
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Regret Analysis for Discounted Reinforcement Learning

Permalink
https://escholarship.org/uc/item/3kd0q8g0

Author
Liu, Shuang

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3kd0q8g0
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Regret Analysis for Discounted Reinforcement Learning

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Shuang Liu

Committee in charge:

Professor Hao Su, Chair
Professor Sanjoy Dasgupta
Professor Russell Impagliazzo
Professor Ramamohan Paturi
Professor Zhuowen Tu

2022



Copyright

Shuang Liu, 2022

All rights reserved.



The Dissertation of Shuang Liu is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2022

iii



DEDICATION

To my grandfather Cixuan Yu and grandmother Kailan Jiang.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Reward Discounting in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Policy Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 γ-Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Proof of Theorem 3.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 4 Tabular Double Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Relation to Sample Complexity of Exploration . . . . . . . . . . . . . . . . . . . . . 32

4.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 5 Kernelized Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.1 Effective Dimension and Pseudo Dimension . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.2 Covering Number of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.3 The General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.4 Specific Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendix A Proofs for Covering Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.1 Proof of Lemma 5.4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2 Proof of Lemma 5.4.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



LIST OF ALGORITHMS

Algorithm 1. T-Step Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Algorithm 2. Tabular Double Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Algorithm 3. Kernelized Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



LIST OF FIGURES

Figure 1.1. An MDP formed by two sub-MDPs connected by N middle states. . . . . . . 8

Figure 3.1. A two-state MDP to prove the lower bound. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 5.1. The MOUNTAINCAR environment: the algorithm needs to swing the car
back and forth to gain momentum in order to reach the flag. . . . . . . . . . . . . 65

Figure 5.2. The PENDULUM environment: the algorithm needs to swing the rod up-
wards and maintain it in the upright position. . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.3. The ACROBOT environment: the algorithm needs to swing the two rods
that are connected by a joint upwards above the line. . . . . . . . . . . . . . . . . . . 66

Figure 5.4. The CARTPOLE environment: the algorithm needs to maintain the rod in
an upright position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



LIST OF TABLES

Table 5.1. Evaluating different versions of Q-learning on classic control environments.
Each model is trained for 1000 steps and evaluated over 100 episodes after
training. The numbers are presented in the format MEAN±STD. Larger is
better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



ACKNOWLEDGEMENTS

I would like to thank my PhD advisor Hao Su, for his guidance and support during the

last four years of my PhD study. He offered me the chance to explore the areas of machine

learning that I am most interested in without any constraints, and is willing to have a discussion

whenever I feel necessary.

I would also like to thank my former PhD advisor Kamalika Chaudhuri, who opened up

many exciting directions to me and taught me a lot how to research and write papers.

I am fortunate to have my labmates accompanied me through my PhD journey, special

thanks to Zhiwei, Tongzhou, Fangchen, and Quan.

Finally, I could not have come this far without my wife Xiaojing, who have been giving

me endless support; and my parents, who have been educating me and encouraging me.

Chapter 2, 3, 4 of this dissertation are primarily based on material in the manuscript

“Regret Bounds for Discounted MDPs" (Shuang Liu and Hao Su), of which the dissertation

author was the primary researcher and author.

Chapter 5 of this dissertation is primarily based on material in the manuscript “Provably

Efficient Kernelized Q-Learning" (Shuang Liu and Hao Su), of which the dissertation author

was the primary researcher and author.

x



VITA

2016 Bachelor of Science, Shanghai Jiao Tong University

2022 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu and Hao Su. “Improving Policy
Optimization with Generalist-Specialist Learning”. ICML 2022

Shuang Liu, Renshen Wang, Michalis Raptis and Yasuhisa Fujii. “Unified Line and Paragraph
Detection by Graph Convolutional Networks”. DAS 2022 (oral presentation)

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen and Hao
Su “Multi-task Batch Reinforcement Learning with Metric Learning”. NeurIPS 2020

Shuang Liu, Olivier Bousquet and Kamalika Chaudhuri. “Approximation and Convergence
Properties of Generative Adversarial Learning” NeurIPS 2017 (spotlight presentation)

MANUSCRIPTS

Shuang Liu and Hao Su. “Provably Efficient Kernelized Q-Learning”.

Shuang Liu and Hao Su. “Regret Bounds for Discounted MDPs”.

Shuang Liu and Kamalika Chaudhuri “The Inductive Bias of Restricted f-GANs”.

Shuang Liu, Cheng Chen and Zhihua Zhang “Regret vs. Communication: Distributed Stochastic
Multi-Armed Bandits and Beyond”.

xi



ABSTRACT OF THE DISSERTATION

Regret Analysis for Discounted Reinforcement Learning

by

Shuang Liu

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Hao Su, Chair

Reward discounting has become an indispensable ingredient in designing practical

reinforcement learning (RL) algorithms. However, standard notions of regret in theoretical RL

are not capable of capturing the essence of reward discounting and, as such, fail to serve as

optimality criteria for analyzing practical RL algorithms. Three questions naturally arise:

(Q1) Can we have a different notion of regret that encapsulates the idea of reward discounting?

(Q2) Can we design RL algorithms, potentially with reward discounting, that can be analyzed

under this different notion?

(Q3) Can we make these algorithms tackle non-linear problems effectively and efficiently so

xii



that they can compete with widely-used RL algorithms on standard benchmarks?

We address these three questions in this dissertation. To answer (Q1), we introduce a

new notion of regret, named γ-regret, to capture the concept of regret in discounted RL. The

parameter γ in γ-regret serves as an alternative to the horizon or the diameter in traditional RL

analysis. The definition of γ-regret not only captures the idea of reward discounting in prevalent

RL algorithms, but also enables rigorous theoretical analysis of these practices. It is also deeply

connected with other regret-related notions in the existing RL literature.

Under the γ-regret framework, both algorithm design and theoretical analysis become

more challenging and require innovation. Nonetheless, we are able to make significant progress

toward answering (Q2). In particular, we first derive a lower bound of Ω

(√
T/(1− γ)

)
, where T

is the total number of interactions, on the γ-regret under the tabular setting. We then introduce two

algorithmic instantiations of the Q-learning paradigm, tabular double Q-learning and kernelized

Q-learning, both of which are amenable to theoretical analysis under the γ-regret framework. In

particular, we obtain an upper bound of Õ
(√

T/(1− γ)3
)

and Õ
(√

T/(1− γ)5
)

respectively

on the γ-regret for these two algorithms under various settings; notably, tabular double Q-learning

is the first RL algorithm that has near-optimal γ-regret, and since it was introduced, many more

RL algorithms has been designed and analyzed under the γ-regret framework.

We also take a big step toward answering (Q3). Specifically, we complement our analysis

of kernelized Q-learning with experiments on classic control tasks; remarkably, kernelized

Q-learning is the first RL algorithm that can nearly solve the MountainCar environment in as few

as one thousand steps.
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Chapter 1

Introduction

Reinforcement learning (RL) is concerned with how an algorithm should interact with

a (partially) unknown environment to maximize the cumulative reward. An environment is

typically modeled as a Markov decision process (MDP), which is specified by a state space, an

action space, a reward function, and a transition function. During the interaction, the algorithm

is associated with a state in the state space at any time. Whenever, the algorithm takes an action

in the action space, it receives a reward according to the reward function, and is transitioned (i.e.,

re-associated) to a new state according to the transition function. Both the reward function and

the transition function take the current state associated with the algorithm and the action taken as

inputs. The interaction is terminated typically after a certain number of actions have been taken.

RL is a very general model that captures the decision-making process of intellectual

entities and have been one of the most studied problems in machine learning. RL should not be

confused with planning, where the reward function and the transition function are both given

to the algorithm before the interaction. In RL, these two functions are only partially known to

the algorithm; most of the time, the algorithm designer does not have any prior on these two

functions except for their domain and range.

In this dissertation, we focus on an important aspect of reinforcement learning — reward

discounting. Reward discounting has become an indispensable ingredient in designing practical

RL algorithms. However, standard notions of regret in theoretical RL cannot capture the essence
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of reward discounting and, as such, fail to serve as optimality criteria for analyzing practical RL

algorithms. In view of this, three questions naturally arise:

(Q1) Can we have a different notion of regret that encapsulates the idea of reward discounting?

(Q2) Can we design RL algorithms, potentially with reward discounting, that can be analyzed

under this different notion?

(Q3) Can we make these algorithms tackle non-linear problems effectively and efficiently so

that they can compete with widely-used RL algorithms on standard benchmarks?

We will address these three questions in this dissertation. In the rest of the introduction,

we first highlight how reward discounting is treated in practice (Section 1.1). We then show a

concrete example to give the reader a better idea why reward discounting is necessary (Section

1.2). We conclude with a summary of our contributions in terms of addressing the three questions

(Section 1.3). The final section also serves as an outline of the remaining part of the dissertation.

1.1 Reward Discounting in Practice

1.1.1 Q-Learning

Q-learning, which dates back to as early as Watkins and Dayan (1992), has undergone

tremendous development in the past decades and remains one of the most sample-efficient RL

frameworks in practice.

Early studies of Q-learning focused on the tabular setting, where both the state space

and the action space are finite sets. In a common implementation, a two-dimensional array

Q is initialized arbitrarily (e.g., by zeros) and updated throughout the learning process such

that whenever the algorithm takes an action a in a state s and then receives a reward r and gets

transitioned to a new state s′, we set

Q[s][a] = (1−α)Q[s][a]+α

(
r+ γ max

a′
Q[s′][a′]

)
, (1.1)
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where γ ∈ [0,1) is a discounting factor. Actions that maximizes Q[s][a] are taken with priority —

for example, the algorithm can use ε-greedy to take actions, i.e., in state s, it takes a to maximize

Q[s][a] with probability 1− ε , and randomly otherwise. It can be shown (Watkins and Dayan,

1992) that as the algorithm takes more and more actions, each Q[s][a] will converge to some

constant Q∗(s,a).

The modern implementation of Q-learning extends beyond the tabular setting and tackles

continuous state spaces. It maintains a value function Qt at each step t such that

Qt ≈ argmin
Q

E
s,a,r,s′

[(
r+ γ max

a′
Qt−1(s′,a′)−Q(s,a)

)2
]
, (1.2)

where (s,a,r,s′), representing the quadruple of state, action, reward, next state, is sampled from

data collected by previous interactions, and γ ∈ [0,1) is a discounting factor. Again, actions that

maximizes Qt are taken with priority, e.g., using the ε-greedy strategy as in the tabular case. The

most successful implementation of the above paradigm is perhaps deep Q-learning (DQN) (Mnih

et al., 2013), in which each Qt is represented by a (deep) neural network.

As we can see from the above two instances of Q-learning, reward discounting, or

more specifically, the discounting factor γ , plays an important role when updating an internally

maintained value function.

1.1.2 Policy Gradient

Policy gradient (Sutton et al., 1999) is another RL framework that also has a very long

history. It treats the policy, instead of the value function, as the first-class citizen. In modern

implementations, the possible policies are parameterized, e.g., by the weights of a neural network.

Here we denote a policy by πθ , where θ is its parameterization. During learning, πθ is updated

with the help of another parameterized function Qω(s,a), which is also frequently updated

such that it approximates the γ-discounted return starting from the state-action pair (s,a) and

3



following the policy πθ , e.g., it is usually updated through gradient descent such that

E
s,a,r,s′

[(
r+ γ ·Ea′∼πθ (s′)

[
Qω(s′,a′)

]
−Qω(s,a)

)2
]
≈ 0, (1.3)

where (s,a,r,s′), representing the quadruple of state, action, reward, next state, is sampled from

data collected under πθ , and γ ∈ [0,1) is a discounting factor. πθ is then update through gradient

descent where the gradient is

∇θ E
s,a
[Qω(s,πθ (s))] , (1.4)

where (s,a), representing the state-action pair, is sampled from data collected under πθ .

As we can see, reward discounting, or more specifically, the discounting factor γ , is

necessary in updating Qω , and therefore also intrinsically indispensable in updating πθ .

1.2 An Example

The previous two sections have already highlighted a discrepancy in current RL practice

and theory: reward discounting has become an indispensable ingredient in designing practical

RL algorithms; however, standard notions of regret in theoretical RL are not capable of capturing

the essence of reward discounting and, as such, fail to serve as optimality criteria for analyzing

practical RL algorithms.

In view of this discrepancy, the first question that comes to mind is, perhaps, regarding

the role that reward discounting is playing in making RL algorithms more effective in practice.

To motivate the discussion, let us consider a concrete example. Consider the MDP illustrated in

Figure 1.1. The MDP consists of two sub-MDPs connected by N middle states. One sub-MDP is

less rewarding — the learner receives a reward in [0,1] if it takes an action within this sub-MDP;

the other one is more rewarding, the learner receives a reward in [3,4] if it takes an action within

this sub-MDP. The exact reward function within each sub-MDP does not matter in this example.

4



The learner starts from a state (marked as initial state in the figure) within the less

rewarding sub-MDP, and interacts with the (whole) MDP for T steps. The learner always has

the action to stay in a sub-MDP if the learner is already in it, but it may also choose to traverse

between the two sub-MDPs following the arrows shown in the figure; however, taking action in

any middle state (circles that do not belong to either sub-MDP in the figure) incurs a reward of

−1.

Because it only requires N +1 steps to arrive at the more-rewarding sub-MDP from the

initial state, during which the learner would incur N times the reward −1 and another reward in

[0,1] at the initial state, apparently, if T ≥ 2N +1, a reasonable learner should head right to the

more-rewarding sub-MDP from the very beginning and stay there afterward. In fact, doing so

would guarantee a total reward of at least 2N, while otherwise the total reward would be strictly

less than 2N.

On the other hand, as long as T ≤ N, it makes no sense for the learner to leave the

less-rewarding MDP, because the learner cannot reach the more-rewarding sub-MDP anyway,

and spending time on middle states only decreases the total reward, and the learner would have

to pass the initial state if it wanted to interact with the less-rewarding MDP again after spending

time in middle states.

An important observation that can be made from the above example is that, if the total

time budget T of a learner is small, it probably should be more myopic in order to earn more

rewards during the limited time budget. In other words, it should discount the future rewards

according to the total time budget.

1.3 Our Contributions

We address the three questions (Q1)-(Q3) in this dissertation. To answer (Q1), we

introduce a new notion of regret, named γ-regret, to capture the concept of regret in discounted

RL (Chapter 2). The parameter γ in γ-regret serves as an alternative to the horizon or the diameter

5



in traditional RL analysis. The definition of γ-regret not only captures idea of reward discounting

in prevalent RL algorithms but also enables rigorous theoretical analysis of these practices. It is

also deeply connected with other regret-related notions in the existing RL literature.

Under the γ-regret framework, both algorithm design and theoretical analysis become

more challenging and require innovation. Nonetheless, we are able to make significant progress

toward answering (Q2). In particular, we first derive a lower bound of Ω

(√
T/(1− γ)

)
, where

T is the total number of interactions, on the γ-regret under the tabular setting (Chapter 3).

We then introduce two algorithmic instantiations of the Q-learning paradigm, tabular double

Q-learning (Chapter 4) and kernelized Q-learning (Chapter 5), both of which are amenable to

theoretical analysis under the γ-regret framework.

The tabular double Q-learning algorithm is a theoretification of the double Q-learning

paradigm (Hasselt, 2010), which is a variant of the updating rule (1.1). We obtain an upper bound

of Õ
(√

T/(1− γ)3
)

on the γ-regret for tabular double Q-learning (Theorem 4.2.1). Notably,

tabular double Q-learning is the first RL algorithm that has near-optimal γ-regret, and since it

was introduced, many more RL algorithms has been designed and analyzed under the γ-regret

framework (Zhou et al., 2021a;b; He et al., 2020).

Kernelized Q-learning (KQL) is a theoretification of the paradigm (1.2). We obtain an

upper bound of Õ
(√

T/(1− γ)5
)

on the γ-regret for KQL (Theorem 5.4.17). Specifically, we

restrict each Qt to a reproducing kernel Hilbert space (RKHS) and perform optimization using

kernel ridge regression, and exploration is done through upper confidence bound.

RKHS are non-parametric function classes that are rich enough in that they are dense

in the space of continuous functions if the kernel is universal (Sriperumbudur et al., 2011).

Therefore, RKHS are, in some sense, as universal as neural networks (Hornik et al., 1989) while

being easier to analyze thanks to decades of research on kernel machines. Combining standard

machinery for analyzing kernel-based learning with our novel approach to analyze Q-learning,

we arrive at general regret bounds for arbitrary kernels (Theorem 5.4.17); in particular, we

provide concrete regret bounds for linear kernels (Corollary 5.4.25) and Gaussian RBF kernels
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(Corollary 5.4.27). Notably, the latter looks almost identical to the former, only that the actual

dimension is replaced by a different dimensionality that is at most polylogarithmic in the number

of steps.

We also take a big step toward answering (Q3). Specifically, we complement our

theoretical analyses with experiments on a subset of classic control tasks provided in OpenAI

Gym (Brockman et al., 2016). We faithfully implement the exact KQL algorithm for which

we derive regret bounds and choose hyperparameters based on the bounds. We demonstrate

superior sample efficiency of KQL, even when compared with DQN (Section 5.5). To the best of

our knowledge, KQL is the first provably low-regret algorithm that excels in commonly used

benchmarks; in particular, KQL is the first RL algorithm that can nearly solve the MountainCar

environment in as few as one thousand steps.

1.4 Bibliographic Notes

Early regret analysis for RL focused on the tabular setting. Jaksch et al. (2010); Osband

and Van Roy (2016) gave regret bounds in the average reward setting, Osband et al. (2016);

Azar et al. (2017); Jin et al. (2018); Simchowitz and Jamieson (2019); Zhang and Ji (2019);

Russo (2019); Zanette and Brunskill (2019); Zhang et al. (2020; 2021) gave regret bounds in the

episodic setting. Regret bounds for the discounted setting was not studied until recently (Liu and

Su, 2021; He et al., 2021b), due to trickier definition of the regret.

Later work generalized tabular analyses to the linear model episodic setting (Wang et al.,

2019; Jin et al., 2020; Zanette et al., 2020), the linear mixture model episodic setting (Cai et al.,

2020; Ayoub et al., 2020; Modi et al., 2020; Yang and Wang, 2020; Zhou et al., 2021a; He et al.,

2021a), and the linear mixture model discounted setting (Zhou et al., 2021b).

Bandit problems can be thought as a special case of RL problems where the state

space contains a single element, by setting the horizon to 1 in the episodic setting, or setting

the discounting factor to 0 in the discounted setting. Naturally, many ideas for RL analyses

7



Figure 1.1. An MDP formed by two sub-MDPs connected by N middle states.

originated from the bandit literature.

The earliest model for bandit problems is multi-armed bandit (Lai and Robbins, 1985).

Later work generalize the multi-armed model to the linear model (Dani et al., 2008; Rus-

mevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Li et al., 2021) and the linear

contextual model (Auer, 2002; Li et al., 2010; Chu et al., 2011; Li et al., 2019). Kernelization of

bandit algorithms are further developed for kernel bandit (Srinivas et al., 2009; 2012; Chowdhury

and Gopalan, 2017) and kernel contextual bandit (Krause and Ong, 2011; Valko et al., 2013;

Zhou et al., 2020).

Analyses for RL is generally much harder than for bandits, in that it needs to additionally

avoid exponential dependencies on the state space and horizon. In particular, (near) optimal

dependencies for these quantities require very sophisticated techniques.
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Chapter 2

γ-Regret

In this chapter, we will introduce a new notion of regret, named γ-regret, to capture the

concept of regret in discounted RL. The parameter γ in γ-regret serves as an alternative to the

horizon or the diameter in traditional RL analysis. The definition of γ-regret not only captures

idea of reward discounting in prevalent RL algorithms, but also enables rigorous theoretical

analysis of these practices. It is also deeply connected with other regret-related notions in the

existing RL literature.

2.1 Notations

For a measurable set X , let P(X) be the set of all probability measures over X .

Let S and A be measurable spaces, let

P : S ×A→P(S)

and

R : S ×A→P([0,1])

be functions. Consider a Markov decision process (MDP) specified by the state space S, the

action space A, the transition function P , and the reward function R. Consider an algorithm that

9



Algorithm 1. T-Step Reinforcement Learning
1: Parameters: number of steps T , state space S, actions space A.

2: Receive the initial state s1.
3: for step t = 1,2, · · · ,T
4: Take action at , then observe rt ∼ R(st ,at) and st+1 ∼ P(st ,at)
5: end for

interacts with this MDP for T steps. Let us label the steps with integers 1,2, · · · ,T . Initially,

the algorithm is given an initial state s0. Then for step t = 1,2, · · · ,T , the algorithm chooses

an action at ∈ A; as a consequence, the reward rt ∼ R(st ,at) and the state st+1 ∼ P(st ,at) are

revealed to the algorithm. Note that a priori, the algorithm only knows T , S, and A, but not R

and P, although it is able to infer R and P better and better as the interactions go on. The whole

process is presented in an algorithmic format in Algorithm 1.

A family of MDPs that are of particular interest is tabular MDP, where the state space

and the action space are both finite sets. In this case we denote the size of the state space by S

and the size of the action space by A.

2.2 The Definition

For any γ ∈ [0,1), state s ∈ S, and policy π : S →P(A), denote by Vπ(s) the expected

γ-discounted total rewards generated by starting from state s and following policy π to choose

the next action repeatedly, i.e.

Vπ(s) = E
s′0=s

a′τ∼π(s′τ )
r′τ∼R(s′τ ,a

′
τ )

s′
τ+1∼P(s′τ ,a′τ )

[
∞

∑
τ=0

γ
τr′τ

]
.

We can define the maximum γ-discounted total rewards from state s by

V∗(s) = sup
π:S→P(A)

Vπ(s).
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The γ-regret is defined by

Regretγ(T ) =
T

∑
t=1

(1− γ)V∗(st)−
T

∑
t=1

rt .

Note that here (1− γ) is for normalization so that the quantities on both sides of the minus sign

have range [0,T ].

2.3 Properties

To get a better understanding of the definition of γ-regret, let us assume the T -step

reinforcement learning process, as depicted in Algorithm 1, continues to run after step T ,

indefinitely. The exact behaviour of the algorithm after step T does not matter for our discussion.

The algorithm will then continue to observe rT+1,rT+2, · · · . Therefore, we can define

∆t =V∗(st)−
∞

∑
τ=0

γ
τrt+τ ,

which essentially captures how optimal the algorithm is from the viewpoint of step t. In order to

characterize the overall optimality of the algorithm, we can then consider the quantity

T

∑
t=1

∆t .

As it turns out, this quantity is closely related to Regretγ(T ), and it really does not matter too

much how the algorithm behaves after step T . Specifically, we have the following lemma.

Lemma 2.3.1.

(1− γ)
T

∑
t=1

∆t−
1

1− γ
≤ Regretγ(T )≤ (1− γ)

T

∑
t=1

∆t +
1

1− γ
.
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Proof. Note that

Regretγ(T )− (1− γ)
T

∑
t=1

∆t =
T

∑
t=1

rt− (1− γ)
T

∑
t=1

∞

∑
τ=0

γ
τrt+τ

=
T

∑
t=1

rt

(
1− (1− γ)

t−1

∑
τ=0

γ
τ

)

=
T

∑
t=1

rt

(
(1− γ)

∞

∑
τ=t

γ
τ

)
∈

[
−

T

∑
t=1

rtγ
t ,

T

∑
t=1

rtγ
t

]

∈
[
− 1

1− γ
,

1
1− γ

]
.

This concludes the proof.

This lemma essentially says that, in principle, we could have defined Regretγ(T ) to be

(1− γ)∑
T
t=1 ∆t . However, since this alternative definition depends on how the algorithm behaves

after step T , it is better to avoid the (not-so-important) ambiguity and stick to our original

definition of γ-regret.

Now let us compare γ-regret with one of the standard definitions of regret in the theoretical

RL literature. To this end, let us make the dependency on γ in Vπ(s) and V∗(s) explicit by writing

them as Vπ,γ(s) and V∗,γ(s).

Theoretical analysis on T-step RL are traditional done on MDPs with finite state and

action space, through the notion of average-reward regret, which is defined by

Regret∗(T ) =
T

∑
t=1

ρ
∗
st
−

T

∑
t=1

rt ,

where

ρ
∗
s = sup

π:S→P(A)
ρ

π
s
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and

ρ
π
s = lim

N→∞

1
N

E
s′0=s

a′τ∼π(s′τ )
r′τ∼R(s′τ ,a

′
τ )

s′
τ+1∼P(s′τ ,a′τ )

[
N−1

∑
τ=0

r′τ

]
.

It can then be shown that for any policy π : S →P(A) and state s ∈ S ,

lim
γ→1

(1− γ)Vπ,γ(s) = ρ
π
s .

Since we assumed the state space and the action space are both finite, there are only finitely

many different deterministic policies, and both ρ∗s and V∗(s) can be attained at a deterministic

policy, we arrive at

lim
γ→1

(1− γ)V∗,γ(s) = ρ
∗
s .

Consequently, the average-reward regret can be related to γ-regret by

lim
γ→1

Regretγ(T ) = Regret∗(T ).

Therefore, γ-regret can be seen as a non-asymptotic version of the average-reward regret.

γ-Regret can also be related to the sample complexity of exploration, introduced in Kakade

(2003). Specifically, this complexity, which we denote by Nγ(ε,δ ), is the smallest integer such

that with probability at least 1−δ , assuming the algorithm runs forever, there are at most Nγ(ε,δ )

different t such that

E[∆t ]> ε.

However, Nγ(ε,δ ) itself does not measure directly the performance of an algorithm in the first T
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steps. For example, an algorithm that (miraculously) incurs the highest possible total reward in

the first T steps could have a very large Nγ(ε,δ ) simply because it behaves randomly after T

steps.

2.4 Bibliographic Notes

Current analysis of Regret∗(T ) all assume that the MDP is at least weakly communicating,

and therefore conveniently ρ∗s does not depend on s. The analysis was pioneered by Jaksch et al.

(2010), who identified the diameter of the MDP, D to be necessary when bounding Regret∗(T ),

and in the case D≪ T , provided a lower bound of Ω(
√

DSAT ), which is still the best lower bound

in terms of D to date. They also derived an upper bound of Õ(DS
√

AT ). Later many more similar

bounds were derived under slightly different, but similar assumptions. For instance, Bartlett and

Tewari (2012); Fruit et al. (2018) assumed the MDP weakly communicates and the optimal bias

vector h∗ has bias-span sp(h∗)≪ T ; Ortner (2020) chooses to consider the maximal mixing time

of the Markov chains induced by all the policies.

In terms of the sample complexity of exploration Nγ(ε,δ ), the best upper bound to

date is Õ
(

SA
ε2(1−γ)6

)
(Szita and Szepesvári, 2010), while the best lower bound to date is

Ω̃

(
SA

ε2(1−γ)3

)
(Lattimore and Hutter, 2012).

This chapter is primarily based on material in section 2 and 3 in Liu and Su (2021), of

which the dissertation author was the primary researcher and author.

14



Chapter 3

Lower Bounds

The first step to understand a new notion of regret is, perhaps, by deriving a lower bound

of it in a simple scenario, for it not only assures us that the new notion is non-trivial, but also

gives us a sense later when we prove upper bounds how tight those bounds are.

In this chapter, we will derive a lower bound on the γ-regret in the tabular setting. Recall

that in the tabular setting, the state space has a finite size S and the action space has a finite size

A. Such a lower bound, if turns out to be non-trivial, will help us get a better understanding of

γ-regret, for if γ regret can be minimized by trivial means, it would not be of any interest, let

alone serving as an optimality criterion for RL algorithms.

The following theorem gives a lower bound on the expectation of γ-regret. Notably, it

suffices to consider an MDP with only two states.

Theorem 3.0.1. For any γ ∈
(2

3 ,1
)
, positive integers A ≥ 30,T ≥ A

1−γ
, and any (possibly

randomized) T -step RL algorithm, there exists a two-state MDP such that

E[Regretγ(T )]≥
√

AT

2304(1− γ)
1
2
− 1

1− γ
.
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Figure 3.1. A two-state MDP to prove the lower bound.

3.1 Proof of Theorem 3.0.1

We will construct an MDP similar to the one in the proof of Jaksch et al. (2010,

Theorem 5) for our proof. Specifically, the MDP has two states 0 and 1; the learner receives

reward 0 in state 0 and reward 1 in state 1, regardless the action taken; the learner goes from

state 1 to state 0 with probability 1− γ regardless the action taken; the learner goes from state 0

to state 1 with probability 1− γ +1a=a∗ ·ε when action a is taken, where ε = 1
24

√
A(1−γ)

T and a∗

will be chosen later. Such an MDP is illustrated in Figure 3.1. It is easy to see that ε ≤ 1− γ

since we assumed that T ≥ A
1−γ

. By definition, we have that

V∗(0) = γ(1− γ + ε)V∗(1)+ γ(γ− ε)V∗(0),

V∗(1) = 1+ γ(1− γ)V∗(0)+ γ
2V∗(1).

We can solve the above equations to get

V∗(0) =
γ− γ2 + γε

(1− γ)(1−2γ2 + γ + γε)
, (3.1)

V∗(1) =
1− γ2 + γε

(1− γ)(1−2γ2 + γ + γε)
. (3.2)
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Note that because ε ≤ 1− γ , we have in the denominators of (3.1) and (3.2) that

(1− γ)(1−2γ
2 + γ + γε) ∈

[
(1− γ)2,4(1− γ)2] (3.3)

Let N0 and N1 be the number of steps (in the first T steps) that the leaner is in state 0 and 1

respectively, and let N∗0 be the number of steps (in the first T steps) the learner is in state 0 and

takes action a∗, using the same argument as in the proof of Jaksch et al. (2010, Theorem 5), we

have that

E[N1]≤
T
2
+E[N∗0 ] ·

ε

1− γ
+

1
2(1− γ)

, (3.4)

E[N∗0 ]≤
T
2A

+
1

2A(1− γ)
+

εT
2

√
T

A(1− γ)
+

εT
2(1− γ)

√
A
. (3.5)
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Therefore,

(1− γ)−1 ·E[Regretγ(T )]

≥ E[N0] ·V∗(0)+E[N1] ·
(

V∗(1)−
1

1− γ

)
=

E[N0] · γ(1− γ + ε)−E[N1] · γ(1− γ)

(1− γ)(1−2γ2 + γ + γε)

(a)
≥

T γε

2 − γ− εγ

2(1−γ) −E[N∗0 ] ·
εγ(2−2γ+ε)

1−γ

(1− γ)(1−2γ2 + γ + γε)

(b)
≥ γ ·

T ε

2 −1− ε

2(1−γ) −
(

T
2A + 1

2A(1−γ) +
εT
2

√
T

A(1−γ) +
εT

2(1−γ)
√

A

)
· ε(2−2γ+ε)

1−γ

(1− γ)(1−2γ2 + γ + γε)

(c)
≥ γ ·

T ε

4 −1−3ε ·
(

5T
8A + εT

2

√
T

A(1−γ) +
εT

2(1−γ)
√

A

)
(1− γ)(1−2γ2 + γ + γε)

(d)
= γ ·

√
AT (1−γ)

96 −1−
(√

AT (1−γ)
384 +

√
AT (1−γ)

192

)
(1− γ)(1−2γ2 + γ + γε)

(e)
=

√
AT (1− γ)

576(1− γ)(1−2γ2 + γ + γε)
− 1

(1− γ)(1−2γ2 + γ + γε)
( f )
≥

√
AT

2304(1− γ)1.5 −
1

(1− γ)2 ,

where (a) is due to (3.4) and the fact that N0 +N1 = T , (b) is due to (3.5), (c) is because by

assumption T ≥ A
1−γ
≥ 4

1−γ
and ε ≤ 1− γ , (d) is by substituting ε with the chosen value and

recall that by assumption A≥ 30 and T (1− γ)≥ 1, (e) is because by our assumption γ ∈
(2

3 ,1
)
,

(f) is due to (3.3). Rearranging the terms concludes the proof.

3.2 Bibliographic Notes

Our proof of the lower bound (Theorem 3.0.1) on γ-regret is an adaptation of the proof for

the average-reward setting in Jaksch et al. (2010, Theorem 5). The major challenge the γ-regret

formulation brings is that the value function, now being the discounted total return instead of the

long-term average, can vary from state to state.
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Shortly after our lower bound appeared online, it was improved it to

Ω

(√
SAT/(1− γ)

)

by He et al. (2020) using a simple extension of our construction and proof — note the additional
√

S factor, who also gives a matching upper bound up to logarithmic factors, thus showing the

tightness of the lower bounds.

This chapter is primarily based on material in section 4 and 6 in Liu and Su (2021), of

which the dissertation author was the primary researcher and author.
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Chapter 4

Tabular Double Q-Learning

4.1 The Algorithm

The double Q-learning paradigm, introduced in Hasselt (2010), has become an important

variant of the vanilla Q-learning paradigm. In double Q-learning, instead of maintaining a single

Q-value function, two Q-value functions are maintained, denoted by QA(s,a) and QB(s,a). Every

time the algorithm takes an action a in a state s, receives a reward r and gets transitioned to a

new state s′, it will choose one of QA and QB, e.g. randomly, and if QA is chosen, it will perform

the update

QA(s,a)← (1−α)QA(s,a)+α

(
r+ γ max

a′
QB(s′,a′)

)
,

and symmetrically if QB is chosen, it will perform the update

QB(s,a)← (1−α)QB(s,a)+α

(
r+ γ max

a′
QA(s′,a′)

)
,

where in both cases α is a parameter.

In this section, we will introduce a provably efficient version of the double Q-learning

algorithm. We simply name this algorithm tabular double Q-learning, although it has much

fewer arbitrariness compared to the one used in practice for it to achieve provable efficiency. We

present tabular double Q-learning in Algorithm 2.
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Compared to the original neural-network-oriented version, the tabular version has certain

specifications that are crucial for theoretical analysis:

• Instead of initializing the Q-value functions arbitrarily as done in the original version,

in our version the two Q-value functions have to be initialized to 1
1−γ

, or for that matter,

the maximal possible discounted cumulative return if it is known. This is rather critical

in terms of exploration. In fact, without any prior knowledge on the dynamics of the

underlying MDP, setting the initial value of the Q-value functions to the maximal possible

value is a necessary condition for the Q-value functions to stay to be an upper confidence

bound during the learning process.

• The behavioral policy (i.e., the strategy used to choose which action to take) cannot be

arbitrary as in the original version. The action has to be taken greedily based on the

Q-value function that immediately gets updated afterward. A greedy behavioral policy

is rather standard in designing algorithms that has low regret, for, the Q-value functions

in fact serve as upper confidence bounds, and taking actions that has the largest upper

confidence bound will make the algorithm to make progress either on the exploitation

frontier or the exploration frontier.

• In the original version, in each round, one of the two Q-value functions gets chosen, for

example, randomly, and gets updated from the other one. In our version, the updates

have to happen in a strictly alternating fashion — the Q-value function gets updated in a

round is used for updating the other Q-value function in the next round. The alternating

updating scheme may seem to be a natural choice in practice, among other options such

as choosing one of the Q-value functions randomly every time; however, it becomes

critical in our analysis. In particular, the alternating updating scheme in some sense avoids

self-dependency and enables certain terms to cancel out during the process of bounding

the γ-regret.
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Algorithm 2. Tabular Double Q-Learning
Parameters: T , γ , S, A, p

Initialize: bt =
2

1−γ

√
ln
(

π2SAt2
p

)
(1−γ)t for t ≥ 1, αt =

2−γ

1+t−tγ for t ≥ 1

for (s,a) ∈ S ×A ▷ start initialization
Q0(s,a),Q1(s,a)← 1

1−γ

N0(s,a),N1(s,a)← 0
end for
receive initial state s0
for step h = 1,2, · · · ,T ▷ main loop

ι ← h mod 2
ah← argmax a′∈AQι(sh,a′)
take action ah, then observe rh and sh+1
Nι(sh,ah)← Nι(sh,ah)+1
t← Nι(sh,ah)
Qι(sh,ah)← (1−αt)Qι(sh,ah)+αt

(
r+bt + γ maxa′∈AQ1−ι(sh+1,a′)

)
end for

• Instead of directly updating the Q-value functions using Bellman equations like in the

original version, an adjusting term are added to the received reward when updating the

Q-value functions so that the maintained Q-value functions stay to be upper confidence

bounds throughout the learning process.

4.2 Upper Bounds

In this section, we will establish an upper bound on the regret of the tabular double

Q-learning algorithm presented in the previous section. More specifically, we have the following

theorem.
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Theorem 4.2.1. For any γ ∈ [0,1) and p ∈ (0,1], with probability at least 1− p, for any positive

integer T , Algorithm 2 has

Regretγ(T )≤
14
√

SAT ln
(

π2SAT 2

p

)
(1− γ)

3
2

+
2SA+4

1− γ
,

and consequently,

E
[
Regretγ(T )

]
≤ 14

√
SAT ln(π2SAT 3)

(1− γ)
3
2

+
2SA+5

1− γ
.

We can see from the above theorem that the upper bound is of the order

Õ

(√
SAT

(1− γ)3

)
.

Recall that in the bibliographic notes of the previous chapter we mentioned that the most

recent lower bound is of the order

Ω

(√
SAT

(1− γ)

)

and there exists an algorithm that has γ-regret of the order

Õ

(√
SAT

(1− γ)

)
.

Therefore, in this sense, the tabular double Q-learning may not be minimax optimal, at least

according to our analysis. Nonetheless, it is the first proposed algorithm that has a γ-regret

that has square root dependency on T and polynomial dependency on (1− γ); it also gives a

theoretical justification of the widely used double Q-learning algorithm.
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4.2.1 Proof of Theorem 4.2.1

The proof will be in the same style as in Jin et al. (2018), with technical modifications

to handle the cyclic dependencies in the non-episodic setting. Recall that in Algorithm 2, for

any t ≥ 1, αt =
2−γ

1+t−tγ . We furthermore define α0 = 1. Let α i
t = αi ∏

t
j=i+1(1−α j); it is easy

to verify that ∑
t
i=0 α i

t = 1. Define by Qh and Nh the Q0 and N0 function at the beginning of

iteration h if h is even, or the Q1 and the N1 function at the beginning of iteration h if h is odd.

Let nh = Nh(sh,ah). For i = 1,2, · · · ,nh, let previ(h) be the ith smallest h′ < h such that h′ and h

have the same parity, sh′ = sh, and ah′ = ah. Define

Vh(s) = max
a

Qh(s,a),

R̄(s,a) = E
r∼R∗(s,a)

[r],

r̄h = R̄(sh,ah),

V∗(P(s,a)) = E
s′∼P(s,a)

[
V∗(s′)

]
,

Q∗(s,a) = R̄(s,a)+V∗(P(s,a)),

φh =Vh(sh)−V∗(sh),

δh = φh +∆h.

Lemma 4.2.2. The following statements are true:

(i). ln(C·t)√
t ≤ ∑

t
i=1 α i

t

√
ln(C·i)

i ≤ 2 · ln(C·t)√
t for any t ≥ 1 and C ≥ e.

(ii). ∑
t
i=1
(
α i

t
)2 ≤ 2

(1−γ)t for any t ≥ 1.

(iii). ∑
∞
t=i α i

t = 2− γ for any i≥ 1.

Proof. For (ii) and (iii), the same proof as in Jin et al. (2018), Lemma 4.1.(b)-(c) can be applied,

with H replaced by 1
1−γ

, and note that in proving (iii) the requirement for n and k to be positive

integers in their proof can be relaxed to n and k being real numbers that are at least 1. We will
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prove (i) by induction on t. The base case t = 1 holds because α1
t = 1. Assuming the statement

is true for t, then on one hand,

t+1

∑
i=1

α
i
t+1

√
ln(C · i)

i
(a)
= αt+1

√
ln(C · (t +1))

t +1
+(1−αt+1)

t

∑
i=1

α
i
t

√
ln(C · i)

i

(b)
≥ αt+1

√
ln(C · (t +1))

t +1
+(1−αt+1)

√
ln(C · t)

t
(c)
≥
√

ln(C · (t +1))
t +1

,

where in (a) we used the definition of α i
t , in (b) we used the induction assumption, and (c) is

because x 7→ ln(C·x)
x is a non-increasing function when C ≥ e and x≥ 1. On the other hand, we

have

t+1

∑
i=1

α
i
t+1

√
ln(C · i)

i

(a)
= αt+1

√
ln(C · (t +1))

t +1
+(1−αt+1)

t

∑
i=1

α
i
t

√
ln(C · i)

i

(b)
≤ αt+1

√
ln(C · (t +1))

t +1
+2(1−αt+1)

√
ln(C · t)

t
(c)
=

2− γ

2+ t− (t +1)γ

√
ln(C · (t +1))

t +1
+

2t(1− γ)

2+ t− (t +1)γ

√
ln(C · t)

t

≤ 2− γ

2+ t− (t +1)γ

√
ln(C · (t +1))

t +1
+

2
√

t(1− γ)
√

t +1
2+ t− (t +1)γ

√
ln(C · (t +1))

t +1

≤ 2+2(t +1)(1− γ)

1+(t +1)(1− γ)

√
ln(C · (t +1))

t +1

= 2

√
ln(C · (t +1))

t +1
,

where in (a) we used the definition of α i
t , in (b) we used the induction assumption, and in (c) we

used the definition of αt . Therefore, the statement in (i) is true for any t ≥ 1.
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Lemma 4.2.3. For any h,

Qh(sh,ah)−Q∗(sh,ah)

= α
0
nh

(
1

1− γ
−Q∗(s,a)

)
+

nh

∑
i=1

α
i
nh

bi + γ

nh

∑
i=1

α
i
nh

φprevi
h+1

+
nh

∑
i=1

α
i
nh

(
rprevi

h
− r̄previ

h
+ γ

(
V∗
(

sprevi
h+1

)
−V∗(P(sh,ah))

))
.

Proof. We have that

Qh(sh,ah) = α
0
nh

1
1− γ

+
nh

∑
i=1

α
i
nh

(
rprevi

h
+bi + γVprevi

h+1

(
sprevi

h+1

))

and

Q∗(sh,ah)
(a)
=

nh

∑
i=0

α
i
nh

(
r̄previ

h
+ γV∗(P(sh,ah))

)
= α

0
nh

Q∗(s,a)+
nh

∑
i=1

α
i
nh

(
r̄previ

h
+ γV∗(P(sh,ah))

)
,

where in (a) we used the fact that ∑
t
i=0 α i

t = 1 for any t and the definition of Q∗(s,a). Therefore

we have

Qh(sh,ah)−Q∗(sh,ah)

= α
0
nh

(
1

1− γ
−Q∗(s,a)

)
+

nh

∑
i=1

α
i
nh

(
rprevi

h
− r̄previ

h
+bi + γ

(
Vprevi

h+1(sprevi
h+1)−V∗(P(sh,ah))

))
= α

0
nh

(
1

1− γ
−Q∗(s,a)

)
+

nh

∑
i=1

α
i
nh

bi + γ

nh

∑
i=1

α
i
nh

φprevi
h+1+

nh

∑
i=1

α
i
nh

(
rprevi

h
− r̄previ

h
+ γ

(
V∗(sprevi

h+1)−V∗(P(sh,ah))
))

.
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This concludes the proof.

Lemma 4.2.4. Define random variables rs,a,i to be the reward received after taking action a on

state s the ith time, and s′s,a,i to be the next state when receiving reward rs,a,i, then for any T , with

probability at least 1− p, the following hold simultaneously

(i). For any h, 0≤ Qh(sh,ah)−Q∗(sh,ah)≤
α0

nh
1−γ

+ γ ∑
nh
i=1 α i

nh
φprevi

h+1 +3βnh ,

where βt =
2

1−γ

√
ln
(

π2SAt2
p

)
(1−γ)t if t ≥ 1 and β0 = 0.

(ii). ∑
T
h=1 r̄h− rh + γ (V∗(P(sh,ah))−V∗(sh+1))≤ ξT , where ξT =

√
2

1−γ

√
T ln

(
3

2p

)
.

Proof. It suffices to show that (i) happens with probability at least 1− p
3 and (ii) happens with

probability at least 1− 2p
3 .

We focus on (i) first. The case where nh = 0 is trivial, so we assume nh ≥ 1. Fix any

s,a, t, let xi = α i
t

(
rs,a,i− R̄(s,a)+ γ

(
V∗(s′s,a,i)−V∗(P(s,a))

))
. We can see that {xi}ti=1 is a

Martingale difference sequence and |xi| ≤ α i
t

1−γ
, therefore by Azuma-Hoeffding inequality we

have that with probability at least 1− 2p
π2SAt2 ,

∣∣∣∣∣ t

∑
i=1

xi

∣∣∣∣∣≤ 1
1− γ

√
2ln
(

π2SAt2

p

) t

∑
i=1

(
α i

t
)2

(a)
≤ 1

1− γ

√√√√4ln
(

π2SAt2

p

)
(1− γ)t

= βt ,

where in (a) we used Lemma 4.2.2.(ii). Using a union bound, the above inequalities hold for all

s, a, t ≥ 1 with probability at least

1−SA
∞

∑
t=1

2p
π2SAt2 = 1− p

3
.

According to Lemma 4.2.3, it suffices to show that with probability at least 1− p
3 , we have that
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for any s,a, t,

0≤
t

∑
i=1

α
i
t bi +

t

∑
i=1

α
i
t
(
rs,a,i− R̄(s,a)+ γ

(
V∗(s′s,a,i)−V∗(P(s,a))

))
≤ 3βt , (4.1)

and then the first inequality in (i) follows by induction and the second inequality in (i) follows

naturally. In fact, to see (4.1), first note that by Lemma 4.2.2.(i) we have that

βt ≤
t

∑
i=1

ai
tbi ≤ 2βt

and the previous arguments showed that with probability at least 1− p
3 we have that for any

s,a, t,

∣∣∣∣∣ t

∑
i=1

α
i
t
(
rs,a,i− R̄(s,a)+ γ

(
V∗(s′s,a,i)−V∗(P(s,a))

))∣∣∣∣∣≤ βt .

This concludes the proof that (i) is true with probability at least 1− p
3 .

Next we focus on (ii). Let yh = r̄h− rh + γ (V∗(P(sh,ah))−V∗(sh+1)). We can see that

{yh}T
i=1 is a Martingale difference sequence and |yh| ≤ 1

1−γ
, therefore by Azuma-Hoeffding

inequality we have that with probability at least 1− 2p
3 ,

T

∑
h=1

yh ≤
1

1− γ

√
2T ln

(
3

2p

)
= ξT .

This concludes the proof that (ii) is true with probability at least 1− 2p
3 .

We are now ready to begin our proof. From now on all the calculation will condition on

the events where the statements in Lemma 4.2.4 are true. It is important to notice that in this
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case we have that for any h, φh ≥ 0 and ∆h ≤ δh. First note that

δh = Qh(sh,ah)−
∞

∑
t=0

γ
trh+t

= (Qh(sh,ah)−Q∗(sh,ah))+

(
Q∗(sh,ah)−

∞

∑
t=0

γ
trh+t

)
(a)
≤ α

0
nh
· 1

1− γ
+ γ

nh

∑
i=1

α
i
nh

φprevi
h+1 +3βnh+

r̄h− rh + γ

(
V∗(P(sh,ah))−

∞

∑
t=0

γ
trh+1+t

)

≤ α
0
nh
· 1

1− γ
+ γ

nh

∑
i=1

α
i
nh

φprevi
h+1 +3βnh+

γ (δh+1−φh+1)+(r̄h− rh)+ γ (V∗(P(sh,ah))−V∗(sh+1)) ,

where (a) is due to Lemma 4.2.4.(i). Therefore, according to Lemma 4.2.4.(ii) we have

T

∑
h=1

δh

≤ 1
1− γ

T

∑
h=1

α
0
nh
+ γ

T

∑
h=1

nh

∑
i=1

α
i
nh

φprevi
h+1 + γ

T

∑
h=1

δh+1− γ

T

∑
h=1

φh+1 +ξT +3
T

∑
h=1

βnh.

Using the fact that |δh| ≤ 1
1−γ

for any h and rearranging the terms, we get

(1− γ)
T

∑
h=1

δh

≤ 1
1− γ

T

∑
h=1

α
0
nh
+ γ

(
T

∑
h=1

nh

∑
i=1

α
i
nh

φprevi
h+1−

T

∑
h=1

φh+1

)
+ξT +3

T

∑
h=1

βnh +
2γ

1− γ
.

(4.2)

To continue the calculation, first note that α0
nh

is 1 if nh = 0 and is 0 otherwise, therefore

T

∑
h=1

α
0
nh
=

T

∑
h=1

1nh=0

≤ 2SA.
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Next note that

T

∑
h=1

nh

∑
i=1

α
i
nh

φprevi
h+1−

T

∑
h=1

φh+1

≤
T

∑
h=1

φh

∞

∑
t=nh+1

α
nh
t −

T

∑
h=1

φh+1

(a)
≤ 2− γ

2

T

∑
h=1

φh−
T

∑
h=1

φh +φ0

= (1− γ)
T

∑
h=1

φh +
1

1− γ

= (1− γ)
T

∑
h=1

(δh−∆h)+
1

1− γ
,

where (a) is because of Lemma 4.2.2.(iii). Now going back to (4.2) we get

(1− γ)
T

∑
h=1

δh ≤
2SA+3

1− γ
+(1− γ)

T

∑
h=1

(δh−∆h)+ξT +3
T

∑
h=1

βnh

⇐⇒ (1− γ)
T

∑
h=1

∆h ≤
2SA+3

1− γ
+ξT +3

T

∑
h=1

βnh
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Finally, note that

T

∑
h=1

βnh ≤
2
√

ln
(

π2SAT 2

p

)
(1− γ)1.5

T

∑
h=1

1nh≥1 ·

√
1
nh

=

2
√

ln
(

π2SAT 2

p

)
(1− γ)1.5 ∑

s,a

NT (s,a)

∑
t=1

√
1
t

(a)
≤

2
√

ln
(

π2SAT 2

p

)
(1− γ)1.5 ∑

s,a
2
√

NT (s,a)

(b)
≤

4
√

SAT ln
(

π2SAT 2

p

)
(1− γ)1.5 ,

where (a) is because ∑
t
i=1

√
1
i ≤ 2

√
t and (b) is by Cauchy-Schwarz inequality and the fact that

∑s,a NT (s,a)≤ T . Therefore,

(1− γ)
T

∑
h=1

∆h

≤ 2SA+3
1− γ

+

√
2

1− γ

√
T ln

(
3

2p

)
+

12
√

SAT ln
(

π2SAT 2

p

)
(1− γ)1.5

≤ 2SA+3
1− γ

+

14
√

SAT ln
(

π2SAT 2

p

)
(1− γ)1.5

(4.3)
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On the other hand, we have

(1− γ)
T

∑
h=1

∆h

=
T

∑
h=1

(1− γ)V∗(sh)− (1− γ)
T

∑
h=1

∞

∑
t=0

γ
trh+t

≥
T

∑
h=1

(1− γ)V∗(sh)−
T

∑
u=1

ru− (1− γ)
∞

∑
u=T

ru

u

∑
v=u−T+1

γ
v

= Regretγ(T )− (1− γ)
∞

∑
u=T

ru

u

∑
v=u−T+1

γ
v

≥ Regretγ(T )−
1

1− γ
.

(4.4)

Combining together (4.3) and (4.4), we arrive at

Regretγ(T )≤
14
√

SAT ln
(

π2SAT 2

p

)
(1− γ)1.5 +

2SA+4
1− γ

.

This concludes the proof.

4.2.2 Relation to Sample Complexity of Exploration

Recall that the sample complexity of exploration Nγ(ε,δ ) is the smallest integer such that

with probability at least 1−δ , assuming the algorithm runs forever, there are at most Nγ(ε,δ )

different t such that

E [∆t ]> ε.

It is easy to see that

E
[
Regretγ(T )

]
∈ O

(
inf
ε

Nγ

(
ε,

1
T

)
+ εT (1− γ)+

1
1− γ

)
.

Plugging in the best existing bound for Nγ(ε,δ ), which is Õ
(

SA
ε2(1−γ)6

)
from Szita and Szepesvári
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(2010), we arrive at an upper bound of Õ
(

T
2
3 (SA)

1
3

(1−γ)
4
3

)
on E

[
Regretγ(T )

]
. It may seem that this

bound has better dependencies on S, A, and γ than those from our tabular double Q-learning, but

this is not the case. In fact, we have the following inequalities:

Õ

(
T

2
3 (SA)

1
3

(1− γ)
4
3

)
≥


Õ(T ) , if T <

SA
(1− γ)4 ,

Õ

( √
SAT

(1− γ)2

)
, otherwise.

(4.5)

Note that in the above inequalities Õ(T ) is a trivial upper bound on Regretγ(T ) for any T , while

Õ
( √

SAT
(1−γ)2

)
has a worse dependency on γ than our upper bound.

If the upper bounds on Nγ(ε,δ ) were to hold uniformly over all possible ε , then we could

translate the (uniform) upper bound on Nγ(ε,δ ) into upper bounds on γ-regret in a better way.

In fact, if the best existing upper bound on Nγ(ε,δ ), Õ
(

SA
ε2(1−γ)6

)
, were to hold uniformly over

all possible ε , then we would have

E
[
Regretγ(T )

]
∈ O

(
(1− γ)

(∫ 1
1−γ

ε0

SA
ε2(1− γ)6 +T ε0

)
+

1
1− γ

)
;

in other words, we could get an upper bound on γ-regret as good as Õ
( √

SAT
(1−γ)2

)
. We can see that

even in this imagined ideal scenario the translated upper bound still has a worse dependency on

γ than ours.

4.3 Bibliographic Notes

Our tabular double Q-learning algorithm and its analysis are inspired by Jin et al. (2018),

who showed that a specific tabular version of Q-Learning (Watkins and Dayan, 1992) has near-

optimal regret in the episodic setting. Their algorithm and analysis, however, are not directly

applicable to the non-episodic setting, for the following two reasons:

First, in the episodic setting, there are H value functions Q0,Q1, · · · ,QH−1 to be learned,
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each Qi depends only on Q j>i — there is no cyclic dependency; on the other hand, in the

non-episodic setting, there is only one single value function, so a hierarchical induction in the

analysis is not possible. To deal with self-dependency, we find it very useful to replace the

regular Q-learning with double Q-learning (Hasselt, 2010), which has been widely used in deep

reinforcement learning since it was introduced (Hasselt et al., 2016; Hessel et al., 2018).

Second, a key ingredient in the proof of Jin et al. (2018) is the choice of learning

rate αt =
H+1
H+t — a nice consequence of this choice is that the total per-episode-step regret

blow-up is (1+1/H); since there are at most H steps in each episode, the total blow-up is

(1+1/H)H , which is upper bounded by the constant e regardless how large H is. The same

quantity (1+1/H)H also appeared in Azar et al. (2017) for the same reason. However, in the

non-episodic setting, the blow-up could become arbitrarily large because the learner is not reset

every H steps; therefore, different techniques are required to control the blow-up of the regret.

Our tabular double Q-learning algorithm also looks visually similar to Dong et al. (2019,

Algorithm 1); however, the goal of Dong et al. (2019) is to propose a model-free algorithm that

has low sample complexity of exploration, and the proof technique therein is very different from

ours.

Episodic regret bounds have also been studied, and a minimax episodic regret of
√

HSAT

has been proved (Azar et al., 2017; Zanette and Brunskill, 2019), where H is the episode length.

This chapter is primarily based on material in section 5 and 6 in Liu and Su (2021), of

which the dissertation author was the primary researcher and author.
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Chapter 5

Kernelized Q-Learning

In the previous chapter, we proposed an algorithm that works well in the tabular setting

in terms of the γ-regret. Naturally, we want to go beyond the tabular setting and tackle linear

or even non-linear reward functions and transition functions, and this will be the topic of this

chapter.

5.1 Preliminaries

For a measurable space X , let B(X) be the space of real-valued bounded measurable

functions over X equipped with the supremum norm ∥·∥∞. For any positive integer n, denote by

[n] the set {1,2, · · · ,n}.

LetH be a Hilbert space. Denote by ⟨·, ·⟩H the inner product onH. Denote by ∥·∥H the

norm induced by the inner product. If T :H→H is a bounded self-adjoint positive-definite

linear operator, define the Mahalanobis norm ∥ f∥T =
√
⟨T f , f ⟩H. Denote by BHS(H) the space

of Hilbert-Schmidt operators from H to H. Denote by ⟨·, ·⟩HS the inner product on BHS(H).

Denote by ∥·∥HS the norm induced by the inner product. For any u,v ∈H, denote by u⊗ v the

linear operator such that for any f ∈H, (u⊗ v) f = ⟨u, f ⟩H · v.

Let H be a real-valued RKHS over a set X such that the corresponding kernel K is

bounded. For any x ∈ X , denote by Kx the reproducing function at x, i.e., Kx is the unique

function that satisfies for any f ∈ H, f (x) = ⟨ f ,Kx⟩H. In fact, Kx = (x 7→ K(x, ·)). For any
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f ∈H, define the norm

∥ f∥∗ = sup
x∈X
⟨ f ,Kx⟩H.

For any bounded linear operator T :H→H, define the norm

∥T∥∗ = sup
x∈X
⟨TKx,Kx⟩H.

5.2 Assumptions

To simplify the exposition, let us assume the reward function is deterministic, and denote

it by r∗(s,a). In other words, R∗(s,a) is a Dirac measure at r∗(s,a). Our analysis can be easily

generalized to incorporate stochastic reward functions.

Let H be a real-valued RKHS defined on S ×A such that the corresponding kernel

K : (S ×A)2→ R is bounded. Without loss of generality, we will assume ∥K∥∞ > 0; and we

further assume K is properly normalized so that for any (s,a) ∈ S ×A,
∥∥K(s,a)

∥∥
H ∈ [1/2,1].

Let us convert P into a linear operator by defining

M∗ : B(S)→B(S ×A)

f 7→
(
(s,a) 7→ EP(s,a)[ f ]

)
.

We will assume there exists an (unknown) M : B(S)→H such that

sup
f∈B(S)
∥ f∥∞≤1

∥(M−M∗) f∥
∞
≤ ε.
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The operator norm of M is defined by

∥M∥= sup
f∈B(S)
∥ f∥∞≤1

∥M( f )∥H.

We assume ∥M∥ ≤ ρ. Similarly, for the reward function, we will also assume there exists an

(unknown) r ∈H such that

∥r∗− r∥∞ ≤ ε, ∥r∥H ≤ ρ.

Let σ ∈ [0,1] be a bound on the stochasticity of the MDP. Specifically, for any (s,a) ∈

S×A, f ∈ B(S) such that ∥ f∥∞ ≤ 1, f (s′) is σ -sub-Gaussian when s′ ∼ P(s,a). Clearly, σ can

always be set to 1, and for a deterministic MDP, σ can be set to 0.

5.3 The Algorithm

We propose kernelized Q-learning (KQL) (Algorithm 3). It is a theoretification of the

deep Q-learning paradigm in the context of kernel spaces. It can run in time O((T +g)T 2|A|),

where g is the time to compute x,y 7→ K(x,y). When the kernel is linear, the running time can be

improved (by special implementation) to O(T d2|A|), where d is the dimension of the feature

space that S ×A is embedded into.

We list closed-form representations of the variables maintained by Algorithm 3 below. In

fact, our results in this chapter hold for any algorithm for which these variables are maintained.

Fact 5.3.1. Denote by Kτ =K(sτ ,aτ ) and rτ = r∗(sτ ,aτ). Algorithm 3 satisfies

(1) For any t ∈ [T ], Ŵt =
(
∑

t−1
τ=1Kτ ⊗Kτ +λ I

)−1
.

(2) For any t ∈ [T ],

Q̂t =

(
t−1

∑
τ=1

(
rτ + γ max

a
Q̃t−1[τ +1][a]

)
Kτ

)
Ŵt .
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Algorithm 3. Kernelized Q-Learning

1: Parameters: T , γ , K, λ > 0, 0≤ β ≤ 2
√

T+λ

1−γ
.

2: Initialize: Ŵ1 =
1
λ

I. Q̂1 = 0.

3: Receive the initial state s1.
4: for step t = 1,2, · · · ,T
5: for a ∈ A
6: Γ̂t [t][a] =

∥∥K(st ,a)
∥∥

Ŵt
. ▷ O(T 2).

7: Q̃t [t][a] = clip[0,1/(1−γ)]

(
Q̂t(st ,a)+β · Γ̂t [t][a]

)
▷ O(T ).

8: end for
9: Take action at = argmax a Q̃t [t][a], observe st+1 ∼ P(st ,at). ▷ O(T 2|A|).

10: for τ = 1,2, · · · , t−1
11: for a ∈ A
12: Q̃t [τ][a] = clip[0,1/(1−γ)]

(
Q̂t(sτ ,a)+β · Γ̂t [τ][a]

)
▷ O(T ).

13: end for
14: end for
15: u = ŴtK(st ,at). ▷ O(T 2).
16: s =

〈
u,K(st ,at)

〉
H. ▷ O(T 2).

17: Ŵt+1 = Ŵt− u⊗u
1+s . ▷ O(T 2).

18: for τ = 1,2, · · · , t
19: for a ∈ A

20: Γ̂t+1[τ][a] =

√(
Γ̂t [τ][a]

)2
− u2(sτ ,a)

1+s . ▷ O(T ).
21: end for
22: end for
23: Q̂t+1 =

(
∑

t
τ=1

(
r∗(sτ ,aτ)+ γ maxa Q̃t [τ +1][a]

)
·K(sτ ,aτ )

)
Ŵt+1. ▷ O(T 2|A|).

24: end for

(3) For any τ, t ∈ [T ] such that τ ≤ t, a ∈ A

Q̃t [τ][a] = clip[
0, 1

1−γ

]
(

Q̂t(sτ ,a)+β
∥∥K(sτ ,a)

∥∥
Ŵt

)
.

5.4 Upper Bounds

The goal of this section is to derive γ-regret upper bounds for KQL. We will introduce

the necessary technicalities in the first two sections and dive into the bounds afterwards.
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5.4.1 Effective Dimension and Pseudo Dimension

We are going to introduce two concepts used in the learning literature to capture the

properties of a RKHS, effective dimension and pseudo dimension. Note that many similar

concepts have been introduced (see Srinivas et al. (2009; 2012); Valko et al. (2013); Chowdhury

and Gopalan (2017); Yang and Wang (2020); Yang et al. (2020) among many others) under

various names such as information gain. All these variants are in some sense equivalent to each

other, in that they all capture the effective dimensionality of a RKHS, perhaps up to a logarithmic

factor.

In this section, let X be a set, K : X×X → R be a kernel, n be a positive integer, x1:n =

(x1,x2, · · · ,xn)∈Xn, and λ > 0, K be a n×n matrix where K[i][ j] =K(xi,x j), Σ=∑
n
i=1Kxi⊗Kxi .

Effective Dimension

Definition 5.4.1 (Effective dimension (Zhang, 2005; Hastie et al., 2009; Calandriello et al.,

2017)1). The effective dimension of x1:n w.r.t. K at scale λ is defined to be

deff(λ ,x1:n) = tr
(
(K+λ I)−1K

)
.

We also define deff(λ , /0) = 0.

Remark 5.4.2. It is easy to see that deff(λ ,x1:n) is a non-negative non-increasing function of λ , it

tends to 0 as λ → ∞. It is also a bounded function of λ in that deff(λ ,x1:n)≤ n.

The following lemma gives a basis-independent representation of deff; in particular, it

shows that the effective dimension is invariant to the permutation of data, therefore x1:n in the

definition of deff can be simply treated as a set.

1It is also called effective degrees of freedom in Hastie et al. (2009).
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Lemma 5.4.3 ((Zhang, 2005)).

deff(λ ,x1:n) = tr
(
(Σ+λ I)−1

Σ

)
.

The following lemma gives yet another representation of deff, which will be particularly

useful when analyzing our proposed algorithm later.

Lemma 5.4.4. deff(λ ,x1:n) = ∑
n
i=1∥Kxi∥

2
(Σ+λ I)−1 .

Proof. Let W = (Σ+λ I)−1, note that

n

∑
i=1
∥Kxi∥

2
W =

n

∑
i=1
⟨WKxi,Kxi⟩H

=
n

∑
i=1

tr(W (Kxi⊗Kxi))

= tr

(
W

n

∑
i=1

(Kxi⊗Kxi)

)
(a)
= deff(λ ,x1:n),

where (a) is due to Lemma 5.4.3.

The following lemma shows that the effective dimension is non-decreasing as data

accumulate.

Lemma 5.4.5. deff(λ ,x1:(n−1))≤ deff(λ ,x1:n).

Proof. Let Wn = (∑n
i=1Kxi⊗Kxi +λ I)−1 and f =Wn−1Kxn . It is easy to verify that

Wn =Wn−1−
f ⊗ f

1+∥Kxn∥2
Wn−1

. (5.1)
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Therefore,

deff(λ ,x1:n)−deff(λ ,x1:(n−1))

(a)
=

n

∑
i=1
∥Kxi∥

2
Wn
−

n−1

∑
i=1
∥Kxi∥

2
Wn−1

(b)
= ∥Kxn∥2

Wn−1
−

n

∑
i=1

⟨Kxi, f ⟩2H
1+∥Kxn∥2

Wn−1

=
∥Kxn∥2

Wn−1

1+∥Kxn∥
2
Wn−1

−
n−1

∑
i=1

⟨Kxi, f ⟩2H
1+∥Kxn∥2

Wn−1

=
∥Kxn∥

2
Wn−1

1+∥Kxn∥
2
Wn−1

−
〈(

∑
n−1
i=1 Kxi⊗Kxi

)
f , f
〉
H

1+∥Kxn∥2
Wn−1

≥
∥Kxn∥

2
Wn−1

1+∥Kxn∥
2
Wn−1

−
∥Kxn∥

2
Wn−1

1+∥Kxn∥2
Wn−1

= 0,

where (a) is due to Lemma 5.4.4 and (b) is due to (5.1).

It is instrumental to see how deff behaves under common kernels. For linear kernels, the

following lemma is well-known.

Lemma 5.4.6 (Effective dimension under linear kernels). If X is a d-dimensional Euclidean

space and K(x,y) = x⊺y, then deff(λ ,x1:n)≤ d.

Proof. Let Σ = ∑
n
i=1 xix

⊺
i . By Lemma 5.4.3 we have that deff(λ ,x1:n) = tr

(
(Σ+λ I)−1Σ

)
. Let

λ1,λ2, · · · ,λd be the eigenvalues of Σ, we have tr
(
(Σ+λ I)−1Σ

)
= ∑

n
i=1

λi
λi+λ

≤ d.

For Gaussian RBF kernels, we have the following recent result. Notably, the effective

dimension grows only polylogarithmically with n
λ

.

Lemma 5.4.7 (Effective dimension under Gaussian RBF kernels (Altschuler et al., 2018)). Let d

be a positive integer, X =
{

x ∈ Rd : ∥x∥2 ≤ 1
}

, and K(x,y) = e−η∥x−y∥2
2 for some η ≥ 0, then
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for any λ ≤ n,

deff(λ ,x1:n)≤ 3
(

6+
41
d

η +
3
d

ln
n
λ

)d

.

Pseudo Dimension

Definition 5.4.8 (Pseudo dimension2 (Jézéquel et al., 2019)). The pseudo dimension of x1:n w.r.t.

K at scale λ is defined to be

dpse(λ ,x1:n) = ln
(

det
(

I +
K

λ

))
.

We also define dpse(λ , /0) = 0.

Remark 5.4.9. Similar to deff, dpse(λ ,x1:n) is also a non-negative non-increasing function of λ , it

tends to 0 as λ → ∞. However, in contrast to deff, dpse(λ ,x1:n) is not a bounded function of λ ; if

K is not a zero matrix, as λ → 0, it tends to infinity.

Remark 5.4.10. Because the determinant only changes sign when swapping rows or columns,

the pseudo dimension is invariant to the permutation of data, therefore just like in the case of

deff, x1:n in the above definition can be simply treated as a set.

The following lemma shows that dpse is at most a logarithmic factor (in terms of n
λ

) larger

than deff.

Lemma 5.4.11 ((Jézéquel et al., 2019)).

dpse(λ ,x1:n)≤ ln
e(n+λ )

λ
·deff(λ ,x1:n).

The following lemma will play an important role in our analysis.

Lemma 5.4.12. The following are true:
2This quantity was not given a name in the original paper, we name it in light of Definition 5.4.1 and Lemma 5.4.11

to facilitate the discussion.
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(I). dpse(λ ,x1:(n−1))≤ dpse(λ ,x1:n).

(II). Let Σi = ∑
i
j=1Kx j ⊗Kx j , then for any γ ∈ [0,1),

n

∑
i=1

i

∑
τ=1

γ
i−τ∥Kxi∥

2
(Στ−1+λ I)−1

≤ 1/λ

ln(1+1/λ )(1− γ)2 ·dpse(λ ,x1:n).

Proof. First note that since Σi−1/λ is a linear operator of rank at most i−1,

det(Σi−1/λ + I)

is well-defined. Therefore,

∥Kxi∥
2
(Σi−1+λ I)−1

= ∥Kxi/λ∥2
(Σi−1/λ+I)−1

(a)
=

edpse(λ ,x1:i)

edpse(λ ,x1:(i−1))
−1,

(5.2)

where (a) can be proved for example using the same argument used for Cesa-Bianchi and Lugosi

(2006, Lemma 11.11). Note that (5.2) already implies (I), since a norm is non-negative. Next,

it is easy to verify that ∥Kxi∥
2
(Σi−1+λ I)−1 ≤ 1/λ and that x ≤ b

ln(1+b) ln(1+ x) for any x ∈ [0,b].

Therefore,

∥Kxi∥
2
(Σi−1+λ I)−1 ≤

1/λ

ln(1+1/λ )
· ln
(

1+∥Kxi∥
2
(Σi−1+λ I)−1

)
(a)
=

1/λ

ln(1+1/λ )
·
(
dpse(λ ,x1:i)−dpse(λ ,x1:(i−1))

)
,

where (a) is due to (5.2). Therefore (I) is proved, since a norm cannot be negative. Note that the

above argument is still true if we replace xi by an arbitrary x ∈ X . Consequently, denote by [a,b]
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the concatenation of sequence a and sequence b, we have

n

∑
i=1

i

∑
τ=1

γ
i−τ∥Kxi∥

2
(Στ−1+λ I)−1

=
2/λ

ln(1+1/λ )

(
n

∑
i=1

i

∑
τ=1

γ
i−τdpse(λ , [x1:(τ−1),xi])−

n

∑
i=1

i

∑
τ=1

γ
i−τdpse(λ ,x1:(τ−1))

)

(a)
≤ 2/λ

ln(1+1/λ )


n

∑
i=1

i

∑
τ=1

γ
i−τdpse(λ ,x1:i)︸ ︷︷ ︸

(A)

−
n

∑
i=1

i

∑
τ=1

γ
i−τdpse(λ ,x1:(τ−1))︸ ︷︷ ︸

(B)


(b)
≤ 2/λ

ln(1+1/λ )

(
n

∑
i=1

2i−n

∑
τ=1

γ
i−τdpse(λ ,x1:i)

)
(c)
≤ 2/λ

ln(1+1/λ )

(
n

∑
i=1

γ
n−i ·

dpse(λ ,x1:n)

1− γ

)

≤ 2/λ

ln(1+1/λ )(1− γ)2 ·dpse(λ ,x1:n),

where we used (I) in (a), (b), (c) and the nonnegativity of dpse in (b); in particular, in (b) we

canceled the (i,τ)th term in (A) with the (2i+1− τ, i+1)th term in (B), where the first index of

a term is its position in the first summation and the second index is its position in the second

summation. This concludes the proof of (II).

In particular, (I) in Lemma 5.4.12 says that, similar to the effective dimension (Lemma

5.4.5), the pseudo dimension is also non-decreasing as data accumulate.

To conclude the introduction of pseudo dimension, let us introduce a generalization of

Abbasi-Yadkori et al. (2011, Theorem 1) stated in terms of dpse in the following Lemma. Its proof

is almost identical to the proof in the special case whenH has a linear kernel. We also note that

the inequality in the lemma visually resembles Theorem 1 in Chowdhury and Gopalan (2017),

however, the quantities on the left hand side of the inequalities are actually quite different.

Lemma 5.4.13 (Self-normalized bound forH-valued martingales). Let {Ft}∞

t=0 be a filtration,

{ηt}∞

t=1 be a real-valued stochastic process such that ηt is Ft measurable, and is zero mean and
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R-sub-Gaussian conditioned on Ft−1. Let {xt}∞

t=1 be a X-valued stochastic process such that xt

is Ft−1 measurable. Then for any p > 0, with probability at least 1− p, for all T ≥ 0,

∥∥∥∥∥ T

∑
t=1

ηtKxt

∥∥∥∥∥
2

(λ I+∑
T
τ=1Kxτ⊗Kxτ )

−1

≤ 2R2
(

dpse(λ ,x1:T )+ ln
(

1
p

))
.

5.4.2 Covering Number of Operators

Let T : X → Y be a bounded linear operator where X and Y are normed vector spaces.

N (ε,T ), the ε-covering number of T , is defined to be the cardinality of the smallest set V ⊆ Y

such that for any x ∈ X , ∥x∥ ≤ 1, there exists a v ∈V such that ∥v−T x∥ ≤ ε . If there is no such

set V of finite cardinality, then N(ε,T ) is defined to be ∞.

Given a real-valued RKHSH, we are interested in the covering numbers of two identity

mappings,

IH,∗ : (H,∥·∥H)→ (H,∥·∥∗),

IHS,∗ : (BHS(H),∥·∥HS)→ (BHS(H),∥·∥∗).

BothN (ε, IH,∗) andN (ε, IHS,∗) captures propertiesH. However, unlike the effective dimension

introduced in Section 5.4.1 and the pseudo dimension introduced in Section 5.4.1 that depend on

a scale λ , these covering numbers are data-independent and depend on a granularity parameter ε

instead.

Lemma 5.4.14 (N (ε, IH,∗) and N (ε, IHS,∗) under linear kernel). If

X =
{

x ∈ Rd : ∥x∥2 ≤ 1
}
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and

K(x,y) = x⊺y,

then

lnN (ε, IH,∗)≤ d ln(1+2/ε)

lnN (ε, IHS,∗)≤ d2 ln(1+2/ε) .

The proof of the above lemma is included in Appendix A.1.

Lemma 5.4.15 (N (ε, IH,∗) under Gaussian RBF kernel (Kühn, 2011)). If

X =
{

x ∈ Rd : ∥x∥2 ≤ 1
}

and

K(x,y) = e−η∥x−y∥2
2

for some η ≥ 0, then

lnN (ε, IH,∗)≤
⌈

2
(

ln
2
ε
+ e2

η

)⌉d

ln
(

1+
4
ε

)
.

Lemma 5.4.16 (N (ε, IHS,∗) under Gaussian RBF kernel). If

X =
{

x ∈ Rd : ∥x∥2 ≤ 1
}
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and

K(x,y) = e−η∥x−y∥2
2

for some η ≥ 0, then

lnN (ε, IHS,∗)≤

⌈
2

(
ln

2
√

2
ε

+ e2
η

)⌉2d

ln
(

1+
4
ε

)
.

The proof of the above lemma is included in Appendix A.2.

5.4.3 The General Setting

Now we are ready to state a rather general upper bound on the γ-regret for KQL. In fact,

we have the following theorem.
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Theorem 5.4.17. Given λ > 0, γ ∈ [0,1), ρ ≥ 1−γ , ε ≥ 0, σ ∈ [0,1], p > 0, dλ ≥ 1, cλ ≥ 0, let

β =
1

1− γ
·min

(
2
√

T +λ , 3ρ
√

λ + ε
√

T dλ +2σ

√
dλ ln

e(T +λ )

λ
+ ln

2
p
+ cλ

)
,

in Algorithm 3, or any algorithm that satisfies (1)-(3) in Fact 5.3.1 and acts to maximize Q̃t

therein, if

dλ ≥ deff
(
λ ,{(st ,at)}T

i=1
)
,

cλ ≥ lnN
(

λ 2(1− γ)

4T 2 , IH,∗

)
+ lnN

(
λ 3(1− γ)

32(T +λ )3 , IHS,∗

)
,

(5.3)

then with probability at least 1− p,

Regretγ(T ) =

O


√

T dλ log e(T+λ )
λ

log(1+1/λ )(1− γ)5 ·

ρ + ε

√
dλ T

λ
+σ

√
dλ log e(T+λ )

λ p + cλ

λ


.

Let us take a closer look at how the bound depends on ρ , ε , σ , and λ . Note that the

bound can be decomposed into three parts, involving ρ , ε , σ respectively:

The first part, involving the complexity bound ρ , is

O

 ρ
√

T
(1− γ)2.5 ·

√
dλ log e(K+λ )

λ

log(1+1/λ )

 .

Here dλ upper bounds a non-increasing function of λ that is bounded by T and
log e(T+λ )

λ

log(1+1/λ ) is a

non-decreasing function of λ that tends to 1 as λ → 0 and tends to ∞ as λ → ∞. This suggests

that λ needs to strive a balance between the two conflicting dependencies.
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The second part, involving the approximation bound ε , is

O

 εT
(1− γ)2.5 ·dλ

√
log e(T+λ )

λ

log(1+1/λ )λ

 .

Here dλ upper bounds a non-increasing function of λ ,
log e(T+λ )

λ

log(1+1/λ )λ is a strictly decreasing function

of λ , and tends to 1 as λ → ∞. This suggests that as far as the ε-related part is concerned, the

larger the λ the better.

The third part, involving the stochasticity σ , is

O

 σ
√

T
(1− γ)2.5

√√√√dλ log e(T+λ )
λ

(
dλ log e(T+λ )

λ p +cλ

)
log(1+1/λ )λ

 .

Here both dλ and cλ upper bound a non-increasing function of λ .
log e(T+λ )

λ

log(1+1/λ )λ , as discussed

before, is a strictly decreasing function of λ that tends to 1 as λ → ∞. log e(T+λ )
λ p is a strictly

decreasing function of λ that tends to log e
p as λ → ∞. This suggests that as far as the σ -related

part is concerned, the larger the λ the better.

To conclude, both the ε- and σ - related parts of the regret bound prefers larger λ ; however,

the ρ-related part in general calls for a λ that is neither too large nor too small.

Having made these observations, let us proceed to prove the theorem.

Proof of Theorem 5.4.17

We first introduce some notations. For any t ∈ [T ], let prev(t) = [t−1]. Let

Q̃t(s,a) = clip
[0,1/(1−γ)]

(
Q̂t(s,a)+β

∥∥K(s,a)
∥∥

Ŵt

)
,

Ṽt(s) = max
a

Q̃t(s,a).
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Define

Φ =
1

1− γ
·
(

3ρ
√

λ + ε
√

T dλ

)
,

Ψp =
2σ

1− γ
·

√
dλ ln

e(T +λ )

λ
+ ln

1
p
+ cλ .

For any p > 0, let Ep be the event that for any s ∈ S, a ∈ A, t ∈ [T ],

∣∣∣Q̂t(s,a)−Q∗(s,a)− γ

((
M∗
(

Ṽt−1−V∗
))

(s,a)
)∣∣∣

≤ (Φ+Ψp) ·
∥∥K(s,a)

∥∥
Ŵt
+

2ε

1− γ
,

where Ṽ0 can be any function that is bounded in [0,1/(1− γ)]. We start from some auxiliary

lemmas.

Lemma 5.4.18. For any t ∈ [T ] and f ∈H, ∥ f∥H√
λ+T
≤ ∥ f∥Ŵt

≤ ∥ f∥H√
λ

.

Proof. Let Σ = ∑τ∈prev(t)K(sτ ,aτ )⊗K(sτ ,aτ ) and λ1,λ2, · · · ,λ|prev(t)| ≥ 0 be the eigenvalues of Σ.

Note that the eigenvalues of Ŵt = (Σ+λ I)−1 are 1
λ1+λ

, 1
λ2+λ

, · · · , 1
λ|prev(t)|+λ

. The upper bound

follows immediately. To get the upper bound, note that for each λi, there exists f ∈H, ∥ f∥H = 1,

such that

λi = ∥Σ f∥H
(a)
≤ ∑

τ∈prev(t)
∥ f∥H∥K(sτ ,aτ )∥

2
H

(b)
≤ T,

where (a) is due to Cauchy-Schwarz and (b) is because by our assumption ∥K(sτ ,aτ )∥H ≤ 1. The

lower bound then follows.
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Because by our assumptions K is normalized such that for any (s,a) ∈ S ×A,

∥∥K(s,a)
∥∥
H ≥

1
2
,

we have the following corollary of Lemma 5.4.18.

Corollary 5.4.19. For any t ∈ [T ], (s,a) ∈ S ×A,
∥∥K(s,a)

∥∥
Ŵt
≥ 1

2
√

T+λ
.

Lemma 5.4.20. For any t ∈ [T ],
∥∥∥Ŵt

∥∥∥
HS
≤
√

T
λ

.

Proof. Let Σ = ∑τ∈prev(t)K(sτ ,aτ )⊗K(sτ ,aτ ) and λ1,λ2, · · · ,λ|prev(t)| ≥ 0 be the eigenvalues of Σ.

Note that the eigenvalues of Ŵt = (Σ+λ I)−1 are 1
λ1+λ

, 1
λ2+λ

, · · · , 1
λ|prev(t)|+λ

, and

∥∥∥Ŵt

∥∥∥
HS

=

√
∑

τ∈prev(t)

1
(λi +λ )2

≤
√

T
λ

.

Lemma 5.4.21. For any t ∈ [T ],
∥∥∥Q̂t

∥∥∥
H
≤ T

λ (1−γ) .

Proof. For any f ∈H, we have that

∣∣∣Q̂t f
∣∣∣= ∣∣∣∣∣

(
∑

τ∈prev(t)

(
rh(sτ ,rτ)+Ṽt−1(sτ+1)

)
·K(sτ ,aτ )

)
Ŵt f

∣∣∣∣∣
≤ 1

1− γ
· ∑

τ∈prev(t)

∣∣∣K(sτ ,aτ )Ŵt f
∣∣∣

(a)
≤ 1

1− γ
· ∑

τ∈prev(t)
∥ f∥Ŵt

·
∥∥K(sτ ,aτ )

∥∥
Ŵt

(b)
≤ 1

1− γ
·
√

∑
τ∈prev(t)

∥ f∥2
Ŵt
·
√

∑
τ∈prev(t)

∥∥K(sτ ,aτ )

∥∥2
Ŵt

(c)
≤ T

λ (1− γ)
· ∥ f∥H,
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where (a) and (b) are due to Cauchy-Schwarz, and (c) is due to the upper bound in Lemma

5.4.18.

Lemma 5.4.22. For any p > 0, if

β = min

(
Φ+Ψp,

2
√

T +λ

1− γ

)

and Ep happens, we have for any t ∈ [T ], s ∈ S , a ∈ A,

Q∗(s,a)−
2ε

1− γ
·

t

∑
τ=1

γ
t−τ

≤ Q̃t(s,a)

≤ Q∗(s,a)+2β

t

∑
τ=1

γ
t−τ∥K(s,a)∥Ŵτ

+
2ε

1− γ
·

t

∑
τ=1

γ
t−τ .

Proof. We prove the lemma by induction. When t = 1, since Ṽ0 can be chosen as either 0 or

1/(1− γ), by the definition of Ep and Q̃t , the choice of β , and Corollary 5.4.19, the inequalities

hold. Now the inequality holds for t = t ′−1 where 1 < t ′ ≤ T , we have again by the definition

of Ep, the choice of β , and Corollary 5.4.19,

Q̂t ′(s,a)+(Φ+Ψp)
∥∥K(s,a)

∥∥
Ŵt′

∈ Q∗(s,a)+ γ

(
M∗
(

Ṽt ′−1−V∗
))

(s,a)+
[
− 2ε

1− γ
, 2β

∥∥K(s,a)
∥∥

Ŵt′
+

2ε

1− γ

]
.

(5.4)
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Note that on one hand

(
M∗
(

Ṽt ′−1−V∗
))

(s,a)

= Es′∼P(s,a)

[
Ṽt ′−1(s

′)−V∗(s′)
]

≥ Es′∼P(s,a)

[
Q̃t ′−1(s

′,a∗(s′))−Q∗(s′,a∗(s′))
]

(a)
≥ − 2ε

1− γ
·

t ′−1

∑
τ=1

γ
t ′−1−τ ,

where (a) is by induction hypothesis. On the other hand, for any s′ ∈ S, let ã(s′) be an arbitray

element in argmax Q̃t ′−1(s′,a), we have

(
M∗
(

Ṽt ′−1−V∗
))

(s,a)

= Es′∼P(s,a)

[
Ṽt ′−1(s

′)−V∗(s′)
]

≤ Es′∼P(s,a)

[
Q̃t ′−1(s

′, ã(s′))−Q∗(s′, ã(s′))
]

(a)
≤ 2β

t ′−1

∑
τ=1

γ
t ′−1−τ

∥∥K(s,a)
∥∥

Ŵτ

+
2ε

1− γ
·

t ′−1

∑
τ=1

γ
t ′−1−τ .

Going back to (5.4) we arrive at

Q̂t ′(s,a)+(Φ+Ψp)
∥∥K(s,a)

∥∥
Ŵt′

∈ Q∗(s,a)+

[
− 2ε

1− γ
·

t ′−τ

∑
τ=1

γ
τ , 2β

t ′

∑
τ=1

γ
t ′−τ
∥∥K(s,a)

∥∥
Ŵτ

+
2ε

1− γ
·

t ′

∑
τ=1

γ
t ′−τ

]
.

Using the choice of β , Corollary 5.4.19, and the definition of Q̃t , we see that the inequality holds

for t = t ′. This concludes the proof.

53



Lemma 5.4.23. Let Q be the function class containing all functions

S ×A→ R

(s,a) 7→ f (s,a)+∥K(s,a)∥W ,

where f ∈H is such that ∥ f∥H ≤ T
λ (1−γ) and W ∈ BHS(H) is such that ∥W∥HS ≤ 2(T+λ )

λ (1−γ) . Then

for any p > 0, with probability at least 1− p, for any t ∈ [T ], and q ∈Q,

∥∥∥∥∥ ∑
τ∈prev(t)

(
vq(sτ+1)−

(
M∗vq

)
(sτ ,aτ)

)
·K(sτ ,aτ )

∥∥∥∥∥
Ŵt

≤
√

λ +Ψp,

where vq(s) = maxa clip[0,1/(1−γ)] q(s,a).

Proof. First let us assume we have a ξ > 0 and a function class Q̃ : S ×A → R of finite

cardinality such that for any q ∈ Q there exists a γ(q) ∈ Q̃ such that ∥q− γ(q)∥∞ ≤ ξ . Then

with probability at least 1− p, for any t ∈ [T ], and q ∈Q,

∥∥∥∥∥ ∑
τ∈prev(t)

(
vq(sτ+1)−

(
M∗vq

)
(sτ,h,aτ,h)

)
·K(sτ ,aτ )

∥∥∥∥∥
Ŵt

≤

∥∥∥∥∥ ∑
τ∈prev(t)

(
vγ(q)(sτ+1)−

(
M∗vγ(q)

)
(sτ,h,aτ,h)

)
·K(sτ ,aτ )

∥∥∥∥∥
Ŵt

+

∥∥∥∥∥ ∑
τ∈prev(t)

2ξ ·K(sτ ,aτ )

∥∥∥∥∥
Ŵt

(a)
≤

∥∥∥∥∥ ∑
τ∈prev(t)

(
vγ(q)(sτ+1)−

(
M∗vγ(q)

)
(sτ ,aτ)

)
·K(sτ ,aτ )

∥∥∥∥∥
Ŵt

+
1√
λ

∥∥∥∥∥ ∑
τ∈prev(t)

2ξ ·K(sτ ,aτ )

∥∥∥∥∥
H

(b)
≤
√

2σ

1− γ

√
dλ ln

e(T +λ )

λ
+ ln

∣∣Ṽ ∣∣+ ln
1
p
+

2ξ T√
λ
,

where in (a) we used the upper bound in Lemma 5.4.18, in (b) we used Lemma 5.4.13, Lemma

5.4.11, and a union bound.

It remains to choose Ṽ and ξ . Note that for any q1 (induced by f1, W1) and q2 (induced
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by f2, W2) in Q,

∥q1−q2∥∞ ≤ ∥ f1− f2∥∗+
√
∥W1−W2∥∗,

so it suffices to bound ∥ f1− f2∥∗ by ξ/2 and bound ∥W1−W2∥∗ by ξ 2/4, therefore we can

choose Ṽ such that

ln
∣∣Ṽ ∣∣≤ lnN

(
ξ λ (1− γ)

2T
, IH,∗

)
+ lnN

(
ξ 2λ (1− γ)

8(T +λ )
, IHS,∗

)
,

choosing ξ = λ

2T concludes the proof.

Lemma 5.4.24. For any p > 0, Ep happens with probability at least 1− p.

Proof. First note that for any t ∈ [T ], Q∗ = r∗+ γM∗V∗, and consequently

∥Q∗− (r+ γMV∗)∥∞
≤ ε

1− γ
.
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To proceed, note that for any t ∈ [T ],

Q̂t− (r+ γMV∗)

=

(
∑

τ∈prev(t)

(
r(sτ ,aτ)+ γṼt−1(sτ+1)

)
·K(sτ ,aτ )− (r+ γMV∗)

(
Ŵt

)−1
)

Ŵt

=−λ (r+ γMV∗)Ŵt︸ ︷︷ ︸
E1

+ γ

(
∑

τ∈prev(t)

(
Ṽt−1(sτ+1)−

(
M∗Ṽt−1

)
(sτ ,aτ)

)
·K(sτ ,aτ )

)
Ŵt︸ ︷︷ ︸

E2

+ γ

(
∑

τ∈prev(t)

(
M
(

Ṽt−1−V∗
))

(sτ ,aτ) ·K(sτ ,aτ )

)
Ŵt︸ ︷︷ ︸

E3

+ γ

(
∑

τ∈prev(t)

(
(M∗−M)

(
Ṽt−1−V∗

))
(sτ ,aτ) ·K(sτ ,aτ )

)
Ŵt︸ ︷︷ ︸

E4

.

Let us bound E1(s,a), E2(s,a), E3(s,a), E4(s,a) separately. First note that

|E1(s,a)| ≤ λ

∣∣∣rŴtK(s,a)

∣∣∣+λ

∣∣∣(γMV∗)ŴtK(s,a)

∣∣∣
(a)
≤ λ ·

(
∥r∥Ŵt

+∥γMV∗∥Ŵt

)
·
∥∥K(s,a)

∥∥
Ŵt

(b)
≤
√

λ · (∥r∥H+∥γMV∗∥H) ·
∥∥K(s,a)

∥∥
Ŵt

≤
√

λ

(
∥rh∥H+

γ

1− γ
∥M∥

)
·
∥∥K(s,a)

∥∥
Ŵt

≤
√

λρ

1− γ
·
∥∥K(s,a)

∥∥
Ŵt
,

where (a) is due to Cauchy-Schwarz and (b) is due to the upper bound in Lemma 5.4.18.
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To bound E2, recall that for any t ≥ 2

Ṽt−1(s,a) = max
a

clip
[0,1/(1−γ)]

(
Q̂t+1(s,a)+

∥∥K(s,a)
∥∥

βŴt+1

)
,

and by Lemma 5.4.21 Q̂t+1(s,a)≤ T
λ (1−γ) , and by Lemma 5.4.20 as well as the constraint on β ,

∥βŴt+1∥HS ≤ 2(T+λ )
λ (1−γ) . Therefore by Lemma 5.4.23 we have that with probability at least 1− p,

uniformly for all t ∈ [T ],

|E2(s,a)|=

∣∣∣∣∣
(

∑
τ∈prev(t)

(
Ṽt−1(sτ+1)−

(
M∗Ṽt−1

)
(sτ ,aτ)

)
·K(sτ ,aτ )

)
ŴtK(s,a)

∣∣∣∣∣
≤

∥∥∥∥∥ ∑
τ∈prev(t)

(
Ṽt−1(sτ+1)−

(
M∗Ṽt−1

)
(sτ ,aτ)

)
·K(sτ ,aτ )

∥∥∥∥∥
Ŵt

·
∥∥K(s,a)

∥∥
Ŵt

≤
(√

λ +Ψp

)
·
∥∥K(s,a)

∥∥
Ŵt
.

Also note that

E3(s,a) =

(
∑

τ∈prev(t)

〈
M
(

Ṽt−1−V∗
)
,K(sτ ,aτ )

〉
H
·K(sτ ,aτ )

)
ŴtK(s,a)

=

((
M
(

Ṽt−1−V∗
))(

∑
τ∈prev(t)

K(sτ ,aτ )⊗K(sτ ,aτ )

))
ŴtK(s,a)

=
(

M
(

Ṽt−1−V∗
))
K(s,a)−λ

(
M
(

Ṽt−1−V∗
))

ŴtK(s,a)

57



Therefore, we have that

∣∣∣E3(s,a)−
(

M
(

Ṽt−1−V∗
))

(s,a)
∣∣∣

= λ

∣∣∣(M
(

Ṽt−1−V∗
))

ŴtK(s,a)

∣∣∣
(a)
≤ λ ·

∥∥∥M
(

Ṽt−1−V∗
)∥∥∥

Ŵt
·
∥∥K(s,a)

∥∥
Ŵt

(b)
≤
√

λ ·
∥∥∥M
(

Ṽt−1−V∗
)∥∥∥

H
·
∥∥K(s,a)

∥∥
Ŵt

≤
√

λ

1− γ
· ∥M∥ ·

∥∥K(s,a)
∥∥

Ŵt

≤
√

λρ

1− γ
·
∥∥K(s,a)

∥∥
Ŵt

where (a) is due to Cauchy-Scharz and (b) is due to the upper bound in Lemma 5.4.18. We also

have

∣∣∣((M−M∗)
(

Ṽt−1−V∗
))

(s,a)
∣∣∣≤ ε

1− γ
.

Finally, note that

|E4(s,a)| ≤
ε

1− γ
∑

τ∈prev(t)

∣∣∣K(sτ ,aτ )ŴtKs,a

∣∣∣
(a)
≤ ε

1− γ

√
∑

τ∈prev(t)

∥∥K(sτ ,aτ )

∥∥2
Ŵt
· ∑

τ∈prev(t)
∥Ks,a∥2

Ŵt

(b)
≤

ε
√

T dλ

1− γ
· ∥Ks,a∥Ŵt

where (a) is due to Cauchy-Schwarz and (b) is due to Lemma 5.4.4 and Lemma 5.4.5. Putting

everything together concludes the proof.

Now we are ready to prove our main theorem. The proof will be conditioned on Ep/2,
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which happens with probability at least p/2 by Lemma 5.4.24. Define

δt = Ṽt(st)−Vt ,

φt = Ṽt(st)−V∗(st),

ζt = (M∗(V∗))(st ,at)−V∗(st+1).

Note that

φt ≥ Q̃t(st ,a∗(st))−Q∗(st ,a∗(st))
(a)
≥ − 2ε

(1− γ)2 , (5.5)

where (a) is due to Lemma 5.4.22. We have for any t ∈ [T ],

δt = Q̃t(st ,at)−Vt

=
(

Q̃t(st ,at)−Q∗(st ,at)
)
+(Q∗(st ,at)−Vt)

=
(

Q̃t(st ,at)−Q∗(st ,at)
)
+ γζt + γδt+1− γφt+1

(a)
≤ 2β

t

∑
τ=1

γ
t−τ
∥∥K(st ,at)

∥∥
Ŵτ

+
2ε

(1− γ)2 + γζt + γδt+1− γφt+1

where (a) is due to the upper bound in Lemma 5.4.22. Taking a summation on both sides, we

have,

T

∑
t=1

δt ≤
2εT

(1− γ)2 +2β

T

∑
t=1

t

∑
τ=1

γ
t−τ
∥∥K(st ,at)

∥∥
Ŵτ

+ γ

T

∑
t=1

(ζt +δt+1−φt+1)

(a)
≤ 2εT

(1− γ)2 +2β

√
T

∑
t=1

t

∑
τ=1

γ t−τ

√
T

∑
t=1

t

∑
τ=1

γ t−τ
∥∥K(st ,at)

∥∥2
Ŵτ

+ γ

T

∑
t=1

(ζt +δt+1−φt+1)

(b)
≤ 4εT

(1− γ)2 +2β

√
T dλ/λ · ln e(T+λ )

λ

ln(1+1/λ )(1− γ)3 + γ

T

∑
t=1

(ζt +δt+1) ,

where (a) is by Cauchy-Schwarz and (b) is due to Lemma 5.4.12, Lemma 5.4.11, and (5.5). After
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rearranging the terms and using the fact |δt | ≤ 1/(1− γ), we have

T

∑
t=1

δt ≤
4εT

(1− γ)3 +2β

√
T dλ/λ · ln e(T+λ )

λ

ln(1+1/λ )(1− γ)5 + γ

T

∑
t=1

ζt +
2

(1− γ)2 .

Now note that {ζt}T
t=1 is a Martingale difference sequence where each element is ( σ

1−γ
)-sub-

Gaussian, therefore with probability at least 1−δ/2,

T

∑
t=1

δt ≤
4εT

(1− γ)3 +2β

√
T dλ/λ · ln e(T+λ )

λ

ln(1+1/λ )(1− γ)5 +
σ
√

2T ln(2/p)
1− γ

+
2

(1− γ)2 .

Finally, note that

Regretγ(T )

(a)
≤ (1− γ)

T

∑
t=1

∆t +
1

1− γ

(b)
≤ 1

1− γ
·

T

∑
t=1

δt +
2εT +1

1− γ

≤ 6εT
(1− γ)2 +2β

√
T dλ/λ · ln e(T+λ )

λ

ln(1+1/λ )(1− γ)3 +
σ
√

2T ln(2/p)
1− γ

+
3

1− γ

≤

(
6ρ
√

λ +2ε
√

T dλ +4σ

√
dλ ln

e(T +λ )

λ
+ ln

2
p
+ cλ

)
·√

T dλ/λ · ln e(T+λ )
λ

ln(1+1/λ )(1− γ)5 +
6εT

(1− γ)2 +
σ
√

2T ln(2/p)
1− γ

+
3

1− γ

=O


√

T dλ log e(T+λ )
λ

log(1+1/λ )(1− γ)5

ρ + ε

√
dλ T

λ
+σ

√
dλ log e(T+λ )

λ p + cλ

λ


+

O

(
σ
√

T log(1/p)
1− γ

+
εT

(1− γ)2 +
1

1− γ

)

(c)
= O


√

T dλ log e(T+λ )
λ

log(1+1/λ )(1− γ)5

ρ + ε

√
dλ T

λ
+σ

√
dλ log e(T+λ )

λ p + cλ

λ


 ,

60



where in (a) we used Lemma 2.3.1, in (b) we used ∆t = δt−φt and (5.5), in (c) we used the fact

that dλ ≥ 1, ρ ≥ 1− γ , and

log e(K+λ )
λ

log(1+1/λ )
≥ 1,

log e(K+λ )
λ

log(1+1/λ )
√

λ
≥ 1.

This concludes the proof.

5.4.4 Specific Settings

The following corollary is a direct consequence of Theorem 5.4.17, Lemma 5.4.6,

Lemma 5.4.14.
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Corollary 5.4.25 (Regret for linear kernels). In Theorem 5.4.17, if

K((s1,a1),(s2,a2)) = φ(s1,a1)
⊺
φ(s2,a2)

where φ : S ×A→ Rd for some positive integer d such that

∥φ(s,a)∥2 ≤ 1

for any (s,a) ∈ S ×A. Then we can choose dλ = d and some

cλ =O
(

d2 log
eH(T +λ )

λ

)

such that (5.3) is always true, and therefore with probability at least 1− p,

Regretγ(T ) =O


√

T d log e(T+λ )
λ

log(1+1/λ )(1− γ)5 ·

ρ + ε

√
dT
λ

+σd

√
log eH(T+λ )

λ p

λ


.

Remark 5.4.26. Recall that in the general setting λ should be neither too large nor too small.

However, since here dλ is bounded by d, which is independent of λ , if λ is sufficiently small

such that λ = O(1/T ), we can make the dependency on ρ to be ρ
√

T d
(1−γ)2.5 . In other words, in

the linear setting, if the MDP is deterministic and the dynamics can be exactly represented by

functions inH, then we can choose λ =O(1/T ) such that

Regretγ(T ) =O

(
ρ
√

T d
(1− γ)2.5

)
.

Comparing this with choosing λ = Θ(1), a factor of
√

log(eT ) is reduced.

A perhaps more interesting example would be the regret bound for the widely-used

Gaussian RBF kernel. The following corollary is a direct consequence of Theorem 5.4.17,
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Lemma 5.4.7, Lemma 5.4.15, Lemma 5.4.16.

Corollary 5.4.27 (Regret for Gaussian RBF kernels). In Theorem 5.4.17, if

K((s1,a1),(s2,a2)) = e−η∥φ(s1,a1)−φ(s2,a2)∥2
2

for some η ≥ 0 and φ : S ×A→ Rn for some positive integer n such that

∥φ(s,a)∥2 ≤ 1

for any (s,a) ∈ S ×A. Then we can choose some

dλ =

(
O
(

η + log
e(T +λ )

λ (1− γ)

))n

, cλ =O
(

d2
λ

log
e(T +λ )

λ (1− γ)

)
,

such that (5.3) is always true, and therefore with probability at least 1− p,

Regretγ(T ) =O


√

T dλ log e(T+λ )
λ

log(1+1/λ )(1− γ)5 ·

ρ + ε

√
dλ T

λ
+σdλ

√
log eH(T+λ )

λ p

λ


.

We see that the above regret bound only differs from the bound in Corollary 5.4.25 in that

d is replaced by O
(

η + log e(T+λ )
λ (1−γ)

)
. This suggests that this new quantity indicates the effective

dimensionality under the Gaussian RBF kernel at scale λ . Note that although a smaller η would

benefit the regret bound, an η too small would violate the assumption on ρ .

Remark 5.4.28. Again we can inspect how the ρ-related term in the bound,

O

 ρ
√

T
(1− γ)2.5 ·

√
dλ log e(T+λ )

λ

log(1+1/λ )


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depends on λ . Consider choosing λ = Θ(1/T ), we have

dλ log e(T+λ )
λ

log(1+1/λ )
=O(dλ ) =

(
O
(

η + log
eT

1− γ

))n

.

In other words, in the Gaussian RBF kernel setting, if the MDP is deterministic and the dynamics

can be exactly represented by functions inH, then we can choose λ = Θ(1/T ) such that

Regretγ(T ) =
ρ
√

T
(1− γ)2.5 ·

(
O
(

η + log
eT

1− γ

))n/2

.

Comparing this with choosing λ = Θ(1), a factor of
√

log(eT ) is reduced. Recall that in

Remark 5.4.26, we showed that the same thing happens in the linear setting.

5.5 Experiments

We test KQL on a suite of classic control tasks included in OpenAI Gym (Brockman

et al., 2016): MOUNTAINCAR (Figure 5.1), PENDULUM (Figure 5.2), ACROBOT (Figure 5.3),

and CARTPOLE (Figure 5.4). The action space of PENDULUM is discretized to {−1,0,1}, all

other environments have discrete action space natively.

5.5.1 Methodology

For any state s and action a, let [s,a] be the concatenation of the state vector and the one-

hot embedding of the action; let l be the length of state vectors. The states are first normalized

such that ∥s∥∞ ≤ 1 for all s. We experiment with two types of kernels:

• Linear Kernel

K((s1,a1),(s2,a2)) =
[s1,a1]

⊺[s2,a2]

2l
+

1
2
.
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Figure 5.1. The MOUNTAINCAR environment: the algorithm needs to swing the car back and
forth to gain momentum in order to reach the flag.

Figure 5.2. The PENDULUM environment: the algorithm needs to swing the rod upwards and
maintain it in the upright position.
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Figure 5.3. The ACROBOT environment: the algorithm needs to swing the two rods that are
connected by a joint upwards above the line.

Figure 5.4. The CARTPOLE environment: the algorithm needs to maintain the rod in an upright
position.
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• Gaussian RBF Kernel

K((s1,a1),(s2,a2)) = e−η∥[s1,a1]−[s2,a2]∥2
2.

where η is empirically set to 0.02 for MOUNTAINCAR, CARTPOLE and ACROBOT, and 1

for PENDULUM.

We normalize the rewards to fall within [0,1]. Since all environments are deterministic

we can let σ = 0. We also believe that for these simple environments, if a correct kernel is used,

ε can be made infinitesimally small. Our theoretical results (Theorem 5.4.17) suggest that in this

case we can set

β =
3ρ
√

λ

1− γ
.

and our discussions in Remark 5.4.26 and Remark 5.4.28 suggest we can set

λ =O
(

1
T

)
.

We heuristically set β =
√

λ

1−γ
so that Q̃t ≳ 1/(1−γ) at the beginning of learning, and set λ = 1

10T

so that λ is large enough to not cause numerical issues.

We compare KQL with Deep Q-Learning (DQN) (Mnih et al., 2013), a practical, widely-

used, neural network based algorithm known for its superior sample efficiency. We use the default

implementation provided in Stable-Baselines3 (Raffin et al., 2021), with the environment-specific

parameter overrides from RL Baselines3 Zoo (Raffin, 2020), except the following changes to

accommodate to the extreme small amount of samples: batch_size=64, learning_starts=100,

target_update_interval=10, train_freq=1, gradient_steps=32.

To emphasize the test on sample efficiency, for each environment, all algorithms are

only allowed 1000 steps through the OpenAI Gym interface; a reset is only allowed in the very
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Table 5.1. Evaluating different versions of Q-learning on classic control environments. Each
model is trained for 1000 steps and evaluated over 100 episodes after training. The numbers are

presented in the format MEAN±STD. Larger is better.

MOUNTAINCAR PENDULUM ACROBOT CARTPOLE

DQN −200.0±0.0 −274.6±393.0 −161.3±96.1 149.6±4.7
Linear −200.0±0.0 −1413.5±202.1 −500.0±0.0 9.3±0.7
Gaussian RBF −−−111333222...555±±±111777...000 −−−111666777...000±±±999777...333 −−−111000777...222±±±333555...222 222000000...000±±±000...000

beginning and after a done is received. We use the same discounting factor γ = 0.95 for all

algorithms and all environments.

5.5.2 Results

The results are shown in Table 5.1. As we can see, the linear kernel performs poorly

on all tasks. In fact, its performance is not noticeably better than a random policy. Without

handcrafted or learned feature embedding, the value function is highly non-linear; thus linear

kernel suffers from huge approximation error. DQN makes progress on most tasks, with the

exception of MOUNTAINCAR, which requires more than random exploration in order to succeed

with a very limited amount of interaction. Remarkably, the Gaussian RBF kernel achieves high

return and performs best on all tasks, compensating for its long running time by its far superior

sample efficiency.

5.6 Computational Considerations

We have demonstrated that KQL is both theoretically sound and empirically promising.

However, kernel methods are known to suffer from the curse of kernelization — their time

complexity has a super-linear dependency on the number of samples, KQL is no exception.

There are two standard ways to trade sample efficiency for time complexity in kernel-

based online learning: one is sparsification, which aims at keeping the number of support

vectors d≪ T by various strategies (see e.g. Engel et al. (2004); Sun et al. (2012); Calandriello
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et al. (2017) and the discussion in Lu et al. (2016, Bibliographic Notes)); the other is kernel

approximation, which aims at projecting vectors in an RKHS into a Euclidean space, for example,

using random Fourier features, and reduce the kernel setting to the linear setting (Lu et al., 2016;

Jézéquel et al., 2019). Given its already impressive performance even without any kernel

sparsification or approximation, it is not hard to believe that with proper acceleration, KQL is

able to tackle more challenging tasks such as Atari games (Bellemare et al., 2013). We leave it

as future work to investigate these directions.

5.7 Bibliographic Notes

Algorithms and corresponding regret analyses have previously been derived for general

function classes (see e.g. Jin et al. (2020); Yang et al. (2020); Zhou et al. (2021b), among others).

However, the proposed algorithms use either episodic value iteration (Jin et al., 2020; Yang et al.,

2020), which is not sample-efficient in practice, or extended value iteration Zhou et al. (2021b),

which is not time-efficient in practice.

There was previous work that generalizes tabular analyses to the linear model episodic

setting (Wang et al., 2019; Jin et al., 2020; Zanette et al., 2020), the linear mixture model episodic

setting (Cai et al., 2020; Ayoub et al., 2020; Modi et al., 2020; Yang and Wang, 2020; Zhou et al.,

2021a; He et al., 2021a), and the linear mixture model discounted setting (Zhou et al., 2021b).

We note here that the linear mixture model assumes the model class has finite (and small) degrees

of freedom, which mitigates many challenges in model estimation (see discussion in Jin et al.

(2020, Bibliographic Notes)). In particular, while Zhou et al. (2021b) gives a seemingly better

regret bound than ours when the model class is linear in certain sense, they are under far stricter

assumptions.

Our KQL and its analysis are most related to Yang et al. (2020), which proposes and

analyzes KOVI, a kernelized version of episodic value iteration. The major difference is that Yang

et al. (2020) operates on an episodic setting, where in each episode, an optimistically optimal
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Q-value function is calculated based on all the historical data using episodic value iteration.

On the other hand, we focus on the non-episodic setting, where in each step, a new Q-value

function, which is not necessarily (optimistically) optimal based on current historical data,

is calculated from the Q-value function from the previous step using one-step discounting.

Such difference indeed affects theoretical analysis in that the non-episodic update introduces

pathological dependencies that must be properly handled (e.g., Lemma 5.4.12). Furthermore, it

also makes our algorithm significantly more applicable to real-world problems. For example, in

our MOUNTAINCAR experiment (Section 5.5), the length of an episode is 200. Given a budget of

1000 interactions, KOVI can only update its value functions 1000/200−1 = 4 times (since each

step in an episode uses a different value function). It is very unlikely that any progress can be

made after such a small number of parameter updates (indeed, we were not able to make KOVI

work on MOUNTAIN-CAR after extensive parameter tuning or even hacking). On the other hand,

KQL does not distinguish between different episodes, and can update its value function 999

times. In fact, we will show that KQL even outperforms DQN in the low-budget setting.

Other kernelization efforts include Xu et al. (2005), which uses kernel regression to ap-

proximate the discounted return of a Markov chain, Xu et al. (2007), which uses kernel regression

as a subroutine in a policy iteration procedure, no exploration is involved thus no regret bound

can be obtained; Chowdhury and Gopalan (2019), which requires very restrictive assumptions,

as discussed in Yang and Wang (2020); Yang and Wang (2020), which assumes linear mixture

models, therefore suffers from aforementioned limitations of such models; Ormoneit and Sen

(2002); Barreto et al. (2016), which are based on local averaging and require Lipschitzness

assumptions, and no exploration is involved thus no regret bound can be obtained; Domingues

et al. (2021), which is similarly based on local averaging and require Lipschitzness assumption,

but with Lipschitzness-based exploration.

More general function approximation classes have also been considered. Notably, Wang

et al. (2020); Ayoub et al. (2020) gave regret bounds in terms of Eluder dimension and cover-

ing number of the function class. However, most of these attempts either result in generally
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intractable algorithms (Krishnamurthy et al., 2016; Jiang et al., 2017; Dann et al., 2018; Dong

et al., 2020; Wang et al., 2020; Ayoub et al., 2020), or make very restrictive assumptions such as

deterministic environment (Wen and Van Roy, 2013; 2017), or the existence of a finite latent

state space (Du et al., 2019).

This chapter is primarily based on material in Liu and Su (2022), of which the dissertation

author was the primary researcher and author.
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Appendix A

Proofs for Covering Numbers

A.1 Proof of Lemma 5.4.14

In the case of linear kernel, for any x ∈ H, ∥x∥H = ∥x∥∗ = ∥x∥2; and for any linear

operator T over X , ∥T∥∗ ≤ ∥T∥F = ∥T∥HS. Because a n-dimensional unit ball can be ε-covered

by (1+2/ε)n points, the lemma follows immediately.

A.2 Proof of Lemma 5.4.16

Let N be the set of non-negative integers. For any multi-index ν = (n1,n2, · · · ,nd) ∈ Nd ,

define |ν |= ∑
n
i=1 ni. The following facts will be useful.

Fact A.2.1 (Multinomial expansion). For any nonnegative integer n,

∑
ν∈Nd

|ν |=n

d

∏
j=1

(2ηx2
j)

n j

n j!
=

1
n!
(
2η∥x∥2

2
)n
.

Fact A.2.2 (Taylor expansion). For any nonnegative integer n and t ≥ 0,

∞

∑
n=N

tn

n!
≤ tN

N!
et .
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Define the function

eν : X → R

x 7→
d

∏
j=1

en j(x j)

where

en j(x j) =

√
(2η)n j

n j!
xn j

j e−ηx2
j .

It is well-known that B =
{

eν : ν ∈ Nd} is an orthonormal basis forH (see e.g. Steinwart et al.

(2006, Theorem 3.7)). Consequently,
{

eν1⊗ eν2 : ν1,ν2 ∈ Nd} is an orthonormal (Schauder)

basis for BHS(H). Now note that

∥∥IHS,∗
∥∥2

= sup
T∈BHS(H)
∥T∥HS≤1

sup
x∈X
⟨TKx,Kx⟩2H

= sup
x∈X

sup
T∈BHS(H)
∥T∥HS≤1

(
∑

ν1,ν2∈Nd

⟨T,eν1⊗ eν2⟩HS · eν1(x) · eν2(x)

)2

(a)
= sup

x∈X
∑

ν1,ν2∈Nd

e2
ν1
(x) · e2

ν2
(x)

= sup
x∈X

(
∑

ν∈B
e2

ν(x)

)2

= sup
x∈X

(
∑

ν∈Nd

d

∏
j=1

(2ηx2
j)

n j

n j!
· e−2η∥x∥2

2

)2

(b)
= sup

x∈X

(
∞

∑
n=0

1
n!
(
2η∥x∥2

2
)n · e−2η∥x∥2

2

)2

= 1,

(A.1)

where (a) is due to Cauchy-Schwarz and (b) is due to Fact A.2.1.

Next we introduce for all positive integer N two orthogonal projections: PN , which is the
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projection onto span {eν1⊗ eν2 : |ν1|< N, |ν2|< N}, and QN , which is the projection onto P⊥N .

Note that

∥∥IHS,∗QN
∥∥2

= sup
T∈BHS(H)
∥T∥HS≤1

sup
x∈X
⟨QNTKx,Kx⟩2H

= sup
x∈X

sup
T∈BHS(H)
∥T∥HS≤1

 ∑
ν1,ν2∈Nd

∥ν1∥ ≥ N or ∥ν2∥ ≥ N

⟨QNT,eν1⊗ eν2⟩HS · eν1(x) · eν2(x)


2

(a)
= sup

x∈X
∑

ν1,ν2∈Nd

∥ν1∥ ≥ N or ∥ν2∥ ≥ N

e2
ν1
(x) · e2

ν2
(x)

(b)
= sup

x∈X

 ∞

∑
n=N

1
n!
(
2η∥x∥2

2
)n · e−2η∥x∥2

2 ·
N−1

∑
n=0

1
n!
(
2η∥x∥2

2
)n · e−2η∥x∥2

2

+
N−1

∑
n=0

1
n!
(
2η∥x∥2

2
)n · e−2η∥x∥2

2 ·
∞

∑
n=N

1
n!
(
2η∥x∥2

2
)n · e−2η∥x∥2

2

+
∞

∑
n=N

1
n!
(
2η∥x∥2

2
)n · e−2η∥x∥2

2 ·
∞

∑
n=N

1
n!
(
2η∥x∥2

2
)n · e−2η∥x∥2

2


≤ 2sup

x∈X

(
∞

∑
n=N

1
n!
(
2η∥x∥2

2
)n · e−2η∥x∥2

2

)
(c)
≤ 2sup

x∈X

(
(2η∥x∥2

2)
N

N!

)
≤ 2

(
2eη

N

)N

,

where (a) is due to Cauchy-Schwarz and (b) is due to Fact A.2.1 and (c) is due to Fact A.2.2.

Note that we can choose

N =

⌈
2

(
ln

2
√

2
ε

+ e2
η

)⌉
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such that
∥∥IHS,∗QN

∥∥≤ ε/2. Finally, note that

lnN (ε, IHS,∗)≤ ln
(
N (ε/2, IHS,∗PN) ·N (ε/2, IHS,∗QN)

)
= lnN (ε/2, IHS,∗PN)

(a)
≤ rank(PN) ln

(
1+

4
ε

)
≤ N2d ln

(
1+

4
ε

)

=

⌈
2

(
ln

2
√

2
ε

+ e2
η

)⌉2d

ln
(

1+
4
ε

)
,

where in (a) we used ∥IHS,∗PN∥ ≤ ∥IHS,∗∥= 1 and the fact that a n-dimensional unit ball can be

ε-covered by (1+2/ε)n points.
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D. Ormoneit and Ś. Sen. Kernel-based reinforcement learning. Machine learning, 49(2):161–178,

79



2002.

R. Ortner. Regret bounds for reinforcement learning via markov chain concentration. Journal of
Artificial Intelligence Research, 67:115–128, 2020.

I. Osband and B. Van Roy. On lower bounds for regret in reinforcement learning. arXiv preprint
arXiv:1608.02732, 2016.

I. Osband, B. Van Roy, and Z. Wen. Generalization and exploration via randomized value
functions. In International Conference on Machine Learning, pages 2377–2386, 2016.

A. Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research,
2021.

P. Rusmevichientong and J. N. Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

D. Russo. Worst-case regret bounds for exploration via randomized value functions. arXiv
preprint arXiv:1906.02870, 2019.

M. Simchowitz and K. G. Jamieson. Non-asymptotic gap-dependent regret bounds for tabular
mdps. Advances in Neural Information Processing Systems, 32:1153–1162, 2019.

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Information-theoretic regret bounds
for gaussian process optimization in the bandit setting. IEEE Transactions on Information
Theory, 58(5):3250–3265, 2012.

B. K. Sriperumbudur, K. Fukumizu, and G. R. Lanckriet. Universality, characteristic kernels and
rkhs embedding of measures. Journal of Machine Learning Research, 12(7), 2011.

I. Steinwart, D. Hush, and C. Scovel. An explicit description of the reproducing kernel hilbert
spaces of gaussian rbf kernels. IEEE Transactions on Information Theory, 52(10):4635–4643,
2006.

Y. Sun, F. Gomez, and J. Schmidhuber. On the size of the online kernel sparsification dictionary.
arXiv preprint arXiv:1206.4623, 2012.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement

80

https://github.com/DLR-RM/rl-baselines3-zoo


learning with function approximation. Advances in neural information processing systems, 12,
1999.

I. Szita and C. Szepesvári. Model-based reinforcement learning with nearly tight exploration
complexity bounds. In Proceedings of the Twenty-seventh International Conference on
Machine Learning, pages 1031–1038, 2010.

M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time analysis of kernelised
contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

R. Wang, R. Salakhutdinov, and L. F. Yang. Reinforcement learning with general value function
approximation: Provably efficient approach via bounded eluder dimension. arXiv preprint
arXiv:2005.10804, 2020.

Y. Wang, R. Wang, S. S. Du, and A. Krishnamurthy. Optimism in reinforcement learning with
generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Z. Wen and B. Van Roy. Efficient exploration and value function generalization in deterministic
systems. Advances in Neural Information Processing Systems, 26:3021–3029, 2013.

Z. Wen and B. Van Roy. Efficient reinforcement learning in deterministic systems with value
function generalization. Mathematics of Operations Research, 42(3):762–782, 2017.

X. Xu, T. Xie, D. Hu, and X. Lu. Kernel least-squares temporal difference learning. International
Journal of Information Technology, 11(9):54–63, 2005.

X. Xu, D. Hu, and X. Lu. Kernel-based least squares policy iteration for reinforcement learning.
IEEE transactions on neural networks, 18(4):973–992, 2007.

L. Yang and M. Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Machine Learning, pages 10746–10756. PMLR,
2020.

Z. Yang, C. Jin, Z. Wang, M. Wang, and M. I. Jordan. On function approximation in reinforcement
learning: Optimism in the face of large state spaces. arXiv preprint arXiv:2011.04622, 2020.

A. Zanette and E. Brunskill. Tighter problem-dependent regret bounds in reinforcement learning
without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304–7312, 2019.

A. Zanette, D. Brandfonbrener, E. Brunskill, M. Pirotta, and A. Lazaric. Frequentist regret
bounds for randomized least-squares value iteration. In International Conference on Artificial

81



Intelligence and Statistics, pages 1954–1964. PMLR, 2020.

T. Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural
Computation, 17(9):2077–2098, 2005.

Z. Zhang and X. Ji. Regret minimization for reinforcement learning by evaluating the optimal
bias function. arXiv preprint arXiv:1906.05110, 2019.

Z. Zhang, Y. Zhou, and X. Ji. Almost optimal model-free reinforcement learning via reference-
advantage decomposition. arXiv preprint arXiv:2004.10019, 2020.

Z. Zhang, X. Ji, and S. Du. Is reinforcement learning more difficult than bandits? a near-optimal
algorithm escaping the curse of horizon. In Conference on Learning Theory, pages 4528–4531.
PMLR, 2021.

D. Zhou, L. Li, and Q. Gu. Neural contextual bandits with ucb-based exploration. In International
Conference on Machine Learning, pages 11492–11502. PMLR, 2020.

D. Zhou, Q. Gu, and C. Szepesvari. Nearly minimax optimal reinforcement learning for linear
mixture markov decision processes. In M. Belkin and S. Kpotufe, editors, Proceedings
of Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of Machine
Learning Research, pages 4532–4576. PMLR, 15–19 Aug 2021a.

D. Zhou, J. He, and Q. Gu. Provably efficient reinforcement learning for discounted mdps with
feature mapping. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 12793–12802. PMLR, 18–24 Jul 2021b.

82


	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Algorithms
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Reward Discounting in Practice
	Q-Learning
	Policy Gradient

	An Example
	Our Contributions
	Bibliographic Notes

	gamma-Regret
	Notations
	The Definition
	Properties
	Bibliographic Notes

	Lower Bounds
	Proof of Theorem 3.0.1
	Bibliographic Notes

	Tabular Double Q-Learning
	The Algorithm
	Upper Bounds
	Proof of Theorem 4.2.1
	Relation to Sample Complexity of Exploration

	Bibliographic Notes

	Kernelized Q-Learning
	Preliminaries
	Assumptions
	The Algorithm
	Upper Bounds
	Effective Dimension and Pseudo Dimension
	Covering Number of Operators
	The General Setting
	Specific Settings

	Experiments
	Methodology
	Results

	Computational Considerations
	Bibliographic Notes

	Proofs for Covering Numbers
	Proof of Lemma 5.4.14
	Proof of Lemma 5.4.16

	Bibliography



