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Abstract
There is increasing awareness of the negative ecological and environmental effects of widespread use of pesticides on the 
landscape. Spillover or drift of pesticides from agricultural areas has been shown to impact species health, reproduction, 
and trophic dynamics through both direct and indirect mechanisms. Neonicotinoid insecticides are associated with observed 
declines of insectivorous and grassland birds, and these environmental pollutants are a significant conservation concern for 
many species that have experienced past or current population declines. Due to the high efficacy of these modern insecticides 
in depressing local insect populations, insectivorous birds can be negatively impacted by a pesticide-mediated reduction in 
food supply. Neonicotinoids may act synergistically with other stressors, such as habitat loss, to exacerbate threats to species 
or population viability. The Tricolored Blackbird is an insectivorous grassland bird of conservation concern in California, 
USA. Due to the high association of this species with agricultural habitats, we sought to quantify the amount of neonicotinoid 
residues in Tricolored Blackbird carcasses as a first step in assessing how this species may be impacted by pesticides. Out of 
85 salvaged carcasses sampled (N = 24 adults, N = 3 fledglings, and N = 58 nestlings), only two contained detectable levels of 
target compounds. These were an adult and one nestling that contained clothianidin residue (40 ppb and 7 ppb, respectively); 
both of these birds were salvaged from breeding colonies associated with dairy farms in Kern County, California. We suggest 
that further work is needed to assess neonicotinoid exposure of Tricolored Blackbirds in dairy-associated breeding colonies.

Keywords Neonicotinoids · Insecticides · Pesticides · Birds · Non-target species · Liver · Conservation · Tricolored 
Blackbird · Agelaius tricolor

Introduction

Ecological effects of neonicotinoids

Pesticides are widely used to meet the demands of the global 
food supply, although there are myriad examples of the det-
rimental effects of pesticides as an environmental pollut-
ant on water quality, biodiversity, and even human health 
(Tang et al. 2021). The use of pesticides and other synthetic 
chemicals across the globe has increased rapidly over the 

last several decades, and much is known about the effects 
of pesticides on target pest species. However, research on 
these practices as a major contributor to global change has 
until recently been overlooked (Bernhardt et al. 2017). It is 
now clear that pesticide use can result in negative ecological 
effects such as declines in biodiversity and a reduction of 
biological pest control (Geiger et al. 2010; Hallmann et al. 
2017; Møller et al. 2021). There is evidence that biodiversity 
declines due to habitat loss or conversion to agriculture are 
exacerbated by agricultural pesticide use (Gibbs et al. 2009; 
Tsiafouli et al. 2015).

A new class of pesticides, neonicotinoid insecticides, 
were developed in the 1980s and since then it has become 
the most widely used class of insecticides in the world 
(Goulson 2013). The neonicotinoid imidacloprid is one 
of the most commonly applied pesticides across the globe 
(Jeschke et al. 2011). Neonicotinoids are applied in both 
agricultural and home garden settings as seed coatings, foliar 
sprays, soil drenches, and granules (Hladik et al. 2018). They 
offer long-lasting protection against insect herbivory as a 
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systemic pesticide, as the chemicals are integrated into tis-
sues through entire plants during growth (Goulson 2013). 
Neonicotinoids are particularly toxic to insects by acting as 
a powerful nicotinic acetylcholine receptor blocker (Mat-
suda et al. 2001; Pisa et al. 2015; Tomizawa et al. 2000). On 
average, just 5% of neonicotinoids applied as seed coatings 
are actually taken up by the target plant, leaving 95% of 
the compound in the surrounding soil and water (Sur and 
Stork 2003). This runoff introduces neonicotinoids into the 
environment surrounding agricultural areas, where they can 
remain persistent for long periods of time under certain con-
ditions (Bonmatin et al. 2015; Hladik et al. 2018). These 
compounds have demonstrated negative impacts on aquatic 
invertebrate biomass at levels below government regulatory 
compliance standards (Schepker et al. 2020), further sup-
porting how these chemicals can have significant indirect 
ecological effects even at low concentrations. Early in 2022, 
the California Department of Pesticide Regulation filed an 
official notice of formal rulemaking to restrict the use of 
imidacloprid, thiamethoxam, clothianidin, and dinotefuran 
in California in an effort to protect pollinator health (DPR 
Regulation No. 22–001).

Neonicotinoid pesticides have been studied frequently 
for their negative effects on pollinating insects, specifically 
the European Honey Bee (Apis mellifera) which is a critical 
pollinator for many agricultural crops (Godfray et al. 2015; 
Henry et al. 2012; Woodcock et al. 2017). Because of the 
importance of pollination as an ecosystem service, there has 
been concern over the connection between neonicotinoid 
use and an overall decline of bee populations in recent years 
(Fairbrother et al. 2014; Henry et al. 2012). Pesticide pollu-
tion is generally considered to be a major driver in the ongo-
ing declines of global insect populations (Sánchez-Bayo and 
Wyckhuys 2019). For example, populations of butterflies 
have also been shown to be impacted by spill-over of pes-
ticides into non-agricultural habitats (Forister et al. 2016).

Impacts of neonicotinoids on birds

The acute toxicity of neonicotinoids to birds is relatively low 
when compared to other classes of pesticides (such as organ-
ophosphates or carbamates) that have been largely replaced 
by neonicotinoids (Mineau and Palmer 2013). However, 
a growing body of literature suggests that neonicotinoids 
have negative indirect effects (e.g., food chain disruptions) 
on birds, in addition to potential direct acute toxicity (Goul-
son 2014; Hallmann et al. 2014). Recent analyses suggest 
that the use of neonicotinoid pesticides is associated with 
declines in bird populations at large continental/regional 
scales (Goulson 2014; Tallamy and Shriver 2021), with 
insectivorous birds impacted to the greatest extent through 
a pesticide-mediated reduction in food supply (Hallmann 
et al. 2014; Møller et al. 2021; Wilson et al. 1999). Thus, 

neonicotinoid pesticides appear to indirectly impact non-
target species at exposure concentrations well below the 
amount that would induce acute toxic effects such as death 
in vertebrates (Goulson 2014).

One of the earliest studies to demonstrate the effects of 
pesticides on the population declines of a single bird species 
found that declines in Grey Partridges (Perdix perdix) was 
linked directly to declines in arthropod prey due to insec-
ticide application (Potts 1986). Another early field study 
found that mean brood size and insect abundance were both 
significantly higher in unsprayed fields compared to sprayed 
fields (Rands 1985). Field experiments have identified rela-
tionships between invertebrate abundance and chick condi-
tion or survival in passerines as well (Boatman et al. 2004). 
In Yellowhammers (Emberiza citronella), brood reduction 
was more likely to occur when a greater proportion of sur-
rounding foraging areas had been sprayed with insecticides 
(Boatman et al. 2004). There was also a negative relationship 
between insecticide use and Yellowhammer nestling body 
condition and a negative relationship between insecticide 
use and invertebrate prey abundance (Morris et al. 2005).

Notwithstanding their negative effects, neonicotinoid 
use in wild bird habitat is extremely widespread, and expo-
sure is ubiquitous in agricultural habitats across many bird 
taxa. A recent study found that every collected sample of 
House Sparrow feathers contained at least one neonicotinoid 
compound, and samples from conventional farms had sig-
nificantly higher concentrations than samples from organic 
farms (Humann-Guilleminot et al. 2019a). Another recent 
investigation found that 69% of Barn Owl (Tyto alba) nest-
ling feathers and 57% of Barn Owl adult feathers contained 
at least one neonicotinoid compound (Humann-Guilleminot 
et al. 2021). This same study found no neonicotinoid resi-
due in Alpine Swift (Tachymarptis melba) nestling feath-
ers, but did find that 75% of food boluses and 20% adult 
plasma samples contained at least one neonicotinoid com-
pound, indicating a diversity of possible exposure routes 
(Humann-Guilleminot et al. 2021). Further demonstrating 
the ubiquity of these chemicals in the environment, 100% 
of Mediterranean Gull (Ichthyaetus melanocephalus) and 
89% of Sandwich Tern (Thalasseus sandvicensis) fledgling 
feather samples contained one neonicotinoid compound 
(Distefano et al. 2022).

Debilitation such as ataxia can be induced in birds given 
imidacloprid orally at an order of magnitude below the 
lethal dose (Callahan and Mineau 2008). These chemi-
cals can cause disruption of endocrine and immune func-
tions and induce changes in feeding behavior (Mitra et al. 
2011). Acute neonicotinoid (imidacloprid) exposure in 
White-crowned Sparrow (Zonotrichia leucophrys) has been 
shown to induce decreased fat stores, lower body mass, and 
improper migratory orientation (Eng et al. 2017). Fertility 
may also be reduced at sublethal doses of neonicotinoids; 
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House Sparrows (Passer domesticus) that were given a field-
realistic dose of acetamiprid showed a significant reduction 
is sperm density (Humann-Guilleminot et al. 2019b). Over-
all, there is sufficient evidence from both laboratory and 
field studies to demonstrate that neurotoxic neonicotinoid 
pesticides can have detrimental direct and indirect effects on 
bird reproduction, foraging, and predator avoidance (Walker 
2003).

Declines of grassland birds

Changes in bird diversity can be an early warning of envi-
ronmental problems (Arya et al. 2019) and massive declines 
in avian abundance over the last half century or more have 
been well established (Rosenberg et al. 2019). When con-
trolled for the effects of agricultural intensification and land-
use change, declines of grassland birds in particular have 
been linked to the widespread use of pesticides. A review of 
agricultural drivers of farmland-associated bird species in 
North America found that 42% of studies found a negative 
impact of pesticides, while 27% of studies found a negative 
impact of habitat loss (Stanton et al. 2018). Neonicotinoid 
pesticide use in the USA was associated with a 4% annual 
decline of grassland birds and a 3% annual decline of insec-
tivorous birds (Li et al. 2020). Overall, grassland birds have 
declined by 53% since the 1970s, faster than any other group 
(Rosenberg et al. 2019). Pesticides are estimated to affect 
87% of bird species that are threatened globally, with a dis-
proportionate impact on grassland birds (Arya et al. 2019).

For endangered species across taxa, the use of population 
models in assessing pesticide risk for listed species has been 
extremely limited (Forbes et al. 2016). Pesticide exposure, 
even if low, can cause additional pressure to species that are 
already declining. Attempts to include pesticide exposure 
into models of avian survival and reproduction have been 
limited by the availability of direct controlled toxicological 
studies (Bennett et al. 2007; Etterson and Bennett 2013). A 
lack of toxicological data for many wild species is, in part, 
responsible for the lack of information of how pesticides 
may impact species of conservation concern across temporal 
and geographic scales (Forbes et al. 2016). Thus, establish-
ing exposure (as the presence of pesticides in tissue) is a 
crucial first step in evaluating the potential effects of neoni-
cotinoids on species of conservation concern. In this study, 
we seek to establish this baseline for pesticide exposure in a 
grassland bird of conservation concern in California, USA.

Tricolored Blackbirds as a study species

The Tricolored Blackbird is a highly colonial marsh-nesting 
songbird that is nearly endemic to California (Neff 1937) 
and has experienced drastic population declines in recent 
years (Graves et al. 2013; Meese 2013; Robinson et al. 

2021). The Tricolored Blackbird is listed as Threatened 
under the California Endangered Species Act and is des-
ignated as Endangered by the IUCN Red List. The species 
is the most colonial land bird in North America since the 
extinction of the Passenger Pigeon (Ectopistes migratorius; 
Bent 1958), and breeding in high-density large colonies 
makes the species especially vulnerable to dramatic nest-
ing failures (Cook and Toft 2005). Tricolored Blackbirds 
also exhibit semi-nomadic behavior and itinerant breeding 
(Hamilton 1998; Orians 1961). Historically, over 90% of 
known individuals nested in wetlands and foraged primar-
ily in grasslands (DeHaven et al. 1975; Neff 1937; Orians 
1961). Wetland habitats have experienced losses of over 90% 
in California’s Central Valley (Frayer et al. 1989). However, 
potential positive signs are shown by the species nesting in 
upland non-native vegetation and agricultural habitats with 
increasing frequency and density over the last several dec-
ades (Meese 2017). Neonicotinoid use in California has been 
linked to population declines in Tricolored Blackbirds and 
Purple Martins (Progne subis; Forister et al. 2016). Due to 
the high association of Tricolored Blackbirds with agricul-
tural areas, especially silage fields for dairy cattle, we sought 
to investigate pesticide residues in Tricolored Blackbirds to 
establish pesticide exposure risk across different land-use 
types. We expect that birds in agricultural areas will have 
higher measured pesticide residue levels than birds breeding 
in non-agricultural areas.

Methods

Study sites and sample collection

Tricolored Blackbird carcasses were opportunistically sal-
vaged from breeding colony locations during banding and 
monitoring efforts from April through the beginning of July 
during 2017–2020. Adult (N = 24) and fledgling (N = 3) 
carcasses were found as a result of vehicle collisions or 
birds striking the windows of buildings. Nestling carcasses 
(N = 58) were obtained as a result of brood reduction behav-
ior that is commonly observed in this species, where parents 
will deposit live or dead nestlings along the perimeters of 
their breeding colonies. No birds were killed as a part of this 
study. Nestlings are obligate insectivores and dependent on 
local insect populations at this stage of life, and because they 
are still in the nest we know that any insecticide exposure 
came from the local area. By comparison, adults are partially 
granivorous and pesticide exposure may have occurred else-
where during earlier time periods.

We obtained carcasses from scattered counties across the 
core of the species’ range in California: Alameda (N = 1), 
Colusa (N = 9), Kern (N = 2), Merced (N = 5), Sacramento 
(N = 15), San Benito (N = 4), Solano (N = 1), Yolo (N = 16), 
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and Yuba (N = 32). Figure 1 shows the counties sampled 
relative to the species range in California. Samples were col-
lected across four field seasons: 2017 (N = 19), 2018 (N = 6), 
2019 (N = 49), and 2020 (N = 11). Sample collection in 2020 
was limited due to travel restrictions caused by the Covid-
19 pandemic. Upon collection in the field, samples were 
immediately put into an ice chest for transportation, and then 
transferred to a − 80 °C freezer for storage until the pesti-
cide assays were performed. Nestling and adult carcasses 
were salvaged in as fresh a state as possible (i.e., no signs 
of decomposition), but the exact time period since death is 
unknown because of the opportunistic nature of this study. 
Liver tissues (whole liver) were extracted from the adult car-
casses prior to pesticide analysis and the nestling carcasses 
remained whole.

Pesticide analysis

A liquid chromatography-mass spectrometry (LC-HRMS) 
assay has been developed and validated to detect neoni-
cotinoid pesticides and other compounds in small-body 
avian tissue samples using homogenized carcasses of 
1–2 day-old chicken carcasses (Filigenzi et al. 2019). This 
method has been successfully used to document insecti-
cide exposure in free-ranging hummingbirds in California 
(Graves et al. 2019). The method allows for the analysis 
of pesticide residues in small-bodied species where tradi-
tional methods of sampling (i.e., liver tissue or blood sam-
pling) are not possible. Given the small size of Tricolored 
Blackbird nestlings, the present pesticide analyses were 
done according to the whole-carcass methods described in 
Filigenzi et al. (2019) and Graves et al. (2019). The same 

LC-HRMS assay was performed on the adult liver tissue 
samples. Target compounds for these assays were dinote-
furan, nitenpyram, thiamethoxam, clothianidin, imidaclo-
prid, acetamiprid, thiacloprid, and sulfoxaflor. Analyses 
were conducted by staff at the California Animal Health 
and Food Safety Laboratory at the School of Veterinary 
Medicine, University of California, Davis, CA 95616.

Results

Out of the 85 birds sampled, only 2 carcasses contained 
residues of any target compound above the detection limit. 
Clothianidin was the only target compound detected. One 
adult male liver showed 40 ppb of clothianidin and one 
7-day-old nestling carcass showed 7.1 ppb of clothianidin 
(limit of quantification 1.0 ppb).

Both birds with detectable levels of clothianidin were 
salvaged from areas adjacent to breeding colonies located 
in silage fields associated with dairy farms in Kern County, 
California. These two carcasses were also the only 2 sam-
ples obtained from Kern County. With only 7 total samples 
able to be salvaged from dairy/silage habitat in Kern and 
Merced Counties, we observed 2 carcasses with clothiani-
din residue (28.6%). The other 78 samples from non-silage 
breeding colonies contained no detectable levels of any 
target compound (0%). With only two samples above the 
detection limit, there would be very low statistical power 
in any statistical comparison of frequency of detection 
in different counties or regions, and therefore we did not 
attempt a statistical analysis of the findings.

Fig. 1  a Map of California 
showing the counties where 
adult and nestling Tricolored 
Blackbird carcasses were 
salvaged; b range map of the 
Tricolored Blackbird in Cali-
fornia (shown in red; obtained 
from the California Department 
of Wildlife; https:// wildl ife. ca. 
gov/).

https://wildlife.ca.gov/
https://wildlife.ca.gov/
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Discussion

Our low detection rates (2 out of 85 birds sampled) of neo-
nicotinoids is surprising considering Tricolored Blackbirds’ 
common association with agricultural habitats during the 
breeding season. However, the two carcasses with detect-
able levels of clothianidin were both salvaged from breeding 
colonies in silage fields associated with dairies; no bird sam-
ples from other land-use types showed any pesticide resi-
due. Clothianidin was the only target compound detected in 
any of our samples. The EPA characterizes clothianidin as 
“moderately toxic to birds on an acute oral exposure basis” 
and “practically nontoxic on a subacute dietary exposure 
basis” (EPA 2020). Clothianidin has however been shown 
to cause eggshell thinning (EPA 2020). Thiamethoxam is 
known to metabolize into clothianidin when given orally to 
birds (Pan et al. 2022), so our detection of clothianidin may 
be a metabolite following initial environmental exposure to 
thiamethoxam (rather than environmental exposure to clo-
thianidin). Thiamethoxam has negative impacts on commer-
cial laying hen productivity, with sub-lethal doses causing 
eggshell thinning, anemia, reduced food consumption, and 
damage to the liver and kidneys (Gul et al. 2020). Sub-lethal 
doses of thiamethoxam also have toxic effects on hemato-
logical and biochemical parameters in broiler chicks (Gul 
et al. 2018). More research is needed to show if exposure to 
clothianidin or thiamethoxam has measurable impact on Tri-
colored Blackbird reproduction or physiology for individuals 
nesting in silage fields.

Birds may be coming into contact with our target com-
pounds at a frequency that was not captured by our sal-
vage sampling method. Environmental exposure may be 
higher at other times of the year outside the Tricolored 
Blackbird breeding season. Surveillance of clothianidin 
exposure in European gamebirds demonstrated a signifi-
cant seasonal difference, with only 6% of birds showing 
detectable residues before sowing with treated seeds com-
pared to 89% of samples after sowing (Lennon et al. 2020). 
Laboratory studies have shown that birds rapidly eliminate 
neonicotinoids from the body. Japanese Quail (Coturnix 
japonica) that have been orally dosed with imidacloprid 
rapidly absorb the compound into blood, brain, liver, and 
kidney tissues (within 1 h) but eliminate the compound 
to below the detection threshold within 24 h (Bean et al. 
2019). Similar rapid rates of clearance in Japanese Quail 
have been shown with thiamethoxam and clothianidin 
(Pan et al. 2022). Neonicotinoids are known to persist in 
the environment for long periods of time (Bonmatin et al. 
2015), so it is unlikely that our target compounds broke 
down in the salvaged carcasses prior to storage at − 80 °C.

There is some evidence to suggest that birds preferen-
tially avoid seeds treated with neonicotinoids (Lopez-Antia 

et al. 2014). A study of eight Ring-necked Pheasants (Pha-
sianus colchicus) found that given the choice of untreated, 
dyed, and dyed/treated seed corn (treated with Poncho® 
1250 clothianidin), birds selected (p < 0.0001) untreated 
seeds over dyed and treated seeds (Sundall 2020). If 
treated seeds are the route of dietary exposure for adult 
Tricolored Blackbirds and birds are actively avoiding this 
food source, this may help explain why we are seeing low 
or no pesticide residue in adult samples. However, further 
research is needed to identify the method of exposure to 
clothianidin (or thiamethoxam) in this species, particularly 
for nestlings.

In summary, we report the first application of a direct pes-
ticide residue analysis to quantify the field exposure of Tri-
colored Blackbirds to neonicotinoid pesticides during the 
breeding season. Of 85 opportunistically collected birds, two 
(an adult and a nestling) showed the presence of clothiani-
din only. Both came from breeding colonies associated with 
dairies in Kern County, and were two of only seven bird car-
casses salvaged from dairy-associated colonies. The other 78 
carcasses salvaged from other (non-silage) breeding habitat 
locations throughout the species range contained no detect-
able levels of any target neonicotinoid insecticides. As of the 
last statewide population survey in 2017, 34.4% of breeding 
Tricolored Blackbirds nest in Kern County, which is a higher 
proportion than in any other county (Meese 2017). Survey 
results also show that 33.1% of Tricolored Blackbirds nest in 
substrates associated with silage (Meese 2017). Additional 
targeted sampling efforts are needed to further explore the 
potential impacts of insecticides on Tricolored Blackbird 
breeding in this geographic area and also in this breeding 
substrate type. Pesticide exposure occurring outside of the 
breeding season and/or in non-breeding birds would not 
have been captured in our study, so further investigation is 
needed to identify additional possible routes of exposure 
across the Tricolored Blackbird annual cycle. Additionally, 
our detection rates in adults may have been different if blood 
or feather samples were taken from adults rather than liver 
samples. Blood and feather samples may show a different 
exposure route than that would be detected in liver tissue. 
This study only targeted neonicotinoid insecticides (and 
sulfoxaflor, a sulfoximine systemic insecticide), so further 
evaluation of exposure to other classes of pesticides is also 
necessary. Additional research is needed to understand if 
and how insecticide application affects the insect prey base 
of Tricolored Blackbirds, as these indirect effects are known 
to play a large role in the ongoing declines of grassland and 
insectivorous birds.
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