
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Landscape analyses using eDNA metabarcoding and Earth observation predict community 
biodiversity in California

Permalink
https://escholarship.org/uc/item/3k47k272

Journal
Ecological Applications, 31(6)

ISSN
1051-0761

Authors
Lin, Meixi
Simons, Ariel Levi
Harrigan, Ryan J
et al.

Publication Date
2021-09-01

DOI
10.1002/eap.2379
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3k47k272
https://escholarship.org/uc/item/3k47k272#author
https://escholarship.org
http://www.cdlib.org/


Landscape analyses using eDNA metabarcoding and Earth 
observation predict community biodiversity in California

Meixi Lin1, Ariel Levi Simons2,3, Ryan J. Harrigan4, Emily E. Curd1, Fabian D. Schneider5, 
Dannise V. Ruiz-Ramos6,7, Zack Gold1, Melisa G. Osborne8, Sabrina Shirazi9, Teia M. 
Schweizer1,10, Tiara N. Moore1,11, Emma A. Fox1, Rachel Turba1, Ana E. Garcia-Vedrenne1, 
Sarah K. Helman1, Kelsi Rutledge1, Maura Palacios Mejia1, Onny Marwayana1,12, Miroslava 
N. Munguia Ramos1, Regina Wetzer13,14, N. Dean Pentcheff13, Emily Jane McTavish7, 
Michael N. Dawson7, Beth Shapiro9,15, Robert K. Wayne1, Rachel S. Meyer1,9,16

1Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los 
Angeles, California 90095 USA

2Department of Marine and Environmental Biology, University of Southern California, Los 
Angeles, California 90089 USA

3Institute of the Environment and Sustainability, University of California-Los Angeles, Los 
Angeles, California 90095 USA

4Center for Tropical Research, Institute of the Environment and Sustainability, University of 
California-Los Angeles, Los Angeles, California 90095 USA

5Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 
California 91009 USA

6Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri 65201 
USA

7Department of Life & Environmental Sciences, University of California-Merced, Merced, 
California 95343 USA

8Department of Molecular and Computational Biology, University of Southern California, Los 
Angeles, California 90089 USA

9Department of Ecology and Evolutionary Biology, University of California-Santa Cruz, Santa 
Cruz, California 95064 USA

10Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA

11School of Environmental and Forestry Sciences, University of Washington, Seattle, Washington 
98195 USA

16 rsmeyer@ucla.edu . 

Supporting Information
Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.2379/full

Open Research
Scripts and data (Lin 2021) associated with the analyses are archived in Zenodo: https://doi.org/10.5281/zenodo.4516670. The raw 
sequencing data is deposited in the NCBI Sequence Reads Archive under Bioproject PRJNA702201.

HHS Public Access
Author manuscript
Ecol Appl. Author manuscript; available in PMC 2022 July 20.

Published in final edited form as:
Ecol Appl. 2021 September ; 31(6): e02379. doi:10.1002/eap.2379.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://onlinelibrary.wiley.com/doi/10.1002/eap.2379/full


12Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences 
(LIPI), Cibinong, Bogor 16911 Indonesia

13Research and Collections, Natural History Museum of Los Angeles County, Los Angeles, 
California 90007 USA

14Biological Sciences, University of Southern California, Los Angeles, California 90089 USA

15Howard Hughes Medical Institute, University of California-Santa Cruz, Santa Cruz, California 
95064 USA

Abstract

Ecosystems globally are under threat from ongoing anthropogenic environmental change. 

Effective conservation management requires more thorough biodiversity surveys that can 

reveal system-level patterns and that can be applied rapidly across space and time. Using 

modern ecological models and community science, we integrate environmental DNA and Earth 

observations to produce a time snapshot of regional biodiversity patterns and provide multi-

scalar community-level characterization. We collected 278 samples in spring 2017 from coastal, 

shrub, and lowland forest sites in California, a complex ecosystem and biodiversity hotspot. We 

recovered 16,118 taxonomic entries from eDNA analyses and compiled associated traditional 

observations and environmental data to assess how well they predicted alpha, beta, and zeta 

diversity. We found that local habitat classification was diagnostic of community composition 

and distinct communities and organisms in different kingdoms are predicted by different 

environmental variables. Nonetheless, gradient forest models of 915 families recovered by eDNA 

analysis and using BIOCLIM variables, Sentinel-2 satellite data, human impact, and topographical 

features as predictors, explained 35% of the variance in community turnover. Elevation, sand 

percentage, and photosynthetic activities (NDVI32) were the top predictors. In addition to this 

signal of environmental filtering, we found a positive relationship between environmentally 

predicted families and their numbers of biotic interactions, suggesting environmental change 

could have a disproportionate effect on community networks. Together, these analyses show that 

coupling eDNA with environmental predictors including remote sensing data has capacity to test 

proposed Essential Biodiversity Variables and create new landscape biodiversity baselines that 

span the tree of life.

Keywords

beta diversity; biomonitoring; citizen science; community ecology; ecological modeling; 
environmental DNA; gradient forest; remote sensing; zeta diversity

Introduction

Species are being rapidly lost worldwide (Pimm et al. 2014, Ceballos et al. 2015, Díaz 

et al. 2019) with many key habitats that harbor high biodiversity (Myers et al. 2000) 

threatened by climate change and environmental degradation. The scientific community 

needs rapid bioinventory tools to provide critical baseline biodiversity data with minimal 

cost and effort that can be applied globally (Bush et al. 2017). Essential Biodiversity 
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Variables (EBVs; Pereira et al. 2013) are a minimal set of measurements needed to support 

multi-purpose, long-term planning at various scales. Example EBVs include community 

composition, genetic composition, and ecosystem structure, which can be extrapolated from 

in situ and remote sensing observations. Scaling up from in situ biological measures to 

enable system-wide projections remains challenging (Pereira et al. 2013). Bioinventories 

remain often taxonomically or spatiotemporally restricted because technical feasibility limits 

large scale monitoring (Cristescu 2014), and thus, very few studies attempt to assess the 

complex composition of the total biotic environment (Karimi et al. 2018, George et al. 2019) 

that could provide unbiased EBVs needed to aid systems-level biodiversity conservation.

Technology-assisted citizen and community science (CCS) is a growing means to obtain 

in situ biodiversity observations to complement those made by taxonomic experts, and 

CCS observations from photographs and sounds have already eclipsed other biomonitoring 

data records such as physical collections (Theobald et al. 2015, Kobori et al. 2016). 

However, most CCS observations favor diurnal macroscopic species and often omit cryptic 

and microbial taxa (Theobald et al. 2015). In response, our program, CALeDNA (by the 

University of California Conservation Genomics Consortium; CALeDNA 2021), and several 

other fledging programs, have focused on giving community scientists the capacity to 

sample environmental DNA (eDNA) from their surroundings (Biggs et al. 2015, Miralles et 

al. 2016, Meyer et al. 2021), which can be probed for nearly any taxonomic group using 

multi-locus metabarcoding methods (Bohmann et al. 2014, Deiner et al. 2016, Thompson et 

al. 2017, Franklin et al. 2019).

Multi-locus metabarcoding of eDNA from surface soil and sediment retains a record of 

taxa recently present in the local area, including bacteria and archaea, often-overlooked 

meiofauna, protozoans, non-vascular plants, algae, and fungi in addition to the vertebrate 

and vascular plant communities that are easier to observe directly. These methods are 

increasing in accuracy as reference DNA sequence databases grow and informatic tools 

improve, and are decreasing in cost as library preparation and sequencing technology 

become less expensive. Community-powered eDNA surveys can be coupled with remote 

sensing measures of ecosystem properties to model community composition, generate EBVs 

and advance ecological theories about how community diversity is regulated by biotic and 

abiotic traits (Yamasaki et al. 2017). On the ground and space-based technologies yield 

increasingly copious and accessible abiotic data (Pettorelli et al. 2014, Schimel et al. 2019) 

on land cover, topography, soil property (Hengl et al. 2017), bioclimate (Fick and Hijmans 

2017), human impact (WCS and CIESIN 2005), and vegetation (e.g., Sentinel-2; European 

Space Agency), which can be used to model eDNA biodiversity changes across landscapes 

(Crowther et al. 2019, van den Hoogen et al. 2019). Biotic-abiotic interactions among soil 

properties (e.g., pH and nutrient availabilities), climate, plant coverage, and habitat type 

have been shown to affect soil alpha and beta diversity in different taxonomic groups (Fierer 

and Jackson 2006, Ranjard et al. 2013, George et al. 2019, White et al. 2020) from tropical 

mountains to temperate ecosystems (Thompson et al. 2017, Karimi et al. 2018, Montagna 

et al. 2018, Peters et al. 2019). However, these studies have largely focused on a single 

habitat, region, or phylogenetic clade with few exceptions, notably, a national-scale soil 

eDNA survey in England showed that animal and microbial richness responded to different 
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environment factors but beta-diversity trends were shared across taxonomic groups (George 

et al. 2019).

Our study attempts to use multi-locus metabarcoding from CCS-collected eDNA in a 

biodiversity-ecological response model that spans kingdoms and habitats of California. 

Similar to other biodiversity hotspots, we expect discontinuous environmental clines 

and high endemism (Myers et al. 2000, Thompson et al. 2017) to be apparent in 

eDNA community patterns. Our objectives are threefold. First, we identify the taxonomic 

occurrence patterns recovered in eDNA surveys and assess their reliability and concordance 

with traditional observations. Second, we assess the relationship of eDNA alpha, beta, and 

zeta diversity to environmental measures to determine how the environment filters species 

richness and community composition. Third, we apply joint-species gradient forest and 

ecological co-occurrence network modeling to generate a community turnover map of the 

entire state of California and characterize the taxonomic families that are found to be most 

sensitive to environmental filtering. These analyses reveal the abiotic and biotic variables 

that are the most predictive of community composition patterns and provide a framework 

for using CCS-generated eDNA with remote sensing to refine static maps of ecological 

delineations and provide effective EBVs.

Methods

Sampling design

Volunteers for CALeDNA sampled biodiversity from a wide variety of habitats, including 

coast, shrub, and lowland forest sites across the state of California using target sampling and 

eDNA metabarcoding. Sample location metadata were collected by a smartphone webform 

made in Kobo Toolbox and included a photograph (software available online).17 Surface 

samples were collected by filling three 2-mL tubes with substrate from <2 cm depth, each 

30 cm apart. Samples were frozen at −80°C immediately upon their return to CALeDNA 

headquarters at UC Los Angeles.

To minimize the potential effect of seasonal variations in eDNA profiles, we selected 

samples from March 2017 to June 2017, with two-thirds of samples collected in April. 

We classified the predominant biome using photographs and a variety of geolocation data. 

We selected 100 samples from each of three transect types, coast, shrub/scrub (abbreviated 

as “shrub”), and forest, that covered the broadest latitudinal range possible. Samples with 

ambiguous metadata were removed, resulting in a total of 278 samples (98 coast, 89 shrub, 

and 91 forest) used in subsequent analyses (Table 1; Data S1).

Compilation of environmental variables

We assembled environmental variables across six main categories: location, habitat, 

bioclimate, soil properties, topography, and vegetation (including surface reflectance 

properties) variables (Appendix S1: Supplemental Methods, Figs. S1, S2; Data S1). 

Uncertainty layers were downloaded if available as well (Appendix S1: Fig. S3). All raster 

17 kobotoolbox.org 
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layers were aligned and projected to a unified 100 × 100 m grid from Google Earth Engine 

(Coordinate Reference System for this project: ESPG 4326, WGS84). Layers were stacked 

and clipped to California’s extent, and used for point extraction. For coastal sites outside of 

the raster’s geographical coverage, values were extracted by the closest point available in 0.5 

km radius or assigned a value of “NA” if not available. All computation and analyses were 

performed in R version 3.5.3 (R Core Team 2019). Raster operations were performed using 

R package raster (v. 2.8–19; Hijmans 2019).

Considering that many environmental variables are correlated, we evaluated the Pearson’s 

correlation coefficient of the 56 numerical environmental variables and hierarchically 

clustered the variables according to the coefficients into variable groups using R functions 

cor, hclust, and cutree. To reduce collinearity and improve interpretability in community 

modeling, we created a “reduced” set of 33 numerical environmental variables that had an 

R2 < 0.8 (Table 1; Appendix S1: Figs. S1, S2) for downstream analysis.

DNA extraction, amplification, and sequencing

DNA extraction, amplification and sequencing followed Curd et al. (2019). Briefly, three 

250-mg biological replicate soil samples from each site were fully homogenized and pooled 

per site. DNA was extracted using the QIAGEN DNeasy PowerSoil Kit (Qiagen, Valencia, 

California, USA) according to the manufacturer’s instructions. Negative controls were 

included in every batch of 12–18 extractions. DNA was amplified by polymerase chain 

reaction (PCR), using primers for five barcode regions: 16S (515F and 806R; Caporaso et al. 

2012), 18S (Euk_1391f and EukBr; Amaral-Zettler et al. 2009), CO1 (mlCOIintF and Fol-

degen-rev; Yu et al. 2012, Leray et al. 2013), fungal ITS1 (“FITS”; ITS5 and 5.8S; White et 

al. 1990, Epp et al. 2012), and plant ITS2 (“PITS”; ITS-S2F and ITS-S3R; Gu et al. 2013). 

Primer sequences and thermocycling profiles can be found in Appendix S1: Tables S1, 

S2. All PCR amplifications were performed in triplicate and with additional PCR negative 

controls. Triplicate positive amplifications confirmed by gel electrophoresis, were pooled 

by sample and barcode to equimolar levels, indexed and sequenced on an Illumina MiSeq 

(Illumina, San Diego, California, USA) using kit v3 for 2×300 bp reads (QB3-Berkeley 

FGL), and sequenced to a target depth of 50,000 reads/sample/metabarcode (Appendix S1: 

Supplemental Methods). Five of the 278 sites were processed as biological replicates by 

different technicians to inspect taxonomic variation in independent DNA extraction and 

technical processing.

Bioinformatics and data processing

We used default settings in the Anacapa Toolkit (Curd et al. 2019) for multi-locus sequence 

data processing and taxonomy assignment. In brief, quality control of raw sequences was 

performed using Cutadapt (Martin 2011) and FastX-Toolkit (Gordon et al. 2010), and 

inference of Amplicon Sequence Variants (ASVs) was made with DADA2 (Callahan et 

al. 2016). Taxonomy assignment was made on each ASV using Bowtie2 (Langmead and 

Salzberg 2012) and the Bayesian Lowest Common Ancestor algorithm (BLCA; Gao et al. 

2017) on custom metabarcode-specific reference databases that were created using Creating 
Reference libraries Using eXisting tools (CRUX; Curd et al. 2019). Taxonomy assignments 

with a bootstrap confidence cutoff score over 0.6 were kept for each ASV. ASVs with 
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the exact same inferred LCA passing confidence filter were summed into one “taxonomic 

entry” as the species/phylotype/MOTU equivalent in this study (Appendix S1: Supplemental 

Methods).

To informatically control for contamination, we further removed all singleton or doubleton 

taxa, and removed taxa that occurred in more than two reads in all blank samples, from 

subsequent analyses. To prepare data for alpha and beta diversity analyses requiring 

rarefaction, we performed rarefaction in 10 replicates and took the mean using the 

custom_rarefaction function in the R package ranacapa (v. 0.1.0; Appendix S1: Text S1, 

Table S3; Kandlikar et al. 2018). Reads with no assignment were not removed before 

rarefaction. We also estimated concordance between biological replicates (Appendix S1: 

Text S2).

Comparison of eDNA taxonomic output with traditional surveys

To compare the eDNA taxonomic results to traditional surveys, we compared eDNA results 

to the curated species inventory of the University of California Natural Reserve System 

(UCNRS), which records Chordata, Arthropoda, and Streptophyta. We counted how many 

taxon records were shared or unique to eDNA results or traditional records at classification 

levels of order, family, and genus combining all reserves and within each reserve.

We developed a metric of traditional observation score (TOS) in eDNA taxonomic 

assignment. TOS uses all observation and collection records in the Global Biodiversity 

Information Facility (GBIF) database from a broad region centered on California to score 

whether the taxon assignment of an eDNA ASV has been observed. A TOS > 0 suggests 

there is support for the assignment of an ASV based on its presence in the TOS region 

(Appendix S1: Supplemental Methods).

Community alpha, beta, and zeta diversity relationships with environmental variables

We used the rarefied data set for alpha and beta diversity analyses to control for variations 

in read depth. Alpha diversity was calculated using Observed and Shannon’s Diversity Index 

in the R package vegan (v. 2.5–2; Oksanen et al. 2018). These two measures weigh relative 

sequence abundance differently. Shannon’s index penalizes rare sequences compared to 

the Observed index (Calderón-Sanou et al. 2020). We evaluated relationships of alpha 

diversity measures using the Kruskal-Wallis test for categorical environmental variables, and 

individual linear models and partial least squares models for numerical variables (Appendix 

S1: Supplemental Methods, Text S3).

Beta diversity was visualized by plotting sample relative abundance of the top 10 phyla 

for metabarcodes 16S, 18S, and CO1, and top 10 classes for PITS and FITS. Composition 

profiles were analyzed using unconstrained ordination to reveal turnover across sites. We 

calculated the binary Jaccard dissimilarity distance to only consider presence–absence 

patterns given eDNA relative abundance can be influenced by stochastic processes of 

DNA shedding, deposition, and decay. We performed principal coordinate analysis (PCoA; 

function ordinate), permutational multivariate ANOVA analysis (PERMANOVA; function 

adonis), and tested for the assumption of homogeneity of dispersion (function beta-disp) 

in the R packages phyloseq (v. 1.24.2; McMurdie and Holmes 2013) and vegan. We also 
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partitioned the data by the four categories in the majorhab variable (aquatic, herbaceous-, 

shrub- and tree-dominated habitats) and performed PCoA and PERMANOVA analyses 

within each major habitat. Additionally, we tested for the effects on community turnover 

of coastal sites and spatial correlation (Appendix S1: Text S4). Post hoc explanation of the 

ordination axes was performed by fitting the reduced set of numerical variables (Table 1) 

onto the PCoA result using functions envfit and ordisurf in the R package vegan (Appendix 

S1: Supplemental Methods).

Zeta diversity was used to measure the fraction of unique categories of organisms held 

in common among nearby sets of communities, which unlike beta diversity, considers the 

composition of metacommunities composed of more than two sites. We set cluster size 

to four nearby sites, calculated and scaled zeta four diversity (ζ4) using the R package 

ZETADIV (v. 1.1.1; Latombe et al. 2018). We tested the likelihood of two model forms of 

the relationship between zeta diversity and sample numbers (zeta decline). Based on prior 

analyses (Hui et al. 2014), declines that follow a power-law of the form ζN = ζ1N−b, or 

an exponential of the form ζN = ζ1eb(N−1), were associated with a niche differentiation 

or stochastic process of community assembly, respectively (Appendix S1: Supplemental 

Methods). Scaled ζ4 diversity values were then plotted on a map of California using 

the R package Leaflet (v. 2.0.2; Cheng et al. 2018). Environmental factor groups were 

made by binning environmental variables according to their categories (Table 1). We used 

generalized linear models (GLM) to determine the variation in ζ4 diversity attributed to 

either geographic distance or an environmental factor group.

Gradient forest modeling and ecological network analysis to predict and interpret 
community turnover across California

We used the gradient forest classification model in the R package gradientForest (v. 0.1–

17; Ellis et al. 2012) to test which environmental variables best explained eDNA-detected 

community turnover patterns across California using all 272 sites without any missing 

metadata collected from three transects (six out of 278 sites excluded due to missing 

metadata). We chose to perform predictive modeling on beta diversity because it is 

less affected by molecular artefacts, such as PCR errors or tag-jumps, or variations in 

bioinformatics pipelines, and more likely to reflect ecologically meaningful community 

composition patterns compared to alpha diversity, which is more sensitive to eDNA 

processing strategies (Calderón-Sanou et al. 2020, Shirazi et al. 2020) and does not require 

the clustering of sites that zeta diversity does. Due to large variation in the coastal sites, 

we also performed additional gradient forest analyses excluding all coastal sites using the 

same methods. The gradient forest model was built with the reduced set of 33 numerical 

environmental variables (Table 1). We fit a classification-tree-based gradient forest model 

using default settings to the eDNA-derived biological matrix, but increased the number of 

trees to 2,000 per family to increase the stability of the model (Breiman 2001). To assess 

model robustness, we repeated the gradient forest model 20 times. To assess model power 

and reliability, we randomized the predictor matrix 100 times and ran the model with the 

same settings (Bay et al. 2018; Appendix S1: Supplemental Methods).
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To visualize the community turnover inferred from the gradient forest model over space, 

we used the input of all 33 environmental variables from 100 × 100 m grids in the extent 

of California without extrapolation (Pitcher et al. 2011). We used the top three principal 

components from the transformed environmental variables and visualized them by red, 

green, and blue (RGB) bands (Ellis et al. 2012). To differentiate model performance from 

the high-dimensional nature of the environmental variable matrix and to provide prediction 

uncertainty estimates, we scaled the environmental variables and performed the same PCA 

and visualization procedure without using the model (“uninformed map”) and performed 

a mantel test and a monotonic regression between the biological matrix and either the 

uninformed map or gradient-forest-informed map. We also estimated which area contained 

more uncertainty by mapping the sites in the gradient-forest-informed map to the biological 

matrix using a Procrustes rotation and evaluated the residuals (Ellis et al. 2012; Appendix 

S1: Supplemental Methods).

To explore the biotic interactions underlying the gradient forest patterns, results for each 

metabarcode were summarized by family, filtered on read depth and frequency, and used 

in ecological co-occurrence network analysis using the R package SpiecEasi (v. 0.1.4; 

Kurtz et al. 2015) for cross domain analysis that incorporates all five metabarcodes into 

one complex network (Tipton et al. 2018). Topological parameters were determined in 

Cytoscape (v. 3.6.1; Shannon et al. 2003) using the NetworkAnalyzer tool. To observe the 

relationship between network degrees and the prediction R2 of each family from gradient 

forest, an ordinary least squares (OLS) linear regression model was made using the lm 

function in R and interactions were visualized with the R package Interactions (v. 1.1.1; 

Long 2020). To evaluate the co-occurrence and gradient forest predictor patterns in a 

phylogenetic framework, the 915 families used in the gradient forest modeling were mapped 

onto the Open Tree of Life and a synthetic tree was generated using synthesis release v12.3 

(available online).18 Phylogeny tips were annotated with data using the Interactive Tree of 

Life (available online).19

Results

eDNA metabarcoding recovered taxonomic entries across 86 phyla

The 278 selected samples from coast, shrub, and forest areas across California (Fig. 1A) 

were sequenced with five metabarcodes. Each metabarcode recovered their target groups as 

expected (Fig. 1C; Appendix S1: Table S1), with 16S amplifying Bacteria and Archaea, 18S 

and CO1 broadly amplifying eukaryotes including Animalia, Chromista, Fungi, Protozoa, 

and some Plantae, ITS1 amplifying Fungi (FITS) from Ascomycota, Basidiomycota, and 

other phyla, and the ITS2 region amplifying plants (PITS) across both Chlorophyta and 

Streptophyta.

Sequencing the 278 samples, five repeated biological replicate samples, and 23 negative 

controls as PCR blanks or extraction blanks amounted to 75,830,796 reads for the five 

metabarcoding loci and averaged 54,554 reads per sample per metabarcode. After several 

18 tree.opentreeoflife.org 
19 https://itol.embl.de/ 
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steps of quality control, taxonomic assignment, and sequence decontamination, a total of 

16,157,425 reads were assigned to 16,118 unique taxonomic entries, i.e., best taxonomic 

hypotheses (Data S2). The median assigned read depth was 7,717 (Appendix S1: Fig. 

S4) and mean taxa identified was 778 per sample. Assignments spanned 86 phyla with 

most reads and taxonomic entries being assigned to Proteobacteria, Ascomycota, and 

Basidiomycota (Fig. 1B, C). Despite fairly deep sequencing, stringent sample filtration and 

validation on eDNA result concordance were necessary to meet quality metrics practiced 

by the metabarcoding community (Goldberg et al. 2016, Taberlet et al. 2018; Appendix S1: 

Text S2, Fig. S5; Data S3). Sequence rarefaction for diversity analyses that require even 

read depth across samples was able to be set near the taxon accumulation curve asymptote, 

suggesting we did not undersample during sequencing, although we did have to remove a 

small number of sample sites to meet the depth requirement (Appendix S1: Text S1, Figs. 

S6, S7, Table S3).

Comparison with traditional surveys: eDNA results partially overlap with traditional 
observations

Our first objective to assess the concordance between eDNA surveys and traditional 

observations initially utilized the UC Natural Reserve System curated species list of 

Streptophyta, Arthropoda and Chordata made by traditional surveys. Forty-four Streptophyta 

families were only found in eDNA, 77 were only in traditional observations, 65 were 

recovered from both methods. We found that 110 Arthropoda families were only recovered 

from eDNA, 139 were only in traditional observations, and 16 were recovered from both 

methods. No Chordata families were jointly recovered from both methods, since our 

metabarcoding markers did not specifically target Chordata. Evaluating concordance at 

order, family, and genus levels, we determined that family was the classification level that 

could be best validated by traditional observation at our UCNRS sample sites (Data S4).

To further evaluate eDNA taxa and traditional observation concordance without relying on 

restricted local surveys, we assigned a Traditional Observation Score (TOS) for eDNA taxon 

entries using the GBIF records from Western North America and the Eastern Pacific, which 

represent hypotheses of correct matches if eDNA entries overlap with the region specific 

GBIF records. Only taxonomic entries resolved to at least the level of order were assigned a 

TOS, hence 1,700 eDNA entries were omitted. Results showed only 5.6% of eDNA entries 

had an adjusted TOS of 0 (no GBIF support for assignment), and 50.0% of entries had an 

adjusted TOS of 1 (strong GBIF support for assignment; Data S5). Partial concordance was 

found in the remaining entries. No relationship was found between TOS and the frequency 

at which a taxon was found in eDNA samples (Pearson’s R2 = 0.004; P < 1 × 10−5), 

suggesting the TOS is not heavily biased toward common or ubiquitous taxa. As with the 

UCNRS comparison, the TOS was highest at the family level, so we selected family level 

classification for downstream gradient forest and network analyses.

Beta and zeta diversity are structured by minor habitat and vegetation variables

We examined relationships of alpha, beta, and zeta diversity to environmental measures 

as our second objective. Alpha diversity varies at the local scale and across the terrestrial-

marine interface (Appendix S1: Fig. S8), with high spatial stratification among loc (reported 
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location names) and minorhab (minor habitat) variables for all metabarcodes besides CO1 

(Appendix S1: Fig. S9). Stratification for the clust variable (neighboring cluster of sites 

within a radius of 0.5 km) according to the Shannon Index for 16S and FITS (Data 

S6), indicated bacterial and fungal alpha diversity are locally constrained in California. 

Post-hoc Dunn tests of categorical groups (Appendix S1: Figs. S10–S13; Data S6), as well 

as individual linear regressions (Data S7) and partial least squares models (Data S8) of 

observed richness and Shannon diversity indices with numerical environmental observations 

showed alpha diversity is predicted by many environmental variables and is most strongly 

predicted in fungi (FITS; Appendix S1: Text S3, Fig. S14; Data S6–S8).

Similarly, beta diversity patterns exhibited variations by habitat characteristics and were 

structured by environmental filtering. We found visually apparent differences in dominant 

taxa by habitat grouping (Appendix S1: Fig. S15). In community dissimilarity analyses, beta 

diversity was significantly different across major habitat groups despite many overlapping 

sites in the ordination plots (PERMANOVA; Fig. 2A, B; Appendix S1: Figs. S16–S19; Data 

S9). In particular, samples from aquatic environments were more dispersed in the ordination 

(Fig. 2A, B). Beta dispersion also showed significant heterogeneity of multivariate 

dispersion (variance) within groups for all metabarcode and category combinations except 

loc, majorhab, transect, and clust for the PITS metabarcode (Data S9).

Further investigation into beta diversity patterns revealed that minor habitat (minorhab) 

composition within each of the four major habitats contributed strongly to dissimilarity 

in all markers (PERMANOVA, adjusted P < 0.01; Fig. 2C; Appendix S1: Fig. S20; Data 

S10). Jaccard dissimilarity PCoA revealed finerscale habitat partitions for some, but not 

all, minor habitat categories, suggesting eDNA may be useful to evaluate minor habitat 

classifications as distinct management units based on community types (McKnight et al. 

2007). For example, within aquatic major habitat, many of the marine nearshore categories 

overlapped, while marine and freshwater lacustrine and riverine sites separated (Fig. 2C; 

Appendix S1: Fig. S20). Patterns of environmental filtering remained after exclusion of 

coastal sites and spatial correlation effects (Appendix S1: Text S4, Figs. S21, S22; Data 

S11, S12). For numerical variables, post hoc explanation of the ordination axes showed that 

photosynthetic activities (NDVI32 and greenness) were most highly correlated with 16S, 

18S, and FITS (Table 2; Appendix S1: Fig. S23; Data S13). Soil organic carbon content 

(orcdrc) was most highly correlated with CO1, and Isothermality (bio3) was most highly 

correlated with PITS (Table 2).

Zeta diversity describes the degree of overlap in the number of unique categories of 

organisms held in common between N sites or communities (ζN; Appendix S1: Fig. S24A), 

which, as N increases, captures more variation due to turnover. This framework allows for 

an assessment in trends in regional scale turnover of relatively common organisms, which 

are less biased toward the presence of rare, or spuriously detected taxa (Hui et al. 2018). 

Environmental factor groups explained 1–32% of the observed variation in ζ diversity (Table 

3). Vegetation variables were among the top predictors for 18S, CO1, FITS, and PITS data 

sets, with the highest variance explained at 32% for the FITS data set. Variables related 

to small-scale location describe minimal variation (<1%) in ζ4 diversity for communities 

(Table 3). To better understand the likeliest processes associated with the spatial assembly of 
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communities, two models of zeta diversity decline were tested using the power law model 

and the exponential model. The power law model was found to be a better fit for more 

than 83% communities described in all but the PITS metabarcode results, 31% of which 

followed the exponential model, suggesting lower spatial autocorrelation in plant and algal 

communities (Appendix S1: Fig. S24; Data S14).

Gradient forest models map high-resolution biodiversity turnover in California

Our third objective used gradient forest and ecological co-occurrence network modeling to 

map and characterize the taxonomic families that are predicted by the environment. Our 

gradient forest model included 272 sites × 915 eDNA-derived families as a response variable 

matrix and 272 sites × 33 environmental variables as a predictor matrix (Data S15). The 

gradient forest model explained 35% of variation in the biotic matrix, and all 915 families 

were able to be effectively modeled (i.e., had an R2 > 0) with high stability across 20 

replicated runs (Average R2 = 0.349 ± 0.0004; Average families effectively modeled = 915 

± 0; Data S16). Using a permutation approach, we confirmed the mean overall R2 and 

number of families with positive R2 for true observations were significantly higher than all 

the permuted runs (Appendix S1: Fig. S25). Many of the most responsive families were 

from marine aquatic sites, and some of these were low in observation frequency (Fig. 3B; 

Appendix S1: Fig. S26).

Gradient forest provides information on the rate of community turnover along environmental 

gradients (Ellis et al. 2012). We plotted the relative density of splits and cumulative 

importance for environmental variables. Within the top three environmental variables, we 

found nonlinear community changes. For elevation, rapid community turnover (high splits 

density) occurred at 0 m and above 1,000 m (Fig. 3C, D). For sand percentage, important 

splits were mainly distributed at 23%, 43%, and 74% sand (local maxima with the highest 

density; Fig. 3C, D), which have similarity to the soil texture triangle in the USDA system 

(Groenendyk et al. 2015). For photosynthetic activities (NDVI32), important splits were 

mainly distributed along −0.16, 0.05, and 0.28 (scale: −1 to 1; Fig. 3C, D).

Our map of California biodiversity resembled EPA North America Level II and California 

Level III Ecoregion maps (U.S. Environmental Protection Agency 2010, 2012), which were 

created with different input data and methods (Fig. 4C–E). For example, in the gradient 

forest map (Fig. 4A), the majority of central and southwestern California community 

type (red) corresponded to Mediterranean California (Fig. 4C, pale green, Level II 11.1.), 

characterized by medium photosynthetic activities (NDVI32), lower elevation (elev), higher 

precipitation seasonality (bio15) and higher mean temperature of wettest quarter (bio8).

We assessed the model prediction robustness and prediction uncertainties by regenerating 

our community turnover map of California without using any information obtained from 

eDNA surveys (Fig. 4B), and the resulting map neither resembled California published 

maps such as the EPA North America Level II Ecoregion map (U.S. Environmental 

Protection Agency 2010, Omernik and Griffith 2014; Fig. 4C) nor did it separate regions as 

sharply as the eDNA-informed map (Fig. 4A). This purely physical approach of community 

turnover mapping showed adding eDNA improves gradient forest informed mapping by a 

1.4% reduction in stress performance statistics and a 5.6% increase in Mantel correlation 
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R2 (Appendix S1: Fig. S27). We quantified the prediction uncertainties at each site by 

Procrustes rotation errors and found that predictions for coastal sites harbor more deviation 

from real eDNA communities (Dunn test, P < 0.001; Appendix S1: Fig. S28). We also were 

curious how robust our map was when coastal sites were removed, since several of the most 

predicted families were marine, and found that we could still explain 30% of the variation in 

the biotic matrix (Appendix S1: Text S5, Fig. S29).

Biotic co-occurrence has a weak positive relationship with gradient forest predictability

To characterize the biotic relationships of families across the spectrum of their predictability 

in the gradient forest models, which indicates environmental filtering (Horner-Devine et 

al. 2007), we modeled the relationship between each family’s ecological co-occurrence 

network degrees and their predictor R2 using an OLS linear model. Co-occurrence patterns 

reflect biotic niche processes that maintain biodiversity patterns that theoretically hold no 

expected relationship with abiotic environmental filtering. A family-level co-occurrence 

network produced 916 edges connecting 290 nodes (families) out of the total 304 families 

that met minimum frequency thresholds for analysis (Fig. 5A; Data S17). In the OLS linear 

model, interaction effects of site frequency were also considered. Model results showed a 

modest positive relationship (adjusted R2 = 0.22) between the number of edges and gradient 

forest R2 for families, indicating the families determined by gradient forest to be under the 

most environmental filtering were also the families most integrated in ecological networks 

based on their numbers of degrees. However, the interaction between frequency in sites 

and network degrees was also significant (P < 0.02; Fig. 5B). In a phylogenetic analysis of 

these patterns, we observed that families with high network degrees and high gradient forest 

predictor values were widely distributed across clades and kingdoms, but most frequent 

in the clades containing the class Flavobacteriia and the SAR supergroup (Stramenopiles, 

Alveolates, and Rhizaria; Fig. 5C), suggesting ecological networks containing these families 

might have the lowest resilience under abiotic change.

Discussion

Species observations by the public will continue to outpace both field collections and on-the-

ground observations made by scientists (Theobald et al. 2015). With eDNA as a CCS tool 

(Biggs et al. 2015, Miralles et al. 2016, Larson et al. 2020), broader taxonomic inventories 

and assessments from minimally invasive environmental collections can be accomplished. 

Soils and sediments used in this study, collected by CCS volunteers, had an average of 778 

taxonomic lineages identified in each DNA sample, and were easily obtained from a broad 

area within a seasonal snapshot. Co-analysis of eDNA from these collections and readily 

available environmental data provides predictor values for hundreds of families that evade 

traditional observations.

Our first objective concerning the concordance between eDNA results and traditional 

observations revealed relatively low overlap with UCNRS surveys, despite high support 

by GBIF traditional observation score, which suggests eDNA CCS surveys complement but 

do not replace traditional surveys. Ongoing efforts to sequence species and build a global 

taxonomic biodiversity reference database in the next decade (e.g., the Earth BioGenome 
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Project [Lewin et al. 2018], the Centre for Biodiversity Genomics [Hobern 2021]) are 

positioned to ameliorate shortcomings of current DNA reference sequences. Emerging 

alternatives to metabarcoding may additionally help mitigate detection bias currently in 

favor of small body size in eDNA studies (Fig. 1; Data S4, S5). For example, DNA capture 

approaches to target larger organisms (Seeber et al. 2019) may improve detection of large-

bodied species, but these are not yet as cost-effective for CCS as multi-locus metabarcoding 

is. Another challenge is that different DNA extractions from the same soil or sediment 

sample exhibit heterogeneity (Appendix S1: Text S2; Data S3). We are examining stability 

and stochasticity of taxonomic profiles under varied sample processing (Castro et al. 2021) 

and DNA library preparation steps (Shirazi et al. 2020) in response to calls for research 

about these potential biases (Prosser 2010, Goldberg et al. 2016). In this study we used 

several standard approaches for reducing these biases.

Our second aim to test predictors of alpha, beta, and zeta diversity revealed that 

most environmental categories can significantly partition samples according to taxonomic 

composition (Fig. 2; Appendix S1: Figs. S15–S20; Data S6–S13), suggesting that surface 

communities are largely filtered by ecological rather than neutral processes (Bahram et 

al. 2018). These patterns remained significant after exclusion of coastal sites and location 

effects (Appendix S1: Figs. S21, S22; Data S11, S12). However, we found substantial 

overlap in community composition ordinations, as has been shown in the global Earth 

Microbiome Project (Thompson et al. 2017) and regional soil biodiversity ordination plots 

(George et al. 2019; Fig. 2A, B; Data S9). In our ordinations, groups separated from each 

other when fine-scale categories are used, such as minor habitat within partitioned major 

habitat, suggesting a large amount of community partitioning is harbored within major 

habitats categories (Appendix S1: Fig. S20). We found prokaryotic diversity was particularly 

diagnostic of minor habitats in ordinations (Fig. 2C; Appendix S1: Fig. S20). We propose 

eDNA-based composition could be EBVs for planning management units such as minor 

habitat delineations and for detecting ecotones (Jetz et al. 2019).

Environmental variables (Tables 2, 3) can have power to predict general biotic patterns and 

can illuminate possible drivers of community turnover (Appendix S1: Fig. S23) because 

they can readily be compared across studies (Omernik and Griffith 2014). For example, 

photosynthetic activities (NDVI32/greenness) had the highest correlation with the observed 

fungal alpha diversity pattern and beta diversity structure in bacteria (16S), eukaryotes 

(18S) and fungi (FITS) in the envfit analyses (Table 2; Appendix S1: Fig. S23). We note 

indices of photosynthetic activity have not been included as part of most microbiome studies 

(Bahram et al. 2018, Karimi et al. 2018, George et al. 2019) so their importance is still being 

discovered. For the subset of studies we found that had included NDVI as a predictor, 

it was observed to be important in modulating soil fungal and herbivore nematodes 

communities (Timling et al. 2014, Delgado-Baquerizo et al. 2016, Yang et al. 2017, van den 

Hoogen et al. 2019). Isothermality (bio3) has strong positive associations with PITS beta 

diversity turnover, suggesting inland arid California regions with low isothermality display 

nestedness in the biodiversity encompassed by these markers, as has been shown with 

plants in Australia (Gibson et al. 2012) and in South American seasonally dry forests (Silva 

and Souza 2018). Organic carbon (orcdrc) was strongly associated with CO1 community 

turnover, which mirrors associations reported in soil meiofaunal communities, particularly 
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nematodes (Jackson et al. 2019). Overall, zeta diversity largely supports the envfit results, 

although zeta diversity had poorer explanatory power for 16S patterns, which can be 

attributed to its greater sensitivity to common groups (Table 3; Simons et al. 2019) such 

as the nearly ubiquitous taxa in Proteobacteria.

Previous efforts have successfully integrated abiotic environmental data and models with 

traditional observational records such as herbarium specimens (Baldwin et al. 2017) to 

produce maps used to conserve threatened species (Jenkins et al. 2015), assess deforestation 

(Zarnetske et al. 2019) and evaluate species richness and endemism (Baldwin et al. 2017). 

However, remotely sensed variables such as from the Sentinel-2 instrument and local-scale 

eDNA observations of taxonomy biodiversity enable community mapping at a grid size finer 

than 5 km (Jenkins et al. 2013, 2015, Pimm et al. 2014, Baldwin et al. 2017, Zarnetske et 

al. 2019), which aligns better with in situ biodiversity (Wang et al. 2018). Our objective to 

project community composition across California’s landscape achieved a higher resolution 

than currently available statewide maps (Fig. 4). Elevation (elev), sand percentage (sndppt), 

photosynthetic activities (NDVI32) and the mean temperature in the wettest quarter (bio8) 

were the among the most important predictors (Fig. 3A) and all of these variables had 

been proposed to be prominent drivers in community structures worldwide. For example, 

sand percentage, an inverse of clay percentage, is known to explain differences in plant 

community guilds (Cornelius et al. 1991), correlates with presence of halophytes (Lee et al. 

2016, Moreno et al. 2018) and influences microbial community structures (Sessitsch et al. 

2001, Ehrlich et al. 2015).

Space, flight, tower, and drone-based remote-sensing information are becoming increasingly 

available and accessible (Pettorelli et al. 2014). By providing more direct, spatially 

continuous measures of plant functional diversity and ecosystem functioning at regional 

(Schneider et al. 2017, Durán et al. 2019, Sousa et al. 2021) to global scales (Schimel 

et al. 2019, Schneider et al. 2020), we expect that future analyses will uncover new 

rules (Rocchini et al. 2021) and important environmental predictors, and will develop 

prediction maps on species richness (alpha diversity) or community turnover at higher 

dimensions (zeta diversity), expanding on the beta diversity map presented here. The eDNA 

composition could potentially be better predicted with more remote sensing and in situ 

bioinventory data from different spatial and temporal scales with improved gradient forest 

R2 from what we achieved at R2 = 0.35 and decreased prediction uncertainties. Bayesian 

hierarchical modeling and artificial neural networks are also receiving increasing attention 

for community modeling with more application potentials for improved spatial-temporal 

biodiversity predictions with associated uncertainty estimates (Hefley and Hooten 2016, 

Nieto-Lugilde et al. 2018, Pollock et al. 2020). We are looking forward to applying Bayesian 

hierarchical models in future CALeDNA meta-analyses.

Finally, we suggest eDNA ecological network analyses should be leveraged so that the 

biotic interaction dependence can be contrasted with dependence or sensitivity to the abiotic 

environment. Our work shows a weak but positive relationship between the number of 

degrees a family has and its propensity for environmental filtering based on gradient forest 

predictability. This positive relationship persists across phylogenetic groups (Fig. 5). Other 
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studies focused on a single kingdom have obtained similar conclusions, such as in microbial 

variation in an altitudinal gradient in the Atacama Desert, Chile (Mandakovic et al. 2018).

Conclusion

In conclusion, we demonstrate the emerging potential of coupling CCS observations and 

eDNA data from samples that CCS volunteers collect in combination with remote sensing 

and ecological modeling to assess community–environment interactions and ultimately map 

community turnover. We provide one of the most comprehensive surveys of terrestrial 

biodiversity across three domains of life over a large, environmentally diverse state. We 

show the predictive and explanatory power of environmental variables on alpha, beta, and 

zeta diversity across highly diverse regions and at local geographic scales. The beta diversity 

map for California, as a continuous surface of community turnover, shares many similar 

boundaries to the standard U.S. Ecoregion maps, but with nuanced detail. Computationally 

intensive and artificial intelligence driven models are producing maps for mitigating the 

challenges of global change (Harfouche et al. 2019, Pollock et al. 2020). Our approach 

contributes to the development of strategies to model living systems which could be 

directly used as Essential Biodiversity Variables for tracking biodiversity change, advancing 

ecological understanding, and managing ecosystems.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Map of 278 sites included in this study and illustration of taxonomic entries recovered 

with five metabarcodes. (A) Study area (gray shade) is defined within the State of 

California, United States. Sample sites are colored by three transect designations: coast 

(red), forest (green), and shrub (blue). Size of the points corresponds to the number of 

samples taken in the same area. The shape of the points represents areas within (circles) 

and outside (triangles) of the University of California’s Natural Reserve System (UCNRS, 

yellow shade, area size not to scale for visibility). (B) Read abundance is grouped by 

the phylum they belong to after taxonomy assignment and decontamination for five 

metabarcodes targeting Bacteria and Archaea (16S), Eukaryota (18S), Metazoa (CO1), 

Fungi (FITS), and Viridiplantae (PITS). Only the most abundant 10 phyla are plotted for 

each metabarcode. All other phyla are summarized in the “Other” category. (C) Heatmap 

shows each metabarcode’s taxonomic specificity. The results from each metabarcode (16S, 

18S, CO1, FITS, PITS) are represented from inner to outer rings (gray arrow). Lighter blue 

in one cell represents more taxonomic entries were recovered by that metabarcode for that 

phylum, gray color represents no entries. Phyla are indicated on the periphery. Background 

color of each pie wedge denotes the superkingdom (red, Archaea; blue, Eukaryota; green, 

Bacteria; no background, unknown) to which the phyla belonged at the time of taxonomy 

assignment (taxonomy file downloaded from NCBI on 19 January 2018). For eukaryotic 

phyla, kingdoms are marked by different line types in an orange outline: Fungi (solid), 

Metazoa (dashed), and Viridiplantae (dotted).
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Fig. 2. 
Beta diversity plots based on Jaccard dissimilarity. The first two principal coordinates are 

plotted with percentage of variance explained included in the axis label. We show selected 

Principal Coordinate Analysis (PCoA) plots from (A) 16S and (B) 18S for major habitat. 

Each point stands for a sample site. (C) Example PCoA plots based on Jaccard dissimilarity 

with samples grouped by minor habitat and plotted within aquatic major habitat for 16S 

metabarcode. Some minor habitat groups separate while others overlap, and patterns of 

compositional similarity (overlap) are different for different metabarcodes (Appendix S1: 

Fig. S20).

Lin et al. Page 23

Ecol Appl. Author manuscript; available in PMC 2022 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Gradient forest result for filtered CALeDNA data set. (A) Ranked overall importance for 

33 environmental predictors. (B) Ranked goodness-of-fit (1 − relative error rates) for the 

top 30 families (response variables). (C and D) Community turnover along the three most 

important environmental gradients: elevation, sand percentage, and photosynthetic activity 

proxy (NDVI32). (C) The gray histogram shows binned split importance at each gradient. 

Kernel density of splits (black lines), of observed predictor values (red lines) and of splits 

standardized by observation density (blue lines) are overlaid. The horizontal dashed line 

indicates where the ratio is 1. Each curve integrates to the importance of the predictor. (D) 

The line shows cumulative importance distributions of splits improvement scaled by R2 

weighted importance and standardized by density of observations, averaged over all families.
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Fig. 4. 
Gradient forest predicted community turnover map in California. (A) Map of transformed 

environmental variables following gradient forest predictions of biodiversity turnover from 

eDNA results compared with (B) uninformed, standardized environmental variables and (C–

E) current major ecoregion maps in California. The map shows the first three principal 

dimensions of (A) biologically predicted or (B) uninformed community compositions 

with an RGB color palette with 100-m resolution. The biplot of the first two PCs 

of the transformed environment space with (inset A) or without (inset B) biological 

information provides a color key for the compositional variation (n = 50,000). Similar 

colors approximate similar community in the transformed environmental space. The gray 

crosses denote the input eDNA sites (n = 272). Vectors denote the direction and magnitude 

of the eight most important environmental correlates. (C–E) Selected major ecoregions 

maps are provided for comparisons with (A) the gradient forest map. (C) EPA Level II 

Ecoregions of North America (U.S. Environmental Protection Agency 2010). (D) EPA Level 

III Ecoregions of California (U.S. Environmental Protection Agency 2012). (E) USDA 

Ecoregion Sections in California (USDA Forest Service 2007).
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Fig. 5. 
eDNA-based ecological co-occurrence network and relationship with gradient forest model 

goodness-of-fit R2. (A) A total of 369 families (as nodes) are included in the network and 

290 of those have at least one edge connecting them to another node. Dark blue and black 

nodes represent families with R2 predictor values >0.4. The size of the node is scaled to the 

number of network degrees. (B) OLS linear regression and quantile-quantile plot showing 

the interaction between network sum of degrees and frequency of taxa in sample sites with 

the dependent variable of gradient forest family goodness-of-fit R2. There were 304 families 

included as joint observations in gradient forest and network results. The adjusted R2 = 0.22, 

network sum estimate = 0.01 (t = 5.44; P = 0.00), frequency in sites estimate = 0.00 (t = 

0.18; P = 0.86), and interaction between network sum and frequency in sites = 0.00 (t = 

−2.38; P = 0.02). (C) Phylogenetic tree made with the Open Tree of Life targeting input 

families as tips. Heat map labels correspond to the range of gradient forest R2 (0.078–0.913) 

from yellow to dark green (inner circle), and to the range of network degrees (0–48) from 

yellow to purple (outer circle). Families too rare to be included in the network analysis (in 

fewer than 28 sites) are not colored in heat maps. Arrows indicate the following clades: 

brown, fungi; mustard, Enterobacteriaceae; blue, Flavobacteriia; green, Streptophyta; red, 

SAR supergroup.
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