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Detecting Compromised Routers via Packet

Forwarding Behavior

Alper Mizrak∗, Keith Marzullo, and Stefan Savage

University of California, San Diego

Abstract

While it is widely understood that criminal miscreants are subverting large numbers of Internet-connected

computers (e.g., for bots, spyware, SPAM forwarding, etc.) it is less well appreciated that Internet routers

are also being actively targeted and compromised. Indeed, due their central role in end-to-end communication,

a compromised router can be leveraged to empower a wide range of direct attacks including eavesdropping,

man-in-the-middle subterfuge and denial-of-service. In response, a range of specialized anomaly detection

protocols has been proposed to detect misbehaving packet forwarding between routers. This paper provides

a general framework for understanding the design space of this work and reviews the capabilities of various

detection protocols.

Key Words: Internet-wide security, Internet robustness, Fault tolerant routing, Reliable networks, Mali-

cious routers.

1 Introduction

It is widely understood that the Internet is awash in threats. The mean time for a vulnerable system

to be infiltrated once connected to the Internet is typically measured in minutes. Consequently, most

research effort in network security has focused on protecting these end systems or mitigating the impact

of their compromise. However, the Internet architecture relies equally strongly on the correct behavior of

the intermediate routers that forward packets, hop-by-hop, to their eventual destination. While it is not as

widely appreciated, these network routers are also under attack.

For example, at the 2005 Black Hat Briefings, Mike Lynn demonstrated how Cisco routers can be compro-

mised via simple software vulnerabilities. Even simpler, others have documented how combinations of social

engineering and weak passwords can and have been used to compromise thousands of Internet routers and

there exists an underground market for trading access to them [1, 2, 3, 4]. Finally, in their annual surveys
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of the Internet network security operations community, Arbor Networks Inc., have repeatedly documented

such attacks across a range of ISPs [5].

Once a router has been compromised, the standard command line interface from vendors such as Cisco

and Juniper can be used to selectively drop packets, delay them or transparently “tunnel” through arbitrary-

third party hosts and back again [6, 7]. Together these capabilities are sufficient to selectively eavesdrop,

deny or degrade service, or construct a man-in-the-middle attack, against any host that receives service

through the router.

Thus, a number of researchers have recently explored the problem of detecting such router compromises

as revealed from their inconsistent packet forwarding behavior. In this paper we provide a general framework

for understanding this work and then study some of the detection protocols [8, 9, 10, 11] in this context.

r'

r

Figure 1. Failure detector via active replica / state machine approach.

2 Centralized Failure Detector via Active Replication

The behavior of a router is deterministic: traffic enters a router and is forwarded on to the next hop

towards its destination. Because it is determinsitic, the behavior of a router can be verified by a failure

detector via an identical replica of that router.1 For example, in Figure 1, a failure detector is implemented

with an identical replica r′ of the router r. In this scheme, the failure detector listens the router r’s traffic

in promiscuous mode and ensures that the replica r′ receives the same input traffic as the router r. Then

the failure detector compares the output traffics of the router r and the replica r′. If there is a discrepancy,

1This scheme is also called master-checker, active replication, or state machine approach in the literature.
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then a failure is detected and an alarm is raised. In this case, either the monitored router is faulty or the

failure detector is faulty.

This is an ideal failure detector that detects malicious behavior of compromised routers. However, this

scheme has limitations:

Complexity of implementation: First of all, a failure detector must implement the necessary precau-

tions to avoid nondeterminism, such as in scheduling and internal multiplexing. For example, upon receiving

routing updates, each router updates its routing tables. If the router and the replica do not update their

routing tables simultaneously, then for a short time interval their output traffic might include some discrep-

ancy. Another issue is the randomization used in active queue management schemes. Both the router and

the replica rely on the same randomization source to generate the same output.

Researchers addressed this issue by implementing a light-weight version of such a failure detector via

traffic validation: Instead of validating the exact traffic that transits a router, various characteristics of the

traffic entering into and leaving various parts of the network can be used for validation. This is discussed in

detail in Section 3.

Resource requirement: Furthermore, to implement such a failure detector, as in Figure 1, requires

additional hardware resources — the identical replica of the router — which might be prohibitively expensive.

This limitation is addressed by implementing such a failure detector in a distributed manner. This requires

the participation of uncompromised routers. We discuss this issue in Section 4.

3 Traffic Validation

Traffic validation is the basis of detecting anomalous behavior: given traffic entering a region of the

network, and knowing the expected behavior of the routers in the network, anomalous behavior is detected

when the monitored traffic leaving that part of the network differs significantly from what is expected. Traffic

validation can be defined in terms of conservation of traffic:

Conservation of traffic: Some property of the traffic entering into a region of a network must be consistent

with the same property of the traffic leaving that part of a network.

There are three design decisions that must be addressed to implement such a mechanism:

• Which property of the traffic is to be validated?

Upon receiving a packet, a router references its routing table to determine the next hop toward the

destination, and then forwards the packet. Thus, ideally, the traffic entering into a router is equal to
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the traffic leaving that router. Of course, there is queueing and processing delay, and packets can be

lost due to congestion.

The most precise description of traffic is itself: the exact content of the packets. However, the storage

requirements to buffer all packets (as well as the bandwidth consumed by resending them to implement

distributed detection, discussed later) make this approach impractical. Instead, one can choose less

precise properties of the traffic to validate traffic. Some properties are:

1. Conservation of flow validates the volume of the traffic, thereby addressing the malicious behavior

of dropping packets.

2. Conservation of content validates the content of the traffic, thereyby addressing the malicious

behavior of modifying packets.

3. Conservation of order validates the order among the packets that constitute the traffic, thereby

addressing the malicious behavior of reordering packets.

4. Conservation of timeliness validates the time behavior of the forwarding process, thereby address-

ing the malicious behavior of delaying packets.

• What traffic is to be monitored?

Some protocols monitor single packet while others monitor aggregate traffic. Some protocols are based

on active probing : they send probe packets periodically; while others deploy a passive approach that

simply monitors existing traffic.

• What region of a network is to be monitored?

Various existing protocols apply conservation of traffic for different parts of a network, such as per

router, per interface, and per path-segment.

A failure detector based on traffic validation can be as effective as one based on active replication, and the

overhead is practically feasible. In practice, designing a traffic validation mechanism includes tradeoffs for

each design decision above. Hence, implementing a traffic validation mechanism is an engineering problem. In

addition, real networks occasionally lose packets due to congestion. Traffic validation needs to accommodate

congestive packet loss.

4 Distributed Detection

Instead of a centralized failure detector, as in Figure 1, our goal is to implement such a failure detector dis-

tributed in the network using the existing hardware resources: requiring the participation of uncompromised
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routers.

A compromised router can make arbitrary alterations to the forwarding behavior of that router. However,

given the distributed nature of packet forwarding it is not possible in general for an adversary to perfectly

conceal such behavior. As long as the packets traverse some uncompromised router, there is enough data

redundancy to detect the alteration. The goal is to implement such a failure detector, as in Figure 1,

distributed in the network: the detection of a compromised router requires synchronizing the collection of

traffic information and distributing the results for detection purposes.

A compromised router can be traffic faulty by forwarding traffic in a faulty manner, as well as be protocol

faulty by behaving arbitrarily with respect to the detection protocol. Thus, any detection protocol should

consider the case of routers being protocol faulty and providing bogus traffic information. Attackers can

compromise one or more routers in a network. However, we assume that between any two uncompromised

routers that there is sufficient path diversity that the malicious routers do not partition the network. In

some sense, this assumption is pedantic since it is impossible to guarantee any network communication

across such a partition. It is worth noting however, if the host’s access router is compromised, then the host

is partitioned and there is no routing remedy even if an anomaly is detected; the fate of individual hosts

and their access routers are intertwined. In these situations, because of fate-sharing reasons, there is little

that can be done. Moreover, from the standpoint of the network such traffic originates from a compromised

router, and, therefore, cannot demonstrate anomalous forwarding behavior. To summarize, these distributed

detection protocols are designed to detect anomalies between pairs of correct nodes.

As the failure detector via active replica, in Figure 1, has some uncertainty — in case of a detection,

either the monitored router is faulty or the failure detector is faulty — there will be some uncertainty, as

well, in distributed detection determining which router is faulty, since routers collect the information upon

which traffic validation is based. For example, suppose router r1 collects traffic information about packets

that traverse r1, then a neighboring router r2, and then a third router r3. Based on the information r3 has

about the traffic it has seen and the traffic information r1 has provided, r3 can determine that packets has

been dropped. But, r3 can’t determine whether r1 is lying about what it claims to have forwarded to r2

or whether r2 has dropped the packets. Hence, there is an inherent lack of precision in determining which

routers are compromised.

A failure detector reports a suspicion as a path-segment, which is defined as a sequence of consecutive

routers that is a subsequence of a path.2 More specifically, a failure detector reports a path-segment if it

suspects a router in that path-segment behaving in a faulty manner.

2For example, if a network consists of the single path 〈r1, r2, r3, r4〉 then 〈r2, r3〉 is a path segment, but 〈r1, r3〉 is not because
r1 and r3 are not adjacent.
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This section is a brief summary of the formal specification presented in [12]. We refer the readers to [12]

for the derivation of the formal specification. In short, we cast the problem as a failure detector with

completeness, accuracy and precision properties.

Completeness: Whenever a router forwards traffic in a faulty manner,

• if all correct routers eventually suspect a path-segment containing a faulty router, then a failure

detector is strong-complete.

• if at least one correct router eventually suspects a path-segment containing a faulty router, then

a failure detector is weak-complete.

Accuracy: A failure detector is accurate if, whenever a correct router suspects a path-segment, then there

is at least one faulty router in that path-segment.

Precision: A failure detector also has a precision, which is the maximum length of a path-segment it

suspects.

A failure detector must be complete and accurate, and preferably with a high precision. Implementing

such distributed detection involves tradeoffs among precision, weak/strong-completeness, and the overhead

of monitoring and communication. Various detection protocols address these design decisions in different

ways, which we study in Section 5.

Compared to weak-completeness, strong-completeness is more desirable property since every correct router

detects the fault. Given a weak-complete detector, a strong-complete one can be implemented but it may

not be simple and some precision would be lost. For example, consider that a source router rs detects a

link 〈r1, r2〉 as faulty. Announcing this detection, the other correct routers in the network have to consider

the case that rs being faulty as well. On the other hand, in some cases, having a weak-complete detector is

enough for taking proper response: for example, relying on source routing, the router rs may only update

its own routing table excluding the suspected 〈r1, r2〉.

5 Case Studies

In this section, we study various protocols proposed as a countermeasure for the attacks on the network

data plane. First, we present each traffic validator that is implemented by the protocols as a single central-

ized service, and examine their various design decisions. Next, we study how the existing protocols have

implemented such failure detectors by distributing them in the network.
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Figure 2. Failure detector via a traffic validator per router.

5.1 Traffic Validation Per Router: WATCHERS

The most similar approximation to the failure detector in Figure 1 is WATCHERS [8], which detects and

isolates faulty routers based on a distributed network monitoring approach. A faulty router is defined as

one that drops or misroutes packets, or that behaves in an arbitrary manner with respect to the proposed

protocol. A conservation of flow principle (CoFP) was proposed to detect faulty routers. Basically, CoFP

states that the amount of traffic entering into a router should be equal to the amount of traffic leaving that

router.

The traffic validator that WATCHERS implements is given in Figure 2 as a centralized service. WATCHERS

validates the conservation of flow property of the aggregate traffic entering into each router in the network.

If the difference between the volumes of the traffic entering into and leaving the router exceeds a user-defined

threshold, then a failure is detected and an alarm is raised. This threshold is needed to avoid false positives

as a result of congestive packet losses.

WATCHERS implements this failure detector by requiring all the neighboring routers of a router r to syn-

chronize with each other, to count how many bytes it has received from and forwarded to r during an

agreed-upon time interval, to distribute the snapshots of its counters to the others by flooding, and finally

to validate the conservation of flow property.

If a neighbor router rn can not validate the router r, then rn announces that the link 〈rn, r〉 is suspicious

and 〈rn, r〉 is removed from the routing fabric.

In terms of our specification, it is accurate with a precision of 2. WATCHERS is not complete since it has a
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flaw as explained in [13]. It can also be fixed [13], in which case WATCHERS is strong-complete.

Generally speaking, there are two limitations of WATCHERS:

• The main drawback of WATCHERS is its weak traffic validation, which is designed for a restrictive threat

model: it addresses only malicious packet drops and misroutes. Several researchers have subsequently

developed protocols with more general traffic validation mechanisms addressing a comprehensive set

of attacks.

• The architects of WATCHERS noticed a completeness problem caused by consorting faulty routers, which

is first introduced by Perlman [14], the earliest work on fault-tolerant forwarding. Consorting faulty

router are the faulty routers launching a coordinated attack and cooperating to hide each others

malicious behavior. WATCHERS addressed the issue by requiring each router to maintain a separate

state for every neighbor and destination pair in the network. Other protocols addressed this problem

of consorting faulty routers with a different approach: they validate traffic over path-segments. We

discuss this next.

r4r3r2r1

Link r1,r2 Link r2,r3 Link r3,r4

Figure 3. Failure detector via a traffic validator per path-segment noeds.

5.2 Traffic Validation Per Path-segment Nodes: HSER

[9] presents Highly Secure and Efficient Routing (HSER), a combination of source routing, hop by hop

authentication, a-priori reserved buffers, sequence numbers, timeouts, end-to-end reliability mechanisms, and

fault announcements. As it is noted in [9], while none of these individual mechanisms is novel by itself, it

is the combination of them that delivers Byzantine robustness and detection.
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The traffic validator that HSER implements is given in Figure 3 as a centralized service. HSER validates

the conservation of content property of a single packet that is monitored along the path from the source to

the destination. If any router along the path discovers that its neighbor has lost or altered the packet, then

a failure is detected and an alarm is raised.

HSER implements such a failure detector distributed in the network by requiring each router along the

path to compute a fingerprint for the monitored packet, and to keep a timeout, and finally to validate the

conservation of content property with its neighbors. Upon receiving a packet, the router first validates the

authenticity and forwards the packet to the next hop towards the destination. After forwarding the packet,

the router sets a timeout to the worst case round trip time to the destination from itself. If authenticity of

the packet is not verified or the timeout expires, then the router generates a fault announcement, including

its neighbor and itself, to send back to the source.

HSER relies on source routing. As a response, upon receiving a fault announcement, the source router

computes a new route to the destination excluding the detected link from its routing fabric.

In terms of our specification, HSER is weak-complete – since only the source detects a failure – and accurate

with a precision of 2.

The overhead of this approach is prohibitively high, since for every source and destination pair, all of the

routers along the path have to participate in the detection. There are two tradeoffs that the researchers

decided to implement a feasible detector for practical deployment based on traffic validation per path-segment

ends:

• Give up precision by only validating at the end routers of the path-segment, in which case none of the

intermediate routers along the path participates in detection.

• The end routers of the path-segment can decide on a sampling pattern and keep track of only the

chosen packets. This method may help decreasing overhead significantly. However, the attacks to

those unmonitored packets would not lead to a detection, and the accuracy in detection would be

decreased.

Other protocols based on this approach are presented in [12, 15, 16].

5.3 Traffic Validation Per Path-segment Ends: SecTrace

SecTrace [10] is developed as a practical tool to securely trace the path of an existing traffic towards

a particular destination from a source. It proceeds hop-by-hop similar to Traceroute: at each round, the

source validates the traffic between itself and an intermediate router towards the destination.
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Path-Segment r2,r3

r2 r3

r1 r2 r3 r4

Figure 4. Failure detector via a traffic validator per path-segment ends.

The traffic validator that SecTrace implements is given in Figure 4 as a centralized service. SecTrace

validates the conservation of content property of the aggregate or sampled traffic3 between the source router

and an intermediate router. If the source detects that there is discrepancy in the traffic, then a failure is

detected and an alarm is raised.

SecTrace implements such a failure detector distributed in the network by requiring only the end routers

of the monitored path-segment to synchronize with each other and to compute fingerprints for the traffic

between themselves for an agreed-upon time interval. At the end of the round, the corresponding intermediate

router sends back the information it has collected and the identity of the next expected router towards the

destination. Upon receiving this information, the source router validates the conservation of content property:

if the source validates the traffic, then it initiates another SecTrace round with the next intermediate router

towards the destination; otherwise, the source detects a failure.

For example, in Figure 4, a path-segment of 〈r1, r2, r3, r4〉 is monitored during the given traffic validation

round and only the source r1 and the corresponding intermediate router r4 implement the distributed failure

detector. If the source r1 detects that there is discrepancy in the traffic, then a failure is detected and an

alarm is raised: (1) Either one of the intermediate routers {r2, r3} is traffic faulty introducing discrepancy

into the monitored traffic. (2) Or, the failure detector, which is implemented by r1 and r4, is protocol faulty:

at least one of {r1, r4} is faulty.

In terms of our specification, SecTrace is weak-complete – since only the source detects a failure – and

accurate with a precision of k, where k is the length of the monitored path-segment.

3It can adopt both active probing and passive monitoring approaches.
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On the other hand, in [10], the authors require that the source detects the link between the corresponding

intermediate router and its upstream neighbor. For example, in Figure 4, if the source r1 could not validate

the traffic with r4, then it would detect 〈r3, r4〉 as faulty. The reasoning behind this approach is that the

source r1 was able to validate the same traffic up to the upstream neighbor r3 at the previous validation

round, so either r3 or r4 must be faulty introducing discrepancy into the traffic. However, this approach

violates the accuracy property. Assume that only the router r2 is faulty manipulating the traffic only after

the source r1 validates the traffic with r3. Consequently, 〈r3, r4〉 would be detected where neither r3 nor r4

is faulty. To address this problem, the authors propose to give occasional indications of SecTrace activity,

such as by continuously sending round initialization packets pretending to monitor the traffic, while in reality

doing nothing.

Finally, they propose three different approaches as a response: (1) The source tries to route the traffic

around the detected link using source routing. (2) The source notifies the downstream routers, expecting

them to make the appropriate routing adjustments avoiding the suspected routers. (3) The source alerts the

administrator of the suspected routers.

Other protocols based on this approach are presented in [17, 12, 18, 19, 20, 21].

Q

r

Figure 5. Failure detector via a traffic validator per interface.

5.4 Traffic Validation Per Interface: Protocol χ

Unfortunately, it is quite challenging to attribute a missing packet to a malicious action because modern

networks routinely drop packets when the load temporarily exceeds a router’s buffering capacity. Almost
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all detection protocols have tried to address this problem using a user-defined threshold. Using such a

threshold will necessarily create unnecessary false positives or mask highly-focused attacks. Protocol χ,

which is a compromised router detection protocol recently presented in [11], dynamically infers the number of

congestive packet losses that will occur based on measured traffic rates and buffer sizes. Once the ambiguity

from congestion is removed, subsequent packet losses can be attributed to malicious actions.

The traffic validator that protocol χ implements is given in Figure 5 as a centralized service. Protocol χ

validates the conservation of timeliness property of the aggregate traffic entering into each interface of a router

in the network. If a packet loss occurs when the monitored interface’s queue is not full, then a failure is

detected and an alarm is raised.

Protocol χ implements such a failure detector distributed in the network by requiring each neighbor of

a router to synchronize with each other, to compute a fingerprint with a timestamp for each packet passes

through the interface Q during an agreed-upon time interval, to distribute these information among the

other neighboring routers, and finally to validate the conservation of timeliness property of the traffic by

simulating the behavior of the monitored interface queue.

If a neighbor router rn detects that the router r drops a packet when the corresponding queue is not full,

then rn announces that the link 〈rn, r〉 is suspicious and 〈rn, r〉 is removed from the routing fabric.

In terms of our specification, protocol χ is strong-complete and accurate with a precision of 2.

Protocol χ can be extended addressing the adjacent consorting faulty routers by monitoring every

output interfaces of the neighbors k hops away and disseminating the traffic information to all neighbors

within diameter hops. This is the same approach that was used in [12], and it increases the overhead of

detection.

[22] is also based on this approach.

6 Conclusion

In this paper we have described a general framework for understanding the literature on detecting malicious

routers via packet forwarding behavior. We have described how traffic validation is the basis for all such

schemes and distributed per-router validation is a simple approximation to an idealized detector. However,

due to the threat of consorting faulty routers (i.e., that multiple routers have been compromised) practical

systems are limited to validating path segments rather than individual routers. Within this approach there

is a tradeoff between precision and overhead – depending on the span of a segment and most protocols have

chosen to explore the lower-overhead part of this design space. Finally, all protocols are subject to noise

due to congestive packet loss which is difficult to distinguish from malicious dropping. While per-interface
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techniques can differentiate between these conditions, it comes at the expense of high overhead. In a short

time, there have been significant advances in this domain, and while none of these protocols has yet been

deployed in a production network, they are quickly becoming cheap enough and precise enough to be a viable

option against router-oriented attacks.
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