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Abstract

Morphology-dependent optical anisotropies in organic semiconductors

by

Steven J. Brown

Organic semiconductors tend to have highly ordered, anisotropic morphologies. These

structural anisotropies lead to optical anisotropies which we have shown directly affect

the efficiency of photonic devices such as organic photovoltaics (OPVs). Measuring the

direction-dependent optical properties of organic films would thus give unique insights

into film structure and inform the design of organic optoelectronics. In this work we de-

velop momentum-resolved spectroscopies to precisely measure the emitting and absorbing

dipole strengths as well as complex refractive indices of uniaxial organic films. We then

demonstrate how these techniques can be used to investigate film morphology by mea-

suring the tilt angle and processing-dependent structural changes in the polymer system

P(NDI2OD-T2). Finally, we show how molecular orientation impacts device properties

by studying changes in surface plasmon dispersion and photoluminescence enhancement

in films of the small molecule p-SIDT(FBTTh2)2 on gold.
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Chapter 1

Introduction

Organic optoelectronics have seen sustained interest for over half a century. They are

inexpensive to manufacture[1], made from abundant materials, eminently chemically tun-

able for a variety of applications[2], and potentially physically flexible[3]. The past fifteen

years in particular have seen a resurgence of research into organic photovoltaics (OPVs).

OPVs have held great promise for next generation renewable energy. Yet even after best-

in-class lab cells have surpassed the 10% efficiency milestone[4] long claimed to be the

bar for commercialization, OPVs have not seen widespread use outside of the laboratory.

There is more work to be done for OPVs to reach their potential.

It has become clear that for continued improvement the relationship between material

morphology and electronic properties must be understood[5, 6, 7]. Organic semiconduc-

tor molecules typically have a planar or rod-like structure. These anisotropic molecules

then self-assemble into films which in turn have anisotropic electric and optical prop-

erties. To achieve the highest possible efficiency, these anisotropies must be taken into

account when designing devices. Prior work has shown charge transport anisotropy to

strongly affect final device performance.[8] My colleagues and I have calculated that op-

tical anisotropy also has strong effects on final device performance.[9] Using analytical
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Introduction Chapter 1

calculations and finite-difference time-domain simulations, we compared two orientations

of the benchmark polymer poly(3-hexylthiophene-2,5-diyl) (P3HT): the as-spun mor-

phology with polymers lying in the plane of the substrate and a model orientation with

polymers perpendicular to the substrate. We looked at both surface plasmon polariton

(SPP) and gap-mode light trapping architectures. We found significant changes to both

absorption and the effective complex refractive index depending on polymer orientation.

In these ultra-thin light trapping architectures, reorientation of P3HT could by itself

increase light absorption over the solar spectrum by greater than a factor of two.

Furthermore, while there have been many previous studies on charge transport

anisotropies [10, 11, 6], there has been less work looking at optical anisotropies. In partic-

ular, measuring the dielectric tensor in the direction perpendicular to the film plane (the

so-called out-of-plane direction) is challenging using traditional techniques. Most of these

techniques probe the material with light incident from air. Because light bends towards

the surface normal when entering a higher index medium, the probing light propagation

direction ends up near-normal in the material of interest with an electric field pointing

almost entirely in the plane of the sample (in-plane). For example, light incident at a

grazing incidence of 80° from air will propagate at 41° upon entering a material with a

refractive index n = 1.5. This results in low sensitivity to out-of-plane optical constants

which are much more important than in-plane constants when designing solar cells with

light trapping architectures.

In this work we develop momentum-resolved spectroscopy techniques to investigate

optical anisotropies in organic films. These techniques are able to precisely measure

absorption, photoluminescence, and reflection as a function of light momentum (angle).

By using high numerical aperture (NA) optics, high momenta modes are accessed in

the material of interest leading to greater sensitivity to out-of-plane optical constants.

Collaborators and I have demonstrated in detail that compared to variable angle spec-
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troscopic ellipsometry (VASE),[12] the current state of the art technique for measuring

anisotropic optical constants, momentum-resolved spectroscopy is more sensitive to out-

of-plane optical properties and enables free-parameter free, or “model blind”, fitting of

optical constants.[13] In particular, building ellipsometric models for anisotropic organic

materials is especially challenging: model free parameters can often exceed 30 or more

leading to a huge parameter space to fit over with possibly many local minima that do

not accurately describe the material in question.

Chapter 2 will detail the concepts behind momentum-resolved spectroscopy, how

our apparatus is constructed, how various measurements are performed, and how to

analyze the resulting data to extract relevant material properties. In particular, we extend

previous momentum-resolved spectroscopy techniques, which only resolved emitted light

momenta, with the ability to precisely choose the input light momentum as well. This

enables new spectroscopies for studying absorption and reflection anisotropies.

In Chapter 3 we then apply these momentum-resolved techniques to discover both how

anisotropic optical properties can reveal subtle structural information (e.g. crystallinity)

as well as how structural anisotropy leads to anisotropic optical properties such as the

dipole tilt angle.

In Chapter 4 we experimentally demonstrate how optical anisotropy affects device

properties. We show how molecular orientation affects optical coupling, by measuring

changes in surface plasmon polariton mode dispersion and photoluminescence enhance-

ment as a function of film morphology.

Chapter 5 discusses potential future avenues for research. Many of the areas are

enabled by our apparatus which resolves both output and input light momenta. In

particular the rich set of problems that can be tackled using structured light input will

be discussed.

3
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1.1 Permissions and Attributions

1. The content of Chapter 3 is the result of a collaboration with Ruth A. Schlitz,

Michael L. Chabinyc, and Jon A. Schuller, and has previously appeared in Physical

Review B.[14] It is reproduced here with the permission of the American Physical

Society: https://www.aps.org/.
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Chapter 2

Momentum-resolved imaging and

spectroscopy

2.1 Introduction

Investigating anisotropic optical properties requires the ability to study how light

interacts with a sample as a function of angle, i.e., measuring the incident, reflected,

or emitted light intensity versus angle. There are three main ways to do this: tilt the

sample, move the detector, or place a 2D detector in the Fourier plane of the sample. It

is challenging to get high angular resolution when simply tilting the sample and it’s more

complicated to extend the measurement, such as adding a prism to access grazing angles

of light in the material. Moving the source and detector on arms (i.e. a goniometer) allows

for a more precise measurement of the angle and it’s easier to modify the experiment.

Fourier space measurements go a step further. By placing a 2D detector in the Fourier

plane, this technique measures all angles simultaneously at high resolution and, by using

a high numerical aperture (NA) objective, can measure light at angles greater than the

critical angle in the sample. Spectroscopies based on this technique are called momentum-
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resolved as they resolve the momentum (angle) of the input or output light. As mentioned

in Chapter 1, momentum-resolved spectroscopies have a number of advantages over state-

of-the-art variable angle spectroscopic ellipsometry (VASE) which is typically used for

studying anisotropies in organic semiconductors.

Fourier space spectroscopy works by placing the source or detector in the back focal

plane (BFP) of an imaging objective. Points in the BFP correspond to specific momenta

of light incident or emitted from a sample as opposed to specific positions of light usually

detected in a traditional imaging setup. By correctly placing an additional lens in an

imaging setup, the BFP can be re-imaged at a detector or source. We call this re-imaged

plane a conjugate BFP of the objective. This technique is extremely versatile and by

adding a polarizer, spectrometer, or pulsed source it can be extended with polariza-

tion, energy, or time resolution. Indeed, Fourier space imaging is the momentum space

equivalent of real space imaging and supports the same multitude of spectroscopies.

These momentum-resolved methods have been used to study a broad range of

phenomena including the orientation of single molecules[15], multipole emission in

nanoparticles[16], magnetic dipole emission in phosphors[17], intra- and intermolecular

excitons[18], radiation leakage in surface plasmon polariton waveguides[19], and radia-

tion patterns of nanoantennas[20] among others. By extending previous techniques with

momentum-resolution for the incident light source, we can now study absorption and re-

flection as well as emission in all of these systems. We can probe how properties in these

systems change when specific angles or modes are pumped. This enables, for example,

exciting an isolated exciton type and watching how it decays into potentially multiple

exciton species. Many of these potential applications are discussed in Chapter 5, Outlook

and future work.

Momentum-resolved photoluminescence (mPL), momentum-resolved photolumines-

cence excitation (mPLE), and momentum-resolved reflectometry (mR) are of particular
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interest for studying organic semiconductors. mPL measures the output PL as a func-

tion of angle and can be decomposed into PL spectra for emitting dipoles in the plane

of the sample (in-plane) and perpendicular to the sample plane (out-of-plane). mPLE

measures total PL as a function of incident light angle and energy. The amount of PL is

used as a proxy for the amount of light absorbed, and mPLE can be thought of as the

absorption equivalent of mPL. mR measures the amount of light reflected as a function

of incident angle and energy. In-plane and out-of-plane complex dielectric functions can

be extracted by fitting mR data.

In this chapter we will discuss how to implement these spectroscopies. First we’ll

discuss the apparatus we constructed and how it can be configured for different types of

experiments. Along the way I will point out key features and design considerations for

performing high-resolution measurements. Then we will step through how to analyze the

resulting data to extract intrinsic material properties.

2.2 Instrumentation

To perform a wide range of momentum-resolved spectroscopies, including first-ever

mPLE and mR measurements, we built an apparatus particularly well-suited for these

techniques. This section discusses the various components of the instrument, configu-

rations for different measurement techniques, and practical considerations for achieving

high resolution measurements.

Figure 2.1 shows a diagram of the constructed setup while Figure 2.2 displays a

corresponding photograph. Figures 2.3 and 2.4 give a more detailed view of the input

and output optics including spacings. Crucially, lenses are arranged such that both the

light source and analyzing spectrometer are in BFPs conjugate to the sample objective

BFP. This allows for momentum resolution on both the input and output. Additionally

7
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Detector

Optical fiber

(supercontinuum laser)

Translation stage

Back focal plane

NA 1.3

Short pass filter Half-wave plate

= Tube lens

Long pass filter

Polarizer

Dichroic Mirror

Mirror

Sample

Polarizer

Back focal plane

Back focal plane

Figure 2.1: The constructed momentum-resolved setup. For momentum-resolved pho-
toluminescence, the supercontinuum excitation source along with the half-wave plate,
polarizer, and first tube lens were replaced with a collimated LED. For momentum-re-
solved reflection the filters are removed and the dichroic mirror is replaced with a 50/50
mirror. (Reproduced from Brown[14])

we resolve the energy on the input by using a supercontinuum source (SuperK Extreme

EXR-15) with monochromator (NKT Photonics SuperK Select IR2 Vis/NIR) and on the

output by using a spectrometer (Princeton Instruments IsoPlane SCT320) and attached

charge coupled device (CCD) camera (Princeton Instruments PIXIS 1024BRX). This

allows us to simultaneously measure energy and momentum and enables so-called energy-

momentum spectroscopies such as mPLE and mPL. The polarization optics on the input

and output discriminate between p-polarized and s-polarized light which leads to greater

differentiation between optical dipoles in the sample plane versus perpendicular to the

plane. By using a 1.3 numerical aperture (NA) objective the region of high momenta

8
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Figure 2.2: Picture of the constructed momentum-resolved setup. A mirror is slid
into place to switch from the fiber-coupled supercontinuum source to an LED source.

past the critical angle, where much of the information to distinguish dipole orientation

exists, can be measured.

There are multiple possible configurations of the apparatus depending on the mea-

surement being performed. Figure 2.1 shows a generic configuration with momentum

resolution of both the input and output light.

To configure the setup for mPLE, the analyzing polarizer is removed and all PL

is collected. The diffraction grating in the spectrometer is set to the zero-order mode

such that there is no separation of light based on wavelength and the sum of counts

on the CCD is recorded, essentially turning the detector into a simple photodiode. In

this arrangement the fiber-coupled light source is a point source in a BFP conjugate to

the objective BFP. By moving the fiber in this plane via a translation stage (driven by

Newport Picomotor actuators), the incident momentum, parallel to the sample, of the

light is varied. Light at normal incidence (k‖ = 0) excites only in-plane optical dipoles,

while p-polarized light at the critical angle (k‖ = k0) excites only out-of-plane dipoles.

9
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Figure 2.3: Picture of input optics with distances labeled.

To configure the setup for mPL, the fiber, polarizer, half-wave plate, and first tube lens

are replaced with a collimated LED. This uniformly illuminates momentum space. The

emitted light is then analyzed with a polarizer and spectrometer. With this measurement

it is possible to get independent PL spectra and effective emitting dipole strengths for

in-plane and out-of-plane oriented dipoles.

To configure the setup for mR, the filters and analyzing polarizer are removed and

the dichroic mirror is replaced with a 50/50 mirror. Additionally, due to the high laser

brightness it is sometimes necessary to add optical density filters to the input. By scan-

10
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Figure 2.4: Picture of output optics with distances labeled. The periscope is only
necessary to shift the beam higher with respect to the table since the exit of the
microscope and entrance of the spectrometer are at different heights.

ning the output fiber in momentum space, it is possible to construct a complete reflection

versus momentum curve. Alternatively, by placing a stack of diffuser films in front of the

laser fiber, it is possible to uniformly illuminate momentum space, thereby allowing for

measurement of the entire reflection versus momentum curve in a single measurement.

Typically, one also varies the input wavelength to measure how the reflection versus

momentum curves change with wavelength.

There are several considerations for achieving high resolution, low aberration

11
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momentum-resolved measurements, some of which are the same as real space measure-

ments and several that are unique to momentum space. Importantly, momentum space is

the Fourier transform of real space. Light that has a well-defined position in real space is

extremely spread out in momentum space and vice versa. This has the immediate conse-

quences when trying to adapt a microscope setup built for traditional real space imaging.

Light that is focused in momentum space will be collimated and spread out over a large

area as it travels between the conjugate BFP of the source and the BFP of the objective.

Narrow tubes and apertures used to cut down on noise in real space measurements can

clip the collimated light beam in momentum space measurements. Where possible, these

apertures and narrow tubes should be removed. Ideally, optics that are large compared

to the collimated beam footprint should be used to avoid clipping and maintain a wide

range of accessible momenta.

Microscope objectives are generally not optimized for momentum space measurements

and there are several momentum-space-specific aberrations possible (see Kurvitz[21] for

an in-depth discussion of these aberrations). The most prominent of these is momentum

space vignetting where high momenta light is reduced in intensity. This vignetting should

be measured with a well-know reference (such as quartz reflection) and corrected for in

data analysis either only using data below a certain momenta or by adjusting the intensity

to account for the reduction due to the objective. For the lowest aberration, high NA

Plan Apo objectives should be used while total internal reflection fluorescence (TIRF)

objectives should be avoided.[21]

Similar to real space measurements, momentum-resolved measurements should be

well focused. See Appendix B for detailed instructions on correctly focusing and aligning

the apparatus. Having optics out of focus makes separating light from in-plane and

out-of-plane dipoles challenging as they are mixed at the “critical angle” in an out of

focus BFP. In particular, achromatic optics should be used to maintain a sharp BFP

12
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across wavelengths. Additionally, polarization preserving and insensitive optics should

be used throughout to ensure s-polarized and p-polarized light have the same BFP and

to preserve the polarization which helps discriminate in-plane versus out-of-plane dipoles

in mPL and mPLE.

In the case of using a CCD camera to record the output light, one must be aware of

electronic noise. There is typically a base noise level whenever data is read out of the

camera. To keep the signal-to-noise ratio high, data should be read out as infrequently

as possible (i.e. long exposure times with a single exposure instead of short exposure

times with multiple exposures). Additionally, the background noise due to both stray

light and electronics should be subtracted during data analysis.

2.3 Analysis

Extracting relevant material parameters from observed data requires a careful anal-

ysis taking into account how the data is produced. The theory for this modeling has

already been well-developed by Schuller[18] and Taminiau[17] and readers are referred

to the supplementary information of those papers for a complete treatment of the the-

ory. With an optical model of data generation in hand, it is possible to deterministically

fit momentum-resolved spectroscopy data to derive intrinsic material properties such as

anisotropic complex refractive indices, emission and absorption dipole strengths, and

molecular orientation.

Here we will focus on practically implementing the optical model and using it for a

complete analysis of the in-plane and out-of-plane effective dipole strengths from mPL

and mPLE. For extracting anisotropic complex refractive indices using mR, please refer

to DeCrescent.[13]

Momentum-resolved photoluminescence analyzes the energy and momentum of emit-
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Figure 2.5: A raw back focal plane image of photoluminescence passing through a
y-oriented polarizer.

ted light. By setting the detector in a conjugate BFP to the objective, a momentum-space

image of the PL (Figure 2.5) can be taken. An analyzing polarizer is set in path to ad-

ditionally discriminate light emitted by in-plane and out-of-plane dipoles. By passing a

thin vertical sliver of light in the BFP through a slit into a spectrometer, light can be

separated into wavelength along the x-axis and k‖ momentum along the y-axis (Figure

2.6).

While the wavelength for each column in Figure 2.6 is known from prior calibration of

the spectrometer, the momentum still needs to be labeled. The PL extends to NA limit

of the objective (i.e. a 1.3 NA objective will capture PL to ±k‖/k0 = 1.3); this fact can

be used to label pixels with their associated momenta. There are many ways to find the

edges of PL for the momentum labeling. Appendix A.1 contains the code to implement a

simple sliding window algorithm for this purpose. The red dots in Figure 2.7 are example

PL edges for a single wavelength column determined using this algorithm.

Once the pixels are labeled, one can decompose the counts into those coming from

14
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Figure 2.6: A raw energy-momentum spectrum image. Light is separated by k‖ along
the y-axis and wavelength along the x-axis.

0 250 500 750 1000
y pixel

0

2

4

Co
un

ts
 (a

.u
.)

Figure 2.7: Pixel intensities for a column from an energy-momentum spectrum im-
age. The red circles denote the edge of photoluminescence which have momentum
±k‖/k0 = NA

in-plane and out-of-plane dipoles with a three layer model (see Appendix A.2 for an

implementation of the model). The shape of the counts versus momentum curves are

different for in-plane and out-of-plane dipoles. This leads to a unique linear combination

of in-plane and out-of-plane counts that best fit the data (see Figure 2.8). This decom-

position is implemented in the fit dip strengths method in Appendix A.3. Note that

in the case of mPL measurements the three-layer model includes a 1
cos θ

= n∗k0
kz

correc-

tion for apodization (for θ, n, kz in the collection layer, typically a quartz substrate).
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Here apodization refers to intensity variations due to each pixel in the BFP capturing a

different solid angle of PL. High momentum pixels capture a larger swath of solid angle

resulting in isotropic emitters having non-isotropic BFP intensity images which needs to

be accounted for.
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Figure 2.8: Decomposition of photoluminescence counts into counts coming from in–
plane (IP) and out-of-plane (OP) dipoles.

From this decomposition one can divide out the density of optical states and extract

the effective emission dipole strengths for in-plane and out-of-plane dipoles. The effec-

tive dipole strength is the product of the number of emitting dipoles and the oscillator

strength of each dipole in a given direction. Plotting the effective dipole strengths at

each wavelength (Figure 2.9) gives an “intrinsic” spectrum of the material. This is a rich

source of information containing details such as the spectra of different excitations[18],

the orientation of the transition dipole[14], and the relative number of in-plane and out-

of-plane dipoles (Chapter 4).

Momentum-resolved photoluminescence excitation is the absorption equivalent of

mPL. In mPLE the total PL is measured as the momentum and wavelength of the
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Figure 2.9: In-plane (IP) and out-of-plane (OP) effective dipole strengths.

incident light is varied. See Figure 2.10 for a BFP image of a typical laser spot used

in mPLE. Analyzing mPLE data is similar to mPL but for each combination of mo-

mentum and wavelength a single PL image is recorded and the total PL is calculated

by summing counts over all pixels. By combining many of these images an intensity

versus momentum curve is created. To then find dipole strengths versus wavelength, an

intensity versus momentum curve must be built for each wavelength. It is important to

note that mPLE does not have an apodization correction since the input power is fixed

(it will just be more spread out in solid angle at higher momenta) and the total PL is

collected. In general mPLE is more challenging than mPL: not only must many more

images be collected, but the optical constants used in the three layer model vary greatly

across the absorption region making the modeling more challenging.

It is important to properly subtract the background when performing mPLE. Due to

subtle but significant background drift over time, the mean background counts should

be calculated for each PL image. One effective method for calculating this background
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Figure 2.10: Back focal plane image of typical incident laser spot used for momen-
tum-resolved photoluminescence excitation. Modified from Brown.[14]

is to find the mean counts per pixel in a “window frame” of the image outside the PL

region (see Figure 2.11). This mean background count is then subtracted from each pixel

before summing over all pixels to get the total PL counts for the image.

2.4 Conclusion

In this chapter we introduced momentum-resolved spectroscopies. These spectro-

scopies place either a source or detector in the back focal, or Fourier, plane of an imaging

objective and are advantageous compared to conventional variable angle spectroscopic

ellipsometry in studying optical anisotropies in organic semiconductors. While discussing

the construction of our apparatus in detail, we highlighted salient points in the design of

momentum-resolved instruments including the inherent trade-off between spot size in real

space and momentum space. Our apparatus resolves input as well as output momentum

which immediately enables new spectroscopies and areas of investigation particularly in

the pumping of specific excitations. The measurements of momentum-resolved photolu-
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Figure 2.11: To calculate mean background counts per pixel in a back focal plane
image, a window frame, denoted here by the lighter outside border, outside the PL
region is used.

minescence, momentum-resolved photoluminescence excitation, and momentum-resolved

reflectometry and their analysis was discussed. These are used to measure emission dipole

orientation and strength, absorption dipole orientation and strength, and anisotropic op-

tical constants, respectively.
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Chapter 3

Morphology-dependent optical

anisotropies

3.1 Abstract

Organic semiconductors tend to self-assemble into highly ordered and oriented mor-

phologies with anisotropic optical properties. Studying these optical anisotropies provides

insight into processing-dependent structural properties and informs the photonic design

of organic photovoltaic and light-emitting devices. Here, we measure the anisotropic opti-

cal properties of spin-cast films of the n-type polymer P(NDI2OD-T2) using momentum-

resolved absorption and emission spectroscopies. We quantify differences in the optical

anisotropies of films deposited with distinct face-on and edge-on morphologies. In par-

ticular, we infer a substantially larger out-of-plane tilt angle of the optical transition

dipole moment in high temperature annealed, edge-on films. Measurements of spectral

differences between in-plane and out-of-plane dipoles, further indicate regions of disor-

dered polymers in low temperature annealed face-on films that are otherwise obscured

in traditional X-ray and optical characterization techniques. The methods and analysis
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developed in this work provide a way to identify and quantify subtle optical and struc-

tural anisotropies in organic semiconductors that are important for understanding and

designing highly efficient thin film devices.

3.2 Introduction

Organic semiconductors hold great promise in optoelectronic applications such as

organic photovoltaics (OPVs)[22] and organic light emitting diodes (OLEDs)[23] due

to their ease of processing (potentially leading to high-throughput and low-cost manu-

facture) and molecular tunability. Organic semiconductors typically self-assemble into

highly ordered and oriented morphologies. As such, great strides have been made in char-

acterizing and optimizing morphologies[24, 25, 26, 27, 28], with a particular focus on the

electrical[29, 30] and optical[31, 32, 33] properties relevant to devices. As most morpholo-

gies are highly oriented, it is important to study the variation of these properties along dif-

ferent directions. For instance, anisotropic electrical properties of organic semiconductors

directly impact charge transport[10, 11, 6] and must be accounted for in device design[8].

Optical spectroscopies such as ellipsometry[34, 12], polarized absorption[35], polarized

photoluminescence[36], and Raman[37, 38], similarly reveal anisotropic optical properties

related to the refractive index, absorption, emission, and vibrational modes that signif-

icantly impact the design and efficiency of light-emitting[39, 40] and photovoltaic[41, 9]

devices.

Recently, momentum-resolved photoluminescence (mPL) measurements have pro-

vided new insight into magnetic dipoles in atomic systems[17], intra- and inter-molecular

excitons in H-aggregates [18], and waveguide exciton polariton modes [42]. Here, we

extend these techniques to study absorption as well as emission properties in highly

ordered polymer films. We study the molecule P(NDI2OD-T2) which adopts distinct
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’edge-on’ or ’face-on’ orientations depending on processing conditions. By characterizing

the optical anisotropies of both morphologies, we determine the average orientation of

the transition dipoles, and resolve subtle differences in morphology (in both crystalline

and non-crystalline regions). These results reveal structural features previously invisible

to diffraction techniques and suggest ways to increase device performance through film

morphology optimization.
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N       O       O       
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C       8       H       17       

S       

S       
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a) b)

c) d)

Face-on Edge-on

Figure 3.1: a)The chemical structure of P(NDI2OD-T2). b) Geometry and transition
dipole moment of a P(NDI2OD-T2) molecule, determined with DFT calculations. The
transition dipole moment (yellow arrow) lies in the plane of the NDI unit and is angled
slightly with respect to the backbone. The alkyl side-chains have been truncated for
visibility. c) A view down the backbone showing the relative twist of thiophene units
with respect to the NDI2OD unit. While the subunits are twisted for both isolated
and crystalline polymer, the exact angle in the solid state is dependent on morphology.
d) When annealed at 150°C or 305°C P(NDI2OD-T2) takes on a face-on or edge-on
morphology, respectively. The planes shown refer to the orientation of the NDI2OD
planes.

P(NDI2OD-T2), sold by Polyera as N2200, is an n-type polymer. See Fig. 3.1(a) for

its structural formula and Fig. 3.1(b,c) for geometry. As n-type semiconducting polymers
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are rare, P(NDI2OD-T2) has been the subject of extensive morphology[43, 44, 45, 46,

47, 48, 49] and charge transport[50, 51, 52, 53, 54] studies.

P(NDI2OD-T2) is a particularly interesting system for studies of structure-function

relations because its molecular orientation can be controlled through processing. An-

nealing films at a low temperature (150°C) results in a face-on morphology where the

pi-stacking direction is perpendicular to the substrate (see GIWAXS, Appendix C.2,

Fig. C.S1). In contrast, a high temperature anneal (305°C) results in an edge-on

morphology with both the pi-stacking direction and polymer backbone parallel to the

substrate.[55, 56] These two alternate morphologies are illustrated schematically in Fig.

3.1(d). Elucidating the effects various morphologies have on film function and device

performance is on-going.

There have been a number of experiments linking processing conditions to optical

properties. The excitations that lead to absorption and emission are thought to arise

primarily from the S0 → S1 ground state to first excited state transition on individual

polymer chains.[46] Previous optical studies of P(NDI2OD-T2) in various solvents as well

as in thin films reveal subtle differences in absorption and photoluminescence (PL) spec-

tra depending on the degree of aggregation.[57, 58, 59] However, the dipole orientation

seems largely insensitive to long-range or pi-pi interactions[57] and is expected to largely

match the transition dipole moment of a single molecule. In this case the TDM is tilted 8

degrees within the NDI plane (Fig. 3.1b) and we thus expect a purely in-plane TDM for

face-on films and a TDM partially angled out-of-plane (8 deg) for edge-on films. Using

rubbing, directional epitaxial crystallization, or epitaxy on oriented substrates researchers

have defined a preferential in-plane alignment of the polymer chains.[35, 48] Polarized

absorbance measurements then reveal in-plane optical anisotropies: the films primarily

absorb light with electric fields primarily polarized along the chain axis.[35, 48] These

studies demonstrate significant optical structure-function relationships. However, these
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measurements of optical anisotropies require specialized processing techniques to achieve

in-plane alignment and are insensitive to out-of-plane oriented optical properties. In this

paper we use momentum-resolved spectroscopies to measure the anisotropic optical prop-

erties parallel vs. perpendicular to the substrate in films of P(NDI2OD-T2) deposited

with standard processing conditions and exhibiting no preferred in-plane alignment over

optical length scales.

3.3 Results and Discussion

3.3.1 Momentum-resolved spectroscopy

P(NDI2OD-T2)

Quartz

Immersion oil

Out-of-plane direction

θk
 =

 n oil
k 0

θ

k = n
oil k

0

p-pol.

s-pol.

Figure 3.2: Schematic showing the measurement geometry. In mPLE, light is incident
on the sample with a specific value of the in-plane momentum, k||. In mPL light is
emitted from the sample and measured as a function of k||. The in-plane momentum
is related to the angle of propagation as, k|| = noilk0 sin θ. Both p-polarized and
s-polarized light are independently measured for both techniques.

Momentum-resolved spectroscopies are a suite of techniques particularly well-suited

to measuring the orientation of emitters, absorbers, and scatterers. In these techniques,

variations in, e.g., PL, absorption, reflection, or scattered light intensity are measured as

a function of the photon’s momentum vector (~k). These techniques utilize imaging in the

back focal plane (Fourier plane) of a microscope objective (see Appendix C.1.1). Every

point in the back focal plane corresponds to an angle of light incident on or emitted
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a) b)

Figure 3.3: (a) False color back focal plane image of y-polarized photoluminescence
(750-1050nm integrated) from a P(NDI2OD-T2) film. Vertical (horizontal) linecuts
through the center correspond to p-polarized (s-polarized) traces. (b) False color back
focal plane image of reflected laser light, demonstrating momentum-resolved excitation
at kx = −0.02k0, ky = 0.96k0. By moving the output laser fiber within this plane
we control the incidence momentum vector of our excitation source. The inset is a
magnified image of the laser spot.

from the sample (θ = arcsin
k‖
nk0

, φ = arctan ky
kx

where k‖ =
√
kx

2 + ky
2); see Fig. 3.2

for the measurement geometry. For example, in Fig. 3.3(a) we plot the p-polarized mPL

from a thin film of P(NDI2OD-T2). Following previously established procedures, [18]

we decompose mPL measurements like these into contributions from in-plane and out-of-

plane oriented emission dipoles. Similarly, we also extend this basic technique to measure

the orientation of absorption dipoles. Incident light is focused to a point in the back focal

plane, Fig. 3.3(b), such that it impinges the sample at a specific angle. By moving this

focused light source within the back focal plane, we have complete control of the incident

photon momentum vector and can measure momentum-resolved absorption. Both PL

and absorption measurements are analyzed with simple electromagnetic models, detailed

below.

Because the emission (and absorption) distribution of a dipole is anisotropic (∝

25



Morphology-dependent optical anisotropies Chapter 3

a) b)

Figure 3.4: (a) Calculated momentum-dependent p-polarized luminescence expected
from equal magnitude in-plane (blue, solid) and out-of-plane (red, dashed) emitting
dipoles. (b) P-polarized photoluminescence at 865nm of P(NDI2OD-T2) annealed at
150°C decomposed into counts due to in-plane and out-of-plane dipoles.

sin2 θ), dipoles that are oriented in the plane of the sample (in-plane for the rest of

the article) emit light into (or absorb light from) different angles than dipoles oriented

perpendicular to the sample plane (out-of-plane). These differences are further amplified

by reflections and interference in multi-layered geometries. Using a three-layer optical

model, we calculate the p-polarized momentum-dependent PL intensity from purely in-

plane (blue, solid) or out-of-plane (red, dashed) dipoles in a P(NDI2OD-T2) film, Fig.

3.4(a). The distributions are particularly different at normal incidence, where only in-

plane (IP) dipoles emit, and at the critical angle, where only out-of-plane dipoles (OP)

emit. We use these calculations to decompose measured momentum-resolved PL into

contributions from IP and OP dipoles, Fig. 3.4(b). The 2D back focal plane PL image is

focused to the entrance slit of an imaging spectrograph where it is separated spectrally.

At each wavelength we measure the PL intensity as a function of in-plane momentum

(black circles). The measured counts are decomposed into contributions from IP (blue,

solid) and OP (red, dashed) dipoles. In this case, 5 percent of the total PL counts
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originate from OP dipoles.

3.3.2 Emission and absorption anisotropy

Measured (solid, dot-dashed) and calculated (dashed) p-polarized (yellow, solid) and

s-polarized (cyan, dot-dash) 865 nm PL traces for face-on and edge-on films are shown

in Figs. 3.5(a,b). The s-polarized calculations contain no free fit parameters and show

excellent agreement with measured PL up to approximately k‖ = ±1.15 ∗ k0. This value

of |k‖| defines the range over which we perform fits of p-pol data—at larger momentum

values the collection efficiency of the microscope objective begins to drop. The p-polarized

experimental traces are fit according to the calculations described above, providing a

measure of the relative contribution of in-plane and out-of-plane dipoles. As expected for

excitations oriented primarily along the polymer chain, the emission in both morphologies

is dominated by an in-plane dipole moment. However, fits of the p-polarized PL traces

reveal a significant difference between the two morphologies. The ratio of out-of-plane

to in-plane dipole moments is more than twice as large for edge-on (0.29) than face-on

(0.13) morphologies. mPL allows us to resolve differences in the optical anisotropies that

are not evident in ellipsometry (Appendix C.2, Fig. C.S2).

From mPL we derive the orientation of the transition dipole moment (TDM) with

respect to the substrate. The ratio of OP to IP dipole moments translate into differences

of the average inclination angle of the TDM with respect to the substrate. The inferred

angle is arctan(0.13) = 7° for face-on films compared to arctan(0.29) = 16° for edge-on

orientations. This increase in angle is consistent with the orientation of NDI planes in

face-on versus edge-on films. DFT calculations indicate a TDM is oriented mostly, but

not completely, parallel to the polymer backbone. The TDM is tilted (8°) in the NDI

plane, see Fig. 3.1(b).[46, 51, 50] In the edge-on morphology, the TDM is thus partially
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a) b)

c) d)

Figure 3.5: Examples of mPL measurements: 865nm photoluminescence intensity is
recorded (solid, dot-dashed lines) vs. emission momentum for (a) face-on and (b)
edge-on P(NDI2OD-T2). P-polarized traces (yellow, solid) are fit (dashed lines) to
determine the relative contribution of IP and OP dipoles as illustrated in figure 4.
From these fits we determine a predicted shape of the s-pol data (cyan, dot-dashed)
with no free fit-parameters. The ratio of OP to IP dipole moments is 0.13 and 0.29
for face-on and edge-on films respectively. Examples of mPLE measurements: total
photoluminescence intensity is recorded vs. incident momentum of 700nm excitation
laser for (c) face-on and (d) edge-on P(NDI2OD-T2). The curves exhibit visible dif-
ferences from mPL due to different values of the experimental apodization factor and
values of the refractive index at 700nm vs. 865nm (see Appendix C.1.3). Regardless,
the fit results of mPLE (0.16 and 0.30) show excellent agreement with mPL.
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aligned perpendicular to the substrate. There may also be a tilting of the polymer

backbone with respect to the substrate.[60] and we cannot unambiguously identify the

cause of differences in TDM orientation between the two morphologies. It is worth noting

that the optical technique used here averages both crystalline and amorphous regions and

therefore provides different information than can be found from X-ray diffraction alone.

From Lorentz reciprocity[61], momentum-resolved light absorption is formally equiv-

alent to momentum-resolved emission. Using the same principles described above, we

provide the first demonstrations of momentum-resolved photoluminescence excitation

(mPLE), a proxy for absorption (assuming photoluminescence intensity is linearly pro-

portional to the amount of light absorbed). We collect the total emitted PL (integrated

over wavelength and momentum) as a function of the position of our momentum-resolved

laser excitation source, Fig. 3.2(b). Face-on and edge-on mPLE measurements are plot-

ted in Figs. 3.5(c) and (d) at an excitation wavelength of 700 nm. Fitting these traces

to the appropriate in-plane and out-of-plane basis functions at 700 nm (see Appendix

C.1.3), we find out-of-plane to in-plane ratios of 0.16 and 0.30 for face-on and edge-on

morphologies respectively. This excellent agreement with momentum-resolved emission

(0.13 and 0.29) further validates our observation of larger TDM tilt-angles for edge-on

polymer films. This also indicates minimal reorientation of the transition dipole between

absorption and emission processes as can occur in other systems [62, 63, 64] which is con-

sistent with the sub-nanosecond lifetimes of excitons in P(NDI2OD-T2).[65, 66, 67, 57]

3.3.3 Spectral differences

The wavelength dependence of these momentum-resolved measurements provides ad-

ditional insight into the differences in optical properties for the two film morphologies.

We only determine mPLE (i.e., absorption) at an excitation wavelength of 700 nm. The
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a) b)

Figure 3.6: In-plane and out-of-plane normalized emission dipole moments for (a)
face-on and (b) edge-on P(NDI2OD-T2), determined by performing mPL decomposi-
tions across the entire 780-1050 nm emission band.

emitted light, on the other hand, is separated by momentum and wavelength simultane-

ously. Performing decompositions similar to Fig. 3.4(b), we observe an average OP/IP

ratio of 0.12 with a standard deviation of 0.1 across the PL band (750-1050nm) for face-

on films. Although the ratio is mostly constant across the PL spectrum, deviations from

these values are observed primarily at wavelengths to the right of the PL peak. This

deviation is most easily visualized by plotting the normalized IP and OP spectra inferred

from our fits at each wavelength. For face-on films, Fig. 3.6(a), the s-polarized spectrum

(light green), which arises from only IP dipoles, is in close agreement with the IP spec-

trum determined from fits of p-polarized data (blue, solid). In particular, both spectra

reveal a shoulder feature at 950 nm that is absent from the OP spectrum (red, dashed)

determined from our fits. In comparison, edge-on films, Fig. 3.6(b) show much closer

agreement between all three spectra (the out-of-plane artifact past 1000nm is due to low

PL counts throwing off the fitting procedure). Evidently, the spectral dependence of

these optical anisotropies reveals subtle differences in the morphology-dependent optical

properties that are otherwise obscured.
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In previous studies, this 950nm shoulder peak was only seen in aggregated

P(NDI2OD-T2).[57]. A likely explanation for the missing face-on shoulder peak is that

out-of-plane oriented dipoles are preferentially found in amorphous regions of the sample.

When the polymer is initially spin-cast onto the substrate most of the molecules aggregate

and align in the plane of the substrate. Some molecules, however, will exist in amorphous

regions where there is a more random orientation of the molecules. The low tempera-

ture anneal provides only a small amount of energy for the molecules to rearrange and

very little of the amorphous regions will crystallize. In this scenario out-of-plane dipoles

are preferentially found in these randomly oriented amorphous regions. In contrast, a

high temperature anneal, which gives rise to the edge-on morphology, has much more

energy for the molecules to adjust and crystallize. A large portion of the amorphous

polymers will crystallize while mostly retaining their original orientation. This simple

model likely explains why the 950nm shoulder peak corresponding to aggregation is found

in the out-of-plane spectra for edge-on, but not face-on, morphologies. To summarize,

we expect that the out-of-plane oriented dipole emission in face-on films is coming from

amorphous regions. The in-plane dipole emission comes both from amorphous and crys-

talline regions, but is dominated by the much larger crystalline regions. In edge-on films

both out-of-plane and in-plane dipole emission comes from the same crystalline polymers,

with a transition dipole moment that is partially oriented perpendicular to the substrate

surface.

3.4 Conclusion

In conclusion we use momentum-resolved spectroscopies to measure in-plane and out-

of-plane effective dipole moments for face-on and edge-on morphologies of P(NDI2OD-

T2). Fits of momentum-resolved emission measurements (mPL) show close agreement
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with first-ever analogous absorption measurements using a momentum-resolved photo-

luminescence excitation (mPLE) technique. We find that edge-on films exhibit a larger

out-of-plane tilt angle (∼ 16°) of the transition dipole moment relative to face-on films

(∼ 7°). These results are consistent with the orientation of the transition dipole moment

within NDI planes, but may alternatively be indicative of a difference in average orienta-

tion of the polymer backbones. We also observe a missing shoulder peak, characteristic of

aggregated P(NDI2OD-T2), in the out-of-plane emission spectrum of face-on films. This

suggests that the out-of-plane emission in face-on films arises largely from amorphous

regions. As typical optical techniques only measure in-plane oriented dipoles and X-ray

diffraction only measures crystalline regions of the film, these out-of-plane amorphous

regions have likely been unexplored in previous studies. Finding annealing techniques

that maintain face-on orientation while crystallizing these previously hidden regions will

likely lead to better charge transport and, therefore, device performance in organic pho-

tovoltaics and light-emitting diodes. In addition to these insights on P(NDI2OD-T2)’s

morphology, the momentum-resolved techniques developed in this paper can be used

to accurately characterize anisotropic optical properties in other materials. These tech-

niques can therefore enable new optimizations of optical device design and reveal subtle

differences in morphology that are obscured in other X-ray and optical characterization

techniques.
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Chapter 4

Preferred orientations in surface

plasmon light-trapping architectures

4.1 Abstract

Due to their electric field enhancement, surface plasmon polaritons (SPPs) are ca-

pable of drastically increasing light-molecule coupling in organic optoelectronic devices.

The electric field enhancement is directional, however, and therefore the concomitant

increase in coupling depends on the molecule’s orientation with respect to the SPP inter-

face. To investigate this orientation dependence, we studied SPPs in a model system, p-

SIDT(FBTTh2)2. We demonstrate that, controllable by processing, p-SIDT(FBTTh2)2

films have either all in-plane or a 50:50 mixture of in-plane and out-of-plane optical

dipoles presenting an ideal test bed for orientation-dependent effects. Using momentum-

resolved reflectometry and momentum-resolved photoluminescence, we study changes in

SPP dispersion and photoluminescence arising purely from molecular orientation. The

increased SPP momentum and photoluminescence for out-of-plane oriented molecules

agrees well with theory and has direct implications for the design and analysis of organic
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optoelectronic devices.

4.2 Introduction

Surface plasmon polaritons (SPPs) are surface electromagnetic waves that may be

excited at a metal-dielectric interface [68]. The strong confinement of the SPP modes

and consequent large electric field enhancement has attracted a great deal of interest

[69]. Indeed, SPPs have wide-ranging applications in organic optoelectronics including

light-trapping in organic photovoltaics (OPVs) [70, 71], emission-enhancement in organic

light-emitting diodes (OLEDs),[72] and enhanced sensitivity in sensors.[73]

The electric field enhancement from SPPs is highly directional, however. The en-

hancement in the electric field vector is greatest for the component perpendicular to the

interface and small to nonexistent parallel for the component to the interface.[74] While

numerous studies on SPP-organic interactions have shown promising results, a system-

atic experimental demonstration of SPP properties with molecules parallel to the SPP

strong electric field direction vs. molecules aligned perpendicular to the field is lacking.

Early work by Drexhage and co-workers studied molecular dyes near metal interfaces.

They theoretically calculated that the emission decay rate would depend on molecular

orientation.[75] Their experimental demonstrations were limited to molecules parallel to

the surface, however.[75] Later experiments with liquid crystals studied changes in molec-

ular tilt angle by measuring SPP position via attenuated total reflection (ATR).[76, 77]

Analyzing the results, though, required using a many layer optical model as the molec-

ular orientation of liquid crystal molecules changes with depth under an applied electric

field.[78] Other effects on SPPs such as absorption or photoluminescence enhancement

were not studied.

Multiple experiments have studied SPPs in uniaxial films with changing in-plane
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anisotropy,[79, 80] but only a small handful have investigated the effects on SPPs induced

by strong out-of-plane anisotropy.[81, 82] Theoretical studies have looked at changes in

the SPP dispersion, propagation length, and absorption in films with significant real and

imaginary refractive indices out-of-plane.[83, 9] In particular, organic films with a large

out-of-plane imaginary refractive index are expected to have greatly increased efficiency

in both plasmonic solar cells and other light-trapping architectures [9]. As molecules

aligned out-of-plane are expected to interact most strongly with the SPP electric field,

investigating the effects of molecular orientation on SPPs for films with in-plane oriented

molecules vs. out-of-plane oriented molecules is of great interest.

a)

b) c)

Figure 4.1: (a) The chemical structure of p-SIDT(FBTTh2)2. (b) The structure of
the p-SIDT(FBTTh2)2 film cast from dichlorobenzene and (c) the structure of films
cast from dichlorobenzene with 0.4% diiodooctane by volume.

In this work we demonstrate the effects of molecular orientation on SPPs by com-

paring uniaxial organic films with imaginary refractive index either entirely in-plane or

evenly split between in-plane and out-of-plane. Crucially, we study films of recently de-

veloped p-SIDT(FBTTh2)2 (Figure 4.1a).[84] From grazing incidence wide-angle X-ray

scattering (GIWAXS) and transmission electron microscopy (TEM) measurements, it has

been shown by Ran and coworkers that p-SIDT(FBTTh2)2 has the unique ability to con-
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trollably take on one of two very different orientations.[85] If films are cast directly from

chlorobenzene (CB), they take on a face-on orientation with all molecules in the plane

of the substrate (Figure 4.1b), while casting from CB with 0.4% by volume diiodooctane

(DIO) leads to an edge-on orientation (Figure 4.1c) with a 50:50 mix of in-plane and

out-of-plane molecules. This provides the ideal system to study differences in SPPs orig-

inating solely from in-plane vs. out-of-plane molecular orientation in a simple geometry

with uniform films.

4.3 Results and discussion

To study the SPPs, we use momentum-resolved spectroscopies. These techniques

resolve the momentum, or angle, of the light coming from the sample by imaging in the

Fourier plane (also known as the back focal plane (BFP)) of the objective. In addition to

studying the orientation of emitting and absorbing dipoles in organic films,[18, 14] these

spectroscopies have been shown to be excellent for studying SPPs with advantages over

typical prism-based approaches.[86]

It is assumed that the optical dipole in p-SIDT(FBTTh2)2 is along the molecular back-

bone. This is confirmed by momentum-resolved photoluminescence (mPL) spectroscopy

of p-SIDT(FBTTh2)2 on quartz (Figure 4.2) which shows that the optical emission dipole

strength in face-on films is almost entirely in the plane of the sample while in edge-on

films it is a 50:50 mixture of out-of-plane and in-plane orientations. Effective emission

dipole strengths were calculated by decomposing emitted light measured via mPL into

light coming from in-plane and out-of-plane dipoles using a three layer optical model (see

our previous paper[14] for more details). To measure mPL, the sample was excited by a

focused 425-650nm light emitting diode (LED) (ThorLabs MCWHL5-C5) that uniformly

filled momentum space. The incident light was filtered via a 633nm shortpass filter and
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a)

b)

Figure 4.2: Effective emission dipole strengths (a) face-on and (b) edge-on
p-SIDT(FBTTh2)2 films on quartz. In-plane (blue, solid line) is parallel to the sub-
strate while out-of-plane (red, dashed line) is perpendicular to the substrate

reflected off a 635nm dichroic mirror to remove overlap with the emission wavelengths.

The emitted PL was then filtered to remove excitation reflections by transmitting through

the same dichroic as well as a 635nm longpass filter. The PL was then passed through

an analyzing polarizer such that light along the y-momentum axis was p-polarized. The

energy and y-momentum of the light was then measured by a spectrometer (Prince-

ton Instruments IsoPlane SCT320) with attached charge coupled device (CCD) camera

(Princeton Instruments PIXIS 1024BRX) in a BFP conjugate to the objective. The mPL
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counts were corrected for momentum-dependent apodization in post-processing.

To map out the energy-momentum dispersion of SPPs for the two molecular orienta-

tions, we use mPL spectroscopy and momentum-resolved reflectometry (mR) to measure

the momentum of the SPP, kSPP , in thin (20nm) p-SIDT(FBTTh2)2 films on gold as

a function of wavelength. The sample structure is shown in Figure 4.3a. Starting with

quartz coverslips, a 3nm Ti adhesion layer, and subsequent 44nm Au layer were deposited

via thermal evaporation. Films were spin-cast at 3000 RPM from a solution of 10mg/mL

p-SIDT(FBTTh2)2 in chlorobenzene (CB). For edge-on films, 0.4% DIO by volume was

added to the CB solution. Reflectance was measured in an inverted microscope with a

1.3 numerical aperture (NA) oil immersion objective. A supercontinuum source (SuperK

Extreme EXR-15) with a monochromator (NKT Photonics SuperK Select IR2 Vis/NIR)

provided the variable wavelength light source. To uniformly illuminate over all incident

momenta, a stack of 10 diffuser films was placed in a BFP conjugate to the objective

which diffused the incident light to a uniform intensity over the entire BFP. With a CCD

camera placed in another conjugate BFP, the reflection intensity at each momentum of

light was measured simultaneously (Figure 4.3b). The procedure for measuring mPL

(Figure 4.3c) was the same as described above. The reflectance minimum and PL maxi-

mum were used to identify the SPP momentum at each wavelength. For a more detailed

description of the experimental apparatus, we refer readers to our previous work.[14, 13]

Figure 4.4 shows the SPP dispersion compiled from mR (triangles and circles) and

mPL measurements (solid lines) compared to theory (dashed curves) for films of p-

SIDT(FBTTh2)2 on Au-Ti-Quartz substrates. The edge-on orientation leads to increased

SPP momentum, as well as decreased SPP group velocity (∂ω
∂k

, indicated by the larger

negative slope in the figure), which is consistent with a stronger interaction with the

SPP mode. For thicker films this effect will be even more pronounced (see Appendix D,

Figure D for the infinitely thick case).
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Theory curves were calculated from transfer matrix methods using a four- and five-

layer Fresnel model for samples without and with an organic film, respectively. For these

curves most system parameters were assumed or determined from reference samples: The

refractive index of quartz and the real part of the titanium permittivity were taken from

literature.[87, 88] The imaginary part of the Ti permittivity as well as the Au complex

permittivity were determined from mR measurements in the absence of organic film (i.e.

Figure 4.3, blue circles). The in-plane complex permittivity of p-SIDT(FBTTh2)2 was

measured via mR of p-SIDT(FBTTh2)2 on quartz. The titanium thickness (3nm) and

Au thickness (44nm) were measured via a crystal deposition monitor and refined with

mR measurements. Thickness of the p-SIDT(FBTTh2)2 layer was measured by atomic

force microscopy (AFM) to be 20nm. Only the out-of-plane complex permittivity of

p-SIDT(FBTTh2)2 was fit based on the final mR data for substrates with an organic

layer.

Figure 4.5 shows the PL intensity for edge-on vs. face-on p-SIDT(FBTTh2)2 films on

Au/Ti/Quartz for each wavelength integrating over all momenta. Due to the emission

enhancement of the SPP mode, the maximum edge-on PL was a factor of 2.2 brighter

than the equivalent face-on PL. In contrast, edge-on directly on quartz has only 0.9 times

the PL as the face-on orientation quartz (Appendix D, Figure D’s unnormalized data).

This further demonstrates the stronger interaction of the edge-on orientation with the

SPP mode.

4.4 Conclusion

In conclusion, we find that edge-on p-SIDT(FBTTh2)2 films have greater surface

plasmon-polariton photoluminescence enhancement and SPP momentum than face-on

p-SIDT(FBTTh2)2 films. We observe a factor of 2.2 greater PL intensity for edge-on vs.
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face-on films due to the SPP electric field enhancement. Along with the greater SPP

momentum and lower SPP group velocity, this establishes experimentally that edge-on

films, and thus out-of-plane oriented molecules, interact more strongly with SPP electric

fields. These results highlight the importance of molecular orientation for SPP modes

and point to drastically improved organic optoelectronic device performance by aligning

molecules to the SPP electric field. Additionally, with measurements of optical dipole

orientation in face-on and edge-on films, we introduce p-SIDT(FBTTh2)2 as a model

system for studying orientation dependent phenomena in uniaxial media with optical

axes out-of-plane. We expect future experiments to study the interplay of optical and

electrical performance with molecular orientation to determine the ideal geometry for

surface plasmon-polariton devices.
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Figure 4.3: (a) Diagram of the sample geometry. (b) Momentum-resolved reflectom-
etry and (c) energy-momentum spectrum of edge-on H1 on Au.
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Figure 4.4: The surface plasmon dispersion of edge-on (green) and face-on (orange)
films on gold as well as a gold reference (blue) as measured by reflectometry (solid
markers) and photoluminescence (solid lines). Theoretical dispersion curves calculated
from transfer matrix methods are shown with dashed lines.
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Figure 4.5: The photoluminescence as a function of wavelength for edge-on (green)
and face-on (orange) films on gold.
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Chapter 5

Outlook and future work

With full resolution of momentum, energy, and polarization for both input and output

light, there is tremendous potential for the characterization of optical systems at an un-

precedented level of detail. These systems range from molecular emitters to dielectric

resonators to excitations in thin films. This chapter will discuss avenues for future re-

search both in organic optoelectronics, which has been the focus of this thesis, and more

broadly.

There is a great deal more work to be done investigating optical anisotropies in or-

ganic semiconductors. In previous chapters many optical properties were studied by

comparisons (e.g. in-plane and out-of-plane dipole strengths). This simplifies the mea-

surements as we only need relative measures as opposed to absolute. It should be possible

with precise measurements of the input power and output power of reference and test

samples to make absolute measurements. This would enable, for example, determining

molecular dipole strengths on an absolute scale. It would then be possible to compare

absorption and emission dipole strengths of various molecules (and films) leading to new

insights into the relationship between optical properties and molecular structure (and

film morphology).
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Now that we have the capability to selectively pump purely in-plane or out-of-plane

dipoles it should be possible to look at specific excitations in organic semiconductors. For

example, Schuller and collaborators were able to identify both intra- and intermolecular

excitations in the small molecule 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA)

based on the emitting dipole orientation.[18] With our recent addition of momentum-

resolution of incident light, one could pump into intermolecular excitons and observe

how the excitations decay into intra- and intermolecular excitons. There is already evi-

dence from the Schuller work that different excitations have different lifetimes.[18] With

a pulsed laser and appropriate electronics, time resolution could be added and excitation

lifetimes could be measured including if the lifetime changes with the original excited

state (previously only the final emitting states could be identified). Another intrigu-

ing possibility is investigating if certain excitations have a higher quantum efficiency in

organic photovoltaics. We know that molecular orientation plays an important role at

the donor-acceptor interface,[89, 85] does excitation orientation play a similar role? By

looking at bilayer films as in Ran[85] and adding current-voltage characterization to a

momentum-resolved setup, it should be possible to answer these and similar questions.

In this work we have only looked at visible wavelengths and primarily absorption

or emission. Using the same techniques, but looking at infrared wavelengths, one could

look at vibrational modes in materials. Prior has demonstrated the utility of angle-

resolved infrared spectroscopy for studying the orientation of vibrational modes.[45, 60]

These spectroscopies could be extended by pumping a specific vibrational mode and

watching the decay or seeing how vibrations affect optical excitons as there is significant

coupling between the electronic and vibrational modes.[32] In a similar fashion, it should

be possible to look at 2D Raman spectra. With full momentum and polarization control

on the input and output, the full Raman scattering tensor can be mapped out including

the off-diagonal elements usually hidden in goniometer-based measurements. This would

44



Outlook and future work Chapter 5

lead to unprecedented detail into the structure and vibrational mechanics of both organic

and inorganic films.

Structured light is a huge potential research area. By controlling the light intensity

pattern in the back focal plane, by using, for example, a spatial light modulator, specific

multipole modes could be excited.[90] This would immediately allow studies of absorption

modes in all of the systems mentioned at the beginning of Chapter 2, namely multipole

absorption in single molecules, multipole absorption in nanoparticles, magnetic dipole

absorption in phosphors, intra- and intermolecular exciton absorption, and absorption

into specific nanoantenna modes. There is already some evidence that this fine-grained

mode control leads to enhanced device properties.[91] It is also theoretically possible to

excite so-called “dark-modes” using structured light.[92] As their name implies, these

modes are often hidden to traditional spectroscopy techniques. Note that to achieve the

full range of structured light requires 2D patterning of coherent light in the back focal

plane. This is not possible using other angle-resolved techniques such as goniometers,

but is only possible with full 2D momentum-resolved spectroscopies. Thus,

the apparatus discussed in Chapter 2, with its momentum-resolution of incident light, is

uniquely poised to investigate this untapped area of research.

This chapter has touched on some of the areas for future work. Momentum-resolved

spectroscopy adds a whole new way of looking at light. While previous work has begun

to scratch the surface of what is possible by looking at emitted light, the additional

momentum control over incident light introduced in this thesis enables asking a whole

new range of research questions both within and outside of organic semiconductors.
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Summary

Organic optoelectronics are inexpensive, made from abundant materials, and tunable.

This makes them attractive for many applications including light emitting diodes, pho-

tovoltaics, and sensors. While organic light emitting diodes have achieved commercial

success, other organic optoelectronic devices, including organic photovoltaics, have not.

This is in part due to their low efficiencies making them uncompetitive in the marketplace.

Recent work has shown performance in these devices is closely tied to the morphology

of the organic semiconductor and many experiments relating the electronic and opti-

cal properties of these materials to their structure have been performed. These organic

films are highly anisotropic, however, and investigation into the directional-dependence

of their optical properties has been lacking. Measuring these optical anisotropies is

of interest not only for fundamental science and understanding of organic semiconduc-

tor materials but also of practical importance when making devices. In this thesis we

have demonstrated momentum-resolved spectroscopies which are particularly well-suited

for measuring optical anisotropies, used these spectroscopies to investigate optical and

structural anisotropies in organic films, and connected molecular orientation to device

performance.
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In Chapter 2 we went over how to measure anisotropic optical properties. We covered

how to construct and configure a spectroscopy setup to take high precision momentum-

resolved photoluminescence, photoluminescence excitation, and reflectometry measure-

ments. We also went through how to analyze the resulting data in detail.

In Chapter 3 we presented results on how optical anisotropies can give insight into

the morphology of organic films. We find the tilt angle of the transition dipole moment

for two orientations of the polymer P(NDI2OD-T2). We also found regions of disordered

polymer in one of the orientations that are challenging to impossible to uncover with

traditional X-ray or optical characterization techniques.

In Chapter 4 we demonstrated the effects of molecular orientation in a simple device

geometry. We observed surface plasmon polaritons in two very different orientations of

the small molecule p-SIDT(FBTTh2)2. Due solely to the molecular orientation there is

a shift in the dispersion curve and a factor of 2.4 increase in the photoluminescence of

these films. This is consistent with the greater interaction of surface plasmon modes

with out-of-plane optical constants and concretely demonstrates the need to take film

anisotropy and device geometry into account when finding final performance.

In Chapter 5 many areas of potential future work were identified. Particular attention

was paid to applications that take advantage of the incident light momentum-resolution

developed in this thesis. The field of structured light was highlighted as the coherent

2D structuring of the light in the back focal plane is only possible using 2D momentum-

resolved spectroscopy and cannot be achieved using traditional goniometer techniques

which are limited to a single angle of light at a time.
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Appendix A

Analysis code

A.1 Edge finding code

def find_NA_edges(column, window_size=3, threshold=0.1):

’’’ Finds the edges of transmitted light corresopnding to the NA of the objective ’’’

# First smooth the data

lowess = sm.nonparametric.lowess

smoothed = lowess(column,range(len(column)), frac= 10/len(column))[:,1]

# Find edges using a window method

window_deltas = []

big_diffs = []

for (i,e) in enumerate(smoothed):

window = smoothed[i:i+window_size]

win_max = max(window)

win_min = min(window)

win_diff = win_max - win_min

window_deltas.append(win_diff)

if win_diff > threshold*max(smoothed):

big_diffs.append(i+window.argmin())

try:

outside_diffs = [big_diffs[0], big_diffs[-1]]
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except IndexError:

outside_diffs=[0,0]

return outside_diffs

A.2 Three layer model code

Python code implementing a three layer model:

from __future__ import division

import math

import cmath

class ThreeLayerModel(object):

""" ThreeLayerModel implments a three layer model to calculate dipole strengths

for dipoles in the middle layer

"""

def __init__(self, n1o, n1e, n2o, n2e, n3, dist_to_layer_3, dist_to_layer_1):

’’’ n1o Ordinary refractive index in top layer

n1e Extraordinary refractive index in top layer

n2o Ordinary refractive index in emitter (middle) layer

n2e Extraordinary refractive index in emitter (middle) layer

n3 Refractive index in substrate (input and collection) layer

dist_to_layer_3 Distance from emitter to layer 3

dist_to_layer_1 Distance from emitter to layer 1

’’’

# Input parameters

self.n1o = n1o

self.n1e = n1e

self.n2o = n2o

self.n2e = n2e

self.n3 = n3

self.dist_to_layer_3 = dist_to_layer_3

self.dist_to_layer_1 = dist_to_layer_1

# Calculated parameters

self.layer_2_thickness = self.dist_to_layer_1 + self.dist_to_layer_3 # nm
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def calc_dipole_emission(self, ky_normed, wavelength, eff_dipole_strengths, apo_factor=True):

’’’ Calculates the expected emission at ky_normed momentum on the detector for both

polarizations given an electric diople with [in-plane, out-of-plane] effective dipole

strengths.

ky_normed ky in units of k_0 (also Sin(theta)*n3 for angle theta) in layer 3

wavelength Wavelength in nm

eff_dipole_strengths [in-plane, out-of-plane] effective dipole strengths of the emitter

apo_factor Whether to include an apodization factor of 1/Cos(theta)

’’’

# Calculated parameters

speed_of_light = 3*10**17 # nanometers/sec

k_0 = 2*math.pi/wavelength # 1/nm

# Wavevectors

ky = k_0 * ky_normed # 1/nm

kz1s = cmath.sqrt((self.n1o*k_0)**2-ky**2) # s-polarized in layer 1

kz2s = cmath.sqrt((self.n2o*k_0)**2-ky**2) # s-polarized in layer 2

kz3s = cmath.sqrt((self.n3*k_0)**2-ky**2) # s-polarized in layer 3

kz1p = cmath.sqrt((self.n1o*k_0)**2-(ky*self.n1o/self.n1e)**2) # p-pol in layer 1

kz2p = cmath.sqrt((self.n2o*k_0)**2-(ky*self.n2o/self.n2e)**2) # p-pol in layer 2

kz3p = cmath.sqrt((self.n3*k_0)**2-ky**2) # p-pol in layer 3 (currently same as kz3s since

# layer 3 assumed isotropic)

# Coefficients

# transmission coefficient from layer 3 into layer 2 for s- and p-polarizations

ts32 = 2*kz3s/(kz3s+kz2s)

tp32 = (2*self.n2o**2*kz3p/(self.n2o**2*kz3p+self.n3**2*kz2p)*

self.n3/(self.n2o))

# reflection coefficient from layer 2 to 1 for s- and p-polarizations

rs21 = (kz2s-kz1s)/(kz2s+kz1s)

rp21 = (self.n1o**2*kz2p-self.n2o**2*kz1p)/(self.n1o**2*kz2p+self.n2o**2*kz1p)

# reflection coefficient from layer 2 to 3 for s- and p-polarizations

rs23 = (kz2s-kz3s)/(kz2s+kz3s)

rp23 = (self.n3**2*kz2p-self.n2o**2*kz3p)/(self.n3**2*kz2p+self.n2o**2*kz3p)
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# Grouped parameters

if apo_factor == True:

grouped_As = (speed_of_light/wavelength**2)*(1/(4*k_0**2))*(k_0/kz3s)

grouped_Ap = (speed_of_light/wavelength**2)*(1/(4*k_0**2))*(k_0/kz3p)

elif apo_factor == False:

grouped_As = (speed_of_light/wavelength**2)*(1/(4*k_0**2))*1/self.n3

grouped_Ap = (speed_of_light/wavelength**2)*(1/(4*k_0**2))*1/self.n3

grouped_Bs = 1 - rs21*rs23*cmath.exp(2*1j*kz2s*self.layer_2_thickness)

grouped_Bp = 1 - rp21*rp23*cmath.exp(2*1j*kz2p*self.layer_2_thickness)

# [DISCLAIMER]

# hbar and the vacuum perimittivity should appear in C_0’s denominator, but they are

# set to one here as we’re in arbitrary units anyways

grouped_C0 = (2*math.pi)**3/(wavelength**3*math.pi)

# Normalized LDOS for electric dipoles

#

# norm_rho_sx => norm_rho_s_IP

# norm_rho_py => norm_rho_p_IP

# norm_rho_pz => norm_rho_p_OP

norm_rho_sx = abs(grouped_As *

abs(

(

(ts32*cmath.exp(1j*kz2s*self.dist_to_layer_1))*

(1+rs21*cmath.exp(2j*kz2s*self.dist_to_layer_3))

)

/grouped_Bs)**2

)

norm_rho_py = abs(grouped_Ap *

abs(

(

(tp32*cmath.exp(1j*kz2p*self.dist_to_layer_1)*kz2p/(self.n2o*k_0))*

(1-rp21*cmath.exp(2j*kz2p*self.dist_to_layer_3))

)

/grouped_Bp)**2

)

norm_rho_pz = abs(grouped_Ap *

abs(

(
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(tp32*cmath.exp(1j*kz2p*self.dist_to_layer_1)*ky/(self.n2o*k_0))*

(self.n2o/self.n2e)**2*

(1+rp21*cmath.exp(2j*kz2p*self.dist_to_layer_3))

)

/grouped_Bp)**2

)

# Calculate emission counts (in arbitrary units since there are unknown experimental

# constants) -- I multiply by 10^-9 to normalize near 1 which makes fitting easier

counts_ppol = grouped_C0 * (norm_rho_py*eff_dipole_strengths[0] +

norm_rho_pz*eff_dipole_strengths[1]) * 10**-9

counts_spol = grouped_C0 * (norm_rho_sx*eff_dipole_strengths[0]) * 10**-9

return (counts_ppol, counts_spol)

A.3 Dipole strength code

freom __future__ import division

from scipy import optimize

import numpy as np

import pandas as pd

import statsmodels.api as sm

import scipy.integrate as integrate

import math

import cmath

class MplDipoleStrengths(object):

""" MplDipoleStrength finds the in-plane and out-of-plane effective emission dipole strengths

"""

def __init__(self, model, data):

’’’ model Three layer model of the sample

data Data frame containing ’wavelength’, ’row’, ’column’, and ’counts’

columns. The counts should be for light emitted with p-polarization.

Fitting works best if counts are normalized near 1.

’’’

self.model = model

self.data = data
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self.wavelengths = {}

self.count_array = None

def reshape_counts(self):

’’’ Reshape counts into a 2d numpy array. Also creates a dictionary with columns as keys

and wavelengths as values.

’’’

# Set up column -> wavelength dictionary

for i, wavelength in enumerate(self.data[’wavelength’].unique()):

self.wavelengths[i] = wavelength

# Reshape counts into appropriate rectangular array

num_rows = len(self.data[’row’].unique())

num_cols = len(self.data[’column’].unique())

self.count_array = self.data[’counts’].reshape((num_rows,num_cols))

def assign_ky(self, column):

’’’ Takes a column of counts and assigns ky values to them

’’’

# First find the column PL edges which we correspond to ky = 1.3 k_0

edges = self.find_NA_edges(column)

# We expect edges[0] < edges[1]

if edges[0] >= edges[1]:

return None

num_rows = len(column)

ky_list = np.zeros(num_rows)

mid = int((edges[0] + edges[1])/2) # The mid point between k_0’s is ky = 0

ky_per_pix = 2.6/(edges[1] - edges[0])

for i in range(num_rows):

ky_list[i] = (mid-i)*ky_per_pix

return ky_list

def find_NA_edges(self, column, window_size=3, threshold=0.1):

’’’ Finds the edges of transmitted light corresopnding to the NA of the objective ’’’

53



Analysis code Chapter A

# First smooth the data

lowess = sm.nonparametric.lowess

smoothed = lowess(column,range(len(column)), frac= 10/len(column))[:,1]

# Find edges using a window method

window_deltas = []

big_diffs = []

for (i,e) in enumerate(smoothed):

window = smoothed[i:i+window_size]

win_max = max(window)

win_min = min(window)

win_diff = win_max - win_min

window_deltas.append(win_diff)

if win_diff > threshold*max(smoothed):

big_diffs.append(i+window.argmin())

try:

outside_diffs = [big_diffs[0], big_diffs[-1]]

except IndexError:

outside_diffs=[0,0]

return outside_diffs

def cost_func(self, dip_strengths, column, ky_list, wavelength):

’’’ Returns the summed square error for actual vs. predicted counts across ky’s

Inputs

--------

wavelength is in nanometers.

dip_strengths is a list of effective dipole strengths with 2 real-valued elements.

[in-plane_dip_strength, out-plane_dip_strength]

’’’

num_rows = len(column)

square_errors = np.zeros(num_rows)

theo_ppol = np.zeros(num_rows)

for i,ky in enumerate(ky_list):
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theo_ppol[i] = self.model.calc_dipole_emission(ky_normed=ky, wavelength=wavelength,

eff_dipole_strengths=dip_strengths)[0]

square_errors = (column - theo_ppol)**2

return square_errors.sum()

def fit_dip_strengths_col(self, column, wavelength, init_strengths=[1,1]):

’’’ Returns the fit effective dipole strengths along with scipy.optimize’s summary output.

Returns a tuple with (in-plane_eff_dip_strength, out-plane_eff_dip_strength).

With perfect data (no noise) the error (cost-function) is convex with respect to the

fitting parameters so fitting should be fast and converge to the correct value.

Inputs

--------

wavelength is in nanometers.

init_strengths sets the initial strengths to start the minimization algorithm.

’’’

ky_list = self.assign_ky(column)

# Error handling: if for some reason assign_ky doesn’t return at least 2 unique values

if type(ky_list) == type(None) or len(np.unique(ky_list)) < 2:

return (0,0)

# Figure out the entries with |ky| < 1.15

# Since ky_list is reverse sorted I take negate the values so search sorted works properly

first_index = (-ky_list).searchsorted(-1.15, side=’right’)

last_index = (-ky_list).searchsorted(1.15, side=’left’)

return optimize.fmin_bfgs(self.cost_func,init_strengths,

args=(column[first_index:last_index],

ky_list[first_index:last_index],

wavelength),

full_output = False,

disp = False

)

def fit_dip_strengths(self, init_strengths=[1,1]):

’’’ Returns a dataframe with ’wavlength’, ’in-plane strength’, and ’out-plane strength’
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columns.

’’’

# Check if we’ve reshaped the data yet

if type(self.count_array) == type(None):

self.reshape_counts()

wavelength_col = []

in_plane_strengths = []

out_plane_strengths = []

for i,col in enumerate(self.count_array.T):

# Keep track of progress

if i % 100 == 0:

print("On column {0}".format(i))

wavelength = self.wavelengths[i]

wavelength_col.append(wavelength)

strengths = self.fit_dip_strengths_col(col, wavelength, init_strengths)

in_plane_strengths.append(strengths[0])

out_plane_strengths.append(strengths[1])

return pd.DataFrame({’wavelength’:wavelength_col, ’in-plane’:in_plane_strengths,

’out-plane’:out_plane_strengths})

def ip_counts(self, dip_strengths, ky, wavelength):

’’’ Returns (ppol, spol) counts from in-plane dipoles at a given ky and wavelength by setting

out-of-plane dipole strength to 0.

’’’

return self.model.calc_dipole_emission(ky_normed=ky, wavelength=wavelength,

eff_dipole_strengths=[dip_strengths[0], 0])

def op_counts(self, dip_strengths, ky, wavelength):

’’’ Returns (ppol, spol) counts from out-of-plane dipoles at a given ky and wavelength by setting

in-plane dipole strength to 0.

’’’

return self.model.calc_dipole_emission(ky_normed=ky, wavelength=wavelength,

eff_dipole_strengths=[0, dip_strengths[1]])

def calc_ppol_count_ratio(self, dip_strengths, wavelength, ky_max=1.15):

’’’ Returns the integrated ppol count ratio up to ky_max ’’’

op_int = integrate.quad(lambda x:self.op_counts(dip_strengths, x, wavelength)[0],

-ky_max, ky_max)
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ip_int = integrate.quad(lambda x:self.ip_counts(dip_strengths, x, wavelength)[0],

-ky_max, ky_max)

return op_int[0]/ip_int[0]

def calc_in_plane_dipole_from_spol(self, spol_df, ky_normed=0):

’’’ Calculates the in-plane dipole strength given spol counts at ky_normed.

:param spol_df: Pandas dataframe. Contains ’counts’ and ’wavelength’ columns.

There should only be one counts entry per wavelength.

:param ky_normed: Float. ky in units of k_0 in layer 3.

:return: Pandas dataframe. Contains ’in-plane’ and ’wavelength’ columns.

’’’

SPEED_OF_LIGHT = 3*10**17 # nanometers/sec

in_plane_strengths = []

for wavelength in spol_df[’wavelength’]:

k_0 = 2*math.pi/wavelength # 1/nm

# Wavevectors

ky = k_0 * ky_normed # 1/nm

kz1s = cmath.sqrt((self.model.n1o*k_0)**2-ky**2) # s-polarized in layer 1

kz2s = cmath.sqrt((self.model.n2o*k_0)**2-ky**2) # s-polarized in layer 2

kz3s = cmath.sqrt((self.model.n3*k_0)**2-ky**2) # s-polarized in layer 3

kz1p = cmath.sqrt((self.model.n1o*k_0)**2-

(ky*self.model.n1o/self.model.n1e)**2) # p-pol in layer 1

kz2p = cmath.sqrt((self.model.n2o*k_0)**2-

(ky*self.model.n2o/self.model.n2e)**2) # p-pol in layer 2

kz3p = cmath.sqrt((self.model.n3*k_0)**2-ky**2) # p-pol in layer 3 (currently same as

# kz3s since layer 3 assumed isotropic)

# Coefficients

# transmission coefficient from layer 3 into layer 2 for s- and p-polarizations

ts32 = 2*kz3s/(kz3s+kz2s)

tp32 = (2*self.model.n2o**2*kz3p/(self.model.n2o**2*kz3p+self.model.n3**2*kz2p)*

self.model.n3/(self.model.n2o))

# reflection coefficient from layer 2 to 1 for s- and p-polarizations

rs21 = (kz2s-kz1s)/(kz2s+kz1s)

rp21 = ((self.model.n1o**2*kz2p-self.model.n2o**2*kz1p)/
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(self.model.n1o**2*kz2p+self.model.n2o**2*kz1p))

# reflection coefficient from layer 2 to 3 for s- and p-polarizations

rs23 = (kz2s-kz3s)/(kz2s+kz3s)

rp23 = (self.model.n3**2*kz2p-self.model.n2o**2*kz3p)/(self.model.n3**2*kz2p+self.model.n2o**2*kz3p)

grouped_Bs = 1 - rs21*rs23*cmath.exp(2*1j*kz2s*self.model.layer_2_thickness)

grouped_As = (SPEED_OF_LIGHT/wavelength**2)*(1/(4*k_0**2))*(k_0/kz3s)

norm_rho_sx = abs(grouped_As *

abs(

(

(ts32*cmath.exp(1j*kz2s*self.model.dist_to_layer_1))*

(1+rs21*cmath.exp(2j*kz2s*self.model.dist_to_layer_3))

)

/grouped_Bs)**2

)

grouped_C0 = (2*math.pi)**3/(wavelength**3*math.pi)

counts = spol_df.loc[spol_df.wavelength == wavelength,’counts’].values[0]

strength = counts/(grouped_C0*norm_rho_sx*10**-9)

in_plane_strengths.append([wavelength, strength])

return pd.DataFrame(in_plane_strengths, columns=[’wavelength’,’in-plane’])

def get_linecuts(self):

’’’ Returns a dataframe with the values of the pixels at -k_0, 0, and +k_0 at each

wavelength.

’’’

wavelength = []

minus_k_0 = []

zero_k_0 = []

plus_k_0 = []

# Check if we’ve reshaped the data yet

if type(self.count_array) == type(None):

self.reshape_counts()

# Find the above values column by column

for i,col in enumerate(self.count_array.T):

wavelength.append(self.wavelengths[i])
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ky_list = self.assign_ky(col)

if type(ky_list) == type(None):

minus_k_0.append(0)

zero_k_0.append(0)

plus_k_0.append(0)

else:

# Figure out the entries with |ky| = 1

# Since ky_list is reverse sorted I take negate the values so search sorted works properly

minus_index = (-ky_list).searchsorted(1, side=’left’)

zero_index = (-ky_list).searchsorted(0, side=’right’)

plus_index = (-ky_list).searchsorted(-1, side=’right’)

minus_k_0.append(col[minus_index])

zero_k_0.append(col[zero_index])

plus_k_0.append(col[plus_index])

return pd.DataFrame({’-k_0’: minus_k_0, ’0’: zero_k_0, ’+k_0’: plus_k_0},

index = wavelength)
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Optical alignment procedure

1. Focus a sample (one that fluoresces if possible to decouple the input and output

focusing) by eye in real space in the microscope. Use the 0.5 - 1.3 NA variable

numerical aperture oil immersion objective.

2. Focus and align output optics

(a) Make sure that you can see photoluminescence on the spectrometer camera.

If you cannot see PL, check that the microscope is set to send light out the

left (L) side, an appropriate filter set is in use, light is actually being output

on the emission side, the spectrometer slit is not in place, and the grating is

set to 0nm to capture the zeroth order reflection. If you still cannot see PL,

adjust periscope mirrors and, if necessary, gently move spectrometer so that

the light appears on the camera.

(b) Focus the output lens so the back focal plane is in focus

i. Illuminate the sample at normal incidence or uniformly in the back focal

plane. If the sample is illuminated non-uniformly in the back focal plane

at a high momentum, there could be correlation between input angle and

60



Optical alignment procedure Chapter B

the output intensity’s angular distribution due to apodization effects in

the objective.

ii. Set variable NA objective to 0.5 NA.

iii. Focus output lens until edge of photoluminescence is visibly sharp. It may

help to look at the intensity slope at the edge of PL for fine focusing – a

sharper slope is more in focus. You may only be able to focus one side of

the PL image at a time at this stage. Try to focus roughly in the middle

of the nearest and farthest focus.

(c) Align output optics

i. First make sure output lens is square/flat with respect to the microscope

output.

ii. Center the output lens with respect to the microscope output so that the

light travels through the center of the lens.

iii. Make sure center height of each periscope mirror is the same height as

the microscope light output and spectrometer light input for the first and

second periscope mirror respectively.

iv. Adjust the mirror tilts by turning the tilt knobs on the mirror mounts.

Think of the light as having a flat constant-phase front; this phase front

should go into the spectrometer flush so that each point in the back focal

plane travels the same distance and is simultaneously in focus. To get

close to flush, use the big knob on top of the top mirror mount to sweep

the light beam around the room. Adjust the tilt knobs on both mirror

mounts until the light beam sweeps flat around the room at the height of

the of the spectrometer input. Use the big knob on the top of the mirror

mount to send the light into the spectrometer once more. Looking at the
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2D back focal plane image, make fine adjustments to the mirror tilts until

the top and bottom (most important) as well as left and right of the image

(less important) are symmetric in intensity. It may help to refocus the

output lens during this final step.

v. Refocus the output lens. The top and bottom as well as left and right of

the back focal plane image should now be in focus at the same position

of the output lens.

3. Align and focus input optics for laser fiber input (if using laser fiber input)

(a) Switch filters and/or sample so that the reflected light can be imaged on the

camera.

(b) If the input path has been removed, start by adjusting the optics so they

are square/flush with respect to the microscope input entrance. This can be

done by temporarily placing machined parts with two flat side between the

microscope input and optic mount and then rotating the optic mount until

it is flat. Next, center the input lens by using the 50:50 mirror on the filter

wheel, turning on the overhead lamp, and looking at the reflected light sent

“backwards” on the input side of the input lens using a piece of paper or lens

paper. When the lens is properly centered, the light will focus uniformly as

you move the paper straight back from the lens. If it is not centered, the focus

will move off-center with respect to the lens.

(c) Align the laser fiber by first adjusting the mount until it is square/flush with

the input lens mount (and therefore the microscope). Center the laser fiber

by moving its reflection spot on the camera using the motorized translation

stage until it is at the center of the back focal plane.
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(d) Focus the laser fiber. It is easier to focus if the laser fiber is slightly off-center

in the back focal plane, thereby avoiding the reflections near normal incidence.

Move the laser fiber closer or farther from the input lens using the motorized

stage until the laser spot is focused on the camera. It should have roughly 3-5

pixels full-width half-max using the variable 0.5-1.3 NA objective at visible

wavelengths. Fine focusing is achieved by maximizing the center intensity of

the laser spot as measured on the camera.

4. Align and focus the LED mirror (if using LED input)

(a) First make sure the LED mount is flat with respect to the table using sup-

porting mounts. It has a tendency to sag if not supported.

(b) With the LED off, move the mirror such that the center of the mirror is verti-

cally and horizontally centered with respect to the microscope input entrance.

Adjust the mirror such that is forms a 45 degree angle with respect to the

LED.

(c) With the LED on, adjust the mirror rotation and position until the reflect

light is visible on the camera. Adjust slowly; if moving too fast you may not

see the reflected light and overshoot.

(d) Focus the mirror by moving it closer or farther away from the LED. The

reflected light should completely fill the back focal plane up to the NA of the

objective and be as bright as possible.

(e) “Flatten” light in back focal plane by adjusting mirror rotation, height, and

tilt. When properly aligned the top and bottom as well as left and right of the

back focal plane image should be the same intensity. It has sometimes been

necessary in this step to place pieces of paper under the mirror mounting post
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to tilt the mirror with respect to the table.
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Chapter 3 additional details

This appendix contains additional details for Chapter 4.

C.1 Methods

C.1.1 Experimental setup

By placing a detector in the back focal plane of a microscope objective, Fig. C.1,

we separate light based on the angle, or momentum, at which it leaves the sample.

A spectrometer (Princeton Instruments IsoPlane SCT320) coupled to a 2D CCD cam-

era (Princeton Instruments PIXIS 1024BRX) separates light by wavelength along one

axis of the camera and momentum along the other axis. This allows measurements of

momentum-dependent photoluminescence intensity at many wavelengths simultaneously.

From this data, we separate emission spectra from dipoles oriented in-plane and out-of-

plane. For mPL experiments we used a collimated LED source (ThorLabs M735L3-C5)

to excite the sample across all momenta uniformly.

Similarly to how placing a detector in a conjugate back focal plane to the objective al-

lowed us to study emission of different momenta of light, we placed our excitation source
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Detector

Optical fiber

(supercontinuum laser)

Translation stage

Back focal plane

NA 1.3

Short pass filter Half-wave plate

= Tube lens

Long pass filter

Polarizer

Dichroic Mirror

Mirror

Sample

Polarizer

Back focal plane

Back focal plane

Figure C.1: The momentum-resolved setup used in the experiments. For momen-
tum-resolved photoluminescence, the supercontinuum excitation source along with
the half-wave plate, polarizer, and first tube lens were replaced with a collimated
LED.

in another conjugate back focal plane to study absorption as a function of light momenta.

We studied absorption properties by measuring the integrated intensity of photolumines-

cence emitted from the sample versus the input excitation momentum (similar to how

photoluminescence excitation, or PLE, measures PL versus input wavelength of light).

The end of a single mode optical fiber (coming from a fiber-coupled supercontinuum

source (SuperK Extreme EXR-15)) was mounted on a translation stage. By moving the

end of the fiber within the conjugate back focal plane, we control the incident momentum

vector of the light exciting the sample.
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C.1.2 Sample fabrication

P(NDI2OD-T2) (Polyera ActivInk N2200) was spin-cast from 1,2-dichlorobenzene

solution (10 µg/mL). Samples were then annealed at 150 ◦C for one hour to produce

face-on samples or at 305 ◦C for one hour to produce edge-on samples. The samples were

then allowed to slowly cool to room temperature. Film thickness was measured using

atomic force microscopy (AFM) to be 50nm. Glass, 200nm silicon dioxide on silicon,

and quartz coverslip substrates were used for AFM, ellipsometry, and PL measurements

respectively.

C.1.3 Data analysis

Raw camera images were analyzed using Python. In mPL we obtain a rectangular

image with wavelength varying along the x-axis and momentum varying along the y-

axis. To obtain in-plane and out-of-plane emission dipole moments, we analyzed each

wavelength independently. For a given wavelength column in the p-polarized image, we

first converted the pixels of the camera into units of k0 by setting the edges of PL to the

1.3 NA (±1.3k0) of our microscope objective. After converting to units of momentum,

we used a three layer model (following the treatment in Schuller et al.[18]) to solve for

the linear combination of in-plane and out-of-plane effective emission dipole moments

that summed to the intensity vs. momentum shape measured at each wavelength. The

model’s input parameters—refractive index and film thickness—were determined from

ellipsometry and AFM measurements respectively. After fitting p-polarized data, we

determine the expected s-polarized PL intensity vs. momentum and compare to actual

s-polarized measurements.

Data analysis for mPLE was similar, but had many separate images that needed to be

aggregated. For each PL image the exciting laser y-position was determined by taking the
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image of the reflected laser spot without the PL filter. Each PL image was background

subtracted using a ”window frame” of dark pixels that surrounded the pixels receiving

PL in the center of the image. This allowed us to correct for background drift over time.

The background subtracted PL image was then summed across all pixels to determine a

single PL value for each image. From the PL image, we were able to convert pixels to

k0 as above. We then found the linear combination of in-plane and out-of-plane effective

absorption dipole moments that summed to the counts vs. momentum shape observed.

Again, we determine the expected s-polarized PL intensity vs. incident momentum and

compare to actual s-polarized measurements. It is important to note that while the mPL

model includes an apodization factor, given the setup geometry the mPLE model does

not. In mPL, each pixel of fixed width in the back-focal-plane correspond to a different

magnitude of solid-angle over which the PL is collected. Thus, an isotropic emitter

would still exhibit intensity variations across the back focal plane image. In mPLE, the

solid-angle magnitude also changes, but the input power is fixed and no correction is

needed.

Dipole moments found via mPL and mPLE are highly sensitive to the film refractive

indices input in the three-layer model (especially in the out-of-plane direction). For

this reason it is essential to have accurate optical constants. We used atomic force

microscopy, UV-Vis transmission, and ellipsometry to get accurate thickness, in-plane

extinction coefficient, and refractive indices respectively.

C.2 Supplemental Material

Figure C.S1 shows grazing incidence wide-angle X-ray scattering (GIWAXS) for the

two orientations of P(NDI2OD-T2). The (100) peak at roughly 0.25 Å−1 indicates the

orientation of the alkyl chain stacking direction along with the higher order (200), (300),
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and (400) peaks at 0.5 Å−1, 0.75 Å−1, and 1.0 Å−1, respectively.

Figure C.S1: a)Grazing incidence wide-angle X-ray scattering (GIWAXS) for a face-on
oriented P(NDI2OD-T2) annealed at 150°C for 6 hours and b)for an edge-on oriented
P(NDI2OD-T2) annealed at 300°C for 45 minutes.

For reference, variable angle spectroscopic ellipsometry (VASE) measurements on

P(NDI2OD-T2) are provided in Figure C.S2. Note the ellipsometry seems to indicate

that the face-on orientation has more out-of-plane oriented dipoles, which is not what we

would expect from the measurements or theory in Chapter 3.
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a) b)

Figure C.S2: The extinction coefficient in the in-plane and out-of-plane directions
(with respect to the substrate) for (a) face-on and (b) edge-on P(NDI2OD-T2), de-
termined from spectroscopic ellipsometry measurements. The ellipsometry results are
highly model dependent and unable to capture the differences in optical anisotropies
that are evident in momentum-resolved measurements.
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Chapter 4 additional details

This appendix contains additional details for Chapter 4.

Figure D.S1 is a calculation of the dispersion of infinitely thick p-SIDT(FBTTh2)2

films on Au. Note not only the increased momentum and difference between edge-on

(green, dot-dash) and face-on (orange, dashed) curves, but also the increased negative

slope of the edge-on curve indicative of reduced surface plasmon polariton group velocity.

k||__
k0

λ [nm]

H1 EO
H1 FO
Au

Figure D.S1: Calculated dispersion curves for infinitely thick edge-on (green, dot-dash)
and face-on (orange, dashed) p-SIDT(FBTTh2)2 films on Au.

Figure D.S2 displays y-polarized photoluminescence 2D back focal plane images for

a) face-on and b) edge-on p-SIDT(FBTTh2)2 films. The in-plane character of the face-on
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film and the mixed character of the edge-on film provide additional support for the dipole

strengths shown in figure 4.2.

a) b)

Figure D.S2: Back focal plane images of y-polarized photoluminescence from a) face-on
and b) edge-on p-SIDT(FBTTh2)2 films on quartz. The face-on image has the pattern
of an in-plane dipole while the edge-on image has the pattern of an out-of-plane
dipole. The red dotted ovals highlight the critical angle where this difference is most
pronounced. The intensity has been normalized to highlight the differences in pattern.
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