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Abstract

We study population protocols, a model of distributed computing appropriate for modeling well-

mixed chemical reaction networks and other physical systems where agents exchange information

in pairwise interactions, but have no control over their schedule of interaction partners.

Concretely, population protocols [10] are asynchronous, complete networks that consist of com-

putational entities called agents with no control over the schedule of interactions with other agents.

In a population of n agents, repeatedly a random pair of agents are chosen to interact, each ob-

serving the state of the other agent before updating its own state.

Population protocols are equivalent to the model of chemical reaction networks, describing

abstract chemical reactions such as A + B → C + D, when the latter is subject to the restriction

that all reactions have two reactants and two products, and all rate constants are 1.

In this thesis, we demonstrate an algorithmic advance for the exact majority problem: starting

in a population of n agents, each with one of two opinions A or B, the agents must determine

whether there are more A, more B, or a tie. The proposed algorithm is nonuniform: assumes that

the agents are initialized with an approximate estimate of n (specifically, a value that is ≥ ⌊log n⌋).

We introduce uniform population protocols: networks of anonymous agents whose pairwise

interactions are chosen at random, where each agent uses an identical transition algorithm that

does not depend on the population size n. Moreover, we study almost optimal protocols that solve

static counting problem: the counting problem is that of designing a protocol so that n agents, all

starting in the same state, eventually converge to states where each agent encodes in its state an

exact or approximate description of population size n.

Finally, we introduce population protocols with dynamic size and finish this thesis with a novel

counting protocol robust to an adversary who can add or remove agents.
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CHAPTER 1

Introduction

1.1. Introduction to population protocols

With recent advances in DNA computation,1 scientists are on the verge of developing smart

molecules that can communicate, perform tasks, and control matter at the nano level. For exam-

ple, intelligent molecules with self-counting ability could improve medical diagnostic tests. I do

not look at molecular computing as a model that competes with the traditional silicon based on

speed or other measures of computational power but as a direct molecular manipulation that can

conduct computation at the molecular level. So, we can use them as biosensors to detect cellular

irregularities and combine them with our existing detection and treatment techniques for various

medical conditions.

To help biological computation scientists achieve their goals, we study population protocols:

an abstract distributed computing model of computation that models the natural physical systems

and captures their dynamics. Population protocols are an appropriate model for electronic com-

puting scenarios such as sensor networks and for “fast-mixing” physical systems such as animal

populations [93], gene regulatory networks [33], and chemical reactions [87], the latter increasingly

regarded as an implementable “programming language” for molecular engineering, due to recent

experimental breakthroughs in DNA nanotechnology [39,88].

A population is a network of n anonymous and identical entities (called agents) each holding

a state representing its entire memory.2 The agents communicate through a sequence of randomly

chosen pairwise interactions, i.e., with no control over whom they interact.

1Microsoft implemented a DNA version of the approximate majority protocol on a mixed population of DNA
agents [39].
2Using message-passing terminology, each agent sends its entire state of memory as the message.
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The computation happens through a sequence of pairwise interactions among randomly chosen

pairs of agents [10]. Concretely, in an interaction, the scheduler selects two different agents uni-

formly at random. Each agent observes the other agent’s entire memory (state) and updates its

state according to the transition function defined by a protocol.

A protocol is defined with 2-input, 2-output transitions such as (a, b) → (c, d) that determine

if two agents with the state a and b interact should update their state to c and d, respectively.

In the original model of population protocols [10], the states and transitions are constant with

respect to the population size n. However, recent studies use a variant of the model: allowing the

number of states and transitions to grow with n [2,3,5,20,24,25,26,27,28,30,34,47,50,51,57,60,

61,79,91], leading to time- and space-optimal solutions for leader election [26] and majority [50]

problems.

One motivation to study population protocols with ω(1) states is the existence of impossibility

results showing that no constant-state protocol can stabilize in sublinear time with probability 1

for problems such as leader election [53], majority [2], or computation of more general predicates

and integer-valued functions [18]. Note that the known time lower bounds [2, 19, 53] are on

stabilization, not convergence time. Intuitively, we say a protocol converges when it reaches the

correct output without subsequently changing it—though it may remain changeable for some time

after converging—whereas it stabilizes when the output becomes unchangeable. See [25,53] for a

discussion of the distinction between stabilization and convergence.

For a concrete example, consider a simple leader election transition is (L,L)→ (L,F ) with all

agents starting in state L. This protocol stabilizes, meaning that with probability 1, it reaches a

configuration that is both correct (has exactly one agent in state L) and stable: every subsequently

reachable configuration is also correct.

Recently Kosowski and Uznanski [69] achieved a breakthrough result, showing constant-state

protocols for leader election and all decision problems computable by population protocols (the

semilinear predicates), which converge with high probability in polylog(n) time, and for any ϵ > 0,

probability 1 protocols for the same problems that converge in O(nϵ) expected time. The latter

protocols require Ω(n) time to stabilize, as would any constant-state protocol due to the cited time

lower bounds.
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1.1.1. A note on uniform computation. Most of the recent algorithmic advances using

non-constant states [2, 3, 5, 20, 24, 25, 26, 27, 30, 50, 61, 79, 91] propose a nonuniform protocol.

Rather than being a single set of transitions, a nonuniform protocol represents a family of protocols,

where the set of transition rules (i.e., the protocol) used is allowed to depend on the population

size n.

The typical way that nonuniformity appears in a protocol is that the agents have an estimate

of n (for example the value ⌈log n⌉) appearing in the transitions. 3 When expressed in pseudocode,

this is often realized by a “hard-coded” constant ⌈log n⌉ to which the code has access (i.e., each

agent receives the value ⌈log n⌉ as “advice”). However, in measuring the state complexity of the

protocol, the space required to store this value does not count against the memory usage. Note that

this concern is relevant because we count memory complexity by counting the number of states,

rather than the number of bits necessary to represent the state. Adding a field with O(log n)

different values does not asymptotically change the bit usage, but it does asymptotically increase

the number of states. As an example of a nonuniform protocol using its estimate of log n, consider

the following nonuniform leaderless phase clock rules: each agent, independently, counts its number

of interactions and uses it as a timer by comparing to 12 lnn. In this protocol, each agents increment

the value in its count field until it reaches a threshold dependent on lnn (note that “−” stands for

an arbitrary value in N for count):

(1.1)

 (A = F, count = i), (−,−)−→ (A = F, count = i + 1), (−,−) if i < 12 lnn

(A = F, count = i), (−,−)−→ (A = T, count = 0), (−,−) if i = 12 lnn

In the above leaderless phase clock, no agent will set their A field to T before 6 lnn time has

passed with probability at least 1 − 1/n.4 However, no uniform protocol can achieve this same

task: in any uniform protocol, some agent will set its A field to T in constant time with high

probability [47, Theorem 4.1].

In a uniform protocol, by contrast, the transitions are not dependent on the population size n,

i.e., agents lack any knowledge of n.

3Some of these protocols crucially rely on an estimate of logn for correctness.
4We can compute the error probability with a straightforward Chernoff bound application on binomial random
variables.
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The original O(1)-state model [10,11,12] is uniform, since there is a single transition function

for all population sizes. However , uniform protocols are not required to have constant states. For

example, starting from n agents in state L1, the protocol defined by transitions Li, Lj → Li+j , F

for all natural numbers i, j, in a population of size n, can produce all values of Li for i between 1

and n. However, note that the (infinitely many) transitions are “uniformly specified”: no transition

makes reference to an estimate of n. (This is formalized by requiring the transition function to be

computable by a single Turing machine; see section 1.2 for more details.)

F
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Figure 1.1. Example of a uniform protocol that solves the exact counting problem
in which the agents calculate the population size n. The protocol (Li, Lj) −→
(Li+j , Fi+j) and (Fi, Fj) −→ (Fmax(i,j), Fmax(i,j)) counts the population size starting
from all agents in state L1. In a population of size n, the agents eventually reach
a configuration with one agent in the leader state and n − 1 agents in the follower
state, all having the same value n.

Throughout this thesis, n denotes the number of agents in the population. Also, we define the

(parallel) time for some event to happen as the number of interactions, divided by n, until the

event happens.5 This represents a natural model of time complexity in which each individual agent

experiences expected O(1) interactions per unit time, hence across the whole population, Θ(n) total

interactions occur per unit time. All references to “time” in this thesis refer to parallel time.

All problems solvable with zero error probability by a constant-state population protocol are

solvable in O(n) time [12,52]. The benchmark for “efficient” computation is thus sublinear time,

ideally polylog(n), with Ω(log n) time a lower bound on most nontrivial computation, since a

simple coupon collector argument shows that is the time required for each agent to have at least

one interaction.

5A simplified approximation for modeling well-mixed systems assumes all pairs of agents have equal probability.
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To have probability 0 of error, a protocol must eventually stabilize: reach a configuration

where all agents agree on the correct output, which is stable, meaning no subsequently reachable

configuration can change the output.6

As a simple example of time complexity, suppose we want to design a protocol to decide whether

at least one x exists in an initial population of x’s and q’s. The single transition x, q → x, x indicates

that if agents in states x and q interact, the q agent changes state to x. If x outputs “yes” and

q outputs “no”, this takes expected time O(log n) to reach a consensus of all x’s (i.e., O(n log n)

total interactions, including null interactions between two x’s or between two q’s). However, the

transitions x, x → y, y; y, x → y, y; y, q → y, y, where x, q output “no” and y outputs “yes”,

which computes whether at least two x’s exist, is exponentially slower: expected time O(n). The

worst-case input is exactly 2 x’s and n − 2 q’s, where the first interaction between the x’s takes

expected
(
n
2

)
= Θ(n2) interactions, i.e., Θ(n) time.

It is conventional in population protocols to measure the memory usage by counting the total

number s(n) of states agents can store in population size n, instead of the number of bits required

to represent these states, which is about log s(n).

In this work, we advance the theoretical understanding of the computational power of population

protocols and introduce a dynamic variation of this model. This initiative is to help fill in the gap

between molecular computing and the current abstract computation models. In chapter 2, we

discuss recent algorithmic advances in population protocols on majority, counting, and other relate

problems. In chapter 3 we discuss the well-studied majority problem, in which in a population of n

agents, each starting with one of two votes, A or B; the goal of the majority problem is to determine

if there are more As, more Bs, or even if it is a tie. More than a decade-long line of research reduced

the state and time complexity for majority protocols [2,3,20,24,25,30,73,78,79]. In this chapter,

we present the first protocol that is asymptotically optimal in both time and state complexity.

Then in chapter 4 and chapter 5, we consider the problem of computing the number of agents in a

population protocol. Both exact (computing n) and approximate counting (computing ⌈log n⌉ or

⌊log n⌋, which gives 2⌈logn⌉ or 2⌊logn⌋ as a multiplicative factor-2 estimate of n) are considered in this

thesis (chapter 4 and chapter 5 respectively). Finally, in chapter 6 we study population protocols

under an adversarial setting. We introduce population protocols with dynamic population size that

6Technically this connection between probability 1 correctness and reachability requires the number of producible
states for any fixed population size n to be finite, which is the case for our protocol.
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is in contrast to most work, which assume the population size n is fixed over time. We model an

adversary that can add or remove agents arbitrarily and repeatedly during the computation.

1.2. Definitions and Notation

In this thesis, we write n to denote the number of agents in the population. Additionally, we

use log n to denote log2 n, and lnn to denote the natural (base-e) logarithm. We write x ∼ y to

denote that x and y are asymptotically equivalent (implicitly in the population size n), meaning

lim
n→∞

x(n)
y(n) = 1.

A population protocol is a pair P = (Λ,∆), where Λ is a finite set of states, and ∆ ⊆ (Λ×Λ)×

(Λ× Λ) is the transition function. (Often this is defined as a function δ : Λ× Λ→ Λ× Λ, but we

allow randomized transitions, where the same pair of inputs can randomly choose among multiple

outputs.)

A transition (a.k.a., reaction) is a 4-tuple α = (r1, r2, p1, p2), written α : r1, r2 → p1, p2,

such that ((r1, r2), (p1, p2)) ∈ ∆. If an agent in state r1 interacts with an agent in state r2, then

they can change states to p1 and p2. This notation omits explicit probabilities; our main protocol’s

transitions can be implemented so as to always have either one or two possible outputs for any input

pair, with probability 1/2 of each output in the latter case.7 For every pair of states r1, r2 without

an explicitly listed transition r1, r2 → p1, p2, there is an implicit null transition r1, r2 → r1, r2 in

which the agents interact but do not change state.

Since in each interaction, the scheduler picks an ordered pair of agents to interact, we denote

these agents in the pseudocode as receiver (rec) and sender (sen) respectively. In other words,

unlike many models of distributed computing, population protocols typically are defined to be able

to break symmetry “for free”.8

For our protocols, we specify transitions formally with pseudocode that indicate how agents

alter each independent field in their state.

7For the purpose of representation, we make an exception in our protocol, when we show agents generate a geometric
random variable in one line (see Protocol 37). However, we can assume a geometric random variable is generated
through O(logn) consecutive interactions with each selecting out of two possible outputs (H or T).
8There are examples of interesting protocols using only symmetric transitions, and under certain circumstances,
asymmetric protocols can be simulated by symmetric ones [32].
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A configuration c of a population protocol is a multiset over Λ of size n, giving the states of

the n agents in the population. For a state s ∈ Λ, we write c(s) to denote the count of agents in

state s.

An execution is a sequence of configurations c0, c1, . . . such that for all i, applying a transition

to ci results in ci+1.

More formally, given a configuration c and transition α : r1, r2 → p1, p2, we say that α is

applicable to c if {r1, r2} ⊆ c, i.e., c contains 2 agents, one in state r1 and one in state r2. If α

is applicable to c, then we write c ⇒α c′, where c′ = c − {r1, r2} + {p1, p2} is the configuration

that results from applying α to c. We write c ⇒ c′, and we say that c′ is reachable from c, if

applying 0 or more transitions to c results in c′. Concretely, if there is a sequence (α0, α1, . . . , αk)

of transitions such that c ⇒α0 c1 ⇒α1 . . . ⇒αk
c′. This notation omits mention of P; we always

deal with a single protocol at a time, so it is clear from context which protocol is defining the

transitions.

The time until some event is measured as the number of interactions until the event occurs,

divided by n, also known as parallel time. Since we would like to model that many interactions

can happen in parallel, with O(1) interactions per agent per unit of time, we define n interactions

as one unit of time.

All references to “time” in this thesis refer to parallel time. This definition coincides with the

time defined in the standard Gillespie kinetic model for chemical reaction networks [62], of which

population protocols are a special case describing n molecules reacting in a volume proportional to

n.

A protocol stably solves a problem if the agents eventually reach a correct configuration with

probability 1, and no subsequent interactions can move the agents to an incorrect configuration; i.e.,

the configuration is stable. A population protocol is self-stabilizing if from any initial configuration,

the agents stably solve the problem.

A protocol converges in a given random execution when the output stops changing, though it

could take longer to subsequently stabilize.

In a uniform protocol (such as protocols in chapter 4, chapter 5, and chapter 6), the transitions

are independent from the population size n. In other words, a single protocol computes the output

correctly when applied on any population size. In contrast, in nonuniform protocols a different Λ

7



and δ are allowed for different population sizes n (one for each possible value of ⌈log n⌉), but we

abuse terminology and refer to the whole family as a single protocol. In all cases (as with similar

nonuniform protocols), the nonuniformity is used to embed the value ⌈log n⌉ into each agent; the

transitions are otherwise “uniformly specified”.

To formally define uniform computation in population protocols, the agents’ transition algo-

rithm is modeled as a 2-tape Turing machine with “state tape” as tape 1 and “computation tape”

as tape 2. Our protocol describes a constant number of integer fields comprising each agent’s state,

which could all be stored in the state tape and separated by a special symbol. When two agents

interact they both append the content of the tape 1 of each other into their own tape 1. (We assume

the Turing machine state and tape head positions are not transmitted, since they can be assumed

WLOG identical in every initial configuration.) The space usage (in bits) s is defined as normal for

Turing machines: the maximum number of tape cells that are written during the computation. The

number of states is then 2s, where s is the maximum space usage of any agent during an execution

of the protocol. For ease of understanding, we will use standard population protocol terminology

and not refer explicitly to details of the Turing machine definition except where needed. Therefore

a state s ∈ Λ always refers to the TM tape content of an agent (leaving out TM state and tape

head positions since these are identical in all initial configurations), where Λ is the set of all states,

a configuration c ∈ NΛ is a vector indexed by a state, where c(s) is the count of state s in the

population. We set the output of our protocol the value stored in a special field labeled “output”.

This definition is not indisputable since the output of a protocol can also be defined as a function

of the fields stored in an agent’s memory. Therefore, agents do not necessarily carry the output

in their memory. Though the latter definition does not reduce our protocol’s space usage it might

benefit other algorithms to save memory. We leave the discussion that which definition is more

suited to the readers.

The traditional definition of population protocols assumes a deterministic transition function.

Several papers [2,27] indicate how to use the randomness built into the interaction scheduler to

provide nearly uniform random bits to the agents, using various synthetic coin techniques, showing

that the deterministic model can effectively simulate a model with a randomized transition. For

brevity and simplicity of presentation, we will simply assume in the model that each agent has

8



access to a source of uniformly random bits. We assume that each agent has access to indepen-

dent uniformly random bits, pre-written on a read-only tape, allowing the Turing machine to be

deterministic even though it is computing a nondeterministic relation.

When discussing random events in a protocol of population size n, we say event E happens with

high probability (WHP) if Pr [¬E] = O(n−c), where c is a constant that depends on our choice of

parameters in the protocol, where c can be made arbitrarily large by changing the parameters. In

other words, the probability of failure can be made an arbitrarily small polynomial. For concrete-

ness, we will write a particular polynomial probability such as O(n−2), but in each case we could

tune some parameter (say, increasing the time complexity by a constant factor) to increase the

polynomial’s exponent. We say event E happens with very high probability if Pr [¬E] = O(n−ω(1)),

i.e., if its probability of failure is smaller than any polynomial probability.

1.3. Useful Techniques and Time Bounds

In this section, we present the most commonly used bounds in this thesis. We will use the

following standard multiplicative Chernoff bound:

Theorem 1.3.1. Let X = X1 + . . . + Xk be the sum of independent {0, 1}-valued random

variables, with µ = E [X]. Then for any δ > 0, Pr [X ≥ (1 + δ)µ] ≤ exp
(
− δ2µ

2+δ

)
.

We will also use the following two concentration bounds on heterogeneous sums of geometric

random variables, due to Janson [67, Theorems 2.1, 3.1]:

Theorem 1.3.2. Let X be sum of k independent geometric random variables with success prob-

abilities p1, ..., pk, let µ = E [X] =
∑k

i=1
1
pi
, and let p∗ = min

1≤i≤k
pi. For all λ ≥ 1, Pr [X ≥ λµ] ≤

e−p∗µ(λ−1−lnλ). For all λ ≤ 1, Pr [X ≤ λµ] ≤ e−p∗µ(λ−1−lnλ).

The expression λ− 1− lnλ is hard to work with if we are not fixing exact constant values for

λ. The following Corollary gives asymptotic approximation to the error bound:

Corollary 1.3.3. Let X be sum of k independent geometric random variables with success

probabilities p1, ..., pk, let µ = E [X] =
∑k

i=1
1
pi
, and let p∗ = min

1≤i≤k
pi. For any 0 < ϵ < 1, we have

(1− ϵ)µ ≤ X ≤ (1 + ϵ)µ with probability 1− exp
(
−Θ(ϵ2p∗µ)

)
.
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Proof. Setting λ = 1 + a in theorem 1.3.2, where a = ϵ in the upper bound and a = −ϵ

in the lower bound, by Taylor series approximation of ln(1 + a), λ − 1 − ln(λ) = a − ln(1 + a) ≥

a− (a− a2

2 + a3

3 ) = a2(12 −
a
3 ) = Θ(ϵ2). The stated inequality then follows from theorem 1.3.2. □

1.3.1. Epidemic time bounds. The following lemma is essentially Lemmas 1 and 2 from

the paper [12]. However, that paper does not state how the various constants are related, which

we require for our proofs. We recapitulate their proof, deriving those relationships explicitly. For

all n ∈ N+, let Hn =
∑n

k=1
1
k denote the n’th harmonic number, recalling that Hn ≈ lnn.

Lemma 1.3.4 ( [12]). Let T denote the time to complete an epidemic. Then E [T ] = n−1
n Hn−1,

Pr
[
T < 1

4 lnn
]
< 2e−

√
n, and for any αu > 0, Pr [T > αu lnn] < 4n−αu/4+1.

Proof. We begin by showing Pr [T > αu lnn] < 4n−αu/4+1. Suppose we have αun lnn interac-

tions, starting with one infected agent. We want to bound the probability that any agent remains

uninfected. The second half of an epidemic (after exactly n/2 agents are infected) has equivalent

distribution to the first, so we analyze just the second half, bounding the probability it requires

more than (αu/2)n lnn interactions. When half of the agents are infected, each interaction picks an

infected sender with probability at least 1/2. The number of interactions to complete the epidemic

is then stochastically dominated by a binomial random variable B((αu/2)n lnn, 1/2), equal to the

number of heads after (αu/2)n lnn coin flips if Pr [heads] = 1/2.

Let µ = E [B((αu/2)n lnn, 1/2)] = (αu/4)n lnn and δ = 2/
√
n. By the Chernoff bound [77,

Corollary 4.10],

Pr [B((αu/2)n lnn, 1/2) < (1− δ)µ] < e−δ2µ = e−(4/n)(αu/4)n lnn = e−αu lnn = n−αu .

So with probability at least 1−n−αu , more than ((1− δ)αu/4)n lnn > (αu/8)n lnn (since δ < 1/2)

interactions involve an infected sender.

To complete the proof of the time upper bound, we need to bound the probability that these

(αu/8)n lnn interactions fail to infect all agents. Conditioned on each interaction having an in-

fected sender, the random variable giving the number of interactions until all agents are infected

is equivalent to the number of collections required to collect the last n/2 coupons out of n to-

tal. Angluin, Aspnes, and Eisenstat [12, Lemma 1] showed that for any β, it takes more than

β(n/2) ln(n/2) < (β/2)n lnn collections to collect n coupons with probability at most n−β+1. Let

10



β = αu/4. Then Pr [(αu/8)n lnn interactions fail to infect every agent] ≤ n−β+1 < n−αu/4+1. By

the union bound on the events “fewer than (αu/8)n lnn interactions involved an infected sender”

and “(αu/8)n lnn interactions fail to infect every agent”, the second half of the epidemic fails to

complete within (αu/2)n lnn interactions with probability at most n−αu + n−αu/4+1 < 2n−αu/4+1.

Again by the union bound on the events “first half of the epidemic takes more than (αu/2)n lnn

interactions” and “second half of the epidemic takes more than (αu/2)n lnn interactions”, the whole

epidemic takes more than αun lnn interactions with probability at most 4n−αu/4+1.

To show Pr
[
T < 1

4 lnn
]
< 2e−

√
n, we note that Lemma 1 of [12] shows that if Sn is the number

of times a coupon must be collected to collect all coupons, then Pr
[
Sn < 1

4n lnn
]
< 2e−

√
n. The

proof says 2e−Θ(
√
n), but inspection of the argument reveals that the big-Θ constant can be assumed

to be 1. In this case, applying the coupon collector argument to the epidemic, since we are proving

a time lower bound, if we assume that every interaction involves an infected sender, this process

stochastically dominates the real epidemic. Thus Pr
[
T < 1

4 lnn
]
< 2e−

√
n.

To analyze the expected time, starting from one infected agent, we require exactly n− 1 inter-

actions between an infected and an uninfected agent. When k agents are infected, the probability

that the next interaction is of this form is

k(n− k)(
n
2

) =
2k(n− k)

n(n− 1)
,

so the expected time until such an interaction is

n− 1

2k(n− k)
.

11



By linearity of expectation, the total expected time for all n− 1 interactions is

n−1∑
k=1

n− 1

2k(n− k)
=

n− 1

2

n−1∑
k=1

1

k(n− k)

=
n− 1

2

n−1∑
k=1

(
1

nk
+

1

n(n− k)

)

=
n− 1

2n

(
n−1∑
k=1

1

k
+

n−1∑
k=1

1

n− k

)

=
n− 1

2n

(
2

n−1∑
k=1

1

k

)

=
n− 1

n
Hn−1.

□

Note that this assumes a receiver can infect a sender and vice versa. A one-way epidemic in

which only senders can infect receivers would have exactly twice the expected time: 2(n−1)
n Hn−1.

The following lemmas give applications of theorem 1.3.2 and theorem 1.3.3 to common processes

that we will repeatedly analyze. When the fractions we consider are distinct and independent of n,

theorem 1.3.3 applies to give tight time bounds with very high probability. We also consider cases

where we run a process to completion and bring a count to 0. Here we must use theorem 1.3.2 and

only get a high probability bound with times at most a constant factor above the mean.

First we consider the epidemic process, i, s→ i, i, moving from a constant fraction infected to

another constant fraction infected.

Lemma 1.3.5. Let 0 < a < b < 1. Consider the epidemic process starting from a count of a · n

infected agents. The expected parallel time t until there is a count b · n of infected agents is

E [t] =
ln
(
b− 1

n

)
− ln

(
1− b + 1

n

)
− ln(a) + ln(1− a)

2
∼ ln(b)− ln(1− b)− ln(a) + ln(1− a)

2
.

Let c = min(a, 1− b+ 1
n) and 0 < ϵ < 1. Then (1− ϵ)E [t] < t < (1 + ϵ)E [t] with probability at least

1− exp
(
−Θ(ϵ2E [t]nc)

)
.

Proof. When there are i infected agents, the probability the next reaction infects another

agent and increases this count is i(n−i)

(n2)
. The number of interactions T for the count to increase

12



from a · n to b · n is a sum of geometric random variables, with expected value

E [T ] =
b·n−1∑
i=a·n

(
n
2

)
i(n− i)

∼ 1

2

b·n−1∑
i=a·n

1
i
n(1− i

n)
∼ n

2

∫ b− 1
n

x=a

dx

x(1− x)

=
n

2
[ln(x)− ln(1− x)]

b− 1
n

a = n ·
ln
(
b− 1

n

)
− ln

(
1− b + 1

n

)
− ln(a) + ln(1− a)

2
,

giving the stated value of E [t] after converting from interactions to parallel time. The minimum

probability p∗ = Θ(min(a, 1 − b + 1
n)), so using theorem 1.3.3 we have Then (1 − ϵ)E [t] < t <

(1 + ϵ)E [t] with probability at least 1− exp
(
−Θ(ϵ2E [T ] p∗)

)
. □

Note that if a, (1 − b), ϵ are all constants independent of n, then the bound above is with

very high probability. If we wanted to consider the complete epidemic process (which starts with

a = 1/n and ends with (1 − b) = 1/n), we would have E [t] = Θ(log n) and minimum probability

p∗ = Θ( 1
n). Then the probability bound would become 1− exp (−Θ(log n)) = 1− n−Θ(1), which is

high probability, but requires carefully considering the constants to get the exact polynomial bound.

In our proofs, we only use the very high probability case. For tight bounds on a full epidemic with

precise constants, see [34,82].

1.3.2. Fast averaging protocol. The averaging technique discussed in this section is used

in the subsequently discussed counting protocols in chapter 4, section 2.3.2, section 2.3.3, and sec-

tion 2.4.6.

The averaging technique, also known as randomized load balancing [21,29,86], was first intro-

duced in population protocols in [7] to solve the exact majority problem.

Each agent’s state is an integer; for intuition, assume the integers represent a “load”9 that

each agent holds. The averaging rules allow each selected pair of agents to exchange loads to

balance (as best they can) their values, e.g., (2, 11) → (6, 7). This leads the population to a

configuration in which all agents have almost equal values: concretely, if the total load among

the population is m, then after stabilization, each agent holds either the value ⌊m/n⌋ or ⌈m/n⌉.

Stabilization can take Θ(n) time in the worst case, but it takes only O(log n) time for all agents to

hold three consecutive values (two of which are ⌊m/n⌋ or ⌈m/n⌉) [21,78]. The averaging technique

has been crucial in several polylogarithmic-time protocols for problems such as population size

9In this thesis, whenever the load values are nonnegative, we use “tokens” instead to present a more intuitive
explanation of the protocols.
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counting [28,51] and majority related problems [7,24,78,79], and its time complexity has been

tightly analyzed [21,29,79,81].

Notably, Mocquard, Anceaume, Aspnes, Busnel, and Sericola [79] used the averaging technique

to solve a generalization of the exact majority problem. Considering a population with na, nb

initialized agents in states A and B, i.e., na + nb = n, the authors designed an averaging-based

protocol that counts the exact difference between the number of agents in the A and B (computing

the value of na − nb).

In this protocol, the A and B agents start with +m and −m values respectively, where m is a

large integer with respect to the population size n. Thus the population as a whole starts with a

total of m(na)−m(nb) load. The protocol is designed to almost equally distribute the load among

the agents while preserving the total sum. In this protocol, the agents update their state according

to the “discrete averaging” rule described in Protocol 0.

Protocol 0 DiscreteAveraging(rec, sen)
Initialization:
if agent.input = A: agent.ave← m
if agent.input = B: agent.ave← −m

1: rec.ave, sen.ave←
⌈
rec.ave+sen.ave

2

⌉
,
⌊
rec.ave+sen.ave

2

⌋
2: rec.output←

⌊
n×rec.ave

m + 1
2

⌋

Initializing Protocol 0 with na, nb agents in states A and B, it is shown that the agents’ ave

value converges to (na−nb)m
n quickly. In fact, the authors of [79] proved for m =

⌈√
2n3/2
√
δ

⌉
, after

O(n log n) interactions with probability 1−δ, the output field of agents will be equal to na−nb. (e.g.

to achieve a high probability result, one can set δ = 1/n and start the protocol with m = O(n2)).

The protocol given in [79] is nonuniform; it is assumed that the population size is known in

advance. Crucially, the protocol requires all agents to store the exact value of n in their memory

to compute the output. In a separate paper [78], Mocquard, Anceaume, and Sericola show how

to remove this assumption and make the protocol uniform. Their protocol computes the ratio of A

agents with respect to n within a multiplicative factor error (1 + ϵ) of the true proportion for any

precision ϵ > 0 using 2
⌈

3
4ϵ

⌉
+ 1 states.
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1.4. Thesis contribution

The majority problem: In chapter 3, we focus on the exact majority protocol of [50]. In

the exact majority problem, in a population of n agents, each agent starts with one of two votes, A

or B; the goal of the majority problem is to determine if there are more As, more Bs, or even if it

is a tie. Computing the majority is a useful primitive for more complicated computations [12,13].

More than a decade-long line of research reduced the state and time complexity for majority

protocols [2,3,20,24,25,30,73,78,79].

Our presented protocol solves this problem in optimal O(log n) time using O(log n) states. By

introducing a new synchronization scheme (fixed-resolution phase clock) that allows the agents

to synchronize within “hours” of O(1) time (previous synchronization techniques allow hours of

O(log n) time [7,12,60]). Still, we prove this looser synchronization keeps a large constant fraction

of agents synchronized every hour.

Exact and approximate size counting: Nonuniform protocols in the literature [2,3,5,20,

24,25,26,27,30,50,61,79,91] initialize each agent with an estimate of the population size (e.g.,

⌊log n⌋). Hence we study the problem of computing the population size. In our papers [47, 51]

(covered in chapter 4 and chapter 5 respectively), we asked how the agents in a population (with

no prior knowledge about the population size) could calculate the population size?

In chapter 4, we focus on exact counting: computing n; while in chapter 5 we discuss the

approximate population size counting problem, i.e., computing an approximation of log n.

The recent algorithmic advances for population size counting problem provide composable build-

ing blocks that simplify the (uniform) solution of other problems: compute an estimate of log n,

and use this value where a nonuniform protocol would use the hard-coded constant ⌈log n⌉. We

can adopt a counting technique as a black box and compose it with a nonuniform protocol through

a restarting scheme [28,47,60] to obtain a uniform protocol.

We presented the first sublinear time protocol to solve exact counting. Our protocol relies on the

discrete averaging idea of [79], which has been extensively used in recent studies [7,24,28,78,79].

For approximate size counting, we proposed a protocol that computes log n±5.7, using O(log2 n)

time and O(log4 n) states, both WHP. We extended a standard coin flip technique that generates an

estimate Θ(log n) [2] to log n+O(1) by taking an average of K = log n independent estimates. We

15



utilized advanced techniques to overcome two main challenges: first, storing all K values takes too

much memory, and second, normal Chernoff bounds don’t apply to unbounded random variables.

Berenbrink et al. [28] improved upon both our result by presenting almost optimal time-space

optimal counting protocols (for both exact and approximate counting problems) while using similar

techniques to ours.

Population protocols with dynamic size In the conventional population protocols model,

we assume the population size is constant throughout the computation. However, it is crucial to

consider dynamic changes that happen to the distributed sensor networks or dynamic domains like

biological applications. Hence, in chapter 6 we study population protocols with a population size

that is dynamically changing. Perhaps the most realistic scenario is sensor networks in which the

agents can arrive and leave a network continuously. In this model, the protocols should converge

to their output despite the network changes. This constraint forces protocols to be uniform and

requires the population to adapt “quickly” to the new size. My goal is to study the limits of

computation in the dynamic model.

This model allows an adversary that changes the population size infinitely many times and

adds or removes an arbitrary number of agents. Suppose the adversary changes the population

size from n to n′; In that case, we say a protocol P compute function F if protocol P converges

to the correct value after polylog(n′) time. Of course, the adversary might change the population

size many times; however, the protocol must converge to the correct answer if the population size

is stable for Ω(polylog(n′)) time.

A fundamental question to ask in the dynamic population size model is “counting” the number

of agents in the population size. Note that any uniform protocol stably converges to the correct

output with a weaker adversary who can only insert agents but not delete existing ones since the

transitions in a uniform protocol are independent of the population size and can tolerate inserting

new agents. However, if we increase the power of the adversary to insert agents with arbitrary

internal states, existing uniform protocols fail to compute the function. In chapter 6, we introduced

a protocol that approximates the population size with a polynomial number of states [49].

Closest to our setting, but assuming the agents communicate in synchronous rounds, Goldwasser

et al. [63] introduced a protocol that “maintains” the population size.
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CHAPTER 2

Population Protocols Literature Review

In this section, we review recent related results that have been shown in population protocols.

See also [6,48,57] for in-depth surveys on recent algorithmic advances.

2.1. Averaging technique

Key to many fast computation in population protocols is a protocol, due to Mocquard, An-

ceaume, Aspnes, Busnel, and Sericola [79] (see section 4.2.3). Despite the title of that paper

(“Counting with Population Protocols”), it actually solves a different problem, a generalization of

the majority problem: count the exact difference between “blue” and “red” agents in the initial

population. The protocol assumes an initial leader and that each agent initially stores n exactly. In

a follow-up work [78], Mocquard et al. showed a uniform protocol that, for any ϵ > 0, computes an

approximation of the relative proportion (but not exact number) of “blue” nodes in the population,

within multiplicative factor (1 + ϵ) of the true proportion. The approximation precision ϵ depends

on a constant number m, which is encoded in the initial state. They also describe a protocol to

find the number of “blue” nodes in the population, However, like [79], this latter protocol is not

uniform since the transition function encodes the exact value of n.

In a different network model, Jelasity and Montresor [68] use a similar technique to ours that

involves a fast “averaging” similar to [78,79]. However, they do arbitrary-precision rational number

averaging, so have a larger memory requirement (not analyzed). They also assume each agent

initially has a unique ID. Goldwasser, Ostrovsky, Scafuro, Sealfon [63] study a related problem in

a synchronous variant of population protocols: assuming that both an adversary and the agents

themselves have the ability to create and destroy agents (similar to the more general model of

chemical reaction networks), using polylog(n) states, they maintain the population size within a

multiplicative constant of a target size. This is likely relevant to the exact and approximate size

counting problems, since the protocol of [63] must “sense” when the population size is too large or

small and react.
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Time

O(1)

O(log n)

O(log3/2 n)

O(log5/3 n)

O(log2 n)

Ω(n)

StatesO
(1)

O
(log n)

O
(log 2

n)

O
(log 3

n)

O
(n ε

)

Ω
(n)

[10,12,54,73]

[2][30]

[20]

[24]

[3,25] [7]

[25] [78,79][∗]

Table 2.1. Summary of results on the stable exact majority problem in population
protocols, including the protocol in chapter 3 [∗]. Gray regions are provably impos-
sible: o(log log n) state, o(n) time unconditionally [2], o(log n) state, O(n1−ε) time
for monotone, output-dominant protocols [3], and o(log n) time unconditionally.

2.2. Majority computation

Angluin, Aspnes, and Eisenstat [13] showed a protocol they called approximate majority, which

means that starting from an initial population of n agents with opinions A or B, if |A − B| =

ω(
√
n log n) (i.e., the gap between the initial majority and minority counts is greater than roughly

√
n), then with high probability the algorithm stabilizes to all agents adopting the majority opinion

in O(log n) time. A tighter analysis by Condon, Hajiaghayi, Kirkpatrick, and Maňuch [40] reduced

the required gap to Ω(
√
n log n).

Mertzios, Nikoletseas, Raptopoulos, and Spirakis [73], and independently Draief and Vojnović [54],

showed a 4-state protocol that solves exact majority problem, i.e., it identifies the majority cor-

rectly, no matter how small the initial gap.1 We henceforth refer to this simply as the majority

problem. The protocol of [54,73] is also stable in the sense that it has probability 1 of getting the

correct answer. However, this protocol takes Ω(n) time in the worst case: when the gap is O(1).

Known work on the stable majority problem is summarized in table 2.1. GKasieniec, Hamilton,

Martin, Spirakis, and Stachowiak [59] investigated Ω(n) time protocols for majority and the more

general “plurality consensus” problem. Blondin, Esparza, Jaax, and Kučera [31] show a similar

stable (also Ω(n) time) majority protocol that also reports if there is a tie.

1The 4-state protocol doesn’t identify ties, (gap = 0), but this can be handled with 2 more states; see Stable Backup.
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Alistarh, Gelashvili, and Vojnović [7] showed the first stable majority protocol with worst-case

polylogarithmic expected time, requiring Ω(n) states. A series of positive results reduced the state

and time complexity for stable majority protocols [2,3,20,24,25,30,78,79]. Ben-Nun, Kopelowitz,

Kraus, and Porat showed the current fastest stable sublinear-state protocol [20] using O(log3/2 n)

time and O(log n) states. The current state-of-the-art protocols use alternating phases of cancelling

(two biased agents with opposite opinions both become unbiased, preserving the difference between

the majority and minority counts) and splitting (a.k.a. doubling): a biased agent converts an

unbiased agent to its opinion; if all biased agents that didn’t cancel can successfully split in that

phase, then the count difference doubles. The goal is to increase the count difference until it is n;

i.e., all agents have the majority opinion. See [6,57] for relevant surveys.

Some non-stable protocols solve exact majority with high probability but have a small positive

probability of incorrectness. Berenbrink, Elsässer, Friedetzky, Kaaser, Kling, and Radzik [25]

showed a protocol that with initial gap α uses O(s + log log n) states and WHP converges in

O(log n logs(
n
α)) time.2 Setting α = 1 and s = O(1), their protocol uses O(log log n) states and

converges in O(log2 n) time. Kosowski and Uznański [69] showed a protocol using O(1) states and

converging in poly-logarithmic time with high probability.

On the negative side, Alistarh, Aspnes, and Gelashvili [3] showed that any stable majority pro-

tocol taking (roughly) less than linear time requires Ω(logn) states if it also satisfies two conditions

(satisfied by all known stable majority protocols, including ours): monotonicity and output domi-

nance. These concepts are discussed in section 3.8. In particular, the Ω(log n) state bound of [3]

applies only to stable (probability 1) protocols; the high probability protocol of [25], for example,

uses O(log log n) states and O(log2 n) time.

Counting in population protocols

Population size counting is the problem of computing the number of agents in a population

protocol. Both exact [28,51] (computing n) and approximate counting [2,28,47,76] (computing

⌈log n⌉ or ⌊log n⌋, which gives 2⌈logn⌉ or 2⌊logn⌋ as a multiplicative factor-2 estimate of n) have

been considered in the literature. Considering the size counting problem in a nonuniform model of

population protocol is trivial since we can provide the agents the values of n or ⌈log n⌉ as advice.

Thus, all cited papers solving this problem use the uniform variant of the model [2,28,47,51,76].

2This protocol is SimpleMajority in [25], which they then build on to achieve multiple stable protocols. The stable
protocols require either Ω(n) stabilization time or Ω(logn) states to achieve sublinear stabilization time.
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In this section, we will discuss the existing counting protocols and draw attention to their

time-space tradeoff. We will cover both the exact and approximate counting problems, since, for

most protocols, having an approximation of log n suffices. table 2.2 and table 2.3 summarize both

exact and approximate counting protocols in the conventional model of population protocols (with

initialized population).

Exact counting protocols
ref. sec. prob. time states comments
[51] 2.3.2 1 O(log n log log n) O(n60) stable

[28] 2.3.3 1− O(1)
n O(log n) O(n log n) -

[28] 2.3.3 1 O(log n) O(n log n log log n) stable

Table 2.2. Summary of existing protocols for the exact counting problem. Note
that “stable” means correct with probability 1. For all the stable protocols, the
stated time bounds the stated time bounds are proven both with high probability
and in expectation. However, the state complexity for all the protocols is correct
with high probability. We also mention the correctness probability for each proto-
col under the “prob.” column. We also discuss counting in population protocols
with constant message size and in the self-stabilizing model in section 2.3.4 and
section 2.3.5 respectively.

Approximate counting protocols
ref. sec. output value (range) prob. time states comments

[28,50] 2.4.1 ⌊log n⌋ 1 O(n log n) O(log2 n) stable

[2] 2.4.2 [ 12 log n, 9 log n] 1− O(1)
n3 O(log n) O(log9 n) deterministic

[2,47,91] 2.4.2 [log n− log lnn, 2 log n] 1− O(1)
n O(log n) O(log2 n) -

[25,60] 2.4.3 [ logn
16 , 256 log n] 1− O(1)

n O(log n) O(log log n) deterministic

[47] 2.4.4 [log n− 5.7, log n+ 5.7] 1− O(1)
n O(log2 n) O(log4 n) -

[28] 2.4.6 ⌊log n⌋ or ⌈log n⌉ 1− O(logn)
n2 O(log2 n) O(log n log log n) -

[28] 2.4.6 ⌊log n⌋ or ⌈log n⌉ 1 O(log2 n) O(log2 n log log n) stable

Table 2.3. Summary of existing leaderless protocols for the approximate counting
problem. The approximation factor of each protocol is implied under the “output
value”. The columns follow the same convention as table 2.2. One leader-driven
protocol is discussed in section 2.4.5.

2.3. Exact population size counting with a fixed size population

In the exact size counting problem, the agents aim to compute their population size n. In some

protocols, to reduce the space complexity, the agents report their estimate of n as a function of

their internal fields [28,51] rather than storing the population size explicitly in their memory. This

trick helps the agent to describe numbers that exceeds their memory limit. For example, the agents
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might store a = ⌊log n⌋ but set their output as 2a without explicitly computing the value of 2a to

keep their memory usage Θ(log n) instead of using linear states.

2.3.1. Näıve slow protocol. A näıve protocol can count the number of agents in a popu-

lation using a modified version of the slow leader election protocol. All of the agents start in the

active state holding 1 token in their count variable. For consistency with other counting proto-

cols in this section, we name the leader active, retaining the standard pairwise leader elimination

(active, active)→ (active, not active). We also change the leader election protocol so that the

final remaining active agent accumulates all the n tokens. The rules of this protocol preserve the

total sum of the active tokens. When two active agents interact one of them becomes inactive, and

both change their count value to the sum of their accumulated tokens. Initially, the agents start

with n scattered tokens and eventually, there will remain one active agent having all the tokens.

Protocol 1 describes how the agents update their state at each interaction.

Protocol 1 IntegerTokenPassing(rec, sen)
Initialization:
agent.count← 1; agent.active← True

1: if rec.active = True & sen.active = True then
2: rec.count, sen.count← rec.count + sen.count
3: sen.active← False
4: if rec.active = False & sen.active = False then
5: rec.count, sen.count← max(rec.count, sen.count)

The transitions of Protocol 1 require O(n) time to converge to the exact population size n.3

Ω(n) is a clear lower bound on the number of states needed for any protocol that requires agents

to store the value n, since ⌈log n⌉ bits are required merely to write the number n. Protocol 1 solves

this problem using 2n states.

2.3.2. Fast exact counting with polynomial states. Doty, Eftekhari, Michail, Spirakis,

and Theofilatos [51] devised the first sublinear time protocol for the exact population size counting

problem. Although their protocol heavily relies on the idea of the averaging protocol of [79]

(explained in section 1.3.2), they managed to eliminate the “advance knowledge of n” assumption.

3This is a standard analysis in population protocols; for instance, see [10, Section 6]. One way to see it requires
Ω(n) time is to observe that once exactly two agents have active = True, since there are

(
n
2

)
= Θ(n2) total pairs of

agents, it takes expected Θ(n2) interactions, i.e., Θ(n) expected parallel time, for the two active agents to interact
and reduce their count to one.
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Their protocol achieves uniformity by putting together one phase of leader election and approximate

counting before the averaging phase (see chapter 4 for more details).

Their protocol is stabilizing (correct with probability 1) and converges to the correct value of

n after Θ(log n log logn) time both WHP. (probability at least 1− O(log logn)
n ) and in expectation.

The error of having multiple leaders always will be detected (since all agents eventually have unique

codenames) and the agents replace their output value resulting an always correct protocol.

2.3.3. Fast exact counting with linear states. Berenbrink, Kaaser, and Radzik [28] im-

proved the space complexity as well as the time complexity of the exact counting protocol of [51].

They start their exact counting with a subprotocol of [60] that elects not a single leader but a

“junta” of nϵ leaders, for 0 ≤ ϵ < 1. In the junta election protocol of [60] (see section 2.4.3 for

more details), each agent computes a level value, and the maximum level among the agents is an

approximation of log log n: assuming l∗ is the maximum level, log log n−4 ≤ l∗ ≤ log log n+ 8 with

probability at least 1 − O(1/n) [25, Lemma 4] [60, Theorem 3]. Having a junta of size nϵ, opens

the possibility of simulating a “phase clock” that allows agents to stay synchronized within phases

of length Θ(log n) for poly(n) time [6, 12, 25, 60]. In addition to the junta, the exact counting

protocol of [28] requires having one unique leader.

They use the leader election protocol from [25] that uses constant number of phases to elect a

leader: in every even phase, each remaining leader generates a sequence of Θ(log n) random bits.

In the odd phases, they broadcast the maximum bitstring by epidemic and if a leader encounters

a larger bitstring than its own, it updates its state to follower. This leader election protocol is

a generalization of the O(log2 n) time protocol described in [60], which allows remaining leaders

to generate and broadcast 1 random bit in each phase and continues for O(log n) phases of each

O(log n) time.

In contrast to the protocol of [51], where the leader starts with poly(n) tokens (nc for 3 ≤ c ≤ 9),

at every stage of the protocol of [28], the leader starts with no more than n tokens. Once the agents

have almost equal tokens because of the averaging phase, the entire population multiplies their ave

value (tokens) by another factor of ≈ n. This trick puts an upper bound of n over the range of

possible values of ave but achieves having a total of poly(n) tokens among the population. The

protocol of [28] uses O(n log n) states and converges in O(log n) time both WHP. However, this

protocol has a small probability of error; i.e., it is not stable (See section 1.2). It is explained in [28]
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how to achieve stabilization in O(log n) time using O(n log n log log n) states with error detection

schemes that point agents to switch to the näıve slow (but stable) section 2.3.1 as a backup.

2.3.4. Fast exact counting with constant size messages. Amir, Aspnes, Doty, Eftekhari,

and Severson [9] studied the exact counting problem in population protocols with large memories

but limited (constant) message size. Considering the exact population size counting problem in

this model, the authors of [9] proposed a leader-driven protocol to count the exact population size

that converges in O(log2 n) time using O(n log2 n) states with probability at least 1−O(1/n). They

also proposed a leaderless protocol that counts the exact number of agents in a population using

O(log2 n) time and O(n polylog n) states with probability at least 1−O(1/n). They also demon-

strated protocols that approximate the population size, also using O(1) messages. See section 2.4

for a definition of approximate population size counting.

The following large-message protocol allows agents to compute n: the leader starts with value 1,

and agents conduct a rational-number variant of the averaging protocol (e.g., 1, 0→ 1
2 ,

1
2 ; 1

2 , 0→
1
4 ,

1
4 ; 1

4 ,
1
8 →

3
16 ,

3
16) until all agents hold dyadic values close enough to 1

n that they can uniquely

identify the size n. The protocol of [9] simulates this in O(log n) phases (synchronized via a

leader-driven phase clock), averaging together only constantly many values at a time, narrowing

the interval of values stored internally by agents, until it contains a unique integer reciprocal 1
n .

2.3.5. Self-stabilizing counting with a fixed size population. So far we have discussed

the initialized setting, where we assume the protocol is permitted to designate a set of valid initial

configurations. In the case of the counting problem, we identify a special state x0, where valid initial

configurations have all agents in state x0. In contrast, a population protocol is self-stabilizing if,

from any initial configuration, it reaches to a correct stable configuration. This is an extreme form

of fault tolerance, modeling errors that can alter states arbitrarily, at any time during the execution

of a protocol, requiring the protocol to be able to recover from any number of such transient errors,

by considering the “initial” configuration to be the (arbitrary) configuration just after the last such

transient error.

It is worth observing why counting, as defined previously, is impossible in this strict setting.

Suppose that a population of n agents has stabilized on output n. Then for any k < n, in the

self-stabilizing setting, any configuration of a sub-population of k of these agents is a valid starting
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configuration for population size k. Then this size-k population must eventually change their output

from n to k. However, the interactions that achieve this are possible in the size-k sub-population

of the original size-n population, contradicting its stability.

To circumvent this impossibility, protocols for the self-stabilizing counting problem have consid-

ered adding one exceptional entity, called the base station, such that the adversary is not permitted

to affect its memory [15,16,17,66]. Furthermore, only the base station is required to know the

count after stabilization; thus it is possible for other agents to have fewer than n states. In these

protocols, the base station stably computes the exact number n of agents in the population, called

counted agents. Assuming a known upper bound P on the population size n, Beauquier, Clement,

Messika, Rosaz, and Rozoy [17] proposed a protocol that solves the exact counting problem using

4P states. This result improved by Izumi, Kinpara, Izumi, and Wada [66] to 2P states space per

counted agent. In both protocols, the base station assigns unique names to the counted agents.

Beauquier, Burman, Clavière, and Sohier [16] proposed a space-optimal protocol that solves the

exact counting problem using 1-bit memory for each counted agent in O(2n) time. Later on, Asp-

nes, Beauquier, Burman, and Sohier reduced the exponential time complexity to O(n log n) time

which is also proven to be optimal while still using 1-bit memory for the counted agents [15].

2.3.6. Loosely-stabilizing. Sudo, Nakamura, Yamauchi, Ooshita, Kakugawa, and Masuzawa [90]

introduce loose-stabilization as a relaxation for the self-stabilizing model in which starting from any

configuration, the population will reach a correct configuration (with respect to the problem) within

a short time. After that, the agents remain in the correct configuration a long time but not forever

(in contrast with self-stabilization). On the positive side, for the leader election problem, the agents

no longer need to know the exact population size to solve the loosely-stabilizing leader election,

but a rough upper bound suffices. Loosely-stabilizing leader election has been studied, providing

a time-optimal protocol that solves the leader election problem [89] and a tradeoff between the

holding and convergence times [65,92].

2.4. Approximate population size counting with a fixed size population

The study of the counting problem is partially motivated by the existence of nonuniform pro-

tocols. Most of these nonuniform protocols require not n exactly, but an approximation, e.g., the

value ⌈log n⌉. In the approximate size counting problem, the agents compute an approximation
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of n , e.g., 2⌈logn⌉, the smallest power of two greater than n, rather than the exact value n. This

freedom opens room for protocols with exponentially smaller space complexity.

2.4.1. Näıve slow protocol. Recall that Protocol 1 solves the exact counting problem via

pairwise elimination of active agents, passing all the tokens (where each agent starts with one token)

to the remaining active agent. A simple modification to Protocol 1 can solve the approximate

counting problem using O(n log n) time [25,50]. In the protocol presented next, token counts are

restricted to powers of two, thus using only Θ(log n) states. All agents start in the active state

with one token stored in their exponent field (initially set to 0 representing integer 20). When two

active agents with the same exponent value equal to i (integer value of 2i) interact, one of them

becomes not active, and both update their exponent to i+1 (integer value of 2i+1). Additionally,

all not active agents help propagating the maximum value of exponent they have seen (described

in Protocol 2).

Protocol 2 PowersOfTwoTokenPassing(rec, sen)
Initialization:
agent.exponent← 0; agent.active← True

1: if (rec.active & sen.active) & (rec.exponent = sen.exponent) then
2: rec.exponent, sen.exponent← rec.exponent + 1
3: sen.active← False
4: if rec.active = False & sen.active = False then
5: rec.exponent, sen.exponent← max(rec.exponent, sen.exponent)

Although Protocol 2 is slow and takes O(n log n) time, it utilizes almost optimal space complex-

ity. This protocol uses O(log n) states having n−O(log n) agents store ⌊log n⌋; however, requiring

all agents to store ⌊log n⌋ results in a O(log2 n) state protocol 4. Note that ⌈log logn⌉ bits (equiv-

alently Θ(log n) states) are needed to write the number ⌊log n⌋ or ⌈log n⌉ for any protocol that

reports an estimation of log n as its output.

In the following, we overview the fast protocols that considered the approximate counting

problem. Commonly, the output of these protocols is an approximation of log n.

4For n = 2k, k ∈ N, the population converges to having one unique active agent, and all not active agents will store
the floor of logn. For other values of n ̸= 2k, k ∈ N, the population converges to O(logn) active agents each having
a different value of {0, . . . , ⌊logn⌋} that results in all null interactions. Note that the interaction between (active,
23), (active, 25), concludes with both agents having the same states.
To be concrete, exactly b1 active agents will remain, such that b1 is the number of 1s in the binary expansion of n.
Each of the b1 active agents hold one of the values i1, . . . , ib1 for all the indices that have 1 in the binary expansion
of n. Thus, to enforce “all” agents (both active and notactive) report the value of logn, the protocol needs at most
O(log2 n) states per agent.
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2.4.2. Maximum of n geometric random variables. Assuming a randomized protocol,

i.e., agents have access to independent, unbiased random bits, there is a simple method for obtaining

a constant-factor approximation of log n, i.e, a polynomial factor approximation of n. Recall

that a 1
2 -geometric random variable is the number of flips of a fair coin until the first heads. It

is known that the maximum of n independent 1
2 -geometric random variables is in the interval

[log n− log lnn, 2 log n] with probability at least 1−O(1/n) [47,56]. Each agent flips a fair coin on

each interaction, incrementing a counter until the first heads,5 and then moves to a “propagate the

maximum” stage where the maximum counter value obtained by any agent is spread by epidemic

throughout the population, i.e., i, j → i, i if i > j.

2.4.2.1. Synthetic coins. Since it may be desirable to use a deterministic transition function,

some work has been done on techniques for simulating randomized transitions with a deterministic

transition function. Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest [2] proposed a general technique,

known as synthetic coins, that synthesizes “almost” independent and unbiased random coin flips

in a deterministic protocol, “extracting” randomness from the random scheduler. Each agent uses

this synthetic coin technique to simulate generating a 1
2 -geometric random variable Gi. Their

protocol provides an approximation of log n in the interval [1/2 log n, 9 log n] with probability at

least 1−O(1)/n3, i.e., worse bounds than obtained with independent, unbiased coin flips, but still

within a constant factor of log n.

Recently, Sudo, Ooshita, Izumi, Kakugawa, and Masuzawa [91] proposed an improved imple-

mentation of synthetic coins: independent and unbiased coins (as with [2], using only symmetric

transitions). The method of Sudo et al. [91] works as follows for any protocol where “population

splitting” can be used. (See [6, Section 4.3].) Create a subpopulation of “coin” agents whose

only job is to provide random bits to the remaining “main” agents. Main agents build up a list

of random bit values to use in the main algorithm, which they obtain when interacting with coin

agents. Coin agents start (after first being assigned to the coin subpopulation) in state J , with

the following transitions: J, J → K,K; K,K → J, J ; J,K → C0, C1. When a main agent interacts

with Cb, it appends bit b to its list of random bits. Since the above transitions ensure that there

are exactly the same number of C0 and C1 agents at any time, the bits are unbiased. Since the

scheduler ensures that, conditioned on an interaction being between a main and a coin agent, the

5In more powerful variants of the model, each agent runs a randomized Turing machine [37,47,51]. In this case the
1
2
-geometric random variable can be generated in one step.
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choice of coin agent is independent of other main-coin interactions, the bit values built up in main

agents are independent.6

2.4.3. Arbitrary biased coins. One can approximate log log n with access to random bits

with arbitrary bias. We explained above how to approximate log n with a series of 1
2 -biased coins.

Consider instead a special coin whose initial bias (probability of tail, i.e., continuing to flip) of 1
2

is squared after each coin flip. In other words, the bias is 1
2 for the first flip, 1

4 for the second

flip, 1
16 for the third flip, etc. Similarly to the previous protocol, let each agent independently flip

this special coin until a head appears and store the number of consecutive tails. In this process,

the fraction of agents who get a tail and continue flipping is approximately squared after each

flip, so the maximum stored value among n agents is an approximation of log log n. The junta

election protocol of [60] (also explained in [25]) simulates this process without using any coin

flips. We describe the modified version of protocol [60] for simplicity [25]. In this protocol the

agents store their current coin number using a level variable. Initially, all agents start in state

(level = 0, active = True), and eventually, all will set their active to False. Agents increase their

level value via the asymmetric transition rules indicated in Protocol 3.

Protocol 3 JuntaElection(rec, sen)
Initialization:
agent.level← 0; agent.active← True

1: if rec.active & rec.level = 0 then
2: rec.level← 1 ▷ happens at the first interaction

3: if sen.active & sen.level = 0 then
4: sen.active← False ▷ happens at the first interaction
5: else if rec.active & rec.level > 0 then
6: if rec.level < sen.level then
7: rec.level← rec.level + 1
8: else if rec.level ≥ sen.level then
9: rec.active← False

The combination of the first two if statements in Protocol 3 acts similarly to the 1
2 -bias coin.

About n/2 agents participate in their first interaction as receiver and increase their level by 1.

Intuitively, in Protocol 3, with αn agents (such that 0 < α < 1) having level ≥ i ≥ 1, there will

be about α2n with level ≥ i + 1.

6The only difference with a truly randomized protocol is that main agents may have to wait to build up random
bits before being allowed to do a randomized transition with another agent. This does introduce some dependence
in the main protocol, which means this is not a fully black-box technique for replacing a randomized protocol with a
deterministic protocol.
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It is proven that the maximum level value in the population (l∗) is an additive approximation of

log logn. More precisely, log log n−4 ≤ l∗ ≤ log logn+8 with probability at least 1−O(1/n) [25,60].

This yields a multiplicative factor approximation of log n; see table 2.3.

The above protocol is also a so-called junta election protocol: the number of agents who obtain

the maximum level is O(
√
n log n) with high probability. These agents can be used, for example

to create a “junta-driven phase clock” [60], useful for synchronization.

2.4.4. Fast protocol with constant additive error. Doty and Eftekhari [47] presented

a protocol that improves the approximation factor of the protocol of [2], which approximates

log n using maximum of n geometric random variables, from a multiplicative to an additive factor

approximation. Their protocol converges to an estimation of log n in the interval [log n−5.7, log n+

5.7] after O(log2 n) time using O(log4 n) number of states per agent. They extend one round of

taking the maximum of n geometric random variables of [2] to K rounds of taking maximums and

computing their average as an approximation of log n. See chapter 5 for an in-depth discussion.

The protocols we have discussed so far for approximating the population size are leaderless.

They are not dependent on the existence of a unique leader. In a leaderless protocol, all agents are

initially equivalent, and there is no distinguished leader.

2.4.5. Leader-driven, epidemic-based protocol. A leader-driven protocol for approximat-

ing the population size was introduced in [76]. The basic idea of their protocol relies on the com-

pletion time of an epidemic process. Specifically, the leader triggers an epidemic process (infecting

exactly one agent L,Q → L∗, A) and keeps track of the number of infected (ca) and uninfected

(cq) agents without infecting more agents. The followers (initialized in state Q) participates in

this protocol via the one-way epidemic rule (A,Q → A,A). As soon as the number of infected

and uninfected agents becomes equal, the leader terminates the protocol and reports the approx-

imation n′ = 2ca+1. In [76] it was shown that ca ≤ 2 log n with high probability.7 This protocol

approximates the population size using Θ(log n) states for leader while the followers use constant

states.

7Theorem 1 of [76] states that logn ≤ ca with high probability. However, this does not appear to hold in simulation.
It seems likely that a bound of c · logn can be proven for some c > 0 based on known results lower bounding times
for epidemics to spread [82].
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2.4.6. Discrete averaging with powers of two. Berenbrink, Kaaser, and Radzik [28] in-

troduced a new averaging protocol via modifying the rules of Protocol 0. Recall that Protocol 0

works by pairwise averaging of nonnegative integer values held by each agent; the modified rules

restrict the agents to use numbers that are a perfect power of two. The authors carefully developed

the protocol such that the new rules of the protocol still preserve the total sum among the agents.

In this variation of the averaging protocol, shown in Protocol 4, the agents can store either a per-

fect power of two or zero. The constraint helps to reduce the space complexity via representing

an integer 2x with x. To show the exact value of 0, the agents use −1. Using a similar approach

to [28,51] for the exact counting problem, a leader starts an averaging process with a large (with

respect to n) positive value, and all the followers start with zero (ave = −1).

Protocol 4 PowersOfTwoAveraging(rec, sen)
Initialization:
if agent.leaderBit = True: agent.ave← m
if agent.leaderBit = False: agent.ave← −1

1: if rec.ave = −1 & sen.ave > 0 then
2: rec.ave, sen.ave← sen.ave− 1
3: else if sen.ave = −1 & rec.ave > 0 then
4: rec.ave, sen.ave← rec.ave− 1

Utilizing the restricted version of the discrete average process, they proposed an approximate

counting protocol that outputs the value ⌊log n⌋ or ⌈log n⌉ with high probability, using O(log2 n)

time and O(log n log log n) states. To stably solve the approximate counting problem, they used

multiple always correct error detection schemes that point the population to the slow token-passing

Protocol 2 if an error occurs. With an overhead of O(log n) states, their protocol stabilizes to ⌊log n⌋

or ⌈log n⌉ using O(log2 n log log n) states after O(log2 n) time.

2.5. Dynamic population protocols

2.5.1. Size regulation in a dynamically sized population. Goldwasser, Ostrovsky, Sca-

furo, and Sealfon [63] consider the size regulation problem: approximately maintaining a target

size (hard-coded into each agent) using O(log log n) bits of memory per agent, despite an adversary

that (like ours) adds or removes agents. That paper assumes a model variation in which:

• The agents can replicate or self-destruct.
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• The computation happens through synchronized rounds of interactions. At each round

the scheduler selects a random matching of size k = O(n) agents to interact.

• The adversary’s changes to the population size are limited. The adversary can insert or

delete a total of o(n1/4) agents within each round.

However, they use a synchronous variation of population protocols: in one round of the com-

putation, a constant fraction of agents interact (at most once) via a random matching of size

k = O(n). Observe that, unlike the asynchronous scheduler, the synchronous scheduler prevents

any agent having multiple interactions per k total interactions. Despite this difference in definitions,

it is conceivable that techniques used in the analysis of [63] could be applied to the standard popu-

lation protocol model. It is also noteworthy that their model of agents being created and destroyed

is expressible in the model of chemical reaction networks [87], of which population protocols are a

special case.

2.5.2. Approximate population size counting in a dynamic size population. Some

of the previous counting protocols would still solve the counting problem in the presence of an

adversary who can only add agents (see theorem 6.2.3). However, these protocols fail in the

presence of an adversary who can also remove agents, since they work only in the initialized setting

and rely on reaching a stable configuration (see theorem 6.2.4). Doty and Eftekhari [49] presented

a population size counting protocol robust to an adversary who can add or remove agents. See

chapter 6 for more details.

2.5.3. Computation with dynamically changing inputs. Alistarh, Töpfer, and Uznański [8]

consider the dynamic variant of the comparison problem. In the comparision problem, a subset of

population are in the input states X and Y and the goal is to compute if X > Y or X < Y . In

the dynamic variant of the comparision problem, they assume an adversary who can change the

counts of the input states at any time. The agents should compute the output as long as the counts

remain untouched for sufficiently long time. They propose a protocol that solves the comparision

problem in O(log n) time using O(log n) states per agent, assuming |X| ≥ C2 · |Y | ≥ C1 log n for

some constants C1, C2 > 1.

Berenbrink, Biermeier, Hahn, and Kaaser [22] consider the adaptive majority problem (gen-

eralization of the comparison problem [8]). At any time every agent has an opinion from {X,Y }
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or undecided and their opinions might change adversarially. The goal is to have agreement in the

population about the majority opinion. They introduce a non-uniform loosely-stabilizing leader-

less phase clock that that uses O(log n) states to solve the adaptive majority problem. This is

similar to having an adversary who can add or remove agents with different opinion. However, all

agents are assumed already to have an estimate of log n that remains untouched. Thus it is not

straightforward to use their protocol to solve our problem of obtaining this estimate.

2.6. Population protocols with faulty agents

Most population protocols8 assume that agents have perfect memory throughout the compu-

tation.9 A single bit of corruption can invalidate the entire computation. In population protocols

with O(1) states, Angluin, Aspnes, and Eisenstat [13] introduced an approximate majority proto-

col robust to O(
√
n) faulty agents. Recently, a population protocol that tolerates linear number

of Byzantine agents has been introduced [35]; however, no research has considered other problems

such as leader election and counting in this model. Therefore, I plan to consider ω(1)-states pop-

ulation protocols in the presence of an adversary who can corrupt a bounded number of agents

at any time by either stopping them or changing their memory arbitrarily. Note that this model

is different from the self-stabilizing systems that assume that any number of processes can have

corrupted states, requiring that the system eventually returns to a correct configuration. My work

on population protocols with faulty agents will support continuous changes by an adversary to

capture changes in real-world physical systems. I plan to continue my research on size counting

in the presence of faulty agents. In addition, I want to work on leader election and consider other

problems.

In a slightly different model, the power of O(1)-state protocols with Byzantine agents has been

studied [64]. In this model, the agents have unique IDs immune to adversarial changes (Byzantine

agents cannot alter their IDs). However, with ω(1) (but still o(n)) state population protocols,

one cannot assign IDs to the agents since it requires at least n states. In a related study [44], the

authors consider O(1) crash failures in the original model of population protocols with constant state

8With the exception of [13,35,44].
9Self-stabilizing protocols assume that errors eventually stop, so are not robust to continual errors from malicious
agents.
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memory (no IDs). However, it is still open if population protocols tolerate ω(1) failures. A series

of relevant studies consider population protocols with a faulty model of communication [45,46].
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CHAPTER 3

A Time and Space Optimal Stable Protocol Solving Exact

Majority

3.1. Introduction

The well-studied majority problem is that of determining in an initial population of n agents,

each with one of two opinions A or B, whether there are more A, more B, or a tie.

Computing the majority is a useful primitive for more complicated computations [12, 13].

More than a decade-long line of research reduced the state and time complexity for majority

protocols [2,3,20,24,25,30,73,78,79].

A stable protocol solves this problem with probability 1 by eventually entering a configuration in

which all agents agree on a correct consensus decision of A, B, or T, from which the consensus can-

not change. We describe a protocol that solves this problem using O(log n) states (log log n+O(1)

bits of memory) and optimal expected time O(log n). The number of states O(log n) is known to

be optimal for the class of polylogarithmic time stable protocols that are “output dominant” and

“monotone” [3]. These are two natural constraints satisfied by our protocol, making it simultane-

ously time- and state-optimal for that class. We introduce a key technique called a “fixed resolution

clock” to achieve partial synchronization.

3.1.1. Our contribution. We show a stable population protocol solving the exact majority

problem in optimal O(log n) time (in expectation and with high probability) that uses O(log n)

states. Our protocol is both monotone and output dominant (see section 3.8 or [3] for discussion of

these definitions), so by the Ω(log n) state lower bound of [3], our protocol is both time and space

optimal for the class of monotone, output-dominant stable protocols.

A high-level overview of the algorithm is given in sections 3.3.1 and 3.3.2, with a full formal

description given in section 3.5. Like most known majority protocols using more than constant

space (the only exceptions being in [25]), our protocol is nonuniform: agents have an estimate of

the value ⌈log n⌉ embedded in the transition function and state space. section 3.7 describes how to
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modify our main protocol to make it uniform, retaining the O(log n) time bound, but increasing

the state complexity to O(log n log logn) in expectation and with high probability. That section

discusses challenges in creating a uniform O(log n) state protocol.

3.2. Preliminaries

There are many modes of computation considered in population protocols: computing integer-

valued functions [18,38,52] where the number of agents in a particular state is the output, Boolean-

valued predicates [11,12] where each agent outputs a Boolean value as a function of its state and

the goal is for all agents eventually to have the correct output, problems such as leader election [2,

5,26,27,53,60,61], and generalizations of predicate computation, where each agent individually

outputs a value from a larger range, such as reporting the population size [28,47,51]. Majority

computation is Boolean-valued if computing the predicate “A ≥ B?”, where A and B represent the

initial counts of two opinions A and B. We define the slightly generalized problem that requires

recognizing when there is a tie, so the range of outputs is {A,B,T}.

Formally, if the set of states is Λ, the protocol defines a disjoint partition of Λ = ΛA ∪ΛB ∪ΛT.

For u ∈ {A,B,T}, if a ∈ Λu for all a ∈ c, we define output ϕ(c) = u (i.e., all agents in c agree on

the output u). Otherwise ϕ(c) is undefined (i.e., agents disagree on the output). We say o is stable

if ϕ(o) is defined and, for all o2 such that o⇒ o2, ϕ(o) = ϕ(o2), i.e., the output cannot change.

The protocol identifies two special input states A,B ∈ Λ. A valid initial configuration i satisfies

a ∈ {A,B} for all a ∈ i. We say the majority opinion of i is M(i) = A if i(A) > i(B), M(i) = B

if i(A) < i(B), and M(i) = T if i(A) = i(B). The protocol stably computes majority if, for any

valid initial configuration i, for all c such that i ⇒ c, there is a stable o such that c ⇒ o and

ϕ(o) = M(i). Let Oi = {o : ϕ(o) = M(i)} be the set of all correct, stable configurations. In other

words, for any reachable configuration, it is possible to reach a correct, stable configuration, or

equivalently reach a strongly connected component in Oi.

3.2.1. Time complexity. In any configuration the next interaction is chosen by selecting

a pair of agents uniformly at random and applying an applicable transition, with appropriate

probabilities for any randomized transitions. Thus the sequence of transitions and configurations

they reach are random variables. To measure time we count the total number of interactions

(including null transitions such as a, b→ a, b in which the agents interact but do not change state),
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and divide by the number of agents n. In the population protocols literature, this is often called

“parallel time”: n interactions among a population of n agents equals one unit of time.

If the protocol stably computes majority, then for any valid initial configuration i, the proba-

bility of reaching a stable, correct configuration, Pr [i⇒ Oi] = 1.1 We define the stabilization time

S to be the random variable giving the time to reach a configuration o ∈ Oi.

3.3. Nonuniform majority algorithm description

The goal of section 3.3 through section 3.6.7 is to show the following theorem:

Theorem 3.3.1. There is a nonuniform population protocol Nonuniform Majority, using O(log n)

states, that stably computes majority in O(log n) stabilization time, both in expectation and with

high probability.

3.3.1. High-level overview of algorithm. In this overview we use “pseudo-transitions”

such as A,B → O,O to describe agents updating a portion of their states, while ignoring other

parts of the state space.

Each agent initially has a bias: +1 for opinion A and −1 for opinion B, so the population-wide

sum g =
∑

v v.bias gives the initial gap between opinions. The majority problem is equivalent

to determining sign(g). Transitions redistribute biases among agents but, to ensure correctness,

maintain the population-wide g as an invariant. Biases change through cancel reactions + 1
2i
,− 1

2i
→

0, 0 and split reactions ± 1
2i
, 0 → ± 1

2i+1 ,± 1
2i+1 , down to a minimum ± 1

2L
. The constant L =

⌈log2(n)⌉ ensures Θ(log n) possible states. The gap is defined to be
∑

v sign(v.bias), the difference

in counts between majority and minority biases. Note the gap should grow over time to spread the

correct majority opinion to the whole population, while the invariant g should ensure correctness

of the final opinion.

The cancel and split reactions average the bias value between both agents, but only when the

average is also a power of 2, or 0. If we had averaging reactions between all pairs of biases (also

allowing, e.g., 1
2 ,

1
4 →

3
8 ,

3
8), then all biases would converge to g

n , but this would use too many

states.2 With our limited set {0,±1
2 ,±

1
4 , . . . ,±

1
2L
} of possible biases, allowing all cancel and split

reactions simultaneously does not work. Most biases appear simultaneously across the population,

1Since population protocols have a finite reachable configuration space, this is equivalent to the stable computation
definition that for all c reachable from i, there is a o′ ∈ Oi reachable from c.
2This was effectively the approach used for majority in [7,78], for an O(n) state, O(logn) time protocol.
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reducing the count of each bias, which slows the rate of cancel reactions. Then the count of

unbiased 0 agents is reduced, which slows the rate of split reactions, see fig. 3.1a. Also, there is a

non-negligible probability for the initial minority opinion to reach a much greater count, if those

agents happen to do more split reactions, see fig. 3.1b. Thus using only the count of positive versus

negative biases will not work to solve majority even with high probability.

To solve this problem, we partially synchronize the unbiased agents with a field hour, adding

log n states 00, 01, 02, . . . , 0L. The new split reactions

± 1

2i
, 0h → ±

1

2i+1
,± 1

2i+1
if h > i

will wait until hour ≥ h before doing splits down to bias = ± 1
2h

. We could use existing phase

clocks to perfectly synchronize hour, by making each hour use Θ(log n) time, enough time for all

opinionated agents to split. Then WHP all agents would be in states {0h,+ 1
2h
,− 1

2h
} by the end

of hour h, see fig. 3.1c. The invariant g =
∑

v v.bias implies that all minority opinions would

be eliminated by hour ⌈log2
1
g ⌉ ≤ L. This would give an O(log n)-state, O(log2 n)-time majority

algorithm, essentially equivalent to [3,25].

The main idea of our algorithm is to use these rules with a faster clock using only O(1) time

per hour. The hour field of unbiased agents is synchronized to a separate subpopulation of clock

agents, who use a field minute, with k consecutive minutes per hour. Minutes advance by drip

reactions Ci, Ci → Ci, Ci+1, and catch up by epidemic reactions Ci, Cj → Cmax(i,j), Cmax(i,j). See

fig. 3.2 for an illustration of the clock minute and hour dynamics.

Since O(1) time per hour is not sufficient to bring all agents up to the current hour before

advancing to the next, we now have only a large constant fraction of agents, rather than all agents,

synchronized in the current hour. Still, we prove this looser synchronization keeps the values of

hour and bias relatively concentrated, so by the end of this phase, we reach a configuration as

shown in fig. 3.1d. Most agents have the majority opinion (WLOG positive), with three consecutive

biases + 1
2l
,+ 1

2l+1 ,+
1

2l+2 .

Detecting ties. This algorithm gives an elegant way to detect a tie with high probability. In

this case, g = 0, and with high probability, all agents will finish the phase with bias ∈
{

0,± 1
2L

}
.

Checking this condition stably detects a tie (i.e., with probability 1, if this condition is true, then

there is a tie), because for any nonzero value of g, there must be some agent with |bias| > 1
2L

.
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(a) Cancel/split reactions with no synchronization.
All states become present, many in about equal
counts. Rate of cancel reactions and fraction of 0
agents are Θ( 1

logn ).
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(b) Later snapshot of the simulation in fig. 3.1a. The
initial minority B now has a much larger count, be-
cause those agents happened to undergo more split
reactions.

T 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29
log2 |bias|

0
100

101

102

103

104

105

106

107

108

109

Co
un

t (
n

=
10

9 )

Fully synchronized cancel / split reactions after time  1242.0 ( 59.93 ln n)
sign(bias)
0 (opinion=T)
+1 (opinion=A)
-1 (opinion=B)

(c) Cancel/split reactions, fully synchronized into
O(log n) time hours, at the beginning of hour 16. All
minority are eliminated by hour log n in O(log2 n)
time.
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(d) Main phase of our protocol, split reactions par-
tially synchronized using the clock in fig. 3.2, at the
end of this O(log n) time phase. Most agents are left
with bias ∈

{
+ 1

218 ,+
1

219 ,+
1

220

}
. Later phases elim-

inate the remaining minority agents.

Figure 3.1. Cancel / split reactions with no synchronization (fig. 3.1a,fig. 3.1b),
perfect synchronization (fig. 3.1c), and partial synchronization (fig. 3.1d) via the
fixed-resolution phase clock of our main protocol. Plots generated from [41].
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Figure 3.2. Clock rules of our protocol, showing a travelling wave distribution
over minutes, on a larger population of size n = 1017 to emphasize the distribution.
The distribution’s back tail decays exponentially, and its front tail decays doubly
exponentially. A large constant fraction of agents are in the same two consecutive
hour’s (here 7 and 8). Plot generated from [41].
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Cleanup Phases. We must next eliminate all minority opinions, while still relying on the in-

variant g =
∑

v v.bias to ensure correctness. Note that is it possible with low probability to have

a greater count of minority opinions (with smaller values of bias), so only relying on counts of

positive and negative biases would give possibilities of error.

We first remove any minority agents with large bias, by using an additional subpopulation

of Reserve agents that enable additional split reactions for large values of |bias| > 1
2l

. Then

after cancel reactions with the bulk of majority agents, the only minority agents left must have

|bias| < 1
2l+2 .

To then remove minority agents with small bias, we allow agents with larger bias to “consume”

agents with smaller bias, such as an interaction between agents +1
4 and − 1

256 . Here the positive

agent can be thought to hold the entire bias +1
4 −

1
256 = + 63

256 , but since this value is not in

the allowable states, it can only store that its bias is in the range +1
8 ≤ bias ≤ +1

4 . Without

knowing its exact bias, this agent cannot participate in future averaging interactions. However,

we show there are enough available majority agents to eliminate all remaining minority via these

consumption reactions. Thus with high probability, all minority agents are eliminated.

A final phase checks for the presence of both positive and negative bias, and if one has been

completely eliminated, it stabilizes to the correct output. In the case where both are present, this

is a detectable error, where we can move to a slow, correct backup that uses the original inputs.

Due to the low probability of this case, it contributes negligibly to the total expected time.

3.3.2. Intuitive description of each phase. Our full protocol is broken up into 11 consec-

utive phases. We describe each phase intuitively before presenting full pseudocode in section 3.5.

Note that some further separation of phases was done to create more straightforward proofs of cor-

rectness, so simplicity of the proofs was optimized over simplicity of the full protocol pseudocode.

It is likely possible to have simpler logic that still solves majority via the same strategy.

Phase 0: “Population splitting” [6] divides agents into roles used in subsequent phases: Main,

Reserve,Clock. In timed phases (those not marked as Untimed or Fixed-resolution clock,

including the current phase), Clock agents count from Θ(log n) to 0 to cause the switch to

the next phase after Θ(log n) time.

“Standard” population splitting uses reactions such as x, x → r1, r2 to divide agents

into two roles r1, r2. This takes Θ(n) time to converge, which can be decreased to Θ(log n)
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time via r1, x → r1, r2 and r2, x → r2, r1, while maintaining that #r1 and #r2 are both

n/2±
√
n WHP. However, since all agents initially have an opinion, but Clock and Reserve

agents do not hold an opinion, agents that adopt role Clock or Reserve must first pass off

their opinion to a Main agent.

From each interacting pair of unassigned agents, one will take the Main role and hold

the opinions of both agents, interpreting A as +1 and B as −1. This Main agent will then

be allowed to take at most one other opinion (in an additional reaction that enables rapid

convergence of the population splitting), and holding 3 opinions can end up with a bias in

the range {−3,−2,−1, 0,+1,+2,+3}.

Phase 1: Agents do “integer averaging” [5] of biases in the set {−3, . . . ,+3} via reactions i, j →

⌊ i+j
2 ⌋, ⌈

i+j
2 ⌉. Although taking Θ(n) time to converge in some cases, this process is known [83]

to result in three consecutive values in O(log n) time. If those three values are detected

to be {−1, 0,+1} in the next phase, the algorithm continues.

Phase 2: (Untimed) Agents propagate the set of opinions (signs of biases) remaining after Phase 1

to detect if only one opinion remains. If so, we have converged on a majority consensus,

and the algorithm halts here (see fig. 3.6). At this point, this is essentially the exact

majority protocol of [73], which takes O(log n) time with an initial gap Ω(n), but longer

for sublinear gaps (e.g., Ω(n) time for a gap of 1). Thus, if agents proceed beyond this

phase (i.e., if both opinions A and B remain at this point), we will use later that the gap

was smaller than 0.025 · #Main. With low probability both opinions remain but some

agent has |bias| > 1, in which case we proceed directly to a slow stable backup protocol

in Phase 10.

Phase 3: (Fixed-resolution clock) The key goal at this phase is to use cancel and split reactions

to average the bias across the population to give almost all agents the majority opinion.

Biased agents hold a field exponent ∈ {−L, . . . ,−1, 0}, describing the magnitude |bias| =

2exponent, a quantity we call the agent’s mass. Cancel reactions eliminate opposite biases

+ 1
2i
,− 1

2i
→ 0, 0 with the same exponent; cancel reactions strictly reduce total mass. Split

reactions ± 1
2i
, 0 → ± 1

2i+1 ,± 1
2i+1 give half of the bias to an unbiased agent, decrementing

the exponent; split reactions preserve the total mass. The unbiased O agents, with role =

Main, opinion = bias = 0, act as the fuel for split reactions.
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We want to obtain tighter synchronization in the exponents than fig. 3.1a, approxi-

mating the ideal synchronized behavior of the O(log2 n) time algorithm of fig. 3.1c while

using only O(log n) time. To achieve this, the Clock agents run a “fixed resolution” clock

that keeps them roughly synchronized (though not perfectly; see fig. 3.2) as they count

their “minutes” from 0 up to L′ = kL, using O(1) time per minute. This is done via

“drip” reactions Ci, Ci → Ci, Ci+1 (when minute i gets sufficiently populated, pairs of

Ci agents meet with sufficient likelihood to increment the minute) and Cj , Ci → Cj , Cj

for i < j (new higher minute propagates by epidemic).3 If randomized transitions are

allowed, by lowering the probability p of the drip reaction, the clock rate can be slowed

by a constant factor. Although we prove a few lemmas about this generalized clock, and

some of our simulation plots in section 3.4 use p < 1, our proofs work even for p = 1, i.e.,

a deterministic transition function, although this requires constant-factor more states (by

increasing the number of “minutes per hour”, explained next).

Now the O agents will use Θ(log n) states to store an “hour”, coupled to the C clock

agents via C⌊i/k⌋,Oj → C⌊i/k⌋,O⌊i/k⌋ if ⌊i/k⌋ > j, i.e., every consecutive k Clock minutes

corresponds to one Main hour, and clock agents drag O agents up to the current hour (see

fig. 3.3). Our proofs require k = 45 minutes per hour when p = 1, but smaller values of k

work in simulation. For example, the simulation in fig. 3.1d showing intended behavior of

this phase used only k = 3 minutes per hour with p = 1.

This clock synchronizes the exponents because agents with exponent = −i can only

split down to exponent = −(i + 1) with an O agent that has hour ≥ i + 1. This prevents

the biased agents from doing too many splits too quickly. As a result, during hour i, most

of the biased agents have |bias| = 1
2i

, so the cancel reactions + 1
2i
,− 1

2i
→ 0, 0 happen at

3This clock is similar to the power-of-two-choices leaderless phase clock of [3], where the agent with smaller (or equal)
minute increments their clock (Cj , Ci → Cj , Ci+1 for i ≤ j), but increasing the smaller minute by only 1. Similarly
to our clock, the maximum minute can increase only with both agents at the same minute. A similar process was
analyzed in [23], and in fact was shown to have the key properties needed for our clock to work—an exponentially-
decaying back tail and a double-exponentially-decaying front tail—so it seems likely that a power-of-two-choices clock
could also work with our protocol.
The randomized variant of our clock with drip probability p is also similar to the “junta-driven” phase clock of [60],
but with a linear number 2pn of agents in the junta, using O(1) time per minute, rather than the O(nϵ)-size junta
of [60], which uses O(logn) time per minute. There, smaller minutes are brought up by epidemic, and only an agent
in the junta seeing another agent at the same minute will increment. The epidemic reaction is exactly the same in
both rules. The probability p of a drip reaction can be interpreted as the probability that one of the agents is in the
junta. For similar rate of O(1) time per minute phase clock construction see also Dudek and Kosowski work [55].
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a high rate, providing many O agents as “fuel” for future split reactions. We tune the

constants of the clock to ensure hour i lasts long enough to bring most biased agents down

to exponent = −i via split reactions and then let a good fraction do cancel reactions (see

fig. 3.4c).

The key property at the conclusion of this phase is that unless there is a tie, WHP

most majority agents end up in three consecutive exponents −l,−(l + 1),−(l + 2), with

a negligible mass of any other Main agent (majority agents at lower/higher exponents,

minority agents at any exponent, or O agents).4 Phases 10-12 use this fact to quickly

push the rest of the population to a configuration where all minority agents have exponents

strictly below −(l + 2); Phase 8 then eliminates these minority agents quickly.

Phase 4: (Untimed) The special case of a tie is detected by the fact that, since the total bias

remains the initial gap g, if all biased agents have minimal exponent −L, g has magnitude

less than 1:

|g| =

∣∣∣∣∣ ∑
a.role=Main

a.bias

∣∣∣∣∣ ≤ ∑
a.role=Main

|a.bias|

≤
∑

a.role=Main

1

2L
<

n

2⌈log2(n)⌉
≤ 1.

The initial gap g is integer valued, so |g| < 1 =⇒ g = 0. Thus this condition implies

there is a tie with probability 1; the converse that a tie forces all biased agents to exponent

−L holds with high probability. If only exponent −L is detected, the algorithm halts here

with all agents reporting output T (see fig. 3.8). Otherwise, the algorithm proceeds to the

next phase.

Phase 5, Phase 6: Using the key property of Phase 3, these phases WHP pull all biased agents

above exponent −l down to exponent −l or below using the Reserve R agents. The R’s

activate themselves in Phase 5 by sampling the exponent of the first biased agent they

meet. This ensures WHP that sufficiently many Reserve agents exist with exponents

−l,−(l + 1),−(l + 2) (distributed similarly to the agents with those exponents). Then

in Phase 6, they act as fuel for splits, via Ri,± 1
2j
→ ± 1

2j+1 ,± 1
2j+1 when |i| > |j|. The

reserve agents, unlike the O agents in Phase 3, do not change their exponent in response

4l is defined such that if all biased agents were at exponent −l, the difference in counts between majority and minority
agents would be between 0.4 · #Main and 0.8 · #Main.
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to interactions with Clock agents. Thus sufficiently many reserve agents will remain to

allow the small number of biased agents above exponent −l to split down to exponent −l

or below.5

Phase 7: This phase allows more general reactions to distribute the dyadic biases, allowing re-

actions between agents up to two exponents apart, to eliminate the opinion with smaller

exponent: 1
2i
,− 1

2i+1 → 1
2i+1 , 0 and 1

2i
,− 1

2i+2 → 1
2i+1 ,

1
2i+2 (and the equivalent with pos-

itive/negative biases swapped). Since all agents have exponent −l or below, and many

more majority agents exist at exponents −l,−(l + 1),−(l + 2) than the total number of

minority agents anywhere, these (together with standard cancel reactions 1
2i
,− 1

2i
→ 0, 0)

rapidly eliminate all minority agents at exponents −l,−(l+1),−(l+2), while maintaining

Ω(n) majority agents at exponents ≥ −(l + 2) and < 0.01n total minority agents, now all

at exponents ≤ −(l + 3).

Phase 8: This phase eliminates the last minority agents, while ensuring that if any error occurred

in previous phases, some majority agents remain, to allow detecting the error by the

presence of both opinions.6

The biased agents add a Boolean field full, initially False, and consumption reactions

that allow an agent at a larger exponent i to consume (set to mass 0 by setting it to be

O) an agent at an arbitrarily smaller exponent j < i. Now the remaining agent represents

some non-power-of-two mass m = 2i−2j , which it lacks sufficient memory to track exactly.

Thus setting the flag full = True corresponds to the agent having an uncertain mass m

in the range 2i−1 ≤ m < 2i. Because of this uncertainty, full agents are not allowed

to consume other smaller levels. However, there are more than enough high-exponent

majority agents by this phase to consume all remaining lower exponent minority agents.

5The reason we do this in two separate phases is to ensure that the Reserve agents have close to the same distribution
of exponents that the Main agents have at the end of Phase 3. If Reserve agents allowed split reactions in the same
phase that they sample the exponent of Main agents, then the splits would disrupt the distribution of the Main agents
before all Reserve agents have finished sampling. This would possibly give the Reserve agents a significantly different
distribution among levels than the Main agents had at the start. While this may possibly work anyway, we find it
is more straightforward to prove if the Reserve agents have a close distribution over exponent values to that of the
Main agents.
6A näıve idea to reach a consensus at this phase is to allow cancel reactions 1

2i
,− 1

2j
→ 0, 0 between arbitrary pairs of

exponents with opposite opinions. However, this has a positive probability of erroneously eliminating the majority.
This is because the majority, while it necessarily has larger mass than the minority at this point, could have smaller
count. For example, we could have 16 A’s with exponent = −2 and 32 B’s with exponent = −5, so A’s have mass
16 · 2−2 = 4 and B’s have smaller mass 32 · 2−5 = 1, but larger count than A.
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Crucially, agents that have consumed another agent and set full = True may them-

selves then be consumed by a third agent (with full = False) at an even larger exponent.

This is needed because a minority agent at exponent i ≤ −(l + 3) may consume a (rare)

majority agent at exponent j < i, but the minority agent itself can be consumed by another

majority agent with exponent k > i.

Phase 9: (Untimed) This is identical to Phase 2: it detects whether both biased opinions A and

B remain. If not (the likely case), the algorithm halts, otherwise we proceed to the next

phase.

Phase 10: (Untimed) Agents execute a simple, slow stable majority protocol [31], similar to that

of [54,73] but also handling ties. This takes Θ(n log n) time, but the probability that an

earlier error forces us to this phase is O(1/n2), so it contributes negligibly to the total

expected time.

3.4. Simulation results
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Figure 3.3. Fixed-resolution phase clock used in Phase 3, with n ≈ 223. All Clock agents set
minute = 0 and count up to k · L with special rules defined in Phase 3. The solid curves show the
distributions of the counts at each value of minute in the Clock agents. Blocks of k = 5 consecutive
minutes correspond to a hour in the unbiased O agents with role = Main and bias = 0. The
dashed curves show the distribution of the counts of each value of hour, with the value written on
top. We show every k minutes with one color equal to its hour color. Near the end of Phase 3, the
O count falls to 0 as the majority count takes over. This plot used the value k = 5 to emphasize
the clock behavior. Later plots will all use the weaker constant k = 2. In later plots we also omit
the minute distribution and only show the hour from the O agents.

In this section we show simulation results, where the complete pseudocode of section 3.5 was

translated into Java code available on GitHub [42]. In these simulations, we stop the protocol

once all agents reach Phase 9. For the low probability case that agents switch to the Phase 10,
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(a) The phase distribution, giving counts of the agents with each value of phase. We show these markers on the
horizontal axis in later plots. We have set max counter = 5 log2(n), and removed the counting requirements for Clock
agents in Phase 0. This makes all timed phases 5, 6, 10, 11, 12, 13 take around the same parallel time 2.5 log2(n).
The fixed-resolution clock in Phase 3 uses O(logn) time with a larger constant. Phase 2 and Phase 4 are untimed,
so they end almost immediately and are not labeled above.
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agents in the respective roles Main, Clock, and Reserve. An agent’s

role remain the same in the following phases except Phase 6, where split reactions convert Reserve agents into Main
agents.

Figure 3.4. The phase and role distributions.

the simulator prints an error indicating the agents should switch to slow back up, but as expected

this was not observed in our simulations. For all our plots, we collect data from simulations with

n ≈ 223, p (drip probability) = 0.1. The first simulation in fig. 3.3 shows the relationship between

minute of Clock agents and hour of Main agents. Here we used k = 5 minutes per hour to show

clearly the relationship and the discrete nature of the hours.

All remaining simulations used the even weaker value k = 2, to help see enough low probability

behavior that the logic enforcing probability-1 correctness in later phases is necessary. We show

3 simulations corresponding to the 3 different types of initial gap. figs. 3.4 and 3.5 show constant
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(c) exponent and hour distribution in biased and unbiased Main agents during Phase 3. The values for exponent can
decrease from 0 to −L. As described in Phase 3, during hour h, only agents with exponent > −h are allowed to split
and decrease their exponent by one. Thus, the changes of exponent are synchronized with the the changes in the
hour values. In this simulation, Phase 3 stops with majority of agents having 3 consecutive values (−19,−20,−21)
in their exponent. The hour values are shown behind the next plot in fig. 3.4d.
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(d) The distribution of opinion over all Main agents, with count shown on a log scale. The green line shows the
difference in count between majority and minority agents. Special snapshots at times marked S0, S1, S2, S3, S4, S5
are shown in fig. 3.5. All Main agents are assigned in Phase 0, with bias ∈ {0,±1,±2,±3}, and all initial biases
represented held by this Main subpopulation. Here the gap depends randomly on the distribution of |bias| ∈ {1, 2, 3}.
Then Phase 1 brings all bias ∈ {−1, 0,+1}, so the gap returns to exactly the initial gap of 2, and the biased counts
decrease polynomially like 1

t
from cancel reactions. In the first part of Phase 3 the gap oscillates randomly about 0,

(S0 in fig. 3.5a). Once we reach a high enough hour / low enough exponent, the doubling trend takes over and the
gap undergoes constant exponential growth (S1 in fig. 3.5b). Finally, this becomes visible as a separation between
counts of majority and minority agents (S2 in fig. 3.5c). Phase 3 ends with a small but nonzero count of minority
agents and the count of unbiased O agents brought near 0 (S3 in fig. 3.5d). Then during Phase 6, this minority count
is amplified slightly by more split reactions bringing the minority exponents down (S4 in fig. 3.5e). During Phase 7,
additional cancel reactions bring the minority count to 0 (S5 in fig. 3.5f). Since minority agents are gone, Phase 8
has no effect, and the protocol stabilizes to the correct majority output in Phase 9.

Figure 3.4. Simulation with n = 5122666 ≈ 223, p = 0.1 (drip probability), k = 2
(number of minutes per hour), and initial gap g = 2. The horizontal axis is in units of
parallel time, with the ranges corresponding to each phase marked. All agents converge to
the correct majority output in Phase 9.
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(a) Snapshot S0. At the start of Phase 3. The
count of minority agents (blue) currently exceeds the
count of majority agents because the minorities have
done more split reactions. Summing the signed bi-
ases, however, gives +50101−49955+ 9738
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+146 − 144 = +2, the invariant initial gap.
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(b) Snapshot S1. A typical distribution at hour =
10, when split reactions have brought most agents to
exponent = −10. Only a few O agents leaked ahead
to hour = 11 and enabled splits down to exponent =
−11, and no agents have leaked further ahead than
this.

2^(-20) 2^(-19) 2^(-18) 2^(-17) 2^(-16)
|Bias|

n/8

n/16

n/32

C
ou

nt
 o

f A
ge

nt
s

16847 16382 57

331287
382822

371

Time step 286 (Hour 19 in Phase 3)

(c) Snapshot S2. We have reached the special exponent
−l = −19. The count of minority (blue) agents has vastly
decreased over the last few hours, and now there will be
few more cancel reactions to produce more O agents.
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(d) Snapshot S3. We end Phase 3 with most Main agents
with the majority opinion, and bias ∈ {−19,−20,−21} in
a range of 3 consecutive values, as shown in theorem 3.6.8.
Only a few minority agents are left.
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(e) Snapshot S4. After Phase 6, where Reserve agents
with sample ∈ {−19,−20,−21} enabled additional
split reactions that brought all minority agents down.
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(f) Snapshot S5. After Phase 7, additional general-
ized cancel reactions eliminate all minority agents at
the higher exponent values. At this point, there are
no minority agents left, and we will stabilize to the
correct output in Phase 9.

Figure 3.5. Snapshots S0, S1, S2, S3, S4, S5 from fig. 3.4d, showing the distribution of
bias among agents with |bias| > 0. The red and blue bars give the count of A (majority,
with bias > 0) and B (minority, with bias < 0) agents respectively. The exact counts are
written above the bars, and everywhere not explicitly written the count of is 0. See the link
to animations of these plots at the end of this section.
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(a) The distribution of opinion in the Main agents in case of a linear size gap g = n/10. The red line gives the
majority count (opinion = +1), the blue line the minority count (opinion = −1), and the green line their difference.
The black line gives the unbiased O agents.
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(b) Snapshot S0. At the end of Phase 0, the biased agents
have |bias| ∈ {1, 2, 3}.
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(c) Snapshot S1. The discrete averaging of Phase 1 first
brings all bias ∈ {−1, 0,+1}. Then all bias = −1 cancel,
leaving bias = +1 as the only nonzero bias. With the
minority opinion eliminated, we converge in Phase 2.

Figure 3.6. The case of linear size gap g = n/10, again with n = 5122666 ≈ 223,
p = 0.1, k = 2. With large initial gap, the simulation converges in Phase 2. fig. 3.6a
shows the counts of each opinion among the population of Main agents. Two special
times S0 and S1, and the configurations of biased agents at these snapshots are
shown in figs. 3.6b and 3.6c. See link to animations of these plots at the end of this
section.

initial gap g = +2. This is our “typical” case, where the simulation eventually stabilizes to the

correct output in Phase 9. fig. 3.6 shows linear initial gap g ≈ n
10 , which stabilizes in Phase 2 after
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Figure 3.7. Showing a case of a tie. The simulation converges in Phase 2. fig. 3.6a shows
the counts of each opinion among the population of Main agents. Three special times S0,
S1, S2, and the configurations of biased agents at these snapshots are shown in Figures 3.8a,
3.8b, 3.8c. The distribution of opinion in the Main agents in case of a tie. The red line
gives the majority count (opinion = +1), the blue line the minority count (opinion = −1),
though they overlap everywhere, and the green line their difference. The black line gives
the unbiased O agents. In Phase 3 we see the same qualitative behavior as the first part of
Phase 3 with a constant initial gap in fig. 3.4d. Now this continues the whole phase, with
the gap in counts oscillating about 0 until finally reaching 0 when all biased agents have
exponent = −23 at time S2. With no exponent > −23, we stabilize to output T in Phase 4.

quickly cancelling all minority agents. fig. 3.8 shows initial tie g = 0, which stabilizes in Phase 4

after all biased agents reach the minimum exponent = −L = −23.

All three simulations show various snapshots of configurations of the biased agents. These

particular snapshots are at special times marked in figs. 3.4d, 3.6a and 3.7. In all cases, an animation

is available at GitHub [43], showing the full evolution of these distributions over all recorded time

steps from the simulation.

3.5. Algorithm pseudocode

In this section we give a full formal description of the main algorithm. Every agent starts

with a read-only field input ∈ {A,B}, a field output ∈ {A,B,T} corresponding to outputs that

the majority is A, B, or a tie. The protocol is broken up into 11 consecutive phases, marked

by the additional field phase = 0 ∈ {0, . . . , 10}. The phase updates via the epidemic reaction

u.phase, v.phase ← max(u.phase, v.phase). Some fields are only used in particular phases, to
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(a) Snapshot S0. We enter Phase 3 with an equal number
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2^(-23) 2^(-22) 2^(-21) 2^(-20) 2^(-19) 2^(-18)
|Bias|

n/16

n/32

C
ou

nt
 o

f A
ge

nt
s

254

230194

17934 5
296

230243

17901 4

Time step 315 (Hour 21 in Phase 3)

(b) Snapshot S1. We see similar distributions as in
fig. 3.5b all the way until the end of Phase 3.
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(c) Snapshot S2. After reaching synchronous hour 23,
split reactions bring all remaining biased agents down to
exponent = −23, which is only possible with an initial
tie.

Figure 3.8. Snapshots from a case of a tie, with initial gap g = 0, again with n = 5122666 ≈ 223,
p = 0.1, k = 2.

ensure the total state space is Θ(log n).7 Such fields and the initial behavior of an agent upon

entering a phase are described in the Init section above each phase. Whenever an agent increments

their phase, they execute Init for the new phase (and sequentially for any phases in between if they

happen to increment phase by more than 1). We refer to the “end of phase i” to mean the time

when the first agent sets phase ← i + 1. Note that the agents actually enter each new phase by

epidemic, so there is technically no well-defined “beginning of phase i”. To simplify the analysis, we

formally start our arguments for each phase assuming each agent is in the current phase, although

technically Θ(log n) time will pass between the time the first agent enters phase i and the last agent

does.

7Note that using two fields, both with O(logn) possible values, requires O(log2 n) states, not O(logn).
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Each timed phase i each requires setting agents to count from ci lnn down to 0, where the min-

imum required value of ci depends on the phase. These constants can be derived from the technical

analysis in section 3.6.2 and section 3.6.7 but for brevity we avoid giving them concrete values in

the pseudocode. Our simulations (section 3.4) that used the same small constant 5 log2(n) for all

counters seem to work, but the proofs require larger constants to ensure the necessary behavior

within each phase can complete with high probability 1−O(1/n2). By increasing these constants

ci (along with changing the phase clock constants p, k; see Phase 3 and theorem 3.6.15), we could

also push high probability bound to 1 − O(1/nc) for any desired constant c. For concreteness,

use 1 − O(1/n2) for most high probability guarantees, since this is large enough to take appro-

priate union bounds and ensure the extra time from low probability failures does not contribute

meaningfully to the total O(log n) time bound.

Nonuniform MajorityL(u, v). Nonuniform majority algorithm for population sizes n with L =
⌈log n⌉.
Init: phase← 0 ∈ {0, 1, . . . , 10} and execute Init for Phase 0.

1: if i.phase < j.phase where {i, j} = {u, v} then
2: for p = {i.phase + 1, . . . , j.phase} do
3: execute Init for Phase p on agent i

4: i.phase← j.phase

5: execute Phase u.phase(u, v)

Phase 0 is a timed phase that splits the population into three subpopulations: Main to compute

majority, Clock to time the phases and the movement through exponents in Phase 3, and Reserve

to aid in cleanup during Phase 6. An agent can only move into role Clock or Reserve by “donating”

its opinion to a Main agent, who can collect up to two other opinions in addition to their own,

leading to a bias of up to ±3. After this phase, the populations of the three roles are near the

expected one quarter Main, one quarter Clock, and one half Reserve. theorem 3.6.5 shows that all

initial opinions have been given to assigned Main agents and these subpopulations are near their

expected fractions, both with high probability.

It is likely that we could use a simpler population splitting scheme. For example, we could

simply have each pair of agents with initially opposite opinions change to roles Clock and Reserve.

However, this would mean the number of agents in the role Main after Phase 0 would depend on

the initial gap. The current method of population splitting gives us stronger guarantees on the

number of each agent in each role, simplifying subsequent analysis.
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Phase 5 Initialize Roles. Agent u interacting with agent v.
Init role← RoleMCR ∈ {Main,Clock,Reserve,RoleMCR,RoleCR}
assigned← False ∈ {True,False}
if input = A, bias← +1 ∈ {−3,−2,−1, 0,+1,+2,+3}
if input = B, bias← −1 ∈ {−3,−2,−1, 0,+1,+2,+3}
we always maintain the invariant opinion = sign(bias) ∈ {−1, 0,+1}
if role = Clock, counter← c0 lnn ∈ {0, . . . , c0 lnn} only used in the current phase

1: if u.role = v.role = RoleMCR then ▷ Allocate ≈ 1
2Main agents

2: u.role← Main; u.bias← u.bias + v.bias

3: v.bias← 0; v.role← RoleCR ▷ v won’t use its bias subsequently

4: if i.role = RoleMCR, j.role = Main, j.assigned = False where {i, j} = {u, v} then

5: j.assigned← True; j.bias← j.bias + i.bias ▷ Main agents can assign 1 non-Main agent

6: i.bias← 0; i.role← RoleCR ▷ i won’t use its bias subsequently

7: if i.role = RoleMCR, j.role ̸= Main,RoleMCR, j.assigned = False where {i, j} = {u, v} then

8: j.assigned← True ▷ non-Main agents can assign 1 Main agent

9: i.role← Main

10: if u.role = v.role = RoleCR then ▷ Allocate ≈ 1
4Clock agents, ≈ 1

4Reserve agents

11: u.role← Clock; u.counter← Θ(log n)

12: v.role← Reserve

13: if u.role = v.role = Clock then ▷ time the phase once we have at least 2 Clock agents

14: execute Standard Counter Subroutine(u), execute Standard Counter Subroutine(v)

Standard Counter Subroutine(c). Agent c with field counter.

1: c.counter← c.counter− 1
2: if c.counter = 0 then
3: c.phase← c.phase + 1 ▷ move to next phase

Phase 1 is a timed phase that averages the biases in Main agents; with high probability at the

end of the phase the bias fields have three consecutive values, shown in theorem 3.6.6. Phase 1

expects no agent to remain in role RoleMCR by this point, signaling an error otherwise.8

8role = RoleMCR is an error because we need all agents not in role Main to have “donated” their bias to a Main agent.
It is okay for RoleCR agents to be undecided about Clock versus Reserve. All such agents because Reserve, which WHP
leaves sufficiently many agents in role Clock to make the clock interactions sufficiently fast.
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Phase 6 Discrete Averaging. Agent u interacting with agent v.
Init if role = RoleMCR, phase← 10 (error, skip to stable backup)
if role = RoleCR, role← Reserve
if role = Clock, counter← c1 lnn ∈ {0, . . . , c1 lnn} only used in the current phase

1: if u.role = v.role = Main then

2: u.bias← ⌊u.bias+v.bias
2 ⌋; v.bias← ⌈u.bias+v.bias

2 ⌉

3: for c ∈ {u, v} with c.role = Clock do

4: execute Standard Counter Subroutine(c)

Phase 2 (an untimed phase) checks to see if the entire minority population was eliminated in

Phase 1 by checking whether both positive and negative biases still exist. It assumes a starting

condition where all bias ∈ {−1, 0,+1} (like the initial condition, but allowing some cancelling

to have already happened). So the Init checks if any |bias| > 1, which can only happen with

low probability (since Phase 1 WHP reaches the three consecutive values {−1, 0,+1}), and we

consider this an error and simply proceed immediately to Phase 10. If not, the minority opinion

is gone, and the protocol will stabilize here to the correct output. Otherwise, we proceed to the

next phase; note this phase is untimed and proceeds immediately upon detection of conflicting

opinions. theorem 3.6.6 shows that starting from a large initial gap, we will stabilize here with high

probability.

Phase 7 Output the Consensus. Agent u interacting with agent v.
Init if |bias| > 1, phase← 10 (error, skip to stable backup)
opinions← {opinion} ⊆ {−1, 0,+1}

1: u.opinions, v.opinions← u.opinions ∪ v.opinions ▷ union opinions

2: if {−1,+1} ⊆ opinions then

3: u.phase, v.phase← u.phase + 1 ▷ no consensus, move to next phase

4: else if +1 ∈ opinions then

5: u.output, v.output← A ▷ current consensus is A

6: else if −1 ∈ opinions then

7: u.output, v.output← B ▷ current consensus is B

8: else if opinions = {0} then

9: u.output, v.output← T ▷ current consensus is T
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Phase 3 is where the bulk of the work gets done. The biased agents (with non-zero opinion)

have an additional field exponent ∈ {−L, . . . , 0}, initially 0, where L = ⌈log2(n)⌉, corresponding

to holding 2exponent units of mass. The unbiased O agents have an additional field hour = L ∈

{0, . . . , L}, and will only participate in split reactions with −exponent > hour. The field hour is

set by the Clock agents, who have a field minute = 0 ∈ {0, . . . , kL}, which counts up as Phase 3

proceeds. Intuitively, there are k minutes in an hour, so hour = ⌈minutek ⌉ ranges from 0 to L.9

fig. 3.3 shows how nonconsecutive minutes in the Clock agents may overlap significantly, but non-

consecutive hours in the O agents have negligible overlap. Once a Clock agent has minute at its

maximum value kL, they initialize a new field counter = Θ(log n) ∈ {0, . . . ,Θ(log n)} to wait for

the end of the phase (waiting for any remaining O agents to reach hour = L and the distribution

to settle).

See the overview in section 3.3.2 for an intuitive description of this phase. theorem 3.6.7 gives

the main result of Phase 3 in the case of an initial tie, where all remaining biased agents are at the

minimal exponent = −L. In the other case, theorem 3.6.8 gives the main result that most of the

population settle on the majority output with exponent ∈ {−l,−(l + 1),−(l + 2)}.

9The drip reaction Ci, Ci → Ci, Ci+1 implemented by line 5 is asymmetric, but could be made symmetric, i.e.,
Ci, Ci → Ci+1, Ci+1 without affecting the analysis meaningfully.
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Phase 8 Synchronized Rational Averaging. Agent u interacting with agent v.
Init if role = Main and opinion ∈ {−1,+1}, exponent ← 0 ∈ {−L, . . . ,−1, 0}, and we define
bias = opinion · 2exponent
if role = Main and opinion = 0, hour← 0 ∈ {0, . . . , L}
if role = Clock, minute← 0 ∈ {0, . . . , kL} and counter← c3 lnn ∈ {0, . . . , c3 lnn}

1: if u.role = v.role = Clock then

2: if u.minute ̸= v.minute then

3: u.minute, v.minute← max(u.minute, v.minute) ▷ clock epidemic reaction

4: else if u.minute < kL then

5: u.minute← u.minute + 1 with probability p ▷ clock drip reaction, p = 1 in

theorem 3.6.15

6: else ▷ count only when both clocks finished

7: execute Standard Counter Subroutine(u), Standard Counter Subroutine(v)

8: if m.role = Main,m.opinion = 0 and c.role = Clock where {m, c} = {u, v} then

9: m.hour← max
(
m.hour, ⌊ c.minutek ⌋

)
▷ clock update reaction

10: else if u.role = v.role = Main then

11: if {u.opinion, v.opinion} = {−1,+1} and u.exponent = v.exponent = −h then

12: u.opinion, v.opinion← 0; u.hour, v.hour← h ▷ cancel reaction

13: if t.opinion = 0, i.opinion ∈ {−1,+1} and |t.hour| > |i.exponent|, where {t, i} = {u, v}

then

14: t.opinion← i.opinion ▷ split reaction

15: i.exponent, t.exponent← i.exponent− 1 ▷ sets i.bias, t.bias← i.bias/2

In Phase 4 (an untimed phase), the population checks if all Main agents have reached the

minimum exponent = −L, which only happens in the case of a tie. If so, the population will

stabilize to the tie output. Otherwise, any Main agent with exponent above L can trigger the move

to the next phase.

Phase 9 Output Tie. Agent u interacting with agent v.
Init output← T

1: if |m.bias| > 2−L where m ∈ {u, v} then ▷ stable if all bias ∈
{
− 1

2L
, 0,+ 1

2L

}
2: u.phase, v.phase← u.phase + 1 ▷ end of this phase
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If there was not a tie detected in Phase 4, then most agents should have the majority opinion,

with exponent ∈ {−l,−(l+ 1),−(l+ 2)} in a small range. The next goal is to bring all agents with

exponent > −l down to exponent ≤ −l. This will be accomplished by the Reserve agents, whose

goal is to let exponents above l do split reactions.

The Reserve agents do this across two consecutive phases. In Phase 5, the Reserve agents

become active, and will set sample = ⊥ ∈ {⊥, 0, . . . , L} to the exponent of the first biased agent

they meet, which is likely in {−l,−(l + 1),−(l + 2)}. The Clock agents now only hold a field

counter = Θ(log n) ∈ {0, . . . ,Θ(log n)} to act as a simple timer for how long to wait until moving

to the next phase. This allows the Reserve agents to adopt a distribution of exponent values

approximately equal to that of the Main agents. This behavior is proven in theorem 3.6.25 and

theorem 3.6.26.

Phase 10 Reserves Sample exponent. Agent u interacting with agent v.
Init if role = Reserve, sample← ⊥ ∈ {⊥,−L, . . . ,−1, 0}
if role = Clock, counter← c5 lnn ∈ {0, . . . , c5 lnn}

1: if r.role = Reserve and m.role = Main,m.opinion ∈ {−1,+1} where {r,m} = {u, v} then

2: if r.sample = ⊥ then ▷ sample exponent of biased agent m

3: r.sample← m.exponent

4: for c ∈ {u, v} with c.role = Clock do

5: execute Standard Counter Subroutine(c)

In Phase 6, the Reserve agents can help facilitate more split reactions, with any agent at an

exponent above their sampled exponent. Because they have approximately the same distribution

across all exponents as Main agents, particular exponents −l,−(l + 1),−(l + 2), this allows them

to bring all agents above exponent = −l down to −l or below. Again, the Clock agents keep a

counter ∈ {0, . . . , c6 lnn}. theorem 3.6.26 proves that Phase 6 works as intended, bringing all

agents down to exponent ≤ −l with high probability.
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Phase 11 Reserve Splits. Agent u interacting with agent v.
Init if role = Clock, counter← c6 lnn ∈ {0, . . . , c6 lnn}

1: if r.role = Reserve and m.role = Main,m.opinion ∈ {−1,+1} where {r,m} = {u, v} then

2: if r.sample ̸= ⊥ and r.sample < m.exponent then

3: r.role← Main; r.opinion← m.opinion ▷ split reaction

4: r.exponent,m.exponent← m.exponent− 1 ▷ sets r.bias,m.bias← m.bias/2

5: for c ∈ {u, v} with c.role = Clock do

6: execute Standard Counter Subroutine(c)

Now that all agents are exponent ≤ −l, the goal of Phase 7 is to eliminate any minority agents

with exponents −l,−(l + 1),−(l + 2). This is done by letting the biased agents do generalized

cancel reactions that allow their difference in exponents to be up to 2, while still preserving the

mass invariant. Again, the Clock agents keep a counter ∈ {0, . . . , c7 lnn}. theorem 3.6.29 shows

that by the end of this phase, any remaining minority agents must have exponent < −(l+ 2), with

high probability.

Phase 12 High-exponent Minority Elimination. Agent u interacting with agent v
Init if role = Clock, counter← c7 lnn ∈ {0, . . . , c7 lnn}

1: if u.role = v.role = Main and {u.opinion, v.opinion} = {−1,+1} then

2: if u.exponent = v.exponent then

3: u.opinion, v.opinion← 0 ▷ cancel reaction

4: else if i.exponent = j.exponent + 1 where {i, j} = {u, v} then

5: i.exponent← i.exponent− 1 ▷ gap-1 cancel reaction

6: j.opinion← 0 ▷ example bias update: +1
4 ,−

1
8 → +1

8 , 0

7: else if i.exponent = j.exponent + 2 where {i, j} = {u, v} then

8: j.opinion← i.opinion ▷ gap-2 cancel reaction

9: i.exponent← i.exponent− 1 ▷ example bias update: +1
4 ,−

1
16 → +1

8 ,+
1
16

10: j.exponent← i.exponent− 2

11: for c ∈ {u, v} with c.role = Clock do

12: execute Standard Counter Subroutine(c)
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Now that all minority agents occupy exponents below −(l + 2), yet a large number of majority

agents remain at exponents −l,−(l + 1),−(l + 2), in Phase 8, the algorithm eliminates the last

remaining minority opinions at any exponent. It allows opposite-opinion agents of any two ex-

ponents to react and eliminate the smaller-exponent opinion. The larger exponent 1
2i

“absorbs”

the smaller − 1
2j

, setting the smaller to mass 0; the larger now represents mass 1
2i
− 1

2j
, which it

lacks the memory to track exactly, so it cannot absorb any further agents (though it can itself be

absorbed by − 1
2m for m > i). theorem 3.6.30 shows that Phase 8 eliminates any remaining minority

agents with high probability. A key property is that it cannot violate correctness since, although

the biases held by some agents becomes unknown, the allowed transitions maintain the sign of the

bias. Thus the only source of error is failing to eliminate all minority agents, detected in the next

phase.

Phase 13 Low-exponent Minority Elimination. Agent u interacting with agent v
Init if role = Clock, counter← c8 lnn ∈ {0, . . . , c8 lnn}

1: if u.role = v.role = Main and {u.bias, v.bias} = {−1,+1} then

2: if i.exponent > j.exponent and i.full = False where {i, j} = {u, v} then

3: i.full← True ▷ consumption reaction

4: j.opinion← 0

5: for c ∈ {u, v} with c.role = Clock do

6: execute Standard Counter Subroutine(c)

Phase 9 (an untimed phase) acts exactly as Phase 2, to check that agents have reached consensus.

Note that the initial check for |bias| > 1 is not required, since it is guaranteed to pass if we reach

this point: it passed in Phase 2, and the population-wide maximum |bias| could only have decreased

in subsequent phases.

Phase 14 Output the Consensus. Exact repeat of Phase 2.

In Phase 10, the agents give up on the fast algorithm, having determined in Phase 9 that it

failed to reach consensus, or detected an earlier error with role or bias assignment. Instead they

rely instead on a slow stable backup protocol. This is a 6-state protocol that stably decides between

the three cases of majority A, B, and tie T. They only use the fields output = input ∈ {A,B,T},
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and the initial field active = True ∈ {True,False}. theorem 3.6.31 proves this 6-state protocol

stably computes majority in O(n log n) time.

Phase 15 Stable Backup. Agent u interacting with agent v. Similar to 6-state algorithm from [31],
slight modification of 4-state algorithm from [54,73].
Init output← input, active← True

1: if u.active = v.active = True then

2: if {u.output, v.output} = {A,B} then

3: u.output, v.output← T ▷ cancel reaction

4: else if i.output ∈ {A,B} and t.output = T where {i, t} = {u, v} then

5: t.output← i.output, t.active← False ▷ biased converts unbiased

6: if a.active = True and p.active = False where {a, p} = {u, v} then

7: p.output← a.output ▷ active converts passive

3.6. Analysis of exact majority protocol

3.6.1. Useful time bounds. This section introduces various probability bounds which will

be used repeatedly in later analysis.

We use the standard Azuma inequality for supermartingales:

Theorem 3.6.1. Let X0, X1, X2, . . . be a supermartingale such that, for all i ∈ N, |Xi+1−Xi| ≤

ci. Then for all n ∈ N and ϵ > 0, Pr [(Xn −X0)− E [Xn −X0] ≥ ϵ] ≤ exp
(
− 2ϵ2∑n

i=0 c
2
i

)
.

In application we will consider potential functions ϕ that decay exponentially, with E [ϕj+1] ≤

(1−ϵ)ϕj . In this case, we will take the logarithm Φ = ln(ϕ), which we will show is a supermartingale

upon which we can apply Azuma’s Inequality to conclude that ϕ achieves a requisite amount of

exponential decay.

Next we consider the cancel reactions a, b→ 0, 0, which are key to the majority protocol.

Lemma 3.6.2. Consider two disjoint subpopulations A and B of initial sizes |A| = a · n and

|B| = b · n, where 0 < b < a < 1. An interaction between an agent in A and an agent in B is a

cancel reaction which removes both agents from their subpopulations. Thus after i cancel reactions

we have |A| = a · n− i and |B| = b · n− i.
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The expected parallel time t until d · n cancel reactions occur, where d < b is

E [t] =
ln(b)− ln(a)− ln

(
b− d + 1

n

)
+ ln

(
a− d + 1

n

)
2(a− b)

.

Let c = (a−d+ 1
n)(b−d+ 1

n) and 0 < ϵ < 1. Then (1− ϵ)E [t] < t < (1 + ϵ)E [t] with probability

at least 1− exp
(
−Θ(ϵ2E [t]nc)

)
.

The parallel time t until all b ·n cancel reactions occur has E [t] ∼ lnn
2(a−b) and satisfies t ≤ 5 lnn

2(a−b)

with high probability 1−O(1/n2).

Again, the first bound is with very high probability if all constants a, b, d are independent of n.

Proof. After i cancel reactions, the probability of the next cancel reaction is p ∼ 2|A|·|B|
n2 =

2(a − i
n)(b − i

n), and the number of interactions until this cancel reaction is a geometric random

variable with mean p. The number of interactions T for d · n cancel reactions to occur is a sum of

geometrics with mean

E [T ] =

d·n−1∑
i=0

1

2(a− i
n)(b− i

n)
∼ n

∫ d− 1
n

x=0

dx

2(a− x)(b− x)
=

n

2(a− b)

∫ d− 1
n

x=0

(
1

b− x
− 1

a− x

)
dx

=
n

2(a− b)

[
− ln(b− x) + ln(a− x)

]d− 1
n

0

= n ·
ln(b)− ln(a)− ln

(
b− d + 1

n

)
+ ln

(
a− d + 1

n

)
2(a− b)

.

Translating to parallel time and using theorem 1.3.3 gives the first result, where minimum proba-

bility p∗ = Θ(c).

In the second case where d = b and we are waiting for all cancel reactions to occur, then

E [t] ∼ ln(b)− ln(a) + ln(n) + ln(a− b)

2(a− b)
=

lnn

2(a− b)
,

and µ = E [T ] ∼ n lnn
2(a−b) . Now the minimum geometric probability is when i = bn−1 and p∗ ∼ 2(a−b)

n .

Choosing λ = 5 so that λ− 1− lnλ > 2, by theorem 1.3.2 we have

Pr

[
t ≥ 5 lnn

2(a− b)

]
≤ Pr [T ≥ λµ] ≤ e−p∗µ(λ−1−lnλ) = exp

(
−2(a− b)

n
· n lnn

2(a− b)
· 2
)

= n−2.

Thus t ≤ 5 lnn
2a with high probability.

Note we get the same result for this second case also by assuming a fixed minimal fraction a− b

in |A| is always there to cancel the agents from |B|, and using the next theorem 3.6.3. □
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Now we consider a “one-sided” cancel process, where reactions a, b → a, 0 change only the b

agents into a different state. This process happens for example when Clock agents change the hour

of O agents.

Lemma 3.6.3. Let 0 < a, b1, b2, ϵ < 1 be constants with b1 > b2. Consider a subpopulation A

maintaing its size above a · n, and B initially of size b1 · n. Any interaction between an agent in A

and in B is meaningful, and forces the agent in B to leave its subpopulation.

The expected parallel time t until the subpopulation B reaches size b2 · n is

E [t] =
ln(b1)− ln(b2)

2a
,

and satisfies (1− ϵ)E [t] < t < (1 + ϵ)E [t] with probability at least 1− exp
(
−Θ(ϵ2E [t]nab2)

)
.

The parallel time t until the subpopulation B reaches size 0 has E [t] ∼ lnn
2a and satisfies t ≤ 5 lnn

2a

with high probability 1−O(1/n2).

Again, the first bound is with very high probability if constants a, b2 are independent of n.

Proof. When |B| = i, then the probability of a meaningful interaction p ∼ 2ia
n . Then the

number of interactions before the next meaningful interaction is a geometric with probability p,

and the total number T of interaction is a sum of geometrics with mean

E [T ] =

b1n∑
i=b2n+1

n

2ia
=

n

2a

(
b1n∑
i=1

1

i
−

b2n+1∑
i=1

1

i

)
∼ n

2a
(ln(b1n)− ln(b2n + 1)) ∼ n

ln(b1)− ln
(
b2 + 1

n

)
2a

.

Translating to parallel time and using theorem 1.3.3 gives the first result, where minimum

probability p∗ = Θ(a · b2).

In the case where b2 = 0, we have µ = E [T ] ∼ n lnn
2a and E [t] ∼ ln(n)

2a . Now the minimum

geometric probability p∗ = 2a
n . Choosing λ = 5 so that λ− 1− lnλ > 2, by theorem 1.3.2 we have

Pr

[
t ≥ 5 lnn

2a

]
≤ Pr [T ≥ λµ] ≤ e−p∗µ(λ−1−lnλ) = exp

(
−2a

n
· n lnn

2a
· 2
)

= n−2.

Thus t ≤ 5 lnn
2a with high probability. □

3.6.2. Analysis of initial phases. Define M, C, and R to be the sub-populations of agents

with roles Main, Clock, Reserve when they first set phase = 1. Let |M| = m·n, |C| = c·n, |R| = r ·n,

where m + c + r = 1.
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The population splitting of Phase 0 will set the fractions m ≈ 1
2 , c ≈ 1

4 , and r ≈ 1
4 . The rules

also ensure deterministic bounds on these fractions once all RoleMCR agents have been assigned.

The probability 1 guarantees on subpoplation sizes using this method will be key for a later uniform

adaptation of the protocol. We first prove the behavior of the rules used for this initial top level

split in Phase 0 between the roles Main and RoleCR.

Lemma 3.6.4. Consider the reactions

U,U → Sf ,Mf

Sf , U → St,Mf

Mf , U →Mt, Sf

starting with n U agents. Let u = #U , s = #Sf + #St, and m = #Mf + #Mt. This converges

to u = 0 in expected time at most 2.5 lnn and in 12.5 lnn time with high probability 1 − O(1/n2).

Once u = 0, n
3 ≤ s,m ≤ 2n

3 with probability 1, and for any ϵ > 0, n
2 (1− ϵ) ≤ s,m ≤ n

2 (1 + ϵ) with

very high probability.

Proof. Let sf = #Sf , st = #St,mf = #Mf ,mt = #Mt.

First we consider the interactions that happen until u = 2n/3. Note that while u ≥ 2n/3, the

probability of the first reaction is ∼
(
u
n

)2 ≥ 4
9 and the probability of the other two reactions is ∼

2
(
u
n

)(mf+sf
n

)
≤ 2· 23 ·

1
3 = 4

9 . Thus until u = 2n/3, each non-null interaction is the top reaction with

at least probability 1/2. Then by standard Chernoff Bounds, with very high probability, at least a

fraction 1
2−ϵ of these reactions are the top reaction, which create a count sf +mf ≥ 2

9(1−ϵ)n > n
5 .

Now notice that this count sf + mf can never decrease, so we have sf + mf > n
5 for all future

interactions. Now we can use the rate of the second and third reactions to bound the completion

time. The probability of decreasing u is at least 2
(
u
n

)
(15), so the number of interactions it takes to

decrement u is stochastically dominated by a geometric random variable with probability p = 2u
5n .

Then the number of interactions for u to decrease from 2n
3 down to 0 is dominated by a sum T of

geometric random variables with mean

E [T ] =

2n/3∑
u=1

5n

2u
=

5n

2

2n/3∑
u=1

1

u
∼ 5n

2
ln(2n/3) ∼ 5

2
n lnn.
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Now we will apply the upper bound of theorem 1.3.2, using µ = 5
2n lnn, p∗ = 2

5n (when u = 1)

and λ = 5, where λ− 1− ln(λ) > 2, so we get

Pr [T ≥ λµ] ≤ exp (−p∗µ(λ− 1− lnλ)) ≤ exp

(
− 2

5n
· 5

2
n lnn · 2

)
= n−2.

Thus with high probability 1 − O(1/n2), this process converges in at most λµ
n = 12.5 lnn parallel

time.

Observe that the reactions all preserve the following invariant: sf + 2st = mf + 2mt. The

probability-1 count bounds follow by observing that when u = 0 (i.e., we have converged) we have

sf + st + mf + mt = n. Maximizing s = sf + st and minimizing m = mf + m + t is achieved by

setting sf = 2n/3, st = 0,mf = 0,mt = n/3, and symmetrically for maximizing m.

Assume we have s > m at some point in the execution, so sf + st > mf + mt. Subtracting

the invariant equation gives −st > −mt, which implies st < mt. Together with the first inequality

this implies that sf > mf . Thus the rate of second reaction is higher than the rate of the third

reaction, so it is more likely that the next reaction changing the value s−m decreases it.

By symmetry the opposite happens when m > s, so we conclude that the absolute value |m−s|

is more likely to decrease than increase. Thus we can stochastically dominate |m− s| by a sum of

independent coin flips. The high probability count bounds follow by standard Chernoff bounds. □

Now we can prove bounds on the sizes |M| = mn, |C| = cn, |R| = rn of Main, Clock, and Reserve

agents from the population splitting of Phase 0.

Lemma 3.6.5. For any ϵ > 0, with high probability 1 − O(1/n2), by the end of Phase 0,

|RoleMCR| = 0, n
2 (1 − ϵ) ≤ |M| ≤ n

2 (1 + ϵ) and |C|, |R| ≥ n
4 (1 − ϵ). If |RoleMCR| = 0 and Phase 1

initializes without error, then with probability 1, 1
3n ≤ |M| ≤

2
3n,

1
6n ≤ |R| ≤

2
3n, and 2 ≤ |C| ≤ 1

3n.

Proof. The top level of splitting of RoleMCR into RoleCR and Main is equivalent to the reactions

of theorem 3.6.4, with U = RoleMCR, M = Main, S = RoleCR, and the f and t subscripts representing

the Boolean value of the field assigned. theorem 3.6.4 gives the stated bounds on Main, if there

were no further splitting of RoleCR.

theorem 3.6.4 gives that with high probability, all RoleMCR are converted to RoleCR and Main

in 12.5 lnn time; we begin the analysis at that point, letting s be the number of RoleCR agents
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produced, noting n/3 ≤ s ≤ 2n/3 with probability 1, and for any ϵ′ n
2 (1− ϵ′) ≤ s ≤ n

2 (1 + ϵ′) with

high probability.

The splitting of RoleCR into Clock and Reserve follows a simpler process that we analyze here.

Let r = |R| and c = |C| at the end of Phase 0. To see the high probability bounds on r and c, we

model the splitting of RoleCR by the reaction U,U → R,C during Phase 0 and U → R at the end

of Phase 0, since all un-split RoleCR agents become Reserve agents upon leaving Phase 0.

The reaction U,U → R,C reduces the count of U from its initial value s (= n/2±ϵ′n/2 WHP) to

ϵ′s, with the number of interactions between each reaction when #U = l governed by a geometric

random variable with success probability O(l2/n2). Applying theorem 1.3.3 with k = s − ϵ′s,

pi = O((i + ϵ′s)2/n2) for i ∈ {1, . . . , k}, the reaction U,U → R,C takes O(1) time to reduce the

count of U from its initial value m (= n/2± ϵ′n/2 WHP) to ϵ′m with very high probability. This

implies that after O(1) time, r and c are both at least

s/2− ϵ′s = s(1/2− ϵ′) ≥ (n/2− ϵ′n/2)(1/2− ϵ′)

= n/4− ϵ′n/2− ϵ′n/4 + (ϵ′)2n/2

> n/4− ϵ′n = n/4(1− 4ϵ′)

with very high probability. Choosing ϵ = ϵ′/4 gives the high probability bounds on r and c. Thus

we require 12.5 lnn + O(1) ≤ 13 lnn time, and for appropriate choice of counter constant c0, this

happens before the first Clock agent advances to the next phase with high probability.

We now argue the probability-1 bounds. The bound r ≤ 2n/3 follows from |M| ≥ n/3. The

bound r ≥ n/6 follows from |M| ≤ 2n/3, so RoleCR ≥ n/3 if no U,U → R,C splits happen, and

the fact that at least half of RoleCR get converted to Reserve: exactly half by U,U → R,C and the

rest by U → R.

Although the reactions U,U → R,C and U → R can produce only a single C, there must

be at least two Clock agents for Standard Counter Subroutine to count at all and end Phase 0,

so if Phase 1 initializes, c ≥ 2. The bound c ≤ n/3 follows from the fact that c is maximized

when |M| = n/3 and no U → R reactions happen, i.e., all 2n/3 RoleCR agents are converted via

U,U → R,C, leading to c = n/3. □

We now reason about Phase 1, which has different behavior based on the initial gap g.
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Lemma 3.6.6. If the initial gap |g| ≥ 0.025|M|, then we stabilize to the correct output in

Phase 2. If |g| < 0.025|M|, then at the end of Phase 1, all agents have bias ∈ {−1, 0,+1}, and

the total count of biased agents is at most 0.03|M|. Both happen with high probability 1−O(1/n2).

Proof. In the case where all agents enter Phase 1, none are still in RoleMCR, so every non-Main

agent has given their bias to a Main agent via line 2 or line 5 of Phase 0. Thus the initial gap

g =
∑

m.role=Mainm.bias.

Let µ = ⌊ g
|M|⌉ be the average bias among all Main agents, rounded to the nearest integer.

By [83], we will converge to have all bias ∈ {µ−1, µ, µ+1}, in O(log n) time with high probability

1 − O(1/n2). We use Corollary 1 of [83], where the constant K = O(
√
n) and δ = 1

n2 . This gives

that with probability 1− δ, all bias ∈ {µ− 1, µ, µ + 1} after a number of interactions

t ≥ (n− 1)(2 ln
(
K +

√
n
)
− ln(δ)− ln(2)) ∼ n(2 ln

(√
n
)

+ ln
(
n2
)
) = 3n lnn.

Thus after time 3 lnn, all bias ∈ {µ− 1, µ, µ + 1} with high probability 1− 1/n2.

If |g| > 0.5|M|, then |µ| ≥ 1, so all remaining biased agents have the majority opinion, and we

will stabilize in Phase 2 to the correct majority output.

If |g| ≤ 0.5|M|, then µ = 0, so now all bias ∈ {−1, 0,+1}. We will use theorem 3.6.2, with the

sets of biased agents A = {a : a.bias = +1} and B = {b : b.bias = −1}, which have initial sizes

|A| = a · n and |B| = b · n.

In the first case where 0.025|M| ≤ |g| ≤ 0.5|M|, we have a − b ≥ 0.025m (assuming WLOG

that A is the majority). Then by theorem 3.6.2, with high probability 1 − O(1/n2), the count of

B becomes 0 in at most time 5 lnn
2(a−b) = lnn 5

2·0.025m = 100
m lnn ≤ 201 lnn. With all minority agents

eliminated, we will again stabilize in Phase 2 with the correct output.

In the second case where |g| < 0.025|M|, we can use theorem 3.6.2 with constant d = b −

0.0025m. Then even with maximal gap a − b = 0.025m, with very high probability in constant

time we bring the counts down to b = 0.0025m and a = 0.0275m. Thus the total count of biased

agents is at most (0.0025m + 0.0275m)n = 0.03|M|.

Since all the above arguments take at most O(log n) time, for appropriate choice of counter

constant c1, the given behavior happens before the first Clock agent advances to the next phase

with high probability. □
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3.6.3. Analysis of main averaging Phase 3. The longest part in the proof is analyzing the

behavior of the main averaging Phase 3. The results of this section culminate in the following two

theorems, one for the case of an initial tie, and the other for an initial biased distribution.

In the case of an initial tie, we will show that all biased agents have minimal exponent = −L

by the end of the phase.

Theorem 3.6.7. If the initial configuration was a tie with gap 0, then by the end of Phase 3,

all biased agents have exponent = −L, with high probability 1−O(1/n2).

Note that the where all biased agents have exponent = −L gives a stable configuration in the

next Phase 4, with all agents having output = T. Thus from theorem 3.6.7, we conclude that

from an intial tie, the protocol will stabilize in Phase 4 with high probability. Conversely, we have

already observed that this configuration can only be reached in the case of a tie, since the sum of

all biased agents would bound the magnitude of the initial gap |g| < 1. Thus in the other case of

a majority initial distribution, the agents will proceed through to Phase 5 with probability 1.

In this majority case, we will show that a large majority of the Main agents have opinion set to

the majority opinion and exponent ∈ {−l,−(l+ 1),−(l+ 2)} is in a consecutive range of 3 possible

exponents, where the value −l depends on the initial distribution. In addition, we show the upper

tail above this exponent −l is very small.

Theorem 3.6.8. Assume the initial gap |g| < 0.025|M|. Let the exponent −l = ⌊log2(
g

0.4|M|)⌋.

Let i = sign(g) be the majority opinion and M be the set of all agents with role = Main, opinion =

i, exponent ∈ {−l,−(l + 1),−(l + 2)}. Then at the end of Phase 3, |M | ≥ 0.92|M| with high

probability 1−O(1/n2).

In addition, the total mass above exponent −l is µ(>−l) =
∑

a.exponent>−l

|a.bias| ≤ 0.002|M|2−l,

and the total minority mass is β− =
∑

a.opinion=−i
|a.bias| ≤ 0.004|M|2−l.

Note the assumption of small initial gap g that we get from Phase 1 is just for convenience

in the proof, to reason uniformly about the base case behavior at hour h = 0 for our inductive

argument. The rules of Phase 3 would also work as intended with even larger initial gaps, just

requiring a variant of the later analysis to acknowledge that the initial exponent = 0 is quite close

to the final range exponent ∈ {−l,−(l + 1),−(l + 2)}.
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3.6.4. Clock synchronization theorems. We will first consider the behavior of the Clock

agents in Phase 3. The goal is to show their minute fields remain tightly concentrated while

moving from 0 up to kL, summarized in theorem 3.6.15. See fig. 3.9 for simulations of the clock

distribution. The back tail behind the peak of the minute distribution decays exponentially, since

each agent is brought ahead by epidemic at a constant rate and thus their counts each decay

exponentially. The front part of the distribution decays much more rapidly. With a fraction f of

agents at minute = i, the rate of the drip reaction is proportional to pf2. This repeated squaring

leads to the concentrations at the leading minutes decaying doubly exponentially. The rapid decay

is key to showing that very few Clock agents can get very far ahead of the rest.

While our algorithm runs for only O(log n) minutes, the clock behavior we require can be made

to continue for O(nc) minutes for arbitrary c. Our proofs rely on induction on minutes, and all

results in this section hold with very high probability. Thus, we can take a union bound over

polynomially many minutes and still keep the very high probability guarantees. If the clock runs

for a superpolynomial number of minutes, the results of this section no longer hold.

We start by consider an entire population running the clock transitions (lines 1-5 of Phase 3),

so |C| = n. The following lemmas describe the behavior of just this clock protocol. In our actual

protocol, the clock agents are a subpopulation |C| = c · n, and these clock transitions only happen

when two clock agents meet with probability
(|C|
2

)/(
n
2

)
∼ 1

c2
. This more general situation is handled

in later theorems applying to our exact protocol.

Definitions of values used in subsequent lemma statements. Throughout this section, we ref-

erence the following quantities. For each minute i and parallel time t, define c≥i(t) = |{c :

c.minute ≥ i}|/|C| to be the fraction of clock agents at minute i or beyond at time t. Then

define t+≥i = min{t : c≥i(t) > 0}, t0.1≥i = min{t : c≥i(t) ≥ 0.1} and t0.9≥i = min{t : c≥i(t) ≥ 0.9} to be

the first times where this fraction becomes positive, hits 0.1 and hits 0.9.

We first show that the c≥i+1 is significantly smaller than c≥i while both are still increasing, so

the front of the clock distribution decays very rapidly. In our argument, we consider three types of

reactions that change the counts at minutes i or above:

(i) Drip reactions i, i→ i, (i + 1) (line 5 in Phase 3)

(ii) Epidemic reactions j, k → j, j, for any minutes j, k with k ≤ i < j (line 3 in Phase 3)

(iii) Epidemic reactions j, k → j, j, for any minutes j, k with k < i ≤ j (line 3 in Phase 3)
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(a) Simulating the clock rules with p = 1.
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Figure 3.9. Simulating the clock rules on a large population of size n = 1017,
with k = 5 minutes per hour and multiple values of p. The minute distribution
gets tighter for smaller values of p. To make the hour distribution tighter, we can
also simply make k larger. The full evolution of these distributions can be seen in
the example notebook [41], along with the code that ran the large simulation to
generate the data.

67



Note we ignore the drip reactions (i− 1), (i− 1)→ (i− 1), i, which would only help the argument,

but we do not have guarantees on the count at minute i− 1.

We will try to show the relationship pictured in fig. 3.9, that c≥(i+1)(t) ≈ c≥i(t)
2. One challenge

here is that this relationship will no longer hold with high probability for small values of c≥i. For

example, if c≥i(t) = n−1/2−ϵ, the desired relationship would require c≥i+1(t) < 1
n , meaning the

count above minute i is 0. A drip reaction at minute i could happen with non-negligible probability

≈ n−2ϵ.

To handle this difficulty, we define the set of early drip agents D≥i+1(t), the set of agents that

moved above minute i via a drip reaction at a time ≤ t when c≥i(t) < n−0.45, or that were brought

above minute i via an epidemic reaction with another early drip agent in d≥i+1. Note that the latter

group of agents can move to minute ≥ i+ 1 after time t+≥i+1. Thus, this set represents the effect of

any drip reactions that happen before c≥i(t) grows large enough for our large deviation bounds to

work. We then define d≥i+1(t) = |D≥i+1(t)|/|C| to be the fraction of early drip agents (including

effects that persist beyond this time due to epidemic reactions). The set of agents above minute

i that comprise the fraction c≥(i+1) is then partitioned into the early drip agents that comprise

D≥i+1, and the rest. By first ignoring these early drip agents D≥i+1, we can show that the rest of

c≥(i+1) stays small compared to c≥i.

Lemma 3.6.9. With very high probability, if n−0.45 ≤ c≥i(t) ≤ 0.1, then c≥i+1(t) ≤ 0.9pc≥i(t)
2+

d≥i+1(t).

Proof. The proof will proceed by induction on time t. As a base case, for all t such that

c≥i(t) < n−0.45, the statement holds simply by definition of d≥i+1(t), which is equal to c≥i+1(t).

For the inductive step, to show the relationship c≥(i+1)(t) < 0.9pc≥i(t)
2+d≥i+1(t) holds at time

t, we will use the inductive hypothesis that c≥(i+1)(t−0.1) < 0.9pc≥i(t−0.1)2 +d≥i+1(t−0.1). Let

x(t) = c≥i(t) and y(t) = c≥i+1(t)− d≥i+1(t), so we need to show y(t) < 0.9px(t)2.

We first lower bound how much x(t) grows by epidemic reactions, in order to show x(t− 0.1) <

0.84x(t). Using theorem 1.3.5, the expected amount of time for an epidemic to grow from fraction

0.84x to x is

1

2

[
ln(x)− ln(0.84x) + ln

(
1− 0.84x

1− x

)]
≤ 1

2

[
− ln(0.84) + ln

(
1− 0.84 · 0.1

1− 0.1

)]
< 0.096,

68



where we used the fact that 1−0.84x
1−x is nondecreasing and x(t) ≤ 0.1.

The minimum probability p∗ is Θ(x(t)) = Ω(n−0.45), and the expected number of interactions

µ is Θ(n). So the application of theorem 1.3.2 will give probability 1− e−Ω(n0.55) for the epidemic

to have grown enough within time 0.1. Thus x(t− 0.1) < 0.84x(t) with very high probability.

Next we bound how much y(t) grows, by both epidemic reactions and drip reactions. The

probability of a drip reaction is at most px(t)2, so the expected number of drip reactions in time

0.1 is 0.1px(t)2. A standard Chernoff bound then gives that there are at most 0.11px(t)2 drip

reactions with very high probability. We assume in the worst case all these drip reactions happen

at time t− 0.1, and then y grows by epidemic starting from z = y(t− 0.1) + 0.11px(t)2.

By theorem 1.3.5, the expected amount of time for an epidemic to grow from fraction z to 1.23z

is

1

2

[
ln(1.23z)− ln(z) + ln

(
1− z

1− 1.23z

)]
≥ 1

2
ln(1.23) > 0.103.

The minimum probability p∗ = Ω(x(t)2) = Ω(n−0.9), and the expected number of interactions

µ = Θ(n). So the application of theorem 1.3.2 will give probability 1 − e−Ω(n0.1). Thus with very

high probability

y(t) ≤ 1.23[y(t− 0.1) + 0.11px(t)2]

≤ 1.23[0.9px(t− 0.1)2 + 0.11px(t)2]

≤ 1.23[0.9p(0.84x(t))2 + 0.11px(t)2] < 0.9px(t)2. □

In order to bound c≥(i+1)(t) as a function of c≥i(t) only (theorem 3.6.11), we need to bound how

large the set D≥i+1 of early drip agents can be. The strategy will be to show there is not enough

time for the set D≥i+1 to grow very large starting from t+≥i+1, the first time any agent appears at

minute ≥ i + 1 (i.e., the first drip reaction into minute i + 1), because there are only O(log log n)

minutes in the front tail (see fig. 3.9), so the time between t+≥i+1 and t0.1≥i+1 is O(log log n).

We will first need an upper bound on how long it takes the clock to move from one minute to

the next.

Lemma 3.6.10. t0.1≥i+1 − t0.1≥i ≤ 2.11 + 1
2 ln

(
1
p

)
with very high probability.
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Proof. First we argue that c≥i+1(t
0.1
i + 1

2) > 0.0045p. If not, the count at minute i, c≥i(t)−

c≥i+1(t) > 0.1−0.0045 = 0.0955 for all t0.1i < t < t0.1i +0.5. Then, the probability of a drip reaction

is at least 0.09552p > 0.0091p. By standard Chernoff bounds, we then have that in time 1
2 , there

are at least 0.0045p drip reactions with very high probability. Thus c≥i+1(t
0.1
i + 1

2) > 0.0045p from

just those drip reactions alone.

Now we argue that the amount of time it takes for epidemic reactions to bring c≥(i+1) up to

0.1. By theorem 1.3.5, the expected amount of time for an epidemic to grow from fraction 0.0045p

to 0.1 is

1

2
[ln(0.1)− ln(0.0045p) + ln(1− 0.0045p)− ln(0.9)] <

ln(0.1)− ln(0.0045)− ln(0.9)

2
− ln p

2

< 1.603− ln p

2
.

As long as p = Θ(1), then the minimum probability p∗ = Θ(p) is constant, and by theorem 1.3.5,

the epidemic takes at most time 1.61− ln p
2 with very high probability.

In total, we then get that t0.1i+1 − t0.1i ≤ 0.5 + 1.61 − ln p
2 = 2.11 + 1

2 ln
(
1
p

)
with very high

probability. □

Proving that the set D≥i+1 remains small will let us prove the main theorem about the front

tail of the clock distribution:

Theorem 3.6.11. With very high probability, if n−0.4 ≤ c≥i(t) ≤ 0.1, then c≥(i+1)(t) < pc≥i(t)
2.

Proof. The proof will proceed by induction on the minute i, where the base case is vacuous

because c≥0(0) = 1, so c≥0(t) > 0.1 for all times t.

The inductive hypothesis will use two claims. The first is that the time t0.1≥i − t+≥i = O(log log n)

for minute i. The second is that d≥i+1(t
0.1
≥i ) = O(n−0.85). Note that using this second claim along

with theorem 3.6.9 proves the Theorem statement at minute i: when n−0.4 ≤ c≥i(t) ≤ 0.1, by

theorem 3.6.9 we have

c≥(i+1)(t) < 0.9pc≥i(t)
2 + d≥i+1(t) ≤ pc≥i(t)

2,

because c≥i(t)
2 ≥ n−0.8, so the d≥i+1 term is negligible for sufficiently large n.

We will prove the first claim in two parts. First we argue that t0.1≥i − t+≥i = O(log log n), because

the width of the front tail is at most 2 log log n. We will show that at t+≥i, when the first agent
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arrives at minute = i, we already have c≥j(t
+
≥i) ≥ 0.1, where j = i− 2 log log n (for i < 2 log log n,

we just have j = 0 and there is nothing to show because the width of the front tail can be at most

i). First we move log log n levels back to k = i− log log n, to show c≥k(t+≥i) ≥ n−0.4.

Assume, for the sake of contradiction that c≥k(t+≥i) < n−0.4. Between t+≥k and tn
−0.4

≥k , consider

the number of drips that happen from levels k + 1 and above. By the inductive hypothesis, we

have c≥k+1(t) ≤ pc≥k(t)2 < n−0.8 during this whole time. Thus in any interaction of this period

the probability of a drip above level k + 1 is at most p · (n−0.8)2 ≤ n−1.6. The interval length is

tn
−0.4

≥k −t+≥k = O(log log n) by the inductive hypothesis, so the probability of having at least log log n

drips during this interval is at most

(
O(n log logn)

log log n

)
(n−1.6)log logn ≤

(
O(n log log n)

n1.6

)log logn

= n−ω(1).

This implies c≥i(t
n−0.4

≥k ) = 0 with very high probability.

Thus with very high probability, we already have c≥k(t+≥i) ≥ n−0.4. Then we can iterate the

inductive hypothesis cl(t) ≤ p(cl−1(t))
2 for the log log n minutes l = k, k − 1, . . . , j, which implies

c≥j(t
+
≥i) ≥ 0.1. Now that we have shown the width of the front tail is at most 2 log log n, we use

theorem 3.6.10, which shows that each minute takes O(1) time, so it takes O(log log n) time between

t+≥i when the first agent gets to minute = i and t0.1≥i , when the fraction at minute ≥ i reaches 0.1.

Now we prove the second claim, arguing that in this O(log log n) time, d≥i+1 can grow to at most

O(n−0.85). By definition of d≥i+1, the drip reactions that increase d≥i+1 happen with probability

at most p(n−0.45)2 = pn−0.9. By a standard Chernoff bound, the number of drip reactions in

O(log log n) time is O(log log n ·n−0.9) = O(n−0.89). Then we assume in the worst case this maximal

number of drip reactions happen, and then d≥i+1 can grow by epidemic. By theorem 1.3.5, the

time for an epidemic to grow from fraction O(n−0.89) to Ω(n−0.85) is Ω(log n) > O(log log n) with

very high probability. Thus, with very high probability, we still have d≥i+1 = O(n−0.85) within

O(log log n) time. □

Now the relationship proven in theorem 3.6.11 implies that c≥(i+1)(t
0.1
≥i ) ≤ 0.01p. We can now

use this bound to get lower bounds on the time required to move from one minute to the next.

Lemma 3.6.12. With very high probability, t0.1i+1 − t0.1i ≥ 1
2 ln
(

1 + 2
9p

)
− 0.01.
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Proof. We start at time t0.1≥i , where by theorem 3.6.11 we have c≥i+1(t
0.1
≥i ) ≤ 0.01p with very

high probability.

Define x = x(t) = c≥i(t) and y = y(t) = c≥i+1(t). The number of interactions for Y = yn

to increase by 1 is a geometric random variable with mean 1
Pr[(i)]+Pr[(ii)] , where the drip reaction

(i) has probability Pr [(i)] ∼ p(x − y)2 ≤ p(1 − y)2 and the epidemic reaction (ii) has probability

Pr [(ii)] ∼ 2y(1−y). Assuming in the worst case that y(t0.1i ) = 0.01p, then the number of interactions

T = (t0.1i+1 − t0.1i )n for Y to increase from 0.1pn to 0.1n is a sum of independent geometric random

variables with mean

E [T ] ≥
0.1n−1∑

Y=0.01pn

1

p(1− Y/n)2 + 2(Y/n)(1− Y/n)
∼ n

∫ 0.1

0.01p

dy

p(1− y)2 + 2y(1− y)

= n

∫ 0.1

0.01p

dy

(1− y)(p + (2− p)y)
= n

∫ 0.1

0.01p

1/2

1− y
+

1− p/2

p + (2− p)y
dy

= n

[
−1

2
ln(1− y) +

1

2
ln (p + (2− p)y)

]0.1
0.01p

=
n

2
[− ln(0.9) + ln(1− 0.01p) + ln(p + 0.1(2− p))− ln(p + 0.01p(2− p))]

=
n

2

[
− ln(0.9) + ln

(
1− 0.01p

p− 0.01p2 + 0.02p

)
+ ln(0.9p + 0.2)

]
≥ n

2

[
− ln(0.9) + ln

(
0.9p + 0.2

1.02p

)]
≥ n

2

[
−0.02 + ln

(
1 +

2.04

9p

)]
Note that the probability in the geometric includes the term p(1 − y)2 ≥ 0.81p since y ≤ 0.1,

thus the minimum geometric probability p∗ ≥ 0.81p is bounded by a constant. Also the mean

µ = Θ(n) so by theorem 1.3.3, Pr
[
T ≤ n(−0.01 + 1

2 ln
(

1 + 2
9p

)]
≤ exp (−Θ(n)), so the time

t0.1i+1 − t0.1i = T/n ≥ 1
2 ln
(

1 + 2
9p

)
− 0.01 with very high probability. □

The worst case upper bound for the dripping probability, p(1− y)2, used in the above Lemma,

is weakest when p = 1. We now give a special case lower bound that is stronger in the deterministic

case with p = 1.

Lemma 3.6.13. With very high probability, t0.1i+1 − t0.1i ≥ 0.45.

Proof. We assume in the worst case that p = 1. Then by theorem 3.6.11, we have c≥i+1(t
0.1
i ) ≤

0.01. This initial fraction will grow by epidemic to at most 0.01 · e2·0.45(1 + ϵ) with very high
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probability by theorem 1.3.5. We must also consider all agents that later make it to minute i + 1

by a drip reaction, and how much they grow by epidemic.

By time t0.1i + s, the fraction c≥i could have increased to at most 0.1 + s, since at most 1 agent

can increase its minute in each interaction. Then the probability of a drip reaction at this time is

at most (0.1 + s)2. By standard Chernoff bounds, there will be at most (1 + ϵ)(0.1 + s)2n0.5 drip

reactions in the next n0.5 interactions with very high probability. Then by theorem 1.3.5, these

agents can grow by epidemic by at most a factor (1 + ϵ)e2·(0.45−s) by time t0.1i + 0.45, with very

high probability. Summing over consecutive groups of n0.5 interactions at time i · n0.5

n and using

the union bound, we get a total bound

c≥i+1(t
0.1
i + 0.45) ≤ 0.01 · e2·0.45(1 + ϵ) +

0.45n0.5∑
i=0

(1 + ϵ)(0.1 + n−0.5i)2n0.5 · e2·(0.45−n−0.5i)

∼ (1 + ϵ) · e0.9
[
0.01 +

∫ 0.45

0
(1 + s)2e−2sds

]
≤ 0.45.

□

We now summarize all bounds on the length of a clock minute in a single theorem:

Theorem 3.6.14. Let t0.1≥i+1 − t0.1≥i be the time between when a fraction 0.1 of agents have

minute ≥ i and when a fraction 0.1 of agents have minute ≥ i+1. Then with very high probability,

max

(
0.45,

1

2
ln

(
1 +

2

9p

)
− 0.01

)
≤ t0.1≥i+1 − t0.1≥i ≤ 2.11 +

1

2
ln

(
1

p

)
These bounds are shown in fig. 3.10, along with sampled minute times from simulation. This

suggests the actual time per minute is roughly 0.75 + 1
2 ln
(
1
p

)
.

We can now build from these theorems to get bounds on the values of hour. For a clock agent

a, define a.hour = ⌊a.minutek ⌋. Define starth = min
(
t : |{a : a(t).hour ≥ h}| ≥ 0.9|C|

)
be the first

time when the fraction of clock agents at hour h or beyond reaches 0.9 and endh = min
(
t : |{a :

a(t).hour > h}| ≤ 0.001|C|
)

be the first time when the fraction of clock agents beyond hour h

reaches 0.001. Define the synchronous hour h to be the parallel time interval [starth, endh], i.e.

when fewer than 0.1% are in any hour beyond h and at least (90 - 0.1) = 89.9% are in hour h. Note

that if endh < starth then this interval is empty, but we show this happens with low probability.

We choose the threshold 0.001|C| to be a sufficiently small constant for later proofs.
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Figure 3.10. The upper and lower bounds from theorem 3.6.14 for the time of one
clock minute, along with samples from simulation. For each value of n, 100 minute
times were sampled, taking t0.1i+1 − t0.1i for i = 9, . . . , 18 over 10 independent trials.
All our proofs assume p is constant, and for any fixed value of p, will only hold for
sufficiently large n. The case n = 103 shows that when p = O(1/n), the bounds no
longer hold. This is to be expected because the expected number of drips becomes
too small for large deviation bounds to still hold.

Recall c = |C|/n is the fraction of clock agents and k is the number of minutes per hour.

Theorem 3.6.15. Consider a fraction c of agents running the clock protocol, with p = 1. Then

for every synchronous hour h, its length endh− starth ≥ 1
c2

[0.45k− 3.1], with very high probability.

The time between consecutive synchronous hours starth+1 − starth ≤ 1
c2

[2.11k + 2.2] with very high

probability.

Proof. Note that the previous lemmas assumed |C| = n, so the entire population was running

the clock algorithm. In reality, we have a fraction c = |C|/n of clock agents. The reactions we

considered only happen between two clock agents, which interact with probability ∼ c2. Thus we

can simply multiply the bounds from our lemmas by the factor 1
c2

to account for the number of

regular interactions for the requisite number of clock interactions to happen, which is very close to

its mean with very high probability by standard Chernoff bounds.

Because our definition references time t0.9≥i when the fraction reaches 0.9, we will first bound

the time it takes an epidemic to grow from 0.1 to 0.9. By theorem 1.3.5, this takes parallel time t,

where

E [t] ∼ ln(0.9)− ln(1− 0.9)− ln(0.1) + ln(1− 0.1)

2
= ln(9) < 2.2.

Since ln(9)(1 + ϵ) < 2.2, this completes within parallel time 2.2 with very high probability.
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Since c.hour = h ⇐⇒ hk ≤ c.minute < (h + 1)k, the times starth = t0.9hk and endh = t0.001hk .

For the upper bound, by theorem 3.6.10 we have t0.1i+1 − t0.1i ≤ 2.11/c2 with very high probability.

We start at t0.9hk ≥ t0.1hk , and sum over the k minutes in hour h, then add at most time 2.2
c2

between

t0.1(h+1)k and t0.1(h+1)k. This gives that starth+1 − starth ≤ 1
c2

[2.11k + 2.2] with very high probability.

For the lower bound, by theorem 3.6.11, at time t0.1(h+1)k−2, we have c≥(h+1)k ≤ (0.12)2 =

10−4 < 0.001, so t0.1(h+1)k−2 < endh. Then starth ≤ t0.1hk + 2.2
c2

. Using theorem 3.6.13, we have

t0.1i+1 − t0.1i ≤ 0.45/c2 with very high probability, for each i = hk, . . . , hk + k − 3. All together, this

gives endh − starth ≥ 1
c2

[0.45(k − 2)− 2.2] = 1
c2

[0.45k − 3.1]. □

We will set k = 45 to give us sufficiently long synchronous hours for later proofs. Since every

hour takes constant time with very high probability, all L hours will finish within O(log n) time.

We finally show one more lemma concerning how the Clock agents affect the Main agents. The

Clock agents will change the hour of the O agents via line 9 of Phase 3. There are a small fraction

0.001|C| of Clock agents that might be running too fast and thus have a larger hour than the

synchronized hour. We must now show these agents are only able to affect a small fraction of the

Main agents. Intuitively, the Clock agents with hour > h bring up the hour of both O agents and

other Clock agents. The following lemma will show they don’t affect too many Main agents before

also bringing in a large number of Clock agents.

We will redefine c>h = c>h(t) = |{c : c.hour > h}|/|C| to be the fraction of Clock agents beyond

hour h, and similarly m>h = m>h(t) = |{m : m.hour > h}|/|M| to be the fraction of Main agents

beyond hour h.

Lemma 3.6.16. For all times t ≤ endh, we have m>h(t) ≤ 1.2c>h(endh) = 0.0012 with very

high probability.

Proof. We have c>h(endh) = 0.001 by the definition of synchronous hour h. Thus it suffices

to show that m>h(t) ≤ 1.2c>h(endh).

Recall c = |C|/n and m = |M|/n, so c · c>h and m · m>h are rescaled to be fractions of the

whole population.

We will assume in the worst case that every Main agent can participate in the clock update

reaction

Ch,Mj → Ch,Mh where h > j,
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so the probability of clock update reaction is 2c · c>h ·m(1 −m>h). Among the Clock agents, we

will now only consider the epidemic reactions Ch, Cj → Ch, Ch between agents in different hours

h > j, so the probability of the clock epidemic reaction is 2c2 · c>h(1− c>h).

We use the potential Φ(t) = m>h(t) − 1.1 · c>h(t). Note that initially Φ(0) = 0 since both

terms are 0. The desired inequality is Φ(endh) ≤ 0.1c>h(endh) = 0.0001, and we will show this

holds with very high probability by Azuma’s Inequality because Φ is a supermartingale. The clock

update reaction increases Φ by 1
|M| = 1

mn . The clock epidemic reaction decreases Φ by 1.1
|C| = 1.1

cn .

This gives an expected change

E [Φ(t + 1/n)− Φ(t)] =
1

mn
[2c · c>h ·m(1−m>h)]− 1.1

cn

[
2c2 · c>h(1− c>h)

]
=

2c · c>h

n
[(1−m>h)− 1.1(1− c>h)]

≤ 2c · c≥i

n
[1− 1.1(0.999)] < 0.

Thus the sequence
(
Φj = Φ( j

n)
)n·endh
j=0

is a supermartingale, with bounded differences |Φj+1 −

Φj | ≤ max
(

1
mn ,

r
cn

)
= O( 1

n). So we can apply Azuma’s Inequality (theorem 3.6.1) to conclude

Pr [Φn·endh ≥ δ] ≤ exp

(
− δ2

2
∑n·endh

j=0 O( 1
n)2

)
= exp

(
−O(n)δ2

)
,

since by theorem 3.6.15, we have time endh = O(1) with very high probability. Thus we can choose

δ = 0.1c>h(endh) = 0.0001 to conclude that m>h(endh) ≤ 1.2c>h(endh) with very high probability

1− exp (−Ω(n)) = 1−O(n−ω(1)).

The lemma statement for times t ≤ endh simply follows from the monotonicity of the value

m>h, since agents only decrease their hour field. □

3.6.5. Phase 3 exponent dynamics. We now analyze the behavior of the Main agents in

Phase 3. We will show their exponent fields stay roughly synchronized with the hour of the Clock

agents, decreasing from 0 toward −L. We first use the above results on the clock to conclude

that during synchronous hour h, the tail of either O agents with hour > h or biased agents with

exponent < −h is sufficiently small.

Lemma 3.6.17. Until time endh, the count |{O : O.hour > h} ∪ {b : b.exponent < −h}| ≤

0.0024|M| with very high probability.
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Proof. By theorem 3.6.16, the count of O agents that have been pulled up by a Clock agent to

hour > h is at most 0.0012|M| with very high probability. Each of these agents could participate

in a split reaction that results in two biased agents with exponent < −h, increasing the total count

of |{O : O.hour > h} ∪ {b : b.exponent < −h}| by 1. Thus this total count can be at most twice

as large: ≤ 0.0024|M|. □

Our main argument will proceed by induction on synchronous hours. During each synchronous

hour h, we will first show that at least a constant fraction 0.77|M| of agents have bias = T with

hour = h. Then we will show that split reactions bring most biased agents down to exponent = −h.

Finally we will show that cancel reactions will reduce the count of biased agents, leaving sufficiently

many O agents for the next step of the induction.

Recall that the initial gap

g = (|{a : a.input = A}| − |{b : b.input = B}|) =
∑

m.role=Main

m.bias

is both the difference between the counts of A and B agents in the initial configuration and the

invariant value of the total bias. We define β+ = β+(t) =
∑

a.opinion=+1 |a.bias| and β− = β−(t) =∑
b.opinion=−1 |b.bias| to be the total unsigned bias of the positive A agents at time t and negative

B agents at time t. Then the net bias g = β+ − β− is the invariant.

We also define µ = µ(t) = β+ + β− to be the total unsigned bias, which we interpret as

“mass”. Note that split reactions preserve µ, while cancel reactions strictly decrease µ. The initial

configuration has mass µ(0) = n, and if we eliminate all of the minority opinion then we will get

β− = 0 and µ = g. Thus decreasing the mass shows progress toward reaching consensus. Also, if

every biased agent decreased their exponent by 1, this would exactly cut the µ in half. We will

show an upper bound on µ that cuts in half after each synchronous hour, which implies that on

average all biased agents are moving down one exponent.

We also define µ(>−i)(t) =
∑

m.exponent>−i |m.bias| as the total mass of all biased agents above

exponent −i. Note that a bound µ(>−i) ≤ x2−i+1 gives a bound on total count |{a : a.exponent >

−i}| ≤ x, since even if all agents above exponent −i+ 1 split down to exponent −i+ 1, they would

have count at most x. Also note that µ(t) and µ(>−i)(t) are nonincreasing in t, since the mass

above a given exponent can never increase.
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This inductive argument on synchronous hours will stop working once we reach a low enough

exponent that the gap has been sufficiently amplified. We define gi = g · 2i, which we call the

relative gap to hour i / exponent −i, because if all agents had exponent = −i, then a gap gi =

|{a : a.opinion = +1}| − |{b : b.opinion = −1}| would maintain the invariant g =
∑

v v.bias =∑
a.opinion=+1

1
2i
−
∑

b.opinion=−1
1
2i

= gi
2i

. Note that g0 = g, and the relative gap doubles as we

increment the hour and decrement the exponent. So if the Main agents have roughly synchronous

exponents, there will be some minimal exponent where the relative gap has grown to exceed the

number of Main agents |M|, and there are not enough agents available to maintain the invariant

using lower exponents.

We now formalize this idea of a minimal exponent. In the case where there is an initial majority,

gi ̸= 0, and because we assume the majority is A, we have gi > 0. Define the minimal exponent

−l = ⌊log2(
g

0.4|M|)⌋ to be the unique exponent corresponding to relative gap 0.4|M| ≤ gl < 0.8|M|.

For larger exponents −i ≥ −l + 5 = −(l − 5), we have gi ≤ gl−5 < 0.025|M|. Thus for hours

0, 1, . . . , l− 5 and exponents 0,−1, . . . ,−l + 5, the gap is still very small. The small gap makes the

inductive argument stronger, and we will use this small gap to show a high rate of cancelling keeps

shrinking the mass µ in half each hour and keeps the count of O agents large, above a constant

fraction 0.77|M|.

For the last few hours l − 4, . . . , l and exponents −l + 4, . . . ,−l, the doubling gap weakens

the argument. Thus we have separate bounds for each of these hours. These weaker bounds

acknowledge the fact that the majority count is starting to increase while the count of O agents is

starting to decrease.

Theorem 3.6.18. With very high probability the following holds. For all synchronous hours h =

0, . . . , l, during times [starth+ 2
c , endh], the count Oh of O agents at hour = h, obeys |Oh| ≥ τh|M|.

Then by time starth + 2
c + 41

m , the mass µ(>−h) above exponent −h satisfies µ(>−h) ≤ 0.001 · 2−h+1.

Then by time starth + 2
c + 47

m ≤ endh, the total mass µ(endh) ≤ ρh|M|2−h.

The constant ρh = 0.1 for h ≤ l − 5. Then we have ρl−4 = 0.104, ρl−3 = 0.13, ρl−2 = 0.212,

ρl−1 = 0.408, and ρl = 0.808.

The constant τh ≥ 0.97− 2ρ(h−1), so τh ≥ 0.77 for h ≤ l− 4, and the minimum value τl ≥ 0.15.
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Note that in the case of a tie, l is undefined since we always have gap gi = 0. Here the stronger

inductive argument will hold for all hours and exponents. In the tie case, we will technically define

l = L + 5 so the stronger h ≤ l − 5 bounds apply to all hours.

We will prove the three sequential claims via three separate lemmas. The first argument of

theorem 3.6.19, where the clock brings a large fraction of O agents up to hour h, will need parallel

time 2
c . The second argument of theorem 3.6.21, where the O agents reduce the mass above

exponent −h by split reactions, will need parallel time 41
m . The third argument of theorem 3.6.22,

where cancel reactions at exponent −h reduce the total mass, will need parallel time 6
m . Thus the

total time we need in a synchronous hour is

2

c
+

47

m
≤ 49

c
≤ 17

c2
≤ 0.45 · 45− 3.1

c2
,

where we use that c < 1
3 < m by theorem 3.6.5. Thus by theorem 3.6.15, since we have constant

k = 45 minutes per hour, each synchronous hour is long enough with very high probability.

The argument proceeds by induction, with each lemma using the previous lemmas and the

inductive hypotheses at previous hours. The base case comes from theorem 3.6.6, where we have

that the initial gap |g| < 0.025m, so l − 5 ≥ 0, and the starting mass is at most 0.03|M|. This

mass bound gives the base case for theorem 3.6.22, whereas since h = 0 is the minimum possible

hour, the base cases for theorem 3.6.19 and theorem 3.6.21 are trivial.

Lemma 3.6.19. With very high probability the following holds. For each hour h = 0, . . . , l, during

the whole synchronous hour [starth, endh], the count of O agents |O| ≥ (0.9976−2ρ(h−1))|M|. Then

during times [starth + 2
c , endh], the count of O agents at hour = h, |Oh| ≥ (0.97− 2ρ(h−1))|M|.

Proof. We show the first claim, that during synchronous hour h, the count |O| ≥ (0.9976 −

2ρ(h−1))|M| by process of elimination. By theorem 3.6.22, by time endh−1 < starth, the total

mass µ ≤ ρ(h−1)|M|2−h+1, which implies the total count {a : a.exponent ≥ −h} ≤ 2ρ(h−1)|M|

in all future configurations, since total mass is nonincreasing. Then by theorem 3.6.17, the count

|{O : O.hour > h} ∪ {b : b.exponent < −h}| ≤ 0.0024|M| until time endh. This leaves |M| −

0.0024|M| − 2ρ(h−1)|M| = (0.9976 − 2ρ(h−1))|M| agents who must be O agents with hour ≥ h

until time endh.
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By definition of time starth, there are at least 0.9|C| Clock agents with hour ≥ h that will

bring these O agents up to hour = h. We need to bring all but 0.0276|M| of these agents up to

hour = h to achieve the desired bound |Oh| ≥ (0.97 − 2ρ(h−1))|M|. We can apply theorem 3.6.3,

with a = 0.9c, b1 = (0.9976− 2ρ(h−1))m < (0.9976− 2 · 0.1)m, and b2 = 0.0276m to conclude this

happens after parallel time t, where t < (1 + ϵ)E [t] with very high probability. The expected time

E [t] =
ln(b1)− ln(b2)

2a
≤ ln(0.7976m)− ln(0.0276m)

2 · 0.9c
≤ 1.89

c
.

Thus for small constant ϵ > 0, we have t < (1 + ϵ)1.89c < 2
c with very high probability.

□

In order to reason about the total mass µ(>−h) above exponent −h, we will define the potential

function ϕ(>−h), where for a biased agent a with a.exponent = −i ≥ −h+1 at time t, ϕ(>−h)(a, t) =

4−i+h−1. The global potential

ϕ(>−h)(t) =
∑

a.exponent>−h

ϕ(a, t) ≥
∑

a.exponent>−h

4−h+1+h−1 = |{a : a.exponent > −h}|.

Since ϕ(>−h) upper bounds the count above exponent h, we can bound the mass µ(>−h)(t) ≤

2−h+1ϕ(>−h)(t). Also note that unlike the mass, ϕ(>−h)(t) strictly decreases via split reactions

since 4−i > 4−i−1 + 4−i−1. This will let us show that ϕ(>−h) exponentially decays to 0 when there

are a constant fraction of O agents to do these splits.

We first show that by hour h exponents significantly far above −h are empty. Letting q = ⌊ lnn
3 ⌋,

we will show the potential ϕ(>−h+q) hits 0 by hour h.

Lemma 3.6.20. For each hour h = 0, . . . , l, by time starth + 2
c , the maximum level among all

biased agents is at most −h + q with high probability 1−O(1/n12).

Proof. The statement is vacuous for hours h < q, so we must only consider hours h ≥ q.

We use the potential ϕ(>−h+q), and start the argument at time tstart = start(h−q) + 2
c + 41

m where

inductively by theorem 3.6.21 ϕ(>−h+q)(tstart) ≤ 0.001|M|. We must show that by time tend =

starth + 2
c , we have ϕ(>−h+q)(tend) = 0.

By theorem 3.6.19, the count of O agents with hour ≥ h − q, |O(≥h−q)| ≥ 0.77|M| during all

synchronous hours after start(h−q) + 2
c and up through synchronous hour l − 5 ≥ h − 5. Thus

the interval we consider consists of at least q − 5 synchronous hours. By theorem 3.6.15, each
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synchronous hour takes at least time [1.48(45− 2)− 2.2]/c2 ≥ 17/c2 ≥ 51/m, since c < 1
3 < m by

theorem 3.6.5. Thus the total time for this argument is at least tend − tstart ≥ 51(q−5)
m time.

For each of the 51(q−5)
m n interactions in this interval, we consider the expected change to

ϕ(>−h+q). For each biased agent a with a.exponent = −i > −h + q, a split reaction will change

the potential by ∆ϕa ≤ 4h−1(2 · 4−i−1 − 4−i) = 4h−1(−1
24−i) = −1

2ϕa. Then in each interaction at

parallel time t, the expected change in the potential

E
[
ϕ(>−h+q)(t + 1/n)− ϕ(>−h+q)(t)

]
≤

∑
a.exponent>(−h+q)

Pr [a splits] ·∆ϕa

≤
∑

a.exponent>(−h+q)

2 · 0.77m

n
· −1

2
ϕa = −0.77m

n
ϕ(>−h+q)(t).

Then we have E
[
ϕ(>−h+q)(t + 1/n)|ϕ(>−h+q)(t)

]
≤ (1− 0.77m

n )ϕ(>−h+q)(t).

We now recursively apply this bound to all 51(q−5)
m n interactions beginning at time tstart:

E
[
ϕ(>−h+q)(tend)|ϕ(>−h+q)(tstart)

]
≤
(

1− 0.77m

n

) 51(q−5)
m

n

ϕ(>−h+q)(tstart)

E
[
ϕ(>−h+q)(tend)

]
≤ exp (−0.77 · 51 lnn/3) · exp (51 · 5 · 0.77) · 0.001|M|

≤ n−13exp (197) · 0.001mn

= O
(
n1−13

)
= O

(
n−12

)
.

Finally, since ϕ(>−h+q) takes nonnegative integer values, we can apply Markov’s Inequality to

conclude Pr
[
ϕ(>−h+q)(tend) > 0

]
= O(1/n12). □

Now we can reason about the potential ϕ(>−h) during hour h, which will decrease by a large

constant factor. The upper bound on ϕ(>−h) gives the a bound on the mass of the upper tail

µ(>−h).

Lemma 3.6.21. For each hour h = 0, . . . , l, by time starth + 2
c + 41

m , the potential ϕ(>−h) ≤

0.001|M| with very high probability. This implies the mass above exponent −h is µ(>−h) ≤ 0.001|M|2−h+1.

Proof. By theorem 3.6.19, after time starth + 2
c , we have a count |Oh| ≥ τh|M|, where the

weakest bound is at hour l, where τl = 0.15.
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Inductively, we have ϕ(>−h+1)(starth) ≤ 0.001|M| by time start(h−1)+
2
c+41

m . By theorem 3.6.22,

by time end(h−1), the total mass µ ≤ ρ(h−1)|M|2−h+1 ≤ ρ(l−1)|M|2−h+1. Thus there are at most

ρ(l−1)|M| = 0.408|M| biased agents with exponent −h + 1, which lets us bound the potential

ϕ(>−h)(starth + 2
c ) ≤ (0.408 + 4 · 0.001)|M| = 0.412|M|. Thus we must drop the potential by the

constant factor 412.

To show that ϕ drops by a constant factor, we will use Φ(t) = ln
(
ϕ(>−h)(t)

)
, which will be

a supermartingale. If agent a at with exponent −i splits, with ϕa = 4−i+h−1, this changes the

potential ϕ by ∆ϕa = −1
2ϕa. The potential Φ then changes by

∆Φa = ln
(
ϕ(>−h) + ∆ϕa

)
− ln

(
ϕ(>−h)

)
= ln

(
1 +

−1
2ϕa

ϕ(>−h)

)
≤ − ϕa

2ϕ(>−h)
.

The expected change in Φ is then

E [∆Φ] ≤
∑

a.exponent>−h

Pr [a splits] ·∆Φa ≤
∑

a.exponent>−h

2τhm

n
· − ϕa

2ϕ(>−h)
= −0.15m

n
.

We define the supermartingale (Φj)
41
m

n

j=0, where Φj = Φ(starth + 2
c + j

n). Then the desired

inequality is ϕ>(h+1)(starth + 2
c + 41

m ) ≤ 0.001|M| ≤ ϕ>(h+1)(starth + 2
c )/412, so we need to show

Φ 41
m

n − Φ0 ≤ ln
(

1
412

)
. The expected value

E
[
Φ 41

m
n − Φ0

]
≤ −0.15m

n
· 41

m
n = −6.15 ≤ ln

(
1

412

)
− 0.12.

To apply Azuma’s Inequality, we will need a bound on the difference |Φj+1−Φj | ≤ max
∣∣∣ ϕa

2ϕ(>−h)

∣∣∣.
During the interval we consider, ϕ(>−h) ≥ 0.001|M|, since after that the desired inequality will hold.

By theorem 3.6.20, by time starth + 2
c , the maximum exponent in the population is at most −h+q,

where q = ⌊ lnn
3 ⌋, so ϕa ≤ 4(−h+q)+h−1 = 4q−1. Using the fact that 4q = eln 4 lnn/3 = O(n0.47), we

can bound the largest change in Φ as

|Φj+1 − Φj | ≤
4q−1

0.002|M|
= O

(
4q

n

)
= O(n0.47/n) = O(1/n0.53).

Now by Azuma’s Inequality (theorem 3.6.1) we have

Pr
[
(Φ 41

m
n − Φ0)− E

[
Φ 41

m
n − Φ0

]
≥ 0.12

]
≤ exp

− 0.122

2
∑ 41

m
n

j=0(O(n−0.53))2

 = exp
(
−Θ(n0.06)

)
.
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Thus ϕ(>−h) will drop by at least the constant factor 412 with very high probability, giving

ϕ(>−h)(starth + 2
c + 41

m ) ≤ 0.001|M|. □

Lemma 3.6.22. For each hour h = 0, . . . , l, by time starth + 2
c + 47

m ≤ endh, the total mass

µ ≤ ρh|M|2−h with very high probability. The constant ρh = 0.1 for all h ≤ l + 5, then the last few

constants ρl−4 = 0.104, ρl−3 = 0.13, ρl−2 = 0.212, ρl−1 = 0.408, and ρl = 0.808.

Proof. We start the argument at time starth+2
c+41

m . Let A = {a : a.opinion = +1, a.exponent =

−h} and B = {b : b.opinion = −1, b.exponent = −h}. We will show that by time endh, large

number of cancel reactions happen between the agents in A and B to reduce the total mass. In-

ductively, by endh−1 we have total mass µ ≤ ρ(h−1)|M|2−h+1. We assume in the worst case (since

we need the total mass to be small) that we start with the maximum possible amount of mass

µ = ρ(h−1)|M|2−h+1. We use the upper bound on the gap gh ≤ α|M|, where α = 0.8 · 2h−l and

assume in the worst case (since larger gaps reduce the rate of cancelling reactions) the largest

possible gap β+ − β− = gh2−h = α|M|2−h. This gives majority mass β+ = (ρ(h−1) + α
2 )|M|2−h

and minority mass β− = (ρ(h−1) − α
2 )|M|2−h.

Since the minority is the limiting reactant in the cancelling reactions, we assume in the worst

case the smallest possible minority count at exponent −h, where all mass outside of exponent −h is

the minority. Then the majority count at exponent −h is |A| = (ρ(h−1)+
α
2 )|M|. By theorem 3.6.21,

the mass above exponent −h is µ(>−h)(starth + t2) ≤ 0.001|M|2−h+1. By theorem 3.6.17, the

maximum count below exponent −h is 0.0024|M|, so the mass µ(<−h) ≤ 0.0024|M|2−h−1. This

leaves a minority count at exponent −h of |B| = (ρ(h−1) − α
2 − 0.002− 0.0012)|M|.

Now we will apply theorem 3.6.2 with a = (ρ(h−1) + α
2 )m and b = (ρ(h−1) − α

2 − 0.0032)m.

First we consider the cases where h ≤ l + 5, where ρh = ρ(h−1) = 0.1 There the bound on the gap

α = 0.8 · 2(l−5)−l = 0.025. This gives a = 0.1125m and b = 0.0843m. By theorem 3.6.2, the time t

to cancel a fraction d = 0.05m from both a and b has mean

E [t] ∼ ln(b)− ln(a)− ln(b− d) + ln(a− d)

2(a− b)

=
ln(0.0843)− ln(0.1125)− ln(0.0343) + ln(0.0625)

2(0.0282m)
<

5.53

m
,
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so E [t] (1 + ϵ) < 6
m and t < 6

m with very high probability. Cancelling this fraction d reduces the

total mass by 2dn2−h = 0.1|M| · 2−h = ρ(h−1)|M|2−h+1 − ρh|M|2−h. Then the total mass is at

most ρh|M|2−h by time starth + 2
c + 47

m .

For the remaining levels h = l − 4, l − 3, l − 2, l − 1, l, we will repeat the above argument and

calculation, but now the bound will change so ρh ̸= ρ(h−1). First our bound on the gap α will

double as we move down each level. This causes the worst case fractions a and b to be spread

further apart. Then d, the largest fraction which will cancel from both sides within 6
m time with

high probability, will be smaller. This gives the new mass bound ρh, since from the equation

ρ(h−1)|M|2−h+1 − ρh|M|2−h = 2dn2−h, we have d = (ρ(h−1) − ρh
2 )m and ρh = 2(ρ(h−1) − d

m). This

relative total mass bound ρh will be growing larger as h decreases. This is to be expected, since

we do in fact see the count of biased agents growing as they reach the final exponents before the

count of O agents runs out (see fig. 3.4c and fig. 3.4d, where the value −l = −19).

The following table shows the constants used in the computations at each of the steps h =

l − 5, l − 4, . . . , l. The top row h = l − 5 corresponds to the exact calculations above, then the

following rows are the constants used in the same argument for lower levels.

h = l − 5 α = 0.025 a = 0.1125m b = 0.0843m d = 0.05m E [t] < 5.53/m ρ(l−5) = 0.1

h = l − 4 α = 0.05 a = 0.125m b = 0.0718m d = 0.048m E [t] < 5.83/m ρ(l−4) = 0.104

h = l − 3 α = 0.1 a = 0.154m b = 0.0508m d = 0.039m E [t] < 5.66/m ρ(l−3) = 0.13

h = l − 2 α = 0.2 a = 0.23m b = 0.0268m d = 0.024m E [t] < 5.29/m ρ(l−2) = 0.212

h = l − 1 α = 0.4 a = 0.412m b = 0.0088m d = 0.008m E [t] < 2.95/m ρ(l−1) = 0.408

h = l α = 0.8 a = 0.808m b = 0.0048m d = 0.004m E [t] < 1.11/m ρl = 0.808

Note that for the last couple hours, the worst case for b is very small, so the amount of cancelling

that happens is negligible, and the relative mass bound essentially doubles. We will see later that

the minority count does in fact sharply decrease, so it is accurate that the rate of cancellation

drops to zero, and the count of biased majority agents is roughly doubling for these last couple

rounds. □

3.6.6. End of Phase 3. Now that we have proven theorem 3.6.18, we will finish analyzing

separately the cases of an initial tie and an initial majority opinion.
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In the case of a tie, the stronger bounds from theorem 3.6.18 hold all through the final hour

h = L. Thus at hour L we still have a constant fraction 0.77|M| of O agents. We now show that

in the remaining O(log n) time in Phase 3, while the Clock agents with hour = h decrement their

counter in line 6, these O agents can keep doing split reactions to bring all remaining biased agents

down to exponent −L. This lets us now prove theorem 3.6.7, the main result of the section for the

case of a tie.

Theorem 3.6.7. If the initial configuration was a tie with gap 0, then by the end of Phase 3,

all biased agents have exponent = −L, with high probability 1−O(1/n2).

Proof. We start by using theorem 3.6.18, where at hour L, the total mass µ(endL) ≤ 0.1|M|2−L.

Thus the count of biased agents is at most 0.1|M|. We also have at least 0.77|M| O agents with

hour = L (this count is actually slightly higher, as we could show almost all of the 0.9|M| O agents

reach hour = L quickly by the same argument as theorem 3.6.19, but this bound will suffice).

We use the potential ϕ(>−L), where by theorem 3.6.21, we have ϕ(>−L)(end0) ≤ 0.001|M|.

The goal is to now show that ϕ(>−L) = 0 within the O(log n) time it takes for any counter to

hit 0 and trigger the move to the next phase. This proof proceeds identically to the proof of

theorem 3.6.20, where we had shown that E
[
ϕ(>−L)(t + 1/n)|ϕ(>−L)(t)

]
≤ (1 − 0.77m

n )ϕ(>−L)(t).

We again recursively bound the expected value of ϕ(>−L) after an additional 16 lnn time.

E
[
ϕ(>−L)(endL + 16 lnn)|ϕ(>−L)(end0)

]
≤
(

1− 0.77m

n

)16n lnn

ϕ(>−L)(end0)

E
[
ϕ(>−L)(endL + 16 lnn)

]
≤ exp (−0.77 · 0.25 · 16 lnn) · 0.001|M|

≤ n−3.080.001mn = O(1/n2).

Again we conclude by Markov’s Inequality that Pr
[
ϕ(>−L)(endL + 16 lnn) > 0

]
≤ O(1/n2).

Finally we must argue that Phase 3 lasts at least until time endL + 16 lnn. We will bound the

probability that a Clock agent can decrement its counter down to 0 before time endL+16 lnn. Note

the if statement on line 6 will only decrement the counter when both Clock agents have reached

the final minute. Even if in the worst case an agent was at the final minute at the beginning

of the phase, until time endL−1 the count of other Clock agents with minute = kL is at most

0.1p|C| = 0.001|C|. By theorem 3.6.15, the time between consecutive hours is at most 3.86k
c2

< 290
c

using k = 45 and the bound c > 0.2 with very high probability from theorem 3.6.5. Then the
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number of interactions until endL−1 is at most 290
c Ln. In each interaction, the probability of the

Clock agent decrementing its counter is at most 2 ·0.001c · 1n , so the expected number of decrements

E [X] ≤ 290L · 0.002 ≤ 0.58(log2(n)) ≤ 0.84 lnn. Then by Chernoff bounds in theorem 1.3.1, with

µ = 0.84 lnn, δ = 5, we have

Pr [X ≥ 5.04 lnn] ≤ Pr [X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
= exp (−3 lnn) = n−3.

Then after time endL−1, we assume that all Clock agents have minute = kL. In this case, the

probability a given Clock agent decrements its counter is at most 2c
n . Thus in 16n lnn interactions,

the expected number of decrements E [X] ≤ 32c lnn ≤ 11 lnn, using c < 1
3 from theorem 3.6.5. We

again use theorem 1.3.1, with µ = 11 lnn, δ = 0.9, to conclude

Pr [X ≥ 20.9 lnn] ≤ Pr [X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
≤ exp (−3.07 lnn) ≤ n−3.

Then by union bound, Clock agents decrements their counter at most 5.04 lnn+ 20.9 lnn < 26 lnn

times with high probability 1 − O(1/n2). In Phase 3, we initialize counter ← c3 lnn, so setting

this counter constant c3 = 26, we conclude that no agent moves to the next phase before time

endL+16 lnn with high probability. This gives enough time to conclude that all biased agents have

exponent = −L by the end of Phase 3. □

Now we consider the case where there is an initial majority, which we have assumed without

loss of generality was A. Here the argument of theorem 3.6.18 stops working at exponent −l,

because of the substantial relative gap 0.4|M| ≤ gl < 0.8|M|. Next we will need to show that the

count of O gets brought to almost 0 by split reactions with the majority. In order to show that

the count of O stays small however, we will need some way to bound future cancel reactions. To

do this, we will now show that during the last few hours l − 4, . . . , l, the minority mass β− drops

to a negligible amount. We will then use this tight bound to show the majority consumes most

remaining O agents, and finally that constraints on the majority mass β+ will force the majority

count to remain above 99% at exponents −l,−(l + 1),−(l + 2) for all reachable configurations in

the rest of Phase 3.

We first show inductively that the minority mass becomes negligible during the last few hours

l− 5, . . . , l. We already showed a bound on the total mass in theorem 3.6.22, which used an upper

bound on the gap. If we want the minority mass to be small, now the worst case is the smallest
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possible gap. Notice that just using the final mass bound µ < ρl|M|2−l = 0.808|M|2−l in the

worst case with the smallest possible gap gl = 0.4 at exponent −l, would imply β+ ≈ 0.6|M|2−l

and β− ≈ 0.2|M|2−l. To get a much tighter upper bound on minority mass, we will make a similar

inductive argument to theorem 3.6.22, now using the lower bound for each gap gh, to show enough

minority mass cancels at exponent −h during each hour h.

Lemma 3.6.23. For each hour h = l−5, . . . , l, by time endh, the minority mass β− ≤ ξh|M|2−h

with very high probability. The constants ξ(l−5) = 0.04375, ξ(l−4) = 0.0375, ξ(l−3) = 0.0267, ξ(l−2) =

0.0145, ξ(l−1) = 0.0056, and ξl = 0.004.

Proof. For the base case h = l−5, by theorem 3.6.22, the total mass µ(end(l−5)) ≤ 0.1|M|2−l+5.

The relative gap 0.0125|M| ≤ g(l−5) < 0.025|M|, so now in the worst case (for minority mass be-

ing small), we assume the smallest gap g(l−5) = 0.0125|M| and largest total mass µ(end(l−5)) =

β+ + β− = 0.1|M|2−l+5. Since the invariant gap g = β+ − β− = g(l−5)2
−l+5, we have β+ =

0.05625|M|2−l+5 and β− = 0.04375|M|2−l+5, giving an upper bound constant ξ(l−5) = 0.04375.

Now we outline the inductive step, for each level h = l−4, . . . , l. We will show the constants for

the first step h = l − 4 here, and then list constants for the remaining steps in a table below. Let

A = {a : a.opinion = +1, a.exponent = −h} and B = {b : b.opinion = −1, b.exponent = −h}.

We start the argument at time starth + 2
c + 41

m , and with the previous bound β−(end(h−1)) =

ξ(h−1)|M|2−h+1 = 0.0875|M|2−h. We will then assume in the worst case the smallest possible gap

gh = α|M| = 0.4 · 2h−l|M| = 0.025|M|. This gives β+ = (2ξ(h−1) + α)|M|2−h. We then assume

in the worst case that all mass allowed outside exponent −h belongs to the minority (so doesn’t

reduce by cancelling), giving majority count |A| = (2ξ(h−1)+α)|M|. We also assume the maximum

amount of mass outside exponent −h. By theorem 3.6.17, before time endh, the count below

exponent −h is at most 0.0024|M|, so the mass is at most 0.0024|M|2−h−1. By theorem 3.6.21,

after time starth + 2
c + 41

m , the mass above exponent −h is µ(>−h) ≤ 0.001 · 2−h+1. This leftover

remaining mass at exponent −h gives minority count |B| = (2ξ(h−1) − 0.0012− 0.002)|M|.

Now we will apply theorem 3.6.2 with fractions a = (2ξ(h−1)+α)m = 0.1125m and b = (2ξ(h−1)−

0.0036)m = 0.0843m. These match the first fractions a, b used in the proof of theorem 3.6.22, and
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again we use that the time t to cancel a fraction d = 0.05m from both a and b has mean

E [t] ∼ ln(b)− ln(a)− ln(b− d) + ln(a− d)

2(a− b)

=
ln(0.0843)− ln(0.1125)− ln(0.0343) + ln(0.0625)

2(0.0282m)
<

5.53

m
,

so E [t] (1 + ϵ) < 6
m and t < 6

m with very high probability. Cancelling this fraction d reduces the

minority mass by dn2−h = 0.05|M| ·2−h, giving a new minority mass β− = (2ξ(h−1)− d
m)|M|2−h =

0.0375|M|2−h. Thus for ξh = 0.0375, the minority mass is at most ξh|M|2−h by time starth+ 2
c + 47

m .

For the remaining levels h = l − 4, l − 3, l − 2, l − 1, l, we will repeat the above argument and

calculation. The following table shows the constants used in the computations at each of the steps

h = l− 4, l− 3, . . . , l. The top row h = l− 4 corresponds to the exact calculations above, then the

following rows are the constants used in the same argument for lower levels.

h = l − 4 α = 0.025 a = 0.1125m b = 0.0843m d = 0.05m E [t] < 5.53/m ξ(l−4) = 0.0375

h = l − 3 α = 0.05 a = 0.125m b = 0.0718m d = 0.048m E [t] < 5.83/m ξ(l−3) = 0.0267

h = l − 2 α = 0.1 a = 0.154m b = 0.0508m d = 0.039m E [t] < 5.66/m ξ(l−2) = 0.0145

h = l − 1 α = 0.2 a = 0.23m b = 0.0268m d = 0.024m E [t] < 5.29/m ξ(l−1) = 0.0056

h = l α = 0.4 a = 0.412m b = 0.0088m d = 0.008m E [t] < 2.95/m ξl = 0.004

Note that the structure of the proof yields the same sequence of values a, b as the proof of

theorem 3.6.22, so we have repeated the exact same applications of theorem 3.6.2. This time,

however, we are using the cancelled fraction d to show the minority mass becomes very small. □

Now theorem 3.6.23 gives that minority mass β− ≤ 0.004|M|2−l by time endl. The rest of the

argument will not try to reason about probabilistic guarantees on what the distribution looks like.

Instead, we will make claims purely about reachability, and show that we get to a configuration

where invariants force the count of majority agents to remain high in any reachable configuration

using the transitions of Phase 3.

Lemma 3.6.24. By the time end(l+2), the count of majority agents with exponent ∈ {−l,−(l +

1),−(l + 2)} is at least 0.96|M|, with very high probability. Then in all reachable configurations
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where all agents are still in Phase 3, the count of majority agents with exponent ∈ {−l,−(l +

1),−(l + 2)} is at least 0.92|M|.

Proof. We argue by process of elimination. First we apply theorem 3.6.17 to conclude that

until time end(l+2), the count |{O : O.hour > l + 2} ∪ {b : b.exponent < −(l + 2)}| ≤ 0.0024|M|

with very high probability.

Now theorem 3.6.23 gives that minority mass β− ≤ 0.004|M|2−l after time endl. Then we can

bound the maximum minority count at exponent −(l + 2) and above by 0.016|M|. In addition,

these minority agents could eliminate more majority agents by cancel reactions. The count of

agents they could cancel with is at most 0.016|M|.

This leaves at least |M|−0.0024|M|−0.016|M−|0.016|M| = 0.9656|M| agents that are either

majority or O agents at time endl. We will next show that in hour l + 2, most of any remaining

O agents set hour = l + 2 and then are consumed in split reactions with majority agents with

exponent > −(l + 2).

The majority mass β+ ≥ g = gl2
−l ≥ 0.4|M|2−l. By theorem 3.6.21, at most 0.001|M|2−l+1 =

0.002|M|2−l of β+ can come from exponents above −l. Thus we need mass 0.398|M|2−l from ma-

jority agents at exponent −l and below. Note that if the count |{a : a.opinion = +1, a.exponent ∈

{−l,−(l + 1)}}| ≤ 0.19|M|, then the maximum majority mass could achieve would be 0.81|M|

with exponent = −l − 2 and 0.19|M| with exponent = −l, which gives (0.814 + 0.19)|M|2−l <

0.398|M|2−l. This implies we must have a count of at least 0.19|M| of majority agents at expo-

nents −(l + 1) and −l in all reachable configurations.

Next we show that all but at most 0.0036|M| of these O agents gets brought up to hour = l+2.

We start at time startl+2, when the count |O| ≤ (0.9656 − 0.398)M = 0.5676|M|, and the count

of clock agents at hour = l + 2 is at least 0.9|C|. Thus we can apply theorem 3.6.3, with a = 0.9c,

b1 = 0.5676m, b2 = 0.0056m to conclude that at most 0.0056|M| of O agents are left at the wrong

hour after parallel time t1 < (1 + ϵ)E [t1], where the expected time

E [t1] =
ln(b1)− ln(b2)

2a
=

ln(0.5676m)− ln(0.0036m)

1.8c
≤ 2.82

c
.

Thus with very high probability t1 <
3
c .

Next the at least 0.19|M| majority agents at exponents −(l + 1) and −l will eliminate these O

agents by split reactions. We show that at most 0.001|M| of Oh agents are left. We again apply
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theorem 3.6.3, with a = 0.19m, b1 = 0.5676m, b2 = 0.01m to conclude this takes at most parallel

time t2 < (1 + ϵ)E [t2], where

E [t2] =
ln(b1)− ln(b2)

2a
=

ln(0.5676m)− ln(0.001m)

0.38m
≤ 16.69

m
.

Thus with very high probability t2 <
17
m .

Account for these counts 0.0032|M| and 0.001|M| of leftover O agents, along with the maximal

count 0.001|M| of biased agents above exponent −l, we are left with 0.9656|M| − 0.0032|M| −

0.001|M| − 0.001|M| = 0.96|M| agents that must be majority agents with exponent ∈ {−l,−(l +

1),−(l + 2)}.

Now we argue that no reachable configurations can bring this count below 0.92|M|. We have

already accounted for the maximum number of minority agents that can do cancel reactions at

exponents −l,−(l + 1),−(l + 2). Thus we only have to argue that no amount of split reactions can

bring this count down by 0.04|M|. Note that reducing the count by 0.04|M| will reduce the mass

at these exponents by at least 0.04|M|2−(l+2). It will take at least 0.08|M| agents below exponent

−l − 2 to account for the same mass, for a total of 0.96|M| − 0.04|M| + 0.08|M| = |M|. Thus

it is not possible to move more than 0.04|M| majority agents below exponent −(l + 2) by split

reactions, because there are not enough Main agents to account for the mass. □

We can now use the results of theorem 3.6.24, theorem 3.6.21, and theorem 3.6.23, including

the high probability requirements from all previous lemmas, to prove theorem 3.6.8, the main result

for Phase 3 in the non-tie case:

Theorem 3.6.8. Assume the initial gap |g| < 0.025|M|. Let the exponent −l = ⌊log2(
g

0.4|M|)⌋.

Let i = sign(g) be the majority opinion and M be the set of all agents with role = Main, opinion =

i, exponent ∈ {−l,−(l + 1),−(l + 2)}. Then at the end of Phase 3, |M | ≥ 0.92|M| with high

probability 1−O(1/n2).

In addition, the total mass above exponent −l is µ(>−l) =
∑

a.exponent>−l

|a.bias| ≤ 0.002|M|2−l,

and the total minority mass is β− =
∑

a.opinion=−i
|a.bias| ≤ 0.004|M|2−l.

3.6.7. Analysis of final phases.
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3.6.8. Reserve agent Phases Protocol 10 and Protocol 11. We now consider the behavior

of the Reserve agents in Phase 5 and Phase 6. We first show that with high probability they are

also able to set their sample field during Phase 5.

Lemma 3.6.25. By the end of Phase 5, all Reserve agents have sample ̸= ⊥, with high probability

1−O(1/n2).

Proof. By theorem 3.6.8, we have at least 0.92|M|majority agents with exponent ∈ {−l,−(l+

1),−(l+ 2)} by the end of Phase 3. Now we can analyze the process of Reserve agents sampling the

exponent of the first biased agent they encounter in Phase 5 with theorem 3.6.3, where subpopula-

tions A = {a : a.role = Main, a.bias = ±1} with and B = R, comprising fractions a ≥ 0.92m and

b1 = r. Then by theorem 3.6.3, all Reserve agents set their sample within time t, where t ≤ 5 lnn
2·0.92m

with high probability 1 − O(1/n2). Thus for appropriate choice of counter constant c5, this will

happen before the first Clock agent advances to the next phase. □

We next show that the Reserve agents are able to bring the exponents of all biased agents down

to at most −l during Phase 6.

Lemma 3.6.26. By the end of Phase 6, all biased agents have exponent ≤ −l, with high proba-

bility 1−O(1/n2).

Proof. theorem 3.6.8, the mass above exponent −l is µ(>−l) ≤ 0.001|M|2−l+1. We must

show that all of this mass moves down to at least exponent −l via split reactions with the Reserve

agents (line 3 in Phase 6). We consider the following two cases based on whether the size of

A−l = {a : a.opinion = +1, a.exponent = −l}.

In the first case, |A| > 0.19|M| and we will show all agents get brought down to exponent ≤ −l.

Because of the sampling process in Phase 5, the count of R−l = {r : r.role = Reserve, r.sample =

−l} has size at least |R−l| ≥ 0.18|R| with very high probability, by standard Chernoff bounds. If all

the agents above exponent −l split down to exponent −l, they would have count at most 0.002|M|,

potentially all coming out of the initial count of R−l. Thus for the entirety of Phase 6, we have

|R−l| ≥ 0.18|R| − 0.002|M| = n(0.18r − 0.002m) ≥ n(0.18 · 0.24− 0.002) ≥ 0.04n,

using the very high probability bound r > 0.24 from theorem 3.6.5.
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In the second case |A| ≤ 0.19|M|. Now we cannot make guarantees on the size |R−l|, so we

will instead reason about A−(l+1) = {a : a.opinion = +1, a.exponent = −(l + 1)} and R−(l+1) =

{r : r.role = Reserve, r.sample = −(l + 1)}.

We first show that |A−(l+1)| > 0.59|M|. Recall by definition of l and gl that the majority mass

β+ ≥ gl2
−l ≥ 0.4|M|2−l. At most 0.001|M|2−l+1 can come from exponents above −l and at most

0.19|M|2−l comes from exponent −l. Thus there must be at least mass (0.398− 0.19)|M|2−l from

A−(l+1) and the exponents below. If |A−(l+1)| = 0.59|M|, then even putting all 0.41|M| remaining

Main agents at exponent = −(l + 2) would only give mass 0.59|M|2−(l+1) + 0.41|M|2−(l+2) =

0.3975|M|2−l. Thus we require |A−(l+1)| > 0.59|M|. Again by standard Chernoff bounds from the

sampling process of Phase 5, this implies the initial size of |R−(l+1)| ≥ 0.58|R|.

If all the agents above exponent −l split down to exponent −(l + 1), they would have count

at most 0.004|M|, potentially all coming out of the initial count of R−l. In addition, we can lose

count |A| ≤ 0.19|M| from R−l from additional split reactions. This implies that for the entirety of

Phase 6, we have count at least

|R−(l+1)| ≥ 0.58|R| − 0.004|M| − 0.19|M| = n(0.58r − 0.004m− 0.19m)

≥ n(0.58 · 0.24− (0.004 + 0.19) · 0.51) ≥ 0.04n,

using the very high probability bounds r > 0.24 and m < 0.51 from theorem 3.6.5.

Thus in both cases we maintain a count of at least 0.04n Reserve agents at level −l or −(l+ 1).

For an agent a with a.exponent > −l, the probability that in a given interaction agent a does a

split reaction (line 3 in Phase 6) with an agent in R−l ∪ R−(l+1) is at least 2·0.04n·1
n2 = 0.08

n . Now

we proceed as in the proofs of theorem 3.6.20 and theorem 3.6.7, analyzing the potential ϕ(>−l) to

show it hits 0 in O(log n) time.

Recall that for each biased agent a with a.exponent = −i > −l and local potential ϕa = 4−i+l−1,

a split reaction changes the potential by ∆ϕa ≤ 4l−1(2 · 4−i−1− 4−i) = 4l−1(−1
24−i) = −1

2ϕa. Then

in each interaction at parallel time t, the expected change in the potential

E
[
ϕ(>−l)(t + 1/n)− ϕ(>−l)(t)

]
≤

∑
a.exponent>−l

Pr [a splits] ·∆ϕa

≤
∑

a.exponent>−l

0.08

n
· −1

2
ϕa = −0.04

n
ϕ(>−l)(t).
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Thus we have E
[
ϕ(>−l)(t + 1/n)|ϕ(>−l)(t)

]
≤ (1− 0.04

n )ϕ(>−l)(t).

When we begin the argument at time tstart at the beginning of Phase 6, we start with ϕ(>−l)(tstart) ≤

0.001|M| from the final iteration of theorem 3.6.21. We will wait until time tend = tstart + 75 lnn,

and now recursively bound the potential after these 75n lnn interactions:

E
[
ϕ(>−l)(tend)|ϕ(>−l)(tstart)

]
≤
(

1− 0.04

n

)75n lnn

ϕ(>−l)(tstart)

E
[
ϕ(>−h+q)(tend)

]
≤ exp (−0.04 · 75 lnn) · 0.001|M|

≤ n−3 · 0.001mn = O
(
n−2

)
Finally, since ϕ(>−l) takes nonnegative integer values, we can apply Markov’s Inequality to conclude

Pr
[
ϕ(>−l)(tend) > 0

]
= O(1/n2). So after 75 lnn time in Phase 6, all biased agents have exponent ≤

−l, with high probability. For appropriate choice of counter constant c6, this happens before any

Clock agent advances to the next phase. □

Recall M is the set of all majority agents with exponent ∈ {−l,−(l + 1),−(l + 2)}, where

|M | ≥ 0.92|M| at the end of Phase 3 by theorem 3.6.8. We finally observe that after Phase 6, M

is still large.

Lemma 3.6.27. At the end of Phase 6, |M | ≥ 0.87|M| with very high probability.

Proof. By theorem 3.6.8, |M | ≥ 0.92|M| at the end of Phase 3, so the count of all other main

agents is at most 0.08|M|. By standard Chernoff bounds on the sampling process in Phase 5, the

count

|{r : r.role = Reserve, r.sample /∈ {−l,−(l + 1),−(l + 2)}}| ≤ 0.09|R| ≤ 0.05|M|.

Split reactions that consume these Reserve agents are the only way to bring agents out of the set

M . Thus at the end of Phase 6, the count is still at least

|M | ≥ 0.92|M| − 0.09|R| ≥ 0.87|M|,

using |R| < 5
9 |M| with very high probability by theorem 3.6.5. □
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3.6.9. Minority elimination Phases Protocol 12 and Protocol 13. Next we argue that

in Phase 7, the agents in M are able to eliminate all minority agents with exponent ∈ {−l,−(l +

1),−(l + 2)}. Note that these minority agents are able to do a cancel reaction with any agent in

M , since by design Phase 7 allows reactions between agents with an exponent gap of at most 2.

We first argue that |M | must stay large through the entirety of Phase 7:

Lemma 3.6.28. At the end of Phase 7, |M | ≥ 0.8|M|.

Proof. We use the bound on minority mass β− ≤ 0.004|M|2−l from theorem 3.6.8. This

implies the minority count at exponent −(l + 4) and above is at most 0.064|M|, since a 0.064|M| ·

2−(l+4) ≥ β. Note that cancelling with these minority agents is the only way for a majority agent

in M to change its state in Phase 7. Using the previous bound from theorem 3.6.27, the count of

M can decrease at most to |M | = 0.87|M| − 0.064|M| ≥ 0.8|M|. □

Now we argue that these agents in M eliminate all high exponent minority agents.

Lemma 3.6.29. At the end of Phase 7, all minority agents have exponent < −(l+2), with high

probability 1−O(1/n2).

Proof. From theorem 3.6.26, all minority agents already have exponent ≤ −l.

Let B−l, B−(l+1), B−(l+2) be the sets of minority agents with exponent = −l,−(l+ 1),−(l+ 2),

respectively. We argue successively that |B−l| = 0, then |B−(l+1)|, then |B−(l+2)| = 0.

The initial bound on minority mass β− ≤ 0.004|M|2−l from theorem 3.6.8 implies that initially

|B−l| ≤ 0.004|M|. Note that an interaction with any agent in M will bring remove an agent from

B−l via one of the Phase 7 cancel reactions. Using the bound |M | ≥ 0.8|M| during the entire

phase from theorem 3.6.28, we can use theorem 3.6.3 to bound the time for |B−l| = 0. We have

constants a = 0.8m and b1 = 0.004m. Then by theorem 3.6.28, with high probability 1−O(1/n2),

the time t1 to eliminate the count of B−l is at most t1 ≤ 5 lnn
2(0.8m−0.004m) ≤ 6.41 lnn, using the bound

m ≥ 0.49 from theorem 3.6.5.

Next we wait to eliminate the count of B−(l+1), by a similar argument. Initially the count

is at most |B−(l+2)| ≤ 0.008|M|, and this will all cancel in at most time t2. By theorem 3.6.28,

with high probability, t2 ≤ 5 lnn
2(0.8m−0.008m) ≤ 6.45 lnn. The same argument for B−(l+2), initially

|B−(l+2)| ≤ 0.016|M|, gives t3 ≤ 5 lnn
2(0.8m−0.016m) ≤ 6.51 lnn.
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Thus the entire process requires time at most t1 + t2 + t3 < 20 lnn. So for appropriate choice of

counter constant c7, this will happen before the first Clock agent advances to the next phase. □

Now we will prove that the remaining 0.8|M| majority agents in M are able to eliminate all

remaining minority agents in Phase 8.

Lemma 3.6.30. At the end of Phase 8, there are no more minority agents, with high probability

1−O(1/n2).

Proof. From theorem 3.6.28 and theorem 3.6.29, by the end of Phase 7, we have |M | ≥ 0.8|M|

and all minority agents have exponent < −(l + 2). We assume in the worst case all 0.2|M| other

Main agents have the minority opinion. Note by the consumption reaction in Phase 8, every

minority agent will be eliminated by an agent in M that still has full = False. Thus we can apply

theorem 3.6.2, with a = 0.8m and b = 0.2m, to conclude that all remaining minority agents are

eliminated in time t, where t ≤ 5 lnn
2(0.8m−0.2m) ≤ 8.5 lnn, using m ≥ 0.495 with very high probability

from theorem 3.6.5. So for appropriate choice of counter constant c8, this will happen before the

first Clock agent advances to the next phase. □

3.6.10. Fast Stabilization. We next give a time bound for the stable backup:

Lemma 3.6.31. The 6-state protocol in Phase 10 stably computes majority in O(n log n) stabi-

lization time, both in expectation and with high probability.

Proof. Note that agents in the initial state with active = True and output ∈ {A,B} can

only change their state by a cancel reaction in line 3 with another active agent with the opposite

opinion.

First we consider the case where one opinion, without loss of generality A, is the majority. We

first wait for all active B agents to meet an active A agent and changed their state to active T

via line 3. This is modelled by the “cancel reaction” process described in theorem 3.6.2, taking

expected O(n) time and O(n log n) time with high probability. At this point, there are no active B

agents and at least one active A agent remaining. We next wait for this active A agent to interact

with all remaining active T agents, which will then become passive via line 5. This takes O(n log n)

time in expectation and with high probability by a standard coupon-collector argument, after which

point there are only active A agents and passive agents. Finally, we wait for these active A agents
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to convert all passive agents to output = A via line 7, taking another O(n log n) time by the same

coupon-collector argument.

Next we consider the case where the input distribution is a tie. We first wait for all n/2 pairs

of active A and B agents to cancel via line 3, taking O(n) time in expectation and O(n log n) time

with probability. Consider the last such interaction. At this point, those two agents have become

active T agents, and there are no active A or B agents left. Thus after interacting with one of the

T agents, all passive agents will output T via line 7. This takes O(n log n) time in expectation and

with high probability by the same coupon-collector argument. □

We are now able to combine all the results from previous sections to prove theorem 3.3.1, giving

guarantees on the behavior of the protocol:

Theorem 3.3.1. There is a nonuniform population protocol Nonuniform Majority, using O(log n)

states, that stably computes majority in O(log n) stabilization time, both in expectation and with

high probability.

Proof. We first argue that with high probability 1− O(1/n2), the protocol Nonuniform Ma-

jority stabilizes to the correct output in O(log n) time. We consider three cases based on the size

of the initial gap |g|. For the majority cases where |g| > 0, we assume without loss of generality

g > 0, so A is the majority.

If |g| ≥ 0.025|M|, then by theorem 3.6.6, we stabilize in Phase 2 to the correct output with

high probability 1−O(1/n2).

If 0 < |g| < 0.025|M|, then by theorem 3.6.8, with high probability 1 − O(1/n2), we end

Phase 3 with at least 92% of Main agents in the set M , with the majority opinion and exponent ∈

{−l,−(l+1),−(l+2)}. Then after Phase 5 and Phase 6, all biased agents have exponent ≤ −l with

high probability 1−O(1/n2) by theorem 3.6.26. Then after Phase 7 and Phase 7, there are no more

minority agents with high probability 1−O(1/n2) by theorem 3.6.30. Thus in Phase 9, the majority

opinion +1 will spread to all agents by epidemic, and we reach a stable correct configuration where

all agents have opinions = {0,+1} and output = A.

If g = 0, then by theorem 3.6.7, with high probability 1 − O(1/n2), we end Phase 3 with all

biased agents at exponent = −L. Thus in Phase 4, we reach a stable correct configuration where

all agents have output = T, and there are no agents with exponent > −L to increment the phase.
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Next we justify that Nonuniform Majority stably computes majority, since it is always possible

to reach a stable correct configuration. By theorem 3.6.5, we must produce at least 2 Clock agents

by the end of Phase 0. Thus we must eventually advance through all timed phases 5, 6, 8, 10, 11,

12, 13 using the counter field. Also all agents have left the initial role RoleMCR, otherwise the Init

of Phase 1 will trigger all agents to move to Phase 10 by epidemic. Thus the sum of bias across

all Main agents is the initial gap g, and this key invariant is maintained through all phases.

Using this invariant, if the agents stabilize in Phase 2, they have a consensus on their output,

the sign of their bias, and this consensus must be the sign of the sum of the biases, giving the

sign of the initial gap. If the agents stabilize in Phase 4, all |bias| ≤ 1
2L
≤ 1

n . This implies the gap

|g| ≤ |M| · 1n < 1, so the gap g = 0 and the agents are correctly outputting T. Finally, note that in

Phase 8, when the agents set the field full = True, they can no longer actually store in memory the

true bias they are holding. For example an agent with opinion = +1, exponent = −i, full = True,

is actually representing the interval 1
2i+1 ≤ bias < 1

2i
. Then we still have the guarantee that if we

reach stable consensus in Phase 9, then this consensus is the sign of the sum of the biases and is

thus correct. The final case is that we do not stabilize here, and then move to Phase 10, where

they agents eventually stabilize to the correct output.

We finally justify that the expected stabilization time is O(n log n). By theorem 3.6.31, the

stable backup Phase 10 will stabilize in expected O(n log n) time. Note that the high probability

guarantees are all at least 1 − O(1/n2), so the time for the stable backup contributes at most

O
(
n logn
n2

)
= o(1) to the total expected time. Now by theorem 3.6.5, with very high probability

we have at least |C| ≥ 0.24n Clock agents. In this case, the time upper bounds of theorem 3.6.15

and upper bounds on the counter times using standard Chernoff bound, imply that every timed

phase lasts expected O(log n) time. If we do not stabilize in the untimed phases, then we also pass

through by epidemic expected O(log n) time. Thus we either stabilize or reach the backup Phase 10

in expected O(log n) time. There is a final very low probability case that |Clock| = o(n), but we

must at least have |Clock| = 2. Even in this worst case, the time upper bounds of theorem 3.6.15

and all counter rounds are at most polynomial in n, whereas the low probability of such a small

Clock population is smaller than any polynomial. Thus this event adds a negligible contribution,

and we conclude the total expected stabilization time is O(log n). □
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3.7. Uniform, stable protocols for majority using more states

The algorithm described in section 3.3 is nonuniform: the set of transitions used for a population

of size n depends on the value ⌈log n⌉. A uniform protocol [37,47,51] is a single set of transitions

that can be used in any population size. Since it is “uniformly specified”, the transition function is

formally defined by a linear-space10 Turing machine, where the space bound is the maximum space

needed to read and write the input and output states. The original model [10] used O(1) states

and transitions for all n and so was automatically uniform, but many recent ω(1) state protocols

are nonuniform. With the exception of the uniform variant in [25], all ω(1) state stable majority

protocols are nonuniform [2,3,7,20,24,30]. The uniform variant in [25] has a tradeoff parameter

s that, when set to O(1) to minimize the states, uses O(log n log logn) states and O(log2 n) time.

In this section we show that there is a way to make Nonuniform Majority in section 3.3 uniform,

retaining the O(log n) time bound, but the expected number of states increases to Θ(log n log logn).11

3.7.1. Main idea of O(log n log log n) state uniform majority (not handling ties). Since

Nonuniform Majority uses the hard-coded value L = ⌈log n⌉, to make the algorithm uniform, we

require a way to estimate log n and store it in a field L (called logn below) of each agent. For

correctness and speed, it is only required that logn be within a constant multiplicative factor of

log n.

GKasieniec and Stachowiak [60] show a uniform O(log log n) state, O(log n) time protocol (both

bounds in expectation and with high probability) that computes and stores in each agent a value

ℓ ∈ N+ that, with high probability, is within additive constant O(1) of ⌈log log n⌉ (in particular,

WHP ℓ ≥ ⌊log logn⌋ − 3 [25, Lemma 8]), so 2ℓ = Θ(log n). (This is the so-called junta election

protocol used as a subroutine for a subsequent leader election protocol.) Furthermore, agents

approach this estimate from below, propagating the maximum estimate by epidemic ℓ′, ℓ → ℓ, ℓ if

ℓ′ < ℓ. This gives an elegant way to compose the size estimation with a subsequent nonuniform

protocol P that requires the estimate: agents store their estimate logn of log n and use it in P.

Whenever an agent’s estimate logn updates—always getting larger—it simply resets P, i.e., sets

10That is, the Turing machine is allowed to use a bit more than the space necessary simply to read and write the
input and output states, but not significantly more (constant-factor). This allows it to do simple operations, such as
integer multiplication, that require more than constant space, without “cheating” by allowing the internal memory
usage of the Turing machine to vastly exceed that required to represent the states.
11We say “expected” because this protocol has a non-zero probability of using an arbitrarily large number of states.
The number of states will be O(logn log logn) in expectation and with high probability.
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the entire state of P to its initial state. We can then reason as though all agents actually started

with their final convergent value of logn.12

To make our protocol uniform, but remove its correctness in the case of a tie, as we explain

below, all agents conduct this size estimation, stored in the field logn, in parallel with the majority

protocol P of section 3.3. Each agent resets P to its initial state whenever logn updates. This gives

the stated O(log n) time bound and O(log n log log n) state bound. Note that in Phase 0, agents

count from counter = Θ(log n) down to 0. It is sufficient to set the constant in the Θ sufficiently

large that all agents with high probability receive by epidemic the convergent final value of logn

significantly before any agent with the same convergent estimate counts down to 0.

Acknowledging that, with small probability, the estimate of log n could be too low for Phase 4 to

be correct, we simply remove Phase 4 and do not attempt to detect ties. So if we permit undefined

behavior in the case of a tie (as many existing fast majority protocols do), then this modification

of the algorithm otherwise retains stably correct, O(log n) time behavior, while increasing the state

complexity to O(log n log log n).

3.7.2. How to stably compute ties. With low but positive probability, the estimate of log n

could be too small. For most phases of the algorithm, this would merely amplify the probability of

error events (e.g., Phase 1 doesn’t last long enough for agents to converge on biases {−1, 0,+1})

that later phases are designed to handle. However, the correctness of Phase 4 (which detects ties)

requires agents to have split through at least log n exponents in Phase 3. Since the population-wide

bias doubles each time the whole population splits down one exponent, the only way for the whole

population to split through log n exponents is for there to be a tie (i.e., the population-wide bias

is 0, so can double unboundedly many times). In this one part of the algorithm, for correctness

we require the estimate to be at least log n with probability 1. (It can be much greater than log n

without affecting correctness; an overestimate merely slows down the algorithm.)

To correct this error, we will introduce a stable backup size estimate, to be done in Phase 4.

Note that there are only a constant number of states with phase = 4: Clock agents do not store a

counter in this phase, and Main agents that stay in this phase must have bias ∈
{

0,± 1
2L

}
. Thus

12One might hope for a stronger form of composition, in which the size estimation terminates, i.e., sets an initially
False Boolean flag to True only if the size estimation has converged, in order to simply prohibit the downstream
protocol P from starting with an incorrect estimate of logn. However, when both states A and B are initially Ω(n),
this turns out to be impossible; Ω(n) agents will necessarily set the flag to True in O(1) time, long before the O(logn)
time required for the size estimation to converge [47, Theorem 4.1].
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we can use an additional Θ(log n) states for the agents that are currently in phase = 4 to stably

estimate the population size. If they detect that their estimate of L was too small, they simply go

to the stable backup Phase 10.

Stable computation of ⌊log n⌋. The stable computation of logn has all agents start in state L0,

where the subscript represents the agent’s estimate of ⌊log n⌋. We have the following transitions: for

each i ∈ N, Li, Li → Li+1, Fi+1 and, for each 0 ≤ j < i, Fi, Fj → Fi, Fi. Among the agents in state

Li, half make it to state Li+1, reaching a maximum of Lk at k = ⌊log2 n⌋.13 All remaining F agents

receive the maximum value k by epidemic. A very similar protocol was analyzed in [28, Lemma

12]. We give a quick analysis below for the sake of self-containment.

Time analysis of stable computation of ⌊log n⌋. The expected time is Θ(n log n). For the upper

bound, for each i, if j is the count of Li agents, then the probability of a Li, Li → . . . reaction

is O(j2/n2), so for any possible starting count k of Li agents, it takes expected time at most

O
(

1
n

∑k
j=1

n2

j2

)
= O(n) for the count of Li agents to get from k to 0 or 1. Assuming in the worst

case that no Li+1, Li+1 → . . . reaction happens until all Li, Li → . . . reactions complete, then

summing over ⌊log n⌋ values of i gives the O(n log n) time upper bound to converge on one Lk

agent, where k = ⌊log n⌋. It takes additional O(log n) time for the F agents to propagate k by

epidemic.

For the lower bound, observe that for each value of i, the last reaction Li, Li → . . . occurs when

the count of Li is either 2 (and will increase at most once more), or 3 (and will never increase

again). This takes expected time Θ(n). Since the count of Li will increase at most once more, at

that time (just before the last Li, Li → . . . reaction), the count of Li−1 is at most 3, otherwise

two more Li’s could be produced, and this would not be the last Li, Li → . . . reaction. Thus, to

produce the Li needed for this last Li, Li → . . . reaction, the previous Li−1, Li−1 → Li, Fi reaction

occurs when the count of Li−1 is at most 5, also taking Θ(n) time. Thus the final reaction at each

level takes time Θ(n) and depends on a reaction at the previous level that also takes time Θ(n), so

summing across ⌊log n⌋ levels gives Ω(n log n) completion time.

13More generally, the unique stable configuration encodes the full population size n in binary in the following dis-
tributed way: for each position i of a 1 in the binary expansion of n, there is one agent Li. Thus, these remaining
agents lack the space to participate in propagating the value k = ⌊logn⌋ by epidemic, but there are Ω(n) followers F
to complete the epidemic quickly.
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It is shown in [28, Lemma 12] that the time is O(n log2 n) with high probability, i.e., slower

than the expected time by a log n factor. Since the probability is O(1/n2) that we need to rely on

this slow backup, even this larger time bound contributes negligibly to our total expected time.

3.7.3. Challenges in creating O(log n) state uniform algorithm. It is worth discussing

some ideas for adjusting the uniform protocol described above to attempt to reduce its space

complexity to O(log n) states. The primary challenge is to enable the population size n to be

estimated without storing the estimate in any agent that participates in the main algorithm (i.e.,

the agent has role Main, Clock, or Reserve). If agents in the main algorithm do not store the size,

then by [47, Theorem 4.1] they will provably go haywire initially, with agents in every phase, totally

unsynchronized, and require the size estimating agents to reset them after having converged on a

size estimate that is Ω(logn).

The following method would let the Size agents reset main algorithm agents, without actually

having to store an estimate of log n in the algorithm agents, but it only works with high probability.

The size estimating agents could start a junta-driven clock as in [60], which is reset whenever they

update their size estimate. Then, as long as there are Ω(n) Size agents, they could for a phase

timed to last Θ(log n) time, reset the algorithm agents by direct communication (instead of by

epidemic). This could put the algorithm agents in a quiescent state where they do not interact

with each other, but merely wait for the Size agents to exit the resetting phase, indicating that the

algorithm agents are able to start interacting again. Since there are Ω(n) size-estimating agents,

each non-size-estimating agent will encounter at least one of them with high probability in O(log n)

time.

The problem is that the reset signal is not guaranteed to reach every algorithm agent. There is

some small chance that a Main agent with a bias different from its input does not encounter a Size

agent in the resetting phase, so is never reset. The algorithm from that point on could reach an

incorrect result when the agent interacts with properly reset agents, since the sum of biases across

the population has changed. In our algorithm, by “labeling” each reset with the value logn, we

ensure that no matter what states the algorithm agents find themselves in during the initial chaos

before size computation converges, every one of them is guaranteed to be reset one last time with

the same value of logn. The high-probability resetting described above seems like a strategy that
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could work to create a high probability uniform protocol using O(log n) time and states, though

we have not thoroughly explored the possibility.

But it seems difficult to achieve probability-1 correctness using the technique of “reset the whole

majority algorithm whenever the size estimate updates,” without multiplying the state complexity

by the number of possible values of logn. Since we did not need ⌊log n⌋ exactly, but only a value

that is Θ(log n), we paid only Θ(log log n) multiplicative overhead for the size estimate, but it’s

not straightforward to see how to avoid this using the resetting technique. Of course, one could

imagine that the savings could come from reducing the state complexity of the main majority-

computing agents in the nonuniform algorithm. However, reducing the nonuniform algorithm’s

state complexity to below the Ω(log n) lower bound of [3] would provably require the algorithm

to be not monotonic or not output dominant. (See section 3.8 for a discussion of those concepts.)

Another possible approach is to intertwine more carefully the logic of the majority algorithm with

the size estimation, to more gracefully handle size estimate updates without needing to reset the

entire majority algorithm.

3.8. Conclusion and open problems

There are two major open problems remaining concerning the majority problem for population

protocols.

Uniform O(log n)-time, O(log n)-state majority protocol. Our main O(log n) state protocol,

described in section 3.3, is nonuniform: all agents have the value ⌈log n⌉ encoded in their transition

function. The uniform version of our protocol described in section 3.7 uses O(log n log logn) states.

It remains open to find a uniform protocol that uses O(log n) time and states.

Unconditional Ω(log n) state lower bound for stable majority protocols. The lower bound of

Ω(log n) states for (roughly) sublinear time majority protocols shown by Alistair, Aspnes, and

Gelashvili [3] applies only to stable protocols satisfying two conditions: monotonicity and output

dominance.

Recall that a uniform protocol is one where a single set of transitions works for all population

sizes; nonuniform protocols typically violate this by having an estimate of the population size (e.g.,

the integer ⌈log n⌉) embedded in the transition function. Monotonicity is a much weaker form of

uniformity satisfied by nearly all known nonuniform protocols. While allowing different transitions
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as the population size grows, monotonicity requires that the transitions used for population size

n must also be correct for all smaller population sizes n′ < n (i.e., an overestimate of the size

cannot hurt), and furthermore that the transitions be no slower on populations of size n′ than on

populations of size n (though the transitions designed for size n may be slower on size n′ than the

transitions intended for size n′). Typically the nonuniform estimate of log n is used by the protocol

to synchronize phases taking time ≈ T = Θ(log n), by having each agent individually count from

T down to 0 (a so-called “leaderless phase clock”, our Standard Counter Subroutine). Θ(log n) is

the time required for an epidemic to reach the whole population and communicate some message

to all agents before the phase ends. Most errors in such protocols are the result of some agent not

receiving a message before a phase ends, i.e., the clock runs atypically faster than the epidemic. If

the size estimate is significantly larger than log n, this slows the protocol down, but only increases

the probability that all agents receive intended epidemic messages before a phase ends; thus such

protocols are monotone.

In our nonuniform protocol Nonuniform Majority, which gives each agent the value L = ⌈log n⌉,

giving a different value of L does not disrupt the stability (only the speed) of the protocol, with

one exception: Phase 3 must go for at least log n exponents, or else (i.e., if L is an underestimate)

Phase 4 could incorrectly report a tie. If we consider running Phase 3 on a smaller population

size n′ than the size n for which it was designed, L = ⌈log n⌉ of ⌈log n′⌉ will be an overestimate,

which does not disrupt correctness. Furthermore, since Clock agents are counting to L in each case,

they are just as fast on population size n′ as on size n. This implies that Phase 3, thus the whole

protocol Nonuniform Majority, is monotone.

Output dominance references the concept of a stable configuration c, in which all agents have

a consensus opinion that cannot change in any configuration subsequently reachable from c. A

protocol is output dominant if in any stable configuration c, adding more agents with states already

present in c maintains the property that every reachable stable configuration has the same output

(though it may disrupt the stability of c itself). This condition holds for all known stable majority

protocols, including that described in this chapter, because they obey the stronger condition that

adding states already present in c does not even disrupt its stability. Such protocols are based on

the idea that two agents with the same opinion cannot create the opposite opinion, so stabilization

happens exactly when all agents first converge on a consensus output.
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To see that our protocol is output dominant, define a configuration to be silent if no transition is

applicable (i.e., all pairs of agents have a null interaction); clearly a silent configuration is also stable.

Although the definition of stable computation allows non-null transitions to continue happening in

a stable configuration, many existing stable protocols have the stronger property that they reach

a silent configuration with probability 1, including our protocol. It is straightforward to see that

any silent configuration has the property required for output dominance, since if no pair of states

in a configuration can interact nontrivially, their counts can be increased while maintaining this

property. (One must rule out the special case of a state with count 1 that can interact with another

copy of itself, which does not occur in our protocol’s stable configurations.)

Monotonicity can be seen as a natural condition that all “reasonable” non-uniform protocols

must satisfy, but output dominance arose as an artifact that was required for the lower bound

proof strategy of [3]. It remains open to prove an unconditional (i.e., removing the condition of

output dominance) lower bound of Ω(log n) states for any stable monotone majority protocol taking

polylogarithmic time, or to show a stable polylogarithmic time monotone majority protocol using

o(log n) states, which necessarily violates output dominance. If the unconditional lower bound

holds, then our protocol is simultaneously optimal for both time and states. Otherwise, it may be

possible to use o(log n) states to stably compute majority in polylogarithmic stabilization time with

a non-output-dominant protocol. In this case, there may be an algorithm simultaneously optimal

for both time and states, or there may be a tradeoff.

O(log n) time, o(log n) state non-stable protocol. Berenbrink, Elsässer, Friedetzky, Kaaser,

Kling, and Radzik [25] showed a non-stable majority protocol (i.e., it has a positive probabil-

ity of error) using O(log log n) states and converging in O(log2 n) time. (See section 2.2 for more

details.) Is there a protocol with o(log n) states solving majority in O(log n) time?

We close with questions unrelated to majority.

Fast population protocol for parity. The majority problem “X1 > X2?” is a special case of a

threshold predicate, which asks whether a particular weighted sum of inputs
∑k

i=1wiXi > c exceeds

a constant c. (For majority, w1 = 1, w2 = −1, c = 0; our protocol extends straightforwardly to

other values of wi, though not other values of c.) The threshold predicates, together with the

mod predicates, characterize the semilinear predicates, which are precisely the predicates stably

computable by O(1) state protocols [11] with no time constraints (though Θ(n) time to stabilize
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is sufficient for all semilinear predicates [12] and necessary for “most” [18]). A representative mod

predicate is parity : asking whether an odd or even number of agents exist. (More generally, asking

the parity of the number of agents with initial opinion A.) Like majority, parity is solvable by a

simple protocol in O(n) time,14 and it is known to require Ω(n) time for any O(1) state protocol

to stabilize [18]. Techniques from [2] can be used to show that stabilization requires close to linear

time even allowing up to 1
2 log logn states. An interesting open question is to consider allowing

ω(1) states in deciding parity. Can it then be decided in polylogarithmic time? Is there a parity

protocol simultaneously optimal for both polylogarithmic time and states, such as the O(log n)

time, O(log log n) state protocol for leader election [26]? Or is there a tradeoff?

Fast population protocols for function computation. The transition X,Q→ Y, Y , starting with

sufficiently many excess agents in state Q, computes the function f(x) = 2x, because if we start with

x agents in state X, eventually 2x agents are in state Y , taking time O(log n) to stabilize [38]. The

similar transition X,X → Y,Q computes f(x) = ⌊x/2⌋, but it takes time Θ(n) to stabilize, as does

any O(1)-state protocol computing any linear function with a coefficient not in N, as well as “most”

non-linear functions such as min(x1, x2) (computable by X1, X2 → Y,Q) and max(x1, x2) [18]. Can

such functions be computed in sublinear time by using ω(1) states?

14Agents start in state L1, undergo reactions Li, Lj → L(i+j) mod 2, F(i+j) mod 2; Li, Fj → Li, Fi; Fi, Fj →
Fi, Fi, i.e., F agents adopt the parity of L agents, and two F agents with different parities adopt that of the sender.
The first two reactions would take time O(n logn) for the last remaining Li to update all F agents directly; the last
reaction reduces this time to O(n) [12, Theorem 5].
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CHAPTER 4

Exact Size Counting in Population Protocols

4.1. Introduction

The limitation on time-efficient computation with constant-memory protocols motivates the

study of population protocols with memory that can grow with n. A recent blitz of impressive

results has shown that leader election [2, 3, 5, 20, 24, 25, 26, 27, 30, 60, 61, 79, 91, 91] and exact

majority [3,5,7,20,24,25] can be solved in polylog(n) time using polylog(n) states leading to time

and space optimal solutions for both problems [26,50]. Notably, most of these protocols requires

an approximate estimate of the population size n to be encoded into each agent (commonly a

constant-factor upper bound on ⌊log n⌋ or ⌊log log n⌋).

Although, there is a uniform leader election [60] in the literature, the reliance of many existed

protocols on storing the population size in advance, partially motivates our study of the size counting

problem of computing the population size n. The problem is clearly solvable by an O(n) time

protocol using a straightforward leader election: Agents initially assume they are leaders and the

count is 1. When two leaders meet, one agent sums their counts while the other becomes a follower,

and followers propagate by epidemic the maximum count. No faster protocol was previously known.

Our study is further motivated by the desire to understand the power of uniform computation

in population protocols. In which the same transition algorithm is used for all populations, though

the number of states may vary with the population size (formalized with Turing machines; see

section 1.2.) A uniform protocol can be deployed into any population without knowing in advance

the size, or even a rough estimate of the size. The original, O(1)-state model [10,11,12], is uniform

since there is a single transition function. Because we allow memory to grow with n, our model’s

power exceeds that of the original, but is strictly less than that of the nonuniform model of most

papers using ω(1) states.

The formal model is given in section 1.2. Here we sketch the relevant intuition. The agents’

transition algorithm is modeled as a Turing machine. When two agents interact they are both
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in an initial configuration of the Turing machine, their input is the tape content in the halting

configuration of the last time each of them had an interaction. (We assume the Turing machine

state and tape head positions are not transmitted, since they can be assumed WLOG identical in

every halting configuration.) The space usage (in bits) s is defined as normal for Turing machines:

the maximum number of tape cells that are written during the computation. The number of states

is then 2s, where s is the maximum space usage of any agent during an execution of the protocol.

For ease of understanding, we will use standard population protocol terminology and not refer

explicitly to details of the Turing machine definition except where needed. Therefore a state s ∈ Λ

always refers to the TM tape content of an agent (leaving out TM state and tape head positions

since these are identical in all initial configurations), where Λ is the set of all staets, a configuration

c ∈ NΛ is a vector indexed by a state, where c(s) is the count of state s in the population.

We furthermore assume that each agent has access to independent uniformly random bits,

assumed to be pre-written on a special read-only tape (this allows the Turing machine to be

deterministic even though it is computing a nondeterministic relation). This is different from the

traditional definition of population protocols, which assumes a deterministic transition function.

In our case, we have a transition relation δ ⊆ Λ4. Several papers [2, 27] indicate how to use

the randomness built into the interaction scheduler to provide nearly uniform random bits to the

agents, using various synthetic coin techniques, showing that the deterministic model can effectively

simulate the randomized model. In the interest of brevity and simplicity of presentation, we will

simply assume in the model that each agent has access to a source of uniformly random bits.

Recall that n denotes the number of agents in the population. Repeatedly, a pair of agents is

selected uniformly at random to interact, where they run the transition algorithm on the pair of

states they were in prior to the interaction, and storing the output states for their next interactions.

All references to “time” in this theis refer to parallel time, i.e., the number of interactions divided

by n. An execution is a sequence of configurations c0, c1, . . . such that for all i, applying a transition

to ci results in ci+1. log n is the base-2 logarithm of n, and lnn is the base-e logarithm of n.

4.1.1. Contribution. Our main result is a uniform protocol that, with probability ≥ 1 −

O( log lognn ), counts the population size, converging in 6 lnn log logn time using 217n60 states (17 +
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60 log n bits), without an initial leader (all agents have an initially identical state). The protocol is

stabilizing : the output is correct with probability 1, converging in expected time 7 lnn log logn.1

A key subprotocol performs leader election in time O(lnn log logn) with high probability and

in expectation. It uses O(n18) states, much more than the O(log log n) known to be necessary [2]

and sufficient [60] for sublinear time leader election. However, it is uniform, unlike many known

sublinear-time leader election protocols [2,27,30]. It repeatedly increases the length of a binary

string each agent stores, where the protocol, with probability at least 1 − O(1/n), takes O(log n)

time once the length of this string reaches ≈ log n. The length increases in stages that each take

O(log n) time.

In our main protocol, the agents doubles the string length each stage, so takes log log n stages

(hence O(log n log log n) time) to reach length log n.

The protocol generalizes straightforwardly to trade off time and memory: by adjusting the

rate at which the string length grows, the convergence time t(n) is O(f(n) log n), where f(n)

is the number of stages required for the string length to reach log n. For example, if the code

length increments by 1 each stage, then f(n) = log n, so t(n) = log2 n. In this case the state

complexity would be O(n30) for the full protocol and O(n9) for just the leader election portion.

(See section 4.4.2.)

By squaring the string length each stage, t(n) = log n log log log n. By exponentiating the string

length, t(n) = log n log∗ n.

Even slower-growing f(n) such as inverse Ackermann are achievable. However, the faster the

string length grows each stage, the more it potentially overshoots log n, increasing the space re-

quirements.

For example, for t(n) = log n log log log n by repeated squaring, the worst-case string length

is log2 n, meaning 2O(log2 n) = nO(logn) states. Multiplying length by a constant gives the fastest

increase that maintains a polynomial number of states.

4.2. Exact population size counting protocol

In this section we prove our main theorem:

1The time to reach a stable configuration, from which the output cannot change, is Ω(n) for our protocol. We leave
open the question of a protocol that reaches a stable configuration in sublinear time.
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Theorem 4.2.1. There is a leaderless, uniform population protocol that stably solves the exact

size counting problem. With probability at least 1 − 10+5 log logn
n , the convergence time is at most

6 lnn log logn, and each agent uses 17 + 60 log n bits of memory. The expected time to convergence

is at most 7 lnn log log n.

The stabilization time can be much larger, up to O(n). (See section 4.4.1.) theorem 4.2.1

follows from theorem 4.4.3 and theorem 4.4.4, which respectively cover the “with high probability”

and “stabilization and expected time” parts of theorem 4.2.1.

Protocol 16 ExactCounting(rec, sen)

▷ state: strings C (code), LC (leader code), Bool isLeader, ints M, ave, count, phase
▷ initial state of agent: C = LC = ε, isLeader = True, M = ave = count = phase = 1

UniqueID(rec, sen)
ElectLeader(rec, sen)
if rec.LC = sen.LC then ▷ separate restarts under different leaders

DiscreteAveraging(rec, sen)
timer(rec, sen)

The protocol is ExactCounting. There are four main subprotocols: UniqueID, ElectLeader,

DiscreteAveraging, and timer, each discussed in detail in later subsections. ExactCounting

runs in parallel on all agents, but within an agent, each subprotocol runs sequentially (for correctness

each subprotocol must run in the given order). Most state updates use one-way rules for selected

agents sen (sender) and rec (receiver). The only rule that is not one-way is DiscreteAveraging, in

which both sender and receiver update their state. In all other cases, only the receiver potentially

updates the state.

High-level overview of ExactCounting protocol. UniqueID eventually assigns to every

agent a unique id, represented as a binary string called a code C. UniqueID requires Ω(n) time

to converge, but it does not need to converge before it can be used by the other subprotocols.

In fact, in other subprotocols, agents do not use each others’ codes directly. Agents also have a

longer code called a leader code LC, such that 2|C| = |LC| and, for any candidate leader, C is a

prefix of LC. ElectLeader elects a leader by selecting the agent whose leader code is lexicograph-

ically largest. The code length |C| will eventually be at least length log n, so |C| can be used to

estimate an upper bound M on the value 3n3 to within a polynomial factor. DiscreteAveraging

uses M in a leader-driven protocol that counts the population size exactly, which is correct so
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long as M ≥ 3n3, by using a fast averaging protocol similar to the one studied by Mocquard et

al. [79]. DiscreteAveraging must be restarted by the upstream UniqueID subprotocol many

times, and in fact will be restarted beyond the O(log n log log n) time bound we seek. However,

within O(log n log logn) time, DiscreteAveraging will converge to the correct population size.

Subsequent restarts of DiscreteAveraging will re-converge to the correct output, but prior to

convergence will have an incorrect output. timer is used to detect when DiscreteAveraging has

likely converged, waiting to write output into the count field of the agent. This ensures that after

the correct value is written, on subsequent restarts of DiscreteAveraging, the incorrect values

that exist before DiscreteAveraging re-converges will not overwrite the correct value recorded

during the earlier restart.

4.2.1. UniqueID. We assume that the two following subroutines are available:

For x, y ∈ {0, 1}∗, Append(x, y) returns xy, and for m ∈ Z+, RandBits(m) returns a random

string in {0, 1}m.

Subprotocol 17 UniqueID(rec, sen)

if |rec.C| < |sen.C| then ▷ If receiver’s code shorter than sender’s, make same length.
ExtendCode(rec, |sen.C| − |rec.C|))

if rec.C = sen.C then ▷ If codes are the same, double the length.
ExtendCode(rec,max(1, |rec.C|))

Subroutine 18 ExtendCode(rec, numBits)

if rec.isLeader then ▷ extend LC by twice numBits; take new C bits from LC
newLC← Append(rec.LC,RandBits(2 · numBits))
SetNewLeaderCode(rec, newLC) ▷ described in section 4.2.2
rec.C← Append(rec.C,newLC[(|rec.C|+ 1) .. (|rec.C|+ numBits)])

else
rec.C← Append(rec.C,RandBits(numBits))

UniqueID can be viewed as traversing a labeled binary tree, until all agents reach a node

unoccupied by any other agent. We say the level is the maximum depth (longest code length) of

any agent in the population. Initiating a new level happens when two agents with the same code

interact. The receiver doubles the length of its code with uniformly random bits, going twice as

deep in the tree. To ensure each agent reaches the new level quickly, agents at deeper levels recruit

other agents to that level by epidemic, which generate random bits to reach the same code length.

110



Subroutine 19 SetNewLeaderCode(rec, newLC)

rec.LC← newLC
▷ restart Timer and Average protocols whenever LC changes.
rec.phase← 1

rec.M← 3 · 23|rec.C|
if rec.isLeader then

rec.ave← rec.M
else

rec.ave← 0

The key property of this protocol is that, in any level ℓ < log n, only O(log n) time is required to

increase the level. Since we double the level when it increases, log log n such doublings are required

to reach level ≥ log n, so O(log n log log n) time. theorem 4.2.2 formalizes this claim, explaining how

the length-increasing schedule can be adjusted to achieve a trade-off between time and memory.

Number of reachable configurations. Since all codes are generated randomly, the number of

reachable configurations is infinite. This choice is merely to simplify analysis, allowing us to assume

that all agents at a level have uniformly random codes. However, if a finite number of reachable

configurations is desired (so that, for instance, the definition of stabilization we use is equivalent

to definitions based on reachability), it is possible to modify UniqueID so that when two agents

with the same code meet, they both append bits that are guaranteed to be different. The protocol

still works in this case and in fact takes strictly less expected time for the codes to become unique.

Viewing two agents with compatible codes (i.e., one code is a prefix of the other) as equivalent,

each new level increases the number of equivalence classes by 1. Thus it is guaranteed that all

agents will converge on unique codes of length at most n− 1, implying the reachable configuration

space is finite.

The next lemma bounds the time for UniqueID to reach level at least log n, assuming a

generalized way of increasing the level, defining f(n) to be the number of times the level must

increase before reaching at least level logn. Afterwards we state a corollary for our protocol,

which doubles the level whenever it increases, so f(n) = log log n. By using this lemma with

different choices of f , one can obtain a tradeoff between time and space; if the level increases more

(corresponding to a slower-growing f) this takes less time to reach level at least log n, but may

overshoot log n and use more space.
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11100100

000 010 100 110011001 101 111

ε

0001 0010 0011 0100 0101 01100000 0111 1000 1001 1010 1011 1100 1101 1110 1111
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11100100

000 010 100 110011001 101 111

ε

0001 0010 0011 0100 0101 01100000 0111 1000 1001 1010 1011 1100 1101 1110 1111

(a) When two agents in the same node at level i interact, receiver moves to a random descendant at level 2i.

10

11100100

000 010 100 110011001 101 111

ε

0001 0010 0011 0100 0101 01100000 0111 1000 1001 1010 1011 1100 1101 1110 1111

10

11100100

000 010 100 110011001 101 111

ε

0001 0010 0011 0100 0101 01100000 0111 1000 1001 1010 1011 1100 1101 1110 1111

(b) When sender is in a deeper level of the tree, receiver moves to a random descendant in its own subtree
at the sender’s level.

Figure 4.1. Agents moving through the binary tree (i.e., choosing binary codes)
in accordance with the UniqueID subprotocol.

Intuitively, the lemma is proven by observing that the worst case is that the current level is

log(n)−1. It takes O(log n) time for all agents not yet at that level to reach it by epidemic. At that

point the worst case is that codes are distributed to maximize expected time: exactly n/2 codes

each shared by two agents. Then the expected time is constant for the first interaction between

two such agents, starting the next level. Thus it takes time O(log n) to increase the level, hence

O(f(n) log n) time for the level to increase from 0 to at least log n.

Lemma 4.2.2. For all n ∈ N, define f(n) to be the number of times UniqueID must increase

the level (last line of UniqueID) to reach level at least log n. For all α > 0, in time 5αf(n) lnn,

all agents reach level at least log n with probability at least 1− 5f(n)n−α.
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Proof. Imagine an alternate process where at each level agents wait until all other agents also

reach the same level before enabling transitions that start the next level (where two agents with

the same code meet and the receiver will double its code length). The time for such a process

stochastically dominates the time for our protocol, so we can use its time as an upper bound for

our protocol. It suffices to show that, when all agents are at the same level, it takes constant time

to start the next level. After initializing a level, by theorem 1.3.4, the new code length will spread

by epidemic in time αu lnn with probability at least 1− 4n−4αu+1.

Assume all agents are currently at level i. Denote by Sj the number of agents in node j of the

tree at level i (i.e., they have the j’th code in {0, 1}i in lexicographic order). The probability that

the next interaction is between two agents at the same node (having equal codes) is minimized

when Sj = Sj′ = n/2i for all 1 ≤ j, j′ ≤ 2i. Then for all 0 ≤ i < log n, if the current level is i,

Pr [next interaction initializes new level] =

∑2i

j=1

(Sj

2

)(
n
2

) =

∑2i

j=1

(
n/2i

2

)(
n
2

)
=

2i(n/2i)(n/2i − 1)

n(n− 1)
=

n/2i − 1

n− 1

≥ n/2log(n)−1 − 1

n− 1
=

1

n− 1
>

1

n
.

Therefore, the expected number of interactions to start a new level is ≤ n, equivalently parallel

time 1. This is a geometric random variable with success probability at least 1
n . Then at any level

i < log n, for any α′
u > 0,

Pr
[
initializing next level take more than α′

un lnn interactions
]

=

(
1− 1

n

)α′
un lnn

< e−α′
u lnn = n−α′

u .

By theorem 1.3.4, for any αu > 0, more than αu lnn time is required for all agents to reach

this level by epidemic with probability at most 4n−αu/4+1. By the union bound over this event

and the event “once all agents are at a level, it takes more than time α′
u lnn to start a new level”

(shown above to happen with probability at most n−α′
u), the time spent at each level is more than

αu lnn + α′
u lnn = (αu + α′

u) lnn with probability at most 4n−αu/4+1 + n−α′
u . Given α > 0, let

α′
u = α and αu = 4(α + 1). Then this probability bound is 4n−αu/4+1 + n−α′

u = 5n−α.
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By the union bound over all f(n) levels visited in the tree, it takes more than time f(n)(α lnn+

4α lnn) = 5αf(n) lnn time to reach level at least log n with probability at most 5f(n)n−α. □

The next corollary is specific to our level-doubling schedule, used throughout the rest of the

chapter, corresponding to f(n) = log log n in theorem 4.2.2.

Corollary 4.2.3. In the UniqueID protocol, for all α > 0, in 5α lnn log logn time all agents

reach level at least log n with probability at least 1− 5 log logn
nα .

The previous results show UniqueID quickly gets to level log n. The next lemma states that

it does not go too far past log n. Intuitively, if the level is 2 log n, there are n2 possible codes

chosen uniformly at random among n agents, a standard birthday problem with probability 1
e of a

collision, which drops off polynomially with the level beyond 2 log n.

Lemma 4.2.4. Let ϵ > 0. If the current level is (2+ϵ) log n, all codes are unique with probability

at least 1− 1
nϵ .

Proof. Consider the agents in order for agent 1, 2, . . .. The code of agent i collides with the

code of some agent 1, 2, . . . , i− 1 with probability i−1
c , where c = 2(2+ϵ) logn = n2+ϵ is the number

of available codes. Then by the union bound,

Pr [at least one collision] ≤
n∑

i=1

i− 1

c
=

n(n− 1)

2c
<

n2

n2+ϵ
=

1

nϵ
.

□

However, since the code length doubles when it changes, not all values of ϵ in theorem 4.2.4

correspond to a level actually visited. It could overshoot by factor two, giving the following.

Corollary 4.2.5. Let ϵ > 0. The eventual code length of each agent is < (4 + 2ϵ) log n with

probability at least 1− 1
nϵ .

Proof. Recall that a new level of the tree is initiated when two agents with the same code

interact. Since the level is doubled in this case, the code lengths exceed (4 + 2ϵ) log n if there was

a duplicate code at the power-of-two level k such that (2 + ϵ) log n ≤ k < (4 + 2ϵ) log n ≤ 2k. Over

all k satisfying this inequality, the probability of a duplicate code is largest if k = (2 + ϵ) log n.

Applying theorem 4.2.4 gives the stated probability bound. □
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Subprotocol 20 ElectLeader(rec, sen)

p← min(|rec.LC|, |sen.LC|)
if rec.LC[1..p] lexicographically precedes sen.LC[1..p] then
▷ Propagate by epidemic the lexicographically greatest leader code

rec.isLeader← False
SetNewLeaderCode(rec, sen.LC)

if (not rec.isLeader) and (|rec.LC| < |sen.LC|) then
▷ Ensure all leader codes eventually have equal length

SetNewLeaderCode(rec, sen.LC)

4.2.2. ElectLeader. ElectLeader works by propagating by epidemic the “winning” leader

code, where a candidate leader drops out if they see an agent (whether leader or follower) with a

leader code that beats its own. The trick is to define “win”. We compare the shorter leader code

with the same-length prefix of the other. If they disagree, the lexicographically largest wins. To

ensure all leader code lengths are eventually equal, a follower with the shorter leader code replaces

it with the longer one.2

The next lemma shows that the leader is probably unique when the population reaches level at

least log n. Let k ∈ N be such that log n ≤ k. When the candidate leaders generate new values of LC

upon reaching level k, |LC| = 2k ≥ 2 log n. Since there are at least n2 strings of length 2k ≥ 2 log n,

in the worst case, even if all n agents remain candidate leaders at that time, the probability that

the lexicographically greatest leader code is duplicated is at most 1
n .3 Thus, with probability at

least 1− 1
n , one unique leader has the maximum leader code, and in O(log n) time this leader code

reaches the remaining candidate leaders by epidemic, who drop out.

Lemma 4.2.6. At any level ≥ log n, with probability ≥ 1− 1
n , there is a unique leader.

Proof. Every remaining candidate leader at level ≥ log n has a leader code with at least 2 log n

bits. We say i and j collide if agents i and j are candidate leaders with the same leader code. Let

Xi,j be the indicator variable:

2Leaders with shorter codes do not replace with longer codes, because it may be that after adding new random bits to
get to the current population level, that agent would have the lexicographically largest leader code. This is because
a leader with a shorter leader code LC also has a shorter code C, so will eventually catch up in leader code length
through the UniqueID protocol.
3This almost looks like a birthday problem, but we don’t need all the remaining candidate leaders to have a unique
leader code, only that the largest code appears only once.
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Xi,j =

 1 if i and j collide

0 otherwise

Let c ≥ 22 logn = n2 be the number of possible leader codes. Note Pr [Xi,j = 1] = 1
c . Let

Xi =
∑

j ̸=iXi,j ; by linearity of expectation E [Xi] = n−1
c . Since c > n2, E [Xi] <

n−1
n2 < 1

n . By

Markov’s inequality, Pr [Xi ≥ 1] ≤ 1
n , and the event Xi ≥ 1 is equivalent to the event that the

leader code of agent i is not unique. If we set i to be the agent with the lexicographically greatest

leader code of any remaining candidate leader, we conclude that leader is unique with probability

≥ 1− 1
n . □

By theorem 4.2.3, the protocol reaches level log n in O(log n log logn) time. By theorem 4.2.6,

with high probability, in time O(log n log log n) ElectLeader converges (the second-to-last candi-

date leader is eliminated). Unfortunately ElectLeader is not terminating: the remaining leader

does not know when it becomes unique. Thus it is not straightforward to compose it with the

downstream protocols DiscreteAveraging and timer. Standard techniques for making the proto-

col terminating with high probability, such as setting a timer for a termination signal that probably

goes off only after K log n log logn time for a large constant K, do not apply here, because when

we start we don’t know the value log n log logn. Thus, it is necessary, each time a leader adds

to its code length, to restart the downstream protocols.4 This is done in SetNewLeaderCode,

which is actually called by both ElectLeader and UniqueID, since extending C for a leader also

requires extending LC, to maintain that 2|C| = |LC|.

Subprotocol 21 DiscreteAveraging(rec, sen)

rec.ave, sen.ave← ⌈rec.ave + sen.ave

2
⌉, ⌊rec.ave + sen.ave

2
⌋

4.2.3. Discrete Averaging. The previous subsections described how to set up a protocol

(perhaps restarted many times) to elect a leader and to produce a value M ≥ 3n3. (With high

probability we also have M ≤ 3 · n18.) Thus we assume the initial configuration of this protocol is

4One might imagine restarts could be tied to the elimination of candidate leaders, which stops within O(logn log logn)
time, rather than the extending of codes, which persists for Ω(n) time. However, the leader may become unique

before level logn, when |C| < logn, so M = 3 · 22|C| < 3 · n3 is not sufficiently large to ensure correctness and speed of
DiscreteAveraging. (See theorem 4.2.7, which is applied with c = 1.)
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one leader and n − 1 followers, each storing this value M, and that the goal is for all of them to

converge to a value in ave such that n = ⌊ M
ave

+ 1
2⌋ (i.e., M

ave
+ 1

2 rounded to the nearest integer).

There is an existing nonuniform protocol [79] that can do the following in O(log n) time. Each

agent starts with a bit b ∈ {0, 1} and a number M = Ω(n3/2). Let nb be the (unknown) number of

agents storing bit b, so that n0 + n1 = n. The agents converge to a state in which they all report

the value n1 − n0, the initial difference in counts between the two bits.

Their protocol requires that M ≥ ⌊n3/2/
√

2δ⌋ to obtain an error probability of ≤ δ. The protocol

is elegantly simple: agents with b = 0 start with an integer value −M, while agents with b = 1 start

with an integer value M, and state space is{−M,−M + 1, . . . , M− 1, M}. When two agents meet, they

average their values, with one taking a floor and the other a ceiling in case the sum of the values

is odd. If an agent holds value x, that agent’s output is reported as ⌊nx
M

+ 1
2⌋. This eventually

converges to all agents sharing the population-wide average (n1 − n0)
M
n , and the estimates of this

average get close enough for the output to be correct within O(log n) time [79].

Our protocol essentially inverts this, starting with a known n0 = 1 and n1 = n− 1, computing

the population size as a function of the average. The leader starts with value ave = M, and followers

start with ave = 0, and the state space is {0, 1, . . . , M}. The population-wide sum is always M.5

Eventually all agents have ave = ⌈ Mn⌉ or ⌊ Mn⌋, which could take linear time in the worst case. We

show below that with probability at least 1−n−c, in O(log n) time, all agents’ ave values are within

nc of M
n . Each agent reports the population size as ⌊ M

ave
+ 1

2⌋. This is the exact population size n

as long as M ≥ 3nc+2 and ave is within nc of M
n , as the following lemma shows.

Lemma 4.2.7. Let c ≥ 0. If M ≥ 3nc+2, and x ∈
[
M
n − nc, Mn + nc

]
, then ⌊Mx + 1

2⌋ = n.

Proof. Since ⌊Mx + 1
2⌋ is monotone in x, it suffices to show this holds for the two endpoints of

the interval. For the case x = M
n − nc, since x < M

n , we have n < M
x , and

M

x
=

M
M
n − nc

=
M

M−nc+1

n

=
Mn

M − nc+1

≤ Mn

M −M/(3n)
since M ≥ 3nc+2

=
n

1− 1/(3n)
=

n

(3n− 1)/(3n)
=

3n2

3n− 1
= n +

1

3(3n− 1)
+

1

3
< n +

1

2
.

5Think of the leader starting with M “balls”. Interacting agents exchange balls until they have an equal number, or
within 1.
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So n < M
x < n + 1

2 , so ⌊Mx + 1
2⌋ = n. In the case x = M

n + nc, a similar argument shows that

n− 1
2 < x < n. □

The above results show that the count computed by DiscreteAveraging is correct if M is

sufficiently large and ave is within a certain range of the true population-wide average M
n . The next

lemma, adapted from [79, Corollary 8], shows that each agent’s ave estimate quickly gets within

that range. That corollary is stated in terms of a general upper bound K on how far each agent’s

ave field starts from the true population-wide average. In our case, this is given by the leader,

which starts with ave = M, while the true average is M
n , so we choose K = M > M− M

n in Corollary 8

of [79], giving the following.

Lemma 4.2.8 ( [79]). For all δ ∈ (0, 1) and all t ≥ ln
(
4M2

)
, with probability at least 1 − δ,

after time t, each agent’s ave field is in the interval
[
M
n −

√
n
2δ ,

M
n +

√
n
2δ

]
.

Corollary 4.2.9. Let c > 0 and let δ = 1
2n2c−1 . For all t ≥ ln

(
4M2

)
, with probability at least

1− δ, within time t, each agent’s ave field is in the interval
[
M
n − nc, Mn + nc

]
.

Setting c = 1 (so δ = 1
2n) gives the following corollary.

Corollary 4.2.10. For all t ≥ ln
(
4M2

)
, with probability at least 1 − 1

2n , within time t, each

agent’s ave field is in the interval
[
M
n − n, Mn + n

]
.

4.2.4. timer. Note that DiscreteAveraging does not actually write the value ⌊ M
ave

+ 1
2⌋ into

the count field; that is the job of the timer protocol, which we now explain. The leader is

guaranteed with high probability to become unique at least by level log n (theorem 4.2.6). However,

since UniqueID likely continues after this point, although the leader is unique, when its level

increases, the leader will again generate more bits for its leader code, updating its value M, initiating

a restart of DiscreteAveraging. The problem is that although we can prove that the agents likely

reach level log n in O(log n log log n) time, it may take much longer to reach subsequent levels. Thus,

although the value M estimated at any level k ≥ log n is large enough for DiscreteAveraging to be

correct, if DiscreteAveraging were to blindly write ⌊ M
ave

+ 1
2⌋ into count each time ave changes,

the output will be disrupted while this restart of DiscreteAveraging converges.

We deal with this problem in the following way. When the leader restarts DiscreteAveraging,

it simultaneously restarts timer, which is a phase clock as described by Angluin et al. [12]. timer
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Subprotocol 22 Timer(rec, sen)

▷ run phase clock until MaxPhase = 1184 is reached
if rec.isLeader and (rec.phase = sen.phase) and (rec.phase < MaxPhase) then

rec.phase← rec.phase + 1

if (not rec.isLeader) and (rec.phase < sen.phase) then
rec.phase← sen.phase

newCount← ⌊ rec.M
rec.ave + 1

2⌋ ▷ M
ave

rounded to the nearest integer
▷ only write output if timer is done and new count is different
if (rec.phase = MaxPhase) and (rec.count ̸= newCount) and (M ≥ 3 · newCount3) then

rec.count← newCount

is so named because we can find βl < βu and MaxPhase such that MaxPhase phases of the phase

clock will take time between βl lnn and βu lnn with high probability. So long as βl lnn is greater

than a high-probability upper bound on the running time of DiscreteAveraging, the timer likely

will not go off (reach the final phase MaxPhase) until DiscreteAveraging has converged. It is only

once timer has reached phase MaxPhase that count is written, and then only if the new calculated

size differs from the previous value in count.

There is one additional check done before writing to count: if newCount = ⌊ M
ave

+ 1
2⌋, we must

have M ≥ 3 ·newCount3 in order to write to count. In particular, if M ≥ 3n3, then newCount cannot

be n unless M ≥ 3 · newCount3. This is an optimization to save space. DiscreteAveraging is

only guaranteed to get the correct size n efficiently if M ≥ 3n3. However, when ave is small before

convergence (e.g., 1) then ⌊ M
ave

+ 1
2⌋ can be as large as M, requiring 18 log n bits. But if ⌊ M

ave
+ 1

2⌋ = n

(i.e., is correct) then this value requires at most log n bits. Since M could be as large as 3 · n18,

requiring O(1) + 18 log n bits, this implies count could be as large as n6, requiring 6 log n bits.

4.3. Simulation results

Simulations for the ExactCounting protocol are shown in fig. 4.2.

4.4. Proofs for correctness of ExactCounting protocol

The following is adapted from [12, Corollary 1]. It relates the number of phases in a phase

clock to upper and lower bounds on the likely time spent getting to that phase. Our proof appeals

entirely to Corollary 1 of [12] but, unlike [12], the exact relationship between the constants is given

in the lemma statement.
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Figure 4.2. Simulated convergence time of ExactCounting. The dots indicate
the convergence time of individual experiments. The population size axis is loga-
rithmic, so exactly c log10 n time complexity would correspond to a line of slope c.
Since log log n is “effectively constant” (< 5) for the values of n shown, we expect
the plot to appear roughly linear.

Lemma 4.4.1 ( [12]). Let βl, ϵl, ϵu > 0, and define p = max(8ϵl, 32βl) and βu = 4p(ϵu + 2). Let

Tp be the time needed for a phase clock with ≥ p phases to reach phase p. Then for all sufficiently

large n, Pr [Tp < βl lnn] <
1

nϵl
and Pr [Tp > βu lnn] <

1

nϵu
.

Proof. Based on [12, Corollary 1], setting (variables of [12, Corollary 1] on the left, and our

variables on the right) c = ϵl, d = βl, k = p, and a = 1/16, then by choosing p = max(8ϵl, 32 ·βl), we

have Pr [Tp < βl lnn] <
1

nϵl
. By theorem 1.3.4, for all αu > 0, the epidemic corresponding to each

phase i will complete (all agents reach phase i) in time > αu lnn with probability < 4n−αu/4+1.

Since the time to complete the epidemic is an upper bound on the time for the leader to interact

with an agent in phase i (which could happen before the epidemic completes), we also have that the

phase takes time > αu lnn with probability < 4n−αu/4+1. By the union bound over all p phases,

there exists a phase 1 ≤ i ≤ p taking time > αu lnn with probability < 4pn−αu/4+1. Since at least

one phase must exceed time αu lnn for the sum to exceed pαu lnn, Pr [Tp > pαu lnn] < 4pn−αu/4+1.

Let αu = 4(ϵu+2). Substituting βu = pαu = 4p(ϵu+2) gives Pr [Tp > βu lnn] < 4pn−(4(ϵu+2))/4+1 =

4pn−ϵu−1 < n−ϵu , which completes the proof. □
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The next lemma says that DiscreteAveraging and timer “happen the way we expect”: first

DiscreteAveraging converges, before timer ends and records the output of DiscreteAveraging,

all in O(log n) time.

When we say “DiscreteAveraging converges”, this refers to the DiscreteAveraging proto-

col running in isolation, not as part of a larger protocol that might restart it. That is to say,

it may be that DiscreteAveraging converges, but ExactCounting has not converged, since

ExactCounting then restarts DiscreteAveraging and subsequently changes the count field.

Intuitively, it follows by a simply union bound on the probability that DiscreteAveraging is too

slow (theorem 4.2.10) or timer is too fast (theorem 4.4.1).

Lemma 4.4.2. For any level ≥ log n, if it takes ≥ 14208 lnn time to start the next level, with

probability ≥ 1− 3
n , first DiscreteAveraging converges to the correct output, then timer ends and

writes n into count, in ≤ 14208 lnn time.

Proof. theorem 4.2.5 applied with ϵ = 1 shows that agents codes’ length are ≤ 6 log n with

probability ≥ 1 − 1
n . theorem 4.2.6 shows that after level ℓ the leader is unique with probability

≥ 1− 1
n . Since ℓ ≥ log n the value of M is will be ≥ 3n3. By theorem 4.2.7, if DiscreteAveraging

converges, then ⌊ M
ave

+ 1
2⌋ exactly n.

By the union bound on theorem 4.4.1 and theorem 4.2.10, with probability ≤ 1
n + 1

n the timer

takes more than 14208 lnn time, or DiscreteAveraging takes more than 37 lnn time to converge.

Negating these conditions gives conclusion of the lemma.

To show that timer does not end until DiscreteAveraging converges, we apply theorem 4.4.1

again, but using the time lower bound for timer. Letting ϵl = 1 and βl = 37, theorem 4.4.1

gives that for p = 32βl = 1148, with probability ≥ 1 − 1
n , timer does not end before βl lnn time.

Applying the union bound to this case and the previous two cases then gives probability 1− 1
n as

desired. □

Finally, we can prove the “with high probability” portion of the main theorem.

Theorem 4.4.3. With probability at least 1 − 10+5 log logn
n , ExactCounting converges to the

correct output within 6 lnn log log n time, and each agent uses at most 17 + 60 log n bits.

A formal proof is given in the full version of our paper [51].
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Proof sketch. We sketch the ideas while omitting exact bounds on time and probability.

Statements below are “with high probability”. Define k to be the unique power of two such that

log n ≤ k < 2 log n. By theorem 4.2.3, level k is reached quickly, so it suffices to prove fast

convergence after the event that k is reached. By theorem 4.2.6, the leader is unique at level k,

therefore also 2k and 4k, and since k ≥ log n, M ≥ 3n3. So by theorem 4.4.2, DiscreteAveraging

will converge within time t = 14208 lnn.

We look at three subcases: among levels k, 2k, 4k, one is the earliest among the three where

> t time is spent. By theorem 4.2.4, level 4k is not exceeded since codes are unique. Since codes

are unique at level 4k, at > t (in fact, infinite time) will be spent at level 4k. But it could be

that the protocol also spends time > t at level k or 2k. Whichever is the first among these three

to spend time > t, since the previous spent less time, it takes time ≤ 2t to reach the first level

taking time > t. By theorem 4.4.2, DiscreteAveraging converges in time ≤ t, and by the time

upper bound of theorem 4.4.1, timer reaches phase MaxPhase in time ≤ t and records the output

of DiscreteAveraging.

If we are at level k or 2k, then we might go to a new level. If this is guaranteed to happen

within O(log n) time, then we would not need the timer protocol. We could simply claim that

DiscreteAveraging will converge at the last level reached, whether k, 2k, or 4k. The problem that

timer solves is that ExactCounting may reach level k quickly, DiscreteAveraging converges

quickly, yet a small number of duplicate nodes remain, say 2. It takes Ω(n) time for them to interact

and increase to level 2k, which restarts DiscreteAveraging. By the time lower bound of theo-

rem 4.4.1, in each of these restarts timer will not reach phase MaxPhase until DiscreteAveraging

reconverges, so the count field will not be overwritten. Thus convergence happened at the first

level where we spent time > t, even if there are subsequent restarts. □

4.4.1. ExactCounting converges in fast expected time. Most of the technical difficulty of

our analysis is captured by the “with high probability” results stated already. ExactCounting is

also stabilizing, meaning that with probability 1 it gets to a correct configuration that is stable (the

output cannot change). Probability 1 correctness is required for the expected correct convergence

time to be finite, and indeed it asymptotically matches the high probability convergence time of
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O(log n log log n). However, the protocol takes longer to stabilize, up to O(n) time, since it does

not stabilize until UniqueID stabilizes.6

The next theorem shows a fast expected convergence time, and it completes the second portion

of the main result, theorem 4.2.1.

Theorem 4.4.4. ExactCounting converges in expected time 7 lnn log log n.

First we establish some other claims necessary to prove theorem 4.4.4. Recall that a protocol

stabilizes if it converges to the correct output with probability 1.

Lemma 4.4.5. ExactCounting stabilizes to the correct population size.

Proof. Since each agent generates code bits uniformly at random, any pair of agents has

probability 0 to generate the same infinite sequence of bits. So with probability 1 all agents

eventually have unique codes, and UniqueID stabilizes. We now show that implies ElectLeader

stabilizes.

Since there are n agents, UniqueID cannot terminate until at least level log n. So when

UniqueID terminates, |C| ≥ log n, so M = 3 · 23|C| ≥ 3n3. Note that DiscreteAveraging also has

an equivalence between converging and stabilizing: once all agents’ ave fields are within a certain

interval, they cannot leave that interval. So by theorem 4.2.7, DiscreteAveraging, if it stabilizes,

will stabilize to values of ave such that ⌊ M
ave

+ 1
2⌋ = n. We claim that DiscreteAveraging stabilizes

with probability 1, which is shown below. Furthermore, timer reaches MaxPhase with probability

1, since the only way to avoid incrementing the phase of an agent is forever to avoid any interaction

between it and an agent at the next phase, which happens with probability 0. This implies that

with probability 1, the correct population size is eventually written into the field count.

It remains to show the claim that DiscreteAveraging stabilizes with probability 1. Define the

potential function Φ for any configuration c by Φ(c) =
∑

a |a.ave−M/n|, where the sum is over each

agent a in the population. The DiscreteAveraging protocol stabilizes by the time Φ reaches its

minimum value,7 which is either n or 0 depending on whether n divides M, when all agents have ave

6Prior to that, it is possible, with low probability, after n is written into each agent’s count field, for a subsequent
restart of DiscreteAveraging to write incorrect values, if the corresponding restart of timer completes too quickly.
So no configuration is stable until UniqueID converges and triggers the final restart.
7If M ≫ 2n2, then DiscreteAveraging can stabilize prior to this time, since the ave values do not have to reach their
final convergent values for the output function ⌊ M

ave
+ 1

2
⌋ to converge, by theorem 4.2.7.
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= ⌊M/n⌋ or ⌈M/n⌉. We claim that Φ is nonincreasing with each transition of DiscreteAveraging.

When two agents meet, there are two cases: 1) both of their ave fields are ≥ ⌈M/n⌉, or both are

≤ ⌊M/n⌋, and 2) one of their ave fields is < (resp., ≤) ⌊M/n⌋, and the other is ≥ (resp., >) ⌈M/n⌉ .

Taking the average of their ave fields, in case (1) does not change Φ, and in case (2) decreases Φ,

so Φ is nonincreasing.

It remains to show that Φ will reach its minimum value with probability 1. If the protocol has

not converged, then there must be some agent with an ave field not equal to either ⌊M/n⌋ or ⌈M/n⌉.

But since the population-wide sum of the ave values is always M, this implies that case (2) holds

for some pair of agents. With probability 1, such a pair of agents must eventually meet, decreasing

Φ. So with probability 1, Φ eventually reaches its minimum value. □

UniqueID stabilizes when all agents have a unique code since, by inspection of the UniqueID

protocol, this implies that the codes no longer can change. The next lemma shows that this happens

at most linear time. A complete proof is given in the full version of our paper [51].

Lemma 4.4.6. UniqueID stabilizes in expected time at most 1.03n.

Proof of theorem 4.4.4. By theorem 4.4.3, ExactCounting converges to the correct an-

swer in time 6 lnn log logn with probability at least 1− 10+5 log logn
n .

By theorem 4.4.6, UniqueID converges in expected time at most 1.03n. Once it has converged,

it takes expected time O(log n) for DiscreteAveraging to converge and timer to write the correct

output if it has not already been written. The sum of these times is at most 1.04n for sufficiently

large n. We can bound the expected time as

Pr [convergence in time ≤ 6 lnn log logn] · 6 lnn log logn +

Pr [convergence in time > 6 lnn log logn] · 1.04n

=

(
1− 10 + 5 log log n

n

)
· 6 lnn log log n +

10 + 5 log log n

n
· 1.04n

< 6 lnn log logn + 1.04(10 + 5 log log n)

< 7 lnn log logn.

□
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4.4.2. Increasing time to minimize state complexity. ExactCounting generalizes eas-

ily to trade off time and memory: by adjusting the rate at which the code length grows, the conver-

gence time t(n) = O(f(n) log n), where f(n) is the number of stages required for the code length

to reach log n. The minimum state complexity is achieved when the code length increments by 1

each stage, so that f(n) = log n and t(n) = log2 n. In this case, a straightforward adaptation of

theorem 4.2.4, letting ϵ = 1, indicates that with probability at least 1− 1
n , all codes are unique by

level 3 log n. Carrying through the string length and integer bounds from the main argument gives

state complexity O(n30) for the full protocol and O(n9) for just the leader election.

4.5. Conclusion and further discussions

We have shown a uniform population protocol computing the exact population size using ≈

60 log n bits memory (i.e., poly(n) states) and O(log n log logn) time.

By removing the DiscreteAveraging and timer subprotocols, the remainder is a uniform

protocol electing a leader in O(log n log logn) time and ≈ 18 log n bits of memory (for C and LC).

Berenbrink, Kaaser, and Radzik [28] improved the space complexity as well as the time com-

plexity of our exact counting protocol. Their protocol uses O(n log n) states and converges in

O(log n) time both WHP [28]. They also explained how to modify the protocol to achieve stabi-

lization in O(log n) time while using O(n log n log logn) states with error detection schemes that

point agents to switch to the näıve slow (but stable) section 2.3.1 as a backup.

To reduce state complexity, one could imagine a variant of the size counting problem that allows

for < n states per agent, if the population size is represented in a distributed fashion. For example,

one could imagine 1 + ⌊log n⌋ agents having a pair (s, b) ∈ N×{0, 1}, where b is a bit of the output

count and s ∈ {0, . . . , ⌊log n⌋} is its significance, with s < 0 in all other n− log n agents to represent

that they do not represent the output.
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CHAPTER 5

Approximate Size Counting in Population Protocols

5.1. Introduction

We study uniform population protocols where each agent uses an identical transition algorithm

that does not depend on the population size n. Many existing polylog(n) time protocols for leader

election and majority computation are nonuniform: to operate correctly, they require all agents to

be initialized with an approximate estimate of n (specifically, the value ⌊log n⌋).

Our first main result is a uniform protocol for calculating log(n)±O(1) with high probability in

O(log2 n) time and O(log4 n) states (O(log log n) bits of memory). The protocol is not terminating :

it does not signal when the estimate is close to the true value of log n. If it could be made terminating

with high probability, this would allow composition with protocols requiring a size estimate initially.

We do show how our main protocol can be indirectly composed with others in a simple and elegant

way, based on leaderless phase clocks, demonstrating that those protocols can in fact be made

uniform.

However, our second main result implies that the protocol cannot be made terminating, a con-

sequence of a much stronger result: a uniform protocol for any task requiring more than constant

time cannot be terminating even with probability bounded above 0, if infinitely many initial con-

figurations are dense: any state present initially occupies Ω(n) agents. (In particular no leader is

allowed.) Crucially, the result holds no matter the memory or time permitted.

Finally, we show that with an initial leader, our size-estimation protocol can be made termi-

nating with high probability, with the same asymptotic time and space bounds.

The original model [10] assumed a set of states and transitions that is constant with respect to

n. However, for important distributed computing problems such as leader election [53], majority

computation [2], and computation of other functions and predicates [19] no constant-state protocol

can stabilize in sublinear time with probability 1.1 This motivated the study of protocols in which

1A protocol stabilizes when it becomes unable to change the output. A protocol converges in a given random
execution when the output stops changing, though it could take longer to subsequently stabilize. Known time
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the set of states and transitions grows with n (essentially adding a non-constant memory to each

agent). Such protocols achieve leader election and majority computation using O(polylog(n)) time,

while keeping the number of states “small”: typically O(polylog(n)) [2,3,5,7,20,20,24,24,25,25,

26,27,28,30,50,60,61,79,91] although O(log log n) states suffice for leader election [26,60] and

exact majority [50].

Unfortunately, many of these sublinear-time protocols [2,3,5,20,24,25,26,27,30,50,61,79,91]

are nonuniform: the set of states and transitions are allowed to depend arbitrarily on n (this is

not true of all, see for example recent fast, low-memory leader election protocols [60,61]). This

capability is used to initialize each agent with an approximate estimate of n (the value ⌊log n⌋)

required by the protocols. 2 A representative example portion of such a protocol is shown in fig. 5.1:

each agent has an internal “counter”, which increments upon each encounter with an x. When the

counter reaches log n, the protocol terminates (or moves to a different “stage”).

algorithm Elect_Leader8

counter := counter+1
if counter == 8:
terminate

population size ≈ 28

algorithm Elect_Leader20

counter := counter+1
if counter == 20:
terminate

population size ≈ 220

c1,x→c2,_
c2,x→c3,_

…
c8,x→t,_

c1,x→c2,_
c2,x→c3,_

…
c8,x→c9,_

…
c20,x→t,_

typical nonuniform algorithms require pre-supplied approximation of population size:

algorithm Elect_Leaderall

counter := counter + 1
if counter == ???:
terminate

…… …
population size = anything

How to make 
uniform?

pseudocode transitions pseudocode transitions

Figure 5.1. Many population protocols with ω(1) states use nonuniform algo-
rithms: the value log2 n is “hardcoded” into the reactions. Above, “terminate”
could mean terminate the whole algorithm, or it could mean “move to the next
stage of the algorithm”.

More desirable would be a uniform protocol in which each agent’s local algorithm for computing

the outputs, given the inputs, has no knowledge of n. Such an algorithm may produce outputs

longer than its inputs, retaining the ability to use a number of states that grows with the population

size. A uniform protocol can be deployed into any population without knowing in advance the size,

or even a rough estimate thereof.

Although the original model of population protocols, stipulating a constant set of states, is

uniform, when the number of states vary with the population size in this manner, little is known

lower bounds [2, 19, 53] are on stabilization, not convergence. Recently Kosowski and Uznanski [69] achieved a
breakthrough result, showing constant-state protocols for leader election and all decision problems computable by
population protocols (the semilinear predicates), which converge with high probability in polylog(n) time, and for
any ϵ > 0, probability 1 protocols for the same problems that converge in O(nϵ) expected time. The latter protocols
require Ω(n) time to stabilize, as would any constant-state protocol due to the cited time lower bounds.
2In fact, uniform protocols with “dense” initial configurations cannot properly terminate. (see [47])
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about the computational abilities and limitations of uniform protocols (with a few interesting

exceptions [36,37,74,75]).

5.1.1. Contribution. Nonuniform protocols in the literature [2, 3, 5, 27, 30] initialize each

agent with the value ⌊log n⌋. Hence we study the problem of computing an approximate estimate

of log n. Our first main result, theorem 5.2.1, is a uniform protocol, starting from a configuration

where all n agents are in an identical state, that with high probability computes log n ± O(1)

(storing the value in every agent), using O(log2 n) time and O(log4 n) states.3

One might hope to use this protocol as a subroutine to “uniformize” existing nonuniform pro-

tocols for leader election and majority [2,3,5,27,30].4 Suppose the size-estimating protocol could

be made terminating, eventually producing a termination “signal” that with high probability does

not appear until the size estimate has converged. This would allow composition with other pro-

tocols requiring the size estimate. It has been known since the very beginning of the population

protocol model [10] that termination cannot be guaranteed with probability 1. However, some

leader-driven protocols can be made terminating with high probability, including simulation of

register machines [12] or exact (but slow) population size counting [74].

Despite this difficulty in directly composing size estimation with a downstream protocol (or sev-

eral stages/subprotocols composed in series), we present a general and simple method of composition

(via restarting), based on a “leaderless phase clock” using a weaker log population size estimate s

(called logSize2 in the pseudocode in section 5.2) obtained initially (where log n− log lnn ≤ s ≤

2 log n w.h.p.).5 Based on s and the expected convergence time of the downstream protocol, each

agent once per interaction increments a counter c, from 0 up to f(s), and the first agent to reach

f(s) signals the entire population to terminate (or move to the next stage). f(s) is chosen large

enough that no agent reaches f(s) before the downstream protocol converges. The entire down-

stream protocol is reset if the initial size estimate s changes. With the above scheme, agents need

to store the variables s, c, and possibly also f(s) (in our case f(s) = O(s) so it need not be stored

explicitly, but if f(s) = poly(s), for example, f(s) may need to be stored separately from s). If the

3It appears difficult to compute ⌊logn⌋ exactly, rather than within a positive additive constant, since for all k, such
a protocol could distinguish between the exact population sizes 2k − 1 and 2k.
4Some protocols for leader election [60,61] are uniform, but other protocols [2,5,27,30] have the benefit of simplicity
and may possibly be easier to reason about and compose with other protocols.
5The first leaderless phase clock for population protocols was proposed in [3]. Ours is different, based on [91]. Both
are nonuniform, relying on an estimate of logn.
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downstream protocol requires t(n) time to converge, then agents also set their threshold f(s) > t(n)

(where f(s) is “large” compared to t(n)). This requires O(f(s)2 · log n) states will be added to the

state complexity of the protocol, or O(log2 n) if f(s) = O(log n) (as in our case) since f(s) need not

be stored explicitly. To compose multiple downstream stages/subprotocols in series, we also need a

way to compute and possibly store the number K of stages (in our case K = Θ(log n), also chosen

as a constant times s, so K need not be stored explicitly), and we need to store an index indicating

which stage we are on. For K stages, this multiplies the state complexity by K if K = O(log n)

and K2 otherwise (since K must be stored explicitly in the latter case).

5.1.2. Definition of correctness and time. The notion that a protocol’s configuration “has

the correct answer” is problem-specific. For leader election, it means there is a single leader agent.

For predicate computation, it means all agents have the correct Boolean output. In this chapter,

since our goal is to approximate log n within additive factor 5.7, we say a configuration is correct

if the output field of each agent is within 5.7 of log n.6

The following definitions match those used in the literature, when other notions of “correct”

are substituted. Let E = (c0, c1, . . .) be an infinite execution. A configuration c is stably correct

if every configuration reachable from c is correct.7 We say E converges at interaction i if ci is not

correct and for all j > i, cj is correct. We say E stabilizes at interaction i if ci is not stably correct

and for all j > i, cj is stably correct. A protocol can converge and/or stabilize with probability 1

or a smaller probability. However, if the set of reachable configurations is bounded with probability

1 (which is the case for the protocols discussed in this chapter), then for any p ∈ [0, 1], a protocol

converges with probability p if and only if it stabilizes with probability p.8 For a computational

task T equipped with some definition of “correct”, we say that a protocol P stably computes T

6We note that our notion of function approximation differs from that of Belleville, Doty, and Soloveichik [19]. They
use a distributed output convention, where the output of a function f : Nd → N is encoded as the population count
of agents in a special output state y. Thus one must examine the entire population to know the output. In our local
output convention, each agent has a field encoding a value from the function’s range. The output is undefined if
some agents have different values, and defined to be their common value otherwise. This is similar to how Boolean
predicate output with range {0, 1} is encoded in population protocols [10].
7Belleville, Doty, and Soloveichik [19] also consider function approximation, but define a configuration to be stable if
the output cannot change, whereas we allow it to change within a small interval around the correct value. The time
lower bound techniques of [19] do not apply to our more relaxed notion of stability.
8Let C and S respectively be the set of stabilizing and converging executions. Clearly S ⊆ C. Although S ⊊ C is
possible, we argue that Pr [C \ S] = 0. Suppose a protocol converges in an execution (c0, c1, . . .) at interaction i (so
cj is correct for all j > i). If did not stabilize, then for all j > i, some incorrect configuration dj would be reachable
from cj . Let pj > 0 denote the probability of reaching dj from cj . The set of reachable configurations is bounded
with probability 1, so min

j>i
pj is well-defined and positive. The probability of never reaching any dj is then 0.
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with probability p if, with probability p, it stabilizes (equivalently, converges). If p is omitted, it

is assumed p = 1. However, when measuring time complexity, convergence and stabilization may

be much different. We say that P converges (respectively, stabilizes) in (parallel) time t(n) with

probability p if, with probability p, it produces an execution that converges (resp., stabilizes) by

interaction i, where i/n ≤ t(n). Many protocols converge much faster than they stabilize, such as

those that combine a fast, error-prone subprotocol with a slow, error-free protocol, e.g., [12,38,69].

However, for the protocol of this chapter, convergence and stabilization coincide. We use the term

“converge” throughout the chapter to refer to this event.

Many papers separately measure high-probability time convergence and expected time to con-

verge. Our protocol has positive probability of error, but we argue that expected time is a mean-

ingful notion only with error probability 0, which is why we do not measure expected time. The

only reasonable definition of “time until correctness” on a non-converging execution is ∞. So with

Pr [doesn’t converge] > 0, the expected convergence time is E [time|converges] · Pr [converges] +

E [time|doesn’t converge] ·Pr [doesn’t converge] = E [time|converges] ·Pr [converges] +∞ =∞. One

could imagine measuring only E [time|converges]. However, conditioning can artificially “speed up”

the process.9

5.2. Fast protocol for estimating population size within constant additive error

In this section we describe a uniform protocol for computing the value of log n with an additive

error, i.e., estimating the population size to within a constant multiplicative factor. We say a

population protocol is leaderless if all agents start in the same state.

Theorem 5.2.1. There is a uniform leaderless population protocol that converges in time

O(log2 n) with probability ≥ 1 − 1/n2, uses O(log4 n) states with probability ≥ 1 − O(log n)/n,

and stores in each agent an integer k such that |k − log n| ≤ 5.7 with probability ≥ 1− 9/n.

We note that the protocol has a positive probability of error. It is open to find a protocol using

polylog(n) time/states computing log(n)±O(1) with probability 1.

9Consider a hypothetical protocol that runs a parallel subprotocol S that completes quickly and, upon completion,
somehow prevents the main protocol M from converging. The main protocol, on the other hand, may somehow detect
if it completes before S does, and if so, M then shuts S down. Many executions will not converge, but those that do
must be very fast in order to converge before S completes. Thus conditioning on convergence “anthropically speeds
up” convergence [1]. This is an extreme example that has the property that the probability of correctness is reduced
by S, but it nevertheless shows that measuring conditional expected time can be problematic.
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The protocol is described and its time and state complexity analyzed in section 5.2.2. Much

of the analysis of the approximation involves proving a bound on the moment-generating function

of a maximum of geometric random variables, enabling the Chernoff technique can be applied to

sums of such variables. This is quite nontrivial and shown in section 5.7.

5.2.1. Intuition. Alistarh et al. [2] describe a protocol for estimating log n within a constant

multiplicative factor. A 1
2 -geometric random variable is the number of flips needed to get one

head when flipping a fair coin. In their protocol, each agent generates an independent geometric

random variable Gi, then propagates the maximum M = max1≤i≤nGi by epidemic: transitions of

the form i, j → j, j for i ≤ j, which in O(log n) time “infect” all agents with the maximum. It is

known that E [M] ≈ log n [56], and log n − log lnn ≤M ≤ 2 log n with probability ≥ 1 − O(1)/n

(theorem 5.7.7).

We take the obvious extension of this approach: do this K times and take an average. The

estimated average is within O(1) of logn so long as K = Ω(log n) (theorem 5.7.10). One problem

to solve first is how to calculate K; after all, K = Θ(log n) scales with n, so with a uniform protocol

it cannot be encoded into the agents at the start. The agents estimate it using the protocol of [2].

Since that protocol is converging but not terminating (provably it cannot be made terminating

by [47]), each time an agent updates its value of K, it reinitializes the remainder of its state.

However, a trickier problem remains: a näıve approach to implement “averaging of K numbers”

requires storing K = Θ(log n) numbers in each agent, each having value Θ(log n), implying the

number of states is Θ((log n)logn) = Θ(nlog logn). This is even more than the O(n60) sufficient

to quickly compute exactly n [51]. To overcome this problem, we use a “leaderless phase clock”

similar to those of [3,80,91], but uniform. Unlike the phase clock used by [3,80], our leaderless

phase clock simply increments a counter on every interaction. This simultaneously gives an elegant

way to compose our protocols with downstream protocols requiring the size estimate. Agents

count their number of interactions and compare it with a threshold value Θ(log n). Whenever

their number of interaction passes the threshold they will move to the next round similar to the

protocol described above (the population with a leader). The threshold is calculated in the following

way. In our protocol, agents start generate a geometric random variable called logSize2 and

propagate the maximum logSize2 among themselves. After agents agree on the logSize2 variable,

a constant multiple 95.logSize2 is the threshold in their leaderless phase clock. This lets the agents
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synchronize epochs of the algorithm, each taking O(log n) time, and prevent the next epoch from

starting until the previous has concluded.

The probabilistic clock inside agents might go off very soon at the very beginning of the protocol,

but after O(log n) time all agents will store the maximum generated logSize2 and their leaderless

phase clock will eventually converge to a stable one which goes off after completion of a predefined

constant factor of log n; to handle this, each time an agent updates its value of logSize2, the

remainder of its state is reset and it begins the rest of the protocol anew. Restarting the downstream

protocol is a known technique in population protocols also used in [60] to compose two leader

elimination subprotocols. The agents then generate K additional geometric random variables in

sequence, taking their sum. Upon completing the generation and propagation of the K’th number,

the agent divides the sum by K and stores the result in their output field. Composition with a

downstream protocol is as simple as letting that protocol be the last phase. However, since our

protocol has a positive probability of failure, this would translate to the downstream protocol as

well.

The time is O(log2 n) by the following rough analysis (details follow). We propagate K numbers

one after each other and for each epidemic O(log n) time is required. Since we set k = O(log n)

then the protocol will take O(log2 n) total time to complete.

5.2.2. Formal specification of protocol. Our protocol uses uniform random bits in multiple

places. We assume agents have access to independent uniformly random bits. In the protocol,

agents start by dividing in two groups of S and A. A agents are responsible for the most part of the

algorithm including generating geometric random variables and propagating their maximums while

the S agents only provide memory to store the sum of K maximum geometric random variables.

We split the state space such that A agents and S agents are responsible to store different variables.

The space multiplexing is a common approach used in population protocols to reduce the space

complexity of the protocols [6].

Agents initially have no role (X), and partition into roles via X, X→ A, S. Since this takes Θ(n)

time to complete, we add transitions A, X → A, S and S, X → S, A, converging in O(log n) time,

with the price of deviating from n
2 for each role. By theorem 5.2.2 this deviation is O(

√
n lnn),
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increasing the size estimation error by merely a constant additive factor.10 All agents start at

epoch = 0. The A agents generate one geometric random variable (called logSize2) and continue

by propagating the maximum among the whole population. Since we use this logSize2 value for

all early estimation of log n, each time an agent finds out there was a greater value for the logSize2

than its own, it will reset all other computations that might have happened.

By theorem 5.2.8, the maximum logSize2 amongst the population is a 2 factor estimation of

log n. When any agent updates its logSize2 with a new maximum, it restarts the entire down-

stream protocol via Restart. Once the maximum logSize2 value is generated in the population,

it propagates (triggering Restart) by epidemic in O(log n) time. The logSize2 variable could

be used to estimate K, which is the number of independent additional geometric random variables

each agent will generate. We also use logSize2 to set the leaderless phase clock inside each agent.

In each epoch, the A agents will generate one new geometric random variable and propagate its

maximum. They count their number of interactions in each epoch using the time variable. At

the end of an epoch, when time reaches 95.logSize2, the A agents accumulate the value of the

maximum gr into the sum of a S agent. The A agents increase their epoch variable by one and set

time = 0 after either passing the geometric random variable to a S agent or interacting with a S

agent in a higher phase. Separately, S agents are responsible to propagate the maximum sum and

maximum epoch among themselves.

In the Log-Size-Estimation protocol, all agents in role A will finally generate K = 5·logSize2

geometric random variable and let the S agents to store a sum of maximum one generated for

each phase. Once all agents reach epoch = 5 · logSize2 they set protocolDone = True and

output = sum
epoch

+ 1. We use |A|, |S| for the cardinality of A and S agents respectively.

The following lemma shows that close to half of agents end up in role A.

Lemma 5.2.2. Let a > 0. In the Log-Size-Estimation protocol the cardinality of agents with

A role is in the interval of
[
n
2 − a, n2 + a

]
with probability ≥ 1− e−2a2/n.

Proof. All agents in the Log-Size-Estimation protocol start in role X. In the Partition-

Into-A/S protocol agents will be assigned to their new roles. Finally, all agents participate in the

10This mechanism of splitting the population approximately in two works for our protocol, because the number of A
agents is likely to be so close to n/2 that our estimate of logn is reduced by an additive factor likely to be very close
to −1.
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Protocol 23 Log-Size-Estimation(rec, sen)

▷ initial state of agent:
role = X,
time = 0, sum = 0, epoch = 0,
gr = 1, logSize2 = 1,
protocolDone = False

Partition-Into-A/S(rec, sen)
if rec.role = A then

rec.time← rec.time + 1
Check-if-Timer-Done-and-Increment-Epoch(rec)

if sen.role = A then
sen.time← sen.time + 1
Check-if-Timer-Done-and-Increment-Epoch(sen)

Propagate-Max-Clock-Value(rec, sen)
Propagate-Incremented-Epoch(rec, sen)
if one agent have role = S and one have role = A then

Update-Sum(rec, sen)

if both agents have role = A then
Propagate-Max-G.R.V.(rec, sen)

if sen.protocolDone then
output← sum

epoch
+ 1

Subprotocol 24 Partition-Into-A/S(rec, sen)

▷ Partition the population in two almost equal size subpopulations.
if sen.role = X, rec.role = X then

sen.role← A

sen.logSize2← one geometric random variable
rec.role← S

else if sen.role = A, rec.role = X then
rec.role← S

else if sen.role = S, rec.role = X then
rec.role← A

rec.logSize2← one geometric random variable

Subprotocol 25 Propagate-Max-Clock-Value(agent1, agent2)

▷ Maximum generated geometric variable for logSize2 will be propagated.
if agent1.logSize2 < agent2.logSize2 then

agent1.logSize2← agent2.logSize2
Restart(agent1)

else if agent2.logSize2 < agent1.logSize2 then
agent2.logSize2← agent1.logSize2
Restart(agent2)

Log-Size-Estimation protocol either having role A or S. Thus, after completion of the Partition-

Into-A/S protocol |A|+ |S| = n holds.
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Subprotocol 26 Restart(agent)

time← 0, sum← 0, epoch← 0
gr← one geometric random variable
protocolDone← False

Subprotocol 27 Propagate-Max-G.R.V.(agent1, agent2)

▷ Maximum generated geometric variable for gr will be propagated.
if agent1.epoch = agent2.epoch then

if agent1.gr < agent2.gr then
agent1.gr← agent2.gr

else if agent2.gr < agent1.gr then
agent2.gr← agent1.gr

Subprotocol 28 Check-if-Timer-Done-and-Increment-Epoch(agent)

▷ Agents compare their time value to the specified threshold.
if agent.time = 95 × agent.logSize2, agent.protocolDone = False, agent.updatedSUM =
True then

agent.epoch← agent.epoch + 1
Move-to-Next-G.R.V(agent)

if agent.epoch = 5× agent.logSize2 then
agent.protocolDone← True

Subprotocol 29 Propagate-Incremented-Epoch(agent1, agent2)

▷ The maximum epoch will be propagated.
if both agents have role = A then

if agent1.epoch < agent2.epoch then
agent1.epoch← agent2.epoch
Move-to-Next-G.R.V(agent1)

else if agent2.epoch < agent1.epoch then
agent2.epoch← agent1.epoch
Move-to-Next-G.R.V(agent2)

else if both agents have role = S then
if agent1.epoch < agent2.epoch then

agent1.epoch← agent2.epoch
agent1.sum← agent2.sum

else if agent2.epoch < agent1.epoch then
agent2.epoch← agent1.epoch
agent2.sum← agent1.sum

The percentage of agents that change to role A is an average of the percentage of A’s produced

by the first rule (always exactly 1/2) and the percentage produced by the next two rules. The

next two rules ensure that if the percentage of A’s so far produced is greater than 1/2, then A

is less likely to be produced next than a fair coin flip (since, conditioned on the next interaction
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Subprotocol 30 Move-to-Next-G.R.V(agent)

▷ The agent move to the next epoch:
agent.time← 0
agent.gr← one geometric random variable
agent.updatedSUM = False

Subprotocol 31 Update-Sum(agent1, agent2)

▷ The agent accumulates the current value of gr in sum:
a ← agent with role = A

s ← agent with role = S

if a.epoch = s.epoch, a.time ≥ 95· a.logSize2, and a.protocolDone = False then
s.epoch← s.epoch + 1
s.sum← s.sum+ a.gr
a.updatedSUM = True

else if a.epoch < s.epoch then
a.updatedSUM = True

being between one X and one non-X, the probability of producing A is exactly |S|
|A|+|S| , i.e., smaller

if there are more A’s than S’s), and vice versa. Thus, the distribution of the percentage difference∣∣∣ |A|n − 1/2
∣∣∣ of A’s is stochastically dominated by the difference between the percentage of heads of

a fair-coin binomial distribution B(n, 1/2) and B’s expected percentage of 1/2. Therefore we can

use a binomial distribution to bound the upper and lower tails of the distribution of the number of

eventual A’s. For any a the Chernoff bound says for any a > 0, Pr [B(n, 1/2) ≥ n/2 + a] ≤ e−2a2/n

and Pr [B(n, 1/2) ≤ n/2− a] ≤ e−2a2/n. □

Corollary 5.2.3. In the Log-Size-Estimation protocol the cardinality of agents with A role

is in the interval of
[
n
3 ,

2n
3

]
with probability ≥ 1− e−n/18.

In each epoch, one geometric random variable (in the first epoch logSize2 and in the subsequent

epochs gr) is generated and its maximum will be propagated by epidemic among the population.

We set the time of each epoch equal to the required time of generating one plus the time for

completion of an epidemic. To analyze the time complexity of our protocol, we require the time

bounds for completing an epidemic from the paper [12]. The current form is taken from [51]. For all

n ∈ N+, let Hn =
∑n

k=1
1
k denote the n’th harmonic number. Note that lnn ≤ n−1

n Hn−1 ≤ 1+lnn.

The following corollary describes an epidemic in a subpopulation. This refers to some subset

S of the population executing epidemic transitions only among themselves, which slows down the

epidemic by only a constant factor if |S| = Ω(n).
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Corollary 5.2.4. Let c ≥ 1. Suppose an epidemic happens among a subpopulation of a = n/c

agents. Let T denote the time to complete such an epidemic. Then for any αu > 0, Pr [T > αu ln a] <

a−(αu−4c)2/12c.

Proof. The probability that in the next interaction the scheduler picks two agents from the

subpopulation a is
(
a
2

)
/
(
n
2

)
= a(a−1)

n(n−1) . By theorem 1.3.5, if T′ denotes the time to complete an

epidemic in population size a, then E [T′] = a−1
a Ha−1. Since we have n(n−1)

a(a−1) expected interactions

in the whole population of size n in order to obtain one interaction within the subpopulation, the

expected time to complete this epidemic (counting total interactions in the whole population) is

E [T] = n(n−1)
a(a−1) · E [T′] = n(n−1)

a(a−1)
a−1
a Ha−1 = n(n−1)

a2
Ha−1 ≥ c2 ln a. By the Chernoff bound we have:

Pr [T ≥ (1 + δ)E [T]] ≤ e−δ2E[T]/3

≤ e−δ2·c2 ln(a)/3

= a−c2δ2/3

Setting αu = 4c(1 + δ), Pr [T ≥ αu ln a] ≤ a−((αu/4c)−1)2c2/3. □

Setting c = 3 and αu = 24 in theorem 5.2.4 gives the following.

Corollary 5.2.5. Suppose an epidemic happens among a subpopulation of n/3 agents with

time T. Then Pr [T > 24 lnn] < 27n−3.

The next lemma bounds the number of interactions an agent has in a given time, and it is the

basis of the leaderless phase clock we use. It follows from a simple Chernoff bound on the number

of interactions involving a single agent in a given window of time.

Lemma 5.2.6. Let C ≥ 3 and D = 2C +
√

12C. In time C lnn, with probability ≥ 1−1/n, each

agent has at most D lnn interactions.

Proof. Fix an agent a. Let Ia be the number of interactions involving a during Cn lnn total

interactions (C lnn time). The probability that any given interaction involves a (either receiver or

sender) is exactly 2
n , so Ia is distributed binomially, and E [Ia] = Cn lnn · 2n = 2C lnn. Applying

the Chernoff bound, for any 0 < δ ≤ 1,

Pr [Ia ≥ (1 + δ)2C lnn] ≤ e−δ22C ln(n)/3 = n−2Cδ2/3.
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Let D = 2C +
√

12C, and let δ = D
2C − 1. (Note δ ≤ 1 so long as C ≥ 3.) Then (1 + δ)2C lnn =

D lnn and n−2Cδ2/3 = n
−(D−2C)2

6C = n−2. Then Pr [Ia ≥ D lnn] ≤ n−2. By the union bound,

Pr [(∃a) Ia ≥ D lnn] ≤ n−1. So, by setting D = 2C +
√

12C we bound the probability that each

agent has more than D lnn interactions in time C lnn to be ≤ 1/n. □

Corollary 5.2.7. Each agent has ≥ 65 lnn interactions in time 24 lnn with probability ≤ 1/n.

By theorem 5.2.6 each agent has at most
(
2 · 24 +

√
12 · 24

)
lnn ≤ 65 lnn ≤ 94 log n interactions

in the time that it takes to generate and propagate maximum of one geometric random variable.

Thus, each agent should count up to 94 log n for its leaderless phase clock, to ensure that with high

probability none reaches that count until the maximum geometric random variable is known to

all agents. However, agents are not aware of any prior approximation of log n. In the Log-Size-

Estimation protocol, agents use their logSize2 variable for this approximation. As mentioned,

all the agents in role A start by generating one geometric random variable logSize2. The maximum

in the population is used as a weak (constant factor) approximation of log n. theorem 5.7.7 says

that the maximum of |A| geometric random variables is in the interval of [log |A|− log ln |A|, 2 log |A|]

with probability at least 1 − 1/|A|. However, we are using the logSize2 and gr variables as an

approximation of log n rather than log |A|. theorem 5.2.8 will give us a bound over the logSize2

value with respect to log n. theorem 5.2.9, theorem 5.2.10, and theorem 5.2.11 use this lemma for

a bound over gr, time, and epoch values.

Lemma 5.2.8. The logSize2 value generated by Generate-Clock is in the interval of [log n−

log lnn, 2 log n + 1] with probability at least 1− 1/n− e−n/18.

Proof. By theorem 5.2.3, n/3 ≤ |A| ≤ 2n/3 with probability ≥ 1 − e−n/18. We apply the

result of theorem 5.7.7 and substitute n with |A|:

log (n/3)− log ln (n/3) ≤ logSize2 ≤ 2 log (2n/3)

log n− 1.6− log lnn− 0.4 ≤ logSize2≤ 2 log n + 2 log(2/3)

log n− log lnn− 2 ≤ logSize2 ≤ 2 log n− 1

log n− log lnn− 2 ≤ logSize2 ≤ 2 log n− 1
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So, by setting logSize2 = logSize2 + 2 for all agents, this variable is in the interval of [log n −

log lnn, 2 log n + 1] with probability ≥ 1− 1/n− e−n/18. □

Corollary 5.2.9. The logSize2 (gr) value generated by Generate-Clock (Generate-

G.R.V) is in the interval of [log n− log lnn−2, 2 log n−1] with probability at least 1−1/n−e−n/18.

Corollary 5.2.10. The number of interactions in each epoch in the Log-Size-Estimation

is in the interval [95 log n− 95 log lnn, 189 log n] with probability ≥ 1− 1/n− e−n/18.

Proof. By theorem 5.2.7, agents should count up to 96 ln ≤ 139 log n before moving to the

next epoch. if we set the threshold of the time to 95 ·logSize2, 95 log n−95 log lnn ≥ 93 log n then

the time variable will be in the interval of [95 log n−95 log lnn, 188 log n+95] with high probability

(188 log n + 95 ≤ 189 log n for n ≥ 2). □

Corollary 5.2.11. The number of epochs in the Log-Size-Estimation is in the interval

[5 log n− 5 log lnn, 11 log n] with probability ≥ 1− 1/n− e−n/18.

Proof. By theorem 5.7.10, to achieve the additive error of 4.7 for our protocol the number

of geometric random variables should be ≥ 4 log n. By setting the threshold of the number of

phases to 5 × logSize2, for n ≥ 200, 5 log n − 5 log lnn ≥ 4 log n. The number of phases will be

in the interval of [5 log n− 5 log lnn, 10 log n + 5] with high probability (10 log n + 5 ≤ 11 log n for

n ≥ 2). □

The next Lemma bounds the space complexity of our main protocol by counting the likely range

taken by the variables in Log-Size-Estimation.

Lemma 5.2.12. Log-Size-Estimation uses O(log4 n) states with probability ≥ 1−O(log n)/n.

Proof. With probability at least 1 − O(1/n) (see individual lemma statements for constants

in the O), the set of values possibly taken on by each field are given as follows:

logSize2 {1, . . . , 2 log n + 1} theorem 5.2.8

gr {1, . . . , 2 log n} theorem 5.2.9

time {0, . . . , 191 log n} theorem 5.2.10

epoch {0, . . . , 11 log n} theorem 5.2.11

sum {0, . . . , 22 log2 n} theorem 5.2.9, theorem 5.2.11
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In our protocol we used space multiplexing to reduce the number of states agents use. The A

agents are responsible to generate geometric random variables and propagate the maximum among

themselves. Thus, they store logSize2, gr, time, and epoch variables. While the S agents are

only responsible to hold the sum of all geometric maximas and they store logSize2, epoch, and

sum. After each agent sets protocolDone = True, it no longer needs to store the value in gr or

epoch and can use that space to store the result of sum/epoch+ 1 as the output. Although we are

using the explained space multiplexing to reduce the number of states used by the agents, both A

and S agents need to store logSize2 and epoch to stay synchronized. Note that the probability

that each geometric random variable is greater than 2 log n is less than 1/n, by the union bound

the probability that any of them is greater than 2 log n is less than 11 logn
n . □

The next corollary bounds the time complexity of protocol Log-Size-Estimation; the main

component of the time complexity is that Θ(log n) geometric random variables must be generated

and propagated by epidemic among the population, each epidemic taking Θ(log n) time.

Corollary 5.2.13. The Log-Size-Estimation protocol converges in O(log2 n) time with

probability at least 1− 1/n2.

Proof. By theorem 5.2.5, with probability ≥ 1 − (27/n3) propagating the maximum of the

logSize2 variable takes at most 24 lnn time.

By theorem 5.2.11, at most 11 log n geometric random variables will be generated, and by

theorem 5.2.5, with probability≥ 1−(27/n3) a given variable takes at most 24 lnn time to propagate

its maximum (total of 11 log n·24 lnn time). Note that, it takes constant time for A agents to interact

with a S agent and move to the next epoch.

By the union bound over all epochs, the probability that generating 11 log n + 1 geometric

random variables and propagating their maximum takes more than (11 log n + 1) · 24 lnn time is

≥ 1− O(logn)
n3 ≥ 1− 1/n2 for large values of n. □

The following result is a Chernoff bound on sums of random variables, each of which is the

maximum of independent geometric random variables (with probability of success 1
2). It is a

corollary of theorem 5.7.10.
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Lemma 5.2.14. Let K ≥ 4 log n and a be a number in the interval of [n/2 −
√
n lnn, n/2 +

√
n lnn]. Let sum/K be the average of K 1

2 -geometric random variables. Then Pr
[∣∣sum

K + 1− log n
∣∣ ≥ 5.7

]
≤

6
n .

Proof. By theorem 5.7.10, Pr
[∣∣sum

K − log a
∣∣ ≥ 4.7

]
≤ 2

a . Since n/2 −
√
n lnn ≤ a ≤ n/2 +

√
n lnn then log n− 2 ≤ log a ≤ log n. Hence: Pr

[∣∣sum
K + 1− log n

∣∣ ≥ 4.7 + 1
]
≤ 2

a ≤
6
n . □

Lemma 5.2.15. In the Log-Size-Estimation protocol, with probability 1, all agents converge

to the same value C in their output field. Furthermore, Pr [|C − log n| ≥ 5.7] ≤ 9/n.

Proof. The convergence of all agents to a common value of C with probability 1 is evident

from inspection of the protocol. The Log-Size-Estimation protocol calculate log n within an

additive error of 5.7 if:

• The logSize2 variable generated at the beginning of the protocol is ≥ log n− log lnn (not

too small). By theorem 5.2.8, the value of logSize2 can be less than log n− log lnn with

probability at most 1/n + e−n/18.

• The number of agents in role A is less than n/2−
√
n lnn or greater than n/2+

√
n lnn. By

theorem 5.2.2, a ≤ n
2 −
√
n lnn or a ≥ n

2 +
√
n lnn with probability at most e−2 lnn = 1/n2.

• The A agents propagate each geometric random variables among themselves within 24 lnn

time. By theorem 5.2.5, an epidemic might take more than 24 lnn time with probability

at most 27
n3 . In the Log-Size-Estimation protocol there are O(log n) epidemics in total.

Thus, by the union bound the probability that any of them take more than 24 lnn time is

at most O(log n)/n3 ≤ 1/n2 for large values of n.

• An epoch terminates before completion of one epidemic. This can happen if one agent

has too many interaction in an epoch. By theorem 5.2.7, for all agents, the probability

that any of them have more than 65 lnn interaction in 24 lnn time is ≤ 1/n.

• By theorem 5.2.14, the average of K geometric random variables among A agents might

be out of the interval of [log n− 5.7, log n + 5.7] with probability at most 6/n.

By the union bound, the probability that output reports a value with an additive error more than

5.7 is less than 8/n + 2/n2 + e−n/18 ≤ 9/n □

Finally, we combine these results to prove the main result of this section, theorem 5.2.1.
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Theorem 5.2.16. There is a uniform leaderless population protocol that converges in time

O(log2 n) with probability ≥ 1− 1/n2, uses O(log4 n) states with probability ≥ 1−O(log n)/n, and

stores in each agent an integer k such that |k − log n| ≤ 5.7 with probability ≥ 1− 9/n.

Proof. By theorem 5.2.13 Log-Size-Estimation take O(log2 n) time to converge with prob-

ability at least 1− 1/n2. By theorem 5.2.12, Log-Size-Estimation protocol uses O(log4 n) states

with probability at least 1−O(log n)/n.

Finally, theorem 5.2.15 guaranties the output obtained by A agents is with an additive error

5.7 of log n with probability at least 1− 9/n.

□

5.2.3. Probability-1 estimation of upper bound on log n. It is not clear how to make

our main protocol correct with probability 1, meaning that it guarantees the estimate k obeys

|k − log n| ≤ 5.7. The protocol could err in either direction and make k too large or too small,

depending on the sampled values of the geometric random variables.

However, for many applications using an estimate of log n, an upper bound is sufficient to

ensure correctness (though being too large may slow things down). A straightforward modification

of our protocol guarantees that k ≥ log n with probability 1, while preserving the high-probability

asymptotic time complexity. We run a slow, exact backup protocol that stabilizes to kex such that

2kex−1 < n ≤ 2kex . This is accomplished by transitions ℓi, ℓi → ℓi+1, fi+1 for all i and fi, fj → fi, fi

for all j < i, where all agents start with ℓ0. After O(n) time all agents store kex in their subscript.

Note this approaches kex from below. Then modify our main protocol estimating log n to add

3.7 (with probability ≥ 1 − 2 · eκ/2−t/4 where κ is the number of geometric random variables; by

theorem 5.7.4, and setting α = 1 ) in theorem 5.7.8 since we can leverage the theorem 5.7.6 for

one side error) to its estimate of log n, calling the result k; with high probability k ≥ log n. We

then get a guaranteed upper bound on log n by reporting max(k, kex) at any moment: the former

converges to k ≥ log n with probability of failure O(log(n)/n). If this fails (i.e., if k < log n), the

value kex is guaranteed eventually to exceed k. The contribution to the expected time of the latter

case is negligible, so the expected convergence time remains O(log2 n).

Note that k may exceed log n by an arbitrary amount, with low probability. In the terminology

of section 5.1.2, we have changed the definition of “correct” from “|k = log n| ≤ 5.7” to “k ≥ log n”,
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and showed probability 1 of correctness under the new definition. (Note that we still guarantee

that k ≤ log n + O(1) with high probability, where the O(1) constant is now 5.7 + 3.7 = 9.4.) An

interesting open question is to find a polylogarithmic protocol that guarantees k is within O(1) of

log n with probability 1.

5.3. Tools for making nonuniform protocols uniform

Part of the practical motivation behind the study of the counting problem comes from the

existence of nonuniform protocols and a desire to create uniform variants of them. Since most

nonuniform protocols require advance knowledge of log n, the basic technique for making such a

protocol uniform is to first compute an estimate of log n using a protocol from section 2.4, then

to compose this with the existing nonuniform protocol, replacing its estimate of logn with this

computed value. We break this section into two pieces. First, we recall a few size approxima-

tion protocols from section 2.4, comparing them in accuracy, space, and simplicity with specific

suggestions for how to account for these properties in choosing one to be composed with a nonuni-

form protocol. In the next part, assuming we have a protocol that computes an estimate of the

population size, we show how to compose it with a nonuniform protocol.

5.3.1. Comparison of approximate counting protocols. In this part, we compare tech-

niques that solve the approximate counting problem. See table 2.3 for a detailed comparison. For

most nonuniform protocols (e.g., a leaderless phase clock [3]), a value that is Θ(log n) suffices. Thus

we lead the discussion with protocols that approximate log n within a multiplicative factor error.

Although additive approximate error is often unnecessary, in some circumstances, one may require

the estimate be to exactly ⌊log n⌋ or ⌈log n⌉. For example, the uniform majority protocol of [50]

requires the estimate to be at least ⌈log n⌉ with probability 1.

Simple 2-approximation: [section 2.4.2] Taking the maximum of n geometric random variables

provides a 2-factor approximation of log n [2,47,56] with probability at least 1−O(1/n),11

and takes O(log n) time to converge. Although this approach is very simple and straightfor-

ward for composition, the space complexity of the protocol is not bounded with probability

1, and the agents use O(log n) states WHP.

11In fact the lower bound is stronger: the maximum is between log2 n− log2(n) · lnn and 2 · log2 n with probability
at least 1 −O(1/n); see [47, Lemma 3.8].
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Minimal space overhead: [section 2.4.3] Recall that the maximum level l∗ in the junta election

protocol is ⌊log log n⌋−3 ≤ l∗ ≤ log logn+4(a+1) with probability at least 1−1/na [25,60].

Despite the large multiplicative approximation factor for computing ⌈log n⌉, the junta

election protocol [60] imposes minimal, O(log log n), space overhead and converges in

O(log n) time. Moreover, the protocol provides a junta of nϵ for 0 ≤ ϵ < 1 leaders that can

simulate a “junta-driven phase clock” to synchronize agents in phases of length Θ(logn)

time [60]. See [6,12] for more details about the phase clock.

Maximizing accuracy, always correct: Two protocols from section 2.4.1 and section 2.4.6 com-

pute ⌊log n⌋ (or ⌈log n⌉). Both protocols provide probability-1 correctness using O(n log n)

and O(log2 n) time respectively. The former is much simpler and is used as a “slow backup”

subroutine in the O(log n) time protocol of [50]. Although it is much slower than O(log n)

time, since it is needed only with low probability, it contributes negligibly to the expected

time.

5.3.2. Composition of an uniform counting protocol with a nonuniform protocol.

Most of the time, we can construct a uniform protocol from a nonuniform protocol through compo-

sition with a uniform approximate counting protocol. Even though we are unaware of any black-box

theorem that proves the correctness of the restarting technique under any circumstance, the au-

thors of [28,47,50,51,60] used the procedure discussed below and proved it correct with an ad-hoc

analysis. We explain in a general way how to use these approximate counting protocols to make a

nonuniform protocol uniform in the next part.

Note that all of the approximate counting protocols mentioned in section 2.4, except approx-

imating with a leader explained in section 2.4.5, are not terminating. In other words, the agents

are not aware of the completion of the protocol. Although termination is impossible in the uniform

model of population protocols [47], we can try composing two protocols without using termination

of the upstream ones. For a concrete discussion, consider protocols U and D such that U is a

uniform approximate counting and D is a general nonuniform protocol; U is the upstream protocol

whose output is given as input to the downstream protocol D. To construct a uniform protocol,

we summarize a simple restarting technique that has been used widely [28, 51, 60] to compose

protocols U and D. In this technique, we run both protocols in parallel in the population. If the

count fields of the protocol U in the agents’ memory change, then a signal will be propagated (by
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epidemic) through the population to notify all agents with the updated count. This signal will stop

the protocol D (or parts of protocol D that are dependent on the population size) and reinitialize

it with the updated count, which eventually will be an approximation of log n.

Despite the difference between the initial configuration of a nonuniform protocol and the one

after the restart signal (agents do not have the same state), any agents who participate in the last

execution of protocol D restarts their memory (related fields concerning protocol D) to the initial

values. Thus, a high probability correct counting scheme can also guarantee the correctness of the

downstream protocol D WHP.

5.4. Simulation results

5.5. Simulation

Simulation results are shown in fig. 5.2.
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Figure 5.2. Simulated convergence time of the protocol. Although the proofs
give only that the estimate of log n is likely to get within additive error of 5, in
practice the estimate is always within 2, so this is how we define convergence in the
experiment. The dots indicate the convergence time of individual experiments. The
population size axis is logarithmic (i.e., exactly O(c log10 n) time complexity would
correspond to a straight line with slope c). The circular dots in the plot are 10
experiments at each value of n ∈ {102, 103, 104, 105}. The convergence in the Log-
Size-Estimation protocol happens when all agents reach epoch = 5 · logSize2.
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5.6. Proofs for correctness of size estimation protocol

This section contains proofs of lemmas required to analyze the correctness and time/space

complexity of the size estimation protocol.

5.7. Chernoff bound on sums of maxima of geometric random variables

This section is aimed at proving theorem 5.7.10, a Chernoff bound on the tails of K independent

random variables, each of which is the maximum of N independent geometric random variables

with success probability 1/2. When applied to prove correctness of the protocol of section 5.2.2, N

is a value very likely to be near n/2, i.e., half the population size.

5.7.1. Sub-exponential random variables.

Definition 5.7.1. Let α, β > 0 and let X be a random variable. We say X is α-β-sub-

exponential if, for all λ > 0, Pr [|X− E [X] | ≥ λ] ≤ αe−λ/β.

The following lemma is well-known; we prove it explicitly since the exact form is convenient for

our purposes but is more general than typically expressed. It shows that exponential tail bounds

for Pr [|X− E [X] | > λ] give bounds on the moment-generating functions of the random variables

X − E [X] and E [X] − X. The proof is modeled on Rigollet’s proof of the analogous lemma for

sub-gaussian random variables proven in [85].

Lemma 5.7.2 ( [85]). Let X be a α-β-sub-exponential random variable. Then for all s ∈[
− 1

2β ,
1
2β

]
, we have E

[
es(X−E[X])

]
,E
[
es(E[X]−X)

]
≤ 1 + 2αβ2s2.

Proof. Let k ∈ N+. Then

E
[
|X− E [X] |k

]
=

∫ ∞

0
Pr
[
|X− E [X] |k ≥ λ

]
dλ =

∫ ∞

0
Pr
[
|X− E [X] | ≥ λ1/k

]
dλ

≤
∫ ∞

0
αe−λ1/k/βdλ = αβkk

∫ ∞

0
e−uuk−1du substituting u = βλ1/k

= αβkkΓ(k) = αβkk!,

where Γ(k) =
∫∞
0 e−uuk−1du is the gamma function, known to equal (k− 1)! for k ∈ N+. Then for

all s ∈
[
− 1

2β ,
1
2β

]
,
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E
[
es(X−E[X])

]
= E

[ ∞∑
k=0

(s(X− E [X]))k

k!

]
Taylor expansion of the exponential function

=
∞∑
k=0

skE
[
(X− E [X])k

]
k!

dominated convergence theorem

= 1 + sE [X− E [X]]︸ ︷︷ ︸
=0

+

∞∑
k=2

skE
[
(X− E [X])k

]
k!

≤ 1 +

∞∑
k=2

|s|kE
[
|X− E [X] |k

]
k!

odd terms can only get larger

≤ 1 +

∞∑
k=2

|s|kαβkk!

k!
= 1 + α

∞∑
k=2

(|s|β)k = 1 + αs2β2
∞∑
k=0

(|s|β)k

≤ 1 + αβ2s2
∞∑
k=0

1

2k
since |s| ≤ 1

2β

= 1 + 2αβ2s2.

The bound for E
[
es(E[X]−X)

]
is derived by a similar argument. □

The following Chernoff bound is well-known, but stated in a more convenient form for our

purposes.

Lemma 5.7.3. Let α, β > 0 and K ∈ N+. Let X1, . . . ,XK be i.i.d. α-β-sub-exponential random

variables. Define S =
∑K

i=1Xi. Then for all t ≥ 0,

Pr [|S− E [S] | ≥ t] ≤ 2
(1 + α/2)K

et/(2β)
.
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Proof. Then for all s, t > 0,

Pr [S− E [S] > t] = Pr
[
es(S−E[S]) > est

]
≤

E
[
es(S−E[S])]

est
Markov’s inequality

= e−stE
[
es((

∑K
i=1 Xi)−E[S])

]
= e−stE

[
es

∑K
i=1(Xi−E[Xi])

]
linearity of expectation

= e−stE

[
K∏
i=1

es(Xi−E[Xi])

]

= e−st
K∏
i=1

E
[
es(Xi−E[Xi])

]
. independence of the Xi’s

By theorem 5.7.2, for all |s| ≤ 1
2β , E

[
es(Xi−E[Xi])

]
≤ 1 + 2αβ2s2, so letting s = 1

2β ,

Pr [S− E [S] > t] ≤ e−st
(
1 + 2αβ2s2

)K
= e−t/(2β) (1 + α/2)K .

The proof that Pr [E [S]− S ≥ t] < e−t/(2β) (1 + α/2)K is symmetric. By the union bound, Pr [|S− E [S] | ≥ t] <

2 · e−t/(2β) (1 + α/2)K . □

5.7.2. Geometric random variables and their maximum. We say G is a p-geometric

random variable if it is the number of consecutive flips until the first H (including the H), when

flipping a coin with Pr [H] = p. Thus E [G] = 1
p ; in particular E [G] = 2 if p = 1

2 .

Defining M = max
1≤i≤N

Gi, where each Gi is an i.i.d. 1
2 -geometric random variable, it is known [56]

that E [M] ≈ logN . theorem 5.7.5 shows a tail bound on M for general p-geometric random

variables, which we will later apply to the case p = 1
2 .

We first require a technical lemma relating E [M] and logN more precisely, and more generally

for p-geometric random variables for p ̸= 1
2 . Let Hn =

∑N
i=1

1
N be the N ’th harmonic number.

Let γ = lim
N→∞

(Hn − lnN) ≈ 0.577 be the Euler-Mascheroni constant; for all N ≥ 50 we have

Hn − lnN − γ ≤ 0.01.

Lemma 5.7.4. Let G1, . . . ,GN be i.i.d. p-geometric random variables with q = 1 − p ≥ 1
e ,

N ≥ 50, and let M = max
1≤i≤N

Gi. Let ϵ1 = 0.01 and ϵ2 = 0.0006. Then for all λ > 0, ln(N)+γ
ln 1/q +1/2−
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ϵ2 < E [M] < ln(N)+γ+ϵ1
ln 1/q + 1/2 + ϵ2; particularly for q = p = 1/2, we have: logN + 1 < E [M] <

logN + 3/2.

Proof. Eisenberg [56] showed that if q ≥ 1
e , then 1

λHn − 0.0006 ≤ E [M] − 1/2 < 1
λHn +

0.0006, where q = e−λ, i.e. λ = ln(1/q). Thus 1
λHn + 1/2 − ϵ2 ≤ E [M] < 1

λHn + 1/2 + ϵ2 i.e.,

lnN+γ
ln 1/q + 1/2− ϵ2 < E [M] < lnN+γ+ϵ1

ln 1/q + 1/2 + ϵ2. □

Lemma 5.7.5. Let G1, . . . ,GN be i.i.d. p-geometric random variables with q = 1− p ≥ 1
e , N ≥

50, and let M = max
1≤i≤N

Gi. Let ϵ1 = 0.01 and ϵ2 = 0.0006. Then for all λ > 0, Pr [E [M]−M ≥ λ] ≤

exp
(
−q1/2+ϵ2−(γ+ϵ1) ln q−λ

)
and Pr [M− E [M] ≥ λ] ≤ qλ−1/2−ϵ2−γ ln q + q2λ−1−2ϵ2−2γ ln q.

Proof. For each t ∈ N, Pr [Gi ≥ t] = qt−1, so Pr [Gi ≤ t] = 1− Pr [Gi ≥ t + 1] = 1− qt.

Since the Gi’s are independent, Pr [M ≤ t] =
∏N

i=1

(
1− qt

)
=
(
1− qt

)N
.

Below we use theorem 5.7.4 and the inequalities ex
(

1− x2

N

)
≤
(
1 + x

N

)N ≤ ex for N > 1, |x| <

N .

Setting t = E [M]− λ, we have

Pr [M ≤ E [M]− λ] =
(
1− qt

)N
=

(
1− q(E[M]−λ)

)N
<

(
1− qlog1/q N−(γ+ϵ1) ln q+1/2+ϵ2−λ

)N
=

(
1− qlog1/q Nq1/2+ϵ2−(γ+ϵ1) ln q−λ

)N
=

(
1− q1/2+ϵ2−(γ+ϵ1) ln q−λ

N

)N

< exp
(
−q1/2+ϵ2−(γ+ϵ1) ln q−λ

)
The last inequality is true since

(
1 + x

N

)N ≤ ex.
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Similarly, letting t = E [M] + λ− 1, we have

Pr [M ≥ E [M] + λ]

= 1− Pr [M ≤ E [M] + λ− 1]

= 1−
(
1− qt

)N
= 1−

(
1− qE[M]+λ−1

)N
< 1−

(
1− qlog1/q N+1/2−ϵ2−γ ln q+λ−1

)N
= 1−

(
1− qlog1/q Nqλ−1/2−ϵ2−γ ln q

)N
= 1−

(
1− qλ−1/2−ϵ2−γ ln q

N

)N

< 1− exp
(
−qλ−1/2−ϵ2−γ ln q

)(
1− q2(λ−1/2−ϵ2−γ ln q)

N

)
since ex

(
1− x2

N

)
≤
(

1 +
x

N

)N
= 1− exp

(
−qλ−1/2−ϵ2−γ ln q + ln

(
1− q2λ−1−2ϵ2−2γ ln q

N

))
≤ qλ−1/2−ϵ2−γ ln q − ln

(
1− q2λ−1−2ϵ2−2γ ln q

N

)
since 1− ex ≤ −x

≤ qλ−1/2−ϵ2−γ ln q +
2q2λ−1−2ϵ2−2γ ln q

N
since ln(1− x) ≥ −2x if x < 0.7

≤ qλ−1/2−ϵ2−γ ln q + q2λ−1−2ϵ2−2γ ln q since N ≥ 2.

□

The following corollary for the special case of p = 1
2 is used for our main result, showing that

a maximum of 1
2 -geometric random variables is α-β-sub-exponential for α = 3.31, β = 2.

Corollary 5.7.6. Let G1, . . . ,GN be i.i.d. 1
2 -geometric random variables, N ≥ 50, and let

M = max
1≤i≤N

Gi. Then for all λ > 0, Pr [|M− E [M] | ≥ λ] < 3.31e−λ/2.

Proof. By theorem 5.7.5 and the union bound,

Pr [|M− E [M] | ≥ λ] < exp
(
−q1/2+ϵ2−(γ+ϵ1) ln q−λ

)
+ qλ−1/2−ϵ2−γ ln q + q2λ−1−2ϵ2−2γ ln q

= exp
(
−2λ−(γ+ϵ1) ln 2−1/2−ϵ2

)
+ 21/2+ϵ2−λ−γ ln 2 + 21+2ϵ2−2λ−2γ ln 2

< 3.31e−λ/2. justified below
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To see the final inequality, note that

exp
(
−2λ−(γ+ϵ1) ln 2−1/2−ϵ2

)
< exp

(
−2λ−1

)
= exp

(
−2λ/2

)
≤ exp (−λ/2)

21/2+ϵ2−λ−γ ln 2 = 21/2+ϵ2−γ ln 2 · 2−λ

= 21/2+ϵ2−γ ln 2 · 4−λ/2

< 21/2+ϵ2−γ ln 2 · e−λ/2

< 1.1 · e−λ/2.

21+2ϵ2−2λ−2γ ln 2 = 21+2ϵ2−2γ ln 2 · 2−2λ

= 21+2ϵ2−2γ ln 2 · 16−λ/2

< (1.1)2 · e−λ/2.

So, their sum is less than 3.31e−λ/2. □

The following lemma bounds the maximum of N 1
2 -geometric random variables for the special

cases of one lower and one upper threshold, which is stronger than the bounds given by theo-

rem 5.7.6.

Lemma 5.7.7. Let G1, . . . ,GN be i.i.d. 1
2 -geometric random variables, N ≥ 50, and M =

max
1≤i≤N

Gi. Then Pr [M ≥ 2 logN ] < N−1 and Pr [M ≤ logN − log lnN ] < N−1.

Proof. For any i, Pr [Gi ≥ logN − log lnN ] =
(
1
2

)(logN−log lnN)
= lnN

N . Since the Gi’s are in-

dependent, Pr [M < logN − log lnN ] = Pr [(∀i) Gi < logN − log lnN ] =
(
1− lnN

N

)N ≤ e−lnN =

N−1. For the upper bound, for any i, Pr [Gi ≥ 2 logN ] =
(
1
2

)2 logN
= N−2. By the union bound,

Pr [M ≥ 2 logN ] = Pr [(∃i) Gi ≥ 2 logN ] ≤ N−1. □
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Lemma 5.7.8. Let N,K ∈ N+, N ≥ 50. Let M1, . . . ,MK be i.i.d. random variables, each of

which is the maximum of N i.i.d. 1
2 -geometric random variables. Define S =

∑K
i=1Mi. Then for

all t ≥ 0, Pr [|S− E [S] | ≥ t] ≤ 2 · eK−t/4.

Proof. By theorem 5.7.6 and theorem 5.7.3, for α = 3.31 < 2e− 2 and β = 2, we have

Pr [|S− E [S] | ≥ t] < 2
(1 + α/2)K

et/(2β)
< 2

(
1 + 2e−2

2

)K
et/4

= 2 · (e)K · e−t/4 = 2 · eK−t/4.

□

Corollary 5.7.9. Let a > 4, N ∈ N+, N > 50, K ≥ lnN
a
4
−1 , and δ0 = 1/2 + γ/ ln 2 − ϵ2. Let

M1, . . . ,MK be i.i.d. random variables, each of which is the maximum of N i.i.d. 1
2 -geometric

random variables. Define S =
∑K

i=1Mi. Then

Pr

[∣∣∣∣ SK − logN − δ0

∣∣∣∣ ≥ a

]
≤ 2

N
.

Proof. We first manipulate the expression in the conclusion of the corollary to put it in a

form where we can apply theorem 5.7.8.

Pr

[
S

K
− logN − δ0 ≥ a

]
= Pr [S−K (logN + 1/2 + γ/ ln 2− ϵ2) ≥ aK]

< Pr [S− E [S] ≥ aK] .

Since K (logN + 1/2 + γ/ ln 2− ϵ2) ≤ E[S].

Pr

[
logN + δ0 −

S

K
≥ a

]
= Pr [K (logN + 1/2 + γ/ ln 2− ϵ2)− S ≥ aK]

= Pr [K (logN + 1/2 + γ/ ln 2 + ϵ1/ ln 2 + ϵ2)− S ≥ aK + (ϵ1/ ln 2 + 2ϵ2)K]

< Pr [E [S]− S ≥ (a + ϵ1/ ln 2 + 2ϵ2)K]

< Pr [E [S]− S ≥ aK] .
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Because E[S] < K
(
logN + 1/2 + γ+ϵ1

ln 2 + ϵ2
)
.

Since the events S
K − logN − δ0 ≥ a and logN + δ0 − S

K ≥ a are disjoint, and the events

S− E [S] ≥ aK and E [S]− S ≥ aK are disjoint, the union bound holds with equality, so

Pr

[∣∣∣∣ SK − logN − δ0

∣∣∣∣ ≥ a

]
= Pr

[
S

K
− logN − δ0 ≥ a

]
+ Pr

[
logN + δ0 −

S

K
≥ a

]
< Pr [S− E [S] ≥ aK] + Pr [E [S]− S ≥ aK]

= Pr [|S− E [S] | ≥ aK] .

Let t = aK. Applying theorem 5.7.8 with these values of K and t,

Pr

[∣∣∣∣ SK − logN − δ0

∣∣∣∣ ≥ a

]
< Pr [|S− E [S] | ≥ aK]

= Pr [|S− E [S]| ≥ t]

≤ 2 · eK−t/4

= 2 · eK(1−a
4
)

= 2 · e−K(a
4
−1)

≤ 2 · e−
lnN

(a4−1)
(a
4
−1)

= 2 · e− lnN

=
2

N
.

□

For example, choosing a = ln 2 + 4 < 4.7 means we can choose K ≥ lnN
a
4
−1 = lnN

(ln(2)+4)/4−1 =

lnN
ln(2)/4 = 4 log2N :

Corollary 5.7.10. Let N ∈ N+, N ≥ 50, K ≥ 4 logN . Let M1, . . . ,MK be i.i.d. random

variables, each of which is the maximum of N i.i.d. 1
2 -geometric random variables. Define S =∑K

i=1Mi. Then

Pr

[∣∣∣∣ SK − logN

∣∣∣∣ ≥ 4.7

]
≤ 2

N
.

pear
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5.8. Conclusion and open problems

In this chapter, we gave a brief description of our protocol that approximately compute the

population size n. We also discussed a technique for converting nonuniform protocols (those that

assume agents are initialized with an approximate estimate of n) to uniform protocols, by composing

size approximation with the nonuniform protocol.

While our focus in this chapter is the size counting problem, the mentioned protocols demon-

strate general techniques that can help solve other problems and design new protocols. Alistarh

and Gelashvilli [6] mentioned different ideas such as the space multiplexing used in [25,28,47,50]

and the junta-driven phase clock [60] as available building blocks to design new protocols. We also

summarized two variations of the discrete averaging technique introduced in [7], tightly analyzed

in [21,28,29,79,81], that has since been widely deployed in other protocols to solve the counting

problem [28,51,78,79] and the exact majority problem [7,50,78]. (See Protocol 0 and Protocol 4.)

Open questions with composition of two uniform protocols. We discussed how to make a nonuni-

form protocol uniform through composition with a uniform counting protocol that allows the

nonuniform protocol to use the output of the counting protocol. Generally, in a composition of a

uniform protocol U with a protocol D, protocol D might get restarted repeatedly. In each restart,

the agents propagate a new signal with updated information about the size. The counting protocol

might even generate a new restart signal before the previous signal hits all the agents. Having this

in mind, if a protocol uses duplicate restart signals, restarted and deprecated agents could become

indistinguishable. For example, using restart signals of constant size might create inconsistency in

the population.

Unique (and perhaps monotonically increasing) restarting signals guarantees the correctness

of the downstream protocol. Since eventually, all agents agree on the last (largest) restart signal

and restart protocol D for the final execution. Even assuming a monotone increasing restart signal

might change some probability bounds on the convergence time of protocols. The current literature

lacks a general-purpose theorem that proves under what conditions of a downstream protocol the

restarting technique works.

Collective output representation of the population size. All the counting protocols summarized

in this chapter require all agents eventually to represent the computed count. If agents are required

to store the value n, then there is clearly a linear-state lower bound, since log n bits are required
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merely to write n. However, what if no agent individually stores all of n? Consider instead a

collective representation of the population size, where some agents each store (for example) one bit

of n, as well as the significance of the bit.

With this trick, the lower bound does not apply anymore. There might exist a protocol that

solves the exact counting with o(n) states. However, readout could be more difficult, since we cannot

simply look at the memory of a single agent and read the population size; instead, we must sample

a small subset of the population. For example, composing size computation with another protocol

would be less straightforward since the agents who are computing the downstream protocol would

not at any point have access to all the bits of n. One could imagine a protocol that spreads the

output to the whole population almost equally: for example, having O(n/ log n) agents responsible

for each index of the binary expansion of n. With this trick, the output will be present dense

enough among the population. Thus, a random sample of polylogarithmic agents would have

enough information to reconstruct the value of n.

The O(n log n) time slow size approximation protocol (Protocol 2) collectively represents n:

each remaining active agent holds a value k such that there is a 1 at significance k in the binary

expansion of n. Is there a sublinear-time, sublinear-state protocol, so that the agents report the

population size via this collective representation? A valid solution to the exact counting problem

with a collective output also solves the parity problem: compute the least significant bit of n.
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CHAPTER 6

Dynamic Population Protocols and Approximate Counting

6.1. Introduction

Biological systems are incredibly dynamic environments, so we must extend our understanding

of population protocols to a model that considers such continual changes. A model capturing such

phenomena would allow faulty agents that suddenly stop working, leave the network, or lose some of

their stored information. In the conventional model of population protocols, we assume a constant

population size with non-faulty agents. However, it is natural to consider biological applications

that should tolerate the dynamic changes within the environment. Therefore, we studied population

protocols robust to adversarial situations. Concretely, we develop a counting protocol that is robust

to an adversary who can continuously:

(1) add agents in their initial state.

(2) observe the agents’ memory and remove them arbitrarily.

The dynamic size counting problem. In contrast to most work, which assumes the population

size n is fixed over time, we model an adversary that can add or remove agents arbitrarily and

repeatedly during the computation. All agents start in the same state, including newly added

agents. The goal is for each agent to approximately count the population size n, which we define

to mean that all agents should eventually store the same output k in their states, which with

high probability is within a constant multiplicative factor of logn.1 Once all agents have the same

output k, they have converged. They maintain k as the output for some time called the holding

time (after which they might alter k even if the population size has not changed). In response to

a “significant” change in size from nprev to nnext, agents should re-converge to a new output k′ of

log nnext. (Agents are not “notified” about the change; instead they must continually monitor the

population to test whether their current output is accurate.) Note that if nprev is close to nnext

1Nonuniform protocols require agents to be initialized with an estimate k of logn in order to accomplish other tasks,
such as a “leaderless phase clock” [2]. The bound k = Θ(logn) is necessary and sufficient for correctness and speed
in most cases [2,3,5,20,24,26,27,30,61,79,91].
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(within a polynomial factor), then k may remain an accurate estimate of nnext, so agents may not

re-converge in response to a small change.

Ideally the expected convergence time is small, and the expected holding time is large. With

a fixed size population, it is common to require the output to stabilize to a value that never again

changes after convergence, i.e., infinite holding time. However, this turns out to be impossible with

an adversary that can remove agents (theorem 6.2.4). When changing from size nprev to nnext, our

protocol achieves expected convergence time O(log nnext + log log nprev) and expected holding time

Ω(nc
next), where c can be made arbitrarily large. The number of bits of memory used per agent is

O(log2(s) + (log log n)2), where s is the maximum integer stored in the agents’ memory after the

change.

While it is common to measure population protocol memory complexity by counting the number

of states (which is exponentially larger than the number of bits required to represent each state),

that measure is a bit awkward here. Our protocol is uniform—the same transition rules for every

population size—so has an infinite number of producible states. One could count expected number

of states that will be produced, but this is a bit misleading: in time t each agent visits O(t) states

on average, so O(t · n) states total. Counting how many bits are required is more accurate metric

of the actual memory requirements.

The loosely-stabilizing counting problem. The dynamic size counting problem has an equivalent

characterization: rather than removing agents and adding them with a fixed initial state, the

loosely-stabilizing adversary sets each agent to an arbitrary initial state in a fixed-size population.

A protocol solves the dynamic size counting problem if and only if it solves the loosely-stabilizing

counting problem, with the same convergence and holding times (theorem 6.2.5). Due to this

equivalence, we analyze our protocol assuming a fixed population size and adversarial initial states.

In this case our convergence time O(log n + logM) is measured as a function of the population

size n and the value M that is the maximum estimate value stored in agents’ memory. From

the perspective of the dynamic size counting problem, these “adversarial initial states” would

correspond to the agent states after correctly estimating the previous population size, just prior to

adding or removing agents.
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6.2. Dynamic size counting protocol

In a population of size n, define C(n, ϵ1, ϵ2) to be the set of correct configurations c such that

every agent u in c obeys ϵ1 log n < u.estimate < ϵ2 log n. Let th be any time bound. Moreover,

we define L(n, th) ⊂ C(n, ϵ1, ϵ2) the subset of correct configurations such that as the expected time

for protocol P starting from a configuration l ∈ L(n, th) to stay in C(n, ϵ1, ϵ2) is at least th(n).

Definition 6.2.1. Let nprev and nnext denote the previous and next population size. A protocol

P solves the dynamic size counting problem if there are ϵ1, ϵ2 > 0, called the accuracy, such that if

the population size changes from nprev to nnext, the protocol reaches a configuration l in L(nnext, th)

with high probability. The time needed to do this is called the convergence time. Moreover, th, the

time that the population stays in C(nnext, ϵ1, ϵ2), is called the holding time.

A population protocol is (tc(n), th(n))-loosely stabilizing if starting from any initial configura-

tion, the agents reach a correct configuration in tc(n) time and stay in the correct configuration

for additional th(n) time [89,90]. In contrast to self-stabilizing [14,34], subsequent interactions

can move the agents to an incorrect configuration; however, the agents recover quickly from an

incorrect configuration.

Given any starting configuration s ̸∈ C(n, ϵ1, ϵ2) of size n, we define fc(s, L(n, th)) as the

expected time to reach a correct configuration in L(n, th).

Definition 6.2.2. [90, Definition 2] Let tc(n,M) and th(n) be functions of n, the largest

integer value M in the initial configuration s, and the set of correct configuration C(n, ϵ1, ϵ2). A

protocol P is a tc(n,M), th(n), ϵ1, ϵ2 loosely-stabilizing population size counting protocol if there

exists a set L(n, th) ⊂ C(n, ϵ1, ϵ2) of configurations satisfying:

For every n and every initial configuration s ̸∈ C(n, ϵ1, ϵ2) of size n, fc(s, L(n, th)) ≤ tc(n,M).

6.2.1. Basic properties of the dynamic size counting problem. We first observe that

the key challenge in dynamic size counting is that the adversary may remove agents. If the adversary

can only add agents, the problem is straightforward to solve with optimal convergence and holding

times.

Observation 6.2.3. Suppose the adversary in the dynamic size counting problem only adds

agents. Then there is a protocol solving dynamic size counting with O(log n) convergence time (in

expectation and with probability ≥ 1−O(1/n)) and infinite holding time.
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Proof. Each agent in the initial state s generates a geometric random variable. After the

last time that the adversary adds agents, resulting in n total agents, exactly n geometric random

variables will have been generated. Agents propagate the maximum by epidemic using transition

a, b→ max(a, b),max(a, b), taking 3 lnn time to reach all agents with probability

≥ 1 − 1
n2 [34, Corollary 2.8]. The maximum of n i.i.d. geometric random variables is in the

range [log n− log lnn, 2 log n] with probability ≥ 1− 1
n [47, Lemma D.7]. □

In contrast, if the adversary can remove agents, then even if it is guaranteed to do this exactly

once, no protocol can be stabilizing, i.e., have infinite holding time.

Observation 6.2.4. Suppose the adversary in the dynamic size counting problem will remove

agents exactly once. Then any protocol solving the problem has finite holding time.

Proof. Suppose otherwise. Let the initial population size be n and the later size be n′ < n.

The protocol must handle the case where the adversary never removes agents, since in population

size n this is equivalent to an adversary who starts with n+ 1 agents and immediately removes one

of them. Thus if the adversary waits sufficiently long before the removal, then all agents stabilize

to output k = Θ(log n). In other words, no sequence of transitions can alter the value, including

transitions occurring only among any subpopulation of size n′. So after the adversary removes

n − n′ agents, the remaining n′ agents are unable to alter the output k, a contradiction if n′ is

sufficiently small compared to n such that the output k is not a correct estimate for a population

of size n′. □

Recall that we define M as the largest integer value the agents stored in the starting con-

figuration s. theorem 6.2.5 shows that the dynamic size counting problem is equivalent to the

loosely-stabilizing counting problem. Due to this equivalence, our correctness proofs will use the

loosely-stabilizing characterization. The proof is given in the full version [49].

Lemma 6.2.5. A protocol solves the dynamic size counting problem with convergence time

tc(n,M) and holding time th(n) if and only if it solves the loosely-stabilizing counting problem

with convergence time tc(n,M) and holding time th(n).

Proof sketch. Any states present in an adversarially prepared configuration c will be pro-

duced in large quantities from any sufficiently large initial configuration of all initialized states
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s [47, Lemma 4.2]. The dynamic size adversary can then remove agents to result in c, which the

protocol must handle, showing it can handle an arbitrary initial configuration. □

6.2.2. High-level overview of dynamic size counting protocol. This section briefly de-

scribes our protocol for solving the dynamic size counting, defined formally in section 6.2.3. By

theorem 6.2.5, it suffices to design a protocol solving the loosely-stabilizing counting problem for

a fixed population size n. Our protocol uses the “detection” protocol of [4]. Consider a subset of

states designated as a “source”. A detection protocol alerts all agents whether a source state is

present in the population.

In Protocol 32, the population maintains several dynamic groups, with the agent’s group stored

as a positive integer field group. The group values are not fixed: each agent changes its group

field on every interaction, with equal probability either incrementing group or setting it to 1. We

show that, no matter the initial group values, after O(log n) time the group values will be in

the range [1, 8 log n] WHP. Furthermore, the distribution of group values is very close to that of n

i.i.d. geometric random variables, in the sense that each agent’s group value is independent of every

other, with expected n/2i agents having group = i if each agent has had at least i interactions.2

The agents store an array of “signal” integers in their signals field to track the existing

group values in the population. Each agent in the i’th group is responsible for boosting the signal

associated with i. The goal is to have signals[i] > 0 for all agents if and only if some agent has

group = i.

The detection protocol of [4], explained below, provides a technique for agents to know which

groups are still present. Once a signal for group k fades out, the agents speculate that there is no

agent with group = k. Depending on the current value stored as estimate in agents’ memory and

the value k, this might cause re-calculating the population size. The agents are constantly checking

for the changes in the signals. They re-compute estimate once there is a large gap between

estimate and the first group i with signals[i] = 0. We call i the first missing value (stored in the

field FMV). The signals array is updated as follows. An agent with group = k sets signals[k] to

its maximum possible value (3k+1); we call this boosting. Other groups k are updated between two

agents u, v with u.signals[k] = a and v.signals[k] = b via propagation transitions that set both

2The difference is that a geometric random variable G obeys Pr [G = j] = 1/2j for all j ∈ N+, but after i interactions
an agent u can increment u.group by at most i, so Pr [u.group = j] = 0 if j ≫ i.
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agent’s signals[k] to max(a − 1, b − 1, 0). The paper [4] used a nonuniform protocol where each

agent already has an estimate of log n. They prove that if the state being detected (in our case, a

state with group = k) is absent and the current maximum signal is c, then all agents will have signal

0 within Θ(c) time. However, if the state being detected is present, then the boosting transitions

(occurring every O(1) units of parallel time on average in the worst case that its count is only 1)

will keep the signal positive in all agents with high probability. For this to hold, the maximum

value set during boosting must be Ω(log n); the nonuniform protocol of [4] uses its estimate of log n

for this purpose.

Crucially, our protocol associates smaller maximum signal values to smaller group values (so

many are much smaller than log n), to ensure that a signal does not take abnormally long to get to 0

when its associated group value is missing. Otherwise, if we set each signal value to Ω(log n) (based

on the agent’s current estimate of log n) during boosting, then it would take time proportional to

estimate (which could be much larger than the actual value of log n) to detect the absence of a

group value. Thus it is critical that we provide a novel analysis of the detection protocol, showing

that the signals for smaller group values k ≪ log n remain present with high probability. This

requires arguing that the boosting reactions for such smaller values are happening with sufficiently

higher frequency, due to the higher count of agents with group = k, compensating for the smaller

boosting signal values they use.

6.2.3. Formal description of loosely-stabilizing counting protocol. Our dynamic count-

ing protocol (Protocol 32) divides agents among several groups via the UpdateGroup subprotocol.

The agents update their group from i to i + 1 with probability 1/2 or reset to group 1 with prob-

ability 1/2. The number of agents at each group and the total number of groups are both random

variables dynamically changing through time. We show that the total number of groups remains

close to log n at all times with high probability.

The agents start with arbitrary (or even adversarial) group values but we show that WHP the

set of group values will converge to [1, 8 log n] within O(log n) time. Additionally, each agent stores

an array of O(log n) signal values in their signals field. The goal is to maintain positive values

in the signals[i] if some agent has group = i. The agents store the index of the first group i

with signals[i] = 0 in their FMV field. They use FMV as an approximation of log n and constantly

compare it with their estimate value.
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Depending on the estimate value stored in agents’ memory, the agents maintain three main

phases of computation:

NormalPhase:: An agent stays in the NormalPhase as long as there is a small gap between estimate

and FMV: 0.25 · estimate ≤ FMV ≤ 2.5estimate.

WaitingPhase:: An agent switches from NormalPhase to WaitingPhase if it sees a large gap be-

tween the FMV and estimate: FMV ̸∈ {0.25 · estimate, . . . , 2.5 · estimate}. The purpose

of WaitingPhase is to give enough time to the other agents so that by the end of the

WaitingPhase for one agent, with high probability every other agent has also noticed the

large gap between the FMV and estimate and entered WaitingPhase.

UpdatingPhase:: During the UpdatingPhase, every agent uses a new geometric random variable

and propagates the maximum by epidemic. We set WaitingPhase long enough so that

with high probability when the first agent switches to the UpdatingPhase, the rest of the

population are all in WaitingPhase. By the end of UpdatingPhase, every agent switches

back to NormalPhase.

Below we explain each subprotocol in more detail.

Protocol 32 DynamicCounting(u, v)

for agent ∈ {u, v} do
UpdateGroup(agent)

SignalPropagation(u, v)
for agent ∈ {u, v} do

UpdateMV(agent)
SizeChecker(agent)
if agent.phase ̸= NormalPhase then

TimerRoutine(agent)

PropagateMaxEst(u, v)
for agent ∈ {u, v} do

if agent.phase = NormalPhase then
agent.estimate← agent.GRV

In every interaction, both sender and receiver update their group according to the rules of the

UpdateGroup subprotocol. If we look at the distribution of the group values after O(log n) time,

there are about n/2 agents in group 1, n/4 agents in group 2, and n/2i agents in group i (see

fig. 6.4). Note that the number of agents in each group decreases exponentially. Still, we ensure
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that agents with larger group values use stronger signals to propagate, since there is less support

for those groups.

Protocol 33 UpdateGroup(u)

u.group←

{
u.group + 1 with probability 1/2

1 with probability 1/2

To notify all agents about the set of all group values that are generated among the population,

we use the detection protocol of [4] that is also used as a synchronization scheme in [22]. The agents

store an integer for each group value that is generated by the population. The signals is an array

of length Θ(log n) such that a positive value in index i represents some agents in the population

have generated group = i. Note that, as an agent updates its group, it boosts multiple signals

based on its group value, e.g., an agent with group = i helped boost all the indices 1, 2, 3, . . . , i

of signals in its last i interactions. We use the SignalPropagation protocol to keep the signal of

group i positive as long as some agents have generated group = i.

Algorithm 34 SignalPropagation(u, v)

▷ Boosting:
u.signals[u.group]← (3 · u.group) + 1
v.signals[v.group]← (3 · v.group) + 1
▷ Propagate signal:
for i ∈ {1, 2, . . . , Max(|u.signals|, |v.signals|} do

m← Max(u.signals[i], v.signals[i])
u.signals[i], v.signals[i]← Max(0,m− 1)

Regardless of the initial configuration, the distribution of group values changes immediately

(in O(log n) time), but it might take more time for the signals to get updated. It takes O(i) time

for signals[i] to hit zero. The larger the index i, signals[i] leaves the population slower. Hence,

the agents look at the first missing signal that they observe among the array of all signals.

Algorithm 35 UpdateMV(u)

▷ Find the first appearance of a zero in u.signals beyond index ⌈log(u.estimate)⌉
s← ⌈log(u.estimate)⌉
u.FMV← min{i ∈ [s, |u.signals|] | u.signals[i] = 0}

Once there is a large gap between the first missing group (FMV) and the agents’ estimation of

log n (estimate), each agent individually moves to a waiting phase and waits for other agents to
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catch the same gap between their estimate and FMV. Note that we time this phase as a function

of FMV and not the estimate since the estimate is not valid anymore and might be much smaller

or larger than the actual value of log n.

Algorithm 36 SizeChecker(u)

if u.phase = NormalPhase and u.FMV ̸∈ {0.25 · u.estimate, . . . , 2.5 · u.estimate} then
u.phase←WaitingPhase ▷ Waiting for other agents to detect the size change

Eventually, all agents will notice the large discrepancy between FMV and estimate and move to

the WaitingPhase. The WaitingPhase is followed by the UpdatingPhase (explained in TimerRoutine).

In the UpdatingPhase, all agents generate one geometric random variable (stored in GRV) and prop-

agate the maximum value. We assume the agents generate a geometric random variable in one line

(line 4 in Protocol 37) for simplicity.3

Once the UpdatingPhase is completed, all agents will update their estimate to the maximum

geometric random variable they have seen and switch to the NormalPhase again. Recall that the

agents remain in the NormalPhase as long as their FMV and estimate are relatively close. They

continue changing their group values and send group signals as described earlier.

Algorithm 37 TimerRoutine(u)

u.timer← u.timer + 1
if u.timer > 12 · u.FMV then

if u.phase = WaitingPhase then
u.GRV←a new geometric random variable
u.timer← 0, u.phase← UpdatingPhase

if u.phase = UpdatingPhase then
u.estimate← u.GRV
u.timer← 0, u.phase← NormalPhase

Algorithm 38 PropagateMaxEst(u, v)

if u.phase = v.phase & u.phase ̸= WaitingPhase then
u.GRV, v.GRV← max(u.GRV, v.GRV)

Intuitively, for each group value, about n/2i agents will hold group = i, and boost signals[i]

by setting it to the max = Θ(i). As the value of i grows, the number of agents with group = i

decreases, but their signals get stronger since the agents enhance a group signal i proportional to i.

3Alternatively, the agents could generate a geometric random variable through O(logn) consecutive interactions, each
selecting a random coin flip (H or T). In this alternative version, we should make the WaitingPhase longer.
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In a normal run of the protocol, the agents expect to have positive values in signals[i] for group

values between [log lnn, log n].

6.3. Simulation results

In this section, we present our simulation results for Protocol 32. We present two separate

simulation results, one starting with a uniformly random initial configuration (fig. 6.1) in which

each agent starts with a random number (bounded by 60) in each of their group and estimate

fields. Additionally, we set a random integer of Θ(i) in each index of their signals. In fig. 6.1, we

depict the group and signals fields of the agents in a population size n = 106. We can observe

the changes in the group and signals within multiple snapshots from the population.

In our second simulation, we initialized the population with default values (starting in the

initialized setting), however, after the population converges to an estimate of O(log n) we remove

agents uniformly at random to simulate an adversarial initialized population. The result of this

simulation is shown in fig. 6.2.

6.4. Analysis of dynamic counting protocol

6.4.1. Bound on the group values. Recall that the agents calculate a dynamic group value

by following the rules of Protocol 33. As described in this protocol, the agents either move to the

next group or return to group 1 with probability 1/2.4

In this part, we analyze the distribution of group values. Note that the group values are rather

chaotic at the beginning of the protocol since the agents might start holding any arbitrary group

values that are much larger than log n. However, after all agents reset back to group = 1, we can

show for each group = k, Pr [group = k] ≈ 1
2k

.

In the rest of this section, we assume the initialized setting for simplicity. Later, we show how

we can generalize our results to any arbitrary initial configuration. We define Gu,t as the group

value of agent u at time t and I(t, u) to represent the number of interactions involving this agent

by the time t. Note that with this definition, Gu,t is equal to k (for k < I(t, u)) if and only if agent

u generates the sequence of [HTTT . . . T ] (H followed by k − 1 Ts) during its last k interactions.

4The truncated version of this Markov chain (mapping all states k + 1, k + 2, . . . to k + 1) is also known as the
“winning streak” [72].
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(a) The distribution of group values at t = 10. Ob-
serve that for all group values less than 10, the distri-
bution is close to the stationary distribution in which
about n

2i
agents have group = i. However, it is too

soon for all “unwanted” group values to disappear.
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(b) Snapshot of the population at time 10: the
distribution of signals values. The data shows
min(u.signals[i]) for every index i and agent u ∈ A.
Note that, for every index i, signals[i] now has a
positive value.
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(c) Snapshot of the population at time 30: the dis-
tribution of group values reached the stationary dis-
tribution.
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(d) Snapshot of the population at time 30: even
though there is no agent with group > 25, the
signals for all groups are still positive.
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(e) Snapshot of the population at time 140: the dis-
tribution of group values reached the stationary dis-
tribution and stays the same for polynomial time.

0 5 10 15 20 25 30 35 40
signals

100

101

sig
na

l v
al

ue
 (s

tre
ng

th
)

Time step 140, n = 1000000

(f) Snapshot of the population at time 140: the emer-
gence of the FMV = 25 which is in O(logn) for the en-
tire population. Note that in our protocol the agents
don’t wait for all values of 25 and greater to disap-
pear. Having signals[i] = 0 for one index i suffices
to re-calculate the estimate.

Figure 6.1. Simulation results for population size =106. Initializing each agent
with a random 1 ≤ group < 30, and for every 1 ≤ i ≤ 60, 0 ≤ signals[i] ≤ 3 · i + 1
in NormalPhase,WaitingPhase, or UpdatingPhase with probability 1/3. Plots of the
signals for a randomly initialized population. The x-axis shows all the indices in
the signals of the agents (bounded by 40 in the simulation). On the y-axis, and
every index i, we take the minimum pairwise value of u.signals[i] for all u ∈ A.
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(a) The distribution of estimate during the course of a computation. First, the agents agree on estimate = 20 and
keep their estimate throughout the computation. This simulation shows how the agents update their estimate once
we removed O(n) agents from the original population.
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(b) The distribution of phase values. This simulation shows how the agents update their estimate by going through
WaitingPhase and UpdatingPhase consecutively.

Figure 6.2. Simulation results for population size n = 400000 ≈ 218. Initializing
each agent with group = 1, and an empty signals in NormalPhase. First, the
agents calculate the estimate for n = 218, then at time 1350 we remove all but 500
agents randomly which results in updating the agents’ estimate from 20 to 10.

Thus, we have:

(6.1) ∀k ∈ N, 1 ≤ k < I(t, u) : Pr [Gu,t = k] =
1

2k

With this definition Gu,t is undefined for any agents that has not generated H yet. In other words,

the values Gu,t are “close to geometric” in the sense that they are independent and have probability

equal to a geometric random variable on all values k < I(t, u).
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Figure 6.3. The infinite chain of group values.

Observation 6.4.1. For agents u1, u2, . . . , un, and the values ki < I(t, ui), for 1 ≤ i ≤ n:

Pr [Gu1,t = k1, Gu2,t = k2, . . . , Gun,t = kn] =

n∏
i=1

Pr [Gui,t = ki]

Next we bound the maximum group value that has been generated by any agent. Let Mt =

maxu∈AGu,t be the maximum value of Gu,t across the population at time t. A proof of the following

lemma appears in the full version [49].

Lemma 6.4.2. Let c ≥ 2 and let t be a time such that all agents have at least c log n interactions.

In a population of size n, 1
d log n ≤Mt with probability at least 1− exp

(
−n1−1/d

)
and Mt < c log n

with probability at least 1− n1−c.

Note that the maximum group value has a large variance. However, we can prove a tight bound

for the first group value with no support; since to have FMV = k, for all values i that are less than

k, ∃u ∈ A such that u.group = i.

So, we analyze the bounds for the first group value with no support, i.e., the value min{k ∈

N+ | (∀u ∈ A) u.group ̸= k}. Considering n i.i.d. geometric random variables, the first missing

value to be the smallest integer not appearing among the random variables. The first missing value

has been studied in the literature [70,71,84] as the “the first empty urn” (see also “probabilistic

counting” [58]) but for simplicity we use a loose bound for our analysis. The proof appears in the

full version [49].

Lemma 6.4.3. Let δ > 0, 0 < ϵ < 1 and let t be a time such that all agents have at least

(1 + δ) log n interactions. Define FMVt = min{k ∈ N | (∀u ∈ A) u.group ̸= k} at time t. Then,
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FMVt > (1− ϵ) log n with probability at least (1− ϵ) log(n) · exp (−nϵ) and FMVt ≤ (1 + δ) log n with

probability at least 1−
(

1
nδ/2

)(2+δ) logn
.
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Time step 300, n = 1000000000

Figure 6.4. Showing the distribution of group values after 300 parallel-time in a
population of size n = 109. The x-axis indicates the different group values while
the y-axis indicates the number of agents in each group. Note that, we are using
log-scale for the y-axis. In this snapshot of the population, FMV = 29. Even though,
the maximum group value is 35 and is much larger than FMV.

6.4.2. Distribution of the groups. So far, we have proved bounds on the existing group

values. However, in general, we need to show that at a given time t = Ω(log n), there are about

n
2k

agents having group = k WHP. The following lemma gives us a lower and upper bound for the

number of agents in each group:

Lemma 6.4.4. Let c ≥ 2, 0 < ϵ < 1, 0 ≤ δ ≤ 1, and let t be a time such that all agents have at

least c log n interactions. Let 1 ≤ k ≤ (1− ϵ) log n, then, the number of agents who hold group = k,

is at least Lk = (1− δ) n
2k

with probability at least 1 − exp
(
− δ2·nϵ

2

)
and at most Uk = (1 + δ) n

2k

with probability at least 1− exp
(
− δ2·nϵ

3

)
.

Proof sketch. The fraction of agents with group = k is equal to the fraction of heads in of

a binomial distribution B
(
n, 2−k

)
with µ = n

2k
, so the Chernoff bound applies. A complete proof is

given in the full version [49]. □

The following theorem summarizes what we will use later about the distribution of the group

values and the number of agents residing in each group at time t.
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Theorem 6.4.5. Fix a time t ≥ d lnn for d > 30, let M∗
t and FMVt be the maximum group

value and the FMV at this time respectively. Then,

• 0.9 log n ≤M∗
t < 0.1d log n with probability at least 1− 2 · n1−d/10 − 2 · n1− 2d

3 .

• 0.9 log n ≤ FMVt < 3 log n with probability at least 1− 4 · n1− 2d
3 .

• The number of agents who hold group = k for 1 ≤ k ≤ 0.9 log n, is in
[

3·n
2k+2 ,

5·n
2k+2

]
with

probability at least 1− 4 · n1− 2d
3 .

6.4.3. Group detection. In the previous section, we show that the set of present group values

among the population will quickly (in O(log n) time) enter a small interval of values ([1, 8 · log n])

consistent with the population size. In this section, we will prove the following:

• The agents agree about the presence of group values in [log lnn, 0.9 log n] after O(log n)

time WHP.

• For a non-existing group value i, each agent will have signals[i] = 0 in O(i + log n) time

WHP.

We designed Protocol 34 such that each agent in the i’th group boosts the associated signal

value by setting signals[i] = Bi (recall Bi = Θ(i)). We will show by having at least Li agents

boosting signals[i], the whole population learns about the existence of the i’th group in O(log n)

time with high probability. Intuitively, although signals[i] starts lower than signals[j] for i < j,

so potentially dies out more quickly, it is also boosted more often since more agents have group value

i. Concretely, with Li agents responsible to boost signal i, and for all indices log lnn < i < 0.9 log n

in the signals of the agents, Pr [signals[i] = 0] < exp
(
− 2Bi

n/Li

)
.

Intuitively, the next lemma shows that if the group values are distributed as in theorem 6.4.4,

then the whole population will learn about all the present group values above log lnn within

O(log n) time. Note that Pr [u.signals[i] = j] is the probability that the agent u has value j in

the ith index of its signals. The following lemma is a restatement from [4, Section 5.1]. The proof

appears in the full version [49].

Lemma 6.4.6. In the execution of Protocol 34, suppose that for each group value log lnn < i <

0.9 log n, at least Ai agents hold group = i. For every agent u ∈ A let u.signals[i] = ri when

u.group = i. Assuming each agent has at least ri interactions, then for a fixed agent u and index

i, Pr [u.signals[i] = 0] ≤
(

1− Ai
n

)2ri−1

.
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To use the previous lemma, we need to make sure that the agents wait for sufficiently long time

such that each agent has at least ri interactions. The next corollary uses theorem 6.4.6 to derive

bounds for the entire protocol using bounds from theorem 6.4.4 for the distribution of the group

values. Also, theorem 6.4.7 takes a union bound over all agents and group values i, and uses the

concrete value ri = Bi = 3 · i + 1 used in our protocol. The proof appears in the full version [49].

Corollary 6.4.7. For all i > 0 and for every agent u ∈ A, assuming Bi = 3 · i + 1 let

u.signals[i] = Bi if u.group = i. Suppose that for each group value log lnn < i < 0.9 log n, at

least Li agents hold group = i. Let β ≥ 8; then after β log n time, we have:

Pr [(∃u ∈ A)(∃i ∈ {log lnn, . . . , 0.9 log n}) u.signals[i] = 0] ≤ 2 · n1−0.9β

Finally, we show that when there is no agent holding group = i, then signals[i] will become

zero in all agents “quickly” with an arbitrarily large probability. To be precise, with no agent

boosting signal i, Pr [u.signals[i] = 0] ≥ 1− n−α within Θ(Bi + α lnn) time WHP in which Bi is

the maximum value for signal i. The lemma is a restatement from [34, Lemma 3.3] and [4, Lemma

1].

Lemma 6.4.8. For every agent u ∈ A let u.signals[i] = Bi when u.group = i. Assume that no

agent sets its group to i from this point on. Then for all α ≥ 1, all agents will have signals[i] = 0

after 3n ln
(
nα · 3Bi

)
interactions with probability at least 1− n−α.

Proof. Set t = 3n ln
(
nα · 3Bi

)
and Rmax = Bi in the proof of [34, Lemma 3.3]. □

6.4.4. Dynamic size counting protocol analysis. Recall that estimate denote the esti-

mate of log n in agents’ memory, and n is the true population size. In the previous section, we

show that the set of present group values among the population will quickly (in O(log n) time)

enter a small sub-interval of consecutive values in [1, 3 · log n] consistent with the population size.

This section will show that the group values will remain in that interval (with high probability for

polynomial time). Moreover, the following two lemmas show how the agents update their estimate

if it is far from log n. The proofs appear in the full version [49].

Assuming the agents’ estimate is much smaller than log n, the next lemma shows that all the

agents will notice the large gap between estimate and FMV. Hence, they will re-calculate their

population size estimate.

171



Lemma 6.4.9. Let M = maxu∈A u.estimate. Assuming M ≤ 0.22 log n, then the whole popu-

lation will enter WaitingPhase in O(log n) time with probability at least 1−O(n−2).

For the other direction, assume the population size estimate in agents’ memory is much larger

than log n. We prove in the following lemma that all the agents will notice the large gap between

estimate and FMV. Hence, they will re-calculate their population size estimation.

Note that in theorem 6.4.7, we proved for all group values i for log lnn ≥ i, the signals[i] will

have a positive value in O(log n) time. However, we could not prove the same bound for values less

than log lnn. So, inevitably the agents ignore their signals for values that are less than log lnn.

Since the agents have no access to the value of log n, they have to use estimate as an approximation

of log n. Thus, they ignore indices that are less than logM in signals: making FMV a function

of max(logM, log n). For example, if the true population size is n but M > 2n, then the agents

should ignore the appearance of a zero in their signals for all indices i that are ≤ log(M) = n.

The correct FMV happens at index j = Θ(log n), but the agents stay in the NormalPhase as long as

signals[i] for i ≥ n are positive. In this scenario, it takes O(n) time for the agents to switch to

WaitingPhase since for each signals[i], it takes O(i) time to hit zero.

This scenario is inevitable with our current detection scheme since for indices i that are less

than log lnn, the event of signals[i] = 0 happens frequently.

Lemma 6.4.10. Let M = maxu∈A u.estimate. Assuming M ≥ 7.5 · log n, then the whole

population will enter WaitingPhase in O(log n + logM) time with probability at least 1−O(n−2).

In the next theorem (full proof given in [49]), we will show once there is a large gap between

the maximum estimate among the population and the true value of log n, the agents update their

estimate in O(log n + logM) time.

Theorem 6.4.11. Let M = maxu∈A u.estimate. Assuming estimate ≥ 7.5 log n or estimate ≤

0.2 log n, then every agent replaces its estimate with a new value that is in [log n− log lnn, 2 log n]

with probability 1−O(1/n) in O(log n + logM) time.

Proof sketch. By theorems 6.4.9 and 6.4.10, once an agent notices the large gap between

estimate and FMV, they switch to WaitingPhase. We set WaitingPhase long enough so when the first

agent moves to UpdatingPhase, there is no agent left in the NormalPhase. Thus, they all re-generate

a new geometric random variable and store the maximum as their estimate. □
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Recall that the adversary can initialize agents with large integer values to arbitrarily increase

memory usage. Therefore, we should calculate the agents’ memory concerning the fields defined

in our protocol and the value that the adversary can set in them. Thus, we use s as the largest

integer value that the adversary set in the agents’ memory.

Theorem 6.4.12. Let M = maxu.estimate for all u ∈ A. There is a uniform leaderless

loosely-stabilizing population protocol that WHP:

(1) If M > 7.5 log n or M < 0.2 log n reaches to a configuration with all agents set their

estimate with a value in [log n− log lnn, 2 log n] in O(log n + logM) parallel time.

(2) If 0.75 log n < M < 2.25 log n, then the agents hold a stable estimate during the following

O(n15) parallel time.

(3) Assuming for every agent u ∈ A, max(u.estimate, u.GRV, u.group, u.signals.size()) < s

in the initial configuration, then the protocol uses O(log2(s)+log n log logn) bits per agent.

6.4.5. Space optimization. In this section, we explain how to reduce the space complexity

of the protocol from O(log2(s) + log n log log n) to O(log2(s) + (log log n)2) bits per agent.

In Protocol 32, the agents keep track of all the present group values using an array of size

O(log n) (stored in signals) by mapping every group = i to signals[i]. We can reduce the space

complexity of the protocol by reducing the signals’ size. Let the agents map a group = i to

signals[⌊log i⌋]. So, instead of monitoring all O(log n) group values, they keep O(log log n) indices

in their signals. Thus, reducing the space complexity to O(log2(s) + (log log n)2) bits per agent.

Recall that in Protocol 32, there are ≈ n
2i

agents with group = i for i ≤ 0.9 log n that help keep

signals[i] positive. However, with this technique, there will be ≈
∑2j+1

i=2j
n
2i

agents that are helping

signals[i] to stay positive. So, every lemma in section 6.4.3 about Protocol 34 holds. Finally,

we update Protocol 36 so that the agents compare their estimate with 2LFMV in which LFMV is the

smallest index i > log logM such that signals[i] = 0. On the negative side of this optimization,

we get a less sensitive protocol with respect to the gap between agents’ estimate and log n.

Theorem 6.4.13. Let M = maxu.estimate for all u ∈ A. There is a uniform leaderless

loosely-stabilizing population protocol that WHP:

(1) If M > 15 log n or M < 0.1 log n reaches to a configuration with all agents set their

estimate with a value in [log n− log lnn, 2 log n] in O(log n + logM) parallel time.
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(2) If 0.75 log n < M < 2.17 log n, then the agents hold a stable estimate during the following

O(n15) parallel time.

(3) Assuming for every agent u ∈ A, max(u.estimate, u.GRV, u.group, u.signals.size()) < s

in the initial configuration, then the protocol uses O(log2(s) + (log log n)2) bits per agent.

6.5. Conclusion and open problems

In this chapter, we introduced the dynamic size counting problem. Assuming an adversary who

can add or remove agents, the agents must update their estimate according to the changes in the

population size. There are several open questions related to this problem.

Reducing convergence time. Our protocol’s convergence time depends on both the previous

(nprev) and next (nnext) population sizes, though exponentially less on the former: O(log nnext +

log lognprev). Is there a protocol with optimal convergence time O(log nnext)?

Increasing holding time. theorem 6.2.4 states that the holding time must be finite, but it is

likely that much longer holding times than Ω(nc) for constant c are achievable. For the loosely-

stabilizing leader election problem, there is a provable tradeoff in the sense that the holding time is

at most exponential in the convergence time [65,92]. Does a similar tradeoff hold for the dynamic

size counting problem?

Reducing space. Our main protocol uses O(s + (log n)logn) states (equivalent to O(log2(s) +

log n log logn) bits). In section 6.4.5, we showed how we can reduce the state complexity of our

protocol to o(nϵ) (equivalent to O(log2(s) + (log log n)2) bits) by mapping more than one group to

each index of the signals. With this trick, we reduce the size of the signals from O(log n) to

O(log log n). Another interesting idea is to replace our O(log n) detection scheme to O(1) detection

protocol of [55] which puts a constant threshold on the values stored in each index. So, it may be

possible to reduce the space complexity even more to O(cO(logn)) (with all O(log n) indices present)

or O(cO(log logn)) = polylog(n) (using our optimization technique to have O(log log n) indices in the

signals).

However, the current protocol of [55] has a one-sided error that makes it hard to compose with

our protocol. With probability ϵ > 0, the agents might say signal i has disappeared even though

there exists agents with group = i in the population.
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Additionally, in the presence of a uniform self-stabilizing synchronization scheme, one could

think of consecutive rounds of independent size computation. The agents update their output if

the new computed population size drastically differs from the previously computed population size.

Note that the self-stabilizing clock must be independent of the population size since we allow the

adversary to change the value of log n by adding or removing agents. To the best of our knowledge,

there is no such synchronization scheme available to population protocols.
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tri-molecular chemical reaction networks. Natural Computing, 19(1):249–270, 2020.

[41] Eric Severson David Doty, Mahsa Eftekhari. https://github.com/UC-Davis-molecular-computing/ppsim/

blob/main/examples/majority.ipynb.

[42] Eric Severson David Doty, Mahsa Eftekhari. https://github.com/eftekhari-mhs/population-protocols/

tree/master/Exact_Majority.

[43] Eric Severson David Doty, Mahsa Eftekhari. https://github.com/eftekhari-mhs/population-protocols/

tree/master/Exact_Majority/animated_simulations.

[44] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric Ruppert. When birds die: Making

population protocols fault-tolerant. In Distributed Computing in Sensor Systems, pages 51–66, 2006.

[45] Giuseppe A Di Luna, Paola Flocchini, Taisuke Izumi, Tomoko Izumi, Nicola Santoro, and Giovanni Viglietta.

Population protocols with faulty interactions: the impact of a leader. Theoretical Computer Science, 754:35–49,

2019.

[46] Giuseppe A Di Luna, Paola Flocchini, Taisuke Izumi, Tomoko Izumi, Nicola Santoro, and Giovanni Viglietta.

Fault-tolerant simulation of population protocols. Distributed Computing, 33(6):561–578, 2020.

[47] David Doty and Mahsa Eftekhari. Efficient size estimation and impossibility of termination in uniform dense

population protocols. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,

PODC ’19, page 34–42. Association for Computing Machinery, 2019.

[48] David Doty and Mahsa Eftekhari. A survey of size counting in population protocols. Theoretical Computer

Science, 894:91–102, 2021. Building Bridges – Honoring Nataša Jonoska on the Occasion of Her 60th Birthday.
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