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Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New 
York 11794-5252, USA

Abstract

We investigate by Monte Carlo simulations density, diffusion, and structural anomalies of the 

simple two-dimensional Mercedes-Benz (MB) model of water, which is a very simple toy model 

for explaining the origin of water properties. MB water molecules are modeled as two-dimensional 

Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the 

MB logo. The model is in a way also a variance of silica-like models. Beside the known 

thermodynamic anomaly for the model we also found diffusion and structural anomalies and map 

out the cascade of density, structural, pair entropy, and diffusivity anomalies for MB model. The 

orientational order parameters with three and six-fold symmetry were determined and maximum 

for each one observed. The anomalies occur in hierarchy order, which is a slight variation of the 

hierarchy order in real water. The diffusion anomaly region is the innermost in the hierarchy while 

for water it is the density anomaly region.

I. INTRODUCTION

Anomalous liquids are liquids that exhibit unexpected behavior upon variations of the 

thermodynamic conditions in comparison to normal (argon-like) liquids. Water is the classic 

example of those anomalous liquids. There are two very distinct mechanisms that give rise 

to the anomalous properties. Angular-dependent interactions, such as oriented hydrogen 

bonding in water, tetrahedral bonding in silica [1–3], and oriented bonds in BeF2, can result 

in density maximum because of the competition between tetrahedral order (low density) and 

translational order (high density). On the other hand, density anomaly was also observed for 

Ga [4] Bi [5], Te [6], S [7], Be, Mg, Ca, Sr, Ba, P, Se, Ce, Cs, Rb, Co, Ge where the system 

lacked oriented bonding. Speaking of water, it expands upon cooling at fixed pressure, 

diffuses faster upon compression at fixed temperature [8,9], and becomes less ordered upon 

increasing density at constant temperature [10]. These are the density, diffusion, and 

structural anomalies. The regions in which these anomalies occur form nested domes in the 

density-temperature diagram [10] or pressure-temperature diagram [11]. The structural 
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anomaly domain occupies the outer region of the pressure temperature phase diagram and 

the density anomaly region is the innermost region for water-like fluids. The diffusion 

anomaly region lies between these two domains [10,11]. This is called the hierarchy of water 

anomalies. It must be noted, however, that for different compounds not all anomalies always 

appear and that a detailed understanding of their origin and their hierarchy remain elusive 

[12,13].

A large number of models of varying complexity have been developed and analyzed to 

model water’s extraordinary properties, for reviews, see, e.g., [14–17]. Many properties of 

water and aqueous solutions can be captured by simpler models [18,19]. One class of such 

simpler models has been developed by Nezbeda and coworkers [15,20,21]. There are also 

many other simple models [22–26]. One the simplest models for water is the so-called 

Mercedes-Benz (MB) model [27–31], which was originally proposed by Ben-Naim in 1971 

[32,33]. This is a two-dimensional toy model where each water molecule is modeled as a 

disk that interacts with other such waters through: (1) a Lennard-Jones (LJ) interaction and 

(2) an orientation-dependent hydrogen bonding interaction through three radial arms 

arranged as in the Mercedes-Benz (MB) logo. Interest in simplified models is due to insights 

that are not obtainable from all-atom computer simulations. Simpler models are more 

flexible in providing insights and illuminating concepts, and they do not require big 

computer resources. Second, the simple models can explore a much broader range of 

conditions and external variables. Whereas simulating a detailed model may predict the 

behavior at one temperature and pressure, a simpler model can be used to study a whole 

phase diagram of temperatures and pressures. Third, the analytical models can provide 

functional relationships for engineering applications and lead to improved models of greater 

computational efficiency. Fourth, simple models can be used as a polygon to develop and 

study theoretical methods. Our interest in using the MB is that it serves as one of the 

simplest models of an orientationally dependent liquid, so it can serve as a testbed for 

developing analytical theories that might ultimately be useful for more realistic models. 

Another advantage of the MB model, compared to the more realistic water models, is that 

the underlying physical principles can be more readily explored and visualized in two 

dimensions. For the MB model, the NPT Monte Carlo simulations have shown that the MB 

model predicts qualitatively the density anomaly, the minimum in the isothermal 

compressibility as a function of temperature, the large heat capacity, as well as the 

experimental trends for the thermodynamic properties of the solvation of nonpolar solutes 

[28,30,31,34] and cold denaturation of proteins [35]. The two-dimensional (2D) MB model 

was also extended to three dimensions by Bizjak et al. [36,37] and Dias et al. [34,38] and 

studied using computer simulations [34,36–38]. The 2D model was also extensively studied 

with analytical methods like integral equation and thermodynamic perturbation theory [39–

45].

In this paper, we investigate the presence of the anomalies in a simple 2D MB model of 

water in Fig. 1. We determine the density, diffusion, and structural anomalies and we 

observe that they occur with a hierarchy slightly different as in water. The outline of the 

paper is as follows. We present the MB model in Sec. II, and the details of the Monte Carlo 

simulations in Sec. III. In Sec. IV we show and discuss the results and summarize everything 

in Sec. V.
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II. MODEL

In the framework of the MB model of water the water molecules are modelled as a 2D disk 

with three bonding arms separated by an angle of 120◦ [28,32] which is fixed. These arms 

mimic the formation of hydrogen bonds. The interaction potential between water particles i 
and j is a sum of a Lennard-Jones (LJ) and a hydrogen-bonding (HB) term

U(Xi, X j) = ULJ(ri j) + UHB(Xi, X j), (1)

where rij is the distance between the centers of particles i and j. Xi and X j are the vectors 

representing the coordinates and the orientation of the ith and jth molecule. The Lennard-

Jones part of the potential has a standard form

ULJ(ri j) = 4εLJ
σLJ
ri j

12
−

σLJ
ri j

6
, (2)

where εLJ is the depth and σLJ the contact value. The hydrogen bonding part of the potential 

is the sum of interactions UHB
kl  between all arms of different molecules

UHB(Xi, X j) =
k, l = 1

3
UHB

kl (ri j, θ1, θ2) . (3)

This interaction is described by the Gaussian function in distance and both angles

UHB
kl (ri j, θ1, θ2) = εHBG(ri j − rHB)G( ik ui j − 1)G( jl ui j + 1)

= εHBG(ri j − rHB)
(4)

× G cos θi + 2π
3 (k − 1) − 1

× G cos θ j + 2π
3 (l − 1) + 1 .

(5)

Here εHB = − 1 is a HB energy parameter and rHB = 1 is a characteristic length of hydrogen 

bond. ui j is the unit vector along ri j and rk is the unit vector representing the kth arm of the 

ith particle. θi is the orientation of the ith particle with respect to the x axes. G(x) is an 

unnormalized Gaussian function

G(x) = exp − x2

2σ2 . (6)

The strongest hydrogen bond occurs when an arm of one particle is colinear with the arm of 

another particle and the two arms point in opposing directions. The LJ well-depth εLJ is 0.1 

times the HB interaction energy εHB and the Lennard-Jones contact parameter σLJ is 0.7rHB. 
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The width of the Gaussian for distances and angles (σ = 0.085rHB) is small enough that a 

direct hydrogen bond is more favorable than a bifurcated one.

III. MONTE CARLO COMPUTER SIMULATION

To determine anomalies and their hiererchy in the 2D MB model of water we performed 

Monte Carlo computer simulations in canonical ensemble (constant N, V and T ) [46,47]. To 

mimic an infinite size of system of particles we used the periodic boundary conditions and 

the minimum image convention. All starting configurations were selected at random. Each 

move consisted of a translation of a random particle and rotation of a different random 

particle. The probabilities for translation and rotation were the same. In one cycle (also one 

time step) we tried to translate and rotate each particle once on average. The simulations 

were equilibrated for 5000000 cycles and averages were taken for 20 series each consisted 

for another 5000000 cycles to obtain well-converged results. In the system we had from 100 

to 500 particles depending on the density of the system. We used such a number of particles 

that the increase of this number had no significant effect on the calculated quantities. The 

system of 100 molecules in two dimensions is equivalent to 1000 particles in three 

dimensions although 2D systems are more complicated in comparison to the three-

dimensional (3D) ones. It is well known that when confined to a 2D space, condensed matter 

behaves differently than in three dimensions. An example is provided by 2D crystals, where 

thermal fluctuations are so strong as to rule out long-range translational order for nonzero 

temperatures, leaving it open for the possibility of unconventional melting scenarios [48]. 

Thermodynamic quantities such as energy were calculated as statistical averages over the 

course of the simulations [47]. The cutoff of the potential was the half-length of the 

simulation box. The pressure was calculated by means of a virial equation [47].

The diffusion coefficient is determined using the mean square displacement averaged over 

different series. In these MC simulation runs, the dynamic adjustment of maximum 

displacement was turned off and was kept fixed for all instances. The mean square 

displacement was calculated as the average of displacements over all particles

〈Δr(n)2〉 = 〈[ r (n) − r 0]2〉, (7)

where r 0 is the initial coordinate of the particle and n is the number of cycles. The 

pseudodiffusion coefficient which is proportional to the real diffusion coefficient was 

obtained as

D∗ = lim
n ∞

〈Δr(n)2〉
n . (8)

It is well known that this later quantity may be ill defined in a 2D system because of the 

possible existence of a long-time (1/t) tail in the velocity autocorrelation function [49]. The 

quantity might be strongly sensitive to the size dependence. In our case we tested results by 

increasing the number of particles times two and times three and in each case the results 

were in agreement. The normal pseudodiffusion coefficient decreases monotonically with 
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increasing density at constant temperature. For the MB model of water there is a region 

where the coefficient increases.

A structural anomaly was assessed by determining the translational order parameter t and 

two orientational order parameters (with three-fold symmetry q3 and with six-fold symmetry 

q6). The translational order parameter measures the degree of pair correlation in the system 

and is defined as

t =
0

xc
g(x) − 1 d   x, (9)

where x = ρ
1
2r is the distance r in the units of mean interparticle separation and g(x) the pair 

distribution function. xc is the cut off distance and is set to half of the simulation box in the 

present paper. For normal fluids the translational order parameter monotonically increases 

with density. If a different behavior is observed in a certain density range, the fluid is said to 

exhibit a structural anomaly. Orientational order parameters ql were calculated following this 

procedure. For each particle j we calculate

ql
j = 1

n j k
exp(ilθ jk), (10)

where nj is the number of neighbors within the first atom shell of particle j and θjk is the 

angle between the vector connecting particles j and k and the horizontal axis. Parameter l 

specifies the type of symmetry (3 or 6). The local orientational parameter of the whole 

system is calculated as the average of the absolute value over all the particles in the system

ql = 1
N i = 1

N
ql

i . (11)

The excess entropy is a convenient quantity for understanding the links between structure 

and thermodynamics, as well as dynamics. To calculate the excess entropy we should count 

all the accessible configurations for a fluid and compare it to the ideal gas entropy. The 

excess entropy can also be calculated by the multiparticle correlation expansion

se = s2 + s3 + ⋯ + sn + ⋯, (12)

where sn denotes the entropy contribution due to n-particle correlations. The effect of triplet 

and higher-order correlations on the entropy has not been extensively studied, the pair 

entropy itself proves to be a very convenient structural estimator for the entropy. The pair 

entropy can be approximated by

s2 = − πρ [g(r)lng(r) − g(r) + 1]r   d   r, (13)

and is the dominant contribution to excess entropy [50–60]. Integration was up to half the 

length of the simulation box. The pair entropy is proved to be between 85% and 95% of the 
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total excess entropy in Lennard-Jones systems [51]. At higher temperatures we determined 

excess entropy by the Widom method and we observed similar agreement for the MB model 

as reported for LJ systems. The pair entropy only depends on the pair correlation function 

g(r) and the density and it is related to the translations order parameter because both are 

related to the deviation of the radial distribution function from unity.

IV. RESULTS AND DISCUSSION

All our results were calculated and are reported in reduced units; the excess internal energy 

and temperature are normalized to the HB energy parameter εHB(A∗ = A
|εHB| , T∗ =

kB ∗ T

|εHB| )

and the distances are scaled to the hydrogen bond characteristic length (r∗ = r
rHB

). Errors in 

the MC simulations depend on temperature, for most of the temperatures are of size of the 

symbols used to present data points.

The 2D MB model of water has water-like behavior as reported before [28]. The density of 

low density ice (see Fig. 2) is lower than the density of the liquid phase. The two most 

important crystal phases of 2D MB water are low density crystal with reduced density 

0.7698 where water molecules occupy positions in a hexagonal lattice. There is only one 

possible crystalline arrangement that permits the maximum number of perfect hydrogen 

bonds per molecule. This low-density crystal structure is analogous to hexagonal ice Ih, and 

it is also the crystalline phase that has been observed in low-temperature Monte Carlo 

simulations of the MB model [28]. The 2D MB water also has denser forms of ice at high 

pressures. One possible candidate for the high density crystal phase is where another water 

molecule occupy empty spaces in hexagons (see Fig. 2). This phase conforms to a triangular 

packing arrangement. The reduced density of the high density crystal phase is 1.1547. We 

should take into account that the two ices described above do not exhaust the possible 

crystalline structures for this model. When the MB water melts, the structure of low density 

ice is present a lot also in liquid water. Figure 3 shows the phase diagram of the MB model 

since the freezing (melting) coexistence lines are relevant to locate if some thermodynamic 

points fall in the metastable regions of the model. As we can see from the phase diagram the 

anomalous regions are present in fluid part of phase diagram and extend also in supercooled 

region.

First we determine density anomaly. We can do this by calculating the density as a function 

of temperature at constant pressure and observe the density maximum at certain pressures. 

This was done for selected pressures before [28]. There is an alternative way to determine 

the temperature of maximum density. This is by calculating pressure as a function of density 

at constant temperature. Where the density maximum is present we observe a minimum in 

pressure as a function of density. Several isochores are presented in Fig. 4 as well as a line 

showing temperatures of maximum density. For the model we observe density anomaly for 

the temperatures lower that 0.18 and for the densities between 0.8 and 1.1 and for the 

pressures between 0.05 and 0.3. This is in a small region between the density of low and 

high crystal phases. The origin of the density anomaly is that at lower temperatures water 

still has a lot of low density ice structure present in the liquid phase. These structures are 
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melting. Water molecules which are released from crystal structures occupy empty spaces 

between hexagons and the density of liquid increases. Upon further increase of temperature, 

hydrogen bonds continue to melt and more opened structures are formed which has lower 

density. At higher temperature such crystal water structures are no longer present and there 

is no density anomaly. Water behaves as a normal liquid where density decreases with the 

increase of temperature at a constant pressure.

We continued our calculation by determining the density anomaly. We calculated the 

pseudodiffusion coefficient by the displacement of water molecules in the MC steps at a 

fixed maximum step. This pseudodiffusion coefficient is proportional to real diffusion 

coefficient of the 2D MB model. For normal fluids the diffusivity decreases monotonically 

with increasing density at constant temperature because with the increase of density there is 

more crowding and molecules move with higher difficulty. For the 2D MB model this is 

observed only for temperatures higher than 0.175. For temperatures lower that 0.175 

diffusion has anomalous behavior. At first the diffusion decreases, reaches minimum, 

increases up to maximum and decreases toward zero for high densities. The region between 

the minimum and the maximum is the so-called anomalous diffusion region and is presented 

in Fig. 5. This anomaly region is also present in the density range between the high and low 

density ices. As the density increases at constant temperature the water forms a more correct 

hexagonal network and a little after the density of low density crystal phase diffusion has hit 

minimum. Upon further increase of the density water molecules occupy empty space within 

the hexagons and diffusion start to increase since these molecules are less bonded than 

molecules forming HB networks and can move more easily. Upon further increase of the 

density the system reaches such density that the mobility of molecules reaches maximum 

and upon further increase less and less space is available and the molecules move with 

bigger difficulty and diffusion starts to decrease. What is unexpected is that this diffusion 

anomalous region lies within the density anomalous region. In water-like models and in 

silica-like models the density anomalous region is the most inner region. The reason for this 

is not completely clear, one reason might be the dimensionality of the system. Here we have 

the 2D model with water-like properties or we can have the model that is not completely 

water- or silica-like but has its unique properties. Since the diffusion is related to the ability 

of water molecules to move we plotted in Fig. 6 the ratio of differently bonded water 

molecules. We would expect that when the diffusion of water is smaller that water molecules 

would be strongly bonded, or on the other hand, would not have available space to move. We 

would expect some unusual behavior, but on the contrary these properties do not have 

anything unusual. All functions are monotonic functions with respect to temperature so they 

do not give us any new insight for the diffusion anomaly with respect to strong bonding.

Thirdly, we studied the structural behavior by calculating three different quantities, the 

translational order parameter t and two orientational order parameters, q3 orientational order 

with three-fold axis and q6 orientational order with six-fold axis. For the normal fluids, t 

increases with increasing density. For the 2D MB model we found this monotonic behavior 

only for the temperatures higher that 0.19 (see Fig. 7). For lower temperatures we observe 

that the t has a maximum, decreases up to a minimum, and recovers the normal increasing 

behavior after the minimum. The region between the minimum and maximum is called the 

anomalous structure region. Figure 8 shows the distribution of both orientational order 
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parameters for low and high temperatures for different densities. We can see that at the 

densities close to the density of the low density ice we can see a huge peak for three-fold 

symmetry. Upon the increase of density we can see that other structures start to appear. We 

can observe additional peaks in distribution. Our study reveals the anomalous behavior also 

for both orientational order parameters. For the temperatures higher than 0.16 both 

parameters decrease with the increase of density. For temperatures lower that 0.16 we can 

observe a maximum close to the density of low density ice phase. This is presented in Fig. 9.

The order map in the t − q3 and t − q6 plane plotted in Fig. 10 resembles the one observed 

for water and other two-scale potentials reported before [10–13]. There are two different 

regimes present for both plots. For the temperatures belonging to the structural anomalous 

region we can observe curves to form closed loops while for higher temperatures curves turn 

in the opposite direction without forming closed loops for both orientational parameters.

The region of entropy anomaly is given by the condition that the entropy of the liquid 

increases on compression. Maxwell’s relation relates the condition for entropy anomaly to 

the isothermal compressibility and the sign of the thermal expansion coefficient

∂s
∂ρ T

= − V2 α
κT

. (14)

The relation shows that the entropy displays anomalous behavior in the region where the 

thermal expansion coefficient is negative. Since for a classical fluid s = sid + se, where sid is 

the ideal gas entropy that has a monotonic dependence on the density, the condition for 

excess entropy anomaly corresponds to (∂se/ ∂ρ)
T

> 0. The multiparticle correlation 

approximation expands the excess entropy as se = s2 + s3 + + sn, so it may be expected that if 

the pair correlations dominate the entropy of the liquid, the pair entropy would provide an 

equivalent condition for finding the region of the entropy anomaly and this is what we did. 

In Fig. 11 we plotted pair entropy as a function of density and temperature and we observed 

an anomalous region. In Fig. 12 we plotted pair correlation functions for two different 

temperatures for several densities to try and see what might be the reason for anomalies. We 

can see that at low temperature there is long-range structure change and we believe this is 

the reason for anomalies, but it does not give us insight on the hierarchy of them.

In Fig. 13 we plotted the relation between the several anomalies presented for the 2D MB 

model of water. The errors of the quantities are the size of the symbols. The temperature of 

the maximum density line lies between the diffusion and entropy anomaly. There is a 

difference between the positions of the structure and entropy anomaly. The hierarchy of 

anomalies found here is different than the one reported for the SPC/E water, other two-scale 

potentials [10–13,61] and a double-Gaussian fluid [62]. Prestipino et al. [63] showed that the 

anomalous thermodynamic behavior may occur also for weakly softened potentials, i.e., 

simple fluids characterized by a repulsion that is only marginally softened and yields a 

single structure at a local level. The most inner is the diffusion anomaly, then density, and 

then structural. In a water-like hierarchy we have density, diffusion, and structural while in a 

silica-like hierarchy we have density, structural, and diffusion. Why the 2D MB model has a 
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different hierarchy might be related to dimensionality or a combination of different effects. 

For the coarse-grained model of a water monolayer between hydrophobic walls at partial 

hydration, the density anomaly is included in the diffusion anomaly region, as in water [64]. 

For an associating lattice gas (ALG) model which combines a two-dimensional lattice gas 

with particles interacting through a soft core potential and orientational degrees of freedom 

[65], the diffusion anomaly is included in the density anomaly region, as in the present 

model. A similar hierarchy has been found also for models in three dimensions [66] 

although never observing also the structural anomaly.

V. CONCLUSION

The Monte Carlo simulations were used to predict the hierarchy of anomalies in the 2D MB 

model of water. The MB model balances the Lennard-Jones interactions with an orientation 

dependence that is intended to mimic hydrogen bonding. The MB model has previously 

been shown to have the volume anomalies of pure water and the thermal anomalies of 

nonpolar solvation. Beside the known density anomaly it was discovered that the MB model 

also has structure and diffusion anomalies. The diffusion anomaly has the smaller region and 

is encompassed by the density anomalous region and this one by the structure anomalous 

region. This is slightly different as in the real water where the anomalies are in order of 

density, diffusion, and structure or in the silica-like models where the anomalies are in order 

of density, structure, and diffusion.
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FIG. 1. 
The MB molecules. Particles form the strongest hydrogen bond when the arms are colinear 

and the distance between the two particles is equal to rHB.
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FIG. 2. 
(a) The unit cell of the low density ice. (b) The unit cell of the high density ice.
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FIG. 3. 
T* − p* phase diagram from MC simulations. Red curve are results for gas-liquid 

coexistence by Urbic [45] in comparison to the prediction of the phase diagram by 

Silverstain et al. [29], which is plotted by the black line.
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FIG. 4. 
(a) The pressure as a function of temperature for different densities. Red lines correspond to 

isochores from bottom up for densities 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 1.0, 

1.025, 1.05, 1.075, 1.1. Black line connects points with maximum density for different 

temperatures. (b) Pressure as a function of density for different temperatures.
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FIG. 5. 
(a) The pseudodiffusion coefficient as a function of the temperature for several isochores and 

(b) the density for several isotherms. Black lines connect points with maximum and 

minimum of the pseudodiffusion coefficient.
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FIG. 6. 
Ratio of differently bonded water molecules for different isochores for (a) at temperature T* 

= 0.16, (b) at T* = 0.20.
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FIG. 7. 
(a) The translational order parameter as a function of the temperature for several isochores 

and (b) the density for several isotherms. Black lines connect points with maximum and 

minimum of the translational order parameter.
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FIG. 8. 
The distribution of the different order parameters for different isochores for (a) three-fold 

parameter at temperature T* = 0.15 (b) at T* = 0.20, and for (c) six-fold parameter at 

temperature T* = 0.15, (d) at T* = 0.20.
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FIG. 9. 
(a) The orientational order parameter with three fold symmetry and (b) the orientational 

order parameter with six-fold symmetry against density for several isotherms.
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FIG. 10. 
(a) The t − q3 order map and (b) the t − q6 plane.
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FIG. 11. 
(a) The pair entropy as a function of the temperature for several isochores and (b) the density 

for several isotherms. Black lines connects points with maximum and minimum of the pair 

entropy.
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FIG. 12. 
The pair correlation functions for different isochores for (a) at temperature T* = 0.15, (b) at 

T* = 0.20.
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FIG. 13. 
(a) The temperature-density plane containing all the anomalies found for the 2D MB model 

of water. Colors of lines are explained by legend. (b) Same as in (a) but for pressure 

temperature plane.
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