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ABSTRACT

We develop continuous time Markov models for a pair of biophysical problems. The
first problem is the kinetic mechanism of protein folding. We develop a model that aims
to explain the nine-order-of-magnitude dependence of folding rates on protein size and
the predominance of two-state folding kinetics. In our model, secondary structures,
which are intrinsically unstable in isolation, are stabilized and directed towards the
native state by cooperative interactions with neighboring secondary structures along the
folding routes. The model fits folding-rate data on a set of 82 proteins and can be applied
to estimate the distribution of intrinsic folding rates for proteins in the proteomes of cells.
The second problem is the analysis of fluorescent protein blinking in super-resolution
microscopy. We develop an aggregated continuous time Markov model for quantifying
the fluorescent proteins in a diffraction-limited volume. Using a maximum-likelihood
approach, we apply the model to study the in vitro photophysics of the protein Dendra2
and to quantify the number of FliM molecules in bacterial flagellar motors. The end goal
of the method is to count proteins in molecular assemblies with single molecule

precision.
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SyNoOPSIs

This thesis is organized in the following way. Chapters 1 and 3 serve as introductions to
the research problems addressed by chapters 2 and 4, which contain original work.
Chapter 1 reviews the protein folding kinetics literature, both folding experiments and
models. Chapter 2 contains a manuscript which will be submitted to PNAS that describes
a model of the chain length dependence of folding kinetics and an application of the
model to the folding kinetics of proteomes. Chapter 3 reviews aggregated Markov
models for ion channel gating dynamics. Finally, chapter 4 contains a manuscript in
preparation for publication that describes how the methods developed in the ion channel
literature can be adapted to the analysis of fluorescent protein time traces collected by

super-resolution microscopy for molecular counting in live cells.



Protein folding kinetics

Proteins are linear polymer chains of amino acids. Many proteins spontaneously fold
into three-dimensional structures, and Anfinsen discovered that all the information
required for folding is encoded in the amino acid sequence.' Ever since the first protein
structures were solved in the late 1950s,%? the folding field has sought to understand how
amino acid sequences encode three-dimensional structures.

The focus of folding research over the past 50 years has been small globular proteins
that are amenable to in vitro refolding experiments, atomistic simulations, and theoretical
models. This chapter will focus on that literature, but it’s important to also mention some

of the additional complexities involved in in vivo folding, many of which have yet to be



fully elucidated.

¢ Over 60% of prokaryotic proteins and over 70% of eukaryotic proteins consist of

multiple domains.*’

* A significant fraction of proteomes are intrinsically disordered, and disorder

appears to be functionally important in many cases.®

* Many proteins are membrane-bound. They require a membrane environment to

fold correctly, and they are critical drug targets.”®

* Chaperones are critical for proper folding in the crowded environment of living

9,10

cells,”™ and the failure of proteostatic mechanisms can lead to protein aggregates

that are implicated in many diseases. '™

Our understanding of folding in the cell is certain to develop in the next 50 years, thanks

in part to the advances in basic folding physics reviewed in this chapter.

1.1 DRIVING FORCES, PATHWAYS, AND FUNNELS

For many small proteins, folding is a thermodynamically two-state process, *

represented by U = I, where U is the unfolded state and F' is the folded state. Under
folding conditions, the folded state is a global free energy minimum for the protein chain
and its solvent. The primary (non-covalent) molecular driving forces'>" (Fig. 1.1.1)

involved in folding are:

1. the hydrophobic effect. The hydrophobic effect refers to the burial of nonpolar
amino acids in the protein core. Near 25°C, this burial process is favorable because
it leads to an increase in solvent entropy. The hydrophobic effect is the dominant

driving force of folding.

2. hydrogen bonds. Hydrogen bonding is a polar interaction, primarily between

amide groups in the protein backbone. Proteins form regular local structures,

3



called secondary structures, to satisfy steric constraints and to ensure that all
hydrogen bonds are satisfied in the folded state. In the unfolded state, hydrogen
bonds are satisfied by interactions with water, so failing to make a hydrogen bond

in the folded state would result in a significant energetic penalty.

3. salt bridges. Salt bridges are electrostatic and hydrogen bonding interactions
between positive (Lys, Arg, His) and negative (Asp, Glu) amino acid side chains.
Some of the earliest models of protein stability in the 1930s predicted that salt
bridges would be the main driving force of folding, but that view was overturned

by further work on hydrophobic interactions. '

4. conformational entropy. The conformational entropy of the protein chain is the

main force that opposes folding.

The balance between these forces leads to a net stability of roughly 5-15 kcal/mol with a
weak dependence on protein length.'®

Folding is a disorder-to-order transition, in which a heterogeneous ensemble of
unfolded conformations converges to a unique folded structure. It’s more similar to a
phase transition, like liquid—solid, than it is to a simple chemical reaction.? Folding
kinetics is about how proteins accomplish this disorder-to-order transition within a
biologically-relevant timescale. A key question is "how do proteins fold so quickly?” This

issue was clearly articulated by Cyrus Levinthal*!

who posed the problem in the
following way: if proteins folded by randomly sampling conformational space, then
folding would require timescales on the order of the age of the universe. If we estimate
that there are z = 3 rotational isomers around each peptide bond, and if there are

N = 100 peptide bonds in a chain, then the number of conformations the protein must
search is 2z’ & 10°°. Even assuming a rapid sampling rate, it would take the age of the

universe to randomly search through such a vast space of conformations. Instead,

proteins fold on biological timescales, so the search for the folded state must be guided,
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Figure 1.1.1: Driving forces in protein folding. The methyl groups represent the hydrophobic
effect. The CO and N H groups represent the formation of backbone hydrogen bonds. The Asp
(red) and Lys (blue) side chains represent salt bridges. Conformational entropy of the protein
chain is the primary force that opposes these stabilizing forces. Adapted by permission from
Macmillan Publishers Ltd: Nature Structural and Molecular Biology *°, copyright (2009). See page
98 for license information.

not totally random.

Inspired by Levinthal, early models were based on the idea that proteins folded
through a pathway of intermediate conformations that guided the protein chain to the
folded state, and early kinetics experiments focused on searching for and characterizing
these intermediates.”** However, ideas about pathways are macroscopic ideas based on
macroscopic experiments; they don’t explain the microscopic physics of folding. They
don’t explain how an ensemble of unfolded chains, each following a separate trajectory
through conformational space, can all converge to the same folded structure. The
microscopic perspective was addressed by the “new view” of folding.*

The aim of the new view is to connect the microscopics of folding with macroscopic
observations. It’s rooted in statistical mechanical models, and it’s defined in terms of

folding funnels and energy landscapes, rather than pathways.*?? The idea of an energy



landscape is a very general one, not specific to folding.?** It’s simply a description of the
free energy of a system with respect to its degrees of freedom. In the case of folding, the
energy landscape is the free energy of the protein and its solvent with respect to the
degrees of freedom of the protein chain, often represented by the backbone dihedral
angles. The folding funnel idea is that, in order to overcome Levinthal’s Paradox, the
energy landscape should have a shape that guides the vast ensemble of unfolded
conformations towards the folded state.?! Additionally, the energy landscape should be
smooth with no major kinetic traps along the way (minimal frustration).>**

A common misconception in the literature is that the classical pathway view is
inconsistent with or contradictory to the new view of folding (in Krishna & Englander,®
for example). This is incorrect. The two views operate at different levels of resolution.
The classical view is about what we observe in bulk-averaged experiments; the new view
is about how the microscopic physics of folding gives rise to those bulk-averaged
observations. Energy landscapes can certainly be shaped in such a way that they give rise
to folding behavior that appears pathway-like on the macroscopic level. To say that one
view is right and the other view is wrong would be akin to saying this: reading the
temperature of a glass of water is right, but a model for how a macroscopic property like
temperature arises from the wiggling and jiggling of many water molecules on the
atomic scale is wrong. They are both valid. The one you choose simply depends on your
goal: a phenomenological model of macroscopic behavior or a microscopic model that
explains where the macroscopic behavior comes from. This is precisely the goal of
folding kinetics research: how do we connect macroscopic data to the microscopic
trajectories of individual proteins and build a general understanding of folding that is

consistent with both?



1.2 How DO WE OBSERVE FOLDING KINETICS?

1.2.1 RELAXATION EXPERIMENTS

The most common folding kinetics experiments perturb the folding environment and
then monitor the relaxation back to equilibrium.* The most common perturbations are
changes in temperature, pH, or concentrations of chemical denaturants, like urea or
GdmCl. The perturbations can be introduced in a variety of ways. Some of the most
common ways are rapid mixing, lasers, and electrostatic discharges. Another method for
perturbing the folding equilibrium is force, introduced by atomic force microscopy or
optical tweezers.*® The relaxation to equilibrium is measured by optical methods, such as
circular dichroism (CD), fluorescence, or infrared (IR) spectroscopy. CD and IR report on
changes in secondary structure, whereas fluorescence is primarily used to measure
changes in the local environment of tryptophan residues—burial in the protein core leads
to a change in fluorescence. The output of such experiments is signal versus time, which

is typically well fit by a function of one or two exponentials (Fig. 1.2.1A).
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Figure 1.2.1: (A) relaxation of an optical signal over time from a refolding experiment, simu-
lated data. The burst phase is a rapid change in signal that occurs during the dead time of the
mixing instrument; (B) a chevron plot from a series of refolding mearsurements at various de-
naturant concentrations, based on CTL9 parameters from Maxwell et al.*’



Folding and unfolding rates in water are determined by extrapolating observed
relaxation rates to zero denaturant. This type of experiment is summarized in a chevron
plot, so named because of the characteristic V-shape of the data (Fig. 1.2.1B). On the left
side of the plot (low denaturant), the observed relaxation rate (k) is dominated by the
folding rate. On the right side of the plot (high denaturant), ks is dominated by the
unfolding rate. Extrapolating these two linear regions of the curve back to zero
denaturant gives the folding rate and unfolding rate in water. In some cases, non-linear
chevrons are observed (rollover), and this is usually attributed to the presence of folding

intermediates.

1.2.2 TPHI-VALUE ANALYSIS

Fersht pioneered the use of protein mutagenesis to study folding.**** The common name
for mutational studies of folding is “phi-value analysis”. The basic experiment is to make
a minimally disruptive point mutation and characterize the variant protein using the
same relaxation-type experiments used to study the wild-type protein. Phi (equation 1.1)
is a way of quantifying the folding behavior of the variant protein relative to the
wild-type protein. It represents the change in transition state free energy over the change
in net protein stability. The change in transition state free energy (the numerator) is
computed from the relative folding rates of the wild type and variant proteins, and the
change in net stability (the denominator) is computed from equilibrium denaturation

experiments.

_AAGH

*= AAG,

(1.1)

Since the original Fersht studies, phi-values have been collected for many other

43-54

proteins, and they’ve been applied to protein design problems™ and used as

benchmarks for folding kinetics models.”*™ Phi is inherently an energetic quantity, but it



has often been interpreted in structural terms. A phi-value of 0 is interpreted as
disruption of interactions that are present in the folded state, but not in the transition
state. A phi-value of 1 means that the disrupted interactions were present in both the
folded state and the transition state. Most phi-values are fractional, which is attributed to
partial interactions or interactions present in only some structures in the transition state

ensemble. The correct structural interpretation of phi-values is still an open question. ®*¢!

1.2.3 HYDROGEN EXCHANGE EXPERIMENTS

Another major branch of folding kinetics experiments is hydrogen exchange
(HX).26°%%71 Amide hydrogens in the protein backbone exchange naturally with
hydrogens in water. H-bonded structures don’t exchange with solvent, so HX provides a
residue-by-residue readout on structure formation. It’s possible to control the rate of
exchange of unprotected amides by adjusting pH and temperature.

One type of experiment is pulse-labeling.*##%7 It starts with an unfolded protein in
D50, fully exchanged with deuterium. The sample is rapidly diluted into H>O at low
denaturant. Refolding is allowed to proceed for a short time, and then the sample is
briefly mixed into high pH, which promotes rapid HX. This HX pulse selectively labels
unstructured regions of the protein backbone. The exchange process is then halted by
transfer into slow HX conditions and refolding goes to completion. The slow HX
conditions preserve the labeling from the high pH pulse so that they can be analyzed by
NMR 662766 or mass spectrometry (MS).”>7

Another type of HX experiment is native state hydrogen exchange (NHX).%7° These
experiments are done at equilibrium as a function of denaturant, and they reveal local
unfolding transitions in addition to the global unfolding transition of the entire protein.
These local regions of structure that undergo cooperative subglobal unfolding transitions

have been named “foldons”. %6677



1.2.4 SINGLE MOLECULE METHODS

The recent development of single molecule methods is expanding our understanding of
folding.?*”*7® One approach is single molecule FRET (smFRET), which allows distances
in the 2 to 10 nm range to be probed.”*”””® Conformational changes in the protein result
in measurable changes in energy transfer between the donor and acceptor FRET probes.
One recent success of smFRET was a study that measured the mean transition path times
of two small proteins.”® Another single molecule approach is to apply force to single
molecules through AFM” or optical tweezers.**®" AFM can apply high forces (up to nN),
but it has a high spring constant that makes it less suitable for observing refolding. On
the other hand, optical traps are well suited to refolding studies because they are
sensitive in the low force regime (below 50 pN).”® A recent optical tweezer study on the
two-domain protein calmodulin discovered a complex folding network with at least six
states.® Another recent study found that src SH3 is more resistant to force applied along
the axis of its terminal /3-strand, compared to force applied perpendicular the strand.®!
Optical tweezers have also been used to apply force to circular permutants® and molten
globules.® It’s clear that both smFRET and force-based single molecule methods are
providing new avenues for probing protein folding, and they will likely be the driving
force behind advances in the field for years to come.

In summary, folding has been studied by a large community of investigators using an
extensive set of experimental methods and tools. We’ve reviewed some of the most
important methods above. Now, we turn our attention to the similarly diverse and
wide-ranging efforts to interpret and understand experimental data through models of

folding kinetics.
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1.3 MODELS OF FOLDING KINETICS

This section will be a broad survey of models of folding kinetics. We start with the most
macroscopic classes of models: descriptive models, mass action models, and linear
regression models. Then, we zoom down to the most microscopic folding models, the
all-atom models. Finally, we discuss models of folding at the coarse-grained level. Some
coarse-grained models are lattice-based or use a simplified off-lattice chain, while others
are more abstract and do away with an explicit chain representation entirely (we call

these “simple models”). We shall discuss both types.

1.3.1 DESCRIPTIVE MODELS

A lot of ideas about folding mechanisms in the literature are descriptive models.
Examples include nucleation-condensation,*® hydrophobic collapse,® the framework
model, ®?” and the Foldon model. %770 Another model is diffusion-collision; it’s
different than the other descriptive models discussed here because it was proposed as
both a description of folding and as a quantitative model.** We’ll return to it in the
discussion of simple models below. Descriptive models help us make sense of
experimental results in a qualitative way, but alone they can’t help us make quantitative

predictions about future experiments.

1.3.2 MAss ACTION MODELS

The kinetic law of mass action relates reaction rates of elementary reactions to reactant
concentrations and stoichiometries.® The simplest mass action model of folding is the
two-state reversible reaction between U and [. For some proteins, the data is better fit by
a sum of exponentials. In these cases, the corresponding mass action models include
intermediate [ states (Fig. 1.3.1). The intermediate states can be on-pathway or

off-pathway, as in the case of proline cis-trans isomerization.”****?’ States with more

11



than three states have also been proposed.****2 Mass action models tell us how many
macroscopic states are present, but they can’t provide microscopic insights. They can tell
us that U and [ and sometimes [ exist, but they can't tell us the structures, the
underlying physics, nor how folding is affected by solution conditions like salt, pH, and

temperature.

kr
(A) U‘k— F

kit

® U = ki Iikﬁ:F

(C) I<— U= F

ui

Figure 1.3.1: (A) two-state kinetics (B) three-state kinetics with an “on-pathway” intermediate,
(C) three-state-kinetics with an "off-pathway” intermediate.

1.3.3 LINEAR REGRESSION MODELS

A key insight in folding kinetics was the observation by Plaxco, Simons, and Baker that
folding rates are correlated with contact order, a measure of protein topology.”* This
result inspired a wave of linear statistical models that fit protein metrics, like topology,
chain length, surface area, and volume to folding rate data.”*'"” One of the major insights
has been that chain length is a better predictor than topology alone, and chain length
combined with topology is better still.”**® A primary concern with these statistical
models is overfitting. Metrics like R? will only improve with the addition of more
parameters, which is why they must be paired with an F-test or an information criterion.
Statistical curve fit models are useful hypothesis generators, but alone they don't tell us

about the microscopic physics of folding.
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1.3.4 ALL-ATOM MODELS

Unlike the classes of models discussed above, atomistic models are very detailed at the
microscopic level. Atomic interactions are encoded in an energy function, also called a
force field or a potential. Biomolecular simulations are based on molecular mechanics
(MM) force fields, such as CHARMM, AMBER, and OPLS. %115 MM force fields
represent atoms as rigid spheres connected by springs. The springs capture the
stretching, bending, and torsional modes of covalently bonded structures. There are also
non-bonded terms in the force field that capture coulombic interactions and van der
Waals forces. Hydrogen bonds are not encoded by specific energy terms; they arise due
to the electrostatic interactions. Water is an important part of biology, and so MM force
fields always need to be paired with accurate water models.''® Water can be modeled
explicitly with individual water molecules added to the simulation box, or implicitly
with an energy function that mimics the effects of water.''>'” Explicit water models are
more accurate, but they are also more expensive to compute. On the other hand, implicit
models are faster to compute, but they lack the accuracy of explicit water.

Molecular Dynamics (MD) simulations take a force field and the atomic coordinates of
molecules and advance them forward in time by numerically integrating Newton’s
equations of motion.''® In principle, if we have an accurate energy function, all-atom MD
simulations have the power to connect macroscopic folding observables with detailed
molecular mechanisms. However, in practice, we run into trouble because atomistic
simulations are expensive to compute. The reason is that integrating Newton’s equations
requires a step size on par with the fastest timescale in the system. In the case of
biomolecules, bond vibrations on the femtosecond timescale are the fastest motions, so a
time step of 1 or 2 femtoseconds is necessary to ensure numerical stability of the
calculation. Another challenge is that the force field calculation at each time step requires
substantial computation: roughly one billion arithmetic operations for a system with one

hundred thousand atoms. "’
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Despite these challenges, MD simulations have been developing at a faster than
Moore’s law pace in recent years.'"” In 2000, Duan & Kollman completed the first
microsecond simulation.'® They simulated the villin headpiece from an extended
conformation to a partially folded one. Since then, the development of crowd-sourced
computational efforts, like Folding@Home,'*' and powerful compute clusters-like IBM’s
Blue Gene'* early on and more recently the Shaw group’s ANTON cluster > '*-have
continually pushed the boundaries of simulation since the Duan & Kollman study:.
Impressively, there are now several reports of millisecond folding simulations, a three
order-of-magnitude jump in simulation timescale in only a decade.'®™

All-atom simulations are challenging to interpret. The raw data they produce is quite
different from the raw data that experimentalists gather: atomic coordinates as a function
of time rather than a bulk-averaged optical signal or a patterns of amide HX rates. An
important goal in the MD simulation field has been to connect all-atom trajectories to
experimental data. Markov State Models (MSMs) have been developed in recent years
with this goal in mind.'#~'3 MSMs are methods for clustering the atomic structures
visited by large data sets of short trajectories into a mesoscopic description of the
dynamics. The end result of MSM analysis is a set of discrete states with rates that govern
hops between kinetically connected states. As an aside, the idea of a model or process
being Markovian is a very general concept. It refers to the fact that the probablility of
transitioning from one state to another depends only on the current state, not on
previously occupied states.'® Many of the coarse-grained models discussed below are

also based on Markovian assumptions.

1.3.5 COARSE-GRAINED POLYMER MODELS

Coarse-grained polymer models use simplified energy functions and simplified chain
representations to circumvent the sampling challenges associated with all-atom models.

Early on, lattice models with native-centric energy functions (Go potentials) were

14



developed.'* Later, in the 80s and early 90s, hydrophobic-polar (HP) energy functions
were developed, in which chain residues are either hydrophobic or polar."*”%* HP
models mimic the hydrophobic burial process through favorable HH contacts. Lattice
models lack the detailed microscopic physics of all-atom models, but they have some of
the key ingredients in folding: chain connectivity, flexibility, excluded volume, and
sequence-dependent interactions. For that reason and for reasons of computational
efficiency, lattice models have been critical for developing an understanding of the
general principles of folding thermodynamics and kinetics.3*'%

Off-lattice models with native-centric potentials have also been the focus of numerous
studies. "™ In the literature, these are often referred to as “Go6 models”. Interestingly,
even though G6 models are native-centric, they do not correctly capture the cooperativity
of folding (quantified by the ratio of the van’t Hoff enthalpy and the calorimetric
enthalpy, AH,y /AH.,). Another problem is that experimental folding rates span nine
orders of magnitude, but G6 models span only two or three orders. However, Kaya &
Chan found that native-centric energy functions augmented with desolvation barriers
can better reproduce the many orders of magnitude variation observed in folding
rates.'*” Also, a recent statistical mechanical model of helix-bundle folding found that
nonlinear coupling between tertiary interactions and helical interactions can predict

correct cooperativities. '*°

1.3.6 SIMPLE MODELS

We use the term ”simple model” here to refer to models which contain microscopic
physics, but do not include an explicit representation of the protein chain. Simple models
are more abstract then their chain-based counterparts, but they are useful companions to
more detailed models. They can be used to help benchmark and guide the development
of more detailed models. A good example comes from helix-coil theory: Zimm-Bragg '

and Lifson-Roig 152 models not only provide an intuitive picture of helix-coil transitions,
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but they are also useful for interpreting experimental data '

and for evaluating the
performance of all-atom force fields in predicting the helicities of peptides.'>* The beauty
of ZB and LR models is that, even though they lack an explicit representation of chain
dynamics and molecular interactions, they help us understand helix-coil transitions in a
quantitative way, in terms of a small number of physically-motivated parameters.
Inspired by the success of models like Zimm-Bragg theory, a number of investigators
have tried to build simple models for protein folding.

One of the earliest simple models of folding was the aforementioned
diffusion-collision model (DC) model of Weaver and Karplus.**® The DC model
represents folding as the diffusion of spherical microdomains connected by flexible
linkers, which collide and coalesce. The probability of collision is determined by
geometric parameters that describe the sizes of the folding units, and the probability of a
pair of folding units sticking together upon collision is determined by helical
propensities. The DC model has been successful in predicting the folding rates of several
small proteins to within the correct order of magnitude, > but it’s reliance on
geometric parameters and helical propensities, which aren’t always known, has
prevented it from being applied more broadly.

Zwanzig, Szabo, and Bagchi (ZSB) pioneered the development of Ising-like models
during the 90’s.">'%° The original ZSB model was focused on solving Levinthal’s
Paradox, and they found that a small energy bias towards native-like interactions, of the
order of a few kT, can reduce the folding time from an astronomical timescale to a
biological timescale. Extensions of the ZSB model sought more detailed representations
of the energetics of folding based on (1) contact formation,*'6-16* (2) burial of surface

2629 or (3) loop entropy.**'¢> These models have been used to

area and Rosetta scoring,
predict folding rates and also phi-values. More recently, Mufioz and collaboraters
developed a mean-field 1D free energy surface model, '**'%” based on a continuous

analog of the Zwanzig nativeness reaction coordinate. Their model partitions the
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energetics of folding into local and non-local components. They used their model to
predict folding and unfolding rates based on structural class and chain length.

DC and Ising-like models are similar in the sense that they both have folding units
(residues or secondary structures) that are represented in a binary way: each unit can be
either folded or unfolded (originally described as “correct” or “incorrect” by Zwanzig et
al.’). The kinetic representations are also similar: both models are described by
Markovian processes on a finite number of discrete states. But this is not the only way
that folding kinetics has been modeled. The aforementioned Mufioz mean-field model is
one example. Another example, is the model of Bicout and Szabo. They represent folding
as the diffusion of a particle within a sphere.'®® The center of the sphere represents the
folded state, and the particle’s search for the center of the sphere mirrors a protein’s
search for its folded state. The search is guided by a spherically symmetric potential that
favors the folded state.

Another alternative approach is to study Gaussian chain models that have analytical
solutions. One example is the topomer search model of Makarov and Plaxco.'® In their
model, the rate-limiting step to folding is the Gaussian chain’s search for a native-like
conformer, from which native contacts can rapidly nucleate. The topomer search model
has been called into question, though, by Wallin & Chan who found that an unbiased
search for the native topomer would require timescales that are much longer than the
actual timescales of folding, essentially the Levinthal problem.!”® In a newer Gaussian
chain model, Rustad and Ghosh found that adding springs between native contacts in the
transition state leads to folding rate predictions that agree well with experimental folding
rates. %

A final class of simple models are those whose folding units are residue-level contacts.
A model by Weikl and Dill describes folding in terms of clusters of native contacts on a
contact map.'”*”2 They applied their contact model to phi-values® and circular

permutant proteins.'” A contact-based model published last year from Lane & Pande is
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notable for its inclusion of non-native contacts.'”* They found hub-like behavior and

folding rates that scale linearly with chain length.

1.4 SuUMMARY AND OUTLOOK

Ultimately, we want models that can be compared directly with experimental data, like
phi-values, chevron plots, and HX patterns. But we also want microscopic insights about
folding. To accomplish both of these goals, we will need a multi-scale perspective, a
toolbox of models that spans the length and timescales of folding. Atomistic models tell
us about the microscopic details, but they don’t directly give us macroscopic insights.
Mass action models give us a macroscopic fit to data, but they lack microscopic insights.
Connecting the macro world to the micro world is a long-standing challenge that
continues to this day.

What we're still missing is a general folding mechanism. A general folding mechanism
would be a universal statement about how proteins fold that accounts for their speed, the
dependence of speed on protein length, and the dependence of speed on environmental
variables, such as temperature and denaturants. It would be a comparative concept that
explains why one protein folds differently than another. It would explain differences and
similarities of the folding routes and rates of different proteins in advance of
experimental data. It would be quantitative, rather than qualitative. It wouldn't just be
about a specific protein, it would tell us something about whole proteomes.

In the next chapter, we present a simple model of the chain length dependence of
folding, which builds on the Zwanzig model discussed above. ™'’ The model is defined
in terms of secondary structures that are intrinsically unstable in isolation, but are
stabilized and directed towards the folded state by cooperative interactions with their
neighbors. The model is simple enough that it can be applied to efforts to characterize

whole proteomes.
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The Staircase-Landscape mechanism of the
folding kinetics of proteomes

This chapter contains a manuscript in preparation for publication.

ABSTRACT

We develop a model for the kinetic mechanism of protein folding. It aims to explain the
nine-order-of-magnitude dependence of folding rates on protein size and the
predominance of two-state folding kinetics. In our model, secondary structures, which
are intrinsically unstable in isolation, are stabilized and directed towards the native state
by cooperative interactions with neighboring secondary structures along the folding
routes. The model energy landscape is shaped like an Up-Staircase with a cliff at the end,
so the dynamics has nested transition states: each higher-order structure is a transition state
for the preceding structure. The model fits folding-rate data on a set of 93 proteins. A
main endpoint of this work is to estimate the distribution of intrinsic folding rates for
proteins in the proteomes of cells. The resultant distribution shows that most proteins in

E coli fold over a time scale of 10 msec - 10 sec.
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2.1 INTRODUCTION

There has been much interest in the kinetic mechanism of how proteins fold. One
motivation has been that if the kinetic routes of folding were known, the resultant
insights might inform algorithms that aim to predict protein structures from their amino
acid sequences, possibly speeding up drug discovery. Our interest here, however, is
based on a different motivation. We want to be able to compute folding rates across
whole proteomes of cells, for the purpose of understanding how folding and aggregation
equilibria and kinetics mediate cellular health and diseases. By mechanism, we mean a
general description of the kinetic process of folding across different proteins, not just the
sequences of folding events in any one particular protein. We want a physical model that
accounts for why small proteins tend to fold so much faster than larger proteins do. An
ultimate folding mechanism should explain both the universal features of how folding
rates depend on protein size and also the particular features of how folding rates depend
on amino acid sequences. The present work is aimed only at the former.

Our modeling draws its basic insights from a large body of prior work. First, it is
known that proteins fold kinetically through the rapid formation and assembly of

2768 108788175176 Gecond, Plaxco et al, had the pioneering insight

secondary structures.
that a protein’s folding rate depends on properties that are evident from its native
structure.” They found that helical proteins tend to fold faster than [3-sheet proteins, and
in general, that local structures tend to form faster than nonlocal ones. Such folding rate

data has also been fitted by a number of other statistical models, 94-107

particularly
showing a strong dependence of folding rate on a protein’s chain length.”***'”” In a more
detailed discussion in SI, we describe the current consensus ! that folding rates are now
better correlated with a protein’s chain length L and with absolute contact order (AC'O)

than they are with other metrics, like relative contact order (ZCO), that only consider the

topology of a protein’s native structure (Fig. S1, Table S1). Third, Zwanzig, Szabo &
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Bagchi (ZSB) pioneered the development of a simple Ising-like model showing how the
funnel shapes of energy landscapes lead to fast folding.*!%* Mufioz, Eaton, Baker,
Finkelstein, and others*6->%162-165167178-181 haye further developed and applied the ZSB
approach, adding more detailed residue-level information in the form of contacts,
hydrogen bonds, buried surface area, and loop entropies. Fourth, previous work has
shown that equilibrium protein folding cooperativities can be explained as a combination
of weak propensities of peptide chains to form secondary structures and stronger
propensities of tertiary interactions to stabilize the secondary structures. ™

Here, we combine the threads above in order to explain the experimental folding rates
across proteins in terms of secondary structure assembly. Our model is an adaptation of
Zwanzig's Ising-like model, ™% but we model folding at the secondary structure level,
rather the amino acid level. Like Karplus and Weaver’s diffusion-collision
model, ¥ 157138 our model allows for marginally stable secondary structures, but like the
original Zwanzig model, our aim has been to keep the physics as simple as possible. Our
model does not require prior knowledge of native topologies, structural propensities, or

native geometric details.

2.2 MobDEL

We express a protein’s folding equilibrium and kinetics adapted from the Ising-like
approach of Zwanzig."™'® We represent a chain of N secondary structures as a 1-D
string of symbols

fffuffuufuffff...

where the f’s indicate that a particular secondary structure is in its folded native-like
conformation, and the u’s indicate that a particular secondary structure is in an unfolded
non-native conformation. Let c represent the number of f’s or “correct” secondary

structures in the string. ¢ = N represents the folded native state; c = N — 1 describes the
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state in which the protein is native in all but one of its secondary structures, so there is
one u somewhere in the string; and ¢ = 0 means that the molecule has no native pieces of
structure. c represents a simple 1-D “reaction coordinate” for folding. In this model,
secondary structures form concomitantly with tertiary structures. When a secondary
structure switches from u — £, it forms tertiary interactions with any other f’s already in
place. We do not restrict the growth of folded segments to one or two contiguous regions
(the single or double sequence approximation®). For example, after the first secondary
structure forms at one of /V locations in the protein, the next secondary structure may
form at any of the other N — 1 locations (Fig. 2.3.2).

8r
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Figure 2.2.1: Nearest-neighbors of a secondary structure in a native protein vs. the total
number of secondary structures in that protein. A pair of secondary structures was taken
to be neighbors if they had at least 1 residue-residue contact. Residue contacts were determined
from a centroid for each residue with a cutoff of 8 A. The circles represent mean values, the error
bars represent standard deviations. The plot is based on the 93 proteins in our data set.

2.2.1 THERMODYNAMICS OF THE MODEL

The Boltzmann weight of any protein configuration having ¢ correct secondary structures

is given by

N!
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The combinatorial factor in equation 2.1 counts the number of ways that c f'sand N — ¢
u’s can be arranged in a 1-D string. All the possible combinations for /N = 4 are shown in
Fig. 2.3.2. K is the equilibrium constant for forming a secondary structure element from
an unformed chain and K3 is the equilibrium constant for forming a bundle and
corresponding contacts between two isolated secondary structures. The microscopic
basis for Ky is the same as in traditional helix-coil theory: hydrogen bonds stabilize
secondary structures and local chain entropy opposes them. Similarly K5 arises from
contact interactions among pairs of secondary structures, and includes hydrophobic,
steric and hydrogen bonding interactions. As we discuss below, we find that the best fits
to data are when Ky < 1 (it is net unfavorable to form isolated secondary structures), and
when K3 > 1 (tertiary interactions are net favorable). The tertiary interactions help
stabilize the secondary structures.

We count each pair of interacting secondary structures as one tertiary interaction, and
n. represents the total number of tertiary interactions. It is defined as a discrete function

of c:

0 ifc=0,1

1 ifc=2
Ne =

3 ifc=3

4c —10 ife >3

\

This definition of n. derives from observing in native protein structures that the
number of nearest neighbors per secondary structure grows with protein size and
saturates at a maximum of about 4-5; see Fig. 2.2.1.

n. is defined by the combinatorics of nearest-neighbor interactions. When there are
zero or one secondary structures (¢ = 0 or 1), there can be no tertiary interactions. When

there are two secondary structures (¢ = 2), they have n. = 1 tertiary interaction between
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them. When there are three secondary structures (¢ = 3), say A, B and C, there are
n. = 3 pairwise tertiary interactions between them, AB, AC' and BC'. For ¢ > 3, each
additional secondary structure gains four tertiary neighbor interactions upon folding
because this is approximately the maximum that is sterically possible; see Fig. 2.2.1.

The equilibrium probability that a protein has ¢ correct secondary structures is given

by
w(e) w(e)
Deg(c) = N N (2.2)
D i—o w(i) Q
@ is the partition function, the sum of the Boltzmann weights of all states.
N N
Q=1+NKy+ (2>K22K3+ <3)K§K§+...
+ NKY 'KV + KY KN K (2.3)

The weight 1 accounts for the fully unfolded protein, the weight /N K5 accounts for the
formation of any of the N individual secondary structures, the term N K5 ' K3~
accounts for the formation of all but one of the secondary structures, and the weight

K3 K3~ K accounts for the fully folded protein. We split the total partition function into

unfolded and folded partition functions:

Q=CQu+Qr (2.4)

Qu is the partition function for the unfolded macrostate. It is the the sum over the
statistical weights of all the microstates in the unfolded ensemble. Likewise, () is the

partition function of the folded state. In this model, the folded state consists of only one
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microstate.

N N
Qu=14+NK,+ (2>K§K3+ <3)K23K§’+...
+ NKY RN (2.5)

Qr = K KiVK; (2.6)

K is an equilibrium constant that contributes to a ”stability gap” between the folded
state and the c = N — 1 state. Ky > 1, representing final favorable interactions that
stabilize the folded state. A possible physical origin of K is a final desolvation step that
expels water from the protein core, similar to the dry molten globule phase discussed
recently by Baldwin and Rose '*>'® and earlier by Shaknovich.'® It’s also known that
desolvation barriers are important in native-centric models to correctly reproduce the
wide variation observed in experimental folding rates.'® The equilibrium populations of

the “first excited” state (¢ = N — 1) and the folded state (c = N) are

NE) 'K

pn-1(eq) = 0 2.7)
KNK'™W K
px(eq) = %’” (2.8)

In Fig. 2.2.2A, we plot free energy with respect to ¢ for a four-helix bundle (also
depicted in Fig. 2.3.2). Free energy is computed from equation 2.9. The free energy

reaches a maximum atc = N — 1.

AG(c) = —RT In[p.(eq)] (2.9)
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2.2.2 KINETICS OF THE MODEL: FOLDING AND UNFOLDING RATES

The folding and unfolding dynamics of the model are described by a continuous time
Markov process (for details, see SI). If the highest barrier is at c = N — 1, the folding and

unfolding rates are well-approximated by:

KN—IKnN—l
ki = klN# (2.10)
KNflKTLNfl

where £ is a rate constant for the folding of a single secondary structure. In the SI, we
show that these analytical expressions capture with neglibible error, for appropriate
ranges of parameter values, the results of the full master equation as computed by
numerical integration (Fig. 2.2.2B) and as found by eigen-decomposition of the rate
matrix. It shows, for example, that the highest barrier is indeed the last step, as we have
assumed. In the SI, we also show that there is a gap in the eigenvalue spectrum, which
means that the model predicts a single dominant slowest exponential relaxation time,
characteristic of two-state kinetics, the general behavior seen for the folding of small

globular proteins.

2.3 RESULTS AND PREDICTIONS OF THE MODEL

2.3.1 FOLDING RATE PREDICTIONS

Fig. 2.3.1A compares the model predictions from equation 2.10 to experimental data on
folding rates of 93 globular proteins, as a function of the number NV of secondary
structures in their native states. We used K3 and K3 as parameters to fit the whole set of
folding rates. We fit K as a function of /V using the protein stability model of Ghosh and

Dill.'318 The values of K ranged from 1.75 for N = 1 to 19.4 for N = 30 (Table S2). We
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Figure 2.2.2: Landscape and dynamics of a four-helix bundle. (A) Free energy vs. ¢, the
highest barrier is at ¢ = 3. (B) Folding dynamics from numerical integration of the master equa-
tion (see SI).
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Figure 2.3.1: Folding rates predicted by model. (A) Folding rate vs. number of secondary
structures, N. The colored points are experimental values, and they are colored by structural
class. The black line is the prediction from the model, and the gray bands represent the 95%
confidence interval. (B) Predicted folding rate vs. experimental folding rate. The colored points
are the same as in the left panel. The black line represents a perfect fit to the data. Fit parame-
ters (95% Cl): Ky = 0.037 (0.025,0.058), K3 = 1.96 (1.67,2.23). We fixed k; = 105657, and
K was fitted to an equilibrium stability model, independent of the folding rate fit. Fit quality
(95% CI): R? = 0.63 (0.49,0.72), rms error = 1.30 (0.96, 1.65).

fixed k1 to 10°6s7!, the mean value of the folding rates of Trp Cage and L9 helix (the two
data points at N = 1). The proteins include both two-state and multi-state proteins. For
the multi-state proteins, we fitted to the slowest folding phase. The proteins are tabulated
in the supplement (Tables S3-S5). The fit line represents the predictions of our model.
The best-fit values are: Ky = 0.037 and K3 = 1.96. Here, we’ve bootstrapped the data
and fitted each resampled data set in order to generate a confidence interval. The 95%
confidence interval bands are plotted in gray. Fig. 2.3.1B shows folding rates predicted
from the model vs. experimental folding rates. R* = 0.63 for this fit.

From these comparisons, we draw a few conclusions. First, as a matter of data fitting,
we compare to some other treatments of folding-rate data. While a more detailed
discussion is given in SI, we note that the present fit is somewhat better than to chain
length alone (R? = 0.48), to the square-root of chain length (R? = (0.53),%8101107177 o
to Absolute Contact Order (ACO) (R? = 0.59).”1%! A disadvantage of ACO is that it

requires knowledge of a protein’s native tertiary structure, whereas our model does not.
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Our model requires knowledge only of the number of secondary structures, which, as we
note below, itself is predicted well from the chain length alone. This fact is highly
advantageous for predicting folding kinetics of whole proteomes (see below). For known
proteomes, protein chain lengths are fully known, whereas their native structures are not.

Second, we are interested in insights the model provides into the mechanism of
protein folding. We find that Ky << 1 while K3 > 1. Secondary structures are unstable
alone; they are stabilized by tertiary interactions. This prediction is consistent with a
model of protein equilibrium cooperativity.*° The predicted folding landscape looks like
an Up Staircase as a function of the 1D reaction coordinate ¢, with a last big step down; see
Fig. 2.3.2. So, the kinetics can be described in terms of nested transition states: from the
denatured state, a rare fluctuation is required to form one of the protein’s /V secondary
structures, then a rare fluctuation from that state further causes the protein to transition
from ¢ = 1 to ¢ = 2, then a further rare fluctuation from state c = 2 givesa ¢ = 3
structure, etc; see Fig. 2.2.2B. In short, each later structure is a transition state for the
preceding structure. In this mechanism, the last step is the rate-limiting step, hence the
kinetics are two-state.

Forming the first helix (i.e. the step from ¢ = 0 to ¢ = 1) is the most costly step.
Forming the second helix (from ¢ = 1 to ¢ = 2) is less costly because the second is
stabilized by the first helix. As a result, the slope of folding rate vs. [V is steep at first for
small /V but decreases for larger values of V. The expectation that isolated secondary
structures are unstable is consistent with the observation that few secondary structures
remain folded if they are removed from the context of the full protein native structure to
which they belong. '*

The present model treats only how folding kinetics depends on protein size, and not
how it depends on the protein’s sequence. However, it is well known that sequence
effects can be large. This can be seen from the broad scatter around the fit line in

Fig. 2.3.1A. Some structurally similar proteins (identical V') have folding rates that can
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Figure 2.3.2: The folding landscape of a four-helix bundle. Each level c is an ensemble of
configurations. The combinatorics are: 1 possible configuration with zero helices (¢ = 0), 4
possible one-helix configurations (¢ = 1), 6 possible two-helix configurations (¢ = 2), 4 possible
three-helix configurations (¢ = 3), and 1 possible four-helix configuration (¢ = 4, the folded
state). While the model treats all possible tertiary pairings, we show here only adjacent ones, to
keep the figure readable.

differ by orders of magnitude. An example is the spectrin superfamily: these proteins
have very different folding rates despite nearly identical chain lengths, secondary
structure counts, and topologies. '#'% Another example is the homeodomain
superfamily.®>** Our dataset includes both the spectrin and homeodomain helix bundles.
The present model is consistent with both the funnel-landscape view that folding is a
disorder-to-order transition through many different microscopic routes®*****2 and the
view of folding based on sequential pathways and “foldons”, wherein secondary
structural elements fold via particular sequences of events.®®*”® Funnels and foldon paths
are not mutually exclusive; they are just different perspectives at different levels of
resolution, often directed at different questions and often focused on different parts of
the landscape. Some aspects of the foldon path perspective are evident in the present
model: the elemental folding unit is the secondary structure, the reaction coordinate is
one-dimensional, the free energy increases along the reaction coordinate from U to a
transition state and decreases to F', and there is a clear order of folding events through

the formation of ¢ = 1,2, 3, ... N secondary structures sequentially. On the other hand,
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the funnel perspective is evident too: Fig. 2.3.2 shows the combinatorics of the many
different routes of assembling the secondary structures (and there are additional route
combinatorics that arise from the many microscopic routes for forming each secondary
structure, but those are below the resolution of the present model). While real protein
folding surely entails more complexity — different secondary and tertiary structures
forming at different rates, some structures are finished when others are only partially
completed, etc. — we believe the present model captures the essence of the physics with
a minimum of parameters.

There is an important consequence of the fact that protein folding rates have a simple
dependence on the number V of secondary structures. In turn, the number of secondary
structures in a native protein depends in a simple linear way on the chain length L
(number of amino acids); see Fig. 2.3.3. Hence, it follows that folding rates can be
predicted, to first approximation, based simply on knowledge of the chain length L
alone, without the need for knowledge of protein native structures. An important
implication is that we can readily make estimates for the distribution of protein folding
and unfolding rates over whole proteomes, since the chain lengths of all the proteins in a

proteome are readily determined once a proteome is known.

2.3.2 FOLDING RATES IN THE E. COLI PROTEOME

Our model indicates that protein folding rates are mainly a function of the number N of
secondary structures in a protein. However, since NN is a linear function of the length L of
the protein chain, we can predict folding rates vs. chain length, k f(L), or folding times,
7¢(L).

However, a protein’s folding unit is often a domain, rather than the whole chain.*
When domains fold as independent units, the total folding time of the protein will be the
sum of the folding times of its domains.'*®> Domains might also fold cooperatively, but it’s

not yet clear if inter-domain kinetic cooperativity is widespread in proteomes.* Here, we
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Figure 2.3.3: Number of secondary structures vs. chain length for the 93 proteins in our
data set. Our fit lineis N = L, where y = 0.0718 secondary structures per amino acid.

R? = 0.85. The slope of the line corresponds to an average of ~ 14 amino acids per secondary
structure. However, this fit includes loops, so it represents an overestimate of average secondary
structure length.

compute an estimated distribution of folding rates by combining our model with domain
annotations from the SUPERFAMILY database, '** which contains domain annotations for
3003 out of the 4228 proteins in the E. coli proteome. In the absence of better information,
we assume that each domain folds as an independent unit. We approximate the folding
time of each of the 3003 annotated proteins as the folding time of its largest (and slowest)
domain.

On this basis, we computed the distribution of intrinsic folding times in E. coli. We use
the term ”intrinsic” to mean in the absence of chaperones, aggregation or other cellular
factors. It is not currently known how to account for those factors, but these intrinsic
folding times may provide a useful reference point for future efforts that aim to account
for additional biological effects on folding in the cell.

The distribution of folding times for the E. coli proteome peaks around the one second
timescale (Fig. 2.3.4). The distribution predicts that none of the proteins are
sub-millisecond folders. There has been much effort to understand ultra-fast folding
domains in order to elucidate the ultimate speed limits to folding,'*® but the figure shows
that such domains are not rate-limiting for the multidomain structures to which they

belong.
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In Fig. 2.3.4, we include bars indicating a few other timescales that are relevant to the
cell: the left line (dark blue) indicates the roughly 16 seconds that is required to
synthesize an average E. coli protein (325 amino acids x 0.05 seconds to add each amino
acid in translation'*®); the middle line (orange) indicates the roughly 30 seconds it takes
for E. coli’s GroEL chaperones to refold a protein (a protein spends about 10 seconds in
the chaperone cavity, and takes about 3 recycling events to fold'%'*”); and the right line
(teal) indicates E. coli’s mimimum doubling time of 20 minutes. The figure shows that
much of the cell’s protein folding activity takes place on a time scale between 10 ms at the
fast end and 10 — 100 sec on the slow end. It also shows that the folding of the slowest
proteins could be bottlenecks at the fastest doubling rates of E. coli.

However, the figure also illuminates a huge gap in our current knowledge-how do
large domains fold? Over 600 of the proteins are predicted to fold on timescales slower
than the doubling time, due to large, slow-folding domains (> 400 amino acids). One
explanation is that these large domains may actually be made up of subdomains that fold
independently, even though current domain annotations treat them as single domains. It
also seems likely that many factors may mitigate problems from slow folding times,
including chaperones, folding on the ribosome, and kinetic cooperativity between

protein domains.

2.4 CONCLUSIONS

We have developed a simple model of protein folding kinetics. Drawing on an earlier
treatment of Zwanzig et al.,"*'®* our model posits that secondary structures are the units
of folding assembly, that they are relatively unstable, that isolated units flicker in and out
of structure, and that individual secondary structures are stabilized and escorted along
the folding route by neighboring secondary structures. This model leads to the prediction

that increasing amounts of structure are uphill in free energy, so the last step is the

33



3007

doubling
time

N
o
<

protein
synthesis

# of proteins
- - N
o [6)] o
2 < <

|
|
|

o
il

m

WA ® \Q@(\‘*‘ WA P A

AP
folding time, 7¢

Figure 2.3.4: E. coli folding time distribution. Colored lines indicate timescales for key cel-
lular processes: (dark blue) ribosomal protein synthesis, (orange) GroEL refolding, (teal) dou-
bling time.
slowest, so increasingly structured chains can be regarded as nested transition states for
preceding structures. The model is consistent with the two-state nature of much protein
folding kinetics, and with the observed variation of folding rates of 93 proteins with
numbers NN of secondary structure elements (or, correspondingly, with chain length L).
We have combined this model for 7¢(L) with domain annotations from the
SUPERFAMILY database to obtain an estimate for the intrinsic folding rate distribution
for the E. coli proteome. It shows that most protein folding times range between 10 msec
and 10 sec. However, a key unknown is how large domains fold. The present model

predicts that the folding times of large domains could take longer than it takes to

duplicate the cell.
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2.6 SUPPORTING INFORMATION

2.6.1 SIMPLE METRIC FITS

Various scaling laws have been proposed for the dependence of folding rates on protein
length. Early on, Thirumalai proposed that folding rates should scale as the square root
of chain length based on polymer theory arguments.'”® Later studies have suggested a
range of exponents for the scaling law, *6-8101,107167.174,177,199,200 A recent manuscript from
Lane and Pande argues that current available data is insufficient to infer the correct
scaling law.?”" We show in Fig. 2.6.1 such correlations, using our data set of 93 proteins

(detailed in Tables S3-S5).
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Figure 2.6.1: Folding rates vs. simple metrics (RCO, ACO, V'L, and L). Proteins are col-
ored based on structural class. The black line is the fit to the data. The gray bands represent the
95% confidence interval. Fit parameters are tabulated in Table ST1.
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Figure 2.6.1 shows fits to experimental folding rates for 93 proteins, both two-state and
multi-state proteins. For the multi-state proteins, we fitted to the slowest phase. We show
fits to some of the presently most prominent metrics: relative contact order (RC0),”
absolute contact order (AC'0),?** chain length (L), and the square root of chain length
(v/L). 101102177200 We fit the function log (k;) = log (ko) — ax, where = is RCO, ACO,
VL, or L using ko and a as adjustable parameters.

The shading in the figures show 95% confidence intervals, which we obtain by
bootstrapping 2> the data (resampling with replacement). Because v/L gives a
reasonable fit to the data, and because the principal difference between RC'O and ACO

is simply that the latter contains the chain length, %!

a key conclusion is the
importance of the chain length in predicting protein folding rates, more important than

the topology, per se.

Table 2.6.1: Simple metric fit parameters and fit quality. Values in parentheses represent
95% confidence intervals from bootstrapping.

Model R? rmse log(ko) a

RCO  0.00 (0.00,0.08) 3.46 (2.51,4.22) 2.21(0.53,4.09) 0.43 (—5.56,7.40)
ACO 059 (0.41,0.75) 1.40(0.96,1.88) 5.33(4.60,6.03) 0.14 (0.11,0.17)
L 0.48(0.32,0.61) 1.82(1.39,8.51) 4.39(3.35,9.64) 0.02(0.01,0.07)
VL 0.53(0.35,0.66) 1.62(1.19,2.03) 7.24(6.33,8.16) 0.55 (0.46,0.65)

2.6.2 THE KINETIC MODEL

Our kinetic model is a “one-step” continuous time Markov process,'® a process that
consists of hops between adjacent sites along a 1D lattice (Fig. 2.6.2). Each lattice site is
labeled with an integer. In our folding model, we refer to the lattice sites as “states” since
they correspond to configurational states of the protein. Our model has N + 1 states,

where NNV is the number of secondary structures in the protein. The states span the integer
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range c € [0,1,2,..., N — 1, N], where c represents the number of folded secondary

structures.

Vo Vea Ves v Vi Uns
—_— D ———
1 Fea Fe Fer1 Fei2 N
Figure 2.6.2: A one-step Markov process. Our kinetic model is a Markov process with hops

between adjacent protein configurational states. Each hop in the forward direction adds an-
other secondary structure to the folding protein.

The forward (v) and reverse (r) hopping rates are

ve = (N —c¢) Kk (2.12)

(c+1)k

L (2.13)
K2K3 c+1 c

Tet1 =

where £ is a rate constant for the folding of an isolated secondary structure and N — ¢
represents the number of secondary structures still waiting to fold, given that c have
already folded. The reverse hopping rate, r., 1, represents unfolding a secondary

structure, and we derive it from detailed balance:

w(c)ve = w(c+ 1)rem (2.14)
_ . w()
Teyl = Ucm (2.15)

Where w(c) and w(c + 1) are the Boltzmann weights of states ¢ and ¢ + 1, respectively.

Plugging in equation 1 from the main text for w(c) and w(c + 1), we get

c!(]ifvic)!KgKgc
Fet1 = Ve N! KC+1Knc+1 (216)
(c+ D) (N—(c+1))! "2 3
1)c(N —c—1)! 1
(c+1)cl( c—1) 2.17)

AN = (N —c— ) KpKp
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where in the second step we divided through and rewrote (¢ + 1)!as (¢ + 1)c! and
(N —(c+1))las (N —c) (N —c— 1)L Several combinatoric terms cancel and we're left
with

c+1 1

Te = V¢ — 2.18
+l N — CKQK;ZC-H fte ( )

Finally, we replace v, with equation 2.12 to get the result shown above in equation 2.13:

c+1 1 (c+ 1)k
Ter1 = (N —¢) ky N = IR = R KT (2.19)

Escape from the folded state has an additional factor, Ky, which stabilizes the folded

state:

Nk
KK ™K f
which we can rewrite in terms of (), the folded partition function
KNfl K”Nfl
ry =k N—=2—3 _ (2.21)

Qr

Given the forward and reverse rates, we write the kinetics of our model as a master

equation:

dp.
d_pt = Te+1Pc+1 + Ve—1Pc—1 — (Tc + Uc)pc (222)

2.6.3 ANALYTICAL EXPRESSIONS FOR THE FOLDING AND UNFOLDING RATES

To compute the folding and unfolding rates, we follow Zwanzig'® and posit that the
rate-limiting step is the transition from the "first-excited state” (c = /N — 1) to the folded

state (c = V). Based on Eqn. 2.22, we can write the rate of change of the population of
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the folded state as

dpn

— = UN_ _1—=7T 2.23
dt N—-1PN-1 NPN ( )

When we substitute Eqn. 2.12 for vy _; and Eqn. 2.21 for ry, we get

dpn
— =k 1 — kN
at 1PN-1 1

N—-1g-MN-1
KQ KS

Or ¥ (2.24)

We follow Zwanzig’s local thermodynamic equilibrium (LTE) approximation that says, if

the highest barrier is ¢ = [NV — 1, all the states ¢ < NV rapidly equilibrate, conditional on

pn(t),

pe(t) = 122(;) (1—pn(t)) forc< N (2.25)

We substitute Eqn. 2.25 for py_; in Eqn. 2.24 to get

dpy , w(N —1)

kl KéV—lK;N—l

(1—=pn () — kN DN (2.26)

dt Qu Qr
KN_lKnN71 KN_lKnN71
=k N—=2—2— (1-py(t)) -t N—2—2—py (2.27)

Qu Qr

This shows that the rate of change of the folded state population is a competition between
a rate of gain, k; NK,' "' K;¥7'Q', and a rate of loss, ky N K2 'KV Qy'. This is

analogous to a two-state folding reaction U == F'in which

S = ylU] = k[ .29
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Comparing Eqn. 2.28 with Eqn. 2.27, we see that k is our rate of gain and k,, is our rate of

loss:

KéV_IK;N_l
Qu

KN—lK”Nfl
k, = yN—2 3
Qr

k= kN (2.29)

(2.30)

This result is shown as Eqn. 10 and Eqn. 11 in the main text.

2.6.4 NUMERICAL INTEGRATION OF MASTER EQUATION

The master equation (Eqn. 2.22) can be written in matrix form as

— 2 =P(H)A (2.31)

where P (%) is a vector of the state probabilities at time ¢ and A is the transition rate

matrix. The matrix elements of A are:

— Vo 0 0 0 0
ry —(r1 4 vp) U1 0 0 0
0 o —(rg +vg) --- 0 0 0
A =
0 0 0 oo —(ry_2+un_2) UN_9 0
0 0 0 e N—1 —(rn—1 +un-1) vN—a
0 0 0 0 TN —ry
(2.32)

Each off-diagonal element A;; represents the transition rate from state ¢ to state j, but
only adjacent states (that differ by one secondary structure) have non-zero transition

rates. Each diagonal element A ; is defined so that the rows sum to zero (satisfying the
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condition that total probability density should be conserved). We can numerically solve

equation 2.31 to get the state populations at time ¢ based on the populations at ¢ = 0:

P(t) = P(0) e (2.33)

We compute state probabilities as a function of time using equation 2.33 with initially all

of the probability density localized to the fully unfolded state (py(0) = 1, p;(0) = O for

¢ > 0). We plot the results of one such calculation in Fig. 2B in the main text. Then, to get
the folding rate, we compute the rate spectrum using the ratespec python package of Voelz
and Pande.?”* Given a time trace, ratespec calculates the rate spectrum using regularized

linear regression.

2.6.5 EIGENDECOMPOSITION OF RATE MATRIX

We can also compute a folding rate from the eigen values of our rate matrix, A. We

diagonalize A as follows:

A =BAB! (2.34)

where B is a matrix of the eigenvectors of A and A is a diagonal matrix with the
eigenvalues of A along the diagonal. The smallest eigenvalue is \; = 0, and its
corresponding eigenvector represents the equilibrium populations of the states of the
model. The folding rate is obtained from the smallest non-zero eigenvalue, k¢ = —\s.
The larger eigenvalues represent dynamics occuring on faster timescales. We observed

two-state folding in our model: there was a clear separation of timescales (Fig. 2.6.3).
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Figure 2.6.3: Eigen spectra for different values of N. At each value of N, we see two-state
folding. There is a clear separation of time scales between the folding mode and faster modes.

2.6.6 NUMERICAL VALIDATION OF ANALYTICAL EXPRESSION FOR FOLDING RATE

Here we show that our analytical expression for the folding rate (Eqn. 2.29) is consistent
with the results of numerical simulations of our master equation, as well as eigen
decomposition of the rate matrix. In Fig. 2.6.4, we plot the results from computing k via
the three different approaches: (1) from Eqn. 2.29 (gray), (2) from numerical integration
of master equation (Eqn. 2.33), and (3) from the smallest non-zero eigenvalue. The
overlap between the three methods is very good. We find that the analytical expression

for k¢ is a good approximation for the more exact numerical evaluations of k.

2.6.7 FITTING PARAMETER K # TO PROTEIN STABILITY MODEL.

We used the linear relationship between chain length (L) and number of secondary
structures (V) (Fig. 5) to compute an average chain length (L ;) at each N. Then, we
used the protein stability model of Dill and Ghosh'®'* to fit K for each N (for each
L¢4). The Dill & Ghosh model predicts stability as a function of L and temperature. We

set T' = 300K. The fit values are tabulated below (Table 2.6.2).
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Figure 2.6.4: Comparison of three methods for computing log(k) from our model. The
agreement between the three methods is very good. We use different dot sizes so that the re-
sults from all three methods can be seen.

2.6.8 CoOMPARISON WITH ZWANZIG MODEL

Here, for ease of comparison, we explain how the parameters in our model map on to the
original Zwanzig model.'® We've split Zwanzig’s K = ve "V into our two equilibrium
constants, Ky and K3. We don't break the equilibrium constants down into enthalpic and
entropic contributions, as Zwanzig does with his parameters U and v, respectively.
Zwanzig’s v represents the number of incorrect configurations per residue. This chain
entropy is one of the components of our parameters, /', and K3. Zwanzig's stability gap
e~P¢ corresponds to our K ;. Our kinetic rate k; is the same as Zwanzig’s. Our order
parameter c represents the number of correct secondary structures; Zwanzig’s order

parameter was .S, the number of incorrect residues.
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Table 2.6.2: Fit values of model parameter K¢ as a function of N at T = 300K.

N Lfit lOg (Kf)
1 14 1.75
2 28 3.21
3 41 4.37
4 55 5.23
5 69 5.79
6 83 6.35
7 97 6.90
8§ 111 7.46
9 124 8.02
10 138 8.58
11 152 9.15
12 166 9.71
13 180 10.27
14 194 10.84
15 207 11.41
16 221 11.99
17 235 12.56
18 249 13.15
19 263 13.74
20 277 14.33
21 290 14.94
22 304 15.55
23 318 16.18
24 332 16.81
25 346 17.46
26 360 18.11
27 373 18.77
28 387 19.44
29 401 20.11
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2.6.9 PROTEINS IN DATA SET

This set of proteins is largely identical to the set used by Ouyang and Liang.'"! To that
set, we’ve added some additional two-state proteins from the data set of Zou and
Ozkan,'® as well as the spectrins R15, R16, and R17,'® the homeodomain, Pit1,>* and the

L9 helix characterized by Mukherjee et al.*®
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Table 2.6.3: List of two-state proteins in data set

Name PDB Structure Length N log(ky)
a3D 2A3D « 73 3 552
Abp1l SH3 1JO8 6] 58 5 1.07
AcP 1APS  «of 98 7  —0.62
AcP common 2ACY af 98 7 0.36
ADA2h 106X af 70 5 2.88
Albumin bd 1PRB « 53 3  5.60
bACBP 2ABD « 86 4 235
BBL 2WXC  « 45 3  4.85
Bec Csp 1C90 g§ 66 5 3.13

¢ myb 1FEX « 99 3 3.79
CheW 1K0S af 151 11 3.23
CI2 2CI2 af 64 6 1.75
CspA MJC S 69 5 227
CspB 1Csp 67 5 3.04
Cyclophilin A 1LOP  af 164 12 2.87
CTL9 1DIVC  «af 92 7 142
E3BD WW IW4E « 45 3 4.44
EC298 1RYK «Q 69 4 3.9
FBP WW 1EOL 16 37 3 437
FKBP12 1FKB af 107 9 0.39
FNfn9 1FNF9 [ 90 7 =040
fyn SH3 ISHF S 59 5 1.94
hbLBD BCKD 1K8M 87 g§ —0.31
HPr 1HDN aof 85 7117
Im7 1AYI « 86 4  3.13
Im9 1IIMQ « 86 4  3.08
L23 IN88  af 96 5 1.31
L9 helix n/a «Q 14 1 5.90
lambda 1ILMB « 87 5 3.69
MerP 2HQI  af 72 6 0.08
NTL9 1DIVN «af 56 5 294
P13 1QTU S 115 9 —0.16
PI3 SH3 1PKS 16 76 7 —0.46
POB 1W4] « 51 3 532
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Table 2.6.4: List of two-state proteins in data set (continued)

Name PDB  Structure Length N log(ky)
protA Y15W 1551 o} 60 3 4.99
protG 1PGB  of 56 5 2.62
protG hairpin ~ 1PGBb j3 16 2 521
protL 2PTL  af 62 5 1.78
PsaE 1IPSE  f 69 5 0.51
R15 R15 o 110 3 412
R16 R16 o 107 3 210
R17 R17 o 101 3 148
RafRBD 1RFA  apf 78 7 3.35
Rapl 1IDY « 54 3 3.56
S6 IRIS  af 97 6 2.64
Shol SH3 2VKN S 75 5 0.92
spectrin SH3 ~ 1SHG 8 57 5 1.70
src SH2 1SPR  aff 103 7 3.80
src SH3 1IFMK 56 5 1.77
sso7d 1SS0 62 6 3.02
Tendamistat 2AIT  f8 74 7 183
Tm1083 1J5U af 127 8 2.98
Tm Csp 1G6P 3 66 5 2.74
TNfn3 1ITEN 89 8 0.46
Trfl 1BA5 « 53 3 2.57
TrpCage 1L2Y  « 20 1 538
Twitchin 1IWIT 93 8 0.18
UlA 1URN apf 96 8 2.50
Ubq 1UBQ af3 76 7 254
Urm1 20 af 99 8 112
Villin 1vi a 36 3 5.00
Villin 14T 2VIK af 126 7 295
WW pin IPIN 8 32 3 4.07
WW prototype 1EOM  j3 37 3 3.84
WW YAP 1K9Q p 40 3 3.63

48



Table 2.6.5: List of multi-state proteins in data set

Name PDB Structure Length N log(ky)
AlphaLactAlb 1HMK  of 121 9 1.22
ApoPseuAz 1ADW 123 10 0.28
BetaLactoGlob 1BEB o) 156 11 —0.95
CheY 3CHY «af 128 10 0.43
Colicin E7 1CEI e} 85 4 252
CPGK 1PHPc apf 219 18 —1.52
CRBP1I 10PA B 133 12 0.61
Cro 2CRO « 65 5 232
DHFR 1RA9  af 159 14 —1.09
EnHD 1IENH « 54 3 4.60
FF HYPA 1UZC « 69 4 3.77
FNfn10 1ENF10 S 93 7 2.38
GFP 1B9C o] 224 13 —1.20
GroEL apical 1DK7 af 146 12 0.35
HEWL 1HEL af 129 9 0.54
HisActPhil IHCD g 118 12 0.48
IFABP rat 1IFC o) 131 12 1.48
ILBP 1EAL B 127 13 0.56
NHypF IGXT  of 88 7 1.91
NPGK 1PHPn of 175 16 1.00
P16 2A5E « 156 8§ 1.52
Pitl 1AU7 « o8 3 423
RNase HI 2RN2 af 155 9 0.61
StaphNuc 1JOO afs 149 9 0.13
Sucl 1SCE af 97 7 181
TrypSynthAlpha 1QOPa «of3 265 19 —-1.09
TrypSynthBeta 1QOPb apf 390 27 —=3.00
Twitchin Ig 1TIT B 89 7 156
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Continuous time aggregated Markov
models for maximum likelihood
estimation

We now shift from protein folding to a new topic: super-resolution microscopy. In the
chapter that follows this one, we will describe a maximum likelihood method for
analyzing super-resolution microscopy data using aggregated Markov models. As a
prelude to that, in this chapter we will introduce aggregated Markov models and explain

how they’ve been used in the ion channel literature.

3.1 AGGREGATED MARKOV MODELS FOR ION CHANNEL GATING KINETICS

The development of patch clamp experiments in the 70s and 80s made it possible to
record the currents of single ion channels in membranes.?**!° Patch clamp recordings
revealed that channels fluctuate between a closed (low conductance) and an open (high
conductance) state. We can think of the gating dynamics in terms of a two-state kinetic
model (Fig. 3.1.1). The rate of hopping from the closed state to the open state is k.,, and

the reverse rate is k,.. One can determine the kinetic rates by fitting the observed
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distribution of closed and open times. We show an example from simulated data in

Fig. 3.1.2. The statistics from the five time traces shown in the left panel of Fig. 3.1.2,
along with many other time traces, are combined to get the histograms shown in the two
panels on the right. The rates are then determined by fitting equations 3.1 and 3.2 to the

closed and open histograms, respectively.

felte) = koo Feote (3.1)

fo(to) = kgee Focte (3.2)

kco
C——=

oc

Figure 3.1.1: An ion-channel gating model with two states: closed (C') and open (O).
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Figure 3.1.2: (left) Simulated trajectories, ke, = 0.1 s7! and k,. = 0.5 57! (center) lifetime
distribution for closed state, (right) lifetime distribution for open state. The histograms are well-
fit by single-exponential distributions.

The histogram method works well for the 2-state scheme presented above, but real ion
channel gating is not that simple. Real ion channels have multiple closed and open states

(Fig. 3.1.3), and the observed output from the experiment does not uniquely specify the
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Figure 3.1.3: lon-channel gating models with two closed states (C, C2) and one open state
(0). (top) COC model; (bottom) CC'O model. Based on equilibrium data alone, these two mod-

els would be indistinguishable.?""

state of the channel, e.g. C'; and C in Fig. 3.1.3 would have the same conductance. To
extract kinetic rates for these more complicated topologies, we need to use aggregated
Markov models (AMMs). During the 80s and 90s, Colquhoun, Hawkes, Sachs and others
pioneered the use of AMMs to extract kinetic rates from single channel recordings*!!
and processive molecular motors.??>?* The term “aggregated” in AMM refers to a
partitioning of the state space into classes, in this case a closed class and an open class. It
is only possible to observe which class the system is in, not the specific state. For
example, given a three-state model like those shown in Fig. 3.1.3, the best we can do is
observe that the channel is closed, we cannot know with certainty whether it is in C'; or
(5. Additionally, both models would have biexponential dwell time distributions, so they
can’t be distinguished, even in theory. As discussed in previous chapters, the term
“Markov” in AMM refers to the fact that the probablility of transitioning from one state
to another depends only on the current state, not on previously occupied states.

AMMs are a special case of hidden Markov models (HMMs).?* In AMMs, the output
probabilities for each state are fixed to zero or one. For example, closed states have
probability zero of producing open conductance and probability one of producing closed
conductance. The converse is true for open states. In HMMs, the outputs depend

probabilistically on the state.
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3.2 MAXIMUM LIKELIHOOD ESTIMATION OF AMM CHANNEL KINETICS

Unlike the simple single-exponential distributions in Fig. 3.1.2, the lifetime distribution of
an aggregated class in an AMM is often multi-exponential. It is still possible to infer
kinetic rates by constructing lifetime histograms, as in the two-state example above, but
this approach is not efficient.?'® Lifetime histograms do not take into account the
correlations between dwell times. Consequently, useful information is discarded.
Another problem is that large amounts of data are needed for accurate histogram fitting.

A smarter way to fit AMMSs to data is to use a maximum likelihood approach that uses
the joint probability density of observed time traces. This approach was initially
proposed by Horn & Lange in terms of a discretization of a continuous time Markov
process.?'* A more efficient likelihood method was developed by Ball & Sansom who
dealt with the continuous time Markov process directly, rather than discretizing it.*'°
Sachs further developed the likelihood method to incorporate missed events (a channel
gating event that happens faster than the resolution of the experiment) and to
incorporate a more efficient forward-backward recursive procedure for computing the
likelihood. %21

The key idea in the AMM maximum likelihood approach is to compute the probability
of escape from an aggregated class of states. Above, in equations 3.1 and 3.2, we showed

examples of how to compute the probability of escape from a single state. We can express

the probability density of escape from an aggregated class of states as:

fle,t) = Poe¥'Quol (3.3)

Here, Q is a rate matrix, and the matrix exponential function is shorthand for an infinite
series (e¥! = [ + Qt + Q*t?/2! + ...). The vector P specifies the initial probability of
each state. The vector 1 is a column vector of ones, which serves to collapse the matrix

product down to a scalar value. The matrix exponential term accounts for all possible
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exchanges between states within the closed class during the dwell. In the case of the
C'OC model, no such exchanges are possible because the open state acts as a gateway
state between the two closed states. In the C'C'O model, the channel can transition back
and forth between the C; and (), states many times during the dwell before eventually
transitioning to the open class. The matrix exponential is numerically expensive to

£ 225226

compute for large matrices, but a vast literature exists on efficient ways compute i

The elements of the rate matrix Q for the C'C'O model would look like this:

- kcl co kCl co 0
Q - kCQCl - <k0261 + kCQO) kCQO (34)
0 kOCQ - kocg

We can divide Q into submatrices based on the aggregated classes:

QCC QCO
Q= (3.5)
QOC QOO
_kclcg kclcz
Qcc = (36)
kCQCl _(k@q + kCQO)
0
Qo = (3.7)
kcgo
Qoc = (o k;) (3.8)
Qoo = <—k) (3.9)

(3.10)

Equation 3.3 represents the probability density of starting in one of the closed states
(with initial probability specified by P), staying in the closed aggregated class for time ¢,

and then transitioning out of the closed aggregated class to a state in the open aggregated
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class. We can now extend equation 3.3 to the case of two dwells and ask, “What'’s the
probability density of dwelling in the closed aggregated class for time ¢;, transitioning to
the open aggregated class, dwelling there for time ¢,, and finally transitioning back to the

closed class?” The corresponding equation for this scenario would be:

f ({Ca 0}7 {tly t?}) - POQQCCtl QcerOOt2 ro]- (311)

Equation 3.11 represents the joint probability density for the series of two dwells
described above. Following the same logic, we can easily extend this equation to

compute the joint density of a long series of dwells:

f(h,t) = PpeQ"Q, e "2Q,....e%¥'tQ,1 (3.12)

where L is the total number of dwells in the time series. We use h to represent the set of
aggregated classes in the dwell series and t to represent the set of dwell times, so
h = {hy,ha,...,hp} and t = {t1,ts, ..., t1}. Each element of h is either the closed or
open class, i.e. h; € {c,0}. We've assumed in this example that the dwell series ends
with a dwell in the open class followed by a transition to the closed class.

In maximum likelihood analysis, the kinetic rates and /N are treated as variables and
the observed data is treated as a fixed set of parameters. To reflect this shift in

perspective, we rewrite the joint density (Eqn. 3.12) in terms of a likelihood function:

f(0|h,t) =Pee"Q,e"2Q,, ...e¥Q,.1 (3.13)

where 0 is the set of rates, 0 = {kc,cys Kesey s Keyos Kocs - Equation 3.13 is the key equation
in the maximum likelihood approach of Sachs and others.?'*?1621821% The goal of the
maximum likelihood approach is to find the parameter set f that maximizes the

likelihood function. The set § represents the best estimate of the kinetic rates, given the
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dwell series data. Note that although we’ve used the CC'O three-state gating model as an
illustrative example here, equation 3.13 is a general concept that we can apply to any
Markov model with a finite number of discrete states. It can be easily extended to kinetic
models that have larger numbers of states and/or that have more than two aggregated
classes.

If the correct kinetic model is unknown, one can compute the likelihood of a series of
models and determine the best model based on which one maximizes the likelihood.
However, Kienker showed that some models (related by a similarity transformation) are
indistinguishable if only equilibrium statistics are available.”"! The pair of three-state
models shown above (Fig. 3.1.3) is one such example. But Kienker also showed that
perturbation experiments can help resolve indistinguishability issues by transiently
increasing the number of experimental observables.

One final note, it is possible to modify the likelihood function to account for the
activity of a collection of independent channels*'*#*"® (see chapter 7 in van Kampen'®
for a general discussion of collective systems). The solution is to represent the state of the
collection of channels with a set of occupation numbers N = {N,,, N.,, N,}, so that N,
for example, represents the number of channels in the collection that are occupying the
first closed state, (.

In the next chapter, we will adapt the AMM approach discussed here to analyze kinetic
data from super-resolution microscopy, with the ultimate goal of counting single
molecules in vivo. We will show how to write a likelihood function for the photophysics
of fluorescent proteins, and we will make use of the Yeo et al.??” formalism for collections
of channels to write the likelihood function in terms of a collection of independent

proteins that cluster together in a diffraction-limited volume.

56



An aggregated Markov model approach to
the molecular counting problem in
super-resolution microscopy

This chapter contains a manuscript in preparation for publication.

ABSTRACT

We develop a maximum likelihood method for quantifying fluorophores in a
diffraction-limited volume measured by super-resolution microscopy. The method is an
extension of aggregated Markov methods developed in the ion channel literature for
studying gating dynamics. We show that the method accurately and precisely (1)
quantifies fluorophores in simulated data and (2) determines the kinetic rates that govern
the photophysics of the fluorophores. We apply the method to in vitro Dendra2 data and
in vivo data of Dendra2 fused to the bacterial flagellar motor protein FliM. Our estimate of
the number of FliM subunits in a single motor is 15, roughly half the expected value
based on previous Cryo-EM and FRAP studies. We discuss possible reasons for the

discrepancy between our estimate and the literature values.
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4.1 INTRODUCTION

Conventional optical microscopy is diffraction-limited and typically cannot resolve
images below the 250nm range, but super-resolution (SR) methods can probe the
nanometer level.*"?* Photoactivated localization microscopy (PALM) is one such SR
method. PALM can image molecules closer than the diffraction limit by separating their
fluorescent signals in time.”* PALM works by illuminating a sample under low light
intensity, which stochastically triggers fluorophore activation. Once active, the
fluorophore is excited by light of a different wavelength and releases a burst of photons
(an emission burst). A short time later, it will irreversibly photobleach. The light intensity
can be modulated to increase the average time separation between fluorophore activation
events.” In PALM, the fluorophores are genetically encoded photoactivatable

fluorescent proteins (PA-FPs),**

which are fused to proteins of interest. Currently,
mEo0s2*” and Dendra2?*** are two of the most common PA-FPs used in PALM.
PALM has the potential to provide molecular counting with single molecule

sensitivity. However, several obstacles remain:

1. PA-FP “blinking” leads to severe overcounting biases. Blinking refers to a process
by which a PA-FP produces a series of intermittent emission bursts, instead of one
continuous burst.?*** This is a problem because, ideally, one would count
molecules by summing up the number of observed emission bursts. However, due
to blinking, a simple sum of bursts will overcount the true number of molecules

(Fig. 4.1.1).

2. Unknown blinking statistics. The blinking properties of common PA-FPs have
been characterized in vitro, but not in vivo where the actual experiments are done.
Current analysis methods are incapable of extracting such information from in vivo

data.
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3. The missed event problem. Some photoactivation or blinking events are missed

due to the finite temporal resolution of the imaging methods (~ 50 ms).

Photons (10°%)
o == N W

Time (s)

Figure 4.1.1: Dendra2 blinks in vitro. Several emission bursts from the same fluorophore are
observed. Simply counting the number of emission bursts would overcount the true number of
molecules. The three bursts shown in B actually come from a single Dendra2 molecule high-
lighted in A. Reprinted with permission from Lee et al.?** Copyright (2012) National Academy of
Sciences, USA. See page 99 for license information.

Here, we describe a maximum-likelihood approach for dealing with these obstacles.
Our approach is an adaptation of the continuous time aggregated Markov model (AMM)
techniques developed in the ion channel literature to estimate kinetic rates for channel
opening and closing events in patch clamp experiments (reviewed in the previous
chapter).?'"?*° We extend these ideas from the ion channel world to handle a new
challenge: molecular quantification in PALM.

Previous studies have addressed the PALM counting problem by setting a temporal
threshold (7.,;;). 2> In those studies, a pair of emission bursts separated by a time
shorter than 7.,;; are grouped together and assigned to a single PA-FP. Bursts separated
by a time longer than 7,,;; are considered to be from separate PA-FPs.

Our method overcomes several important limitations of thresholding methods. First,
thresholding methods require advance knowledge of kinetic rates to determine the
optimal value of 7.,;;. Our method doesn’t require knowledge of kinetic rates
beforehand. Kinetic rates are an output of our method, rather than an input. Second,
thresholding methods can’t account for missed events, but our method can. The missed

events problem was solved by Roux?" and later Sachs*'® for ion channel problems, and
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their solution can be applied to PALM data. And third, our method is not tied to a
specific kinetic model. We can easily explore alternative kinetic models, such as models

with multiple blinked states or with time-varying rates.

4.2 AN AGGREGATED MARKOV MODEL FOR THE PHOTOPHYSICS OF A COLLECTION

OF PA-FPs IN A DIFFRACTION-LIMITED VOLUME

4.2.1 STATES OF THE MODEL

Consider the model shown in Fig. 4.2.1 for the photophysics of a single PA-FP. There are
four possible states: inactive (I), active (A4), dark (D), or photobleached (B). Once active,
the PA-FP has two options: (1) it can blink to the dark state, or (2) it can irreversibly
photobleach. Fluorescence is only detected in the active state, not in the other three states.

I ka kb

—_— N —

kd kr

D

Figure 4.2.1: This kinetic model has four states inactive (1), active (A), dark (D), and photo-
bleached (B). The only fluorescent state is A. We name the transitions between states this way:
activation (I — A), blinking (A — D), recovery (D — A), and photobleaching (A — B).

Now consider a collection of N identical PA-FPs, each of which is governed by the
model of Fig. 4.2.1. We assume that each fluorophore is independent of the others: the
state of one fluorophore doesn’t affect the state of any other fluorophore. We describe the
state of a system of /V fluorophores as a vector of the populations of the inactive, active,
dark, and photobleached states: { N;, N4, Np, Np}. To avoid confusion, we will use the

term microstate to refer to the state of a single fluorophore (i.e. I, A, D, or B), and we will
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use macrostate to refer to a population vector that describes the collection of fluorophores.
For example, macrostate ¢ for a collection of two PA-FPs in which both PA-FPs are
inactive would be s; = {2,0,0,0}. The set of all macrostates is S = {sy,...,Sm}, where
each s; in S is a population vector and M is the total number of macrostates.

Computing M is a common combinatorial problem: the number of unique ways to
partition /V indistinguishable objects into = bins. In this case, the objects are PA-FPs and

the bins are the microstates. There are four microstates, so x = 4.

N -1 N +3
= (MrEm (v 1)
r—1 3
For example if the collection contains two fluorophores the following 10 macrostates

(obtained from (g)) are available:

Table 4.2.1: Macrostates for a collection with N = 2 PA-FPs

macrostate {I, A, D, B} aggregated class

S1 {2,0,0,0} dark
Sa {0,0,2,0} dark
S3 {0,0,0,2} dark
S4 {1,0,1,0} dark
S5 {1,0,0,1} dark
S {0,0,1,1} dark
S7 {0,2,0,0} bright
Ss {1,1,0,0} bright
So {0,1,1,0} bright
S10 {0,1,0,1} bright

We model the collection of PA-FPs as an aggregated Markov model (AMM). As shown
in table 4.2.1, each macrostate belongs to an aggregated class, either dark or bright.
Macrostates with at least one active PA-FP (A > 0) are assigned to the bright class.
Macrostates with zero active PA-FPs (A = 0) are assigned to the dark class.

Here, the bright class corresponds to the detection of fluorescence and the dark class
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corresponds to the absence of fluorescence. The aggregated classes are necessary because
PALM experiments can’t distinguish between the various dark states or between the
various bright states. The dark and bright classes here are analogous to the closed and
open classes in the ion channel AMMs discussed in the previous chapter.

Another possibility would be that multiple levels of fluorescence are observable:
bright2, bright3, etc. For the purposes of this chapter, we focus on the scenario in which
all macrostates with A > 0 are grouped into one bright class. Extending our approach to
the scenario with more aggregated classes would be straightforward. Additional
aggregated classes would actually simplify the analysis problem because it would enable

us to better identify the state of the collection of PA-FPs in each dwell.

8000
7000/ | ™= dark
bright A =1
6000 bright A .x =3
. 5000 bright A = 10
E 4000
’ 3000
2000
1000 e

0 5 10 15 20 25 30 35 40
N

Figure 4.2.2: As the number of PA-FPs increases, the number of macrostates grows exponen-
tially. We tune the growth rate by setting A4z, the number of PA-FPs that we allow to be si-
multaneously active.

The number of macrostates grows exponentially (Fig. 4.2.2) with N. This is a concern
for the numerical calculations discussed in the next section; the computational time of
the likelihood depends on the number of macrostates. As such, we define a quantity
Ajnaz, which represents the maximum number of PA-FPs we allow to be simultaneously
photoactive. We use this quantity as a way to tune the size of the state space to save on

computational time in situations where we expect photoactivation events to be well
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separated in time.

4.2.2 MODEL KINETICS

The transition rate from macrostate s; to macrostate s; is simply the transition rate for one
PA-FP muliplied by a combinatoric factor for the population of the appropriate
microstate. The macrostate transition rates are summarized in table 4.2.2.

Table 4.2.2: Kinetic rates of a collection of PA-FPs

Transition type Change in population Rate s; — s;

activate {-1,+1,0,0} Niika(t)
blink {0,-1,+1,0} Naika
recover {0,4+1,—1,0} Np. ik,
photobleach {0,—1,0,+1} Ny iky

The dynamics of the PA-FP AMM are governed by a rate matrix, Q. Each off-diagonal
matrix element g;; equals the transition rate of s; — s;. The diagonal elements are set so
that each row sums to zero: ¢;; = — >, i 4ij- The macrostate transition probabilities at

any time ¢ are given by the Kolmogorov equation *>*'2:

dP(t)
— =P(t 42
7t )Q (4.2)
whose solution is given by
P(t) = P(0) e? (4.3)

In the case of dark and bright observation classes, we can partition the rate matrix Q

into four submatrices, based on the dark (subscript d) and bright (subscript b) aggregated
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classes:

Q _ Qdd de (4'4)

Qva Qw
The submatrix Qg4 contains the rates for transitions from states in class d to other states
in class d; Qg contains the rates for transitions from the states in class d to the states in

class b. The other two submatrices are similarly defined.

4.3 LIKELIHOOD FUNCTION

The likelihood function that we describe in this section provides an answer to the
following question: “Given a kinetic model and a set of kinetic rates, what'’s the
likelihood of observing the data?” Our goal is to determine the kinetic rates and /V, and
we can do so by finding the values of the rates and /N that maximize the likelihood
function, i.e. maximize the likelihood of observing the data that was collected by PALM.
Suppose we have a trajectory of L dwells representing the dynamics of a collection of
N PA-FPs. Associated with each dwell is an observed aggregated class and a dwell time.
The set of observation classes is h = {h1, ..., h }. The set of dwell times is
t = {t1,...,tr}. So, during dwell i we observe class h; € {d, b} for duration t;. See
Fig. (4.3.1) for an illustration. The probability densities for dwelling in the dark class for
time ¢ and then transitioning to the bright class are given by the elements of the following

matrix:

Gdb(t) = GQddthb. (45)

The (4, j)"" element of G4, is the probability density of entering class d from its i*" state,
dwelling in class d for time ¢ and then transitioning to the ;' state of class b.

We wish to calculate the likelihood of the dwell trajectory h, given the model
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parameters ¢, where 0 is the set of parameters (/V and the transition rates) that go into the

rate matrix Q. The likelihood function then reads as follows:

O] t,h) =P - Gap(t1)Goalta) . . . Gpa(ty)eQedtsinat . Py (4.6)

where P;,,;; is a probability vector with all probability density in the fully inactive
macrostate. The parameters, 0, determine the elements of the rate matrix Q. The final
factor of ¢Qddlsinal comes from the fact that all of the PA-FPs irreversibly photobleach by
the end of the trajectory. After all photobleaching events occur, the system will dwell in
the dark class indefinitely. We represent this with a long final dwell in the dark class for

4

time ¢ 4;,s = 10” seconds. P i, is a probability vector with all probability density in the

fully photobleached macrostate.

t2
bright = .

t1 3 tfinal
dark I \\ ®

t={t, to..tt}] h=1{h;,ha.h} 0={N,rates}

f({t,h} | 0) = Pinit Gan(t1) Gpa(ta) Gab(ts)
exp(Qdd tﬁnal) Pfinal

Figure 4.3.1: An idealized time trace. Each dwell is color-coded with its corresponding term in
the likelihood function.

The likelihood function, as it’s presented in equation 4.6 and Fig. 4.3.1, assumes that no
fluorescence events are missed by the instrument. In reality, current experiments have a
resolution of about 50 milliseconds, so some events will be missed. In the SI, we discuss a

modification of the likelihood function that accounts for missed transitions.
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4.3.1 NUMERICAL EVALUATION OF THE LIKELIHOOD FUNCTION

Our goal is to find the set of parameters f that maximizes the likelihood function given
the data (a dwell trajectory represented by t and h). In practice, we accomplish this goal
by maximizing the likelihood function with respect to the rates for a fixed value of NV,
and then we repeat the maximization process for other values of V.

We maximize the likelihood function via the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) minimizer, implemented in Scipy. 224
BFGS is a quasi-Newton method that performs well on non-smooth optimization
problems. Our goal is to maximize the likelihood but, in practice, we minimize
—log [f({t,h} | §)]. The computational time for maximizing the likelihood function is
plotted in Fig. 4.3.2. The scaling depends on A,,,,, and it is advantageous to set A4, to a
small value when possible (wWhen activation events are well separated).

As an aside, we would like to point out that A,,,, = 1 is still distinct from
thresholding methods. Consider the following scenario: a PA-FP activates, and then
blinks. While the first PA-FP is in the blinked state, a second PA-FP activates and

photobleaches before the first molecule recovers from blinking. This scenario would still

obey A, = 1, but it would be forbidden in thresholding.
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Figure 4.3.2: (left) computation time for a single matrix exponential calculation; (right) esti-
mated time for full likelihood maximization.

4.4 Resurrs aND Discussion

4.4.1 ANALYSIS OF SIMULATED DATA

We analyzed simulated trajectories of a collection of N = 5 PA-FPs (Fig. 4.4.1) to test the
ability of our method to extract kinetic rates and estimate /V from data. Our simulated
trajectories were generated by the Gillespie stochastic simulation algorithm.?**> We
simulated three different blinking scenarios: moderate blinking (set 1), fast blinking (set
2), and slow blinking (set 3). The parameters for the three sets are summarized in
Table 4.4.1. We tuned the ratio between the blinking rate and the photobleaching rate
(ka/kp) to control the blinking behavior. If k, is large, relative to k;, then many blinking
events will occur before photobleaching. If k; is much smaller than k;, the PA-FP is more
likely to photobleach without blinking.

An initial question is “does the likelihood function have a maximum in the correct
location?” This question is important because it will determine whether or not we expect

likelihood maximization runs to converge to the correct parameter values. If the
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Figure 4.4.1: Sample traces from Gillespie simulations with parameters: N = 5, k, = 0.5,
kg = 3.0, k, = 0.1, k;, = 1.0. Rates in units of s~1.

Table 4.4.1: Kinetic rates used to generate simulated data sets. Rates in units of s 1.

Rate constant Set1 Set2 Set3

kq 05 05 05
kg 30 100 0.1
k, 01 01 o1
oy 1.0 1.0 10
ka/ke 3 10 01
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maximum lies elsewhere in parameter space, we would expect to see a bias in our results
when we analyze the data. To answer this question, we computed 1D slices in parameter
space around the true value of each parameter. Each panel of Fig. 4.4.2 was obtained by
holding four of the five parameters (k,, k4, k., ks, and N)) constant at their true values
and then varying the remaining parameter near its true value. We see that the four
kinetic rates are peaked in the correct location at their true values. In the 1D slice for N,

we see a maximum that spans N = 4 and NV = 5.

0 0
-2 2
%-4 %-4
20 &0
<6 <6
0
-8 8
2
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 00 05 1.0 o
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-2 2 -8
=4 =4 i2 3 456 7 809
5 5 x
- -6 - -6
-8 -8
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log(ka/kj) log(k,/k})

Figure 4.4.2: In each panel, one parameter is varied while the other parameters are held at
their true values. We find the the likelihood is maximized at the true parameter values.

Next, we assessed the ability of the numerical maximization procedure to converge to
the correct parameter values. The 1D slices discussed above suggest that the likelihood
function maximum is in the correct region of parameter space, but a separate question is
“can we simultaneously determine all five parameters?” We found that the likelihood
maximization procedure converges to the correct kinetic rates within 100 cycles.

Figure 4.4.3 shows the convergence of the rate estimates from one of the maximization

runs.
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Figure 4.4.3: Convergence of likelihood maximization of data set A. The maximization con-
verges close to true the parameter values. The parameters are estimated from the results of
many independent maximization runs, like the one depicted here. In these runs, N = 5.

We used a bootstrapping approach (resampling data with replacement) to determine
the precision of our parameter estimates.?**?® We randomly selected a subset of
trajectories and determined the rates that maximized the sum of the log-likelihoods of
the selected trajectories. We constructed a distribution of rates by repeating this process
for other randomly selected sets of trajectories. Our estimate for each parameter is the
mean of the corresponding distribution, and we compute the 95% confidence interval
based on percentiles of the distribution.

Now, we discuss the results for simulated fast (set 2) and slow blinking (set 3). We
found that, like with set 1, convergence of the likelihood maximization occured within
100 cycles (Fig. 4.4.5 and Fig. 4.4.6). The boostrap results show that the parameters were
determined precisely (Fig. 4.4.7 and Fig. 4.4.8), but we observed a small bias toward

slower kg4 in set 2 (Fig. 4.4.7). This set has a faster blinking rate than the other two sets.
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Figure 4.4.4: Histogram of bootstrapping results from simulated data set A. We fitted 200 boot-
straps of the data with 10 time traces per bootstrap.

Given that we’ve imposed a 50 ms temporal resolution on our simulated data (to mimic
the resolution of PALM experiments), it's possible that the bias is due to missed blinking
events. It’s also possible that this causes bias toward smaller /V that we observe for this

data set. Even so, our estimated k is correct to within a factor of two.
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Figure 4.4.5: Convergence of likelihood maximization of simulated data set B. In these runs,
N =5.
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Figure 4.4.6: Convergence of likelihood maximization of simulated data set C. We observe a
bias toward slower rates for kg and k; in this particular maximization run. In these runs, N = 5.
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Figure 4.4.7: Histogram of bootstrapping results from simulated data set B. We fitted 200 boot-
straps of the data with 5 time traces per bootstrap. An overall bias toward slow k; is observed in
the k4 distribution.
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Figure 4.4.8: Histogram of bootstrapping results from simulated data set C. We fitted 200 boot-
straps of the data with 40 time traces per bootstrap.
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4.42 ANALYSIS OF IN VITRO DATA

In addition to the simulated data presented above, we analyzed the in vitro data of Lee et
al.” In this data set, biotinylated Dendra2 molecules were immobilized on a
streptavidin-coated glass coverslip. The sample was illuminated with a 405 nm laser to
photoactivate the Dendra2 and then excited with a 561 nm laser until the molecules were
photobleached (see Lee et al.?* for further details). Individual emission bursts from the
EMCCD output (Fig. 4.1.1A) were processed into single molecule time traces (Fig. 4.1.1B)
for analysis.

We simultaneously extracted the four kinetic rates (k,, k4, k;, k) and found that
Dendra? blinking is slow (k;/k;, = 0.3); its behavior most closely resembles that of set 3
of our simulated data. Dendra2 molecules are more likely to photobleach upon activation
than blink. Our NV distribution is sharply peaked at 1 (Fig. 4.4.9), as expected for this data
set, since the experiments were designed to separate and isolate Dendra2 molecules on
the coverslip. Our rate estimates compare well with those of Lee et al., who found a
similar blinking rate (Table 4.4.2). Our results differ from their results most significantly
for k,, the rate of recovery from D to A. They fit the distribution of fluoresence-off times
to determine k, and found that the distribution fit poorly to a single exponential, but that
it was well fit by a double exponential (k,1e~*1* + ak,9e~*2t). The poor fit to a single
exponential agrees with the fact that our histogram of k, is heavy tailed towards slower
rates (Fig. 4.4.9). Their findings and ours suggest that perhaps the kinetic model of
Dendra2 (Fig. 4.2.1) should be amended to two blinked states, rather than one. Fitting the

data with alternative kinetic models will be included in future work.
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Figure 4.4.9: Histogram of bootstrapping results from in vitro data. We fitted 300 bootstraps of
the data with 50 time traces per bootstrap. The dashed lines show the parameter values from
Lee et al.?*®

Table 4.4.2: in vitro Dendra2 kinetic rates from the current AMM analysis and from Lee.
Units: s~ 1

Rate constant Our analysis Lee et al.”
ko 0.009 0.01
kaq 2.8 3.2
k, 0.87 1.6
ko n/a 18, o« = 3.2
Ky, 9.2 16.6
ka/ky 0.3 0.2
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4.4.3 ANALYSIS OF IN VIVO DATA

The ultimate goal of our work is to enable accurate in vivo molecular counting. To that
end, we also analyzed the data of Dendra2 fused to the flagellar motor protein FliM in E.
coli from Lee et al.?® (Fig. 4.4.10). The PALM data for FliM-Dendra2 was acquired by
continuous illumination of a 561 nm excitation laser, but the 405 nm activation laser
power was modulated according to a “Fermi” activation scheme. Fermi activation refers
to the gradual ramping of laser power to maximize the temporal separation of PA-FP

activation events. Under the Fermi protocol, the activation rate is given by:

1 (=t /T)

ko(t) = T [1 4 elt=tr/D]log[1 + elt=tr/T)]

(4.7)

We simulated the Fermi activation protocol by recomputing &, according to equation 4.7
for each dwell, i.e. for each G matrix in the likelihood function (equation 4.6). We used
the parameters reported by Lee et al.: tx = 2.2 min and 7" = 12 sec. A sample of the FliM

time traces are shown in Fig. 4.4.11. Total photobleaching occurs within four minutes.

Figure 4.4.10: (A) Bright-field image of bacterial cell. (B) FliM-Dendra2 PALM overlay image.
The motor proteins mainly localize as clusters at the cell membrane. The cluster indicated with
a solid arrow head was selected for molecular counting. Other clusters that were elongated, lo-
cated at the cell pole, not on the membrane, or surrounded by dispersed molecules were not se-
lected for counting. (Scale bar, 500 nm) (C) Diffraction-limited FliM-Dendra2 image. Reprinted
with permission from Lee et al.?** Copyright (2012) National Academy of Sciences, USA. See
page 99 for license information.
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Figure 4.4.11: Ten FliM time traces out of the eighty-eight that were analyzed. Data was col-
lected in E. coli cells with a Fermi activation protocol to facilitate well-spaced activation events.

Using the kinetic rates we extracted from the in vitro data in the previous section
(Table 4.4.2), we computed the likelihood as a function of [V for the FliM data. The center
of our N distribution is at NV = 15 (Fig. 4.4.12), roughly half of the expected value.
Cryo-EM studies found that a mature copy of the flagellar motor has 34 copies of
FliM. 27 Another study found 30 + 6 using a photobleaching approach.?* Lee et al.
analyzed the same data with their thresholding method and found a value for N that
agrees well with the Cryo-EM and FRAP results.

There are several factors that could cause the undercounting that we observe. First, the
current analysis doesn’t account for missed events. Any events faster than 50 ms will be
missed. In the SI, we discuss a method for correcting the likelihood function for missed
events. Second, the current FliM analysis assumes the in vitro kinetic rates are the same in
vivo. We are currently working on determining the rates from the in vivo data. Finally, the
raw data is very noisy and prone to drift. The current strategy for converting the raw
data into dwell-based time traces uses simple intensity thresholding. An improvement
would be to detrend the data to account for drift and apply one of the many piece wise

constant (PWC) denoising methods that exist in the literature (recently reviewed by Little
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Figure 4.4.12: N was estimated from 200 independent likelihood maximizations, using kinetic
rates extracted from in vitro data. The dashed line indicates the expected number of FliM sub-
units, based on independent experimental data.

and Jones?***?*%). These improvements will be the focus of future work.

4.5 CONCLUSIONS

We have adapted maximum likelihood aggregated Markov methods, originally
developed for studying ion channel gating dynamics, to the PALM counting problem.
Our approach accounts for fluorescent protein blinking in a robust way that doesn’t rely
on thresholds, doesn’t require advance knowledge of kinetic rates, and isn’t limited to
models with only one blinked state. We’ve successfully used the method to extract
kinetic rates and count the number of molecules accurately and precisely in simulated
and in vitro data. However, our current in vivo results suggest that we undercount the
number of FliM molecules in bacterial flagellar motors. Future work will focus on
denoising the in vivo data and accounting for missed events in order to address the

undercounting discrepancy.
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4.7 SUPPORTING INFORMATION

4.7.1 How TO ACCOUNT FOR MISSED TRANSITIONS

We consider a dwell of length ¢ in the bright state. As shown in equation 4.8, the
probability density for a dwell of length ¢ in the bright class followed by a transition to

the dark class is

de(t) = €bethd. (48)

215 we assume, for sake of

Following work by Qin et al.?’® and Roux and Sauvé,
concreteness, that within this dark dwell we miss rapid transitions to the bright state. We
could just as well have assumed that within the bright dwell we miss rapid transitions to
the dark state. In order to be missed, the transitions must be shorter than some time dead
time or acquisition time 7.

We define a new probability density which is the sum over all possible missed

transitions:

Gua(t) = Y T(n) (4.9)

where I'(n) is the probability density for n missed transitions where, in general, we have
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assumed that n runs from 0 to infinity. I'(n), is defined as follows

['(n) = / dri - Topta (H de(721_1)Gdb(Tzi)> Gpd(T241)- (4.10)
i=1

where the integral over time accounts for the fact that we must sum over all possible
times during which the transitions can occur within the dwell ¢. The prime on the
integral indicates that there are restrictions in taking this integral. These conditions are

the following:

d om=t (4.11)

T > g (4.12)

Toi < tg. (4.13)

The first condition says that all dwell times within ¢ must eventually last a total time ¢.
The second condition says that 71 must exceed ¢, (otherwise the first missed transition
would be lumped in with the previous dark dwell). The third condition simply states
that, in order to be missed, all transitions to the dark class must be shorter than .

In the limit that the amount of time spent in missed state (in this case the dark state) is
much smaller than the total ¢ (i.e. the time spent in the bright state including missed
events), then the integral given by equation 4.10 simplifies considerably. The transition

probability G4(t) then becomes

G~bd (t) = 6betde(be—de(l—eQb‘Dtd)de’leb)(t—td)de (4.14)
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