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ABSTRACT OF THE DISSERTATION

Advancing Heuristics for Search over Graphical Models

By

William Ming Lam

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor Rina Dechter, Chair

Graphical models are widely used to model complex interactions between variables. A graph-

ical model contains many functions over these variables which have an underlying graph

structure and represents an overall joint function composed of these functions. Examples

include Bayesian networks, Markov networks, and weighted constraint satisfaction problems.

In these, a common query is the optimization query, which is to find a joint configuration of

variables that optimizes the objective function defined by the joint function.

One of the best frameworks for these queries is the AND/OR search framework, which

casts this optimization problem as a heuristic search problem. AND/OR Branch-and-

Bound (AOBB) and AND/OR Best-First (AOBF) search are both algorithms that search

the AND/OR search space, which exploits conditional independencies in a problem. The

performance of these algorithms are highly dependent on the strength of its heuristics, which

is the main focus of this thesis.

We first investigate the well-known technique of look-ahead, commonly used in search appli-

cations such as games, adapting it to the optimization task in graphical models. In partic-

ular, we analyze the typically used MBE heuristic within the AND/OR search framework,

establishing a connection between the “bucket error” of MBE and the residual. This connec-

tion enables a cost-effective scheme that allows look-ahead to be selectively performed only
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where it is likely to have a positive impact on the heuristic. An extensive empirical evaluation

demonstrates that we are able to improve the power of AND/OR Branch-and-Bound.

Second, in seeking an anytime scheme for providing lower bounds on the optimal solution,

we explore the impact of subproblem ordering on AOBF. Our analysis demonstrates that

this can significantly impact the performance of AOBF for both exact and anytime solutions.

We propose heuristics based on the bucket error of MBE and demonstrate their potential.

Third, to tackle problems where MBE is known to perform poorly on, we explore dynamic

heuristics that are computed during search rather than static heuristics which are pre-

computed such as with MBE. We adapt the FGLP algorithm, a coordinate-descent method

for a linear programming relaxation-based bound on the objective, for use a a heuristic gen-

erator for AOBB. Through a re-derived update method and a defined update schedule, we

demonstrate the advantage of FGLP heuristics on problems known to be difficult when using

MBE.

Additionally, we extend AND/OR Multi-valued Decision Diagrams, a framework for the

compact representation of functions in graphical models. We provide a previously missing

empirical evaluation of previously introduced methods. We also extend the framework to

allow for exact bucket elimination to be implemented using AOMDDs, thus pushing the

feasibility of bucket elimination on problems that normally require an infeasible amount of

memory.
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Chapter 1

Introduction

Graphical models are a widely used framework for representing structure in complex systems

such as probability distributions over a large number of variables. They allow us to model

interactions between variables using graphs, where nodes represent variables and cliques

represent local functions over the connected variables.

Examples of graphical models include Bayesian networks, Markov networks, factor graphs,

and weighted constraint satisfaction problems [11, 42, 13]. One of the most common tasks

over graphical models is the optimization query, which is to find a joint configuration of the

variables that optimizes an objective function represented by the graphical model. When the

graphical model represents a probability distribution, a maximization corresponds to finding

the most likely configuration of the graphical model, which is known as the Most Probable

Explanation (MPE) or Maximum A Posteriori (MAP) query. In other literature such as

in constraint satisfaction, the local functions are viewed as costs and thus a minimization

corresponds to finding the least cost configuration of the model. The optimization task

is known to be NP-hard. Thus, given limited resources in time and/or memory, we often

turn to approximation algorithms. One desirable property for approximation algorithms

is to be anytime, which provide monotonically improving suboptimal configurations over

time and are guaranteed to return the optimal configuration with enough time. Casting

inference as a heuristic search problem is a natural step, which systematically enumerates
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the configurations of a model. Depending on the design of the heuristic search algorithm,

it can be an effective anytime approximation algorithm. Indeed, one of the most effective

frameworks for performing these tasks is AND/OR search [16], including algorithms such

as AND/OR Branch-and-Bound (AOBB) and AND/OR Best-First (AOBF), along with

the Mini-Bucket with Moment Matching (MBE-MM) heuristic. This was demonstrated by

winning recent UAI inference competitions [40]. The most significant strength of AND/OR

search lies in its ability to take advantage of problem decomposition in graphical models [16].

1.1 Dissertation Outline and Contributions

In this dissertation, we focus on improving the state-of-the-art heuristic search, and the

heuristics available to guide the AND/OR search framework to yield faster exact and anytime

inference (both upper and lower bounds) for optimization queries, thus extending their reach

to a wider variety of problems. In particular, we focus on look-ahead during search and on

dynamic heuristic computation. Within these, balancing a time and space trade-off is an

inherent problem which we address in our work. We also improve the AND/OR Best-First

search algorithm’s performance by addressing the generally overlooked aspect of subproblem

ordering.

Lastly, we extend a framework, AND/OR Decision Diagrams, for the compact representation

of graphical models to allow exact inference on summation queries on problems that cannot

be solved due to memory constraints.

We provide an overview of each chapter in the following subsections. Subsequently, we

provide background relevant to all of the work. Additionally, more specific background is

deferred to each of the chapters.
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1.1.1 Cost-Directed Look-ahead in AND/OR Search via Residual Analysis

Chapter 2 focuses on applying the classic technique of look-ahead to improve the mini-bucket

elimination (MBE) heuristic used in AND/OR Branch-and-Bound (AOBB). The look-ahead

technique is known to be useful in the context of online search algorithms (e.g. game playing

schemes, planning under uncertainty, etc.) [4, 22, 47]. It improves the heuristic function h(·)

of a node by expanding the search tree below it and backing up the h(·) values of descendants

(known as a Bellman update). Thus, look-ahead can be seen as a secondary search embedded

in the primary search. In these, the heuristic is commonly treated as a black-box, and thus

look-ahead is used in an arbitrary way. As such, it may not always be cost-effective because

there are no guarantees that the heuristic will improve enough to make sufficient impact that

counter balances the computational overhead. However, in the context of MBE heuristics

which are pre-compiled prior to search, there is information that can be exploited to inform

of the impact before attempting a look-ahead. Thus, the goal of the research here is whether

look-ahead can be made into a cost-effective scheme given this information. This motivates

the work in this chapter:

Contributions

• We define the concept of bucket error of the mini-bucket heuristic and show their

connection with the residual.

• We present bucket error as a guide for controlling look-ahead to avoid frivolous look-

ahead.

• We show how look-ahead can be accomplished as a conditioned variable elimination

task, which enables it to be carried out more efficiently.

• In an extensive empirical evaluation, we demonstrate that look-ahead can be a cost-

effective scheme for both finding an exact solution and approximate anytime solutions.
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1.1.2 Subproblem Ordering Heuristics for AND/OR Best-First Search

Chapter 3 focuses on the subproblem ordering in AND/OR Best-First Search (AOBF). Unlike

traditional best-first search in an OR search space, the current best partial solution contains

many “best” nodes corresponding to different subproblems, while only one node is chosen for

expansion at a time. This problem has already been posed by Pearl in [41], where AND/OR

Best-First search is presented as having two heuristics: one for estimating the quality of the

current partial solution graph (as typical in heuristic search), and one for guiding which node

expansion to this partial solution graph will lead to the largest refinement in the estimate.

Our work aims for an algorithm that provides anytime lower bounds on the optimal solution.

Therefore, a secondary heuristic should aim to increase the lower bound the most. Indeed,

the generation of anytime lower bounds using best-first search has been a recent topic of

interest in the context of graphical models [1, 34, 31]. However, the specific question on

the impact subproblem ordering in best-first search in AND/OR search spaces has not been

explored, and is the main focus on this chapter. The following outlines the contributions.

Contributions

• We illustrate that subproblem ordering can have a significant impact on the perfor-

mance of AOBF. In particular, exploring one subproblem before another can increase

the lower bound on the solution far more significantly.

• We show that look-ahead can be helpful for identifying the best subproblem to explore

amongst the current partial solution tree frontier nodes. Thus, we show that the bucket

errors of the MBE heuristic presented in Chapter 2 can be instrumental for guiding

subproblem ordering.

• Due to the overhead associated with full look-ahead, we propose several schemes that

approximate the bucket errors which are used to guide look-ahead.
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• We conducted an extensive empirical evaluation through which we demonstrate that

subproblem ordering can impact significantly the runtime of AOBF in a large number

of problems, both when it runs to completion, providing an exact solution, and when

it provides lower bounds in an anytime manner.

1.1.3 Dynamic FGLP Heuristics

Chapter 4 explores the use of dynamic heuristics in branch-and-bound using the Factor

Graph Linear Programming (FGLP) algorithm [25]. The quality of the MBE heuristic

depends greatly on the available memory for the compilation of its functions. On problems

with high domain size and/or densely structured graphs, the amount of memory needed for

accurate MBE increases greatly, leading to poor bounds. A common alternative is based on

Linear Programming relaxation [23] and FGLP is a particular coordinate descent algorithm

for this class of algorithms [25]. The algorithm works by re-parameterizing the problem to

tighten the relaxation. A similar approach to in the WCSP literature is known as soft arc-

consistency, which generates bounds by a set of transformations that re-parameterize the

problem [30, 10]. FGLP, however, was not designed to be used repetitively during search as a

heuristic generator. The main question of this chapter is whether using FGLP as a heuristic

can allow us to boost the performance of branch-and-bound on problems where MBE fails

to provide strong heuristics. Our contributions are outlined below.

Contributions

• We present a new version of FGLP that tightens the bound with fewer coordinate

descent steps in the context of search, which is important in making it a cost-effective

heuristic.

• In order to generate heuristics that can be strong for a wider variety of problem classes,

5



we explore the potential of a hybrid algorithm that combines the strengths of FGLP

and MBE heuristics.

• We demonstrate empirically that FGLP heuristics are more effective than MBE heuris-

tics on specific problem classes known to be challenging when using MBE heuristics.

1.1.4 AND/OR Multivalued Decision Diagrams for Inference

Chapter 5 builds on the framework of AND/OR Multivalued Decision Diagrams (AOMDD)

[37]. Although graphical models are established as a compact representation of complex

systems, they only capture the structural relationships between variables and are oblivious

to the structure of the values defining these relationships. In many cases, there is a more

compact representation using AOMDDs [37], which are canonical representations of func-

tions. This can allow models that may have extremely high induced width to be tractable,

which would otherwise be intractable due to memory constraints. The empirical evaluations

in earlier work on this AOMDD framework [37] was based on constructing AOMDDs rep-

resenting the global function of a graphical model via tracing a regular AND/OR search

and pruning nodes from the trace to satisfy the properties of AOMDDs. If there are suf-

ficient resources to compute and store the AOMDD, various queries can be performed on

the model in time linear in the size of the AOMDD. An algorithm for this same task based

on constructing AOMDDs bottom-up was defined [37], but was not evaluated empirically.

Furthermore, in other decision diagram literature, it is typical to treat decision diagrams as

complete replacements to tabular representations of functions in the implementation of any

algorithm that performs operations on functions [5, 2]. AOMDDs have not be used this way

because its APPLY algorithm for performing operations was not previously implemented.

Taking this step can have the potential of improving a variety of inference algorithms that

operate on large functions within graphical models, such as Bucket Elimination, which can

still be important if resources restrict the feasibility of compiling the entire model to an
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AOMDD. Thus, the main questions in this work are 1) whether the performance of the

bottom-up compilation algorithm is better than the existing compilation algorithms, and 2)

the potential for pushing the feasibility of exact inference by using AOMDDs.

Contributions

• We provide a first implementation of the previously introduced bottom-up BE-

AOMDD [37] algorithm for compiling the global function of a graphical model and

empirically evaluated it by comparing it to previous work based on top-down search

algorithms.

• We define an elimination operator for AOMDDs, thus completing (relative to work in

[37]) the AOMDD framework as an alternative way to represent discrete real-valued

functions such as those within in a graphical model.

• We empirically evaluate AOMDDs as an alternative representation to tables for func-

tions by applying it within the exact BE algorithm, demonstrating its potential in

pushing the boundaries of exact inference to problems of high induced width.

1.2 Background

We start by providing a formal definition of a graphical model. Next, we provide an overview

of heuristic search and review the search algorithms and heuristics used for inference in

graphical models.

1.2.1 Graphical Models

We will use Xi to denote a variable and Di its domain. A generic domain value will be noted

xi. A variable assignment will be denoted (Xi, xi) or, when the context is clear, just xi. We
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Xi, xi variable, assigned variable
fj, Sfj function, scope
M = (X,D,F,⊗) graphical model
G = (V,E) primal graph
G∗(d) induced graph relative to order d
w∗(d) induced width relative to order d

Table 1.1: Notation on graphical models.

will use fj to denote a function and Sfj its scope. The scope Sfj is the set of variables for

which the function is defined (i.e., fj :
∏

Xi∈Sfj
Di → R). A graphical model is a collection

of functions over subsets of variables,

Definition 1.1 (graphical modelM). A graphical modelM is a tupleM = (X,D,F,⊗),

where

1. X = {X1, . . . , Xn} is a finite set of variables

2. D = {D1, . . . , Dn} is a set of finite domains associated with each variable.

3. F = {f1, . . . , fm} is a set of valued local functions with scope Sfj ⊆ X for all fj.

4. ⊗ is a combination operator (typically the sum or product)

Each graphical model has an associated graph which makes explicit some of the conditional

independencies that exists in the model

Definition 1.2 (primal graph G). The primal graph G = (V,E) of a graphical modelM =

(X,D,F) has one node associated with each variable (i.e, V = X) and edges (Xi, Xi′) ∈ E

for each pair of variables that appear in the same scope Sfj of some local function fj ∈ X.

Figure 1.1 is a primal graph of a graphical model with variables indexed from A to G

with binary functions over pairs of variables connected by an edge. In this particular ex-

ample we have F = {f(A), f(A,B), f(A,D), f(A,G), f(B,C), f(B,D), f(B,E), f(B,F ),
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Figure 1.1: A primal graph of a graphical model with 7 variables.

f(C,D), f(C,E), f(F,G)}, for a total of 11 functions. Note that it is possible for unary

functions to exist which are not apparent from looking at the primal graph (as seen here

with f(A)).

A graphical model represents a global function which is the combination of all the local

functions, denoted ⊗mj=1fj(·). Graphical models are used to model complex systems and

their main virtue is allowing compact representation and their structure can often allow

efficient query processing. Given a set of variables Y, queries are defined by a marginalization

operator ⇓Y, which eliminates variables in Y from a function f(·).

In this thesis (excluding Chapter 5), the combination operator is summation and the

marginalization operator is min.

Definition 1.3 (min-sum problem). Given a graphical model M = (X,D,F,
∑

), the

min-sum problem is the optimal assignment of its variables with respect to the global function,

min
x

∑
fj∈F

fj(·)

The framework is general and can include various queries of interest. For instance, when vari-

ables are random variables, the combination operator is the product, and the local functions

are conditional probability tables (plus some additional conditions) the graphical model is a
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Bayesian network [11]. If a negative log transformation is applied to the local functions, the

min-sum problem corresponds to the MPE/MAP inference query [14]. Another well-known

example occurs when variables correspond to decisions, the combination operator is the sum,

and local functions represent local costs of taking the decisions. This is the graphical model

used in constraint optimization problems (or weighted constraint satisfaction problems) [13].

This query is known to be NP-hard.

In Chapter 5, we also focus on the summation query.

Definition 1.4 (weighted counting problem). Given a graphical model M =

(X,D,F,
∑

), the weighted counting problem is the sum of the weight of all full assignments

to the global function. ∑
x

∑
fj∈F

fj(·)

Namely, the combination operator is the same as before, but the marginalization operator

is now summation. This query also shows up in various contexts. In a Markov network,

the local functions are unnormalized probability distributions, thus also making the global

probability function unnormalized. Thus, computing the normalizing constant, which can be

achieved by solving the weighted counting problem, is necessary to compute the probability

of a particular assignment to the system. This is commonly as computing the partition

function. Alternatively, to compute the probability of a partial assignment in a Bayesian

network, we condition on the partial assignment and sum out the rest of the variables. This

corresponds to the weighted counting task over the conditioned model.

The complexity of both the optimization and the summation queries for a given graphical

model can be bounded by the induced width w∗ of its associated primal graph.

Definition 1.5 (induced width [14]). Given a primal graph G = (V,E), an ordered graph

is a pair (G, d), where d = (X1, ..., Xn) is an ordering of the nodes. The nodes adjacent to
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Xk that precede it in the ordering are called its parents. The width of a node in an ordered

graph is its number of parents. The width of an ordered graph (G, d), denoted w(d), is

the maximum width over all nodes. The width of a graph is the minimum width over all

orderings of the graph. The induced graph of an ordered graph (G, d) is an ordered graph

(G∗, d), where G∗ is obtained from G as follows: the nodes of G are processed from last to

first along d. When a node Xk is processed, all of its parents are connected. The induced

width of an ordered graph (G, d), denoted w∗(d), is the maximum number of parents a node

has in the induced ordered graph (G∗, d). The induced width of a graph w∗, is the minimum

induced width over all its orderings.

1.2.2 Heuristic Search

n0, n initial state, state
c(n, n′) arc cost between n and n′

g(n) cost of path from initial state n0 to n
h(n) heuristic function of n
h(n) evaluation function of n
succ(n) successors of n in the search space

Table 1.2: Notation on heuristic search.

Search is a general framework that is used in a variety of applications. As mentioned earlier,

we apply it to our work on optimization queries over graphical models. For completeness,

we provide some background here in a general setting. Table 1.2 lists notation used in this

section.

A general search problem is defined by an (implicit) search tree (or graph) where its nodes

correspond to states, actions which map states to states, and costs associated with the edges

of the graph. Within the set of states, one state is defined as the initial state n0 and a subset

of them are defined as goal states. We also have a successor function whose input is a single

state n, returns the set of possible actions that can be taken from that state, which can also

be viewed as the set of children of n. A node expansion is defined as applying the successor
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function to a node n and generating its children. We say that a part of a search space has

been explored if its states have been expanded. Search is a process that repeatedly selects

a generated node, but unexpanded node, and expands it to explore the search graph. The

task is typically to find a minimum cost path from n0 to one of the goal states, where the

path cost is defined by a combination of the arc costs, typically the summation [44].

There are different search strategies that determine the order that nodes are selected for

expansion. In the most general sense, they can be categorized as either blind (uninformed)

search or heuristic (informed) search. The former only considers information in the generated

search graph, such as the current best path cost from the initial state n0 to some generated

node n, denoted g(n). The latter guides the expansions based on (heuristic) information

about the unexplored parts of the search space.

The information is defined based on a heuristic function, denoted h(n), which maps states

to an estimate of the cost of the minimum cost path from the state to any of the goal states.

Given the actual minimum cost, denoted h∗(n), h(n) is admissible if ∀n h(n) ≤ h∗(n), that

is, it is an optimistic estimate of the actual cost. Next, given the cost of an edge (n, n′) in

the search graph, denoted c(n, n′), h(n) is consistent if ∀n∀n′ h(n) ≤ c(n, n′) + h(n′).

Within heuristic search, we can categorize different strategies under depth-first branch-and-

bound search or best-first search. In either case, they use an evaluation function f(n), which

is typically chosen to be g(n) + h(n). This uses both the current best path cost from the

initial state n0 to n and the heuristic in order to estimate the minimum cost path from n0

to a goal that includes n.

1.2.2.1 Depth-First Branch-And-Bound Search

Depth-First Branch-and-Bound (DFBB), is a popular search strategy based on expanding

nodes in a depth-first ordering. The main strength of a depth-first expansion ordering is

12



that, provided the search depth is bounded, it can be carried in linear memory since paths

that either do not reach a goal state or are suboptimal can be deleted from memory. If the

search space is a graph, then we can also elect to cache nodes to avoid its re-expansion in

order to improve performance, thus providing a way to trade space for time.

In general, it maintains an upper bound UB on the current minimum cost path to a goal

node from the initial state. At the start, UB is set to infinity. For a given node n, with path

cost g(n) and an admissible heuristic h(n), if the value of its evaluation function f(n) =

g(n) + h(n) > UB, then it is possible to prune the node, forgoing its expansion and thus

never exploring its successors. In the worst case when no pruning is possible, DFBB explores

the entire search space. In addition, for infinite search spaces with unbounded depth, the

algorithm may never terminate.

Algorithm 1: Depth-First Branch-and-Bound (DFBB)

Input: Node n, current upper bound UB
Output: Cost of minimum cost path from n to a goal state, or UB if the goal is

unreachable
1 if n is a goal state then return 0;
2 foreach n′ ∈ succ(n) do
3 if c(n, n′) + h(n) ≤ UB then
4 UB := min(UB, c(n, n′) + DFBB(n′, UB − c(n, n′))

5 return UB

We present pseudocode for DFBB in Algorithm 1, defined recursively. We leave out the

details of path generation here for simplicity. It assumes that a successor function succ(n)

is defined for all nodes in the search space that returns the set of successors. Given an input

node n and current upper bound UB, it proceeds as follows. Line 1 captures the trivial

case when n is already a goal state and thus has a cost of 0. Otherwise, we expand n by

generating its successors in line 2. Inside the loop, line 3 is the pruning check and line 4

recursively calls DFBB on n′ to find the minimum cost from n′ to a goal state. On the same

line, UB is updated if a better cost path has been found, which is returned in line 5 after
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either expanding or pruning each successor.

1.2.2.2 Best-First Search

Best-First Search is an alternative strategy which expands nodes based on the evaluation

function f(n) directly. In contrast to depth-first search, it maintains all of the explored paths,

thus generally requiring exponential memory. It maintains an OPEN list which contains all

generated, but unexpanded nodes and a CLOSED list containing all expanded nodes. At

each step, it expands a node n ∈ OPEN having the minimum f(n) value. The variants of

best-first search are defined by how their f(n) is defined. In the case of f(n) = g(n) + h(n),

this yields the A* algorithm, which is the most popular variant. Given that h(n) is consistent,

the f(n) values along a path are monotonically non-decreasing. If this is the case A* is known

to be optimally efficient for that given h(n) [44]. When a goal node is reached, its evaluation

function is guaranteed to be equal to the cost of the minimum cost path from n0. Thus, A*

is the best algorithm in terms of the number of nodes expanded, but does so at the cost of

memory.

Algorithm 2: Best-First Search (A*)

Input: Initial state n0

Output: Cost of minimum cost path from n0 to a goal state, or ∞ if the goal is
unreachable

1 OPEN := {n0}
2 while OPEN 6= ∅ do
3 n := arg minn∈OPEN f(n)
4 if n is a goal state then return f(n);
5 else OPEN := OPEN − {n}+ succ(n);

6 return ∞

Algorithm 2 presents pseudocode for the A* algorithm under the assumptions about the

evaluation and heuristic stated above, along with a succ(n) function as defined for DFBB.

Since we do not specify path generation here, the CLOSED list is not required.
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1.2.2.3 Look-ahead

In cases where the heuristic is poor, a technique that can be used to improve any heuristic is

known as look-ahead, commonly used on applications of search such as game-playing [44]. It

works by replacing the h(n) value of node n with information based on its successors through

fully expanding a part of the search space below n to a specified depth d. We can formally

define the d-level look-ahead recursively as follows.

Definition 1.6 (look-ahead). The depth d look-ahead of node n is

hd(n) =

minn′∈succ(n){c(n, n′) + hd−1(n′)} d > 0

h(n) d = 0

1.2.3 Heuristic Search for Graphical Models

We now turn back to graphical models and show how heuristic search is applied to performing

queries. As a systematic method of enumeration, we can use it to enumerate the possible

assignments to a graphical model with the appropriate search space and use heuristic search

algorithm to find the optimal cost path.

The simplest variant is known as an OR search space, where each level corresponds to a

variable in the graphical model. The nodes correspond to individual variable assignments

while the arc costs are determined from the function values. This search space is clearly

bounded, where all the paths correspond to full assignments to the graphical model, thus

making each leaf a goal state. The size of the search tree is O(kn), where n is the number of

variables and k is the maximum domain size.
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T pseudo-tree (nodes correspond to variables)
X̄i pseudo-tree path from root to Xi

Ti sub-tree rooted by Xi

Ti,d sub-tree rooted by Xi with depth d
c(Xi, xi) cost of arc from OR node Xi to AND node xi
x̄i path from root to AND node xi

Table 1.3: Notation on AND/OR search for graphical models.

1.2.3.1 AND/OR Search for Graphical Models

In the context of graphical models, the conditional independencies in the model can be

exploited via the AND structures in AND/OR search spaces.

In AND/OR search trees [38, 41], there are two types of nodes: OR nodes and AND nodes.

OR nodes represent branching points where a decision has to be made, and AND nodes

represent sets of subproblems that need to be solved. In AND/OR search over graphical

models, the children of OR nodes are AND nodes, and the children of AND nodes are OR

nodes. OR nodes are always internal nodes, while AND nodes may be internal nodes, or

leaves. There is a cost associated with each edge between an OR node and its child AND

node, which represents the cost of making the corresponding decision at that branching

point.

Thus, to adapt AND/OR search spaces for graphical models, they are defined relative to a

pseudo tree of the primal graph [16].

Definition 1.7 (pseudo tree [16]). Given an undirected graph G = (V,E), a directed rooted

tree T = (V,E ′) defined on all its nodes is a pseudo tree if any arc of G which is not included

in E ′ is a back-arc in T , namely it connects a node in T to an ancestor in T . The arcs in

E ′ may not all be included in E.

Definition 1.8 (AND/OR search tree [16]). Given a graphical model M = (X,D,F,⊗)

and a pseudo tree T , its AND/OR search tree consists of alternating levels of OR and AND
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nodes. OR nodes are labeled with a variable Xi ∈ X. Its children are AND nodes, each

labeled with an instantiation xi of Xi. Children of AND nodes are OR nodes, labeled with

the children of Xi in T . Each child represents a conditionally independent subproblem given

assignments to their ancestors. The root of the AND/OR search tree is an OR node labeled

by the variable at the root of T .

Each edge from an OR node Xi to an AND child node xi represents a variable assignment.

The path from the root to an AND node xi represents a unique assignment to the variables

in X̄i, that will be denoted x̄i (see Table 1.3)

The path from the root to an AND node xi represents a unique assignment to the variables

in X̄i, that will be denoted x̄i (see Table 1.3). In the AND/OR search tree, the costs of the

OR-to-AND arcs denoted c(Xi, xi) (abusing notation, since they are dependent on the path

to xi) are defined as follows:

Definition 1.9 (arc cost c(Xi, xi)). The cost c(Xi, xi) of the arc (Xi, xi) is the combination

of all the functions in the graphical model whose scope includes Xi and that are fully assigned

by the values specified along the path x̄i from the root to node xi.

For completeness, we define the costs of edges from AND nodes to OR nodes to be the

identity element of the chosen combination operator ⊗ (i.e. 0 for
∑

and 1 for
∏

).

A more compact search space can be obtained if identical subproblems in the AND/OR tree

are merged, producing an AND/OR graph [16]. A class of identical subproblems can be

identified in terms of their OR context,

Definition 1.10 (OR context). The context of a variable Xi in a pseudo tree T = (V,E ′)

is the set of ancestor variables connected to Xi or its descendants by arcs in E ′.

Definition 1.11 (context-minimal AND/OR search graph [16]). Identical subproblems

can be merged based on the OR context. We can merge two nodes if they have the same
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assignment to the context variables. This yields a context-minimal AND/OR search graph

CT whose size can be shown to be bounded exponentially in the induced width of G along the

pseudo-tree T .

A solution tree T of the AND/OR search tree or graph corresponds to complete assignments

of the variables in the graphical model, defined next.

Definition 1.12 (solution tree). A solution tree T is a subtree of the AND/OR search

graph CT such that:

1. It contains the root node of CT ;

2. If it contains an internal AND node n, then all children of n are also in T ;

3. If it contains an internal OR node n, then exactly one AND node child is in CT ;

4. Every tip node in T (nodes with no children) is a terminal node of CT .

The cost of a solution tree is the combination of the arc weights associated with the arcs of

CT .

The cost of a solution tree corresponds to the cost of the assignment it represents as given

by the global function of the model. Thus, for the min-sum problem, the optimal solution

tree corresponds to the optimal solution.

Example. Figure 1.2a shows a pseudo tree for our running example. We indicate, with

solid arcs, the arcs that form the main tree structure and indicate with dotted arcs the back-

arcs. Each variable is annotated with its context. Figure 1.2b shows the corresponding

context-minimal AND/OR search graph guided by this pseudo tree. Since the context of

variable E is only over B,C, the corresponding OR nodes have been merged with respect to
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(b) Example AND/OR search graph. A solution tree is highlighted.

A, which is an ancestor not in the context. Similarly, the OR nodes of G are merged with

respect to B. The solution tree corresponding to the assignment (A = 0, B = 1, C = 1, D =

0, E = 0, F = 0, G = 0) is highlighted.
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u(n) current upper bound of node n
h(n) heuristic (lower bound) of node n
OPEN stack of created but unexpanded nodes
succ(n) successors of n in the search space
T (n), T ∗(n) current (best) partial solution tree rooted by n

Table 1.4: Notation on AND/OR search algorithms.

1.2.3.2 Depth-First AND/OR Branch-and-Bound

We now present the one of the most used AND/OR search algorithms used for inference

in graphical models, depth-first AND/OR Branch-and-Bound (AOBB), which is used in

both Chapters 2 and 4. We defer the presentation of AND/OR Best-First search (AOBF) to

Chapter 3 where we use it. In Table 1.4, we introduce some notation used in the pseudocode

and assume the min-sum query.

The depth-first AOBB (AND/OR Branch and Bound) algorithm traverses the AND/OR

search space in a depth-first manner [32]. It keeps track of the best solution it encounters,

yielding upper bounds on the optimal solution whenever terminated.

We present the pseudocode in Algorithm 3, for simplicity, showing the AND/OR search

tree without context-minimal merging. The two main activities are 1) node expansion (lines

5-27) and 2) a bound propagation step (lines 28-38). The node expansion step expands nodes

and puts them on the OPEN list. It also prunes subtrees if the heuristic evaluation function

for a partial solution tree is worse than the current best solution (lines 12-13). To compute

the heuristic evaluation function for a given partial solution tree, we recursively evaluate

it with Algorithm 4. The bound propagation step propagates the upper bounds and best

partial solution trees bottom-up. It is carried out whenever a node n has no successors

and repeats up until one of its ancestors has successors in OPEN. Thus, if the root node is

reached in this step, the upper bound and solution tree recorded at the root is the optimal

solution.
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Algorithm 3: AND/OR Branch-and-Bound (AOBB) [32]

Input: A graphical modelM = (X,D,F), pseudo-tree T , heuristic function h(·)
Output: Optimal solution toM

1 Create root OR node r labeled corresponding to the root X1 of pseudo-tree T
2 OPEN ← {r}
3 u(r)←∞; T ∗(r)← ∅
4 while OPEN 6= ∅ do

// Node Expansion

5 n← top(OPEN); OPEN ← OPEN − {n}
6 succ(n)← ∅
7 if n is an OR node (labeled Xi) then
8 foreach xi ∈ Di do
9 Create AND node n′ labeled xi

10 u(n′)←∞; T ∗(n′)← ∅
11 succ(n)← succ(n) ∪ {n′}

12 else if n is an AND node (labeled xi) then
13 canBePruned← false
14 foreach OR ancestor a of n do
15 LB ← evalPST(T ∗(a), a) // See Algorithm 4

16 if LB ≥ u(a) then
17 canBePruned← true
18 break

19 if canBePruned = false then
20 foreach child Xj of Xi ∈ T do
21 Create an OR node n′ labeled by Xj

22 u(n′)←∞; T ∗(n′)← ∅
23 succ(n)← succ(n) ∪ {n′}

24 else
25 p← parent(n)
26 succ(p)← succ(p)− {n}

27 Add succ(n) on top of OPEN
// Bound Propagation

28 while succ(n) = ∅ do
29 p← parent(n)
30 if n is an OR node (labeled Xi) then
31 if Xi is the root then
32 return 〈u(n), T ∗(n)〉
33 u(p)←

∑
m∈succ(p) u(m); T ∗(p)←

⋃
m∈succ(p) T

∗(m) ∪ {p}

34 else if n is an AND node (labeled xi) then
35 if u(p) > c(p, n) + u(n) then
36 u(p)← c(p, n) + u(n); T ∗(p)← T ∗(n) ∪ {p}

37 succ(p)← succ(p)− {n}
38 n← p
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Algorithm 4: Recursive Computation of Heuristic Evaluation Function (evalPST)

Input: Partial solution subtree T (n) rooted at node n, heuristic function h(·)
Output: Heuristic evaluation function value f(T (n))

1 if succ(n) = ∅ then
2 if n is an AND node then
3 return 0

4 else
5 return h(n)

6 else
7 if n is an AND node then
8 Let k1 . . . kl be the OR children of n

9 return
∑l

i=1 evalPST(T (ki), h(·))
10 else if n is an OR node then
11 Let k be the AND child of n
12 return c(n, k)+ evalPST(T (k), h(·))

The time complexity of AOBB is bounded by O(nkw
∗
), which is when it explores every node

in the search space. As a depth-first search algorithm, its space complexity is linear in the

depth of the pseudo tree when we search a tree. When it searches the context-minimal graph,

the space complexity is O(nkw
∗
).

The next 2 sections cover two types approximation algorithms for graphical models that

can be used as heuristics for AOBB and other AND/OR search algorithms for graphical

models. Since each search node can be viewed as rooting a problem in itself, we can use

any approximation algorithm. However, the following two function as admissible heuristics

because they give upper bounds.

1.2.3.3 Mini-Bucket Elimination

The most commonly used heuristic guiding AND/OR search is the MBE (mini-bucket elim-

ination) heuristic [17]. It is based on a relaxation of the exact BE (bucket elimination)

algorithm [12]. Thus, MBE is an approximation algorithm that provides lower bounds on
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Bk, SBk bucket associated to pseudo-tree node Xk, scope
Br
k mini-bucket associated to pseudo-tree node Xk

λk→p message computed at Bk and sent to Bp

Λk(x̄p) sum of messages from Bk to X̄p

h(x̄p) heuristic value of node x̄p

Table 1.5: Notation on bucket elimination for graphical models.

the optimal solution. We present both algorithms next.

Bucket Elimination Bucket elimination [14] works relative to the same pseudo tree that

defines the AND/OR search graph. Each variable Xi of T is associated with a bucket Bi

that includes a subset of functions from F. A function fj is placed into a bucket Bi if Xi is

the deepest variable in T such that Xi ∈ Sfj . The scope of a bucket Bi is the union of the

scopes of its functions. Each bucket Bi is then processed, bottom-up, from the leaves of the

pseudo tree to the root by computing a new function, known as a message, λi→p = minxiBi,

where p is the parent of i in the pseudo tree. This message is then placed in bucket Bp. Due

to the bottom-up processing schedule, a bucket is never processed until it receives messages

from all of its children. At the end of processing, the message generated by the root bucket

(a constant) is the optimal C∗ value. The messages generated by this process represent a

“cost to go” in the order from root to leaves, so BE in fact provides exact heuristics in the

context of search. In particular, the optimal assignment can be computed in linear time by

a greedy search using BE as a heuristic. The BE algorithm’s time and space complexity is

bounded by O(nkw
∗
) [12].

We illustrate the algorithm on our example problem in Figure 1.3. We see that bucket

elimination breaks the entire optimization problem of the graphical model into smaller sub-

problems. BE has been shown to be equivalent to exploring the context-minimal AND/OR

search graph in a bottom-up fashion, given certain conditions [35].

If w∗(d) (d is a DFS order of the pseudo-tree) is very large, then BE is not feasible. Mini-
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Figure 1.3: Illustration of bucket elimination.

Bucket Elimination (MBE) is a relaxation of BE that bounds the induced width of the

problem via a parameter known as the i-bound [17]. The main difference is in how functions

are processed inside buckets. MBE relaxes the problem by partitioning buckets into mini-

buckets B1
k, . . . , B

r
k whose scope sizes do not exceed the i-bound. Each mini-bucket then

generates its own message that is sent to its closest ancestor bucket Bp such that Xp is in

the scope of the message. We denote these messages as λsk→p, where s ∈ 1, . . . , r is the

mini-bucket index. (The index s is omitted when there is no partitioning.) The partitioning

process can be interpreted as a process of duplicating variables in the problem and optimizing

over the copies independently. Therefore, MBE generates lower bounds on the min-sum

problem.

We provide details in Algorithm 5. The main loop (lines 1-9) partitions and generates the

λ messages used in the above expressions. The message computed by the root variable is a

lower bound to the optimal solution of the graphical model. When the i-bound equals the

induced width w∗, each bucket partition will consist of a single mini-bucket, so the algorithm

reduces to bucket elimination. The time and space complexity is O(nrki), where r is the

maximum number of mini-buckets for any variable [14].

24



Algorithm 5: Mini-Bucket Elimination [17]

Input: Graphical modelM = (X,D,F), pseudo tree T , bounding parameter i-bound
Output: Lower bound to min-sum on M and messages λsq→p

1 foreach Xp ∈ X in bottom up order according to T do
2 Bp ← {fj ∈ F | Xp ∈ Sj}
3 F← F− Fp

4 Put all generated messages λsq→p in Bp

5 Partition the Bp into mini-buckets B1
p , . . . , B

r
p with scope bounded by the i-bound

6 foreach Bs
p ∈ B1

p , . . . , B
r
p do

7 Let Xa be closest ancestor variable of Xp in the mini-bucket
8 Generate message: λsp→a ← minXp

∑
fj∈Bsp

fj

9 return All λ-messages generated (root message is the min-sum lower bound)

A"

f(A,B)"B"

f(B,C)"C" f(B,F)"F"

f(A,G)"
f(F,G)"

G"f(B,E)"
f(C,E)"

E"f(B,D)"
f(C,D)"

D"

λF!B(A,B)(

λB!A(A)(

λE!C(B,C)(λD!C(B,C)(

λC!B(B)(

λD!A(A)(

f(A,D)"D"

mini0buckets"

λG!F(A,F)(

f(A)"

λ1( λ2(

Figure 1.4: Example of mini-bucket elimination on the running example using an i-bound
of 3.
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We provide an example in Figure 1.4 for our example problem. Here, we use an i-bound

of 3. In this case, starting with variable D, we have the functions f(A,D), f(B,D), f(C,D)

which all contain that variable. However, the total scope size here is 4, which exceeds the

i-bound of 3. Therefore, we partition it into two mini-buckets and each generates a separate

λ message, as if they were separate variables. For the rest of the variables, the i-bound is

satisfied, so there is no need to partition them.

MBE messages can be used to construct a heuristic for search in the same spirit as BE

[26]. Heuristics generated from the messages of mini bucket elimination are called static

heuristics since they are pre-compiled before search starts. During search, they can be

extracted efficiently by table lookups.

Definition 1.13 (MBE heuristic). Let x̄p be a partial assignment and X̄p be the set of

corresponding instantiated variables. Λk denotes the sum of the messages sent from bucket

Bk to all of the instantiated ancestor variables, which includes only the subset of messages

which are sent to a variable in X̄p.

Λk(x̄p) =
∑

s∈1,...,rk|Xq∈X̄p

λsk→q(x̄p) (1.1)

where rk denotes the number of mini-buckets for variable Xk. The heuristic value for x̄p is

given by:

h(x̄p) =
∑
Xk∈Tp

Λk(x̄p) (1.2)

where Xk ∈ Tp denotes the set of variables in the pseudo subtree rooted by Xp, excluding Xp.

Example. In the example, (see Figure 1.4), the heuristic function of the partial assignment

(A = 0, B = 1) is h(A = 0, B = 1) = λD→A(A = 0) + λC→B(B = 1) + λF→B(A = 0, B = 1).
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Fi collection of functions, {fj ∈ F|Xi ∈ Sfj}
λfj(Xi) auxiliary unary function associated with fj over Xi

γfj(Xi) ”min-marginal” of function fj

Table 1.6: Notation on re-parameterization.

1.2.3.4 Cost Shifting Methods

Another class of approximations work by re-parameterizing the original problem. Assuming

the min-sum task, we can approximate it by exchanging the min and sum operators, yielding

min
x

∑
fj∈F

fj(·) ≥
∑
fj∈F

min
x
fj(·) (1.3)

In other words, the bound is based on optimizing each function independently. This bound

can be tightened by re-parameterizing the functions.

In the following we use the notation in Table 1.6. For each variable Xi, we introduce a

collection of functions {λfj(Xi)|fj ∈ Fi} which we will add to the graphical model. Therefore,

we require

∀Xi,
∑
fj∈Fi

λfj(Xi) = 0 (1.4)

which enforces that there is no change to the global function represented by the graphical

model.
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This yields

C∗ = min
x

∑
fj∈F

fj(·)

= min
x

∑
fj∈F

fj(·) +
∑
Xi∈X

∑
fj∈Fi

λfj(Xi)

= min
x

∑
fj∈F

fj(·) +
∑
fj∈F

∑
Xi∈Sfj

λfj(Xi)

= min
x

∑
fj∈F

fj(·) +
∑

Xi∈Sfj

λfj(Xi)


≥
∑
fj∈F

min
x

fj(·) +
∑

Xi∈Sfj

λfj(Xi)

 (1.5)

Let Λ = {λfj(Xi)|fj ∈ Fi, Xi ∈ X}. The objective is then to find an optimal Λ such that

we maximize the bound in (1.5). The new functions f ′j(·) = fj(·) +
∑

Xi∈Sfj
λfj(Xi) define a

re-parameterization of the original model such that the bound presented in Equation 1.5 is

optimal.

Depending on the literature, these λ functions are viewed as equivalence-preserving trans-

formations (EPTs), in the soft arc consistency literature [8], or as Lagrange multipliers

enforcing consistency between the variable copies in the LP relaxation [50]. In the latter

view, the re-parameterized functions are computed by coordinate descent updates that can

be viewed as message passing [23].

In [25], a scheme known as LP-tightening was introduced to maximize (1.5) over Λ =

{λfj(Xi)|fj ∈ Fi, Xi ∈ X}.1 First, we initialize each λfj(Xi) = 0. As a coordinate de-

scent algorithm (ascent in our case), the maximization proceeds by iteratively optimizing

the objective over each λfj(Xi), fixing all other λfj(Xk) s.t.Xk 6= Xi. This yields the follow-

1The original work presents this material for bounding the max-sum problem, thus minimizing over Λ
instead for a reversed version of the objective.
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ing,

max
λfj (Xi)

∑
fj∈Fi

min
Sfj

fj(·) + λfj(Xi)


= max

λfj (Xi)

∑
fj∈Fi

min
Xi

[
min
Sfj \Xi

fj(·) + λfj(Xi)

]

We can define γfj(Xi) = minSfj \Xi fj(·), which we refer to as min-marginals. Rearranging

the above, we obtain:

max
λfj (Xi)

∑
fj∈Fi

min
Xi

[
min
Sfj \Xi

fj(·) + λfj(Xi)

]
= max

λfj (Xi)

∑
fj∈Fi

min
Xi

[
γfj(Xi) + λfj(Xi)

] (1.6)

≤ max
λfj (Xi)

min
Xi

∑
fj∈Fi

[
γfj(Xi) + λfj(Xi)

]

One choice of λfj(Xi) that maximizes (1.6) is making all min-marginals of the updated

functions equal. First we define the average min-marginal over fj ∈ Fi,

γ̄Fi(Xi) =
1

|Fi|
∑
fj∈Fi

γfj(Xi)

Then we choose

λfj(Xi) = γ̄Fi(Xi)− γfj(Xi) (1.7)

Using this, we iterate over all the functions fj ∈ F, updating them with fj(·) ← fj(·) +

λfj(Xi), then recalculate the updates λfj(Xi) and applying them again until convergence.

This update step is the building block for several algorithms such as factor graph linear
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programming (FGLP), join graph linear programming (JGLP), and mini-bucket elimination

with moment-matching (MBE-MM) [25].

Throughout this thesis, we use MBE-MM as a heuristic [25]. By taking the functions formed

by the combination of functions within each mini-bucket, it applies the same update described

above between the mini-buckets in order to tighten their approximation before generating

messages. We present it in Algorithm 6, which is identical to Algorithm 5 presented

earlier, but adds lines 7-9 to compute the min-marginal for each mini-bucket along with the

average min-marginal. It then proceeds to also update the function of each mini-bucket in

line 12 before generating the messages as before in line 13.

Algorithm 6: Mini-Bucket Elimination with Moment Matching [25]

Input: Graphical modelM = (X,D,F), pseudo tree T , bounding parameter i-bound
Output: Lower bound to min-sum on M and messages λsq→p

1 foreach Xp ∈ X in bottom up order according to T do
2 Bp ← {fj ∈ F | Xp ∈ Sj}
3 F← F− Fp

4 Put all generated messages λsq→p in Bp

5 Partition the Bp into mini-buckets B1
p , . . . , B

r
p with scope bounded by the i-bound

6 Let fBsp ←
∑

fj∈Bsp
fj denote the function of each mini-bucket.

7 foreach Bs
p ∈ B1

p , . . . , B
r
p do

8 Compute min-marginal: γBsp minSBsp Xp fBsp

9 Compute average min-marginal: γ̄Bp ← 1
r

∑
Bsp∈B1

p,...,B
r
p
γBsp

10 foreach Bs
p ∈ B1

p , . . . , B
r
p do

11 Let Xa be closest ancestor variable of Xp in the mini-bucket
12 Update function: fBsp ← fBsp − γBsp + γ̄Bp
13 Generate message: λsp→a ← minXp fBsp

14 return All λ-messages generated (root message is the min-sum lower bound)

The complexity of MBE-MM is still dominated by the step of computing the functions of

each mini-bucket, which is required to generate the mini-bucket messages, and is O(rki)

time for each bucket, where r is the number of mini-buckets. Thus, its time complexity is

equivalent to that of MBE. Clearly, since the messages are also the same size, the space
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complexity is also equivalent. This gives MBE-MM a time and space complexity of O(nrki)

[21].
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Chapter 2

Cost-Directed Look-ahead in AND/OR

Search via Residual Analysis

2.1 Introduction

The goal of our research is to improve both the exact and anytime performance of AOBB

using the MBE heuristic. It has repeatedly observed that MBE gets tighter as the i-bound

approaches the problem induced width. In problems with high induced width, this approach

is likely to fail, since i-bound cannot be made close to the problem’s induced width. For

that purpose we consider the well-known technique of look-ahead, which is known to be

useful in the context of online search algorithms (e.g. game playing schemes, planning under

uncertainty, etc.) [22, 47]. Look-ahead improves the heuristic function h(·) of a node by

expanding the search tree below it and backing up the h(·) values of descendants (known as

a Bellman update). Thus, look-ahead can be seen as a secondary search embedded in the

primary depth-first search.

A naive implementation of look-ahead is unlikely to be effective in the context of AOBB

since it is essentially a transference of the expansion of nodes from the primary search to the

secondary search. In this paper we address the challenge of making it cost effective. First, we
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develop the notion of look-ahead graphical model which presents the look-ahead task as min-

sum task over a graphical sub-problem. We show that the structural complexity (i.e, width)

of such a task can be characterized and determined as a pre-process. The consequence is that

good look-ahead depths can be identified prior to search and full inference algorithms can be

used for look-ahead computation. Second, we develop the notion of local bucket error, which

we show to be equivalent to the residuals in a single level of look-ahead. We show that local

bucket errors can be computed in a pre-process, thus causing no overhead during search.

We provide the algorithm and characterize its complexity in terms of a structural parameter

called pseudo-width. When the pseudo-width indicates that computing local bucket errors

is too expensive, we compute approximations. Then, we improve AOBB exploiting local

bucket errors in a number of ways:

• At some nodes, they provide overhead-free depth one look-ahead, which translates into

a heuristic improvement. This leads to better pruning and value ordering.

• At each node, they give advice on which is the right level of look-ahead that may

improve the heuristic function. In fact, AOBB makes a negative use of the information.

It looks-ahead selectively, only up to the depth where it is likely to improve the heuristic

significantly. To facilitate this, we introduce the notion of look-ahead subtrees which

dictates the look-ahead computation for each variable and prune them individually as

a preprocessing step based on the local bucket errors.

In most literature, the heuristic function is treated as a black box and no assumption is made

about its topology. The originality of our approach lays on a more structural exploitation

of the heuristic. Our research was inspired from the observation that in a wide spectrum of

problems, the local heuristic errors are not uniformly distributed in the search space. On the

contrary, there are localized regions where most of the error accumulates and those regions

are just a small fraction of the entire search space. The main implication of this observation
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is that a blind look-ahead will mainly do redundant computations (look-ahead on error-free

or near-error-free regions has no effect what-so-ever).

Thus, the main contribution of this work is to exploit the error function structure and design a

scheme that performs look-ahead selectively. In particular, look-ahead will intensify where the

heuristic error is locally high and decrease where it is locally low. In cases where the heuristic

is known to be locally exact, we can even completely skip look-ahead. In our empirical

evaluation, we show improved runtime for finding exact solutions and more generally, better

anytime profiles over the current methods of AOBB with static MBE heuristics.

The rest of the chapter is organized as follows. In section 2.2, we describe our main contri-

butions. We introduce the notion of local bucket error in MBE, establish its connection to

the look-ahead residuals, and present an algorithm for computing them. Next, we show how

the local bucket errors can be used to guide look-ahead. In section 2.3, we show in several

benchmarks how error is distributed non-homogeneously along the search spaces. In section

2.4, we provide an empirical evaluation our selective look-ahead scheme in the context of

AOBB with MBE heuristics for both exact solutions and anytime performance. Section 2.5

concludes.

2.2 Look-Ahead for AND/OR Search in Graphical Models

Tp,d depth d look-ahead subtree of Xp

M(x̄p, d) depth d look-ahead graphical model relative to assignment x̄p
wp,d induced width of look-ahead graphical model M(x̄p, d)
Ek(x̄p) local bucket error

Ẽk average local bucket error

Êk sampled local bucket error
T εp,d pruned look-ahead subtree

Table 2.1: Notation on look-ahead.

This section contains the main contributions of our work. We present and analyze the look-
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ahead principle for AND/OR search in graphical models when using the MBE heuristic. In

the first subsection we rephrase look-ahead as a min-sum problem over a graphical (sub)

problem. In the second subsection we perform a residual analysis and present a method

that identifies the look-ahead relevant regions of the search space that can be used to skip

redundant look-ahead.

2.2.1 Look-ahead

As mentioned in the background, the AOBB algorithm’s performance may improve by having

more accurate heuristic values. One way to achieve this improvement is by look-ahead, which

is especially attractive because it does not increase the space complexity of MBE. The idea

is to replace the h(·) value of a node by the best alternative among all successors to a certain

depth d. Look-ahead has been defined in the OR case in various contexts such as games or

planning [44, 47]. A natural generalization to the AND/OR case follows. In our definition

we take into account that only OR nodes represent branching points (i.e., alternatives).

Therefore, the notion of depth is in terms of OR nodes, only. We extend Definition 1.6

based on OR search spaces to AND/OR search spaces.

Definition 2.1 (AND/OR look-ahead). The depth d look-ahead of an AND node n is

hd(n) =


∑

m∈ch(n) minb∈ch(m){c(m, b) + hd−1(b)} d > 0

h(n) d = 0

A related notion that we will be using later is that of residual. The residual measures the

gain produced by the look-ahead.

Definition 2.2 (residual). The depth d residual of node n is

resd(n) = hd(n)− h(n)
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Figure 2.1: Look-ahead subtree example for TB,1 (shaded region)

2.2.2 The Look-ahead Graphical Model

We pointed out in the introduction that looking ahead is like performing a secondary search

inside of the primary search and backing up heuristic values of the expanded nodes. Next,

we show that in the context of graphical models, looking-ahead corresponds to solving a

graphical sub-models. Consequently, it is possible to characterize the induced width (and

therefore the complexity) of such sub-models. The analysis depends only on the node’s depth

and the look-ahead depth, but it does not depend on the actual assignment. Therefore it

can be computed for each variable before search.

As a first step, we define the depth d look-ahead subtree for variable Xp.

Definition 2.3 (look-ahead subtree). Given a pseudo tree T over a graphical model M

and a variable Xp. The depth d look-ahead subtree for variable Xp, noted Tp,d, is the subtree

formed by the descendants of Xp pruned below depth d. Note that Xp is excluded from the

look-ahead subtree since the look-ahead computation does not depend on Xp.

Figure 2.1. In our running example pseudo tree T , TB,1 is the shaded region. It illus-

trates which variables in the AND/OR search space are minimized over in the look-ahead

computation. We will use the look-ahead subtree Tp,d to refer its set of variables.

Next we define the look-ahead graphical model, which captures the problem micro-structure,
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Definition 2.4 (look-ahead graphical model). Consider a graphical model M =

(X,D,F) with pseudo-tree T , the set of messages generated by MBE(i) along the pseudo

tree, and a partial assignment x̄p. The depth d look-ahead graphical model M(x̄p, d) =

(Xp,d,Dp,d,Fp,d) is defined by,

• Variables Xp,d: M(x̄p, d), is defined by the variables {Xk|Xk ∈ Tp,d},

• Domains Dp,d: original domains.

• Functions Fp,d:

– Possibly partially assigned original functions that were originally placed in the

buckets of Tp,d,

{f(x̄p)|Xk ∈ Tp,d, f ∈ Bk}

– Possibly partially assigned messages sent from buckets below Tp,d to buckets in Tp,d

by the MBE algorithm. Thus, for each Xj ∈ Tp − Tp,d,

{λsj→k(x̄p)|s ∈ 1, . . . , rj, Xk ∈ Tp,d}

Clearly, Tp,d is a valid pseudo tree for M(x̄p, d). Note that the induced width of M(x̄p, d)

along Tp,d, denoted wp,d, does not depend on the partial assignment x̄p. Therefore, for a

given d, they can easily be computed prior to search.

The min-sum problem of M(x̄p, d) is therefore

Ld(x̄p) = min
x̄p,d


∑

Xk∈Tp,d
f∈Bk

f(x̄p, x̄p,d) +
∑

Xk∈Tp,d
s∈1,...,r,Xj∈Tp−Tp,d

λsj→k(x̄p, x̄p,d)

 (2.1)

where x̄p,d denotes an extension to the assignment of all the variables in Tp,d.
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The following property shows that Ld(x̄p) is the task required to compute look-ahead when

the MBE heuristic is used,

Proposition 1 (look-ahead value for the MBE heuristic in graphical models).

Consider a graphical model M, a pseudo-tree Tp,d and its associated AND/OR search tree.

If the MBE heuristic (Definition 1.13) is used, the depth d look-ahead value of partial as-

signment x̄p (Definition 2.1) satisfies,

hd(x̄p) = Ld(x̄p) +
∑

Xk∈Tp−Tp,d

Λk(x̄p) (2.2)

where Tp,d is the corresponding look-ahead tree and the expression Xk ∈ Tp−Tp,d denotes the

variables below the look-ahead tree.

Proof. See Appendix A.1.

Note that the second term in Equation 2.2 contains all messages sent from buckets below

Tp,d to buckets in X̄p. Note as well that all these messages are completely assigned by x̄p,

so the expression is a constant and therefore irrelevant in terms of the optimization task.

Therefore, computing the look-ahead at node x̄p is equivalent to computing Ld(x̄p), and it

can be done with BE in time and space exponential on wp,d. In those levels Xp where the

width is smaller than the depth (i.e., wp,d < d) exact inference by BE is likely to be carried

out more efficiently than with search. Though the space complexity of look-ahead is no

longer linear when carried out in this manner, as long as wp,d is less than the i-bound, MBE

itself would still be the dominant factor in memory usage.

Computing AND/OR d-level look-ahead requires solving a min-sum problem dictated by the

look-ahead subtree. Even with the use of bucket elimination, it can still be computationally

expensive. Clearly, look-ahead is worthless if it does not increase and thus improve the

accuracy of the heuristic value. Recall that the gain produced by the look-ahead is the
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so-called residual (Definition 2.2). We analyze depth 1 residuals and show how they can be

used to estimate residuals of higher depth.

We start by relating the residual’s expression to Ld(x̄p),

Proposition 2 (AND/OR d-level residual for MBE). Consider a graphical model M,

a pseudo-tree Tp,d and its associated AND/OR search tree. If the MBE heuristic (Definition

1.13) guides the search, the depth d residual at x̄p (Definition 2.2) satisfies

resd(x̄p) = Ld(x̄p)−
∑

Xk∈Tp,d

Λk(x̄p) (2.3)

Proof. From Definition 2.2, resd(n) = hd(n) − h(n) Replacing hd and h with Proposition 1

and Equation 1.2 respectively, we obtain the equation above.

Note that the subtracted expression in Equation 2.3 is a constant. Therefore, as could be

expected, computing the residual requires to computing Ld(x̄p). We therefore propose to

approximate d-level residuals using a sum of 1-level residuals.

Proposition 3. Given a node n, let Nk denote all nodes that are k-levels away from n in

the search graph. Then we have

resd(n) ≥
d−1∑
k=0

min
nk∈Nk

res1(nk)

Proof. See Appendix A.2.

Corollary 1. For a given level j in a d-level residual, if res1(nj) = 0 for all nodes nj ∈ Nj,

then

resd(n) ≥
d−1∑
k=0

min
nk∈Nk

res1(nk) =
d−1∑

k=0,k 6=j

min
nk∈Nk

res1(nk)
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Therefore, this suggests that 1-level residuals can be informative when they are large, point-

ing out which levels are likely to contribute to a d-level look-ahead. Furthermore, if the

1-level residuals for all nodes at a particular level are 0, they contribute nothing. Since

1-level residuals can be generally informative for d-level look-ahead, we next analyze 1-level

residuals for MBE heuristics. We show that it corresponds to a notion of local bucket error

of MBE, to be defined next.

We start by comparing the message that a particular bucket would have computed without

partitioning (called an exact bucket message µ∗k) to that of the sum of the messages computed

by the mini-buckets of the bucket (called a combined mini-bucket message µk). We define

these notions below.

Definition 2.5 (combined bucket and mini-bucket messages). Given a mini-bucket

partition Bk = ∪kBr
k, we define the combined mini-bucket message at Bk,

µk(·) =
∑
r

min
xk

∑
f∈Brk

f(·)

 (2.4)

In contrast, the exact bucket message without partitioning at Bk is

µ∗k(·) = min
xk

∑
f∈Bk

f(·) (2.5)

Note that although we say that µ∗k is exact, it is exact only locally to Bk since it may contain

partitioning errors introduced by messages computed in earlier processed buckets. We now

define the local error for MBE,

Definition 2.6 (local bucket error of MBE). Given a completed run of MBE, the local

bucket error function at Bk denoted Ek is

Ek(·) = µ∗k(·)− µk(·)
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The scope of Ek is the set of variables in Bk excluding Xk.

Next, we show that the local bucket error of MBE equals the 1-level residual.

Theorem 2.1 (equivalence of residuals and local bucket errors). Assume an execution

of MBE(i) along T yielding heuristic h, then for every x̄p,

res1(x̄p) =
∑

Xk∈ch(Xp)

Ek(x̄p) (2.6)

We first present the following lemmas which relates µk (Equation 2.4) to the MBE heuristic

of its parent Xp, and relates µ∗k (Equation 2.5) to Ld(x̄p).

Lemma 1. If Xk is a child of variable Xp, then Λk(X̄p) = µk(X̄p).

Proof. Λk(X̄p) is the sum of messages that MBE(i) sends from Bk to the buckets of variables

in X̄p, defined in Equation 1.1 as

Λk(x̄p) =
∑

s∈1,...,r,Xq∈X̄p

λsk→q(x̄p)

Since Xp is the parent of Xk, Λk(X̄p) is the sum of all the messages sent from Xk, which is

the definition of µk(X̄p).

Lemma 2. If Xk is a child of variable Xp ∈ T , then L1(x̄p) =
∑

Xk∈ch(Xp) µ
∗
k(x̄p).

Proof. Given the expression of L1(x̄p) (Equation 2.1, substituting d = 1), we can push the

minimization into the summation, yielding:

L1(x̄p) =
∑

Xk∈ch(Xp)

min
xk

fk(x̄p, xk) +
∑

Xj∈Tp−ch(Xp)

λj→k(x̄p, xk)

 (2.7)
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The set of functions inside each minxk are, by definition, the set of functions in Bk placed

there either originally or are messages received from its descendants, therefore we can rewrite

L1(x̄p) =
∑

Xk∈ch(Xp)

min
xk

∑
f∈Bk

f(x̄p)

By the definition of the exact bucket message (Equation 2.5), we obtain

L1(x̄p) =
∑

Xk∈ch(Xp)

µ∗k(x̄p)

Proof of Theorem 2.1. From Proposition 2 given d = 1, we have

res1(x̄p) = L1(x̄p)−
∑

Xk∈ch(Xp)

Λk(x̄p)

By applying Lemma 2 and Lemma 1 to the first and second terms respectively, we obtain

res1(x̄p) =
∑

Xk∈ch(Xp)

µ∗k(x̄p)−
∑

Xk∈ch(Xp)

µk(x̄p)

=
∑

Xk∈ch(Xp)

(µ∗k(x̄p)− µk(x̄p))

Yielding (Definition 2.6),

res1(x̄p) =
∑

Xk∈ch(Xp)

Ek(x̄p) (2.8)

Corollary 2. When a bucket is not partitioned, its local bucket error is 0, contributing 0 to

the residual and to the look-ahead value of its parent.
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Establishing this equivalence between the 1-level residuals and local bucket error is useful as

each bucket corresponds to a particular variable and look-ahead is based on the look-ahead

subtree (Definition 2.3), which is defined in terms of these variables.

2.2.3 Computing Local Bucket Errors

Now that we established that local bucket errors can be used to assess the impact of 1-

level look-ahead at a particular variable, we present an algorithm for computing them in a

preprocessing step before search begins and analyze it.

Algorithm 7: Local Bucket Error Evaluation (LBEE)

Input: A Graphical model M = (X,D,F), a pseudo tree T , i-bound
Output: Error function Ek for each bucket Bk

Initialization: Run MBE(i) w.r.t. T .
foreach Bk, Xk ∈ X do

Let Bk = ∪rBr
k be the partition used by MBE(i)

µk =
∑

r(minxk
∑

f∈Bk f)
µ∗k = minxk

∑
f∈Bk f

Ek ← µ∗k − µk
return E functions

Algorithm 7 (LBEE) computes the local bucket error for each bucket. Following the

execution of MBE(i), a second pass is performed from leaves to root along the pseudo tree.

When processing a bucket Bk, LBEE computes the combined mini-bucket message µk, the

exact bucket message µ∗k, and the error function Ek. The complexity of processing each

bucket is exponential in the scope of the bucket following the execution of MBE(i). The

total complexity is therefore dominated by the largest scope of the output buckets. We call

this number the pseudo-width.

Definition 2.7 (pseudo-width(i)). Given a run of MBE(i) along pseudo tree T , the

pseudo-width of Bk, psw
(i)
k is the number of variables in the output bucket following MBE(i).

The pseudo-width of T relative to MBE(i) is psw(i) = maxk{psw(i)
k }
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Figure 2.2: Example to illustrate the concept of pseudo-width. Left: the mini-bucket tree,
right: the exact bucket tree. Buckets C and D in both are annotated with their induced
width and pseudo-width.

Theorem 2.2 (complexity of LBEE). The time and space complexity of LBEE is

O(nkpsw(i)), where n is the number of variables, k bounds the domain size, and psw(i) is

the pseudo-width along T relative to MBE(i).

The pseudo-width lies between the width and the induced width w∗ of the ordering and

grows with the i-bound. When the i-bound of MBE(i) is large, computing the local errors

may be intractable.

Example. In Figure 2.2, we illustrate the concept of pseudo-width and also relate it to

LBEE with our running example. We consider the buckets for variable C and D in this

example. On the left-hand side, we show the mini-bucket tree for an i-bound of 3 and on

the right-hand side, we show the bucket tree of exact bucket elimination. Buckets C and

D are annotated with their induced width and pseudo-width, where the induced width of a

bucket is the number of variables in its largest mini-bucket. Starting with processing bucket

D, computing the exact message µ∗D is like treating the bucket as if it was not partitioned

(e.g. the form of bucket D on the right-hand side figure). Therefore, its pseudo-width is

4. However, when moving to process bucket C, we still use the message obtained by MBE

(λD → C(B,C)). Thus, the pseudo-width of bucket C is 2 rather than 3. The distinction
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here is that unlike in exact bucket elimination, the complexity of LBEE stays local.

2.2.3.1 Approximating Local Bucket Errors

Indeed, since the time and space complexity of LBEE is at least as high as that of MBE

itself, it is not advisable to use it in practice when the i-bound is high. Therefore, we

consider sampling and subsequently aggregating the local bucket error functions for each

variable. The goal here is to obtain an efficiently computable metric for each variable, which

we will then use to inform us about the impact of look-ahead at each variable.

We first address the space complexity with the following:

Definition 2.8 (average local error). The average local error of Bk given a run of

MBE(i) is

Ẽk =
1

|DScope(Bk)|
∑
x̄k

Ek(x̄k) (2.9)

Computing Ẽk takes O(kpsw(i)) time per variable, but O(1) space to store. Clearly, we also

do not lose any information if Ẽk turns out to be 0, so it is sufficient to conclude in this

case that performing look-ahead on variable Xk yields no benefit. Otherwise, we have an

approximation for all assignments to X̄k.

An alternative measure is the average relative local error, computed by by dividing the Ek(x̄k)

term by the exact bucket message µ∗k(x̄k). This serves as a way to normalize the error with

respect to the function values, which can vary in scale amongst the bucket errors in practice.

Sampling Local Errors The average local error may still require significant time to com-

pute, because we would still need to enumerate over O(kpsw(i)) values per variable, as men-

tioned above. To address this, we can sample rather than enumerate. We can draw samples
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from a uniform distribution over the domain of the error function’s scope and finally average

over the samples to approximate the average local error Ẽk.

Definition 2.9 (sampled average local error). The sampled average local error of Bk

given a run of MBE(i) is

Êk =
1

#samples

∑
x̄k

Ek(x̄k) x̄k ∼ U(Scope(Bk)) (2.10)

2.2.4 Look-ahead Subtree Pruning

With efficient methods to approximate the bucket errors, we now present our main scheme

for selective look-ahead through a method of choosing a look-ahead subtree for each variable

that balances time and heuristic accuracy. From Proposition 3, we also have a lower-bound

on d-level residual using summation of 1-level residuals (which is exact when d = 1). We

will use the local bucket error as a measure of relevance for including a particular variable

when looking ahead.

Definition 2.10 (ε-relevant variable). A variable Xk is ε-relevant if Ẽk > ε.

We will include paths in the look-ahead subtree only if they reach relevant variables.

Definition 2.11 (ε-pruned look-ahead subtree). An ε-pruned look-ahead subtree T εp,d is

a subtree of Tp,d containing only the nodes of Tp,d that are ε-relevant or on a path to an

ε-relevant node.

We show in Figure 2.3 the look-ahead subtree TB,2. Since D is the only relevant variable

due to its mini-bucket partitioning (see Figure 1.4), only the path from C to D remains in

the ε-pruned look-ahead subtree T εB,2 for ε = 0 (circled).

Algorithm 8 (CompilePLS(ε)) generates the ε-pruned look-ahead subtree for each variable.

Its complexity is linear in the size of the look-ahead subtree Tp,d.
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Figure 2.3: Look-ahead subtree TB,2. (B is shown for reference to root the multiple subtrees
that make up TB,2.) Circled: the ε-pruned look-ahead subtree T εB,2 for ε = 0.

Algorithm 8: Compile ε-pruned Look-ahead Subtrees (CompilePLS(ε))

Input: A Graphical model M = (X,D,F), a pseudo tree T , i-bound, threshold ε,
depth d

Output: ε-pruned look-ahead subtree for each Xp ∈ X
1 Compute average (relative) local error Ẽk for each Xk ∈ X

2 X′ ← all nodes in T that are ε-relevant (Xk ∈ X s.t. Ẽk > ε)
3 foreach Xp ∈ X do
4 Initialize T εp,d to Tp,d
5 while T εp,d has leaves /∈ X′ do
6 Remove leaf Xj /∈ X′ from T εp,d

7 return T εp,d for each Xp

The ε-pruned look-ahead subtrees are used during search for performing d-level look-ahead.

This suggests a static approach for deciding where look-ahead before search begins. When

ε = 0, the look-ahead subtrees guide the computation to only compute as much as necessary

for a given d-level look-ahead, since buckets with zero error do not contribute to any look-

ahead. As ε increases, we get less look-ahead across the search space, targeting regions with

higher error only. Finally, at ε =∞, our scheme reduces to using no look-ahead at all.

We present in Algorithm 9 pseudo-code for our MBE look-ahead heuristic. Before search

begins, we initialize the regular MBE heuristics, which generates the λ messages used for the

heuristics (Definition 1.13). These are also used by CompilePLS(ε) to generate the ε-pruned

look-ahead subtrees. Lines 2-7 describe the main execution of the algorithm for each input
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Algorithm 9: Look-ahead Heuristic for MBE (MBE-Look-ahead)

Input: A Graphical model M = (X,D,F), a pseudo tree T , i-bound, threshold ε,
depth d, partial assignment x̄p

Output: Lower bound on partial assignment x̄p to M
1 Initialization: Run MBE(i) w.r.t. T and run CompilePLS(ε) to generate T εp,d for

each Xp ∈ X
2 if T εp,d is empty then
3 return

∑
Xk∈Tp Λk(x̄p)

4 else
5 Construct look-ahead graphical model Mε(x̄p, d) w.r.t. T εp,d
6 Ld(x̄p) := min-sum Bucket Elimination on Mε(x̄p, d)
7 return Ld(x̄p) +

∑
Xk∈Tp−T εp,d

Λk(x̄p)

partial assignment x̄p encountered. If the ε-pruned look-ahead subtree T εp,d is empty, we

return the MBE heuristic value. Otherwise, we construct the look-ahead graphical model

Mε(x̄p, d) with respect to T εp,d and solve for its min-sum value with BE and return that

value plus the MBE heuristic value without the contribution from messages generated from

variables within the look-ahead subtree (Definition 1).

2.3 Analysis of Local Errors

To illustrate how look-ahead subtree pruning behaves on selected problem instances, we

annotate their respective variables in the pseudo-trees with the average local error. We will

describe the behavior of the errors on 4 problem instances: one of each from the pedigree,

grid, spot5, and dbn classes.

Figure 2.4 shows an annotated pseudo-tree for our running example problem. Only variable

D has partitioning and a non-zero bucket error. On this particular example, for a particular

level d, we can construct a look-ahead subtree for each variable. For example, if d = 2 and

ε = 0, then we can extract from this figure the ε-pruned look-ahead subtree shown earlier in

Figure 2.1 by observing that D is the only relevant variable (Figure 2.4). For every other

48



A"

B"

C" F"

G"D" E"

2.375" 0" 0"

0" 0"

0"A"B"C" ErrD"
0" 0" 0" 0"
0" 0" 1" 2"
0" 1" 0" 1"
0" 1" 1" 3"
1" 0" 0" 3"
1" 0" 1" 5"
1" 1" 0" 4"
1" 1" 1" 1"

0"
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Figure 2.4: A pseudo-tree annotated with bucket errors, given that the error function of D
shown here.

variable excluding C, the ε-pruned look-ahead subtrees are empty, thus correctly avoiding

look-ahead computation.

The rest of this section illustrates this analysis on several pseudo-trees of instances from

different problem classes. We annotated the pseudo-trees with the number of mini-buckets

(mb), the pseudo-width (psw), and the average relative local bucket errors. Each node is

color coded on a spectrum of pale yellow to dark red to indicate its relative degree of error.

Within each node, we indicate its variable index on top and its average relative local bucket

error on the bottom. Nodes with partitioning but zero error are colored dark gray. Finally,

nodes with no partitioning are colored light gray and the mini-bucket and pseudo-width

annotations are omitted. We only show portions of the tree since the full pseudo-trees are

too large to show 1.

We also plot the average relative local errors of each variable by its error ranking along

with a plot that shows the number of mini-buckets in order to show the relation between

the errors and the mini-bucket partitioning. We also note the number of buckets with zero

average relative error, the average across all variables, and the average across all variables

with non-zero error. We next show several case studies.

1 The full pseudo-trees can be viewed at http://graphmod.ics.uci.edu/~wlam/

pseudotree-errors-1609/.
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Figure 2.5: Extracted structure from pseudo-tree showing errors for pedigree40 (n=842, k=7,
w=27, h=111) with an i-bound of 12. mb: the number of mini-buckets, psw : the pseudo-
width of that node. The top number in each box is the variable index and the bottom is the
average relative local bucket error.

2.3.1 Case Study: Pedigree

We show in Figure 2.5 an extracted portion of the pseudo-tree of pedigree40 annotated

with local bucket error information when the i-bound of MBE applied is 12. We see that the

errors tend to accumulate along several paths. On the left side, the decomposed subproblems

that sit near the leaves of the pseudo-tree have zero partitioning, and therefore, zero error.

It means that messages in the leaves are small and no partitioning is required. Notably, the

magnitude of the errors differ, as we notice that the error on nodes 73, 581, and 427 (the

red nodes) have much higher error than the rest. We also see that nodes 352 and 360 (dark

gray) have zero error, despite having partitioning.

In Figure 2.6, we plot the each variable with its error (top) and mini-bucket partitioning
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Figure 2.6: Distribution of errors and mini-buckets for pedigree40. The variables (x-axis) are
plotted in descending order based on their average relative local bucket error.

(bottom). The variables are sorted in descending order based on their error. We observe a

range of errors across the variables, averaging at 0.17 (1.259 excluding zeros). Out of the

842 variables, 729 of them have zero error. We also see that bucket errors provide a much

finer-grained measure of the error compared with counting the number of mini-buckets.

More importantly, we see a few variables having 2 mini-buckets, yet have zero bucket error.

These patterns were often observed in other benchmarks having a fair amount of subproblem

decomposition (namely, when the height h of the pseudo-tree is small relative to n).

2.3.2 Case Study: Grid

Figure 2.7 provides another example, showing a part of the pseudo-tree for grid80x80.f15

when the i-bound of the MBE applied is 14. This instance is difficult, having an induced
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Figure 2.7: Extracted structures from pseudo-tree showing errors for grid instance
grid80x80.f15 (n=6400, k=2, w=112, h=296) with an i-bound of 14. mb: the number of
mini-buckets, psw : the pseudo-width of that node. The top number in each box is the
variable index and the bottom is the average relative local bucket error.
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Figure 2.8: Distribution of errors and mini-buckets for grid instance grid80x80.f15. The
variables (x-axis) are plotted in descending order based on their average relative local bucket
error.

width of 112. It indeed contains long chains with errors (see top plot). However, the nodes in

the decomposed subproblems (see bottom plot) typically have higher error than those along

the chains. Within decomposed subproblems, despite nearly all having 2 mini-buckets, we

can observe that the errors can vary, from as low as 0.09 (variable 4610, near the top right)

to 2.33 (variable 4455, near the bottom left).

In Figure 2.8, we see that most variables have zero error, while the rest vary within a

relatively small range up to around 3.5, averaging only 0.576. We observe that the number

of mini-buckets does not correlate with the magnitude of error. There are many variables

with 3 mini-buckets that are spread out roughly uniformly over the range of errors. Once

again, due to the high number of variables with zero error, we can have pruned look-ahead
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Figure 2.9: Extracted structure from pseudo-tree showing errors for SPOT5-414 (n=364,
k=4, w=79, h=226) with an i-bound of 5. mb: the number of mini-buckets, psw : the
pseudo-width of that node. The top number in each box is the variable index and the
bottom is the average relative local bucket error.

subtrees.

2.3.3 Case Study: SPOT5

Another example of an instance is SPOT5-414 in Figure 2.9. Here, the MBE i-bound is

5. We see here that there is a subset of the nodes, having a relatively large number of
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Figure 2.10: Distribution of errors and mini-buckets for SPOT5:414. The variables (x-axis)
are plotted in descending order based on their average relative local bucket error.

mini-buckets in the neighborhood of 20-30, while having no error. Considering that the

pseudo-width of these nodes are also high (50-70), the fact that these nodes (variables) have

zero bucket error will translate to avoiding intensive, yet frivolous look-ahead computation.

Most other errors are relatively low (< 0.1). We observe these low errors despite the i-

bound of 5 being much lower than the induced width of 79. Therefore, this tells us that the

mini-bucket heuristic actually works fairly well on this benchmark in spite of the significant

partitioning applied by MBE.

In Figure 2.10, we count that 161 variables have zero error, while there are a few places

with relatively higher errors (we see errors up to near 70, but the average across the non-zero

error variables is only 8.608). When comparing the magnitude of errors with the number of
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Figure 2.11: Extracted structure from pseudo-tree showing errors for DBN instance
rus2 50 100 3 2 (n=160, k=2, w=59, h=59) with an i-bound of 14. mb: the number of
mini-buckets, psw : the pseudo-width of that node. The top number in each box is the vari-
able index and the bottom is the average relative local bucket error. We also include here
another portion of the leaf level of the tree with an outlier node.

mini-buckets per variable, there is little correlation. Again, the high number of zero error

buckets, will help to have a more effective control on the magnitude of look-ahead during

search.

2.3.4 Case Study: DBN

In the last example pseudo-tree of the instance rus2 50 100 3 2 from the DBN benchmark

in Figure 2.11 the i-bound is 14. The problem instances of this benchmark typically have

a structure where there is a single point of decomposition at the bottom of the pseudo-tree.

In particular, this instance has 100 of its 160 variables branching out from a single node

(the actual branching node is not shown in the figure). There is partitioning only at the

leaves with 5 mini-buckets per variable. The average relative bucket errors are extremely

large, suggesting that the residuals can be highly informative in guiding search. Observe

that there is a single node having far higher error than the rest (variable 57, colored in red

in the figure).
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Figure 2.12: Distribution of errors and mini-buckets for DBN instance rus2 50 100 3 2. The
variables (x-axis) are plotted in descending order based on their average relative local bucket
error.

In Figure 2.12, we see that the errors are all very high for variables which do have error,

with an average of 7966. In particular, we can observe that the errors’ range is high. The

other 60 variables which sit along the chain of the pseudo tree have no partitioning and thus

zero bucket error. Consequently, for look-ahead, many variables along the chain would have

empty look-ahead subtrees, thus avoiding unnecessary look-ahead.

2.3.4.1 Discussion

We considered a handful of differently structured instances in this section and illustrated

different structures of error distributed along the pseudo-trees. As expected, the bucket

error grows when the i-bound is low relative to the induced width (consider the grid instance
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Benchmark d=1 d=2 d=3 d=4 d=5 d=6
Pedigree 0.89 0.87 0.85 0.85 0.85 0.85

LargeFam3 0.87 0.86 0.85 0.85 0.85 0.85
Promedas 0.90 0.87 0.86 0.86 0.86 0.86

Type4 0.86 0.83 0.81 0.81 0.81 0.81
DBN 0.99 0.98 0.97 0.97 0.96 0.95
Grid 0.82 0.77 0.75 0.74 0.73 0.73

Table 2.2: For each benchmark, the average ratio of variables with near empty look-ahead
subtrees over for various look-ahead depths with a fixed i-bound of 10.

compared with the pedigree instance). We find that there are a fair number of nodes within

the pseudo-trees having no error, which is useful for controlling the look-ahead. For example,

in the SPOT5 instance, the majority of nodes appear to have high error when considering

the mini-bucket partitioning alone, yet evaluating their bucket errors suggest otherwise. We

showed here that the local bucket error provides information beyond the presence of mini-

bucket partitioning.

Most importantly, we observe that problems typically have zero error for most of its vari-

ables, having significant implications for look-ahead during search. To demonstrate this, we

compiled the look-ahead subtrees for every problem instance across the 6 benchmarks used

in our experimental evaluation in the following section. The results are summarized in Table

2.2 by averaging the ratio of variables which have a look-ahead subtree that is nearly empty

(defined by being at most 10% of the unpruned look-ahead subtree’s size) for an i-bound

of 10 and look-ahead depths ranging from 1 to 6 with an error threshold ε of 0.01. Indeed,

most variables have nearly empty look-ahead subtrees, with the ratio decreasing relatively

slowly as depth increases. Clearly, this would yield a positive impact on dealing with the

overhead of look-ahead.
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2.4 Experimental Evaluation

We evaluate the impact of our look-ahead scheme on the performance of both finding exact

solutions and anytime behavior. We use depth as a control parameter for adjusting the

strength of look-ahead using a fixed small non-zero ε, and also demonstrate the impact of ε

given fixed depths.

2.4.1 Overview and Methodology

We augmented breadth-rotating AND/OR branch-and-bound (BRAOBB) guided by

MBE(i) with moment-matching (MBE-MM) with our look-ahead scheme. BRAOBB is

a variant of the AOBB algorithm that has improved the anytime performance through a

method of rotating through subproblems in the AND/OR search space [39]. The MBE-MM

heuristic is one of the best versions of the MBE heuristic, which adds a step that shifts costs

between mini-buckets to tighten the approximation [25]. Together, they form one of the best

algorithms for optimization in graphical models, which won the PASCAL inference compe-

tition in 2011 [40]. The pseudocode for our look-ahead algorithm is given in Algorithm

9. For the first step of CompilePLS(ε) (Algorithm 8) for compiling pruned look-ahead

subtrees, the average was computed exactly if the local bucket error function had no more

than 105 entries. Otherwise, we approximated this by sampling 105 of the entries and aver-

aging over the samples. We compare it to the baseline heuristic which uses no look-ahead,

enforced in our code using empty look-ahead subtrees. All algorithms were implemented in

C++ (64-bit) and the experiments were run on an Intel Xeon X5650 2.66GHz processor,

with a 4GB memory limit for each job. The time limit for every experiment was bound to

2 hours (7200 seconds).

Benchmarks. We evaluated the look-ahead scheme using the ε-pruned subtrees on bench-

marks from the UAI and PASCAL2 competitions. This includes instances from genetic
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Benchmark # inst n k w h |F | a

Pedigree 12
581 3 19 79 794 4
1006 7 39 143 1185 5

LargeFam3 69
874 3 21 44 1321 4
2489 3 78 174 3772 4

Type4 38
3907 5 21 300 5749 4
8473 5 66 971 13570 4

Promedas 36
615 2 28 65 625 3
1911 2 94 165 1928 3

DBN 74
70 2 29 29 16167 2
310 2 109 109 99927 2

Grids 21
400 2 24 62 1161 2
6400 2 196 341 19201 2

Table 2.3: Benchmark statistics for. # inst - number of instances, n - number of variables,
w∗ - induced width, h - pseudo-tree height, k - maximum domain size, |F | - number of
functions, a - maximum arity. The top value is the minimum and the bottom value is the
maximum for that statistic.

linkage analysis (Pedigree, LargeFam3, Type4) [20] and medical diagnosis (Promedas)

[49], deep belief networks (DBN), and binary grids (Grids). For each problem, we used a

fixed pseudo-tree for the algorithms applied with all levels of look-ahead, thus yielding the

induced widths and heights reported in Table 2.3. Within each of these benchmarks, we

selected a subset of instances that were not trivial to solve with weak heuristics (namely

solved in less than 30 seconds with an i-bound of 6 or lower). Overall, we evaluated on 250

problem instances of varying difficulty, having induced widths ranging from 19 to 196.

Heuristics. The i-bounds selected for each problem instance yields a range of heuristic

strengths from relatively weak to strong. The lowest i-bound for each instance is based on

whether it was possible with that i-bound to solve the problem in the 2 hour time limit,

while the highest i-bound shown is selected to fit within the 4GB memory limit. We also

show an i-bound between these two.

The next two sections (2.4.2 and 2.4.3) use depth as a control parameter for look-ahead

and describe the results on exact solutions and anytime behavior, respectively. In order to

show the impact of depth clearly, we fix the ε parameter to 0.01 to ensure that all error-free
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variables are pruned from the look-ahead subtrees and pruning only small non-zero errors.

We vary the look-ahead depth from 0 to 6, where 0 is the baseline with no look-ahead.

Afterwards, in section 2.4.4, we show the impact of the ε parameter, where we vary it from

0 to 10, plus ∞ and show its impact on look-ahead with depths of 2 and 5.

2.4.2 Evaluating Look-ahead for Exact Solutions

Tables 2.4, 2.5, 2.6, 2.7, and 2.8, present results on the amount of time spent (in seconds)

and nodes expanded (in millions of nodes) for selected representative instances. Next to each

time, we also provide the relative speedup over the baseline. Similarly, next to each node

count, we provide the ratio of nodes expanded relative to the baseline. In cases were the

baseline fails to find the exact solution, we give a lower bound on the speedup, assuming the

baseline is 7200 seconds. For the number of nodes expanded, the ratio is an upper bound

obtained by counting the number of nodes expanded by the timeout. Within an instance,

each column corresponds to a different i-bound and each row corresponds to a different

look-ahead depth.

To account for the full set of instances solved within the time limit, we provide in Figures

2.13, 2.14, 2.15, 2.16, and 2.17 scatter plots of the speedups of the runtime of each

look-ahead depth against the baseline. The differently colored points represent the different

problem instances in the benchmark. Each depth is annotated by the number of instances

which performed better than the baseline. We separate these into the same weak to strong

heuristic groupings as done in the tables.

The Type4 benchmark is not included in the results for finding exact solutions since there

were no instances which were solved within the time limit.
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instance
(n, k, w∗, h) depth time (speedup) nodes (ratio) time (speedup) nodes (ratio) time (speedup) nodes (ratio)

i=11 i=16 i=21
d=0 2078 (1.00) 385.79 (1.00) 74 (1.00) 13.32 (1.00) 142 (1.00) 4.66 (1.00)
d=1 1905 (1.09) 280.04 (0.73) 75 (0.99) 10.59 (0.80) 146 (0.97) 3.95 (0.85)
d=2 1846 (1.13) 226.18 (0.59) 72 (1.02) 8.91 (0.67) 147 (0.96) 3.45 (0.74)

pedigree7 d=3 1972 (1.05) 177.49 (0.46) 76 (0.97) 7.43 (0.56) 148 (0.95) 3.08 (0.66)
(867,4,28,123) d=4 2423 (0.86) 135.83 (0.35) 86 (0.86) 6.18 (0.46) 154 (0.92) 2.64 (0.57)

d=5 3204 (0.65) 103.89 (0.27) 104 (0.71) 5.11 (0.38) 169 (0.84) 2.44 (0.52)
d=6 4976 (0.42) 81.77 (0.21) 146 (0.50) 4.29 (0.32) 194 (0.73) 2.22 (0.48)

i=5 i=8 i=23
d=0 5207 (1.00) 974.63 (1.00) 386 (1.00) 79.94 (1.00) 85 (1.00) 0.01 (1.00)
d=1 4249 (1.23) 668.92 (0.69) 372 (1.04) 65.51 (0.82) 85 (0.99) 0.01 (0.95)
d=2 4061 (1.28) 564.38 (0.58) 325 (1.19) 50.21 (0.63) 87 (0.97) 0.01 (0.90)

pedigree9 d=3 3594 (1.45) 371.50 (0.38) 312 (1.24) 38.44 (0.48) 85 (0.99) 0.01 (0.88)
(935,7,25,137) d=4 3548 (1.47) 245.15 (0.25) 398 (0.97) 32.54 (0.41) 85 (0.99) 0.01 (0.85)

d=5 3654 (1.43) 159.41 (0.16) 457 (0.84) 22.58 (0.28) 85 (0.99) 0.01 (0.83)
d=6 5523 (0.94) 128.85 (0.13) 680 (0.57) 19.37 (0.24) 85 (1.00) 0.01 (0.75)

i=5 i=7 i=10
d=0 1464 (1.00) 327.19 (1.00) 66 (1.00) 17.60 (1.00) 7 (1.00) 1.93 (1.00)
d=1 1245 (1.18) 244.45 (0.75) 55 (1.19) 12.88 (0.73) 6 (1.12) 1.36 (0.70)
d=2 1147 (1.28) 200.20 (0.61) 48 (1.35) 10.08 (0.57) 5 (1.39) 0.94 (0.49)

pedigree18 d=3 887 (1.65) 136.37 (0.42) 36 (1.83) 6.64 (0.38) 4 (1.53) 0.69 (0.36)
(931,5,19,102) d=4 675 (2.17) 84.72 (0.26) 29 (2.30) 4.17 (0.24) 5 (1.34) 0.48 (0.25)

d=5 755 (1.94) 64.45 (0.20) 30 (2.22) 3.14 (0.18) 6 (1.23) 0.39 (0.20)
d=6 777 (1.88) 46.28 (0.14) 42 (1.55) 2.32 (0.13) 8 (0.87) 0.28 (0.14)

i=13 i=15 i=18
d=0 3193 (1.00) 544.11 (1.00) 1470 (1.00) 246.25 (1.00) 108 (1.00) 2.63 (1.00)
d=1 3125 (1.02) 457.74 (0.84) 1458 (1.01) 210.39 (0.85) 114 (0.95) 2.26 (0.86)
d=2 2705 (1.18) 334.54 (0.61) 1497 (0.98) 188.04 (0.76) 114 (0.95) 2.02 (0.77)

pedigree34 d=3 3118 (1.02) 284.64 (0.52) 1736 (0.85) 168.68 (0.69) 106 (1.02) 1.87 (0.71)
(922,5,28,143) d=4 4086 (0.78) 249.13 (0.46) 2119 (0.69) 147.71 (0.60) 123 (0.88) 1.61 (0.61)

d=5 6205 (0.51) 212.84 (0.39) 3022 (0.49) 128.82 (0.52) 136 (0.80) 1.39 (0.53)
d=6 oot - 4992 (0.29) 116.30 (0.47) 166 (0.65) 1.27 (0.48)

i=8 i=12 i=23
d=0 2256 (1.00) 492.98 (1.00) 345 (1.00) 81.92 (1.00) 76 (1.00) 0.00 (1.00)
d=1 2066 (1.09) 389.99 (0.79) 351 (0.98) 68.86 (0.84) 77 (0.99) 0.00 (1.00)
d=2 2027 (1.11) 324.45 (0.66) 313 (1.10) 53.82 (0.66) 77 (0.99) 0.00 (1.00)

pedigree44 d=3 1787 (1.26) 220.62 (0.45) 303 (1.14) 38.10 (0.47) 76 (1.00) 0.00 (1.00)
(644,4,24,79) d=4 1847 (1.22) 166.69 (0.34) 330 (1.05) 28.83 (0.35) 77 (0.99) 0.00 (1.00)

d=5 2167 (1.04) 114.99 (0.23) 382 (0.90) 20.07 (0.24) 77 (0.99) 0.00 (1.00)
d=6 3027 (0.75) 91.94 (0.19) 494 (0.70) 13.80 (0.17) 77 (0.99) 0.00 (1.00)

i=16 i=19 i=22
d=0 4075 (1.00) 917.81 (1.00) 2545 (1.00) 599.16 (1.00) 502 (1.00) 82.85 (1.00)
d=1 4168 (0.98) 782.74 (0.85) 2673 (0.95) 508.52 (0.85) 514 (0.98) 71.01 (0.86)
d=2 4108 (0.99) 670.59 (0.73) 2759 (0.92) 442.76 (0.74) 536 (0.94) 64.13 (0.77)

pedigree51 d=3 3892 (1.05) 512.25 (0.56) 2590 (0.98) 335.50 (0.56) 542 (0.93) 53.31 (0.64)
(871,5,39,98) d=4 4871 (0.84) 437.29 (0.48) 3004 (0.85) 278.58 (0.46) 614 (0.82) 45.33 (0.55)

d=5 5896 (0.69) 351.41 (0.38) 3697 (0.69) 224.62 (0.37) 759 (0.66) 39.73 (0.48)
d=6 oot - 5708 (0.45) 194.39 (0.32) 1091 (0.46) 35.33 (0.43)

Table 2.4: Selected pedigree instances: “time” indicates the CPU time in seconds (speedup
over baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes
(ratio relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded.
The problem parameters are also provided for each instance (n: number of variables, k:
maximum domain size, w∗: induced width, and h: height) Within each instance and i-
bound, the best time and fewest nodes are boxed.
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2.4.2.1 Pedigree

Table 2.4 shows the results in terms of time spent and nodes expanded to find the exact

solution on selected i-bounds of representative instances in the benchmark and demonstrates

how the look-ahead scheme performs. We observe that look-ahead improves the performance,

especially for lower i-bounds. For instance, on pedigree18 with an i-bound of 5, we see a

runtime of 675 seconds with a look-ahead depth of 4, which is 2.16 times faster than the

baseline time of 1464 seconds. Indeed, the number of nodes expanded here decrease by

74%. However, on higher i-bounds, lookahead is less cost effective. For instance, we see on

pedigree51 with an i-bound of 22, the baseline is the best performer. The number of nodes

here decreases only by 57%, even with the deepest look-ahead.

Figure 2.13: Solved pedigree instances: plot of speedups on instances by look-ahead depth.
The number on top of each depth group is the number of instances that had speedup over
1. #inst indicates the number of instances in the benchmark that are shown in each plot.

Figure 2.13 shows the distribution of speedups across all the instances of this benchmark

that were solved within the time limit. For low i-bounds of modest look-ahead depths (less

than 3), we observe that look-ahead improves over the baseline for most of the instances.

However, as the look-ahead depths increase, it is often the case that it is not cost-effective,

though there are a few instances that still show benefit.

In summary, due to the relatively easy nature of this benchmark, the bucket errors tend to

be very low for the higher i-bounds. Thus, there are fewer opportunities for look-ahead to

improve the pre-compiled mini-bucket heuristic.
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instance
(n, k, w∗, h) depth time (speedup) nodes (ratio) time (speedup) nodes (ratio) time (speedup) nodes (ratio)

i=16 i=18 i=20
d=0 6560 (1.00) 1306.25 (1.00) 2180 (1.00) 471.67 (1.00) 387 (1.00) 75.13 (1.00)
d=1 6058 (1.08) 991.91 (0.76) 1999 (1.09) 343.13 (0.73) 371 (1.04) 54.20 (0.72)
d=2 5669 (1.16) 744.66 (0.57) 1978 (1.10) 263.95 (0.56) 380 (1.02) 42.71 (0.57)

lf3-10-52 d=3 4915 (1.33) 431.36 (0.33) 2545 (0.86) 214.29 (0.45) 467 (0.83) 33.51 (0.45)
(959,3,39,68) d=4 6068 (1.08) 301.99 (0.23) 3809 (0.57) 165.31 (0.35) 651 (0.59) 26.56 (0.35)

d=5 oot - 6627 (0.33) 131.89 (0.28) 1087 (0.36) 21.56 (0.29)
d=6 oot - oot - 1974 (0.20) 17.54 (0.23)

i=14 i=16 i=18
d=0 oot - 5319 (1.00) 1041.65 (1.00) 471 (1.00) 70.24 (1.00)
d=1 oot - 4879 (1.09) 752.73 (0.72) 433 (1.09) 49.08 (0.70)
d=2 oot - 4418 (1.20) 529.90 (0.51) 390 (1.21) 35.29 (0.50)

lf3-13-58 d=3 oot - 3858 (1.38) 340.03 (0.33) 462 (1.02) 28.11 (0.40)
(1272,3,32,76) d=4 oot - 5222 (1.02) 261.37 (0.25) 575 (0.82) 21.10 (0.30)

d=5 oot - oot - 865 (0.55) 16.66 (0.24)
d=6 oot - oot - 1447 (0.33) 12.20 (0.17)

i=14 i=16 i=18
d=0 3971 (1.00) 821.75 (1.00) 644 (1.00) 154.40 (1.00) 56 (1.00) 10.94 (1.00)
d=1 3579 (1.11) 609.38 (0.74) 499 (1.29) 99.26 (0.64) 51 (1.10) 7.59 (0.69)
d=2 3071 (1.29) 464.28 (0.56) 455 (1.41) 75.97 (0.49) 48 (1.16) 5.97 (0.55)

lf3-15-59 d=3 3057 (1.30) 346.87 (0.42) 480 (1.34) 61.42 (0.40) 50 (1.11) 4.79 (0.44)
(1574,3,33,71) d=4 3896 (1.02) 284.40 (0.35) 614 (1.05) 47.89 (0.31) 61 (0.92) 3.65 (0.33)

d=5 4740 (0.84) 219.70 (0.27) 972 (0.66) 38.95 (0.25) 98 (0.57) 3.09 (0.28)
d=6 oot - 1655 (0.39) 30.63 (0.20) 178 (0.31) 2.50 (0.23)

i=14 i=16 i=18
d=0 1760 (1.00) 367.61 (1.00) 381 (1.00) 77.79 (1.00) 104 (1.00) 9.30 (1.00)
d=1 1954 (0.90) 337.70 (0.92) 400 (0.95) 66.06 (0.85) 112 (0.93) 8.11 (0.87)
d=2 1862 (0.95) 281.86 (0.77) 376 (1.01) 53.07 (0.68) 107 (0.97) 6.28 (0.67)

lf3-16-56 d=3 1926 (0.91) 227.79 (0.62) 366 (1.04) 40.25 (0.52) 104 (1.00) 4.55 (0.49)
(1688,3,38,77) d=4 2232 (0.79) 175.98 (0.48) 430 (0.89) 31.17 (0.40) 112 (0.92) 3.65 (0.39)

d=5 2183 (0.81) 104.73 (0.28) 513 (0.74) 20.77 (0.27) 115 (0.91) 2.31 (0.25)
d=6 2803 (0.63) 77.90 (0.21) 732 (0.52) 15.65 (0.20) 131 (0.79) 1.60 (0.17)

i=12 i=14 i=16
d=0 1386 (1.00) 263.46 (1.00) 476 (1.00) 93.62 (1.00) 20 (1.00) 2.28 (1.00)
d=1 1401 (0.99) 208.27 (0.79) 463 (1.03) 70.44 (0.75) 22 (0.90) 1.53 (0.67)
d=2 1212 (1.14) 161.49 (0.61) 436 (1.09) 53.60 (0.57) 21 (0.92) 1.12 (0.49)

lf3-17-58 d=3 1468 (0.94) 117.04 (0.44) 579 (0.82) 43.52 (0.46) 22 (0.91) 0.74 (0.33)
(1712,3,31,75) d=4 1988 (0.70) 88.02 (0.33) 1039 (0.46) 35.35 (0.38) 27 (0.73) 0.57 (0.25)

d=5 2129 (0.65) 33.84 (0.13) 2770 (0.17) 23.36 (0.25) 36 (0.54) 0.41 (0.18)
d=6 3968 (0.35) 24.37 (0.09) 5428 (0.09) 10.40 (0.11) 63 (0.31) 0.32 (0.14)

Table 2.5: Selected largefam3 instances: “time” indicates the CPU time in seconds (speedup
over baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes
(ratio relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded.
The problem parameters are also provided for each instance (n: number of variables, k:
maximum domain size, w∗: induced width, and h: height) Within each instance and i-
bound, the best time and fewest nodes are boxed.
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2.4.2.2 LargeFam3

Table 2.5 shows the detailed results for representative instances in this benchmark. In con-

trast to the pedigree benchmark, these instances are more difficult as seen by the relatively

higher induced width and therefore higher i-bounds required to find exact solutions. We ob-

serve that on weaker heuristics, look-ahead obtains some speedups. For instance lf3-10-52,

we see a runtime of 4915 seconds for a depth of 3 compared to 6560 seconds for the baseline,

close to the timeout. At a depth of 4, the ratio of the number of nodes only changes by 10%,

thus making look-ahead less cost-effective. When moving to higher i-bounds, we see a shift

towards lower depths being cost effective, but with relatively small improvements over the

baseline. For example, on the same instance, for i=20, a depth of 1 reduces the runtime only

marginally. Still, in lf3-13-58, there is more payoff with a look-ahead depth of 2 giving a 1.2

speedup over the baseline, thanks to a 50% reduction in the number of nodes expanded.

Figure 2.14: Solved largefam3 instances: plot of speedups on instances by look-ahead depth.
The number on top of each depth group is the number of instances that had speedup over
1. #inst indicates the number of instances in the benchmark that are shown in each plot.

Figure 2.14 shows the distributions of speedups across all the instances of the benchmark

that were solved within the time limit. Here we observe that for the weaker heuristics, only a

very small number of instances improve over the baseline for the various look-ahead depths.

We see that for depths of 1 and 2, 5 of the instances performed better than the baseline, but

as the depth increases, the number of instances that perform better decreases. For stronger

heuristics (medium and high i-bounds), a slightly larger proportion of instances improve

over the baseline since it also includes more difficult instances that could not be solved with
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weaker heuristics. Still, increasing depth past 2 or 3 results in fewer improvements.

In summary, for this benchmark, the impact of look-ahead is somewhat similar to what

we saw for the pedigree benchmark. While the instances that we could solve were more

difficult, the bucket errors behave similarly.

2.4.2.3 Promedas

Table 2.6 shows the detailed results for representative instances in the promedas benchmark.

We see a significant speedup when using weak heuristics. For example on or-chain-140.fg,

a depth 6 look-ahead completed in 1156 seconds where the baseline required 4555 seconds,

a 3.94 speedup. Also worth noting in this benchmark is or-chain-108.fg, which is a fairly

hard instance with an induced with of 67. Here, even the highest i-bound of 22 which we

could use resulted in the baseline timing out at 7200 seconds. Thus, with a depth of 4, we

achieved a time which is at least twice as fast.

Figure 2.15: Solved promedas instances: plot of speedups on instances by look-ahead depth.
The number on top of each depth group is the number of instances that had speedup over
1. #inst indicates the number of instances in the benchmark that are shown in each plot.

Figure 2.15 shows the distribution of speedups across all instances that were solved within

the time limit. For low i-bounds, we observe a general trend of deeper look-ahead improving

performance. In particular, the number of instances for which look-ahead improved per-

formance increases monotonically until a depth of 4. A few instances continue to improve

thereafter. Moving to medium i-bounds, look-ahead improves over the baseline on only
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instance
(n, k, w∗, h) depth time nodes time nodes time nodes

i=18 i=20 i=22
d=0 oot - 6685 (1.00) 1538.31 (1.00) oot -
d=1 oot - 6519 (1.03) 1311.00 (0.85) oot -
d=2 oot - 6216 (1.08) 1135.75 (0.74) 3892 (¿1.85) 746.99 (¡0.66)

or-chain-108.fg d=3 6782 (¿1.06) 1083.13 (¡0.69) 5741 (1.16) 928.40 (0.60) 3664 (¿1.97) 633.30 (¡0.56)
(1263,2,67,117) d=4 6221 (¿1.16) 836.41 (¡0.54) oot - 3554 (¿2.03) 526.19 (¡0.47)

d=5 6741 (¿1.07) 723.05 (¡0.46) oot - 3931 (¿1.83) 450.86 (¡0.40)
d=6 oot - oot - 5224 (¿1.38) 361.61 (¡0.32)

i=8 i=14 i=22
d=0 4048 (1.00) 922.01 (1.00) 940 (1.00) 250.21 (1.00) 40 (1.00) 7.13 (1.00)
d=1 3225 (1.26) 677.95 (0.74) 897 (1.05) 200.63 (0.80) 45 (0.91) 6.14 (0.86)
d=2 2981 (1.36) 588.24 (0.64) 687 (1.37) 151.52 (0.61) 42 (0.96) 4.92 (0.69)

or-chain-113.fg d=3 2454 (1.65) 486.12 (0.53) 704 (1.34) 125.95 (0.50) 40 (1.01) 3.54 (0.50)
(1416,2,40,83) d=4 2327 (1.74) 395.83 (0.43) 763 (1.23) 95.09 (0.38) 42 (0.95) 2.81 (0.39)

d=5 2442 (1.66) 296.26 (0.32) 797 (1.18) 76.51 (0.31) 47 (0.86) 2.26 (0.32)
d=6 2790 (1.45) 227.63 (0.25) 1024 (0.92) 60.46 (0.24) 55 (0.73) 1.77 (0.25)

i=6 i=14 i=22
d=0 4555 (1.00) 989.30 (1.00) 485 (1.00) 123.22 (1.00) 23 (1.00) 1.96 (1.00)
d=1 3769 (1.21) 724.32 (0.73) 432 (1.12) 96.52 (0.78) 25 (0.89) 1.76 (0.90)
d=2 3005 (1.52) 550.05 (0.56) 337 (1.44) 67.55 (0.55) 25 (0.92) 1.40 (0.72)

or-chain-140.fg d=3 2132 (2.14) 370.58 (0.37) 304 (1.60) 50.38 (0.41) 24 (0.95) 1.12 (0.57)
(1260,2,32,79) d=4 1604 (2.84) 226.90 (0.23) 297 (1.63) 39.68 (0.32) 24 (0.93) 1.04 (0.53)

d=5 1403 (3.25) 152.70 (0.15) 370 (1.31) 33.30 (0.27) 26 (0.87) 0.94 (0.48)
d=6 1156 (3.94) 93.02 (0.09) 514 (0.94) 26.82 (0.22) 28 (0.82) 0.76 (0.39)

i=16 i=18 i=22
d=0 3392 (1.00) 776.00 (1.00) 1347 (1.00) 332.59 (1.00) 590 (1.00) 135.98 (1.00)
d=1 3445 (0.98) 672.30 (0.87) 1521 (0.89) 292.67 (0.88) 583 (1.01) 115.44 (0.85)
d=2 3049 (1.11) 531.20 (0.68) 1094 (1.23) 200.99 (0.60) 446 (1.32) 74.57 (0.55)

or-chain-202.fg d=3 3037 (1.12) 443.17 (0.57) 1016 (1.33) 159.28 (0.48) 433 (1.36) 62.09 (0.46)
(1138,2,57,99) d=4 3465 (0.98) 385.27 (0.50) 1163 (1.16) 138.94 (0.42) 493 (1.20) 54.06 (0.40)

d=5 3833 (0.88) 286.23 (0.37) 1304 (1.03) 115.07 (0.35) 536 (1.10) 44.13 (0.32)
d=6 5345 (0.63) 247.75 (0.32) 1815 (0.74) 102.03 (0.31) 801 (0.74) 37.78 (0.28)

i=14 i=16 i=20
d=0 5360 (1.00) 1051.18 (1.00) 3179 (1.00) 641.34 (1.00) 1860 (1.00) 381.76 (1.00)
d=1 4292 (1.25) 736.64 (0.70) 3309 (0.96) 558.36 (0.87) 1829 (1.02) 323.42 (0.85)
d=2 3554 (1.51) 553.47 (0.53) 2420 (1.31) 382.38 (0.60) 1661 (1.12) 271.88 (0.71)

or-chain-230.fg d=3 3325 (1.61) 463.20 (0.44) 2501 (1.27) 340.48 (0.53) 1764 (1.05) 245.41 (0.64)
(1338,2,61,109) d=4 3583 (1.50) 406.36 (0.39) 2518 (1.26) 271.47 (0.42) 1853 (1.00) 202.43 (0.53)

d=5 4723 (1.13) 323.11 (0.31) 2814 (1.13) 212.02 (0.33) 2202 (0.84) 166.51 (0.44)
d=6 4779 (1.12) 200.85 (0.19) 3360 (0.95) 173.98 (0.27) 2832 (0.66) 143.76 (0.38)

i=8 i=14 i=22
d=0 1936 (1.00) 473.14 (1.00) 698 (1.00) 174.41 (1.00) 34 (1.00) 4.99 (1.00)
d=1 1455 (1.33) 318.79 (0.67) 654 (1.07) 138.89 (0.80) 39 (0.86) 4.43 (0.89)
d=2 1221 (1.59) 240.71 (0.51) 593 (1.18) 112.57 (0.65) 39 (0.87) 3.79 (0.76)

or-chain-8.fg d=3 1072 (1.81) 192.22 (0.41) 574 (1.21) 93.09 (0.53) 36 (0.94) 2.53 (0.51)
(1195,2,42,80) d=4 1034 (1.87) 151.75 (0.32) 577 (1.21) 75.34 (0.43) 38 (0.88) 2.09 (0.42)

d=5 1094 (1.77) 127.13 (0.27) 682 (1.02) 62.81 (0.36) 43 (0.79) 1.72 (0.34)
d=6 1117 (1.73) 87.01 (0.18) 904 (0.77) 56.84 (0.33) 53 (0.64) 1.50 (0.30)

Table 2.6: Selected promedas instances: “time” indicates the CPU time in seconds (speedup
over baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes
(ratio relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded.
The problem parameters are also provided for each instance (n: number of variables, k:
maximum domain size, w∗: induced width, and h: height) Within each instance and i-
bound, the best time and fewest nodes are boxed.
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about half of the 30 solved instances from depths 1 to 4. This is due to how a large number

of the instances are trivial to solve (less than 30 seconds of runtime) once using a stronger

heuristic (typically an i-bound of 14). Increasing the heuristic strength further, most of

the instances are solved easily, except for a few of the hardest ones such as or-chain-108 in

Table 2.6, which still exhibit significant speedup.

In this benchmark, which contains some hard instances, we see for the first time the power of

look-ahead when memory restrictions allow only relatively weak heuristics. Indeed, here we

see more than before that look-ahead improves at depths even when we have the strongest

heuristics that we can compile under the memory constraints.

2.4.2.4 DBN

Table 2.7 shows the detailed results for representative instances in the DBN benchmark. On

the hardest instance we were able to solve (rus2-20-40-9-3 ), we see a significant improvement

using the lowest i-bound of 8, and a look-ahead depth of 4 resulting in a runtime of 1744

seconds compared with the baseline yielding 6171 seconds, a speedup of 3.54. Indeed, the

number of nodes expanded is reduced by about 90.5%. We observe improved performance

for many instances as we increase the i-bound. The baseline time is generally at least twice

that of the look-ahead depth of 1.

Figure 2.16: Solved DBN instances: plot of speedups on instances by look-ahead depth.
The number on top of each depth group is the number of instances that had speedup over
1. #inst indicates the number of instances in the benchmark that are shown in each plot.
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instance
(n, k, w∗, h) depth time (speedup) nodes (ratio) time (speedup) nodes (ratio) time (speedup) nodes (ratio)

i=8 i=10 i=12
d=0 271 (1.00) 3.50 (1.00) 47 (1.00) 0.64 (1.00) 498 (1.00) 5.57 (1.00)
d=1 126 (2.16) 2.02 (0.58) 28 (1.68) 0.39 (0.61) 197 (2.53) 3.04 (0.55)
d=2 111 (2.44) 1.19 (0.34) 24 (1.95) 0.24 (0.38) 166 (3.01) 1.68 (0.30)

rus2-20-40-1-1 d=3 110 (2.46) 0.71 (0.20) 26 (1.81) 0.15 (0.24) 166 (2.99) 0.94 (0.17)
(70,2,29,29) d=4 119 (2.28) 0.43 (0.12) 28 (1.66) 0.09 (0.15) 164 (3.03) 0.53 (0.10)

d=5 137 (1.97) 0.26 (0.07) 35 (1.33) 0.06 (0.09) 189 (2.64) 0.30 (0.05)
d=6 158 (1.72) 0.16 (0.04) 41 (1.14) 0.04 (0.06) 210 (2.37) 0.17 (0.03)

i=8 i=10 i=12
d=0 264 (1.00) 3.09 (1.00) 104 (1.00) 1.21 (1.00) 386 (1.00) 4.28 (1.00)
d=1 120 (2.21) 1.70 (0.55) 53 (1.97) 0.67 (0.56) 169 (2.28) 2.27 (0.53)
d=2 97 (2.73) 0.95 (0.31) 42 (2.47) 0.39 (0.32) 129 (3.00) 1.22 (0.29)

rus2-20-40-3-3 d=3 95 (2.79) 0.54 (0.17) 42 (2.49) 0.22 (0.18) 122 (3.17) 0.66 (0.15)
(70,2,29,29) d=4 99 (2.68) 0.31 (0.10) 48 (2.19) 0.13 (0.11) 131 (2.95) 0.36 (0.09)

d=5 108 (2.45) 0.18 (0.06) 48 (2.15) 0.08 (0.06) 142 (2.71) 0.20 (0.05)
d=6 119 (2.21) 0.11 (0.03) 57 (1.84) 0.04 (0.04) 147 (2.62) 0.11 (0.03)

i=8 i=10 i=12
d=0 307 (1.00) 3.89 (1.00) 53 (1.00) 0.76 (1.00) 539 (1.00) 6.41 (1.00)
d=1 150 (2.05) 2.27 (0.58) 30 (1.79) 0.47 (0.61) 240 (2.25) 3.52 (0.55)
d=2 123 (2.50) 1.35 (0.35) 26 (2.01) 0.29 (0.38) 206 (2.61) 1.97 (0.31)

rus2-20-40-4-1 d=3 124 (2.48) 0.81 (0.21) 29 (1.83) 0.18 (0.24) 188 (2.86) 1.11 (0.17)
(70,2,29,29) d=4 134 (2.30) 0.49 (0.13) 32 (1.67) 0.11 (0.15) 201 (2.68) 0.64 (0.10)

d=5 160 (1.92) 0.30 (0.08) 39 (1.36) 0.07 (0.09) 211 (2.55) 0.37 (0.06)
d=6 187 (1.64) 0.19 (0.05) 46 (1.16) 0.05 (0.06) 246 (2.20) 0.22 (0.03)

i=8 i=10 i=12
d=0 1517 (1.00) 17.09 (1.00) 569 (1.00) 6.76 (1.00) 2156 (1.00) 22.32 (1.00)
d=1 698 (2.17) 9.47 (0.55) 234 (2.43) 3.83 (0.57) 861 (2.50) 11.89 (0.53)
d=2 562 (2.70) 5.32 (0.31) 213 (2.67) 2.21 (0.33) 691 (3.12) 6.41 (0.29)

rus2-20-40-5-2 d=3 523 (2.90) 3.03 (0.18) 209 (2.72) 1.29 (0.19) 680 (3.17) 3.48 (0.16)
(70,2,29,29) d=4 544 (2.79) 1.75 (0.10) 231 (2.47) 0.76 (0.11) 661 (3.26) 1.92 (0.09)

d=5 621 (2.44) 1.02 (0.06) 269 (2.11) 0.45 (0.07) 750 (2.88) 1.06 (0.05)
d=6 659 (2.30) 0.61 (0.04) 292 (1.95) 0.27 (0.04) 746 (2.89) 0.60 (0.03)

i=8 i=10 i=12
d=0 350 (1.00) 4.21 (1.00) 161 (1.00) 1.80 (1.00) 564 (1.00) 6.49 (1.00)
d=1 154 (2.27) 2.36 (0.56) 81 (2.00) 1.02 (0.57) 232 (2.43) 3.48 (0.54)
d=2 130 (2.70) 1.34 (0.32) 70 (2.30) 0.59 (0.33) 189 (2.98) 1.89 (0.29)

rus2-20-40-8-2 d=3 128 (2.73) 0.78 (0.18) 64 (2.53) 0.34 (0.19) 183 (3.08) 1.04 (0.16)
(70,2,29,29) d=4 134 (2.62) 0.46 (0.11) 64 (2.53) 0.20 (0.11) 183 (3.09) 0.58 (0.09)

d=5 149 (2.35) 0.27 (0.06) 69 (2.33) 0.12 (0.07) 193 (2.92) 0.33 (0.05)
d=6 167 (2.10) 0.17 (0.04) 71 (2.26) 0.07 (0.04) 212 (2.66) 0.19 (0.03)

i=8 i=10 i=12
d=0 6171 (1.00) 58.00 (1.00) 1906 (1.00) 23.11 (1.00) oot -
d=1 2620 (2.36) 31.70 (0.55) 903 (2.11) 13.03 (0.56) 2913 (¿2.47) 40.58 (¡0.53)
d=2 1905 (3.24) 17.52 (0.30) 713 (2.67) 7.48 (0.32) 2435 (¿2.96) 21.53 (¡0.28)

rus2-20-40-9-3 d=3 1956 (3.15) 9.74 (0.17) 696 (2.74) 4.30 (0.19) 2128 (¿3.38) 11.47 (¡0.15)
(70,2,29,29) d=4 1744 (3.54) 5.48 (0.09) 748 (2.55) 2.50 (0.11) 2158 (¿3.34) 6.17 (¡0.08)

d=5 1995 (3.09) 3.07 (0.05) 820 (2.32) 1.44 (0.06) 2198 (¿3.28) 3.33 (¡0.04)
d=6 2156 (2.86) 1.75 (0.03) 1035 (1.84) 0.83 (0.04) 2403 (¿3.00) 1.81 (¡0.02)

Table 2.7: Selected DBN instances: “time” indicates the CPU time in seconds (speedup over
baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes (ratio
relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded. The
problem parameters are also provided for each instance (n: number of variables, k: maximum
domain size, w∗: induced width, and h: height) Within each instance and i-bound, the best
time and fewest nodes are boxed.
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In Figure 2.16, we see that look-ahead nearly always improves over the baseline. For low

i-bounds, the speedups range between 1.5 to 3.5 for all instances. This range decreases

for medium i-bounds, but in nearly all cases look-ahead produces gains over the baseline.

This benchmark is also an example of a case where higher i-bounds may result in weaker

heuristics, due to the unpredictable behavior of partitioning given that all of the functions

in this benchmark are binary, yet having high induced width in the model as a whole.

Partitioning has been shown to be an important factor in the quality of MBE heuristics [43].

Indeed, the number of nodes expanded at an i-bound of 12 is greater than the number at

an i-bound of 10. Thus, the minimum speedup increases for the high i-bounds, suggesting

more errors in the heuristic, which look-ahead manages to exploit.

In summary, all of the instances in this benchmark have structure where all of the partitioning

occurs at the leaves of the pseudo-tree. As a result, it is easy to identify where look-ahead

should be performed to be cost-effective (near the leaves of the search space). Furthermore,

the relative errors are extremely high for this benchmark, which can be exploited by look-

ahead to a great extent. Overall, across all i-bounds shown here, we see that a look-ahead

depth of 1 leads to most of the improvement, with higher depths having incremental positive

impact until depths greater than 4.

2.4.2.5 Grids

Table 2.8 shows the detailed results for representative instances in this benchmark. We

observe generally modest speedups for this benchmark. For instance, on grid40x40.f2 with

an i-bound of 16, the baseline achieved a runtime of 4924 seconds where the best setting

of the depth of 3 only reduced this runtime to 4782. Indeed, we only observe roughly a

23.2% reduction in the number of nodes expanded in this case. Though deeper depths lead

to additional reduction, it is not cost-effective.
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instance
(n, k, w∗, h) depth time (speedup) nodes (ratio) time (speedup) nodes (ratio) time (speedup) nodes (ratio)

i=12 i=14 i=16
d=0 2566 (1.00) 598.29 (1.00) 1876 (1.00) 433.11 (1.00) 14 (1.00) 3.22 (1.00)
d=1 2522 (1.02) 492.63 (0.82) 1915 (0.98) 372.87 (0.86) 18 (0.77) 2.94 (0.91)
d=2 2308 (1.11) 402.01 (0.67) 1559 (1.20) 276.33 (0.64) 17 (0.81) 2.42 (0.75)

grid20x20.f10.wrap d=3 2427 (1.06) 355.08 (0.59) 1667 (1.13) 246.56 (0.57) 18 (0.78) 2.16 (0.67)
(400,2,44,68) d=4 2622 (0.98) 303.87 (0.51) 1963 (0.96) 221.55 (0.51) 20 (0.68) 1.94 (0.60)

d=5 2689 (0.95) 232.46 (0.39) 2127 (0.88) 175.57 (0.41) 26 (0.54) 1.78 (0.55)
d=6 3186 (0.81) 198.89 (0.33) 2242 (0.84) 132.04 (0.30) 33 (0.42) 1.54 (0.48)

i=10 i=12 i=14
d=0 148 (1.00) 33.63 (1.00) 126 (1.00) 32.05 (1.00) 95 (1.00) 24.37 (1.00)
d=1 138 (1.08) 27.24 (0.81) 132 (0.95) 27.81 (0.87) 97 (0.98) 19.94 (0.82)
d=2 136 (1.09) 23.77 (0.71) 126 (1.00) 24.01 (0.75) 86 (1.10) 16.59 (0.68)

grid20x20.f5.wrap d=3 151 (0.99) 21.60 (0.64) 95 (1.32) 15.93 (0.50) 90 (1.05) 14.48 (0.59)
(400,2,45,69) d=4 159 (0.94) 18.11 (0.54) 95 (1.32) 13.22 (0.41) 92 (1.04) 11.90 (0.49)

d=5 190 (0.78) 15.34 (0.46) 95 (1.32) 10.30 (0.32) 95 (1.00) 9.74 (0.40)
d=6 238 (0.62) 12.18 (0.36) 100 (1.26) 8.16 (0.25) 109 (0.87) 8.05 (0.33)

i=18 i=20 i=22
d=0 oot - 2907 (1.00) 562.40 (1.00) 845 (1.00) 156.13 (1.00)
d=1 oot - 2934 (0.99) 504.87 (0.90) 851 (0.99) 141.49 (0.91)
d=2 oot - 2732 (1.06) 430.81 (0.77) 667 (1.27) 104.68 (0.67)

grid40x40.f10 d=3 oot - 2923 (0.99) 397.71 (0.71) 665 (1.27) 93.53 (0.60)
(1600,2,52,148) d=4 oot - 3276 (0.89) 361.41 (0.64) 695 (1.22) 83.73 (0.54)

d=5 oot - 4211 (0.69) 337.03 (0.60) 767 (1.10) 73.28 (0.47)
d=6 oot - 6094 (0.48) 305.26 (0.54) 972 (0.87) 68.07 (0.44)

i=16 i=18 i=20
d=0 4924 (1.00) 947.79 (1.00) 373 (1.00) 68.89 (1.00) 1177 (1.00) 213.90 (1.00)
d=1 4908 (1.00) 877.94 (0.93) 386 (0.97) 65.21 (0.95) 932 (1.26) 151.49 (0.71)
d=2 5049 (0.98) 845.76 (0.89) 369 (1.01) 57.45 (0.83) 859 (1.37) 135.76 (0.63)

grid40x40.f2 d=3 4782 (1.03) 727.57 (0.77) 392 (0.95) 54.90 (0.80) 859 (1.37) 123.10 (0.58)
(1600,2,52,157) d=4 4873 (1.01) 591.59 (0.62) 451 (0.83) 53.48 (0.78) 911 (1.29) 111.25 (0.52)

d=5 6389 (0.77) 554.56 (0.59) 567 (0.66) 52.05 (0.76) 1132 (1.04) 105.15 (0.49)
d=6 oot - 811 (0.46) 49.68 (0.72) 1596 (0.74) 105.20 (0.49)

i=18 i=20 i=22
d=0 oot - oot - 543 (1.00) 92.97 (1.00)
d=1 oot - oot - 393 (1.38) 57.67 (0.62)
d=2 oot - 6231 (¿1.16) 1068.42 (¡0.79) 383 (1.42) 50.90 (0.55)

grid40x40.f5 d=3 oot - 7147 (¿1.01) 975.40 (¡0.72) 421 (1.29) 49.22 (0.53)
(1600,2,52,136) d=4 oot - oot - 504 (1.08) 45.44 (0.49)

d=5 oot - oot - 730 (0.74) 48.60 (0.52)
d=6 oot - oot - 868 (0.63) 37.27 (0.40)

Table 2.8: Selected grid instances: “time” indicates the CPU time in seconds (speedup over
baseline) and “nodes” indicates the number of OR nodes expanded in millions of nodes (ratio
relative to baseline) In a time column, ’oot’ that the time limit of 2 hours was exceeded. The
problem parameters are also provided for each instance (n: number of variables, k: maximum
domain size, w∗: induced width, and h: height) Within each instance and i-bound, the best
time and fewest nodes are boxed.
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Figure 2.17: Solved grid instances: plot of speedups on instances by look-ahead depth. The
number on top of each depth group is the number of instances that had speedup over 1.
#inst indicates the number of instances in the benchmark that are shown in each plot.

In Figure 2.17, considering the instances that were solved with the low i-bounds, we do

see that a look-ahead depth of 1 always has a positive impact, though only marginally, with

the best speedup at around 1.1. As the depth increases, the number of instances that are

improved decreases, though there is one instance that exhibits additional speedup with more

look-ahead. At higher i-bounds, many instances benefit from look-ahead, but with modest

speedups up to 1.4.

In summary, we see on this benchmark that using high i-bounds yields accurate heuristics

and therefore little search. As such, there are few cases where look-ahead can exploit any

error. Overall, look-ahead improves performance on this benchmark, but the improvements

are modest.

2.4.2.6 Summary

We conclude our evaluation of exact solutions with the following takeaways.

1. Look-ahead improves more for weak heuristics: the purpose of look-ahead is

to correct the error in heuristics and this conclusion is supported by our evaluation.

We observed that lower i-bounds tended to benefit more in benchmarks where high

i-bounds were fairly accurate without look-ahead (e.g. pedigree and largefam3).
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For harder instances where the heuristic was relatively weak even the highest i-bound

under our memory constraints, look-ahead was also beneficial.

2. Depth is a significant control parameter that should be controlled for the

best balance: Across the benchmarks, the best depth tended to range between 2 and

3, suggesting that a modest level of look-ahead is best.

3. Look-ahead is a method that enables trading memory for time: In cases where

even the highest i-bound that memory allows is still weak (instances having runtimes

in hundreds of seconds for the baseline), spending time to perform look-ahead is a

cost-effective way improve the heuristic without spending more memory.

2.4.3 Evaluating the Anytime Behavior

We next show results investigating the impact of our look-ahead scheme on anytime behavior.

This evaluation is especially important since based on the previous section, we observed that

look-ahead tends to work well when the heuristic is weak. However, it is not possible to

evaluate the most difficult instances in those benchmarks without a detailed look at all of

the solutions it produces over time. Thus, we provide anytime results on representative

instances that were the most difficult in the benchmark for each i-bound by plotting the cost

as a function of time. We show two i-bounds for each instance: the highest we could use

with our memory limit and another lower i-bound that was still able to produce solutions

on a good number of instances in the benchmark. We show results in Figures 2.18, 2.20,

2.22, and 2.24.

Lastly, to summarize over each benchmark, we plot, for each instance, the normalized relative

accuracy for selected i-bounds and look-ahead depths at different time points (60, 1800,

3600, and 7200 seconds) compared with no look-ahead. We define the normalized relative

accuracy as |C−Cw||Cb−Cw|
, where Cw and Cb are the worst and best solutions obtained at any time
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amongst all setting of the algorithms. Thus, an algorithm is better if it obtains a higher

relative accuracy. The differently colored points represent the different problem instances

over the benchmark. We summarize this by annotating each plot with a tuple (#wins for

look-ahead/#wins for baseline/#ties). For clarity, we exclude instances from a plot if no

solutions were found by both the baseline and look-ahead method by any time point. These

are shown in Figures 2.19, 2.21, 2.23, and 2.25.

We omit the pedigree and promedas benchmarks from this part of the evaluation since

they did not contain instances where were unable to find an exact solution.

2.4.3.1 LargeFam3

In Figure 2.18, we show the anytime plots for two representative instances from this bench-

mark over 2 different i-bounds. We see that for lf3-haplo 18 57 with an i-bound of 12 and

with look-ahead depths of 3 and higher, we quickly obtain a better solution than the base-

line at the start of the time period. The baseline manages to find a better solution at 100

seconds, but is eventually dominated once again by these same look-ahead settings. It is not

until near the timeout that the baseline manages to obtain a solution of the same quality as

look-ahead with a depth of 3 or higher. Moving to an i-bound of 15, all of the look-ahead

schemes outperform the baseline except for a depth of 1. Furthermore, the best solution

is obtained near timeout with a look-ahead depth of 6. On lf3-haplo 19 55 when using an

i-bound of 12, look-ahead obtains solutions sooner than the baseline and maintains higher

quality solutions. For the higher i-bound of 17, performance is similar across the different

look-ahead depths, except for a depth of 6, look-ahead has a better solution early on and

almost until timeout, where all other schemes catch up.

Figure 2.19 summarizes instances for depths of 2 and 5. Starting with the lowest i-bound

of 12 and a depth of 2, we observe at 60 seconds that look-ahead has a slight edge over the
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Figure 2.18: largefam3 instances: Anytime plots across 2 different i-bounds for two selected
instances. The tuple next to the problem instance name indicates (n: number of variables,
k: maximum domain size, w: induced width, and h: pseudo-tree height). The solution cost
is plotted against the time. The timeout is shown as a vertical dotted line; plots reaching
past this line timed out. Lower early on is better.

baseline, with 6 instances where it improves and 4 instances where it is outperformed by the

baseline. Moving forward in time at 1800 and 3600 seconds, look-ahead performs even better.

Moving to 7200 seconds, the number of instances where look-ahead is superior decreases, but

still maintains an advantage. Increasing the look-ahead depth to 5, the results are similar,

but puts look-ahead at an advantage on more instances. However, we can also see that

the baseline manages to outperform look-ahead on some instances where it was performing

identically before. Increasing the i-bound to 16, look-ahead can still help when the depth is

lower, but at a higher depth, it tends to be less cost effective. Across all the plots at anytime

point, it is worth nothing that there are a number of cases where the relative accuracy of the

baseline is zero while look-ahead obtains non-zero relative accuracies, indicating that there

75



Figure 2.19: largefam3. Normalized relative accuracies for all instances in the benchmark
across 2 different i-bounds and 2 different look-ahead depths. On the x-axis is the baseline
and on the y-axis is the look-ahead algorithm with the specified depth. Each row of plots
corresponds to a particular i-bound/depth and each column corresponds to a time point.
We provide summary statistics for each plot with a tuple that counts the numbers of (#wins
for look-ahead/#wins for baseline/#ties).
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are a number of instances where look-ahead manages to produce much better solutions all

the time.

In summary, we observe on this benchmark that a high look-ahead depth is quite useful

when the i-bound is lower. On the other hand, a lower look-ahead depth is preferable when

the heuristic is stronger.

2.4.3.2 Type4

Figure 2.20: type4 instances: Anytime plots across 2 different i-bounds for two selected
instances. The tuple next to the problem instance name indicates (n: number of variables,
k: maximum domain size, w: induced width, and h: pseudo-tree height). The solution cost
is plotted against the time. The timeout is shown as a vertical dotted line; plots reaching
past this line timed out. Lower early on is better.

In Figure 2.20, for instance t4b 130 21 with an i-bound of 14, the baseline does not produce

any solution during the entire time period (namely, the corresponding line is not present).
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Figure 2.21: type4. Normalized relative accuracies for all instances in the benchmark
across 2 different i-bounds and 2 different look-ahead depths. On the x-axis is the baseline
and on the y-axis is the look-ahead algorithm with the specified depth. Each row of plots
corresponds to a particular i-bound/depth and each column corresponds to a time point.
We provide summary statistics for each plot with a tuple that counts the numbers of (#wins
for look-ahead/#wins for baseline/#ties).

78



Comparing the look-ahead depths against each other, depths of 5 and 6 are superior, with

5 being slightly more cost-effective. Increasing the i-bound to 16, the heuristic becomes

strong enough so that the baseline produces solutions and it is now also the first to do so.

However, it is outperformed by all look-aheads in under 100 seconds, with depths of 4 and

higher producing considerably better solutions. For instances t4-haplo 180 21 using an i-

bound of 14, look-ahead with depths of 2 and higher outperforms the baseline for most time

periods. Increasing the i-bound to 16, the baseline is quickest to produce a solution, but

it is outperformed by all of the look-ahead depths. A depth of 5 yields the best solutions

over the time period. Overall, look-ahead is usually superior to the baseline, with a bit of a

preference for deeper depth regardless of heuristic strength.

In Figure 2.21, we summarize over the benchmark for depths 2 and 5. Starting with the

lower i-bound of 14 and lower look-ahead depth of 2, we observe that look-ahead produces

better solutions early on many instances at the 60 second mark. As time advances, additional

instances also benefit from look-ahead. Increasing the depth to 5, look-ahead dominates the

baseline. Increasing the i-bound to 16, we can observe that look-ahead remains dominant

over the baseline regardless of the depth. Additionally, we see that there are a number of

instances where look-ahead manages produce solutions of non-zero relative accuracy while

the baseline remains at zero, indicating a clear dominance over the baseline in solution quality

by look-ahead.

In summary, while we were not able to find any exact solutions within the time limit for

instances in this benchmark, look-ahead clearly has a positive impact when considering

anytime solutions, even under high i-bounds.
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Figure 2.22: DBN instances: Anytime plots across 2 different i-bounds for two selected
instances. The tuple next to the problem instance name indicates (n: number of variables,
k: maximum domain size, w: induced width, and h: pseudo-tree height). The solution cost
is plotted against the time. The timeout is shown as a vertical dotted line; plots reaching
past this line timed out. Lower early on is better.

2.4.3.3 DBN

In Figure 2.22, we observe little difference between look-ahead and the baseline. Indeed,

across all the instances (including the 30 instances where exact solutions were achieved), we

see in Figure 2.23, we see that this behavior is systematic for this benchmark. Although we

saw impressive speedups for look-ahead when finding exact solutions, we see here that the

exact solution is actually obtained by both with a less significant margin of time between

the two. For example, in the anytime plot for rus-2-20-40-9-2 (Figure 2.22, top), the

exact solution is found by all look-ahead depths in less than 100 seconds, while the base line

took about 200 seconds. The rest of the time is spent proving that the solution is optimal.
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Figure 2.23: DBN. Normalized relative accuracies for all instances in the benchmark across 2
different i-bounds and 2 different look-ahead depths. On the x-axis is the baseline and on the
y-axis is the look-ahead algorithm with the specified depth. Each row of plots corresponds
to a particular i-bound/depth and each column corresponds to a time point. We provide
summary statistics for each plot with a tuple that counts the numbers of (#wins for look-
ahead/#wins for baseline/#ties).
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However, look-ahead methods achieve this 2 to 3 times faster than the base line.

In summary, in the context of anytime behavior, though look-ahead here results in a speedup

for reaching the exact solution, there is little to no variance in the solution quality over most

the time period since the baseline also manages to reach the exact solution relatively early.

2.4.3.4 Grids

Figure 2.24: grid instances: Anytime plots across 2 different i-bounds for two selected
instances. The tuple next to the problem instance name indicates (n: number of variables,
k: maximum domain size, w: induced width, and h: pseudo-tree height). The solution cost
is plotted against the time. The timeout is shown as a vertical dotted line; plots reaching
past this line timed out. Lower early on is better.

In Figure 2.24, for 80x80.f10.wrap using an i-bound of 14, the baseline generates a solution

earlier than look-ahead, but all look-ahead depths of 2 and higher produce better solutions

by 100 seconds. The solution qualities converge towards the end, but all look-ahead depths
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manage to maintain leads over the baseline, with a depth of 2 performing the best. Moving

to a higher i-bound of 18, the behavior at the start is similar. However, there is more

variance in the solutions between each setting, with depths of 4 and higher performing the

best. The results for 80x80.f15.wrap are similar, with look-ahead still outperforming the

baseline, though there is less variance between the solutions.

In Figure 2.25, for an i-bound of 14, at 60 seconds that a depth of 2 falls a bit short

compared with the baseline. However, moving forward in time, look-ahead establishes a

clear advantage. Increasing the depth to 5, the advantage starts at 60 seconds and this is

maintained to the end. Increasing the i-bound to 18, the baseline outperforms look-ahead

regardless of the depth at 60 seconds. Indeed, the relative accuracy of the solution for a

number of instances is zero for look-ahead. However, past this, look-ahead establishes itself

as the better performer regardless of depth, having better solutions on about half of the

instances and matching the baseline on the other.

In summary, look-ahead always has a positive impact on this benchmark.

2.4.3.5 Summary

In shifting our focus to hard instances where we could not evaluate for exact solution within

the time bound, our takeaways from section 2.4.2 carry over to this evaluation of the anytime

behavior. We re-iterate the first two points with discussion specific to this section.

First, on look-ahead’s impact on weak heuristics, this evaluation further enforces its

positive impact as the best heuristics are relatively weaker due to the difficulty of the prob-

lems. We see that the baseline tended to be outperformed by look-ahead on many instances

for all of the benchmarks.

Next, on the depth as a control parameter, one difference is that the best depth tended
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Figure 2.25: grid. Normalized relative accuracies for all instances in the benchmark across 2
different i-bounds and 2 different look-ahead depths. On the x-axis is the baseline and on the
y-axis is the look-ahead algorithm with the specified depth. Each row of plots corresponds
to a particular i-bound/depth and each column corresponds to a time point. We provide
summary statistics for each plot with a tuple that counts the numbers of (#wins for look-
ahead/#wins for baseline/#ties).
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to be deeper for anytime solutions. On each of the benchmarks, a depth of 5 tended to

produce better solutions earlier on more instances compared with a depth of 2. Many of

the instance-specific plots also show higher depths resulting in higher quality solutions being

found earlier in general. It is worth noting that in many cases that as the depth increases,

the first solution found improves. Thus, this suggests that deep look-ahead is particularly

effective for guiding search early on to more promising parts of the search space.

2.4.4 Impact of the ε Parameter: Subtree Pruning

All of the experiments in the previous two sections use a fixed ε of 0.01 for generating the

ε-pruned look-ahead subtrees. In this section, we investigate the impact of our second control

parameter of ε. We ran experiments on the largefam3 and grid benchmarks using the full

look-ahead subtree and pruned look-ahead subtrees with ε values of 0.01, 0.1, 1, 10, and,∞.

We consider look-ahead depths of 2 and 5 in the following experiments in order to evaluate

the ε parameter’s impact on subtree pruning on full look-ahead subtrees of different size.

As discussed earlier in section 2.2.4, less look-ahead is performed as ε increases since the

look-ahead subtrees are pruned more aggressively. This opens up the opportunity for more

focused look-ahead at parts of the search space with more significant errors and skipping

computational overhead otherwise. Clearly, as ε→∞, the look-ahead scheme reduces to the

baseline. Thus, adjusting ε is an alternative way to controlling the computational trade-off

of look-ahead. An important point to note is that the extreme cases of the full look-ahead

subtree (ε = 0) and no look-ahead (ε = ∞) do not require of the preprocessing of bucket

errors. Therefore, search will always begin earlier for those cases. This is especially relevant

in an anytime setting as we show later.

In the following, we present plots similar to those seen in the previous 2 sections. All

comparison based metrics such as speedup, node reduction, and solution quality are measured
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relative the baseline using no look-ahead as before.

2.4.4.1 LargeFam3

instance
(n, k, w∗, h) (d, ε) time nodes time nodes time nodes

i=14 i=16 i=18
(2,0) 3757 (1.06) 464.21 (0.56) 552 (1.17) 75.95 (0.49) 55 (1.02) 5.97 (0.55)

(2,0.01) 3071 (1.29) 464.28 (0.56) 455 (1.41) 75.97 (0.49) 48 (1.16) 5.97 (0.55)
(2,0.1) 3337 (1.19) 489.43 (0.60) 452 (1.42) 78.47 (0.51) 47 (1.19) 6.09 (0.56)
(2,0.5) 3136 (1.27) 505.07 (0.61) 464 (1.39) 93.14 (0.60) 45 (1.24) 6.46 (0.59)
(2,1) 2995 (1.33) 621.75 (0.76) 539 (1.19) 118.10 (0.76) 47 (1.17) 7.68 (0.70)
(2,10) 4081 (0.97) 821.75 (1.00) 690 (0.93) 154.40 (1.00) 61 (0.91) 10.94 (1.00)

lf3-15-59 (5,0) oot - 1350 (0.48) 38.95 (0.25) 152 (0.37) 3.09 (0.28)
(1574,3,33,71) (5,0.01) 4740 (0.84) 219.70 (0.27) 972 (0.66) 38.95 (0.25) 98 (0.57) 3.09 (0.28)

(5,0.1) 5604 (0.71) 234.99 (0.29) 972 (0.66) 41.04 (0.27) 90 (0.62) 3.39 (0.31)
(5,0.5) 4370 (0.91) 251.51 (0.31) 612 (1.05) 50.90 (0.33) 66 (0.84) 3.87 (0.35)
(5,1) 4652 (0.85) 451.87 (0.55) 605 (1.06) 96.35 (0.62) 48 (1.16) 5.67 (0.52)
(5,10) 4215 (0.94) 821.75 (1.00) 691 (0.93) 154.40 (1.00) 61 (0.91) 10.94 (1.00)
(0,∞) 3971 821.75 644 154.40 56 10.94

i=14 i=16 i=18
(2,0) 2151 (0.82) 281.51 (0.77) 422 (0.90) 53.07 (0.68) 109 (0.95) 6.23 (0.67)

(2,0.01) 1862 (0.95) 281.86 (0.77) 376 (1.01) 53.07 (0.68) 107 (0.97) 6.28 (0.67)
(2,0.1) 1951 (0.90) 283.88 (0.77) 383 (1.00) 53.17 (0.68) 108 (0.96) 6.30 (0.68)
(2,0.5) 1888 (0.93) 285.78 (0.78) 413 (0.92) 63.32 (0.81) 116 (0.89) 8.33 (0.90)
(2,1) 2149 (0.82) 349.75 (0.95) 437 (0.87) 74.00 (0.95) 124 (0.84) 10.90 (1.17)
(2,10) 1842 (0.96) 367.61 (1.00) 408 (0.93) 77.79 (1.00) 112 (0.93) 9.30 (1.00)

lf3-16-56 (5,0) 3083 (0.57) 104.02 (0.28) 656 (0.58) 20.76 (0.27) 138 (0.75) 2.30 (0.25)
(1688,3,38,77) (5,0.01) 2183 (0.81) 104.73 (0.28) 513 (0.74) 20.77 (0.27) 115 (0.91) 2.31 (0.25)

(5,0.1) 2000 (0.88) 103.89 (0.28) 524 (0.73) 20.80 (0.27) 115 (0.91) 2.31 (0.25)
(5,0.5) 2126 (0.83) 107.91 (0.29) 457 (0.83) 23.59 (0.30) 116 (0.90) 2.99 (0.32)
(5,1) 2241 (0.79) 144.19 (0.39) 484 (0.79) 39.06 (0.50) 136 (0.76) 7.79 (0.84)
(5,10) 1835 (0.96) 367.61 (1.00) 413 (0.92) 77.79 (1.00) 111 (0.93) 9.30 (1.00)
(0,∞) 1760 367.61 381 77.79 104 9.30

i=12 i=14 i=16
(2,0) 1688 (0.82) 161.52 (0.61) 565 (0.84) 53.59 (0.57) 20 (0.98) 1.12 (0.49)

(2,0.01) 1212 (1.14) 161.49 (0.61) 436 (1.09) 53.60 (0.57) 21 (0.92) 1.12 (0.49)
(2,0.1) 1352 (1.03) 162.99 (0.62) 470 (1.01) 62.15 (0.66) 21 (0.95) 1.12 (0.49)
(2,0.5) 1292 (1.07) 180.75 (0.69) 434 (1.10) 66.46 (0.71) 21 (0.93) 1.41 (0.62)
(2,1) 1336 (1.04) 202.73 (0.77) 454 (1.05) 74.18 (0.79) 21 (0.93) 1.42 (0.62)
(2,10) 1501 (0.92) 263.23 (1.00) 469 (1.01) 93.62 (1.00) 24 (0.83) 2.28 (1.00)

lf3-17-58 (5,0) 2555 (0.54) 33.84 (0.13) 2905 (0.16) 23.37 (0.25) 40 (0.50) 0.41 (0.18)
(1712,3,31,75) (5,0.01) 2129 (0.65) 33.84 (0.13) 2770 (0.17) 23.36 (0.25) 36 (0.54) 0.41 (0.18)

(5,0.1) 1849 (0.75) 34.08 (0.13) 1966 (0.24) 30.27 (0.32) 34 (0.58) 0.42 (0.19)
(5,0.5) 3629 (0.38) 87.07 (0.33) 1323 (0.36) 34.66 (0.37) 39 (0.50) 0.79 (0.35)
(5,1) 2294 (0.60) 106.18 (0.40) 1473 (0.32) 51.92 (0.55) 34 (0.57) 0.89 (0.39)
(5,10) 1451 (0.96) 262.29 (1.00) 512 (0.93) 93.62 (1.00) 24 (0.83) 2.28 (1.00)
(0,∞) 1386 263.46 476 93.62 20 2.28

Table 2.9: Selected largefam3 instances for look-ahead depths of 2 and 5. Each row corre-
sponds to a different depth, ε pair. The best time and nodes within for each depth are bolded
and the best overall time and nodes are boxed. All speedups and reduction are calculated
relative to the baseline using no look-ahead (0,∞).

Table 2.9 shows the impact of the ε parameter on look-ahead depths of 2 and 5 on 3 repre-

sentative instances from the LargeFam3 benchmark. To account for the entire benchmark,
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Figure 2.26: Speedups on all solved largefam3 instances relative to no-lookahead. The
information shown is similar to those in section 2.4.2, with both varying depth and ε.

we also plot speedups over the baseline for each solved instances in Figure 2.26. In this

plot, we only show ε for 0, 0.01, 0.5, and 10. The first four of each plot correspond to a

depth of 2 while the last four are for a depth of 5. In nearly all cases, subtree pruning with

any ε > 0 has a positive impact on the runtime compared with no pruning (ε = 0). As

expected, since pruning reduces look-ahead, the number of nodes expanded increases as a

function of ε in most cases. Looking into the lower i-bounds with a look-ahead depth of 2,

ε values of 0.01 and 0.5 had the best performance amongst the instances. However, most of

the speedup can be attributed by moving to an ε of 0.01, which prunes away the error-free

variables from look-ahead subtrees. In particular, the speedup increases the most between

ε = 0 and ε = 0.01 in many cases. Under higher i-bounds, the impact is minimal overall

since the errors are small. At a depth of 5, higher ε is preferred, since the full look-ahead

subtrees correspond to expensive look-ahead computation. For example, for lf3-16-56 and

lf3-17-58, performing no look-ahead (0,∞) is preferred over a depth 5 look-ahead for all

i-bounds here on nearly all instances. In the summary plot, almost no instances benefit at

depth 5, which is in contrast to depth 2 where the speedup is over 1.0 for most ε. Finally,

on this benchmark, since most bucket errors are less than 10, the heuristic strength when

ε = 10 and when ε = ∞ is nearly identical, which we can conclude based on the number

of nodes between these two being nearly equivalent in all cases. However, since we do not

need to compute bucket errors when ε =∞, it has less preprocessing overhead and therefore

performs better on runtime. In summary, a depth of 2 with ε = 0.01 or 0.5 was overall best
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for evaluating exact solutions on this benchmark, which was also found to be the best in

section 2.4.2.

Figure 2.27: largefam3 instances: Solutions obtained over time for different ε thresholds
with look-ahead depths of 2 and 5. The information shown is similar to figures presented in
Section 2.4.3.

Figure 2.27 shows the anytime performance for 2 representative instances from this bench-

mark under 2 i-bounds. In all cases, the highest quality solutions tend to be obtained by

the full look-ahead subtree (ε = 0), especially near the start. For both instances at the lower

i-bound, the combination of a depth of 5 and ε = 0 produces the best solutions early on

and maintains a lead over the other settings for most of the time period. One of the con-

tributing factors to its superior early performance is due to the lack of need to pre-process

any bucket errors as mentioned earlier. Still since the strongest look-ahead settings here are

best, it reinforces our earlier observations from section 2.4.3. At the higher i-bounds, the

best setting is less clear as it varies over time. In lf3-haplo-18-57 under an i-bound of 15,

although the baseline obtains the first solution, the combination of a depth of 2 and ε = 0
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obtains a much better solution shortly after. Considering a look-ahead depth of 5 on the

same instance, the behavior is similar, except that it takes longer for ε ≤ 0.01 to obtain the

same higher quality solutions. There is less variation in the other instance (lf3-haplo-19-55 )

shown. Both ε = 0 and ε = inf obtain solutions earlier due to the lack of need to pre-process

bucket errors. The variation is not very significant until the end, where we see that higher ε

is preferred for both depths.

Figure 2.28 demonstrates the impact of the ε parameter on the anytime performance over

all of the instances. First, at the 60 second time bound, the difference between ε at 0 and

0.01 is small. Performance degrades as ε increases, reinforcing that more look-ahead is better

for an anytime setting. In terms of the number wins/losses/ties, a depth of 2 with ε = 0

is the top performer, given that it had 5 wins and 3 losses, which is the largest number

of wins and best win-loss ratio amongst all of the settings. Moving to a 3600 second time

bound, for a depth of 2, as ε increases, the number of losses decreases without much change

in the number of wins, thus providing improving its win-loss ratio. In contrast, for a depth

of 5, which has the largest number of wins at ε = 0, the win-loss ratio remain negative with

increasing ε. Thus, a depth of 2 with ε = 0.5 is best overall at this time bound.

2.4.4.2 Grids

In Table 2.10, we see similar behavior to what we saw with the LargeFam3 benchmark.

Here too, the ε parameter has small impact at a look-ahead depth of 2, while the impact is

larger at a depth of 5. Much like the previous benchmark, most of the speedup is attributed

to moving to ε = 0.01 for most of the instances. However, more pruning is not always

preferred at a depth of 5. For example, on grid20x20.f5.wrap, an ε of 0.5 yields the best

performance, with higher ε resulting in more nodes being expanded. Also, grid40x40.f2 is an

example where a higher i-bound can lead to a weaker heuristic. For both depths, we see that

ε = 0.01 is best here in these cases under an i-bound of 20, with depth 2 being the overall
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Figure 2.28: largefam3. Normalized relative accuracies for all instances in the benchmark.
Each 2x4 set of scatter plots corresponds to a different time bound. Within each set, the
depth varies along the rows and ε varies along the columns.
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instance
(n, k, w∗, h) ε time nodes time nodes time nodes

i=12 i=14 i=16
(2,0) 2536 (1.01) 402.01 (0.67) 1733 (1.08) 276.33 (0.64) 15 (0.91) 2.42 (0.75)

(2,0.01) 2308 (1.11) 402.01 (0.67) 1559 (1.20) 276.33 (0.64) 17 (0.81) 2.42 (0.75)
(2,0.1) 2408 (1.07) 404.57 (0.68) 1581 (1.19) 277.85 (0.64) 17 (0.83) 2.44 (0.76)
(2,0.5) 2526 (1.02) 487.67 (0.82) 1813 (1.03) 391.17 (0.90) 16 (0.85) 2.69 (0.84)
(2,1) 2734 (0.94) 577.27 (0.96) 1975 (0.95) 422.48 (0.98) 18 (0.78) 3.21 (1.00)
(2,10) 2739 (0.94) 598.29 (1.00) 1957 (0.96) 433.11 (1.00) 18 (0.76) 3.22 (1.00)

grid20x20.f10.wrap (5,0) 3509 (0.73) 232.46 (0.39) 2815 (0.67) 175.57 (0.41) 30 (0.46) 1.78 (0.55)
(400,2,44,68) (5,0.01) 2689 (0.95) 232.46 (0.39) 2127 (0.88) 175.57 (0.41) 26 (0.54) 1.78 (0.55)

(5,0.1) 2795 (0.92) 234.99 (0.39) 2302 (0.81) 179.01 (0.41) 24 (0.57) 1.80 (0.56)
(5,0.5) 2875 (0.89) 310.18 (0.52) 2395 (0.78) 296.25 (0.68) 22 (0.61) 2.27 (0.70)
(5,1) 2880 (0.89) 408.39 (0.68) 2251 (0.83) 347.10 (0.80) 19 (0.73) 3.13 (0.97)
(5,10) 2731 (0.94) 598.29 (1.00) 1987 (0.94) 433.11 (1.00) 18 (0.78) 3.22 (1.00)
(0,∞) 2566 598.29 1876 433.11 14 3.22

i=10 i=12 i=14
(2,0) 148 (1.00) 23.77 (0.71) 139 (0.91) 24.01 (0.75) 95 (0.99) 16.58 (0.68)

(2,0.01) 136 (1.09) 23.77 (0.71) 126 (1.00) 24.01 (0.75) 86 (1.10) 16.59 (0.68)
(2,0.1) 131 (1.13) 23.45 (0.70) 128 (0.98) 24.09 (0.75) 87 (1.09) 16.61 (0.68)
(2,0.5) 137 (1.08) 27.08 (0.81) 129 (0.98) 26.67 (0.83) 83 (1.15) 18.05 (0.74)
(2,1) 150 (0.99) 31.26 (0.93) 138 (0.91) 31.09 (0.97) 93 (1.02) 20.89 (0.86)
(2,10) 154 (0.97) 33.63 (1.00) 134 (0.94) 32.05 (1.00) 104 (0.92) 24.37 (1.00)

grid20x20.f5.wrap (5,0) 236 (0.63) 15.34 (0.46) 113 (1.11) 10.30 (0.32) 120 (0.79) 9.74 (0.40)
(400,2,45,69) (5,0.01) 190 (0.78) 15.34 (0.46) 95 (1.32) 10.30 (0.32) 95 (1.00) 9.74 (0.40)

(5,0.1) 198 (0.75) 15.82 (0.47) 100 (1.25) 10.32 (0.32) 95 (1.00) 9.76 (0.40)
(5,0.5) 174 (0.85) 18.53 (0.55) 92 (1.37) 12.19 (0.38) 72 (1.31) 11.71 (0.48)
(5,1) 170 (0.87) 23.81 (0.71) 123 (1.03) 19.99 (0.62) 81 (1.17) 14.25 (0.58)
(5,10) 151 (0.98) 33.63 (1.00) 135 (0.94) 32.05 (1.00) 104 (0.91) 24.37 (1.00)
(0,∞) 148 33.63 126 32.05 95 24.37

i=16 i=18 i=20
(2,0) 6031 (0.82) 844.36 (0.89) 409 (0.91) 57.34 (0.83) 1028 (1.14) 135.69 (0.63)

(2,0.01) 5049 (0.98) 845.76 (0.89) 369 (1.01) 57.45 (0.83) 859 (1.37) 135.76 (0.63)
(2,0.1) 4971 (0.99) 854.61 (0.90) 368 (1.01) 59.63 (0.87) 1185 (0.99) 189.89 (0.89)
(2,0.5) 4883 (1.01) 895.64 (0.94) 359 (1.04) 61.40 (0.89) 1173 (1.00) 203.87 (0.95)
(2,1) 5107 (0.96) 942.09 (0.99) 400 (0.93) 68.61 (1.00) 1177 (1.00) 213.90 (1.00)
(2,10) 5156 (0.96) 947.79 (1.00) 406 (0.92) 68.89 (1.00) 1236 (0.95) 213.90 (1.00)

grid40x40.f2 (5,0) oot - 870 (0.43) 51.94 (0.75) 1934 (0.61) 105.02 (0.49)
(1600,2,52,157) (5,0.01) 6389 (0.77) 554.56 (0.59) 567 (0.66) 52.05 (0.76) 1132 (1.04) 105.15 (0.49)

(5,0.1) 6611 (0.74) 682.91 (0.72) 522 (0.71) 53.94 (0.78) 1540 (0.76) 159.76 (0.75)
(5,0.5) 5674 (0.87) 833.52 (0.88) 381 (0.98) 58.24 (0.85) 1158 (1.02) 194.83 (0.91)
(5,1) 5507 (0.89) 916.74 (0.97) 413 (0.90) 69.84 (1.01) 1229 (0.96) 213.90 (1.00)
(5,10) 5134 (0.96) 947.79 (1.00) 396 (0.94) 68.89 (1.00) 1226 (0.96) 213.90 (1.00)
(0,∞) 4924 947.79 373 68.89 1177 213.90

Table 2.10: Selected grid instances for look-ahead depths of 2 and 5. Each row corresponds
to a different depth, ε pair. The best time and nodes within for each depth are bolded
and the best overall time and nodes are boxed. All speedups and reduction are calculated
relative to the baseline using no look-ahead (0,∞).
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Figure 2.29: Speedups on all solved grid instances relative to no-lookahead. The information
shown is similar to those in section 2.4.2, with both varying depth and ε.

best. Higher levels of ε result in considerably worse heuristics here, thus demonstrating

look-ahead’s impact on improving the heuristic.

Figure 2.29 shows speedups for all solved instances in this benchmark. For low i-bounds,

we see minor improvements on nearly all of the solvable instances only for a depth of 2. The

impact of ε here is also small. Moving to higher i-bounds, we see that increasing ε helps

when using a depth of 5, though this is unable to outperform the performance using a depth

of 2. At a depth of 2, increasing ε over 0.01 decreases the overall performance, thus the

combination of a depth of 2 with an ε of 0.01 was overall the best for all i-bounds on this

benchmark for evaluating exact solutions.

Figure 2.30 shows the anytime performance for various ε on 2 instances of this benchmark

under 2 i-bounds. At an i-bound of 14, a depth of 5 with ε = 0 is best at the start for

both instances. However, for 80x80.f10.wrap, a depth of 2 with ε <= 0.01 take the lead.

For both depths, increasing ε to 1 results in worse performance compared with lower ε and

also the baseline over certain time points. Moving to the highest i-bound of 18, a depth of

5 with ε <= 0.01 is generally the best. On 80x80.f10.wrap, ε = 0 produces a solution before

ε = 0.01 due to the preprocessing overhead of the latter. However, ε = 0.01 clearly performs

the best thereafter. The same behavior is observed on the other instance, but the difference

is less significant. Indeed this is systematic over the benchmark as seen in Figure 2.31

summarizing over all instances. At a 60 second time bound, we see that ε = 0 performs the
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Figure 2.30: grid instances: Solutions obtained over time for different ε thresholds with
look-ahead depths of 2 and 5. The information shown is similar to figures presented in
Section 2.4.3.

best at both depths. The best setting here is a depth of 2 with ε = 0, having 9 wins and 1

loss over the baseline. However, for ε = 0.01 the result is reversed for both depths. Since

the losses here are all instances where the look-ahead scheme has zero relative accuracy, this

means that a single solution was not yet generated. This is because the preprocessing step in

bucket errors for subtree pruning is still in progress at 60 seconds. Moving to a 3600 second

time bound, ε = 0.01 has nearly identical performance as ε = 0, now that preprocessing

has been long completed. For either time bound, like on the previous benchmark, higher ε

severely degrades the anytime performance compared with stronger look-ahead by making

its performance approach the baseline.

In summary, this benchmark is more difficult and thus also results in more expensive prepro-

cessing time for the bucket errors. As a result, ε = 0 tended to be the best for both depths.

Overall, comparing the performance between both depths with ε = 0, the performance was
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Figure 2.31: grid. Normalized relative accuracies for all instances in the benchmark. Each
2x4 set of scatter plots corresponds to a different time bound. Within each set, the depth
varies along the rows and ε varies along the columns.
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similar.

2.4.4.3 Summary

We explored the ε parameter in conjunction with the depth parameter in this section. For

the purposes evaluating for exact solutions, we found that a depth of 2 with ε = 0.01 was

overall the best. This often gave the best balance of look-ahead power while pruning away

only parts of the look-ahead subtree that were unlikely to yield benefits, which we observe

in various cases where moving from 0 to 0.01 results in the largest positive change in the

speedup. Although, increasing ε further helped in some cases, it also tended to weaken look-

ahead to the point where the behavior was close to the baseline with no look-ahead. On

harder instances where we consider the anytime behavior, subtree pruning is less important,

especially if we consider a very low time bound. In particular, the overhead of preprocessing

for bucket errors can cause any look-ahead scheme with a non-zero ε to start search later,

thus not generating any solutions in the meantime. Even then, when considering higher time

bounds, the quality of solutions obtained between the two do not differ much. On the two

benchmarks explored in this section, neither depth 2 or 5 were significantly dominant over

the other, but from our earlier results on other benchmarks in section 2.4.3 which all used

ε = 0.01, stronger look-ahead tended to benefit.

2.5 Conclusion

We provided a framework for performing look-ahead in the context of AND/OR search for

graphical models. We analyzed the residuals and introduced a way to approximate them,

showing that we can estimate the impact of any d-level look-ahead with local information.

Specializing to the MBE heuristic, we introduced the notion of local bucket errors which

correspond to local residuals. Using this information, we developed a scheme to control
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where look-ahead should be performed in the search space such that it is cost-effective. In

our evaluation for exact solving, we found that look-ahead allows us to solve instances more

quickly given that we use it sparingly by restricting to a low depth, specifically a depth of 2-3.

For our evaluation on anytime performance focusing on hard instances, look-ahead manages

to improve the anytime performance, with higher depths performing best in many cases. To

generalize, we observed look-ahead is more helpful as the difference between the i-bound

and induced width increases. Therefore, depth should be increased to promote strong look-

ahead on hard problems, specifically with depths greater than 4. In our exploration of the

secondary control parameter of ε, we generally found that it should be minimized (ε = 0.01)

for finding exact solutions. The combination of this with a lower depth of 2 was found to

be the best overall. On the other hand, for anytime behavior, there was little difference

between using ε = 0 and ε = 0.01 due to both managing to find the highest quality solutions

in nearly the same amount of time. Though it was not clear whether depth 2 or 5 was best

here based on the 2 benchmarks we evaluated in that section, strong look-ahead was still

shown to be important. This suggests that higher depths with near-zero ε are the best for

anytime performance. Additionally, care should be taken when the time bound is low, as

the preprocessing overhead of look-ahead subtree pruning may exceed the time bound.

A secondary contribution of this paper is in identify a more efficient method of computing

look-ahead by using bucket elimination. From this alone, we know that look-ahead can

improve the heuristic without increasing the memory usage as long as the look-ahead width

is lower than the i-bound.

In future work, ε should be tuned to a problem instance automatically, since its impact heav-

ily depends on the distribution of bucket errors on a particular instance. we can also consider

finer-grained controls in controlling look-ahead to further improve its cost-effectiveness. In

particular, we observed that while deep look-ahead manages to find the best anytime solu-

tions, it tended to be less cost effective when running search to termination to prove the
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optimality of an obtained solution. Thus, this suggests a dynamic scheme that performs

look-ahead intensively at the beginning, but dials back on it as time passes. Also, the look-

ahead subtrees are currently used in a static way for each variable, even though errors can

vary depending on the instantiation. Thus, a context-dependent method that can vary the

look-ahead subtrees based on the current instantiation could be helpful.

Another direction that comes from our framing of the look-ahead computation as bucket

elimination is to use the look-ahead width as a control parameter for look-ahead rather than

depth. As the look-ahead computation is bound by the look-ahead width, it would be highly

beneficial to perform look-ahead in cases where the look-ahead width is much smaller than its

depth, thus giving us the benefits of deep look-ahead without incurring heavy computational

cost.
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Chapter 3

Subproblem Ordering Heuristics for

AND/OR Best-First Search

3.1 Introduction

One of our goals in this thesis is to develop anytime algorithms that provide both upper

and lower bounds on the min-sum objective [1, 34] as well as for summation queries [31]. As

shown in earlier work including that of Chapter 2, AND/OR Branch-and-Bound (AOBB) is

one such an anytime algorithm that generates upper bounds through a sequence of improved

suboptimal solutions over time. However, there has been little work on the symmetrical

problem of generating lower bounds by search in an anytime manner.

We turn to best-first search for this task, which explores the search space in frontiers of

non-decreasing lower bounds and is thus inherently anytime for producing lower bounds.

Specifically, we will explore AND/OR Best-First (AOBF) search, guided by the mini-bucket

heuristic, which is known to be a state-of-the-art algorithm for the min-sum task, but which

has been evaluated mostly on its performance for finding an optimal solution [33]. The

scheme can be easily adapted to yield a sequence of lower bounds by simply reporting the

best heuristic evaluation it has seen so far. Indeed, this idea was used recently in another
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search framework [1].

The focus of this chapter is on the specific aspect of the impact of AND child node ordering

on AOBF’s ability to generate lower bounds in an anytime manner. AOBF is guided by

two heuristic evaluation functions. In the AND/OR search space, the “best” node is repre-

sented by a partial solution graph with the best potential solution according to a heuristic

evaluation function f1 amongst all partial solution graphs of the currently explored search

space. A second heuristic f2 prioritizes which leaf (known as tip nodes) of the current best

partial solution graph should be expanded next. We call this the AND subproblem ordering.

Quoting Pearl (page 50) [41],

“These two functions, serving in two different roles, provide two different types

of estimates: f1 estimates some properties of the set of solution graphs that may

emanate from a given candidate base, whereas f2 estimates the amount of infor-

mation that a given node expansion may provide regarding the alleged superiority

of its hosting graph. Most works in search theory focus on the computation of

f1, whereas f2 is usually chosen in an adhoc manner.”

Indeed, in most current implementations of AOBF, f2 is simply chosen to be equal to f1. We

show in this chapter that the choice of f2 has a significant impact on the anytime performance

of AOBF for finding lower bounds. In our analysis, we show that the residual, which captures

the accuracy of the heuristic evaluation function, is a natural choice for f2. In Chapter 2,

we showed that residual of the mini-bucket heuristic can be approximated by its local errors.

We illustrate empirically that the local bucket errors can provide relevant information on

the increase of the lower bound due to a given node expansion. To our knowledge, this is

a first investigation of subproblem ordering in AOBF and among the first investigations of

anytime best-first search for generating lower bounds.

99



The rest of this chapter is organized as follows: Section 3.2 presents background on the

AOBF algorithm. Section 3.3 analyzes the impact of subproblem ordering and illustrates it

with an example. Section 3.4 introduces the subproblem ordering heuristic based on residuals

and local bucket errors and suggests a way to approximate them. Section 3.5 presents the

experiments and section 3.6 concludes.

3.2 Background: AND/OR Best-First Search

G currently explicated search graph
T current best solution tree to G
r root of the search graph (initial node in G)
n node in G
l(n) current best lower bound on below n
succ(n) set of successors (children) of n

Table 3.1: Notation on AND/OR Best-First search.

The AO* algorithm is a best-first search algorithm for AND/OR search spaces [38]. Our

AOBF (AND/OR Best First) algorithm is a variant of AO* specialized for graphical models

[33]. In the following, we use the notation in Table 3.1. The algorithm works by gradually

expanding a portion of the context-minimal AND/OR search graph G, always identifying

the best partial solution tree T in G. After node expansion, every node n ∈ G needs to be

updated with its best lower bound based on the current state of G, denoted l(n). As usual in

AO* search, AOBF [33], presented in Algorithm 10, interleaves a top-down expansion step

and a bottom-up revision step. Once the current best partial solution tree T is determined

(using f1, implicitly in line 28), the top-down expansion step selects a non-terminal tip node

of T and generates its children which are appended to G (lines 4-13). A bottom-up revision

step then updates the internal nodes values that represent the current best lower bounds

below them (lines 15-26). In this step, the values of newly expanded children are propagated

to their parents, and recursively up to the root. During these value updates, the algorithm
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Algorithm 10: AND/OR Best-First (AOBF) [33]

Input: A graphical model M = (X,D,F), pseudo-tree T , heuristic function h
Output: Lower-bound to solution of M

1 Create the root OR node r labeled by X1 and let G = {r}
2 Initialize value l(r) = h(r) and best partial solution tree T to G
3 while r is not marked SOLVED and memory is available do

// Expand

4 n← Select-Node(T )
5 if n is an OR node (labeled Xi) then
6 Create AND node n′ for each xi ∈ Di

7 if n′ is TERMINAL then mark n′ as SOLVED;

8 else if n is an AND node (labeled xi) then
9 Create OR node n′ for each child Xj of Xi ∈ T

10 foreach generated n′ do
11 succ(n)← succ(n) ∪ n′
12 l(n′)← h(n′) // Initial lower bound is the heuristic value

13 G ← G ∪ {succ(n)}
// Revise

14 S ← {n}
15 while S 6= ∅ do
16 Select p from S s.t. p has no descendants in G ∩ S
17 S ← S − {p}
18 if p is an OR node then
19 l(p)← minm∈succ(p)(c(p,m) + l(m))
20 Mark k = arg minm as the best successor of p
21 if k is SOLVED then mark p as SOLVED;
22 if l(p) changed and p = r then
23 Output l(p) // Report new lower bound

24 else if p is an AND node then
25 l(p)←

∑
m∈succ(p) l(m)

26 if ∀m ∈ succ(p) are SOLVED then mark p as SOLVED;

27 if l(p) changed or p is SOLVED then
28 S ← S ∪ {parent(p)}

29 Update T to new best partial solution tree by following marked best successors
from root r

30 return 〈l(r), T 〉
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marks the best child of each OR node. In addition, OR nodes are marked solved if their

current best child is marked solved and AND nodes are marked solved if all of their children

are marked solved. Subsequently, a new best partial solution tree T is identified by following

the marked children from the root to leaves of G. When the root node of G is marked as

solved, the best solution tree T is the optimal solution whose cost is the value of the root

node l(r) and AOBF terminates.

In earlier literature the algorithm is provided as a purely exact algorithm [38, 33]. However,

since lower bound values are constantly updated as the algorithm searches, l(r) provides a

anytime lower bound on the optimal solution (lines 22-23).

The use of the f2 heuristic for subproblem ordering occurs implicitly in line 4 of the algorithm

which calls the Select-Node function that returns any non-terminal tip node of T . The

behavior of this function is thus defined by the f2 heuristic which imposes an ordering of

the tip nodes. It is common to choose an f2 which orders the non-terminal tips using the f1

heuristic in ascending order. The focus of our work is in proposing a more informed f2.

3.3 Illustrating the Impact of Subproblem Ordering

We will now show that the f2 heuristic can have a potentially large impact in AOBF and

start with an example. In the following, Ti refers to the best partial solution tree after the

i-th node expansion of AOBF. We first define the notion of a profile of f2 relative to f1:

Definition 3.1 (profile). Given a primary and secondary heuristic function f1 and f2

respectively for AOBF applied to a graphical model, the sequence pf2 = {f1(Ti)|i = 1 . . . j}

produced with a particular f2 when f1 is kept fixed, is the profile of f2, under f1.

The sequence of f1 values seen at each step yields lower bounds on C∗, the optimal cost,

whose quality increases with steps (for a monotone heuristic function). At termination, we
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Figure 3.1: A simple graphical model over 3 variables with two functions. Shown above are
the primal graph (also a valid pseudo-tree in this case), the function tables, and the associated
AND/OR search space with weights labeled. The optimal solution tree is highlighted and
has a cost of 11.

get the cost C∗. Yet, one sequence may be superior to another.

Proposition 4. Given AOBF using an evaluation function f1, there exist two tip node

evaluation function f2 and f ′2 such that the profiles pf2 and pf ′2 under f1 differ.

Proof of Proposition 4. We prove by counter-example. Figure 3.1 depicts a graphical model

defined over variables A,B,C having two functions f(A,B) and f(A,C). The full AND/OR

search space is shown explicitly and the optimal solution (A = 1, B = 1, C = 0) is marked in

red. Assume that our heuristic evaluation function is a constant 0. Assume two f2 evaluation

functions: f2 which orders the subproblems by from left to right (B ≺ C), while f ′2 reverses

the orderings from right to left. The profile of f2 under f1 is: (0,1,5,11), while the profile

of f ′2 is: (0,6,11). In particular, with f2 the algorithm explores all solution subtrees while

with f ′2, it will never expand node B under A = 0, since expanding C proves that the A = 0

branch has a cost of at least 20. We would never return to the A = 0 branch since the

A = 1 branch never exceeds a cost of 20 at any point. In fact, it yields the optimal solution.

Clearly, profile pf ′2 dominates that of pf2 in this case.

In the following we show further that the choice of f2 can, in the worst case, make an
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exponential impact on the number of expansions needed in order to cross a given lower

bound threshold L. This means that the impact of f2 can be quite high for both anytime

performance and when searching for an optimal solution.

Theorem 3.1. Given a weighted AND/OR search graph, a heuristic evaluation function

f1, and two secondary f2 and f ′2 functions, there exists an AND/OR search graph and a

threshold L where the profile until reaching L for pf2 is exponentially longer than for pf ′2.

Proof. Let T be a partial solution tree that is currently selected for extension by AOBF

when searching a weighted AND/OR graph. Let C = f1(T ) where C < C∗. Assume that

T cannot be extended to an optimal solution, namely f ∗(T ) > C∗. Let A and B be two

variables labeling OR tip nodes of T which are direct child nodes of an AND parent X = 0.

Let a subtree below a variable X be denoted as tX and the d-depth truncated subtree be

denoted as tdX . Now, assume that tB is an OR tree having depth n (i.e., there are n variables

below it). Assume that the best extension of T into tB has f1 smaller than C∗. Furthermore,

we want to force all of the nodes in tB to be explored by AOBF in order to establish

the optimal cost in tB. This can be accomplished if the arc costs in tB are monotonically

increasing along a breadth-first ordering of the arcs in tB. In contrast, assume that t1A (tA

truncated to depth 1), provides an extension to T having f1 > C∗, namely f(T ∪ t1A) ≥ C∗.

Under these assumptions, an f ′2 that prefers expanding all of tB before any of tA (and such

exists) will yield a profile with many more nodes than that of an f2 that expands tA first.

Since f(T ∪ t1A) ≥ C∗, it will never expand any of tB. Therefore, pf ′2 would be exponentially

longer than pf2 for the threshold of C∗.
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3.4 Local Bucket Errors for AOBF

The overall target for an effective subproblem ordering heuristic should be to select the

subproblem which increases the lower bound the most. Assume a greedy scheme where

given a frontier of tip nodes, we choose the node which would lead to the largest increase

in f1 in a single expansion. We will show that this largest increase in f1 corresponds to the

notion of residual, and therefore we can use look-ahead as a guide to decide which subproblem

to expand next. In Chapter 2, we introduced the concept of local bucket errors and showed

its relation to the residual. The bucket error measures the difference between the exact

bucket message µ∗k(·) that would have been generated by a particular bucket Bk without

partitioning, to the mini-bucket message µk(·) generated with partitioning. The difference

between the two messages is defined as the local bucket error function Ek(·). We showed that

this quantity is equivalent to the depth-1 residual (see Theorem 2.1). Therefore, the local

bucket error functions can be used also to order tip node expansion for the goal of increasing

f1 the most with a single expansion. Furthermore, we showed that this information can be

compiled prior to search (see Algorithm 7).

Clearly, this greedy scheme may be too greedy. For example, consider a tdX having d > 1

and f1(T ∪ tdX) > C∗. To illustrate where the 1-level greedy scheme may fail, we consider

the situation where f1(T ∪ t1X) = f1(T ). Using a greedy f2, X would be ordered last because

its depth-1 residual is zero, yet a greater increase in f1 may occur with a deeper look into

the subproblem rooted by X.

The actual quantity of interest (which we will have to approximate) is the exact residual

defined next.

Definition 3.2 (exact residual). The exact residual res∗(n) is defined as h∗(n)− h(n).

The exact residual is equivalent to a d-level residual when d is the depth of the search space
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below node n. Computing the exact residual res∗(n) is equivalent to full look-ahead. Since

this is too computationally expensive, we propose to approximate this by a sum of depth-1

residuals over all the nodes in the look-ahead subtree. This can be accomplished by adding

up all the local bucket errors of all variables in the subtree, a quantity we call subtree error.

Two specific approximations for these quantities will be explored.

3.4.1 A Measure for Average Subtree Error

The first approach is to use the average local bucket error Ẽk (Definition 2.8) that was

introduced in Chapter 2 as a measure of the error at each bucket. It is the average over

the values of the functions, or over a sample of the values if the scope of the function is

cost-prohibitive. Computing this quantity is linear in the number of samples and requires a

single constant to memorize. The average subtree errors, denoted Ẽt
k, are derived by adding

the average bucket error along a subtree t. Namely,

Definition 3.3 (average subtree error). The average subtree error Ẽt
k can be defined

recursively by:

Ẽt
k = Ẽk +

∑
c∈ch(Xk)

Ẽt
c (3.1)

where Ẽk is the average local bucket error for Xk.

Clearly, the average subtree error is a constant, so its quality depends on the variance of

the bucket error functions. Still, its value is its low memory consumption, which is a critical

resource in the context of a best-first algorithm such as AOBF.

3.4.2 A Functional Measure for Subtree Error

We next propose a more refined function-based subtree error. We will use the following

elimination operator.
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Definition 3.4 (average elimination operator �). Let f(·) be a function with scope Sfj ,

and S ⊆ Sfj , and DS be the domains of the variables in S. The average elimination �S of

f(·) is defined by

�Sf(·) =
1

|DS|
∑
S

f(·)

Next, we define the subtree error functions, denoted Et
k(·).

Definition 3.5 (subtree error function). Let Ek(·) be the local bucket error function of

Xk The subtree error function relative to a pseudo-tree is defined recursively by:

Et
k(·) = Ek(·) +

∑
c∈ch(Xk)

�(SEc−SEk ) E
t
c(·) (3.2)

We can view each element of summation over the children as a message computed by averag-

ing out the variables which are not present in the parent’s bucket. Each message computed

at c can be interpreted as the expected error of the subproblem rooted by Xc as a function

of its ancestor variables.

In the above definition, we treat all the variables as equal contributors to the error. Since one

of our goals is to expand fewer nodes to reach a particular threshold L, we need to discount

the contribution of errors from variables that are far away from the current variable. Thus,

we introduce a variable-dependent discount factor γk ≤ 1, yielding

Et
k(·) = Ek(·) + γk ·

∑
c∈ch(Xk)

�SEc−SEk E
t
c(·) (3.3)

Due to the recursive definition, one can see that the impact of a descendant’s message

decreases exponentially with distance from Xk.

Algorithm 11 generates the subtree error functions starting from the local bucket error

functions as input. We denote the parent of k in T as pa(k) and λec→k as the message sent

107



from c to k.

Algorithm 11: Bucket Error Propagation (BEP)

Input: A Graphical model M = (X,D,F), a pseudo-tree T , local bucket error
functions Ek(·), discount factors γk

Output: Subtree error functions Et
k(·)

1 Initialize, for all leaves u of T , Et
u(·) = Eu(·)

2 Compute bottom-up over T , for each variable Xk:
3 Et

k(·) = Ek(·) + γk ·
∑

c∈ch(Xk) λ
e
c→k(·) ; // Incorporate child messages

4 λek→pa(k)(·) =�SEk−SEpa(k)
Et
k(·); // Compute message

5 return Et
k(·) for each variable Xk ∈ X

Proposition 5 (complexity of BEP). Given the local bucket error functions Ek(·) with

a maximum scope size of |S| where k bounds the maximum domain size, the time and space

complexity of algorithm BEP is O(nk|S|).

Proof. Computing the subtree error message generated by a subtree error function Et
k(·)

requires enumeration over its values which is bounded by O(k|SEk |) time. Clearly, each

message used for computing each subtree error function Et
k(·) is used just once. Incorporating

a message into a function Et
k(·) from a child also enumerates over its values, bounded by

O(k|SEk |) time. Since we have n variables, the total time complexity is O(nk|S|), where

|S| = maxk|SEk |. The space complexity is also O(nk|S|), since the scopes of each Et
k(·) are

identical to the scopes Ek(·).

3.4.3 Approximating the Error Functions

Since the scope of the error functions may be exponential in the pseudo-width, we consider

additional simplification.
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3.4.3.1 Scope Bounding

One way of bounding further the complexity of the error measure is to quantize by truncating

the scopes of the local bucket error functions and aggregating over the eliminated variables.

Definition 3.6 (scope-bounded bucket error function). Given Ek, the scope-bounded

bucket error function of Ek relative to S ⊆ SEk is defined by

Eb
k(·) =�(SEk−S) Ek(·) (3.4)

We can select a bounded scope S where |S| is smaller than a specified integer s, which we call

the s-bound. We typically choose the s-bound to be smaller than or equal to the i-bound of

the MBE heuristic. We currently select the bounded scopes in a straightforward fashion by

removing variables from SEk that are closest to Xk in the pseudo-tree T until the condition

of |S| ≤ s is satisfied.

Algorithm 12: Scope-Bounded Local Bucket Error Evaluation (SB-LBEE)

Input: A Graphical model M = (X,D,F), a pseudo-tree T , i-bound, s-bound
Output: Scope-bounded error function Eb

k(·) for each variable Xk

1 Initialization: Run MBE(i) for M w.r.t. T
2 foreach Xk ∈ X do
3 Let Bk = ∪rBr

k be the partition used by MBE(i) for Xk

4 Choose S s.t. S ⊆ SBk , Xk ∈ S, and |S| ≤ s+ 1
5 µbk(·) =�SBk−S

∑
r(minxk

∑
f∈Brk

f(·))
6 µb∗k (·) =�SBk−S minxk

∑
f∈Bk f(·)

7 Eb
k(·) = µb∗k (·)− µbk(·)

8 return Eb
k(·) functions

Algorithm 12 presents a modified version of LBEE (called SB-LBEE) to account for the

bounded bucket errors. It differs from LBEE (Algorithm 7 in Chapter 2) in having an s-

bound parameter (line 4). Lines 5-6 average over the variables not in S, generating bounded

versions of the MBE and exact bucket messages. If s = 0, the errors reduce to the average

local bucket error.
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Proposition 6 (complexity of SB-LBEE). Given an s-bound, and an i-bound for MBE,

the time complexity of SB-LBEE is O(nkpsw(i)) and the space complexity is O(nks), where n

is the number of variables, k bounds the maximum domain size, psw(i) is the pseudo-width

along T relative to MBE(i).

Proof. The time complexity for each variable is dominated by computing the exact (s-

bounded) bucket message µb∗k (·). Although the resulting scope is bounded by s using the �

operator, the min-sum computation over the bucket variables is still bounded by the scope

size of Bk, which is the pseudo-width. Therefore, each iteration is bounded by O(kpsw(i))

time, yielding a total time complexity of O(nkpsw(i)). For space complexity, the messages

and error functions and bounded by s by design, thus for each Xk, the algorithm needs O(ks)

space, yielding a total space complexity of O(nks).

Since the space complexity of BEP (Algorithm 11) depends on the maximum scope size of

the error functions, we can replace the full local bucket error functions Ek(·) with the scope-

bounded versions computed by SB-LBEE to generate s-bounded subtree error functions,

which are tractable to store in memory with an appropriate choice of s.

3.4.3.2 Sampling

Since the time complexity of SB-LBEE is bounded by O(nkpsw(i)), it may still be intractable.

Since this complexity is due to the computation of the exact bucket message µb∗k (·) (Propo-

sition 6), we can further alleviate this by sampling to approximate the �SBk−S operation.

Given S ⊆ SBk , for each instantiation x̄S of µb∗k (·), we define an estimate of µb∗k (·) by

µ̂b∗k (x̄S) =
1

m
min
xk

∑
f∈Bk

f(x̄S, x̄i) x̄i ∼ U(DSBk−S) (3.5)
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where m is the number of samples and U(DSBk−S) is a uniform distribution over its argument

SBk − S, the set of variables we need to eliminate. Since we sample m times for each of the

ks instantiations over n variables, the time complexity is O(nmks), which carries over to

SB-LBEE.

3.4.4 Algorithm: Select-Node-Subtree-Error

Algorithm 13: Subtree Error Compilation (SEC)

Input: A Graphical model M = (X,D,F), a pseudo-tree T , i-bound, s-bound,
discount factors γk, partial solution tree T

Output: Subtree error functions Et
k(·)

1 Initialize: Run MBE(i) for M w.r.t. pseudo-tree T
2 Generate scope-bounded bucket error functions Eb

k(·) with SB-LBEE w.r.t. scope
bound s

3 Generate subtree error functions Et
k(·) for each variable Xk ∈ X using BEP using

scope-bounded Eb
k(·) and discount factors γk

4 return Et
k(·)

Algorithm 14: Select-Node-Subtree-Error (Select-Node-STE)

Input: A Graphical model M = (X,D,F), a pseudo-tree T , i-bound, s-bound,
discount factors γk, partial solution tree T

Output: Variable Xk

1 Initialize: Compile Subtree Errors with given M, T , i-bound , s-bound, and γk.
tips := tip nodes of T

2 x̄T := partial assignment corresponding to T
3 return arg maxk∈tipsE

t
k(x̄T )

We summarize the approach in Algorithms 13 and 14. Before search begins, we compile

the subtree errors with SEC (Algorithm 13), which includes the standard procedure of

compiling the MBE heuristic, then we subsequently use SB-LBEE to generate the scope-

bounded bucket error functions. The algorithm then uses BEP (Algorithm 11) to generate

the subtree error functions based on the output of SB-LBEE. Note that as SB-LBEE reduces

to computing average local bucket errors when the s-bound is 0, the subtree error functions

are exactly the average subtree errors described in section 3.4.1, but with the discount factors

applied.
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During search, we can use Select-Node-STE (Algorithm 14) in AOBF, which selects a tip

node with the largest value according to its corresponding subtree error function and the

current assignment based on the current partial solution tree T .

3.5 Experiments

We experimented with 4 variants of our scope-bounded subtree error functions, formed by

using either constant or scope-bounded errors (denoted Const and ScpBnd respectively),

and absolute or relative errors (denoted Abs and Rel respectively). Thus, the 4 variants are

named Const-Abs (C-A), Const-Rel (C-R), ScpBnd-Abs (SB-A), and ScpBnd-Rel

(SB-R).

Using Algorithm 14, the Const variants set the s = 0, while otherwise we use a default

s = 10 for the ScpBnd variants. The absolute error Abs computes each error function

value exactly as described in the previous section, while the relative error Rel divides each

error value by the exact bucket message value as a way to normalize for the differing scales

of values in a function (see Definition 2.8 in the previous chapter for more details). In all

variants, for each variable Xk, we set the discount factor γk = 1
|Dk|

, the inverse of the domain

size of Xk.

We compare against the baseline subproblem ordering that uses the heuristic evaluation

function, f1 (denoted Heur (H) in the experiments). We will generally refer to the 4

variants as error-guided orderings. Additionally, we break ties using the baseline ordering.

For all experiments, we use the mini-bucket elimination with moment-matching (MBE-MM)

heuristic [25] and the same pseudo-tree for all settings. We varied the i-bound to show how

the results depend on the levels of heuristic error. For i-bounds less than 10, we set the

s-bound to be equal to the i-bound. Whenever necessary, we used a maximum sample size
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of 105 shared across the entire scope-bounded error function. Furthermore, if the number

of samples is less than the number of instantiations of a particular scope-bounded error

function, we reduce s further. Given these settings, the memory used by the pre-compiled

error functions were no greater than that of the MBE heuristics (i.e. MBE dominates the

space complexity for anything computed during preprocessing).

Benchmark # inst n k w h |F | a

Pedigree 13
387 4 16 58 438 4
1006 7 39 143 1273 5

Promedas 34
661 2 31 66 669 3
1911 2 94 165 1928 3

Type4 65
3907 5 21 300 5749 4
9838 5 68 1535 14765 4

Table 3.2: Benchmark statistics for. # inst - number of instances, n - number of variables,
w∗ - induced width, h - pseudo-tree height, k - maximum domain size, |F | - number of
functions, a - maximum arity. The top value is the minimum and the bottom value is the
maximum for that statistic.

We experimented with benchmarks from genetic linkage analysis [19] (pedigree, type4 ), and

medical diagnosis networks [49] (promedas). and included only instances that had a signifi-

cant amount of search, in particular, having a number of nodes expanded is larger than 105

when using the baseline ordering for the lowest i-bound. Overall we report results on 13

pedigrees, 34 promedas networks, and 65 type4 instances, yielding a total of 112 problem

instances. The benchmarks represent a variety of problem difficulties ranging from easy to

hard and are presented in that order. Table 3.2 provides ranges of the various benchmark

parameters.

The implementation is in C++ (64-bit) and was executed on a 2.66GHz processor with 24GB

of RAM, which was shared between AOBF and MBE-MM.
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3.5.1 Evaluating for Exact Solutions

Tables 3.3, 3.5, and 3.7 report the preprocessing time for compiling the MBE heuristic and

subtree error functions (in seconds), total CPU time including preprocessing (in seconds),

and number of OR nodes (in thousands of nodes) expanded for a subset of the problems

which could be solved exactly by AOBF over the benchmarks. For each instance we also

mention the problem’s parameters such as the number of variables (n), maximum domain

size (k), induced width (w∗), and pseudo-tree height (h). Each column is indexed by the

i-bound of the MBE-MM. Each row for each instance shows the various subproblem ordering

schemes we experimented with. Additionally, we summarize over all of the problems that

could be solved, by i-bound, for each benchmark in Tables 3.4, 3.6, and 3.8.

We aim to assess whether an ordering strategy had a positive impact in terms of the number

of nodes expanded and whether the impact is cost-effective time-wise.

Pedigree. Table 3.3 shows the results for four different i-bounds for selected instances

from the pedigree benchmark. At an i-bound of 6, we see that for 2 of the instances

(pedigree9 and pedigree33 ) AOBF runs out of memory when using the baseline ordering.

For pedigree20, we see when using the Const-Rel heuristic, the number of nodes expanded

is a about half of that of the baseline. Still, the baseline can be better (e.g. see pedigree39 ).

Moving to higher i-bounds, we see that for instances other than pedigree39, the error-guided

orderings usually result in fewer nodes expanded at termination which usually translates to

improved runtime, except at the highest i-bounds. This is due to the small difference in

the number of nodes expanded relative to the extra preprocessing time. For example, on

pedigree9 with i =18, although Const-Abs expands 60K fewer nodes, preprocessing took 2

seconds longer compared with the baseline, resulting in a total time that is 1 second worse.

Table 3.4 shows the win counts for time and nodes expanded for each of the error-guided

orderings relative to the baseline. Examining the number of wins based on nodes expanded,
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instance heur i = 6 i = 10 i = 14 i = 18
(n, k, w∗, h) pre time nodes pre time nodes pre time nodes pre time nodes

Heur 0 oom - 0 154 4137 1 14 512 6 10 193
Const-Abs 0 602 6368 1 73 1741 3 12 350 8 11 133

pedigree9 Const-Rel 0 673 6361 1 72 1751 3 11 350 8 11 134
(935,7,25,137) ScpBnd-Abs 0 oom - 1 448 9241 3 18 617 8 13 216

ScpBnd-Rel 0 588 6355 1 119 3034 2 10 350 8 11 133
Heur 0 85 2678 0 28 1019 0 16 595 6 6 5
Const-Abs 0 78 1933 0 24 812 2 16 503 7 7 5

pedigree20 Const-Rel 0 58 1523 1 28 833 1 15 505 7 7 5
(387,5,21,58) ScpBnd-Abs 0 232 5521 0 43 1354 1 22 831 7 7 4

ScpBnd-Rel 0 57 1579 0 24 818 1 15 512 7 7 4
Heur 0 oom - 0 11 448 1 4 163 6 6 28
Const-Abs 0 576 10568 1 13 392 4 8 160 8 9 26

pedigree33 Const-Rel 0 503 10498 1 13 434 4 7 156 8 9 26
(581,4,24,116) ScpBnd-Abs 0 452 10527 1 10 380 3 6 145 8 8 26

ScpBnd-Rel 0 514 10513 1 13 415 3 7 159 8 8 26
Heur 0 146 3869 0 11 490 0 0 3 6 6 1
Const-Abs 0 230 4964 1 17 604 1 1 2 6 7 1

pedigree39 Const-Rel 0 223 4921 0 15 604 1 1 2 6 7 1
(953,5,20,82) ScpBnd-Abs 0 217 4974 0 15 605 1 1 2 6 6 1

ScpBnd-Rel 0 220 4920 0 15 593 1 1 1 6 6 1
Heur 0 oom - 0 oom - 2 oom - 34 180 4995
Const-Abs 0 oom - 3 oom - 6 487 13188 39 166 3942

pedigree41 Const-Rel 0 oom - 3 oom - 6 oom - 39 168 3942
(885,5,33,100) ScpBnd-Abs 0 oom - 2 oom - 5 oom - 38 oom -

ScpBnd-Rel 0 oom - 2 oom - 5 oom - 38 167 3967
Heur 0 23 935 0 28 1113 12 15 130 170 170 20
Const-Abs 0 20 671 2 22 780 14 16 83 171 171 14

pedigree42 Const-Rel 0 20 679 2 22 780 14 16 123 173 174 14
(390,5,21,67) ScpBnd-Abs 0 40 1109 2 30 986 13 15 83 171 171 12

ScpBnd-Rel 0 20 675 2 29 1053 13 16 102 171 171 15
Heur 0 oom - 0 664 12209 1 36 1254 4 9 223
Const-Abs 0 oom - 1 388 9683 3 36 1230 6 11 221

pedigree44 Const-Rel 0 oom - 1 412 9783 3 35 1138 6 11 221
(644,4,24,79) ScpBnd-Abs 0 oom - 1 336 9117 3 35 1154 6 10 213

ScpBnd-Rel 0 oom - 1 497 11041 2 36 1175 6 11 213

Table 3.3: Exact evaluation for pedigree instances. The best times and node counts are
bolded per i-bound and the best times and node count overall for a given instance are also
underlined. If the optimal solution was not found, then we report ‘oom‘ to denote that
the experiment ran out of memory. We also report the pre-processing time to the left of
each total time. n - number of variables, k - maximum domain size, w∗ - induced width, h -
pseudo-tree height

Win counts for pedigree instances
i = 6 i = 10 i = 14 i = 18

(solved=6) (solved=7) (solved=8) (solved=11)
wins by wins by wins by wins by

heuristic time(%)/nodes(%) time(%)/nodes(%) time(%)/nodes(%) time(%)/nodes(%)
Const-Abs 4 (66.7)/4 (66.7) 4 (57.1)/5 (71.4) 4 (50.0)/8 (100.0) 2 (18.2)/7 (63.6)
Const-Rel 4 (66.7)/4 (66.7) 4 (57.1)/5 (71.4) 3 (37.5)/7 (87.5) 3 (27.3)/7 (63.6)
ScpBnd-Abs 1 (16.7)/1 (16.7) 2 (28.6)/3 (42.9) 1 (12.5)/4 (50.0) 0 (0.0)/4 (36.4)
ScpBnd-Rel 4 (66.7)/5 (83.3) 3 (42.9)/5 (71.4) 3 (37.5)/7 (87.5) 2 (18.2)/7 (63.6)

Table 3.4: Summary for exact solutions on pedigree instances: win counts of instances
that the ordering heuristic had a lower time or lower number of nodes than the baseline.
The number of instances solved by any heuristic (including the baseline) is shown under
each i-bound label. Each number in parentheses is the percentage of solved instances that
performed better for that particular i-bound.

115



more than half of the instances that could be solved benefited from error-guided ordering (ex-

cluding ScpBnd-Abs). For example, at an i-bound of 10, every method except ScpBnd-Abs

has fewer nodes expanded than the baseline on 71.4% of the solved instances. At the lower

i-bounds of 6 and 10, we see that the savings in the number of nodes translates to savings

in time as well in most cases. However, this decreases as the i-bound increases, due a com-

bination of the preprocessing overhead of the computing the error-based heuristics and the

relative ease of the benchmark problems using stronger heuristics. Overall, the error-guided

orderings demonstrate their moderate impact on a variety of i-bounds here, but their over-

head prevents them from being useful in situations where problems are already easy to solve

with the correct f1 heuristic and the baseline orderings.

Promedas. Table 3.5 reports on a selection of promedas instances. We used higher

i-bounds for this benchmark because the instances are harder compared to the pedigrees.

As in the previous benchmark, we observe that the number of nodes expanded by an error-

guided ordering is better than the baseline ordering in many cases. Notably, we see here for

the high i-bound of 18, where the savings in nodes on a few harder instances translated well

to savings in the runtime. For example, on or chain 25.fg, both the runtime and number

of nodes expanded using any of the error-guided orderings were about half of those of the

baseline ordering. Still, the error-guided orderings may still be worse than the baseline (e.g.

or chain 140.fg, but this is usually the exception.

Table 3.6 provides the win counts for each error-guided ordering heuristic. The ScpBnd-

Abs heuristic is the worst performer, as we saw before. Both relative error base orderings

(Const-Rel and ScpBnd-Rel) have similar positive performance, demonstrating positive

impact of the orderings on at least 50% of the instances across all i-bounds. Overall, Const-

Abs was best, yielding improvements on at least 70% of the instances. The time savings in

nodes carries over to most cases using lower i-bounds and slightly fewer at higher i-bounds.

For example, at an i-bound of 12 using Const-Abs, 9 out of the 10 instances (90%) had
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instance heur i = 12 i = 14 i = 16 i = 18
(n, k, w∗, h) pre time nodes pre time nodes pre time nodes pre time nodes

Heur 0 oom - 0 239 10020 0 164 7009 1 319 13152
Const-Abs 2 oom - 3 172 6686 4 115 4629 4 161 6225

or chain 25.fg Const-Rel 2 oom - 3 175 6668 4 117 4671 4 159 6226
(1075,2,43,80) ScpBnd-Abs 2 oom - 2 oom - 3 117 4678 4 163 6225

ScpBnd-Rel 2 oom - 2 170 6670 3 115 4657 4 161 6224
Heur 0 oom - 0 oom - 1 195 8642 2 109 5084
Const-Abs 2 oom - 3 oom - 5 168 7039 6 60 2550

or chain 40.fg Const-Rel 2 oom - 3 oom - 5 144 5721 7 60 2550
(988,2,43,87) ScpBnd-Abs 2 oom - 3 oom - 4 302 12748 5 231 9579

ScpBnd-Rel 2 oom - 3 oom - 4 152 6151 6 61 2550
Heur 0 42 2036 0 11 563 0 7 349 1 9 411
Const-Abs 1 31 1391 2 10 350 3 8 226 4 8 251

or chain 63.fg Const-Rel 1 32 1391 2 10 350 3 8 244 4 9 251
(731,2,38,81) ScpBnd-Abs 1 52 2266 2 15 608 3 10 382 4 12 467

ScpBnd-Rel 1 44 2038 2 10 361 3 7 230 4 9 273
Heur 0 128 5374 0 80 3398 1 47 1977 2 46 1904
Const-Abs 2 112 4550 4 75 3019 5 47 1724 7 42 1443

or chain 80.fg Const-Rel 2 99 4550 4 76 3029 5 47 1738 7 41 1443
(840,2,50,108) ScpBnd-Abs 2 248 9001 3 174 6222 5 83 3108 6 84 3127

ScpBnd-Rel 3 114 4551 3 76 3018 4 46 1724 6 40 1444
Heur 0 74 3659 0 58 2945 1 45 2498 1 28 1582
Const-Abs 1 39 1690 3 32 1416 4 28 1318 4 21 937

or chain 94.fg Const-Rel 1 35 1690 3 32 1416 4 28 1298 4 21 937
(762,2,32,97) ScpBnd-Abs 1 370 12931 2 206 8068 3 114 5048 4 59 2787

ScpBnd-Rel 1 37 1624 2 30 1357 3 27 1307 4 21 931
Heur 0 135 5103 0 79 3946 1 41 2224 1 32 1714
Const-Abs 2 128 4950 3 66 2913 4 51 2290 4 55 2448

or chain 140.fg Const-Rel 2 139 5633 3 66 2934 4 49 2288 4 69 3328
(1260,2,32,79) ScpBnd-Abs 2 139 4979 2 70 2962 3 43 2008 4 51 2240

ScpBnd-Rel 2 138 5305 2 65 2944 3 47 2119 4 67 3220
Heur 0 oom - 0 284 13893 1 253 14811 1 231 11752
Const-Abs 2 265 11758 3 134 6389 5 145 6958 5 114 5339

or chain 178.fg Const-Rel 2 264 11724 3 133 6390 5 254 12591 6 111 5339
(1012,2,35,97) ScpBnd-Abs 2 oom - 3 oom - 4 oom - 5 oom -

ScpBnd-Rel 2 300 12810 3 157 7303 4 278 13411 5 113 5461
Heur 0 33 1677 0 42 2259 0 33 1850 1 20 1098
Const-Abs 1 29 1332 2 43 2094 3 30 1496 4 20 971

or chain 199.fg Const-Rel 1 39 1708 2 71 2921 3 30 1498 4 20 971
(917,2,33,79) ScpBnd-Abs 1 93 3330 2 79 3048 2 70 3050 3 34 1527

ScpBnd-Rel 1 39 1693 2 58 2596 2 38 1789 3 22 1065
Heur 0 103 5031 0 60 3110 0 43 2382 1 17 911
Const-Abs 1 55 2476 2 33 1569 3 26 1165 4 14 549

or chain 212.fg Const-Rel 1 55 2476 2 33 1570 3 26 1164 4 14 549
(773,2,33,79) ScpBnd-Abs 1 oom - 2 282 12138 3 215 9986 3 86 4305

ScpBnd-Rel 1 66 2830 2 35 1670 3 31 1399 3 14 566
Heur 0 197 8434 0 212 9580 1 75 3443 2 34 1528
Const-Abs 2 156 5322 4 90 3330 5 45 1611 6 28 921

or chain 226.fg Const-Rel 2 154 5320 4 104 3905 5 45 1611 5 26 976
(735,2,42,87) ScpBnd-Abs 2 291 11595 3 346 15606 4 117 4854 5 62 2525

ScpBnd-Rel 2 159 5482 3 98 3663 4 46 1697 4 25 976

Table 3.5: Exact evaluation for promedas instances. The best times and node counts are
bolded per i-bound and the best times and node count overall for a given instance are also
underlined. If the optimal solution was not found, then we report ‘oom‘ to denote that
the experiment ran out of memory. We also report the pre-processing time to the left of
each total time. n - number of variables, k - maximum domain size, w∗ - induced width, h -
pseudo-tree height

a positive impact of ordering also had better runtime than the baseline. In contrast, at an

i-bound of 18, only 12 out of the 16 instances (75%) had improved times.

Type4. Table 3.7 shows all the instances of the type4 benchmark that could be solved

by AOBF with the given i-bounds. This benchmark is the hardest of the 3 benchmarks and

thus we used even higher i-bounds compared to the promedas benchmark. Even then, only

with an i-bound of 20 are we able to solve all 6 of the instances. Like with the previous
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Win counts for promedas instances
i = 12 i = 14 i = 16 i = 18
wins by wins by wins by wins by

(solved=14) (solved=17) (solved=19) (solved=20)
heuristic time(%)/nodes(%) time(%)/nodes(%) time(%)/nodes(%) time(%)/nodes(%)
Const-Abs 10 (71.4)/10 (71.4) 11 (64.7)/12 (70.6) 11 (57.9)/14 (73.7) 12 (60.0)/16 (80.0)
Const-Rel 8 (57.1)/8 (57.1) 10 (58.8)/12 (70.6) 10 (52.6)/13 (68.4) 10 (50.0)/14 (70.0)
ScpBnd-Abs 2 (14.3)/4 (28.6) 2 (11.8)/3 (17.6) 3 (15.8)/4 (21.1) 2 (10.0)/2 (10.0)
ScpBnd-Rel 7 (50.0)/7 (50.0) 10 (58.8)/11 (64.7) 9 (47.4)/15 (78.9) 10 (50.0)/14 (70.0)

Table 3.6: Summary for exact solutions on promedas instances: win counts of instances
that the ordering heuristic had a lower time or lower number of nodes than the baseline.
The number of instances solved by any heuristic (including the baseline) is shown under
each i-bound label. Each number in parentheses is the percentage of solved instances that
performed better for that particular i-bound.

instance heur i = 14 i = 16 i = 18 i = 20
(n, k, w∗, h) pre time nodes pre time nodes pre time nodes pre time nodes

Heur 4 oom - 9 oom - 23 2436 11898 61 208 1415
Const-Abs 16 oom - 24 oom - 36 1965 10036 70 176 1231

t4-haplo 100 19 Const-Rel 16 oom - 25 oom - 35 2024 10036 70 177 1231
(3927,5,28,362) ScpBnd-Abs 14 oom - 21 oom - 33 2953 13625 68 222 1654

ScpBnd-Rel 14 oom - 21 oom - 33 2039 10343 68 175 1231
Heur 3 oom - 7 568 1846 17 32 162 32 34 10
Const-Abs 12 oom - 16 325 1823 21 29 155 34 34 8

t4-haplo 120 17 Const-Rel 12 oom - 14 311 1825 21 29 155 34 34 8
(4302,5,23,300) ScpBnd-Abs 10 oom - 14 211 1880 20 25 155 33 34 8

ScpBnd-Rel 10 oom - 14 338 1828 20 28 155 33 34 8
Heur 2 1390 5299 3 41 300 8 12 21 13 16 6
Const-Abs 9 3239 5820 11 31 359 11 12 16 14 14 6

t4-haplo 170 23 Const-Rel 9 3323 5821 11 32 385 11 12 16 14 14 6
(6933,5,21,396) ScpBnd-Abs 7 2046 6675 9 22 398 10 11 22 14 14 6

ScpBnd-Rel 8 2067 6484 10 31 383 10 11 16 14 14 6
Heur 5 oom - 11 oom - 30 oom - 101 880 7757
Const-Abs 18 oom - 26 oom - 43 oom - 111 832 7664

t4b 100 19 Const-Rel 18 oom - 26 oom - 43 oom - 111 678 7588
(3938,5,29,354) ScpBnd-Abs 16 oom - 22 oom - 35 oom - 109 973 7891

ScpBnd-Rel 16 oom - 22 oom - 40 oom - 109 634 7598
Heur 3 oom - 8 508 1956 22 24 119 38 39 48
Const-Abs 11 oom - 16 336 1922 27 31 104 41 42 35

t4b 120 17 Const-Rel 11 oom - 14 307 1919 27 31 104 41 42 35
(4072,5,24,319) ScpBnd-Abs 10 oom - 14 364 1937 26 29 103 40 41 38

ScpBnd-Rel 10 oom - 14 329 1919 26 30 105 40 41 37
Heur 3 382 2968 4 5 37 7 7 20 9 9 5
Const-Abs 8 287 2879 9 10 36 8 9 6 9 10 5

t4b 170 23 Const-Rel 8 333 2809 9 10 35 8 8 6 9 9 5
(5590,5,21,427) ScpBnd-Abs 7 176 2630 8 9 53 8 8 6 9 10 5

ScpBnd-Rel 7 281 2736 8 9 34 8 8 6 9 10 5

Table 3.7: Exact evaluation for type4 instances. The best times and node counts are
bolded per i-bound and the best times and node count overall for a given instance are also
underlined. If the optimal solution was not found, then we report ‘oom‘ to denote that
the experiment ran out of memory. We also report the pre-processing time to the left of
each total time. n - number of variables, k - maximum domain size, w∗ - induced width, h -
pseudo-tree height
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Win counts for type4 instances
i = 14 i = 16 i = 18 i = 20

(solved=2) (solved=4) (solved=5) (solved=6)
wins by wins by wins by wins by

heuristic time(%)/nodes(%) time(%)/nodes(%) time(%)/nodes(%) time(%)/nodes(%)
Const-Abs 1 (50.0)/1 (50.0) 3 (75.0)/3 (75.0) 3 (60.0)/5 (100.0) 3 (50.0)/4 (66.7)
Const-Rel 1 (50.0)/1 (50.0) 3 (75.0)/3 (75.0) 3 (60.0)/5 (100.0) 3 (50.0)/4 (66.7)
ScpBnd-Abs 1 (50.0)/1 (50.0) 3 (75.0)/1 (25.0) 2 (40.0)/3 (60.0) 2 (33.3)/2 (33.3)
ScpBnd-Rel 1 (50.0)/1 (50.0) 3 (75.0)/3 (75.0) 3 (60.0)/5 (100.0) 3 (50.0)/4 (66.7)

Table 3.8: Summary for exact solutions on type4 instances: win counts of instances that the
ordering heuristic had a lower time or lower number of nodes than the baseline. The number
of instances solved by any heuristic (including the baseline) is shown under each i-bound
label. Each number in parentheses is the percentage of solved instances that performed
better for that particular i-bound.

two benchmarks, we see that the error-guided orderings yield better performance on many

instances. However, the variation is smaller. For example, on type4-haplo 100 19 using an

i-bound of 20, the number of nodes expanded using the Const-Abs ordering is still about

87% of what the baseline ordering yields, compared with the lower 50% rates seen on some

instances in the other two benchmarks. On two of the instances here (type4-haplo 170 23

and type4b 170 23 ), there is no difference in the number of nodes expanded, indicating

that most of the errors likely evaluated to zero, thus falling back on the baseline ordering.

Still, we see improved runtime on the hardest of the instances here (type4-haplo 100 19 and

type4b 100 19 ), where any savings in the number of nodes expanded did carry over to overall

savings in runtime.

Table 3.8 aggregates the results by win counts as before. Across the i-bounds, every

error-guided ordering was better on at 50-100% of the instances except for ScpBnd-Abs.

Notably, improvement was achieved on all instances by these 3 orderings at an i-bound of

18 and a majority at the highest i-bound of 20. In terms of overall runtime improvement,

most instances also had better runtimes when their orderings were better in terms of node

expansions.
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3.5.1.1 Discussion on Finding Exact Solutions

Our experiments, show that the error-guided orderings can benefit AOBF. For most combina-

tions of benchmark and i-bound, at least 60-70% of the solved instances had positive impact

when using the error-guided orderings in terms of nodes expanded, despite the multiple levels

of approximation performed (summing 1-level residuals to approximate the exact residual,

bounding the scopes of the error functions, and sampling). Furthermore on the harder bench-

marks (promedas and type4), the superior orderings node-wise usually also carried over

to improved overall runtime. Specifically, when considering time on the same benchmarks,

the percentage of instances that exhibited positive impact around 50-60%, though in some

cases, the error-guided orderings were only a bit slower, since the difference in preprocessing

time is usually in the order of a few seconds. For easy instances, the impact was negative

in terms of the number of nodes (and obviously time-wise). This is partly because on easy

instances, the MBE-MM heuristic is strong and thus there are no errors. Also, with small

errors, subproblem ordering also has a smaller impact, thus making the error-guided order-

ings not cost-effective. Overall, all of the error-guided orderings (except ScpBnd-Abs) have

similar performance to each other.

3.5.2 Anytime Lower Bounding

Next, we will evaluate AOBF for generating lower bounds in an anytime fashion and the

impact of the f2 ordering heuristic on this anytime performance. Figures 3.2, 3.4, and 3.6

report the lower bound obtained as a function of time for each subproblem ordering f2. A

profile that is higher earlier in time is superior. The first point of each line is always the

bound returned by the MBE-MM heuristic itself, recorded whenever search starts following

all pre-processing. If known, the exact solution is also plotted as a dashed gray line. For

each benchmark, we select 2 representative instances, one of which was exactly solved and

another which was not. For each instance, we show 4 different i-bounds. For pedigrees both
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instances are exactly solved (Figure 3.2) Each ordering is labeled with abbreviated names

for clarity.

We also aggregated the results per benchmark in Figures 3.3, 3.5, and 3.7. We normalized

the time scale for each instance to that of the baseline, ranked the bounds yielded by each

variant across time, and aggregated across the instances by averaging. The number of

instances varies with the different i-bounds since for some large instances, compiling the

MBE heuristics at the highest i-bounds exceeds our memory limit of 24GB.

Pedigrees. Figure 3.2 shows the lower bounds as a function of time on 2 selected

instances from the pedigree benchmark. First, on pedigree9 (which is solved exactly). For

the lower i-bounds of 6 and 10, all of the methods except ScpBnd-Abs perform better early

on. Since the problem is easy at higher i-bounds, AOBF quickly finds the optimal solution

after the initial bound generated by MBE-MM. Still, at an i-bound of 14, everything except

ScpBnd-Abs improves over the baseline. At the highest i-bound of 18, the preprocessing

overhead makes the error-guided orderings not cost-effective. In pedigree51, where AOBF

ran out of memory before finding the exact solution, the lowest i-bounds of 6 and 10 also

benefited from error-guided orderings. Increasing to the i-bound 14 yields marginally better

performance compared with the baseline (except for ScpBnd-Abs). Finally, at the highest

i-bound the baseline performs best.

Figure 3.3 presents the average ranks for each ordering heuristic based on normalizing the

time across the instances and averaging as explained earlier. As seen in the instance-by-

instance results, all error-guided orderings except ScpBnd-Abs outperform the baseline.

As the i-bound increases the average rank of the baseline improves. For an i-bound of 18,

only ScpBnd-Rel ranks similarly to the baseline, but the baseline is better overall.

Promedas. Figure 3.4 shows results on 2 selected instances from the promedas bench-
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Figure 3.2: Lower bounds as a function of time for two instances from the pedigree bench-
mark. Higher is better.
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Figure 3.3: Average rank of each ordering as a function of normalized time across all of the
instances in the pedigree benchmark. Lower is better.

mark. For the first instance (or-chain-178.fg), the error-guided orderings improve signifi-

cantly over the baseline, except for ScpBnd-Abs across all i-bounds. Next, on or-chain-

108.fg, most of the error-guided orderings improve over the baseline at an i-bound of 12.

Once we increase the i-bound to 14, the baseline manages to get a profile that is more simi-

lar to the 3 dominating methods, but still falls short. At i-bounds of 16 and 18, all methods

that were performing well before show a better profile, generating a higher lower bound early,

as expected

Figure 3.5 presents the ranking summary over this benchmark. For all i-bounds the baseline

seems superior early on due to the preprocessing overhead of the error-guided orderings.

However, it is overtaken by the other methods eventually at different points on the normalized

time scale. At an i-bound of 12, the Const methods outrank the baseline early on. Moving

to i-bounds of 14 and 16, everything but ScpBnd-Abs approaches the baseline eventually

and outrank it with time. Finally, at the highest i-bound of 18, the ScpBnd-Rel method

performs better early around 0.1 on the time scale, with the Const methods overtaking the
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Figure 3.4: Lower bounds as a function of time for two instances from the promedas
benchmark. Higher is better.
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Figure 3.5: Average rank of each ordering as a function of normalized time across all of the
instances in the promedas benchmark. Lower is better.

baseline at around 0.6 on the time scale.

Type4. Figure 3.6 shows lower bounds over time for 2 instances of our last benchmark.

The first instance (t4-haplo-100-19 ) could not be solved at i-bounds of 14 and 16, but were

solved with higher i-bounds. Once again, all of the error-guided heuristics except ScpBnd-

Abs improve performance over all i-bounds of 16 and up. At the lowest i-bound of 14, the

performance is close to the baseline. Moving to t4-haplo-190-20 which was not solved, we

have similar behavior. Specifically, ScpBnd-Abs is slightly better than the rest at i-bounds

up to 18, but performs significantly worse than both Rel methods at the highest i-bound of

20.

Figure 3.7 provides summary rankings of the orderings over normalized time for all of

the instances that did not run out of memory for each i-bound. Notably, the number of

instances reported decreases significantly as we increase the i-bound because we were unable

to compile the MBE heuristics given our memory bound for many instances. At an i-bound of
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Figure 3.6: Lower bounds as a function of time for two instances from the type4 benchmark.
Higher is better.
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Figure 3.7: Average rank of each ordering as a function of normalized time across all of the
instances in the type4 benchmark. Lower is better.

14, the baseline performs best. Many of the instances had a large number of variables, which

substantially increased the time and memory needed to compile the MBE heuristics. In turn,

this extra cost carried over to increasing the preprocessing time for the error-guided ordering

heuristics, leading to a negative impact. For higher i-bounds, we observe the same behavior

as in the previous benchmark, where the baseline ordering is best initially. However, the

error-guided orderings other than ScpBnd-Abs dominate with more time. Notably, with

the highest i-bound, the ScpBnd-Rel ordering outperforms the baseline early and maintains

its continuously.

3.5.2.1 Discussion on Anytime Performance

In contrast with the performance for finding exact solutions, we see that ScpBnd-Rel was

overall the winning ordering heuristic. This is illustrated by its ranking at the highest i-

bound on the two harder benchmarks we evaluated (promedas and type4). However, it

was still outperformed by the baseline on the pedigree benchmark, though not significantly.
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Overall, from the instance-by-instance lower bound plots ScpBnd-Rel was most consistent

in producing superior lower bounds.

3.6 Conclusion

This chapter focuses on the potential of using AND/OR best-first search for generating

lower bounds in an anytime fashion. Within this context, it explores the impact of sub-

problem ordering heuristics (the so-called secondary evaluation function [41]) for both exact

and anytime performance. We present new heuristics for subproblem ordering which are

based on pre-compiled information regarding the error associated with the primary heuris-

tic, guided by the notion of bucket error. In an extensive empirical evaluation, we showed

that in the context of evaluating the exact solution, all of our proposed error-based variants,

with the exception ScpBnd-Abs, were equally good, improving the runtime on 50-60% of

the instances. This accounted for most of the hard instances which had enough error to

impact subproblem ordering. In the anytime evaluation, we found that ScpBnd-Rel was

the best scheme overall, illustrating the advantage of having more informed functional error

information over the constant-based ones.

Various issues remain to be explored. First, all averages are taken by enumeration or sam-

pling and using a simple average. However this assumes that each assignment has equal

impact. Exploration into a weighted average estimate (i.e. importance sampling) could po-

tentially improve the estimates. Also, the method of truncating the scopes for the ScpBnd

methods is quite arbitrary. A more informed truncation procedure may reduce the loss of

information. Lastly, we saw that ScpBnd-Abs tended to be much inferior to all ordering

heuristics in nearly all cases, which is a clear indication that the truncation and message

passing process is sensitive to the scale of values.
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As far as we know, there has been little focus on subproblem ordering in AND/OR Best-First

search in recent literature and the work presented here illustrates that there is potential to

be realized by ordering the subproblems in a better informed manner. Our ideas presented

here generalize to any type of AND/OR search. In particular, various memory-efficient A*

variants (e.g. IDA*, RBFS) [29, 28] use the idea of repeatedly deleting and re-expanding

nodes, which would potentially also benefit from the savings yielded by better subproblem

orderings.
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Chapter 4

Dynamic FGLP Heuristics

In the work presented in this thesis so far, we use static mini-bucket heuristics for all the

search algorithms. To reiterate, the typical setup is to compile the heuristics before search

begins as a preprocessing step, then use table lookups over the generated mini-bucket mes-

sages to obtain heuristic values for each node that is generated. While this has the advantage

of low overhead in node expansion, the quality of the heuristics are bounded by the amount

of memory available to store the pre compiled heuristics. More importantly, static heuristics

do not capture any special structure that may be induced into a problem when it is partially

instantiated.

This chapter explores the alternative of computing heuristics dynamically under the OR

search framework. In contrast to the table lookups of static heuristics, we compute the

heuristic on the subproblem induced by the current partial conditioning during search, thus

allowing additional structure to be exploited. However, this means that we must also keep

the computational cost of generating heuristics low. For example, running MBE with a

high i-bound at every node generation is unlikely to be cost-effective. In the constraint

optimization literature, one efficient approach is maintaining soft arc consistency (SAC) [30]

during search. Maintaining SAC is a method of re-parameterizing the problem by shifting

costs from higher arity functions toward lower arity functions, which bounds the problem

with a single nullary function that has cost shifted into it. One of these algorithms is optimal
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soft arc consistency (OSAC), which formulates finding the set of re-parameterizations as a

linear programming (LP) task [10]. However, maintaining OSAC entails solving a large LP

for each search node and thus not cost-effective. Another algorithm is virtual arc-consistency,

which finds a sequence of cost shifts to tighten the bound based on a connection with classical

arc consistency, yielding an iterative cost-shifting method [9].

In other literature, there are several iterative approximation techniques based on solving the

LP relaxation of a graphical model [48]. This initial work established connections between

these LP relaxations and message-passing, which led to coordinate descent update algorithms

such as max-product linear programming (MPLP) [23].

As we first introduced in the background of Chapter 1, the ideas of cost-shifting were used

to tighten the bounds generated by MBE heuristics [25]. One of these methods employs a

similar algorithm to MPLP, known as factor graph linear programming/join graph linear pro-

gramming (FGLP/JGLP) as a preprocessing step on the original problem. Another scheme

is MBE with moment-matching (MBE-MM), an enhanced version of MBE that includes cost-

shifting to enforce consistency between the duplicated variables. However, all these schemes

were used so far in the context of static heuristics.

In this work, we aim to 1) explore the use of FGLP as a heuristic generator dynamically

for every node during the search, and compare with the most advanced statically generated

heuristics as in [25], and 2) to combine both static and dynamic schemes into a single, poten-

tially more powerful heuristic for branch-and-bound. While generating dynamic heuristics

based on FGLP is closely related to the soft-arc consistency algorithms such as those in

the toulbar21 solver, our work provides an alternative based on techniques that come from

the LP literature. In particular, FGLP solves a problem that is identical to that of the

LP for OSAC, which we show later. Since FGLP is an LP coordinate descent algorithm,

1http://mulcyber.toulouse.inra.fr/projects/toulbar2/
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it allows us to aim towards an optimal re-parameterization, yet terminating short of solv-

ing it to optimality, based on a given computation budget. We will compare our presented

dynamic re-parameterization schemes against the state-of-the art static mini-bucket based

schemes. We also present and experiment with a combination of the two approaches (the

static, mini-bucket-based and the dynamic, re-parameterization-based).

We present empirical results showing that on some problem instances for which static mini-

bucket evaluation is quite weak due to memory restrictions, the dynamic FGLP scheme

can prune the search space far more effectively, and in some cases this is carried out in a

cost-effective manner despite the significant overhead inherent in the dynamically generated

heuristics. We acknowledge however that the overhead of our dynamic re-parameterization is

often quite prohibited limiting its effectiveness both when applied in a pure form and within

a hybrid scheme.

We present the background in section 4.1, reviewing the framework of bounding via re-

parameterization and presenting the FGLP algorithm. In section 4.2, we present a new

version of the FGLP algorithm that employs scheduled updates, taking into account the

fact that it is used as a dynamic heuristic. In section 4.3, we present experimental results

comparing various settings of the dynamic and static heuristics and their performance in OR

search spaces. We conclude in the last section.

4.1 Background: Factor Graph Linear Programming

We discussed cost-shifting methods in the background in section 1.2.3.4. We briefly re-state

some of the concepts here once again to put FGLP, the core building block of the work in

this chapter, into context.

Recall that cost-shifting methods start from considering a bound the min-sum objective by
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exchanging the min and sum operators yielding

min
x

∑
fj∈F

fj(·) ≥
∑
fj∈F

min
x
fj(·), (4.1)

which can be viewed as optimizing each function independently. One view of this is that

each function has its own copy of each variable so each is optimized independently.

By introducing a collection of functions {λfj(Xi)|fj ∈ Fi} for each variable Xi and enforcing

that ∀Xi,
∑

fj∈Fi λfj(Xi) = 0 (so the global cost function does not change), we can define

a re-parameterization of the graphical model as follows

C∗ = min
x

∑
fj∈F

fj(·)

= min
x

∑
fj∈F

fj(·) +
∑

Xi∈Sfj

λfj(Xi)


≥
∑
fj∈F

min
x

fj(·) +
∑

Xi∈Sfj

λfj(Xi)

 (4.2)

The goal to optimize over Λ = {λfj(Xi)|fj ∈ Fi, Xi ∈ X} in order to maximize (4.2).

One common class of optimization methods is based on coordinate descent on each variable

Xi. Known as LP-tightening [25], a choice of λfj(Xi) that maximizes with respect to Xi is

making all min-marginals of the updated functions equal, where the min-marginal is defined

as γfj(Xi) = minSfj \Xi fj(·). We also define the average min-marginal over fj ∈ Fi by

γ̄Fi(Xi) =
1

|Fi|
∑
fj∈Fi

γfj(Xi)

Formally, we choose

λfj(Xi) = γ̄Fi(Xi)− γfj(Xi) (4.3)
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which can be shown to solve equality between the min-marginals.

The coordinate descent proceeds by repeatedly applying LP-tightening over different vari-

ables, thus updating a subset of the functions in the graphical model in each iteration such

that their min-marginals become equal. This process is carried out until convergence.

We now present the FGLP algorithm, which works by using the LP-tightening update.

Algorithm 15: FGLP(M,m) [25]

Input: Graphical Model M = 〈X,D,F〉, where fj is a function defined on variables
Sfj , number of iterations m

Output: Re-parameterized factors F′, bound on optimum value
1 for m iterations do
2 foreach variable Xi do
3 Let Fi = {fj|Xi ∈ Sfj}
4 ∀fj ∈ Fi, compute min-marginals:
5 γfj(Xi) = minSfj \Xi fj(·)

6 γ̄Fi(Xi) = 1
|Fi|
∑

fj∈Fi γfj(Xi)

7 ∀fj ∈ Fi, update parameterization:
8 fj(·)← fj(·) + γ̄Fi(Xi)− γfj(Xi)

9 return Re-parameterized factors F′ and bound
∑

fj∈F minx fj(·)

We show the pseudocode of FGLP in Algorithm 15. In contrast to the original presentation

in [25], we include a parameter m to explicitly control the number of iterations, where an

iteration is defined as a single loop over all the variables.

The time complexity of FGLP for a single iteration is O(n · |Fs| · l), where n is the number of

variables, k is the maximum domain size, |Fs| = maxi |Fi| is the largest number of functions

having the same variable Xi in their scopes, and a is the maximum arity of the functions, and

l ≤ ka bounds the number of entries in a single function. The space complexity is O(|F| · l),

the size of the input graphical model [21].
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4.2 Search with Dynamic FGLP Heuristics

In this work, we re-purpose the FGLP algorithm as a heuristic generator for branch-and

bound. The main idea is to not only apply it to the original problem, but also to each

conditioned subproblem during search. While we can generate valid heuristics by treating

FGLP as a black-box heuristic applied independently to each node in the search space, we

can make the process more efficient by exploiting the relationship along a path in the search

tree. In particular, any bound tightening performed earlier at a particular node can be

inherited by its children. This introduces a trade-off between time and accuracy for each

node expansion. In general, this process is similar to the method of heuristic generation in

the WCSP literature known as maintaining soft-arc consistency [30]. However, unlike our

setup, trade-offs explored in the WCSP literature focus on varying the strengths of soft-arc

consistency.

Algorithm 16: BB-FGLP(M,O,m,UB)

Input: Graphical model M = 〈X,D,F〉, where fj ∈ F is a function defined on
variables Sfj , variable ordering O, number of iterations for FGLP m, current
upper bound UB

Output: Optimal cost to M
1 if X = ∅ then return 0 ;
2 else
3 Apply FGLP onM for m iterations to generate re-parameterizedM′ = 〈X,D,F′〉
4 Xk ← SelectV ar(X) according to O
5 h(Xk)←

∑
f ′j∈F′

minSfj \Xk f
′
j(·) ; // Compute heuristic for each xk

6 foreach xk ∈ Dk do
7 if c′(Xk, xk) + h(Xk = xk) < UB then
8 UB ← min(UB, c′(Xk, xk) + BB-FGLP(M′(xk),O,m, UB − c′(Xk, xk)))

9 return UB

Our algorithm incorporating Branch-and-Bound (BB) with FGLP is presented in Algorithm

16. It finds the optimal solution toM on an OR search tree. It takes in an upper bound UB,

which is set to∞ at the root, and is used as a pruning threshold. Line 1 is a self-explanatory
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base case. Otherwise we perform the steps in lines 2-9. First, line 3 re-parameterizes the

problem by running FGLP for the specified number of iterations, creating problem M′. In

line 4, we select the variable based on the variable ordering. Line 5 computes the heuristic

for each value xk of variable Xk in a similar way to to the bound on C∗ shown in Equation

4.1, except we do not minimize over Xk. This generates a function of a single variable, Xk,

which provides a heuristic value for each xk. Lines 6-8 solves each subproblem formed by

conditioning Xk inM′ with xk (denotedM′(xk)). Within this loop, line 7 is a pruning check

which skips the subproblem based on its heuristic value and the arc cost. Line 8, updates the

UB value by recursively calling BB on the subproblem using the current UB value. Note

that the arc cost, denoted c′(Xk, xk), is defined by the re-parameterized function rather than

the original problem. Finally, line 9 returns the value UB, which is the optimal solution to

M.

The key difference here compared with regular BB for graphical model problems is that

we use M′ in the recursion, which is the re-parameterized version of problem M, thus any

updates performed by FGLP can by inherited by all children. This step allows FGLP to

start at a state potentially near convergence, thus maximizing the effectiveness of the m

iterations performed each time (or running fewer if a given convergence criterion is met).

Theorem 4.1 (complexity of BB-FGLP). Given a problem with n variables having a

maximum domain size of k with functions F having maximum arity a, the time complexity

of BB-FGLP is O(N ·m · n · |Fs| · l) and the space complexity is O(n · |F| · l), where N ≤ kn

bounds the size of the search space, |Fs| = maxi |Fi| is the largest number of functions having

the same variable Xi in their scopes, and l ≤ ka bounds the number of entries in a single

function.

Proof. For each node expansion, since FGLP is run once with m iterations, the time complex-

ity is O(n·m·|Fs|·l). Thus the total time complexity over the search space is O(N ·n·m·|Fs|·l)
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Each recursive call needs to make a copy of problem M′ before conditioning. The space re-

quired to store a copy of M′ is bounded by O(|F| · l). Since we store a copy for each node

along a depth-first path which is at most the maximum depth n, the space complexity is

O(n · |F| · l).

4.2.1 Improving FGLP for Branch-and-Bound

In the context of branch-and-bound, we have additional assumptions that can be made to

improve the performance of FGLP in the context of heuristic generation. In particular, since

we inherit the re-parameterization performed by FGLP prior to conditioning, it is likely that

the best candidates for re-parameterization in the conditioned problem are the functions that

were affected by the conditioning. At the same time, a standard round-robin schedule may

be wasting computation on updating parts of the problem that are already near convergence.

We address these issues in two steps as follows.

4.2.1.1 Normalization

The LP-tightening update used in FGLP (Equation 4.3) averages the min-marginals of all

functions. This has the effect of spreading the cost of the minimum of each function across all

functions. Consequently, all functions may be updated if changes via conditioning are made

to a small subset of the functions. This is a key step in the context of search with dynamic

heuristics. In order to reduce the number of updates needed in this situation, we normalize

the re-parameterized functions such that their minimum is zero. The LP is redefined to

enforce this condition below.

For each variable Xi, we introduce an additional constant λXi , therefore Λi = {λfj(Xi)|fj ∈

Fi} ∪ {λXi}.
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The new constraint set is as follows:

∀Xi ∈ X, λXi +
∑
fj∈Fi

λfj(Xi) = 0 (4.4)

which enforces no change to the global function of the graphical model, as before. Next,

∀fj ∈ F, min
x

fj(·) +
∑

Xi∈Sfj

λfj(Xi)

 = 0 (4.5)

is the normalization constraint enforcing that the resulting re-parameterization to the func-

tions have 0 as their minimum.

The λXi constants represent the cost that can be shifted out of all λfj(Xi) into a nullary

function f∅, which represents the global lower bound.

We now rewrite the objective (4.2) to include the λXi terms:

C∗ ≥
∑
Xi

λXi +
∑
fj∈F

min
x

fj(·) +
∑

Xi∈Sfj

λfj(Xi)

 (4.6)

From the normalization constraint (4.5), we can drop the second term, yielding

=
∑
Xi

λXi (4.7)

As before, Λ = {Λi|Xi ∈ X} and the objective is then to find an optimal set of functions Λ

to maximize (4.2), which can be interpreted as finding a re-parameterization that shifts as

much cost as possible to f∅.

The previous LP-tightening update (Equation 4.3) no longer satisfies the constraints, so we

derive a new, but similar update as follows. Here, we iteratively optimize over λXi , λfj(Xi),
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fixing all other λXk , λfj(Xk) s.t. Xk 6= Xi. So we want to solve the following local optimization

max
λXi ,λfj (Xi)

λXi +

∑
fj∈Fi

min
Sfj

fj(·) + λfj(Xi)


= max

λXi ,λfj (Xi)

λXi +

∑
fj∈Fi

min
Xi

[
min
Sfj \Xi

fj(·) + λfj(Xi)

]

Replacing terms with the min-marginal γfj(Xi),

= max
λXi ,λfj (Xi)

λXi +

∑
fj∈Fi

min
Xi

[
γfj(Xi) + λfj(Xi)

] (4.8)

≤ max
λXi ,λfj (Xi)

λXi +

min
Xi

∑
fj∈Fi

[
γfj(Xi) + λfj(Xi)

]

Here, if we choose λfj(Xi) = γ̄Fi(Xi)− γfj(Xi) = 1
|Fi|
∑

f ′j∈Fi
γf ′j(Xi)− γfj(Xi) as before, the

normalization constraint (4.5) is violated since this choice would yield

min
Xi

[
γfj(Xi) + γ̄Fi(Xi)− γfj(Xi)

]
= min

Xi
[γ̄Fi(Xi)]

To enforce this constraint, we subtract γ̄Fi(Xi) with its minimum minX′i γ̄Fi(X
′
i) yielding

min
Xi

[
γ̄Fi(Xi)−min

X′i

γ̄Fi(X
′
i)

]
= 0
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Thus, we choose to assign λfj(Xi) as

λfj(Xi) = γ̄Fi(Xi)−min
X′i

γ̄Fi(X
′
i)− γfj(Xi). (4.9)

Next, we also need to choose λXi . From constraint (4.4), we can directly solve for λXi .

λXi +
∑
fj∈Fi

λfj(Xi) = 0

λXi = −
∑
fj∈Fi

λfj(Xi)

Substituting in the λfj(Xi) terms we chose (4.9) and rearranging, we obtain

λXi = −
∑
fj∈Fi

[
γ̄Fi(Xi)−min

X′i

γ̄Fi(X
′
i)− γfj(Xi)

]
=
∑
fj∈Fi

min
X′i

γ̄Fi(X
′
i) = |Fi| ·min

X′i

γ̄Fi(X
′
i)

which serves to shift an equal amount of cost from each the average min-marginals into f∅.

Algorithm 17: Normalized FGLP-Variable-Update(Xi)

Input: Graphical Model M = 〈X,D,F〉, where fj is a function defined on variables
Sfj , variable Xi to update, current lower bound f∅

Output: Re-parameterized factors F′

1 Let Fi = {fj : Xi ∈ Sfj}
2 ∀fj ∈ Fi, compute min-marginals:
3 γfj(Xi) = minSfj \Xi fj(·)

4 γ̄Fi(Xi) = 1
|Fi|
∑

fj∈Fi γfj(Xi)

5 ∀fj ∈ Fi, update parameterization:
6 fj(·)← fj(·) + γ̄Fi(Xi)−minXi γ̄Fi(Xi)− γfj(Xi)
7 f∅ ← f∅ + minXi γ̄Fi(Xi)

8 return Re-parameterized F′ containing updates to fj with Xi in their scope

Algorithm 17 presents changes to the FGLP algorithm in terms of a single variable update,

using the above choices for λXi and λfj(Xi). Everything is identical the original FGLP
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algorithm (Algorithm 15) until lines 6-7. Here, we also subtract off the minimum of the

average min-marginal in order to enforce that the minimum of the resulting re-parameterized

fj(·) is 0. These quantities are then shifted into the nullary function f∅.

Theorem 4.2 (complexity of Normalized FGLP-Variable-Update). Given functions

Fi ⊆ F containing variable Xi in a graphical model, let k be the maximum domain size, a be

the maximum arity, and l ≤ ka bound the number of entries in a single function, then the

time complexity of Normalized FGLP-Variable-Update is O(|Fi| · l) and the space complexity

is also O(|Fi| · l).

Proof. Computing each min-marginal takes O(l) time. Since we need to do this |Fi| times,

the total time complexity is O(|Fi| · l). The space complexity is bounded by the size of the

functions to be updated, thus we also have O(|Fi| · l).

Note that the objective we derived (Equation 4.7), is equivalent to the OSAC objective in

[10]. In that work, enforcing OSAC was accomplished by using standard LP solvers such

as CPLEX. It was only applied to the original problem (i.e. at the root node of the search

space), being deemed to costly to maintain during search. However, this equivalence implies

that FGLP, which can be fine tuned to stop short of reaching the optimal solution to the

LP, is an alternative method that allows us to aim at maintaining OSAC, but stop short of

it if it is not cost-effective. Our update is also closely related to the one used in the MPLP

algorithm [23].

4.2.1.2 Scheduling Updates

FGLP updates the variables in a fixed order during each iteration. To further reduce the

number of updates required to tighten the bound, we propose a scheduling scheme that

identifies the most important variables to update. There are a number of works which
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aim to solve the general problem of update scheduling in related coordinate update based

algorithms. This includes scoring methods for either choosing entire regions for updates

[46] or adding entire clusters for higher order updates [3] for LP-based methods, but those

methods are less suitable in the context of being embedded in a complete search algorithm

which rapidly changes the functions by conditioning.

Thus, we consider Residual BP (RBP) [18], a variant of BP that defines a message update

schedule which enables better convergence properties. In BP, different parts of the graphical

model may converge at different rates when performing message updates. First, a message

norm ‖ · ‖ is used to measure the distance between two messages, which is computed by

treating the messages as vectors and taking vector norms (e.g. L1, L2, L∞,). The schedule is

based on maintaining a priority queue of messages by computing the residual of each message,

defined as the message norm between the current message and the message after the update

if it were applied. Thus, RBP computes the next message update for each message first, in

order to obtain the residuals, and then applies the message with the largest residual.

We can apply a similar method to variable updates in FGLP. In order to avoid computing the

updates beforehand, our priority for a given variable Xi are instead based on the previously

applied re-parameterizations to its neighboring variables. We redefine an iteration of FGLP

as a single variable update rather than a set of updates over all of the variables.

Definition 4.1 (FGLP variable update priority). At iteration t, the priority for Xi,

denoted pXi, is maxfj∈Fi maxk∈Sfj ‖λ
t−

fj
(Xk)‖, where λt

−

fj
(Xk) denotes the most recent re-

parameterization over Xk performed on function fj.

We present the full version of the FGLP algorithm with normalization and scheduling called

prioritized FGLP (pFGLP) in Algorithm 18. To stop the computation early we have two

parameters: a tolerance ε that stops updates with the highest priority pXi if it is less than ε,

and a maximum number of iterations m′. The algorithm loops to perform updates while the
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Algorithm 18: pFGLP(M, P, ε,m′)

Input: Graphical Model M = 〈X,D,F〉, where fj is a function defined on variables
Sfj , initial priorities P = {pXi |Xi ∈ X}, convergence tolerance ε, maximum
number of iterations m′

Output: Re-parameterized factors F′, bound on optimal value f ′∅, updated priorities
p′X1

, ...p′Xn
1 while maxXi pXi > ε and # iterations ≤ m do
2 Xi ← arg maxXi pXi
3 pXi ← 0
4 Let Fi = {fj : Xi ∈ Sfj}
5 ∀fj ∈ Fi, compute min-marginals and shift their minimum into f∅:
6 λfj(Xi) = minSfj \Xi fj(·)
7 λ′fj(Xi) = λfj(Xi)−minxi λfj(Xi)

8 f∅ ← f∅ + minxi λfj(Xi)

9 ∀fj ∈ Fi, update parameterization::
10 fj(·)← fj(·)− λfj(Xi) + 1

|Fi|
∑

f ′j∈Fi
λ′f ′j

(Xi)

11 ∀Xk ∈ Sfj \Xi, update priorities:
12 pXk ← max(pXk , ‖ 1

|Fi|
∑

f ′j∈Fi
λ′fj(Xi)− λfj(Xi)‖)

13 return Re-parameterized factors F′ and priorities p′X1
, ...p′Xn

maximum priority is greater than ε or the number of iterations m′ has not been exceeded

(line 1). In each iteration, the variable with the maximum priority is extracted and its

priority value is set to 0 (lines 2-3). The following lines are those of FGLP-Variable-Update

(Algorithm 17) (lines 4-10). Finally, we update all of the neighboring variable priorities with

a priority based on the magnitude of the update just performed on variable Xi in lines 11-12.

When applied to the original problem (or the root of the search space), the initial priorities

are initialized to ∞ to ensure each variable is updated at least once.

Theorem 4.3 (complexity of pFGLP). The time complexity is O(m′|Fs| ·l) and the space

complexity is O(·|F| · l), where m′ is the number of iterations, k is the maximum domain

size, a is the maximum function arity, |Fs| = maxi |Fi| is the largest number of functions

having the same variable Xi in their scopes, and l ≤ ka bounds the number of entries in a

single function. The space complexity is O(|F| · l).
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Proof. Each of the m′ iterations is a single execution of Normalized-FGLP-Variable Update,

thus yielding a time complexity is O(m′ · |Fs| · l). The space complexity, like FGLP, is

O(|Fs| · l) the size of the input graphical model.

As expected, the complexity is similar to that of FGLP, but the time complexity depends

on updating m′ variables rather then the coarser schedule which is mn variables, where n

is a fixed quantity. Thus, pFGLP gives us a finer-grained control of the time and accuracy

trade-off while performing more effective updates.

Algorithm 19: BB-pFGLP(M,O, P, ε,m, UB)

Input: Graphical model M = 〈X,D,F〉, where fj ∈ F is a function defined on
variables Sfj , variable ordering O, priorities P = {pXi |Xi ∈ X}, convergence
tolerance ε, number of iterations for each pFGLP m, current upper bound UB

Output: Optimal cost to M
1 if X = ∅ then return 0 ;
2 else
3 Apply pFGLP on M for m iterations using priorities P and tolerance ε to

generate re-parameterized M′ and updated priorities P ′

4 Xk ← SelectV ar(X) according to O
5 h(Xk)←

∑
f ′j∈F′

minSfj \Xk f
′
j(·) ; // Compute heuristic for each xk

6 foreach xk ∈ Dk do
7 if c′(Xk, xk) + h(Xk = xk) < UB then
8 foreach Xi ∈

⋃
f ′j∈F′k

Sf ′j do

9 p′Xi ←∞
10 UB ←

min(UB, c′(Xk, xk) + BB-pFGLP(M′(xk),O, P ′, ε,m, UB − c′(Xk, xk)))

11 return UB

For the sake of completeness, we present branch-and-bound once again, but using pFGLP

instead of FGLP in Algorithm 19. We discuss only the changes compared to BB-FGLP

(Algorithm 16) in the following. The algorithm’s parameters are changed (from BB-FGLP)

to include the priorities P , convergence tolerance ε, and iterations m (defined as single

variable updates). Line 3 also generates an updated set of priorities P ′. Before the recursive

call to BB-FGLP, we reset all the priorities in P ′ to ∞ for variables in functions that would
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be affected by the conditioning in lines 8-9. Indeed, the priorities play a larger role in this

context by allowing pFGLP to continue where it left off as nodes are expanded.

4.2.2 Search on Graphs

All of the above algorithms assume search on an OR tree. Naturally, the next step is

to consider search on an OR graph, which can be more compact. Graph search is often

implemented by using a cache indexed by the instantiated context that stores the cost of

optimally solved subproblems. However, due to the nature of re-parameterization which

shifts costs between functions, the information stored in the cache may be invalidated. The

main problem with the BB algorithms as presented is the use of the re-parameterized path

costs c′(Xk, xk) rather than ones based on the original problem. Thus, any optimal cost of

a subproblem is given in terms of the re-parameterized version instead of the original one.

In the following, we provide a simple analysis of the costs involved. Let f ∗(n) = g(n)+h∗(n)

denote the optimal cost through n in terms of the original parameterization and f ∗
′
(n) =

g′(n)+h∗
′
(n) denote the same quantity for some re-parameterization. Clearly, since f ∗(n) =

f∗′(n), we have g(n) + h∗(n) = g′(n) + h∗
′
(n). The goal in caching is to record the cost

of a subproblem rooted by n in terms of h∗(n) = g′(n) − g(n) + h∗
′
(n). Since BB-FGLP

returns h∗
′
(n) if the problem rooted by n is solved (and thus cached), we only need to keep

track of the complete path costs g′(n) and g(n) and apply the equation above. Thus, when

we encounter node n again, we do not need call BB-FGLP on it again. This adjustment

allows search to be performed on the same search graph defined by the original problem,

while using FGLP heuristics. This can also be viewed as a way for FGLP (or any type of re-

parameterizing method) to generate heuristics on subproblems in terms of the original local

functions without losing the benefits of maintaining the various re-parameterized versions

along a path of the search space.
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Algorithm 20: BB-pFGLP-C(M,O, P, ε,m, UB)

Input: Graphical model M = 〈X,D,F〉, where fj ∈ F is a function defined on
variables Sfj , variable ordering O, priorities P = {pXi |Xi ∈ X}, convergence
tolerance ε, number of iterations for each pFGLP m, current upper bound
UB, original path cost g, re-parameterized path cost gr, current path π,

Output: Cost to M ≤ UB, flag opt indicating whether the cost returned is the
optimal cost

1 Initialize: Cache← ∅
2 if X = ∅ then return (0, true);
3 else
4 Apply pFGLP on M for m iterations using priorities P and tolerance ε to

generate re-parameterized M′ and updated priorities P ′

5 Xk ← SelectV ar(X) according to O
6 h(Xk)←

∑
f ′j∈F′

minSfj \Xk f
′
j(·) + gr − g ; // Compute heuristic for each xk

7 opt← false
8 foreach xk ∈ Dk do
9 if c(Xk, xk) + h(Xk = xk) < UB then

10 if Cache(ctxt(Xk, π)) exists then
11 childcost← Cache(ctxt(Xk, π))
12 childopt← true

13 else
14 foreach Xi ∈

⋃
f ′j∈F′k

Sf ′j do

15 p′Xi ←∞
16 π′ ← π ∪ {(Xk, xk)}
17 g′ ← g + c(Xk, xk)
18 g′r ← g′r + c′(Xk, xk)
19 (childcost, childopt)←

BB-pFGLP-C(M′(xk),O, P ′, ε,m, UB − c(Xk, xk), g
′, g′r, π

′))

20 if c(Xk, xk) + childcost ≤ UB then
21 UB ← c(Xk, xk) + childcost
22 if childopt then
23 opt← childopt

24 if opt then
25 Cache(ctxt(Xk, π))← UB

26 return (UB, opt)

146



Algorithm 20 presents a version of BB-pFGLP that searches the OR graph instead, which

we call BB-pFGLP with caching (BB-pFGLP-C). To accomplish graph search, there are two

main changes: 1) the adjustment to the heuristic value as described above, and 2) a cache

which is indexed by the instantiations to the contexts. We discuss these changes one at a

time.

To implement the first change, we include two additional parameters g and gr to the input

which are used to keep track of the path costs with respect the original functions and the

re-parameterized functions, respectively. These are primarily used in line 6, which adds the

quantity gr−g to the heuristic value for each xk, thus h(Xk) becomes a heuristic with respect

to the original functions. Lines 17-18 are update g and gr with the arc costs according to the

original problem and re-parameterized problem, which are passed into the recursive call to

BB-pFGLP-C on line 19. Furthermore, UB is adjusted based on the original parameterization

as well.

With this change, it makes it so the arc costs of the search space are fixed, thus allowing

us to implement graph search using a cache. The cache is indexed by instantiations to the

contexts. To use the cache, we include a parameter π, which stores the partial assignment.

We use ctxt(Xk, π) to denote the instantiation to the context of Xk w.r.t. to π. The

algorithm also outputs whether the cost returned is the optimal cost, since a cost should

only be cached if it is. The main changes occur when we do not perform pruning (lines

10-23). Lines 10-12 retrieve the cost of the subproblem from the cache if it exists based on

the context. Otherwise, in lines 13-19, we proceed as before, recursively calling BB-pFGLP

on the child. Line 16 keeps track of the path π by appending the current child and is passed

into the recursive call. The call to BB-pFGLP-C on line 19 then returns the tuple containing

the cost of the subproblem and whether it is the exact optimal value. Lines 20-23 updates

the UB value as before, but also sets a flag to note whether this new value is the optimal

solution, which is only the case if the child’s cost was also optimal. Lines 24-25 caches the
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result UB’s most recent update in line 21 was from an optimal child.

Theorem 4.4 (complexity of BB-pFGLP-C). Given a problem with n variables having a

maximum domain size of k with functions F having maximum arity a and pathwidth pw, the

time complexity of BB-pFGLP is O(N ·m·n·|Fs|·l) and the space complexity is O(N+n·|F|·l),

where N ≤ nkpw bounds the size of the search space, |Fs| = maxi |Fi| is the largest number

of functions having the same variable Xi in their scopes, and l ≤ ka bounds the number of

entries in a single function.

Proof. The time complexity is identical to that of BB-FGLP (Algorithm 16), except that

the search space is smaller. The size of the OR graph is bounded by O(nkpw) [33], thus

N ≤ nkpw in this case. The space complexity is increased by O(N), since we may need to

cache each node [33].

4.3 Experiments

Benchmark # inst n k w pw |F | a

Block world 15
192 3 17 101 196 5
2695 3 60 1699 2703 5

WCSPs 61
16 2 5 10 58 2
1057 100 287 387 21787 3

Pedigree 22
298 3 15 86 335 4
1015 7 39 357 1290 5

CPD 46
11 48 10 10 67 2
115 198 114 114 6671 2

Table 4.1: Benchmark statistics for. # inst - number of instances, n - number of variables,
w - induced width, pw - pathwidth, k - maximum domain size, |F | - number of functions, a
- maximum arity. The top value is the minimum and the bottom value is the maximum for
that statistic.

In the following empirical evaluation, we experiment with FGLP and pFGLP as dynamic

heuristic generators for Branch-and-Bound on the OR search graph, (Algorithm 20 and a
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version using FGLP instead). We used several benchmarks including block world plan-

ning, WCSPs, pedigrees, and CPD (computational protein design). Table 4.1 presents

the ranges of problem parameters for each benchmark. We report the pathwidth pw here,

relevant for the BB-FGLP-C algorithm. We can see that the pathwidth is relatively high

compared with the number of deadends, implying that most caches are dead caches [15].

For every instance, we ran FGLP for 30 seconds as preprocessing and stochastic local search

(SLS) for a maximum of 10 seconds to generate an initial solution. The baseline algorithm

uses the static MBE-MM heuristic [25]. Our dynamic heuristic schemes consisted of both

pFGLP and FGLP as the heuristic generator, denoted d-pFGLP and d-FGLP respectively.

For d-pFGLP, we ran between 100 and 150 iterations per node and for dFGLP we ran

between 1 and 2 iterations (suffixed with N to indicate the number of updates in terms

of single variable updates). We will refer to these as pure dynamic schemes. For each

of d-pFGLP and d-FGLP, we also combined them together with MBE-MM by taking the

maximum heuristic value of the two. We will refer to these as hybrid dynamic schemes. We

used a time limit of 1 hour and memory limit of 1GB. All algorithms were implemented in

C++ and ran on a 2.66Ghz processor.

4.3.1 Evaluating for Exact Solutions

In this section, we compared MBE-MM against our dynamic heuristic schemes for finding an

exact solution. Tables 4.2, 4.3, 4.4, and 4.5 report the preprocessing time, total time, and

number of OR nodes expanded for each scheme. Figures 4.1, 4.2, 4.3, and 4.4 summarize

the performance of each scheme on each benchmark by plotting the number of instances

solved as a function of time.
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Block world planning

MBEMM

d-pFGLP(100) MBEMM+d-pFGLP(100)
problem d-pFGLP(150) MBEMM+d-pFGLP(150)

(n,w,pw,k,fn,ar,ib) d-FGLP(1N) MBEMM+d-FGLP(1N)
d-FGLP(2N) MBEMM+d-FGLP(2N)

ptime time nodes ptime time nodes ptime time nodes

36 36 0

32 36 6685 36 36 358
bw2 2 4 5 32 36 6625 36 37 331

(314,17,175,3,318,5,17) 32 39 7234 36 37 318
32 38 6761 36 37 335

38 38 0

33 2608 1648250 38 39 437
bw2 2 4 7 33 2549 1648182 38 39 437

(436,17,249,3,440,5,17) 33 2862 1648452 39 93 41942
33 2954 1648227 39 39 437

68 68 601

36 36 601 68 69 601
bw6 3 4 4 36 36 601 68 69 601

(600,34,354,3,607,5,16) 35 37 601 65 67 601
36 37 601 68 70 601

69 72 464803

44 76 18675 69 76 2791
bw6 3 4 5 43 76 18458 69 76 2534

(746,34,434,3,753,5,15) 43 89 18631 70 89 6172
43 88 18418 69 79 2440

76 610 66384363

47 392 96408 77 188 23648
bw6 3 4 6 48 202 48058 76 165 17514

(892,34,527,3,899,5,15) 47 398 66517 76 334 36176
47 323 45198 79 285 21745

103 - -

72 - - 103 241 21994
bw6 3 4 8 69 - - 104 308 38259

(1184,34,715,3,1191,5,15) 69 - - 128 579 34338
69 - - 104 590 61578

136 - -

123 270 12992 135 - -
bw7 4 4 6 125 226 9361 132 - -

(1627,58,1001,3,1635,5,13) 119 229 7899 136 - -
118 230 7043 132 - -

Table 4.2: Exact evaluation for block world instances. The best times and node counts
are boxed. If an optimal solution was not found, the time and nodes are marked as ’-’. We
also report the preprocessing time to the left of each total time. n - number of variables, w
- induced width, pw - pathwidth, k - maximum domain size, fn - number of functions, ar -
maximum function arity, ib - i-bound used for MBE-MM.

4.3.1.1 Block World Planning

Table 4.2 shows results for selected instances from the block world planning benchmark.

This benchmark contains a fair amount of determinism that can be exploited with condition-

ing and methods such as FGLP. Some instances are solved by MBE-MM, since we could use

an i-bound which is equal to the induced width. However, for harder instances, we see that

the FGLP heuristics could be useful. For example, on bw6 3 4 6, all of the pure dynamic

schemes have about half the runtime of MBE-MM, and search about an order of 103 fewer

nodes. Yet, the hybrid scheme yields even better performance here, with even lower runtime

and fewer nodes. Finally, the last two instances timed out when using static heuristics, but

were solvable using either the pure or hybrid dynamic schemes.

Figure 4.1 shows the number of instances solved in this benchmark over time. Many of the
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Figure 4.1: Number of instances solved by time over all block world instances. A line that
is farther to the right and lower is better.

instances are quite easy for all of the methods. However, with the static MBE-MM heuristic,

we solve just 8 instances. Overall, the hybrid scheme using d-pFGLP at 100 iterations is the

best performer here.

4.3.1.2 WCSPs

Table 4.3 shows results for selected instances from the WCSP benchmark. Some instances

in this benchmark have high domain sizes, thus drastically decreasing the highest feasible

i-bound for MBE-MM. For example, on bwt5ac.wcsp, the domain size is 27, allowing the

i-bound to be just 5. This problem is quite difficult, having an induced width of 61. Indeed,

the static MBE-MM heuristic times out, but all of the dynamic heuristics were able to solve

the problem relatively quickly in under 3 minutes. On most instances here, the number of

nodes expanded using a dynamic heuristic is usually smaller. However, this is not always the

case. For instance, on queen5 5 4.wcsp, the i-bound is sufficiently high, thus the MBE-MM
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Weighted CSPs

MBEMM

d-pFGLP(100) MBEMM+d-pFGLP(100)
problem d-pFGLP(150) MBEMM+d-pFGLP(150)

(n,w,pw,k,fn,ar,ib) d-FGLP(1N) MBEMM+d-FGLP(1N)
d-FGLP(2N) MBEMM+d-FGLP(2N)

ptime time nodes ptime time nodes ptime time nodes

30 30 0

30 3229 4239791 30 30 0
GEOM30a 3.wcsp 30 - - 30 30 0
(30,6,15,3,82,2,6) 30 1735 8466176 30 30 0

30 1506 4827347 30 30 0

76 243 33188442

30 - - 76 3577 1645072
myciel5g 4.wcsp 30 - - 76 - -

(47,19,26,4,237,2,11) 30 - - 76 - -
30 - - 76 3365 2743578

80 92 2773158

30 1026 353526 79 732 282346
queen5 5 4.wcsp 30 1335 318584 79 935 253766

(25,18,21,4,161,2,11) 30 719 1075466 79 457 745422
30 629 599570 74 414 462678

67 - -

42 135 3686 67 158 3791
bwt5ac.wcsp 41 112 2650 67 146 2614

(431,61,165,27,9246,2,5) 42 95 1527 67 120 1516
42 87 934 68 113 940

67 - -

41 - - 67 - -
driverlog05ac.wcsp 41 - - 67 - -

(351,66,177,11,6493,2,6) 42 - - 68 - -
41 3260 182543 70 3245 182349

78 93 1986417

30 31 330 78 79 332
satellite01ac.wcsp 30 32 295 78 79 294
(79,19,34,8,744,2,7) 30 32 399 77 79 399

30 31 199 77 78 199

61 61 1259

31 31 105 62 62 201
zenotravel02ac.wcsp 31 31 99 61 62 190
(116,18,41,19,1203,2,6) 31 31 84 61 62 84

31 31 62 67 67 62

131 - -

30 40 1176 139 151 13492
CELAR6-SUB0.wcsp 30 41 1825 138 149 10808

(16,7,10,44,58,2,4) 30 49 8776 137 155 9881
30 42 5324 137 151 18690

54 54 2188

30 32 755 54 56 101
graph05.wcsp 30 32 755 54 56 101

(100,24,60,44,417,2,3) 30 43 3062 54 55 101
30 43 3062 54 55 101

30 30 0

30 882 342791 30 30 0
54.wcsp 30 1184 326976 30 30 0

(67,11,22,4,272,3,11) 30 497 529156 30 30 0
30 596 418783 30 30 0

Table 4.3: Exact evaluation for WCSP instances. The best times and node counts are
boxed. If an optimal solution was not found, the time and nodes are marked as ’-’. We also
report the preprocessing time to the left of each total time. n - number of variables, w -
induced width, pw - pathwidth, k - maximum domain size, fn - number of functions, ar -
maximum function arity, ib - i-bound used for MBE-MM.

heuristic maintains its dominance. In the extreme when the i-bound is equal to the induced

width (e.g. GEOM30a 3.wcsp), no search is needed, while it can be difficult for the dynamic

heuristics to perform well.

Figure 4.2 summarizes by plotting the number of instances solved over time. The pure

dynamic schemes are not cost-effective on half of the instances here, which correspond to

problems where the i-bound used for MBE-MM was close to the induced width. The hybrid

schemes are overall superior here, showing the ability to perform well on instances where

MBE-MM is strong and where dynamic FGLP is strong. This is seen with how the hybrid
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Figure 4.2: Number of instances solved by time over all WCSP instances. A line that is
farther to the right and lower is better.

scheme maintains a low runtime for most instances comparable to MBE-MM while also

solving more instances than MBE-MM.

4.3.1.3 Pedigree

Table 4.4 shows the results on the pedigree instances. We show a subset containing

the hardest instances that could still be solved within the time limit in the table. The

dynamic schemes perform poorly on this benchmark. Although, the hybrid scheme can

produce stronger heuristics for some configuration of pFGLP/FGLP with a certain number

of iterations on each of the instances that were solved, as demonstrated by the lower numbers

of nodes expanded, it was never cost effective. None of the pure dynamic schemes solved

any of the instances shown within the time limit.

Figure 4.3 plots the number of instances solved over time for this benchmark. Indeed, we

see that the pure dynamic schemes only managed to solved 3 of the instances with worse
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Pedigree networks

MBEMM

d-pFGLP(100) MBEMM+d-pFGLP(100)
problem d-pFGLP(150) MBEMM+d-pFGLP(150)

(n,w,pw,k,fn,ar,ib) d-FGLP(1N) MBEMM+d-FGLP(1N)
d-FGLP(2N) MBEMM+d-FGLP(2N)

ptime time nodes ptime time nodes ptime time nodes

61 117 8020188

39 - - 61 - -
pedigree7 39 - - 61 - -

(867,28,259,4,1069,4,18) 39 - - 62 - -
39 - - 62 - -

56 688 122555546

44 - - 60 - -
pedigree13 44 - - 60 - -

(888,32,312,3,1078,4,20) 44 - - 60 - -
45 - - 60 - -

59 74 515627

49 - - 62 75 3742
pedigree25 49 - - 62 113 17031

(993,23,259,5,1290,5,21) 49 - - 62 3158 667854
49 - - 62 3561 653074

65 713 94359897

51 - - 70 - -
pedigree31 51 - - 70 - -

(1006,30,343,5,1184,5,17) 52 - - 70 - -
52 - - 70 - -

50 1134 144332505

39 - - 51 - -
pedigree34 39 - - 51 - -

(922,28,274,5,1161,4,15) 39 - - 51 - -
40 - - 51 - -

50 58 493931

37 - - 50 332 78139
pedigree44 37 - - 50 344 78139

(644,24,257,4,812,5,20) 37 - - 50 1803 500221
37 - - 50 2283 502428

38 53 2346914

31 - - 38 1828 756009
pedigree50 31 - - 38 1763 736027

(478,16,168,6,515,4,10) 31 - - 38 2140 760121
32 - - 38 3074 749242

Table 4.4: Exact evaluation for pedigree instances. The best times and node counts are
boxed. If an optimal solution was not found, the time and nodes are marked as ’-’. We also
report the preprocessing time to the left of each total time. n - number of variables, w -
induced width, pw - pathwidth, k - maximum domain size, fn - number of functions, ar -
maximum function arity, ib - i-bound used for MBE-MM.

runtimes. While the hybrid scheme was able to extend the reach of the number of problems

solved with respect to the dynamic heuristics, there were also cases where the overhead of the

dynamic portion of the heuristic resulted in timeouts. The static MBE-MM scheme alone

was overall dominant in terms of the both the number of problems solved and runtime.

4.3.1.4 Computational Protein Design

Table 4.5 shows results on selected instances of the CPD benchmark. This benchmark has

the notable property of all the structures being complete graphs. Thus, the induced width

of each problem is always n − 1. It also contains variables with very high domain size (up

to 194). These factors make it challenging for static MBE-MM. Indeed, the pure dynamic

schemes tend to perform better here. On many of the instances shown here, the number of

variables is relatively low compared to other benchmarks, so static MBE-MM is still able to
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Figure 4.3: Number of instances solved by time over all pedigree instances. A line that is
farther to the right and lower is better.

solve some of these instances. However, the instances tend to be trivially easy for dynamic

FGLP heuristics in a number of cases, expanding only under 1000 nodes. For example, on

1BK2, a significant amount of time was spend constructing the MBE-MM heuristic (about 40

seconds), followed by 12 more seconds for search to find the solution. However, the dynamic

schemes provided nearly exact heuristics, solving the problem with just 4 seconds of search

without the need for large preprocessing (other than the initial 30 seconds of FGLP we ran

for every setting). On the much harder 2TRX, the static MBE-MM heuristic times out,

while all of the dynamic schemes manage to solve the problem.

Figure 4.4 plots the number of instances solved by time for these instances. While the static

MBE-MM scheme performs decently overall, the pure dynamic schemes dominate it. The

hybrid schemes here perform worse than the pure dynamic schemes, but still outperform

MBE-MM alone. Overall, the pure dynamic schemes using pFGLP were best here, with

similar performance between the two iteration settings.
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Protein CPD

MBEMM

d-pFGLP(100) MBEMM+d-pFGLP(100)
problem d-pFGLP(150) MBEMM+d-pFGLP(150)

(n,w,pw,k,fn,ar,ib) d-FGLP(1N) MBEMM+d-FGLP(1N)
d-FGLP(2N) MBEMM+d-FGLP(2N)

ptime time nodes ptime time nodes ptime time nodes

70 82 329336

30 35 28 70 75 32
1BK2.mat... 30 34 25 70 74 27

(24,23,23,182,301,2,3) 30 35 133 70 75 165
30 34 85 71 77 96

62 62 1850

30 31 59 62 63 58
1CSK.mat... 30 31 36 64 66 36

(30,29,29,49,466,2,4) 30 31 83 64 64 83
30 30 66 66 66 66

53 78 139403

33 34 1 54 54 1
1ENH.mat... 33 34 1 53 53 1

(36,35,35,182,667,2,2) 33 - - 54 - -
35 - - 54 - -

98 98 35

30 31 35 99 99 35
1NXB.mat... 30 31 35 99 100 35

(34,33,33,56,596,2,4) 30 30 35 102 102 35
30 30 35 106 107 35

631 1150 14992222

31 960 582 712 1534 585
1PIN.mat... 31 1350 325 636 1612 322

(28,27,27,194,407,2,3) 31 1589 10086 646 2291 10089
31 1071 3049 645 1650 3054

119 123 218381

31 34 133 241 246 195
1TEN.mat... 30 37 176 131 136 139

(39,38,38,66,781,2,4) 31 37 539 123 128 475
30 37 390 133 139 348

52 52 29

30 50 33 52 53 19
2PCY.18p... 30 31 19 52 53 19

(18,17,17,48,172,2,3) 30 30 34 52 52 20
30 30 32 52 52 19

176 - -

32 604 3607 187 677 3584
2TRX.mat... 32 893 3250 225 994 3121

(61,60,60,186,1892,2,4) 32 300 4272 270 509 4042
32 316 3343 250 575 3630

Table 4.5: Exact evaluation for CPD instances. The best times and node counts are boxed.
If an optimal solution was not found, the time and nodes are marked as ’-’. We also report
the preprocessing time to the left of each total time. n - number of variables, w - induced
width, pw - pathwidth, k - maximum domain size, fn - number of functions, ar - maximum
function arity, ib - i-bound used for MBE-MM.

4.3.1.5 Discussion

Many of the results we saw performed as expected. Namely, on instances such as the pedi-

grees where the static MBE-MM scheme can execute with a sufficiently high i-bound, the

static heuristics much more cost-effective. On the other hand, when the feasible i-bound for

MBE-MM was drastically decreased from due to large variable domain sizes, the dynamic

schemes perform are stronger and cost-effective, often solving instances that the static heuris-

tic timed out on. In some cases, pFGLP performed worse than FGLP likely due to overhead

in maintaining the priority queue for scheduling updates. However, it still maintained an

advantage over MBE-MM whenever FGLP did. Overall, we demonstrate here that dynamic

FGLP schemes should be used instead of static MBE-MM on hard problems with high vari-

able domain sizes and high induced width.
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Figure 4.4: Number of instances solved by time over all CPD instances. A line that is
farther to the right and lower is better.

4.3.2 Anytime Behavior

We next report on the anytime performance of the different heuristics. Figures 4.5, 4.6,

4.7, and 4.8 plot upper bounds on the optimal solution as a function of time on 2 selected

instances from each benchmark. To reduce clutter, the legend on these plots abbreviates the

algorithms: MM for MBE-MM and F for FGLP.

Tables 4.6, 4.7, 4.8, and 4.9 give an account of the anytime performance of all the hardest

instances in each benchmark by reporting the percentage of instances for which a heuristic

obtains the best solution at time bounds of 45, 60, 600, 1200, 2400, and 3600 seconds.

4.3.2.1 Block World Planning

Figure 4.5 shows the anytime performance on 2 selected instances from the block world

benchmark. There is generally not a lot of change in the solution quality in these instances.

157



Figure 4.5: Upper bounds as a function of time for two instances from the block world
benchmark. Lower is better. The dotted gray line indicates the optimal solution, if known.

Time bound (sec)
Block world,#inst = 10, n = 600-2695, k = 3-3, w = 34-60, pw = 354-1699

Heuristic 45 60 600 1200 2400 3600
MBEMM 1.00 1.00 0.80 0.80 0.80 0.70

d-pFGLP(100) 1.00 1.00 0.90 0.90 0.90 0.80
d-pFGLP(150) 1.00 1.00 0.90 0.90 0.90 0.80
d-FGLP(1N) 1.00 1.00 0.90 0.90 0.90 0.80
d-FGLP(2N) 1.00 1.00 0.90 0.90 0.90 0.80

MBEMM+d-pFGLP(100) 1.00 1.00 0.90 0.90 0.90 0.80
MBEMM+d-pFGLP(150) 1.00 1.00 0.90 0.90 0.90 0.90
MBEMM+d-FGLP(1N) 1.00 1.00 0.90 0.90 0.90 0.80
MBEMM+d-FGLP(2N) 1.00 1.00 0.90 0.90 0.90 0.80

Table 4.6: Percentage of instances for which a heuristic finds the best solution amongst all
of the heuristics. #inst - the number of instances, n - number of variables, k - maximum
domain size, w - induced width, pw - pathwidth.

On bw6-3-4-5, all of the algorithms begin with the same initial solution obtained by stochastic

local search (SLS) at an early stage and reach the optimal solution at about the same time.

Here, the static MBE-MM heuristic is slightly superior. On the more difficult bw6-3-4-8, we

see a grouping in the behavior across the algorithms. The static MBE-MM heuristic does

not manage to improve over the initial SLS solution, while the pure FGLP heuristics improve

once. The hybrid heuristics improve once to the solution the pure FGLP heuristics obtain,

then improve again to the optimal solution. On this particular instance, the hybrid scheme

using pFGLP with 100 iterations performed best.
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Table 4.6 provides winning percentages for each algorithm at various time points. All of

the dynamic schemes have about the same performance at all times, except for the hybrid

using pFGLP with 150 iterations at the final time point of 3600 where it performs better

than the rest of the algorithms. The static MBE-MM heuristic starts to fall behind at 600

seconds. Like in the exact evaluation, the hybrid scheme gets the best of both the static and

dynamic heuristics on this benchmark.

4.3.2.2 Pedigree

Figure 4.6: Upper bounds as a function of time for two instances from the pedigree bench-
mark. Lower is better. The dotted gray line indicates the optimal solution, if known.

Figure 4.6 shows the results for 2 representative instances from the pedigree benchmark.

Like the previous benchmark, there is relatively little change in the upper bounds over time.

On pedigree7, nearly all of the schemes obtain the optimal solution quickly and the rest of

the time is spent exhausting the search space to prove optimality. For harder instances such

as pedigree40, all algorithms began with the initial solution from SLS, but could not improve

it over time.

Table 4.7 summarizes the anytime performance over the entire benchmark via winning

percentages for each algorithm. As expected and also observed in the previous section on

exact evaluation, the static MBE-MM heuristic is dominant, winning on almost all of the
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Time bound (sec)
Pedigree,#inst = 15, n = 390-1006, k = 3-7, w = 16-39, pw = 125-357

Heuristic 45 60 600 1200 2400 3600
MBEMM 0.93 0.93 1.00 1.00 1.00 0.93

d-pFGLP(100) 0.87 0.80 0.60 0.60 0.67 0.67
d-pFGLP(150) 0.93 0.87 0.60 0.67 0.73 0.67
d-FGLP(1N) 0.87 0.80 0.60 0.67 0.73 0.67
d-FGLP(2N) 1.00 0.87 0.73 0.73 0.80 0.73

MBEMM+d-pFGLP(100) 0.93 0.80 0.87 0.87 0.93 0.87
MBEMM+d-pFGLP(150) 0.93 0.80 0.87 0.87 0.93 0.87
MBEMM+d-FGLP(1N) 0.93 0.80 0.80 0.80 0.93 0.87
MBEMM+d-FGLP(2N) 0.93 0.80 0.80 0.80 0.87 1.00

Table 4.7: Percentage of instances for which a heuristic finds the best solution amongst all
of the heuristics. #inst - the number of instances, n - number of variables, k - maximum
domain size, w - induced width, pw - pathwidth.

instances for nearly all time points. Though there are time points at the beginning and end

where one of the dynamic schemes is better than the static heuristic, it is clear that the

static MBE-MM heuristic is preferred for the anytime performance on this benchmark.

4.3.2.3 WCSPs

Figure 4.7: Upper bounds as a function of time for two instances from the WCSP bench-
mark. Lower is better. The dotted gray line indicates the optimal solution, if known.

Figure 4.7 shows the performance for 2 instances from the WCSPs. Here we, see that

the pure dynamic schemes dominate on these two difficult instances. On the first instance,

160



Time bound (sec)
WCSP,#inst = 52, n = 14-1057, k = 2-100, w = 7-287, pw = 10-387

Heuristic 45 60 600 1200 2400 3600
MBEMM 0.87 0.83 0.83 0.83 0.83 0.85

d-pFGLP(100) 0.92 0.88 0.83 0.83 0.83 0.83
d-pFGLP(150) 0.90 0.85 0.81 0.81 0.81 0.81
d-FGLP(1N) 0.90 0.87 0.83 0.83 0.81 0.81
d-FGLP(2N) 0.96 0.94 0.90 0.90 0.88 0.88

MBEMM+d-pFGLP(100) 0.83 0.79 0.77 0.79 0.79 0.79
MBEMM+d-pFGLP(150) 0.83 0.79 0.77 0.79 0.79 0.79
MBEMM+d-FGLP(1N) 0.85 0.81 0.79 0.81 0.83 0.83
MBEMM+d-FGLP(2N) 0.87 0.83 0.81 0.81 0.83 0.83

Table 4.8: Percentage of instances for which a heuristic finds the best solution amongst all
of the heuristics. #inst - the number of instances, n - number of variables, k - maximum
domain size, w - induced width, pw - pathwidth.

CELAR6-SUB2.wcsp, the pure dynamic heuristics obtain much better solution than the

static heuristic early on. It is also better than the hybrid schemes here. However, with more

time, the hybrids MBEMM+dFGLP obtain a slightly better solution. On the other hand,

the hybrid scheme performs worst on graph11.wcsp, having a solution that is much worse

than even the static heuristic alone. Still, the pure dynamic schemes are all better than the

static heuristic. All variants of the pure dynamic scheme performed similarly here on both

instances.

Table 4.8 gives an account of the anytime performance on all the instances. Performance is

similar across the algorithms, but the pure d-FGLP(2N) scheme dominates the rest here for

all time bounds. A large majority of the instances in this benchmark tend to be unfavorable

for MBE-MM due to the large domain sizes present. In contrast with the results seen for

evaluating exact solutions, the pure dynamic schemes work well in the anytime context on

most of this benchmark.
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Figure 4.8: Upper bounds as a function of time for two instances from the CPD benchmark.
Lower is better. The dotted gray line indicates the optimal solution, if known.

Time bound (sec)
CPD,#inst = 46, n = 11-115, k = 48-198, w = 10-114, pw = 10-114

Heuristic 45 60 600 1200 2400 3600
MBEMM 0.26 0.28 0.65 0.76 0.78 0.78

d-pFGLP(100) 0.85 0.85 0.93 0.89 0.93 0.96
d-pFGLP(150) 0.78 0.91 0.93 0.93 0.98 0.98
d-FGLP(1N) 0.85 0.85 0.89 0.85 0.87 0.87
d-FGLP(2N) 0.96 0.91 0.91 0.91 0.93 0.93

MBEMM+d-pFGLP(100) 0.26 0.30 0.83 0.85 0.93 0.98
MBEMM+d-pFGLP(150) 0.26 0.28 0.85 0.91 0.96 0.98
MBEMM+d-FGLP(1N) 0.26 0.30 0.80 0.83 0.87 0.89
MBEMM+d-FGLP(2N) 0.26 0.30 0.83 0.85 0.93 0.96

Table 4.9: Percentage of instances for which a heuristic finds the best solution amongst all
of the heuristics. #inst - the number of instances, n - number of variables, k - maximum
domain size, w - induced width, pw - pathwidth.

4.3.2.4 Computational Protein Design

Figure 4.8 presents the anytime performance for 2 CPD instances. Almost all of the

dynamic schemes behave similarly on these instances. On the 1BRS instance, all but MBE-

MM and MBE-MM+dFGLP(2N) have similar anytime profiles. There is, however, some

variance, as MBE-MM+dFGLP(150) performs slightly better out of the rest. Still most of

the schemes converge to the same solution given enough time. The other instance, 2DHC, is

easier with a lower induced width. Here, MBE-MM remains competitive with the dynamic

162



schemes. We also see that both d-pFGLP schemes perform worse than the rest here, while

the MBE-MM+d-pFGLP schemes are best.

Table 4.9 summarizes the anytime performance. The pure d-FGLP(2N) scheme performs

the best at low time bounds below 60 seconds. Notably, both MBE-MM alone and the

hybrid schemes are very poor at low time bounds, due to the long preprocessing time for

MBE-MM on these instances. At above 60 seconds, the pure d-pFGLP(150) scheme leads

the way, providing the best solutions at all other time bounds. The hybrid schemes using

d-pFGLP also catch up over time, eventually converging to the same performance.

4.3.2.5 Discussion

Many of the positive or negative impacts we observed carried over from the exact evaluation

to this anytime evaluation. The same conclusions can be made, that hard problems having

large domain sizes are prime candidates for dynamic FGLP heuristics. We also saw once again

that performance was unfavorable on benchmarks where the static MBE-MM works well on

like the pedigrees. Still, we demonstrated the strength of both FGLP as a pure dynamic

scheme and as a component of a hybrid scheme with MBE-MM on the other benchmarks.

4.4 Conclusion

We demonstrated how to use FGLP as a dynamic heuristic generator. In particular, we

derived a new version of FGLP with a schedule for updates and in the process, established

its direct connection with optimal soft arc-consistency. We then conducted an empirical

evaluation on using both the new and old version of FGLP as heuristics, as well as combining

them with MBE-MM to generate a superior heuristic. This demonstrated how dynamic

heuristics are preferable on many instances known to be difficult when using static heuristics.
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Our pFGLP algorithm was not always superior to the FGLP algorithm alone when used as

a dynamic heuristic generator. Though it converges in fewer iterations, it needs to maintain

a priority queue, which requires extra work to maintain. We also did not experiment with

running more than 150 iterations per node, which can be fewer than what FGLP would run

in a single round-robin pass over the variables on a number of problems. Further empirical

work tuning the number of iterations to each problem for pFGLP would shed more light on

the relationship between pFGLP and FGLP.

The most important method we did not incorporate our heuristics into is search with dynamic

variable orderings, which are proven to be effective for dynamic heuristics, as seen in solvers

such as toulbar. Although, moving to dynamic variable orderings would not allow for a

hybrid scheme, we expect the dynamic FGLP heuristics to perform much better when it is

able to exploit structure with minimal amounts of conditioning, allowing for larger portions

of the search space to be pruned off sooner. This would also allow a comparison of FGLP

with the existing soft arc-consistency methods to know where FGLP stands in the spectrum

of cost-shifting based heuristics.
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Chapter 5

Extensions to AND/OR Multi-valued

Decision Diagrams

In this chapter, we explore AND/OR Multi-valued Decision Diagrams (AOMDDs), which

combines the two frameworks of AND/OR search spaces and Multi-valued Decision Diagrams

(MDDs). Decision diagrams are generally used to represent functions compactly, widely used

in formal verification [6].

The main motivation of AOMDDs [37] is to compile the global function into a more compact

and explicit representation on which queries can be answered in linear time.

Our main contribution over [37] is the introduction of an elimination operator for AOMDDs,

thus allowing the use of AOMDDs as a alternative representation to the tabular representa-

tion of functions in graphical models. This facilitates query processing on otherwise difficult

problems having high treewidth. Similar work is presented in [7], where an algebraic decision

diagram (ADD) structure is considered. In [45], ADDs are extended with affine transforma-

tions to capture additive and multiplicative structures in graphical models. However, AND

problem decomposition is still not exploited in these alternative decision diagram variants.

We perform an empirical evaluation of the BE-AOMDD algorithm first presented in [36] to
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generate an AOMDD. Next, we present BE-AOMDD-I, which is the standard bucket elimi-

nation algorithm using AOMDDs to represent all functions and messages and demonstrate

its performance for exact inference.

The rest of this chapter is organized as follows: section 5.1 provides background on decision

diagrams in general and previous work on AOMDDs. Section 5.2 presents our main contri-

bution of the elimination operator for AOMDDs. Section 5.3 presents the empirical results

and section 5.3.3 concludes.

5.1 Background

A decision diagram is a compilation of a function that exploits problem function structure to

create a compact representation. Let us consider the most basic version of a binary decision

diagram (BDD).

Definition 5.1. (binary decision diagram (BDD)) Given B = {0, 1}, a BDD is a

directed acyclic graph representing a boolean function f : BN ⇒ B. The graph has two

terminal nodes 0 and 1 that represent the right-hand side of the mapping. Each internal

node corresponds to one of the N boolean variables each with two pointers to either other

internal nodes or terminal nodes.

A BDD is defined relative to a variable ordering. Figure 5.1b shows a decision tree that

represents the function in Figure 5.1a along ordering (A,B,C). Each node corresponds to

a variable, dotted edges correspond to a value of 0, and solid edges correspond to a value of

1. The leaf nodes correspond to the value of the function along a path. There are now two

reduction rules that can be applied [5]:

• isomorphism: merge nodes of the same variable that have the same children.
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(a) Tabular representation (b) Decision tree

(c) Isomorphic nodes (d) Redundant nodes (e) Reduced Ordered Binary
Decision Diagram (OBDD)

Figure 5.1: BDD Example: from table to OBDD (from [37])

• redundancy : delete nodes whose children are identical and connect its parent to that

child.

Applying both of these rules yields the canonical reduced ordered binary decision diagram

(OBDD) [5].

Continuing the example, we can first merge the leaves with the same value, yielding the

graph in Figure 5.1c. However, we can merge more nodes here, since the marked C nodes

are isomorphic. Carrying out this merge yields the graph in Figure 5.1d. Here, we can

identify redundant nodes (the marked B and C nodes). Applying the rule removes them

and redirects their parents’ arcs toward the terminal 0 and remaining C node, respectively.

This results in the OBDD in Figure 5.1e.

An important property of the OBDD is that it is a canonical compact representation of the

function with respect to the chosen variable ordering. The extension of BDDs to non-binary
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variables is straightforward, yielding multi-valued decision diagrams (MDDs).

5.1.1 AND/OR Multi-Valued Decision Diagrams

The AND/OR Multi-valued Decision Diagram (AOMDD), which is a compact representation

of an AND/OR search graph was introduced in [36]. It is a data structure based on applying

the reduction rules of decision diagrams to (weighted) context-minimal AND/OR search

graphs [37]. The basic unit of an AOMDD is the meta-node, which groups OR and their

AND child nodes together. We provide the following definitions and notation from [37].

Definition 5.1 (meta-node). A meta-node u in an AOMDD is either: (1) a terminal node

labeled with 0 or 1, or (2) a nonterminal node grouping an OR node labeled with a variable

X and its k AND children labeled xi representing each assignment to X. Each AND node

stores a set of pointers to child meta-nodes, denoted u.childreni. Additionally, the AND

node stores a weight u.c(X, xi) for weighted graphical models.

An example of an AOMDD and its meta-nodes can be seen in Figure 5.2c.

Definition 5.2 (isomorphic meta-node [37]). Given a weighted AND/OR search graph

represented with meta-nodes, two meta-nodes u and v having var(u) = var(v) = X with

domain size k are isomorphic iff

1. ∀i ∈ {1, . . . , k} u.childreni = v.children.i, and

2. ∀i ∈ {1, . . . , k} u.c(X, xi) = v.c(X, xi)

Definition 5.3 (redundant meta-node [37]). Given a weighted AND/OR search graph

represented with meta-nodes, a meta-nodes u having var(u) = X with domain size k is

redundant iff the child nodes and the arc-costs are all the same. Namely if,

1. u.children1 = . . . = u.childrenk and
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(a) Two possible distributions of weights for the function on the left

(b) AOMDD with meta-node B normalized (c) Normalized AOMDD with a canonical
distribution of weights

Figure 5.2: Weight normalization example for AOMDDs.

2. u.c(X, x1) = . . . = u.c(X, xk)

Even with the reduction rules applied, AOMDDs are not yet canonical representations a

graphical models such as Bayesian networks, Markov networks, or weighted CSPs. This is

due to how weights along the paths can be factorized in many ways to yield the same cost.

We illustrate this with an example in Figure 5.2. The top part shows a function in a tabular

representation along with two AOMDDs with the same structure, but different weights.

Recall that like in weighted AND/OR search graphs, the cost of a solution is the product of

the arc costs in a solution graph. In this case, when taking identical solutions trees between

each of the AOMDDs, the resulting product is equal. However, based on the definition of

isomorphism given above, these two AOMDDs would not be considered isomorphic since their

weights differ. In order to restore this property, we can normalize the weights. Namely, we
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require that the weights of AND nodes within a metanode sum to 1. The weights of AOMDD

can be normalized by processing nodes bottom-up. In our example, taking the first AOMDD

in Figure 5.2a, we take the weights of B and sum them up, yielding 0.24 + 0.56 = 0.8. We

normalize each of these weights by dividing each by 0.8, yielding 0.3 and 0.7, respectively,

then propagating up the normalizer 0.8 to its parent, yielding the graph in Figure 5.2b.

Following this, we normalize the weights of A, yielding a normalizer of 0.8+1.2 = 2, therefore

giving weights of 0.4 and 0.6. Since there is no parent of A here, the normalizer 2 is placed

at the root meta-node. Figure 5.2c shows the final normalized AOMDD.

Thus, given a graphical model and a pseudo-tree T , an AOMDD of this graphical model is

and AND/OR search graph along T is defined as follows.

Definition 5.4 (AOMDD [37]). An AND/OR Multi-valued Decision Diagram (AOMDD)

is a weighted AND/OR search graph such that it is completely reduced and non-redundant.

Namely, its meta nodes obey that 1) each meta-node is normalized (its weights sum to 1), 2)

the root meta-node has a constant associated with it, and 3) it is completely reduced, namely,

it has no isomorphic meta-nodes and no redundant meta-nodes.

5.1.1.1 Apply Operator

In the decision diagram literature such as [5], the idea is to have BDDs represent smaller

functions, which can then be combined into larger ones through the use of a so-called apply

operator. This allows for standard binary operators (union, intersection, join, etc.) to be

performed on two boolean functions represented by BDDs.

We next present the apply operator for AOMDDs, first introduced in [36], and extended for

weighted models in [37]. In OBDDs, in order to combine two BDDs using apply, they must

have compatible variable orderings. In AOMDDs, we define the notion of strictly compatible

pseudo trees.
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Definition 5.5 (strictly compatible pseudo trees [37]). Given a pseudo-tree T with

nodes X and pseudo-tree T∞ with nodes X1 ⊆ X, T1 is embeddable in T if T1 can be obtained

from T by removing each node in X\X1 and connecting its parent to each of its descendants.

Two pseudo-trees T1 and T2 are strictly compatible if there exists a pseudo-tree T which they

can both be embeddable in.

The APPLY operator for AOMDDs is given in Algorithm 21 [37]. It requires that the

pseudo-trees of the input AOMDDs are strictly compatible with respect to a pseudo-tree T .

The inputs specifically take the root meta-node of AOMDD f with the list of meta-nodes

from AOMDD g. Initially, the list of nodes from g consists of only the root node of g.

Furthermore, this list of nodes from g must satisfy that the single node from f is a common

ancestor and that none of them are ancestors of each other. Thus, the list of nodes in g

represent meta-nodes rooting decomposed parts with respect to T . Note that we consider a

node to be an ancestor of itself here, thus having v1 and w1 with the same variable is valid.

APPLY makes use of two caches: H1 for detecting isomorphism and H2 to prevent the same

operation from being computed more than once.

The first line of the algorithm makes use of H2 in this way. Otherwise, several other simple

cases occur in lines 2-4. Line 5 initializes a new meta node u with the same variable as v1,

then proceeds to generate the children for each of its AND nodes in lines 6-20.

Line 14 is a step which serves to dictate how to recursively work down the decision diagram

structure to combine the children. Intuitively, this moves the down each side of f and g

as needed and generates APPLY calls that represent each of the decompositions formed by

multiple children if they exist. Once, these parameters are determined, lines 15-20 generate

a meta-node for each parameter set, which become the children of u’s jth AND node. We

can also terminate early if any of the metanodes generated is 0. After the meta-node u has

been completely generated, lines 21-22 checks if it is redundant, promoting its weight to its
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Algorithm 21: APPLY(v1;w1, ..., wm)[37]

Input: AOMDDs f with nodes vi and g with nodes wj, based on strictly compatible
pseudo trees T1, T2 that can be embedded in T .

var(v1) is an ancestor of all var(w1), ..., var(wm) in T .
var(wi) and var(wj) are not in an ancestor-descendant relation in T ∀i 6= j
Output: v1 ⊗ (w1 ⊗ ...⊗ wm), based on T

1 if H2(v1, w1, ..., wm) exists then return H2(v1, w1, ..., wm) ;
2 if any of v1, w1, ..., wm = 0 then return 0 ;
3 if v1 = 1 then return 1 ;
4 if there are no wi then return v1 ;
5 Create new nonterminal metanode u with variable var(v1) = Xi (which has a domain

from 1 to ki.
6 for j ← 1 to ki do
7 u.childrenj ← ∅ ; // children of the j-th AND node of u

8 u.c(Xi, xj)← v1.c(Xi, xj)
9 if m = 1 and var(v1) = var(w1) = Xi then

10 u.c(Xi, xj)← v1.c(Xi, xj)⊗ w1.c(Xi, xj) ; // combine weights

11 tempChildren← w1.childrenj

12 else
13 tempChildren← {w1, ..., wm}
14 Group nodes from v1.childrenj ∪ tempChildren into sets {v1;w1, ..., wr}
15 foreach {v1;w1, ..., wr} do
16 y ← APPLY(v1;w1, ..., wr)
17 if y = 0 then
18 u.childrenj ← 0; break

19 else
20 u.childrenj ← u.childrenj ∪ {y}

21 if u.children1 = ... = u.childrenki and u.c(X, x1)= . . . = u.c(X, xk) then
22 Promote u.c(Xi, x1) to parent
23 return u.children1 ; // redundancy

24 if ∃u′ ∈ H1 s.t. u is isomorphic to u′ then
25 return u′

26 Insert u into H1

27 Let H2(v1;w1, ..., wm) = u
28 return u
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parent and returning a set of children from any of its AND nodes, thus removing it. Lines

23-24 checks if u has already been generated (and thus isomorphic) by consulting H1 and

simply returns the previous generated version instead if so. Finally, lines 25-27 update H1

and H2 and return the newly created meta-node u.

The runtime of apply is quadratic in the size of the input AOMDDs [37].

5.1.1.2 Compiling AOMDDs

Algorithm 22: BE-AOMDD-C [37]

Input: Graphical model M = 〈X,D,F〉, pseudo tree T
Output: AOMDD representing the global function of M

1 foreach Xp ∈ X in bottom up order according to T do
2 Bp ← {fAOMDD

j ∈ F|Xp ∈ Sj}
3 F← F− Fp

4 Put child message λAOMDD
ch(p) in Bp

5 λAOMDD
p→pa(p) ← 1

6 foreach fAOMDD
j ∈ Bp do

7 λAOMDD
p ← APPLY (λAOMDD

p , fAOMDD
j )

8 return λAOMDD
root(T )

Algorithm 22 presents an algorithm for compiling the AOMDD [37]. Introduced as BE-

AOMDD, we call it BE-AOMDD-C here to emphasize its purpose for compilation. Using

APPLY, it creates the AOMDD of the graphical model using a bucket elimination (BE)

based schedule. It works exactly like BE, except it combines functions using the APPLY

algorithm and does not eliminate variables.

5.2 AOMDDs for Exact Inference

It is easy to see that in BE-AOMDD-C, if we include a step to eliminate the bucket variable,

then the result is the same as BE, but carried out via functions represented as AOMDDs.
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Thus, we need an elimination operator to eliminate variables from and AOMDD, namely

summation.

We next define a simple form of the operator that is restricted to eliminating variables that

sit at the leaves of the embedded pseudo-tree of a given AOMDD.

The pseudo code is given in Algorithm 23. Lines 1-4 cover the simple cases when the

AOMDD is a terminal 0 or 1. The only special case is when the operator is summation

(which is what we plan to use), where we multiply the input by the domain size of the

variable to eliminate. Otherwise, given the embedded pseudo tree of the AOMDD, we

identify the metanodes associated with variables which lie on the path from the variable to

be eliminated to the root (line 5). We will refer to these variables as elimination relevant. The

loop beginning at line 7 then processes each metanode in the AOMDD in a bottom-up fashion

according to the pseudo tree if its variable is one of the relevant variables. If the node is an

elimination variable, we eliminate the node by performing the necessary operator, promote

the weight to the parents (lines 10-15). Otherwise, we first need to perform a redundancy

reduction on the node if necessary due to the weights promoted from the children through

elimination, promoting its weight further up to its parents (lines 21-28). If the node is not

redundant, then we normalize the node and pass on the normalization constant to the parent

(line 29-34).

There is also a special case for processing a metanode that is not the variable to eliminate

when the operator is summation. In the event that the metanode for a variable to eliminate

is not present in the decision diagram due to the redundancy reduction, we need to detect

this and adjust the weights properly, namely multiplying them by the domain size of the

elimination variable to carry out the summation operation. To identify which AND nodes do

not require this step, we keep track of the AND nodes that have had their weights updated via

either elimination (lines 8-15), redundancy reduction (lines 21-28), or normalization (lines
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Algorithm 23: ELIMINATE(f, eV ar,⇓: elimination operator : (
∑
,max,min))

Input: AOMDD f (with embedded pseudo tree T containing eV ar as a leaf)
Output: AOMDD f ′ representing ⇓eV ar f (with embedded pseudo tree T ′)

1 if f = 0 or f = 1 then
2 Remove eV ar from T
3 if ⇓ =

∑
then return |DeV ar| · f ;

4 else return f ;

5 R := set of metanodes of variables on the path from eV ar to the root of T
6 weightUpdated := ∅
7 Process each m ∈ R bottom-up, according to T :
8 if var(m) = eV ar then
9 weight :=⇓c∈ch(m) (c.weight)

10 foreach p ∈ pa(m) do
11 p.weight := p.weight · weight
12 Insert p into weightUpdated
13 Remove m from ch(p)
14 if weight = 0 then ch(p) := {0} ;
15 else if ch(p) = ∅ then ch(p) := {1} ;

16 else
17 if ⇓=

∑
then

18 foreach c ∈ ch(m) do
19 if c /∈ weightUpdated then
20 c.weight := c.weight · |DeV ar|

21 if m is redundant then
22 weight := c.weight for any c ∈ ch(m)
23 foreach p ∈ pa(m) do
24 p.weight := p.weight · weight
25 Insert p into weightUpdated
26 Remove m from ch(p)
27 if weight = 0 then ch(p) := {0} ;
28 else if ch(p) = ∅ then ch(p) := {1} ;

29 else
30 z :=

∑
c∈ch(m) c.weight

31 foreach c ∈ ch(m) do

32 c.weight := c.weight
z

33 foreach p ∈ pa(m) do
34 p.weight := p.weight · z
35 Insert p into weightUpdated
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29-34). If an AND node has never been updated, then it means that we must apply the

weight adjustment. Lines 17-20 carries out the weight update based on these conditions.

Figure 5.3: Example of elimination on AOMDDs. The state of the AOMDD is shown through
the process.

We demonstrate the algorithm on a small example, shown in Figure 5.3. The function tables

above (a) the AOMDDs demonstrate the operation performed in a standard representation.

We are interested in summing out variable B (namely eliminating B). The embedded pseudo

tree (b) is used to determine the set of relevant variables, which in this case is {A,B}.

We begin with the AOMDD shown at Figure 5.3.1, which represents the same function as

the input table. Visiting the relevant nodes in a reverse BFS order, we visit the metanode

B first, eliminate it, and propagate its result up to the parent AND node in metanode A,

shown in 5.3.2. At 5.3.3, we are left with only metanode A. Checking the 0 AND node,

since it received a weight from something, we are done with it. Checking the 1 AND node,
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since it has not received a weight, we multiply it by the domain size of B, which is 2 in

this case. The result is now shown at (4). Finally, we normalize the AND node weights

of metanode A and propagate its normalization term up to the root, yielding the resulting

AOMDD in (5), which represents the same function as the output table.

In the cases of maximization and minimization, we do not encounter the same problem since

these operators choose one from the set of values, which has no effect on functions where all

the output values are identical.

Proposition 7 (complexity of ELIMINATE). The time complexity of ELIMINATE is

linear in the size of the AOMDD. The output size of the AOMDD is also linear in the size

of the input AOMDD.

Proof. In the worst case, when the AOMDD has an embedded pseudo tree that is a chain,

then every meta-node in the AOMDD will be processed bottom-up, starting with the variable

to eliminate. Thus, the time complexity of ELIMINATE is linear in the size of the AOMDD.

In the worst case, there is only a single meta-node corresponding to the variable we eliminate,

thus the output is still be linear in the size of the AOMDD.

5.2.1 Bucket Elimination

Now that we have the APPLY and ELIMINATE operators, we have everything necessary

to perform bucket elimination using AOMDDs as the function representation. We call the

resulting algorithm BE-AOMDD-I. The algorithm is identical to BE-AOMDD-C (see Algo-

rithm 22), except that we also eliminate the bucket variable when generating the message.

BE-AOMDD-I is therefore a version of BE where the functions of the graphical model use

AOMDDs as the representation instead of tables. Since the elimination operator is restricted

to eliminating only leaf variables, each function must also be constructed based on a pseudo-

tree that can be embedded in the pseudo-tree guiding the elimination ordering of BE.
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5.3 Experiments

In this section we provide results in two parts. The first uses the previously introduced BE-

AOMDD-C algorithm which compiles the AOMDD in the same order as bucket elimination

(i.e. in the variable elimination ordering) using the APPLY operator to combine functions.

The second reports on experiments using AOMDDs as a general framework for the represen-

tation of functions inside the BE algorithm for performing the weighted counting problem

(summation query).

The AOMDDs and all operators were implemented in C++ and run on a 2.66GHz processor

with 24GB of RAM. All experiments were run with no time limit and a maximum of 24GB

memory.

5.3.1 Compilation

In previous work [37], results on the compilation of AOMDDs were carried out via a top-down

compilation algorithm that worked by tracing of an execution of AND/OR search. We com-

pare with a variant this algorithm known as AOMDD-BCP, which applies boolean constraint

propagation to the original problem as a preprocessing step to better capture determinism

during search. In our experiments, the implementation of AOMDD-BCP used was provided

by the authors of [37]. The redundancy rule was not applied in this implementation, so our

results on BE-AOMDD-C are the first for compiling canonical AOMDDs.

We ran experiments on the UAI 2006 ISCAS circuits and protein side chain prediction

networks. In each table, we report various problem instances parameters, runtime for each

of the algorithms, the size of the context-minimal AND/OR graph (in OR nodes), and the

sizes of the AOMDDs for each algorithm.
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5.3.1.1 UAI 2006 ISCAS Circuits

time (s) Metanodes
[BE-AOMDD-C] [BE-AOMDD-C]

name n w h k f [AOMDD-BCP] CM OR [AOMDD-BCP]
BN 42 850 20 50 2 879 10 5623680 25841

36 95963
BN 43 850 21 50 2 881 73 22731586 148184

647 629027
BN 44 850 21 60 2 880 OOM 11681649 OOM

110 396583
BN 45 850 21 56 2 875 17 15778481 122763

142 260917
BN 46 850 19 47 2 499 OOM 4277086 OOM

1 10237
BN 47 632 36 54 2 662 OOM 4.49E+11 OOM

0.42 1974
BN 49 632 40 60 2 663 OOM 9.56E+12 OOM

0.33 1277
BN 51 632 40 59 2 665 OOM 6.39E+12 OOM

0.43 1884
BN 53 532 42 82 2 562 OOM 3.02E+13 OOM

1.3 5317
BN 55 532 42 85 2 563 OOM 2.66E+13 OOM

0.44 1704
BN 57 532 41 82 2 562 OOM 1.54E+13 OOM

1.47 6425
BN 59 511 46 86 2 542 OOM 4.54E+14 OOM

3.47 15679
BN 61 638 40 60 2 668 OOM 8.11E+12 OOM

0.34 1278
BN 63 511 47 81 2 539 OOM 1.03E+15 OOM

6.52 17888
BN 65 411 51 98 2 460 OOM 1.61E+16 OOM

230.8 9631
BN 67 411 50 79 2 460 OOM 9.44E+15 OOM

449.13 1135

Table 5.1: Compilation results on UAI 2006 benchmarks (ISCAS circuits). For each in-
stance, report the number of variables (n), induced width (w), pseudo-tree height (h), max-
imum domain size (k), and number of functions (f). In the columns labeled “time(s)” and
“Metanode”, the top and bottom are the runtimes/metanode counts for BE-AOMDD-C and
AOMDD-BCP respectively. We also report the number of OR nodes in the context-minimal
AND/OR graph (CM OR).

Table 5.1 presents the compilation results on ISCAS circuits from the UAI 2006 benchmark.

Notice that the target here is to generated the full weighted AOMDD. There are a total of 16

ISCAS instances, but only 3 could be successfully compiled by BE-AOMDD-C. BE-AOMDD-

C ran out of memory on the rest. On these 3 instances, we observe that the AOMDDs

generated by BE-AOMDD-C are smaller and also have a faster runtime. For example, on

BN 42, BE-AOMDD-C took 10 seconds to construct an AOMDD with 25841 meta-nodes
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while AOMDD-BCP took 36 seconds to build an AOMDD with 95963 meta-nodes. For

the instances where BE-AOMDD-C ran out of memory, AOMDD-BCP has an advantage

through its preprocessing via boolean constraint propagation, which detects determinism in

the network and prunes out branches of the search graph before they are generated. Our

implementation of BE-AOMDD-C performs no preprocessing on the input problem which

is likely to be a major contribution for the poor performance. This performance difference

can be additionally attributed to the difference in a bottom-up vs. a top-down compilation

approach. We observe this by noticing that during the execution of BE-AOMDD-C, the

intermediate messages are generally larger than the final AOMDD. Given enough time and

memory resources, we expect BE-AOMDD-C to always yield a smaller compiled AOMDD

than AOMDD-BCP, since it generates the canonical, fully reduced AOMDD for any given

function.

5.3.1.2 Protein Networks

Table 5.2 shows compilation results on protein networks. For these instances, we were

unable to run the supplied implementation of AOMDD-BCP due to unknown technical

issues. Thus, we only provide a comparison to the context-minimal AND/OR graph size

here. In general, this benchmark has low induced width, but high domain sizes, thus still

yielding large context-minimal AND/OR graphs. In all cases, the AOMDDs generated are

smaller as expected. In particular, we can see reductions as high as 87.9 times (see pdb1rzl).

Indeed, despite the high domain size, when inspecting the functions of these instances, there

are many variable assignments that have the same value, a feature that AOMDDs can exploit

by mapping all of them to the same meta-node. These types of compilations are computed

here for the first time.
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Metanodes
name n w h k time (s) CM OR [BE-AOMDD-C]
pdb1ajj 32 5 12 81 35 2076152 188974
pdb1akg 14 2 4 18 0 271 49
pdb1etl 9 1 3 27 0 70 19
pdb1etm 10 1 3 27 0 82 25
pdb1etn 9 1 2 27 0 85 22
pdb1fna 75 6 18 81 136 1983522 56377
pdb1fxd 51 5 17 81 121 1361708 109076
pdb1hh5 54 5 14 81 704 11069620 302913
pdb1hoe 60 5 16 81 108 584840 51972
pdb1j8e 39 6 12 81 294 2714323 258198
pdb1k51 57 5 14 81 47 910288 15388
pdb1mof 46 4 16 81 362 2970412 54002
pdb1noa 80 4 21 81 390 3193958 312262
pdb1not 11 2 5 81 0 179 72
pdb1pef 17 6 11 81 430 4123288 342367
pdb1pen 13 2 4 18 0 432 104
pdb1piq 29 4 20 81 359 2568277 223488
pdb1rb9 42 7 14 81 1127 13370233 1163424
pdb1rh4 21 4 14 81 35 386047 55054
pdb1rzl 65 5 14 81 2232 43949983 499710
pdb1xy2 7 2 2 36 0 480 62
pdb2erl 34 4 12 81 22 359718 13914
pdb2fdn 42 4 11 81 0 9704 1761
pdb2igd 50 6 19 81 1295 33711674 451081
pdb2mcm 80 4 18 81 52 744266 10555
pdb3cao 84 5 21 81 1022 12535345 913621
pdb3ezm 88 3 13 81 7 514561 6959

Table 5.2: Compilation results on protein networks using BE-AOMDD-C. The information
is the same as the previous table, except without AOMDD-BCP.

5.3.2 Exact Inference

In this section, we do not compile a graphical model to an AOMDD, but rather perform in-

ference using the bucket elimination framework. The following evaluates the BE-AOMDD-I

algorithm, which is the same as bucket elimination, but uses AOMDDs to represent all func-

tions. We ran experiments on the UAI 2006 evaluation problems, mastermind instances,

and genetic linkage analysis networks, available at http://graphmod.ics.uci.edu. In each

table, we compare the time and memory usages of standard BE vs. BE-AOMDD-I. Times

reported as “OOM” indicate that the algorithm exceeded our memory bound of 8GB. Re-

sults on memory usage are based on the usage of the cache storing nodes of the AOMDDs.

For instance where BE runs out of memory, we simulated its execution by only passing

information about scope sizes to compute the memory usage.
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time (s) time (s) Mem (MB) Mem (MB)
problem n w h k [BE] [BE-AOMDD-I] [BE] [BE-AOMDD-I]
BN 22 2425 5 575 91 1 13 26.93 581.27
BN 24 1819 5 381 91 1 23 24.07 977.52
BN 28 24 5 9 10 1 13 1.79 568.36
BN 30 1156 48 179 2 OOM 38 1.50E+10 245.93
BN 32 1444 56 219 2 OOM 4384 4.45E+12 3006.08
BN 34 1444 55 220 2 OOM 145 2.30E+12 515.45
BN 36 1444 56 210 2 OOM 7792 3.51E+12 2629.44
BN 40 1444 55 235 2 OOM 91 1.82E+12 322.76
BN 42 880 23 54 2 21 2 314.04 21.62
BN 43 880 22 53 2 10 2 153.66 11.83
BN 44 880 22 55 2 10 2 159.78 18.47
BN 45 880 22 55 2 10 2 162.39 16.56
BN 46 499 22 49 2 18 <1 248.97 1.99
BN 49 661 44 59 2 OOM 1188 7.83E+08 2991.78
BN 51 661 44 61 2 OOM 3433 1.17E+09 2274.11
BN 53 561 48 95 2 OOM 4063 8.43E+09 3303.48
BN 61 667 44 61 2 OOM 17 9.46E+08 235.72
BN 65 440 61 95 2 OOM 1062 Overflow* 2843.65
BN 67 440 61 99 2 OOM 9893 Overflow* 1270.54
BN 78 54 13 24 2 <1 <1 0.51 29.82
BN 84 360 20 24 2 4 22 24.76 546.21
BN 86 422 22 40 2 26 73 179.44 1084.59
BN 92 422 22 33 2 26 23 187.43 433.65

Table 5.3: BE-AOMDD-I on UAI 2006 benchmarks (22-28: unrolled dynamic Bayesian
networks, 30-40: grid structured networks, 42-67: ISCAS circuits, 78-92: medical diagnosis).
(* The size in MB could not be stored within a double precision number representation.)

5.3.2.1 Results of Inference for UAI 2006 Instances

Table 5.3 presents results on running bucket elimination using the traditional representation

of functions by tables against our implementation using AOMDDs. We see that our scheme

is able to solve some problems which do not fit in standard main memory. For example,

on BN 65 having an induced width of 61, BE would require an amount of memory (in

MB) larger than the maximum double-precision number ( 10308), yet BE-AOMDD-I requires

only 3303 MB of memory to solve the problem. A large number of these instances, on

which AOMDD performs well, have a significant amount of determinism and mostly constant

functions (42-67 are ISCAS circuits), which AOMDDs can exploit. On the other hand, there

must be a significant amount of compression before we get any memory savings, as seen

on instances such as BN 86 where far more memory was needed by BE-AOMDD-I. This is

due to the overhead of the AOMDDs graph representation compared with a simple tabular
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representation. Whenever there is not enough structure to exploit, AOMDD-based schemes

end up using more resources in both time and memory. Overall, we observe that as expected

for easier problems, standard BE is sufficient and yields better runtime.

5.3.2.2 Mastermind

time (s) time (s) Mem (MB Mem (MB)
name n w h k [BE] [BE-AOMDD-I] [BE] [BE-AOMDD-I]
03 08 03-0000 1220 18 53 2 4 5 48.23 154.45
03 08 03-0001 1220 18 54 2 4 4 53.63 105.21
03 08 03-0006 1220 18 41 2 2 2 44.38 41.70
03 08 03-0007 1220 18 52 2 2 1 46.40 21.64
03 08 04-0000 2288 29 79 2 OOM 643 49865.56 4187.84
03 08 04-0001 2288 28 76 2 OOM 293 39769.34 2610.66
03 08 05-0006 3692 37 101 2 OOM 6 24847465.64 39.04
03 08 05-0007 3692 37 80 2 OOM 9 25456599.73 120.19
04 08 03-0001 1418 22 58 2 46 54 638.49 907.49
04 08 03-0002 1418 22 55 2 41 33 621.16 786.86
04 08 03-0006 1418 22 59 2 46 11 621.98 270.47
04 08 03-0007 1418 22 52 2 36 2 617.11 47.70
04 08 04-0006 2616 35 88 2 OOM 17 4675522.59 371.95
04 08 04-0007 2616 35 93 2 OOM 17 3467438.50 349.37
05 08 03-0000 1616 26 57 2 690 1064 9092.90 5742.06
05 08 03-0001 1616 26 67 2 758 759 8853.24 3919.56
06 08 03-0006 1814 29 73 2 OOM 135 92849.60 1150.94
06 08 03-0007 1814 29 66 2 OOM 27 76976.00 588.10
06 08 03-0008 1814 29 64 2 OOM 24 85068.34 523.36
06 08 03-0010 1814 29 66 2 OOM 13 93097.25 253.99
10 08 03-0006 2606 43 92 2 OOM 654 2085939395.05 673.54

Table 5.4: BE-AOMDD-I on Mastermind instances.

Table 5.4 shows results on instances derived from mastermind games. Much like the ISCAS

circuits, these networks also exhibit high amounts of determinism and have near constant

functions, which can be exploited by AOMDDs. Here, half of the instances cannot be

solved by BE, but BE-AOMDD-I manages to solve them despite the extremely high memory

required by BE. See, for example, instance 10 08 03-0006.

5.3.2.3 Pedigree Networks

Table 5.5 shows results on the pedigree networks. On these instances, many of the partition

function values were not known before the work of [27], which uses hard disk to push the
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time (s) time (s) Mem (MB) Mem (MB)
name n w h k [BE] [BE-AOMDD-I] [BE] [BE-AOMDD-I]
pedigree1 334 15 61 4 2 14 23.61 210.09
pedigree7 1068 28 123 4 OOM OOM 404625.25 OOM
pedigree9 1118 25 137 7 550 5301 7499.77 4030.34
pedigree13 1077 29 161 3 OOM OOM 150793.98 OOM
pedigree18 1184 19 102 5 7 200 136.13 959.28
pedigree19 793 21 118 5 OOM OOM 23478.49 OOM
pedigree20 437 21 58 5 131 291 1393.90 1030.66
pedigree23 402 20 58 5 19 52 241.57 532.46
pedigree25 1289 23 86 5 146 1284 2037.69 2999.84
pedigree30 1289 20 102 5 13 307 220.63 1044.76
pedigree31 1183 28 106 5 OOM OOM 919612.70 OOM
pedigree33 798 24 116 4 347 883 4277.26 1368.42
pedigree34 1160 28 143 5 OOM OOM 762082.00 OOM
pedigree37 1032 20 62 5 OOM 3535 251109.68 7992.43
pedigree38 724 16 67 5 OOM 2201 172249.65 6253.16
pedigree39 1272 20 83 5 46 400 772.20 1555.68
pedigree40 1030 27 111 7 OOM OOM 3884488.59 OOM
pedigree41 1062 28 142 5 OOM OOM 261551.31 OOM
pedigree42 448 21 67 5 OOM OOM 39007.50 OOM
pedigree44 811 24 79 4 516 3795 6153.63 4782.29
pedigree50 514 16 53 6 OOM OOM 682521.86 OOM
pedigree51 1152 34 121 5 OOM OOM 2900534.96 OOM

Table 5.5: BE-AOMDD-I on Pedigree networks.

memory restrictions of BE.

Our results are less promising on these networks. There are only two instances on which

BE-AOMDD-I manages to perform very well, where standard BE would require about 30

times the amount of memory (pedigree37 and pedigree38 ). For the rest of the problems

that BE-AOMDD-I managed to solve, on half of the instances it was less efficient than

standard BE. For the other half where BE-AOMDD-I uses less memory, the runtime is often

much worse, due to overhead in maintaining the properties of a canonical AOMDD. We

can attribute these results this set of problems having much less structure than networks

derived from digital applications such as circuits and board games (ISCAS and mastermind).

However, these results also demonstrate the use of decision diagrams on non-binary networks

for inference, when compared to related work using ADDs [7, 24].
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5.3.3 Conclusion

To recap, we explored the potential of AOMDDs in two ways: first for compilation and

then for exact inference. On compilation, our results are preliminary, but demonstrate

a reduction in AOMDD size on instances on which the new compilation algorithm was

feasible. The feature of canoncity is useful, as compiling a graphical model into an AOMDD

can reveal whether it is truly as hard as implied by the induced width. The notion of

semantic induced width can be calculated based on the size of an AOMDD [37]. For exact

inference, we demonstrated the potential of using AOMDD as a function representation

by solving many difficult instances exactly that would have required the traditional tabular

representations an infeasible amount of memory. This was demonstrated on instances having

high levels of determinism and near constant functions. This suggests that the AOMDD

representation should be considered for such types of problems.

For future work, performing some preprocessing may allow us to compile a wider variety of

problems with high treewidth. More importantly, the bucket elimination based schedule for

compiling AOMDDs is needlessly restrictive. With the flexibility of the apply operator, we

can consider other schedules. A particularly useful one might be to combine the functions

with the smallest AOMDDs first, which are likely to have determinism or are near constant.

Incorporating this information into a compilation process as soon as possible may mitigate

the increase of size of the intermediate AOMDDs.

For problems which are still too large to compile, we still have the option of using AOMDDs

as an alternative function representation. For certain problems such as the pedigree net-

works, the overhead results in worse performance due to overhead which is not mitigated by

exploitable structure.

185



Chapter 6

Summary and Conclusion

In this dissertation, we focused primarily on methods for improving state-of-the-art heuris-

tics for combinatorial optimization tasks. We also extend previous work using a compact

representation of graphical models for the weighted counting task.

We first (Chapter 2) considered the well-known technique of look-ahead which we adapted

to heuristic search for the MPE task in graphical models. Through an analysis of the most

commonly used mini-bucket (MBE) heuristic for AND/OR Branch-and-Bound for this task,

we established a connection between the so-called bucket error of MBE with the concept of

known as the residual in the Bellman backup value [22]. This enabled developing a cost-

effective scheme which, by using pre-compiled information about the bucket error, allowed a

selective look-ahead which focuses on the most promising nodes during search. In an exten-

sive empirical evaluation, we demonstrated improved runtime when using our error-guided

look-ahead to improve the state-of-the-art mini-bucket elimination with moment matching

(MBE-MM) heuristic.

Next (Chapter 3), focusing on finding algorithms generating lower bounds on the optimal

cost, we explored the potential of AND/OR Best-First (AOBF) search to generate such

bounds in an anytime fashion. In this context, we tackled the issue of subproblem ordering.

Namely, we analyzed the impact of subproblem ordering on the performance of AOBF and
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showed that the impact could be significant. Indeed this was a problem posed by Pearl

[41], but was hardly explored. We identified that look-ahead would be a useful heuristic

for subproblem ordering and thus leveraged our findings on bucket error. Our experiments

demonstrated that our better informed subproblem ordering heuristics can provide a positive

impact for both finding exact solutions and for generating lower bounds in an anytime

manner.

Another focus of this dissertation (Chapter 4) is on dynamic heuristics that are orthogonal

to static MBE. On some problems, especially when the domain sizes are large, MBE-MM

can yield a poor heuristic, thus calling for alternative methods of heuristic generation that

can exploit the new structure induced during search. We presented a dynamic heuristic

generator based on factor-graph linear programming (FGLP), a coordinate-descent algorithm

for solving an LP based on re-parameterizing the functions of a graphical model [25]. The

algorithm was originally designed to be used once during preprocessing rather than run

repeatedly during search. We address this in two ways. First, we redefine the LP that FGLP

solves in order reduce the number of iterations required to for convergence conditioning a

variable during search. Second, we define a finer-grained update schedule that leads to the

most bound tightening. Our resulting method is similar to soft arc-consistency methods in

the WCSP literature [10], but aims toward the optimal re-parameterization while balancing

time and accuracy through the use of a controlling parameter. On challenging benchmarks

for MBE-MM, we demonstrated the potential of FGLP as a dynamic heuristic generator.

Lastly (Chapter 5), we advanced the state-of-the-art on AND/OR Multi-valued Decision

Diagram (AOMDD) framework. We provided the first empirical evaluation on the class

of bottom-up compilation algorithms that were previously introduced. We also extended

the framework to allow for the elimination of variables from a function represented by an

AOMDD, thus allowing for the exact bucket elimination algorithm to be carried out with

AOMDD-based functions. For compilation, we illustrated that the bottom-up methods ap-
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plying full reduction rules are able to yield smaller complied AOMDD than previously re-

ported. For exact inference via bucket elimination using AOMDDs, we demonstrated that

we could solve problems that would otherwise take an infeasible amount of memory, if we

used bucket elimination with a table representation of functions.
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Appendices

A Cost-Directed Look-ahead in AND/OR Search: Additional Proofs

A.1 Proposition 1

If x̄p is a partial assignment, then the look-ahead heuristic for MBE can be expressed as

hd(x̄p) = Ld(x̄p) +
∑

Xk∈Tp−Tp,d

Λk(x̄p)

Proof. We rewrite the hd(x̄p) term by using Definition 2.1 and unroll the recursive hd−1(x̄q)

term. Doing so replaces the summation over children and minimization of each child with a

minimization over all of the variables within the look-ahead subtree Tp,d, plus the heuristic

below the look-ahead subtree. Let x̄↓p,d denote an extension to the assignment of all the

variables in Tp,d. Then we have

hd(x̄p) = min
x̄↓p,d

 ∑
Xk∈Tp,d

fk(x̄p, x̄
↓
p,d) + h(x̄p, x̄

↓
p,d)


Using Equation 1.2, we replace h(x̄p, x̄

↓
p,d) with the appropriate term, yielding

hd(x̄p) = min
x̄↓p,d

 ∑
Xk∈Tp,d

fk(x̄p, x̄
↓
p,d) +

∑
Xj∈Tp−Tp,d

Λj(x̄p, x̄
↓
p,d)

 (1)
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We then further expand Λk term using Equation 1.1,

hd(x̄p) = min
x̄↓p,d

 ∑
Xk∈Tp,d

fk(x̄p, x̄
↓
p,d) +

∑
Xj∈Tp−Tp,d

∑
Xq∈Tp,d∪X̄p

λj→q(x̄p, x̄
↓
p,d)


Next, the second term’s inner sum

∑
Xq∈Tp,d∪X̄p λj→q(x̄p, x̄

↓
p,d) can be broken down into∑

Xq∈Tp,d λj→q(x̄p, x̄
↓
p,d) +

∑
Xq∈X̄p λj→q(x̄p) where we drop the x̄↓p,d argument in the second

term since those messages do not contain any variables in Tp,d. Substituting back into Equa-

tion 1, we obtain

hd(x̄p) = min
x̄↓p,d

 ∑
Xk∈Tp,d

fk(x̄p, x̄
↓
p,d) +

∑
Xj∈Tp−Tp,d

 ∑
Xq∈Tp,d

λj→q(x̄p, x̄
↓
p,d) +

∑
Xq∈X̄p

λj→q(x̄p)


Factoring out the terms that do not depend on the minimization over x̄↓p,d and applying

Equation 1.1 on the factored out terms,

hd(x̄p) = min
x̄↓p,d

 ∑
Xk∈Tp,d

fk(x̄p, x̄
↓
p,d) +

∑
Xj∈Tp−Tp,d

 ∑
Xq∈Tp,d

λj→q(x̄p, x̄
↓
p,d)


+

∑
Xj∈Tp−Tp,d

∑
Xq∈X̄p

λj→q(x̄p)

= min
x̄↓p,d

 ∑
Xk∈Tp,d

fk(x̄p, x̄
↓
p,d) +

∑
Xj∈Tp−Tp,d

 ∑
Xq∈Tp,d

λj→q(x̄p, x̄
↓
p,d)


+

∑
Xj∈Tp−Tp,d

Λj(x̄p)

Finally, redistributing and reindexing (from q to k) the summation of the λ terms, we obtain

hd(x̄p) = min
x̄↓p,d

 ∑
Xk∈Tp,d

fk(x̄p, x̄↓p,d) +
∑

Xj∈Tp−Tp,d

λj→k(x̄p, x̄
↓
p,d)

+
∑

Xj∈Tp−Tp,d

Λj(x̄p)
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By Definition 2.4, we replace the first term with Ld(x̄p), therefore showing that

hd(x̄p) = Ld(x̄p) +
∑

Xk∈Tp−Tp,d

Λk(x̄p)

A.2 Proposition 3

Given a node n, let Nk denote all nodes that are k-levels away from n in the search graph.

Then we have

resd(n) ≥
d−1∑
k=0

min
nk∈Nk

res1(nk)

We start by assuming that we have the optimal d-level look-ahead path {nopt(d)
k ∈ Nk|0≤k≤d}.

We derive the following to relate the 1-level look-ahead heuristic for each level k to the

path costs and base heuristic under this assumption. Given the definition of the look-ahead

heuristic (Definition 2.1) for d = 1 and some node n
opt(d)
k on the optimal path, we have

h1(n
opt(d)
k ) = min

nk+1∈ch(n
opt(d)
k )

{
c(n

opt(d)
k , nk+1) + h(nk+1)

}

With the optimal d-level look-ahead path, setting nk+1 = n
opt(d)
k+1 , this yields an upper-bound

on the minimization.

h1(n
opt(d)
k ) ≤ c(n

opt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
k+1 )

Subsequently, from the definition of the 1-level residual (Definition 2.2), we can derive the

following:

res1(n
opt(d)
k ) = h1(n

opt(d)
k )− h(n

opt(d)
k )

≤ c(n
opt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
k+1 )− h(n

opt(d)
k )

(2)
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We will refer to Equation 2, which is an upper-bound on the 1-level residual as res1
≤(n

opt(d)
k )

in the following lemma which establishes that the summation of these upper-bounds is equiv-

alent to the d-level residual resd(n).

Lemma 3. If resd(n) is the d-level residual from node n and {nopt(d)
k ∈ nk|0≤k≤d} is the set of

nodes on the optimal d-level look-ahead path (where n
opt(d)
0 is trivially n), then the following

holds:

resd(n) =
d−1∑
k=0

res1
≤(n

opt(d)
k )

Proof. Starting with the definition of the d-level residual, we have

resd(n) = hd(n)− h(n)

Rewriting the look-ahead heuristic hd, we obtain

resd(n) = min
n1∈n

{
c(n, n1) + hd−1(n1)

}
− h(n)

Without loss of generality, we substitute n with n0 in the following. By unrolling the recursive

hd−1 look-ahead term completely, we obtain a min-sum problem over a path.

resd(n0) = min
n1,...,nd

{
d−1∑
k=0

(c(nk, ni+k)) + h(nd)

}
− h(n0)

Since we are given the optimal path, we remove the minimization and substitute each nk
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with n
opt(d)
k , obtaining

resd(n
opt(d)
0 ) =

d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
d )− h(n

opt(d)
0 )

=
d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
d ) +

d−1∑
k=1

h(n
opt(d)
k )−

d−1∑
k=1

h(n
opt(d)
k )− h(n

opt(d)
0 )

=
d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) +

d∑
k=1

h(n
opt(d)
k )−

d−1∑
k=0

h(n
opt(d)
k )

=
d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) +

d−d∑
k=0

h(n
opt(d)
k+1 )−

d−1∑
k=0

h(n
opt(d)
k )

=
d−1∑
k=0

c(n
opt(d)
k , n

opt(d)
k+1 ) + h(n

opt(d)
k+1 )− h(n

opt(d)
k )

We can see that we obtain a summation over k for Equation 2, so we prove our claim

(substituting n
opt(d)
0 with n):

resd(n) =
d−1∑
k=0

res1
≤(n

opt(d)
k )

Proof of Proposition 3. Since res1
≤(n

opt(d)
k ) is an upper-bound for res1(n

opt(d)
k ) for every k, it

follows that their summation is an lower-bound on the d-level residual.

resd(n) =
d−1∑
k=0

res1
≤(n

opt(d)
k ) ≥

d−1∑
k=0

res1(n
opt(d)
k ) (3)

Taking the minimization of a 1-level residual with respect to all nodes for a given level k,

we obtain

res1(n
opt(d)
k ) ≥ min

nk∈Nk
res1(nk) (4)
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Applying Equations 3 and 4 together, we obtain our proposed statement.

resd(n) ≥
d−1∑
k=0

min
nk∈Nk

res1(nk)
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