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Abstract 

 

 

Predictability in Strategic Air Traffic Flow Management 

by 

Yi Liu 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Mark Hansen, Chair 

This dissertation investigates predictability in strategic air traffic management with a 

focus on ground delay programs (GDPs). Through a survey of flight operators, we 

confirm the proposition that flight operators care about predictability. We then develop 

models that incorporate predictability into GDP cost optimization after failing in finding 

an existing model that can serve this purpose. This is accomplished by modifying 

traditional GDP delay cost functions so that they incorporate predictability, and 

determining the sensitivities of the optimal planned capacity recovery time and 

associated cost to the unpredictability premiums included in the cost functions. To do 

this, we develop two stochastic GDP models: a GDP no-revision, or static, model; and a 

GDP revision, or dynamic, model considering one GDP revision. GDP scope, which 

matters only in the revision model, is also considered. The optimization results from the 

case study show that the cost of unpredictability clearly matters, particularly in the 

more realistic case where GDP revision is allowed. Of the two unpredictability cost 

parameters, the one for unplanned delay has a stronger impact than the one for 

planned un-incurred delay. The insights from this analysis might eventually be used to 

develop a decision support tool that air traffic managers could use in determining what 

the planned end time should be for a GDP in a manner that reflects the importance of 

predictability to flight operators. 
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1 Introduction 

1.1 Air Traffic Flow Management  

Air traffic flow management (ATFM) is the craft of managing the flow of air traffic (FAA, 

2009) in the national airspace system (NAS). Unfavorable conditions, such as adverse 

weather and high traffic volume, may lead to imbalance between capacity and demand. 

The mission of ATFM is to balance demand with system capacity to ensure the 

maximum efficient utilization of the NAS in a safe and equitable way (FAA, 2009). When 

there is congestion or when congestion is foreseen, either at an airport or in some en 

route portion of the NAS, federal Aviation Administration (FAA) traffic specialists seek 

ways to ensure that there are not too many aircraft flying into or out of the congested 

airport or flying through the congested airspace. This is done strategically through the 

use of traffic management initiatives (TMIs). There are two types of TMIs: airport-

specific and en route. 

Airport-specific TMIs are implemented to manage flow into congested airports. Such 

TMIs include: 

• ground delay program (GDP), implemented to balance arrival demand with 

available arrival capacity at the destination airport by metering takeoffs at their 

departure airports. GDPs are normally called at airports where capacity is 

reduced because of adverse weather, such as marine stratus at San Francisco 

International airport (SFO) and strong wind at Newark Liberty International 

airport (EWR). We control arrival times for the affected flights according to the 

available capacity and assign expect departure clearance times (EDCTs) to 

regulate their arrival times. If traffic specialists do not take action when capacity 

is reduced at the arrival airport, then incoming flights will experience airborne 

delay before landing which is more expensive than ground delay. Moreover, 

excessive number of aircraft in the air is a burden to traffic controllers and could 

also be a safety concern; 

• ground stop (GS), similar to GDP but more restrictive. It freezes incoming flights 

to the GS airport on the ground at their departure airports. GSs are implemented 

when air traffic control is unable to safely accommodate additional aircraft in the 

system (FAA, 2009). For instance, GS will be called for Chicago O’Hare 

International airport when thunderstorm forces the airport to close; and  

• traffic management advisor (TMA), designed to plan efficient flight trajectories 

from cruise altitude to the runway threshold (FAA, 2009). The goal is to allow the 

arrival airport to accept arrivals at its capacity and in the meantime prevent 

excessive airborne delay. Different from GDP which may affect flights from far 

away, TMA usually assigns EDCT to flights departing from the same or adjacent 
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center to the destination airport. To some degree, we may consider TMA a 

tactical ATFM tool since flight operators cannot find out the delay until pilots call 

air traffic control tower for clearance to depart.    

En route TMIs are implemented to manage flow in or into congested airspace, which 

include: 

• Airspace Flow Program (AFP), identifies constraints in the airspace and meters 

the demand through the congested area by delaying flights on the ground. 

Similar to GDP, AFP also controls the flow by assigning EDCTs to incoming flights; 

• Collaborative Trajectory Options Program (CTOP), used to manage demand 

through constrained airspace—one or more flow constrained areas (FAA, 2014). 

Flights subject to CTOP are assigned either a reroute which will avoid the 

congested airspace or a combination of delay at the departure airports and a 

route through the congested area. CTOP allows flight operators to communicate 

their preferences with regard to both routes and delays. CTOP, introduced in 

2014, is one of the new TMIs being developed within collaborative air traffic 

management technologies as the air transportation system progresses toward its 

next generation; and  

• Miles-in-trail (MIT), used to apportion traffic into a manageable flow, as well as 

provide space for additional traffic (merging or departing) to enter the flow of 

traffic (FAA, 2009). To achieve this, MIT requires a separation between aircraft. 

MIT can be applied to aircraft departing from the same airport, over a waypoint, 

through an en route sector or on a specific route.  

TMI decisions are made under uncertainty. Take GDPs at SFO as an example. GDPs at 

SFO are usually called because of marine stratus at the airport. Traffic specialists make 

GDP decisions and assign EDCTs to GDP affected flights based on the forecast of stratus 

clearing time available at the decision time. The decisions are revised when there are 

changes in conditions. For instance, traffic specialists may cancel the GDP and remove 

the constraints on the affected flights earlier if stratus clears earlier than forecasted. 

Given the uncertainty in the weather forecast, TMIs can be implemented differently and 

people with different attitudes toward risk may prefer different plans.  

In the current NAS, TMI decisions are made through telephone-conferences between 

FAA traffic specialists and flight operators. FAA air traffic control system command 

center holds a strategic planning telephone-conference with flight operators every two 

hours. When there are active TMIs in the system, telephone-conference may be held 

every hour. In the telephone-conferences, flight operators express their opinions on TMI 

decisions verbally and traffic specialists make the decisions based on the verbal inputs 

and their experiences. Since the conversations focus on TMI parameter settings and not 

on the underlying performance objectives, it is unclear what performance can be 
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expected from the decisions and the decision-making process is thus subjective and ad-

hoc.  

To move from the current TMI decision-making process to a performance-based one, it 

is important for us to capture all the dimensions of the TMI performance space. Multiple 

performance goals can be considered for TMI performance assessment. International 

Civil Aviation Organization (ICAO) identified 11 key performance areas for evaluating 

ATFM performance (ICAO, 2005). Commonly, the community focuses on a couple of 

them, such as capacity and efficiency (Bradford et al., 2000; FAA, 2011; Sherali et al., 

2011; FAA et al., 2014). Earlier works have shown that performance goals are often in 

conflict and thus differing priorities among these goals can lead to different TMI 

decisions (Mukherjee and Hansen, 2007; Liu and Hansen, 2013). 

1.2 Motivation and Objectives 

In earlier research, we conducted a retrospective performance evaluation of GDPs at 

SFO and EWR—two of the most congested airports in the United States. In that analysis, 

we develop and evaluate metrics for three performance goals: capacity utilization, 

efficiency, and predictability. Capacity utilization is defined as the ratio of actual arrivals 

during the GDP period to the count of arrivals that could have been landed assuming we 

knew the actual capacity at the beginning of the GDP; efficiency is quantified as the ratio 

of ground delay to the sum of ground delay and airborne delay; and predictability is 

measured as the ratio of the minimum of planned and realized delay to the maximum of 

the two. All the metrics fall on a 0-1 scale, where 1 implies perfect performance. We 

find that while capacity utilization and efficiency scores are high on average and exhibit 

small variability, predictability performance is weaker and more variable (Figure 1.1). On 

the other side, FAA has shown increasing interest in predictability (FAA, 2011) and the 

ATFM system users—flight operators—also consider predictability as a high priority 

improvement area (Aponso et al., 2015).  
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Figure 1.1: Average level and Standard Deviations of GDP Performances, Quarter Year, 

SFO and EWR, 2006 and 2011 

The apparent discrepancy between what the community is advocating and actual 

predictability performance of GDP piques our interest in two questions: how the value 

of predictability affects GDP decisions and what is the resulting loss if predictability is 

undervalued. However, existing models cannot answer these questions. In virtually all 

the GDP cost optimization models in the literature, the total expected costs are 

functions of two delay components: ground delay and airborne delay. This ignores the 

fact that GDP decisions, which are based on weather forecast, involve great uncertainty. 

The initial plan for a GDP is often different—sometimes very different—from what is 

eventually implemented. The most common and impactful changes are extension and 

early cancellation. Prior research has not considered how these changes to the initial 

plan affect the cost of a GDP. The existing work considers the same unit cost of ground 

delay regardless of whether it is part of the initial GDP plan or is imposed due to an 

extension. In reality, however, unexpected extra delays due to the GDP extension 

require more flight operator dispatcher effort and reduce the set of feasible mitigation 

actions, which may result in extra cost compared to delays in the initial plan. In the case 

of an early cancellation, the existing work assumes the delay assigned in the initial plan 

that is not incurred to be cost-free. This ignores the efforts made and actions taken to 

adapt to this delay before it is de-assigned. As a result, we cannot use existing models to 

address our questions about the role of predictability in GDP cost optimization. 

To fill the gap, we are motivated to construct GDP cost optimization models that 

incorporate predictability. The key ideas are that it is good to know early how late flights 
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will be, and that GDP decisions that recognize this can be quite different from those that 

do not and may also substantially reduce the cost of GDPs to flight operators. Ideally, 

given an amount of actual delay incurred in a GDP, the cost is least if the entire delay is 

accurately predicted up front; if there are subsequent modifications, the cost increases. 

We build our GDP cost optimization models based on deterministic queueing theory and 

continuous approximation and consider predictability by attaching penalties to 

unexpectedness in delays.  

Before developing our model, we first examine the proposition that flight operators care 

about predictability and quantify the importance that they attach to predictability in the 

context of GDPs. For this purpose, we have designed and administered a survey of flight 

operators. Considering there has been no previous research on flight operators’ views 

on GDP decisions, the survey also asks for their feedback on GDP decision setting and 

have them rate the importance of different variables in evaluating GDPs. The survey 

results thus will provide a comprehensive report of flight operators’ perception on GDPs 

with emphasis on how they value predictability. 

1.3 Overview of the Dissertation 

The dissertation is organized as follows: 

• Chapter 2 presents the survey of flight operators including survey motivation, 

questions, analysis methods and discussion on the results. 

• Chapter 3 proposes the models that relate GDP decisions to delay components in 

the cost function. Using deterministic queueing theory and continuous 

approximation, we develop two GDP models: no-revision, where GDP revision is 

not considered; and one-revision, where GDP is revised once after the initial 

implementation. The models capture the aggregate behavior of the system 

without getting into details. The chapter starts with an introduction to GDP cost 

optimization, followed by an overview of existing GDP cost optimization models, 

before introducing the proposed GDP models. 

• Chapter 4 defines the GDP cost function with predictability considered and 

present how we reach the optimal decision with both GDP models. This involves 

introducing so called unpredictability premiums into the cost function. We derive 

the closed-form expression for the optimal decision in the no-revision model. For 

the one-revision case, we optimize the decision numerically because of the 

complexity of the objective function. At the end of the chapter, we discuss about 

the impact of constant demand rate assumption on the cost optimization results. 

• Chapter 5 illustrates our approach with a case study, in which we focus on 

sensitivities of the optimal planned duration of a GDP to different levels of 

unpredictability premiums in the cost function. We also explore how the scope 

decision affects the optimal planned duration of a GDP. 
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• Chapter 6 offers a summary of the dissertation and directions for future research. 

1.4 Contributions 

This dissertation contributes to the literature in three-fold: 

• The survey designed and administered in this research is the first effort in 

making a comprehensive report of flight operator perceived value of 

predictability and quantifying flight operators’ preferences over multiple 

performance goals. The insights gained from the survey results can be leveraged 

in driving the TMI decision-making process toward greater responsiveness to 

user preferences.   

• This work makes the first effort in incorporating predictability into cost 

optimization for GDPs. While predictability has been getting increasing 

recognition as a vitally important aspect of operational performance by FAA and 

stakeholders, the existing GDP optimization models fail to consider it. By 

considering predictability in the cost function, we add a new dimension to the 

performance space in the GDP cost optimization problems. The insights from our 

analysis could improves how air traffic managers cope with unexpected delays 

and be used to develop a decision support tool that air traffic managers use to 

design more predictable GDPs. 

• We pioneer a new technique for modeling GDP cost optimization based on 

continuous mathematics. To study the relationship between the enhanced GDP 

cost function and GDP decisions in a generic manner, we formulate the GDP 

optimization problem based on continuous approximation models. This is the 

first time that this class of models, though widely used in other areas of 

transport analysis, has been applied to this kind of problem. The models are 

based on a small number of parameters, highlighting the problem’s essence 

without the distraction of extraneous details.  
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2 A Survey of Flight Operators 

2.1 Survey Motivation 

As part of a larger research project, we survey flight operators to ascertain their views 

on current GDP decision-making practices and the relative importance of different 

performance goals related to GDPs. One area of interest is flight operators’ views on 

predictability. We ask respondents to rate the importance of “predictability” per se, as 

well as various aspects of GDP decision-making that flight operators may associate with 

predictability. For instance, we ask the respondents to rate the importance of accuracy 

of GDP end time estimation in evaluating GDP performance. The idea is that more 

accurate the estimation, higher the predictability. In the rating questions, we also ask 

them to rate the importance of other performance goals such as average flight delay 

and percentage of airborne delay, which are accepted measures of ATFM performance. 

This enables us to compare the importance of predictability-associated aspects to other 

aspects of GDP performance. Further, we design trade-off questions to quantify the 

importance that flight operators attach to predictability.   

At the beginning of the survey, we present questions asking for respondents’ feedback 

on TMI service in general and GDP decision setting. These questions are used to warm 

up the respondents and get them acquainted with the survey background. 

2.2 The Survey 

The survey consists of two types of questions: rating scale and stated preference. Two 

types of rating scale questions are used: semantic differential scales and Likert scales. In 

the semantic differential scale questions, the ends of the scale are associated with 

opposing statements. An example is shown in Figure 2.1. In the Likert scale questions, 

respondents are asked for the degree to which they agree or disagree with a statement 

on a seven-point scale. An example of the Likert scale question is show in Figure 2.2. We 

use the rating scale questions to learn respondents’ assessments on TMI decisions and 

decision-making process. For instance, we ask respondents to rate overall quality of TMI 

decisions and the clarity of the logic behind the decisions. We also ask respondents to 

assess particular aspects of GDP decisions. For instance, we ask them whether the 

planned rates in the initial GDP plan are usually too low, too high, or about right. Other 

rating questions concern the importance of various criteria in assessing GDP 

performance. For instance, we ask them to rate the importance of GDP lead time (time 

difference between GDP report time and GDP start time) from 1 (not at all important) to 

5 (extremely important). At the end of this question set, we present one open-ended 

question. We ask the respondents to identify other factors that they think are important 

in assessing GDP performance and rate their importance using the same scale 

accordingly.  



 

8 

 

Figure 2.1: Sample Semantic Differential Scale Question 

 

 

Figure 2.2: Sample Likert Scale Question 

The second type of questions are stated preference. We have two groups of questions 

in this category. An example of the first group is shown in Figure 2.3, where respondents 

are asked to grade GDP A against GDP B by comparing their outcomes. The GDP 

outcomes are described on the basis of: 

• average delay per flight, calculated as minutes of arrival delay per flight caused 

by GDP; 

• maximum flight delay, calculated as maximum minutes of delay incurred by a 

flight as a result of the GDP; 

• unrecoverable delay per flight, calculated as the number of minutes of arrival 

delay per flight that could have been avoided if capacity at the GDP airport had 

been more fully utilized; 

• change in delay per flight (or called delay change), calculated as the change in 

average delay between what is planned and assigned initially and what is 

ultimately incurred; 

• lead time, calculated as the time difference in minutes between when a GDP is 

announced and when it starts; and 
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• number of revisions, which is the number of times the GDP is revised after the 

initial plan. 

The information above is specified and shown to the respondents before the 

hypothetical choice scenarios. Each respondent is then presented with 16 such 

scenarios with the scenario sequence randomized.  

  

Figure 2.3: Sample GDP Outcome Grading Question  

We determined the values for the attributes based on historical GDP data. First, we 

calculated actual values of the attributes for GDPs at SFO and EWR in 2011. The data 

source is Metron Aviation Flight Scheduler Analyzer (FSA) database (Liu and Hansen, 

2014) and we use two types of information from there: GDP parameter information and 

individual flight data. Then, we set the levels of the attributes by referring to the actual 

values. The attribute levels are summarized in Table 2.1. We were mainly curious about 

the tradeoffs between delay change, which is viewed as a measure of unpredictability, 

and other outcomes. We therefore consider more levels for delay change. In the 

historical GDPs, we saw cases where GDPs were revised more than once. In our 

questions, we consider at most one revision. Finally, we ran fractional factorial analysis 

and selected 16 pairs of outcomes based on the analysis output. When finalizing the 

scenario selection, we also look at the correlations between the changes in attributes 

across all the scenarios. The value of each individual attribute can be measured more 

precisely when the correlations between its change and changes in other attributes are 

small. The linear correlation coefficients are controlled below 0.25 with two exceptions. 

First, changes in average delay and in unrecoverable delay are perfectly positively 

correlated. For a given situation, the minimum delay assuming perfect information is the 

same and thus average delay that has been incurred minus unrecoverable delay is the 

same in one scenario. Due to this, we cannot separate the effect of average delay from 

that of unrecoverable delay when analyzing the model, discussed more in Section 2.3. 

Second, changes in lead time and in number of revisions are highly positively correlated. 
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The logic behind this is the assumption that longer lead time involves more uncertainty 

in a GDP decision and thus a revision is more likely. 

Table 2.1: Attribute Levels for GDP Outcome Choice Scenarios 

Attributes Levels 

Average delay (min) 35 40 45 50 55 60     

Maximum flight delay (min) 230 250 260 270 280 295     

Unrecoverable delay (min) 0 5 10 15 25      

Delay change (min) -60 -30 -20 -15 -10 -5 5 10 30 60 

Lead time (min) 30 60 90 100 150 180     

Number of revision 0 1         

In the second group of stated preference questions, we ask respondents to grade GDPs 

by their expected system performances. They are told to imagine a GDP is being 

initiated, and different plans may be made for the same situation. Each plan leads to a 

different set of expectations for the three system performance metrics: 

• capacity utilization, the ratio of the number of total arrivals to the available 

capacity during the GDP period. This performance is high if most of the available 

capacity is used by the GDP. The range of values of this metric is from 0.6 to 1 

based on our analysis of previous GDPs; 

• efficiency, the ratio of ground delay at the departure airports to total arrival 

delay in the system, resulted from the GDP. If we are conservative in setting 

planned rates, the airport is likely to be capable to promptly land all airborne 

flights and efficiency will be high. The range of values of this metric is from 0.6 to 

1 based on our analysis of previous GDPs; and 

• predictability, how accurate the assigned delay and called rates in the initial GDP 

plan is. A value close to 1 indicates high accuracy and a value close to 0 indicates 

low accuracy. The range of values of this metric is from 0.4 to 1 based on our 

analysis of previous GDPs. 

A sample GDP performance trade-off question is shown in Figure 2.4. There are 12 such 

questions in the survey. Based on previous research (Liu and Hansen 2014), we set four 

levels for each performance metrics: 0.6, 0.75, 0.9 and 1 for capacity utilization and 

efficiency; 0.4, 0.65, 0.9 and 1 for predictability. We finalized the questions using a 

fractional factorial design.   
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Figure 2.4: Sample GDP Expected System Performance Grading Question 

2.3 Survey Results  

The survey is presented to flight operators in two parts. The first part contains all the 

questions except the 12 trade-off questions on GDP system performance, which is in the 

second part. The second part of the survey also asks questions that are not relevant to 

the subject and thus not discussed here.  

23 respondents complete the first part of the survey: 11 from legacy airlines, nine from 

low-cost carriers and three from cargo airlines. 17 respondents completed the second 

part, 11 from legacy airlines, three from low-cost carriers and three from cargo airlines. 

Most of Part Two respondents have over 10 years’ experience in participating TMI 

planning telecons.   

Below, in 2.3.1, we present results of the rating scale questions, including those on TMI 

practice, GDP decisions and GDP performance evaluation. In Section 2.3.2, we present 

results on the two groups of stated preference questions: one where respondents are 

asked to select a preferred GDP out of two according to their outcomes (Figure 2.3) and 

the other one where respondents are asked to grade GDPs based on their expected 

system performances (Figure 2.4). 

2.3.1 Results of Rating Scale Questions 

We present results of rating scale questions in Table 2.2 to Table 2.4. Table 2.2 

summarizes general feedback on TMI decisions and TMI decision-making process. On 

average, flight operators have neutral attitudes towards current TMI service according 

to responses to the first five questions. Survey respondents do not strongly believe that 

TMI telecons require too much time or effort, nor that differences in decisions among 

FAA specialists are very different. They do agree that more vocal participants in the TMI 

planning telecons have greater influence on TMI decisions than less vocal ones. 

 

 



 

12 

Table 2.2: Feedback on Current TMI Practice  

Questions  Range Mean S.D. 

Overall quality of FAA TMI decisions 1 (very poor) to 7 (very 

good) 

4.4 0.92 

Clarity of the logic behind FAA TMI decisions 1 (very unclear) to 7 

(very clear) 

4.3 1.29 

Similarity of different FAA traffic managers' 

TMI decisions when faced the same situation 

1 (very different) to 7 

(very similar) 

3.8 1.35 

Effective of the planning telecons in 

obtaining flight operators' inputs on TMI 

decisions: 

1 (very ineffective) to 7 

(very effective) 

4.3 1.55 

Responsiveness of the FAA TMI decisions 

with regard to the different needs of 

individual flight operators 

1 (very unresponsive) to 

7 (very responsive) 

4.2 1.38 

More vocal participants have greater 

influence on TMI decisions than less vocal 

participants 

1 (strongly disagree) to 7 

(strongly agree)  

5.7 0.91 

TMI telecons require too much time and 

effort 

1 (strongly disagree) to 7 

(strongly agree)  

3.8 1.44 

Table 2.3 summarizes feedback on GDP decisions. Due to uncertainty, GDP decisions, 

such as duration and planned rates (planned airport arrival capacity), are subject to 

change after they are made. The respondents report that, in the initial GDP plans, traffic 

specialists are conservative in setting GDP durations and its planned rates. GDP revisions 

are too frequent, and GDP lead time which reflects the time that flight operators have 

to adapt to GDPs is slightly shorter than desired. Frequent revisions and short GDP lead 

time are signs of unpredictability. Overall, respondents think that GDP scope, the area 

from which originating flights are assigned ground delays, is set about right. During 

briefs with respondents, we learn that responses to the GDP scope question might not 

be precise. GDPs are frequently implemented at different airports, such as SFO and 

EWR. Respondents report that the scopes set for some GDP airports are too large while 

for others they are too small. Therefore, the answer to this question is highly airport 

specific. Finally, as shown in the last row, respondents do not think airlines with large 

number of flights at a GDP airport have a larger influence. 
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Table 2.3: Feedback on GDP Decision Setting  

Questions  Range Mean S.D. 

GDP durations set in the initial 

plan are 

1 (much too short) to 5 (much too 

long) 

3.6 0.57 

Planned rates in the initial GDP 

plan are 

1 (much too low) to 5 (Much too 

high) 

2.3 0.62 

GDP revisions are 1 (much too infrequent) to 5 (much 

too frequent) 

3.6 0.71 

GDP lead times are 1 (much too short) to 5 (much too 

long) 

2.6 0.65 

GDP scopes are 1 (much too small) to 5 (much too 

large) 

3.1 0.68 

Influence of airlines with large 

numbers of flights affected by a 

GDP decision is 

1 (much too weak) to 5 (much too 

strong) 

3.0 0.81 

Table 2.4 summarizes responses to questions regarding the importance of various GDP 

evaluation criteria to flight operators. These questions are designed to reveal the 

importance of different criteria in determining GDP performance. As reported, the most 

important criteria are accuracy of airport acceptance rate (AAR) estimates in the initial 

plan, accuracy in predicting GDP end time, and the number of AAR revisions. All these 

criteria are predictability-associated. It is very interesting that the percentage of 

airborne delay, which is an indicator of efficiency, is much less important.  

As mentioned earlier, the survey also asks the respondents to add variables that are 

important in measuring GDP performance but not provided in the questionnaire. Those 

additional variables include balance between arrival and departure rates at a GDP 

airport and accurate prediction of demand. 
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Table 2.4: GDP Performance Evaluation Results  

How important is each variable in evaluating GDP performance?  

1 not at all important; 2 slight important; 3 important; 4 very 

important; 5 extremely important 

Mean S.D. 

GDP lead time 3.4 0.88 

GDP duration 3.6 0.82 

GDP scope 4.0 0.55 

Number of GDP extensions 3.7 1.13 

Average flight delay of non-exempted flights 3.7 0.86 

Percentage of total delay that is taken in the air 3.0 0.75 

Unrecoverable delay 4.1 0.88 

Maximum fight delay 2.9 1.35 

Accuracy of forecast on GDP end time 4.1 0.68 

Accuracy of initial delay estimates 3.5 0.88 

Accuracy of airport acceptance rate (AAR) estimates in the initial plan 4.3 0.90 

Number of AAR revisions 4.1 0.88 

2.3.2 Results of Stated Preference Questions  

This section presents results of two sets of grading questions: the ones on GDP outcome 

(Figure 2.3) and those on GDP expected performance (Figure 2.4). Both sets of questions 

share one common characteristic: the potential responses are ordered. As a result, one 

alternative is similar to those close to it and less similar to those further away, which 

violates the assumption of independent errors. We thus employ ordered choice models 

to analyze the responses (Train, 2009). We consider two types of ordered choice 

models: logit and probit. For each type, we consider three model specifications: 

standard, fixed-effect and random-effect. Below, we use the GDP outcome grading 

questions to describe the methods. 

In the standard ordered logit model, utility for observation � takes the form �� = ���� + ��  
(Eq 2.1) 

where �� is the vector of variables for observation �, �� is the vector of coefficients, and �� is the error term. For the GDP outcome grading questions, we set the variables as the 
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differences in the outcome attributes: the attribute values in B minus those in A. The 

error term is assumed to be identically and independently distributed (iid) logistic with 

the cumulative distribution specified as ���� = exp��� /�1 + exp����.  

Respondents choose a discrete response in one of five categories: strongly prefer A, 

somewhat prefer A, no preference, somewhat prefer B and strongly prefer B. We 

assume the choices are made based on the level of utility. The decision is represented as 

• “strongly prefer A” if −∞ < � < !"; 

• “somewhat prefer A” if !" < � < !#; 

• “no preference” if !# < � < !$; 

• “somewhat prefer B” if !$ < � < !%; and 

• “strongly prefer B” if !% < � < +∞. 

Following this, the probability of the answer “somewhat prefer A” for observation � is 

then Prob��"somewhat prefer A"� = Prob�!" < �� < !#� = Prob�!" < ���� + �� < !#� 

= Prob��� < !# − ����� − Prob��� < !" − ����� 

= exp �!# − �����1 + exp �!# − ����� − exp �!" − �����1 + exp �!" − ����� 

(Eq 2.2) 

Probabilities for the other answers are obtained analogously. We estimate the 

coefficient parameters � and the cutoff points !" to !% by maximizing the log likelihood 

function 

LL��, !", !#, !$, !%� = 5�Prob�,6�78,9�  

(Eq 2.3) 

where :�,6 = 1 if the �th response is choice ; and zero otherwise and there are five 

possible choices in the GDP outcome grading question as listed above. 

In the standard ordered probit model, we assume the error term is (iid) distributed 

standard normal instead of logistic. Accordingly, the probability of the answer 

“somewhat prefer A” is then Prob��"somewhat prefer A"� = Φ�!# − ����� − =�!" − ����� 

(Eq 2.4) 

where Φ is the standard cumulative normal function. Again, probabilities for the other 

answers can be obtained similarly. 
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We consider fixed-effect and random-effect versions of the models to capture potential 

correlations between responses from the same individual since each participant was 

asked repeated questions (Greene and Hensher, 2010). The utility that participant > 

assigns to variables in observation ? is �@,A = ���B,C + D@ + �@,A 

(Eq 2.5) 

where D@ captures the individual specific heterogeneity and �@,A is still the observation-

related error term and follows the same distribution assumptions as before: iid logistic 

for the logit models and iid standard normal for the probit models. In the fixed-effect 

models, D@’s are estimated as constants and may be correlated with �B,C. In the 

random-effect models, D@ is assumed to be a normal random variable with mean zero 

and variance EF#, uncorrelated with �B,C and independent of the observation-related 

error term �@,A. The mixture of a logistic error term with a normally distributed random 

effect is considered a bit unnatural in the random-effect ordered logit model (Greene 

and Hensher, 2010). This leads to more popularity of the random-effect ordered probit 

model. 

We first tried all the model specifications. If there is no significant improvement from 

considering individual heterogeneity according to likelihood ratio test, then we only 

present the results from the standard choice models. If there is significant individual 

heterogeneity, then we report the results from both fixed-effect and random-effect 

models.  

Table 2.5 summarizes the estimation results for the set of GDP outcome grading 

questions. Each respondent was asked 16 such questions and 23 respondents finished 

the questionnaire. This leads to 368 observations in total. As mentioned, differences in 

average delay and in unrecoverable delay are perfectly positively correlated. We only 

kept the former in the analysis and its utility coefficient therefore reflects the combined 

effect of average delay and unrecoverable delay. Actual delays at the end of a GDP are 

usually different from the initially assigned delay due to uncertainty. The change in 

delay, actual delay minus planned delay, could be positive when more delay occurs than 

planned or negative otherwise. To test the hypothesis that flight operators value delay 

saving differently from excessive delay, we distinguish difference in positive delay 

change from that in negative delay change in the analysis. Difference in negative delay 

change, ∆GH, is calculated as ∆GH = ∆DJ  ×  LJ,M − ∆DN  ×  LN,M 

(Eq 2.6) 

where ∆DJ (∆DN) is change in delay in outcome B(A) and LJ,M(LN,M) is an indicator 

variable set to one if changes in delay in outcome B(A) is negative and zero otherwise. 
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Difference in positive delay change is calculated analogously. Following this, we define 

two variables based on the change in delay attribute. For example, in the question 

shown in Figure 2.3, difference in negative delay change is -5 × 1 - (-10) × 1 = 5 and 

difference in positive delay change is -5 × 0 - (-10) × 0 = 0.  

Table 2.5: Results of GDP Outcome Grading Questions (Figure 2.3) 

 Ordered probit Ordered logit 

Variable (Option B-Option A) Estimate Standard error 

(SE) 

Estimate SE 

∆Average delay per flight (min)  -0.076*** -10.41 -0.13*** -9.96 

∆Maximum flight delay 

difference (min) 
0.0010 0.63 0.002 0.62 

∆Negative change in delay per 

flight (min) 
-0.010*** -3.06 -0.019*** -3.15 

∆Positive change in delay per 

flight (min) 
-0.012*** -2.76 -0.020*** -2.71 

∆Lead time difference (min) 

  
0.0001 0.06 -0.0003 -0.10 

∆Number of revisions 

difference 
-0.14 -0.58 -0.19 -0.48 

!" -1.37*** 14.05 -2.36*** -13.25 !# -0.17** -2.17 -0.31** -2.36 !$ 0.28*** 3.60 0.45*** 3.43 !% 1.35*** 13.78 2.32*** 12.84 

Log likelihood at convergence       -482.38 -482.74 

Log likelihood at constant        -570.20 

Number of observations 368 
*** Significant at 0.1% level; ** Significant at 1% level; * Significant at 5% level. 

We report results from the standard ordered choice models since no significant 

individual heterogeneity was observed. The coefficient estimates and goodness-of-fit 

are similar from the ordered probit and logit models. Three variables have significant 

impact on grading GDP outcomes: average delay, negative change in delay and positive 

change in delay. Out of the three, average delay is the most important one.  
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The sign for the coefficient estimate of difference in negative delay change is negative, 

which indicates that more negative change is appreciated. In other words, all else equal 

(including actual average delay), flight operators would prefer an outcome where delay 

is overestimated in the initial plan to one where actual delay is the same as planned.  

However, this may not be what flight operators really mean. It is clear to us, the survey 

designers, that when average delay is fixed, a large magnitude of negative change does 

not mean more delay would be saved but rather that delay was overestimated initially. 

However, this idea may not carry over to the survey respondents. It is more intuitive for 

them to think that the actual delay will be less in an outcome where negative delay 

change is small (large absolute value). As a result, they appreciate negative change. The 

magnitude of the coefficient estimate of the negative delay change is smaller than that 

of average delay. This implies there is a cost associated with planned but un-incurred 

delay. The coefficient of the positive delay change is negative but smaller than that of 

average delay. If respondents interpreted the question as we intend—i.e. that total 

delay is fixed so that a positive delay change implies that delay was initially 

underestimated, then this result shows that respondents prefer to have an accurate 

initial delay estimate. On the other hand, if they fail to recognize that total delay is fixed, 

then the results implies that they attach less cost to unpredicted increases in delay than 

to the originally planned delay. In sum, our results suggest that there are issues with 

how respondents interpret this set of stated preference questions, which preclude 

definitive interpretation of the results. Table 2.6 summarizes results of GDP expected 

system performance grading questions. Fixed effects are not reported for the fixed-

effect models since their magnitudes are not important. According to likelihood ratio 

test, there is significant individual heterogeneity and thus we are not reporting results 

from the standard models. It is interesting that individual heterogeneity is significant for 

this question set but not the previous one. The attributes in the GDP outcome questions 

are familiar to flight operators and different flight operator personnel may have similar 

sensitivities to the attributes. On the contrary, the performance metrics at the system 

level in this question set are new to the personnel and they may hold different 

standards in grading depending on how they expect these metrics to be associated with 

their business objectives. This may have led to significant heterogeneity in the 

estimation result. 

In Table 2.6, all the model results show that predictability is viewed as a very important 

performance goal from the view of flight operator personnel, more valued than 

efficiency. This is consistent with the results in Table 2.4, where predictability indicators 

such as accuracy in setting GDP decisions and number of revisions are valued most 

important in assessing GDP outcomes where the percentage of airborne delay is 

considered less important.  
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Table 2.6: Results of GDP Expected System Performance Grading Questions (Figure 2.4) 

 Ordered probit Ordered logit 

 Fixed-effecta Random-effect Fixed-effect  Random-effect 

Variable Estimate SE Estimate SE Estimate SE Estimate SE 

Capacity utilization 4.96*** 0.59 4.68*** 0.58 8.59*** 1.08 8.04*** 1.06 

Efficiency 1.50*** 0.52 1.42*** 0.52 2.70*** 0.93 2.55*** 0.92 

Predictability 1.98*** 0.36 1.87*** 0.36 3.65*** 0.66 3.39*** 0.65 !" 3.47*** 0.81 3.57*** 0.78 6.07*** 1.44 6.16*** 1.40 !# 4.60*** 0.81 4.67*** 0.78 8.18*** 1.43 8.24*** 1.39 !$ 5.40*** 0.83 5.44*** 0.80 9.59*** 1.48 9.60*** 1.44 !% 6.09*** 0.85 6.10*** 0.83 10.79** 1.53 10.74*** 1.50 !O 7.07*** 0.87 7.04*** 0.85 12.48*** 1.58 12.35*** 1.55 !P 7.94*** 0.89 7.85*** 0.87 13.98*** 1.62 13.76*** 1.59 EF   0.89*** 0.21   1.59*** 0.35 

Log likelihood at 

convergence 
-284.33 -312.68 -284.75 -313.03 

Log likelihood at 

constant 
-371.67 

Number of 

observations 

204 

a Fixed effects are not reported. 

*** Significant at 0.1% level; ** Significant at 1% level; * Significant at 5% level. 

2.4 Summary 

This chapter reports on a survey that addresses flight operators’ views and concerns 

about predictability and quantifies the importance that flight operators attach to 

predictability in the context of GDPs. The survey also collects flight operators’ views on 

TMI decisions and decision-making with a particular focus on GDP decisions.  

The results show that predictability is considered very important in evaluating the 

performance of GDPs. The most valued GDP outcomes by flight operators are all 

predictability associated: accuracy of AAR estimates in the initial plan, accuracy in 

predicting GDP end time, and the number of AAR revisions. It is interesting that an 

indicator of GDP efficiency—the ratio of airborne delay to total delay—is less valued. 

The importance of predictability is further suggested by the results of a set of stated 
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preference questions, where respondents prioritize three GDP performance goals as 

follows: capacity utilization, predictability and efficiency. The survey results thus confirm 

the proposition that flight operators care about predictability and deserve attention in 

the design of a GDP. 
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3 GDP Modeling 

3.1 Introduction 

Most of the research on GDPs has focused on minimizing the expected cost of delay. In 

virtually all of these cost optimization models, the total expected costs are functions of 

two delay components: ground delay and airborne delay (Richetta and Odoni, 1993; 

Hoffman et al., 2007; Ball et al., 2003; Kotnyek and Richetta, 2006; Mukherjee and 

Hansen, 2007). The models recognize that the duration and degree of the capacity 

shortfall cannot be known with certainty at the time when the GDP plan is made. Some 

models represent the problem as a static one resulting in a GDP plan that cannot (from 

the standpoint of the model) be revised. Others recognize that revision is possible and 

model GDP planning as a dynamic problem.  

A GDP revision can affect program duration and arrival capacity rates, with the former 

being much more common. A revision of GDP duration can be an extension or a 

cancellation. A GDP extension usually occurs when capacity remains low at the initially 

planned capacity recovery time. A GDP extension results in more affected flights and 

delay. In the existing extension models, the cost of incurred ground delay is valued the 

same regardless of whether it is part of the initial GDP plan or is imposed due to a GDP 

extension. In reality, however, unexpected extra delays due to the GDP extension 

require more effort from airline dispatchers and reduce the set of feasible mitigation 

actions, which may result in extra cost compared to expected delays in the initial plan. 

Conversely, a GDP may be cancelled earlier to reduce ground delay if capacity recovers 

earlier than initially planned. In the literature, assigned ground delay in the initial plan 

that is not incurred is assumed zero cost. Yet actions may have been taken to adapt to 

this planned but un-incurred delay, generating cost. In sum, deviations from the initial 

GDP plan, whether these result in additional delay or reduced delay, may carry a cost in 

terms of reduced predictability, which current models fail to account for.  

We propose a more general GDP cost function that incorporates predictability into GDP 

cost optimization. Specifically, we modify the cost function in three ways. First, the unit 

cost of unplanned ground delay will be set higher than planned ground delay. The 

difference between the cost coefficients reflects the penalty due to unpredictability. 

Second, airborne delay will be more expensive than planned ground delay not just 

because of higher operating costs and safety concerns, but also because it is inherently 

less predictable—there is never airborne delay in the initial GDPs. Lastly, delay that is 

initially planned but not ultimately incurred is also considered in the cost function in 

recognition of the effort and actions taken to accommodate it. Following this, a GDP is 

most predictable when its implementation most closely follows the original plan. When 

the actual GDP deviates from the plan, predictability performance degrades. A natural 

way to measure the amount of deviation is in terms of differences between the incurred 
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delay and the initially planned delay. The larger the difference, the poorer the 

performance. For present purposes, the costs of unpredictability are assumed to be 

linear in the total quantities of these differences, specifically the amount of planned 

delay that is not incurred and the amount of extra delay over what is initially planned.  

We do not consider more refined cost functions that might, for example, account for the 

difference between planned and incurred delay by flight, or the number of flights for 

which there is such a difference. One reason to focus on aggregate delay in our models 

is the Collaborative Decision Making (CDM) process (Ball et al., 2011), through which 

flight operators may re-assign slots to different flights based on their individual business 

objectives. These processes do not change aggregate delay but they do change delays 

incurred for individual flights. Slot re-assignment reduces the overall costs of delays, and 

may also change the relative costs of different delay components. To the extent this is 

true, the coefficients in our cost function should be assumed to take these effects into 

account. There are also cases in which flight operators make changes in their slot 

assignments for individual flights that in some sense reduce predictability of individual 

flight arrival times. We do not consider such “self-imposed unpredictability” in our 

analysis. 

To study the relationship between the enhanced GDP cost function and GDP decision 

variables in a generic manner, we construct the GDP models based on deterministic 

queueing theory and continuous approximation using a small set of key GDP parameters 

(Daganzo, 1997). Unlike more widely used mathematical programming approaches, our 

method does not require detailed inputs about flight schedules and capacity scenarios. 

The output from our models—the time when the planned arrival capacity increases to 

reflect good weather conditions—is also much simpler. In this way, the sensitivity of the 

optimal planned capacity recovery time to different assumed cost functions can be 

easily compared. On the other hand, our approach requires a set of assumptions, which 

we discuss further below. The proposed GDP models can also be used to model 

tradeoffs between performance goals when metrics for predictability and other 

performance criteria are specified explicitly instead of being embedded in a cost 

function (Liu and Hansen, 2013). This is not discussed in this dissertation. 

We use three chapters to introduce the GDP cost optimization models. In this chapter, 

we will give an overview of the literature on existing GDP optimization models and 

briefly discuss the continuous approximation method. We will also describe our GDP 

models in Sections 3.3 to 3.6. Two GDP models are developed: a static GDP model that 

does not allow revision, and a more realistic dynamic GDP model in which one GDP 

revision is considered. Based on the GDP models, in Chapter 4, we will propose our cost 

functions and show how optimal GDP decisions minimizing the expected cost can be 

reached for both GDP models. In Chapter 5, we will illustrate the proposed models with 

a case study. Research presented in Chapters 3 to 5 has been published in a journal 

paper by Liu and Hansen (2015). 
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3.2 Related Literature 

Since the first study by Richetta and Odoni (1993), Integer Programming (IP) has been 

the primary technique for GDP stochastic optimization problems (Richetta and Odoni, 

1994; Ball et al., 2003; Kotnyek and Richetta, 2006; Liu and Hansen, 2007; Mukherjee 

and Hansen, 2007; Ball et al., 2010; Mukherjee et al., 2012). There are two types of IP 

optimization models: static stochastic and dynamic stochastic. In the static GDP models 

(Richetta and Odoni, 1993; Ball et al., 2003; Kotnyek and Richetta, 2006), the optimal 

decision is made based on the available capacity scenarios forecast at the start of the 

planning horizon and cannot be revised in response to updated capacity information. 

The optimization criterion is to minimize total delay cost—ground plus airborne delay 

costs. The marginal cost of delaying one aircraft in the air is usually assumed as 

constant, whereas the functions of ground-hold cost can be linear or arbitrary. The time 

horizon for which the GDP is considered is discretized into equal time periods—typically 

15 minutes. In the models with linear ground delay cost, the decision variables are Q�—
the number of aircraft arriving at the GDP airport during period �, and :�—the number 

of aircraft held on the ground from period � to � + 1. In the models with arbitrary 

ground delay cost functions, the decision variables are Q�A—the number of aircraft 

originally scheduled to arrive at the GDP airport during period � that are rescheduled to 

arrive during ?.    

In the dynamic GDP models (Richetta and Odoni, 1994; Liu and Hansen, 2007; 

Mukherjee and Hansen, 2007; Ball et al., 2010), uncertainty in decision-making is 

accommodated by allowing re-assignment of landing slots in response to updated 

capacity information. Richetta and Odoni (1994) modeled the dynamic evolution of the 

capacity forecasts and the implicit updating of the associated probabilities through a 

scenario tree. The model re-assigns slots to groups of aircraft based upon the updated 

capacity forecasts. Their model assumes that the ground delays assigned at each stage 

cannot be revised. Mukherjee and Hansen (2007) overcome the limitation of Richetta-

Odoni model by allowing revision of ground delay assignment. Moreover, the 

Mukherjee-Hansen model optimizes the cost by assigning delay at the individual flight 

level. Both models are multistage stochastic programs, where branching points reflect 

new information about capacity. One shortcoming of the scenario-based models is that 

they assume a limited number of capacity scenarios whereas capacity may change 

continually rather than a few discrete branching points. In the light of this, Liu and 

Hansen (2007) proposed a scenario-free sequential decision model based on a value 

iteration algorithm.  

In our study, a continuous approximation method based on deterministic queueing 

theory (Daganzo, 1997) will be employed to model the GDP problem. This technique is 

widely used in the context of ground transportation (Hendrickson and Kocur, 1981; 

Newell, 1987; Daganzo and Garcia, 2000; Lago and Daganzo, 2007; Yang et al., 2013). 
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Airport applications of this approach include Newell (1979), Hansen (2002), and Kim and 

Hansen (2013). The assumption is that the number of trips is sufficient that traffic can 

be treated as a continuous variable (Newell, 1982). One classic application is the 

morning commute problem, where morning commuters change their home departure 

times to avoid periods of high congestion at the bottleneck on their way to work 

(Vickrey, 1969). Commuters have ideal times when they want to pass the bottleneck. 

Due to congestion, the arrival and departure times at the bottleneck will be different. 

Continuous functions for cumulative arrivals to and departures from the bottleneck can 

be generated for the same set of commuters. Individual commuters choose their arrival 

times at the bottleneck to minimize their individual costs, including lateness, earliness 

and extra travel time. The GDP problem resembles the morning commute problem, 

since flights must change their departure times to avoid congestion at the destination 

airport, which acts as a bottleneck. The major differences are that the departure times 

are chosen by a central planner—the Federal Aviation Administration (FAA), the 

bottleneck results from a temporary reduction in capacity, and the duration and degree 

of this reduction cannot be known with certainty at the time when the central plan is 

created. 

3.3 Basics of the GDP Models 

We assume a GDP airport with a constant and continuous arrival demand rate R, 

expressed in units of flights per unit time (all of the notations are summarized in 

Appendix). Using Aviation System Performance Metrics (ASPM) data, we find this is a 

reasonable assumption at airports with the most GDPs, such as EWR and SFO airports. 

For instance, at SFO and EWR airports, the Pearson linear correlation coefficients 

between the cumulative arrival counts and the scheduled arrival times are usually over 

0.99 for flights involved in the initial GDPs. The origins of these flights are continuously 

distributed over space so that the distribution of required flight times for flights bound 

for the GDP airport is also continuous. For simplicity, we assume here that the flight 

time distribution is uniform between �6�@  and �6ST = �6�@ + ∆�, where ∆�  is the 

range of the flight time. For a given destination airport, there are usually more flights 

from a closer origin airport than a further one, but the catchment area around an 

airport increases quadratically with distance. The joint effect of these two factors makes 

it plausible to assume a uniform distribution of flight time. This is further supported 

using flight schedule data from ASPM, which shows that uniform distribution reasonably 

(although by no means perfectly) approximates the empirical distribution function of 

flight time of GDP-delayed flights for airports with the most GDPs. We further assume 

that the scheduled arrival time and a required flight time are independent, and any slot 

reassignment resulting from CDM does not significantly change this joint distribution. 

The flight time for an individual flight is assumed to be fixed and deterministic. 

Therefore, the arrival demand rate for the subsets of flights whose required flight times 
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are between U" (�6�@ ≤  U" ≤ �6ST) and U# (U" ≤  U# ≤ �6ST) is R�U# − U"�/∆�. Under 

normal conditions, the GDP airport has arrival capacity WX > R and thus the airport can 

land the arrival demand without delay. However, on some occasions, the airport 

operates at a reduced capacity WZ < R. Traffic specialists anticipate these situations and 

implement GDPs in advance to reduce the cost of the associated delay. There are three 

decision variables in the design of a GDP: the scope—area from which originating flights 

are assigned ground delays, the time period over which the program is in effect, and the 

planned AAR. While the choice of scope is of fundamental importance, we will show in 

Section 3.6 that it is a simple extension to our basic models, in which we assume that 

the scope includes all origin airports. This also means that the GDP is planned at least �6ST  time units ahead of the actual start of the GDP. The other two decision variables 

are illustrated in the deterministic queuing diagram shown in Figure 3.1. As shown in 

Figure 3.1a, the scheduled arrival demand rate is assumed as a constant—R, and thus 

the scheduled cumulative arrival curve— [�\� can be formulated as: [�\� = R ∙ \ 

(Eq 3.1) 

The GDP starts when the arrival capacity—known as the AAR—drops from its good-

weather value, WX, to a reduced value, WZ. This is also the time when the first plane 

affected by the GDP is planned to arrive at the airport. We assume that this time is 

known at the GDP issuance time—when the GDP is planned—and make it the origin of 

our time scale. We also assume that WZ and WX are also known at the time of the plan, 

that WZ < R < WX, and that these values are used as the planned rates. Once the AAR 

drops, arrival capacity is insufficient to keep pace with the arrival demand and GDP 

starts, using a rate of WZ. The planned rate increases to WX at time ^. After that, the 

ground delays start to decline and finally go to zero at time #̂, which corresponds to the 

planned GDP end time. The planned cumulative arrival curve, _�\, ^�, under the GDP is 

then a piece-wise function: 

_�\, ^� = ` WZ ∙ \, 0 < \ ≤ ^WZ ∙ ^ + WX ∙ �\ − ^�, ^ < \ ≤ #̂ 

(Eq 3.2) 

where \ is time and 

#̂ = WX − WZ�WX − R� ^ 

(Eq 3.3) 

Note that, given a demand rate and AARs, GDP duration, #̂, is determined by the 

planned capacity recovery time—^—based on Eq 3.3. 
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Figure 3.1: Cumulative Arrival Plots under the Initial Ground Delay Program Plan 

While there are a number of uncertainties surrounding a GDP plan, we focus on the 

uncertainty about when the capacity will return to its good-weather value of WX. 

Compared to the capacity recovery time, AARs can be predicted with much better 

accuracy, since they are based on considerable experience and understanding of how 

the airport operates under a given set of weather conditions. For example, at SFO, 

marine stratus (fog) can preclude simultaneous arrival operations on its closely spaced 

parallel runways, reducing the arrival capacity from 60 to 30 flights per hour (Cook and 

Wood 2009). The time when the capacity decreases to WZ can sometimes be a source of 

uncertainty, but the capacity recovery time is based on a longer term forecast and thus 

a larger source of uncertainty in most GDPs. According to the historical GDP data (Liu 

and Hansen 2014), there were rare cases of revising a GDP start time but far more cases 

of revising a capacity recovery time. Here, we will treat the capacity recovery time—^—

as the only decision variable that has uncertainty. 

Under the GDP, flights are assigned delays because their planned arrival times are later 

than their scheduled times of arrival due to the capacity drop. The planned arrival time 

is also referred to as Controlled Time of Arrival (CTA) which is determined by the ration-

by-schedule principle: the available time slots are assigned to affected flights according 

to their arrival sequence in the schedule. Given this, the Nth arrival in the schedule will 

also be the Nth arrival in the GDP plan, as illustrated in Figure 3.1b. As a result, for each 

arrival, the horizontal difference between the CTA and the scheduled time of arrival is 

the delay assigned to it in the GDP plan. The total amount of planned ground delay for 

all the delayed flights in the GDP, ab , is then the sum of all the flight delays and can be 

expressed as a function of ^: 

ab�^� = c [[�\� − _�\, ^�]a\fg
h = �WX − WZ� ∙ �R − WZ�2 ∙ �WX − R� ∙ ^# 

(Eq 3.4) 
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The analysis above pertains to the plan for the GDP. The actual capacity recovery time, j, could be earlier or later than the planned recovery time, ^. When the information on 

actual capacity recovery time is updated, traffic specialists may make a revision to the 

initial GDP by cancelling the GDP earlier in the case of early clearance or extending the 

GDP in the case of late clearance. The impacts of revisions add considerable complexity 

to the models. Before considering these, it is useful to consider the case where such 

revisions are not allowed. Next, we will introduce the GDP no-revision model.  

3.4 GDP No-revision Model 

In this section, we assume that the initial GDP plan is not revised. Under this 

assumption, flights that are affected by the initial GDP will take off at their assigned 

departure time slots and flights that are not affected by the initial plan will take off at 

their scheduled departure times. Queueing diagrams for the GDP no-revision model are 

illustrated in Figure 3.2 for both the early and late capacity recovery cases. Besides the 

scheduled and planned cumulative arrival curves ([�\� and _�\, ^�) introduced before, 

there is one more curve: the ideal cumulative arrival curve— L�\, j�  which is 

independent of our decision on ^. The ideal cumulative arrival curve is determined by 

the actual capacity recovery time j, which is considered as a random variable in our 

analysis. If we knew j when we were designing the GDP, then we could have allocated 

the time slots based on the ideal cumulative arrival curve, the slope of which shifts from WZ to WX at time j and becomes the same as the demand rate after time j#—the ideal 

delay clearance time: 

L�\, j� = k WZ\, 0 < \ ≤ jWZ^ + WX�\ − ^�, j < \ ≤ j#R\, \ > j#  

(Eq 3.5) 

 

Figure 3.2: GDP No-revision Model and Delay Components 
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In the case of early capacity recovery (Figure 3.2a), between j and ^, we should have 

planned the GDP on the capacity level WX but we will actually land arrivals based on the 

lower rate WZ according to the GDP plan. The actual capacity is enough to carry out the 

planned GDP and thus the incurred delay will equal the planned delay, and be taken on 

the ground. The planned and incurred ground delay, lam,�M , is thus formulated as: 

lam,�M �j, ^� = ab�^� = �WX − WZ� ∙ �R − WZ�2 ∙ �WX − R� ∙ ^#, j ≤ ^ 

(Eq 3.6) 

where the superscript _ indicates this is a no-revision case, and the subscripts n and � 

indicate the delay is planned and incurred respectively. The incurred delay is larger than 

the ideal delay that would have been incurred in the case of early capacity recovery. 

We now consider the case of late capacity recovery (Figure 3.2b). Between ^ and j, we 

should have planned the GDP assuming the capacity level WZ but we overestimated the 

capacity and there will be more flights approaching the airport than can be 

accommodated. Because of this, flights that are affected by the initial GDP plan may 

experience unexpected airborne delay in addition to planned ground delay, and flights 

that are not affected by the initial GDP but scheduled to arrive between #̂ and j# will 

experience unexpected airborne delay before landing. In this case, there will be two 

types of delay: planned ground delay—lam,�M , and unplanned airborne delay—oapm,�M . lam,�M  is calculated as in Eq 2.1. oapm,�M  is determined by the GDP plan and also the actual 

cumulative arrival curve, which is identical to the ideal cumulative arrival curve in this 

case: 

oapm,�M �j, ^� = aq�j, ^� − lam,�M �j, ^� = c [[�\� − L�\, j�]a\r�s�tu�s,v� − ab�^�  
= �WX − WZ� ∙ �R − WZ�2 ∙ �WX − R� ∙ �j# − ^#�, j > ^ 

(Eq 3.7) 

where aq�j, ^� is the total realized delay. It will be seen in the next section that aq�j, ^� 

is the same with and without revision in the case of late capacity recovery. However, the 

delay cost is lower with revision since the extension transfers some of the airborne 

delay in oapm,�M �j, ^� to the ground. 

3.5 GDP Revision Model 

In this section, we will present the GDP revision model considering both cancellation 

and extension. After the initial plan, GDP could be revised more than once. In our GDP 

revision model, we are only considering one revision. Previous work (Liu and Hansen, 
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2014) has shown that GDPs at SFO airport—the airport with the most GDPs—usually 

have either no revision or one revision. Therefore, our model of revision, while relatively 

simple, is not unrealistic. The complexity in the revision model comes from the fact that 

the impacts of revisions are not instantaneous. In the early capacity recovery case, 

additional flights can be released but it takes time for them to reach the GDP airport.  In 

the late capacity recovery, flights on the ground can be further held but flight traffic in 

the air already exceeds what the airport can accommodate. These effects are captured 

in our revision model and discussed below in Sections 3.5.1 and 3.5.2 respectively. 

3.5.1 GDP Cancellation Model 

Under early cancellation, flights that are ground-holding can be released earlier than 

their controlled times of departure as planned in the initial GDP. However, we cannot 

necessarily release all flights at their earliest possible take-off times, since this may still 

overwhelm the arrival capacity. In other words, we may still need to meter the release 

of flights when updating the CTA’s. In the cancellation model, we assume the 

cumulative arrival curve is revised at time j − \q,w , where \q,w, 0 < \q,w < �6�@ , is the 

difference between the revision time and the actual capacity recovery time. In addition, 

we assume j is known with certainty at the revision time. In the remainder of the paper, 

we assume \q,w to be 0. When \q,w is larger than 0, all the derived equations hold by 

replacing �6�@(�6ST) with �6�@ − \q,w (�6ST − \q,w).  

The revised CTA’s are assigned based on the revised cumulative arrival curve, which is 

jointly determined by the available capacity and the available cumulative arrival 

demand. At time j, capacity recovers and therefore the available capacity—W�\, j�—can 

be written as: 

W�\, j� = `WZ , \ ≤ jWX , \ > j 

(Eq 3.8) 

The available cumulative arrival demand, G�\, j, ^�, is obtained by releasing flights at 

their earliest possible take-off time and is a function of the planned and actual capacity 

recovery time. When capacity permits, the arrival throughput will be determined by the 

available demand. If capacity is insufficient for the available demand, the arrival 

throughput is determined by capacity. The cumulative arrival throughput, x�\, j, ^�, is 

thus a function of demand and capacity: x�\ + ∆\, j, ^� = ;�> {G�\ + ∆\, j, ^�, x�\, j, ^� + W�\, j� ∙ ∆\} 
(Eq 3.9) 

which is also the revised cumulative arrival curve and the basis for assigning new GDP 

CTA’s. Sometime after j, the revised cumulative arrival curve goes above the planned 

cumulative arrival curve—_�j, ^�, as shown in Figure 3.3. The area between these two 
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curves is then the planned un-incurred ground delay: lam,p�. In other words, this is the 

unexpected saving in ground delay due to early GDP cancellation. Because of the 

unexpected delay saving, planned and incurred ground delay is smaller than the ground 

delay assigned in the initial plan. The planned un-incurred and incurred delays are 

formulated in Eq 3.10 and Eq 3.11 respectively: 

lam,p��j, ^� = c [x�\, j, ^� − _�\, ^�]a\{�s,v,f�tM�s,f� , j ≤ ^ 

(Eq 3.10) 

lam,��j, ^� = ab�^� − lam,p��j, ^�, j ≤ ^ 

(Eq 3.11) 

 

Figure 3.3: Delay Components in the Case of Early GDP Cancellation 

To calculate the delay components in Figure 3.3, we must estimate the revised 

cumulative arrival curve x�\, j, ^�, which can be derived from revised cumulative 

demand curve G�\, j, ^�  and the available capacity W�\, j�  as in Eq 3.9. W�\, j�  is 

formulated in Eq 3.8 and thus the unanswered question is the mathematical expression 

of G�\, j, ^�. To determine the available demand, we recognize that the affected flights 

in the initial GDP fall into three categories, based on their status at the actual capacity 

recovery time j. At this time, flights bound for the congested airport are either: 

• Type I: these flights have already departed. They are scheduled to depart before j and actually have departed before j under the initial GDP. These flights have 

already incurred the ground delays assigned in the initial GDP and will arrive at 

their initially assigned CTA’s. We denote the available cumulative demand curve, 

which is the same as the planned cumulative arrival curve under the original 

GDP, for this type of flights as Gu�\, j, ^� and its rate as Gu��\, j, ^�.  
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• Type II: these flights are being held on the ground at j. Type II flights would have 

already departed in the original schedule but are waiting on the ground at time j 

under the initial GDP. These flights can, in principle, depart immediately if 

capacity permits. The available cumulative demand curve for Type II flights, 

which is denoted as Guu�\, j, ^� with demand rate Guu� �\, j, ^�, thus assumes that 

these flights all depart at j. 

• Type III: there flights are scheduled to depart after j. Ground delays assigned in 

the initial GDP have not yet been incurred for flights of this type. Therefore, 

there would be no delay for these flights if they were allowed to take off as 

scheduled. Assuming they depart as scheduled, they will arrive earlier than the 

CTA’s assigned to them under the initial GDP. The available cumulative arrival 

demand curve for these flights is the same as the scheduled cumulative arrival 

curve. The cumulative demand and its rate for Type III are denoted as Guuu�\, j, ^� and Guuu� �\, j, ^� respectively. 

The total available cumulative arrival demand after revision, G�\, j, ^�, is then the sum 

of the available cumulative demands of each type. The difference between G�\, j, ^� 

and the planned cumulative arrival demand curve in the initial GDP plan reflects the 

effect of GDP revision. This effect depends on the flight time distribution. If the delayed 

flights are concentrated in the vicinity of the affected airport, they can arrive at the 

airport earlier under revision, which enables the airport to utilize the extra capacity 

from early clearance more efficiently. If the flight time distribution is shifted toward 

larger values, Type II flights will take longer to reach the airport, so the extra capacity 

will be less fully utilized. There are four different cases for G�\, j, ^�, depending on the 

range of flight time distribution, �6�@  and �6ST , and the values of j, ^ and #̂ , as 

summarized in Table 3.1. 

Table 3.1: Different Cases for Available Cumulative Arrival Demands after Revision, Early 

Cancellation 

Case ID Condition Revision Impact on Demand 

C0 ^ < j + �6�@ None 

C1 j + �6�@ < ^ < #̂ < j + �6ST  Small 

C2 j + �6�@ < ^ < j + �6ST < #̂ Moderate 

C3 j + �6�@ < j + �6ST < ^ < #̂ Large 

In the case of C0, the extra demand from the early cancellation could not arrive until 

after time ^, when it was assumed in the initial plan that capacity would increase. The 

extra demand would arrive at a time when available capacity is being fully utilized under 

the initial GDP. Therefore, the GDP should not be revised in this case. In the other cases, j + �6�@ is less than ^, and a GDP revision can take advantage of the extra capacity 
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resulting from early clearance. The formulations for G�\, j, ^� are slightly different for 

each case. These formulations are discussed below, with C1 fully analyzed and C2 and 

C3 described in terms of their differences with C1.  

3.5.1.1 Available Cumulative Arrival Demand, Case C1 

A conceptual plot of available cumulative arrival demand curve for Case C1 is presented 

in Figure 3.4. The available demand is obtained by allowing flights to depart at their 

earliest possible take-off times. The earliest arrival time for these flights is j + �6�@, 

which is the time when the updated arrival demand starts to be different from the 

planned arrivals. Even if capacity permits, delay will not vanish earlier than the planned 

delay clearance time #̂. This is because there will be Type I flights—flights that have 

been delayed on the ground and taken off before j—arriving at the affected airport 

from j + �6�@ to #̂, since #̂ < j + �6ST. The total available demand is the sum of the 

available demands for the three types of flights. We now consider these three demands 

in turn. We don’t consider flights arriving after #̂, because there is no more delay under 

the initial GDP after this time. 

 

Figure 3.4: Conceptual Plot of Available Cumulative Arrival Demand Curve, Case C1  

Type I flights are the flights that have been released from their departure airports at the 

actual capacity recovery time j. They have arrived at the GDP airport or are in the air at 

this time. In either case, delay assigned to these flights in the initial GDP has already 

been incurred and they will arrive at their CTA’s. The principles that are used to derive Gu(\, j, ^), the available demand for Type I flights, are: 

• Before j + �6�@, all planned capacity is utilized for Type I flights. All other flights 

take off at or after j, making it impossible for them to arrive prior to j + �6�@ 

since �6�@ is the minimum flight duration. 

• For Type I flights planned to arrive between j + �6�@ and #̂, the flight time 

range at any time \ is between \ − j and �6ST. If a flight arrives at \ with flight 
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time less than \ − j, then this flight must have taken off after j, so it cannot be a 

Type I flight. Moreover, flights arriving at \ with flight time in [\ − j, �6ST] will all 

be Type I flights. The probability that a flight is a Type I flight given its CTA is t, |�Gu|W^~ = \�, is then: |�Gu|W^~ = \� = �6ST − �\ − j��6ST − �6�@ , j + �6�@ < \ ≤ #̂ 

(Eq 3.12) 

Since the flight time distribution for all flights is uniform between �6�@ and �6ST, flight 

time for Type I flights will be uniformly distributed between \ − j and �6ST. Given the 

planned capacity rate is WZ before ^ and WX afterwards, the available demand rate of 

Type I flights after revision, which is the same as the planned capacity rate for Type I 

flights under the original GDP, can be expressed as: 

Gu��\, j, ^� =
���
�� WZ , 0 ≤ \ ≤ j + �6�@WZ ∙ �6ST − �\ − j��6ST − �6�@ , j + �6�@ < \ ≤ ^

WX ∙ �6ST − �\ − j��6ST − �6�@ , ^ < \ ≤ #̂
 

(Eq 3.13) 

With these, we integrate and express the available cumulative arrival demand curve for 

Type I flights as: Gu�\, j, ^� = 

���
�� WZ\, 0 < \ ≤ j + �6�@− WZ2 ∙ �� [\ − �j + �6ST�]# + WZ �j + �6�@ + ��2 � , j + �6�@ < \ ≤ ^

− WX2 ∙ �� [\ − �j + �6ST�]# + WZ �j + �6�@ + ��2 � + WX − WZ2 ∙ �� [^ − �j + �6ST�]#, ^ < \ ≤ #̂
 

(Eq 3.14) 

Type II flights are the flights that should have taken off by j if the GDP had not been 

initiated, but have not taken off at j due to the GDP. All these flights have been delayed 

to some degree at j. There is no delay planned for the flights arriving after #̂, and thus 

these flights cannot be Type II flights. The flight time range for Type II flights is thus 

between �6�@ and #̂ − j. Type II flights are held on the ground at j, and can take off 

immediately if capacity permits. We can easily calculate the cumulative available 

demands for Type II flights if we know the distribution of flight time for these flights, U��|Guu�, since the new departure time will be j for all the Type II flights. To find U��|Guu�, we use Bayes’ rule, which gives  
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U��|Guu� = |�Guu|�� ∙ U���|�Guu�  

(Eq 3.15) 

where, |�Guu|�� is the probability that a flight is a Type II flight given that its flight time 

is �; U��� is the flight time distribution, assumed as a uniform distribution on �6�@ and �6ST; and |�Guu� is the unconditional probability that a flight impacted by the GDP is a 

Type II flight.  

To find |�Guu|�� for a given j, refer to Figure 3.5. For a flight with flight time � to be a 

Type II flight it is necessary and sufficient that it be in the virtual queue at j + �. Under 

ration by schedule, flights that are in the virtual queue at time j + � correspond to 

flights that are scheduled to arrive between j� and j + �. Since scheduled arrival time 

and flight time are independent, the probability that a flight in the GDP is in the virtual 

arrival queue at j + � given its flight time is �, is equal to the unconditional probability 

that a flight in the GDP is in the virtual arrival queue at this time. Therefore, |�Guu|��is 

equal to the unconditional probability that a flight in the GDP is in the virtual arrival 

queue at j + �. From Figure 3.5, we thus see that: 

|�Guu|�� = �[�j + �� − _�j + �, ^�[� #̂� , j + �6�@ ≤ j + � ≤ #̂ 

=
���
�� �R − WZ� ∙ �j + ��R ∙ #̂ , �6�@ ≤ � ≤ ^ − j�R − WX� ∙ �j + �� + �WX − WZ� ∙ ^R ∙ #̂ , ^ − j < � ≤ #̂ − j 

(Eq 3.16) 

 

Figure 3.5: Virtual Arrival Queue Length at time j + � 
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To obtain |�Guu�, the probability that a flight impacted by the GDP is being held on the 

ground at j, we use the total probability theorem. In combination with Eq 3.16, we get 

|�Guu� = c |�Guu|���9��
�98� U���a� = c |�Guu|��fg�v

�98� U���a� 

(Eq 3.17) 

Assuming � is uniformly distributed over [�6�@, �6ST], we get 

|�Guu� = 1R ∙ #̂ ∙ ∆� ∙
���
�� c [R ∙ �j + �� − WZ ∙ �j + ��]f�v

�98� a�
+ c [R ∙ �j + �� − WZ ∙ ^ − WX ∙ �j + � − ^�]fg�v

f�v a����
��

 

(Eq 3.18) 

where ∆� = �6ST − �6�@. Integrating, we get |�Guu�
= WX − WZ2 �^ − j�# + R − WX2 � #̂ − j�# − R − WZ2 �j + �6�@�# − R − WZ2 ∙ j# + WX − WZWX − R ∙ �R − WZ� ∙ ^#

R ∙ #̂ ∙ ∆�  

(Eq 3.19) 

Applying Bayes’ rule, we now obtain: 

U��|Guu� = |�Guu|�� ∙ U���|�Guu� =
���
�
���

�R − WZ� ∙ �j + ��R ∙ #̂ ∙ ∆�Guu,s�sS�R ∙ #̂
, �6�@ ≤ � ≤ ^ − j

�R − WX� ∙ �j + �� + �WX − WZ� ∙ ^R ∙ #̂ ∙ ∆�Guu,s�sS�R ∙ #̂
, ^ − j < � ≤ #̂ − j

 

=
���
�� �R − WZ� ∙ �j + ��Guu,s�sS� ∙ ∆� , �6�@ ≤ � ≤ ^ − j�R − WX� ∙ �j + �� + �WX − WZ� ∙ ^Guu,s�sS� ∙ ∆� , ^ − j < � ≤ #̂ − j 

(Eq 3.20) 

The total number of Guu flights can be written as a function of |�Guu�: Guu,s�sS� = R ∙ #̂ ∙ |�Guu� 

= WX − WZ2 �^ − j�# + R − WX2 � #̂ − j�# − R − WZ2 �j + �6�@�# − R − WZ2 ∙ j# + WX − WZWX − R ∙ �R − WZ� ∙ ^#
∆�  

(Eq 3.21) 
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To obtain the cumulative demand curve by Type II flights, we require the cumulative 

distribution of their flight time. Integrating Eq 3.20, we obtain: 

For �6�@ ≤ � ≤ ^ − j, 

���|Guu� = c �R − WZ� ∙ �j + Q�Guu,s�sS� ∙ ∆� aQ�
�98� = �R − WZ�Guu,s�sS� ∙ ∆� [�j� + �#2 � − �j�6�@ + �6�@#2 �] 

(Eq 3.22) 

For ^ − j ≤ � ≤ #̂ − j 

���|Guu� = c �R − WZ� ∙ �j + Q�Guu,s�sS� ∙ ∆� aQf�v
�98� + c �R − WX� ∙ �j + Q� + �WX − WZ� ∙ ^Guu,s�sS� ∙ ∆� aQ�

f�v  
= �R − WZ�Guu,s�sS� ∙ ∆� ��j�^ − j� + �^ − j�#2 � − �j�6�@ + �6�@#2 ��

+ �R − WX�Guu,s�sS� ∙ ∆� ��j� + �#2 � − �j�^ − j� + �^ − j�#2 �� + �WX − WZ� ∙ ^Guu,s�sS� ∙ ∆� [� − �^ − j�] 

(Eq 3.23) 

The cumulative available demand of Type II flights, Guu, is obtained by assuming all these 

flights take off immediately at time j. Therefore, if capacity permits, Type II flights 

arriving at time \ after revision are the Type II flights with flight time \ − j. The 

cumulative available demand of Type II flights at time \ is then equal to the product of 

the total number of Type II flights times the value of the cumulative flight time 

distribution function at \ − j: Guu�\, j, ^� = Guu,s�sS� ∙ ��\ − j|Guu� = 

��
��
���

0, 0 ≤ \ ≤ j + �6�@�R − WZ�∆� ∙ ��j�\ − j� + �\ − j�#2 � − �j�6�@ + �6�@#2 �� , j + �6�@ < \ ≤ ^�R − WZ�∆� ��j�^ − j� + �^ − j�#2 � − �j�6�@ + �6�@#2 �� + �R − WX�∆� ��j�\ − j� + �\ − j�#2 � − �j�^ − j� + �^ − j�#2 ��
+ �WX − WZ� ∙ ^∆� �\ − ^�, ^ < \ ≤ #̂

 

(Eq 3.24) 

We now consider arrival demand from Type III flights, which are originally scheduled to 

take off after j. Planned ground delay has not been incurred for these flights by j, and 

thus there would be no delay for Type III flights if they could take off as scheduled. In 

the schedule, the first Type III flights—those with the shortest flight times—arrive just 

after j + �6�@. All the scheduled arrivals are Type III flights after j + �6ST. Between j +�6�@ and j + �6ST, the demand rate for Type III flights in the original schedule increases 

linearly at a rate R/∆�. Since these flights have not been delayed at j, the available 

demand for Type III is the same as the scheduled cumulative demand: 
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Guuu�\, j, ^� = k 0, 0 ≤ \ ≤ j + �6�@R2∆� �\ − j − �6�@�#, j + �6�@ < \ ≤ #̂ 

(Eq 3.25) 

Summing up the available demands for the three types of flights; we get the cumulative 

available arrival demand as: G�\, j, ^� = Gu�\, j, ^� + Guu�\, j, ^� + Guuu�\, j, ^� = 

���
�� WZ\, 0 ≤ \ ≤ j + �6�@R − WZ∆� ∙ \# − R − WZ∆� ∙ �j + �6�@� ∙ \ + WZ ∙ \, j + �6�@ < \ ≤ ^R − WX∆� ∙ \# − R − WX∆� ∙ �j + �6�@� ∙ \ + WX ∙ \ + WX − WZ∆� ∙ ^ ∙ \ − WX − WZ∆� ∙ ^ ∙ �j + �6ST�, ^ < \ ≤ #̂

 

(Eq 3.26) 

The available demand rate can be calculated as the derivative of G�\, j, ^�: 

G′�\, j, ^� =
���
�� WZ , 0 ≤ \ ≤ j + F���2 R − WZ∆� ∙ \ − R − WZ∆� ∙ �τ + F���� + WZ , τ + F��� < \ ≤ ^

2 R − WX∆� ∙ \ − R − WX∆� ∙ �τ + F���� + WX + WX − WZ∆� ∙ ^, T < \ ≤ #̂
 

(Eq 3.27) 

Between j + �6�@ and ^, the available demand rate increases with time since R is larger 

than WZ. At time ^, the rate increases by (WX − WZ��j + �6ST − ^�/∆� due to the jump 

in demand rate for Type I flights at this time (Equation 13). The demand rate decreases 

with time afterwards. If capacity permits, all the held flights can be released 

immediately and Type III flights can take off as scheduled when the GDP is cancelled 

earlier. In other words, there is no need for new CTA’s. Mathematically, arrival times can 

be determined directly from G�\, j, ^� . This scenario is possible—indeed quite 

common—because of the natural spread of flight time and scheduled arrival time. At 

SFO airport, in the early clearance case, 77% of GDPs were cancelled without the need 

to assign new CTA’s (Ball et al., 2010). Otherwise, when capacity is insufficient, the 

throughput rate will be jointly determined by the demand and the capacity. 

3.5.1.2 Available Cumulative Arrival Demand, Case C2 

In this case, flights that depart before j can all arrive at the GDP airport before the 

planned delay clearance time #̂ and, when capacity permits, there will be no more 

delay in the system after j + �6ST, as in Figure 3.6. In such a case, arrivals will follow the 

available cumulative arrival demand curve—the red dashed curve. The other possibility 

is that capacity is insufficient to handle the available demand. The revised cumulative 
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arrival curve—the solid black curve—is then different from the cumulative demand 

curve. 

 

Figure 3.6: Conceptual Plot of Available Cumulative Arrival Demand Curve, Case C2 

The logic used to generate the available demand curves for the three types of flights in 

Case C2 is in most respects the same as in Case C1. The studied period is still between 0 

and #̂. The difference is that the flight time range for Type II flights is [�6�@, �6ST] in 

this case. The available arrival demand curve is found to be G�\, j, ^� = 

��
��
� WZ\, 0 ≤ \ ≤ j + �6�@R − WZ∆� ∙ \# − R − WZ∆� ∙ �j + �6�@� ∙ \ + WZ ∙ \, j + �6�@ < \ ≤ ^R − WX∆� ∙ \# − R − WX∆� ∙ �j + �6�@� ∙ \ + WX ∙ \ + WX − WZ∆� ∙ ^ ∙ \ − WX − WZ∆� ∙ ^ ∙ �j + �6ST�, ^ ≤ \ ≤ j + �6STR\, j + �6ST ≤ \ ≤ #̂ 

 

(Eq 3.28) 

The first three sub-functions of the formulation are identical to the formulation for 

available demand in Case C1 given in Eq 3.26, with the exception of the sub-domain for 

the third sub-function. The fourth sub-function, which does not appear in Case C1, is 

when the available cumulative demand curve follows the original scheduled curve, [�\�. 

3.5.1.3 Available Cumulative Arrival Demand, Case C3 

In this case, a combination of an early j and a small value for �6ST  enables cumulative 

available demand to join the scheduled demand curve prior to the planned capacity 

recovery time, as shown in Figure 3.7. The GDP revision should result in substantial 

delay saving. Since j + �6�@ is earlier than ^, there is no jump in the demand rate 

between j + �6�@  and j + �6ST  and thus the cumulative demand is quadratic in 

between. After this time, available arrival demand is the same as the scheduled arrival 

demand.  
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Figure 3.7: Conceptual Plot of Available Cumulative Arrival Demand Curve, Case C3 

The formulation of available demand curve is simple compared to Cases C1 and C2. The 

major difference is that there is no jump in the available demand rate at time ^, given 

that j + �6ST < ^. The expression is formulated as: 

G�\, j, ^� = � WZ\, 0 ≤ \ < j + �6�@R − WZ∆� ∙ \# − R − WZ∆� ∙ �j + �6�@� ∙ \ + WZ ∙ \, j + �6�@ ≤ \ < j + �6STR\, j + �6ST ≤ \ ≤ #̂  

(Eq 3.29) 

3.5.2 GDP Extension Model 

If high capacity is not available at time ^, there will be more aircraft approaching the 

airport than what the arrival capacity permits and GDP will be extended by giving 

priority to flights in the air and further holding other flights on the ground. The purpose 

of an extension, like the initial GDP, is to convert airborne delay to ground delay. For the 

extension model, we assume traffic managers revise the program at time ^ − \q,Z, 

where \q,Z is the difference between the revision time ^ − \q,Z and the initially planned 

capacity recovery time ^. As mentioned, we are modeling the case of one GDP revision, 

and thus the actual capacity recovery time j is known with certainty at the revision 

time. Further, we assume traffic managers revise the program when the planned 

capacity recovery time is approaching and limit \q,Z to be between 0 and �6�@. In the 

remainder of the paper, we are presenting the model by setting \q,Z as 0. When \q,Z is 

larger than 0, all the conclusions hold by replacing �6�@ (�6ST) with �6�@ − \q,Z (�6ST −\q,Z). Similar to the early cancellation case, we distinguish three types of flights based on 

their status at time ^:  

• Type I: these flights have landed at time ^. Type I flights have absorbed the 

assigned ground delays in the initial GDP, and cannot and need not be delayed 

further. 
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• Type II: these flights have taken off but not yet landed. They will experience 

unplanned airborne delay before landing in addition to the planned and incurred 

ground delay. When extending the GDP, priority is given to Type II flights in order 

to minimize airborne delay. 

• Type III: these flights are still on the ground at time ^. They either have 

departure time slots later than ^ or their scheduled arrival times are late enough 

that they are not involved in the initial GDP. Type III flights should be assigned 

additional ground delay so that they absorb as much as possible of the extra 

delay due to underestimating j. 

As was the case for the cancellation model, the key to constructing the extension model 

is updating the arrival demand. While in the cancellation case the aim is to accelerate 

demand, in this case the goal is to ‘put on the brakes’. This is only possible for Type III 

flights since Type I and Type II flights have already taken off at time ^. The arrival time 

of Type III flights can, however, be pushed back to a later time and their departure times 

should be postponed accordingly. In order to meter Type III departures precisely, we 

need to know how much capacity is available for landing Type III flights. This question is 

answered by comparing the planned cumulative arrival curve for Type I and Type II 

flights to the actual total cumulative arrival curve that can be achieved given full 

utilization of the available capacity. When all the flights that have taken off before ^ are 

landed, capacity can be devoted to landing Type III flights.  

The GDP extension model and delay components in the case of extension are illustrated 

in Figure 3.8. [�\� and _�\, ^� are the scheduled and initially planned cumulative arrival 

curves as defined before. The blue dotted curve in Figure 3.8a represents the planned 

cumulative arrival curve in the initial GDP for flights that have taken off by time ^ (Type I 

and Type II flights): G��\, ^�. Before ^ + �6�@, all the capacity is used for G� flights in 

the plan and G��\, ^� overlaps with _�\, ^�. After that, part of the capacity is also 

planned for flights taking off after ^. Flights taking off before ^ last land at time ^ +�6ST. As a result, G��\, ^� deviates from _�\, ^� at time ^ + �6�@ and levels out at time ^ + �6ST. At time ^, we assume that we know j with certainty. Therefore, the actual 

cumulative arrive curve is the ideal cumulative arrival curve L�\, j�—what would have 

been planned assuming perfect information at the GDP decision time. The time 

coordinate of the intersection of G��\, ^� and the actual cumulative arrival curve is 

denoted as \�. Before \�, all the available capacity should be devoted to land G� flights 

to eliminate airborne delay. Since Type I flights have landed by time ^, all the actual 

arrivals between ^ and \� are Type II flights. The difference between the actual arrival 

time and the planned arrival time is unplanned airborne delay for these flights. 
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Figure 3.8: Conceptual Plot of GDP Extension Model and Delay Components 

After \�, all the available capacity is used to land Type III flights. In the initial plan, Type 

III flights that are arriving between ^ + �6�@ and #̂ are delayed; Type III flights that are 

scheduled to arrive between #̂ and j# are not involved in the original GDP and would 

have arrived at their scheduled times. As a result of extension, the former flights will be 

further delayed, while the latter flights will be delayed and take off at their assigned 

departure time slots in the updated program instead of their scheduled departure 

times. 

There are three types of delay in the GDP extension model as shown in Figure 3.8b: 

• Planned and incurred ground delay, lam,�. This delay is absorbed by Type I 

flights, Type II flights and Type III flights that are involved in the initial GDP. 

• Unplanned and incurred airborne delay, oapm,�. This delay is only absorbed by 

Type II flights. 

• Unplanned and incurred ground delay, lapm,�. This delay is only absorbed by 

Type III flights.  

Comparing the delay components to those in Figure 3.2b, it is observed that total delay 

is the same with or without revision in the case of late capacity recovery. However, the 

delay cost with revision is smaller because part of the unplanned and incurred delay is 

transferred to the ground. To estimate the amount of the three types of delays, we only 

need to find the expression for G��\, ^� since the equations for the other curves are 

known. There are two expressions for G��\, ^� depending on which of the two times is 

earlier: #̂  or ^ + �6ST . The principles for generating G��\, ^� are the same as for 

deriving the available cumulative arrival demand curve for Type I flights in the early 

cancellation model.  

There are two expressions for G��\, ^� depending on which of the two times is earlier: #̂ or ^ + �6ST. Figure 3.8 illustrates the case where #̂ is earlier than ^ + �6ST. In this 

case: 

(a) Extension model (b) Delay components

Time

Cumulative 

arrivals

T0 τ

S(t)

T2
τ2

Planned and incurred 

ground delay, gdp,i(τ,T)
Unplanned and 

incurred ground 

delay, gdup,i(τ,T)

tc

Unplanned and incurred 

airborne delay, adup,i(τ,T)

Time

Cumulative 

arrivals

T0 τ

S(t)

T2
τ2T+Fmin T+Fmax

N(t,T)

Actual cumulative 

arrival curve for 

all flights, = I(t,τ)

Planned 

cumulative arrival 

curve for flights 

taking off before T, 

D– (t,T)

tc



 

42 

• For planned arrival times before ^ + �6�@, all planned capacity is utilized for G� 

flights.  

• For planned arrival times after ^ + �6�@, the proportion of flow that is G� flights 

at time \ is: |�G�|\� = �6ST − �\ − ^��6ST − �6�@  

(Eq 3.30) 

Given the planned arrival rate is WZ  before ^ , WX  between ^ + �6�@  and #̂ , and R 

afterwards, the demand rate of G� flights can be expressed as: 

G�� �\, ^� =
���
�
���

WZ , 0 ≤ \ ≤ ^WX , ^ < \ ≤ ^ + �6�@ WX ∙ �6ST − �\ − ^��6ST − �6�@ , ^ + �6�@ < \ ≤ #̂
R ∙ �6ST − �\ − ^��6ST − �6�@ , #̂ < \ ≤ ^ + �6ST0, \ > ^ + �6ST

 

(Eq 3.31) 

With these, we integrate and express the available cumulative arrival demand curve for G� flights as: 

G��\, ^� =
���
�
���

WZ\, 0 ≤ \ ≤ ^ + �6�@WZ^ + WX�\ − ^�, ^ < \ ≤ ^ + �6�@− WX2 ∙ �� [\ − �^ + �6ST�]# + Wh, ^ + �6�@ < \ ≤ #̂
− R2 ∙ �� [\ − �^ + �6ST�]# + W", #̂ < \ ≤ ^ + �6STW", \ > ^ + �6ST

 

 (Eq 3.32) 

where,  

Wh = WX ��6�@ + ��2 � + WZ^ 

and 

W" = Wh + R − WX2 ∙ �� [ #̂ − �^ + �6ST�]# 

 

When #̂ is later than ^ + �6ST, G��\, ^� levels out before #̂ and a single quadratic 

equation governs the G� flight arrival demand curve between ^ + �6�@ and ^ + �6ST: 
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G��\, ^� =
���
�� WZ\, 0 < \ ≤ ^ + �6�@WZ^ + WX�\ − ^�, ^ < \ ≤ ^ + �6�@− WX2 ∙ �� [\ − �^ + �6ST�]# + Wh, ^ + �6�@ < \ ≤ ^ + �6STWh, ^ + �6ST < \

 

(Eq 3.33) 

Given the expressions of G��\, ^�, we can then calculate the unplanned and incurred 

airborne delay: 

oapm,��j, ^� = c [G��\, ^� − L�\, j�]a\���s,f�tu�s,v� , j > ^ 

(Eq 3.34) 

The planned and incurred delay, lam,�, is the same as ab. The unplanned and incurred 

ground delay can then be calculated as:  

lapm,��j, ^� = c [[�\� − L�\, j�]a\r�s�tu�s,v� − oapm,��j, ^� − ab�^�, j > ^ 

(Eq 3.35) 

There are only two expressions for G��\, ^�, but there are seven different expressions 

for the delays depending on where G��\, ^� intercepts the actual cumulative arrival 

curve, as shown in Figure 3.9. In other words, there are different extension cases 

depending on where \� is. The conditions for each model are summarized in Table 3.2, 

where there are two categories of models depending on the GDP parameters—E1 and 

E2, and there are different models in each category depending also on the value of j. 
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Figure 3.9: Different Cases for Extension Models 

 

Table 3.2: Conditions for Different Cases for Extension Models 

Case ID Condition determined by GDP parameters Condition depending on j 

E1.1 ^ + �6�@ < #̂ ≤ ^ + �6ST  ^ + �6�@ < \� ≤ #̂ 

E1.2 ^ + �6�@ < #̂ ≤ ^ + �6ST  #̂ < \� ≤ ^ + �6ST  

E1.3 ^ + �6�@ < #̂ ≤ ^ + �6ST  ^ + �6ST < \� &  j < \� 

E1.4 ^ + �6�@ < #̂ ≤ ^ + �6ST  ^ + �6ST < \� ≤ j 

E2.1 ^ + �6ST < #̂ ^ + �6�@ < \� ≤ ^ + �6ST  

E2.2 ^ + �6ST < #̂ ^ + �6ST < \� &  j < \� 

E2.3 ^ + �6ST < #̂ ^ + �6ST < \� ≤ j 
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3.6 Impact of GDP Scope 

So far, we have assumed that all the flights heading to the affected airport with 

scheduled arrival times in the GDP time horizon are subject to ground delays. In 

practice, flights coming from longer distances are often exempt from the GDP. The 

scope of a GDP is defined as the region from which flights are not exempt—i.e., are 

subject to ground delays. In this analysis, the GDP scope is captured by the parameter ����m�, the maximum flight time of non-exempt flights. Flights with flight time between ����m� and �6ST  will be controlled by the GDP in the sense that a CTA will be assigned, 

but these flights are not delayed because the assigned CTA is close to its scheduled time 

of arrival so that no ground holding is required. The demand rate of the exempted 

flights, or called exemption ratio, is denoted by R�. By assuming a uniform distribution 

for flight time and that the GDP is planned at least ����m� ahead of the actual start of the 

GDP, we can obtain 

R� = �6ST − ����m��6ST − �6�@ ∙ R 

(Eq 3.36) 

Cumulative queueing diagrams of the scheduled and planned arrivals for GDP delayed 

flights are presented in Figure 3.10 for a non-exemption case and an exemption case 

with exemption rate R�. The non-exemption case is represented with dashed lines and 

the case with exempted flights is represented with solid lines. Compared to the non-

exemption case, both the demand rate and the capacity rates in the exemption case are 

reduced by R� , which cannot exceed WZ . Denote the delay clearance time in the 

exemption case as #̂,�. It can be easily proved that #̂,� is equal to #̂ and the total 

quantity of planned delays is the same in the two cases. This makes sense since there 

should be no delay for exempted flights. Therefore, when ����m� is smaller than �6ST, 

the previous models are valid if we replace �6ST  with ����m�, R with R − R�, WX  with WX − R�, and WZ with WZ − R�, where R� is calculated as in Eq 3.36. It should be noted 

that while the total assigned delay in the initial plan is the same regardless of scope, as ����m�  decreases, this delay is concentrated among a smaller set of flights. The 

advantage of reduced scope is greater adaptability: demand can dialed up more quickly 

in the case of early cancellation and dialed down more quickly in the case of extension. 

Our model captures these effects. 
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Figure 3.10: Impact of Scope on the Amount and Clearance Time of Planned Delays 
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4 GDP Cost Optimization 
In the previous chapter, we defined different delay components in the cases of early and 

late capacity recovery, with and without considering GDP revision. Moreover, we 

showed how these delay components can be calculated from our GDP models. These lay 

the foundation for the discussion of GDP cost optimization. 

As shown above, the delay components are functions of j and ^. j is unknown when the 

decision on ^ must be made. Our objective is therefore to minimize the expected cost, 

based on the assumed distribution of j. Our lone decision variable is ^—the time at 

which the planned arrival rate will be increased from WZ to WX.  

GDP cost functions are defined as linear functions of the delay components weighted by 

their cost coefficients. Planned and incurred ground delay is set as the baseline delay 

and the cost coefficients for other delays are defined with respect to the cost coefficient 

of this baseline delay. In Section 4.1, the cost function based on no-revision GDP model 

is discussed and closed-form expressions are derived for the optimal ^, denoted as ^∗. 

In Section 4.2, the cost functions based on GDP revision model are presented and the 

algorithm used to find ^∗ is discussed. We have also investigated in the impact of the 

assumption of a constant demand rate on the optimization. We find that the 

assumption can be relaxed to a considerable degree without changing our results. 

Details on the constant demand rate assumption are provided in Section 4.3. 

4.1 GDP Cost Optimization with No-revision Model 

Flights are always assumed to take off at their controlled times of departure as planned 

in the initial GDP in the no-revision model. Two delays may occur in a GDP without 

considering revision: planned ground delay—lam,�M , and unplanned airborne delay—oapm,�M . When ^ is selected, lam,�M  is known with certainty since it is only a function of ^ 

and other known parameters, as shown in Section 3.3. oapm,�M  only happens in the case 

of late capacity recovery, and its value depends on j. oapm,�M  is more expensive than lam,�M  for two reasons. First, airborne delay is more expensive than ground delay due to 

higher operating costs and safety concerns (Mukherjee and Hansen, 2007). Second, this 

delay is not predictable. This leads to different cost coefficients for the two delays in the 

cost function. For the case of early capacity recovery, the GDP delay cost function is 

expressed as: 

W¡¢\M�j, ^� = Wh ∙ lam,�M �j, ^� = Wh ∙ �WX − WZ� ∙ �R − WZ�2 ∙ �WX − R� ∙ ^#, j ≤ ^ 

(Eq 4.1) 

For the case of late capacity recovery, the function has two terms: 
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W¡¢\M�j, ^� = Wh ∙ lam,�M �j, ^� + �£ + ∆pm,�� ∙ Wh ∙ oapm,�M �j, ^� 

=Wh ∙ �¤¥�¤¦�∙�§�¤¦�#∙�¤¥�§� ∙ [^# + �£ + ∆pm,���j# − ^#�],            j > ^ 

(Eq 4.2) 

where, Wh is the unit cost of planned and incurred ground delay; £ is the cost ratio of 

airborne delay to ground delay; ∆pm,� is the additional unit cost of unplanned delay 

expressed as a fraction of the unit cost of planned ground delay. Assuming a uniform 

distribution in [\6�@, \6ST] for j, the expected delay cost can then be written as: 

¨M�^� = ©[W¡¢\M] = c W¡¢\M�j, ^� 1\6ST − \6�@
s9��

s98� aj 

= W∆\ ∙ [23 �£ + ∆pm,��^$ + «∆\ − �£ + ∆pm,��\6ST¬^# + �£ + ∆pm,�� \6ST$3 ] 
(Eq 4.3) 

where W = Wh ∙ �¤¥�¤¦�∙�§�¤¦�#∙�¤¥�§�  and ∆\ = \6ST − \6�@. Given other GDP parameters such 

as planned AARs and scope, the objective function is only a function of ^. Differentiating 

the objective function with respect to ^, the optimal ^∗ is calculated as: 

^∗ = [\6�@ + �£ + ∆pm,� − 1� ∙ \6ST]£ + ∆pm,�  

(Eq 4.4) 

From Eq 4.4, we find that ^∗ is determined by the distribution of τ, as well as the cost 

coefficients £ and ∆pm,� , but does not depend on demand and capacity. The numerator 

in the equation is a weighted sum of the bounds of the distribution, where the weight 

on the upper bound is the additional unit cost of unplanned airborne delay compared to 

planned ground delay, expressed as a fraction of the latter. If this additional cost is zero, 

then the optimal solution is to plan for the weather to clear at the earliest possible time. 

As this cost increases, the solution, as expected, moves toward the latest possible 

clearance time, approaching it asymptotically as the additional cost approaches infinity. 

4.2 GDP Cost Optimization with Revision Model 

In the GDP revision model, flights may not take off at their controlled times of departure 

as planned in the initial GDP. In the case of early cancellation, some flights can take off 

earlier to take advantage of early recovered capacity. In the case of GDP extension, 

some flights may be further delayed on the ground in order to absorb unavoidable delay 

on the ground instead of in the air. As shown in Figure 3.3 and Figure 3.8b, four types of 

delay are possible in the revision model: planned and incurred ground delay, lam,�; 
planned and un-incurred ground delay, lam,p�; unplanned and incurred airborne delay, 
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oapm,�; and unplanned and incurred ground delay lapm,�. Given this, the GDP cost 

function with revision model is expressed as: W¡¢\�j, ^� = Wh[lam,��j, ^� + ∆m,p� ∙ lam,p��j, ^� + «1 + ∆pm,�¬ ∙ lapm,��j, ^� + �£ + ∆pm,�� ∙ oapm,��j, ^�] 
(Eq 4.5) 

where  ∆m,p� is the cost ratio of planned un-incurred delay to planned ground delay. 

When ∆m,p� and ∆pm,� are set as 0, the cost functions are the same as those in prior 

research. Assuming a uniform distribution in [\6�@, \6ST] for j, the expected delay cost 

can then be written as: 

¨�^� = ©[W¡¢\] = Wh∆\ ∙ {c lam,�ajs9��
s98� + c ∆m,p� ∙ lam,p�ajf

s98�+ c «1 + ∆pm,�¬ ∙ lapm,� + «£ + ∆pm,�¬ ∙ oapm,�®ajs9��
f } 

(Eq 4.6) 

The optimal ^∗ is then defined as the planned capacity recovery time that minimizes the 

value of the objective function. The domain for ^ is the same as j: [\6�@, \6ST].  

There are various methods for finding ^∗. Analytical first order optimality conditions can 

be determined for identifying ^∗. However, the conditions are complex because of the 

different cases (Table 3.1 and Table 3.2) and the fact that as we integrate over j, the 

relevant case switches (Figure 4.1). In each plot of Figure 4.1, the delay cost—expressed 

in equivalent minutes of planned ground delay— is plotted as a function of j for a given 

set of ^ and exemption ratio, where the values of the parameters are set the same as in 

the case study discussed in the next chapter (Table 5.1). In this case study, the range of j is between 120 and 360 minutes. Therefore, there are only GDP extensions when ^ is 

120 minutes and only GDP cancellations when ^ is 360 minutes. When ^ is between the 

two bounds, both extensions and cancellations are possible. The cost is a piece-wise 

function of j and each piece is either constant or quadratic, with some of the quadratic 

pieces approximately linear. 

Assuming uniform distribution for j, the expected costs are equal to the areas below the 

cost curves divided by ∆\. As seen in Figure 4.1, the controlling case, and hence the 

appropriate expression for the cost function, changes as we vary j. The optimal decision ^∗ can be found by differentiating the expected cost function, but the piece-wise 

integration and differentiation lead to complexity in the analytical solutions. Moreover, 

the first order conditions, when they can be identified, are cubic equations whose 

solution is not particularly enlightening. Thus for this analysis, we optimize ^ 

numerically by means of a Golden Section Search (GSS), which does not require the 

calculation of the first derivatives but is nonetheless computationally efficient. The GSS 
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method requires the objective function to be strictly unimodal (Press et al, 1986), which 

we also established numerically by plotting the function for a wide range of cases.  

 

Figure 4.1: Delay Cost (in units of planned ground delay minutes) as a Function of j, ∆pm,�= ∆m,p�= 0.5 

4.3 Impact of Constant Demand Rate Assumption 

In this section, we will discuss the impact of constant demand rate assumption on our 

models. So far, we have assumed a constant rate for scheduled arrival demand. This is 

actually an unnecessary assumption for the no-revision model. Based on Equations Eq 

4.1 and Eq 4.2, the objective function could be expressed as:   

©[W¡¢\M] = 1∆\ c Wh ∙ lam,�M �j, ^�f
s98� aj + 1∆\ c Wh ∙ lam,�M �j, ^� + «£ + ∆pm,�¬ ∙ Wh ∙ oapm,�M �j, ^�s9��

f aj 

= 1∆\ c Wh ∙ lam,�M �j, ^�s9��
s98� aj + 1∆\ c �£ + ∆pm,�� ∙ Wh ∙ oapm,�M �j, ^�s9��

f aj 

 (Eq 4.7) 

As shown in Section 3.4, planned and incurred ground delay in the no-revision model—lam,�M �j, ^�—is equal to the initially planned ground delay—ab�^�; unplanned airborne 

delay—oapm,�M �j, ^�, only applies when j > ^—is equal to realized delay minus planned 

ground delay. The amount of realized delay in this case (late clearance case) is only a 
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function of j. Here, we denote it as aq�j�. With these, the objective function can be 

further written as: 

©[W¡¢\M] = 1∆\ c Wh ∙ ab�^�s9��
s98� aj + 1∆\ c «£ + ∆pm,�¬ ∙ Wh ∙ «aq�j� − ab�^�¬s9��

f aj 

= Wh ∙ ab�^� + «£ + ∆pm,�¬ ∙ Wh∆\ c aq�j�s9��
f aj − «£ + ∆pm,�¬ ∙ Wh∆\ ab�^��\6ST − ^� 

(Eq 4.8) 

Take the first derivative with respect to ^, we have ¯©[W¡¢\M]¯^ = Wh ∙ ¯ab�^�¯^ + «£ + ∆pm,�¬ ∙ Wh∆\ [−aq�^�] − «£ + ∆pm,�¬ ∙ Wh∆\ ∙ ¯ab�^�¯^ ∙ �\6ST − ^� − «£ + ∆pm,�¬ ∙ Wh∆\∙ ab�^� ∙ �−1� 

= Wh ∙ ¯ab�^�¯^ �1 − «£ + ∆pm,�¬ ∙ �\6ST − ^�∆\ � 
(Eq 4.9) 

Set the derivative as 0. We obtain the optimal decision on ^: 

^∗ = [\6�@ + �£ + ∆pm,� − 1� ∙ \6ST]£ + ∆pm,�  

(Eq 4.10) 

which is the same as in Eq 4.4 where a constant demand rate is assumed. Therefore, the 

optimal decision in the no-revision model is independent of the scheduled arrival 

demand function. It should though be mentioned that this applies only if ab�^� is larger 

than 0 for \6�@ ≤ ^ ≤ \6ST.  

The constant demand rate constraint can be partially relaxed in the revision models. 

Here, we assume delay starts to develop in the system from time 0 and does not vanish 

until time #̂ in the initial plan. In the GDP cancellation Models, analytical expressions 

are derived for available arrival demand after revision (G�\, j, ^�) upon an early 

clearance for four different cases (Table 3.1). To derive the expressions, we group flights 

into three types. The expression of available demand from Type I flights is independent 

of the scheduled demand function ([�\� ) but depends on the initially planned 

cumulative arrival curve (_�\, ^�) and flight time distribution. The available demand 

expressions of Type II and Type III flights depend on the scheduled demand function. It 

can be proved that these expressions will remain the same if cumulative arrival demand 

is R ∙ �j + �6�@� at time j + �6�@ and the demand rate is a constant R after j + �6�@, as 

illustrated in the plot (a) of Figure 4.2. For the extension models, the key is to find the 

expression for the cumulative arrival demand curve for flights that have already taken 

off before ^ (G��\, ^�), which allows us to determine how much unexpected delay is 
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incurred on the ground. It can be proved that the expression for G��\, ^� remains the 

same if cumulative arrival demand is R ∙ #̂ at time #̂and the demand rate is a constant R afterwards, as illustrated in the plot (b) of Figure 4.2. Overall, the analytical solutions 

we have for revision models will be valid if cumulative arrival demand is R ∙ �j6�@ +�6�@� at time j6�@ + �6�@ and the demand rate is a constant rate R afterwards. 

If the scheduled demand rate is variable outside the ranges described above, analytical 

expressions may not be derivable for G�\, j, ^� in the early clearance case or G��\, ^� in 

the late clearance case. In this case, the problem can be analyzed numerically. The 

numerical approach would still be based on the same categorization of flights that we 

have employed in the analysis presented above. 

 

Figure 4.2: Constant Demand Rate Constraint Relaxation, Revision Models 
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5 Case Study 
In this chapter, through a case study based loosely on SFO airport, we will show the 

influences of unpredictability premiums on the optimal GDP decision—^∗. Sensitivity of 

the optimal decision to the unpredictability coefficients is performed by varying the 

values of these coefficients and observing the resulting changes in ^∗. In addition, we 

also investigate the impact of scope on ^∗. Finally, we assess the cost savings from 

properly considering unpredictability premiums when determining ^∗. 

The set of parameter values in the case study is shown in Table 5.1. The AARs are 

chosen referring to the airport capacity benchmark report by the FAA (FAA, 2004). 

International flights are usually exempted in GDPs so the maximum flight time is set as 7 

hours. The cost ratio of airborne delay to ground delay is set to 2 (Mukherjee and 

Hansen, 2007). The range of j is different from day to day depending on the weather 

forecast. Here, we set the lower bound of this clearance time as 2 hours and the upper 

bound as 6 hours. Unpredictability premiums are not treated as known parameters. 

Instead, we perform sensitivity analysis to observe how these premiums affect optimal 

decisions and costs. We will first study the influences of the unpredictability costs on the 

optimal decisions by varying ∆pm,�, assuming ∆m,p�= 0, and then varying ∆m,p�, assuming ∆pm,�= 0. Then we look at the joint influence of both unpredictability cost parameters. ^∗ is generated from GSS for the revision model. For the no-revision model, ^∗ is 

calculated analytically using Eq 4.4.  

Table 5.1: Parameters used in the Case Study 

Notation Description Value Unit R  Scheduled arrival demand rate 45 Arrivals per hour WX  High airport acceptance rate 60 Arrivals per hour WZ  Low airport acceptance rate 30 Arrivals per hour �6�@  Minimum flight time 30 Minutes �6ST   Maximum flight time 420 Minutes \6�@  Lower bound for j and ^ 120 Minutes \6ST  Upper bound for j and ^ 360 Minutes £  Cost ratio of airborne delay to ground delay 2 - 

Figure 5.1 shows how the optimal decisions change with increasing unpredictability 

premium for unplanned and incurred delays—∆pm,�. In this figure, the unpredictability 

premium of planned un-incurred delay,  ∆m,p�, is set as 0. The unplanned and incurred 

delay is always airborne delay for the no-revision model, but consists of airborne delay 
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and ground delay for the revision model. The dashed curve is for the no-revision model, 

and the solid curves are for the revision model with varied exemption ratios reflecting 

different GDP scopes, which matter only when there is revision. First, it is observed that ^∗ increases with ∆pm,�. Unplanned delays are incurred in the case of late capacity 

recovery. A larger ^ reduces the chance of late clearance and thus decreases the 

probability of unplanned delays. Second, ^∗ is more sensitive to the premium for 

unplanned delays under the revision model. When ∆pm,� increases from 0 to 2, ^∗ 

increases by 60 minutes in the no-revision model and by 100 minutes in the revision 

model. In the case of early capacity recovery, some planned delay can be recovered in 

the revision model, whereas in the no-revision model, all the planned delay is incurred. 

The cost saving from early cancellation makes ^∗ more sensitive to ∆pm,�. Third, we 

notice that for a given ∆pm,�, ^∗ increases with the exemption ratio in the revision 

model. With a smaller GDP scope, GDP delayed flights are concentrated in the vicinity of 

the GDP airport and thus can arrive at the airport earlier in the case of early 

cancellation, enabling more efficient utilization of the unexpected extra capacity. With 

no penalty for early cancellation, ^∗ is increased to reduce the chance of GDP extension. 

Fourthly, ^∗ is usually, but not always, larger in the revision model. When ∆pm,� is small, 

the ability to revise encourages a more aggressive GDP, since the program can be 

extended at less cost. Lastly, we notice that values of ^∗ from the revision model are 

close to or below that from the no-revision model—240 minutes—when both 

unpredictability premiums are set as 0. When both premiums are set as 0, planned and 

un-incurred delay has no cost. Furthermore, unplanned ground delay costs the same as 

planned ground delay and unplanned airborne delay is more costly only because it is 

incurred in the air. As a result, a revision reduces the cost by saving delay in the early 

clearance case and transforming airborne delay to ground delay in the late clearance 

case. In the absence of predictability effects, the revision model yields a more optimistic 

planned clearance time (≤240 minutes) because it is easier to transform airborne delay 

to the ground in the late clearance case than to recover delay in the early clearance 

case.  
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Figure 5.1: Sensitivity Analysis of ∆pm,� on ^∗, No-revision Model and Revision Model 

with Different Exemption Ratios 

Figure 5.2 shows how the optimal decisions change with increasing unpredictability 

premium for planned but un-incurred delays—∆m,p�. In this figure, ∆pm,�= 0. There is no 

planned delay that is not incurred in the no-revision model. Therefore, the value of ^∗ in 

the no-revision model is independent of ∆m,p�. For the revision model, we first observe 

that ^∗ decreases with ∆m,p�. This is because planned un-incurred delay happens when 

there is early cancellation. Thus, when the cost associated with this delay increases, the 

value of the recovered delay from early cancellation decreases. As a result, ^∗ 

decreases. Second, we see that when ∆m,p� is low, ^∗ increases with exemption ratio. 

This is because a high exemption ratio enables more planned delay to be avoided when 

there is an early cancellation, which leads to substantial cost saving when ∆m,p� is low. In 

contrast, when ∆m,p� is high, the relationship flips—^∗ decreases with exemption ratio. 

In this situation, the primary benefit of a limited scope is to reduce airborne delay in the 

case of a GDP extension. With a smaller scope, fewer non-exempt flights are in the air at 

the time of extension, and thus GDP extension is more effective in shifting airborne 

delay to ground delay. For this reason, a smaller scope results in an earlier ^∗. Third, we 

see that ^∗ is more sensitive to ∆m,p� when the exemption ratio is larger. A higher 

exemption ratio results in more recoverable delay when there is early cancellation. Thus 

increasing the value of recoverable delay—i.e. reducing ∆m,p�—has a more pronounced 

effect on ^∗ when the exemption ratio is high.      
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Figure 5.2: Sensitivity Analysis of ∆m,p� on ^∗, No-revision Model and Revision Model 

with Different Exemption Ratios 

Figure 5.3 shows the joint influence of the two unpredictability effects on ^∗. For Figure 

5.3, we set the exemption ratio as 0.45, which is the average exemption ratio at SFO (Liu 

and Hansen, 2014). As before, we see that ^∗  increases with the unpredictability 

premium on planned un-incurred delay—∆pm,�—and decreases as planned un-incurred 

delay becomes more costly. There is also a clear interaction effect whereby °gf∗°∆±²,8∙°∆²,±8 < 0. In other words, a high cost of planned un-incurred delay weakens the 

positive relationship between ^∗ and the cost of unplanned delay, while a high cost of 

unplanned delay strengthens the negative relationship between ^∗ and the cost of 

planned un-incurred delay. The values of ^∗ for the two most extreme cases—1-unit 

premium on unplanned delay and no premium on planned un-incurred delay, and no 

premium on unplanned delay and 1-unit premium on planned un-incurred delay—

ranges from the 87th percentile of j to the 33rd percentile. If, on the other hand, both 

premiums are assumed to have the same value, then ^∗ increases from the 47th to the 

58th percentile of j as that premium goes from 0 to 1. This observation points to a 

consistent pattern in our results: ^∗ is more sensitive to the premium on un-planned 

delay than that on planned un-incurred delay. This is not surprising because in most 

cases the magnitude of planned un-incurred delay when there is early cancellation is 

much smaller than that of unplanned delay when there is extension. Thus the unit cost 

of planned un-incurred delay has less influence on the objective function. 

Finally, in Figure 5.4, we show the impact of unpredictability premiums on the optimal 

costs. On the vertical axis, ¨∗ is the optimal cost considering predictability, calculated 

using Equation 35 by setting ^ as ^∗. ¨@m is the cost considering predictability, but 

assuming that ^ is optimized ignoring predictability. The difference between these two 

costs is then the cost that can be saved by considering predictability in the objective 
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function. Figure 5.4 shows that, depending on the values of the unpredictability 

premiums, up to 13% of cost may be saved.  Similar to the results shown in Figure 5.3, 

here the cost saving is also more sensitive to the premium for unplanned and incurred 

delay. 

 

Figure 5.3: Sensitivity Analysis of ∆pm,� and ∆m,p� on ^∗, Revision Model with Exemption 

Ratio 0.45 

 

Figure 5.4: Sensitivity Analysis of ∆pm,� and ∆m,p� on Optimal Costs, Revision Model with 

Exemption Ratio 0.45 
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6 Conclusion 

6.1 Summary 

In this dissertation, we investigate predictability in strategic air traffic management with 

a focus on GDP. We start the discussion by revealing the importance of predictability 

through a survey of flight operators. According to the responses, flight operators 

appreciate predictability, less than capacity utilization but more than efficiency. Using 

the survey, we have also collected flight operators’ feedback on ATFM strategies in 

general and GDP decision setting. 

We then present the new models that incorporate predictability into the GDP cost 

optimization problem under capacity uncertainty for a single airport case. This is 

accomplished by modifying traditional GDP delay cost functions so that they incorporate 

predictability, and determining the sensitivities of the optimal planned capacity recovery 

time and associated cost to the unpredictability premiums included in the cost 

functions. To do this, we develop two stochastic GDP models: a GDP no-revision, or 

static, model; and a GDP revision, or dynamic, model considering one GDP revision. GDP 

scope, which matters only in the revision model, is also considered.  

The optimization results from the case study show that unpredictability clearly matters, 

particularly in the more realistic case where revision is allowed. Of the two 

unpredictability cost parameters, the one for unplanned delay has a stronger impact 

than the one for planned un-incurred delay. In general, a smaller GDP scope leads to a 

larger optimal planned capacity recovery time—^∗ . Depending on the values of 

unpredictability premiums, considerable cost may be saved if the decision takes 

predictability into account.  

The insights from this analysis might eventually be used to develop a decision support 

tool that traffic managers could use in determining what the planned end time for a 

GDP should be in a manner that reflects the importance of predictability to flight 

operators. Despite the idealizations used in our model, it could be adopted to a real-

world setting fairly easily, with a front end that would convert conditions in a given 

situation into the model input parameters. Alternatively, a more general model based 

on the details of the flight schedule and distribution of weather clearance time might be 

employed. This would dispense with the analytic formulas in favor of a purely numeric 

algorithm informed by the same basic concepts.  

More immediately, the model results can guide traffic managers about when to be 

optimistic, pessimistic, or neither in their assumptions about clearance times. For 

example, Figure 5.1 demonstrates that when there is no cost for planned, un-incurred 

delay, and with a high exemption ratio (small GDP scope), a planned clearance time on 

the late side—an hour or so after the expected value of the actual clearance time—is 
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appropriate. For most plausible values on the unpredictability premiums, some degree 

of pessimism about when the weather will improve is called for, particularly when there 

is a large fraction of exempt flights. Interestingly, data for SFO and EWR (Liu and 

Hansen, 2014) reveal that GDPs end earlier than the initial plan about 80% of the time, 

suggesting that air traffic managers may already know that the cost function includes a 

premium on unplanned delay. 

More broadly, our analysis highlights the interplay of scope and unpredictability 

premiums in determining the appropriate risk posture to take in planning GDPs. With a 

high unpredictability premium for unplanned delay, the analysis suggests a more 

conservative plan—i.e. a later ^∗—when the GDP scope is smaller. This is because 

unexpected extra capacity can be utilized more efficiently in the case of early clearance 

with a smaller scope, and thus a conservative decision should be made to reduce the 

chance of GDP extension. Conversely, the scope matters relatively little in the case 

where planned, un-incurred delay has a high cost relative to unplanned delay. 

6.2 Model Limitations and Extensions 

A potentially restrictive assumption in our models is that all the flights within the GDP 

scope can be delayed as needed. This allows the assumption of a uniform distribution of 

flight time for GDP affected flights. If some flights within the scope are in the air at the 

GDP decision time, then these flights needed to be exempted from the GDP too. In 

other words, two exemption rules will be applied: exemption by scope and exemption 

by departure status. This alters the distribution of flight time for non-exempt flights. Our 

current models are valid only when the maximum flight time of the GDP delayed flights 

is smaller than GDP lead time—GDP start time minus GDP decision time. Research is 

being conducted to overcome this limitation.  

Another desirable extension of the models is to consider GDP decision time as a variable 

and explore its impact on the cost function. In the current models, we consider GDP 

decision time as fixed. Modeling this time as a variable will enable us to explore the 

tradeoffs between lead time and accuracy of information. An early decision gives a long 

lead time which may facilitate the mitigation actions, but probably involves large 

uncertainty and a greater chance of major revisions. On the contrary, a more timely 

decision can provide more accurate information but this will be at the expense of a 

shorter time window to adapt to the decision. Considering this tradeoff between 

timeliness and accuracy will add one more dimension to tradeoffs involving 

predictability. 

Finally, the models can be extended to consider GDP revision time as a decision variable, 

particularly in the case of extension. In the extension case, the traffic managers may 

revise the program before the planned capacity recovery time to avoid airborne delay. It 

is then most likely that the actual recovery time is unknown at the GDP extension time. 
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A possible refinement of the current models is to update the capacity recovery time in 

the case of extension as the upper bound of the possible capacity recovery times. If so, 

the GDP will be finally cancelled earlier, as is commonly observed in practice. Enhancing 

the model to include the succession of a GDP extension and a subsequent early 

cancellation would enhance its practical value, particularly if it can also guide managers’ 

decisions about when to extend the program.  

6.3 Predictability in Strategic Air Traffic Flow Management 

Through a survey of flight operators, this dissertation confirms the importance of 

predictability in evaluating GDP performance. Using developed models, the work further 

reveals that GDP optimal decisions with predictability considered in the cost function 

can be very different from the sub-optimal ones without considering predictability. 

These urge the need to consider predictability in the decision-making process of GDPs. 

One may wonder whether similar stories will be told for other strategic ATFM tools, 

such as AFP and TMA. While further research is required to find the answer, this 

dissertation helps pave the way toward the broader objective of incorporating 

predictability in strategic ATFM.   
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Appendix: Summary of Notations in the 

GDP models 
 

Notation Description \:  time; GDP start time is defined as the origin R:  scheduled arrival demand rate WX�WZ�:  planned high (low) airport acceptance rate (AAR) ^:  planned capacity recovery time 

#̂:  planned delay clearance time j:  actual capacity recovery time j#:  ideal delay clearance time if perfect information were available at the decision time �6ST��6�@�:  upper (lower) bound of the flight time R�:  exempted demand rate �r��m�: GDP scope, maximum flight time of the GDP delayed flights \6ST�\6�@�: upper (lower) bound of the capacity recovery time [�\�: scheduled cumulative arrival curve, providing scheduled arrival time _�\, ^�: planned cumulative arrival curve in the initial GDP, basis for assigning the initial 

Controlled Time of Arrival (CTA) L�\, j�: ideal cumulative arrival curve assuming j were known at the decision time G�\, j, ^��G��: revised cumulative arrival demand (demand rate) for all flights when GDP is 

cancelled earlier and infinite capacity is assumed Gu�\, j, ^��Gu��: revised cumulative arrival demand (demand rate) for Type I flights when GDP is 

cancelled earlier and infinite capacity is assumed; Guu�Guu� � and Guuu�Guuu� � are 

defined similarly W�\, j�: available capacity rate function x�\, j, ^��x��: revised cumulative arrival curve (arrival rate), basis for assigned the revised time 

slots G��\, j, ^��G�� �: planned cumulative arrival curve in the initial GDP for flights that have taken off by 

time ^, GDP extension case am�^�: planned ground delay in the initial GDP aq�j, ^�: realized delay at the end of the GDP lam,�M �j, ^�: planned and incurred ground delay, no-revision model oapm,�M �j, ^�: unplanned and incurred airborne delay, no-revision model 
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lam,��j, ^�: planned and incurred ground delay, revision model lam,p��j, ^�: planned un-incurred ground delay, revision model lapm,��j, ^�: unplanned and incurred ground delay, revision model oapm,��j, ^�: unplanned and incurred airborne delay, revision model W¡¢\�j, ^� (W¡¢\M): delay cost function, revision models (no-revision model) ¨�^��¨M�^��: objective function, revision models (no-revision model): expected cost Wh: unit cost of planned and incurred ground delay £: cost ratio of airborne delay to ground delay ∆pm,�: additional cost of unplanned delay expressed as a fraction of the unit cost of 

planned ground delay ∆m,p�: cost ratio of planned un-incurred delay to planned ground delay ^∗: optimal decision on planned capacity recovery time, revision model 
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