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ABSTRACT OF THE DISSERTATION

A Framework for Optimization and Simulation of Reservoir Systems Using Advanced
Optimization and Data Mining Tools

By

Matin Rahnamay Naeini

Doctor of Philosophy in Civil Engineering

University of California, Irvine, 2019

Professor Kuolin Hsu, Co-Chair
Professor Amir AghaKouchak, Co-Chair

The simulation and optimization of reservoir systems has attracted a great deal of attention

in the field of hydrology and water resources management. Although many advances have

been made, the gap between theoretical and real-world operation of reservoir systems still

exists. Here, multiple tools and algorithms are proposed to bridge the existing gap to some

extent. These tools are developed to aid decision makers, engineers, and scientists to under-

stand, simulate, and improve the operational rules of reservoir systems.

In this dissertation, I propose an optimization framework, titled shuffled complex-self adap-

tive hybrid evolution (SC-SAHEL), to optimize the controlled discharge from reservoirs. This

new optimization tool can solve a wide range of optimization problems, using a self-adaptive

search mechanism. The algorithm employs multiple search methods from different optimiza-

tion tools and selects the most suitable method for the problem space. This process reveals

the potential of each search mechanism during the course of the search and enhances the

efficiency and effectiveness of the search. The SC-SAHEL framework is tested on multiple

benchmark problems and showed superior performance in comparison to single search meth-

ods. The framework is applied to the Folsom reservoir to maximize hydropower generation

by tuning the controlled discharge. The results showed that the SC-SAHEL algorithm is

xvi



superior to other single search method algorithms for finding near optimum solutions. The

results also demonstrated the robustness of the SC-SAHEL framework for solving a wide

range of reservoir optimization problems.

In addition to the optimization framework, a new data-mining algorithm, title generalized

model tree (GMT), is proposed for simulating rule-based hydrologic systems. The new

framework is developed based on the decision tree models and employs linear regression for

prediction and model induction. The newly developed framework is tested on several bench-

mark datasets to compare its performance with other popular decision tree models. The

framework can generate simple models to replicate different rule-based hydrologic systems.

The simple structure of the inducted models makes them easy to implement and use in any

programming languages and modeling framework. The framework is employed to simulate

controlled discharge from multiple reservoirs across the Contiguous United States (CONUS).

The results revealed the potential of the GMT framework for generating reservoir routing

models. The models inducted by the GMT framework can be employed as a reservoir module

within the hydrologic models, especially in large scale hydrologic modelling. In addition, the

GMT framework model structure can reveal useful information about the underlying struc-

ture of the system. Hence, it can reveal information about importance of decision variables

in the real operation of the reservoir systems.

The proposed tools benefit stakeholders to understand and improve their management prac-

tices of reservoir systems. The simulation method reveals the hydrologic response of natural

systems to historical reservoir operation through reservoir routing, while shed light on the

importance of decision variable in real operation of the system. The optimization algorithm

finds the optimum operational rules for the reservoir systems for the specified goal and objec-

tive. The outcome of these two algorithms can be used for evaluating reservoir management

practices, while considering the hydrologic behavior of the watersheds.

xvii



Chapter 1

Introduction

1.1 Reservoir Operation

Spatial and temporal variability of precipitation make reservoirs a vital component of water

resources systems (Simonovic, 1992; Chang and Chang, 2001). Reservoirs play an essential

role in providing resilience against flood and drought (Mehran et al., 2015) and provide a

wide range of services including water supply, hydropower electricity, recreation and ecosys-

tem protection (Simonovic, 1992) to our society. Due to the multi-user and multi-objective

nature of these systems, reservoir operators need to address the conflicts among different

targets (Ahmad et al., 2014). In other words, the goal of reservoir operation is to maximize

benefits, minimize costs and meet various water demands considering the conditions of the

system (Rani and Moreira, 2010).

In spite of the extensive studies in the field of reservoir operation (Hejazi et al., 2008), many

researchers acknowledged the existing gap between the theory and real-world operation of

these systems (Yeh and Becker, 1982; Simonovic, 1992; Hejazi et al., 2008; Yang et al., 2016).

Also, many reservoirs fall short in producing the level of benefits projected for these systems
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(Labadie, 2004; Azamathulla et al., 2008). Hence, shortcoming of reservoir operation and

the existing gap between theory and real-world operation urge for further investigation into

the real operation of the reservoir systems (Hejazi et al., 2008). Furthermore, increase in the

frequency and severity of extreme events (Cheng and AghaKouchak, 2014) and changes in

land-cover and land-use impose more stress and risk on the dams and reservoirs (Vahedifard

et al., 2017; Mallakpour et al., 2019). Hence, more effective and efficient operation of reser-

voirs are required to mitigate the effect of these changes (Ahmad et al., 2014).

To achieve these goals, tools and algorithms are needed to understand the operational pro-

cedure of the reservoir systems and improve these operational rules. Nonetheless, modifying

the reservoir operation can alter the downstream natural flow, which results in changes in

hydrologic response of the natural systems. Hence, models are required to understand and

simulate the real operation of the reservoir systems and replicate the controlled discharge

from these systems. These models can aid decision makers to understand the consequence of

their decision making or evaluate the current operational rules of the reservoir system. Also,

these models shed light on the potentials for improving the existing reservoir operation. In

addition to that, reservoir simulation models can significantly enhance the performance of

hydrologic models in simulating streamflow (Tavakoly et al., 2017).

So, understanding and improving the operation of the reservoirs are coined with the simu-

lation and optimization of these systems. Thus, in this dissertation I emphasize these two

important aspects of reservoir operation. First, I focus on the optimization aspect of reser-

voir systems and introduce a framework for optimizing the controlled discharge from dams.

Second, a data-driven framework will be introduced to mimic human decision making in

reservoir systems and simulate the controlled discharge based on the historical data. Appli-

cation of these two frameworks on reservoir systems are demonstrated through various case

studies across CONUS.

In this chapter, a brief background on reservoir optimization and simulation is presented.

Then, challenges and opportunities for optimization and simulation of the reservoir systems
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are summarized. At last, the research objectives and approaches are listed at the end of this

chapter.

1.2 Reservoir Optimization

Optimizing reservoir systems has been a popular area of research in water resources man-

agement (Hejazi et al., 2008). In fact, reservoir optimization is the source of motivation for

development of many optimization algorithms (Li et al., 2010; Haddad et al., 2006; Afshar

and Shahidi, 2009). Harvard Water Program (Maass et al., 1962) was the group that first

introduced the systems method, and in particular the application of optimization approach

in water resources systems modeling (Meier Jr and Beightler, 1967). Since then optimiza-

tion techniques have found many applications in the water resources planning. In general,

the optimization problems for reservoir systems are formulated with the goal to maximize

benefits for stakeholders (Ahmad et al., 2014). All optimization problems have two common

elements, objective functions and constraints (Belaineh et al., 1999). Hence, the general form

of the optimization problems can be demonstrated as (Farmani and Wright, 2003; Marler

and Arora, 2004):

minimize F = [F1(X), F2(X), . . . , Fp(X)]T

Fi(x) = f(x1, . . . , xn),

(1.1)

subject to inequality constraints,

gj(X) ≤ 0, (j = 1, . . . , q), (1.2)

and equality constraints,

hj(X) = 0, (j = q + 1, . . . ,m), (1.3)
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where x is the decision variable and F is the objective function. The objective functions and

constraints address the management goals and physical constraints of the system (Belaineh

et al., 1999). The optimization algorithms are usually selected according to the characteris-

tics of these two elements of the optimization problems.

The evolution of application of optimization theory in reservoir operation started with linear

programming (LP) and dynamic programming (DP) and to more advanced nonlinear tools

in par with the improvement of computation power of computers. LP is concerned with solv-

ing problems in which all the relationships are linear among the variables in the constraints

and objective function (Yeh, 1985). LP has been widely used for reservoir operation due to

available solvers (Belaineh et al., 1999), flexibility in solving large scale reservoir problems,

and convergence to global solutions (Rani and Moreira, 2010). For instance, Dorfman (1962)

employed LP to optimize an economic objective function for a reservoir system by tuning

the storage capacity and releases, Revelle et al. (1969) employed LP to find the optimum

release during reservoir operation, Loucks and Dorfman (1975) applied LP to solve a chance-

constraint reservoir model to optimize storage and release limits, and Needham et al. (2000)

employed LP to analyze the optimal operation policy for reservoir systems. Although the

LP algorithm is efficient in solving large scale problems, the algorithm can be used for lin-

ear and convex objective functions and constraints only (Rani and Moreira, 2010). However,

most reservoir optimization problems deal with nonlinear objective functions and constraints

(Ahmad et al., 2014; Rani and Moreira, 2010). In such problems, the objective functions

and constraints can be approximated by linear functions (Mays, 1989; Needham et al., 2000;

Garcia-Gonzalez and Castro, 2001) or successive LP (Rani and Moreira, 2010). However,

nonlinear constraints and objective functions are more suitable for reservoir problems (Need-

ham et al., 2000). Also, in addition to traditional objectives such as flood control, water

supply, hydropower production, and navigation, operators are interested in other objectives

and constraints such as water quality, riparian habitat, and recreation interests (Zagona

et al., 2001) which increase the complexity and nonlinearity of the reservoir problems.
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Nonlinear reservoir optimization problems can be solved by nonlinear programming (NLP)

and DP. However, DP can handle complex nonlinear optimization problems by decomposing

them into more simple problems (Meier Jr and Beightler, 1967). Hall and Buras (1961) were

the first to employ dynamic programming for reservoir optimization problems (Meier Jr and

Beightler, 1967). Thence, these type of algorithms have been used in reservoir optimization

problems to maximize return from reservoir systems (Hall et al., 1968), maximize power

generation over a specific period of time (Chu et al., 1979), and optimize water release for

a reservoir network (Cervellera et al., 2006). However, these algorithms are not capable of

solving large and sparse problems (Mays, 1989) and suffer from the curse of dimensionality

(Yakowitz, 1982; Ahmad et al., 2014).

Although mathematical programming optimization tools attracted a great deal of attention

in the field of water resources management and hydrology, they are incapable of solving

many nonlinear, nonconvex, discontinuous, discrete, and multiobjective optimization prob-

lems (Rani and Moreira, 2010). Metaheuristic optimization algorithms have been introduced

to overcome these shortcomings (Rani and Moreira, 2010) and have gained more applica-

tion due to their flexibility in handling nonlinearity and uncertainty in problem (Rani and

Moreira, 2010; Sadegh, 2015). In general, the metaheuristic algorithms can be divided into

population-based and single point-based algorithms (Maier et al., 2014). The population-

based algorithms such as Particle Swarm Optimization (PSO) (Kennedy, 2011), Genetic Al-

gorithm (GA) (Goldberg and Holland, 1988; John, 1992), Differential Evolution (DE) (Storn

and Price, 1997), and Shuffled Complex Evolution developed at University of Arizona (SCE-

UA) (Duan et al., 1993), combine a sample of points from a population to generate a new

solution which is superior to other points (Roeva et al., 2014). In contrast, single point-

based methods such as Simulated Anealing (SA) (Kirkpatrick et al., 1983) and Tabu Search

(TS) (Glover, 1989, 1990) improve each point by searching neighboring regions (Roeva et al.,

2014). Many different algorithms have been proposed for these two categories.

Although numerous metaheuristic optimization algorithms have been proposed, the No Free
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Lunch (NFL) theorem (Wolpert and Macready, 1997) implies that none of these algorithms

are superior to others for all optimization problems (Maier et al., 2014). The NFL the-

orem has been the source of motivation for developing and improving the metaheuristic

optimization algorithms (Mirjalili et al., 2014; Naeini et al., 2018). Due to the nature of the

metaheuristic algorithms, their performance varies based on the characteristics of the prob-

lem space. Yet, studies on the performance of the algorithms revealed the problem-specific

performance of particulate implementation of an algorithm (Kollat and Reed, 2006). This

characteristic of metaheuristic optimization algorithms incites efforts for the development

of hybrid and auto adaptive optimization algorithms (Maier et al., 2014) to tackle a broad

class of optimization problems. In this regard, several algorithms have been developed which

employ two or more evolutionary algorithms (Vrugt et al., 2009; Hadka and Reed, 2013), or

tune their settings according to the problem (Qin and Suganthan, 2005). These self adap-

tive optimization algorithms are more flexible and can be used for a wide range of problems

(Naeini et al., 2018).

This feature of self adaptive optimization algorithms encouraged me to investigate the de-

velopment of the self adaptive concept for other optimization algorithms. To this end, the

SCE-UA algorithm, which is one of the most popular optimization algorithms in the field

of water resources management, is selected for the development of a self adaptive hybrid

optimization algorithm. My research led to development of a new version of SCE-UA, titled

Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). The SC-SAHEL algorithm

is detailed in chapter 2. Chapter 3 demonstrates the application of the SC-SAHEL framework

for a reservoir optimization problem.
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1.3 Reservoir Simulation

Although optimization tools play a significant role in improving the reservoir operation, sim-

ulation models are important tools for understanding reservoir systems (Rani and Moreira,

2010). In general, the reservoir simulation models can be categorize into two classes; the

models which simulate the controlled discharge from reservoirs based on the operational rules

of the system, so called pure simulation models (Rani and Moreira, 2010), and models which

simulate controlled discharge or some objective function values based on the changes in the

operational rules (Wang et al., 2005), so called simulation-optimization models (Rani and

Moreira, 2010). The former is mostly used for reservoir routing, to incorporate the effect of

lakes and reservoirs into hydrologic models, and to mimic human decision making in these

systems (Giuliani and Herman, 2018). The latter is mostly used to derive the objective

function values for decision variables obtained from optimization algorithms (Neelakantan

and Pundarikanthan, 1999). The simulation-optimization tools such as RiverWare (Zagona

et al., 2001), CalSim (Draper et al., 2004), and MODSIM (Labadie, 2006), are mostly de-

signed for water management and planning (Rani and Moreira, 2010).

Here, I mainly focus on the pure simulation models for the purpose of understanding and

replicating human decision making in reservoir systems. Pure simulation models can be

physical-based or data-driven. The physical-based models employ the operational rules of

the reservoir within a physical framework to simulate the controlled discharge. Many of

these reservoir models, such as HEC-ResSim (USACE, 2013) and RiverWare (Zagona et al.,

2001), are embedded within the river system modelling framework. The application of these

models can be restricted due to their complexity (Draper et al., 2004; Yang et al., 2016)

and require information about the operational rules. Also, in many cases the operators may

deviate from these operational rules (Oliveira and Loucks, 1997; Yang et al., 2016). Thus,

the application of the physical-based models can be limited, specially for the large scale hy-

drologic modeling. Therefore, data-driven models can be used to overcome these obstacles
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in reservoir routing. Data-driven models can be trained on the historical reservoir releases

to mimic the real reservoir operation.

Among data-driven models, decision trees have the advantage of providing interpretable

models, which can provide information about the underlying system. The transparent struc-

ture of the decision tree models is easy to understand and employ in practice (Yang et al.,

2016). In recent years, decision tree models have found many applications in the field of

water resources management (Castelletti et al., 2010; Galelli and Castelletti, 2013b; Yang

et al., 2016, 2017b; Han et al., 2018). A popular class of decision tree algorithms is model

trees (MTs) which was developed for continuous spaces (Quinlan et al., 1992; Wang and

Witten, 1997). MTs are suitable for representing continous spaces and have been widely

used for representing water resource systems (Kompare et al., 1997; Solomatine and Dulal,

2003; Štravs and Brilly, 2007; Jothiprakash and Kote, 2011; Galelli and Castelletti, 2013a).

In this dissertation, I focus on this class of decision tree algorithms for reservoir routing.

Multiple decision tree and model tree algorithms are investigated for simulating the con-

trolled discharge from reservoir systems. Also, a new MT framework titled, generalized

model tree (GMT), is proposed to simulate the reservoir releases and capture the variability

of the flow. To enhance the efficiency and robustness of the algorithm, several modules have

been implemented into the GMT framework. The newly developed algorithm is applied to

multiple benchmark data sets and compared to other popular decision trees. Application of

the GMT framework for reservoir routing is demonstrated through multiple reservoir case

studies across CONUS.

1.4 Research Motivations and Approaches

The motivations for this research stemmed from the need to understand, simulate and im-

prove the current operational rules of the reservoir systems. The main objective is to provide
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tools and algorithms for decision makers and modelers to optimize and simulate reservoir

systems. The proposed frameworks are tested and evaluated on multiple case studies to show

their potential application to real reservoir problems. The main objectives and approaches

of this dissertation are as follows:

Objective 1:

The first objective of this dissertation is to provide a self adaptive optimization frame-

work for optimizing reservoir problems. Due to the increasing number of optimization

algorithms and the complexity of the optimization problems, a self adaptive optimiza-

tion framework can solve a wide range of problems, without the need to find the best

optimization algorithms and settings for the problem at hand. In general, my goal

is to develop a flexible, robust, and efficient optimization algorithm for the reservoir

systems.

Approach 1:

To achieve the first objective, I employ the structure of the Shuffled Complex Evolution

developed at University of Arizona, as the cornerstone for developing a robust opti-

mization algorithm. I implement several search methods into the SCE-UA framework,

so the algorithm can automatically select the best search method for the problem space

at each stage of the optimization process. The new hybrid algorithm can reveal the

performance of the search methods during the course of the search.

Objective 2:

The next objective of this dissertation is to understand and simulate the real operation

of the reservoir systems. My goal is to provide a tool and algorithm to mimic human

decision making in the operation of dams and reservoirs. Hence, these systems can be

simulated within the hydrologic models.

Approach 2:
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To achieve the second objective, I employ decision tree algorithms. In contrast to

other data-mining algorithms, decision trees can reveal information about the under-

lying process, while they represent the system. Here, I employ the MTs, which are

suitable for continuous spaces, to simulate and understand the controlled discharge

from reservoir systems. Also, a new framework is developed to overcome some of the

shortcomings of the existing MTs for reservoir routing.

1.5 Scope of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 introduces a self adaptive

hybrid evolution optimization framework. Since the previous investigations on optimization

algorithms have revealed the advantage of the self adaptive optimization algorithms, here, I

focus on the development of this type of optimization tools for reservoir systems. In chapter

2, I also test and evaluate the new optimization algorithm on various mathematical test

functions. Chapter 3 verifies the application of the newly developed optimization framework

on a conceptual reservoir case study. The reservoir optimization problem is defined based

on the information obtained for the Folsom reservoir. In Chapter 4 a new data-mining

framework is developed for the rule-based systems. The framework is tested on multiple

continuous benchmark data-sets in this chapter. Chapter 5 is devoted to the application of

the newly developed framework for simulating controlled discharge and reservoir routing. In

this chapter multiple reservoir systems with different range of services are selected, and the

new data-mining algorithm is trained and tested on the historical data. Chapter 6 summarize

the findings, limitations and future directions.
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Chapter 2

Developing a Shuffled Complex-Self

Adaptive Hybrid EvoLution

(SC-SAHEL) Optimization

Framework

2.1 Introduction

Metaheuristic optimization algorithms have gained a great deal of attention in science and en-

gineering (Blum and Roli, 2003; Lee and Geem, 2005; Nicklow et al., 2009; Reed et al., 2013;

BoussäıD et al., 2013; Maier et al., 2014). Simplicity and flexibility of these algorithms, along

with their robustness make them attractive tools for solving optimization problems (Lee and

Geem, 2005; Coello et al., 2007). Many of the metaheuristic algorithms are inspired by a

physical phenomenon, such as animals social and foraging behavior and natural selection.

For example, Simulated Annealing (Kirkpatrick et al., 1983), Big Bang-Big Crunch (Erol and
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Eksin, 2006), Gravitational Search Algorithm (Rashedi et al., 2009), and Charged System

Search (Kaveh and Talatahari, 2010) are all inspired by various physical phenomena. Ant

Colony Optimization (Dorigo et al., 1996), Particle Swarm Optimization (Kennedy, 2011),

Bat-inspired Algorithm (Yang, 2010), Firefly Algorithm (Yang, 2009), Dolphin Echolocation

(Kaveh and Farhoudi, 2013), Grey Wolf Optimizer (Mirjalili et al., 2014), Bacterial Foraging

(Passino, 2002), Genetic Algorithm (Goldberg and Holland, 1988; John, 1992), and Differen-

tial Evolution (Storn and Price, 1997) are examples of algorithms inspired by animal’s social

and foraging behavior, and the natural selection mechanism of Darwin’s evolution theorem.

According to the No-Free-Lunch (NFL) (Wolpert and Macready, 1997) theorem, none of

these algorithms are consistently superior to others over a variety of problems, although

some of them may outperform others on a certain type of optimization problem.

The NFL theorem has been a source of motivation for developing optimization algorithms

(Woodruff et al., 2013; Mirjalili et al., 2014). It has encouraged scientists and researchers

to combine the strengths of different algorithms and devise more robust and efficient opti-

mization algorithms that suit a broad class of problems (Qin and Suganthan, 2005; Vrugt

and Robinson, 2007; Vrugt et al., 2009; Hadka and Reed, 2013; Sadegh et al., 2017). These

efforts led to the emergence of multi-method and self-adaptive optimization algorithms such

as Self-adaptive DE algorithm (SaDE) (Qin and Suganthan, 2005), A Multialgorithm Ge-

netically Adaptive Method for Single Objective Optimization (AMALGAM-SO) (Vrugt and

Robinson, 2007; Vrugt et al., 2009) and Borg (Hadka and Reed, 2013). They all regularly

update the search mechanism during the course of optimization according to the information

obtained from the response surface.

Here, I propose a new self-adaptive hybrid optimization framework, titled Shuffled Complex-

Self Adaptive Hybrid EvoLution (SC-SAHEL). The SC-SAHEL framework employs multiple

Evolutionary Algorithms (EAs) as search cores, and enables competition among different al-

gorithms as optimization run progresses. The proposed framework differs from other multi-

method algorithms as it grants independent evolution of the population by each EA. In this
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framework, the population is partitioned into equally sized groups, so-called complexes, each

assigned to different EAs. Number of complexes assigned to each EA is regularly updated

according to their performance. In general, the newly developed framework has two main

characteristics. First, all the EAs evolve population in a parallel structure. Second, each

participating EA works independent of other EAs. The architecture of SC-SAHEL is in-

spired by the concept of the Shuffled Complex Evolution algorithm - University of Arizona

(SCE-UA) (Duan et al., 1992). The SCE-UA algorithm is a population-evolution based al-

gorithm (Madsen, 2003), which evolves individuals by partitioning population into different

complexes. The complexes are evolved for a specific number of iterations independent of

other complexes, and then are forced to shuffle.

The SCE-UA framework employs Nelder-Mead simplex (Nelder and Mead, 1965) technique

along with the concept of controlled random search (Price, 1987), clustering (Kan and Tim-

mer, 1987), competitive evolution (John, 1992) and complex shuffling (Duan et al., 1993) to

offer a global optimization strategy. By employing these techniques, the SCE-UA algorithm

provides a robust optimization framework and has shown numerically to be competitive and

efficient comparing to other algorithms, such as GA, for calibrating rainfall-runoff models

(Gan and Biftu, 1996; Wagener et al., 2004; Wang et al., 2010; Beven, 2011). The SCE-UA

algorithm has been widely used in water resources management (Sorooshian et al., 1993;

Yapo et al., 1996; Madsen, 2000; Toth et al., 2000; Eckhardt and Arnold, 2001; Ajami et al.,

2004; Liong and Atiquzzaman, 2004; Lin et al., 2006; Barati et al., 2014; Yang et al., 2015),

as well as other fields of study, such as pyrolysis modeling (Ding et al., 2016; Hasalová et al.,

2016) and Artificial Intelligence (Yang et al., 2017a).

Application of the SCE-UA is not limited to solving single objective optimization problems.

The Multi-Objective Complex evolution, University of Arizona (MOCOM-UA), is an exten-

sion of the SCE-UA for solving multi-objective problems (Yapo et al., 1998; Boyle et al.,

2000). Besides, the SCE-UA architecture has been used to develop Markov Chain Monte

Carlo (MCMC) sampling, named Shuffled Complex Evolution Metropolis algorithm (SCEM-
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UA) and the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) to infer

posterior parameter distributions of hydrologic models (Vrugt et al., 2003a,b). The Metropo-

lis scheme is used as the search kernel in the SCEM-UA and MOSCEM-UA (Vrugt et al.,

2003a,b; Chu et al., 2010). There is also an enhanced version of SCE-UA, which is developed

by Chu et al. (2011) entitled the Shuffled Complex strategy with Principle Component Anal-

ysis, developed at the University of California, Irvine (SP-UCI). Chu et al. (2011) found that

the SCE-UA algorithm may not converge to the best solution on high-dimensional problems

due to population degeneration phenomenon. The population degeneration refers to the sit-

uation when the search particles span a lower dimension space than the original search space

(Chu et al., 2010), which causes the search algorithm to fail in finding the global optimum.

To address this issue, the SP-UCI algorithm employs Principle Component Analysis (PCA)

in order to find and restore the missing dimensions during the course of search (Chu et al.,

2011).

Both SCE-UA and SP-UCI start the evolution process by generating a population within

the feasible parameters space. Then, population is partitioned into different complexes, and

each complex is evolved independently. Each member of the complex has the potential to

contribute to offspring in the evolution process. In each evolution step, more than two par-

ents may contribute to generating offspring. To make the evolution process competitive, a

triangular probability function is used to select parents. As a result, the fittest individuals

will have a higher chance of being selected. Each complex is evolved for a specific number

of iterations, and then complexes are shuffled to globally share the information attained by

individuals during the search.

The Competitive Complex Evolution (CCE) and Modified Competitive Complex Evolution

(MCCE) are the search cores of the SCE-UA and SP-UCI algorithm, respectively. The CCE

and MCCE evolutionary processes are developed based on Nelder-Mead (Nelder and Mead,

1965) method with some modification. The evolution process in the SCE-UA is not limited to

these algorithms. In fact, several studies have incorporated different EAs into the structure

14



of the SCE-UA algorithm. For example, the Frog Leaping (FL) is developed by adapting

Particle Swarm Optimization (PSO) algorithm to the SCE-UA structure for solving discrete

problems (Eusuff and Lansey, 2003; Eusuff et al., 2006). Mariani et al. (2011) proposed an

SCE-UA algorithm which employs DE for evolving the complexes. These studies revealed

the flexibility of the SCE-UA in combination with other types of EAs; however, the poten-

tial of combining different algorithms into a hybrid shuffled complex scheme has not been

investigated.

The unique structure of the SCE-UA algorithm along with the flexibility of the algorithm for

using different EAs, motivated us to use the SCE-UA as the cornerstone of the SC-SAHEL

framework. The SC-SAHEL algorithm employs multiple EAs for evolving the population

in a similar structure as that of the SCE-UA, with the goal of selecting the most suitable

search algorithm at each optimization step. On the one hand, some EAs are more capable

of visiting the new regions of the search space and exploring the problem space, and hence

are particularly suitable at the beginning of the optimization (Olorunda and Engelbrecht,

2008). On the other hand, some EAs are more capable of searching within the visited regions

of the search space, and hence boosting the convergence process after finding the region of

interest (Mirjalili and Hashim, 2010). Balancing between these two steps, which are re-

ferred to as exploration and exploitation (Moeini and Afshar, 2009), is a challenging task in

stochastic optimization methods (Črepinšek et al., 2013). The SC-SAHEL algorithm main-

tains a balance between exploration and exploitation phases by evaluating the performance

of participating EAs at each optimization step. EAs contribute to the population evolution

according to their performance in previous steps. The algorithms’ performance is evaluated

by comparing the evolved complexes before and after evolution. In this process, the most

suitable algorithm for the problem space become the dominant search core.

In this study, four different EAs are used as search cores in the proposed SC-SAHEL frame-

work, including Modified Competitive Complex Evolution (MCCE) used in the SP-UCI

algorithm, Modified Frog Leaping (MFL), Modified Grey Wolf Optimizer (MGWO), and
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Differential Evolution (DE). To better illustrate the performance of the hybrid SC-SAHEL

algorithm, the framework is benchmarked over 29 test functions and compared to SC-SAHEL

with single EA. Among the 29 employed test functions, there are 23 classic test functions

(Yao et al., 1999) and 6 composite test functions (Liang et al., 2005), which are commonly

used as benchmarks in comparing optimization algorithms. All the problems presented here

are minimization problems.

The rest of this chapter is organized as follows. In section 2.2, structure of the SC-SAHEL

algorithm and details of four EAs are presented. Section 2.3 presents the test functions,

settings of the experiments, and results obtained for each test function. Finally, in section

2.4, I draw conclusion, summarize some limitations about the newly introduced framework,

and suggest some directions for future work.

2.2 Methodology

The SC-SAHEL algorithm is a parallel optimization framework, which is built based on

the original SCE-UA architecture. SC-SAHEL, however, differs from the original SCE-UA

algorithm by using multiple search mechanisms instead of only employing the Nelder-Mead

simplex downhill method. In this section, I first introduce the main structure of SC-SAHEL.

Then, I present four different EAs, which are employed as search cores in the SC-SAHEL

framework. These algorithms are selected for illustrative purpose only and can be replaced

by other evolutionary algorithms. Some modifications are made to the original form of these

algorithms, to allow fair competition between EAs. These modifications are detailed in

appendix A-D.
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2.2.1 The SC-SAHEL Framework

The proposed SC-SAHEL optimization strategy starts with generating a population with

a pre-defined sampling method within feasible parameters’ range. The framework supports

user-defined sampling methods, besides built-in Uniform Random Sampling (URS) and Latin

Hypercube Sampling (LHS). The population is then partitioned into different complexes.

The partitioning process warrants maintaining diversity of population in each complex. In

doing so, population is first sorted according to (objective) function values. Then, sorted

population is divided into NGS equally-sized groups (NGS being the number of complexes),

ensuring that members of each group have similar objective function values. Each complex

subsequently will randomly select a member from each of these groups. This procedure

maintains diversity of the population within each complex. The complexes are then assigned

to EAs and evolved. In contrast to the original concept of the SCE-UA, the complexes are

evolved with different EAs rather than single search mechanism. At the beginning of the

search, an equal number of complexes is assigned to each evolutionary method. For instance,

if population is partitioned into 8 complexes and 4 different EAs are used, each algorithm will

evolve 2 complexes independently (2-2-2-2). After evolving the complexes for pre-specified

number of steps, the Evolutionary Method Performance (EMP) metric (Eq. (1)) will be

calculated for each EA,

EMP =
mean(F )−mean(FN)

mean(F )
, (2.1)

in which, F and FN are objective function values of individuals in each complex before and

after evolution, respectively.

The EMP metric measures change in the mean objective function value of individuals in

each complex in comparison to their previous state. A higher EMP value indicates a larger

reduction in the mean objective function value obtained by the individuals in the complex.

The performance of each evolutionary algorithm is then evaluated based on the mean value
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of EMP calculated for each evolved complex. EAs are then ranked according to the EMP

values. Ranks are in turn used to assign number of complexes to each evolutionary method

for the next iteration. The highest ranked algorithm will be assigned an additional complex

to evolve in the next shuffling step, while, the lowest ranked evolutionary algorithm will

lose one complex for the next step. For instance, if all the EAs have 2 complexes to evolve

(2-2-2-2 case), the number of complexes assigned to each EA can be updated to 3-2-2-1. In

other words, this logic is an award and punishment process, in which the algorithm with best

performances will be awarded with an additional complex to evolve in the next iteration,

while the worst-performing algorithm will be punished by losing one complex.

It is worth mentioning that as some of the algorithms may have poor performance in the

exploration phase, they might lose all their complexes during the adaptation process. This

might be troublesome as these algorithms may be superior in the exploitation phase. If

such algorithms are terminated in the exploration phase, they cannot be selected during

the convergence steps. Hence, EAs termination is avoided to fully utilize the potential of

EAs in all the optimization steps and balance the exploration and exploitation phases. The

minimum number of complexes assigned to each evolutionary method is restricted to at least

1 complex in this case. If the lowest ranked EA has only 1 complex to evolve, it won’t lose

its last complex. If an algorithm outperforms others throughout the evolution of complexes,

the number of complexes assigned to the superior EA will be equal to the total number of

complexes minus the number of EAs plus one. In this case, all other algorithms are evolving

one complex only. As all algorithms are evolving at least one complex, they have the chance

to outperform other EAs and gain more complexes during the optimization process, and to

potentially become the dominant search method as the search continues toward exploitation

phase. Figure 2.1 briefly shows the flowchart of the SC-SAHEL algorithm, pseudo code of

which is as follows:

0. Initialization. Select NGS > 1 and NPS (suggested NPS > 2n+1, where n is dimension
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of the problem), where NGS is the number of complexes and NPS is the number of

individuals in the complexes. NGS should be proportional to the number of evolution-

ary algorithms so that all the participating EAs have an equal number of complexes

at the beginning of the search.

1. Sample NPT points in the feasible parameter space using a user-defined sampling

method, where NPT equals to NGS×NPS. Compute objective function value for each

point.

2. Rank and sort all individuals in the order of increasing objective function value.

3. Partition the entire population into complexes. Assign complexes to the participating

EAs.

4. Monitor and restore population dimensionality using PCA algorithm (Optional).

5. Evolve each complex using the corresponding EA.

6. After evolving the complexes for a pre-defined number of iterations, calculate the mean

EMP for each EA.

7. Rank the participating EAs according to the mean EMP value of each evolutionary

method. The highest ranked method will get additional complex in the next iteration,

while the worst evolutionary method will lose one.

8. Shuffle complexes and form a new population.

9. Check whether the convergence criteria are satisfied, otherwise go to step 3.

SC-SAHEL allows for different settings that can influence the performance of the algorithm.

Careful consideration should be devoted to the selection of these settings, including num-

ber of complexes, number of individuals within each complex, number of evolution steps

before each shuffling, and stopping criteria thresholds. Some of these settings are adopted
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Figure 2.1: The SC-SAHEL framework flowchart.
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from the suggested settings for the SCE-UA. For instance, the number of individuals within

each complex is set to 2d + 1, where d is dimension of the problem. However, some of the

suggested settings cannot be applied to the SC-SAHEL framework due to use of different

EAs. These settings can be changed according to the complexity of the problem and the

EAs employed within the framework. For instance, the number of complexes, the number

of points within each complex, and the number of evolution steps before each shuffling are

problem dependent.

The SC-SAHEL framework employs three different stopping criteria which are adopted from

SCE-UA and SP-UCI. These stopping criteria include number of function evaluations, range

of samples that span the search space, and improvement in the objective function value in

the last m shuffling steps. These criteria are compared to pre-defined thresholds, which can

in turn be tuned according to the complexity of the problem. Improper selection of these

thresholds may lead to early or delayed convergence.

2.2.2 Evolutionary Algorithms Employed Within SC-SAHEL

In this chapter, I employ four different EAs to illustrate the flexibility of the SC-SAHEL

framework in adopting various EAs and show the algorithms competition. These algorithms

are briefly presented here. The pseudo code and details of these algorithms can be found in

Appendix A-D.

Modified Competitive Complex Evolution (MCCE)

The MCCE algorithm is an enhanced version of CCE algorithm used in the SCE-UA frame-

work; which provides a robust, efficient, and effective EA for exploring and exploiting the

search space. The MCCE algorithm is developed based on the Nelder-Mead algorithm, how-
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ever, Chu et al. (2011) found that the shrink concept in the Nelder-Mead algorithm can cause

premature convergence to a local optimum. Interested readers can refer to (Chu et al., 2010,

2011) for further details on MCCE algorithm. The pseudo code of the MCCE algorithm is

detailed in Appendix A. SC-SAHEL has similar performance to SP-UCI, when the MCCE

algorithm is used as the only search mechanism and PCA and resampling settings of SP-UCI

are enabled. For simplification and comparison, SC-SAHEL with the MCCE algorithm as

search core is referred as SP-UCI, hereafter.

Modified Frog Leaping (MFL)

The Frog Leaping (FL) algorithm uses adapted PSO algorithm as a local search mechanism

within the SCE-UA framework (Eusuff and Lansey, 2003). FL has shown to be an efficient

search algorithm for discrete optimization problems, and can find optimum solution much

faster as compared to the GA algorithm (Eusuff et al., 2006). In order to adapt the FL

algorithm to the SC-SAHEL parallel framework, I introduce a slightly modified version of

FL algorithm entitled MFL. Further details and pseudo code of the MFL can be found in

Appendix B. The original FL algorithm and the MFL have four main differences. First, the

original FL is designed for discrete optimization problems, however, the MFL is modified

for continuous domain. Second, the modified FL uses the best point in the subcomplex for

generating new points, however, in the original FL framework new points are generated using

the best point in the complex and the entire population. The reason for this modification is

to avoid using any external information by participating EAs. In other words, the amount

of information given to each EAs is limited to the complex assigned to the EAs. Third,

as the MFL algorithm only uses the best point within the complex for generating the new

generation, two different jump rates are used. The reason for different jump rates is to allow

MFL to have a better exploration and exploitation ability during optimization process. These

jump rates are selected by trial and error and may need further investigation to achieve a
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better performance by MFL algorithm. Fourth, when the generated offspring is not better

than the parents, a new point is randomly selected within the range of individuals in the

subcomplex. This process, which is referred to as censorship step in the FL algorithm

(Eusuff et al., 2006), is different from the original algorithm. The MFL algorithm uses the

range of points in the complex rather than the whole feasible parameters range. Resampling

within the whole parameter space can decrease the convergence speed of the FL algorithm.

Hence, the resampling process is carried out only within the range of points in the complex.

Hereafter, the SC-SAHEL with MFL algorithm as the only search core is referred as SC-MFL.

Modified Grey Wolf Optimizer (MGWO)

The Grey Wolf Optimizer is a metaheuristic algorithm inspired by the social hierarchy and

hunting behavior of grey wolves (Mirjalili et al., 2014, 2016). Grey wolves hunting strategy

has three main steps: first, chasing and approaching the prey; second, encircling and pursuing

the prey, and finally attacking the prey (Mirjalili et al., 2014). The GWO process resembles

the hunting strategy of the grey wolves. In this algorithm, the top three fittest individuals

are selected and contribute to the evolution of population. Hence, the individuals in the

population are navigated toward the best solution. The GWO algorithm has shown to

be effective and efficient in many test functions and engineering problems. Furthermore,

performance of GWO is comparable to other popular optimization algorithms, such as GA

and PSO (Mirjalili et al., 2014). GWO follows an adaptive process to update the jump

rates, to maintain balance between exploration and exploitation phases. The adaptive jump

rate of the GWO is removed here and 3 different jump rates are used instead. The reason

for this modification is that the information given to each EA is limited to its assigned

complex. Similar to MFL algorithm, the modified GWO (MGWO) algorithm uses the range

of parameters to resample individuals, when the generated offspring are not superior to their

parents. Details and pseudo code of the MGWO algorithm can be found in Appendix C.
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Hereafter, the SC-SAHEL with MGWO algorithm as the only search core is referred as

SC-MGWO.

Differential Evolution (DE)

The DE algorithm is a powerful but simple heuristic population-based optimization algorithm

(Qin and Suganthan, 2005; Sadegh and Vrugt, 2014) proposed by Storn and Price (1997). In

2011, Mariani et al. (2011) integrated the DE algorithm into SCE-UA framework and showed

that the new framework is able to provide more robust solutions for some optimization

problems in comparison to the SCE-UA. Similar to the work by Mariani et al. (2011), I use

a slightly modified DE algorithm based on the concepts from Qin and Suganthan (2005), in

order to integrate the DE algorithm into the SC-SAHEL framework. As the DE algorithm

has slower performance in comparison to other EAs used here, I have added multiple steps

to the DE. Here, the DE algorithm uses three different mutation rates in three attempts. In

the first attempt, the algorithm uses a larger mutation rate. This helps exploring the search

space with larger jump rates. In the second attempt, the algorithm reduces the mutation

rate to a quarter of the first attempt. This will enhance the exploitation capability of the

EA. If none of these mutation rates could generate a better offspring than the parents, in

the next attempt the mutation rate is set to half of the first attempt. Lastly, if none of these

attempts generate a better offspring in comparison to the parents, a new point is randomly

selected within the range of individuals in the complex. The pseudo code of the modified

DE algorithm is detailed in Appendix D. The SC-SAHEL algorithm is referred to as SC-DE,

when the DE algorithm is used as the only search algorithm.
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2.3 Conceptual Test Functions

2.3.1 Test Functions

The SC-SAHEL framework is benchmarked over 29 mathematical test functions using single-

method and multi-method search mechanisms. This includes 23 classic test functions ob-

tained from Yao et al. (1999). The name and formulation of these functions along with their

dimensionality and range of parameters are listed in Table 2.1. I selected these test functions

as they are standard and popular benchmarks for evaluating new optimization algorithms

(Mirjalili et al., 2014). The remaining 6 are composite test functions, cf 1−6, (Liang et al.,

2005), which represent complex optimization problems. Details of the composite test func-

tions can be found in the work of Liang et al. (2005) and Mirjalili et al. (2014). Classic test

functions have dimensions in the range of 2 to 30, and all the composite test functions are

10 dimensional. Figure 2.2 and 2.3 show response surface of the test functions which can be

shown in 2-dimension form. The SC-SAHEL settings used for optimizing these test functions

are listed in Table 2.2 for each test function. Number of points in each complex and number

of evolution steps for each complex are set to 2d+ 1 and max(d+ 1, 10), respectively, where

d is the dimension of the problem. The number of evolution steps is set to max(d+ 1, 10), to

guarantee that EAs evolve the complexes for enough number of steps, before evaluating the

EAs. In the high-dimension problems, the maximum number of function evaluation should

be selected with careful consideration.

Several experiments were conducted to find an optimal set of parameters for the SC-SAHEL

setting. These experiments revealed that a low number of evolutionary steps before shuffling

the complexes, may not show the potential of the EAs. On the other hand, using a large

value for the number of evolution steps may shrink the complex to a small space, which

cannot span the whole search space (Duan et al., 1994). Maximum number of function

evaluation is determined according to the complexity of the problem and is different for each
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Function NGS NPS I
f1 8 61 100,000
f2 8 61 100,000
f3 8 61 300,000
f4 8 61 300,000
f5 8 61 500,000
f6 8 61 100,000
f7 8 61 200,000
f8 8 61 200,000
f9 8 61 200,000
f10 8 61 200,000
f11 8 61 200,000
f12 8 61 300,000
f13 8 61 400,000
f14 8 10 100,000
f15 8 10 100,000
f16 8 10 100,000
f17 8 10 100,000
f18 8 10 100,000
f19 8 10 100,000
f20 8 13 100,000
f21 8 10 100,000
f22 8 10 100,000
f23 8 10 100,000
cf 1 8 21 100,000
cf 2 8 21 100,000
cf 3 8 21 100,000
cf 4 8 21 100,000
cf 5 8 21 100,000
cf 6 8 21 100,000

Table 2.2: List of the settings for the SC-SAHEL algorithm for classic and composite test
functions. NGS is the number of complexes, NPS denotes the number of points in each
complex and I is the maximum number of function evaluation.

27



Figure 2.2: Classic test functions in 2-dimension form.
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Figure 2.3: Composite test functions in 2-dimension form.
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of the test cases. In addition to the maximum number of function evaluation, the range of

the parameters in the population and the improvement in the objective function values are

used as convergence criteria. The optimization run is terminated if the population range is

smaller than 10−7% of the feasible range or the improvement in (objective) function value is

smaller than 0.1% of the mean (objective) function value in the last 50 shuffling steps. The

LHS mechanism is used as the sampling algorithm of SC-SAHEL for generating the initial

population. The framework provides multiple settings for boundary handling, which can be

selected by user. SC-SAHEL uses reflection as the default boundary handling method. Other

initial sampling and boundary handling methods are also implemented in the SC-SAHEL

framework. Sensitivity of the initial sampling and boundary handling on the performance

of the SC-SAHEL algorithm is not studied in this chapter. The aforementioned settings can

be applied to a wide range of problems.

2.3.2 Results and Discussion

Table 2.3 illustrates the statistics of the final function values at 30 independent runs on 29

test functions using the hybrid SC-SAHEL and individual EAs, with the goal to minimize the

function values. The best mean function value obtained for each test function is expressed

in bold in Table 2.3. Results show that the hybrid SC-SAHEL achieved the lowest function

values in 15 out of 29 test functions, compared to the mean function values achieved by

all individual algorithms. It is noteworthy that in 20 out of 29 test functions, the hybrid

SC-SAHEL was among the top two optimization methods in finding the minimum function

value. A two-sample t-test (with 5% significance level) also showed that the results gener-

ated with the SC-SAHEL algorithm is generally similar to the best performing algorithms.

Comparing among single-method algorithms, in general, the statistics obtained by SP-UCI

are superior to other participating EAs. In 12 out of 29 test functions, the SP-UCI algorithm

achieved the lowest function value. SC-MFL, SC-MGWO, and SC-DE were superior to other
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algorithms in 6, 10, and 11 out of 29 test functions, respectively. In test functions f6, f16,

f17, f18, f19, f20, and f23, the single-method and multi-method algorithms achieved same

function values on average in most cases. In these cases, according to the statistics shown

in Table 2.3, the SP-UCI and SC-SAHEL algorithms offer lower standard deviation values

and show more consistent results as compared to other EAs. The low standard deviation

values obtained by SP-UCI and SC-SAHEL indicate the robustness and consistency of these

two algorithms in comparison to other algorithms. In the test functions that the hybrid

SC-SAHEL algorithm was not able to produce the best mean function value, the achieved

mean function values deviation from that of the best-performing algorithms are marginal.

For instance, on the test functions f2, f4, f10, and f22, the statistics of the values obtained by

SC-SAHEL are similar to that achieved by the best-performing methods, which are SP-UCI,

and SC-MGWO. In general, the hybrid SC-SAHEL algorithm is superior to algorithms with

individual EA on most of the test functions, although on some test functions, the SC-SAHEL

algorithm is slightly inferior to the best-performing algorithm with only marginal differences.

The performance of the SC-SAHEL in these test functions can be attributed to two main

reasons. First, in the hybrid algorithm, all the EAs are involved in the evolution of the

population. Hence, if one of the algorithms have poor performance in comparison to other

EAs, it still evolves a portion of the population. As the complexes are evolved independently,

the poor-performing EAs may devastate a part of the information in the evolving complex.

On the other hand, when the algorithms are used individually in the SC-SAHEL framework,

the EA utilizes the information in all the complexes and the whole population. In this case,

better result will be achieved in comparison to the hybrid SC-SAHEL, if the EA is the fittest

algorithm for the problem space. Second, some of the EAs are faster and more efficient in

a specific optimization phase (exploration/exploitation) than others. However, they might

not be as effective as other EAs for other optimization phases. Hence, dominance of these

algorithm during the exploration or exploitation phases can mislead other EAs and cause

early (and premature) convergence. Engagement of other algorithms in the evolution process
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may prevent early convergence in these cases. Generally, the performance criteria, EMP, is

responsible for selecting the most suitable algorithm in each optimization step, however, the

criteria used in the SC-SAHEL is not guaranteed to perform well in all problem spaces. The

performance criteria are problem dependent and need further investigations based on the

problem space and EAs. However, the EMP metric seems to be a suitable metric for a wide

range of problems.

To further evaluate the performance of the hybrid SC-SAHEL algorithm, I present the suc-

cess rate of the algorithms in Figure 2.4. The success rate is defined by setting target values

for the function value for each test function. When the function value is smaller than the

target value, the goal of optimization is reached, and therefore, the algorithm is considered

successful. A higher success rate resembles a better performance. I use same target value for

all algorithms in order to have a fair comparison. According to Figure 2.4, in 16 out of 29

test functions, the hybrid algorithm achieved 100% success rate. In other cases, the success

rates achieved by the proposed hybrid algorithm are comparable to the best-performing al-

gorithm with single EA. For instance, on the test function f9, the SC-MGWO, SC-DE and

SC-MFL are not successful in finding the optimum solution (success rates are 0%, 0%, and

10%, respectively). However, the hybrid SC-SAHEL algorithm has similar performance (80%

success rate) to SP-UCI (97% success rate). On the test function f21, the success rate of

the hybrid SC-SAHEL algorithm (87%) is close to the SC-MGWO (93%), which is the most

successful algorithm. The hybrid SC-SAHEL algorithm also achieved a higher success rate

than SP-UCI algorithm (33%) in this test function. According to Fig. 4, the average success

rate of SC-SAHEL is about 80% over all 29 test functions, and it is the highest compared

to the average success rate of other EAs, i.e., 73%, 58%, 58%, and 54% for SP-UCI, SC-DE,

SC-MGWO, and SC-MFL algorithm, respectively.

In some situations, the poor performing EAs may mislead other EAs and cause early (and

premature) convergence. For instance, on the test function , the hybrid algorithm achieved

57% success rate, which is still better success rate than SP-UCI, SC-MFL and SC-MGWO,
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Figure 2.4: The success rate of the SC-SAHEL algorithm using multi-method and single-
method search mechanism for 30 independent runs for 29 test functions

which are 0%, 10%, and 50%, respectively. On this test function (cf5), the performance

of the hybrid SC-SAHEL is less affected by the most successful algorithm (DE). This may

be due to the low evolution speed of the DE algorithm, as the SC-SAHEL algorithm main-

tains both convergence speed and efficiency during the entire search. The hybrid SC-SAHEL

presents promising performance on the test functions and . On test functions and , the suc-

cess rate of hybrid SC-SAHEL is significantly higher than other EAs, most of which have 0%

success rates. For test function , the SC-DE algorithm achieved the lowest objective func-

tion value and the highest success rate (37%) among single-method algorithms. However,

when EAs are combined in the hybrid form, the objective function value and the success

rate are significantly improved. This shows that SC-SAHEL has the capability of solving

complex problems by utilizing the potentials and advantages of all participating algorithms

and improving the search success rate.

In Table 2.4, I present the mean and standard deviation of the number of function evalu-

ation, which indicates the speed of each algorithm. The lowest mean number of function
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evaluation is expressed in bold in Table 2.4. As one of the stopping criteria in SC-SAHEL

framework is the maximum number of function evaluation, some algorithms may terminate

before they show their full potential. For instance, the SC-DE and the SC-MFL, usually

reach the maximum number of function evaluations, while other algorithms satisfy other

convergence criteria in much less number of function evaluations. In this case, the objec-

tive function value doesn’t represent the potential of the slow algorithms. To give a better

insight into this matter, the mean and standard deviation (Std) of the number of function

evaluations are compared in Table 2.4. The goal is to compare the speed of the individual

EAs and the hybrid optimization algorithm. According to Table 2.4, in most of the test

cases, the SP-UCI algorithm has the least number of function evaluations, regardless of the

objective function value achieved by the EAs.

Comparing the success rate and the number of function evaluation for different EAs shows

that SP-UCI achieved 100% success rate with the lowest number of function evaluation, in 15

out of 29 test functions. The SC-MGWO algorithm only achieved 100% success rate with the

lowest number of function evaluation in one test function. Although the hybrid SC-SAHEL

algorithm is not the fastest algorithm, its speed is usually close to the fastest algorithm. This

is due to the contribution of different EAs in the evolution process and the EAs behavior

on different problem spaces. For instance, DE algorithm is slower in comparison to MCCE

(SP-UCI) algorithm in most of the test functions. Hence, when the algorithms are working

in a hybrid form, the hybrid algorithm will be slower than the situation when the MCCE

(SP-UCI) algorithm is used individually.

Figure 2.5, 2.6, and 2.7 compare the average number of complexes assigned to each EA for

the 29 employed test functions during the course of the search. The variation of the number

of complexes assigned to each EA indicates the dominance of each EA during the course of

the search. Hence, the performance of EAs at each optimization step can be monitored. In

many test cases, MCCE (SP-UCI) algorithm has a relatively higher number of complexes

than other EAs during the search. This shows that MCCE is a dominant search algorithm
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on most of the test functions. However, in some other cases, MCCE is only dominant in a

certain period of the search, while other EAs have demonstrated better efficiency during the

entire search. For example, on test functions f7 and f20, MCCE algorithm appears to be

dominant only during the beginning of the search. In the test function f7, the exploration

process starts with the dominance of the MCCE and shifts between MGWO and MFL after

the first 20 shuffling steps. In some of the test functions, such as f7, a more random fluc-

tuation is observed in the number of complexes assigned to each EA. The reason for this

behavior is the close competition of EAs in these shuffling steps. Due to the noisy response

surface of the test function f7, most of the EAs cannot significantly improve the (objective)

function values during the exploitation phase. On test functions f8 and f18, the MFL and DE

algorithms are the dominant search methods, respectively, during the beginning of the run,

while MCCE algorithm becomes dominant only when the algorithm is in exploitation phase.

Lastly, on test functions f9, f22, cf1, and cf4, the variations of the number of complexes and

the precedence of different EAs as the most dominant search algorithm are observed.

It is worth mentioning that, Figure 2.5, 2.6, and 2.7 show the number of complexes assigned

to each EA for a single optimization run. Our observation of each individual run results (not

shown herein) shows variation of the number of complexes among different runs is similar to

each other for most test cases. The observed variation for individual runs follows a specific

pattern and is not random. The similarity of the EAs dominance pattern indicates that the

selection of the EAs by the SC-SAHEL framework only depends on the characteristics of the

problem space and the EAs employed. This also indicates that different EAs have pros and

cons on different optimization problems.

As a summary of our experiments on the conceptual test functions (Table 2.3, and 2.4,

and Figure 2.4, 2.5, 2.6, and 2.7), the main advantage of the SC-SAHEL algorithm over

other optimization methods is its capability of revealing the trade-off among different EAs

and illustrating the competition of participating EAs. Different optimization problems have

different complexity, which introduces various challenges for each EA. By incorporating dif-
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Figure 2.5: Number of complexes assigned to EAs during the entire optimization process for
test functions f1-f10.
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Figure 2.6: Number of complexes assigned to EAs during the entire optimization process for
test functions f11-f20.
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Figure 2.7: Number of complexes assigned to EAs during the entire optimization process for
test functions f21-f23 and cf 1-cf 6

ferent types of EAs in a parallel computing framework, and implementing an award and

punishment logic, the newly developed SC-SAHEL framework not only provides an effective

tool for global optimization but also gives the user insights about advantages and disad-

vantages of participating EAs on individual optimization tasks. This shows the potential

of the SC-SAHEL framework for solving different class of problems with different level of

complexity. Besides, the hybrid SC-SAHEL algorithm is superior to shuffled complex-based

methods with single search mechanism, such as SP-UCI, in an absolute majority of the test

functions.

2.4 Conclusions and Remarks

In this chapter a new hybrid optimization framework, named Shuffled Complex Self Adap-

tive Hybrid EvoLution (SC-SAHEL) is introduced. The new framework uses an award and
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punishment logic in junction with various types of Evolutionary Algorithms (EAs), and

selects the best EA that fits well to different optimization problems. The framework pro-

vides an arsenal of tools for testing, evaluating, and developing optimization algorithms. I

compared the performance of the hybrid SC-SAHEL with single-method algorithms on 29

test functions. The results showed that the SC-SAHEL algorithm is superior to most of

the single-method optimization algorithms and in general offers a more robust and efficient

algorithm for optimizing various problems. Furthermore, the proposed algorithm is able

to reveal the characteristics of different EAs during entire search period. The algorithm is

also designed to work in a parallel framework which can take the advantage of available

computation resources. The newly developed SC-SAHEL offers different advantages over

conventional optimization tools. Some of the SC-SAHEL characteristics are:

• Intelligent evolutionary method adaptation during the optimization process

• Flexibility of the algorithm for using different evolutionary methods

• Flexibility of the algorithm for using initial sampling and boundary handling method

• Independent parallel evolution of complexes

• Population degeneration avoidance using PCA algorithm

• Robust and Fast optimization process

• Evolutionary algorithms comparison for different types of problems

Although the presented results support advantage of the hybrid SC-SAHEL to algorithms

with individual EAs, there are multiple directions for further improvement of the framework.

For example, EAs’ performance metric for evaluating the search mechanism. In the current

algorithm, the complex allocation to different EA is carried out by ranking the algorithm

according to the EMP metric. The performance criteria can change the allocation process and
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affect the performance of the algorithm. Depending on the application a more comprehensive

performance criterion may be necessary for achieving the best performance. However, the

current EMP criterion does not affect the conclusion and comparison of different EAs. In

addition, the current SC-SAHEL framework is designed to solve single objective optimization

problems. A multi-objective version can be developed to extend the scope of the application.

This chapter serves as an introduction to the newly developed SC-SAHEL algorithm. I

hope that more investigation on the interaction among different EAs, boundary handling

schemes and response surface in different case studies and optimization problems reveal the

advantages and limitations of SC-SAHEL. The SC-SAHEL framework can be downloaded

from MathWork website.

41



Chapter 3

Application of the SC-SAHEL

Framework to Reservoir Optimization

3.1 Introduction

In his chapter, the SC-SAHEL framework is tested for a conceptual hydropower model, which

is built for the Folsom reservoir located in the northern California, USA. The objective is to

maximize the hydropower generation, by finding the optimum discharge from the reservoir.

The study period covers run-off season in California from April to June, in which reservoirs

have the highest annual storage volume (Field and Lund, 2006a). Using the proposed frame-

work, I compared different EAs’ capability of finding a near-optimum solution for dry, wet,

and below-normal scenarios. The results support that the proposed algorithm is not only

competitive in terms of increasing power generation, but also is able to reveal the advantages

and disadvantages of participating EAs.

The rest of this chapter is organized as follows. Section 3.2 details the conceptual reservoir

model for the Folsom Reservoir. In this section, the setting, objectives, and constraints em-
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ployed of the optimization problem is specified. At the end of this section, the results and

performance of the SC-SAHEL optimization framework is detailed and compared with other

optimization algorithms. At last, section 3.3 discuss the findings and concludes this chapter.

3.2 Reservoir Model

A conceptual model is set up based on the relationship between the hydropower generation,

storage, water head and bathymetry of the Folsom reservoir. Daily releases from the reservoir

in the study period are treated as the parameters of the model, which in turn determines the

problem dimensionality. The model objective is to maximize the hydropower generation for

a specific period. The total hydropower production is a function of the water head difference

between forebay and tailwater and the turbine flow rate. The driving equation of the model

is based on mass balance (water budget), which is formulated as,

St = St−1 + It −Rt ±Mt, (3.1)

where St is storage at time step t, It and Rt signify total inflow and release from the reservoir

at time t, respectively. Mt is total outflow/inflow error which is derived by setting up mass

balance for daily observed data. The objective function employed here is,

OF =
N∑
t=1

1− Pt
Pc
, (3.2)

where Pc is total power plant capacity in MW and Pt is total power generated in day t in

MW. Minimizing the objective function in this case is equivalent to maximizing hydropower

generation. For each day Pt is derived as follow,

Pt = ηρgQtHt, (3.3)

43



where η signifies turbine efficiency, ρ is water density (Kg/m3), g is gravity (9.81m/s2) and

Qt is discharge (m3/s) at time step t. Ht is hydraulic head (m) at time step t, which is

defined as,

Ht = hf − htw, (3.4)

where hf and htw are water elevation in forebay and tailwater, respectively. hf and htw are

derived by fitting a polynomial to reservoir bathymetry data.

In the reservoir model coined above, multiple constraints are considered for better repre-

sentation of the real behavior of the system. These constraints include power generation

capacity, storage level, spill capacity, and changes in the daily hydropower discharge. Total

daily power generation is compared to maximum capacity of the hydropower plant. Also,

rule curve is used to control reservoir storage level during the operation period. Besides, final

simulated reservoir storage is constrained to 0.9 − 1.1 of the observed storage. In another

word, 10% variation from the observation data is allowed for the final simulated storage

level. This constraint adds information from real reservoir operation into the optimization

process and added as penalty to objective function. This constraint can be replaced by other

operation rules for simulation purposes. The spill capacity of dam is calculated according to

the water level in the forebay and compared to simulated spilled water. A quadratic function

is fitted to the water level and spill capacity data, to derive the spill capacity at each time

step. The change in daily hydropower release is also constrained to better represent actual

hydropower discharge and avoid large variation in a daily release. The reservoir model used

here is non-linear and continuous. The constraints of the model render finding the feasible

solution a challenging task for all the EAs. The SC-SAHEL framework is used to maximize

the hydropower generation by minimizing the objective function value. The settings used for

the SC-SAHEL is similar to the settings used for the mathematical test functions. However,

the maximum number of function evaluations is set to 106. Lower bound of the parame-
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ters’ range varies monthly due to the operational rules; however, upper bound is determined

according to the hydraulic structure of the dam.

3.2.1 Study Basin

Folsom reservoir is located on the American river, in Northern California and near Sacra-

mento, California. Folsom dam was built by US Army Corps of Engineers during 1948

to 1956, and is a multi-purpose facility. The main functions of the facility are flood con-

trol, water supply for irrigation, hydropower generation, maintaining environmental flow,

water quality purposes, and providing recreational area. The reservoir has a capacity of

1,203,878,290 m3 and the power plant has a total capacity of 198.7 MW. Three different

periods are considered here. The first study period is April 1st, 2010 to June 30th, 2010.

The year 2010 is categorized as below-normal period according to California Department of

Water Resources. The same period is selected in 2011 and 2015, as former is categorized by

California Department of Water Resources as wet, and latter is classified as critical dry year.

The input and output from the reservoir are obtained from California Data Exchange Cen-

ter http://cdec.water.ca.gov/. Note that demand is not included in the model because

demand data was not available from a public data source.

3.2.2 Results and Discussion

The boxplot of the objective function values is shown in Figure 3.1 for the Folsom reservoir

during the runoff season in 2015, 2010, and 2011, which are dry, below-normal, and wet

years, respectively. The presented results are based on 30 independent optimization runs;

however, infeasible objective function values are removed. The feasibility of the solution is

evaluated according to the objective function values. Due to the large values returned by

the penalty function considered for infeasible solutions, such solutions can be distinguished
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from the feasible solutions. For wet year (2011) case, SC-MGWO, and SC-DE didn’t find

a feasible solution in 2, and 4 runs out of 30 independent runs, respectively. The hybrid

SC-SAHEL found feasible solutions in all the cases; however, some of these solutions are

not global optima. On average, the hybrid SC-SAHEL algorithm is able to achieve the

lowest objective function value as compared to other algorithms during dry and below-

normal period. During dry and below-normal periods, SC-SAHEL, SP-UCI, and SC-DE show

similar performance. In the wet period, the SP-UCI algorithm achieved the lowest objective

function value. The SC-SAHEL algorithm ranked second, comparing the mean objective

function values. In this period, the results achieved by the SC-DE is also comparable to

SC-SAHEL and SP-UCI. The results show that overall, the hybrid SC-SAHEL algorithm

has similar or superior performance in comparison to the single-method algorithms. Also,

the results achieved by SC-SAHEL and SP-UCI algorithms has less variability in comparison

to other algorithms, which show the robustness of these algorithms. The worst performing

algorithm is the SC-MGWO, which achieved the least mean objective function value in all

the study periods. In Figure 3.2, boxplot of the number of function evaluations is presented

for successful runs from the 30 independent runs during dry, below-normal and wet period

years. Although the SC-MGWO algorithm satisfied convergence criteria in the least number

of function evaluation, the SC-MGWO was not successful in achieving the optimum solution

in many cases. The SP-UCI algorithm is the second fastest method among all the algorithms.

The hybrid SC-SAHEL, SC-MFL, and SC-DE are the slowest algorithm for satisfying the

convergence criteria, in almost all cases. The slow performance of the hybrid SC-SAHEL is

due to the fact that 2 out of 4 (DE and MFL) participating EAs have very slow performance

over the response surface. Figure 3.3 demonstrates the number of complexes assigned to

each EA during the search, which indicates the dominance of the participating algorithms,

and the award and punishment logic in the reservoir model. As seen in Figure 3.3, the

MGWO algorithm is dominant in the beginning of the search; although, it is not capable of

finding the optimum solution in most cases. The reason for the dominance of the MGWO
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Figure 3.1: Boxplots of objective function values for successful runs among 30 independent
runs, for dry (A), below-normal (B) and wet period (C). The mean of objective functions
values is shown with pink marker.

is the speed of the algorithm in exploring the search space. MGWO is superior to other

EAs in the beginning of the search, however, after a few iterations, the MCCE algorithm

took the precedence and become the dominant algorithm over other EAs. MGWO and DE

are less involved in the rest of the optimization process after the initial steps. However,

competition between MCCE and MFL continues. Although contribution of MGWO and

DE are at minimum in the rest of the optimization process, they are utilizing a part of

information within the population. This can affect the speed and performance of the SC-

SAHEL algorithm. In both the wet and below-normal cases, the hybrid SC-SAHEL algorithm

is mostly terminated by reaching the maximum number of function evolution. However, the

mean objective function value obtained by the hybrid SC-SAHEL is still superior to most of

the algorithms. The performance of the SC-SAHEL can be affected by the settings of the

algorithm. Different settings have been tested and evaluated for the reservoir model. The

results show that the number of evolution steps before shuffling can influence the performance
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Figure 3.2: Boxplots of number of function evaluations for successful runs among 30 indepen-
dent runs for dry (A), below-normal (B) and wet period (C). The mean number of function
evaluation is shown with pink marker.
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Figure 3.3: The average number of complexes assigned to each EA at each shuffling step for
30 independent runs for dry (A), below-normal (B), and wet (C) period.
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of the hybrid SC-SAHEL algorithm. In the current setting, the number of evolution steps

within each complex is set to d + 1 (d is dimension of the problem). Although this setting

seems to provide acceptable performance for a wide range of problems, it may not be the

optimum setting for all the problems spaces and EAs. In the reservoir model, as the study

period has 91 days, the model evolves each complex for 92 steps. This number of evolution

steps allows the algorithms to navigate the complexes toward local solutions and increase

the total number of function evaluations without specific gain. Decreasing the number of

evolution steps allows the algorithms to communicate more frequently, so they can use the

information obtained by other EAs. Here, for demonstrative purposes, the same setting has

been applied to all the problems. However, better performance is observed for the hybrid

SC-SAHEL algorithm when the number of evolution steps are set to a value smaller than

92. The algorithm is less sensitive to other settings for the reservoir model, however they

can still affect the performance of the algorithm.

In Figure 3.4, I present the simulated storage for different study periods achieved by different

EAs. During the dry period, not only the SC-SAHEL algorithm achieved the lowest objective

function value, but also the storage level is higher than the observed storage level in most

of the period. This is due to the fact that, power generation is a function of water height,

as well as discharge rate. During below-normal period, SC-SAHEL, SP-UCI, and SC-DE

algorithms show a similar behavior in terms of the storage level. During wet period, storage

level simulated by SP-UCI and SC-SAHEL algorithm is lower than all other algorithms. It

is worth noting that, during wet period, SC-SAHEL and SP-UCI algorithms are able to

find optimum solution (which objective function value is 0) in some of the runs. However,

the simulated storage by these algorithms show some level of uncertainties (Figure 3.4).

This shows equifinality in simulation, which means that same hydropower generation can be

achieved by different sets of parameters (Feng et al., 2017). This equifinality can be due to

deficiencies in the model structure, or the boundary conditions (Freer et al., 1996). The wet

period seems to offer a more complex response surface for the reservoir model. During the wet
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period, some algorithms, such as SC-DE, are not capable of finding a feasible solution in some

of the runs. In this period, the large input volume and the rule curve added more complexity

to the optimization problem. The results of the real-world application show the potential of

the newly developed SC-SAHEL framework for solving high dimension problems. In general,

the hybrid algorithm was more successful in finding a feasible solution in comparison to

single-method algorithms. In some cases, the hybrid SC-SAHEL was terminated due to the

large number of function evaluations. However, the performance of the hybrid SC-SAHEL

is always comparable to the best performing method. This shows the potential of the SC-

SAHEL for solving a broad class of optimization problems. Besides, the framework provides

insight into the performance of the algorithms at different steps of the optimization process.

This feature of the SC-SAHEL algorithm can aid user to select the best setting and EA for

the problem.

3.3 Conclusions and Remarks

The results and performance of the SC-SAHEL framework on the reservoir problem shows

the potential of the framework for solving real world optimization problems. In general, it

has been observed that the hybrid optimization algorithm is superior to other single search

method optimization algorithms in term of efficiency and effectiveness in finding the near

optimum solution. Also, the performance of the algorithms in this section showed that the

complexity of the optimization problems can change with the hydrologic condition of the

reservoir system. For instance, during the wet season, the optimization algorithms required

more function evaluation to find the optimum solution.

Although the SC-SAHEL framework showed superior result on this reservoir problem, there

are some potential directions for future investigation. Most reservoir problems are many

objective optimization problems. Hence, developing a many objective optimization algorithm
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Figure 3.4: Simulated storage for dry (A), below-normal (B), and wet (C) period.
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based on the SC-SAHEL framework can extend the application of the framework to a larger

class of problems. Also, the SC-SAHEL framework is flexible in employing different methods

and settings. Hence, the effect of these settings can be significant on different class of

problems and needs further investigation.
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Chapter 4

Developing a Generalized Model Tree

(GMT) Framework for Simulating

Rule-Based Hydrologic Systems

4.1 Introduction

Tree-based (decision tree) algorithms are transparent data-mining approaches (Jung et al.,

2010; Etemad-Shahidi and Taghipour, 2012), which describe and present a response (de-

pendent) variable by splitting the explanatory (independent) variables space into clusters

of data (Ciampi, 1991; De’ath and Fabricius, 2000). Simplicity and accuracy of tree-based

algorithms make them attractive tools among practitioners in different fields of study (Loh,

2014), including remote sensing (Friedl and Brodley, 1997; Huang and Townshend, 2003; Pal

and Mather, 2003), water resources management (Castelletti et al., 2010; Yang et al., 2016,

2017b) and hydrology (Galelli and Castelletti, 2013b; Han et al., 2018). Although classic

tree-based algorithms were more concerned with classification and discrete spaces (Wang
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and Witten, 1997), application of tree induction methods have been extended to regression

problems and continuous spaces (Loh, 2014). A wide range of algorithms have been pro-

posed for regression tree induction, among which Classification And Regression Tree (CART)

(Breiman et al., 1984), random forest (RF) (Breiman, 2001), and extremely randomized tree

(Extra-Tree) (Geurts et al., 2006) found more applications in water resources management

and reservoir studies (Galelli and Castelletti, 2013a,b; Yang et al., 2016; Goyal et al., 2013).

An extension of the regression tree algorithms is model trees (MTs) (Malerba et al., 2004).

MTs and regression tree models share similar structures, however, MTs are equipped with

multiple linear regression as a predictive tools (Etemad-Shahidi and Mahjoobi, 2009). This

feature of MT algorithms makes them effective tools for high dimensional continuous prob-

lems (Bhattacharya and Solomatine, 2005). M5 (Quinlan et al., 1992), and M5’ (Wang and

Witten, 1997) are among the popular MT algorithms in the field of hydrology and water re-

sources management (Kompare et al., 1997; Solomatine and Dulal, 2003; Štravs and Brilly,

2007; Jothiprakash and Kote, 2011; Galelli and Castelletti, 2013a). Most MT algorithms

follow a binary splitting mechanism. In these algorithms, an exhaustive search approach is

employed to find the best attributes and split points (SP) to partition a set of instances (Par-

ent: contains all the data) into two subsets (Child: partitioned data over a selected variable

and split point). This partitioning process is carried out according to a predefined measure

of goodness for split candidates (Murthy and Salzberg, 1995). In most MT algorithms, every

single value of the attributes (independent variable) is treated as a split candidate. Hence,

the algorithm evaluates all the values and attributes to find the split point. This exhaustive

search mechanism can be biased in attribute selection when the number of possible split

points are different for the attributes (Loh, 2002; Shih, 2004; Loh, 2014; Loh et al., 2015).

Hence, the attributes with more split candidates have higher chance of being selected for

partitioning. Also, this search mechanism is computationally inefficient (Witten et al., 2016)

for finding the combinatorial effect of variables (Loh, 2014). These shortcomings motivated

us to develop a new generalized model tree (GMT) framework for tree induction to reduce
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the selection bias and computational burden of MTs, and also enhance the performance of

these algorithms.

The newly developed GMT framework can describe continuous data and offer an inter-

pretable structure for underlying system. To handle large datasets and high dimensional

problems, GMT is equipped with various tools and settings. To enhance the efficiency of

the algorithm, I employ principal component analysis (PCA), which is an effective tool for

analyzing (Chu et al., 2010; Naeini et al., 2018) and reducing dimensions of data (Hsu et al.,

2002; Shlens, 2014). In addition to PCA, GMT employs a k-fold cross-validation tree growing

scheme to overcome bias in variable selection and reduce the computational burden of the

algorithm. In this process, attributes and split points are selected by evaluating a specific

number of split candidates over all attribute domain, rather than testing all the values in

dataset. This can significantly reduce the number of split candidates, while maintaining the

performance of the model. Also, the split candidates are evaluated by taking multiple sam-

ples of data, which reduces the bias in variable selection. As a result, the GMT algorithm is

computationally more efficient and robust in comparison to conventional MTs.

Similar to many tree-based algorithms, GMT framework follows a top-down binary tree in-

duction scheme. The top-down binary tree splitting mechanism is an inseparable component

of many regression tree algorithms (Breiman et al., 1984; Quinlan et al., 1992; Murthy and

Salzberg, 1995; Wang and Witten, 1997; Hothorn et al., 2006; Quinlan, 2014). In these al-

gorithms, the tree induction process follows a successive partitioning of a set of explanatory

variables into smaller clusters of data until no further partitioning is possible. The resulting

tree-structured model has a hierarchical if-then form and consists of three different types

of nodes. The node at the top level of the tree is the root node, which contains all the

instances of the dataset. The lowest nodes of the tree are terminal nodes (leaf nodes), which

predict the response variable. All the nodes between the top node and lowest nodes are

non-terminal (decision) nodes. The selected attributes and split points shape the decision

rules in the non-terminal nodes. The non-terminal nodes navigate the instances through
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branches of the tree towards the terminal (leaf) nodes. Simulation is then made through the

terminal nodes.

Predictive mechanisms in the terminal nodes are different for regression tree algorithms and

MTs. CART algorithm reports the mean of response variable in the terminal nodes as the

prediction value (Breiman et al., 1984). However, MT algorithms, such as M5 and M5’, use

linear regression as predictor (Quinlan et al., 1992; Wang and Witten, 1997). Similar to M5

and M5’ algorithms, the GMT framework employs linear regression in terminal nodes. How-

ever, the GMT framework employs a backward elimination process to drop linear regression

terms and simplify the regressed line. Hence, the resulting model employs less variables in

terminal nodes to represent data.

The GMT framework is tested on multiple datasets. The performance of the framework

is evaluated as follows. First, seven benchmark datasets are obtained from the University

of California, Irvine (UCI) data repository (Asuncion and Newman, 2007). These datasets

have been widely used for developing and testing different machine learning and data-mining

tools (Yang et al., 2017a). The effect of the split criteria (SC) and the algorithm settings

are investigated through employing multiple combinations of settings for the GMT frame-

work. The GMT framework is also compared against other tree-based algorithms. These

algorithms include CART, M5’, which are single tree algorithms, and random forest (RF),

which is an ensemble tree algorithm.

Second, performance of the GMT framework is assessed for simulating discharges from eight

reservoir systems across the Contiguous United States (CONUS) in the next chapter. Due to

the importance and complexity of the reservoir simulation in hydrologic routing (Tavakoly

et al., 2017; Zhang et al., 2018), data-mining algorithms can be employed as effective tools

to derive and reproduce the controlled outflow from reservoir systems (Yang et al., 2016).

Among data-mining techniques, tree-based algorithms have the advantage of producing in-

terpretable models. So, the rules extracted with tree-based algorithms can be monitored and

further enhanced (Bessler et al., 2003). Here, the proposed GMT algorithm is employed to
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simulate and extract the operational rules of multiple reservoirs with different services and

purposes. Historical reservoir discharge data, along with the information about hydrologic

conditions of the system are employed to train these models. Performance of the GMT al-

gorithm is compared against CART, M5’ and RF algorithms on these reservoir cases.

The rest of this chapter is organized as follows. Section 4.2 introduces the newly developed

GMT framework and explains the algorithm settings. In section 4.3, the GMT framework

is tested on different benchmark datasets obtained from the UCI repository. Performance of

the GMT algorithm is further compared against CART, M5’, and RF in this section. Section

4.4 concludes the chapter and elaborates on GMT performance, limitations and future works.

4.2 Generalized Model Tree

The GMT framework follows two main steps to generate tree-based models. First, it follows

a top-down tree induction mechanism to shape the structure of the trees. Second, multiple

linear regressions are used to explain the response variable for each cluster of data. Figure

4.1 shows the schematic representation of the tree induction process in the GMT framework.

In this process, parent nodes are recursively partitioned into two child nodes, until no further

splitting is possible. Then a multiple linear regression model is fitted to each terminal node.

The partitioning process in GMT framework is carried over according to a predefined SC.

The pseudo code of the GMT framework is as follows:

The GMT framework is equipped with multiple SC to evaluate and select attributes and

split points for partitioning data. Employing different SC may lead to different model struc-

tures, which can affect the performance of the resulting model. In general, most regression

tree algorithms employ a least square approach for finding the split point. For instance,

partitioning of data in CART algorithm is carried over such that the sum squared residual
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Figure 4.1: The schematic representation of the GMT framework.

(SSR) with respect to the mean of response variable is minimized for all the subset regions

(Breiman et al., 1984; Huang and Townshend, 2003). The SSR with respect to the mean of

response variable (SSRM) is defined as,

SSRM =
N∑
n=1

(yn − ȳ)2, (4.2)
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Algorithm 4.1 GMT(·) Framework

Step 0: Set the problem dependent parameters: (a) minimum leaf size ι and (b) error
threshold ε. (Tune additional algorithm settings if necessary.)

Step 1: Split Xp and Yp into Xl, Yl and Xr, Yr according to split criteria SC (Equ. 4.2-
4.4). (X: explanatory variables; Y: response variable; p: parent node; l: left child node; r: right child

node)
Step 2: Evaluate the stopping criteria for both child nodes l and r.

If SCl + SCr ≤ ε SCp ∨ min|Xl(·D)| ≤ ι ∨ min|Xr(·D)| ≤ ι (4.1)

go to Step 4, else proceed. (D is the number of independent variables)
Step 3-1: Xp ← Xr and go to Step 1.
Step 3-2: Xp ← Xl and go to Step 1.
Step 4: Fit a linear model to each child node. Yl := f(Θl,Xl) and Yr := f(Θr,Xr)
Step 5: Simplify the fitted line employing backward elimination using Bayesian Informa-
tion Criterion (BIC) (Equ. 4.6).

where yn is the observed response variable, ȳ is the mean of the observed response variables

in the subset, and N is the number of instances in the subset region. CART calculates SSRM

for all the subsets and selects the split candidate which offers the lowest SSRM for resulted

subsets. In contrast to CART algorithm, M5 and M5’ algorithms treat standard deviation

as a measure of error (Quinlan et al., 1992; Wang and Witten, 1997). The attributes and

split points which maximize the standard deviation reduction (SDR) will be selected for

generating the subsets. The SDR is defined as,

SDR = sd(Y)−
M∑
m=1

|Ym|
|Y|

× sd(Ym), (4.3)

where sd() is the standard deviation operator, Y is the vector of target values, Ym is the

vector of target values in the subset m, M is the number of subsets, which is two in the

binary splitting algorithms (i.e. M = r, l) and | · | determines the size of the vectors. Huang

and Townshend (2003) proposed a stepwise regression tree approach which clusters data by

minimizing distance of the data points from a fitted line for each subset. In this method,
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the SSR using multiple linear regression (SSRML) is derived as,

SSRML =
N∑
n=1

(yn − f (θ,xn))2, (4.4)

where f(·, ·) is the regressed linear function, and xn and θ signify the vector of attributes

and coefficients employed in the linear regression, respectively. Huang and Townshend (2003)

employed stepwise linear regression (SLR) to remove the effect of multi-collinearity of the

attributes.

The GMT framework is equipped with these three SC mentioned above, however, the frame-

work employs SSRML as the default SC. As the GMT framework employs multiple linear

regression in leaf nodes as predictor, the SSRML works better with the fitted lines in the

terminal nodes. Trees generated by SSRML criteria is expected to have fewer branches,

and demonstrate superior performance. Figure 4.2 shows an example to demonstrate the

superiority of SSRML to SSRM. In this example, a conceptual dataset with a single response

variable and two explanatory variables are simulated with CART and GMT framework. The

left plot (A) shows the model generated by CART algorithm (which employs SSRM), and

the right plot (B) shows the model generated by GMT algorithm using SSRML and mul-

tiple linear regression models in the terminal nodes. In this figure, the regressed and split

hyperplanes are shown in green and gray, respectively. The figure shows the effectiveness of

the SSRML in combination with multiple linear regression in presenting a dataset with a

linear pattern. GMT used a single split plane and two regression planes to describe data,

while CART algorithm employed three split planes and four predictive planes. Also, the

regressed planes offer a better representation of the dependent variable than the average

values, employed by CART algorithm. Hence, SSRML offers a more simplified structure for

representing the data, while capturing the linear pattern in the dataset.

Employing SSRML as SC requires evaluating all split candidates for each explanatory

variables. The conventional exhaustive search mechanism embedded in most tree-based al-
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Figure 4.2: In comparison to Classification And Regression Tree (CART; plot A) algorithm,
Generalized Model Tree (GMT) framework with Sum Squared Residual with Multiple Linear
(SSRML) split criteria (plot B) offers less decision rules and better representation of linear
pattern in dataset.

gorithms requires evaluating all possible split candidates. In other words, in these algorithms

every single instance in the dataset will be evaluated for every dimension of data. Hence,

employing SSRML as criteria requires fitting a multivariate linear model to all possible clus-

ters of data, resulting from each split candidates. This evaluation mechanism is inefficient

and computationally intensive. Also, this exhaustive search method can be biased towards

attributes with more split candidates (Loh, 2002). To overcome these shortcomings, the

GMT framework is loaded with three different modules. First, the algorithm searches over

pre-specified number of equidistant quantiles (λ) of data as split candidates. In this process,

the quantiles are derived empirically for the sorted values of each explanatory variables using

their plotting position. The cumulative probability of each value is calculated using Hazen

plotting position as,

FX(x) =
r − 0.5

N
, (4.5)
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where r is the rank of the sorted values and N is the number of data points. Then equidistant

quantiles of data are selected according to these probabilities.

This approach can significantly reduce the number of split candidates while covering the en-

tire domain for each explanatory variable. Considering a node with D explanatory variables

and N instances, the size of data will be D × N . If the minimum leaf size is set to ι, the

number of split candidates in an exhaustive search process will be (N − 2 × ι − 1) ×D for

the node. In most cases, ι� N , and the nodes closer to the root node have more instances.

Hence, the exhaustive search mechanism evaluates all the (N − 2 × ι − 1) ×D candidates.

Therefore induction time has a direct relationship with the dimension of data. The equidis-

tant quantile sampling scheme can significantly reduces the number of split candidates at

each node. The number of split candidates in this process is λ×D, where λ is the number

of candidates for each dimension. The default value for λ is 100, which can be tuned by the

user. Applying the default setting of the algorithm, GMT evaluates 100 × D candidate at

each node. 100×D � (N − 2× ι− 1)×D when the size of data is large. In addition to the

induction speed, the equidistant quantile sampling can reduce bias in variable selection, as

all the explanatory variables have an equal number of split candidates.

Second, GMT employs k-fold cross-validation mechanism during the tree growing process

to select the best attributes and split candidates. In this process, at each level of the tree,

the parent node is partitioned into almost equally sized folds. Then GMT performs a cross

validation for each of the folds. Each fold is selected at a time as the testing data and the

remaining folds are used for training. The training folds are used for partitioning the parent

node and fitting a multiple linear model. Then the test fold is used to evaluate the split

candidate according to the pre-specified SC (here, SSRML). This process is repeated for all

the folds, and the SSRML values are averaged for each split candidates. This process tests

each split candidate on multiple samples of data. Although k-fold cross-validation increases

the number of line fittings and evaluations, the limited number of split candidates, make this

process computationally feasible for large datasets. GMT employs 10-fold as default for cross-
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validation, which is recommended by many researchers (Arlot et al., 2010; Zhang and Yang,

2015), knowing that increasing the number of folds will increase the computation time for

the algorithm. Considering the default setting of the algorithm, each split candidate will be

evaluated 10 times. Hence, at each partitioning step, 1000×D evaluations will be conducted

to find the best split candidates using the default settings. 1000×D � (N − 2× ι− 1)×D

will hold when the size of the dataset is large.

Third, GMT leverages it’s computational efficiency to the principal component analysis

(PCA). GMT employs PCA to perform principal components (PCs) transformations of ex-

planatory variables for linear regression. This guarantees a well-posed regression problem,

while reduces the number of dimension of the independent variables (Hsu et al., 2002). GMT

selects the PCs which describe 99.99% of the variability of the independent variables. This

step can remove the redundancy and noise in the data to some extent (Shlens, 2014). Al-

though PCA can remove some of the informative variables and increase the error of linear

regression (Jolliffe, 1982), it is employed solely for improving the induction speed of GMT.

Reducing the number of explanatory variables during regression will reduce the computa-

tional burden of the regression process. Interested readers can refer to (Hsu et al., 2002) for

further detail on PC regression.

In addition to these modules, GMT employs different mechanisms to control the size of the

resulting models and avoid over fitting data. It employs two criteria to stop partitioning

dataset and control the number of branches. These stopping criteria are employed to avoid

over-fitting training data and to reduce the depth of the tree, which is the longest path be-

tween the root node and any terminal node. The depth of the tree resembles the complexity

of the inducted model. In most cases, deeper trees have more branches and complexity. An-

other stopping criteria in GMT is the amount of improvement in prediction resulting from

splitting the data. For each testing fold, the SSRML is used to compare the performance

of child nodes with the parent node in terms of prediction accuracy. Partitioning will only

occur, if the prediction accuracy of the child nodes are superior to the parent node by a
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specific amount. GMT uses 5% as the default value for the minimum improvement resulting

from splitting the parent node. This means that partitioning will only occur if splitting will

improve the average prediction accuracy of that node by at least 5%.

Many tree induction mechanisms employ a pruning algorithm after the tree growing pro-

cess to simplify the tree. In this process, some of the non-terminal nodes are replaced with

terminal nodes to reduce bias, simplify the structure of the model and to avoid over fitting

the data. Although GMT supports employing pruning algorithms, the current framework

doesn’t have any pruning method built-in. However, the implemented stopping criteria in

the algorithm, works as a pre-pruning process, which controls the size of the tree.

After shaping the structure of the trees, GMT fits multivariate lines to each terminal node

by least squared residual regression using the original independent variables (not the PC

transformed ones). The regressed line is further simplified by employing a backward elim-

ination process. In this process, a variable is removed in an stepwise procedure at a time

and Bayesian Information Criterion (BIC) (Schwarz et al., 1978; Broman and Speed, 2002)

is calculated for the lines fitted to the rest of variables. The set of variables with the lowest

BIC is selected at each step. This process is repeated until removing more variables does

not reduce BIC. For convenience, residuals are assumed to be independent and identically

distributed with a normal distribution (Diks and Vrugt, 2010; Sadegh et al., 2017). Hence,

the BIC equation can be stated as,

BIC = Dln(n) + nln(
SSR

n
), (4.6)

where D is the dimension of the problem, ln is the natural logarithm operator, and n is the

number of instances in the terminal node. BIC penalizes the number of parameters employed

in the model (Nasta et al., 2013). Hence, it simplifies the regressed model in the terminal

nodes. This can reveal the importance of independent variables in describing the response

variables in each partition of data.
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Table 4.1: GMT settings

GMT No.
Setting

split Criteria
Dimension Reduction

(PCA)
k-fold
(k = 10)

GMT(1) SSRML X X

GMT(2) SSRML X

GMT(3) SSRM X

GMT(4) SSRML X

GMT(5) SSRML

GMT(6) SSRM

The setting implemented in the GMT framework can be tuned by user according to the

dataset. Here, I employ six different combination of settings for the GMT framework to

investigate the influence of these modules on the performance of the resulting models. Table

4.1 lists all the settings employed in this study. The first three settings (GMT(1), GMT(2),

and GMT(3)) employ the k-fold cross-validation scheme with the equidistant quantile sam-

pling method. GMT(1) employs all the default settings of the GMT framework including the

dimension reduction and cross-validation induction settings. GMT(2) is similar to GMT(1),

however dimension reduction is disabled in this case. The effect of SC is investigated by

employing SSRM in GMT(3). The rest of the settings GMT(4), GMT(5), and GMT(6) are

similar to the first three settings, however, exhaustive search mechanism is used to find the

split points and attributes. The error improvement threshold ε, the number of candidates

for splitting λ, and the number of folds for k-fold cross-validation are set to default in all

these cases. In the following sections, these settings are applied to different cases, and are

compared against CART, M5’ (Jekabsons, 2016), and RF. The M5’ code is obtained from

http://www.cs.rtu.lv/jekabsons/.
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4.3 Benchmark Datasets

4.3.1 Datasets

In this section, the GMT framework is benchmarked on multiple datasets obtained from

the UCI machine-learning repository (https://archive.ics.uci.edu/ml/datasets.html)

(Asuncion and Newman, 2007). The selected datasets are different in size and number of

attributes. These datasets have been extensively used for evaluating and comparing models

and algorithms (Yang et al., 2017a). The selected datasets are used to evaluate the GMT

family before applying the algorithm to large real-world case studies. Detailed information

on the selected datasets are listed in Table 4.2. The minimum leaf size ι for each dataset

is also shown in Table 4.2. The minimum leaf size for each case study is selected according

to the number of instances and the overall performance of the algorithms. The selected

minimum leaf size is not optimized for any of the algorithms, and is selected for comparison

purposes only.

Table 4.2: Selected UCI machine learning repository data details with minimum leaf size

Case Dataset Name
No. Features

(D)
No. Instances

(N)
Minimum Leaf Size

(ι)
a Airfoil self-noise 5 1503 150

b Auto MPG 7 398 25

c Combined cycle power plant 4 9568 500

d Concrete Compressive Strength 8 1030 100

e Energy efficiency (heating load) 8 768 100

f Energy efficiency (cooling load) 8 768 100

g Istanbul stock exchange 7 536 100
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4.3.2 Experiment Design

In addition to the selected settings for GMT, CART, M5’ and RF algorithms are also tested

and evaluated on the benchmark datasets. Minimum leaf size for CART and M5’ are the

same as the GMT framework, and the minimum leaf size for RF is set to 5, which is the

default setting for the algorithm. Number of trees in the RF algorithm is set to 50 for all

the test cases. Pruning is enabled for the M5’ algorithm. Comparisons for all the algorithms

are carried out using k-fold cross-validation. The number of folds is set to 30 for all the

datasets. The performance of the algorithms are evaluated on the testing and training folds

subsequently. The performance of the algorithms are compared using boxplots and notches

are provided to evaluate the significance of the differences. Notches show the confidence

interval for the median (Krzywinski and Altman, 2014), that can be derived as,

CI = m± IQR√
Ns

(4.7)

where, CI is confidence interval, m is the sample median, IQR is the interquartile range

(Q75 − Q25), and Ns is the sample size. The IQR shows the consistency and robustness of

the model performance.

4.3.3 Results

Figure 4.3 and Figure 4.4 show the boxplots for the normalized root mean squared error

(RMSE) values for the training and testing folds, respectively. The results for the training

data (Figure 4.3) shows that RF algorithm is superior to all other algorithms, as expected.

On average the accuracy of the best single-tree algorithm fall 10% below ensemble methods

(Loh, 2014). Hence, the single tree algorithms are not expected to outperform RF. Among

the single tree methods, the CART algorithm has the highest RMSE in all cases. The poor
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performance of the CART algorithm can be explained by the prediction method employed in

the terminal nodes. Since the CART algorithm reports the average value of the dependent

variable in each cluster of data, it cannot explain the variability of data within each cluster.

GMT and M5’ are equipped with linear regression models in terminal nodes, which justifies

their better performance in the continuous spaces. However, the GMT family are superior

to M5’ in all the cases. To shed light on the effect of linear regression in the terminal nodes,

CART and GMT(6) are further compared here. GMT(6) and CART algorithm share the

same model structure, however, GMT(6) employs linear regression in the terminal nodes to

present data. Performance of GMT(6) algorithm shows that employing linear regression in

terminal nodes can significantly improve the performance of the regression trees (Karalic,

1992).

Among other GMT algorithms, GMT(1), GMT(2), GMT(4), and GMT(5) offer lower RMSE

in most cases. These GMTs employ SSRML as SC, which works well with the linear regres-

sion employed in the terminal nodes. This shows the effectiveness of the SSRML SC on

enhancing the performance of the MTs. It is worth noting that although GMT(1) and

GMT(2) algorithms evaluate predefined number of split candidates for splitting, their per-

formance is similar to GMT(4) and GMT(5) in most cases. If the size of the data is small

(similar to case b) the k-fold induction process may show inferior performance due to the

small size of the folds. In general, the results show the effectiveness of the k-fold induction

mechanism and the equidistant quantile sampling. These results also show that the MTs

are less sensitive to the cut point, and models with different structures can achieve similar

performance. Among other single tree methods, M5’ offers close performance to GMT algo-

rithms in dataset c and g. However, in other cases, all the GMTs are superior to M5’.

Furthermore, robustness and consistency of the performance for each algorithm is evaluated

according to the interquartile ranges (IQR). The RF algorithm offers the least IQR in all the

datasets. In almost all the test cases, the GMT family models show more consistent results

in comparison to other single tree methods. Among GMT settings, the algorithms with
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Figure 4.3: Boxplots of the RMSE values for 30-fold cross-validation on the airfoil self-
noise(a), auto MPG (b), combined cycle power plant (c), concrete compressive strength (d),
energy efficiency-heating load (e), energy efficiency-cooling load (f), Istanbul stock exchange
(g) training datasets. The notches are shown with red triangles.

SSRM as SC (GMT(3) and GMT(6)) offer a larger IQR for dataset f, however, in general

the GMTs show similar performance in term of IQR. In some of the presented datasets, PCA

has slightly increased RMSE. Although PCA is employed for speed enhancement in GMT,

the removed dimension of data can increase regression error during the tree induction pro-

cess. As dimension reduction is solely based on the variance of each dimension, some of the

informative dimensions can be removed during this process (Jolliffe, 1982). Any changes in

the regression error during the induction process can affect the structure of the tree. Hence,

it can change the performance of the model as can be seen in dataset a. The default setting

of the GMT algorithm, GMT(1), employs PCA to reduce induction speed. However, this

setting is recommended for large datasets with a large number of attributes.

Figure 3.4 shows the boxplots for the the testing data. These results illustrate the per-

formance of the algorithm on unseen data. Similar to the training dataset, RF is the best

performing algorithms in almost all cases. The IQR for RF also shows that the algorithm of-

fers more consistent performance on different samples of data. Among single tree algorithms,
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CART has the highest median for RMSE. M5’ shows close performance to the CART algo-

rithm in most cases. Among GMTs, the algorithms which employed SSRML as SC show

superior performance in all cases. Comparing the notches also shows that performance of

these algorithms is significantly superior to GMTs with SSRM (Specifically in dataset a,

f, and g). The result also shows that the k-fold induction scheme with a fixed number of

equidistant quantile samples has very close performance (in some cases k-fold has slightly

improved performance such as dataset d). Similar to the training data, the dimension re-

duction process has slightly increased the RMSE of the model. However, in most cases, the

accuracy of the model is less influenced by this setting. The IQR value of the GMTs are lower

than other single tree methods in most cases. In general, these results show that models

generated with the default setting of the GMT algorithm, GMT(1), have close performance

to the best performing setting of the GMTs in most cases. Details on the induction speed of

the algorithm are left for the next section. The size of the dataset employed in this section

cannot reveal the full potential of the algorithms on large datasets.

Performance of the algorithms is further compared by evaluating the correlation between

simulated and observed response variables. The correlation values show the capability of

the algorithms in describing the variability of data. The average values of the correlation

are presented in Figure 4.5. Correlation for the training data and testing data are shown

in blue circles and triangles, respectively. Figure 4.5 shows that RF achieved the highest

correlation in almost all the test cases in both training and testing data. However, in dataset

g correlation for RF dropped for the test data. In this case, the GMT algorithms outperform

RF in terms of correlation. In the rest of the cases, most GMT algorithms are superior to

other single tree methods in all the cases. However, the GMTs which employed SSRML as

split criteria show more consistent performance and higher correlation for the the training

and testing data. This can be observed in the dataset a, b, d and g. Also, comparing the

testing and training correlation in dataset b shows that more consistent performance can be

achieved using the k-fold cross-validation induction process. This also reveals that the new
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Figure 4.4: Boxplots of the RMSE values for 30-fold cross-validation on the airfoil self-
noise(a), auto MPG (b), combined cycle power plant (c), concrete compressive strength (d),
energy efficiency-heating load (e), energy efficiency-cooling load (f), Istanbul stock exchange
(g) testing datasets. The notches are shown with red triangles.

induction process reduces bias in variable selection; hence the performance of the model is

more consistent for training and testing data.

Figure 4.5 also shows the depth of each tree by red squares. The tree-depth shows the

maximum number of decision nodes an instance should pass to reach a terminal node. Shal-

low trees are expected to have simpler structure and fewer decision nodes. On average, M5’

offers the most simple representation of the underlying system. In most case studies, trees

inducted by the M5’ algorithm have depths of 3 or less. The reason for this is the pruning

method employed in the M5’ algorithm Wang and Witten (1997). M5’ prunes the resulted

model tree by estimating the nodes error for unseen data. This estimation is derived by

multiplying the training data error by a factor, as training data error underestimates the

error for test data. This process leads to a more simplified structure for the model. Among

the other algorithms, CART, GMT(3), and GMT(6) generate the largest trees. The large

depth of trees in these algorithms is attributed to the SSRM criteria employed for evaluating

the split candidates.
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Figure 4.5: The average correlation between simulation and observed data and also the
average depth of the trees generated by each algorithm for 30-fold cross-validation on the
airfoil self-noise(a), auto MPG (b), combined cycle power plant (c), concrete compressive
strength (d), energy efficiency-heating load (e), energy efficiency-cooling load (f), Istanbul
stock exchange (g) datasets. Correlation for training data and testing data are shown in
blue circles and triangles, respectively. Tree-depths are shown in red squares.

Among GMT settings, GMT(1), GMT(2), GMT(4), and GMT(5) generate smaller trees,

however, GMT(2), and GMT(5) have the least depth. The dimension reduction process in

the GMT algorithm seems to affect the attribute selection in GMT(1), and GMT(4), hence,

the depths of the trees are larger in these cases. As PCA reduces dimension solely on the

variance, it can remove informative dimensions during the regression process. Removing the

informative dimensions can introduce error into the regression process. This can change the

structure of the trees. On the other hand, the larger error during the regression process af-

fects the minimum improvement stopping criteria. Hence, the algorithm may partition data

into more clusters to further reduce the error. In general, the effect of dimension reduction

on data depends on the characteristics of data.

The effect of the k-fold cross-validation induction mechanism on tree depth is evident compar-

ing the depth of the tree for GMT families. In general, the new induction scheme employed

in GMT(1), GMT(2), and GMT(3) controls the depth of the trees more rigorously than other
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GMT settings. In this process, the k-fold cross-validation controls the error improvement to

stop the partitioning process. Hence, the error is the average error on multiple samples of

data, rather than the whole data, so it tends to be smaller and less biased. Therefore, the

k-fold cross-validation setting within GMT reduces the depth of the trees and offers a more

simplified representation of the underlying system. In the following section, the GMT frame-

work is tested on larger datasets to investigate the potential of the framework for reservoir

routing.

4.4 Conclusions and Remarks

In this chapter a new data-mining framework, titled Generalized Model Tree (GMT) is intro-

duced for simulating rule-based systems. The proposed algorithm provides a flexible tool for

generating tree-based models. The newly developed framework allows employing different

split criteria for tree induction, which result in trees with different structure. The GMT

framework also benefits from multiple modules to enhance the efficiency and robustness of

the resulted models. The algorithm employs a dimension reduction scheme to improve the

induction speed of the trees, while maintain the accuracy of the models. Also, the exhaustive

search mechanism of the conventional tree induction algorithms is replaced with a equidis-

tant quantile sampling method. This new tree induction approach is combined with a k-fold

cross-validation induction scheme to generate more robust model trees. This process can

reduce bias in variable selection while increases the induction speed of the algorithm. The

growing process is also controlled with the k-fold cross-validation scheme, which resulted in

more simplified trees. The presented results support the effectiveness of the implemented

modules for tree induction process. To better understand the effect of these modules, com-

bination of settings for GMT has been tested on multiple test cases. The presented results
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showed that the default settings of the GMT algorithm (GMT(1) and GMT(2)) offer more

accurate models with less computational burden. However, the dimension reduction mecha-

nism (employed in GMT(1)) may introduce some error during the induction process. Hence,

the dimension reduction module (GMT(1)) is recommended for larger datasets. In other

cases GMT(2) can produce robust and simplified trees.

The experiments also revealed useful information about the effect of split criteria. As MTs

employ multiple linear regression in terminal nodes, considering linearity during the parti-

tioning process led to more accurate and efficient models. The default setting of the GMT

algorithm consider linearity during the tree induction process. Besides, the GMT framework

leverage its simplicity to the multiple linear regression models employed in the terminal

nodes. Hence, the generated models can be easily used and combined with other models.

This feature of the algorithm allows implementing the inducted trees into any programming

languages without the need for external libraries and complex functions.

This chapter of the dissertation serves as the introduction to the GMT framework. How-

ever, there are multiple directions for improving the performance of the algorithm. The

PCA dimension reduction method has been observed to introduce some error to the model.

Hence, employing other dimension reduction procedures can enhance the performance of

the GMT algorithm, specially on larger datasets. Another potential improvement for the

GMT algorithm is to employ the framework with an ensemble algorithm. The robust per-

formance of the algorithm can be further improved by using the algorithm in the form of

forest rather than single tree. However, this approach will reduce the transparency of the

GMT framework.
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Chapter 5

Application of the GMT Framework

for Reservoir Routing

5.1 Introduction

Simulating reservoir routing in hydrologic models is coined with multiple hardships. In prac-

tice, the storage-release relationships, so called rule curves, are used for operating reservoir

systems (Chang et al., 2005; Yang et al., 2016). However, the operators deviate from these

rules according to the constraints and condition of the reservoir (Oliveira and Loucks, 1997).

Also, many reservoir models require detailed information about the operational rules and

constrains of the system. Hence, application of these models can be restricted by their

complexity due to the existing details (Draper et al., 2004). On the other hand, recent

improvements in the computational efficiency of high-resolution river flow modeling have

changed the river flow modeling paradigm from local to high-resolution continental scale

(e. g. Tavakoly et al. (2012); Yamazaki et al. (2013); David et al. (2013); Tavakoly et al.

(2017)). The implementation of continental-scale modeling system offers unprecedented in-
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sight into river system dynamics (Lin et al., 2018; Salas et al., 2018; Snow et al., 2016).

However, modeling surface water is a real challenge without the inclusion of reservoirs and

can result in a non-realistic representation of actual surface water flows (David et al., 2015).

Tavakoly et al. (2017) showed that, based on the reservoir storage capacity, location, and

magnitude of the controlled discharge, the reservoirs can potentially gain 12−150% accuracy

in streamflow simulation of the river basin. The GMT framework can incorporate the effect

of reservoir systems in continental scale river routing to enhance the accuracy of stream-

flow simulation. The algorithm can generate models for reservoir routing based on available

historical data, and without using information about operational rules and constraints of

the system. Of course, availability of this information can enhance the performance of the

model. At the same time, the transparent structure of the models generated by the GMT

framework provide a better insight into the underlying system. Here, I test the GMT frame-

work on multiple reservoir systems to investigate the potential application of the framework

for reservoir routing.

The rest of this chapter is organized as follows. In section 5.2 details of the selected reser-

voirs and their location are presented. Section 5.3 details the experiment and the settings

employed for each model tree. Section 5.4 presents the results and compares the perfor-

mance of the GMT framework with other popular tree-based algorithms. At last, section

5.5 concludes this chapter and mentions the potential directions for future investigations.

5.2 Reservoir Case Study

In this section the GMT framework is employed to simulate daily discharge from eight

different reservoirs to evaluate the performance of the algorithms on rule-based hydrologic

systems. Figure 5.1 shows the location of these reservoirs across CONUS. The selected

reservoirs provide different ranges of services including flood control, water supply, recreation,
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Figure 5.1: Location of the selected reservoirs

and hydropower. Four out of the eight selected reservoirs provide hydropower, among which

three of them are located in California. For most selected reservoirs, the study period covers

more than 10 years, however, nine years of data are used for the Coralville dam, due to

availability of data. The minimum leaf size for the reservoir case studies are larger than the

ones used for benchmark dataset in the previous chapter. The value of the minimum leaf

size for each reservoir is selected according to the number of instances and performance of

the algorithms. The optimum minimum leaf size for each reservoir and algorithms needs

further investigation. Here, the same leaf size is employed to compare the performance of

the models with similar settings and complexity. Table 5.1 lists the details of the selected

reservoirs and the minimum leaf size for each case.

5.3 Experiment Design

The settings used for GMT are similar to the settings used for the benchmark dataset in

the previous chapter. These settings are compared against the CART, M5’, and RF algo-
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Table 5.1: The selected reservoirs and the minimum leaf size.

Case Reservoir State City Services Study
Period

Min.
leaf
size

a Arkabutla MS Tunica Flood Control, Recreation 1999-2016 500

b Coralville IA Iowa City Flood Control, Recreation 2005-2013 500

c Dale
Hollow

TN Celina Hydropower, Flood
Control, Recreation

2000-2012 500

d El Dorado KS El Dorado Flood Control, Water
Supply, Recreation

2000-2016 1000

e Folsom CA Folsom Hydropower, Flood
Control, Water Supply,

Recreation

2001-2017 500

f Prado CA Corona Flood Control 2000-2016 500

g Shasta CA Shasta Lake Hydropower, Flood
Control, Water Supply,

Recreation

2004-2016 500

h Trinity CA Lewiston Hydropower, Flood
Control, Water Supply,

Recreation

2000-2017 1000
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rithms. Here, I employ storage and inflow data as input for the algorithms. The advantage

of employing storage and inflow information is the availability data. As inflow data can be

simulated by hydrologic models, and storage data can be obtained by mass balance, this

information can be obtained within most hydrologic models. Hence, trees inducted by this

information can be employed for reservoir routing in hydrologic models. Although, lagged

discharge data is suggested as indicators for reservoir releases (Hejazi et al., 2008), discharges

at previous time steps are not considered here. The high autocorrelation of discharge data

can deteriorate time series simulations. Figure 5.2 shows autocorrelation for the discharge

data for the selected reservoir cases. For almost all the selected reservoirs, the autocorre-

lation remains above 0.5 after seven lags (days). Due to the high autocorrelation, the MT

algorithms tend to employ lagged data for regression in the terminal nodes. However, em-

ploying lagged discharge can propagate the simulation error, and increase error in long term

simulations. Hence, storage and inflow information are used for all the reservoirs rather than

for previous reservoir releases. Using lagged storage and inflow data is also avoided as dis-

charge can be derived from these data using linear regression. Yet, lagged data can provide

information about the previous state of the reservoir and seasonality. So, to provide this

information to the algorithm, average storage and inflow data in the last 7, 14, and 30 days

is used instead of lagged data. Due to availability of data for the Corallvile reservoir, only

inflow data is employed for training the models in this case study. It is worth noting that,

the storage volume for some reservoirs was not available, so the storage level is employed in

these cases. To evaluate the performance of the algorithms on reservoir datasets, a k-fold

cross-validation scheme is employed here. In the cross-validation process each year of data is

considered as a fold. Each fold of data is first removed, and the remaining folds are used for

training the model. Then the trained model is tested on the removed fold. This process is

repeated for every single year (fold) in the data, and a comparison is carried out according

to the performance of the algorithms on all the folds. Hereafter, the removed year is referred

to as testing data, and the remaining data is the training data.

79



0 2 4 6 8 10 12 14 16 18 20

Number of Lags

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

u
to

c
o

rr
e
la

ti
o

n
Arkabutla

Coralville

Dale Hollow

El Dorado

Folsom

Prado

Shasta

Trinity

Figure 5.2: Autocorrelation of reservoir discharge for different lags for the selected reservoirs.

5.4 Results

Figures 5.3 and 5.4 show the boxplots for the normalized RMSE values for the training

and testing data, respectively. The notches are shown with red triangles. According to the

training data results (Figure 5.3) RF has the best performance among the algorithms as

expected. Among the single tree algorithms, CART has the highest median for RMSE in

almost all reservoirs, except reservoir d (El Dorado), e (Folsom), and g (Shasta). In these

reservoirs, CART has similar performance to the M5’ algorithm. Comparing CART and

GMT(6) reveals the significant effect of the linear regression in terminal nodes. Although

these two algorithms generate models with same structures, GMT(6) which employs linear

model has better performance. GMT(6) is superior to CART in all the cases, however,

the algorithm is slightly inferior to other GMTs. This shows the effect of the SC on the

performance of the model trees. In most cases, the GMTs which employed SSRML as SC

offer lower median for RMSEs, in comparison to GMTs which employed SSRM. The sig-

nificant effect of SSRML criteria can be observed in reservoir a (Arkabutla). In the rest
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Figure 5.3: Boxplots of the normalized RMSE values for k-fold cross-validation on Ark-
abutla(a), Coralville (b), Dale Hollow (c), El Dorado (d), Folsom (e), Prado (f), Shasta (g),
and Trinity (h) reservoir training datasets. The notches are shown with red triangles.

of the cases, the algorithms have similar performance on the training dataset. Among the

rest of GMTs, GMT(1), GMT(2), and GMT(3) only employed a fixed number of splitting

candidates. However, the performance of these algorithms are close to the methods which

employed an exhaustive search approach. This shows that the MTs are less sensitive to the

split point.

The IQR values are compared to show the consistency of the algorithms in their perfor-

mance. RF offer the most stable performance on the datasets. The algorithm offer the least

IQR on different years of data. Among single tree methods, CART and M5’ show similar

variability in the RMSE values. These two algorithms have the highest median and IQR in

all the cases. However, GMT shows performance similar to RF in most cases. The effect

of the splitting criteria can also be observed by comparing IQR values for different GMTs.

In reservoir a (Arkabutla), the algorithms with SSRM as splitting criteria offer larger IQR.

This shows that the models generated by SSRML are more robust and consistent in their

performance. In the rest of the cases, the algorithms have similar performance.

Figure 5.4 shows the boxplots for the normalized RMSE values for the unseen data. Con-
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Figure 5.4: Boxplots of the normalized RMSE values for k-fold cross-validation on Ark-
abutla(a), Coralville (b), Dale Hollow (c), El Dorado (d), Folsom (e), Prado (f), Shasta (g),
and Trinity (h) testing datasets. The notches are shown with red triangles.

trary to the training folds, the RF algorithm is inferior to other algorithms in almost all the

cases. In most cases, RF is outperformed by GMT family algorithms. This shows that RF

over-fitted the training data. Among single tree methods, CART is the worst performing

algorithm followed by M5’. In cases a, d, and f these two algorithms show very close perfor-

mance. The GMT family algorithms are superior to other algorithms in most cases. Among

the GMT settings, the GMTs which employed SSRML are superior to ones that used SSRM.

This can be observed in the Arkabutla and Dale Hollow (case a and case c) reservoir. In

other reservoirs, the difference between GMTs are not significant. In the testing folds, the

algorithms which employed k-fold cross-validation scheme shows slightly better performance

in terms of the median of RMSEs. In the rest of the cases, the GMTs have close performance

and no significant difference is observed. The GMTs have close behavior in term of IQR. In

almost all the cases, they offer lower IQR in comparison to other single tree methods. These

results show that the speed enhancement modules in the GMT framework maintained the

performance of the algorithm.

In addition, the average correlation for each of the models is presented in Figure 5.5. In this
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figure, correlation for training and testing folds are shown with blue circles and triangles, re-

spectively. Among the algorithms, RF achieved the highest correlation for the training folds.

However, the RF algorithm shows the highest reduction in correlation with regards to the

training and testing data. This shows that RF is over-fitting the training data. Comparing

single tree methods, CART and M5’ offer the lowest correlation among all the algorithms

for the training and testing period. However, this reduction is less than that observed for

RF. Although RF outperforms GMT family comparing the correlation for training data, the

GMT algorithm is superior to RF in the test cases. Among GMT algorithms, the algorithms

with SSRML as splitting criteria are superior to ones with SSRM, in all the cases. Hence,

the variability of data is better presented by these algorithms. This can be seen in reservoir

cases a, c, d, and f. The effect of k-fold cross-validation scheme is well depicted in cases

d, f, and g. In these cases the new induction method has reduced the difference between

correlation for the training and testing data. This shows that the model generated by the

k-fold cross-validation is more robust and less bias in variable selection. The rest of the

settings offer similar correlation in most cases.

Figure 5.5 also shows the depth of the inducted trees. As RF is an ensemble method, no

depth is reported for the algorithm and comparison is made among the single tree methods.

On average, the M5’ algorithm generated models with the least number of branches. This

is due to the pruning method employed in the M5’ algorithm Wang and Witten (1997).

CART algorithms and GMT(6) have the same depth as both algorithms employ the same

SC. Among other GMT algorithms, the algorithms with k-fold cross-validation induction

scheme have simplified the structure of the models in most cases. The k-fold cross-validation

scheme evaluates the stopping criteria on multiple samples of data. Hence, the depth of the

trees in these cases are monitored and controlled more rigorously on multiple samples of

data. This can be observed in reservoir b, d, f, and h. On the other hand, the dimension

reduction scheme has slightly increased the depth of the trees. As discussed in the previous

section, the dimension reduction mechanism can introduce some error into the regression
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Figure 5.5: The average correlation between simulation and observed data and also the
average depth of the trees generated by each algorithm for k-fold cross-validation on Ark-
abutla(a), Coralville (b), Dale Hollow (c), El Dorado (d), Folsom (e), Prado (f), Shasta (g),
and Trinity (h) datasets. Correlation for training data and testing data are shown in blue
circles and triangles, respectively. Tree-depths are shown in red squares.

process. This can affect the stopping criteria during the tree induction process. However,

dimension reduction is solely employed for speed enhancement of the GMT algorithm.

The setting of the GMT algorithm can significantly affect the induction time of the algo-

rithm. Evaluating a fixed number of splitting candidates, besides the dimension reduction

mechanism, has significantly affected the induction time of the algorithm in the presented

cases. Monitoring the induction speed of the algorithms revealed that on average 100−300%

and 25− 200% speed enhancement can be observed from the new induction mechanism and

dimension reduction, respectively. Among the presented settings of the GMT framework,

GMT(1) has the lowest induction time in most datasets. The induction speed enhancement

is mostly observed in datasets with more than 10000 instances and 4 explanatory variables.

Of course, the significance of these improvement will be more compelling in larger datasets.

To further investigate the structure of the models generated by GMTs, two out of the eight

presented reservoirs are selected for more detailed study. Prado and Folsom are selected as
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storage volume data is available for both of these cases. Hence, the observed storage volume

can be compared with the one simulated by mass balance and GMT model. Here, another

experiment is conducted by using the first 90% of data period for training the model and

the remaining 10% as the test period. Figure 5.6 shows the simulated storage (plot (a)) and

simulated discharge (plot (b)) for the GMT(1), GMT(2), GMT(3), M5’, CART, and RF

algorithms for Prado reservoir for the testing period. The first 3 GMTs are only selected

here for demonstration purposes, as these GMTs have shown better or similar performance

to other GMTs. The results show that the simulated storage and discharge are better repre-

sented by GMTs. This shows the effect of linear regression in terminal nodes. Among GMT

algorithms, the algorithms which employed SSRML as SC have better performance (GMT(1)

and GMT(2)). GMT(1) and GMT(2) captured the variability and peak flows better than

other algorithms. GMT(3) shows a close performance to GMT(1) and GMT(2), but the

algorithm underestimates a few peaks and generates negative discharges for some days. The

CART and M5 algorithms are inferior to other algorithms in most of the simulations. In

many situations, the storage simulated by these algorithms is negative. This is due to the

overestimation of the reservoir releases.

Figure 5.7 shows the structure of the trees generated by each of the GMT algorithms. The

models generated by different GMTs have different structure and complexity. The GMTs

which employed SSRML as SC (GMT(1) and GMT(2)) seem to offer a more simplified

structure. In the trees generated by GMT(1), the root node uses x5, which is the storage in

the previous day, as the decision rule, however, GMT(2) employs x1, which is the inflow in

previous day, as splitting point at root node. The tree generated by GMT(1) and GMT(2)

are mostly using the storage related information for splitting, however, GMT(3) employs

rules combining information from storage and inflow. Although GMT(1) employs x5 as the

decision rules in all the nodes, all terminal nodes employ previous day inflow as a variable

in the regressed lines. However, the storage information is mostly employed in the regressed

line. Similar case is observed in the model generated by GMT(2) and GMT(3). The result
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Figure 5.6: Simulated storage (a) and discharge (b) for Prado dam.

from this section shows that there is not a unique tree structure for the model. Also, trees

with different structures can have very close performance.

A similar experiment is conducted for the Folsom reservoir, which provides a wide range

of services in California. These services include: flood control, hydropower, recreation, envi-

ronmental protection, water supply and drought management (Yao and Georgakakos, 2001;

Field and Lund, 2006b; Zhu et al., 2007). The operational rules and services that the Folsom

reservoir provides make it a more complex system. Hence, the GMT framework is tested

on the Folsom reservoir to evaluate its performance on a multi-purpose system. Figure 5.8

shows the storage and discharge simulation for the Folsom reservoir. In this case study, I

used the first 90% of the data as training period and the rest as testing period. The reservoir

discharges and storage simulated by the GMT family shows superior results in comparison

to other algorithms. The RF algorithm has captured the variability of the releases, however,

GMTs show better performance in simulating the peak flows. The GMTs perform simi-

larly on the Folsom reservoir. Peak flows are better simulated by GMT(2) in comparison to

86



(a) x5(11073.99)

x5(6809.33)

x5(208.81)

f1 f2

f3

f4

(b) x1(393)

x1(265)

x6(6618.67)

x5(243)

f1 f2

f3

f4

f5

(c) x1(393)

x8(1289.15)

x1(164.59)

x1(116)

f1 f2

x1(215)

x1(191)

f3 f4

f5

x2(308.85)

f6 f7

f8

Figure 5.7: The tree structure for GMT(1) (plot a), GMT(2) (plot b), and GMT(3) (plot
c) for the Prado dam. The splitting points are shown in paranthesis. The left branches
corresponds to smaller than (<) and right branches are correspond to greater or equalt to
(≥). In these models, x1 is the inflow at the previous day, x2 is the average inflow in the last
30 days, x5 is the storage for the previous day,x6 is the average storage in last 30 days, and
x8 is the average storage in last 7 days.
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other GMTs. Worth noting that as the Folsom reservoir provide different services, providing

information about these service, such as demand for hydropower, can further enhance the

performance of the GMT algorithms.

The structure of models inducted by GMTs are shown in Figure 5.9. All the GMTs em-

ployed a combination of different variables for splitting the data. The close performance of

the GMT algorithms, and the differences in the structures of the models show that there

is not a unique model structure. These differences partially stem from the high correlation

of the variables employed here and error in observed data. This characteristic of the MTs

are similar to equifinality condition in model calibration. However, it should be noted that

the setting of the GMT algorithm can change the structure of the model as observed in

the presented cases. Also, performance of the resulting models is a function of the employed

settings. The combination of the settings presented in this section revealed the effect of some

of these settings. However, the GMT algorithm has few other settings which need further

investigation. Among the GMT settings, the k value in k-fold cross-validation induction

mechanism can affect the model structure. Selecting very small or a very large k value for

the model may lead to an unstable model structure. Although the effect of this instability

may not be significant in the performance of the resulting model, the splitting variables and

points can change. This behavior of the algorithm depends on the quality and characteristics

of the data. Nonetheless, the recommended value of 10 for k offers a more stable result for

a large range of problems.

5.5 Discussion and Conclusion

In this chapter, I employed the GMT framework for simulating the controlled discharge from

multiple reservoir systems across the CONUS. The selected reservoirs provide a wide range
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Figure 5.8: Simulated storage (a) and discharge (b) for Folsom reservoir.

of services and represent different class of these systems. The transparent structure of the

GMT framework, along with the algorithm performance make it a suitable choice for repre-

senting reservoir systems. The performance of the GMT on the reservoir case study supports

the application of GMT for reservoir routing. The trees generated by GMT framework can

also provide useful information about the underlying process. This allows understanding,

auditing, and modifying these models. Although, information about the structure of the in-

ducted trees are not discussed here, the structure of the trees can provide useful information

about the real operation of the reservoirs.

This chapter showed the potential application of the GMT framework for reservoir rout-

ing. Although the presented results support the performance of the algorithm on different

reservoir systems, there are multiple direction for future investigations. In most hydrologic

systems, constraints can play significant role in the performance of the models. These con-

straints can be combined with the inducted trees to further enhance the performance of the

models. In addition to that, the potential application of the GMT framework in hydrologic
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Figure 5.9: The tree structure for GMT(1) (plot a), GMT(2) (plot b), and GMT(3) ( plot
c) for Folsom reservoir. The splitting points are shown in paranthesis. The left branches
corresponds to smaller than (<) and right branches are correspond to greater or equal to
(≥). x2 is the average inflow in last 30 days, x3 is the average inflow in the last 14 days,
x4 is the average inflow in the last 7 days, x5 is the storage for the previous day, x6 is the
average storage in last 30 days, and x7 is the average storage in the last 14 days.
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models need further investigation. The output of the GMT framework can be integrated

within large scale hydrologic models for reservoir routing to address the effect of reservoir

operation in the river systems and to improve the modeling results. Moreover, the applica-

tion of the GMT framework is not limited to reservoir systems and can be used for a wide

range of systems. The GMT framework can be employed for simulating and understanding

continuous spaces. At last, the structure of the GMT framework needs further investigation

for understanding the represented system.
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Chapter 6

Conclusions and Future Directions

With the advances in the algorithms and tools for decision making in reservoir operation,

the gap between theoretical and real reservoir operation still exists (Hejazi et al., 2008). In

this dissertation, tools and algorithms are offered to bridge the existing gap to some extent.

My main focus in this dissertation is to develop tools and algorithms to aid decision makers

and modelers in the field of reservoir operation, to understand, simulate, and improve the

operation of reservoir systems. Hence, two algorithms are proposed for optimization and

simulation of reservoirs.

In chapter 2 of this dissertation, a new self-adaptive hybrid optimization framework titled

SC-SAHEL is introduced. The increasing number of optimization algorithms and the NFL

theorem encouraged me to propose a new optimization framework for solving a wide range

of optimization problems. The SC-SAHEL algorithm employs multiple search mechanisms

as search cores and evaluates the performance of these search mechanisms on the problem

space. During the course of the search, the algorithm allocates more resources and informa-

tion (individuals from population) to methods that are performing better. This “award and

punishment” process promotes the superior search methods for the problem space, hence,

the overall performance of the algorithm will be enhanced. The SC-SAHEL framework is
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also equipped with multiple tools and modules for initial sampling and boundary handling.

Moreover, the SC-SAHEL framework reveals the performance of the search methods at each

optimization step.

Chapter 3, demonstrated the application of the SC-SAHEL framework on reservoir opti-

mization problems. In this chapter, a conceptual reservoir model is employed to optimize

the controlled discharge from the Folsom reservoir. The SC-SAHEL framework is employed

to tune the controlled discharge to maximize hydropower generation over a three month

period. In this problem, several constraints are implemented into the model to increase the

complexity of the problem space and represent the real condition of the reservoir system.

The results demonstrated that the SC-SAHEL framework can be successfully used for solv-

ing real-world optimization problems. The SC-SAHEL framework outperformed the single

search methods and exhibited robust performance on the reservoir optimization problem.

In addition to the optimization tool, this dissertation also offers a new framework for sim-

ulating reservoir systems. Although there are physical models for simulating the operation

of reservoir systems, these models require detailed information about the real operation of

reservoir. Also, in many cases the operators may deviate from these operational rules (Yang

et al., 2016), so the physical models cannot represent the real operation of the reservoir

systems. Hence, application of the physical models can be limited, especially in the large

scale hydrolgic modeling. Hereupon, I proposed a generalized model tree (GMT) framework,

to simulate the real operation of the reservoir systems. I specifically employed model trees,

which is a special form of decision tree, to mimic human decision making in reservoir sys-

tems. In this dissertation, several modules are implemented to enhance the computational

efficiency of the model trees, while enhancing the performance of these models.

In chapter 4, first the GMT algorithm is employed to simulate multiple benchmark datasets.

The results showed that the GMT framework can outperform many existing algorithms in

terms of accuracy and performance. The framework is then applied to 8 reservoir across

CONUS and compared with other popular algorithms such as CART and M5’ for simulating
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the controlled discharge. The result showed that the algorithm outperforms other regression

tree models. These results revealed the potential application of the algorithm for reservoir

routing. The simple structure of the models inducted by the GMT framework make them

easy to use and implement in any programming language and hydrologic model. Also, the

transparent structure of the algorithm reveals useful information about the underlying sys-

tem.

Although the proposed algorithms for optimization and simulation of the reservoir systems

showed superior results for multiple case studies, there are multiple directions for future in-

vestigations. In general this dissertation serves as the introduction to these algorithms which

have the potential for improvements and extended applicability of these methods. Some of

these potentials directions are summarized as follows:

• Extend the application of the SC-SAHEL framework to many-objective optimization

problems

• Implement more evolutionary algorithms into the SC-SAHEL framework to enhance

the performance of the algorithm

• Investigate the effect of initial sampling and boundary handling on the performance of

the SC-SAHEL framework

• Incorporate the opinion of the reservoir operators into the reservoir optimization models

• Enhance the dimension restoration mechanism employed within the SC-SAHEL frame-

work

• Employ other algorithms for dimension reduction within the GMT framework

• Investigate the potential application of the GMT framework for reservoir routing within

the hydrologic models
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• Employ physical constraints into the GMT framework to improve the performance of

the model

• Extend the application of the GMT framework to other rule-based hydrologic systems.

• Employ the GMT framework within an ensemble framework to further enhance the

performance of the model

• Investigate the structure of the models inducted by the GMT framework to better

understand the underlying system

• Train the GMT framework on optimized reservoir discharges to extract optimum op-

erational rules for the reservoir systems

95



Bibliography

Afshar, M. and Shahidi, M. (2009). Optimal solution of large-scale reservoir-operation
problems: Cellular-automata versus heuristic-search methods. Engineering optimization,
41(3):275–293.

Ahmad, A., El-Shafie, A., Razali, S. F. M., and Mohamad, Z. S. (2014). Reservoir optimiza-
tion in water resources: a review. Water resources management, 28(11):3391–3405.

Ajami, N. K., Gupta, H., Wagener, T., and Sorooshian, S. (2004). Calibration of a semi-
distributed hydrologic model for streamflow estimation along a river system. Journal of
Hydrology, 298(1-4):112–135.

Arlot, S., Celisse, A., et al. (2010). A survey of cross-validation procedures for model selec-
tion. Statistics surveys, 4:40–79.

Asuncion, A. and Newman, D. (2007). Uci machine learning repository.

Azamathulla, H. M., Wu, F.-C., Ab Ghani, A., Narulkar, S. M., Zakaria, N. A., and Chang,
C. K. (2008). Comparison between genetic algorithm and linear programming approach
for real time operation. Journal of Hydro-environment Research, 2(3):172–181.

Barati, R., Neyshabouri, S., and Ahmadi, G. (2014). Sphere drag revisited using shuffled
complex evolution algorithm. In River flow, pages 345–353.

Belaineh, G., Peralta, R. C., and Hughes, T. C. (1999). Simulation/optimization modeling
for water resources management. Journal of water resources planning and management,
125(3):154–161.

Bessler, F. T., Savic, D. A., and Walters, G. A. (2003). Water reservoir control with data
mining. Journal of water resources planning and management, 129(1):26–34.

Beven, K. J. (2011). Rainfall-runoff modelling: the primer. John Wiley & Sons.

Bhattacharya, B. and Solomatine, D. P. (2005). Neural networks and m5 model trees in
modelling water level–discharge relationship. Neurocomputing, 63:381–396.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM computing surveys (CSUR), 35(3):268–308.

96
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Appendices

Appendix A

MCCE algorithm pseudo code is as follows:

0. Initialize i = 1, and get maximum number of iteration allowed, I.

1. Sort individuals in order of increasing objective function value. Assign individuals a

triangular probability (except for the fittest point) according to:

p =
2(NPS + 1− n)

NPS(NPS + 1)
(A.1)

where NPS is the number of individuals in the complex and is the rank of the sorted

individuals.

2. Select d+1 individuals (d is problem dimension) from the complex including the fittest

individual in the complex.

3. The selected individuals are then stored in S, forming a simplex. Generate offspring

according to following steps.

(a) Sort individuals in S according to their objective function value. Find centroid,

~c, of the first d individuals.
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(b) Reflection: Reflect the worst individual in S, ~w, across the centroid to generate a

new point, ~r, according to following equation:

~r = 2~c− ~w. (A.2)

Evaluate objective function for the new point, fr. If f1 < fr < fd set offspring,

~o = ~r, and go to (g).

(c) Expansion: If fr < f1, reflect ~c across ~r and generate ~e,

~e = 2~r − ~c. (A.3)

Evaluate objective function for the new point, fe. If fe < fr, set ~o = ~e and go to

(VII); otherwise, and go to (g).

(d) Outside contraction: If fd ≤ fr < fw, calculate the outside contraction point,

~oc = ~c+ 0.5(~r − ~c). (A.4)

Evaluate the outside contraction point, foc. If foc < fr set ~o = ~oc and go to (g);

otherwise, ~o = ~r and go to (g).

(e) Inside contraction: If fw < fr calculate inside contraction point,

~ic = ~c+ 0.5(~w − ~c). (A.5)

Evaluate inside contraction point, fic. If fic < fr set ~o = ~ic and go to (g);

otherwise continue to (f).

(f) Multinormal sampling: If the steps above, did not generate a better offspring, an

individual will be drawn with a multinormal distribution defined by simplex and

replace the worst individual in the simplex, regardless of objective function value.
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The multinormal sampling is as follow,

i. Calculate the covariance matrix, R, for the simplex and store diagonal of

matrix in ~D.

ii. Modify ~D as follow,

~Dm = 2( ~D +mean( ~D)). (A.6)

iii. Generate a new covariance matrix R′, with ~Dm as diagonal and zeroes every-

where else.

iv. Sample a point with multinormal distribution with mean of ~c and covariance

of R′ and store in ~o.

(g) Replace the worst individual in the complex with ~o. Let i = i + 1 If i ≤ I, go to

(Step 1); otherwise sort the points in the complex and return the evolved complex.

Appendix B

Modified FL (MFL) algorithm is as follows:

0. Initialize i = 1, and get maximum number of iteration allowed, I.

1. Sort individuals in order of increasing objective function value. Assign individuals a

triangular probability (except for the fittest point) according to:

p =
2(NPS + 1− n)

NPS(NPS + 1)
(A.7)

where NPS is the number of individuals in the complex and is the rank of the sorted

individuals.
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2. Select d+1 individuals (d is problem dimension) from the complex including the fittest

individual in the complex.

3. The selected individuals are then stored in S, forming a simplex. Generate offspring

according to following steps.

(a) Generate a new point with the worst point in S, ~w and best point ~b in the

subcomplex, as follows,

~nb = ~w + (0.5R + 1.5)(~b− ~w) (A.8)

where R is a random number in the range of [0,1]. Evaluate objective function

for the new point and get fb. If fb < fw; set ~o = ~nb and go to (d).

(b) If fw < fb, generate a new point with the worst point in S, ~w and best point ~b in

the subcomplex, as follows,

~nB = 0.5R(~b− ~w) (A.9)

Evaluate objective function for the new point and get fB. If fB < fw set the

offspring set ~o = ~nB and go to (d).

(c) Censorship step: If fw < fB, randomly generate the offspring, ~o by sampling

within the range of individuals in the subcomplex.

(d) Replace the worst individual in the complex with the offspring, ~o. Let i = i + 1.

If i ≤ I, go to (Step 1); otherwise sort the points in the complex and return the

evolved complex.
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Appendix C

Modified Grey Wolf Optimizer is as follows:

0. Initialize i = 1, and get maximum number of iteration allowed, I.

1. Sort individuals in order of increasing objective function value. Assign individuals a

triangular probability (except for the fittest point) according to:

p =
2(NPS + 1− n)

NPS(NPS + 1)
(A.10)

where NPS is the number of individuals in the complex and is the rank of the sorted

individuals.

2. Select d + 1 individuals (d is problem dimension) from the complex, with triangular

probability, including the fittest point in the complex and store them in S.

3. Select the best three points in the S and store them in ~α, ~β and ~γ, respectively. The

worst point in the S, is stored in ~w.

4. For each of ~alpha, ~beta and ~gamma , evolve individuals according to the following

procedure,

(a) Derive ~A and ~C as follow for ~α, ~β and ~γ,

~A = 4× ~r1 − 2, (A.11)

~C = 2× ~r2, (A.12)
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where r1, r2 are two independent random vectors, which have d dimensions and

values in range of (0,1).

(b) Derive ~D, for ~α, ~β and ~γ as follows,

~Dα = | ~Cα × ~Xα − ~w|, ~Dβ = | ~Cβ × ~Xβ − ~w|, ~Dγ = | ~Cγ × ~Xγ − ~w|. (A.13)

(c) Derive ~Z, for ~α, ~β and ~γ as follow,

~Zα = ~Xα − ~Aα. ~Dα, ~Zβ = ~Xβ − ~Aβ. ~Dβ, ~Zγ = ~Xγ − ~Aγ. ~Dγ, (A.14)

(d) Generate a new point by finding the centroid of ~Zα, ~Zβ and ~Zγ,

~C =
~Zα + ~Zβ + ~Zγ

3
. (A.15)

(e) Calculate and store objective function value for the new point, fC . If the new

point is better than the worst point among the selected points, fC < fw, set

~o = ~C, go to step 7.

5. If fC > fw, go to step 4, and use a smaller range for ~A. In this step, ~A is calculated as

follows:

~A = 2× ~r1 − 1, (A.16)

6. If the newly generated individual is worse than the worst individuals in subcomplex,

generate a new point with uniform random sampling within the range of individuals

in the complex. Store the new point in ~o.

7. Replace the worst individual among selected points in the complex with the offspring,

~o. Let i = i+ 1. If i < I, go to (Step 1); otherwise sort the points in the complex and
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return the evolved complex.

Appendix D

Modified differential evolution algorithm is as follows:

0. Initialize i = 1, and get maximum number of iteration allowed, I.

1. Sort individuals in order of increasing objective function value. Assign individuals a

triangular probability (except for the fittest point) according to:

p =
2(NPS + 1− n)

NPS(NPS + 1)
(A.17)

where NPS is the number of individuals in the complex and is the rank of the sorted

individuals.

2. Select d + 1 individuals (d is problem dimension) from the complex, with triangular

probability, including the fittest point in the complex and store them in S.

3. The selected individuals are sorted and stored in S, forming a subcomplex. Generate

offspring according to following steps.

(a) Generate a new point with the worst point in S, ~w and using the top three

individuals in the subcomplex,

~V = ~w + 2f(~s1 − ~w) + 2f(~s2 − ~s3), (A.18)

where ~w is the worst point in the S, ~s1, ~s2, and ~s3 are three selected individuals.

Then mutation, and crossover operator is applied to ~w and ~V1 to generate ~Vn1.
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The objective function value for the new point is calculated and stored in fn1. If

fn1 < fw, set ~o = ~Vn1 and go to (e).

(b) If fw < fn1, generate a new point with the worst point in S, ~w and using the top

three points in the subcomplex as follow,

~V2 = ~w + 0.5f(~s1 − ~w) + 0.5f(~s2 − ~s3), (A.19)

After mutation, crossover operator is applied to the ~w and ~V2 to generate ~Vn2.

Then, the objective function for the new point is derived and stored in fn2. If

fn2 < fw; set ~o = ~Vn2 and go to (e).

(c) If fw < fn2, generate a new point with the worst point in S, ~w and using the top

three points in the subcomplex as follow,

~V3 = ~w + f(~s1 − ~w) + f(~s2 − ~s3), (A.20)

After mutation, crossover operator is applied to the ~w and ~V3 to generate ~Vn3.

The objective function value is calculated and stored in fn3. If fn3 < fw; set

~o = ~Vn3 and go to (e).

(d) If the newly generated point is worse than the worst point in subcomplex, generate

a new point from uniform random distribution within the range of points in the

complex. Store the new point in ~o.

(e) Replace the worst point in the complex with the offspring, ~o. Let i = i + 1. If

i ≤ I, go to (Step 1); otherwise sort the points in the complex and return the

evolved complex.
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