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Abstract

Geometry, topology, and response in condensed matter systems

by

Dániel Varjas

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

Topological order provides a new paradigm to view phases of matter. Unlike conven-
tional symmetry breaking order, these states are not distinguished by different patterns of
symmetry breaking, instead by their intricate mathematical structure, topology. By the
bulk-boundary correspondence, the nontrivial topology of the bulk results in robust gap-
less excitations on symmetry preserving surfaces. We utilize both of these views to study
topological phases together with the analysis of their quantized physical responses to per-
turbations.

First we study the edge excitations of strongly interacting abelian fractional quantum
Hall liquids on an infinite strip geometry. We use the infinite density matrix renormalization
group method to numerically measure edge exponents in model systems, including subleading
orders. Using analytic methods we derive a generalized Luttinger’s theorem that relates
momenta of edge excitations.

Next we consider topological crystalline insulators protected by space group symme-
try. After reviewing the general formalism, we present results about the quantization of
the magnetoelectric response protected by orientation-reversing space group symmetries.
We construct and analyze insulating and superconducting tight-binding models with glide
symmetry in three dimensions to illustrate the general result. Following this, we derive
constraints on weak indices of three dimensional topological insulators imposed by space
group symmetries. We focus on spin-orbit coupled insulators with and without time reversal
invariance and consider both symmorphic and nonsymmorphic symmetries.

Finally, we calculate the response of metals and generalize the notion of the magneto-
electric effect to noninteracting gapless systems. We use semiclassical dynamics to study the
magnetopiezoelectric effect, the current response to elastic strain in static external magnetic
fields.
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Chapter 1

Topological orders with and without
symmetry

1.1 Symmetry and symmetry breaking

The huge success of characterizing phases of matter in the 20th century relied on Lev Lan-
dau’s insight[1]: phases of matter are distinguished by the symmetry of ordering. The
underlying Hamiltonian of our physical world has a large symmetry, for example continuous
translation and rotation invariance. Solid state systems, however, develop a crystal structure
that only retains discrete translations and rotations. The symmetry of the high temperature
phase, such as gas or liquid gets spontaneously broken at lower temperatures in order to find
the minimum energy configuration. This is a fight between energy and entropy, the system
tries to minimize its free energy F = E−TS. At high temperatures a disordered phase with
high entropy is favorable, that, on average, is highly symmetric. As T is lowered, energy
minimization becomes dominant and a highly ordered phase with low entropy is selected.

The mathematical tool used to characterize symmetries is group theory. A symmetry
operation maps one history of the system to another, this is a group element. Products of
elements are formed by successive applications of the operations and every operation has its
inverse by undoing it.

Most generally we say a system has a given symmetry, if a possible history is mapped
onto another possible history. In the following we restrict our attention to systems invariant
under continuous time translations. This allows the definition of conserved energy, and we
further demand that symmetries leave the energy invariant. We say that a steady state – or
equilibrium ensamble – is symmetric if it is mapped to itself. Now we see that a state with
spontaneously broken symmetry is necessarily degenerate, there are symmetry operations
that map it onto different states with the same energy. For example, a crystal is different
from its image translated by a fraction of a lattice vector, but otherwise the two states have
identical properties, as the underlying Hamiltonian has continuous translation invariance.

The symmetry breaking is characterized by a local order parameter, that is zero in the
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symmetric phase and distinguishes the various broken symmetry states. Across a phase-
transition it changes non-analytically, it is discontinuous across a first order phase transition
or its derivative jumps at a second order transition. Phase transitions are also possible
without symmetry breaking, such as the liquid-gas transition, but in this case the transition
can be circumvented and the two phases are connected by a path where all properties change
analytically.

Excited continuum

Figure 1.1: Sketch of the low energy spectrum of the transverse field Ising chain as it is tuned
across the symmetry breaking transition at g = 1. As the degeneracy of the ground state
changes across the transition, some ground states must merge into the excited continuum
(red) and the gap must close at the transition.

For simplicity, in the following we only consider zero temperature gapped phases of
matter. A second order symmetry breaking transition between two gapped phases necessarily
comes with the closing of the gap (Fig. 1.1). This follows from the change in the ground state
degeneracy: to change it, some states from the excited continuum must continuously come
down to the ground state energy. In the next section we will see that such a gap closing may
also be necessary even when the two ground states are both symmetric and nondegenerate,
as they can be still distinguished by topology that cannot change continuously.
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1.2 Topological order

1.2.1 Intrinsic topological order

Here we endeavor to classify local Hamiltonians with unique1 gapped ground states by their
topology. By local we mean the Hamiltonian is a sum of terms acting on spatially localized
regions, this is necessary to make sense of the dimensionality of the system. We consider two
systems to be in the same phase if their Hamiltonians can be continuously deformed into each
other without closing the gap, in other words, they are adiabatically connected. Furthermore,
to avoid distinguishing systems that only differ by some frozen degrees of freedom, we also
allow adding a trivial atomic insulator, where the Hamiltonian is just a sum of strictly local,
non-overlapping gapped terms, acting on the new degrees of freedom. Topological order is
called intrinsic if it does not rely on any symmetry, so for now we allow all Hamiltonians
without any symmetry restriction.

Given the dimensionality and the statistics (bosonic or fermionic) we can create a land-
scape of all local Hamiltonians (Fig. 1.2). It consists of connected regions with the gap open
and intervening gapless areas. One of these regions contains the trivial atomic insulator,
this is the trivial phase. The other phases separated from it by gapless areas have intrinsic
topological order, as it is impossible to adiabatically deform them the trivial state using a
path of gapped Hamiltonians.

Trivial

Noninteracting x

Figure 1.2: Schematic phase diagram of fermions in 2 dimensions. The white regions repre-
sent gapped topological phases, while at the black borders the gap closes. The shaded area
is the space of free Hamiltonins. The atomic insulator (x) is in the trivial phase, there is
an infinite series of IQH states labeled by integers, FQH states labeled by rational fractions
among other possible phases.

Let us return to the question what “adding” two systems together means. It is easiest to

1We assume the ground state is unique in an infinite geometry. On a closed manifold with a nontrivial
topology, such as a torus, a finite topological degeneracy of locally indistinguishable states may arise.
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visualize in two dimensions, take the two systems as sheets and lay them on top of each other.
From now on we treat them as a single 2d system and allow deformations by local terms in
the Hamiltonian that couple degrees of freedom in different layers. This commutative and
associative stacking operation maps two topological phases on a third, with the trivial phase
as the unit element, defining a monoid structure on the set of topological phases. Phases
are called invertible if there is an inverse phase, such that stacking the two we get a trivial
phase. Thus we have a group structure on the set of invertible topological phases.

Consider for example free fermions in 2 dimensions. In a strong external magnetic field
the spectrum splits into Landau-levels (LL’s), when some of these are completely filled, we
get an integer quantum Hall (IQH) state[2, 3]. Such states are characterized by a gapped bulk
with vanishing longitudinal conductance and Hall conductance quantized in integer multiples
of the conductance quantum, σxy = Ce2/h. These states can also be mimicked using lattice
models with no external magnetic field[4], termed quantized anomalous Hall (QAH) effect.
The integer C is identified as the Chern number of the occupied bands[5] characterizing the
nontrivial topology of the ground state wave function. C is additive under stacking, resulting
in a Z classification of fermions in 2d. We review these phases in Sec. 1.3.1 in more detail.

Turning on interactions, gapped states can stabilize at rational fractions of the LL’s
filled, called fractional quantum Hall effect (FQHE)[6, 7]. These states feature fractional
excitations, which carry fractions of the electric charge of the underlying fermions, as well
as fractional exchange statistics. Such state is impossible in a noninteracting system, as all
excitations there have the same character as the underlying fermions. For more details see
Sec. 1.4.

Quantum Hall states feature one of the hallmarks of topological order: gapless edge states.
One way to understand this, is to imagine a family of translation invariant Hamiltonians
that interpolate between the topological bulk and the trivial vacuum. If the system has a
soft edge, such that the Hamiltonian changes slowly compared to microscopic length scales,
locally it looks like a translation invariant system. However, we know that any interpolation
between a topological and trivial system must close the gap at some point, so there must be
a gapless interface between the two phases.

1.2.2 Symmetry protected topological order

The topological classification can be refined if we restrict to Hamiltonians with a certain
symmetry. Condensed matter physics deals with the low energy excitations over some already
symmetry broken ground state of the very symmetric high energy Hamiltonian. But some
of these symmetries are more robust than others, so it is reasonable to restrict our attention
to deformations that preserve some symmetry. For example time reversal symmetry (TRS,
T ) is only broken in magnetically ordered materials, which is the non-generic case. The
U(1) charge conservation symmetry is often implicitly assumed, even though it is broken
in superconductors. The particle-hole symmetry (PHS, C or charge-conjugation symmetry)
in superconductors is not even a physical symmetry, just a symmetry of the overcomplete
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Bogoliubov-de Gennes (BdG) description, thus it can never be broken.2

x x

a) b)

Figure 1.3: A different view of the trivial phase (black border) with the atomic insulator
in it (x). Note the gapless areas proturding into the phase that can be circumvented. a)
Subspace of Hamiltonians with symmetry group G1 (blue ellipse). With the added symmetry
constraint the trivial phase splits into SPT phases. b) Subspace of Hamiltonians with a higher
symmetry G2 > G1 (red ellipse). With the increased symmetry some phases split into more
phases, others are ruled out.

Starting from the trivial phase of the intrinsic classification, let us impose a symmetry
group G1 that constrains the possible Hamiltonians. We still demand that the ground state
is unique, which implies that it is symmetric. Regions of the phase that were connected by
paths breaking the symmetry, may now be separated (Fig. 1.3 a)). We term these symmetry
protected topological (SPT) phases, with the symmetric atomic insulator defining the trivial
phase.

Further increasing the symmetry to G2 (such that G1 is a subgroup of it) has a twofold
effect on the classification (Fig. 1.3 b)). On one hand, phases that were connected in G1 may
become separated in G2, enriching the structure of the phase diagram. On the other hand,
a G1-SPT phase may necessarily break G2 and this phase is ruled out by the more stringent
symmetry.

The classification of SPT phases admits an abelian group structure under stacking and
has been extensively studied using group cohomology theory[8]. Early studies only con-
sidered on-site symmetries, that act as a product of identical commuting local operators
centered at each site. These symmetries include the Z2 spin flip symmetry of the Ising
model, time reversal, charge conservation or particle-hole symmetry. Later it was realized
that translation invariance of the lattice can lead to new SPT phases[9] called weak topological

2Note that this is not the physical particle-hole symmetry of the electronic spectral function that is only
approximate at low energies.
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phases. Other lattice symmetries can further enrich the classification leading to crystalline
topological phases [10].

A similar classification can be carried out for the other intrinsic phases in the presence
of symmetries leading to symmetry enriched topological order.

1.3 Topological phases of noninteracting fermions

1.3.1 Quantum anomalous Hall effect and Chern insulators

As a basic example of a topological phase of non-interacting fermions, let us examine two
dimensional insulators with only charge conservation symmetry. To further simplify the
arguments we will look at translation invariant systems with only two bands (Sec. 4.2).

The Hamiltonian of such systems is a mapping Hk from the Brillouin-zone (BZ) torus
T 2 to the space of 2 by 2 Hermitian matrices. The most generic such function has the form

Hk = dk · σ + µk1 (1.1)

where d is a 3 dimensional vector and σ is the vector of Pauli matrices. The spectrum is
ε±k = µk ± dk with d = |d|. To get a gapped insulator with the lower band filled we need
d > 0 and |µ| < d, for simplicity we set µ = 0 in the following. As the Hamiltonian at a
fixed k is formally identical to that of a spin-1/2 in a magnetic field in the −d direction,
the eigenstates

∣∣u±k 〉 are spins pointing parallel or antiparallel to d and can be represented
as points on the Bloch-sphere.

As we saw, gapped Hamiltonians can be represented as maps from a torus to 3d space
excluding the origin, and their ground states (the |u−〉 band) as maps from a torus to the unit
sphere. We want to study the topology of such maps, so we allow continuous deformations.
The two views are equivalent, as we can project points of 3d space onto the unit sphere by
continuously “flattening” it, this corresponds to continuously changing the magnitude of d
to 1 without changing its direction.

Now we can classify the topological phases using this intuitive picture (Fig. 1.4). As
the origin is excluded, a torus that does not enclose it cannot be “dragged through” this
forbidden point without “breaking the surface” such that the origin is now inside. This is
easy to see, considering that the former torus can be contracted to a single point, while
the latter cannot. Tori that do not enclose the origin form the trivial class, as they can
be deformed to any constant map. There are also two distinct directionalities in which
the torus can wrap the origin together with the possibility of multiple wrappings in either
direction. Mathematically, the homotopy classes of maps from the 2-torus to the 2-sphere
(or the punctured 3d space) are classified by this integer wrapping number.

This classification can be extended to multiple bands using the Berry curvature and
Chern-number (Sec. 4.4). To characterize geometry of the band-structure we introduce the
Berry connection for the n-th band

Ani,k = 〈unk| (∂i |unk〉) (1.2)
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Figure 1.4: Topologically distinct embeddings of the BZ torus into the space of 2-band
Hamiltonians (top row) and the corresponding maps to the Bloch sphere (bottom row)
indexed by the Chern number.

where ∂i is the derivative with respect to the i-th coordinate in k-space. It is analogous
to the electromagnetic vector potential, and we define the associated “magnetic field”, the
Berry curvature

Ωn
k = ∂xAny,k − ∂yAnx,k. (1.3)

It can be visualized as a normal magnetic field penetrating the BZ torus. Its total flux for
all occupied bands is quantized in integer multiples of 4π, so the Chern number is

C =
1

4π

∑
n∈occ.

∫
BZ

d2k Ωn
k. (1.4)

C is additive under stacking, and provides the Z classification for noninteracting insulators
with only charge conservation symmetry. It can also be shown by studying homotopy classes
of Hamiltonians[11] that this classification is complete, all the information is captured by C.

The Chern number is related to the Hall conductance as σxy = (e2/h)C [5, 12]. This be-
havior is similar to the IQHE, but without external magnetic field, hence the name quantum
anomalous Hall effect. This effect has been experimentally observed in magnetic insula-
tors[13].

These simple models offer an easy way to visualize the topological edge states. For
example the Hamiltonian

Hk = sin kxσx + sin kyσy + (cos kx + cos ky −m)σz (1.5)
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Figure 1.5: Left: Schematic view of a Chern insulator in a strip geometry with finite width
in the y direction. Right: Band structure for a 20 site wide strip. The color code shows the
center of mass location of the bands in the y direction.

can be realized as a nearest neighbor tight-binding model on the square lattice with two
orbitals per site. Cutting a strip that has a finite Ly number of unit cells in the y direction
but infinite in x reduces the system to effectively 1d. Now each unit cell has Ly sites, so we
find 2Ly bands as a function of kx. Most of these bands correspond to standing waves in the
y direction that have near homogeneous probability density across the strip. The dispersion
approximately maps out slices of the bulk 2d dispersion at evenly spaced ky values. If the
system is in the topological phase, however, we find states that are exponentially localized
on one edge. In Fig. 1.5 we show the numerically calculated band structure at m = 1. The
bulk bands are gapped and the center of mass is near the center of the strip. We find two
counterpropagating modes crossing the gap that are localized on opposite edges of the strip,
these are the chiral edge modes analogous to those in IQHE. We often use bandstructures in
the strip (or slab in 3d) geometry to illustrate surface states in the rest of the dissertation.

1.3.2 On-site symmetries and the ten-fold way

Translation invariant systems of non-interacting fermions in other dimensions and with ad-
ditional on-site symmetries can be classified using similar methods: by finding the homo-
topy classes and associated invariants of maps Hk from the d-dimensional BZ torus to a
constrained set of Hermitian matrices. On-site symmetries act strictly locally, in an appro-
priately chosen basis their action can be written as a product of commuting operators that
map non-overlapping compact regions onto themselves. The two most universal symmetries
are time reversal (T ) and charge conjugation (C) that combine with charge conservation and
spin rotation non-trivially, and we focus on them here. Free fermions can form topological
phases thanks to the Fermi exclusion principle, by completely filling bands with non-trivial
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topology. Free bosons at zero temperature, on the other hand, form a gapless Bose-Einstein
condensate. It is possible to force bosons to evenly fill entire bands by fine-tuning interac-
tions or by pumping. Even though free bosons are not in a topological phase, they still show
edge states in the bulk gap when in a topological band structure.

Time reversal acts as an antiunitary operator on the Hilbert space. This can be seen by
looking at the time-dependent Schrödinger equation

i∂t |Ψ(t)〉 = H(t) |Ψ(t)〉 . (1.6)

Besides reversing the direction of time, time reversal may also act in the Hilbert space of
a given instance t in a local, norm-preserving fashion. The time reversed history of the
wave funcion |Ψ(t)〉 reads T |Ψ(−t)〉 and the time reversed Hamiltonain as T H(−t)T −1.
Substituting this into the Schrödinger equation and renaming t→ −t, we get

− i∂tT |Ψ(t)〉 = T H(t)T −1T |Ψ(t)〉 = T H(t) |Ψ(t)〉 = T (i∂t) |Ψ(t)〉 . (1.7)

As T is temporally local, it must commute with ∂t, so the only choice is making it antiunitary
such that it anticommutes with i. Any antiunitary operator can be written as a combination
of a unitary and complex conjugation (K). Furthermore, we demand that if we reverse time
twice, the result is physically identical to the original state, T 2 ∝ 1 forming the two-element
group ZT2 . From the properties of T it follows that there are only two choices, T 2 = ±1. For
physical spin-1/2 fermions T = σyK and T 2 = −1. The other possibility may be realized
in systems without spin-orbit coupling, which allows combining T with a spin flip and only
focusing on one spin sector. This relies on SU(2)c spin rotation symmetry, which is only
approximate in a solid state system. T 2 = +1 is also possible in various effective models, or
if the system is invariant under TR combined with a π spin rotation, but not under TR or
spin rotations separately[14].

Charge-conjugation (or particle-hole) symmetry is somewhat more subtle. We may view
it as an extra antiunitary Z

C
2 “antisymmetry”, an operator that anticommutes with the

Hamiltonian such that CH = −HC. Again, we may choose whether C2 = ±1.
On the other hand, in the context of the Bogoliubov-de Gennes (BdG) formalism (Sec. 4.5)

it is not a physical symmetry, merely a constraint enforcing Hermiticity and Fermi-statistics
in a formalism that doubly counts degrees of freedom. It is actually the lack of charge (or
particle number) conservation. In the low energy theory of a paired superconductor charge
conservation is broken, as a Cooper-pair from the condensate can break up any time and
create two fermionic Bogoliubov quasiparticles, so we allow fermion bilinears of two creation
or annihilation operators cicj or c†ic

†
j. If charge is conserved, only terms like c†icj are allowed,

and the system has a global U(1)c phase symmetry: ci → eiφci (together with c†i → e−iφc†i ).
With no symmetry only the C2 = +1 case is realized with C = τxK where τx flips particle

and hole-like states. To get C2 = −1 we need to demand SU(2)s spin rotation invariance,
these are the singlet superconductors.

Both T and C can be absent, or square to either of the two signs which gives 9 possibilities.
If both symmetries are present, their combination S = CT is a unitary “antisymmetry”
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called chiral symmetry. Chiral symmetry may be present without T or C, it appears for
example in insulators on bipartite lattices or TR invariant superconductors with U(1)s spin
rotation invariance[15]. This completes the list of the 10 Altland-Zirnbauer (AZ) symmetry
classes[16].

Let us briefly review the most important symmetry classes.

• Class A This is the class of TR breaking (magnetic) insulators. Only relies on charge
conservation symmetry. The Chern insulators of the previous section represent this
class in d = 2. The class can also be realized in TR breaking superconductors with
spin-z conservation.

• Class AII Time reversal invariant insulators, relies on charge conservation and time
reversal symmetry. The quantum spin Hall (QSH) effect in 2d[17–19] and the strong
TI in 3d[9] belong to this class, both require strong spin-orbit coupling (SOC).

• Class AI Time reversal invariant insulators without spin-orbit coupling. Relies on full
spin rotation invariance. SOC approximately vanishes in materials consisting of light
elements.

• Class D TR breaking superconductors. This class requires no symmetry, any com-
bination of singlet and triplet pairing is allowed. There is a residual fermion parity
conservation that cannot be broken in any free (quadratic) theory.

• Class DIII TR invariant superconductors.

• Class C TR breaking superconductors without SOC. Needs full spin rotation invari-
ance, only singlet pairing is allowed.

• Class CI TR invariant superconductors without SOC.

The SPT phases of systems in the ten-fold way can be classified using various tech-
niques[11, 15] (Tab. 1.1). There is a remarkable periodicity in the classification which can be
explained by the study of Clifford-algebras and K-theory. The two unitary classes (without
antiunitary symmetries) repeat a pattern for changing d by 2. The 8 real classes, repeat
a pattern with a periodicity of 8, these are manifestations of the Bott periodicity. A com-
mon feature of these phases is that they admit an effective long-wavelength topological
field theory description[20, 21]. This guarantees stability in the presence of weak, symme-
try preserving disorder and interactions. However, different non-interacting phases may be
connected through strongly interacting gapped symmetric deformations [22, 23].

The classification can be easily enhanced by including additional unitary on-site sym-
metries that commute with the symmetries considered so far. As an on-site symmetry acts
locally and identically at every k-point, Hk can be block-diagonalized, and the above classi-
fication applied to each block separately, resulting in a symmetry graded classification. This
can also be applied for spatial symmetries on the subspace of the BZ that is left pointwise
invariant (Sec. 1.3.5).
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class T C S physical symmetry d=0 1 2 3 4 5 6 7

A 0 0 0 U(1)c/s Z Z Z Z

AIII 0 0 1 U(1)s × ZT2 Z Z Z Z

AI 1 0 0 U(1)c o Z
T
2 × SU(2)s Z 2Z Z2 Z2

BDI 1 1 1 Z
T +
2 Z Z 2Z Z2

D 0 1 0 0 Z2 Z2 Z 2Z

DIII -1 1 1 Z
T
2 Z2 Z2 Z 2Z

AII -1 0 0 U(1)c o Z
T
2 2Z Z2 Z2 Z

CII -1 -1 1 SU(2)s × ZT +
2 2Z Z2 Z2 Z

C 0 -1 0 SU(2)s 2Z Z2 Z2 Z

CI 1 -1 1 SU(2)s × ZT2 2Z Z2 Z2 Z

Table 1.1: The periodic table of non-interacting fermions. Time reversal (T ), charge conju-
gation (C) and chiral (S) symmetry can be absent (0) or square to ±1. We also list examples
of physical symmetries that realize the classes in systems of spin-1/2 fermions. These can
be time reversal (ZT2 ), time reversal combined with a π (pseudo)spin rotation (ZT +

2 ), charge
conservation (U(1)c), spin-z conservation (U(1)s) or full spin rotation invariance (SU(2)s).
The classification is marked with the corresponding abelian group (Z2 or Z ' 2Z), no symbol
means there is only one trivial phase.

In the following sections we briefly review the state of theoretical and experimental re-
search in the most studied classes.

1.3.3 Quantum spin Hall effect

The quantum spin Hall state is the nontrivial two dimensional phase in class AII. Shortly
after its prediction[17–19] it was experimentally realized[24] in HgTe quantum wells. The
hallmark feature of this phase is an insulating bulk with a pair of topologically protected
gapless edge modes resulting in 2e2/h longitudinal conductance. The two counterpropagating
modes have opposite spin polarization, which prevents backscattering even in the presence
of TR invariant disorder.

Quantum spin Hall effect is in fact a misnomer, as in general these systems completely
break spin rotation invariance in the bulk. A conserved spin current cannot be defined in
the absence of spin conservation. In the effective low energy theory of the edge, the states
at the Fermi level select a spin quantization axis. This spin component is approximately
conserved and a transverse electric field drives a nonzero spin current, resulting in a spin-
hall conductance of 2 e

4π
. This picture is only correct in a pristine edge with translation

invariance, a spatial modulation of the Fermi level causes the quantization axis to rotate.
The Z2 classification can also be understood using the edge states. TR invariance de-
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mands that modes with opposite momentum carry opposite spin, but the spin direction can
be arbitrarily twisted without leaving the phase. Combining two QSH edges, where the
right movers in one system have the same spin polarization as the left movers in the other,
it becomes possible to fully gap the edge.

1.3.4 Three dimensional topological insulators

Class AII hosts a nontrivial topological phase in 3d as well. Similarly to QSH systems, a
material realization in strongly spin-orbit coupled Bi2Se3 was found[25, 26] shortly after the
theoretical proposal[9]. A TR invariant surface is metallic, with a single Dirac cone. If TR
invariance is broken, the surface is gapped out, but a half-integer surface Hall conductance
is left behind. Both of these situations is impossible in a purely 2d system with the same
symmetry, showing the topological nature of the bulk. Stacking two such surface layers,
however, results in a trivial or Chern-insulator 2d system, that can arise from the details of
the surface termination of a trivial bulk, resulting in a Z2 classification. A different view of
the bulk phase comes form the half-quantized magnetoelectric effect[20, 27]. A topological
E · B term is allowed in the effective electrodynamics of TR invariant crystalline systems.
This results in an electric polarization response parallel to magnetic fields, and conversely a
magnetic polarization in response to electric fields.

Besides the above strong Z2 index, 3d crystalline insulators have three further Z2 invari-
ants[9]. These are analogues of the 2d QSH invariant for TR invariant cuts of the BZ, called
weak indices. Insulators with only nontrivial weak indices are adiabatically connected to
weakly coupled stacks of QSH layers. As explained in the previous section, these layers can
pairwise couple to form trivial layers, this is only prevented if the translation invariance be-
tween the layers is preserved. Thus we see that these weak phases rely on lattice translations
for symmetry protection, the simplest example of topological crystalline insulators.

1.3.5 Topological crystalline insulators

In recent years, extensions the SPT classification scheme to phases protected by space group
symmetries gained much attention[14, 28–54], these phases are called topological crystalline
insulators and superconductors (TCI/TCSC). Initially topological crystalline phases were
viewed as unphysical because of the reliance on perfect crystalline order. However, further
efforts then showed that weak topological phases have many robust features emerging from
topology[55–59], in particular that lattice defects play a special role in these phases and
topological zero modes captured by them signal SPT order in the disorder-free bulk[39, 60–
62].

As a simple example we present a construction of mirror Chern insulators[28] in terms of
weakly coupled Chern insulator layers[63]. Consider a layered 3d material with layers in the
xy plane that has two spinful s orbitals on every site. The symmetries we impose are charge
conservation (class A), lattice translations and a single mirror. A mirror Mz : z → −z acts
on the spin sector as iσz, the two spin z eigenstates have ±i eigenvalues. Let us put the
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symmetry sectors in half filled Chern-insulator states with the filled +i band with Chern
number C+ = C and the filled −i band with C− = −C.

If the layers are completely decoupled, Hk does not depend on kz and every xy cut looks
like a combination of Chern insulators. In k-space the mirror also flips the sign of kz, so the
Hilbert spaces at kz = 0 or π are mapped onto themselves. This means the mirror eigenvalue
is well defined at these two mirror-invariant planes. If we turn on hopping between the layers,
the symmetry prevents hybridization of the two mirror sectors at the high symmetry planes.
So we see that even though the total Chern number is zero, the mirror symmetry allows
the definition of the mirror Chern number CM = 1

2
(C+ − C−) at these invariant planes,

signaling nontrivial topological crystalline order. A surface in the xz plane preserves the
mirror symmetry, and one finds C pairs of counterpropagating chiral modes as a function
of kx at fixed kz = 0 or π. All the right movers have +i mirror eigenvalue, while the left
movers have −i, preventing a gap from opening. If we move away from the symmetric kz
values, the surface bands can hybridize, opening a gap, resulting in Dirac-cones on the high
symmetry lines.

1.3.6 Weyl semimetals

A different kind of topological states of matter we did not explain in detail are gapless
topological phases. These phases are distinguished from trivial gapless phases by robust
properties that can only be changed by large deformations[64].

A simple realization of such a phase with noninteracting fermions is a Weyl semimetal [65–
68]. These 3d materials host pointlike crossings of two bands that are topologically protected.
To see this, consider the 2-band effective Hamiltonian linearized near the band-crossing. Most
generally

Hk = k · σ + µ (1.8)

for an appropriate (not necessarily orthogonal) basis in k-space. The crucial fact is that
such Hamiltonians exhaust the full space of 2-band Hamiltonians, an arbitrary perturbation
merely shifts the Weyl-point either in momentum or energy, but cannot gap it out. Weyl
semimetals are in some sense generic, as the space of 2-band Hamiltonians (ignoring the
constant energy shift) is 3 dimensional, a mapping from the 3d Brillouin-zone includes the
origin with a finite probability.

There are several topological aspects to this band crossing. Calculating the Berry flux for
occupied bands on a sphere surrounding the Weyl-point one finds that it is quantized to ±1.
So the Weyl-node acts as a monopole for the Berry vector potential. This also implies that
the total charge of Weyl-points must be zero and they can pairwise annihilate by merging.
For cuts of the BZ that separate opposite charges the Berry flux is also nonzero. By analogy
to Chern insulators, we expect that the projection of such a cut onto the surface BZ will cross
a gapless chiral mode. By moving the surface we can map out the surface dispersion, and
find Fermi arcs connecting the projections of Weyl-points of opposite charge. These unusual
lines of gapless excitations do not enclose a Fermi surface, instead at the end of the arc the
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states extend into the bulk to then emerge on the opposite surface of the sample to form the
counterpart of the Fermi arc. Besides direct detection using angle-resolved photoemission
spectroscopy, the presence of the arcs can also be inferred from quantum oscillations[69].
The study of responses of low symmetry (semi)metals is an active area of research. Many
of these responses, such as optical gyrotropy[70, 71] and negative magnetoresistence[72, 73]
are forbidden by common symmetries like time reversal and inversion, thus scarcely studied
in the literature.

1.4 Fractional Quantum Hall effect

The first strongly interacting topologically ordered states that were experimentally discovered
are the fractional quantum Hall (FQH) states[6]. Phenomenologically they manifest in a
similar fashion to the integer effect, but with robust plateaus of the Hall conductance at
rational fractions of the conductance quantum σxy = νe2/h.

Electrons confined to a 2d plane a strong external normal magnetic field form Landau-
levels: the single particle energy levels are highly degenerate and evenly spaced. The level
spacing is given by the cyclotron energy Ec = ~ωc = ~eB/m. The degeneracy of each level
is such that there is one electronic state per flux quantum penetrating the surface. This
allows the definition of the filling fraction ν = (hn) / (eB), the number of electrons per flux
quantum with the electron number density n. If ν is an integer, some LL’s are completely
filled, in strong enough magnetic field such that Ec is much larger than other energy scales
(such as interactions or temperature) excitations to the next LL are absent and a gapped
IQH state is formed. If ν is fractional, however, there is a huge ground state degeneracy in
the non-interacting limit and the ground state is chosen exclusively by interactions however
weak. Considering this, it is quite surprising that we find a robust gapped state and a
mystery why certain fractions are preferred while others are not.

1.4.1 Bulk theory

The first theoretical proposal came from Laughlin[7] in terms of the many-particle wave
function

Ψ ({zi}) =
∏
j<k

(zj − zk)m exp

(
−1

4

∑
l

|zl|2
)

(1.9)

where zi = xi + iyi are electronic coordinates and m is an odd integer indexing the principal
FQH states. These wave functions have the desired properties of uniform charge density
and because of the m-th order zeroes, when two electrons are close by, the electrons “avoid”
each other and Coulomb energy is lowered compared to an uncorrelated state. Later it was
shown by Haldane[74] that the Coulomb interaction can be expanded in terms of the relative
angular momentum of the electrons (pseudopotential) and these wave functions are exact
eigenstates if the series is truncated after m terms.
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The appearance of fractionally charged quasiparticles can be understood at this level,
using the charge pumping argument[7]. Imagine starting from a disk of the FQH state, then
adiabatically inserting an infinitely thin flux tube at the middle. The changing flux induces
a circular electric field, that dives a radial current as demanded by the Hall conductivity
σxy = νe2/h. When the flux reaches one flux quantum, the Hamiltonian is identical to the
original, completing the pumping cycle. However, a total of νe charge leaves the vicinity
of the flux tube, thus creating an excited state with a localized fractionally charged exci-
tation, a quasihole. The associated wave function with a quasihole at z0 can be written as
Ψz0 ({zi}) =

∏
j(zj − z0)Ψ ({zi}). This picture also explains why the filling fraction and the

Hall conductivity coincide. In the symmetric gauge the LL basis functions are concentric
annuli. By inserting a flux through the origin, each orbital moves smoothly out, taking the
place of the next one by the end of the cycle. Assuming that the structure and the uniform
density of the many-body wave function does not change during this process, the charge
depletion in the center is exactly given by the filling fraction.

Using the principal states as building blocks it is possible to construct a hierarchy of
FQH states[74]. If there is a finite density of quasiparticles (because the filling is sufficiently
detuned from ν = 1/m) the quasiparticles can again form a principal state. For example
the ν = 2/5 state can be viewed as a 1/3 state with a 1/5 state of e/3 quasiparticles on top,
since 2/5 = 1/3 + 1/3× 1/5.

A different view of the hierarchy is given by the composite fermion picture[75]. A closer
look at the Laughlin wave function reveals that an electron encircling another picks up 2πm
phase. 2π is from the Fermi statistics (half of an encirclement amounts to an exchange
that comes with a π phase) and the rest can be viewed as magnetic flux “attached” to the
electrons. As the average electron density is homogeneous, this attached flux is smeared
out and forms part of the external magnetic field. So attaching m − 1 flux quanta to each
electron, we are left with composite fermions at filling ν∗ = 1. So in this picture a FQH
state is the IQH state of composite fermions. To build the hierarchy we can go the other
way, starting from an integer state at ν∗ and attaching 2p flux quanta to each electron, for
example the 2/5 state has ν∗ = 2, p = 1.

This flux attachement argument can be made more rigorous, and after integrating out
the fermions in a mean-field approximation we are left with an effective Chern-Simons (CS)
gauge theory [76, 77]. A state at the nth level of the hierarchy is described in terms of an
n-component statistical gauge-field aIµ with the Lagrangian density

L = − 1

4π~
εµνλKIJaIµ∂νaJλ +

e

2π~
εµνλtIAµ∂νaIλ (1.10)

where the summation over field component (I, J) and spacetime (µ, ν, λ) indices is implicit.
K is an integer matrix (K-matrix) and t an integer vector (charge vector) characterizing the
topological order and its response to external electromagnetic fields. A principal state, for
example has K = (m) and t = (1).

It is easy to see how this Lagrangian reproduces the phenomenology of the FQHE. The
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current is given by
δL
δAµ

= Jµ =
e

h
tIε

µνλtI∂νaIλ, (1.11)

substituting this into the equation of motion

δL
δaIµ

− ∂ν
δL

δ (∂νaIµ)
= 0 (1.12)

we find

Jµ =
e2

h

(
tTK−1t

) (
εµνλ∂νAλ

)
. (1.13)

Looking at different components, we find that the charge density is proportional to the
magnetic field with filling fraction ν = tTK−1t and the Hall conductance σxy = ∂Jx/∂Ey =
νe2/h.

The theory is gapped in the bulk and the excitations are vortices of the aI fields (with a
core energy not included in the Lagrangian) corresponding to localized charged quasiparti-
cles. Such vortices can happen in one or more of the field components, characterized by an
integer vector m listing the vorticities. The charge of the excitation is given by emTK−1t.
Generic quasiparticles have anyonic exchange statistics, that is, under the exchange the com-
plex phase picked up by the wavefunction is not bosonic (0) or fermionic (π) but given by
πmTK−1m. All the states described by the K-matrix formalism are abelian, as particle
exchanges commute. Other FQH states may be nonabelian[78], such that an exchange acts
as a unitary operator on the space of locally indistinguishable degenerate excited states with
identical quasiparticle positions.

1.4.2 Edge theory

Similar to IQHE and Chern-insulators, FQH states demonstrate gapless edge states. While
the bulk is insulating, the edges have nontrivial transport properties. For example, there is
nonzero resistance between contacts on the edge of a QH sample. Tunneling current[79, 80]
and noise[81–83] measurements between edges separated by the FQH liquid or the vacuum
provide further insights to the structure of the topological order.

The Chern-Simons theory is not gauge-invariant at the boundary, this can be fixed by
restricting gauge-transformations, which makes some of the gauge degrees of freedom dy-
namical at the boundary. This results in the effective Chiral Luttinger Liquid (χLL) theory

Ledge =
1

4π
(KIJ∂tφI∂yφJ − VIJ∂yφI∂yφJ) . (1.14)

The low energy excitations are waves propagating on the edge of the incompressible liquid.
In general there is a different number of left and right moving excitations. If all excitations
propagate in the same direction, the edge is fully chiral and backscattering is forbidden.
Similar to the bulk theory, excitations are characterized by an integer vector m. Some of
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these have unit charge, electrons tunneling in through vacuum, or from a trivial metallic
lead excite some combination of these modes. Tunneling through the bulk at a quantum
point contact is allowed for all excitations, as the FQH liquid hosts the corresponding frac-
tionalized quasiparticles. Using this, it is possible to verify the presence fractionally charged
quasiparticles.

1.5 Outlook

One of the most promising application of topological states of matter is topological quantum
computing [84–86]. Quantum computers process information by executing unitary operations
on an entangled set of quantum states. The main obstacle to developing this technology is
decoherence, interaction with the environment ruins the phase coherence of the quantum
state, eventually leading to wave function collapse into a classical product state. Topological
quantum computing addresses this issue by storing the quantum information non-locally. As
we previously mentioned, topological states of matter may have degenerate states that are
locally indistinguishable. This provides protection against local perturbations, as the locally
identical states are perturbed in an identical way and the relative phase in a superposition
is preserved.

Using multi-genus surfaces to harness the ground state degeneracy is practically very
challenging. Instead, most attention is focused on nonabelian states, that have degeneracy
on a trivial geometry when quasiparticles are present. Adiabatic braiding of nonabelian
quasiparticles (nonabelions) performs unitary operations on the degenerate manifold with
an error rate exponentially suppressed with their separation. Certain FQH states are thought
to host nonabelions, however, no definitive experimental evidence of this is known to date.

The simplest nonabelions are Majorana fermions [87]. These can be thought of as “half of
a fermion”, representing the real an imaginary part of a fermionic zero mode. The two halves
can be spatially localized and well separated, such systems are experimentally accessible in
1d superconducting heterostructures[88, 89]. These quantum wires realize the nontrivial
phase in the Z2 classification of class D in 1d. While braiding is not well defined in strictly
1d, use of wire networks was proposed[90] to perform effective braiding. While Majoranas
alone are not sufficient for universal quantum computing, it is a promising direction to realize
scalable quantum computing with partial topological protection in the near future.

Further progress may be made by harnessing the effects of strong disorder on interacting
topological phases. Topological order combined with many-body localization can result in
phases where not only the ground state, but all excited states are short-range entangled and
carry topological information[91]. This opens up the possibility to observe novel quantum
effects and engineer topological quantum computers without the need of cooling near the
ground state.
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Chapter 2

Overview of dissertation

The dissertation is divided into three parts. In Part II we study the edge excitations of
fractional quantum Hall systems. In Part III we investigate classification of non-interacting
fermionic topological phases in the presence of space group symmetries. In Part IV we
generalize the notion of the magnetoelectric effect to metallic systems.

Part II

• Chapter 3 presents a study of edge excitations of abelian fractional quantum Hall
liquids on an infinite strip geometry. We use the iDMRG method to numerically
measure edge exponents in model systems, including subleading orders. Using analytic
methods we derive a generalized Luttinger’s theorem that relates momenta of edge
excitations. The work was completed in collaboration with Michael P. Zaletel and Joel
E. Moore, published in Ref. [92].

Part III

• Chapter 4 reviews the formalism and main technical results used throughout Part III.
We review concepts of space group symmetry and geometry of band structures. Then
we develop the transformation properties of these geometrical objects under generic
space group operations. These results were published as appendices to Refs [48] and
[49], here we organized them into a separate chapter for a more transparent presenta-
tion.

• Chapter 5 presents results about the quantization of topological θ-terms protected by
orientation-reversing space group symmetries. We construct and analyze tight-binding
models with glide symmetry in 3d in classes A, D and C to illustrate the general result.
This study was completed in collaboration with Fernando de Juan and Yuan-Ming Lu,
published in Ref. [48].

• Chapter 6 presents results about constraints on weak indices imposed by space group
symmetries. We focus on spin-orbit coupled insulators with and without time reversal
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invariance and consider both symmorphic and nonsymmorphic symmetries. This study
was completed in collaboration with Fernando de Juan and Yuan-Ming Lu, published
in Ref. [49].

• Chapter 7 reviews some results about zero and one dimensional invariants. Zero dimen-
sional invariants are obtained from studying space group representations. We develop
the transformation properties of Wilson loops under space group operations and possi-
ble crystalline topological phases characterized by resulting invariants. Some of these
results are unpublished, others appeared in appendices of Ref. [49].

Part IV

• Chapter 8 generalizes the notion of a topological θ-term to 3d metallic systems. We use
semiclassical dynamics to study the current response to elastic strain in static external
magnetic fields, an effect we call magnetopiezoelectricity. This work was completed in
collaboration with Adolfo G. Grushin, Roni Ilan and Joel E. Moore and published in
Ref. [93].
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Part II

Edge states of 2D quantum liquids
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Chapter 3

Edge excitations of abelian FQH
states

We use bosonic field theories and the infinite system density matrix renormalization group
(iDMRG) method to study infinite strips of fractional quantum Hall (FQH) states starting
from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately mea-
sure chiral central charge, edge mode exponents and momenta without finite-size errors. We
analyze states in the first and second level of the standard hierarchy and compare our results
to predictions of the chiral Luttinger liquid (χLL) theory. The results confirm the univer-
sality of scaling exponents in chiral edges and demonstrate that renormalization is subject
to universal relations in the non-chiral case. We prove a generalized Luttinger’s theorem
involving all singularities in the momentum-resolved density, which naturally arises when
mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of
non-Fermi liquids in 1D.

3.1 Introduction

The incompressible liquids of two-dimensional electrons that underlie the fractional quantum
Hall effect (FQHE) are believed to support excitations with fractional charge and anyonic
statistics. For the “abelian” states, including the Laughlin states at fractional filling ν = 1/m
of the lowest Landau level [7], the quasiparticles pick up an exchange phase factor that is
neither bosonic nor fermionic, as allowed in two-dimensional systems.[94] Experiments on
these quasiparticles typically involve edge [79, 80, 82, 95, 96] or dot [97] geometries. While
it is clear that the gapless excitations at an FQHE edge are different from those of a Fermi
liquid, it has been challenging to obtain quantitative agreement between microscopic models
and predictions of the effective theory.

We aim to answer two long-standing questions about fractional quantum Hall edge physics
by combining recent analytical and numerical advances in mapping the 2D Landau level of an
infinitely long cylinder to an unusual 1D fermion chain. First, we address whether electron
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Figure 3.1: a) Geometry: An infinitely long cylinder of circumference L with a trapping
potential V (x) squeezing the fluid into a strip of width W . Coordinate x runs around the
circumference, and y along the infinite length. The Landau orbitals are localized in y. b)
Real space edge correlation functions |C(y)| = 〈ψ†(x, y)ψ(x, 0)〉 for ν = 1/3 (green),
ν = 2/5 (yellow) and ν = 2/3 (red). x lies near the edge of the strip. Guiding dashed
lines indicate η = 3 and η = 1.14 power laws. In the 2/5 case, oscillations are present
due to two η = 3 contributions with different momenta. c) Central charge c from
finite entanglement scaling. The correlation length ξ and the entanglement entropy S
are measured for increasingly accurate MPS, and are found to scale as S = c

6
log(ξ) + s0.

The markers are the measured data points; the undashed lines show the scaling relation for
c = {1, 2, 2} for the ν = {1/3, 2/5, 2/3} states respectively; the dashed lines indicate slopes
for c± 1/4.

correlation functions along an unreconstructed[98] edge have the universal behavior pre-
dicted by the chiral Luttinger liquid (χLL) theory. [77, 99] If universal, the edge correlation
functions are an experimentally accessible probe of the topological order characteristic of
the FQHE phase. For the interactions studied here (truncated dipolar for nu = 1/3, hollow-
core for nu = 2/5 and 2/3) we find unambiguous evidence that for maximally chiral edges
with excitations moving in only one direction, the equal time electron correlation functions
show universal exponents resulting from the bulk topological order, while non-chiral edges
have exponents depending on the intra-edge interactions. In both cases, the subleading edge
exponents obey the relations obtained from χLL theory.

Second, since our method involves mapping the Landau level of a cylinder to a 1D fermion
chain, we address how the critical states that arise when studying FQHE edge physics fit
into standard descriptions of 1D metals. For a 1D metal, Luttinger’s theorem [100] can be
taken to mean that the volume of the Fermi sea, as determined by the non-analytic points
in the electron occupation nk, is not modified by interactions (though we note that there
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is continuing debate over the validity of Luttinger’s original formulation in the presence of
non-perturbative effects[101]). Haldane conjectured [102, 103] a ‘Luttinger sum rule’ that
extends Luttinger’s theorem to FQH strips in the Abelian hierarchy, which was motivated
by a simplified picture of the density profile of the hierarchy states. We unambiguously state
and prove a ‘generalized Luttinger’s theorem’ which constrains the momenta of singularities
in the Greens function of any Abelian FQH state. In the K-matrix description of the χLL
it takes the simple form kT t = πνT , where νT is the filling fraction of the cylinder, which
agrees with Haldane’s conjecture for the hierarchy states. We prove the constraint using the
Lieb-Shultz-Mattis theorem, [104, 105] and confirm it numerically for some one-component
and two-component edges. We then clarify why any strip of an Mth level hierarchy state is,
in the 1D picture, an M -component Luttinger liquid, which implies that any two states at
level M can be adiabatically transformed into each other.

We use a geometry (Fig. 3.1a) in which the edges are infinitely long, which we study
using the infinite system density matrix renormalization group (iDMRG).[106, 107] Since
the problem is translation-invariant along the infinite direction, the approximation in ma-
trix product state numerics is not finite-size but rather finite matrix dimension or “finite
entanglement.”[108] An advantage of this geometry is that correlation functions in the long
direction can be obtained over much greater lengths than possible using exact diagonaliza-
tion, leading to unambiguous scaling behavior. Recent work on how entanglement scales at
conformally invariant quantum critical points [108–111] also allows us to extract the central
charge of the edge (Fig. 3.1c). The finite circumference does not cut off the correlation length
of the edge, and we find that the edge exponents become well quantized at circumferences
where there is still significant non-uniformity of the electron density of the bulk.

Tunneling experiments, which probe the frequency and temperature dependence of the
edge Green’s function, have measured a tunneling exponent of α ∼ 2.7 for the 1/3-edge, while
the unreconstructed χLL prediction is α = 3. [79] Numerical studies have since investigated
the equal time correlation functions and made comparison with χLL theory. [112–121] There
is general agreement that the ‘model’ wave functions obtained from a conformal field theory
(CFT), such as the Moore-Read and Laughlin wave functions, must have the exponents
predicted by the associated CFT.[112, 122] The situation is much less clear both for the
hierarchy states and for longer range interactions. For the 1/3-edge there is some evidence,
using finite sized disks, that η3 in fact depends on the interactions ( Ref. [113, 123] found
η3 ∼ 2.5 for the Coulomb interaction r−1 and η3 ∼ 2.6 for a Yukawa interaction r−1e−r/`B).

3.2 Model and Methodology

We first map the continuum problem to a translationally invariant fermion chain.[124–126]
We start with an infinitely long cylinder of circumference L, (Fig. 3.1a). Letting x be the
coordinate around the cylinder, and y along it, we choose the Landau gauge A = B(−y, 0)
so that each LLL orbital φn(x, y) is localized in the vicinity of yn = na with a = 2π`2

B/L,
and can be ordered sequentially. Interactions and potentials which are translation invariant
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Figure 3.2: The occupation number nk, which is the Fourier transformation of the orbital
correlation function 〈ψ†nψ0〉, or equivalently, the occupation of Landau orbitals for the gauge
in which they are localized in x. The gray dashed lines indicate the ‘wedding cake’ caricature
of the hierarchy states. Three states are shown: i) ν = 1/3 for W = 3

4
17`B, both for the

model ‘hollow-core’ interaction (red dashed) and for a truncated version of the r−3 dipole
interaction (solid). ii) ν = 2/5 at W = 5

8
19.2`B. iii) ν = 2/3 at W = 3

4
20`B

.

along y result in a translation invariant Hamiltonian for the fermion chain. The interac-
tion matrix elements are nonzero up to infinite distances, but are exponentially suppressed
over a characteristic length O(L/`B) sites. The mapping is exact, but we must truncate
the interaction terms in order to use the iDMRG, which limits the economically accessible
circumference to L . 24`B.[127]

After fixing a filling fraction νT for the cylinder, a trapping potential V (x) is projected
into the LLL, resulting in hopping terms in the 1D picture. The trap squeezes the Hall
fluid into a denser strip of width W . For example, to obtain the ν = 1/3 strip, we set
the overall filling of the cylinder to νT = 1/4 and use a trap of width W = 3

4
L. Rather

than realistically modeling a cleaved edge, [115] the trap potentials were chosen to stabilize
the desired phases and avoid edge reconstruction, by using a box of depth t and width W
convoluted with a gaussian of width d ∼ `B to smooth the edge. For the 1/3-state, we
use a truncated dipolar interaction r−3e−(r/7`B)2

. For the 2/5, 2/3-states, we use only the
hollow-core Haldane pseudo-potential interaction V1.[124, 128]
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3.2.1 iDMRG and Finite Entanglement Scaling

To find the ground state we use the iDMRG method as adapted to the QH problem.[127,
129, 130] The iDMRG algorithm is a variational procedure within the space of infinite matrix
product states (iMPS). An iMPS has finite bipartite entanglement, while the entanglement
of the critical edges diverges logarithmically, so the iMPS ansatz cuts off the correlations at a
length ξMPS depending on the dimension χ of the matrices used. The finite size effects have
been removed, but ‘finite entanglement’ effects introduced. Analogous to finite size scaling,
the finite entanglement ansatz introduces only one length scale, and a ‘finite entanglement
scaling’ (FES) procedure has been developed for extracting critical properties. [108, 131–
133] One advantage of FES is that the complexity to obtain a correlation length ξMPS scales
as O(ξ3κ

MPS) for an exponent κ that depends on the central charge.[108] In contrast, to
find the ground state of a disk of circumference L in exact diagonalization (ED) scales as
O(αL

2
). We obtain states with ξMPS ∼ 200`B, an order of magnitude larger than the largest

disk circumferences obtained from ED, and somewhat larger than the disk circumference
obtained through composite fermion ED. For the largest simulations used here, χ ∼ 1400,
which required about 30 cpu-hours.

The output of the iDMRG calculation is an iMPS representation of the approximate
ground state, from which we can efficiently measure any desired observable.

3.2.2 Obtaining the edge-exponents

The electronic edge exponents are encoded in power-law contributions to the equal time
electron correlation function C(x; y) = eixy`

−2
B 〈ψ†(x, y)ψ(x, 0)〉. Here ψ(x, y) is the electron

operator in the FQH model, and the phase factor is chosen for convenience.
We first review the expected form of C in χLL theory. The low energy effective theory

of a generic abelian FQH edge is described using the K-matrix formalism:[77]

S =
1

4π

∫
dydt (KIJ∂tφI∂yφJ − VIJ∂yφI∂yφJ) . (3.1)

K specifies the topological order, while V depends on the microscopic details and sets the
edge velocities and their density-density interactions. We suppress the indices in what fol-
lows. A generic quasiparticle excitation is characterized by an integer vector m, ψm(y) =
eim

Tφ+imTk y/a. The quantum numbers of the excitation are specified by the ‘charge vector’
t and ‘momentum vector’ k. The momentum of ψm is km = kTm, with the convention
k ∈ [−π, π] regardless of L. The charge of ψm is qm = tTK−1m. As we only probe electronic
excitations, we restrict to qm = 1.

As the bulk is gapped, the dominant long range contributions to C are power laws from
each charge 1 operator in the edge theory:[77, 134]

C(x; y) = i
∑

m:qm=1

cm(x)eikmy/a
1

yK(m)

1

|y|ηm−K(m)
+ · · · . (3.2)



CHAPTER 3. EDGE EXCITATIONS OF ABELIAN FQH STATES 27

Here K(m) = mTK−1m is an odd integer, while ηm is the equal time scaling exponent of the
excitation m, and depends on both K and V . A consequence of the projection into the LLL
is that each cm(x) is a Gaussian peaked at xm = Lkm/2π; hence the momenta km indicates
the depth x at which the mode propagates.

It is easiest to perform the FES collapse in k-space. After Fourier transforming in y
to obtain C(x; k), the power-law behavior results in non-analytic dependence on k at the
discrete set of momenta {km}. To proceed we express C(x; k) in the lowest Landau level.
Letting ψn denote the field operators of the Landau orbitals, we form the Fourier transformed
operators ψk = 1√

NΦ

∑
n e
−iknψn, where we temporarily consider a finite number of orbitals

NΦ. Note that ψk are also the creation operators for orbitals in the A = B(0, x) gauge
convention, localized at x = Lk/2π. For large L/`B, we find

C(x; k) =

∫
dye−iky/aeixy`

−2
B 〈ψ†(x, y)ψ(x, 0)〉 (3.3)

=
1√
π`B

nke
−`−2

B (Lk/2π−x)2

(3.4)

where nk ≡ 〈ψ†kψk〉 is the k-space occupation number in the 1D chain. The gaussian factor
implies that the correlations at x are dominated by the behavior near k ∼ 2πx/L. In the
vicinity of each non-analytic point nk takes the form [124]

nk ∼ θ (k − km) |k − km|ηm−1[a0 + a1(k − km) + · · · ] + · · · (3.5)

where the higher powers of k arise from more irrelevant ‘descendent’ operators. To determine
ηm numerically we use a modified version of a fractional derivative defined by

Dν [nk] = F [|r|νF−1[nk]] (3.6)

where F is the Fourier transform. We expect

Dηm−1[nk] ∼ θ (k − km) [b0 + b1(k − km) + · · · ] + · · · (3.7)

which can be used to check for the correct choice of ηm.
However, the finite entanglement effects cut off the correlation functions at a scale ξMPS,

and hence round out the non-analytic behavior. On dimensional grounds, the smearing must
take the form

θ(k − km)→ s(ξMPS(k − km)) (3.8)

where s is some smoothed version of a step function. For the correct choice of ηm, we can
collapse the data by plotting Dηm−1[nk] as a function of ξMPS(k − km), up to irrelevant
corrections and the smooth background, as can be seen in Fig. 3.3. The collapse gives a very
precise measurement of both km (to better than one part in 10−5) and ηm (to about one
part in 10−2).
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Figure 3.3: Analysis of a ν = 1/3 strip of width W = 3
4
17`B. The measured D2[nk] is

plotted for increasingly accurate MPSs, parameterized by their correlation length ξMPS.
The crossing of the lines at k3 = 3

8
· 2π indicates a singularity at k3, corresponding to the

edge of the droplet. Inset. Scaling collapse supports a true singularity with the predicted
exponent η3 = 3. If η3 = 3, then the singular part of D2[nk] is dimensionless near k3, so
no vertical scaling is necessary. The combination ξMPS(k − k3) is also dimensionless, so the
data should collapse when plotted as a function of ξMPS(k − k3).

3.3 Edge universality at ν = 1/3, 2/5 and 2/3.

3.3.1 The ν = 1/3 edge

We first study the filling ν = 1
3
, a first level hierarchy state whose edge theory supports a

single chiral mode. If the edge is described by a χLL, the dominant electronic edge exponent
is predicted to be quantized to η3 = 3 when the two edges of the strip don’t interact.[77]

We start with a ‘thick’ strip of width W = 3
4
17`B on a cylinder of circumference L = 17`B,

with a cylinder filling fraction of νT = 1/4. For the interaction we use truncated dipolar
repulsion, V (r) = r−3e−(r/7`B)2

, which was used in favor of the Coulomb interaction as a
compromise between the increased numerical cost of longer range interactions and the need to
ensure the interaction is significantly perturbed from the model Hamiltonian. Consequently
the interaction between the two edges should be very weak. The distribution nk is shown in
Fig. 3.2i, including a comparison to the profile when only V1 is used.

The dominant singularity of the ν = 1
3

edge is observed to occur at |k3| = 3
8
· 2π ± 10−6,

corresponding to the naive ‘edge’ of the strip as would be obtained from assuming nk to be
a box of height 1

3
, an example of the Luttinger sum rule. The results of the FES collapse

assuming η3 = 3 are shown in Fig. 3.3, showing excellent agreement. To check the precision
with which we can determine η3, we repeat the collapse for various η3 as shown in Fig. 3.4.
The exponent is best fit by η3 = 3.005± 0.02.
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Figure 3.4: Comparing collapse of the ν = 1/3 strip for different ansatz η. The correct
η is distinguished by two features: the tightness of the collapse for various ξMPS, and the
degree of under/overshoot to the form of a step function. The trial collapses at different
η are shifted apart vertically for clarity. Left panel) a thick strip, W = 3

4
17`B. We find

η3 = 3.005 ± 0.02, consistent with no inter-edge interactions. Right panel) a thin strip,
W = 9

10
11`B. Because the edges are close to one another, inter-edge interactions renormalize

η upwards to η = 3.13± 0.02

3.3.2 Renormalization of edge exponents for thin strips

To verify that the measurement of η3 = 3 is not a bias of the approach, we let the edges
interact so that η3 = 3 renormalizes upwards. Using the same interactions and trap profile as
before, but using a L = 11`B,W = 9

10
11`B strip, the edges now interact across the vacuum.

As shown in Fig. 3.4, the exponent indeed renormalizes upwards to η3 = 3.135.
For thin strips the 1/3-state contains multiple electron operators, which correspond to

inserting, for example, charge 2
3
e on one edge and 1

3
e on the other, which we label m =

(2, 1). The amplitude for such a process decays as e−(W/`B)2/4. χLL theory predicts a fixed
relationship between η3 and η(2,1) even if η3 has renormalized away from 3, which can be
derived in the K-matrix formalism.

A single edge of the 1/3 state is described by K = (3), t = (1), but if the two edges of
the strip are in proximity we cannot neglect interactions between them. The full edge theory
is K ′ = K ⊕ (−K), t′ = t⊕ (−t), k′ = k⊕ (−k) and V , restricted by mirror symmetry, has
two independent components. Two singularities we observe correspond to m = (3, 0) and
m = (2, 1),[124, 135, 136] and their exponents should satisfy the relation

η̃3 = 5η(2,1) − 4
√
η2

(2,1) − 1. (3.9)
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Figure 3.5: Checking the predicted χLL exponent relations as the ν = 1/3 trap is squeezed.
On a small enough strip (here L = 4`B) two electronic excitations are visible, corresponding
to injecting either e into one edge ( m = 3) or 2e/3 into one edge and e/3 into the other
(m = (2, 1)). We plot the measured exponents η3 and η(2,1) as the strength of the trap t/U
is increased, as well as the predicted η̃3 given the measured value of η(2,1) using Eq. (3.9).
At low very t/U , η3 = 3, the universal ν = 1/3 value. As the trap is squeezed, the predicted
relation of χLL theory is satisfied to within 0.5%. Note η(2,1) moves towards 1, the exponent
of a non-interacting Luttinger liquid.

To verify Eq. (3.9) we use a thin cylinder (L = 4`B) so that both excitations are
observable. Keeping the interactions as before, we vary the strength of the trap t relative
to the interaction strength U . In Fig. 3.5, for each t we extract η3, η(2,1) and check their
predicted relation. We find agreement with χLL theory to better than 0.5%.

In summary, the behavior of the ν = 1/3 edges is well described by χLL theory, both
for thick and thin strips. For thick strips the edge exponent approaches the quantized value
η3 = 3. While we have not simulated the full Coulomb interaction, the interaction is sufficient
to significantly perturb the bulk density profile and measurably renormalizes the exponents
when the two edges are close. It would be interesting to determine whether the quantization
η3 = 3 is nevertheless a peculiarity either of the r−3 interaction or its cutoff at ∼ 7`B. We
leave enhancing our method to include Coulomb interaction to future work.
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Figure 3.6: The zoo of electron excitations of a ν = 2/5 strip. Bottom panel. Occupation
number nk; vertical dashed lines indicate locations of singularities, only some of which are
directly visible in nk. Dotted line indicates the naive wedding cake density profile. Top
panel. After applying Dη−1, the singularities appear as step functions. For the close-up
of the mth singularity, Dηm−1 is applied, some of the regular background is removed, and
the vertical axis is rescaled for better visibility. The two most prominent singularities (e)
and (f) have exponents η = 3 ± 0.02, consistent with no inter-edge interactions. The rest
of the singularities are found at momenta predicted by the first two. Approximate η and
m values for the singularities: ηa = 4.8, ma = (2,−1, 2,−2); ηb = 5.8, mb = (1, 1, 0, 2);
ηc = 5.2, mc = (1, 2, 0, 1); ηd = 4.2, md = (3,−2, 1,−1); ηe = 3, me = (2, 1, 0, 0); ηf = 3,
mf = (3,−1, 0, 0); ηg = 7, mg = (4,−3, 0, 0); ηh = 4.2, mh = (3, 0,−1, 1).

3.3.3 The ν = 2/5 edge

The second level hierarchy state at ν = 2/5 has a rich edge structure resulting from the
presence of two modes on each edge. The 2/5 edge is maximally chiral in the sense that
both edge modes propagate in the same direction, so intra-edge interactions are not expected
to renormalize the scaling exponents. In contrast to the ν = 1/3 case, there are multiple
ways of inserting charge into a single edge, which appear as a set of singularities. Using the
convention

K−1 =
1

5

(
2 1
1 3

)
t =

(
1
0

)
(3.10)

the two most relevant operators are m1 = (2, 1)T and m2 = (3,−1)T with η1 = η2 = 3.
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We simulate a strip of width W = 5
8
19.2`B on a cylinder of circumference L = 19.2`B,

at νT = 1/4, using only the hollow-core V1 pseudo-potential. Adding a small perturbing V3

was not observed to change the exponents. Our data is consistent with negligible inter-edge
interactions, but there is a small amplitude for inserting an electron as a fractional part in
both edges. We can identify a number of small contributions of this type.

Over two dozen singularities are visible in nk; a summary of the most singular exponents
are included in the inset of Fig. (3.6). In all cases where the singularity is strong enough
to extract η, it is consistent with the universal values predicted by the χLL theory. The
dominant exponents m1 = (2, 1) and m2 = (3,−1) are observed to be η1 = 3.00± 0.02 and
η2 = 2.995± 0.015 respectively.

The hierarchy picture of the 2/5 strip is a 1/3 droplet with an additional condensate of
quasielectrons of excess density 1/15 in the interior. We cannot directly detect the singularity
at the edge of the 1/15 condensate, m3 = (0, 5), as the exponent η3 = 15 is too large.
Nevertheless, k can be determined from the momenta k1 and k2 of the two most relevant
singularities. The locations of the remaining km are all in agreement with km = kTm.
Assuming the unobserved 1/15 edge is at k3 = kTm3, we find that 1

3
k2 + 1

15
k3 = νTπ± 10−5.

This is in agreement with the Luttinger sum rule: assuming the 2/5-state has a ‘wedding
cake’ density profile of nk = 2

5
for |k| < k3 and nk = 1

3
for k3 < |k| < k2, the total electron

density is 1
3
k2+ 1

15
k3 = πνT . If the trap potential is modified the km change but the constraint

is always satisfied. It is quite remarkable that the naive result is correct to better than one
part in 10−5, as the true density profile has strong oscillations with no actual discontinuities
at the km, as shown in Fig. 3.6.

3.3.4 The ν = 2/3 edge

The ν = 2/3 state is also a second level hierarchy state, but the edges are not chiral, and hence
the edge exponents are not universal even in the limit of a wide strip. It has been argued
that disorder[137, 138] or long-range Coulomb interaction[77] makes the exponents flow to
the universal Kane-Fisher-Polchinski (KFP) fixed point. Including disorder would require
breaking translational invariance along the edge, which would greatly increase computational
effort, thus we restrict the current study to clean edges with short-ranged interaction. Using
the convention K = diag(1,−3), t = (1,−1), at intermediate intra-edge interactions the
two most relevant excitations of a single edge are m1 = (1, 0) and m2 = (2,−3).

We simulate a W = 15`B strip on a cylinder of circumference L = 20`B at νT = 1
2
, using

only the hollow-core V1 pseudo-potential. In agreement with χLL theory, η1 is not observed
to be quantized. In order to access different V -matrices we can change the sharpness of the
edge d. Under the assumption of vanishing inter-edge interactions, η1 and η2 should satisfy
the χLL prediction η2 = 7η1 − 4

√
3
√
η2

1 − 1, which they do only to within about ∼ 10%,
as shown in Fig. 3.7. While the disagreement is likely due to inter-edge interactions, we
cannot accurately measure enough of the ηm to fully determine the two-edge V to check
for consistency. We again observe a Luttinger sum rule (k1 + k2)/3 = π/4. As the trap is
modified the km change, but the Luttinger sum rule remains satisfied to one part in 10−5
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Figure 3.7: (Color online) Renormalization of edge mode momenta and exponents as a
function of the edge sharpness d (large d is soft edge). Top panel: change of momentum k1

(circles) and k2 (squares) with respect to an arbitrary reference. (k1 + k2)/3− π/4 (crosses)
stays 0 to 10−5 accuracy, confirming the Luttinger sum rule. Bottom panel: Exponents η1

, η2 from iDMRG, and η̃2 calculated from η1 assuming χLL with no inter-edge interaction.
The significant disagreement between η2 and η̃2 is likely due to inter-edge interactions.

accuracy, as shown in Fig. 3.7. It is interesting to note that for softer edges (large d), the
exponents are observed to renormalize towards the KFP point η1 = η2 = 2 (Fig. 3.7), even
with clean edges and hollow-core interaction.

3.4 Edge states in the 1D picture

Our numerics demonstrate robust χLL exponents, yet are ultimately realized in a 1D fermion
chain. What can be learned from the 1D point of view? First, we apply the Lieb-Schultz-
Mattis theorem to the 1D fermion chain to explain the constraint on the km. Second, we
clarify why strips of different ν, which at first seem to be different phases of matter, can in
fact be smoothly deformed to each other.

3.4.1 A Generalized Luttinger Theorem for Hall Droplets

For all three filling fractions the locations of the singularities km obey a stringent constraint to
better than a part in 10−5. In the hierarchy picture, the constraint arises from a caricatured
version of nk which jumps discontinuously to a quantized filling as each level of the hierarchy
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is added, though nk looks nothing like this ‘wedding cake’ type profile, as can be seen in
Fig. 3.2. Letting the jump in filling at the ith level of the level-M hierarchy state be ∆νi at
momentum ki, the total filling fraction νT is observed to be

νT = 2 ·
M∑
i=1

∆νiki/2π. (3.11)

To our knowledge this ‘Luttinger sum rule’ was first conjectured by Haldane, and taken as
the axiomatic starting point of a bosonized description of the excitations. [102] However,
Eq. (3.11) is somewhat unsatisfactory as it appears to single out a particular set {mi} of the
edge singularities out of infinitely many. There is a natural choice for the hierarchy states,
but given a generic K matrix description of an Abelian edge, what constraints are placed on
the momenta km of the singularities?

To state the generalized Luttinger theorem more precisely, we show that Eq. (3.11) has the
basis independent formulation kT t = πνT . We consider only the right edge, as the left has an
identical constraint. The set of singularities {mi} appearing in Eq. (3.11) are distinguished
as a linearly independent set of M electron operators with trivial mutual statistics,

mT
i K

−1mj = δijDi, mT
i K

−1t = 1. (3.12)

However, there are in fact multiple sets {mi} satisfying this constraint, so we must show
that the hypothesis is independent of the choice. Interpreting ∆νi = D−1

i , the hypothesis

reads
∑

j D
−1
j mT

j k = πνT . Since mT
i K

−1
(∑M

j D−1
j mj

)
= 1, while {mT

i K
−1} is a linearly

independent set, we must have
∑M

j D−1
j mj = t. Hence the generalized Luttinger Theorem

takes the basis independent form kT t = πνT .
To prove that kT t = πνT , we first take a 1D point of view. Temporarily consider the

system on a torus, so that the edges have finite length Ly (in real space). According to
Ref. [105], under conditions satisfied by our 1D fermion chain, there exists a low en-
ergy (E ∼ 1/Ly), neutral excitation at crystal momentum 2πνT . The non-perturbative
proof is an adaption of the Lieb-Schultz-Mattis theorem, [104] using the ‘twist operator’
U = e2πi

∑
l ln̂l/NΦ , where n̂l is the occupation of orbital l and NΦ is the number of orbitals. As

will become clear, we can interpret this excitation as a transfer of charge ν (the filling fraction
of the strip) from the left to right edge, with m vector (t,−t). Accepting this interpretation
gives a non-perturbative proof that (kT ,−kT ).(t,−t) = 2πνT , or kT t = πνT . Hence Lut-
tinger’s theorem for the 1D fermion chain implies the generalized Luttinger Theorem for the
Hall fluid.

To motivate the identification of the k = 2πνT excitation, we reinterpret this result in
terms of the 2D continuum problem. The twist operator U acts on the real-space coordinates
as translation around the circumference, (x, y) → (x + `2

B/Ly, y). The interaction energy is
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unchanged, but the trapping energy goes as

δV =

∫
dxdy

[
V (x+ `2

B/Ly)− V (x)
]
ρ(x, y) (3.13)

∼ `2
B

2Ly

∫
dx`2

BV
′′(x)ρ(x) = O(1/Ly) (3.14)

where we have relied on the reflection symmetry x → −x. Hence the k = 2πνT neutral
excitation is simply a small translation of the fluid, which transfers charge from the right to
left edge. To show that the desired excitation is (t,−t) in the K-matrix formalism, recall
that threading a 2π-flux through the cycle y of the torus translates the state by `2

B/Ly in
x, due to the Hall response of the fluid. In the bulk, threading 2π-flux is, by definition, the
excitation m = t. Since threading flux through y is equivalent to dragging a flux from the
left to right edge, the excitation is (t,−t), as desired.

For bilayer states, there is a conserved U(1) charge for each component a. A simple
extension of the above argument leads to a constraint for each component; if ta, νT ;a is the
charge vector and filling of component a, then kT ta = πνT ;a.

This result is intuitively clear in the composite fermion or the parton picture. Our
derivation demonstrates, however, that it is not necessary to assume a mapping to weakly
interacting quasiparticles and the theorem is rigorously true whenever there is a K-matrix
description of the edge states including, for example, reconstructed edges or strongly inter-
acting composite fermions.

3.4.2 Adiabatic continuity between Abelian edges

In the χLL theory, edge theories with different K matrices (modulo an SL(M,Z) equivalence
relation) are understood to be distinct phases of matter. Viewed as a 1D problem, this would
seem to imply the existence of distinct classes of metals, even at central charge c = 1. We
clarify why this is not the case for any finite width strip; in principle all Mth hierarchy states
can be adiabatically continued to one another. In the 1D picture, this implies they can all be
adiabatically transformed to an M -component non-interacting metal. Microscopically, this
adiabatic path might require shrinking the cylinder, as for thick strips coupling between the
edges is exponentially suppressed.

The restriction to SL(M,Z) transformations in the K-matrix formalism of a single edge is
enforced to preserve the compactification lattice of the bosons, which determines the allowed
excitations. On a geometry with one edge, the edge Hilbert space must contain fractional
excitations because we can create a quasiparticle-quasihole pair and bring one particle to
the edge while bringing the other infinitely deep into the bulk. However, if there are two
edges, all excitations can be considered edge excitations, and the total topological charge of
the two edges together should be trivial. The restriction to trivial topological charge means
a larger class of SL(2M,Z/|K|) transformations can be applied, and the distinction between
states at the same hierarchy level is lost.
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The Laughlin states, for example, can all be deformed to the non-interacting IQH state.
In the ν = 1/q phase, K = diag(q,−q), t = (1,−1)T , k = (k,−k)T . By applying an
SL(2,Z/q) transformation

S =
1

2

(
q + 1 q − 1
q − 1 q + 1

)
, (3.15)

we find K̃−1 = SK−1ST = diag(1,−1) while k and t are unchanged and all the original
electronic excitations are spanned by m = Sm̃ with m̃ ∈ Z2. This is the K-matrix descrip-
tion of a Luttinger liquid, which implies that any electronic excitation m at ν = 1/q can be
identified as an excitation of a Luttinger liquid. For example, the usual m = (3, 0) excitation
of the 1/3-state is the 3kF excitation of a Luttinger liquid, i.e., m = (3, 0) ↔ m̃ = (2,−1).
Likewise, the m = (2, 1) excitation of the 1/3-state is the usual kF the of a Luttinger liquid,
i.e., m = (2, 1)↔ m̃ = (1, 0). By tuning V with the appropriate interactions, we can ensure
Ṽ = diag(ṽ,−ṽ), so that the exponents will agree with those of non-interacting electrons.

We have constructed similar explicit transformations for some second and third level
hierarchy states. For certain bilayer states, a similar correspondence is possible only if we
restrict to excitations with integral charge in each layer separately, which signifies that such
states are only realized with two distinguishable species of fermions satisfying separate charge
conservation conditions.

Adiabatic continuity of this form has already been demonstrated for the thin strip inves-
tigated in Fig. 3.5. For small t/U , η3 and η(2,1) are close to their quantized ν = 1

3
values; as

t/U increases and the edges interact, we find η(2,1) → 1, which is the exponent of the (1, 0)
excitation of a free Luttinger liquid. Throughout the deformation, the functional form of
η3

(
η(2,1)

)
is as predicted for the ν = 1

3
state, and is the same as the relation η̃(2,−1)

(
η̃(1,0)

)
of a Luttinger liquid.

3.5 Conclusion and future directions

In the present work we demonstrated the potential of iDMRG to access the edge physics
of FQH phases in a clean infinite strip geometry starting from a microscopic Hamiltonian.
We calculated scaling exponents for multiple edge excitations in the ν = 1/3, 2/5 and 2/3
states and found that the predictions of χLL theory are very accurately met, including the
universality of scaling exponents in the maximally chiral 2/5 edge and their renormalization
in non-chiral edges or in the presence of inter-edge interactions.

The mapping of the Landau level Hamiltonian onto a fermionic chain offers a 1D point of
view on our results. The occupation number nk has multiple non-analytic features, which can
be identified with edge excitations in the FQH picture. We demonstrated and analytically
proved a long standing conjecture regarding the k-values where these features occur, the
generalized Luttinger theorem, and demonstrated the adiabatic continuity between finite
width FQH states and multicomponent Luttinger liquids.
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The techniques used here suggest a number of future directions. Of particular interest
would be the calculation of exponents in the presence of a point contact, the geometry rele-
vant to interferometry experiments.[139] MPS techniques allow one to introduce a localized
defect to the Hamiltonian (a constriction of the trapping potential) while maintaining the
infinite boundary conditions of the gapless edge away from the defect. [127, 140] One could
then calculate the inter-edge correlation functions in the presence of an interferometer. A
second direction would be to investigate more exotic FHQ states, such as the Moore-Read
state at filling ν = 5/2, for which significant questions remain regarding the stability of
the edge and the interplay between the trap potential and particle-hole symmetry breaking.
[141, 142] Finally, one can apply iDMRG and FES techniques to lattice models on a strip in
order to study the edge excitations of other candidate topological phases, either symmetry
protected or intrinsic; currently little is known about the microscopics of such edges.
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Part III

Space group symmetry and topology
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Chapter 4

Geometry in band structures of solids

4.1 Space group symmetries

Symmetry of space underpins much of our understanding of physics. Just as the analysis
the Poincaré group provides the foundations of high energy physics that deals with particles
and fields in empty spacetime, crystallographic space group symmetry is the starting point
of the study of solid state systems. The space group (SG) G consists of all isometries of the
physical space under which the system is invariant. All crystallographic space groups are
subgroups of the Poincaré group: the crystal defines an absolute rest frame, so it contains
no boosts, and it only contains discrete translations and rotations. In a broader sense one
may consider magnetic space groups which also contain operations with time reversal.

A general space group operation has the form g = {O|t} where O is an orthogonal
rotation (or rotoinversion) and t is a vector describing the translational part. It acts on a
point as {O|t}x = Ox + t The composition rule is

{O1|t1} {O2|t2} = {O1O2|t1 +O1t2} . (4.1)

Note that the operation on the right is carried out first, and we treat these as active op-
erations that move the physical system rather than changing the basis. The form of the
transformation does depend on the choice of the coordinate system. If we shift the origin by
t̃ and rotate the coordinate system by Õ such that x = Õx′ + t̃, a SG operation {O|t} in

the new coordinate system reads {O′|t′} =
{
Õ−1OÕ

∣∣∣Õ−1
(
t− t̃ +Ot̃

)}
.

Pure translations form a normal subgroup T of any space group, as its conjugate with
any SG operation g, g {1|t} g−1 is again a pure translation. In a crystalline system pure
translations form a d-dimensional lattice, such that there is a set of primitive translations
ti (i = 1 . . . d) of which any translation is an integer linear combination. This requirement
restricts the possible rotations to be 1, 2, 3, 4 or 6-fold. Classification of all such groups (up
to group isomorphisms) yields the list of affine space groups, of which there is 17 in 2 and
219 in 3 dimensions. For 11 of these groups there are two distinct chiralities in which they
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can act on 3d space, making the total of 230 crystallographic space groups. Including time
reversal, we find 80 and 1651 magnetic groups in 2 and 3 dimensions respectively.

The point group of a space group G is defined as the quotient P = G/T , it is isomorphic
to the group of orthogonal transformations that appear in the SG. Symmorphic space groups
are distinguished by the property that they are a semidirect product G = ToP . With proper
choice of origin there is a true subgroup of G isomorphic to P that consists of pure orthogonal
operations {O|0}. A nonsymmorpic group contains at least one symmetry operation with a
fractional lattice translation irrespective of the choice of origin.

An essential nonsymmorpic operation[143] leaves no point in space invariant, or equiv-
alently, contains a fractional translation for any choice of origin. There are two kinds or
essential nonsymmorphic operations: a glide which is a mirror combined with a fractional
translation parallel to the mirror plane, and a screw which is a rotation combined with a frac-
tional translation parallel to the axis of rotation. Almost every nonsymmorphic SG contains
at least one essential nonsymmorphic symmetry with only two exceptions: space groups 24
and 199 contain only true rotations, but no choice of origin makes them simultaneously have
no fractional translation part.

4.2 Bloch’s theorem

4.2.1 Bloch’s theorem and the Brillouin zone

In quantum mechanics symmetries act by (anti)unitary operators on the physical Hilbert
space and commute with the Hamiltonian. Every energy eigenstate can be labeled by the
eigenvalue under the symmetry. If we consider a symmetry group, where operations do not
necessarily commute, we label sets of states by the irreducible representations of the sym-
metry group by which they transform. A group representation is a group homomorphism
ρ : G → U(V ) from G to a group of unitary operators over a vector space V 1 (usually
a set of finite unitary matrices). It is irreducible if no basis transformation brings all op-
erators to the same block-diagonal form, or in other words, V has no invariant subspace
under the action of the operator group. As all symmetries commute with the Hamiltonian,
these irreducible subspaces of the Hilbert space are also eigensubspaces of the Hamiltonian
and are degenerate in energy. The Hamiltonian has no matrix elements between subspaces
that belong to different irreducible representations, hence it can be block-diagonalized in a
symmetry-respecting basis.

Translations form a commutative group, so all representations are one dimensional,
ρk ({1|t}) = eikt, labeled by a vector k. We call this vector the (crystal) momentum of
the state. For continuous translations (T ' R

d) all k ∈ Rd describe different representa-
tions, so the momentum space (or k-space) is infinite. If translations are discrete (T ' Zd),
there are vectors G such that ρk+G = ρk. These vectors form a d-dimensional lattice called
the reciprocal lattice, and a (non-unique) set of generators {Gi}i=1...d are primitive reciprocal

1For simplicity we only explain unitary representations here.
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lattice vectors. By identifying points in k-space that are related by reciprocal lattice vec-
tors, it turns into a finite d-dimensional torus. There are many choices for the fundamental
domain in k-space, we will either use a primitive cell which is a parallelepiped spanned by
a set of primitive reciprocal lattice vectors, or the Brillouin zone that consists of the points
closer to the origin than to any other reciprocal lattice point. The former has the advantage
of simplicity, while the latter reflects the symmetries of the lattice better.

As explained earlier, using this symmetry the Hamiltonian can be block-diagonalized in
the momentum basis. The Hilbert-space splits according to the momentum representation,
H = ⊕kHk and the Hamiltonian is a direct sum of terms, each acting only at a single k,
H = ⊕kHk. The problem of diagonalizing H reduces to diagonalizing each Hk separately.

To use Bloch’s theorem and write operators and states in k-space instead of real space,
we have to rearrange the degrees of freedom first. A system with discrete translation invari-
ance has the same degrees of freedom in every unit cell, periodically repeated. The crystal
momentum only captures the spatial structure at the level of the lattice, but is blind to the
details within the unit cell. Degrees of freedom in a unit cell are to be considered “inter-
nal”, their number determines the dimensionality of the Hilbert-space Hk and the number
of Bloch-bands. We use the indices a, b, etc. to label the orbitals in the unit cell. If we
wanted to view free space as a lattice, it would have an infinite number of degrees of freedom
per unit cell, thus Bloch states would be infinite dimensional. But in a physical solid it is
reasonable to restrict attention to a finite number of electronic states per unit cell: the low
energy orbitals of the ions making up the crystal.

4.2.2 Conventions for Bloch functions

There are two widely used conventions to define the Bloch basis functions. When appropriate
we use the convention where we define Bloch basis functions |χ̃ak〉 ∈ Hk in terms of the orbitals
of the unit cell

|χ̃ak〉 =
1√
N

∑
R

eikR
∣∣φaR+ra

〉
(4.2)

where R is the unit cell coordinate, a the orbital index and ra is the position of the a-th
orbital in the unit cell. Note the absence of phase factors corresponding to the position of the
orbitals within the unit cell, so the basis functions are strictly periodic in the BZ. While in this
convention the information about the position of the orbitals is lost, thus the polarizations
computed via Berry vector potential integrals do not equal the true Wannier center positions,
the Bloch Hamiltonian is BZ periodic, making some derivations more transparent.

In the other convention, called the “periodic gauge”[144] we define

|χak〉 =
1√
N

∑
R

eik(R+ra)
∣∣φaR+ra

〉
(4.3)

. The two conventions are related by the operator Wk with W ab
k = δabe−ikra such that

|χak〉 =
(
W−1

k

)ab ∣∣χ̃bk〉 so the coefficients of of Bloch wavefunctions transform as nak = W ab
k ñ

ab
k .
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The basis functions are not BZ periodic,
∣∣χak+G

〉
= eiGra |χak〉 where G is a primitive

reciprocal lattice vector. Consequently, states and operators expanded in this basis satisfy
nk+G = WGnk and Ok+G = WGOkW

−1
G respectively. WG : Hk → Hk+G is acting between

the Hilbert spaces of the coefficients of the wavefunctions in this basis. As an example we
expand the Hamiltonian in this basis:

Hab
k = 〈χak|H

∣∣χbk〉 =
1

N

∑
RR′

e−ik(R+ra)
〈
φaR+ra

∣∣H ∣∣φbR′+rb

〉
eik(R′+rb) =

=
1

2

∑
δ

eik(δ+rb−ra)
〈
φa0+ra

∣∣H ∣∣φbδ+rb

〉
=

1

2

∑
δ

eik(δ+rb−ra)Hab
δ (4.4)

Here we used the discrete translation invariance, such that the hopping matrix elements only
depend on the relative separation of the unit cells δ.

This convention, using the coefficients only (e.g. Anm = in† dm), is usually assumed in
formulae for electromagnetic response, as the naive Peierls substitution k → k + A only
gives the correct phase factor for hopping in this case, as we explain in the next section in
more detail. The two conventions give equivalent results for quantized topological indices in
most symmorphic cases, provided there is a continuous, symmetry preserving deformation
of the lattice, such that all the orbitals are brought to the same point in the unit cell. In
nonsymmorphic lattices however, this is never possible, as the shortest orbit of a point in
the unit cell under the symmetry group modulo lattice vectors is longer than one, there is no
crystal with one site per unit cell obeying a nonsymmorphic symmetry. For example with
an n-fold screw translating in the z direction one needs at least n lattice sites that can be
arranged such that the positions are ra = aza/n for a = 1. . . n, so W ab

Gz
= δabe2πia/n and

WG = 1 for perpendicular directions.
We remark that in both bases global antiunitary transformations, such as T = Kσy act

as constant operators in k-space. To switch conventions, one must transform them same
as other operators, T̃ = W−kTW−1

k = T , where we used that W−1
k = W−k = W ∗

k as W is
diagonal and proportional to the identity in spin space.

4.3 Electromagnetic response of free fermions

A wide range of experimental probes of solid state systems, ranging from DC electrical
conductivity to optical measurements rely on the response to external electromagnetic fields.

A continuum theory can be coupled to an external U(1) gauge-field using minimal cou-
pling with the replacement:

p→ p− qA. (4.5)

As already mentioned, in solid state theory the tight-binding approximation is widely used,
which amounts to a discretization of space, we need an analogue of the minimal coupling for
these situations, called Peierls substitution.
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The hopping matrix element between two orbitals is

H ll′

x,x′ =
〈
φlx
∣∣H ∣∣∣φl′x′〉 . (4.6)

For strongly localized orbitals a gauge-invariant minimal coupling is given by

H(A)ll
′

x,x′ ≈ H ll′

x,x′ exp

(
i
q

~

∫ x′

x

Adr

)
≈ H ll′

x,x′e
i q~A1/2(x′+x)·(x

′−x)
+O

(
∂2A

)
. (4.7)

In the first approximation we assumed that the orbitals are strongly localized on the scale
A varies and the integration contour is taken to be a straight line. Note that there is an
ambiguity in the choice of a straight line, this approximation neglects the detailed spatial
structure of the orbitals. Taking a straight line assumes that most of the overlap between
the orbitals in question occurs near the line connecting their centers. This is not necessarily
the case, lobes of the two orbitals may overlap at an angle, in this case the flux through the
triangle spanned by the straight line and the lobes presents as an error[145]. This error is
at the same order as the mixing of various orbitals on the same atom due to the magnetic
field. At experimentally relevant field strengths the magnetic flux through a surface of such
atomic scale is negligible compared to the flux quantum.

It is important to note that x is the real space coordinate of the orbital, not the position
of the unit cell. When we transform to momentum space, only when the phase factors
corresponding to the actual orbital coordinates are used do we find the result analogous to
the continuum minimal coupling:

H(A)abk = 〈χak|H(A)
∣∣χbk〉 = Hab

(k− q~A). (4.8)

The Peierls substitution underlies many common methods of calculating electromagnetic
response in solids, including the use of semiclassical formalism[144] or linear response theory
using the Kubo formula. To get the correct result, this convention must be used, as otherwise
the position and velocity operators are represented in an unphysical way.

4.4 Differential geometry of band structures

4.4.1 Overview of coordinate-free formalism

We present a brief overview of the coordinate-free formalism of differential forms[146] we use
in the remainder of the dissertation. As all our calculations are carried out in the flat k-space,
we will not delve into mathematical subtleties and treat this as a convenient notational and
computational tool.

An r-form is an antisymmetric tensor of type (0, r), it maps r vectors of the local tangent
space linearly to scalars. These “scalars” may have internal indices, only need to be scalars
from a geometric point of view, as we will see later, we use matrix valued forms as well.
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Given a coordinate system xµ (we use µ, ν, . . . to index spatial directions), the coordinate
basis in the 1-forms is given by dxµ that transform the same way as xµ. To construct the
basis of r-forms, we define the antisymmetric wedge or exterior product ∧ of r 1-forms:

dx1 ∧ dx2 ∧ . . . ∧ dxr =
∑
P

sgn(P ) dxP (1) ⊗ dxP (2) ⊗ . . .⊗ dxP (r) (4.9)

where the sum runs over all permutations of the indices 1 . . . r and sgn(P ) is the signature

of the permutation. On a d dimensional manifold r-forms form a

(
d
r

)
dimensional vector

space. There are no forms with r > d and the space of d-forms is one dimensional.
A generic r-form ω can be expanded in this basis as

ω =
1

r!
ωµ1,µ2,...,µr dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr = ωµ1,µ2,...,µr dxµ1 ⊗ dxµ2 ⊗ . . .⊗ dxµr , (4.10)

where ωµ1,µ2,...,µr is completely antisymmetric and we implicitly sum over all repeated indices.
The wedge product of a generic q-form and r-form, resulting in a q + r-form is

(ω ∧ ξ)µ1,...,µq+r =
1

q!r!

∑
P

sgn(P )ωµP (1),...,µP (q)
ξµP (q+1),...,µP (q+r)

. (4.11)

The prefactor comes from demanding associativity of the wedge product. Some useful general
properties are: ω ∧ ξ = (−1)qpξ ∧ ω, as a result ω ∧ ω = 0 if q is odd.

The exterior derivative d generalizes the concept of gradient, divergence and curl, and
maps r-forms to r + 1-forms as

dω =
1

r!

(
∂

∂xν
ωµ1,...,µr

)
dxν ∧ dxµ1 ∧ . . . ∧ dxµr . (4.12)

It is nilpotent (d2 = 0) and acts on a wedge product as d(ω ∧ ξ) = (dω)∧ ξ+ (−1)qω ∧ (dξ).
A d-form ω = ω1,...,d dx1 ∧ . . . ∧ dxd can be integrated over a d-dimensional region V of

an orientable manifold: ∫
V

ω =

∫
V

ω1,...,ddx
1 . . . dxd. (4.13)

The generalized Stokes’ theorem relates the integral of an r-form on the boundary ∂V of an
r + 1 dimensional region V to the integral of its exterior derivative over V :∫

∂V

ω =

∫
V

dω. (4.14)

4.4.2 Berry curvature

We define the Berry connection as

Anm = i 〈un| d|um〉 (4.15)
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where |unk〉 is the wave function of the nth occupied eigenstate of a Hamiltonian Hk. In gen-
eral the dependence is on an arbitrary parameter that takes its values from a base manifold.
Here, without loss of generality we call this parameter k. Explicitly in components

Anmµ (k) = i 〈unk| ∂kµ |umk 〉 . (4.16)

From an abstract geometric point of view, by attaching a basis of the local occupied
Hilbert space to every point in the base manifold, we create a fiber bundle. The connection
defines parallel transport of bases between different points in the base manifold and measures
nontrivial “twists” in the bundle.

It is important to realize that there is a gauge ambiguity in the assignment of |unk〉. For
once, a quantum mechanical state is only well defined up to a U(1) phase, the reassignment
|unk〉 → eiφn(k) |unk〉 does not change the physical content. But there is an even greater gauge
freedom. We are only interested in the topology and it is possible to make all the nocc.

occupied bands degenerate in energy without closing the gap. Now nothing distinguishes
the bands and there is a U (nocc.) gauge freedom |unk〉 → U(k)nm |umk 〉 with a unitary matrix
function U . As all these transformations only amount to a change of basis, all measurable
physical quantities must have gauge-invariant expressions. This gauge-freedom allows for
nontrivial situations, where there is no continuous global mapping (a global section of the
bundle) assigning a basis to each k-point. Instead, we may find that the bases are mismatched
by a gauge-transformation between different patches in the base manifold no matter what
we do.

The gauge connection A takes values in the Lie-algebra of U (nocc.), the space of nocc. ×
nocc. Hermitian matrices2. In the following when we omit the band indices (n, m, . . . ) we
mean products in the sense of non-commuting matrix multiplication. The connection is not
gauge-invariant, it transforms as

A → U †AU + iU † dU. (4.17)

The covariant derivative (Dω = dω− i [A, ω]) of A with respect to the parallel transport
defined by A gives the Berry curvature (or field strength):

F = DA = dA− iA ∧A, (4.18)

or in components
Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ] . (4.19)

The curvature is also Lie-algebra valued and it is gauge-covariant, transforms as

F → U †FU, (4.20)

making its trace TrF a gauge-invariant quantity. The curvature satisfies the Bianchi-identity

DF = dF − i [A,F ] = 0. (4.21)
2We use the physicist’s convention, in the mathematical literature the i is usually omitted in the definition

of A and the matrices are skew-Hermitian.
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For an abelian U(1) gauge field this implies dF = 0 and in general Tr dF = 0, making TrF
a closed form.

Our treatment so far has only referenced the occupied Hilbert space. A different, less
abstract view is to consider the full Hilbert space at each k. Assuming dimHk = N , the
band structure is a mapping onto the space of nocc. dimensional subspaces U(N)/U (nocc.).
The precise form of A depends on the choice of basis. As we have seen earlier, in the
physical response functions of solids it is the expansion coefficients in the |χ〉 basis that enter
(cf. Sec. 4.2.2). So in the following we will use the definition in terms of the coefficients
Anm = in† dm.

We introduce the projector onto the occupied bands

Pk =
∑
n∈occ.

nkn
†
k. (4.22)

It is gauge-invariant and captures all the topological properties of the Bloch-Hamiltonian:
1 − 2Pk is identical to Hk except that all the occupied bands have energy −1 and the
unoccupied +1. F can be written in a gauge invariant form as

F = iP(dP) ∧ (dP)P . (4.23)

In this formulation F is a Hermitian operator acting on Hk, but is only nonzero on occupied
bands. The different definitions should not cause confusion as we can form products and
extend the trace to the full Hilbert-space without changing the result. The usual gauge-
dependent components can be obtained as matrix elements between occupied states in a
given basis of eigenstates, Fnmk = n†kFkmk.

4.4.3 Chern and Chern-Simons forms

The nontrivial topology of band structures, or equivalently the nontrivial winding of fiber
bundles can be assessed by computing topological invariants.

In even dimensions it is possible to define Chern numbers. Let us start with the familiar
2d case. TrF is a gauge-invariant 2-form and can be integrated over the 2d parameter space
V to give the first Chern-number:

C =
1

2π

∫
V

TrF =
1

4π

∫
dk2εµν TrFµν . (4.24)

To see that C is insensitive to continuous changes, consider adding a third “deformation”
dimension, making the 3d space V × [0, 1]. Assuming that F changes smoothly between
k3 = 0 and k3 = 1, we can use the Stokes’ theorem to calculate the difference between the
integrals at the two cuts:

1

2π

∫
V,k3=1

TrF − 1

2π

∫
V,k3=0

TrF =
1

2π

∫
V×[0,1]

Tr dF = 0. (4.25)
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In the last step we used that TrF is closed (dTrF vanishes identically). This shows that C
can only take discrete values, and it can also be proved that with this normalization C ∈ Z.

The concept can be generalized to higher dimensions, in d = 2n the nth Chern form

chn =
1

n!
Tr

(
F
2π

)∧n
(4.26)

is closed, allowing the definition of the nth Chern number

Chn =

∫
chn =

1

n!

∫
Tr

(
F
2π

)∧n
(4.27)

were we used powers with respect to the wedge product. These integers form the Z classifi-
cation in even dimensions in class A.

A related object is the Chern-Simons form in odd dimensions[147]. It is defined such
that locally

chn = d(cs2n−1) . (4.28)

It can be constructed for any n, for example

cs1 =
1

2π
TrA, cs3 =

1

8π2
Tr

(
A ∧ dA− 2i

3
A ∧A ∧A

)
. (4.29)

Its integral over a 2n + 1 dimensional manifold CS2n+1 =
∫

cs2n+1 is not a topological in-
variant in the absence of symmetry, it can change continuously, consistent with the trivial
classification in odd dimensions in class A. Nevertheless, it has an important role for clas-
sification in odd dimensions with additional symmetries (cf. Chap. 5), so we review its
properties here.

The Chern-Simons forms, unlike the Chern forms, are not locally gauge invariant. This
can be checked by straightforward substitution of a gauge transformed connection. The
CS integrals, however, possess a limited gauge invariance, the value is well defined mod-
ulo integers. The change is nothing but the integer winding number of the U(N) gauge
transformation

CS2n+1(A′)− CS2n+1(A) = − n!

(2n+ 1)!

(
i

2π

)n+1 ∫
Tr
(
U−1 dU

)∧2n+1
. (4.30)

Another way to see this, is to add an extra cyclic dimension, k2n+2 ∈ S1 and consider cyclic
deformations as k2n+2 advances from 0 to 2π. By the definition of cs2n+1, the change between
the initial and final slices can be calculated using Stokes’ theorem:

CS2n+1(k2n+2 = 2π)− CS2n+1(k2n+2 = 0) =

∫
dcs2n+1 =

∫
chn+1 = Chn+1. (4.31)

The right hand side is the Chern number for the 2n+ 2 dimensional compact V × S1 space,
which is in general a nonzero integer. As we demanded the initial and final gauge field
configurations to be the same, we see that CS is only well defined modulo integers. Note
that we introduce θ in Chap. 5 with a different normalization (θ = 2πCS3) and the ambiguity
also changes to multiples of 2π.
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4.5 BdG formalism

Here we summarize general results of the BdG formalism used for superconductors[15], with
special emphasis to representations of symmetries in class C.

The general form of a Hamiltonian for a superconductor without any additional symmetry
is

H =
∑
k

(
c†k c−k

)( εk ∆k

∆†k −εT−k

)(
ck
c†−k

)
=

=
∑
k

(
c†k c−k

)
Hk

(
ck
c†−k

)
(4.32)

where c is a vector formed of all the electron anihilation operators of the unit cell and
the BdG Hamiltonian Hk is a 2N × 2N block matrix with N orbitals in the unit cell.
εk = ε†k (Hermiticity) and ∆k = −∆T

−k (Fermi statistics). It is customary to denote the
Pauli matrices acting on the particle-hole space (the block structure of H) τµ. All such
Hamiltonians are compatible with paricle-hole symmetry represented by C = τxK for usual
electronic systems such that C2 = 1. This symmetry restricts the BdG Hamiltonian as

CHkC−1 = τxH
∗
−kτx = −Hk (4.33)

which is automatically satisfied by this form of the Hamiltonian. This transformation relates
excitations with opposite energy and momentum in the doubled spectrum.

At this point we digress to discuss transformation properties of the BdG Hamiltonian un-
der physical symmetry and gauge transformations. A general transformation on the particle-
hole degrees of freedom has the form(

ck
c†−k

)
→
(

Uk Wk

W ∗
−k U∗−k

)(
ck
c†−k

)
(4.34)

because we require that the transformed particle and hole-like operators are still related by
hermitian conjugation. Moreover, preserving the fermionic commutation relations restricts
the block matrix to be unitary.

Now we turn to the case with spin rotation symmetry. We split the c vector in 2 halves

for the spin z component ck =
(
ck↑ ck↓

)T
and rewrite the Hamiltonian in a 4N × 4N

block form where N is the number of orbitals not counting spin. The U(1) spin rotation
invariance around the z axis requires H4 to commute with the generator of the rotations
σzτz which restricts it to the block-diagonal form

H4k =


ξk↑ 0 0 δk
0 ξk↓ −δT−k 0
0 −δ∗−k −ξT−k↑ 0

δ†k 0 0 −ξT−k↓

 . (4.35)
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Imposing spin rotation symmetry for the x axis as well (commutation with σxτz) means

ξk↑ = ξk↓ =: ξk and δk = δT−k. If we now define a new set of operators dkσ =
(
ckσ c†−kσ̄

)T
with well defined momentum and spin quantum number, we can rewrite the Hamiltonian as
the sum of two 2N × 2N terms for the two spin orientations

H =
∑
kσ

d†kσH2kσdkσ (4.36)

where

H2k↑ =

(
ξk δk
δ†k −ξT−k

)
(4.37)

and H2k↑ = rzH2k↓rz =: H2k with Pauli matrices rµ acting on the space with the two
components of d. The unitary relation between the two spin sectors guarantees that the
spectrum is doubly degenerate, for every eigenstate there is another state with the same
energy and momentum but opposite spin.

The constraints on the form of H2k can be summarized as

CH2kC−1 = ryH
∗
2−kry = −H2k (4.38)

where we introduced the new particle-hole conjugation operator C = ryK with C2 = −1 (in
the body of the paper we use τ instead of r for this set of Pauli matrices as well). This
operator relates states with opposite energy and momentum but the same spin. Note that
this operator differs from the original particle-hole conjugation in that it is combined with
a spin flip, the physical symmetry should also reverse spin. As the symmetry is antiunitary
and squares to −1, a zero energy eigenstate at an invariant momentum must be doubly
degenerate (on top of the spin degeneracy that is always present) by the same reasoning that
proves Kramers degeneracy with T 2 = −1.

4.6 Transformation properties

4.6.1 Global symmetries

First we review transformation properties under time reversal. We take the active point of
view, T acting on a band structure produces a new band structure and we express quantities
of this new state in the same basis. Time reversal on a Bloch state of system of spin-1/2
fermions acts as

(T n)k = σyn
∗
−k (4.39)

where σy acts on the spin degree of freedom of the unit cell Hilbert-space. With simple
substitution we find for the Berry connection:

(T A)nmkµ = i (T n)†k ∂µ (Tm)k =
(
−in†−k∂µm−k

)∗
=
(
−in†k (−∂µ)mk

)∗
−k

= A∗nm−kµ = Amn−kµ.
(4.40)
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Here we used that d
dx
f(−x) = − df

dx
(−x) and the Hermitian property of A. This can be

written concisely as
(T A)k = AT−k. (4.41)

Similar calculation for the Berry field strength yields

(T F)k = −FT−k (4.42)

in the gauge where the nth band at k is mapped to the nth band at −k by T . In the
gauge-invariant formalism,

(T F)k = −σyFT−kσy (4.43)

which can be seen using the transformation property of the projector

(T P)k = σyPT−kσy. (4.44)

Our treatment so far did not rely on time reversal symmetry, the expressions give the
time reversed image of the band structure. Even in a TR breaking system, the image of
the Bloch states are Bloch states of the time reversed system with the same energy. It is
often convenient to work in a basis of spin (or total angular momentum) polarized orbitals
for a TR breaking system, but the time reversed orbitals can always be put back by hand,
forming unoccupied bands at high energy, not affecting the topology of the occupied bands.

As nk is not gauge invariant, TR invariance does not imply that nk equals (T n)k. The
equivalence is only true up to gauge transformations (T n)k = Unm

k mk, characterizing the
nontrivial winding of Uk underlies the Pfaffian view of topological insulators[18]. Similarly
Anm and Fnm are also gauge dependent, and we must be careful to only demand TR in-
variance of gauge-invariant quantities. The band projector and F as an operator on the full
Hilbert space are gauge-invariant, so TR symmetry implies (T P)k = Pk and (T F)k = Fk.

Now we are in a position to prove some properties of TR symmetric systems. TrF is
gauge-invariant and odd under time-reversal, TrFk = −TrF−k. The Chern-number for a
TR invariant slice must vanish, as contributions from opposite k-points cancel.

We also prove the quantization of the CS form in 3d TI’s:

T CS3 =
1

8π2
T
∫

Tr

(
Ak ∧ dAk −

2i

3
Ak ∧ Ak ∧ Ak

)
=

=
1

8π2

∫
Tr

(
AT−k ∧ dAT−k −

2i

3
AT−k ∧ AT−k ∧ AT−k

)
=

=
1

8π2

∫
Tr

(
ATk ∧ (− d)ATk −

2i

3
ATk ∧ ATk ∧ ATk

)
=

=
1

8π2

∫
Tr

(
(− dAk) ∧ Ak +

2i

3
Ak ∧ Ak ∧ Ak

)T
= −CS3. (4.45)

In the first step we merely substitute T A, then we switch the integration variable to −k
taking care of the minus sign picked up by the derivative. In the third step we move the
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transpose out, which comes with signs corresponding to the rearrangement of wedge products.
In the last step we integrate the first term by parts using d(A∧A) = (dA)∧A−A∧ (dA).
As CS3 is gauge invariant up to integers, this explicitly proves that it is quantized to 0 or
1/2 (mod 1).

Formally charge conjugation acts very similarly,

(Cn)k = τxn
∗
−k. (4.46)

However, we must remember that C flips the sign of the energy, mapping an occupied band
onto an unoccupied one. This only allows comparison of geometric properties between the
occupied and unoccupied bands:

(CAo)k = (Au)T−k, (CFo)k = −(Fu)T−k. (4.47)

This offers a concise proof for the Z2 classification for class D in 1d. Consider the first
Chern-Simons form for the occupied bands:

C (CSo1) =
1

2π
C
∫

TrAok =
1

2π

∫
Tr(Au)T−k = CSu1 . (4.48)

As we constructed the system from trivial localized orbitals, CStot
1 for all the bands must

be zero modulo integers, corresponding to a trivial bundle. As TrAtot = TrAo + TrAu,
we find CSo1 = −CSu1 = −CSo1 (mod 1). This implies that CSo1 is quantized to 0 or 1/2.
Similar reasoning does not apply to all higher Chern-Simons forms because of the different
sign under C or the lack of such simple additive property.

4.6.2 Space group symmetries

First we review the representations of space group operations in k-space[47, 48]. We use
the convention with Bloch basis functions

∣∣χxl
k

〉
=
∑

R e
ik(R+x)

∣∣φlR+x

〉
, where we split the

orbital index a = (x, l), x labels the sites of the unit cell by their real space position and l
is an on-site orbital index accounting for spin, orbital angular momentum, etc. (the values l
can take may depend on x). A useful property of this basis is that it is periodic in the real

space coordinate, i.e.
∣∣∣χ(x+R)l

k

〉
=
∣∣χxl

k

〉
for any lattice vector R. We emphasize that our

treatment is not specific to tight-binding models, the same can be told in the continuum,
there x is the continuous index for position in the unit cell and l stands for the spin only. To
go to the tight-binding approximation, we restrict the Hilbert-space to a finite set of orbitals
per unit cell, the only assumption we make is that orbitals centered on different sites span
orthogonal subspaces.

Consider a general space group operation g = {O|t} acting on one of the basis states

g
∣∣φlR+x

〉
= U ll′

x

∣∣∣φl′g(R+x)

〉
= U ll′

x

∣∣∣φl′O(R+x)+t

〉
(4.49)
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where U is the site and g-dependent unitary representation on the local orbitals, a double
representation if the model is spinful. Applying this to the Bloch basis functions, with simple
algebra we find

g
∣∣χxl

k

〉
= e−i(gk)tU ll′

x

∣∣∣χgx,l′gk

〉
(4.50)

with gk = Ok and gx = Ox + t that is understood as a permutation of sites at the
same Wyckoff position. Grouping indices back together, this can be written as g |χak〉 =
e−i(gk)tU ba

∣∣χbgk〉
The key observation is that in this basis the k-dependence decouples as a single factor

proportional to the identity. Consider the transformation of a Bloch eigenstate in the n-th
band |nk〉 = nak |χak〉. The symmetry transformation results in a state at gk, the coefficients
transform as (gn)agk = e−i(gk)tUabnbk or in a compact notation

(gn)k = e−iktUng−1k. (4.51)

As g is a symmetry operation, the transformed state is again an eigenstate of the Bloch
Hamiltonian with the same energy, but at gk. As a consequence, the transformation of
occupied band projector operator Pk =

∑
n∈occ. nkn

†
k reads

(gP)gk =
∑
n∈occ.

(gn)gk(gn)†gk = UPkU
†. (4.52)

So if g is a symmetry, such that (gP)k = Pk, any gauge invariant quantity that can be
expressed through Pk is invariant if the k-space coordinates are transformed accordingly.
Examples include[48] the Berry curvature F = iP dP ∧dPP and closed loop integrals of the
Berry connection A (see below).

For completeness we derive the transformation properties of A and F under the basis
change corresponding to switching between conventions and show that invariants calculated
in either convention give the same result. We feel this is necessary because, while the Berry
connection for the Bloch basis |χ̃ak〉 vanishes and one can safely use the coefficients, for the
basis |χak〉 it is nonzero, Aabχ = i 〈χak| d

∣∣χbk〉 = iδabeiktata dk. This means that one may worry
that the formulae in terms of the components in this basis may be missing some terms coming
from the derivatives of the basis vectors.

For generality, we consider a transformation Uk acting on the coefficients, it may either
be a basis transformation, or a physical one and let n′k = Uknk. We find

Trocc.A′ =
∑
n

in′† dn′ = Trocc.A+ iTr
(
PU † dU

)
(4.53)

Trocc.F ′ = Trocc. dA′ = Trocc.F + i dTr
(
PU † dU

)
(4.54)

where Trocc.(.) =
∑

n(.)nn is the trace over occupied bands, while Tr(.) =
∑

a(.)
aa is the

trace over the entire Hilbert-space of the unit cell. We see that as long as PU † dU is unit
cell periodic, which is the case for the basis transformation Uab

k = W ab
k = δabeikra if P = P̃
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(BZ periodic convention), the change in Trocc.
∫
S
F is fully compensated by the change in

Trocc.
∫
∂S
A in the formula for the Z2 invariants and vanishes for Chern-numbers.

We note that the expression for Trocc.
∮
A along a non-contractible loop in terms of the

projector is modified in the |χ〉 basis,

Trocc.

∮
A = i log det

+

(
W−G

k0−G∏
k=k0

Pk

)
(4.55)

where det+ is the pseudo-determinant of the matrix, which is defined as the product of all
nonzero eigenvalues. This is equivalent to calculating the determinant of the restriction to
the local occupied space at k0, i.e. we evaluate −i log det+ as the sum of the complex phases
of the nonzero eigenvalues. The reason WG appears is the mismatch of the basis at k0 and
k0 + G. We give more details on the properties of Wilson loops in Chap. 7.

4.6.3 Magnetic space group symmetries

Magnetic space groups contain symmetries that are a combinations of time reversal and a
space group operation. As TR is not a symmetry by itself, the low energy theory does not
necessarily contain the TR image of all orbitals. It is always possible, however, to enlarge
the unit cell Hilbert-space with the time reversed image of all orbitals. These orbitals will
have a high energy, forming unoccupied bands, not affecting the topology of the occupied
bands. This allows definition of T operator with the same properties as before, but not as
a symmetry. An issue we swept under the rug so far, is that the low energy theory often
contains orbitals with nonzero orbital angular momentum that also has to be reversed by
T alongside the spin. To be the most general, consider spin-orbit coupled electronic states
of isolated ions where only the total angular momentum J is a well defined half-integer. In
the standard basis Jy is purely imaginary and a time-reversal operator T = e−iπJyK can be
defined. As required T 2 = −1 and T Ji = −JiT for all i. The anticommutation relation
ensures that spatial rotations ein·J commute with T , and this property is inherited by any
invariant subspace. So we see that T with all the properties we used previously is well
defined in the enlarged Hilbert-space.

Now we can combine the formalisms in the two previous two sections. The symbols for
magnetic group elements are the same as for space group elements, the presence of TR in
the operation is denoted by a prime:

{O|t}′ = {O|t} T . (4.56)

T acts strictly locally and commutes with local rotations, so it commutes with all SG op-
erations. The transformation properties of states and other objects are a simple product of
the two operations:

({O|t}′ n)k = e−iktUσyn
∗
−g−1k (4.57)

where σy is the unitary part of T , not necessarily equal to the Pauli matrix.
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Armed with this formalism it is possible to show that any magnetic group operation that
reverses time but preserves orientation quantizes θ. The calculation is analogous to that
presented for the TR invariant case in Sec. 4.6.1 combined with the SG case in Sec. 5.2.1.
This generalizes antiferromagnetic topological insulators studied in Ref. [44] where only
simple Neél-like symmetries were considered, which are combinations of TR with a pure
fractional translation.
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Chapter 5

θ-terms and topological response with
nonsymmorphic symmetries

In this chapter we consider whether nonsymmorphic symmetries such as a glide plane can
protect the existence of topological crystalline insulators and superconductors in three di-
mensions. In analogy to time-reversal symmetric insulators, we show that the presence of
a glide gives rise to a quantized magnetoelectric polarizability, which we compute explicitly
through the Chern-Simons 3-form of the bulk wave functions for a glide symmetric model.
Our approach provides a measurable property for this insulator and naturally explains the
connection with mirror symmetry protected insulators and the recently proposed Z2 index
for this phase. More generally, we prove that the magnetoelectric polarizability becomes
quantized with any orientation-reversing space group symmetry. We also construct analo-
gous examples of glide protected topological crystalline superconductors in classes D and C
and discuss how bulk invariants are related to quantized surface thermal-Hall and spin-Hall
responses.

5.1 Introduction

The last decade has seen a major breakthrough in the search of novel phases of matter
with the discovery of topological insulators and superconductors[148–150]. The original
predictions of these systems have already led to many experimental realizations, in a very
fruitful endeavor that continues today. The key insight underlying this discovery is that the
presence of a symmetry, in this case time-reversal symmetry (T ), allows to define a new bulk
topological invariant of the Bloch wave functions in the Brillouin Zone (BZ). In a gapped
fermion system, this invariant cannot change unless the gap closes, defining a robust phase
and protecting the existence of gapless boundary states. It was soon realized that other
global symmetries in the Altland-Zirnbauer (AZ) classes[16], such as charge conjugation (C)
and chiral symmetry, also give rise to new phases, leading to the periodic table[11, 15] of
topological insulators and superconductors.
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The classification based on global symmetries then lead to the natural question of whether
lattice symmetries can give rise to new topological phases of matter. For example, it was
realized early on that in the presence of lattice translations, one may define extra topological
invariants in lower dimensional slices of the Brillouin Zone [9], which lead to the concept of
weak topological insulators [60, 151]. Point group symmetries such as rotations or reflections
were also used to define new topological invariants and phases of matter, which were termed
topological crystalline insulators[28, 29] (TCI) and superconductors (TCSC). Recent efforts
in the field [14, 31, 32, 34–37, 41, 46, 152] have been devoted to classifing these phases of
matter protected by lattice symmetries in addition to global ones. Most of these previous
works focused on symmorphic space groups for simplicity, i.e. groups where the full group
is a semidirect product of the translation part and the point group. However, in view of the
strong constraints that non-symmorphic symmetries place on the Bloch wave functions, one
may expect that these symmetries can lead to richer structures, an idea that has drawn a lot
of attention recently [40, 42–45, 50, 51, 53, 143]. The question we consider in this paper is
whether non-symmorphic symmetries, in particular glide reflections, can define a new class
of topological insulators or superconductors. We will focus on the three dimensional case
without time-reversal symmetry, where it has been predicted that a new TCI protected by
glide symmetry indeed exists[40].

While in this work we will present explicit computations of microscopic topological invari-
ants, our main conclusions can also be understood in a simple way by considering topological
bulk responses. It is well known that a three dimensional topological insulator can be char-
acterized by a quantized bulk electromagnetic response term of the type[20]

S =
θe2

16πh

∫
d4x εµνλγFµνFλγ =

θe2

4πh

∫
F ∧ F (5.1)

which is known as the magnetoelectric response (because F ∧ F ∝ E ·B) or the “axion”
Lagrangian. The second equality is expressed in coordinate-free notation, which we will use
from now on (see Appendix 5.A). The magnetoelectric coupling θ is defined modulo 2π, and
the presence of time-reversal symmetry requires that θ = −θ. This implies that θ = 0 or
π, and the second case corresponds to a strong topological insulator. θ can be computed
microscopically from the Chern-Simons 3-form of the Berry connection, establishing a direct
correspondence with the Z2 index. A physical consequence of θ = π is the presence of an
odd number of massless Dirac fermions on the surface which are protected by time-reversal
symmetry.

The same line of reasoning[44, 46] implies that the magnetoelectric coupling is quantized
in the presence of any symmetry that sends θ → −θ, such as mirror reflection[10, 36] which
reverses one spatial coordinate. In the presence of a surface that respects this symmetry,
one must also have an odd number of Dirac cones. A three dimensional topological insulator
can therefore be protected by either time-reversal or mirror symmetry. The magnetoelectric
coupling in the second case can be computed microscopically from mirror Chern numbers[10]
at invariant planes.
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The main result of this work is that glide symmetry also gives rise to quantized magneto-
electric coupling, which exactly corresponds to the Z2 invariant previously defined for glide
protected topological crystalline insulators[40]. This result can be simply rationalized by
the fact the magnetoelectric coupling is a bulk response property which makes no reference
to the lattice. Since a glide differs from a regular mirror only by a half translation, from
the perspective of the bulk response both symmetries guarantee the quantization of the θ
term, giving rise to a topological insulator when θ = π. This result is explicitly proven in
Appendix 5.2.1 where we show in general that θ becomes quantized in the presence of any
orientation-reversing space group symmetry.

In this work we also illustrate this general result by an explicit calculation of θ via the
Chern-Simons form for a particular model of a glide symmetric TI, confirming the presence
of a single Dirac fermion in the surface spectrum when θ = π. In the second part of this
work, we explain how these ideas can be naturally extended to superconductors without time-
reversal symmetry in classes D and C. In these classes there are analogs of the magnetoelectric
coupling for the thermal and spin response, respectively, and these can also be quantized in
the presence of a glide symmetry. We will also present explicit models for these classes, and
show that microscopic computations of the bulk topological invariants are consistent with
the surface spectra.

5.2 Magnetoelectric Coupling and Z2 Invariant In

Mirror and Glide Symmetric Insulators

The quantized magnetoelectric response in Eq. 5.1 has been long known to be the distin-
guishing feature of strong topological insulators[20, 27] with time-reversal invariance. The
quantized coefficient in the action is known as the magnetoelectric polarization θ, and is
given by the formula

θ =
1

4π

∫
BZ

Tr

(
A ∧ dA− 2i

3
A ∧A ∧A

)
. (5.2)

where Anm = i 〈un| d|um〉 for n and m conduction bands, and the integral is only gauge
invariant modulo 2π, consistent with the ambiguity in Eq. 5.1. While θ is computed in
this manner for translationally invariant systems, the corresponding topological response is
robust against disorder that preserves the symmetry on average and can be defined in the
presence of interactions. The quantization of θ can also be protected by spatial symmetries
like inversion symmetry [33, 46] and improper rotations[31], but cases where it is not possible
to find a surface that preserves the symmetry lack protected gapless surface states.

The existence of a quantized magnetoelectric response in a bulk material has an important
implication for the response of surface states. In the presence of a small perturbation that
breaks time-reversal symmetry, the surface Dirac fermion becomes gapped, giving rise to a
half-integer quantized Hall conductance[20]. This cannot happen in a pure two-dimensional
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system without topological order and reflects the topological nature of the 3d bulk. This
behavior can be understood by considering the surface as an interface between the bulk and
the vacuum where θ changes from π to 0. The surface can thus be modeled by a spatially
dependent θ

S =
e2

4πh

∫
θ(x)F ∧ F. (5.3)

such that θ(x < 0) = π and θ(x > 0) = 0 for an interface between the topological and trivial
regions. Since F ∧ F is a total derivative, one may integrate by parts to find the effective
2+1-D surface action of the Abelian Chern-Simons form

S = ∆θ
e2

4πh

∫
A ∧ dA (5.4)

which implies that the effective Hall conductance of the surface, given by ∆θ = π in units
of e2/(2πh), is a half-integer value. This half-quantized topological response can serve as an
additional feature to distinguish a topological phase, and as we will see, can be generalized
to other types of responses.

To determine the coefficient θ and identify a topological phase, one needs to explicitly
evaluate Eq. 5.2. The coefficient will be quantized in the presence of any symmetry that
takes θ → −θ, but the computation may simplify in different ways for different symmetries.
For example, in the presence of both time-reversal and inversion symmetry, Eq. 5.2 can be
related to the eigenvalues of the inversion operator at time-reversal invariant momenta[152].
In the presence of a mirror symmetry, the computation can be related to the mirror Chern
numbers at mirror invariant planes.

In the following subsection we prove the quantization of θ in the presence of a generic
orientation-reversing space group symmetry with no reference to any of these simplifying
circumstances. The purpose of the rest of this section is to demonstrate the robust quanti-
zation of θ imposed by mirror and glide symmetries using microscopic tight-binding models.
Starting with a brief review of crystalline insulators in class A with mirror symmetry, we
show that the quantized magnetoelectric response can be obtained as the parity of the the
integer-valued (Z) topological invariant protected by the mirror. However, when the mirror
symmetry is replaced by a glide[40, 42], only a Z2 invariant survives, which corresponds to
the quantized θ = 0, π.

5.2.1 Proof of quantization of θ

Here we provide a formal microscopic proof of our claim that any orientation-reversing space
group (SG) operation quantizes θ using the formalism in Sec. 4.6.2.

First consider a symmorphic SG operation g = {O|0} acting as (gn)Ok = Unk. Note
that in this convention that reproduces the microscopic expression[27] for the diagonal
magnetoelectric coupling, the Berry connection is calculated using the coefficients only as
Anmk = in†k dmk and we drop terms that come from the derivatives of the basis states. It
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transforms under g as

(gA)nmµ,k = i (gn)†k d(gm)k = in†O−1kU
† dUmO−1k = (5.5)

= OµνAnmν,O−1k.

The constant U cancels and the 3d BZ integral (5.2) for θ picks up a factor of detO from
the point-group rotation of k-space, so gθ = (detO) θ.

We will reduce the general case to the previous symmorphic one. Consider a continuous
family of transformations represented as (g (k4)n)Ok = e−i(Ok·t)k4Unk where t is fixed and
0 ≤ k4 ≤ 1 is a tuning parameter, k4 = 1 corresponding to the actual SG symmetry
g (k4 = 1) = g = {O|t}. We will show that θ(k4) calculated from a wave function transformed
by g (k4) is independent of k4. This is to be expected, considering the special case of U = 1

and O = 1 corresponds to a mere shift of the spatial origin by k4t. We can calculate the
change in θ as k4 changes from 0 to 1 by evaluating the second Chern form

∫
BZ×[0,1]

F ∧ F
with k4 as the fourth coordinate. Using the expression (5.23), as P is k4-independent, we
see that θ is unchanged through this process. g (k4 = 0) has the same form as a symmorphic
SG operation discussed above, those considerations are still valid even though g (0) is not a
symmetry.

The same result can be derived by direct substitution, but one encounters a subtlety we
discuss now. Using the transformed wave function n′k = eiktnk we find A′nmµ = Anmµ −tµδ

nm,
substituting it in (5.2)

θ′ = θ − 1

4π

∫
εµνλ TrFµνtλ. (5.6)

As t is constant the extra term can be expressed as a linear combination of Chern numbers in
various cuts of the Brillouin zone. If the Chern numbers vanish, the correction is zero, or if t
is a lattice vector, it is an integer multiple of 2π that does not change the value of θ modulo
2π. However, t can be an arbitrary vector if we interpret the above transformation as a shift
of the entire crystal, or equivalently as a redefinition of the spatial origin. This shows that
θ is ill defined with nonzero Chern numbers, we rationalize this observation below.

This situation is analogous to the problem of polarization in 2d Chern-insulators[153].
From a mathematical point of view, there the polarization becomes ill defined because it
is not possible to choose a gauge where the wave functions are BZ periodic in the presence
of nonzero Chern-number. Similarly, the Chern-Simons 3-form is not invariant under gauge
transformations that are not periodic over the BZ, one needs to choose a periodic gauge to fix
its value, but the Chern-number prevents this. Equation (5.23) misses the extra correction
term because, while P stays BZ periodic throughout the deformation, A4 does not, to apply
Stokes’ theorem one has to add surface terms for ∂BZ × [0, 1], that exactly reproduces the
correction. However this does not make a difference in the cases with vanishing Chern-
numbers discussed in this paper. A4 fails to be periodic because the boundary conditions
for the Bloch functions change throughout the deformation. To guarantee that such surface
terms do not appear during the deformation to the trivial state used to calculate θ, we
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prescribe that these deformations should be made keeping the lattice sites (thus the boundary
condition) fixed, which is always possible.

We can continue the analogy from a physical point of view. Polarization measures surface
charge, but on the surface of a Chern-insulator charge is no longer conserved due to the chiral
anomaly. θ measures the fractional part of the surface Hall conductance σSxy. However,
when the bulk has a Hall conductance per transverse unit cell σxy/az, depending on the
definition of the “surface layer” it may contribute more or less to σSxy. We may fix the
boundary of the “surface layer” and push the crystal in the z direction by tz. The surface
Hall conductance changes exactly by tzσxy/az, in agreement with our formal result. We
conclude that there is no natural zero for θ with nonzero Chern-number, consequently our
result about the quantization of θ is only meaningful if we restrict to the case of vanishing
total Chern-numbers, as we did throughout this work.

To summarize, we proved that θ transforms under a generic SG operation g = {O|t} as

gθ = (detO) θ (5.7)

meaning that θ is quantized to 0 or π by any orientation-reversing SG symmetry.

5.2.2 Mirror symmetry

In three dimensional insulators with mirror symmetry, topological invariants can be defined
by considering the mirror invariant planes in the BZ, where bands have a definite mirror
parity. Total and mirror Chern numbers can be thus defined for these invariant planes [10,
154]. The total Chern numbers for cuts perpendicular to the mirror plane vanish by sym-
metry, and for simplicity we assume they are zero in the mirror-invariant planes as well1. In
a system with mirror symmetry reflecting the z axis, the bulk BZ has two mirror invariant
planes2 at kz = 0 and π (Fig. 5.1 (a)). This allows us to label bands in these two planes by
their mirror eigenvalue ±iF (F = 0 and 1 for spinless and spinful fermions respectively), as
no terms mixing the two sectors are allowed by symmetry. Chern numbers C±kz for the even
and odd occupied bands are separately well defined for kz = 0 and π. The mirror Chern
number for a mirror-invariant plane (kz = 0, π) is defined as the difference between the two
sectors CM

kz
= 1

2

(
C+
kz
− C−kz

)
. Consider, for example the case with nonzero Chern numbers

for the even and odd sectors in the kz = 0 plane (C±0 = ±1) and vanishing Chern number
for both sectors at kz = π (C±π = 0), now CM

0 = 1 and CM
π = 0.

A minimal Hamiltonian implementing this phase can be obtained starting from the 4-
band model of a 3d TI with time-reversal symmetry[20, 31] T = iσyK:

HAM
k = tx sin kxτy + ty sin kyσzτx + tz sin kzσyτx +mkτz (5.8)

1In a gapped 3d insulator, the total Chern number in any parallel cut in momentum space must be the
same integer, which is a 2d weak index. We omit this extra factor of Z in our further classification.

2Note that not all space groups have two mirror-invariant k-planes. For example a tetragonal crystal
only has one pointwise invariant plane with respect to a diagonal mirror. While this might affect the detailed
classification with mirror symmetry, the conclusions about the quantization of θ remain valid.
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with mk = m−
∑

µ cos kµ. This model is in the strong TI phase for 1 < |m| < 3 with θ = π.
Now we can remove the time-reversal symmetry constraint and instead demand invariance
under mirror M = iFσz reflecting the z direction. The Hamiltonian (5.8) formally has both
symmetries, but the mirror allows different perturbations than time-reversal. It is easy to see
that the two mirror sectors (with opposite σz eigenvalues) now have opposite Chern numbers
in the kz = 0 plane and vanishing Chern numbers at kz = π. Similar to the weak indices
in time-reversal invariant insulators, CM

0 and CM
π separately rely on translational symmetry

along z direction but the strong mirror Chern number CM
s = CM

0 + CM
π is robust against

translational symmetry breaking, as long as mirror symmetry is preserved. We note that,
with vanishing total Chern number (i.e. C+

kz
+C−kz = 0), the quantized magnetoelectric cou-

pling θ is completely determined by the strong mirror Chern number, θ = πCM
s (mod 2π).

This is seen by counting surface modes: in the invariant planes C+
kz

= −C−kz counts the num-
ber of chiral modes on the surface at kz = 0 or π propagating right (left) in mirror sector
+ (−). Each pair of counterpropagating modes forms a surface Dirac-cone, so if the total
number is odd, the bulk has nontrivial θ.

5.2.3 Glide symmetry

In this section we present an alternate picture to understand the glide-protected Z2 invariant
first proposed in Ref [40] (see also Appendix 5.B), in terms of the quantized magnetoelectric
polarization. Let the glide G = {Mz|tx/2} reflect the z direction and translate along x by half
of a unit cell (Fig. 5.1). G2 =

{
(−1)F1|tx

}
is a pure translation, with the sign depending on

how a 2π rotation is represented. The eigenvalues of the glide operator are ±iF eikx/2. As we
traverse the Brillouin Zone (BZ) in the x direction on a line that is pointwise invariant under
the symmetry, the eigenvalues wind into each other. In a system respecting this symmetry
if we follow a band with the +iF eikx/2 eigenvalue, it is connected to band with −iF eikx/2
at the zone edge, so the boundary condition for the Bloch wave functions is constrained to∣∣u+

k+Gx

〉
∝
∣∣u−k 〉 where Gx is the reciprocal lattice vector parallel to tx. So bands in the

presence of glide symmetry come in pairs that cannot be separated by a gap, as the crossings
are protected by the fact that the pairs have different eigenvalues under the symmetry. The
Chern number for each single band is ill defined as one band must evolve into the other on
the zone boundary, only the total Chern number for the pair is a topological invariant.

Again, for simplicity, we assume that the total Chern number for conduction/valence
bands in any 2d cut parallel to the mirror plane vanishes. Nonzero values for perpendicular
cuts are forbidden by mirror symmetry. The minimal model realizing the nontrivial phase[40]
is analogous to the mirror-symmetric case i.e. Eq. (5.8)

HAG
k = tx sin

(
kx + φ

2

)
ρxτx + ty sin kyτy+

+ tz sin kzρzτx +mkτz (5.9)

with the glide operator Gk = iF eikx/2ρx. Here mk has the same form as in (5.8). It is easy
to see that the model is gapped for appropriate choice of parameters and band degeneracies
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Figure 5.1: (a) Bulk BZ of a glide or mirror symmetric crystal with the two invariant
planes BZ in red (shaded) and invariant lines in blue (thick) if particle-hole symmetry is
also present. (b) Surface BZ for a cut normal to y with invariant lines in red (thick), labels
for high symmetry points and a sketch of an occupied band pair along these lines. On the
invariant planes (kz = 0 and kz = π) the glide eigenvalue (color code) distinguishes the two
bands. (c) Example of a crystal with glide symmetry G that reflects the z direction and
translates by half of the unit cell in the x direction, the glide operator exchanges the two
sublattices (4 and 5). This pattern is repeated in parallell planes shifted perpendicular to
the plane of the drawing.

can be removed almost everywhere in the BZ with symmetry allowed terms. Pauli matrices
τ and ρ act on orbital and sublattice degrees of freedom respectively and the Hamiltonian
preserves glide symmetry GkHk = HMzkGk with Mz (kx, ky, kz) = (kx, ky,−kz). We used
the convention where operators and Bloch wave functions are not periodic in the BZ (see
Appendix ??), and the model can be regarded as either spinless (F = 0) or spinful (F = 1)
with spin-polarized electrons, such that trivial bands with opposite z-component spin Sz are
pushed far over or below the Fermi level and can be omitted (note that Mz is diagonal in
the Sz basis).

Regardless of the microscopic differences, in the macroscopic translational-invariant elec-
tromagnetic response theory there should be no distinction between a mirror and a glide,
θ is quantized as 0 or π just like with a mirror. We numerically[155] verified that in the
nontrivial phase of this model, θ = π is robust against symmetry preserving perturbations
(Fig. 5.2, for details see Appendix 5.A). We would like to point out that starting from a
mirror symmetric TCI (for example (5.8)) one can double the unit cell and weakly break
down separate mirror and half translation symmetries to a glide without closing the gap or
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Figure 5.2: (a) Band structure in slab geometry with 20 unit cells in the y direction for
glide protected class A topological insulator. We use HAG with tµ = 1, m = 2 and φ =
0.4. The surface Dirac cone is at a generic momentum on the high symmetry line, the left
and right moving branches are distinguished by their glide eigenvalues and cannot gap out.
(b) Evolution of θ from numerics while tuning across the transition from the topological to
the trivial phase without breaking the glide symmetry. The error bars indicate two standard
deviations (95% confidence interval) of the Monte Carlo estimates.

changing the value of θ. While the mirror Chern numbers are no longer well defined, the Z2

invariant defined by θ survives. We emphasize that θ is a macroscopic response quantized
by macroscopic mirror symmetry, so it is robust against symmetry preserving interactions
and disorders which preserve the symmetry on average[156], both in the case of glide and
mirror symmetry. To summarize, we provided a physical understanding of the Z2 invariant
introduced in Ref. [40] in terms of quantized magnetoelectric coupling.

5.3 Topological Crystalline Superconductors in Class

D

In the previous section we have shown how the magnetoelectric coupling in insulators can
be quantized in the presence of symmetries other than T , in particular a mirror or a glide.
We now show how these considerations can also be applied to superconductors in three
dimensions where T is broken. In this section we consider a superconductor with no other
local symmetry but the particle-hole symmetry of the Bogoliubov-de Gennes Hamiltonian,
which belongs to class D. We will show that the presence of an additional glide symmetry
protects the existence of a topological crystalline superconductor with a single Majorana
cone at the surface. In section 5.4 we will consider the analogous problem in the presence of
SU(2) spin rotation symmetry.
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5.3.1 Bulk invariant and surface thermal Hall conductance

The reason why a glide can protect a topological superconductor in three dimensions without
time reversal symmetry is that this phase is also characterized by θ term that is quantized
with any orientation-reversing symmetry. The reasoning is analogous to the one used for
insulators. We first consider the case of a superconductor with time-reversal symmetry, in
class DIII. In three dimensions, class DIII has an integer topological invariant ν ∈ Z which
counts the number of Majorana cones at the surface. In the same way as the insulator, in the
presence of a weak perturbation that breaks time reversal symmetry, the surface becomes
gapped and each Majorana cone contributes half of the minimal thermal Hall conductance
of a 2d superconductor (that is half of the minimal value for a 2d insulator)[21, 157]:

κxy
T

=
(πkB)2

3h

ν

4
. (5.10)

Formally, a class D superconductor is the same as an insulator with an extra antiunitary
particle-hole symmetry C that anticommutes with the Hamiltonian and squares to +1, be-
cause a particle-hole symmetric Bloch Hamiltonian for insulators has the same form as the
Bogoliubov-de Gennes (BdG) Hamiltonian for superconductors. The only important differ-
ence is that only half of the degrees of freedom in the BdG Hamiltonian are physical, since
all negative energy states correspond to the annihilation operators of the positive energy
excitations over the BdG ground state. This is why the surface Dirac cones in insulator case
reduce to surface Majorana cones in the superconductor case.

The fact that the insulator and superconductor problems are formally the same allows
us to use the BdG Hamiltonian the same way as the Bloch Hamiltonian to calculate θ from
the band structure of a glide-symmetric superconductor, which must be quantized to 0, π by
the same reason as in the insulator case. When θ = π, this implies an odd number of surface
Majorana cones, and a half-integer thermal Hall conductance when the glide symmetry
is broken. This is not allowed in a purely two-dimensional gapped superconductor with no
ground state degeneracy, where κxy/T is always quantized in integer multiples of (πkB)2/(6h).

5.3.2 Microscopic model with glide plane in 3d

The explicit model for a glide symmetric superconductor in class D is very similar to the
insulator in Eq. (5.9), but with an extra particle-hole symmetry C2 = 1. Again we consider a
glide plane reflecting the z direction and translating along x, G = {Mz|tx/2}. We represent
charge conjugation as C = τxK where K is the complex conjugation operator and the τ act
on the particle-hole degree of freedom. As charge conjugation acts locally, it has to commute
with the glide as G−kC = CGk. The Hamiltonian (5.9) with φ = 0 possesses these symmetries
for spinless fermions, however, such systems do not naturally appear as superconductors and
require fine tuning as insulators. For the rest of this section we assume the physical case
of spinful fermions, for which the appropriate choice of the glide representation is Gk =
ieikx/2ρxτz (see Appendix ?? for details about symmetry representations in BdG systems).
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A simple Hamiltonian respecting these symmetries is:

HDG
k = tx cos

kx
2
ρyτx + ty sin kyρzτx + tz sin kzτy +mkτz. (5.11)

Figure 5.3: Band structures in slab geometry for glide protected class D topological super-
conductor. We use HDG with tµ = −1. (a) with m = 2.5 the surface Majorna cone is at
M̄ , while (b) with m = 0.5 at X̄. The left and right moving branches are distinguished
by their glide eigenvalues on the invariant lines and cannot gap out. Inset: Evolution of θ
while tuning across the transition from the topological (m < 3) to the trivial (m > 3) phase
from numerics. Note that at m = 3 the gap closes and θ takes on an intermediate value not
allowed in a gapped system. The error bars for the Monte Carlo results are smaller than the
symbols.

For appropriate choice of parameters (see Fig. 5.3) the model is in its topological phase
with gapless excitations on symmetry preserving surfaces and numerical evaluation confirms
that θ = π (Appendix 5.A). Fig. 5.3 (a) and (b) shows surface spectra with single Majorana
cones pinned by particle-hole symmetry to different high symmetry points. As will be ex-
plained later, in fact the Majorana cone can only appear at X̄ or M̄ , but not Γ̄ or Z̄ in the
surface BZ (shown Fig. 5.1 (b)). This is an important difference compared to the insulator
case.

5.3.3 Lower dimensional topological invariants

The structure of the surface modes in the particular case of class D can be further understood
from the presence of lower dimensional topological invariants (known as weak invariants or
indices) associated to glide-invariant lines and planes in the Brillouin Zone. While our model
has been chosen such that all 1d and 2d invariants associated to particle-hole symmetry are
trivial, the presence of a mirror or glide enables new lower dimensional invariants.

First we review the case of mirror symmetry[36, 37]. The classification for TCSCs in
class D depends on the square of mirror operator i.e. M2

± = ±1. In particular, no nontrivial
TCSCs exist with M−, this means, while θ is quantized, only θ = 0 is allowed by symmetry.
On the other hand, with the choice of M+, we find a rich structure with both 1d and 2d weak
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invariants. Similarly to class A, there is an integer-valued 2d index (mirror Chern number) in
mirror-invariant planes. Besides, there are 1d mirror Z2 invariants along the high symmetry
bulk lines in y direction (blue lines in Fig. 5.1 (a)). These mirror Z2 invariants guarantee
the presence of a pair of surface zero modes of opposite parity at the corresponding surface
high-symmetry momentum, which split for any other momenta generating a Majorana cone.
Therefore, these 1d mirror indices determine the parity of the number of surface Majorana
cones on the surface projections of the mirror invariant lines (Fig. 5.1 (b)). This leads to a
Z

4
2 index in the case of M+ mirror symmetry, as long as translation symmetry is preserved.

The case of a glide can be understood as a combination of the above two cases as we
argue below. Mirror Chern numbers cannot be defined with a glide for the same reason that
applies in class A. However, the smaller symmetry group with glide symmetry poses weaker
constraints on the band structure compared to mirror M−, allowing θ = π as illustrated by
our model. 1d indices can still be defined, but the square of the glide operator is different for
high symmetry points since it changes with kx, unlike for a mirror. For the lines at kx = 0
we have G2

0 = −1, but for kx = π, G2
π = 1. This difference is key because for G2

0 = −1,
no mirror index exists[36, 37], while for G2

π = 1 there is a Z2 index at each high symmetry
point. Therefore, surface Majorana fermion can only be found at high-symmetry points with
kx = π, i.e. the X̄ or M̄ points. Two cases with a single Majorana cone at X̄ or M̄ are
realized in our proposed model for m = 0.5 and m = 2.5, as seen in Fig. 5.3, in both cases
θ = π as it is determined by the parity of the total number of Majoranas.

5.3.4 Surface Dirac model

An alternative approach to demonstrate the protection of a topological phase by a symmetry
is to consider how symmetries are implemented in a generic surface theory. For example,
for a regular topological insulator, the presence of time-reversal symmetry protects a single
Dirac cone to be gapless. If a single Dirac cone is found at the surface, it cannot be removed
until the symmetry is broken or the bulk gap closes. Two surface Dirac cones can however
be gapped without breaking the symmetry.

We consider how the glide symmetry is implemented in a generic Dirac Hamiltonian at
a high-symmetry point, offering an alternative explanation of the results in the previous
section. As mentioned earlier, as a result of particle-hole symmetry a single Majorana cone
can only appear at a high symmetry surface momentum, we will discuss the case of more
Majoranas later. In a 2-band model G0 that squares to −1 can be chosen iσi for i = x, y, z,
but since σx and σz behave the same under complex conjugation we only need to consider
σx or σy. Charge conjugation is represented as C = UCK with real unitary UC. A 2-band
gapless Dirac Hamiltonian has the form

H = kxΓx + kzΓz (5.12)

where the Γ’s are hermitian, anticommuting, with ±1 eigenvalues and [Γx, G0] = {Γz, G0} =
[Γi, C] = 0. If we choose G0 = iσy, [UC, G0] = 0, so UC = 1, Γx cannot be chosen to satisfy all
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commutation and anticommutation relations. Similarly if G0 = iσx, {UC, G0} = 0, UC = σz
and again no Γx is allowed. Therefore it is impossible to write a Dirac Hamiltonian with
particle-hole symmetry and G2

0 = −1. This shows that a single surface Majorana cone is
forbidden at the Γ̄ and Z̄ points of the surface BZ (see Fig. 5.1 (b)) in the presence of a
glide.

On the other hand with G2
π = +1 we can choose Gπ = σx, UC = 1, Γx = σx and Γz = σz.

Now a single Majorana cone is allowed, but it cannot be gapped out, for that we would need
a mass term mΓ0 such that {Γ0,Γi} = {Γ0, C} = [Γ0, Gπ] = 0. One can check that a mass
term is not allowed for any valid choice of a 2× 2 representation, single Majorana cones are
allowed and protected at X̄ and M̄ .

Finally, we may also consider a system with a pair of cones at opposite surface momenta.
Similarly to class A[40], a pair of surface Majorana cones with different glide eigenvalues at
one high symmetry point are locally protected, but can symmetrically move around the BZ
and gap each other out at another point where their eigenvalues are the same. This shows
that only the number of cones modulo 2 at each of X̄ and M̄ is stable against symmetry-
preserving perturbations. The classification with full translation invariance is thus Z2

2, while
allowing terms doubling the unit cell in the z direction reduces the classification to Z2

counting the parity of the total number of surface Majorana cones. Such a Z2 index is given
by the Chern-Simons 3-form in Eqn. (5.2).

5.4 Class C superconductor with glide plane in 3d

In this last section we consider how a singlet superconductor with SU(2) spin rotational sym-
metry in three dimensions may also have a topological phase. This type of superconductor
belongs to class C. After appropriate rearrangement of the degrees of freedom (see Appendix
??) the Hamiltonian can be block-diagonalized in the spin-Sz basis where the two blocks are
unitarily related with identical spectra and topological properties. In the reduced problem
charge conjugation is combined with a spin rotation acting as C = τyK, with C2 = −1, which
is the main difference compared to class D.

To understand the emergence of the topological phase protected by a glide in class C, it
is instructive to first consider the more familiar case of an SU(2) invariant superconductor
with time-reversal symmetry, which belongs to class CI, and the anomalous response of the
surface after breaking time reversal symmetry. After this, we argue how the θ term is also
quantized in a class C superconductor with a glide, present an explicit model for this, and
also argue how the protection of the surface states can be seen directly from the surface
theory.

5.4.1 Bulk invariant and SU(2) axion term

In class CI, topological superconductors are characterized by a topological invariant ν, which
counts the number of pairs of surface Majorana cones. The SU(2) spin rotation symmetry
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allows the definition of spin Hall conductance[158]. Once the surface is gapped by breaking
time-reversal symmetry (but not SU(2) spin rotational symmetry), the surface spin quantum
Hall conductance is given by[14]

σSxy =
(~/2)2

h

ν

2
(5.13)

where ν is an even integer. Note that when ν = 2 the above σSxy is only half of that of
a d + id singlet superconductor in 2d[158]. Therefore this anomalous half-integer surface
spin quantum Hall conductance serves as a probe to characterize the nontrivial 3d phase. It
should be noted that the thermal Hall conductance κxy is well defined, but it is not sufficient
to characterize the topological phase.

This half-integer response can be related to an analog SU(2) bulk θ term, in an analogous
way to a 3d topological insulator. To see this, we first consider the effective SU(2) continuum
gauge theory that describes the spin quantum Hall superconductor in 2+1 dimensions, which
captures the response of the SU(2) spin rotation invariant system coupled to a SU(2) gauge
field. While this gauge field is fictitious, this treatment is useful to derive the response to an
external Zeeman field[159]. This system is described by the effective action[159]

S =
1

4π

(~/2)2

~
C

∫
Az ∧ dAz (5.14)

where Az is the z component (in spin space) of the SU(2) gauge field, which we identify as
the z component of an external Zeemann field Az = Bz. C =

∫
F ∈ 2Z is the Chern-number

of the negative energy bands in one spin sector, which is an even integer in class C. This is
analogous to the quantum Hall effect, but as we are interested in spin currents, the electric
charge e is replaced by ~/2 in the coupling (we take the g-factor g = 1). The spin current is

J i = δS/δAzi =
(~/2)2

h
Cεij∂jB

z, (5.15)

so the spin Hall conductance is σsxy = (~/2)2

h
C. To get a proper SU(2) gauge theory, we

promote A to a nonabelian SU(2) gauge field by A = σiA
i
µ, the action compatible with the

previous one is given by the nonabelian Chern-Simons 3-form

S =
1

4π

(~/2)2

~
C

2

∫
Tr

(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
, (5.16)

where an extra 1/2 appears to compensate for the trace. As we see, compared to the U(1)
gauge theory, the coefficient is only half of the Chern number for one spin sector.

In analogy to Eq. (5.1), an SU(2) axion action can be defined in 3+1 dimensions in the
following way:

S =
1

4π

(~/2)2

~
θ

2

∫
TrF ∧ F (5.17)

where F is the nonabelian field strength tensor and θ is the Berry Chern-Simons 3-form
(Eq. (5.2)) for the occupied bands in one spin species. The ambiguity in θ is now 4π because
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of the extra factor of 1/2. One can also check that a spatial domain wall of 4π in theta
gives rise to a surface with the minimum allowed value of the spin Hall conductance in a 2d
system, corresponding to C = 2 in one spin sector. As we argued in class A, if the system
has a symmetry on average that flips an odd number of spacetime dimensions, θ is quantized
to 0 or 2π modulo 4π, leading to a 2Z2 classification. The reason why the ambiguity in θ
calculated from the band structure changes to 4π is quite subtle[159]. It comes from the
gauge fixing requirement that the band structure can be continuously deformed to the trivial
band structure in the trivial gauge without breaking C. We refer the interested reader to
Appendix 5.A for details.

5.4.2 Microscopic model with glide plane

Following the same logic as for classes A and D, we now consider how the presence of a glide
symmetry can protect an SU(2) invariant topological superconductor in the absence of time-
reversal symmetry, i.e. in class C. As in the previous classes, the presence of an orientation
reversing symmetry is sufficient to guarantee the quantization of the θ term (now to either
0 or 2π), which is the topological invariant that characterizes the phase. This phase has
formally the same properties as a CI topological superconductor with ν = 2, namely a pair
of Majorana surface cones and a half-quantized spin Hall conductance upon breaking the
glide symmetry on the surface.

To show this, we now consider a microscopic model in class C with a glide symme-
try, demonstrating the presence of protected surface modes and computing the value of
θ explicitly. In the original full Hilbert space the natural representation of the glide is
Gk = ieikx/2ρxτzσz, but because of the full SU(2) spin symmetry we can cancel the spin
rotation part by attaching −iτzσz to our definition, so we may use Gk = eikx/2ρx. For this
operator G2

k = +eikx1, showing the “spinless” nature of the problem. A Hamiltonian for one
spin component with these symmetries can be constructed as

HCG
k =∆xy sin ky sin

kx
2
ρxτx + ∆xz sin kx sin kzρzτx+

+ ∆0(cos kx − cos ky + α)τy +mkτz. (5.18)

For appropriate choice of parameters (Fig. 5.4) this Hamiltonian realizes a nontrivial
topological phase with an odd number of pairs of surface Majorana cones (not counting
the spin degeneracy). Class C is similar to class A as it has a 2Z index in 2d without
symmetry, corresponding to an even total Chern number in xy cuts which vanishes in our
model and we restrict our further discussion to this case. Again, no integer-valued mirror
Chern number can be defined in glide-invariant planes, but a 2Z2 index still survives due to
the bulk quantization of θ, which we have computed explicitly (Fig. 5.4 inset).
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Figure 5.4: Band structure in slab geometry for glide protected class C topological supercon-
ductor. We use HCG with ∆xy = ∆xz = ∆0 = 1, α = 0.5 and m = 1.5. Note the symmetric
pair of surface Majorana cones at a generic momentum, the left and right moving branches
are protected from gapping out by different glide eigenvalues. This is the spectrum for one
spin sector, for the full system there is an additional spin degeneracy. Inset: Evolution of θ
while tuning across the transition from the topological to the trivial phase from numerics.
Note that at m = 2.5 the gap closes and θ takes on an intermediate value not allowed in a
gapped system. The error bars for the Monte Carlo results are smaller than the symbols.

5.4.3 Surface Dirac model

The fact that an odd number of pairs of Majorana cones is protected in class C with a glide
can be shown explicitly by considering the surface Hamiltonian of a pair of Majorana cones
with C2 = −1. It is instructive to show first the known case of class CI. The Hamiltonian in
the vicinity of a high symmetry surface momentum (Fig. 5.1 (b)) is

H = σxkx + σzkz (5.19)

where the Dirac matrices are 4×4 and spanned by σi, τj, the identity is implicit. The particle-
hole operator is C = iτyK and the time-reversal operator is T = σyτyK with K complex
conjugation. There are four possible mass terms for this Hamiltonian, σyτx, σyτy, σyτz, σy.
The first three masses are forbidden by C, and the last one, σy, is forbidden by T . Therefore,
a single pair of Majorana cones cannot be gapped out at the surface in class CI.

In class C, when time reversal symmetry is broken, both a mirror or a glide can still
protect the presence of a single pair Majorana cones, because as we now show, both of these
symmetries forbid the σy mass as well. In the presence of a mirror, we consider a reflection
z → −z, with operator M± that satisfies M2

± = ±1. In the presence of a glide, we would
have G2

k = eikx , but since the Majorana cones must be at opposite momenta due to C, their
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annihilation can only occur at kx = 0, π and we only need to consider these two cases with
G2

0 = +1 and G2
π = −1, same as the situation of regular mirrors. We now discuss the two

cases of M±, which apply to both mirror and glide.
In the M+ case, for the two eigenstates of σx with positive eigenvalues, the mirror eigen-

values are the same and equal to 1, while the other two are equal to -1, as would happen if
M were the glide operator at k = 0. The operator doing this is simply M+ = σx. In the M−
case, for the two eigenstates of σx with positive eigenvalues, the mirror eigenvalues are ±i ,
as would happen if M were the glide operator at k = π. This is achieved with M− = iσxτz.
Note both M± anticommute with σz because M reverses kz. Also note both M± commute
with C as we want.

Once we have the operators for M±, it is easy to see that both operators forbid the mass
σy. Since the other three masses are already forbidden by C, a pair of Majorana cones is
protected in the presence of C2 = −1 and the additional mirror/glide symmetry M±.

5.5 Conclusions

In this work we classified 3d topological insulators and superconductors protected by non-
symmorphic glide symmetry in classes A, D and C and presented lattice models for these
phases. Our results, however, are more general. As our arguments only rely on symmetries
of the effective long-wavelength response theory, the Z2 classification is also robust if mirror
symmetry, or any symmetry reversing an odd number of spatial coordinates, is preserved on
average. The cases with glide symmetry illustrate that these macroscopic considerations are
insensitive to the fractional translation that accompanies the mirror operation, and identify
the most robust topological invariants that are also defined (among others) with simple
mirror symmetry. Glide symmetry is present in over a hundred of the 230 crystallographic
space groups, and all but the 65 chiral groups contain orientation-reversing operations, so
our results should be widely applicable to experimentally and numerically detect topological
crystalline insulators and superconductors without time-reversal symmetry.
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Appendix

5.A Evaluation of Chern-Simons 3-form and second

Chern-form

In this section we review the calculation of the magnetoelectric coupling. The magnetoelec-
tric coupling is defined in terms of the Chern-Simons 3-form:

θ =
1

4π

∫
BZ

Tr

(
A ∧ dA− 2i

3
A ∧A ∧A

)
. (5.20)

The main difficulty about evaluating this expression is that one has to find a (patchwise)
smooth gauge in the occupied band space, which is a complicated task in numerical studies.
To circumvent this, we instead find a gapped deformation to a trivial state with constant
Hamiltonian using a tuning parameter k4, such that θ(k4 = 0) = 0, and calculate the change
in θ by the 4 dimensional second Chern form[20, 27] that is locally gauge invariant:

θ(π)− θ(0) =
1

4π

∫
BZ

∫ π

k4=0

Tr (F ∧ F) (5.21)

where F = dA− iA∧A, the nonabelian Berry curvature in the 4 dimensional space spanned
by kµ = (k, k4). (Note that in the convention we use F∧F = 1

4
εµνγλFµνFγλ.) We realize that

F can be written in a gauge invariant form as F = iP(dP)∧ (dP)P using the projector onto
occupied bands Pk =

∑
n∈occ. |unk 〉 〈unk |, which is also gauge invariant. In this formulation F

is an operator acting on the full Hilbert-space of the unit cell, but only nonzero on occupied
bands, so we can extend the trace to the full Hilbert-space without changing the result. The
usual components can be obtained as matrix elements between occupied states in a given
basis, Fnmk = 〈unk | Fk |umk 〉. So we arrive at the locally gauge-invariant expression

θ(π)− θ(0) = (5.22)

= − 1

4π

∫
BZ

∫
k4

Tr (P(dP) ∧ (dP)P ∧ (dP) ∧ (dP))

that we numerically evaluate using adaptive Monte Carlo integration[155]. In order to get
physical result, one must use the Bloch formalism where the orbital positions are taken into
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account (Sec 4.2.2 and 5.2.1), the interpolating Hamiltonians in classes A and D can be
written as

HAG
k =

1

2
(1− cos k4)HAG

k +

+ sin k4 sin(kx/2)ρy +
1

2
(1 + cos k4)τz (5.23)

HDG
k =

1

2
(1− cos k4)HDG

k +

+ sin k4 sin(kx/2)ρxτx +
1

2
(1 + cos k4)τz (5.24)

with HAG
k and HDG

k given in (5.9) and (5.11) respectively. We find that θ is quantized to 0 or
π (mod 2π) to high accuracy, a result that is robust against symmetry allowed perturbations
of the final Hamiltonian and deformations of the interpolation as long as the bandgap does
not close (Fig. 5.A.1 (a)).

Figure 5.A.1: (a) Evolution of θ during the gapped deformation HAG
k from the trivial to

the topological phase while breaking glide symmetry in class A. We use parameters tµ = 1,
φ = 0.4 and m = 2 (circles) or m = 2.5 (squares) and we also show a deformation with m = 2
but with the symmetry allowed perturbation βτy with β = 0.5 added to HAG

k (triangles). (b)
Same plot for class C using HCG

k with ∆xy = ∆xz = ∆0 = 1, α = 0.5 and m = 1.5 (circles) or
m = 2 (squares) and m = 1.5 with symmetry allowed perturbation βτx with β = 0.5 added
to HCG

k . The error bars are smaller than the symbols.

In class C we have to reconcile the change of ambiguity in θ from 2π to 4π from the
band structure point of view. A natural gauge choice for a class C system is the requirement
that |uok〉 = iτy

∣∣uu−k〉∗ that relates unoccupied states at k with occupied states at −k.

Gauge transformations preserving this condition satisfy τyU
o
k = (Uu

−k)∗τy where U o/u act on
the occupied/unoccupied bands. This constraint is not sufficient to remove the 2π gauge
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ambiguity in θ coming from the winding number of U o
k, as any U o

k is allowed as long as it is
accompanied by the appropriate Uu

k .
So how can we define a proper bulk invariant? The idea is to prove that for a cyclic

gapped deformation of the band structure (with k4 as the tuning parameter) the second
Chern form

1

4π

∫
TrF ∧ F (5.25)

is quantized to multiples of 4π as long as particle-hole symmetry in any 3d cut is preserved
(as opposed to multiples of 2π without symmetry). This is proved in Ref. [160], for our
case D = 3 is the dimension of k-space and δ = 1 the dimension of real space, for us this is
k4, the tuning parameter that is not affected by particle-hole symmetry. The result is, for
D − δ = 2 in class C the classification is 2Z, proving our conjecture.

Now, if we find a gapped particle-hole symmetric deformation from the trivial band
structure to the glide symmetric one, we can calculate the difference ∆θ = θ(π)−θ(0) in the
3d Chern-Simons forms between the initial and final states using the locally gauge invariant
expression of the second Chern form in terms of the band projector. 2π will be different
from zero, as the ambiguity introduced by different deformations is 4π. Such deformation
to the trivial state always exists, as there are no nontrivial phases in 3d class C without any
other symmetry. Note that the formula in terms of F requires a continuous gauge choice
throughout the deformation and θ(0) is only zero in the trivial gauge. We can view this
as a nontrivial gauge fixing condition demanding that the band structure is continuously
deformable to the trivial state in the trivial gauge, in this gauge the Chern-Simons 3-form in
the final state gives the same result. However, we know of no method of checking whether this
condition is satisfied other than explicitelly constructing a deformation. On the other hand,
the formula with the projector is completely gauge-invariant, insensitive to discontinuous
large gauge changes that would add extra 2π’s to the formula with F , so we do not have
to worry about the band structure satisfying any gauge condition using this method of
computation.

For the specific model in equation (5.18) we use the deformation preserving C = τyK:

HCG
k =

1

2
(1− cos k4)HCG

k +

+ sin k4 sin(kx/2)ρyτx +
1

2
(1 + cos k4)τz. (5.26)

Our numerical results give θ = 0 and 2π (mod 4π) to a high accuracy for the trivial and
topological phases respectively (Fig. 5.A.1 (b)).
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Figure 5.B.1: Illustration of our definition of the glide Chern number. (a) Bulk BZ of a
glide symmetric crystal with a possible choice of the “bent” BZ in red (shaded). The glide
Chern number is calculated by integrating the Berry flux following a single band around this
torus. (b) Surface BZ for a cut normal to y with projection of the “bent” BZ in red (thick)
and a sketch of an occupied band pair along this loop. On the invariant planes (kz = 0 and
kz = π) the glide eigenvalue (color code) distinguishes the two bands. On the non-symmetric
part (other values of kz) bands are generically nondegenerate. The glide Chern-number is
calculated by counting the winding number of φ(ks) following a single band (solid or dashed)
around the X̄ − Γ̄− X̄ − M̄ − Z̄ − M̄ − X̄ loop. (c) Value of φ(ks) around the loop for the
minimal model in the nontrivial phase. Color code indicates glide eigenvalue in the invariant
planes. Note that following one band around, the phase winds 2π, indicating that the glide
Chern-number is odd.

5.B Relation to earlier definition of Z2 index in class

A

Here we review the alternate definition of the Z2 index in class A introduced in Ref. [40].
There are two planes in the 3d BZ that are invariant under a mirror or glide, at kz = 0 and π,
in the rest of the BZ glide does not act locally, bands do not have a well defined eigenvalue and
symmetry allowed perturbations generically destroy most degeneracies. A 2×2 Hamiltonian
without any symmetry constraints only has pointlike degeneracies between occupied bands
in 3d (Weyl nodes), which allows us to choose a surface in the BZ that connects the kz = 0
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and π planes such that the all the bands are nondegenerate. We will choose a constant
kx surface for simplicity and show later that the result is insensitive to this choice or the
assumption that there are only pointlike degeneracies.

Now we can choose a surface in the bulk BZ that includes the two invariant planes plus
a surface connecting them traversing half the BZ, say at kx = 0 (see Fig.5.B.1 (a)). We can
follow a band around this surface (Fig.5.B.1 (b)), this is possible because of the well defined
glide eigenvaue in the invariant planes and the generic lack of degeneracies in the connecting
surfaces. We can compute the “glide Chern number” corresponding to one such band on the
“bent BZ”[32] by counting the winding number of the Berry-connection integral integrals in
the y direction

φ(ks(t)) =

∫ 2π

0

Ay(k)dky. (5.27)

where Aµ(k) = i 〈uk| ∂µ |uk〉 and the curve ks(t) = (kx(t), ky(t)) encloses half of the surface
BZ (Fig.5.B.1 (b)). In the case when there are multiple pairs of conduction bands with we
naturally sum the Chern numbers for bands with the same glide eigenvalue. This quantity
(mod 2) is a well defined topological invariant because pushing a Weyl node across one of
the connecting surfaces can only change the winding by 2. A definition that does not rely
on distinguishing the two bands in the nonsymmetric region is obtained realizing that the
winding number (mod 2) is the same as the parity of crossings regardless of direction of
an arbitrarily set branch cut by φ(t) throughout the invariant planes and one copy of the
connecting plane[40]. Even when the bands are degenerate, phases of eigenvalues of the
nonabelian Wilson loop operators along the y direction give equivalent quantities. This def-
inition, while in principle well defined, still suffers from problems of distinguishing crossings
from anticrossings in a many-band model at finite k-space resolution[161].

The fact that the Berry flux through a closed surface for a set of bands that are separated
from all other bands on this surface is nonzero signals the presence a Weyl-node inside the
bounded region connecting this set of bands to some other bands. This Weyl-node connects
valence/conduction bands among themselves, the systems we consider are fully gapped.
This Weyl-node is also present in mirror symmetric insulators with different mirror Chern-
numbers in the two invariant planes (sec. 5.2.2). We can think of the 3d band structure as
an interpolation of 2d systems in the kxky cuts as the tuning parameter kz evolves from 0
to π. To interpolate 2d systems between the two cuts, we have to close and open a Dirac
node between the occupied bands connected to different mirror sectors to transfer Berry flux,
which corresponds to a Weyl node inside the half 3d BZ. This Weyl node is topologically
protected and must exist somewhere in the half BZ, mirror symmetry at the high symmetry
planes prevents it from locally annihilating with its opposite chirality mirror image that lives
in the other half of the BZ.



77

Chapter 6

Space group constraints on weak
indices in topological insulators

Lattice translation symmetry gives rise to a large class of “weak” topological insulators
(TIs), characterized by translation-protected gapless surface states and dislocation bound
states. In this chapter we show that space group symmetries lead to constraints on the
weak topological indices that define these phases. In particular we show that screw rotation
symmetry enforces the Hall conductivity along the screw axis to be quantized in multiples
of the screw rank, which generally applies to interacting systems. We further show that
certain 3D weak indices associated with quantum spin Hall effects (class AII) are forbidden
by the Bravais lattice and by glide or even-fold screw symmetries. These results put a
strong constraints on candidates of weak TIs in the experimental and numerical search for
topological materials, based on the crystal structure alone.

6.1 Introduction

The discovery of topological insulators and superconductors is one of the most important
breakthroughs of condensed matter physics in the past decades[148–150]. The key principle
underlying the existence of these novel topological phases is that the presence of a symmetry,
such as time reversal symmetry (T ), can lead to a quantized bulk topological invariant and
robust gapless surface states. In a gapped fermion system, this invariant cannot change
unless the gap closes, defining a stable quantum phase and protecting the existence of gapless
boundary states. After the discovery of three dimensional topological insulators, which are
protected by T , it was shown that other global symmetries in the Altland-Zirnbauer (AZ)
classes[16], such as charge conjugation (C) and spin rotational symmetries, also give rise
to topological phases, leading to the periodic table[11, 15] of topological insulators and
superconductors.

It was realized early on that additional topological phases can be obtained from invariants
defined on a lower dimensional slice of the Brillouin Zone [9] (BZ). Since this definition
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requires the discrete translational symmetry of the lattice, it was initially thought that these
phases would not survive generic disorder and thus termed “weak” topological insulators.
The lower-dimensional topological invariants are therefore known as weak indices. However,
further efforts then showed that weak topological phases have many robust features emerging
from topology[55–58], in particular the fact that lattice dislocations host protected gapless
modes that originate from the weak indices[60–62]. Recently it was also proposed that strong
interactions can lead to novel topological orders on the surface of weak TIs[59, 162]. Most
of these theoretical predictions remain untested due to the difficulty of finding materials
realizing these weak topological phases[163], though several candidates have been predicted
in ab-initio studies[164–167]

The consideration of a perfect lattice with translational symmetry immediately raises the
question of whether the space group symmetries of this lattice may also have an impact on
the topological properties. The addition of space group often leads to the emergence of novel
phases, generally termed topological crystalline insulators[14, 31, 35–37, 39–45, 47, 48, 152],
with different properties from weak TIs. Here we address a complementary question: what
are the restrictions brought by space group symmetries on possible topological phases, in
particular, the weak topological phases?

In this work, we show that the nonsymmorphic elements of the space group lead to
unexpected constraints for the weak indices beyond those derived from the point group. First,
we show that for three dimensional (3D) magnetic insulators in class A there is nontrivial
quantization condition of Hall conductivity tensor in the presence of nonsymmorphic screw
symmetry. We derive this condition from band theory, and then provide a general proof of
its applicability to interacting systems. Second, we turn to time-reversal-invariant insulators
in class AII and show how nonsymmorphic screw and glide symmetries can make the weak
indices vanish in a particular direction. While enumerating every AZ symmetry class and
dimensionality is beyond the scope of this paper, we present the necessary formalism to
generalize our results to topological superconductors with a few examples in Appendix 6.A.

6.2 Chern number and Hall conductivity (class A)

6.2.1 Hall conductivity of a 3D insulator

A simplest example of weak indices in a three dimensional system is the quantized Hall
conductivity of an insulator, which in proper units is given by integer-valued Chern numbers
of 2D slices of the BZ. As off-diagonal elements of the conductivity tensor, these Chern
numbers transform like an axial vector under point group operations. Here we show that
a nonsymmorphic screw symmetry further imposes an important constraint on the integer-
valued Hall conductivity. This constraint holds generally for interacting and disordered
systems, as long as the ground state is a non-fractionalized 3D insulator which preserves the
screw symmetry.

In a 2D system, the Hall conductance (or conductivity) σxy characterizes the transverse
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current response to an in-plane electric field: jx = σxyEy. Using the Kubo formula one
finds[5, 168] that the Hall conductivity in unit of e2/h is given by the integral of Berry
curvature for the occupied bands over the BZ:

σxy =
e2

h
C, C =

1

2π

∫
BZ

d2k Trocc.Fk (6.1)

where Trocc. is the trace over occupied bands and F is the Berry curvature matrix. In an
insulator with a bulk gap between valence and conduction bands, the total Berry flux over
the BZ is quantized to be an integer, known as the Chern number C, and hence σxy is also
quantized.

In a 3D insulator the Hall conductivity becomes an antisymmetric tensor and can be cast
in terms of an axial vector[168] Σ in the form of

σij =
e2

2πh
εijlΣl, Σi =

εijl
4π

∫
BZ

d3k Trocc.F jlk (6.2)

where repeated indices are summed over implicitly. In band insulators this “Hall vector” is
always a reciprocal lattice vector[169] and can be expressed as Σ =

∑3
i=1 GiCi where Gi are

an independent set of primitive reciprocal lattice vectors, and Ci ∈ Z is the Chern-number
for a cut of the BZ oriented towards Gi and spanned by the other two reciprocal lattice
vectors. The weak topological invariant associated with 3D insulators in symmetry class A
is such a “Chern vector” ~C ∈ Z3.

The “Hall vector” as defined in Eqn. (6.2) may be cast in a coordinate free form, as

Σ =
1

2π

∫
TrF ∧ dk. (6.3)

To see that it is equal to
∑3

i=1 GiCi, it is sufficient to check that ai · Σ is the same in the
two cases for all lattice vectors. Simple substitution shows that this vector transforms as an
axial vector under all SG operations, i.e. even under inversion, Σ→ (detO)OΣ).

This shows that lattice symmetry severely constrains the allowed values, as it has to stay
invariant under every orthogonal transformation in the point group. Nonzero values are only
allowed with low enough symmetry, two intersecting axes of (improper) rotations is sufficient
to force vanishing Hall conductance[31].

For a finite 3D insulator with lattice translational symmetry, the Hall conductance normal
to a certain direction m̂ is given by

εmnlσnl =
e2

2πh
Σ · (Lmm̂) =

e2

h

∑
i

Lmm̂ ·Gi

2π
Ci (6.4)

where Lm is the linear size of the periodic system along m̂ direction. If this 3D system
has a gapped bulk, its Hall conductance must also be an integer in units of e2/h along any
direction. Adding one extra unit cell along Gi direction will increase the Hall conductance
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Figure 6.1: (a) Brillouin zone of an insulator with 4-fold screw symmetry. The perpendicular
plane through the BZ center (blue) contains four high symmetry points (red spheres), we
use the formula relating the chern number to rotation eigenvalues at these 4 points. In
the direction of the screw, along the four invariant lines (dashed red) the screw eigenvalues
evolve into each other, illustrated by spirals and color code. Note that at lines that are
only invariant under twofold screw there are only two different eigenvalues, but the total
number of occupied bands is still a multiple of 4. (b) Intuitive real space picture of the screw
symmetric insulator as a stack of integer Chern insulator layers related by the screw. The
unit cell contains four layers, so the Hall conductance per transverse unit cell is a multiple
of 4.

along Gi direction by exactly the Chern number Ci in units of e2/h. In an anisotropic limit
the 3D insulator can be viewed as a stack of 2D layers with a quantized Hall conductance
σLxy each. Therefore the Hall conductivity tensor (6.2) is nothing but the Hall conductance
per unit cell layer, σLxy, which can be defined as the difference between the Hall conductance
of Nz and Nz + 1 layers along a certain direction. As will become clear later, this difference
σLxy does not depend on Nz as long as Nz is much larger than the correlation length, so we
adopt this definition for our interacting proof.

In the following we show that, with a nonsymmorphic n-fold screw symmetry, the Hall
conductance per unit cell layer along the screw-axis direction cannot be an arbitrary integer
(in units of e2/h) for a gapped 3D insulator without fractionalization. Instead it must be a
multiple of n, as enforced by the screw symmetry.

6.2.2 Screw symmetry enforced constraints

Below we will show the Chern number for a cut perpendicular to an n-fold screw axis is
quantized to a multiple of n. Consider an essential n-fold screw in the z direction, by es-
sential screw we mean a SG operation that leaves no point in space invariant up to lattice
translations[143]. We assume that the translation part is 1/n of the primitive lattice vec-
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tor parallel to the n-fold rotational axis1, g = {Cn|az/n}. We invoke results[31, 47] (see
Sec. 7.3.3) that allow calculation of the Chern number in the presence of n-fold rotational
symmetry in 2D as a product of rotation eigenvalues of occupied bands at high symmetry
points of the BZ. For example with C4 symmetry (Fig. 6.1 (a))

exp

(
2πi

C

4

)
=
∏

m∈occ.

ξΓ
m (C4) ξMm (C4) ξXm

(
C−2

4

)
(6.5)

where ξkm (O) is the rotation eigenvalue of O in band m at momentum k. Similar formulae
can be derived for rotations C2, C3 and C6.

When restricted to the 2D cut of the BZ through Γ, a screw acts the same way as a
symmorphic Cn rotation, so the formula can be applied. Now consider the screw-invariant
lines in BZ, parallel to the screw axis (dashed vertical lines in FIG. 6.1 (a)). As the n-
th power of the screw gn = (−1)F {1|az} is a pure translation up to fermion parity, the
eigenvalues of screw g take values of exp (ik · az/n+ 2πim/n+ πiF/n) for m ∈ Zn. When
restricted to the perpendicular plane with k · az = 0 the eigenvalues are simply the n-th
roots of fermion parity (−1)F . Increasing kz by 2π will change g eigenvalue by a factor of
e2πi/n, leading to a n-multiplet of occupied bands at each screw-invariant momentum. This
shows that the product of screw eigenvalues at high-symmetry points is always 1 for every
allowed configuration. This immediately proves that

σLxy
e2/h

= Cz ≡ 0 mod n. (6.6)

In the following we show that this result is not a peculiarity of band theory for free electrons,
but holds for any gapped unique ground state preserving n-fold screw symmetry, even in the
presence of interactions and disorders. The proof is based on the following cut and glue
procedure. We start with a slab containing Nz +m/n unit cells along the z direction which
is parallel to the screw axis. While this number of unit cells is not integer, screw symmetry
allows us to identify the top and bottom surfaces using a boundary condition twisted by a
Cn rotation[50], which results in a screw symmetric bulk without boundaries (Fig. 6.2 (a)).
To take the thermodynamic limit we assume the size of the system is much larger than the
correlation length of the gapped bulk. To define the Hall conductance σxy in this geometry
we invoke the Streda formula[170], whereby the Hall conductance is given by the charge
bound to a localized 2π flux threaded through the system. Unless the charge captured is an
integer, the system is fractionalized and has a non-unique ground state, contradicting our
initial assumption.

Next we cut the system open in the z direction. During this process we change the
Hall conductance by a surface contribution of −σSxy. σSxy can depend on the thickness, but
should saturate to a thickness-independent constant, as long as Nz is much larger than the

1Space groups with such screw axes are usually denoted by international symbols containing 21, 31, 41
or 61.
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X

Figure 6.2: The process used in the general proof for the Hall conductance constraint (6.6),
illustrated in the case of a 2-fold screw. (a) A thick slab with half-integer thickness and
twisted periodic boundary condition in the z direction. As we open the boundary condition
in the z direction, the Hall conductance may change by a surface contribution −σSxy. (b)
We combine two slabs, the screw axis allows to arrange these such that the interfaces are
guaranteed to be identical, a top surface (F) meets a bottom surface (G) with the same
orientation. Glueing the two interfaces together each contributes +σSxy. (c) The resulting
system has periodic boundary conditions in all three directions with odd thickness while the
Hall conductance is an even multiple of the conductance quantum.

correlation length of the gapped bulk. We then take n copies of this open system and arrange
them along the z direction related by Cn rotations such that all the interfaces are symmetry
related (Fig. 6.2 (b)). Gluing the surfaces together by restoring the screw symmetric bulk
Hamiltonian changes the Hall conductance by σSxy at each interface, as the separation between
them is much larger than the bulk correlation length. The resulting system (Fig. 6.2 (c))
has periodic boundary conditions in all three directions with a thickness of nN + m unit
cells and Hall conductance of n

(
σxy − σSxy

)
+ nσSxy = nσxy. Thus we proved that a sample

with arbitrary integer thickness has a Hall conductance which is a multiple of n times the
conductance quantum.

6.3 Weak TI indices (class AII)

6.3.1 Bravais lattice

Point group symmetry can put stringent constraints on the allowed values of the weak indices.
To calculate the weak Z2 invriants we evaluate[9]

νi =
1

2π
Trocc.

(∫
1
2
T 2

Fkd2k−
∮
∂ 1

2
T 2

Ak · dk

)
mod 2 (6.7)

where A and F are the Berry curvature and connection and the integral is over the interior
and boundary of half of the time-reversal invariant 2D cut of the BZ spanned by the two
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reciprocal lattice vectors other than Gi and displaced from the Γ point by Gi/2. This defines
a k-space vector characterizing the weak indices, pointing to one of the 8 TR invariant
momenta:

Gν =
1

2
νiGi. (6.8)

This vector is independent of the choice of the unit cell[44] and transforms under space
group operations as k-space vectors (see Appendix 5.2.1). One can enumerate the allowed
values of Gν by inspecting tables for Wyckoff-positions of the reciprocal space groups: Gν

can only take values at points with half-integer Miller indices that are invariant under the
point group up to reciprocal lattice vectors. This means that a face-centered cubic lattice
(for example the common cubic diamond structure[171]) can not support nontrivial weak
indices without breaking point group symmetries. To see this, consider the body-centered
cubic (bcc) reciprocal lattice and note that there is no maximal symmetry k-point other that
the Γ point that represents trivial weak indices. The constraints only depend on the type of
Bravais lattice2, listed in Table 6.1.

These results can also be rationalized from the band inversion point of view. To get a weak
TI, we need an odd number of band inversions among the four TR invariant momenta located
on one plane offset from Γ. But point group symmetry relates some of these TR invariant
momenta, and band inversion can only occur simultaneously on all symmetry related points.
For example in the bcc reciprocal crystal TR invariant momenta are symmetry equivalent
in such a fashion that there is an even number of related points in any of the offset planes,
explaining the lack of nontrivial weak TI’s. On the other hand, a strong TI is possible with
any SG, as the Γ point is always of maximal symmetry and it is possible to have a band
inversion only at Γ (see Appendix 6.B).

6.3.2 Nonsymorphic symmetries

The presence of nonsymmorphic symmetries leads to further constraints on the weak indices.
We now show that in the presence of an essential twofold screw in the z direction, the weak
index must be trivial in this direction. First we note that a 2-fold screw {C2|az/2} with
az a primitive lattice vector, squares to {−1|az}, represented at kz = π as +1, which
commutes with T . Note that a diagonal3 twofold screw is never essential and the Bravais
lattice constraint already rules out a nontrivial weak index in the screw direction. So we
can assume the other two primitive lattice vectors are perpendicular to az and in the kz = π

2A priori the constraints depend on the arithmetic crystal class that is determined by the point group
(geometric crystal class) and its action on the translations (Bravais lattice). Direct enumeration[172–174]
reveals that the result in fact only depends on the Bravais lattice. This can be rationalized noting that
a Bravais lattice contains arithmetic crystal classes that have a large enough point group to force certain
relations among lattice vectors by mapping them to each other. As Gν takes values on the same reciprocal
Bravais lattice with half the spacing, the constraints are the same for every arithmetic crystal class in a
Bravais lattice.

3By diagonal screw/glide (rotation/mirror) we mean that there is no choice of a generator set of trans-
lations such that they are all parallel or perpendicular to the axis/plane.
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Table 6.1: Constraints on possible weak indices based on the Bravais lattice in time reversal
invariant insulators. The allowed values of Gν are labeled as in ITA[172], “all” means all
the 8 possible values are allowed.

Crystal system Centering Allowed values of Gν

Triclinic P all

Monoclinic
P all
C Γ, Y , A, M

Orthorhombic

P all
C Γ, Y , T , Z
I Γ, X
F Γ, Y , T , Z

Tetragonal
P Γ, Z, M , A
I Γ, M

Trigonal
P Γ, A
I Γ, T

Hexagonal P Γ, A

Cubic
P Γ, R
I Γ, H
F Γ

plane the screw it acts like a proper inversion in a 2D system. We use the known result
to evaluate the weak index by counting inversion eigenvalues[152], it is given by the total
number of occupied Kramers pairs with −1 inversion eigenvalue at the four TR invariant
momenta modulo 2. In this plane Kramers partners have the same screw eigenvalues, as
required.

However, this situation in a 3D system with screw is different from a 2D system with a
symmorphic inversion symmetry in that the screw requires an equal number of both screw
eigenvalues below the gap, as shown earlier. Specifically at kz = π at each high symmetry
point the number of occupied +1 and −1 eigenvalues must be equal, and as the number of
occupied bands is constant, the total number of occupied −1 bands is a multiple of 4, leading
to a trivial Z2 index in this plane.

In general a weak vector in the presence of an essential screw {C2|az/2} is only allowed
if

Gν · az ≡ 0 mod 2π. (6.9)

We analogously argue[36, 37] that an essential glide forbids nontrivial weak index in the
direction parallel to the the translational part of the glide. Again, a diagonal glide is never
essential and is covered by our earlier constraints. In general, an essential glide with in-
plane translation az/2 only allows a weak vector if Gν · az ≡ 0 (mod 2π), consistent with
the analysis of the “hourglass” surface states[43, 47].
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6.4 Conclusion

In summary, we derived a set of constraints on weak topological indices in 3D insulators from
nonsymmorphic and symmorphic space group symmetries. We show that in the presence of
n-fold screw rotation, Hall conductivity must be quantized as a multiple of n for any 3D
non-fractionalized insulator preserving screw symmetry. This condition is generally proved
for interacting systems. We also show that certain weak indices for 3D TIs (class AII) can
be ruled out considering the Bravais lattice, glide and even-fold screw symmetries. These
results put strong constraints on the candidates for weak topological phases in the ongoing
experimental and numerical efforts to find physical realizations of these novel topological
phases.
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Appendix

6.A Generalization to topological superconductors

Weak indices are also present in other symmetry classes[60, 175] and we extend our consid-
erations to other cases with d−1 dimensional weak indices. In 3D there are analogous 2D Z

and 2Z indices in classes D and C respectively, these are Chern numbers of the Bogoliubov-de
Gennes Hamiltonians and the same reasoning applies as in class A. In other cases, however,
the presence of charge conjugation symmetry (C) has a more important role, in the following
we review one example and present the relevant formalism.

In class D we have 1D Z2 indices that serve as d − 1 dimensional weak indices in a 2D
system:

νi =
1

π

∮
TrA (mod 2) (6.10)

where the integration contour is along an invariant line on the edge of the BZ Gi/2 + tεijGj,
t ∈ [0, 1]. Similarly to the weak Z2 in 3D TI’s, the value ν ′i on a parallel invariant line
through the Γ point is not independent, it is related through the 2d strong index C ∈ Z
such that C ≡ (νi + ν ′i) (mod 2). It can be shown that the weak vector Gν = 1/2νiGi again
transforms as k-space vectors under space group operations, showing that rhombic and
square lattices only allow (1/2, 1/2) (in primitive basis) and 3 or 6-fold rotational symmetry
does not allow any nontrivial weak vector.

In order to prove the transformation properties of the 1d weak Z2 indices in class D, we
have to switch to the BZ periodic convention, as Trocc.

∮
A is only quantized in a periodic basis

and gauge. A space group operation g in this basis is represented as Uab = Uac
0 δ

cbe−ikδRb

where δRa is the lattice vector of the unit cell in which site a of the unit cell with at
R = 0 ends up after the application of g. U0 is k-independent and we set it to the identity
without loss of generality. The set δRa depends on the choice of the unit cell, and a basis
transformation redefining the unit cell has the same form with δRa showing the change of
unit cell position to which site a is assigned. Now we are in a position to prove two things
at once: the 1D Z2 indices in class D transform in a simple fashion under SG operations and
are insensitive to the choice of the real space unit cell.

We introduce the band-flattened Hamiltonian, Q = 1 − 2P , it has the same properties
as H except all particle/hole-like bands have energy ±1. Charge conjugation symmetry
C = τxK imposes Qk = −τxQ∗−kτx, for P it means Pk = 1 − τxP∗−kτx. The particle and
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hole-like states are related by Hermitian conjugation, this in general implies Uk = τxU
∗
−kτx,

for the diagonal form we use this means every Ra has to appear twice. This is a consequence
of double-counting degrees of freedom, the creation and annihilation operators of the same
state must live one the same lattice site. We emphasize that this assumption is not always
valid in insulators with effective particle-hole symmetry[175]. We find

i

∮ G

0

Tr
(
PU † dU

)
= − i

2

∮ G

0

Tr
(
U † dU

)
= (6.11)

= −1

2

∮ G

0

∑
a

dkδRa = −1

2

∑
a

GδRa (6.12)

where G is the reciprocal lattice vector along which the integration contour for Trocc.
∮
A is

oriented. Because of the doubling of orbitals the right hand side of the equation is always
an integer multiple of 2π. Comparing with (4.53) we see that a change of the unit cell or
a space group operation (with the appropriate transformation on k-space) does not change
the value of Trocc.

∮
A which is only defined modulo 2π.

6.B No Constraints on Strong TI’s

In general, a topological phase from Kitaev’s periodic table, protected by a global symmetry
of the 10 AZ classes is robust against breaking lattice symmetry, such as strong TI in 3D.
If a phase is compatible with a group G, then it is also compatible with any space group
that is a subgroup of G. This is simply true because the topological protection doesn’t rely
on G, all the symmetry restrictions in G can do is to rule out certain phases in the original
classification. A subgroup can’t rule out more phases, as it poses less restrictions. Of course it
is possible to have phases that are protected by G (and the global symmetry), then breaking
G down to a subgroup can either allow more phases or protect less. For example, as we saw,
nonsymmorphic symmetry can give interesting results about weak indices, as they rely on
the translation part of the space group for protection.

As every crystallographic space group is a subgroup of either SG #229 (Im3m) or #191
(P6/mmm), finding examples of strong TI’s in both of these crystal structures proves that
crystal symmetry cannot forbid strong TI’s: starting from either of these maximally sym-
metric examples weakly breaking some of the lattice symmetries one can produce a system
with any SG without leaving the strong TI phase.

In our tight-binding examples we have a single site per unit cell with two orbitals, four
bands in total. One of the orbitals is a spinful s-orbital, transforming under rotations with
the canonical SU(2) representation and even under inversion. The other orbital transforms
the same way under proper rotations, but odd under inversion, such orbitals naturally arise
through crystal-field splitting of p-orbitals in a spin-orbit coupled ion. We introduce the
Pauli matrices τ to act on the space of the two orbitals, now proper rotations by angle n are
represented as exp

(
i
2
n · σ

)
, inversion as τz and time-reversal as T = σyK. Both minimal
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models have the same form that guarantees that they are invariant under the full symmetry
group:

H(k) =
∑
δ

{sin (k · δ) (δ · σ) τx + (m− cos (k · δ)) τz} (6.13)

where the sum runs over nearest neighbor vectors. By tuning m we can enter the strong TI
phase, this can be easily checked by counting inversion eigenvalues.

This result is expected based on the band inversion picture, the Γ point is always of
maximal symmetry, it is possible to have a band inversion only at the Γ point, resulting in
a strong TI with trivial weak indices. We can also rationalize this result from the effective
field theory point of view. The strong TI phase is characterized by the topological θ term in
the long wavelength electromagnetic action, a theory that possesses continuous translation
an rotation symmetries. While a microscopic theory with full Galilean invariance is not
possible, we showed that the maximally symmetric crystal structures are all compatible
with this emergent behavior.
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Chapter 7

Zero and one dimensional invariants
in TCI’s

7.1 Topological protection with restricted equivalence

The topological phases we considered so far were all defined modulo the addition of trivial
bands. We use the term stable equivalence borrowed from the mathematical literature for
this construction. The reason for this definition is that it allows comparison between physical
systems with Hilbert spaces of very different structure, for example different number and
location of the degrees of freedom. This view, however, may seem too general to study
phases of condensed matter systems. It allows for an infinite set of frozen, trivial low energy
degrees of freedom that can be freely added or subtracted. In real systems the Hamiltonian
is bounded from below, there is only a finite number of fermions (even considering core
electrons and nucleons) per unit cell. When studying a phase transition in a given material,
the number of electrons never changes.

This leads us to consider a finer division of topological phases:

• One possibility is to consider a fixed lattice and classify phases living on this given
discretized space up to stable equivalence[31, 32, 39]. Here we only mod out atomic
insulators (AI’s) that live on the same lattice, but not those on different lattices com-
patible with the same symmetry.

• Alternatively, we may insist on a given number of electrons per unit cell, or equivalently
a given number of filled bands. This will produce new classes at low fillings[50–52,
176], in the large filling limit we expect no difference from the stable equivalence
classification. From the stable equivalence point of view these phases may be “too-few-
band-models” that are only distinct from the trivial case because the low dimensionality
of the occupied space restricts deformations.

The latter scheme looses the abelian group structure of the classification, as the addition of
two band structures changes the filling, and there is no way to compare systems with different
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filling. Phases in these classifications may be stably equivalent to atomic insulators, thus
host no surface states on generic interfaces with the vacuum or other materials. On the
other hand, the nontrivial nature may still be observed at crystallographic defects. If no
impurity is present, these defects can be viewed as unusual boundary conditions for the
same material. Another situation where this classification proves useful are domain walls
between different symmetry breaking phases in a single crystal. Polyacetilene[] is an example
of this, where a domain wall is between two regions that both have inversion symmetry with
two sites per unit cell, but are staggered in opposite ways. A similar scenario may explain
the recently observed metallic domain walls in all-in-all-out pyrochlore magnets[177, 178].
The important feature here, is that both domains have exactly the same residual symmetry,
but the breaking of the higher symmetry occurs in distinct ways. This leads to topologically
different mass terms on the two sides of the domain wall, resulting in topological zero modes.

In the remainder of this chapter we review the representation theory of space groups
and the resulting one dimensional invariants. We also address the question (without fully
answering it), which of these phases survive stable equivalence. Following this, we also
present results about Wilson loops and speculate about further topological crystalline phases
that are characterized by unusual patterns of Wilson loop eigenvalues.

7.2 Space group representations and zero dimensional

invariants

7.2.1 Representation theory of space groups

Here we briefly review the representation theory of space groups. We already reviewed
Bloch’s theorem for representing translations, this can be extended to the full space group
action. As translations form a normal subgroup, we can use Wigner’s little group trick. In
symmorphic space groups at each k point we attach an irreducible representation (irrep)
of the subgroup of the point group Pk ≤ P that leaves k invariant, the little group of k:
Pk = {O ∈ P : Ok = k (mod G)}.

In nonsymmorphic space groups the situation is more complicated and we need to use
projective representations. The reason for this is that nonsymmorphic operations, while
their orthogonal parts satisfy some relation, it will only be satisfied by the full operation up
to lattice translations. We already saw an example of this with an essential nonsymmorphic
operation g = {O|ti/n} where On = 1 but gn = {1|ti}. The product rule for space group
operations is {O1|t1} {O2|t2} = {O1O2|t1 +O2t2}, this has to be obeyed by the representa-
tion of the little group Pk. Elements of the little group are representatives of each class of
operations that only differ by pure lattice translations {Og|tg} (g ∈ Pk) where tg is usually
chosen to be the fractional part of the translation. Pure lattice translations {1|t} are rep-
resented as eikt, so given a set of little group elements whose product is a pure translation
(gh. . . = e) for the representatives we have {Og|tg} {Oh|th} . . . = {1|t(g, h, . . . )} where the
translation t(g, h, . . . ) is defined by the multiplication rule of space group operations. This
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means, that the projective representation of Pk must obey the set of relations

Dk (g)Dk (h) . . . = eikt(g,h,. . . )β(g, h, . . . )1 (7.1)

where the signs β(g, h, . . . ) keep track of the 2π rotation for half integer spins. This set of
relations unambiguously defines the factor system of the projective representation[179].

Projective representations may be equivalent to a linear one by attaching phase factors.
For certain factor systems, however, projective representations cannot be obtained this way.
Without TR invariance all point groups have one dimensional representations, but projective
representations must be at least two dimensiona. This forces band degeneracies of the
dimensionality of the smallest irrep at the high symmetry momentum. At points in the
interior of the BZ projective representations of Pk are equivalent to linear representations
with Dk(g) = eiktgD′k(g) where D′k is a linear (double) representation of Pk.

If a high symmetry line or plane is connected to a higher symmetry point, the represen-
tation must obey compatibility conditions. If the the representation at the higher symmetry
manifold is decomposed with respect to the lower symmetry group, it must yield the repre-
sentation on the lower symmetry manifold. As points with the same little groups may have
different factor systems and irreps, it is possible that the minimal dimension irrep at a BZ
boundary point is incompatible with any representation of the same dimension at another
high symmetry point connected with a high symmetry line, adding more protected band
crossings[180, 181].

7.2.2 Classification at fixed filling

These considerations naturally lead to a classification with fixed filling. One can construct
all the consistent band representations at a given filling1, as representations are a discrete
set, the representation content can only change through gap closings. This classification is
rather fine, even atomic insulators with orbitals transforming under different representations
may fall in different classes. Consider for example the case of inversion symmetry only at
one electron per unit cell. The representation which is even at every invariant k is distinct
from the one that is everywhere odd, even though both can result from AI’s, with one filled
orbital per site that is even or odd under inversion respectively.

The most striking of these phases are filling enforced quantum band insulators (feQBI)[50–
52]. These are band structures that occur in TR invariant nonsymmorphic systems at fillings
that do not support any atomic insulators (see Sec. 7.2.4). Because of this, feQBI’s are clearly
topologically distinct from any atomic insulator with the same filling and inherently short-
range entangled in nontrivial ways. It is still unclear, however, whether these phases are
stable with respect to adding atomic insulators, as it is possible to add AI’s and arrive at
a filling that is compatible with AI’s. We leave the search for stable topological invariants
that characterize feQBI’s to future work.

1Care must be taken about topological obstructions, see Sec. 7.2.3.
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7.2.3 Representation valued invariants on simple lattices

We rephrase the ideas in Ref. [39] in the more general terms of irreducible representations.
We fix a simple symmorphic lattice with the microscopic degrees of freedom living at the cen-
ters of the Wigner-Seitz cells (WSC). Given a gapped Hamiltonian we have a representation
Dk on the occupied bands that decomposes at each point as:

Dk = ⊕iN i
kD

(i)
k (7.2)

where the direct sum runs over the set of irreps D
(i)
k of Pk and N i

k is the multiplicity of irrep

D
(i)
k . We want our classification to be insensitive to addition of trivial bands, which are in

the atomic limit with noninteracting atoms at the WSC centers, meaning that every point
in the BZ obeys the same representation. We take the Γ point as reference, decompose the
representation there according to all the lower symmetry little groups Do

Γ = ⊕imi
kD

(i)
k and

subtract it, yielding the set of numbers:

nik = N i
k −mi

k. (7.3)

These numbers are not independent for every k, obviously niΓ = 0, nik = 0 if Pk is trivial,
nik = nik′ if k and k′ are symmetry related and as the total number of occupied bands is
fixed throughout the BZ,

∑
i n

i
k dim(Di

k) = 0 for every k. If a high symmetry line or plane
is connected to a higher symmetry point, the representation must obey the compatibility
conditions that unambiguously fix it as the decomposition of the representation at the high
symmetry point in the lower symmetry subgroup. We may worry that the representation,
while staying unitarily equivalent on these submanifolds, performs some nontrivial twist
hiding some topological information. This is not the case in dimensions not greater than 3,
as SU(N) is simply connected and all the point groups that leave a plane pointwise fixed
are commutative. So we only need to consider representations at points (or lines or planes
if the symmetry is sufficiently low) of the BZ that are of highest symmetry locally, moreover
if two such points are connected by a nontrivial lower symmetry line their representations
must be compatible giving rise to the same representation on this line.

This classification naturally has an Abelian group structure, upon adding two systems
with the same symmetry the invariants add up as natural numbers, this is obvious in the
limit when we superimpose two systems without any coupling.

To elucidate this abstract reasoning we apply it to cyclic groups Cn, n = 2, 3, 4, 6 in 2
dimensions[31, 33, 39]. As Cn is commutative, all irreps are one dimensional, characterized
by the eigenvalue of the sates under an n-fold rotation Rn, the generator of Cn, a state at
the Γ point transforming under irrep Dp

Γ (p = 0 . . . n−1) has eigenvalue e2πp/n (for simplicity
we use the single representatoin for spinless electrons). In the n = 4 case we have two points
with full symmetry, Γ and M and two symmetry related points X and Y with C2 symmetry
with irreps Dp

X (p = 0,1) that decompose the irreps at Γ as Dp
Γ = D

(p mod 2)
X . There are no

high symmetry lines, so we face no constraints aside from those that come from the total
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number of bands being constant, so the four independent invariants are:

npM = Np
M −N

p
Γ for p = 1, 2, 3 (7.4)

n1
X = N1

X −N1
Γ −N3

Γ (7.5)

resulting in a Z4 classification.
We note that there may be topological obstructions to realizing all representation patterns

satisfying the compatibility relations. A simple example is given in Refs. [33, 46] in terms of
a 3d TR breaking inversion symmetric system. Following the same reasoning would give Z7

classification by counting the difference in the number of odd representations at the seven
high symmetry points compared to Γ. It can be shown (Sec. 7.3.3) that the parity of the
Chern number for a cut of the BZ is determined by the inversion eigenvalues in that plane.
As the Chern number cannot change between parallel cuts without closing the gap, this
restricts the allowed patterns.

This recipe classifies point group symmetric insulators with only unitary space group
symmetries. There are two possible directions if we want to include time reversal. One can
consider magnetic space groups, where time reversal is not a symmetry on its own, but only
when combined with some space group operation, representatoins of magnetic space groups
are known and a similar program can be carried out. The other possibility is when time
reversal is a global symmetry, giving rise to so-called co-representations at high symmetry
points[182, 183]. The allowed representations are intertwined with the Z2 index and only
the simplest cases have been investigated so far[33, 152]. In superconductors the charge
conjugation symmetry relates states in the “occupied” band to those in the“empty” band,
the representations of such symmetry related pairs are complex conjugates posing additional
constraints[39].

The same recipe can be applied to more complex lattices that have multiple inequivalent
sites per unit cell. Intuitively, if we include a large number of sites at different locations the
classification becomes identical to that in continuous space. First we review the construction
of all possible kinds of atomic insulators.

7.2.4 Construction of atomic insulators

Before addressing the question of stable equivalence on continuous space, we must clarify
what exactly we mean by atomic insulators. On generic nonsymmorphic lattices it is not
obvious how to enumerate all atomic insulator representations compatible with the symmetry
group, here we propose a scheme for this.

First choose a Wyckoff position (WP) on which the atoms are located. A WP is defined
as the set of points in the unit cell that is visited by some starting point under the action of
all space group elements modulo lattice vectors. The multiplicity of the WP is the number of
points in this set. Symmorphic space groups are distinguished by the existence of a position
of multiplicity 1, usually this point is chosen as the origin. A given point in the WP is left
invariant under a subgroup of the space group, this is the site symmetry group of the WP, or
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the point group of the site. The starting point may be continuously moved without affecting
the symmetry properties of the WP, more generally these families are also called Wyckoff
positions. In general there may be atoms on multiple WP’s, but as these are not symmetry
related, we may use single WP atomic insulators as building blocks.

Next, choose an irreducible representation of the site’s point group, including possible
on-site antiunitary symmetries. While the site symmetry groups have isomorphic group
structures for all inequivalent sites in the Wyckoff position, the orientations of the space group
operations may differ and the representations are identical only up to unitary equivalence.
This ambiguity is fixed by considering the operations relating different sites. Let us fix a
basis of space (or spacetime for magnetic groups) on site 1 and map it onto the other sites
using some set of symmetry operations and repeat the pattern in every unit cell. To get a
consistent representation, for every operation mapping site i to j we compare the image of
the basis at i to the basis at j and assign the representation of site symmetry group element
relating the two bases to the off-diagonal block between the Hilbert-spaces of sites i and j.

Given this real space representation U({O|t}), it is straightforward to construct the
corresponding k-space representation. For the interior of the BZ all we need to do is to
attach a phase factor to get Dk({O|t}) = e−iktU({O|t}). At high symmetry points on the
surface of the BZ k and Ok may only be equivalent up to reciprocal lattice vectors, and the
Hilbert spaces are related by Wk−Ok. At these points a local representation is obtained by
Dk({O|t}) = e−iktWk−OkU({O|t}). Note that for a point inside the BZ k = Ok for all little
group elements, so this formula is applicable to the generic situation as well and produces
continuously changing representations when moving on a lower symmetry line to a high
symmetry point. Such atomic insulators do not generally have irreducible representations at
all k-points, one can decompose these representations and obtain a list of the irreps appearing
at all inequivalent k-points for all possible atomic insulators.

As the construction shows, in nonsymmorphic crystals atomic insulators cannot realize
arbitrarily low filling. If the minimal multiplicity of a Wyckoff position is n, an AI without TR
invariance cannot have less than n bands. With TRI the bound is 2n because of the Kramers
degeneracy. These bands are degenerate in the atomic limit, and cannot be separated by
gaps with weak hopping. For generic band structures the minimal number of bands that can
be separated by a gap from all others (but not among each other) is called nonsymmorphic
rank[143, 184], a simple upper bound for this number is provided by the above AI result. It
can be proved[143] that this bound is exact for spinless fermions without TRI, but as already
mentioned, feQBI’s realize lower filling than any TR invariant AI.

7.2.5 Invariants with stable equivalence on continuous space

Placing the degrees of freedom to the cell centers is not the only option, most crystals have
multiple equivalently high symmetry Wyckoff positions, for example on a square lattice the
corners also possess the full symmetry (Fig. 7.1 (b)). A quick calculation shows that an
atomic insulator placed at the cell corners would fall into a nontrivial phase with respect
to the classification on a lattice with sites in the centers. This is not surprising considering
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Figure 7.1: Various atomic insulators on the square lattice with C4 or C4v symmetry. Dotted
lines delimit the Wigner-Seitz cells, symmetry operations are shown on subfigure (a). Every
symbol represents an atom with electonic orbitals transforming by an irreducible represen-
tation of the local point group. (a), (b) and (c): three inequivalent atomic limits. Note that
it is impossible to deform a single copy of (a) into (b) or a single copy of (c) into two copies
of (a) or (c) without breaking the symmetry. (d): a trivial insulator with atoms at general
positions in the interior of the WSC, it interpolates between four type (a) and two type (c)
atomic limits.

that there is no way to continuously deform the lattice located at the corners into the one
in the centers while preserving the symmetry. An alternative way of viewing this distinction
is to consider the electric polarization[185] P, it can be shown[31, 38] that P, defined up to
lattice translations, transforms as real space vectors under point group operations, so the two
allowed values are P = (0, 0) and

(
1
2
, 1

2

)
. For a tight-binding model living at the cell centers

the former is trivial, while for one on the corners the latter, there is a phase transition for a
fixed microscopic model.

We shall ask the question, what if we want to classify systems living on the combined
lattice that has inequivalent sites at the cell centers and corners or, going even further, where
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degrees of freedom can be located anywhere in continuous space? The natural answer in the
spirit of topological order is, we have to factor out all the trivial insulators. For example
on the square lattice with C4 or C4v symmetry there are three distinct atomic limits with
atoms located at the center, corner or two edge centers of the WSC (Fig. 7.1 (a)-(c)). It is
easy to see that sites located in the interior of the WSC or at generic points of the boundary
(Fig. 7.1 (d)) the representation is always reducible to multiple copies of the trivial insulator
at the center, the only complications arise at locally maximal symmetry points of the WSC
boundary. Without going into too much detail, we can construct representations of these
new trivial insulators taking special care about the fact that the sites are only invariant up
to lattice translations using methods explained in the previous section.

One may object that cases (a) and (b) in Fig. 7.1 are equivalent because they only differ
by the choice of spatial origin. This is true with respect to a system with full translational
invariance, like the vacuum, but they are inequivalent if compared to another system with
discrete space group symmetry, like each other. If we were to consider the two cases equiv-
alent, when adding two square lattice insulators we would have to specify whether we want
to place the sites on top of each other or in the plaquette centers, thus loosing the group
structure of our classification. That is why we fix the spatial origin, noting that two sys-
tems related by a shift of the origin have the same properties (such as surface states) when
compared to the vacuum.

The simplest example is an inversion symmetric insulator in 1D, here, with a fixed cen-
tered lattice there are two phases, the trivial one where D0(I) = Dπ(I) and nontrivial if
D0(I) = −Dπ(I). However, for an atomic insulator at WSC edge, because inversion moves
the site by one lattice vector, we get D0(I) = −Dπ(I), the nontrivial case is equivalent to
a different atomic limit. Extending the argument to 3 dimensions it can be shown[46] that
the only nontrivial topological indices are the Chern numbers and the quantized magneto-
electric polarizability (θ). For a C4 symmetric insulator explicit calculation shows, with this
extended set of equivalence relations, the only invariant is the Chern number C (mod 4),
while if we include reflections (C4v) that forbid nonzero Chern number there is no nontrivial
index. This shows that in these symmetry classes without any global symmetry the only
topological invariants are Chern numbers and quantized magnetoelectric polarizability. A
natural extension of this statement (for which we do not have a rigorous proof) is that, in
this stricter sense, all the topological properties of space group symmetric insulators can be
expressed in terms of strong and weak invariants that only rely on global symmeties (such
as Chern numbers, weak Z2 invariants and the quantized magnetoelectric coefficient), or
their symmetry graded versions on lower dimensional subspaces of the BZ that are pointwise
invariant under a subgroup, such as the mirror Chern numbers. All the space group can do
is restricting the values of these invariants. A systematic study of this conjecture is left to
future work.
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7.3 Wilson loop invariants

7.3.1 Transformation properties of Wilson loops

Here we review symmetry properties of Wilson loop (WL) eigenvalues. As a natural conse-
quence of our formalism we find constraints SG symmetry imposes on WL eigenvalues and
resulting new topological invariants in topological crystalline insulators. Similar results were
obtained in Refs [30, 31], those we generalize for all SG symmetries.

We define Wilson line operators as maps from the unit cell Hilbert space at the start of
line C at k0 to the end at k1, WC : Hk0 → Hk1 . We use the definition in terms of an ordered
discretization of C, {ki}Ni=1 with k1 = k0 and kN = k1:

WC = lim
N→∞

1∏
i=N

Pki . (7.6)

We use the projector operators P expanded in the |χ〉 convention, as in this convention it
contains all the information about the positions of the sites in the unit cell and is invariant
under the choice of the unit cell besides some other useful properties we will prove later.
Note that WC only takes nonzero values on the occupied subspace at k0 and its image is the
occupied space at k1. Its restriction to the local occupied spaces is unitary, this is seen by
checking that W†CWC = WC−1WC = Pk0 + O (dk) with dk → 0 the typical distance between
the discretized k points. This means that all of its eigenvalues are either zero or a unit
magnitude complex number, with the number of nonzero eigenvalues equal to the number of
occupied bands. Moreover, Wilson loop operators restricted to the local occupied spaces form
a unitary representation of the groupoid of curves under concatenation asWC2WC1 =WC1+C2
where the end point of C1 is the same as the starting point of C2.

This definition is consistent with the definition in terms of the Berry connection as∑
n,m∈occ.

(
P exp

(
i

∫
C
A
))nm

nk0m
†
k1

=WC (7.7)

where nk is the coefficients of an orthonormal set of occupied eigenstates in the |χ〉 convention
at k[30, 31]. In general WC is gauge-dependent, however, as we show in the following, for a
closed loop its spectrum σ (WC) (with multiplicities) is well defined.

For a closed loop C we define

WC = W−G

(
k0−G∏
k=k0

Pk

)
(7.8)

where G is a nonzero reciprocal lattice vector if the loop is non-contractible and the overall
displacement along it is G. We use this definition to make WC a mapping from Hk0 onto
itself, as in our convention the Hilbert spaces at k and k + G are not identical, but related
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through the unitary mapping WG. Using the groupoid property we can check that with
this definition Wilson loops along the same oriented loop but with different starting points
are unitarily related. Furthermore, a gauge transformation or a shift by a reciprocal lattice
vector also acts as a unitary transformation, showing that the spectrum is insensitive to these
choices, meaning we can consider closed loops C as directed curves on the BZ torus in the
following. Finally, consider a shift of the real space origin by t acting on the coefficients as
eikt. P does not change, but the BZ boundary condition changes WG → WGe

iGt, resulting
in WC → WCe−iGt, meaning a simple shift in all the phases of the nonzero eigenvalues,
{φC} → {φC −Gt} with {φC} = −i log (σ (WC) \ 0). This result is easily understood if we
regard the curve C as the BZ of a 1d system with isolated bands. The phases of the Wilson
loop eigenvalues can be identified as the Wannier center positions for occupied bands, and
as we showed they indeed transform as real space coordinates in the G direction under a
shift of the spatial origin.

In the following we establish some symmetry properties of the WL operators, starting
with the well known case of time-reversal symmetry. TR symmetry with T = σyK implies
Pk = T P−kT −1 = σyP∗−kσy, plugging this in (7.8) for a TR invariant line (such that −C =
C−1) we find

WC = (W2k0T )W†C (W2k0T )−1 (7.9)

where we used the fact that Wk is a diagonal unitary that commutes with σy. The antiunitary
operator (W2k0T ) squares to −1 same as T , direct calculation shows that the eigenvectors |λ〉
and (W2k0T ) |λ〉 are orthogonal, both with eigenvalues λ, proving the Kramers-degeneracy
of WL eigenvalues.

Next we move on to the action of SG symmetries on WL operators, in particular we
consider SG operation {O|t} represented by Rk = e−i(Ok)tU : Hk → HOk. As we did so far,
we keep track of the absolute (not BZ reduced) positions, and transition to a BZ reduced
convention when necessary. Using the symmetry property POk = UPkU

† of the projector
we see for any open Wilson line operator

WOC = UWCU † (7.10)

where OC is the image of C.
As discussed before, the great advantage of our formalism is that the atomic positions

are encoded in the boundary conditions obeyed by operators and symmetry operators take
the above simple form. Symmetry operators satisfy the same boundary conditions leading to
consistency relations. Consider Rk+G : Hk+G → HO(k+G), leading to Rk+G = WOGRkW

−1
G

which imposes the constraint on the constant unitary part e−i(OG)tU = WOGUW
−1
G . As a

result, for closed Wilson loops
WOC = ei(OG)tUWCU † (7.11)

with the reciprocal lattice vector G describing the winding of the loop C. So the set of
phases of the eigenvalues is related as {φOC} = {φC + (OG) t}. This property is identical
to the symmetry requirement for the projections of the atomic (Wyckoff) positions. The
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set of atomic positions has to be invariant under the SG symmetry, {x} = {Ox + t}. Now
consider the projection onto OG, {(OG) x} = {(OG) (Ox + t)} = {Gx + (OG) t}, same
requirement as for the phases if we identify phases along a loop with winding G with the
projections of atomic coordinates along G. This picture is further supported by considering

an atomic insulator with P(x,l),(x′,l′)
k = δx,x

′
P l,l′
x where P l,l′

x is the projector onto the occupied
atomic levels at each site, same for all symmetry related sites. In this case WC = PW−GP
whose eigenvalues are exactly the list of the projections of the atomic positions of the occupied
orbitals onto G.

7.3.2 TCI’s from Wilson loop invariants

We emphasize that the WL eigenvalues are not the same as the projections of the polar-
ization, the latter are obtained integrating the sum of the WL phases for all parallel lines
in a given direction, thus contain less information. As already mentioned, for insulators
on a given lattice, the polarization may characterize nontrivial TCI’s if it is at a maximal
symmetry Wyckoff position that is different from the underlying lattice.

The polarizations for individual bands are in general ill defined as WL eigenvalues can
cross as moving the line C in the perpendicular direction. On the other hand, the above
symmetry constraints on WL eigenvalues are weaker than those on Wyckoff positions, a
symmetry preserving preimage of the projections as a set of 3D points may not exist, such
a situation would signal a crystalline topological phase distinct from the trivial AI. This
distinction also not stable, adding a sufficient number of trivial bands the eigenvalues may
be continuously deformed to allow a preimage. We believe such phases can appear on a
wide variety of simmorphic and nonsymmorphic lattices, explicite construction of models
expressing this behavior is left for future work.

Symmorphic inversion symmetric systems were studied using similar methods in Ref. [30],
there TCI’s were identified by observing the nontrivial rearrangement of the WL eigenvalues
as sweeping the WL across the BZ. Hourglass Fermions[43, 47] are also characterized by
similar WL patterns.

7.3.3 Derivation of the Chern number formula with Cn symmetry

We briefly review the results of Ref. [31, 47] constraining the Chern number of insulators with
discrete rotational symmetry. We use our notation for Wilson loop invariants (Sec. 7.3.1)
and arrive at the same results.

As an example we detail the derivation for fourfold (C4) rotations, the other cases
can be obtained analogously. We are going to examine the Wilson loop operator along
the contractible curve C = ΓXMY . As this curve is contractible, the enclosed Berry
flux modulo 2π is given by the pseudodeterminant of WC, and because of the symme-
try properties of F this is exactly one quarter of the total flux through the BZ. This
can be summarized as exp

(
2πi
4
C
)

= det+WC. We can break up the loop into 4 parts as
WC = WΓ←YWY←MWM←XWX←Γ and analyze symmetry properties of its parts. We find
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WΓ←Y = UWΓ←XU = UW−1
X←ΓU

† as they are related by C4 represented by U and reversal of
the direction. Here and in the following by ()−1 we mean the Moore-Penrose pseudoinverse
of singular operators, which in this case is the same as the inverse if we restrict both the
domain and codomain to the occupied subspace. Similarly WY←M = U †W−GxW−1

M←XWGxU
as now the necessary transformation is a rotation in the opposite direction combined with a
translation by a reciprocal lattice vector and reversal of direction.

Substituting this we rearrange the WL operator as

WC = (PΓUPΓ)W−1
X←Γ

(
PXU−2W−GxPX

)
W−1

M←X×
(PMWGxUPM)WM←XWX←Γ. (7.12)

We inserted band projectors at the end points of the lines without changing the results and
introduced parentheses to emphasize the structure. Every term in the product is a unitary
when restricted to the occupied subspace at its domain and codomain. Thus the determinant
multiplication theorem applies to the pseudodeterminant,

det
+
WC = det

+
(PΓUPΓ) det

+

(
PXU−2W−GxPX

)
×

det
+

(PMWGxUPM) . (7.13)

Each of these determinants is exactly the product of the occupied eigenvalues of a C4 or C2

rotation at a given point of the BZ,

det
+
WC =

∏
m∈occ.

ξΓ
m (C4) ξMm (C4) ξXm

(
C−2

4

)
(7.14)

where ξkm (O) is the rotation eigenvalue of O in band m at momentum k. Thus we reproduced
the result for C4 in Ref. [31] and Eqn. 6.5, results for C2, C3 and C6 symmetry follow
analogously:

e2πiC
2 =

∏
m∈occ.

ξΓ
m (C2) ξMm (C2) ξXm

(
C−1

2

)
ξYm
(
C−1

2

)
(7.15)

e2πiC
3 =

∏
m∈occ.

ξΓ
m (C3) ξKm (C3) ξK

′

m

(
C−2

3

)
(7.16)

e2πiC
6 =

∏
m∈occ.

ξΓ
m (C6) ξKm

(
C2

6

)
ξMm
(
C−3

6

)
. (7.17)
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Part IV

Topological response in metals
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Chapter 8

Orbital magnetopiezoelectric effect in
metals

The polarization of a material and its response to applied electric and magnetic fields are
key solid-state properties with a long history in insulators, although a satisfactory theory
required new concepts such as Berry-phase gauge fields. In metals, quantities such as static
polarization and magnetoelectric θ-term cease to be well-defined. In polar metals there can be
analogous dynamical current responses, which we study in a common theoretical framework.
We find that current responses to dynamical strain in polar metals depend on both the
first and second Chern forms, related to polarization and magnetoelectricity in insulators,
as well as the orbital magnetization on the Fermi surface. We provide realistic estimates
that predict that the latter contribution will dominate and investigate the feasibility of
experimental detection of this effect.

8.1 Introduction

The importance of Berry phases and other geometrical properties of Bloch wavefunctions was
first clearly understood in topological phases such as the integer quantum Hall effect [5, 12].
It rapidly became clear that many physical observables in solids are described by Berry phases
even in ordinary insulators with no quantization; the electrical polarization in a crystal can be
fully and concisely expressed via the Berry phase of Bloch states [186, 187]. Metallic systems
present additional challenges: in the oldest example, the anomalous Hall effect [168], there
are both Berry-phase “intrinsic” contributions and “extrinsic” contributions that depend on
the details of scattering processes. Discrete symmetries underlie and restrict the emergence
of these responses [188]; the anomalous Hall effect is enabled by the breaking of time-reversal
symmetry and is observed in magnetic metals.

The goal of this paper is to analyze a class of transport effects enabled by the breaking of
inversion symmetry in metals. The study of inversion breaking materials such as ferroelectric
insulators with switchable polarization, has revealed several fundamental pieces of solid-state
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physics and lead to a variety of applications [189, 190]. These advances have translated into
a recent increasing interest in the more elusive polar metals [191–193]. While metals do not
have a measurable electrical polarization–any surface charge density would be screened by
the bulk conduction electrons–polar metals have a low enough symmetry group to support
a static polarization were they insulators.

A

Figure 8.1: Schematic experimental setup. The sample is placed in static magnetic field and
homogenous time-dependent strain is appiled. The top and bottom surfaces are contacted,
short-circuited through a low impedance ammeter and the current parallel to the applied
field is measured.

More precisely, we explain how the Berry phase and related quantities such as the orbital
magnetic moments [194] determine multiple observable properties of polar metals with or
without time reversal symmetry. Some of these observables can be viewed as generalizations
to metals of Berry-phase properties in insulators such as electrical polarization and the
orbital magnetoelectric effect, while others are Fermi-surface properties and hence specific
to metals. The effects we discuss have important analogues in the corresponding insulating
inversion-broken state, in the same way as the integer quantum Hall effect is connected to
the intrinsic anomalous Hall effect [195, 196]. An additional motivation for the present work
is the active theoretical discussion of when metals, such as Weyl semimetals [197, 198], can
support a current that is induced by and is parallel to an applied magnetic field (the chiral
magnetic effect) [199–206]. The answer is connected to the low-frequency limit of optical
activity and involves the magnetic moment of Bloch electrons at the Fermi level [70, 71],
which raises the question of what other properties of metals might involve such magnetic
moments.

Table 8.1 compiles the requirements of the effects that are the focus of the present work.
The first is referred to as piezoelectricity [185, 207, 208]; in a polar material, even in a metal,
any time-dependent change of the material, such as a time-dependent strain, will induce a
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current resulting from the change of polarization. In a metal, only changes in polarization
are well-defined as these involve measurable bulk currents through the unit cell.

As a difference with the insulating case where the energy gap protects against process that
do not excite electrons far from the ground state, we will require a slow evolution of strain
relative to electronic time scales 1. This assumption guarantees that the distribution function
remains close to equilibrium. Additional effects from strongly non-equilibrium distributions
and the scattering processes that restore equilibrium are left for future work.

T I m Eq.

Piezoelectricity Any No Any (8.11)
MPE Fermi sea No No Any (8.12)
MPE Fermi surface No No Nonzero (8.13)

Table 8.1: The three effects considered in this work and their requirements in terms of time
reversal (T ) and inversion (I) symmetry and the orbital moment m.

A second effect, which we call magnetopiezoelectricity (MPE), emerges when the material
is magneticaly ordered and time-reversal symmetry is broken along with inversion symmetry.
One contribution can be viewed as the generalization to metals of the orbital magnetoelectric
effect in insulators [20, 27, 210, 211]. It involves the second Chern form of the Berry gauge
fields [212, 213]2, a slightly more complicated geometrical object than the first Chern form
that controls the polarization and Hall effect, and can be interpreted as a metallic version
of the dynamical axion effect in antiferromagnets [214, 215].

We also find a second, purely Fermi-surface contribution to the MPE that is proportional
to the orbital magnetic moment. Estimates for realistic systems predict that this part of the
MPE unique to metals dominates the response. It is therefore the main prediction of this
letter for a new experimental effect.

8.2 Methodology

To address the topological responses of metallic magneto-electrics we employ the semiclassi-
cal formalism [194, 195, 212, 216–218]. Our starting point is a three-dimensional Hamiltonian
of a metal H(k, θ) that is parametrized by a time dependent parameter θ(t). The micro-
scopic origin of θ(t) can be diverse, it can for example parametrize ferromagnetic [47] or

1 A different mechanism is considered in [209] that discusses a strain-induced chiral magnetic effect
in Weyl semimetals. Unlike the near-equilibrium or adiabatic physics found here, it depends on a non-
equilibrium electronic configuration created by straining faster than the intervalley relaxation time. This
rapid strain can create a large current in a magnetic field.

2Refs. [212] and [213] discuss a different occurrence of the second Chern form in the response of metals
to magnetic field in the presence of static spatial inhomogeneity rather than the purely dynamical effects
studied here.
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antiferromagnetic ordering [219]. Such a fluctuating magnetic order in insulating systems
has been previously studied [220] and termed “dynamical axion field”.

In this work we focus on the case where θ emerges from the coupling of homogeneous time-
dependent strain to orbital degrees of freedom, which effectively renormalizes the hopping
structure of H(k) in a time-dependent fashion leading to H(k, θ). The parameter θ can refer
to any strain component, or an arbitrary parametrization of some combination of strain
components. Before proceeding, it is worth highlighting several relevant aspects of our
calculation. First, strain is non-electromagnetic and acts as an independent external field.
Second, although we allow for the time-reversal-breaking magnetic order required for the
MPE to depend on θ, we assume it does not respond to external magnetic fields at the linear
order of interest here. Thus we only focus on the orbital contribution. Finally, we assume the
clamped ion limit; strain changes the hopping amplitudes for the electrons but the atomic
coordinates remain fixed.

A compact way of dealing with H(k, θ) is to regard θ as an extra momentum coordinate kθ
and promote the semiclassical picture to a four-dimensional space. Its corresponding phase
space is defined by an extended momentum and position vector, kµ = (k, θ) and rµ = (r, rθ)
respectively, with µ = x, y, z, θ. The semiclassical equations for such phase space read [194,
221]

ṙµ =
1

~
∂Ẽk,θ
∂kµ

− F̃µν k̇ν (8.1)

~k̇µ = −eEµ − eBµν ṙ
ν (8.2)

Here Eµ = ∂0Aµ − ∂µA0 and Bµν = ∂µAν − ∂νAµ are the generalization of the electric
and magnetic fields constructed from the gauge field Aµ = (A0,A, Aθ). By construction we
impose that Aθ is uniform and time dependent while A is independent of θ. This constrains
Bνθ = 0 and, from (8.2), ~θ̇ = −eEθ. We note that Eq. (8.1) includes two corrections due
to the external fields [194, 222]. One modifies the band structure εk,θ → Ẽk,θ = εk,θ−mk ·B
where mk,θ = e

2~Im〈∂kuk,θ|×(H−εk,θ)|∂kuk,θ〉 is the magnetic orbital moment define through
the Bloch wave-functions |uk,θ〉. Second, the Berry curvature Fµγ = ∂kµAkγ − ∂kγAkµ where

Akµ = i〈u|∂kµ |u〉 is the unperturbed Berry connection, is corrected as Fµγ → F̃µγ = Fµγ +
Fµγ1 . The correcting Fµγ1 = ∂kµA′kγ − ∂kγA′kµ is defined by A′kµ = i〈u|∂kµ|u′〉 + c.c. that
incorporates the first-order correction from the perturbing electromagnetic fields to the Bloch
wave-function |u′k,θ〉. The quantity a′kµ is gauge-invariant, and physically corresponds a shift
of the wave-packet centre induced by interband mixing from the external fields [222].
Combining (8.1) and (8.2) and keeping terms to second order in the external fields results
in [221]

ṙµ =
1

~
∂Ẽk,θ
∂kµ

+
e

~
F̃µν

(
Eν +

1

~
Bνλ

∂Ẽk,θ
∂kλ

)
+
e2

~2
F̃µνBνλF̃λγ

(
Eγ +

1

~
Bγδ

∂Ẽk,θ
∂kδ

)
+ · · · ,
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which enters the current density

jµ =

∫
T3

d3k[ṙµDk,θ]f(Ẽk,θ, µ). (8.3)

Here f(Ẽk,θ, µ) is the Fermi-Dirac distribution for the perturbed band structure Ẽk,θ at chem-
ical potential µ and Dk,θ is the modified density of states defined as

Dk,θ =

[
1 +

1

2

e

~
BµνF̃µν +O(B2)

]
. (8.4)

Using (8.3) and (8.3) the current density reads

jµ = e

∫
T3

d3k

(2π)3

[
1

~
∂Ẽk,θ
∂kµ

+
e

~
F̃µνEν+

e2

~2

(
FµνBνγFγδEδ +

1

2
F δγBδγFµνEν

)
+

+
e

~2

(
F̃µνBνγ

∂Ẽk,θ
∂kγ

+
1

2
F̃γνBγν

∂Ẽk,θ
∂kµ

)]
f(Ẽk,θ, µ) + · · · . (8.5)

We are interested in the spatial components of current density ji with i = x, y, z generated
in the absence of an electric field E = 0. Keeping terms potentially linear in magnetic field
Bi = εijkBjk results in

ji ≈ e

∫
T3

d3k

(2π)3

[(
1

~
∂Ẽ
∂ki

+ θ̇F̃ iθ
)
− 1

8

e

~
(
εµνγδFµνFγδ

)
θ̇Bi

+
1

2

e

~2

(
εlmnF̃ lm

∂Ẽ
∂kn

)
Bi

]
f(Ẽk,θ, µ) + · · · , (8.6)

which is of the form ji = jia + jib + jic. The last term, jic can be proved to be zero (see
supplementary material) and is consistent with the absence of the chiral magnetic effect in
the static limit [70, 71]. In the second term, jib, keeping only linear order corrections in Bi

allows us to evaluate the distribution function at the unperturbed energy εk,θ leading to

jib =− 1

8

e2

~

∫
T3

d3k

(2π)3

[(
εµνγδFµνFγδ

)
θ̇
]
f(εk,θ, µ)Bi , (8.7)

which is linear in magnetic field as desired and explicitly gauge invariant. To simplify jia, we
can expand the Fermi-Dirac distribution around its unperturbed form f(εk,θ, µ)

f(Ẽk,θ, µ) ∼ f(εk,θ, µ) +
∂f(E)

∂E

∣∣∣
εk,θ
Ẽ ′ + · · · , (8.8)

where Ẽ ′ = −mk,θ ·B. We obtain

jia = e

∫
T3

d3k

(2π)3

[
θ̇F iθf(εk,θ, µ) + θ̇F iθ1 f(εk,θ, µ)− θ̇F iθ ∂f(E)

∂E

∣∣∣
εk,θ

mk,θ ·B
]

(8.9)
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using that the integral of the Fermi velocity over the Fermi sea vanishes. The correction F iθ1
to the Berry curvature results from interband mixing and vanishes as 1/∆3 where ∆ is the
separation between different bands [222]. Taking ∆ to be large, the low temperature limit
and recasting the last term in (8.9) as a Fermi surface contribution, the final response, which
is the central result of this work, is given by

ji = βiθ̇ + (αij1 + αij2 )θ̇Bj +O(1/∆3) (8.10)

βi = e

∫
occ.

d3k

(2π)3
F iθ (8.11)

αij1 = −δ
ij

8

e2

~

∫
occ.

d3k

(2π)3
εµνγδFµνFγδ (8.12)

αij2 = − e
~

∫
FS

d2k

(2π)3

1

|vk|
F iθk m

j
k,θ (8.13)

where ~ |vk| = |∂εk,θ/∂k|.
The first term βi is independent of the magnetic field and captures the piezoelectric

effect [207] when θ corresponds to strain. For metals, the bulk current arises from the
change in polarization involving occupied states.

The second term, αij1 , is the analogue of the isotropic magnetoelectric effect in insulators.
Recall that in an insulating system a polarization in response to a static magnetic field
is characterized by the momentum integral of a Chern-Simons three-form determined by
the band structure [20, 27, 210, 211]. For the case of metals we find that the change in
polarization depends on the variation with respect to θ and is determined by the integral of
the second Chern-form, εµνγδ TrFµνFγδ over occupied states. It is exactly the derivative of
the Chern-Simons three-form with respect to θ.

Two important remarks are in order. First, the semiclassical approach only incorporates
single band effects and thus Fµν is an Abelian U(1) curvature and we need not trace over its
components. This yields an isotropic magnetoelectric effect in our semiclassical treatment,
which neglects terms resulting from cross-gap contributions, which vanish as 1/∆ [223].
Second, the current generated by finite deformations is well defined since it is the integral of
the second Chern-form. The Chern-Simons three-form is only gauge-invariant if integrated
over a closed manyfold, so it does not correspond to a measurable quantity in metals; the
static polarization is ill defined in metals.

Finally, the third term, αij2 , is a novel Fermi surface contribution that is unique to metals.
It is the correction to the piezoelectric response at linear order in the magnetic field due to
the orbital moment of the Bloch states. In what follows, we estimate the magnitude of all
three terms contributing to the current to find that the Fermi surface contribution dominates
the response.
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8.3 Experimental feasibility

An estimate of the observability of the current in Eq. (8.10) relies on the magnitude of the
Berry curvature Fµν , which is common to all its terms. We distinguish two contributions to
Fµν of distinct physical origin: the purely spatial part F ij and the mixed F iθ terms. The
former defines the Hall conductivity σij = Cije

2/h in the (i, j) plane through the Chern
number Cij = 1

2π

∫
d2kF ij. Since Cij is of the order of unity [13] or higher [224, 225], we

expect F ij & a2

2π
where we estimate the cross sectional area of the unit cell in the (i, j)

plane using the lattice spacing a. To estimate F iθ we use previously known facts about
the piezoelectric effect. Identifying θ with a specific strain component εjk (θ = εjk), the
piezoelectric constant reads [185]

βijk =
∂P i

∂εjk
= −e

∫
occ.

d3k

(2π)3
F iθ. (8.14)

This formula only contains the electronic (clamped ion) contribution to the polarization
response, typically smaller than the dominant contribution from the rearrangement of the
ions. The electronic contribution can nonetheless be accessed independently in ab initio
calculations that estimate βi ∼ 1 C/m2 [226] (suppressing the strain component indices for
clarity). It follows that F iθ ∼ βi a3

e
using the inverse cube of the lattice spacing as an

approximate volume of the Fermi sea.
From the above estimate of the piezoelectric effect we now can now approximate the

magnitude of the remaining terms in Eq. (8.10), αij1,2 given by Eqs. (8.12) and (8.13) that
are novel to this work. The magnitude of the Fermi sea contribution α1 amounts to

α1 ∼
e

~
a2Cijβ

k, (8.15)

for a particular set of i 6= j 6= k and neglecting the order one factor arising from the
difference between a Fermi sea integral and a Brillouin zone integral. Inserting βk ∼ 1 C/m2,
a ∼ 10−10m, Cij = 1 we get α1 ∼ 10−5 A s

T m2 .
The estimate of the magnitude of the Fermi surface term α2, unique to metals, requires

the magnitude of the orbital magnetic moment |m|. A conservative estimate results in
|m| ∼ µB ∼ 10−23J/T where µB is the Bohr magneton but it can be as large as |m| ∼ 30µB
[194]. The area of the Fermi surface can be estimated as 1/a2, the cross section of the BZ
which is the inverse of the cross section of the real space unit cell. Taking vF ∼ 106m/s,
which is typical for metals but can be significantly smaller for lightly doped insulators near
the band bottom, and using our above estimate for F iθ we obtain

α2 ∼
βimja

~vF
∼ 10−4 A s

T m2 . (8.16)

Therefore we conclude that α2 & α1, and the Fermi surface contribution specific to metallic
systems is dominant.
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In addition, it is relevant to emphasize the following important points regarding exper-
imental detection. Firstly strain rates at the order of 10−2s−1 are achievable in the elastic
regime using ultrasonic techniques [227, 228]. For a sample at the cm scale, with cross sec-
tional area As ∼ 10−4m2 and a magnetic field of 1T 3, the current signal is of the order
of Ii = Asji ∼ 100 pA. Conventional ammeters have sensitivity extending to the pA range
that is further improved in SQUID devices.

Second, the magnetopiezoelectric effect is expected to coexist with the piezoelectric con-
tribution, so accurate measurements over a range of magnetic fields are necessary for its
detection. In our estimates α2 is proportional to and much smaller than β. However, β
gets contributions from the entire Fermi sea, while α2 only depends on Fermi surface prop-
erties. This allows suppression of β without changing α2 in appropriately engineered band
structures.

Third, the movement of the ions and the polarization of electrons in the valence bands
induces a bound surface charge density. Part of the bulk current can be trapped screening
it, possibly preventing its detection in our proposed setup (Fig. 8.1), but there is no reason
to expect full cancellation. We note as well that pumping DC current is also possible by
out-of-phase modulation of different strain components. Such a deformation path encircles
a finite area in parameter space; the integral of the current for a pumping cycle is in general
a non-vanishing, non-quantized value.

Finally, from the materials perspective we find that MnSi satisfies most requirements for
these effects to manifest. It is a magnetically ordered, inversion breaking metal with complex
Berry curvature patterns in the conduction bands that is very susceptible to strain [229–232].
The magnetic order, however, is incommensurate and very sensitive to external magnetic
field. An ideal candidate material would have simple easy axis ferromagnetic or Néel order
that has vanishing susceptibility for magnetic fields in the ordering direction in the low
temperature limit. The recently studied polar metals [192, 193], while non-magnetic, would
provide a platform to realize the field-independent piezoelectric response β. Cold-atomic
systems also offer an alternative; the current is related to an easily accesible observable, the
center-of-mass velocity vc.m. through vc.m. = j/n where n is the density of the atomic cloud.
Recently, vc.m. has been exploited as a probe of topological properties [233] and it is therefore
plausible that the effects we discuss here can be observed in these systems as well.

3The semiclassical approach is applicable if ~Fc = ~eB/m � min (h/τMF , kBT ) where τMF = l/vF is
the mean free time between scattering events and l is the average distance between impurities. For B = 1T
the Landau level splitting is ~Fc ∼ 7.27 × 10−4eV, a broadening similar to that achieved at a temperature
of T = 8.44K. Assuming a relatively pure material with l ∼ 10−7m with vF ∼ 106m/s, the broadening
from scattering is h/τMF ∼ 10−2eV, which is two orders of magnitude larger than ~Fc, establishing the
applicability of our approach.
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8.4 Conclusion

We have calculated a novel magnetopiezoelectric response in inversion and time reversal
breaking metals subjected to static magnetic field and dynamic strain. Similar to the anoma-
lous Hall effect in metals which can be viewed as a generalization of the quantized anomalous
Hall effect in insulators, our results for magnetopiezoelectricity generalize the magnetoelec-
tric response of insulators to metals. As a key difference, we find an additional Fermi surface
contribution that relies on a finite orbital moment of the electrons, that is unique to metals
and likely dominates the effect in real systems.
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Appendix

8.A Vanishing of jic

In this section we prove that jic, defined as

jic = e

∫
T3

d3k

(2π)3

1

2

e

~2

(
εlmnF̃ lm

∂Ẽ
∂kn

)
Bif(Ẽk,θ, µ) ,

in the main text is zero. The last term, corresponding to jzc , can be integrated by parts to
give

jic =
1

2

e

~2

∫
T3

d3k

(2π)3

[
−Ẽ

(
εlmn

∂F̃ lm

∂kn

)
f(Ẽk,θ, µ)− Ẽ

(
εlmnF̃ lm

∂f(Ẽk,θ, µ)

∂kn

)]
Bi (8.17)

The first term is the divergence of the Berry field strength and vanishes. The second term in
the low temperature limit can be rewritten as the total the Berry flux over all Fermi surfaces,
which vanishes as well. This results is consistent with the absence of the chiral magnetic
effect in the static limit [70, 71].
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