1λ, x̃j; r̃j,SM,1)

or

comj 6= NICommit(1λ, (x̃j, r̃j,SM,1, K̃j); r̃j,com),

and

• A’s r-th Honest Computation Encoding query asks for Pk’s encoding w.r.t. some

(f, I) such that j∗ ∈ I.

Define êxpt
0,k,r

A and êxpt
0,k,r−1

A to be the same as expt0,k,rA and expt0,k,r−1
A , except that whenever

the event above does not occur, the simulator outputs a “dummy evaluation”, where all

parties behave according to the honest input specification, have input 0, and evaluate the

constant f(x1, . . . , xn) = 0 with I = [n]. Fixing the j∗ that maximizes the probability of A

distinguishing these two experiments, we then have that∣∣∣Pr
[
D(êxpt

0,k,r

A ) = 1
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1
]∣∣∣ ≥ 1/p′(λ),

for some polynomial p′(λ).

Define PSk,j∗ to be the event that perfect soundness holds in the zero knowledge instance

with prover Pj∗ and verifier Pk which takes place during Hybrid0,k,η for η ∈ {r − 1, r}. Note

that since both hybrids are identical up to the r-th Honest Computation Encoding

query, this event is well-defined even if η is unspecified.
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With this event defined, we can rewrite the probability

Pr
[
D(êxpt

0,k,r

A ) = 1
]

as the following:

Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]

Pr
[
PSk,j∗

]
+ Pr

[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]

Pr
[
PSk,j∗

]
.

Claim 6. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,

εsound,1, and εsound,2 are as in Claim 5, it holds that

Pr
[
PSk,j∗ ] ≥ εsound,1.

Proof. Assume this is not the case. Then we construct a reduction R to the soundness mode

frequency property of the zero knowledge protocol. R is a circuit of size poly(T2) which does

the following:

1. Receive zk1,V from the challenger.

2. Run expt0,kA , using zk1,V as part of Pk’s input encoding whenever this encoding is

requested from A.

3. Whenever A sends an input encoding on behalf of Pj∗ , halt and output the zk1,j∗,P

message which is part of Pj∗ ’s input encoding.

By assumption, PSk,j∗ holds with probability < εsound,1. This means that E(τ1, σzk,V,k) = 1

with probability < εsound,1. Thus R contradicts (Csound, εsound,1, εsound,2)-soundness of the zero

knowledge protocol.

Claim 7. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,

εsound,1, and εsound,2 are as in Claim 5, and the extractor CCAVal for the CCA-non-malleable

commitment scheme is a T2-size circuit, it holds that for all k and r,∣∣∣Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]∣∣∣ ≤ εsound,2.
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Proof. We prove the claim via a poly(T2)-size reduction to soundness of the zero knowledge

protocol. Assume for the sake of contradiction that∣∣∣Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]∣∣∣ > εsound,2.

We construct the reduction R, which behaves as follows:

1. Receive zk1,V from the challenger.

2. Run a← êxpt
0,k

A using zk1,k,V = zk1,V whenever Pk’s input encoding is queried, where a

is the output of the experiment. Send zk1,j∗,P to the challenger. Output D(a).

Note that the probability that R distinguishes between soundness modes is exactly∣∣∣Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]∣∣∣,

and thus R contradicts indistinguishability of soundness mode.

Claim 8. Assuming the existence of a distinguishing A as before, the zero knowledge protocol

is (Csound, εsound,1, εsound,2)-sound where Csound, εsound,1, and εsound,2 are as in Claim 5, and the

extractor CCAVal for the CCA-non-malleable commitment scheme is a T2-size circuit, it holds

that for all k and r,∣∣∣Pr
[
D(êxpt

0,k,r

A ) = 1 ∧ PSk,j∗
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1 ∧ PSk,j∗
]∣∣∣ ≥ εsound,1/p(λ),

for some polynomial p(λ).

Proof. By Claim 6 the left-hand side of the inequality is at least∣∣∣ (Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1 | PSk,j∗
])
· εsound,1

∣∣∣.
So it suffices to show that∣∣∣Pr

[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1 | PSk,j∗
]∣∣∣ ≥ 1/p(λ)

for some polynomial p(λ).

149



Recall that by assumption we have∣∣∣Pr
[
D(êxpt

0,k,r

A ) = 1
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1
]∣∣∣ ≥ 1/poly(λ). (5.1)

We can lower-bound the left-hand side of (5.1) as∣∣∣ (Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1 | PSk,j∗
])
· Pr
[
PSk,j∗

]
+(

Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1 | PSk,j∗
])
· Pr
[
PSk,j∗

]∣∣∣,
which by claim Claim 7 is less than∣∣∣ (Pr

[
D(êxpt

0,k,r
A ) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

0,k,r−1
A ) = 1 | PSk,j∗

])
· (Pr

[
PSk,j∗

]
+ Pr

[
PSk,j∗

]
)
∣∣∣

+ 2εsound,2 · Pr
[
PSk,j∗

]
.

(i.e., substitute out Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]

and Pr
[
D(êxpt

0,k,r−1
A ) = 1 | PSk,j∗

]
for

Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]

+ εsound,2 and Pr
[
D(êxpt

0,k,r−1
A ) = 1 | PSk,j∗

]
+ εsound,2, respectively.)

Thus,∣∣∣ (Pr
[
D(êxpt

0,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1 | PSk,j∗
]) ∣∣∣ ≥ 1/poly(λ)− 2εsound,2,

which proves the claim.

Claim 9. Assuming the “perfect soundness holds during soundness mode” property of the

zero knowledge argument, and (CWE, ε)-security for the witness encryption scheme, where CWE

is the class of circuits of size p(T5) for all polynomials p and ε = 1/T5, and T5 � T2, the size

of the extraction procedure CCAVal for the CCA commitment, it holds that for all k,∣∣∣Pr
[
D(êxpt

0,k,r

A ) = 1 ∧ PSk,j∗
]
− Pr

[
D(êxpt

0,k,r−1

A ) = 1 ∧ PSk,j∗
]∣∣∣ < εWE.

Proof. Fix a state state of the experiment just before the r-th Honest Computation

Encoding. We show that given such a state where PSk,j∗ holds,∣∣∣Pr
[
D(êxpt

0,k,r

A (state)) = 1
]
− Pr

[
D(êxpt

0,k,r−1

A (state)) = 1
]∣∣∣ < εWE.
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We consider two cases. First is the case in which the “dummy evaluation” is triggered.

In this case, the output of both êxpt
0,k,r

A (state) and êxpt
0,k,r−1

A (state) are both drawn from

exactly the same distribution, and thus∣∣∣Pr
[
D(êxpt

0,k,r

A (state1)) = 1
]
− Pr

[
D(êxpt

0,k,r−1

A (state1)) = 1
]∣∣∣ = 0.

The second case is where the “dummy evaluation” is not triggered, i.e. where the following

three conditions are satisfied:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, where either

m̂j,1 6= SM.Encode(1λ, x̃j; r̃j,SM,1)

or

comj 6= NICommit(1λ, (x̃j, r̃j,SM,1, K̃j); r̃j,com),

and

• A’s r-th Honest Computation Encoding query asks for Pk’s encoding w.r.t. some

(f, I) such that j∗ ∈ I.

In this case, the difference between the two experiments is that when responding to the

r-th Honest Computation Encoding in êxpt
0,k,r−1

A (state), the simulator sends WE.CTk ←

WE.Encrypt(1λ,ΦWE,k, rk,com) to A on behalf of Pk, whereas in êxpt
0,k,r

A (state), the simulator

sends WE.CTk ← WE.Encrypt(1λ,ΦWE,k, 0
|rk,com|). Here ΦWE,k is the statement in Figure 5.2.

Assume for the sake of contradiction that∣∣∣Pr
[
D(êxpt

0,k,r

A (state1)) = 1
]
− Pr

[
D(êxpt

0,k,r−1

A (state1)) = 1
]∣∣∣ ≥ εWE.

WLOG fix the randomness of A which maximizes this probability. Note that if A is

deterministic this means that state fully determines the statement ΦWE,k.
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We build a reduction R which is of size T2 and contradicts security of the witness

encryption scheme. R has state hardcoded and does the following:

1. Receive WE.CTk ← WE.Encrypt(ΦWE,k,m) from the challenger, where m is either rk,com

or 0|rk,com|, and ΦWE,k is the statement fixed by state and the randomness of A.

2. Run b← D(ẽxpt
0,k,r−1

A (state1)), where ẽxpt
0,k,r−1

A (state1) is computed in the same way

as êxpt
0,k,r−1

A (state1), except using WE.CTk as Pk’s witness encryption during the r-th

Honest Computation Encoding.

If the challenger chooses m = rk,com then the experiment run by R is exactly the same

as êxpt
0,k,r−1

A (state); if the challenger chooses m = 0|rk,com| then the experiment is exactly the

same as êxpt
0,k,r

A (state). Note that the statement ΦWE,k is false because of perfect soundness

of the zero knowledge scheme. Thus R is a size-T2 machine which distinguishes between two

different witness encryptions for the same false statement, thus contradicting security of the

witness encryption scheme.

We now finish the proof of Claim 5 using the three claims proven above.

Proof of Claim 5. We directly achieve a contradiction by applying Claim 8 and Claim 9,

along with the fact that εsound,1 � εWE.

5.3.0.4 Indistinguishability Between Hybrid1 and Hybrid2

The proof of indistinguishability between Hybrid1 and Hybrid2 is very similar to the previous

proof. We include it for the sake of completeness.

Claim 10. Assuming:

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound

is the class of circuits of size p(T5) and polynomial depth for all polynomials p, and

εsound,1 = 1/T4, and εsound,2 is any negligible function,
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• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a

circuit of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid1 is computationally indistinguishable from Hybrid2.

We prove this claim via a sequence of subhybrids, which we describe here. Let q = q(λ) be

a polynomial upper bound on the number of Corrupt Computation Encoding queries

made by A.

• Hybrid1,0,0 is the same as Hybrid1.

• Hybrid1,k,r is the same as Hybrid1,k,r−1, except for the following differences. Whenever

A submits its `-th Corrupt Computation Encoding, on behalf of some corrupted

party Pj w.r.t. f and I, then the simulator does the following:

1. Compute the extracted value (x̃j, r̃j,SM,1, K̃j, r̃j,com) ← CCAVal(τi, tagj, nmcj) of

Pj’s CCA-non-malleable commitment for each i ∈ I \ C.

2. For each i ∈ I \ C, i ≤ k, check if there exists a j ∈ I ∩ C such that:

– ZKVerify2(φzk,j,k, zk1,i,V , zk1,j,P , zk2,j→i,P ) verifies, and

– Steps 2-5 of Φzk,j,i do not hold with respect to the extracted values x̃j, r̃j,SM,1,

K̃j, r̃j,com and the input encoding phase of the protocol. Note that this is

checkable in polynomial time given the values x̃j, r̃j,SM,1, K̃j, r̃j,com.

3. If there does exist such a j, then if either i < k, or if i = k and ` ≤ r, halt and

output a special abort symbol ⊥∗.

• Hybrid1,n,q is the same as Hybrid2.

Note that for all k ∈ [n], Hybrid1,k,q = Hybrid1,k+1,0. Thus, to prove Claim 10, it is then

sufficient to prove the following claim.
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Claim 11. For all k ∈ [n] and r ∈ [q], assuming: Assuming:

• The zero knowledge protocol is (Csound, εsound,1, εsound,2)-statistically sound, where Csound

is the class of circuits of size p(T5) and polynomial depth for all polynomials p, and

εsound,1 = 1/T4, and εsound,2 is any negligible function,

• The CCAVal extraction procedure for the CCA-non-malleable commitment scheme is a

circuit of size T2 and polynomial depth, and

• T2 � T4 � T5,

Hybrid1,k,r is computationally indistinguishable from Hybrid1,k,r−1.

We will rely on several subclaims in order to prove Claim 11. First we introduce some

notation. In the following, we denote with expt1,k,rA the output of the simulator during

Hybrid1,k,r.

Assume for the sake of contradiction that there exists an adversary (A,D) and an index

(k, r) such that A distinguishes between Hybrid1,k,r−1 and Hybrid1,k,r with non-negligible

probability. That is, assume that∣∣∣Pr
[
D(expt1,k,rA ) = 1

]
− Pr

[
D(expt1,k,r−1

A ) = 1
]∣∣∣ ≥ 1/p(λ),

for some polynomial p. Fix some j∗ ∈ C, and consider the event that during Hybrid1,k,r−1 or

Hybrid1,k,r:

• A asks for Pk’s honest input encoding,

• A sends corrupted party Pj∗ ’s input encoding to S, and

• A’s r-th Corrupt Computation Encoding query sends Pj∗ ’s computation encoding

w.r.t. some (f, I) such that k ∈ I,and the conditions for special abort hold with respect

to this encoding.
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Define êxpt
1,k,r

A and êxpt
1,k,r−1

A to be the same as expt1,k,rA and expt1,k,r−1
A , except that whenever

the event above does not occur, the simulator outputs a “dummy evaluation”, where all

parties behave according to the honest input specification, have input 0, and evaluate the

constant f(x1, . . . , xn) = 0 with I = [n]. Fixing the j∗ that maximizes the probability of A

distinguishing these two experiments, we then have that∣∣∣Pr
[
D(êxpt

1,k,r

A ) = 1
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1
]∣∣∣ ≥ 1/p′(λ),

for some polynomial p′(λ).

Define PSk,j∗ to be the event that perfect soundness holds in the zero knowledge instance

with prover Pj∗ and verifier Pk which takes place during Hybrid1,k,η for η ∈ {r − 1, r}. Note

that since both hybrids are identical up to the r-th Corrupt Computation Encoding

query, this event is well-defined even if η is unspecified.

With this event defined, we can rewrite the probability

Pr
[
D(êxpt

1,k,r

A ) = 1
]

as the following:

Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]

Pr
[
PSk,j∗

]
+ Pr

[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]

Pr
[
PSk,j∗

]
.

Claim 12. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,

εsound,1, and εsound,2 are as in Claim 11, it holds that

Pr
[
PSk,j∗ ] ≥ εsound,1.

Proof. Assume this is not the case. Then we construct a reduction R to the soundness mode

frequency property of the zero knowledge protocol. R is a circuit of size poly(T2) which does

the following:

1. Receive zk1,V from the challenger.
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2. Run expt1,kA , using zk1,V as part of Pk’s input encoding whenever this encoding is

requested from A.

3. Whenever A sends an input encoding on behalf of Pj∗ , halt and output the zk1,j∗,P

message which is part of Pj∗ ’s input encoding.

By assumption, PSk,j∗ holds with probability < εsound,1. This means that E(τ1, σzk,V,k) = 1

with probability < εsound,1. Thus R contradicts (Csound, εsound,1, εsound,2)-soundness of the zero

knowledge protocol.

Claim 13. Assuming the zero knowledge protocol is (Csound, εsound,1, εsound,2)-sound where Csound,

εsound,1, and εsound,2 are as in Claim 11, and the extractor CCAVal for the CCA-non-malleable

commitment scheme is a T2-size circuit, it holds that for all k and r,∣∣∣Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]∣∣∣ ≤ εsound,2.

Proof. We prove the claim via a poly(T2)-size reduction to soundness of the zero knowledge

protocol. Assume for the sake of contradiction that∣∣∣Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]∣∣∣ > εsound,2.

We construct the reduction R, which behaves as follows:

1. Receive zk1,V from the challenger.

2. Run a← êxpt
1,k,r

A using zk1,k,V = zk1,V whenever Pk’s input encoding is queried, where

a is the output of the experiment. Send zk1,j∗,P to the challenger. Output D(a).

Note that the probability that R distinguishes between soundness modes is exactly∣∣∣Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]∣∣∣,

and thus R contradicts indistinguishability of soundness mode.
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Claim 14. Assuming the existence of a distinguishing A as before, the zero knowledge protocol

is (Csound, εsound,1, εsound,2)-sound where Csound, εsound,1, and εsound,2 are as in Claim 11, and the

extractor CCAVal for the CCA-non-malleable commitment scheme is a T2-size circuit, it holds

that for all k and r,∣∣∣Pr
[
D(êxpt

1,k,r

A ) = 1 ∧ PSk,j∗
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1 ∧ PSk,j∗
]∣∣∣ ≥ εsound,1/p(λ),

for some polynomial p(λ).

Proof. By Claim 12 the left-hand side of the inequality is at least∣∣∣ (Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1 | PSk,j∗
])
· εsound,1

∣∣∣.
So it suffices to show that∣∣∣Pr

[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1 | PSk,j∗
]∣∣∣ ≥ 1/p(λ)

for some polynomial p(λ).

Recall that by assumption we have∣∣∣Pr
[
D(êxpt

1,k,r

A ) = 1
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1
]∣∣∣ ≥ 1/poly(λ). (5.2)

We can lower-bound the left-hand side of (5.2) as∣∣∣ (Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1 | PSk,j∗
])
· Pr
[
PSk,j∗

]
+(

Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1 | PSk,j∗
])
· Pr
[
PSk,j∗

]∣∣∣,
which by claim Claim 13 is less than∣∣∣ (Pr

[
D(êxpt

1,k,r
A ) = 1 | PSk,j∗

]
− Pr

[
D(êxpt

1,k,r−1
A ) = 1 | PSk,j∗

])
· (Pr

[
PSk,j∗

]
+ Pr

[
PSk,j∗

]
)
∣∣∣

+ 2εsound,2 · Pr
[
PSk,j∗

]
.

(i.e., substitute out Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]

and Pr
[
D(êxpt

1,k,r−1
A ) = 1 | PSk,j∗

]
for

Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]

+ εsound,2 and Pr
[
D(êxpt

1,k,r−1
A ) = 1 | PSk,j∗

]
+ εsound,2, respectively.)
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Thus,∣∣∣ (Pr
[
D(êxpt

1,k,r

A ) = 1 | PSk,j∗
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1 | PSk,j∗
]) ∣∣∣ ≥ 1/poly(λ)− 2εsound,2,

which proves the claim.

Claim 15. Assuming the “perfect soundness holds during soundness mode” property of the

zero knowledge argument, , it holds that for all k,∣∣∣Pr
[
D(êxpt

1,k,r

A ) = 1 ∧ PSk,j∗
]
− Pr

[
D(êxpt

1,k,r−1

A ) = 1 ∧ PSk,j∗
]∣∣∣ = 0.

Proof. This follows directly from the perfect soundness mode of the ZK argument scheme.

We now finish the proof of Claim 11 using the three claims proven above.

Proof of Claim 11. We directly achieve a contradiction by applying Claim 14 and Claim 15.

5.3.0.5 Proving Indistinguishability of the Remaining Hybrids

Claim 16. Assuming the ZK argument scheme satisfies (CS , Czk, εS)-adaptive reusable statis-

tical zero knowledge, where CS is the class of circuits of size poly(T1) and depth T1 (i.e. the

simulator runs in size poly(T1) and depth T1), and Czk is the class of circuits of size p(T3)

for all polynomials p, and εS is any negligible function, and the CCA extractor CCAVal is

a circuit of size T2, where T2 � T3, then for any polynomial time MPC adversary A and

unbounded distinguisher D, we have

|Pr[D(Hybrid2) = 1]− Pr[D(Hybrid3) = 1]| < negl(λ)

for some negligible negl.

Proof. This can be done by introducing |[n] \ C| intermediate hybrids. For simplicity, we

use n hybrids, where ||C| hybrids are non-functional. We index each hybrid as Hybrid2,i for
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i ∈ [n]. Hybrid2,i is exactly the same as the same as Hybrid2,i−1 except that if i ∈ [n] \ C,

every zk2,i→j,P is now generated by running ZKSim(σzk1,i,P
,Φzk,i,j, zk1,j,V ). Note that the final

hybrid in the series is exactly the same as Hybrid3. To prove the claim, it suffices to show

indistinguishability between each successive pair of subhybrids.

Assume for the sake of contradiction that (A,D) distinguishes between two successive

subhybrids Hybrid2,i and Hybrid2,i−1. We then construct a reduction (R,D) which breaks the

statistical ZK property of the zero knowledge protocol. R is a circuit of size poly(T2) and

depth T1 and does the following:

1. Receive zk1,P from the challenger.

2. Run Hybrid2,i−1 with A, using zk1,i,P = zk1,P (i.e. use the challenger’s round-one zk

prover’s message as the round-one prover’s message for Pi2 as part of its input encoding.

3. When A asks for an honest computation encoding from Pi w.r.t. f and I, for each

j ∈ I \ {i}, send the message (Φzk,i,j,Wzk,i, zk1,j,V ) to the challenger, and receive a

response zk2,i→j,P = zk2,P from the challenger.

4. Generate Pi2 ’s honest computation encoding in the same way as in Hybrid2,i−1 ex-

cept using the challenger’s responses {zk2,i→j,P}j∈I\{i} as the ZK2 messages instead of

generating them honestly.

5. Output the result of the experiment.

If the challenger sends honestly generated proofs to R, then the output of R is identical

to Hybrid2,i−1; otherwise, if the challenger simulates the proofs, then the output of R is

identical to Hybrid2,i. Note that R has size � T3; thus by assumption (R,D) contradicts

(CS , Czk, εS)-statistical zero knowledge of the zero knowledge protocol.

Claim 17. Assuming that the CCA non-malleable commitment scheme satisfies (C, ε)-CCA

security (Definition 16), where C contains all circuits of size poly(T1) where T1 is the size
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of the ZK simulator, and ε is any negligible function, we have that for any polynomial time

MPC adversary (A,D):

|Pr[D[Hybrid3] = 1]− Pr[D[Hybrid4] = 1]| ≤ negl(λ),

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid3,i for i ∈ [n]. We define

Hybrid3,i to be identical to the previous hybrid except that if Pi is honest, nmci is generated

as a non-malleable commitment of all zero string with tag tagi during the Honest Input

Encoding query. Note that Hybrid3,0 is identical to Hybrid3 and Hybrid3,n is identical to

Hybrid4. We show that for any two intermediate hybrids Hybrid3,i−1 and Hybrid3,i, it holds

that for any polynomial time distingusher D:

|Pr[D[Hybrid3,i−1] = 1]− Pr[D[Hybrid3,i] = 1]| ≤ negl(λ)

The only difference is how nmci is generated. If the advantage in distinguishing between the

two is more than 1
poly(λ)

for some polynomial poly, then, we can create a reduction R that

runs in time poly(T1) and breaks the security of the one-round CCA commitment scheme

with the same advantage. Here is how the reduction works:

• R submits tag∗ = tagi to the CCA challenger.

• It runs the adversary (A,D) as in Hybrid3,i−1.

• R generates nmci′ for all i′ ∈ [n] \ C and i′ 6= i as in Hybrid3,i−1.

• For all Pi′ , i
′ ∈ [n] \ C, R sends a τ -query to the CCA challenger, and uses the response

as the string τi′ given the input encoding for Pi′ .

• When R receives the Honest Input Encoding query from A for Pi with input xi,

it sends α0 = (xi, ri,SM, Ki, ri,com) and α1 = 0|xi,ri,SM,Ki,ri,com| to the challenger of the

non-malleable commitment. It gets a response nmc∗ which is a commitment with
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respect to the tag tagi. It it either a commitment of α0 or α1. The reduction uses this

as nmci when constructing Pi’s input encoding.

• Whenever Hybrid3,i−1 needs to extract a CCA commitment nmcj w.r.t. tagj and some

honest τi′ , R sends a query (τi′ , tagj, nmcj), and uses the response as the extracted

value.

• Finally it outputs whatever D outputs.

Note that if nmc∗ is a commitment of α0, then the view is identical as in Hybrid3,i, otherwise

it is as in Hybrid3,i−1. The reduction runs in time polynomial in T1, since excluding the

simulation for ZK rest of the steps are polynomial time. Further, the CCAVal algorithm is

never invoked for the challenge tag tagi. Thus if D distinguishes between the two cases with

probability 1
poly(λ)

, then, it must win in the CCA non-malleable commitment security game

with the same advantage.

This proves the claim.

Claim 18. Assume that the perfectly binding commitment scheme is hiding against adversaries

of size poly(T2), where T2 is the size of the CCAVal circuit. Then we have that

|Pr[D[Hybrid4] = 1]− Pr[D[Hybrid5] = 1]| ≤ negl(λ)

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid4,i for i ∈ [n]. We define

Hybrid4,i to be identical to the previous hybrid except that if Pi is honest, comi is generated

as a non-malleable commitment of all zero string during the Honest Input Encoding

query. Note that Hybrid4,0 is identical to Hybrid4 and Hybrid4,n is identical to Hybrid5. We

show that for any two intermediate hybrids Hybrid4,i−1 and Hybrid4,i, it holds that for any

polynomial time distingusher D:

|Pr[D[Hybrid4,i−1] = 1]− Pr[D[Hybrid4,i] = 1]| ≤ negl(λ)
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The only difference is how comi is generated. Assume there is an (A,D) where the distinguish-

ing advantage between the two is more than 1
poly(λ)

for some polynomial poly. Then we can

create a reduction R that runs in time poly(T2), and contradicts hiding of the commitment

scheme. First, fix the randomness of A and all randomness in Hybrid4,i−1 and Hybrid4,i except

for that used to generate Pi’s perfectly-binding commitment comi. There must be a way to

fix this randomness so that (A,D) still has advantage 1
poly(λ)

in distinguishing the two hybrids.

Note also that this fixes the input xi which A chooses for Pi, and thus fixes the committed

value in Hybrid4,i. The reduction then works as follows:

• It runs the adversary (A,D) as in Hybrid4,i−1.

• The reduction generates comj for all j ∈ [n] \ C and j 6= i as in Hybrid4,i−1.

• When the reduction receives an Honest Input Encoding request from A for Pi

with input xi, it sends α0 = (xi, ri,SM, Ki) and α1 = 0|xi,ri,SM,Ki| to the challenger of the

perfectly binding commitment. It gets a response com∗. It it either a commitment of

α0 or α1. The reduction uses this in constructing Pi’s input encoding

• The reduction runs the rest of the experiment exactly the same as Hybrid4,i−1.

Note that if com∗ is a commitment of α0, then the view is identical as in Hybrid4,i, otherwise

it is as in Hybrid4,i−1. The reduction runs in time polynomial in T2. Thus if D distinguishes

between the two cases with probability 1
poly(λ)

, then, it contradicts hiding of the perfectly

binding commitment scheme against adversaries of size poly(T2).

This proves the claim.

Claim 19. Assume that the PRF is secure against adversaries of size poly(T2), where T2 is

the size of the CCAVal circuit. Then we have that

|Pr[D[Hybrid5] = 1]− Pr[D[Hybrid6] = 1]| ≤ negl(λ)

for some negligible negl.
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Proof. We show this by constructing intermediate hybrids Hybrid5,i for i ∈ [n]. We define

Hybrid5,i to be identical to the previous hybrid except that if Pi is honest, then during any

the Honest Computation Encoding query for Pi the hybrid generates m̂i,2 and comi,m̂i,2

using true randomness instead of the PRF evaluations. Note that Hybrid5,0 is identical to

Hybrid5 and Hybrid5,n is identical to Hybrid6. We show that for any two intermediate hybrids

Hybrid5,i−1 and Hybrid5,i, it holds that for any polynomial time distinguisher D:

|Pr[D[Hybrid5,i−1] = 1]− Pr[D[Hybrid5,i] = 1]| ≤ negl(λ)

Assume there is an (A,D) where the distinguishing advantage between the two is more than

1
poly(λ)

for some polynomial poly. Then we can create a reduction R that runs in time poly(T2),

and contradicts security of the PRF. The reduction works as follows:

• It runs the adversary (A,D) as in Hybrid5,i−1.

• The reduction generates computation encodings for all j ∈ [n] \ C and j 6= i as in

Hybrid5,i−1.

• Whenever a Honest Computation Encoding query is made requesting Pi’s encoding,

R makes two queries to the PRF oracle at indices (f, I, 1) and (f, I, 2), receiving strings

r1 and r2. It then uses r1 as the randomness when computing m̂i,2, and uses r2 as the

randomness when computing comi,m̂i,2 .

• The reduction runs the rest of the experiment exactly the same as Hybrid5,i−1.

Note that if the oracle is supplying PRF values, then the view is identical as in Hybrid5,i. If

the oracle is supplying true random values, the view is as in Hybrid5,i−1. The reduction runs

in time polynomial in T2. Thus if D distinguishes between the two cases with probability

1
poly(λ)

, then, it contradicts security of the PRF against adversaries of size poly(T2).

This proves the claim.
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Claim 20. Assume that the perfectly binding commitment scheme is secure against adversaries

of size poly(T2), where T2 is the size of the CCAVal circuit. Then we have that

|Pr[D[Hybrid6] = 1]− Pr[D[Hybrid7] = 1]| ≤ negl(λ)

for some negligible negl.

Proof. We show this by constructing intermediate hybrids Hybrid6,i,r for i ∈ [n], r ∈ [q], where

q is a (polynomial) upper bound on the total number of Honest Computation Encoding

queries that A makes. We define Hybrid6,i,r to be identical to the previous hybrid except

that if Pi is honest, then during the r-th Honest Computation Encoding query for

Pi, the hybrid computes comi,m̂i,2 ← NICommit(0|m̂i,2|) whenever the equalities checked in

the steps for Hybrid1 do not hold. Note that Hybrid6,i,q = Hybrid6,i+1,0, Hybrid6,1,0 = Hybrid6,

and Hybrid6,n,q = Hybrid7. We show that for any two intermediate hybrids Hybrid6,i,r−1 and

Hybrid6,i,r, it holds that for any polynomial time distinguisher D:

|Pr[D[Hybrid6,i,r−1] = 1]− Pr[D[Hybrid6,i,r] = 1]| ≤ negl(λ)

Assume there is an (A,D) where the distinguishing advantage between the two is more

than 1
poly(λ)

for some polynomial poly. Then we can create a reduction R that runs in time

poly(T2), and contradicts security of the PRF. First, fix the randomness used in all rounds

before the r-th Honest Computation Encoding made to Pi. Let (f, I) be this r-th query.

In particular, this fixes whether or not the equalities check in the steps for Hybrid1 hold

w.r.t. Pi, f and I. It also fixes Pi’s semi-malicious MrNISC message m̂i,2 which it computes

when computing its r-th honest computation encoding. If we fix the randomness such that

the distinguishing advantage is maximized, then the distinguishing advantage must still be

polynomial in λ. This means that the equalities must not hold, otherwise the two hybrids

are identical.

The reduction R then works as follows. It plays a game with a commitment challenger,

which either gives a commitment to m̂i,2 or 0|m̂i,2| R does the following:
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• It runs the adversary (A,D) as in Hybrid6,i,r−1, with the randomness fixed as described

above.

• When A submits the r-th Honest Computation Encoding, R queries the challenger to

get com, which it then uses as comi,m̂i,2 when generating its response on behalf of Pi.

• R runs the rest of the experiment in the same way as Hybrid6,i,r−1.

Note that if the challenger sends R a commitment to m̂i,2, then the view is identical

to that in Hybrid6,i,r−1. If the challenger sends a commitment to 0|m̂i,2|, the view is as in

Hybrid6,i,r. The reduction runs in time polynomial in T2. Thus if D distinguishes between

the two cases with probability 1
poly(λ)

, then, it contradicts the hiding of the perfectly binding

commitment scheme against adversaries of size poly(T2).

This proves the claim.

Claim 21. Assuming semi-malicious security of the underlying semi-malicious protocol holds

against poly(T3)-time adversaries, where T3 is the size of the NICommit commitment scheme

extractor,

|Pr[D[Hybrid7] = 1]− Pr[D[Hybrid8] = 1]| ≤ negl(λ).

Proof. Assume for the sake of contradiction that there exists an adversary (A,D) which

distinguishes between the two hybrids with non-negligible probability. We build a reduction

(R,D) to the semi-malicious security of the underlying semi-malicious MrNISC protocol. R

runs in time p(T3), and behaves as follows. First, R is initialized with 1λ and z; it then

invokes A with the same 1λ and z. When A chooses M and H, R forwards these to the

challenger. R then interacts with A and the challenger as follows:

1. Whenever A submits an Honest Input Encoding query asking for honest party Pi’s

input encoding with respect to input xi, R sends the same Honest Input Encoding
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query for Pi to the semimalicious challenger. It then uses the response m̂i,1 when

computing Pi’s input encoding for A.

2. Whenever A submits a Corrupt Input Encoding query on behalf of Pj, j ∈ C,

R extracts comj to obtain (x̃j, r̃j,SM,1, K̃j). If Pj’s m̂j,1 is honestly generated, then R

submits m̂j,1 to the challenger as Pj ’s message, along with the explanation (j, x̃j, rj,SM,1).

Otherwise, R submits (j,⊥).

3. Whenever A submits an Honest Computation Encoding query asking for honest

party Pi’s encoding w.r.t f and I, if the equalities checked in Hybrid1 hold, R sends

the same Honest Computation Encoding query to the challenger. It uses the

(semi-malicious) response m̂i,2 when constructing Pi’s (malicious) response to A’s query.

If the checks do not hold, R responds to A without querying the challenger.

4. Whenever A submits a Corrupt Computation Encoding on behalf of corrupted

party Pj w.r.t. f and I, if R already submitted (j,⊥) as Pj’s input encoding, then R

submits the query (j, f, I,⊥). Otherwise, R performs the “special abort” check (steps 1

to 3 in the simulator description) and outputs the special abort symbol ⊥∗ if the check

fails. If the check passes, R checks that

(a) All ZK2 messages sent by Pj as part of its computation encoding verify correctly.

(b) Pj’s WE decrypts correctly. (R can do this by generating computation encodings

“in the head” for any honest parties Pi who have not already sent their computation

encodings.)

If so, R forwards m̂j,2 along with the witness (x̃j, r̃j,SM,1, K̃j) to the challenger. Other-

wise, R again submits the query (j, f, I,⊥).

5. At the end of the experiment, R outputs the output of A.

If the challenger enacts the real-world experiment for the semi-malicious protocol, then

the output of R, the transcript τ of queries made by A along with R’s responses, and the
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list honest outputs are identical to the view of A along with τ in the output of Hybrid7. If

the challenger enacts the ideal-world game, then the output of R, τ , and honest outputs

are identical to A’s view and τ in the output of Hybrid8. Thus by assumption we have

a distinguisher (R,D) which contradicts security of the semi-malicious MrNISC against

adversaries running in time poly(T3).
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