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Abstract

Simulating the Inelastic Seismic Behavior of Steel Braced Frames

Including the Effects of Low-Cycle Fatigue

by

Yuli Huang

Doctor of Philosophy in Engineering — Civil and Environmental Engineering

University of California, Berkeley

Professor Stephen A. Mahin, Chair

The research in this dissertation describes simulations of the inelastic seismic be-

havior of steel braced frames including the effects of low-cycle fatigue. Various types

of nonlinear behavior are considered: material inelasticity, low-cycle fatigue, and lo-

cal and global geometric nonlinearities. The effects of suddenly started, quasi-brittle

fracture are not considered herein. For steel braced frames, braces, columns, beams,

and connections subjected to significant axial loads and deformations, as well as bend-

ing moments and shear. Under these complex-loading conditions, a wide variety of

behavior mechanisms and failure modes may occur for each type of member and con-

nection. Thus, numerical models that assess the initiation and propagation of failure

during cyclic loading need to account for multi-axial states of material nonlinearity,



2

local and global buckling, and the exhaustion of the ability of the material to deform

inelastically caused by low-cycle fatigue.

Following a review of existing material models for simulating structural steel dete-

rioration, a series of investigations are conducted using finite element modeling tech-

niques. Finite element methods can directly account for complex states of stress and

changes in deformed shape. And material models are critical for constitutive behavior

at integration points of the finite element models. However, available material models

tend to emphasize behavior associated with ideal ductile response or with failure oc-

curring under monotonic loading conditions (e.g., during metal-forming processes or

vehicle collision). These models are not suitable for progressive collapse analysis un-

der cyclic loading where the consequence of this adverse behavior on the subsequent

response or integrity of the structure is of interest.

Therefore, a new, numerically efficient continuum damage mechanics material

model capable of simulating inelastic behavior and deterioration of mechanical prop-

erties because of low-cycle fatigue has been devised and implemented in a finite el-

ement software LS-DYNA (LSTC 2007). Computational results obtained with this

new material model correlate well with test results for several beam-to-column con-

nections, individual braces, and braced frame subassemblies. These applications of

the finite element model to realistic cases involving progressive collapse illustrate the

importance of material deterioration and rupture. Unfortunately, the ability of the

material model to predict ultimate behavior depends heavily on the material model-
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ing properties specified. Recommendations for characterizing material properties for

these types of analysis are developed and presented.

A series of analyses are presented that evaluate and refine several requirements for

detailing and analyzing special concentrically braced steel frame buildings, demon-

strating that the fatigue life capacity of braces is heavily dependent on width-thickness

ratios and deformation histories. Member slenderness ratios are shown to have negligi-

ble effect on fatigue life capacity. Therefore, recommendations are presented for devel-

oping fatigue life demand or loading protocols for use in numerical and experimental

investigations. Next, damage evolution in gusseted beam-to-column connections is

evaluated and compared for different connection details, and improved connection

details are recommended to reduce the damage accumulation. The position of lat-

eral bracing members for beams in V-type and inverted V-type braced frames are

also examined. More appropriate positions and methods to compensate for problems

detected for currently recommended lateral bracing member positions are suggested

and evaluated. Finally, for low-rise braced frames that respond inelastically during

strong earthquake ground shaking, an alterative method to estimate interstory drift

demands is suggested based on the Modal Pushover Analysis procedure.

Professor Stephen A. Mahin
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Background

Engineers frequently use various types of computer analysis to assess the safety of

engineered structures. Simplified analysis methods are often employed in the design of

standard structures. Modeling guidelines and acceptance criteria used in conjunction

with such simplified methods are intended to provide acceptable conservatism relative

to the safety and serviceability of the structure. In some cases, however, more refined

analysis methods are required. Such refined analysis is used in situations where:

1. Existing structures are to be evaluated for loading or environmental conditions

more severe than initially considered in design. Simplified analysis methods not

directly related to the expected behavior of as-built structural elements may

not be able to quantify adequately the true ability of a structure to withstand
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more severe loading conditions, raising questions regarding the need to retrofit

or upgrade a structure for the new criteria.

2. An existing structure is to be architecturally or functionally remodeled, requir-

ing removal or shifting of structural members, changing the overall size of the

building, or altering the type and configuration of the structural system.

3. New structural systems employ unusual features, details or configurations where

simplified analysis methods may not be adequate or the incorporation of these

new structural elements introduce significant uncertainties regarding the ade-

quacy of the proposed design. Modern architecture often does not conform to

past practices regarding gravity and lateral load resisting systems and tends to

incorporate unusual details or member proportions.

4. A precise evaluation of the safety or performance of a structure is required for

hypothetical man-made or natural hazards. Today, various stakeholders (own-

ers, occupants, government officials, insurance companies, financial institutions,

etc.) are requesting assessment of the safety and probable losses that might oc-

cur as a result of a variety of natural and man-made hazards.

In cases such as these, commonly used, simplified analysis methods may not be

able to give a true picture of actual damage or losses. Thus, a more complex analysis

is needed that can simulate the various behavior modes that can occur at the element

and structure level and track the evolution of damage from onset to eventual member
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and structural failure. Because several modes of behavior can potentially occur in

all members and connections, the models must simulate to a fair degree of accuracy

those modes, and correctly identify those modes that control behavior and ultimate

failure.

Although this work focusses on the behavior of components, it is recognized that

the local failure of a part of one member may not lead to the loss of structural integrity

of that member or of the structure as a whole. Where collapse does occur, it may

involve one or several local regions of the structure. In some cases, the failure of

one element may be critical to the overall stability of the structure. The complete

structure, or a substantial portion of the structure above (and below) the element

or region that initially fails, may collapse. Situations where a local failure leads to

disproportionate damage or collapse of large portions of a structure are known as

“progressive collapse”.

Predicting the onset of damage within a large and complex structure, and the

consequence of such local damage on other elements and the structure as a whole,

requires analytical models that simulate to a fair degree of accuracy the behavior of

structural elements and systems undergoing large inelastic deformations. As such,

available analysis procedures and models will be reviewed and evaluated to assess

their ability to predict the behavior and failure of elements and structural systems.

For structures subjected to earthquakes, material models need to account for cyclic

plasticity, including deterioration and eventual failure because of low-cycle fatigue.
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The deterioration of a member may alter not only the distribution of forces and

damage within a structural system, but also the response history. Because response

history influences the degree of deterioration, accurate material and component mod-

els that predict the response of structures subjected to severe earthquake shaking or

other transient dynamic excitations are critical.

In seismic-resistant design, equivalent static or dynamic analysis based on elastic

representations of member properties are commonly employed, even though signifi-

cant inelastic action is expected. Engineers are increasingly interested in predicting

inelastic response using nonlinear static or nonlinear dynamic analysis procedures.

For nonlinear static methods, a realistic structural model is subjected to a fixed dis-

tribution of lateral forces, which monotonically increase in intensity with time. Such

static inelastic “pushover” analyses, fairly common in design practice, provide a de-

sign engineer with a general indication of the distribution of inelastic deformations

(and internal forces) within the structure, the global load capacity of the structure,

and the lateral displacement at which certain key events occur (initial yielding, initi-

ation of member failure, loss of global stability, etc.). Nonlinear dynamic time history

analysis are computationally more demanding, but provide a more realistic prediction

of the response quantities of interest.

Nonlinear time history analysis of structures during design usually assume ideal

ductile member behavior. The computer model estimates global response quantities

(interstory drift, story shears, etc.) and locally required plastic deformation demands
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(plastic hinge rotations, plastic strains, etc.) based on ideal ductile behavior. Al-

though this assumption is quite broad, it is generally accepted because the elements

and connections can subsequently be detailed to develop predicted inelastic demands,

or if the resulting details, are objectionable or the structure does not meet acceptance

criteria for the overall system behavior, the configuration, proportions and details of

the structural system and elements can be changed.

Members and connections in new and especially existing structures have finite

ductility capacities, however, and because a certain degree of deterioration of prop-

erties might be expected generally, infinitely ductile models may not be adequate for

seismic or other abnormal loading conditions, as inelastic demands will likely lead

to deterioration and possible failure of members. These weakened members will, in

turn, influence dynamic response and overall system stability.

In order to assess behavior of an element or structure as it approaches failure

under earthquake or other excitations, several types of nonlinear behavior need to be

considered. These relate to material inelasticity, fracture, low-cycle fatigue, and local

and global geometric nonlinearities.

Herein, the effects of suddenly started, quasi-brittle fracture are not considered.

Where issues of fracture mechanics need to be taken into account, a large number

of small sized finite elements are required. Such analysis models and methods do

not lend themselves to the analysis of a complete structural system under dynamic

loading. Thus, it is assumed herein that a separate fracture-mechanics-based analysis
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should be carried out on individual fracture critical regions. Where behavior is found

to be vulnerable to quasi-brittle or ductile fracture, this report assumes that: (1) a

simplified material or damage model is devised that would mimic the mode of fracture

detected; or (2) problematic details would be changed to mitigate the vulnerability.

Regardless, the research presented herein includes scenarios where members rupture

because of the materials reaching and exceeding their ability to develop further in-

elastic deformations, either under monotonic or cyclic loading. Such ruptures may

appear similar to and have similar consequences as fracture, but they are different

physical phenomena and require different analysis approaches.

Steel braced frames are the focus of this investigation is steel braced frames. For

such structures (see the frame designated as a braced frame in Figure 1.1), lateral load

resistance is, in large part, because of the braced frame acting as a vertically oriented

truss. The braces, columns, beams, and connections are subjected to significant axial

loads. Braces are generally expected to respond in the inelastic range during moderate

and severe earthquakes. At displacement levels associated with brace yielding or

buckling, significant bending and shear demands can also develop in all members

and connections. Under these complex-loading conditions, a wide variety of behavior

mechanisms and failure modes must be taken into account for each type member

and connection. The particular behavior that occurs and the consequence of its

occurrence depend on material properties, member proportions, local details, and the

applied loading or deformations (which will depend not only on the externally applied
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loads, but also on the behavior of adjacent members and connections). Thus, models

that assess the potential for failure to propagate throughout the structure need to

account for multi-axial states of material nonlinearity, local and global buckling, and

low-cycle fatigue.

Moment Frame Braced Frame

Rigid Beam-Column
Connection

Beam

Column

Pinned connection

Brace
Gusset plate
connection

Figure 1.1: Schematic steel building comprising braced and moment-resisting frames

This investigation considers elements that make up typical concentrically braced

steel frames. These include conventional bracing members that may buckle laterally

and locally during loading in compression. Because braced frames are often used as

part of a dual system, some attention will be given to the modeling of conventional

steel beam-to-column connections. Additional Issues related to modeling and analysis

in moment-resisting frame components and connections are the focus of a parallel

study carried out at Stanford University (Lignos and Krawinkler, 2007).
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Generally speaking, three basic approaches will be taken to modeling structural

members of the type examined in this report. These are referred to herein as: (1)

phenomenological models; (2) physical theory models; and (3) finite element models.

• Phenomenological Models. — Phenomenological models use a simplified

physical representation of the member in question. For example, a phenomeno-

logical model for a brace usually consists of a simple uniaxial, pin ended truss

element with a hysteretic axial force-axial deformation relation defined by a set

of generic rules that simply mimic the hysteretic response observed for a brace.

The user is responsible for inputting data that enables the generic brace model

to represent the particular design being analyzed. In the case of a flexurally

dominated beam, a common phenomenological model represents the member

as an elastic beam connected at each end to the element’s nodes by means of

inelastic rotational springs. The rotational springs are simplified in terms of

rules that define the hysteretic nature of the moment-rotation characteristics

of the plastic hinge region at the end of the member. To model the effects of

spalling of concrete, and yielding, buckling, and fracture of steel, more and more

complex rules are employed. Generally, these rules do not depend on or attempt

to track the actual occurrence of concrete spalling, or steel yielding, buckling,

or fracture. These models depend on having an extensive database of experi-

mental results with which the numerical modeling parameters can be identified.

Where various behavior modes can occur (bending plus axial buckling, flexure
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plus shear, or flexure plus axial loading) the rules become even more complex

or are uncoupled, leading to questionable results.

• Physical Theory Models. — In many cases, member behavior can be well

represented by certain established but simplified rules of mechanics. For ex-

ample, in a beam with low axial load and shear, plastic hinges occur at easily

identified locations. Outside of these regions, this beam will behave in a nearly

elastic manner. Within the plastic hinge region, the material may yield and

undergo various actions that will affect its properties. In such cases, it may

be acceptable to make certain assumptions regarding the distribution of strains

across a section and the distribution of curvatures along the member, and track

the actual stress-strain history in individual material fibers located across the

section. In this way, certain types of physical behavior can be tracked auto-

matically in the analysis, so that complex empirically calibrated rules are not

needed. As shown later, this can be applied to a variety of beams, columns,

and braces; however, some of the assumptions may not be valid, as the typical

fiber-based model incorporates only unidirectional material properties. Con-

sequently, multi-axial stress states and three-dimensional phenomena [such as

local buckling, section warping, or distortion (because of shear or torsion), bar

pull out, etc.] cannot be easily represented.

• Finite Element Models. — Although phenomenological and physical the-
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ory models described above are special forms of finite elements, the more gen-

eral case, where a member and structure is divided up into a variety of small

shell or solid elements, allows the response of the structure in various modes

to be simulated. Such finite element formulations can account for multi-axial

stress states, nonlinear material properties, and changes in geometry that occur

during loading. Because of the large number of elements and the absence of

simplifying assumptions, these models are often computationally expensive and

time-consuming to develop and execute; however, they usually produce results

close to those expected of real structures. Nevertheless, these models cannot

reproduce behavior that is not incorporated in the model (e.g., buckling be-

cause of large displacements, material failure, etc.), and they put much more

reliance on having well-defined multi-directional material property models. As

such, careful calibration of these models to test results is needed, and the degree

of improvement in response prediction compared to the increased level of effort

to perform these models should be carefully considered.

This investigation studies the ability of finite element formulations to simulate

accurately the behavior modes of interest in braces, beams, beam-to-column connec-

tions and braced frame subassemblies. Compared to phenomenological models, these

models require more computational effort, but incorporate more realistic physical

representations of members and materials, including the initiation and evolution of

damage up to and including complete failure.
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1.2 Objectives and scope of research

The objectives of the research presented in this dissertation are as follows: (1)

to review available information on the behavior and analysis of members and sub-

assemblies from steel concentrically braced frames where elements are subjected to

deterioration; (2) to develop improved numerical models that simulate adequately the

behavior of a steel braced frames up to and including failure; (3) to use the improved

models to evaluate and refine several requirements for detailing and analyzing special

concentrically braced steel frame building.

The remaining chapters of this dissertation derive from the objectives listed above.

Chapter 2 reviews existing experimental investigation. Chapter 3 reviews and evalu-

ates material models on structural steel deterioration. Chapter 4 develops a improved

cyclic damage plasticity model. Chapter 5 discusses calibration, validation and ap-

plication of the new damage material model using test results from beam-to-column

connections, individual braces, and braced frame subassemblies. Chapter 6 provides

studies of steel braced frame behavior, including brace proportions, connection de-

tails, lateral bracing for beams, and estimate of interstory drift demands. Concluding

remarks and recommendations are discussed in Chapter 7. An appendix includes

constraint method developed in this research for pushover analysis and a discussion

on instability of Newmark integrator.
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Chapter 2

Review of Existing Experimental

Investigations

This research is focussed on braces, beams, columns, and connections that are

part of braced steel frames, where members are subjected to high axial loads alone or

in combination with bending and shear. Some aspects of conventional moment frame

construction will also be addressed as these elements may be used in combination with

braced frames as a gravity load-resisting system or a backup lateral load-resisting

system. Both static and dynamic loading situations will be considered, although,

the focus will not be on cases where strain rate effects or where local inertial forces

along the length of a member need to be considered. The analysis models considered

will include the effects of material inelasticity, local and global buckling, and low-

cycle fatigue on the behavior and failure of various elements and structural systems.
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Thus experimental results that investigate such behavior are of interest. This chapter

reviews experimental data from investigations of conventional braces, gusset plates,

braced frame subassemblies, and beam-column connections.

2.1 Investigations of conventional braces

Tremblay (2002) compiled and interpreted the results of more than one hundred

tests of steel braces available at that time. These tests include braces fabricated from

square hollow structural section (HSS) sections, pipes, wide flange sections, double

channels, single and double angles, and structural “T” sections. This compilation

does not include recent tests by Tremblay et al. (2003), Elchalakani et al. (2003),

Goggins et al. (2005), Yang and Mahin (2005), Fell et al. (2006), Han et al. (2007),

Tremblay et al. (2008), and Lehman et al. (2008).

Tremblay (2002) used this database to assess several useful engineering relation-

ships used in design. For example, the initial buckling load was compared for the

braces in the database to theoretical predictions and to equations included in United

States and Canadian building codes, demonstrating that code values are often con-

servative; they tend to underestimate the buckling capacity of braces, especially for

slender braces.

Importantly, Tremblay also examined several other simplified relations that may

be used to develop and interpret phenomenological models for braces. For example,

relations exist that predict the out-of-plane displacement of buckling braces and the
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deterioration of the compressive buckling capacity of braces. For this later case, a

relation was developed between the compressive load capacities of braces that have

been shortened by a displacement equal to five times the displacement at the on-

set of buckling. Similar relations were developed for lower and higher normalized

displacements.

Tremblay also provided information on the cyclic ductility that a brace may de-

velop as a function of loading history and brace slenderness. This ductility factor

shows considerable variability and sensitivity to loading history. This variability

must be considered when evaluating the ability of refined analysis models to predict

member failure. The refined analysis may suggest a higher level of confidence in the

predicted deformation capacities than those can be supported by test data.

Also of significance is that the ductility values presented by Tremblay are cyclic

values, defined as the sum of the peak elongation displacement and compressive dis-

placement divided by the displacement at first buckling. Thus, for a loading history

where the amplitudes of displacement are equal in both tension and compression, the

ductility values should be divided by two to estimate the maximum shortening of the

brace prior to failure. The cyclic ductilities range from about 6 to more than 20,

corresponding to unidirectional ductilities for symmetric cycles of about 3 to more

than 10. Thus, the braces considered in the database are not too ductile, with the

stockier braces having less ductility capacity.

A similar empirical investigation of a nearly identical database has examined the
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energy dissipation capacity of braces and the deterioration of energy dissipation effi-

ciency and compression capacity with cumulative plastic shortening as a function of

member type and slenderness ratio (Lee and Bruneau, 2005). This research points

out many difficulties in defining useful parameters for design or analysis purposes.

Earlier studies of brace test data by Lee and Goel (1987) and Ikeda et al. (1984)

have produced specific recommendations for two different types of phenomenological

model used for braces (Jain and Goel, 1978; Ikeda et al., 1984). With parameters

estimated empirically, hysteretic loops can be predicted using the analytical models.

As noted previously, these loops do not directly account for any phenomena associ-

ated with yielding or buckling of the brace. They only follow the general shape of the

hysteretic loops based on empirically derived parameters. Ikeda et al. (1984) sug-

gested that the parameters are not well conditioned, however, and are, in fact, very

sensitive to materials, section shape, loading history, etc. Ikeda and Mahin (1984)

subsequently developed a physical theory model for brace buckling that was also cal-

ibrated to available test data. This model utilized a generalized axial load-bending

moment plastic hinge based on classic plasticity at the center of the member and a

large displacement formulation for the internal lateral displacements within the brace.

It proved difficult to properly model the behavior of braces in the re-straightening

phase from a previously buckled configuration, and a variety of empirical adjustments

were imposed to improve accuracy.

Test data is need to evaluate existing brace models and calibrate new ones. Be-
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cause of their availably at the beginning of this investigation, the primary experiment

source of data used is a series of eight nearly identical Hollow Structural Section

(HSS) braces tested at University of California at Berkeley (Yang and Mahin, 2004;

Uriz, 2005). The braces (see Figure 2.1) consisted of square 6× 6× 3/8 HSS sections

fabricated from ASTM A500 Grade B steel having specified minimum strengths of

Fy = 46 ksi and Fu = 58 ksi. Mill certificates showed that the specimens were con-

siderably stronger, with Fy = 60 ksi and Fu = 65 ksi. The ends of the HSS sections

were slotted and welded to gusset plates at each end. The framing members — to

which the gusset plates were attached at both ends — were fixed against rotation,

but axial elongation or shortening of the brace was permitted. Some specimens were

reinforced locally near their ends where there was a reduction of the net area of the

brace because of the slots used to fasten the braces to the gusset plates. The KL/r

ratio for the braces, considering K = 1 and the length L extending between from the

faces of the framing members to which the gusset plates were attached, was 51 for all

specimens.

Three different types of axial displacement histories were imposed along the longi-

tudinal axis of the brace. One of the loading protocols consisted of a cyclic displace-

ment history based on a nonlinear analysis of a Special Concentrically Braced Frame

(SCBF) that was subsequently tested (Uriz, 2005). This would facilitate compari-

son of hysteretic loops for individual braces and braces tested as part of a structure.

A second loading protocol consisted of a near-fault type history, where there was a
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modest cycle with compressive loading followed by a large excursion in tension, fol-

lowed, in turn, by a series of smaller cycles about an offset position. A similar test

was done where the signs of the displacement excursions was reversed (i.e., the large

displacement excursion was in compression). Finally, a third type of protocol was

used where a series of symmetric, constant amplitude displacement cycles at several

levels were imposed until the brace failed. These test results were previously used

to assess damage accumulation models and the sensitivity of failure to the loading

history (Uriz, 2005).

2.2 Investigations of gusset plates

A comprehensive three-year literature review on the behavior of gusset plates was

completed in 2005 (Chambers and Ernst, 2005). Including more than 200 papers

and reports, this review evaluates the results in terms the ability of modern codes

and analysis methods to predict behavior. The conclusions state that the amount of

information available on gusset plates for conditions similar to those found in current

design practice, and for loads representative of seismic loading conditions, are too few

to make an adequate assessment.

To help address this issue, a series of tests are currently underway at the University

Washington, Seattle, under the supervision of Professors C. Roeder and D. Lehman

(Roeder et al., 2006; Lehman et al., 2008). These tests place the braces along the

diagonal of a single story, single bay frame. The braces include buckling restrained
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braces as well as conventional braces that are allowed to buckle.

A variety of gusset plate details are used. Initially, gusset plate connections were

designed by considering the conventional Whitmore section (effective width, Whit-

more, 1952) and the Uniform Force Method (Thornton, 1991; AISC, 2005a), which are

basically strength-based design methods and do not consider the inelastic deforma-

tion demands expected during seismic loading from brace buckling or frame rotations.

Currently, the investigation has expended to include a number of configurations and

alternative design methods for the gusset plates. Previous test results have shown

that current gusset plate details tend to fail prematurely along the weld connecting

the plate to the supporting beam and column, or initiate fracture into the beam or

column. Representative damage observed in their tests is shown in Figure 2.2.

A series of simple gusset plate tests were carried out at University of California

at Berkeley by Markarian and Mahin (2004). In these tests, only frame flexural

deformations were imposed, with no axial tensile or compression loads. The beams

to column connections were pinned, consisting of a simple shear tab connection from

the beam to the column. The addition of the gusset plate resulted in considerable

moment transfer and stress states that do not appear in typical design or analysis

practices. These tests demonstrated a tendency for the beams and columns to exhibit

complex states of stress, and for the connection to fail in a brittle fashion.

More recent tests have been conducted on gusset plate connection in buckling

restrained braced frames (BRBF) system by Kishiki et al. (2008). In these tests,
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interaction between framing components and the gusset plate was considered, but

influence of bracing forces was ignored. Beam-column frame subassemblies with the

gusset plate were subjected to cyclic lateral loading. It was found that effective

length of the beam shortened by the presence of the gusset plate connections. It was

indicating that the critical section of the beam was moved to the toe of the gusset

plate. On the other hand, effective length of the column was hardly affected by the

gusset-plate when a rectangular hollow section (RHS) was used for the column.

2.3 Investigations of braced frame subassemblies

Most tests of braced frames have used small-scale models or employed details

that are not currently in use. Valuable data was obtained from Japanese pseudo-

dynamic tests of a full-scale, six-story special concentrically braced frame and eccen-

trically braced frame. These tests were performed at the Building Research Institute,

Tsukuba, Japan, in the mid-1980s (Midorikawa et al., 1988; Foutch et al., 1986). One-

third scale models of the same structures were tested on the University of California

at Berkeley shaking table (Whittaker et al., 1989).

Relatively few recent tests have been conducted on multistory subassemblies of

concentrically braced frames. One recent example was carried out by Uriz (2005). The

frame is shown in Figure 2.3, and the displacement history imposed at the roof of the

structure is shown in Figure 2.4. The frame suffered extensive damage to the braces

in the lower level, the columns at the base of the building, and in the beam-to-column
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connections at the first story level. A wide variety of behavior was observed, from

yielding, local buckling, local tearing, brace fracture, and column local buckling and

connection fracture (Uriz, 2005). Following brace buckling, the strength of the frame

degraded significantly from cycle to cycle. This specimen provides a good test of the

ability of various methods to predict behavior associated with members undergoing

bending and axial load, lateral buckling, and local buckling.

Uriz (2005) reported that the distribution of lateral drift was nearly equal for the

top and bottom stories at the beginning of test. Both levels developed slight amounts

of buckling, but full lateral buckles formed in the lower level, with local buckling

occurring almost immediately (Figure 2.5). Because of the reduced load capacity of

the buckled braces, the forces in the upper (and lower) level decreased, and no further

tendencies were observed for the upper level to buckle. This resulted in a weak-story

response, with nearly all of the inelastic behavior and damage concentrated in the

lower level. This led to the complete fracture of the braces during the first design level

displacement excursion (Figure 2.6), with failure of the lower level beam to column

connections occurring soon thereafter (Figure 2.7).

The hysteretic loop relating the roof lateral force versus base shear is shown in

Figure 2.8. The points marked A, B, C, and D represent the initial tearing and final

complete fracture of the braces in the lower story. Points E and F represent the

fracture of the lower beam to column connection, first on one side of the structure

and then on the other. The initial buckling of the braces is easily identified by the
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sudden nonlinearity of the system, with slight negative post-buckling tangent stiffness.

Substantial deterioration of the specimen load capacity, occurred upon cycling at the

level that induced first buckling of the lower level braces. This buckling occurred at

relatively small drifts compared to drifts considered for design purposes in the United

States. The braces completely fractured during subsequent cycles at this drift level

or during the first excursion to the design level.

A series of four full scale, 2-story, single bay braced frame tests were performed

at the National Center for Research on Earthquake Engineering (NCREE) in Taiwan

(Powell et al., 2008). The first test was a braced frame with HSS tube braces in a

multi-story X-brace configuration. It provided an experimental examination of the

multi-story X-brace system and of the mid-span gusset plate connections. At the same

time, it was a confirmation study for past research on corner gusset plate connections

performed at the University of Washington.

Several tests of BRBFs have recently been carried out at University of California

at Berkeley (Uriz, 2005). The tested subassemblies consist of portion of a seven-story

BRBF. Two configurations of braces were considered. These included a chevron

configuration with each unbonded brace having a single flat plate for the yielding

core; in one brace the core was oriented horizontally and in the other it was oriented

vertically. The second configuration utilized a single unbonded brace oriented across

the diagonal of the frame. Two brace sizes were considered: one where the core was

the same size as used for the chevron configuration and another where the area was
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doubled (and the core was cruciform in shape).

The buckling restrained braces (BRBs) performed quite well in these tests com-

pared to conventional braces; however, considerable yielding was noted throughout

the surrounding frame. This included shear yielding of the column webs, yielding

of the columns and gusset plates, and yielding of the beam to column connection

regions. In addition, gusset plate buckling was noted. Interestingly, this buckling

occurred when the attached brace was in tension. The buckling was a result of the

kinematic distortion of the gusset plate that occurred as a result of frame action (the

gusset plate is squeezed as the brace is loaded in tension). Eventually, fracture was

noted in the beams adjacent to the gusset plate. This fracture appeared to be induced

as a consequence of frame bending behavior.

A series of tests on BRBFs have been carried out at the NCREE in Taiwan (Tsai

et al., 2006). The basic differences between this test and the single diagonal brace

test conducted by Uriz (2005) is as follows: (1) a different type of BRB is used; (2)

a concrete-over-metal-deck floor system is used; and (3) the frame is subjected to

two horizontal components of motion using the pseudo-dynamic test method, leading

to bidirectional-bending effects in the columns. The specimen was able to undergo a

substantial number of simulated earthquakes. During a moderate level test, a fracture

in the welds of the gusset plate to the column was noted and required repair before

conducting the subsequent tests. The NCREE has also tested BRBFs in a three-story

configuration where the columns were concrete filled steel tubes (Tsai et al., 2004).
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2.4 Investigations of beam-column connections

The steel moment connection data used herein are from two sources. One is a

series of welded steel beam-column connection tests (Tanaka et al., 2000) conducted

by Kajima Corporation, Japan. These tests incorporated box columns and beams

with horizontally tapered haunches so that the beam flanges widened to conform to

the width of the column. The columns were made of welded square tube section of

400 × 400 × 19 (mm) and steel grade of SS400 (Fy = 280 MPa, Fu = 430 MPa).

Beams were made of rolled wide-flange section of 500× 200× 10× 16 (mm) and steel

grade of SS400 (Fy = 270 MPa, Fu = 420 MPa). The distance from the column

axis to the load point at beam is 2000 mm. Various forms of ductile behavior were

observed with the specimens eventually developing fractures. Specimen BW10, which

developed significant local buckling prior to terminating the test, is studied herein.

Test setup for specimen BW10 is shown in Figure 2.9.

The other set of data used here is from Suita et al., (2000), where a variety of

Japanese style post-Kobe and United States style post-Northridge welded beam-to-

column connections were tested. This experimental study compared beams having

uniform sections and reduced beam sections in the plastic hinge region. Duplicate

specimens fabricated by two manufacturers were tested to identify variability in per-

formance with different heats of steel and manufacture. The beam-column connec-

tions with a uniform flange section and no weld access hole (NWAH) failed because

of low-cycle fatigue. They are used in current research. The columns were made of
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cold-formed square tube section of 350× 350× 12 (mm) and steel grade of BCR295

(Fy = 295 MPa, Fu = 400 MPa). And the beams were made of rolled wide-flange

section of 500× 200× 10× 16 (mm) and steel grade of SN400B (Fy = 235 MPa, Fu

= 400 MPa). The distance from the column axis to the load point at beam is 3000

mm. Test setup for specimen N4 studied herein is shown in Figure 2.10.

An extensive database of results of steel beam-to-column connection tests has

recently been compiled by Lignos and Krawinkler (2007).

2.5 Concluding remarks

Considerable experimental data exists on components such as conventional braces,

beams, columns, and connections, and on subassemblies including these components.

Some of this well-documented data will be used to calibrate or validate the numerical

models developed in this research.
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(a) Specimen

(b) End connection

Figure 2.1: Experimental setup for conventional brace test (Yang and Mahin, 2005)
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(a) Crack initiation and propagation

(b) Complete rupture

Figure 2.2: Gusset plate damage (Roeder et al., 2006)
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Figure 2.3: Test setup for SCBF (Uriz, 2005)

Figure 2.4: Target roof displacement history of SCBF test (Uriz, 2005)
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(a) Global buckling

(b) Local buckling

Figure 2.5: Brace buckling (Uriz, 2005)
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(a) Crack propagation

(b) Complete rupture

Figure 2.6: Brace failure (Uriz, 2005)
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Figure 2.7: Beam-column connection failure (Uriz, 2005)
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Figure 2.8: Base shear versus roof lateral displacement (Uriz, 2005)
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Figure 2.9: Test setup for BW10 beam-column connection (Tanaka et al., 2000)
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Figure 2.10: Test setup for N4 beam-column connection (Suita et al., 2000)
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Chapter 3

Structural Steel Deterioration

For structural steel subjected to a severe cyclic loading history, such as that expe-

rienced during a strong earthquake, several stages of behavior commonly exist during

the course of material deterioration. Initially, it is assumed there are no macroscopic

cracks or defects, thus no stress or strain singularities are associated with the mate-

rial. The material is then loaded non-proportionally and cyclically into the inelastic

regime under asymmetric stress and strain histories of varying amplitude. Deterio-

ration then develops because of imposition of large plastic deformation, resulting in

substantial energy dissipation. This causes progressive failure of the material volume

through ductile damage and fracture associated with microvoid nucleation, growth,

and coalescence. After complete failure of a local material volume, a macroscopic

crack is initiated eventually.

Damage resulting from plastic deformation in ductile metals is mainly because of
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the formation of microvoids, which initiate (nucleate) either as a result of fracturing

or debonding of inclusions such as carbides and sulfides from the ductile matrix. The

growth and coalescence of microvoids under increasing plastic strain progressively

reduces the material’s capability to carry loads and can result in complete failure.

Figure 3.1 shows the section of a tensile specimen during the necking process [defined

as a mode of tensile deformation where relatively large amounts of strain localize

disproportionately in a small region of the material, in Bridgman (1952)], clearly

demonstrating void accumulation at the specimen center (Puttick, 1959). Figure 3.2

schematically illustrates the nucleation, growth, and coalescence of such microvoids

(Anderson, 1995). If the initial volume fraction of voids is low, each void can be

assumed to grow independently; upon further growth, neighboring voids interact.

Plastic strain eventually concentrates along a sheet of voids, and local necking insta-

bilities develop as shown schematically in the figure.

A proper modeling of this micro-void nucleation and growth mechanism is needed

to predict ductile failure in steel members and structures. In the context of continuum

mechanics, plasticity and damage models are essential for the simulation. Plastic

behavior and models, damage and fracture of structural steel under monotonic and

cyclic loading are discussed in the following sections.
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Figure 3.1: Void accumulation in a tensile specimen (Puttick, 1959)

(a) Inclusions in a ductile matrix (b) Void nucleation

(c) Void growth (d) Strain localization between voids

(e) Necking between voids (f) Void coalescence and fracture

[after Anderson (1995)]

Figure 3.2: Void nucleation, growth, and coalescence in ductile metals
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3.1 Plastic behavior and models

Isotropic hardening and/or kinematic hardening are commonly used to describe

the plastic behavior of metal-like materials under complex loading conditions. Prager

(1956) and Ziegler (1959) initiated the fundamental framework used for kinematic

hardening rules. Armstrong and Frederick (1966) developed a nonlinear kinematic

hardening rule that generalized its linear predecessor. In this model, the kinematic

hardening component is defined to be an additive combination of a purely kinematic

term (i.e., the linear Prager/Ziegler hardening law) and a dynamic recovery term,

which introduces the nonlinearity. When combined together with isotropic harden-

ing, such a model can account for the following observed phenomena: (1) Nonlinear

Bauschinger effect (Figure 3.3); (2) Cyclic hardening (Figure 3.3); and (3) Ratcheting

(Figure 3.4).

The Armstrong and Frederick’s rule was further extended by Chaboche (1986,

1989), where an additive decomposition of the back stress was postulated. The evolu-

tion equation of each back stress component is similar to the work done by Armstrong

and Frederick (1966). The advantages of this superposition are that a larger strain

range can be realistically modeled, and a more accurate description of ratcheting is

provided. These features allow modeling of inelastic behaviors of metals that are

subjected to cycles of load, resulting in significant inelastic deformation and, possi-

bly, low-cycle fatigue failure. Discussion of these plasticity models can be found in

Lemaitre and Chaboche (1990).
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3.2 Damage and fracture under monotonic loading

Two alternative approaches are generally considered for modeling material failure:

local approaches and global approaches. Local approaches focus on issues related to

micromechanics, whereas global approaches address issues of fracture mechanics.

3.2.1 Local approaches

The local approach to fracture can be defined very generally as the combination

of the following two factors: (1) the computation of local stress and deformation

values in the most loaded zones of a component or structure; and (2) the use of

predefined empirical models corresponding to various fracture mechanisms, such as

cleavages, ductile fracture, fatigue, creep, stress-corrosion, etc. (Rousselier, 1987).

The parameters needed for these empirical models are obtained by calibration to

experimental data.

Many damage models have been developed since the initial micromechanics studies

of McClintock (1968) and Rice and Tracey (1969). The models can be categorized into

two classes: (1) void volume fraction models; and (2) continuum damage mechanics

models. In the first group, failure is predicted when void volume fraction reaches a

critical value. In the second group, the material is considered fractured when the

reduction of effective area exceeds a critical value.

Both types of models can be written in the form of stress-modified critical plastic
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strain:

Damage evolution D =

∫
F (σ)G (ε̇p) dt (3.1a)

Failure criteria D = Dc (3.1b)

where σ is the stress tensor, F is the stress modification function, ε̇p is the plastic

strain rate tensor, G is the plastic strain rate function, D represents the damage of

the material, and Dc is the value of the critical damage parameter at failure. For

example, the Rice and Tracey (1969) model can be written as

F (σ) = exp (1.5σm/σeq) G (ε̇p) = ˙̄εp (3.2)

where σm = σ : 1/3 is the mean stress, σeq =
√

3/2‖σ‖ is the equivalent stress,

σm/σeq is the stress triaxiality, and ˙̄εp is the equivalent plastic strain rate, defined as

˙̄εp =

√
2

3
ε̇p : ε̇p (3.3)

For the porous metal plasticity model (GTN model) developed by Gurson (1977), and

Tvergaard and Needleman (1984), a sophisticated yield function is developed and the

void growth part is given by

F (σ) = 1 G (ε̇p) = ε̇pv = ε̇p : 1 (3.4)

where ε̇pv is the volumetric plastic strain rate, and 1 is the second-order identity tensor

1 = δijei ⊗ ej.

For the ductile damage model proposed by Lemaitre (Lemaitre, 1992; Dufailly and

Lemaitre, 1995), which is based on continuum damage mechanisms (CDM) introduced
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by Kachanov (1958), the damage evolution function becomes

F (σ) =

[
Y

S

]t
G (ε̇p) = ˙̄εp (3.5)

where S is a material constant in energy density units, t is a dimensionless material

constant, and Y is the internal energy density release rate, calculated as

Y =
1

2
σ : [De]−1 : σ (3.6)

where De represents the fourth-order elasticity tensor

De = κ1⊗ 1 + 2G(I− 1

3
1⊗ 1) (3.7)

where λ and G are the Lamé constants, and I is the fourth-order symmetric identity

tensor.

I =
1

2
[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el (3.8)

The Rice and Tracey (1969) model and Lemaitre (1992) model predict very similar

trends in the case of proportional loading, as seen in Figure 3.5, where the equivalent

plastic strain to failure ε̄pf versus stress triaxiality σm/σeq is plotted for the two models.

In the case of non-proportional loading, Marini et al. (1985) showed that the two

models also give similar results. Recently, Steglich et al. (2005) investigated the

relationship between the CDM and the GTN models.

3.2.2 Global approaches

Global approaches are based on asymptotic continuum mechanics analysis. Under

some situations, single- or dual-parameters can uniquely characterize the crack tip
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Figure 3.5: Equivalent plastic strain to failure versus stress triaxiality

condition. Well-known single-parameter variables are stress intensity K, J-integral,

and CTOD (crack tip opening displacement). A well-known dual-parameter formu-

lation is based on the addition of a T -stress parameter that characterizes the crack

tip constraint.

All these parameters are defined at the global level of the crack medium, within

the framework of fracture mechanics. They are applicable to a number of situations

where it is not necessary to know the exact state of stress or damage in the vicinity

of the crack tip (ranging from a two-dimensional, almost elastic medium, with only a

small plastic zone relative to the crack size; to a three-dimensional medium subjected

to proportional loading or cyclic loading in fatigue). On the other hand, this approach

may prove deficient in some cases, because of the size of the cracks, pronounced overall

plasticity during ductile fracture, or loading history effects.
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3.2.3 Relation between local and global approaches

A systematic comparative and parametric study of local and global models was

reported by Xia and Shih (1995) using the representative volume element (RVE)

methodology. Here, the size of the elements in the fracture process layer (the fracture

elements representing the crack) in local approaches is the key parameter linking local

and global approaches, and an approximate equality exists:

JIc = µdσ0 (3.9)

where JIc is the critical J-integral under the Mode I condition, d is the size of the

elements, σ0 is the flow stress, and µ is a factor of order unity, suggesting that the

element size in local approaches should be on the order of JIc/σ0 or CTOD to obtain

consistent results. This may make local approaches infeasible for large structural

systems or subassemblies.

3.3 Damage and fracture under cyclic loading

In this section, local approaches (as defined in previous section) to modeling dam-

age and fracture under cyclic loading are examined in more detail. This approach is

compared to the popular Manson-Coffin rule for low-cycle fatigue. The traditional

Manson-Coffin rule “increments” the damage state only at the end of each cycle. In

contrast, the micromechanics and damage plasticity approach “ramps” the damage

continuously during cycling.
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3.3.1 Manson-Coffin rule

The Manson-Coffin rule is a popular model for low-cycle fatigue because of its

simplicity. Generally, it is written in the form

∆εp
2

= ε′f (2Nf )
c (3.10)

where ∆εp/2 is the amplitude of plastic strain, Nf is the number of cycles, ε′f is the

ductility coefficient, and c is the ductility exponent. In 1953, Manson, recognizing the

form of Equation (3.10) relating fatigue life and plastic strain range, suggested that

the magnitude of 1/c was “in the neighborhood of three” (Manson, 1953). Coffin

(1954) showed that for practical purposes the fatigue property c is approximately

equal to −1/2, and that ε′f is related to the monotonic fracture ductility εf (Tvernelli

and Coffin, 1959). Actually, c commonly ranges from −0.5 to −0.7 for most metals,

with −0.6 as a representative value.

Despite a large amount of work to generalize this law to multi-axial states of

stress (e.g., Morrow, 1964) and to complex histories of loading (Manson et al., 1971),

it remains a model generally only applied to uniaxial periodic loadings. Still, a wide

variety of tests of structure, component, and material specimens have demonstrated

the general validity of the Manson-Coffin relation, and the range for the coefficient c

cited above.

Recently, Uriz (2005) utilized the Manson-Coffin rule together with Palmgren-

Miner linear hypothesis for damage accumulation (Palmgren, 1924; Miner, 1945) and
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the rainflow cycle counting method (Matsuishi and Endo, 1968) to predict the low-

cycle fatigue behavior of uniaxially loaded struts. This approach mimics rupture of

uniaxially loaded material fibers used to represent the cross-section of a member.

They simplified the rainflow cycle counting method so that only several recent cycles

were considered. This allows computation of damage during the response rather than

just at the end. After parameter calibration it was shown that the prediction matched

the experiment quite well. Note that the continuous damage models discussed in this

chapter do not rely on cycle counting algorithms, but rather damage continuously

accumulating based on the damage mechanics models presented.

3.3.2 Continuous damage models

Not much attention has been given to the possibility of incorporating damage

into cyclic plasticity by means of micromechanics. Recent works on porous metal

plasticity are those of Leblond et al. (1995), Besson and Guillemer-Neel (2003), and

Cedergren et al. (2004). These models introduce nonlinear kinematic hardening

into the GTN model. As far as continuum damage mechanics is concerned, Pirondi

and Bonora (2003) introduced uniaxial conditions to model stiffness recovery during

tension-compression cyclic loading. Kanvinde and Deierlein (2004) extended the Rice

and Tracey (1969) formulation to incorporate a cyclic void growth model (CVGM).

They revised the material characteristic Dc in Equation (3.1).

Dc = Dc0 exp(λε̄p) (3.11)
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so that the critical void volume fraction decreases as the equivalent plastic strain

increases, and then revising the stress modification function as

F (σ) =
|σm|
σm

exp(1.5σm/σeq) (3.12)

so that the void volume fraction decreases (heals) in compression.

Lemaitre (1992) introduced a relative simple modification for damage evolution

in cyclic loading

Ḋ =


[
Y

S

]t
˙̄εp σ1 > 0

0 otherwise

(3.13)

where σ1 is the maximum principal stress. Here, damage does not accumulate when

all principle stresses are in compression. In the present investigation, this is further

revised for simpler implementation as:

Ḋ =


[
Y

S

]t
˙̄εp

σm
σeq

> −1

3

0 otherwise

(3.14)

This simplification has negligible effect for most states of stress.

To schematically illustrate the difference between the CVGM and CDM models,

preliminary results of an analysis of an individual brace (presented later in more detail

in Section 5.2.1) are shown in Figures 3.6 and 3.7. From Figure 3.6 it can be seen that

for the cyclic void growth model, the damage D increases during some portions of the

deformation cycle and then heals in other portions, and the critical damage parameter

Dc decreases with pseudo-time [according to Equation (3.11)]. In contrast, for the
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same example, the continuum damage model given by Equation (3.14) only increases

with increasing pseudo-time, and the critical damage parameter Dc is a constant.

The numerical values of the critical damage parameters, Dc0 for the CVGM and Dc

for the CDM models will, in general, differ. For the sake of this illustration, they

have been loosely calibrated to tail at about the same time.

It is also worth mentioning that although the critical equivalent-plastic-strain

approach (F (σ) = 1, G (ε̇p) = ˙̄εp) can be used in proportional loading cases where the

triaxiality is constant and known, it is unsuitable for arbitrary cases of cyclic loading.

As illustrated in Table 3.1 (and approximately in Figures 3.8 and 3.9), fatigue life

(number of cycles to failure) will tend to be underestimated if large strain amplitude

data is used to calibrate the parameters (by a factor of 4 in the table); conversely,

the fatigue life will tend to be overestimated if small strain amplitude data is used

to calibrate the parameters. This is an inherent and important drawback of applying

the critical equivalent-plastic-strain criterion to cyclic loading. This drawback is one

of the reasons why “stress-modified” critical plastic strain criteria, such as CVGM

and CDM, are typically used to simulate low-cycle fatigue failure behavior under

arbitrarily varying strain histories. The other reason is the triaxiality-independence

of critical equivalent plastic strain criterion; the effect of triaxial constraint on the

initiation of rupture is a well-known phenomenon.
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3.3.3 Simple comparison of the continuous damage models

with the Manson-Coffin rule

Although the basic trends predicted by the Manson-Coffin rule have been verified

by considerable low-cycle fatigue data, the rule only increments the damage state at

the end of each cycle. This rule is not suitable for the case where the number of cycles

to failure is less than 10, because this will not allow a point in a material to fracture

until the end of a full cycle. Continuous damage models resolve this difficulty. Thus,

it is useful to use the Manson-Coffin rule as a reference and to compare results of

different continuous damage models to results predicted by the Manson-Coffin rule.

For this comparison, the cyclic void growth model in Equation (3.11) and (3.12)

and the simplified continuum damage mechanics model in Equation (3.14) are evalu-

ated for low-cycle fatigue and compared against the Manson-Coffin rule. A uniaxial

stress condition model is subjected to a series of constant amplitude strain cycles con-

sidering several amplitudes of maximum strain. These cyclic deformation histories

are imposed until rupture of the material occurs. In this way, standard Manson-Coffin

type plots can be prepared for the analysis results, and these can be compared di-

rectly with the most basic Manson-Coffin criteria for an ideal experiment, as shown in

Figures 3.8 and 3.9. Both models predict results that agree with those computed with

the Manson-Coffin rule, with the ductility exponent c ranging from −0.5 to −0.7; i.e.,

corresponding to typical values for metals.

Note that the low-cycle fatigue criterion based on critical equivalent plastic strain
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results in a fixed ductility exponent c equal to −1. As such, it cannot predict the cor-

rect trend of low-cycle fatigue for metals. Thus, although the effective plastic strain

criterion can be calibrated for a particular material and specimen configuration sub-

jected to a specific loading protocol, the same failure criterion might be inappropriate

for different loading histories at other locations within the same structure.

Considering that the CDM result in Figure 3.9 is more accurate than CVGM result

in Figure 3.8, and that CDM is comparatively easy to implement and numerically

more efficient, the simplified CDM model in Equation (3.14) is chosen herein as the

damage evolution model for further investigation. It is believed that some underlying

relationship should be satisfied when continuous damage models match the Manson-

Coffin relation, suggesting that deeper investigation is needed.

3.4 Concluding remarks

This chapter systematically reviews material models for structural steel subject

to plasticity, damage, and failure, and subject to cyclic loading history. Among

several models reviews, the sophisticated low-cycle fatigue model based on damage

mechanics is chosen because of its ability to reproduce the Manson-Coffin relation

with reasonable accuracy.
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Calibrated to large strain amplitude data
Strain amplitude Failure Cycle Test/EPS

Test 2
EPS∗

0.20
2

1.00

Test 32
EPS

0.05
8

4.00

Calibrated to small strain amplitude data
Strain amplitude Failure Cycle Test/EPS

Test 2
EPS

0.20
8

0.25

Test 32
EPS

0.05
32

1.00

∗EPS — critical equivalent-plastic-strain criterion

Table 3.1: Simple illustration of the difference between predictions of number of cycles
to failure for an ideal experiment following the Manson-Coffin relation
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Chapter 4

Cyclic Damage Plasticity Model

This chapter develops a cyclic damage plasticity model based on the review of

material models in previous chapter. First, the theory of plasticity and damage evo-

lution is presented. Next, implementation of plasticity and damage models using the

cutting-plane algorithm or the closest-point algorithm is discussed. Finally, examples

of time integration procedure for brick and shell elements is shown step-by-step. The

cyclic damage plasticity model is used in next two chapters for calibration, validation,

application, and studies of steel braced frame components and subassemblies.

4.1 Theory of plasticity and damage evolution

Components of the damage plasticity model, including strain rate decomposition,

yield criterion, isotropic and kinematic hardening behavior, and damage evolution

are summarized in this section.
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4.1.1 Strain rate decomposition

The rate-of-deformation tensor ε̇ is written in the additive form of the elastic and

plastic strain rate components as

ε̇ = ε̇e + ε̇p (4.1)

4.1.2 Elastic behavior

The elastic behavior is modeled as isotropic hypoelasticity, i.e., the corotational

rate of the Cauchy stress tensor σ̇ is calculated from the elastic strain rate tensor ε̇e

as

σ̇ = De : ε̇e (4.2)

where De represents the fourth-order elasticity tensor

De = κ1⊗ 1 + 2G(I− 1

3
1⊗ 1) (4.3)

where λ and G are the Lamé constants, 1 is the second-order identity tensor, and I

is the fourth-order symmetric identity tensor.

1 = δijei ⊗ ej (4.4a)

I =
1

2
[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el (4.4b)
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4.1.3 Plastic behavior

The plastic behavior is modeled as pressure-independent plasticity. If the Huber-

von Mises yield condition is adopted, the yield surface is defined by the function

F = σ̄ − σy = 0 (4.5)

where σy is uniaxial yield stress, and σ̄ is the effective von Mises stress, with respect

to the effective deviatoric stress tensor

se = dev[σ]−α = s−α (4.6)

where s is deviatoric stress tensor andα is the back stress tensor, which is decomposed

into multiple tensor components

α =
∑
j

αj (4.7)

The effective von Mises stress is defined as

σ̄ (se) =

√
3

2
se : se =

√
3

2
‖se‖ (4.8)

The model assumes associated Levy-Saint Venant plastic flow, i.e., the plastic

strain rate tensor is defined as

ε̇p =
∂F

∂σ
λ̇ =

3

2

se
σ̄
λ̇ =

3

2
nλ̇ (4.9)

where λ̇ is the plastic consistency parameter, and n is the flow direction

n =
se
σ̄

(4.10)
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Note that for the sake of implementation simplicity, n is not a unit vector; its norm

is

‖n‖ =

√
2

3
(4.11)

Adoption of the above form of von Mises yield criterion results in λ̇ = ˙̄εp, where

˙̄εp is the equivalent plastic strain rate defined as

˙̄εp =

√
2

3
ε̇p : ε̇p (4.12)

4.1.4 Nonlinear isotropic/kinematic hardening model

The size of the yield surface σy is a function of equivalent plastic strain ε̄p for

materials that either cyclically harden or soften.

σy = σy (ε̄p) (4.13)

where the equivalent plastic strain is defined as an accumulation

ε̄p(t) =

∫ t

0

˙̄εp(τ) dτ (4.14)

The evolution of the back stress tensor components are of the Armstrong-Frederick

type (Armstrong and Frederick, 1966), defined as

α̇j =
2

3
Cj ε̇

p − γjαj ˙̄εp = [Cjn− γjαj] ˙̄εp (4.15)

where Ci and γi are material parameters. The recall term γjαj ˙̄εp introduces the non-

linearity in the evolution law. The law can be degenerated into the linear kinematic

one by specifying only one α component with γ = 0.
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4.1.5 Damage evolution model

Based on the principle of strain equivalence (Lemaitre, 1971): “Any strain consti-

tutive equation for a damage material may be derived in the same way as for a virgin

material except that the usual stress is replaced by the effective stress,” the stress

tensor (in the damaged material) σD is calculated from the effective stress tensor σ

as

σD = σ(1−D) (4.16)

where D is the damage variable, whose rate is given by Lemaitre’s model (Lemaitre,

1992; Dufailly and Lemaitre, 1995)

Ḋ =


[
Y

S

]t
˙̄εp ε̄p > ε̄pd and

σm
σeq

> −1

3

0 otherwise

(4.17)

where σm = σ : 1/3 is the mean stress, σeq =
√

3/2‖σ‖ is the equivalent stress,

σm/σeq is the stress triaxiality, ε̄pd is damage threshold, S is a material constant in

energy density units, t is a dimensionless material constant, and Y is the internal

energy density release rate, calculated as

Y =
1

2
σ : [De]−1 : σ (4.18)

4.2 Implementation of the plasticity model

In numerical analysis, the state variables of a material model such as stress, elastic

and plastic strain are updated from one discrete time to the next, known as “time
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integration” of state variables. Corresponding discretization and update procedure of

these state variables, i.e., implementation of the plasticity model is presented in this

section.

4.2.1 Backward Euler difference scheme

First, the state variables are discretized using backward Euler difference scheme.

Subscript i represent the step number; (•)i’s are variables at time ti

ε̄pi+1 = ε̄pi + ∆λ (4.19a)

σi+1 = σi + De : (∆ε−∆εp) (4.19b)

∆εp =
3

2
ni+1∆λ (4.19c)

∆αj = [Cjni+1 − γj(αj)i+1] ∆λ (4.19d)

4.2.2 Elastic-plastic operator split

Next, the state variables are updated using a two-step algorithm: (1) an elastic

trial predictor; followed by (2) a plastic corrector that performs projection of the trial

states onto the yield surface. The elastic predictor obtains the trial elastic states by
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freezing plastic flow during the time step as

ε̄p,triali+1 = ε̄pi (4.20a)

σtriali+1 = σi + De : ∆ε (4.20b)

∆εp,trial = 0 (4.20c)

∆αtrialj = 0 (4.20d)

The plastic return-mapping corrector then updates the states as

ε̄pi+1 = ε̄p,triali + ∆λ (4.21a)

σi+1 = σtriali+1 − De : ∆εp (4.21b)

∆εp =
3

2
ni+1∆λ (4.21c)

∆αj = [Cjni+1 − γj(αj)i+1] ∆λ (4.21d)

The plastic corrector can be implemented either using the cutting-plane algorithm

or the closest-point algorithm. For theory of these two algorithms, see Simo and

Hughes (1998). The development of these two algorithms for the damage plasticity

model is shown below.
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4.2.3 Cutting-plane algorithm

For the cutting-plane algorithm, in the k-th iteration, the states are integrated

from (•)(k) to (•)(k+1), with linearization about (•)(k):

ε̄
p,(k+1)
i+1 = ε̄

p,(k)
i+1 + ∆2λ(k) (4.22a)

σ
(k+1)
i+1 = σ

(k)
i+1 − 3Gn

(k)
i+1∆

2λ(k) (4.22b)

(αj)
(k+1)
i+1 = (αj)

(k)
i+1 +

[
Cjn

(k)
i+1 − γj(αj)

(k)
i+1

]
∆2λ(k) (4.22c)

σy

(
ε̄
p,(k+1)
i+1

)
≈ σy

(
ε̄
p,(k)
i+1

)
+
∂σy
∂ε̄p

(
ε̄
p,(k)
i+1

)
∆2λ(k) (4.22d)

Solution of the yield function

0 = F
(k+1)
i+1 ≈F (k)

i+1 +
∂F

∂σ

(k)

∆2σ
(k)
i+1 +

∂F

∂α

(k)

∆2α
(k)
i+1 +

∂F

∂σy

(k)

∆2σ
(k)
y,i+1

=F
(k)
i+1 +

3

2
n

(k)
i+1 :

(
−3Gn

(k)
i+1∆

2λ(k)
)

+
∂σy
∂ε̄p

(
ε̄
p,(k)
i+1

)
∆2λ(k)

− 3

2
n

(k)
i+1 :

[
Cjn

(k)
i+1 − γj(αj)

(k)
i+1

]
∆2λ(k)

(4.23)

obtains

∆2λ(k) =
F

(k)
i+1

3G+
∂σy
∂ε̄p

(
ε̄
p,(k)
i+1

)
+
∑
j

Cj −
3

2
n

(k)
i+1 :

[∑
j

γj(αj)
(k)
i+1

] (4.24)

Because linearization is used to update the state except for

σy

(
ε̄
p,(k+1)
i+1

)
≈ σy

(
ε̄
p,(k)
i+1

)
+
∂σy
∂ε̄p

(
ε̄
p,(k)
i+1

)
∆2λ(k) (4.25)

the yield function can be calculated that

F
(k+1)
i+1 = σy

(
ε̄
p,(k)
i+1

)
+
∂σy
∂ε̄p

(
ε̄
p,(k)
i+1

)
∆2λ(k) − σy

(
ε̄
p,(k+1)
i+1

)
(4.26)
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If the isotropic hardening function σy (ε̄p) is defined using piecewise linear curve,

and ∆2λ(0) is small enough, the linearization of σy is accurate. Then, the error of

F
(1)
i+1 above may be ignored. This leads to a non-iterative algorithm:

∆λ = ∆2λ(0) =
F trial
i+1

k
(4.27)

where

k = 3G+
∂σy
∂ε̄p

(ε̄pi ) +
∑
j

Cj −
3

2
ntriali+1 :

[∑
j

γj(αj)i

]
(4.28)

whereby the states are updated as

ε̄pi+1 = ε̄pi + ∆λ (4.29a)

σi+1 = σtriali+1 − 3Gntriali+1 ∆λ (4.29b)

(αj)i+1 = (αj)i +
[
Cjn

trial
i+1 − γj(αj)i

]
∆λ (4.29c)

And because

∂∆λ

∂εi+1

=
1

k

{
3Gntriali+1 +

3

2
∆λ

∂ntriali+1

∂εi+1

:

[∑
j

γj(αj)i

]}
(4.30)

where

∂ntriali+1

∂εi+1

=
∂ntriali+1

∂striale,i+1

:
∂striale,i+1

∂εi+1

=
I− 3

2
ntriali+1 ⊗ ntriali+1

σ̄triali+1

:

[
2G

(
I− 1

3
1⊗ 1

)]
=

2G

σ̄triali+1

(
I− 1

3
1⊗ 1− 3

2
ntriali+1 ⊗ ntriali+1

) (4.31)

then from

σi+1 = σtriali+1 − 3Gntriali+1 ∆λ (4.32a)

dσi+1 = De : dεi+1 − 3G[ntriali+1 d∆λ+ dntriali+1 ∆λ] (4.32b)

=

[
De − 3Gntriali+1 ⊗

∂∆λ

∂εi+1

− 3G∆λ
∂ntriali+1

∂εi+1

]
: dεi+1 (4.32c)
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the algorithm consistent tangent moduli can be obtained as

∂σi+1

∂εi+1

= Di+1 = κ1⊗ 1 + 2Gθi+1(I−
1

3
1⊗ 1)− 3Gθ̃i+1n

trial
i+1 ⊗ ntriali+1 − D̃i+1 (4.33)

where

θi+1 = 1− 3G∆λ

σ̄triali+1

(4.34a)

θ̃i+1 =
3G

k
− (1− θi+1) (4.34b)

D̃i+1 =
9G2∆λ

kσ̄triali+1

ntriali+1 ⊗

{[
I− 3

2
ntriali+1 ⊗ ntriali+1

]
:

[∑
j

γj(αj)i

]}
(4.34c)

4.2.4 Closest-point projection algorithm

For the closest-point projection algorithm, in iteration number k, the states are

integrated from (•)(0) to (•)(k), with linearization about (•)(k):

ε̄
p,(k)
i+1 = ε̄pi + ∆λ(k) (4.35a)

s
(k)
i+1 = striali+1 − 3Gn

(k)
i+1∆λ

(k) (4.35b)

(αj)
(k)
i+1 = (αj)i +

[
Cjn

(k)
i+1 − γj(αj)

(k)
i+1

]
∆λ(k) (4.35c)

resulting in

s
(k)
e,i+1 = s

(k)
i+1 −α

(k)
i+1

=

[
striali+1 −

∑
j

(αj)i
1 + γj∆λ(k)

]
−

[
3G+

∑
j

Cj
1 + γj∆λ(k)

]
∆λ(k)n

(k)
i+1

= ξ
(k)
i+1 −

[
3G+

∑
j

Cj
1 + γj∆λ(k)

]
∆λ(k)n

(k)
i+1

(4.36)
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where

ξ
(k)
i+1 = striali+1 −

∑
j

(αj)i
1 + γj∆λ(k)

(4.37)

From the yield function

0 = F
(k)
i+1 = σ̄

(k)
i+1 − σy

(
ε̄
p,(k)
i+1

)
(4.38)

obtain

s
(k)
e,i+1 = σ̄

(k)
i+1n

(k)
i+1 = σy

(
ε̄
p,(k)
i+1

)
n

(k)
i+1 (4.39)

Hence, the direction n
(k)
i+1 is determined exclusively in terms of ξ

(k)
i+1

n
(k)
i+1 =

ξ
(k)
i+1

σ̃
(k)
i+1

where σ̃
(k)
i+1 =

√
3

2

∥∥∥ξ(k)
i+1

∥∥∥ (4.40)

Therefore,

σy

(
ε̄
p,(k)
i+1

)
n

(k)
i+1 = σ̃

(k)
i+1n

(k)
i+1 −

[
3G+

∑
j

Cj
1 + γj∆λ(k)

]
∆λ(k)n

(k)
i+1 (4.41)

and the following nonlinear scalar equation is obtained

0 = g
(
∆λ(k)

)
=σ̃

(k)
i+1 −

[
3G+

∑
j

Cj
1 + γj∆λ(k)

]
∆λ(k) − σy

(
ε̄
p,(k)
i+1

)
(4.42)

and
∂g

∂∆λ

(
∆λ(k)

)
=

3

2
n

(k)
i+1 :

[∑
j

γj(αj)i

(1 + γj∆λ(k))
2

]

− 3G−
∑
j

Cj

(1 + γj∆λ(k))
2 −

∂σy
∂ε̄p

(
ε̄
p,(k)
i+1

) (4.43)

Advancing to the next iteration by Newton’s method

∆λ(k+1) = ∆λ(k) −
[
∂g

∂∆λ

(
∆λ(k)

)]−1

g
(
∆λ(k)

)
(4.44)
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After convergence, the states are updated as

ε̄pi+1 = ε̄pi + ∆λ(k+1) (4.45a)

si+1 = striali+1 − 3Gn
(k+1)
i+1 ∆λ(k+1) (4.45b)

(αj)i+1 =
(αj)i + Cj∆λ

(k+1)n
(k+1)
i+1

1 + γj∆λ(k+1)
(4.45c)

Because εi+1 is fixed in plastic corrector

0 =
∂g

∂εi+1

=
∂g

∂∆λ
(∆λ)

∂∆λ

∂εi+1

+
∂g

∂striali+1

:
∂striali+1

∂εi+1

=
∂g

∂∆λ
(∆λ)

∂∆λ

∂εi+1

+
3

2
ni+1 : 2G

(
I− 1

3
1⊗ 1

)
=

∂g

∂∆λ
(∆λ)

∂∆λ

∂εi+1

+ 3Gni+1

(4.46)

So
∂∆λ

∂εi+1

=
3G

k
ni+1, where k = − ∂g

∂∆λ
(∆λ).

Then from

∂ni+1

∂εi+1

=
∂ni+1

∂ξi+1

:
∂ξi+1

∂εi+1

=
I− 3

2
ni+1 ⊗ ni+1

σ̃i+1

:

[
2G

(
I− 1

3
1⊗ 1

)
+
∑
j

γj(αj)i

(1 + γj∆λ)2 ⊗
∂∆λ

∂εi+1

]

=
I− 3

2
ni+1 ⊗ ni+1

σ̃i+1

:

[
2G

(
I− 1

3
1⊗ 1

)
+

3G

k

∑
j

γj(αj)i ⊗ ni+1

(1 + γj∆λ)2

]

=
2G

σ̃i+1

(
I− 1

3
1⊗ 1− 3

2
ni+1 ⊗ ni+1

)
+

3G

kσ̃i+1

[
I− 3

2
ni+1 ⊗ ni+1

]
:

[∑
j

γj(αj)i ⊗ ni+1

(1 + γj∆λ)2

]

(4.47)
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and

σi+1 = σtriali+1 − 3Gni+1∆λ (4.48a)

dσi+1 = Del : dεi+1 − 3G[ni+1d∆λ+ dni+1∆λ] (4.48b)

=

[
Del − 3Gni+1 ⊗

∂∆λ

∂εi+1

− 3G∆λ
∂ni+1

∂εi+1

]
: dεi+1 (4.48c)

the algorithm consistent tangent moduli is obtained as

∂σi+1

∂εi+1

= Di+1 = κ1⊗ 1 + 2Gθi+1(I−
1

3
1⊗ 1)− 3Gθ̃i+1ni+1 ⊗ ni+1 − D̃i+1 (4.49)

where

θi+1 = 1− 3G∆λ

σ̃i+1

(4.50a)

θ̃i+1 =
3G

k
− (1− θi+1) (4.50b)

D̃i+1 =
9G2∆λ

kσ̃i+1

[
I− 3

2
ni+1 ⊗ ni+1

]
:

[∑
j

γj(αj)i ⊗ ni+1

(1 + γj∆λ)2

]
(4.50c)

4.3 Implementation of the damage model

The damage state is updated using a trapezoidal scheme

∆Di =
1

2

[(
Yi
S

)t
+

(
Yi+1

S

)t]
∆ε̄pi (4.51)

where

Yi =
1

2
σi : [De]−1 : σi (4.52)

The stress in the damaged material is then updated as

σD,i+1 = σi+1(1−Di+1) (4.53)
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Because of major symmetry of elastic moduli, the algorithm consistent tangent

moduli for the stress (in the damaged material) is derived as follows:

∂Yi+1

∂εi+1

=
1

2
σi+1 : [De]−1 :

∂σi+1

∂εi+1

+
1

2

∂σi+1

∂εi+1

: [De]−1 : σi+1

= σi+1 : [De]−1 :
∂σi+1

∂εi+1

(4.54)

then

∂∆Di

∂εi+1

=
1

2

[(
Yi
S

)t
+

(
Yi+1

S

)t]
∂∆λ

∂εi+1

+
t

2

(
Yi+1

S

)t−1
1

S
∆λ

∂Yi+1

∂εi+1

=
1

2

[(
Yi
S

)t
+

(
Yi+1

S

)t]
∂∆λ

∂εi+1

+
t∆λ

2S

(
Yi+1

S

)t−1

σi+1 : [De]−1 :
∂σi+1

∂εi+1

(4.55)

and finally

∂σD,i+1

∂εi+1

=
∂σi+1

∂εi+1

(1−Di+1)− σi+1 ⊗
∂∆Di

∂εi+1

(4.56)

4.4 Time integration examples

The pseudo-code for the time integration procedure using non-iterative cutting-

plane algorithm for brick and shell elements is listed step-by-step below. For the

sake of simplicity and clarity, there is only one back stress tensor component and

isotropic hardening is not included. The complete cyclic damage plasticity model

with two back stress tensor components, piecewise linear isotropic hardening, and

damage evolution was implemented as LS-DYNA mat 153 (mat damage 3, LSTC,

2007). A simplified version with one back stress tensor component, linear isotropic

hardening, and critical equivalent plastic strain damage criterion was implemented as

LS-DYNA mat 165 (mat plastic nonlinear kinematic, LSTC, 2007).
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4.4.1 Integration procedure for brick elements

1. Compute incremental average strain

∆εavg =
∆ε1 + ∆ε2 + ∆ε3

3
(4.57)

2. Compute incremental hydrostatic stress

∆p = 3K∆εavg (4.58)

3. Compute trial stress σtrial

σtriali = σi + ∆p+ 2G (∆εi −∆εavg) (i = 1, 2, 3) (4.59a)

σtriali = σi + ∆p+G∆εi (i = 4, 5, 6) (4.59b)

4. Compute trial hydrostatic stress

ptrial =
σtrial1 + σtrial2 + σtrial3

3
(4.60)

5. Compute trial deviatoric effective stress striale

striale,i = σtriali − ptrial − αi (i = 1, 2, 3)

striale,i = σtriali − αi (i = 4, 5, 6)

(4.61)

6. Compute second invariant of trial effective deviatoric stress

J trial2 =

(
striale,1

)2
+
(
striale,2

)2
+
(
striale,3

)2
2

+
(
striale,4

)2
+
(
striale,5

)2
+
(
striale,6

)2
(4.62)
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7. Compute trial Mises stress

σ̄trial =
√

3J trial2 (4.63)

8. Compute flow direction n

ni =
striale,i

σ̄trial
(i = 1, 2, 3, 4, 5, 6) (4.64)

9. Compute equivalent plastic strain increment

∆ε̄p =
σ̄trial − σy

3G+ C − 3

2
γ

(
3∑
i=1

niαi +
6∑
i=4

2niαi

) (4.65)

10. Update total equivalent plastic strain

ε̄p = ε̄p + ∆ε̄p (4.66)

11. Update back stress α

αi = αi + (Cni − γαi) ∆ε̄p (i = 1, 2, 3, 4, 5, 6) (4.67)

12. Update stress σ

σi = σtriali − 3Gni∆ε̄
p (i = 1, 2, 3, 4, 5, 6) (4.68)

4.4.2 Integration procedure for shell elements

1. For plane stress iteration number j = 1, compute fully elastic normal strain

ε
(1)
3 = − ν

1− ν
(ε1 + ε2) (4.69)
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2. Follow the procedure of brick element and compute normal stress σ
(i)
3 ;

3. For iteration number j = 2, compute fully plastic normal strain

ε
(2)
3 = − (ε1 + ε2) (4.70)

4. Follow the procedure of brick element and compute normal stress σ
(i)
3 ;

5. Compute estimated normal strain

ε
(j+1)
3 = ε

(j−1)
3 − ε

(j)
3 − ε

(j−1)
3

σ
(j)
3 − σ

(j−1)
3

σ
(j−1)
3 (4.71)

6. Compare ε
(j)
3 and ε

(j+1)
3 , check convergence and check normal stress condition

σ
(j)
3 = 0; if either check does not satisfy its tolerance, increase j, and go to step

4.

7. Update state.

4.5 Concluding remarks

The theory, implementation, and examples of the cyclic damage plasticity models

are discussed in detailed. The model was implemented by the author in finite element

software LS-DYNA as Material 153 (mat damage 3, LSTC, 2007). This newly

developed material model is used in the following chapters.
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Chapter 5

Calibration, Validation and

Application

This chapter focusses on calibration, validation and application of the new damage

material model using experimental results from beam-to-column connections, individ-

ual braces, and braced frame subassemblies. Material calibration procedures using

monotonic and cyclic experimental data is discussed, followed by the application of

the calibrated material model to components and subassemblies of steel braced frame.

5.1 Material calibration

The material model developed in Chapter 4 has several plasticity and damage

properties. These properties can be calibrated using monotonic and/or cyclic exper-

imental data, discussed as following.
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5.1.1 Calibration using monotonic data

For monotonic loading in uniaxial tension test, the stress-plastic strain curve rep-

resented by the model is given by

σ = σy +
C1

γ1

[1− exp (−γ1ε
p)] +

C2

γ2

[1− exp (−γ2ε
p)] +Hεp (5.1)

where σ is the uniaxial stress, εp is the uniaxial plastic strain, σy is the initial yield

stress, C1, γ1, C2, and γ2 are kinematic hardening parameters, andH is linear isotropic

hardening parameter. If γi = 0, the nonlinear term
Ci
γi

[1− exp (−γiεp)] is reduced to

a linear term Ciε
p. Equation (5.1) may be used to determine the plasticity parameters

if only monotonic tension test data is available.

The physical meaning of kinematic hardening parameters C1 and γ1 can be illus-

trated by specifying C2 = H = 0; then Equation (5.1) becomes

σ = σy +
C1

γ1

[1− exp (−γ1ε
p)] (5.2)

making the initial slope (derivative
∂σ

∂εp

∣∣∣∣
εp=0

) equal to C1, and the saturated yield

stress equal to σy + C1/γ1 (Figure 5.1).

5.1.2 Calibration using cyclic data

For uniaxial stress cyclic loading, the evolution of back stress is given by

α̇i = Ciε̇
p − γiα |ε̇p| = − (α− nCi/γi)nγiε̇p (5.3)
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Figure 5.1: Illustration of kinematic hardening parameters

where αi’s are the uniaxial back stress components, ε̇p is the uniaxial plastic strain

rate, and n = sign(ε̇p) is the plastic flow direction. Equation (5.3) is transformed as

α̇i
αi − nCi/γi

= −nγiε̇p (5.4)

If the plastic strain increases or decreases monotonically, direction n is constant.

Integration of Equation (5.4) results in

ln
αi − nCi/γi
αi0 − nCi/γi

= −nγi (εp − εp0) (5.5)

where the subscripts 0 denote the initial values. Equation (5.5) can be written as

αi = nCi/γi + (αi0 − nCi/γi) exp [−nγi (εp − εp0)] (5.6)

For a stabilized symmetric cycle, the amplitude and peaks of back stress are ∆αi/2

and ±∆αi/2, respectively. Similarly, the amplitude and peaks of plastic strain are

∆εp/2 and ±∆εp/2, respectively. Substitute them into Equation (5.5) and obtain

∆αi/2− nCi/γi
−∆αi/2− nCi/γi

=
1

exp [2 (γi∆εp/2)]
(5.7)
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which leads to the relation between back stress and plastic strain amplitudes

∆αi
2

=
Ci
γi

tanh

(
γi

∆εp

2

)
(5.8)

For the tension half cycle, direction n = 1, then Equation (5.6) becomes

αi =
Ci
γi
−
[
Ci
γi

tanh

(
γi

∆εp

2

)
+
Ci
γi

]
exp

[
−γi

(
εp +

∆εp

2

)]
(5.9)

For the tension half cycle of a stabilized symmetric cycle, when the cyclic hardening

is saturated, the stress-plastic strain curve is given by

σ = σ′y +
C1

γ1

−
[
C1

γ1

tanh

(
γ1

∆εp

2

)
+
C1

γ1

]
exp

[
−γ1

(
εp +

∆εp

2

)]
+
C2

γ2

−
[
C2

γ2

tanh

(
γ2

∆εp

2

)
+
C2

γ2

]
exp

[
−γ2

(
εp +

∆εp

2

)] (5.10)

Equation (5.10) may be used to determine the kinematic hardening parameters using

cyclic test data. Then, isotropic hardening parameters can be obtained by removing

the kinematic hardening part of stress-equivalent plastic strain curve. The material

properties may be further adjusted by running numerical tests and using a least square

nonlinear fitting process to improve fidelity.

The above calibration process may result in widely different sets of kinematic

hardening parameters (C1, γ1, C2, and γ2) depending upon the strain range of interest.

Interest in response with a larger range of strain tends to result in lower kinematic

hardening modules. Using a series of material tests of Japanese SM490 steel (Fujimoto

et al., 1985) and SS440 steel (Nishimura et al., 1994) as examples, calibration results

in two sets of parameters. Parameters in Set A are C1 = 30000, γ1 = 300, C2 = 2000,
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and γ2 = 15, and parameters in Set B are C1 = 4000, γ1 = 400, C2 = 500, and

γ2 = 0. The results are shown in Figures 5.2 to 5.5 for SM490 steel and Figures 5.6

to 5.9 for SS440 steel, both for cases of cyclic loading. Compared to the experimental

results, the numerical results predicted by parameters in Set A are more accurate

than those in Set B, in which the ranges of strain are relative small. For larger ranges

of strain, however, the numerical results presented with the parameters in Set A are

not as good as those in Set B. This is demonstrated in Figure 5.10, which compares

results for monotonic tensile tests. Thus, there are two options; a user may choose

Set A for the pleasing round corners during smaller strain cycles, or Set B for better

agreement during larger strain cycles or monotonic straining. Other sets of parameters

may be determined by “trial and error” to provide a balance of characteristics more

appropriate for a particular application.

The best method of calibrating damage parameters is unknown because of current

lack of detailed low-cycle fatigue data. Additional research and material testing is

needed.

If no specific input is provided by the user, “default” values are provided in the

implementation of the damage plasticity model to maintain backward compatibility

with LS-DYNA Material 104 (LSTC, 2007). The “default” values for S and t are

σy/200 and 1, respectively, where σy is the initial yield stress. The effect of different

values of parameter t on the rate of deterioration can be seen in the simulated Manson-

Coffin curves plotted in Figure 3.9.
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[Experimental results by Fujimoto et al. (1985)]

Figure 5.2: Experimental versus numerical results (SM490 cyclic test 1)
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[Experimental results by Fujimoto et al. (1985)]

Figure 5.3: Experimental versus numerical results (SM490 cyclic test 2)



75

-0.10 -0.05 0.00 0.05 0.10
-800

-400

0

400

800

S
tr

es
s 

(M
P

a)

Strain

 Experimental
 Numerical

(a) Parameters Set A

-0.10 -0.05 0.00 0.05 0.10
-800

-400

0

400

800

S
tr

es
s 

(M
P

a)

Strain

 Experimental
 Numerical

(b) Parameters Set B

[Experimental results by Fujimoto et al. (1985)]

Figure 5.4: Experimental versus numerical results (SM490 cyclic test 3)
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[Experimental results by Fujimoto et al. (1985)]

Figure 5.5: Experimental versus numerical results (SM490 cyclic test 4)
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[Experimental results by Nishimura et al. (1994)]

Figure 5.6: Experimental versus numerical results (SS440 cyclic test 1)
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[Experimental results by Nishimura et al. (1994)]

Figure 5.7: Experimental versus numerical results (SS440 cyclic test 2)
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[Experimental results by Nishimura et al. (1994)]

Figure 5.8: Experimental versus numerical results (SS440 cyclic test 3)
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[Experimental results by Nishimura et al. (1994)]

Figure 5.9: Experimental versus numerical results (SS440 cyclic test 4)
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Figure 5.10: Experimental versus numerical results (monotonic loading)
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5.2 Validation and application to components

Finite element analyses were done to assess the ability of the newly developed

damage plasticity model to simulate the hysteretic behavior of braces, braced frame

subassemblies, and beam-to-column connections. The focus of this investigation was

to evaluate the prediction of local buckling and the evolution of damage because of

low-cycle fatigue. Individual braces and beam-column connections subassemblies are

described in this section and braced frame subassemblies are described in Section 5.3.

All finite element models were built using fully integrated shell elements (Engel-

mann et al., 1989; Simo and Hughes, 1986; Pian and Sumihara, 1985) and implicit

time integration. This type of shell element is based on a combined co-rotational and

velocity-strain formulation. An embedded element coordinate system that deforms

with the element is defined in terms of the nodal coordinates (LSTC, 2007). The

Mindlin theory of plates and shells (Mindlin, 1951) is used to determine the velocity

of any point in the shell.

Shell elements instead of solid elements were selected for these studies because

the optimum element determined here for single braces are adopted for subsequent

analyses of braced frame subassemblies and beam-column connections. Because the

computational effort for complete braced frame is substantially greater than for an

individual brace, efficient finite element models are preferred. A shell element is more

time-consuming than a solid element in that shell elements require zero-normal stress

iterations. But many more solid elements are required through the wall thickness to
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capture the combined membrane and plate actions. Because shell and solid elements

have the same number of degrees-of-freedom per element, more total CPU time is

expected for models developed with solid elements than those with shell elements.

The choice of shell elements instead of beam elements is based on the considera-

tion that beam elements assume that plane sections remain plane and the sectional

coordinates of integration points on plane sections remain constant during the course

of analysis. This assumption makes it impossible to model local buckling of a tube-

section brace using beam elements. For shell elements, a tube section is built with

several elements. Therefore, there are sufficient degrees-of-freedom related to local

buckling deformation.

Crack initiation and propagation is modeled by element erosion (element removal).

Once the material point damage parameter exceeds a critical damage state corre-

sponding to fracture, it is considered failed and is removed from a model. Although

the shell element size is much larger than the material characteristic length of de-

terioration (∼ 0.01 inch, Kanvinde and Deierlein, 2004), the gradients of equivalent

plastic strain and damage variable contours are small with respect to the character-

istic length before crack initiation. Therefore, it is acceptable to have shell element

sizes larger than the characteristic length, but a mesh convergence test is required.

Mesh convergence for a single brace is examined in Section 5.2.1 using progressively

refined finite element meshes.
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5.2.1 Single brace

A finite element model was built for the single brace test specimens discussed

previously in Section 2.1 (Yang and Mahin, 2005). Because the yield stress and

ultimate stress were the only material properties known for the braces, the damage

evolution constants for the steel material needed to be calibrated using the overall

results for individual braces. The applied displacement history for each experiment

was extracted and prescribed as a time-varying displacement boundary condition

at one end of the brace and the other end was fixed. No initial imperfection was

introduced in the finite element model. The buckling was expected to be trigged by

perturbations of numerical truncation or round-off error.

The analysis results are shown in Figures 5.11 to 5.14. Global buckling (Figure

5.11), local buckling and damage localization (Figure 5.12), crack initiation (Figure

5.13), and crack propagation (Figure 5.14) were successfully simulated, demonstrating

that the cyclic damage plastic model is suitable even though only basic plasticity and

damage models were used. Comparisons between experimental and numerical results

for the axial force-axial displacement hysteretic curves are shown in Figures 5.15 to

5.17, and the comparisons for peak loads in each half cycle are shown in Figures 5.18

to 5.20. By incorporating the damage model, the numerical analyses predict with a

fair degree of accuracy the strength deterioration and the resulting force-displacement

curve over the whole loading history. This makes it reasonable to extend the modeling

of an individual brace to a larger model of a complete braced frame subassembly.
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The mesh sensitivity of plastic strain was validated using models with succes-

sively smaller elements. Plastic strain was chosen as the index of quality because

it is the major source of damage. Four different element sizes in the refined mesh

region at brace mid-span (Figure 5.12) were evaluated. Figure 5.21 shows the time

history of plastic strain for these four element sizes. Note both the equivalent plas-

tic strain and the damage state are seen to converge reliably when the element size

is at the order of shell thickness. Obviously after crack initiation, the gradients of

both equivalent plastic strain and damage state are much higher. Mesh sizes larger

than the material characteristic length combined with element erosion for crack will

result in a larger energy release rate at the crack tip (Xia and Shih, 1995) and blunt

the crack front to an unrealistic size, resulting in an exaggerated ductile behavior of

crack tip. But this is a local behavior of crack tip, and before the crack tip behaves

inelastically, the strength and stiffness of a typical brace member have significantly

deteriorated because of lateral and local buckling; therefore, the exaggerated crack

front blunting when using large-size shell elements should have less influence on the

force-deformation performance. Note that mesh sizes at the same scale of the mate-

rial characteristic length may be required for analyses of local crack tip behavior. It

is believed the choice of shell element at sizes around the shell thickness achieves an

overall model that is as simple as reasonably possible with reasonable accuracy for

analyses of braces and braced frame subassemblies. This choice of shell element size

is applied to all analyses in this research.
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(dashed line for undeformed shape)

Figure 5.11: Global buckling of brace specimen 5 (after Yang and Mahin, 2005)

Figure 5.12: Local buckling of brace specimen 5 (after Yang and Mahin, 2005)
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Figure 5.13: Crack initiation of brace specimen 5 (after Yang and Mahin, 2005)

Figure 5.14: Crack propagation of brace specimen 5 (after Yang and Mahin, 2005)
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Figure 5.15: Hysteresis loops of brace specimen 5 (after Yang and Mahin, 2005)
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Figure 5.16: Hysteresis loops of brace specimen 7 (after Yang and Mahin, 2005)
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Figure 5.17: Hysteresis loops of brace specimen 8 (after Yang and Mahin, 2005)
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Figure 5.18: Peak loads of brace specimen 5 (after Yang and Mahin, 2005)
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Figure 5.19: Peak loads of brace specimen 7 (after Yang and Mahin, 2005)
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Figure 5.20: Peak loads of brace specimen 8 (after Yang and Mahin, 2005)
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Figure 5.21: Evolution and mesh sensitivity of plastic strain (shell thickness t)
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5.2.2 Single beam-column connection

A finite element model was built for the welded steel beam-column connection

subassembly tested by Tanaka et al. (2000) and discussed previously in Section 2.4.

Half of specimen is modeled and symmetry boundary conditions were applied. The

finite element model is shown in Figure 5.22. The newly developed cyclic damage

plasticity model was used. The parameters of combined isotropic and nonlinear kine-

matic hardening were calibrated against experimental data from Nishimura et al.

(1994).

Figure 5.23 shows the numerical result of the load-displacement curve compared

with the experiment. Most of the hysteretic features are well captured by the simu-

lation. Some comparison of the buckling shape between simulations and experiments

are shown in Figures 5.24 to 5.26. The simulation results match the experiment very

well.

The last half cycle of experiment displacement history starts from −60 mm to

80mm. In the numerical analysis, the displacement history was extended with 10

cycles of displacement amplitude at 80 mm. Further local buckling was observed and

the hysteretic loop stabilized, but no low-cycle fatigue-induced fracture was observed.

In order to apply and validate the material model, beam-column connection test by

Suita et al. (2000) was also simulated and discussed below.
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Figure 5.22: Finite element modeling of BW10 specimen
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Figure 5.23: Hysteretic loop of BW10 specimen
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(a) Experimental result

(b) Numerical result

Figure 5.24: BW10 behavior comparison 1
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(a) Experimental result

(b) Numerical result

Figure 5.25: BW10 behavior comparison 2
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(a) Experimental result

(b) Numerical result

Figure 5.26: BW10 behavior comparison 3
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The beam-column connections experiment by Suita et al. (2000) discussed in

Section 2.4 was also analyzed. The specimens ruptured because of low-cycle fatigue

in a region of the beam flanges where large plastic deformation and local buckling

occurred. Specimen N4 was numerically simulated and results are plotted in Figures

5.27 to 5.30.

The finite element model used is shown in Figure 5.27. Because there was no

weld access hole, the structural mesh was easily established. To reduce computational

costs, only the region near the face of the beam-column connection is refined. Because

a single beam framed into the column, and assumptions of symmetry could not be

used as in the case of the column tested by Tanaka et al. (2000), the whole column

(instead of half) was modeled.

The newly developed cyclic damage plasticity model was used for the simulations.

The initial estimate used for the material modeling parameters were almost identical

to those used in BW10, except the initial yield stress was changed to match those ob-

tained from coupon tests for Specimen N4. Damage was calculated, and the elements

eroded during the analysis as damage accumulated.

Because stress-strain relations for the steel in this specimen were not available, the

default damage parameter set for the material was used as an initial estimate as no

detailed cyclic material stress-strain data was available for this specimen to calibrate

the model. The “default” damage parameter S is around Fy/200 to Fu/200, where

Fy and Fu are the yield stress and ultimate stress of the steel, respectively. For this
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test specimen (N4, Set B), the reported Fy for the flange was 295 MPa and that for

the web was 325 MPa.

Figure 5.28 presents and compares the numerical load-displacement curves with

the experimental data. Both buckling and damage features are well captured by the

analysis. The buckled shape is shown in Figure 5.29, and the final fracture pattern in

the flange is shown in Figure 5.30. These results match the final damage description

in Suita et al. (2000) very well.
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Figure 5.27: Finite element modeling of N4 specimen
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Figure 5.28: Hysteretic loop of N4 specimen
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Figure 5.29: Predicted local buckling and damage

Figure 5.30: Predicted fracture in top flange
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5.3 Validation and application to subassemblies

5.3.1 Subassembly subjected to quasi-static loading

A finite element model was developed for the braced frame subassembly discussed

previously in Section 2.3, as an extension of the approach used to model for the

individual brace discussed in Section 5.2.1. Details including the gusset plate and

the shear tab in beam column connection are modeled. For the sake of simplicity,

no out-of-plane offset of the shear tab is modeled. The roof level displacement was

prescribed. The base was fixed and out-of-plane constraints were imposed on the

column ends and beam mid-spans as they were in the experiment.

The analysis results are shown in Figures 5.31 and 5.32. The distribution of

damage within the subassembly is accurately simulated (Figure 5.31). The sequence

and nature of global, local buckling and fracture of braces are very similar to test

results. In additional, the damage and fracture at the beam-column connection, right

near the corner of the shear tab, was predicted as well (Figure 5.32). Considering the

material parameters used were approximate, these results show that the cyclic damage

plasticity model predicts overall response to a reasonable degree and should be useful

for damage evaluation of the steel structures, especially if material properties are

well defined. Figures 5.33 and 5.34 show the base shear-roof displacement hysteresis

curves for the experimental and numerical analysis, respectively. Note that strength,

stiffness, and deterioration in overall behavior of the braced frame is well simulated.
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Figure 5.31: Damage and fracture of brace

Figure 5.32: Damage and fracture of beam-column connection
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Figure 5.33: Experimental result for braced frame
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Figure 5.34: Numerical result for braced frame
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5.3.2 Subassembly subjected to dynamic loading

The previous subsection simulated the subassembly subjected to quasi-static load-

ing. To predict response under dynamic loading, masses were assigned to the floor

levels, and the LA23 ground motion was imposed. LA23 is one of the 20 ground

motions assembled for the SAC project (Somerville et al., 1997) representing an ex-

ceedance probability of 2% in 50 years, derived from the free-field motion recorded

at a distance of 3.5 km during the 1989 Loma Prieta earthquake. The design base

shear capacity of the structure, based on the methods used in ASCE 7-05, was used

to determine the weight of structure that the code would assume could be supported

by the braced frame. The total weight was equally distributed between both floors.

The model and ground motion is shown in Figure 5.35.

The failure mode at time t = 13.8 second is shown in Figures 5.36 to 5.38 from

different points of view. The braces in the first story buckled and restraightened

repeatedly, causing the bottom story to become a soft story.

From the hysteretic loops shown in Figure 5.39 and first-story drift time history

shown in Figure 5.40, one can see that extremely large interstory drifts occur for

the selected earthquake motion. Comparison of models with and without damage

incorporated are also shown in Figures 5.39 and 5.40. For the model without damage,

the structure does not collapse; for the one with damage, substantial deterioration

of strength, stiffness occurs and the structure collapses. The significant difference

suggests the importance of considering damage in the simulation.
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Figure 5.35: Subassembly model and ground motion

Figure 5.36: Failure mode at time t = 13.8 sec, global view
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Figure 5.37: Failure mode at time t = 13.8 sec, local view 1

Figure 5.38: Failure mode at time t = 13.8 sec, local view 2
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5.4 Concluding remarks

Computational results obtained with the new cyclic damage plasticity model cor-

relate well with test results for individual braces, beam-to-column connections, and

braced frame subassemblies. These applications of the model illustrate the importance

of considering material nonlinearity, local and global buckling, and the exhaustion of

the ability of the material to deform inelastically caused by low-cycle fatigue.
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Chapter 6

Studies of Steel Braced Frame

Behavior

For Special Concentrically Braced Frame (SCBF) systems, energy dissipation is

achieved by tension yielding and compression buckling of the braces, and all other

components are intended to remain essentially elastic. To achieve desirable ductile

behavior in the braces, the AISC Seismic Provisions for Structural Steel Buildings

(AISC, 2005b) have several requirements for proportions and details of SCBF systems.

Requirements that are closely related to studies of steel braced frame behavior in this

chapter include:

• Slenderness of brace. — Bracing member slenderness is quantified as the

slenderness ratio KL/r, where K is the effective length factor, L is laterally

unbraced length of the member, and r is governing radius of gyration. Brace
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slenderness is limited to ensure adequate compressive strength and resistance

to the cyclic degradation of the brace.

• Compactness of section. — Sections are classified as compact, noncompact,

or slender-element sections. Compact sections are those capable of developing

a fully plastic stress distribution and possessing a rotation capacity of approx-

imately three before the onset of local buckling (AISC, 2005b). Compactness

of section is quantified in terms of width-thickness ratios λ = b/t. For flanges

of rectangular hollow structural sections, width b is the clear distance between

webs less the inside corner radius on each side, and the thickness t is the design

wall thickness. The post-buckling performance of the braces is also dependent

on the compactness of the members. Higher width-to-thickness ratios may lead

to earlier and more severe local buckling, which in turn results in premature

rupture of the brace and lower energy dissipation capacity.

• Connections. — Connections are responsible to combine and transmit forces

between the bracing element and framing beams and columns. Requirements

for these connection details help realize ductility and energy dissipation of the

system by preventing premature failure modes.

• Beams. — For V-type and inverted V-type frames, beams must be continuous

between columns and must be designed for vertical unbalanced loads associated

with yielding of the tensile brace and buckling of the compressive brace. Beam
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top and bottom flanges must be braced at the intersection of the braces and

beam.

This chapter first looks at the effect of brace proportions (slenderness ratio KL/r

and width-thickness ratios b/t) on fatigue life capacity of bracing members subjected

to cyclic deformation histories. Here, fatigue life demand is how much the brace needs

to deform inelastically to achieve expected system performance. In contrast, fatigue

life capacity is how much the brace is able to deform inelastically before failure of

low-cycle fatigue. Fatigue life demand can for example be specified as the demanded

deformation history of a brace corresponding to two interstory drift cycles of 2%,

followed by three interstory drift cycles of 1%.

A parametric study of fatigue life demand for SCBF systems with different struc-

tural period, brace slenderness and compactness, ground motion characteristics, and

so on is not considered in this research. In the current research, only fatigue life ca-

pacity is investigated. Factors affecting fatigue life capacity are discussed in Section

6.1. After fatigue life demand and capacity are both well understood, one can com-

pare them for a given structure and to avoid fracture, adjust the design parameters of

the structure such that the fatigue life demand is satisfied by the fatigue life capacity.

Code requirement of braces proportions (slenderness of member and compactness of

section) may be similarly determined by statistical comparison of fatigue life demand

and capacity of different structures.



113

Next, the effect of connection details on damage accumulation in the column is

studied. Although the tensile, flexural, and compressive strength requirement for

connection in the AISC Seismic Provisions helps forces transfer and ensure system

integrity, high local stress and large plastic deformation in the column leading to

fracture may effect the performance. Some connection details may result in crack

initiation and propagation in the column, as observed in Uriz (2005) (Figure 2.7),

and simulated in Section 5.3 (Figure 5.32). Because damage control of columns is

essential to maintain integrety of the gravity load resisting system, it is necessary to

evaluate and compare damage evolution in columns for different connection details.

To reduce the damage accumulation in the column, improved connection details are

recommended in Section 6.2.

The position of lateral bracing for beams in V-type and inverted V-type braced

frames is discussed next. The most common position for lateral bracing is at the in-

tersection of braces and beam, i.e., both top and bottom flanges are laterally braced

at the section passing through the working point of braces at beams. As shown in

Section 6.3, however, lateral bracing at this position may result in local buckling

of gusset plates. More appropriate positions and methods to compensate for prob-

lems detected for currently recommended lateral bracing positions are suggested and

evaluated.

Finnaly, Chen et al. (2008) found that for low-rise braced frames with short foun-

dational periods, estimates of interstory drift based on elastic spectra diverge from
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nonlinear response history analysis results for intense ground motions. An alterative

interstory drift estimation method for low-rise braced frames that respond inelas-

tically during strong earthquake ground shaking is suggested based on the Modal

Pushover Analysis procedure. This method is discussed in Section 6.4.

The following questions are answered for all the four studies of steel braced frame

behavior in this chapter.

1. Is fatigue life capacity of braces a function of slenderness ratios KL/r or width-

thickness ratios b/t, or a function of both?

2. Which connection details mitigate damage accumulation in the columns?

3. Is there a more appropriate position of lateral bracing for beams than the in-

tersection of braces and beam?

4. It is possible to better estimate the interstory drift for low-rise braced frames?

6.1 Brace proportions

The proportions of the braces in a SCBF system, including their slenderness and

compactness, are critical when considering compressive buckling strength and, more

importantly, the post-bucking hysteresis performance of brace members. It is well

established that overall instability of braces, including overall compressive buckling

strength and cyclic strength degradation, are mostly dependent on slenderness ratios
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KL/r (Bruneau et al., 1998; Galambos, 1998). In addition, the width-thickness ratio

b/t has been shown to be a significant factor for fracture because of local instability,

including local buckling and low-cycle fatigue (Goel, 1992; Hassan and Goel, 1991;

Tang and Goel, 1989). Despite these advances, it is still unclear whether and how

slenderness ratios KL/r affect the fatigue life capacity of braces, which is closely

related to local instability.

Tremblay (2000) demonstrated that frames with very slender braces designed for

compression strength behavior behave well because of the system overstrength inher-

ent with their tension yielding, which results in a reduction in the fatigue life demand.

Higher overstrength factor reducing the demand of fatigue life can be explained intu-

itively by Newmark and Hall’s energy preservation for short period systems (Newmark

and Hall, 1982); if the strength increases, the deformation and ductility demand de-

creases. Besides the overstrength factor, it is believed that fatigue life demand also

depends on period and hysteresis of the structure, characteristics of ground motion,

contribution of framing actions, etc. A separate systematic research on fatigue life

demand is expected to be carried out and not considered in this research.

Regarding the fatigue life capacity, dependence on different factors has been pro-

posed in existing literature: dependence on slenderness ratios KL/r only, dependence

on width-thickness ratios b/t only, and dependence on both. Goel and his colleagues

showed that the fatigue life capacity of a brace member depends on both slenderness

ratios KL/r and width-thickness ratios (b′− 2t)/t (equivalent to b/t in AISC Specifi-
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cations). The fatigue life capacity is generally constant when slenderness ratios KL/r

are smaller than 60 but increases with an increase in slenderness ratios KL/r when

it is larger than 60 (Tang and Goel, 1987, 1989). They give:

Nf =


262

(b′/d′) (60)

[(b′ − 2t)/t]2
(KL/r ≤ 60)

262
(b′/d′) (KL/r)

[(b′ − 2t)/t]2
(KL/r > 60)

(6.1)

where Nf is accumulated tensile deformation normalized by tensile yield deformation,

the width b′ is the clear distance between webs and the depth d′ is the clear distance

between flanges. Based on the test results of Lee and Goel (1987) and Liu and

Goel (1987), Tang and Goel (1987, 1989) observed that a larger slenderness ratio

KL/r resulted in less severe local buckling and proposed that overall buckling also

affects the fracture life capacity of the bracing members. Based on study of hysteresis

behavior of bracing members in Jain and Goel (1978), Tang and Goel (1987, 1989)

also proposed that the effect of the slenderness ratio KL/r is not considered in the

fatigue life capacity when it is less than 60.

Lee and Goel (1987) proposed a refined fatigue life capacity formula, suggesting

that the ductility depends on only compactness:

∆f = 1335
(46/Fy)

1.2

[(b′ − 2t)/t]1.6

(
4b′/d′ + 1

5

)
(6.2)

where ∆f is the accumulated effective tension excursion of braces, defined as

∆f =
∑

(0.1∆1 + ∆2) (6.3)
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In a tension half cycle of load-deformation loops of braces, ∆1 is tension deformation

from load reversal point to one third of tension yield strength of the brace Py/3, and

∆2 is tension deformation from one third of tension yield strength of the brace Py/3

to end point of the tension half cycle.

Tremblay (2002) analyzed existing experimental data for braces with various slen-

derness and compactness ratios. He proposed that the normalized range in a cycle

deformation history is a linear function of slenderness ratio KL/r.

µf = 2.4 + 8.3
kL

r

√
Fy
π2E

(6.4)

where µf is the peak-to-peak deformation range normalized by tensile yield deforma-

tion. Tremblay et al. (2003) later proposed that

µf = 1 +
2L

Dy

[
0.0455

(
b

t

d

t

)−0.1(
KL

r

)0.3
]

(6.5)

where Dy is tensile yield deformation of the braces. These two equations suggest

either no or little dependence on width-thickness ratios b/t.

Recently, Fell (2008) analyzed almost the same set of experimental data for braces,

but proposed that the maximum range in a cyclic deformation history is a function

of width-thickness ratios b/t:

∆′f =
L

2

[
α

(
b′/2 +md′

d′

)(
b

t

)β]2

(6.6)

where ∆′f is the peak-to-peak deformation range of braces, the width b′ is the clear

distance between webs, and the depth d′ is the clear distance between flanges. Based
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on experimental data, Fell (2008) suggested the plastic hinge length is given by Lh =

b′/2 +md′, m = 0.5, α = 0.9, and β = −0.53.

These conflicts of opinion regarding factors controlling fatigue life capacity arise

from several reasons, the primary one being the characteristic of the experimental

data itself. A comparison of the statistical data in Tremblay (2002) and Fell (2008)

demonstrates that the specimens with higher ductility have larger slenderness ra-

tios and smaller width-thickness ratios, and the specimens with lower ductility have

smaller slenderness ratios and larger width-thickness ratios.

It is difficult to distinguish the contributions of these two parameters: does the

ductility comes from larger slenderness ratios or smaller width-thickness ratios? The

dispersion of ductility may also be attributed to variation of ductility measure, vari-

ation of deformation histories, and probable variations of steel fatigue properties.

Clearly, more research is needed on this issue.

Therefore, in order to get a better understanding of how proportions and defor-

mation histories effect ductility, experiments with one parameter altered at each step

in the study would be necessary. This type of experiment is conducted numerically

and presented in this section. The numerical perameter matrix is shown is Table 6.1.

The first two parameters are width-thickness ratios b/t and slenderness ratios KL/r.

For the hollow square section, the radius of gyration is proportional to the width

b. Thus by changing thickness t and fixing width b, it is possible to vary b/t while

keeping KL/r constant, and vice versa. The third parameter is the number of cycles
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per deformation level. The forth parameter is the tension/compression asymmetry

ratio. For a T/C asymmetry ratio of 3:1 and deformation range of 1.0, the peak ten-

sile deformation is 0.75 and peak compressive deformation is 0.25. The deformation

history imposed has an increasing amplitude level series of 0.5, 0.75, 1.0, 1.5, 2.0,

3.0, 4.5, 6.0, 7.5, 9.0, 10.5, and 12.0 times tensile yield displacement (range series of

1.0, 1.5, 3.0, 4.0, 6.0, 9.0, 12.0, 15.0, 18.0, and 21.0 times tensile yield displacement).

Therefore, the fatigue life can be uniquely identified for a given deformation level to

failure, where “failure” is defined here as cracking of three sides of a brace section

and significant loss of strength (Figure 5.14).

Brace 1 in Table 6.1 used as the reference in these analyses is same size as the

single brace described in the previous chapter (Section 5.2.1), with a b/t of 14.2

and KL/r of 50. The number of cycles per deformation level for the reference case is

two, the tension/compression asymmetry ratio is 1:1. The corresponding deformation

history is shown in Figure 6.1, and the deformation level to failure for the reference

brace is µf/2 = 7.5 (Figures 6.3b, 6.4b, 6.5b, 6.6b, and Table 6.1). Note that µf is

the deformation range to failure normalized by tensile yield deformation, and µf/2

is deformation level (deformation amplitude) to failure normalized by tensile yield

deformation.

Numerical results are grouped and displayed in Figures 6.3 to 6.6, and deformation

level to failure are summarized in Table 6.1. The influence of width-thickness ratios

b/t is shown in Figure 6.3 demonstrating clearly that the width-thickness ratios b/t



120

have a pronounced effect on ductility capacity: the smaller the width-thickness ratios,

the higher the ductility. As shown in Figure 6.4, however, even though it is clear that

specimens with smaller KL/r have higher compressive buckling strength and tend

to dissipate more energy within each cycle, it is more noticeable that they have an

almost identical deformation level at failure. In other words, slenderness ratios have

little effect on ductility capacity.

The number of cycles per deformation level also plays an important role (Figure

6.5). Obviously, increasing the number of cycles at a deformation level causes more

cumulative plastic deformation (and thus more damage). This suggests that for a

given ground motion, structures with shorter periods may experience more cycles

and, thus, more damage for the same maximum drift is expected. Finally, for the

asymmetry deformation history, bias in terms of compression leads to less ductility, as

shown in Figure 6.6 which may be because compressive deformation is concentrated

at the mid-span of the brace where local buckling occurs, but tensile deformation is

distributed along the length of brace.

Based on numerical analysis, it is evident that fatigue life capacity is heavily

dependent on width-thickness ratios b/t and deformation histories. Slenderness ratios

KL/r appear to have negligible, if any, effect on fatigue life capacity. It is worth

noting that slenderness ratios KL/r may reduce fatigue life demand (Tremblay 2000;

Uriz 2005). Careful experimental validation of these observations from numerical

simulations is advised.
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Based on the above discussion and evaluation on fatigue life capacity, the following

important parameters for its counterpart, fatigue life demand, are suggested. Fatigue

life demand may be specified as the demanded deformation history of a brace, e.g.,

corresponding to two interstory drift cycles of 2% followed by three interstory drift

cycles of 1%. In this sense, the fatigue life demand is, essentially, a loading protocol

for braces. The four most important basic parameters for realistic loading protocols

are numbers, amplitudes, sequence and asymmetry of cycles.

These four parameters depend on many factors:

• First, they depend on intensity [e.g., peak ground acceleration (PGA) and du-

ration] and frequency content of ground motion, which in turn depend on mag-

nitude of the earthquake, distance from epicenter, soil type at the site, etc.

• Second, they depend on configuration, strength, stiffness, and modal properties

(periods and participation factors) of the structure, as well as the contribution

of framing beam and column members, and the effects of response modification

coefficients (R factors) and system overstrength factors (Ω0 factors) (ASCE

7-05).

• Third, they depend on the deterioration characteristics of the structure. For

braces frames, compressive strength, overstrength factor and resistance to the

cyclic degradation of braces may depend on the slenderness ratios KL/r as well

as steel yield strength Fy. All these factors are equally important and interact
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with each other. For example, the period of a structure has a significant effect on

the response to near-fault ground motions; compressive strength, overstrength

factor, and slenderness ratios KL/r may be not fully independent of each other

and they may be reduced to a smaller number of independent factors.

There are many decisions and judgements to be made in developing a loading

history that is statistically representative of the full range of ground motions and

structural characteristics. A detailed discussion of the development of loading histo-

ries for steel moment frames and wood frames structure which are good guidelines

for future development of fatigue life demand for braced frame systems can be found

in Krawinkler et al. (2000a, b). For braced frame systems, it is recommended that

several variations be considered, including consideration of both “ordinary” and near-

fault ground motions, the duration of earthquake versus the period of structure, the

slenderness ratios KL/r and resulting overstrength factor, and steel yield strength Fy

and hardening properties. Other variation of parameters should also be considered,

with the cumulative damage concepts kept in mind. Considering both a series of re-

sponse history analyses of single-story braced frame systems and a statistical analysis

of the response history of brace deformation, a representative loading history can be

developed with proper numbers, amplitudes, sequence, and asymmetry of cycles.

Once the deformation history or the fatigue life demand is developed, code re-

quirements for brace proportions can be determined. For example, if the following

assumptions are met:
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1. The reference history in this parametric study (Figure 6.1) is a typical defor-

mation history.

2. The plasticity and damage properties calibrated against Yang and Mahin (2005)

in this research are typical material properties for ASTM A500 Grade B steel.

3. The braced frames have 45 degrees brace orientation, and the nominal yield

strain of braces is εy = 0.16% approximately.

then from a normalized deformation level to failure for different width-thickness ratios

b/t summarized in Table 6.1, a relationship can be developed between interstory drift

ratios to failure and width-thickness ratios b/t. For example, for b/t = 14.2, the

deformation level to failure is 7.5 times the yield deformation. by assuming 45-degree

braces, the interstory drift to failure is 2×εy×7.5 = 2.4%. This relationship is shown

in Figure 6.2. Based on this relationship, in order to achieve interstory drift capacity

without failure at 2.5%, the limiting width-thickness ratio b/t is 13.1.

Alternatively, test protocols of the “pass or fail” type proposed by Tremblay and

Bouatay (2002) may be used to determine the limiting with-thickness ratios b/t. In

this type of test, a brace system is said to be adequate if it survives the applied

displacement history. The largest width-thickness ratio b/t of survivals is the critical

factor. Tremblay and Bouatay’s deformation histories do not include all the variations

discussed herein. In particular, they are independent of structural properties (such

as the slenderness ratios KL/r), which may be important based on observations
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by Tremblay (2000); the histories were proposed with careful consideration of the

individual effects of four ground motion types.

The four proposed deformation histories adopted in current research represent

crustal (intra-plate) rich high frequency earthquakes that occur in Eastern North

America that are richer in high frequency, crustal earthquake occurring along the

Pacific coast, west coast near-field ground motions that are characterized by large

acceleration pulses leading to high ground velocity and displacement, and earthquakes

occurring along the Cascadia subduction zone. These four deformation histories are

shown in Figure 6.7. In order to show clearly the failure of unsatisfying braces, a

tensile excursion is appended at the end of the original histories. “Failure” is defined

here as cracking of three sides of a brace section and a significant drop of strength, and

the appended tensile excursion and corresponding resistance response are purely for

visual demonstration of the failure (“strength lost” or “strength recovered” annotated

in Figures 6.8 to 6.11).

When a braced frame is subjected to a interstory drift history, one brace in the

pair is in tensile deformation while the other is in compressive deformation — and

vice versa — if deformation of beam is ignored. Based on the previous parametric

analysis in this section, compressive asymmetry causes more damage. Therefore, the

deformation histories applied to braces are the ones biased in terms of compression,

i.e., only the braces with greater compressive deformation are analyzed, as they are

related to the limiting width-thickness ratios.
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Braces with different width-thickness ratios b/t are analyzed using these four “pass

or fail” type loading protocols. The results are shown in Figures 6.8 to 6.11 for four

loading histories, respectively. For both west crustal events at distance and west

near-field events, the critical width-thickness ratios b/t are 13.2. Braces with width-

thickness ratios less than 13.2 will survive the applied displacement history. For east

crustal events at distance and west subduction events, the critical width-thickness

ratios b/t are 16.4 and 15.9, respectively. The critical width-thickness ratios for four

loading histories are summarized in Table 6.2.
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b/t KL/r No. of cycle T/C µf/2
1 14.2 51 2 1/1 7.5
2 8.1 51 2 1/1 10.5
3 28.2 51 2 1/1 6.0
4 14.2 32 2 1/1 7.5
5 14.2 70 2 1/1 7.5
6 14.2 100 2 1/1 7.5
7 14.2 51 1 1/1 9.0
8 14.2 51 3 1/1 6.0
9 14.2 51 2 3/1 7.5
10 14 51 2 1/3 6.0

Table 6.1: Numerical experiment matrix for brace proportion

Event b/t Pass/Fail Peak Def. Peak IDR∗

15.3 Pass
East crustal events at distance 16.4 Pass 5Dy 1.6%

17.6 Fail
12.5 Pass

West crustal events at distance 13.2 Pass 7Dy 2.2%
14.2 Fail
12.5 Pass

West near-field events 13.2 Pass 12Dy 3.8%
14.2 Fail
14.9 Pass

West subduction events 15.9 Pass 5Dy 1.6%
17.0 Fail

∗ Peak Interstory Drift Ratios are calculated by assuming the angle of
braces are 45 degrees and the nominal yield strain of braces is εy = 0.16%

Table 6.2: Numerical results of “pass or fail” type loading histories
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Figure 6.3: Influence of width-thickness ratios b/t (KL/r = 51)



129

-15 -10 -5 0 5 10 15
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

N
or

m
al

iz
ed

 lo
ad

 (
P

/P
y)

Normalized deformation (D/Dy)

(a) KL/r = 32

-15 -10 -5 0 5 10 15
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

N
or

m
al

iz
ed

 lo
ad

 (
P

/P
y)

Normalized deformation (D/Dy)

(b) KL/r = 51

-15 -10 -5 0 5 10 15
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

N
or

m
al

iz
ed

 lo
ad

 (
P

/P
y)

Normalized deformation (D/Dy)

(c) KL/r = 70

-15 -10 -5 0 5 10 15
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

N
or

m
al

iz
ed

 lo
ad

 (
P

/P
y)

Normalized deformation (D/Dy)

(d) KL/r = 100

Figure 6.4: Influence of slenderness ratio KL/r (b/t = 14.2)
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Figure 6.5: Influence of number of cycles per deformation level
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Figure 6.6: Influence of tension/compression asymmetry ratio
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Figure 6.8: Critical width-thickness ratios b/t for east crustal events at distance
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Figure 6.9: Critical width-thickness ratios b/t for west crustal events at distance
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Figure 6.10: Critical width-thickness ratios b/t for west near-field events
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Figure 6.11: Critical width-thickness ratios b/t for west subduction events
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6.2 Connection details

The AISC Provisions place a great deal of emphasis on brace-to-gusset connection

details. Although the connection between brace and the frame is strengthen by the

gusset, the “rigid” zone created by the beam-column connection and the gusset plate

generate more deformation and damage to member immediately surrounding the zone:

the column and the beam. This may result in cracks in column flanges and webs,

as seen in the inverted-V type SCBF test discussed in previous chapter, or cracks in

beam flanges and webs, as seen in BRBF test in Uriz (2005).

Several methods for reducing damage accumulation in the column are analyzed in

this section, including:

1. Reduced depth (Figure 6.14). When the depth of column is reduced, there are

two effects. First, the stiffness and strength of the column is reduced; second,

for the a given curvature, the strain at outer fiber will decrease with decreasing

section depth. These two effects counteract each other, and together may help

alleviate damage in the column.

2. Thickened web (Figure 6.15). Thickening the web increases the stiffness and

strength of the column. Stiffness and a stronger column will have less deforma-

tion and damage.

3. Thickened flanges (Figure 6.16). Thickening the flanges has similar effect as the

thickened web. Because the flange has more outer fibers, thickening the flanges
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are expected to be more effective.

4. Stiffener (Figure 6.18). There is a tensile component of interface force between

beam and column. A stiffener may distribute the tensile force and reduce dam-

age at the column.

5. Reinforcing plates at the flanges (Figure 6.19). The reinforcing plates locally

strengthen the damage zone of the column.

6. T-shear tab (Figure 6.20). A T-section shear tab is a variation of the reinforcing

plate, but easier to manufacture and install.

7. Welded flanges (Figure 6.21). After the flanges of beam and column are welded,

it provides a more uniform interface force transfer than a shear tab.

8. Stiffener and welded flanges (Figure 6.22). Combine the stiffener and welded

flanges and create a standard moment connection.

The two-story SCBF used in this numerical analysis is identical to the one dis-

cussed in previous chapter, which was subjected to a displacement history at the top

of the frame. Critical damage state of steel material was 0.5 (typical value, Lemaitre,

1992), beyond which is considered failure. The history of maximum damage at the

column was recorded and compared in Figure 6.12. Modification methods listed in

the legend are sorted by damage state, with the largest damage state history at the

top.
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The numerical analysis shows that strengthening the column uniformly (reduced

depth, thickened web, and thickened flanges) is, in general, less effective than strength-

ening the column locally at the damage zone. Reinforcing plates are the most effective

method. Unfortunately, this is the least feasible method because it is difficult to ac-

cess the weld near beam web. The use of a stiffener and a combination of stiffener

and welded flanges are good candidates for effective damage reduction methods.

The combination of stiffener and welded flanges results in more damage than using

the stiffener by itself because the connection becomes more rigid. As displacement

history at the top of frame is prescribed, rigid connections lead to more deformation

at the column. For structures subjected to earthquake ground motion, more rigid

connections lead to higher stiffness, which generally results in less overall deformation.

Therefore the difference between using a stiffener and a combination of a stiffener and

welded flanges are expected to be less. Finally, the combination of a stiffener and

welded flanges is a standard moment connection, which can be easily designed by

structural engineers. Based on these considerations, the combination of a stiffener

and welded flanges are recommended.
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Figure 6.13: Details of column: reference

Figure 6.14: Details of column: reduced depth
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Figure 6.15: Details of column: thickened web

Figure 6.16: Details of column: thickened flange
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Figure 6.17: Details of reinforcement: reference

Figure 6.18: Details of reinforcement: stiffener
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Figure 6.19: Details of reinforcement: reinforcing plates

Figure 6.20: Details of reinforcement: T-shear tab
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Figure 6.21: Details of reinforcement: welded flanges

Figure 6.22: Details of reinforcement: stiffener and welded flanges
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6.3 Lateral bracing for beams

For V-type and inverted V-type braced frames, beam top and bottom flanges must

be laterally braced at the intersection of the braces and beam. Bracing is to resist

the beams rotation about its longitudinal axis (lateral-torsional buckling), in accor-

dance with the AISC Seismic Provisions. Although AISC specifies the required brace

strength and stiffness, the term “intersection of braces and beam” is not precisely

defined. In an idealistic model, braces are pin-connected to beam at the mid-span

point. But in reality, the brace-gusset-beam connection is not a point but a region.

Thus, there are at least two bracing configurations: one where the lateral bracing is

at the middle of the beam, and another where two lateral bracing members are pro-

vided, one at each end of the gusset plate (Figure 6.23). Note that the lateral bracing

members at the top flanges and continuous bracing by the slab are not shown in the

figures. Although the first configuration is most common in structural engineering

practice, the second one might be more appropriate. For example, consider:

1. For special moment frames, the Seismic Provisions (Section 9.8) require that

lateral bracing members for beams shall be placed at locations where changes

in cross-section occur and where analysis indicates formation of a plastic hinge.

For SCBFs, at the edges of the gusset plate, the cross section changes because

the gusset plates enhance beam bending stiffness. Moreover, because of the

vertical unbalanced load, it is possible that a plastic hinge in the beam will

form at the ends of the gusset plate during inelastic deformation of the braced
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frame. To this end, placing lateral bracing members at the gusset plate edges

would be consistent with practices for special moment frames.

2. Gussets are typically detailed in accordance with Seismic Provisions Commen-

tary Section C13.1. This results in a fixed-fixed with sidesway buckling config-

uration for the gussets, with coefficient K = 1.2 (AISC 2006). As the brace-

gusset-beam connection is not rigid region out-of-plane, the configuration with

lateral bracing members at the edge of the gusset (Figure 6.23b) is more likely

to satisfy the fixed-end condition, typically assumed in design practice.

Analysis results of braced frames with the two types of bracing configurations

subjected to earthquake ground motion are compared. Structural parameters of the

braced frame are described in Section 6.4. The SAC LA32 ground motion that was

randomly chosen and is large enough to buckle the braces, was applied to the struc-

ture. The comparison of first-story hysteretic loops is shown in Figure 6.24 and

comparison of behaviors is shown in Figure 6.25 and 6.26. As can be seen, the gusset

with lateral bracing member at the middle buckled out of plane, and then lead to

lateral torsional buckling of beam, as well as a plastic hinge at the beam right next

to the connection (Figures 6.25b, 6.26b). The configuration with two lateral bracing

members at the edges of gusset provided sufficient stiffness against torsion of beam

and boundary rotation of gusset buckling configuration; therefore, energy dissipation

was localized at braces, which is ideal for SCBFs.
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A braced frame with only one lateral bracing member at the middle, but with

a thicker gusset design with fixed-pin with sidesway buckling assumption was also

analyzed. The result is similar to the two-lateral-bracing-member configuration, with

buckling localized in braces.

Alternatively, in-plane buckling connection might be used to reduce twisting forces

on the beam. An example of this kind of connection (Rutherford and Chekene, 2008)

is shown in Figure 6.27. In order to eliminate the out-of-plane buckling mode of the

gusset-brace-gusset component, the out-of-plane bending stiffness at the ends of the

component has to be increased. Here, stiffeners are used strengthen the gusset and

prevent it from compression buckling. Thickening of the gusset and incorporating

a gusset stiffener effectively increase the out-of-plane radius of gyration, thereby in-

creasing its compression buckling strength. Thus, the in-plane bucking connection is

also helpful when only one lateral bracing member at the middle is feasible. Analysis

results of the same braced frame but with in-plane buckling connection include is

shown is Figure 6.28. The energy dissipation is again localized in the braces, and

buckling of gusset is prevented.
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(a) At the middle of the beam (b) At each end of the gusset plate

Figure 6.23: Schematics of two lateral bracing configurations
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Figure 6.24: Comparison of first-story hysteretic loops
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(a) One lateral bracing member at the middle

(b) Two lateral bracing members at the edge of gusset plate

Figure 6.25: Damage modes for drift to the right
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(a) One lateral bracing member at the middle

(b) Two lateral bracing members at the edge of gusset plate

Figure 6.26: Damage modes for drift to the left
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Figure 6.27: Detail used to induce in-plane buckling of braces

Figure 6.28: Analysis result of in-plane buckling of braces
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6.4 Estimate of interstory drift demands

For moment frames, and tall braced frames, which have relatively long fundamen-

tal periods falling into the Newmark and Hall displacement-preserved range (New-

mark and Hall, 1982), the elastic spectral analysis may give a reasonably conservative

estimate of average drift demands for inelastic systems. In other words, for short pe-

riod braced frames, the estimation based on elastic spectra is relatively poor. It is not

clear whether equivalent nonlinear modal analysis, namely Modal Pushover Analysis

(MPA), can be used to realistic estimate interstory drift for low-rise braced frames.

In this section, a three-story SCBF structure is evaluated using nonlinear response

history analysis (RHA) and MPA, and results compared. A new method for pushover

analysis using a multiple point constraint is derived based on the principle of virtual

work and presented in Appendix A.

The nonlinear static procedure or pushover analysis (FEMA 273, FEMA 356) has

been adopted by structural engineers as a building evaluation tool for seismic demands

estimations. Based on structural dynamics theory, while retaining the simplicity

of existing pushover analysis, the MPA procedure was developed to include modal

contributions that may be significant to seismic demands (Chopra and Goel, 2002).

The procedure has been applied to SAC buildings (Goel and Chopra, 2004), height-

wise regular generic frames (Chintanapakdee and Chopra, 2003) and irregular generic

frames (Chintanapakdee and Chopra, 2004). The goal of this section is to bridge the

gap between computationally intensive RHA and efficiency-demanding design practice
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based on a comparison of results for low-rise braced frames with short fundamental

periods. Results in terms of maximum interstory drift ratios (IDRs) are compared,

and the method to estimate interstory drift demands is suggested based on these

analyses.

The model building (DASSE, 2007) developed to investigate the SCBF systems

is a rectangular structure with four perimeter braced frame subassemblies. Braces

are arranged as a double story X-type. The building was designed in conformance

with the provisions of 2006 IBC, ASCE 7-05, and AISC 341-05. A typical building

floor plan and frame elevation are shown in Figure 6.29. A finite element model

was developed for the braced frame subassembly, using shell elements and the cyclic

damage plasticity model. The finite element model is shown in Figure 6.30.

First, the model building was subjected to the sixty ground motions that were

assembled for the SAC project (Somerville et al., 1997), representing seismic events

ranging from the frequently occurring to those that are very rare, and was evaluated

using RHA procedure. In all sixty analyses, the maximum interstory drift occurs in

the first story, thus, hereinafter maximum interstory drift ratios refer to those ratios

in the first story. In the RHA, a standard Newmark integrator is adopted. Discussion

on instability of Newmark integrator can be found in Appendix B.
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Figure 6.29: Model building floor plan and braced frame elevations

Figure 6.30: Finite element model and refined regions of the building
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Then the model building was evaluated using MPA:

1. The natural frequencies ωi, and modes φi, were computed with modal analysis.

2. For the nth mode, the base-shear-roof displacement, Vbn-urn, pushover curve by

nonlinear static analysis of the building using lateral force distributions s =

mφn was developed. The structural deformation history is saved. A new

pushover method using constraints (Appendix A) is adopted in this research.

3. The Vbn-urn pushover curve was converted to the force-deformation, Fsn/Ln-Dn,

relation for the nth-mode equivalent inelastic single-degree-of-freedom system

with unit mass. This step is illustrated in Figure 6.31, where M∗
n is the nth-

mode effective modal mass.

4. The force-deformation hysteresis relation for the nth-mode single-degree-of-

freedom system was idealized. In this analysis, a peak-oriented stiffness de-

teriorating hysteresis type was chosen based on comparison of monotonic and

cyclic pushover curves for Mode 1, shown in Figure 6.32.

5. The peak deformation Dn of the nth-model inelastic single-degree-of-freedom

system defined by the hysteretic force-deformation relation developed in Step 4

with response history analysis was computed.

6. The peak roof displacement urn associated with the nth-mode inelastic system

from urn = ΓnφrnDn was computed.
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7. From the structural deformation history obtained in Step 2, the story displace-

ments vector at roof displacement equal to urn was extracted.

8. Steps 3 to 7 were repeated for all modes to be included.

9. The total responses by combining the peak modal responses using an appropri-

ate model combination rule was determined. The SRSS rule was used in this

paper. Some modal properties are listed in Table 6.3.

In Step 5, the behavior of second and third mode inelastic single-degree-of-freedom

system was essentially elastic because of their relative high yield forces compared to

the first mode (Table 6.3).

n Tn (s) φn Γn Vbn/M
∗
n (in/sec2)

1 0.521 [0.32, 0.71, 1.00]T 1.26 200

2 0.204 [1.00, 0.95,−1.00]T 0.33 1300

3 0.146 [1.00,−0.80, 0.25]T 0.26 4000

Table 6.3: Elastic modal properties of the 3-story SCBF subassembly

Maximum interstory drifts (in Story 1) from elastic spectral analysis and RHA

are compared in Figure 6.33. Estimates of interstory drift based on elastic spectra

substantially diverge from nonlinear RHA results for intense ground motions. This

is similar to observation reported by Chen et al. (2008). Maximum interstory drifts

(in Story 1) from MPA and RHA are then compared in Figure 6.34. In contrast

to estimates using elastic spectra, good agreement is observed between predictions

using MPA as proposed above (with inelastic spectra) and simulations using RHA,
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for MPA of both the first mode and the first three modes. Results of MPA for the

first three modes are slightly better than those of MPA of the first mode in terms

of the coefficient of determination R2 (0.9568 versus 0.9651). The reason why the

improvement is small is again because of the elastic behavior of second and third

modal single-degree-of-freedom system, as well as smaller modal contribution factors

for higher modes. Thus, the dominant interstory drift response is that for the first

mode.

As demonstrate above, for low-rise braced frames with short fundamental periods

that do not fall into the Newmark and Hall displacement-preserved range, the MPA

procedure estimates interstory drift with reasonable accuracy.
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Figure 6.32: Monotonic and cyclic pushover curves for Mode 1
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6.5 Concluding remarks

A series of analyses are presented that evaluate and refine several requirements for

detailing and analyzing special concentrically braced steel frame buildings. Numerical

simulations demonstrate that the fatigue life capacity of braces is heavily dependent

on width-thickness ratios and deformation histories. Recommendations are presented

for developing fatigue life demand or loading protocols for use in numerical and exper-

imental investigations. Improved beam-column connection details are recommended

to reduce the damage accumulation. More appropriate lateral bracing positions for

beams in V-type and inverted V-type braced frames are suggested and evaluated. An

method to estimate interstory drift demands for low-rise braced frame is suggested

based on the Modal Pushover Analysis procedure.



163

Chapter 7

Conclusions

This research focuses on simulations of the inelastic seismic behavior of steel

braced frames including the effects of low-cycle fatigue. Numerical models that as-

sess the initiation and propagation of failure during cyclic loading need to account for

multi-axial states of material nonlinearity, local and global buckling, and the inability

of the material to deform inelastically because of low-cycle fatigue. This study sim-

ulates failures caused by low-cycle fatigue using finite element models. Compared to

phenomenological models, finite element models require more computational effort,

but incorporate more realistic physical representations of members and materials, in-

cluding the initiation and evolution of damage through complete failure. In addition

to examining the inelastic behavior and failure of traditional steel beam-to-column

connections, members and connections in concentrically braced frames were inves-

tigated to better understand the influence of global and local buckling on member
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deterioration and failure.

Following a review of existing material models for simulating structural steel dete-

rioration, a series of investigations are conducted using finite element modeling tech-

niques. Finite element methods can directly account for complex states of stress and

changes in deformed shape. And material models are critical for constitutive behavior

at integration points of the finite element models. However, available material models

tend to emphasize behavior associated with ideal ductile response or with failure oc-

curring under monotonic loading conditions (e.g., during metal-forming processes or

vehicle collision). These models are not suitable for progressive collapse analysis un-

der cyclic loading where the consequence of this adverse behavior on the subsequent

response or integrity of the structure is of interest.

Therefore, a new, numerically efficient continuum damage mechanics material

model capable of simulating inelastic behavior and deterioration of mechanical prop-

erties because of low-cycle fatigue has been devised and implemented in a finite el-

ement software LS-DYNA (LSTC 2007). Computational results obtained with this

new material model correlate well with test results for several beam-to-column con-

nections, individual braces, and braced frame subassemblies. These applications of

the finite element model to realistic cases involving progressive collapse illustrate the

importance of material deterioration and rupture. Unfortunately, the ability of the

material model to predict ultimate behavior depends heavily on the material model-

ing properties specified. Recommendations for characterizing material properties for
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these types of analysis are developed and presented.

A series of analyses are presented that evaluate and refine several requirements for

detailing and analyzing special concentrically braced steel frame buildings, demon-

strating that the fatigue life capacity of braces is heavily dependent on width-thickness

ratios and deformation histories. Member slenderness ratios are shown to have negligi-

ble effect on fatigue life capacity. Therefore, recommendations are presented for devel-

oping fatigue life demand or loading protocols for use in numerical and experimental

investigations. Next, damage evolution in gusseted beam-to-column connections is

evaluated and compared for different connection details, and improved connection

details are recommended to reduce the damage accumulation. The position of lat-

eral bracing members for beams in V-type and inverted V-type braced frames are

also examined. More appropriate positions and methods to compensate for problems

detected for currently recommended lateral bracing member positions are suggested

and evaluated. Finally, for low-rise braced frames that respond inelastically during

strong earthquake ground shaking, an alterative method to estimate interstory drift

demands is suggested based on the Modal Pushover Analysis procedure.

Additional research work is needed to develop improved guidelines for modeling.

These depend on having high-quality data on the cyclic hysteretic properties of the

materials being analyzed and on their low-cycle fatigue characteristics. In addition,

more experience with the new continuum damage mechanics model is required, in-

cluding analysis of systems with high axial loads in members, considering a wider
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range of behavior. For such elements to become more useful and reliable, it is essen-

tial to obtain additional high-quality data for evaluation and calibration. When such

models can be implemented with confidence, they can be used to improve structural

details, assess the behavior of structures subjected to unusual loading, and provide a

mechanism for calibrating simpler numerical (phenomenological or physical theory)

models that can be applied to large structures where computational costs prohibit

the use of finite element models.
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Appendix A

Applying Proportional Loads

using Constraints

A.1 Introduction

Several structural analyses require a fixed load pattern, with all load mag-

nitudes varying with a single scalar parameter. This is known as “proportional

loading”. One example of a analysis that requires proportional loading is a

pushover analysis in which loads are applied at some or all stories. Another

example is multiaxial compression — or tension — of concrete specimens in

which two or three surface loads are applied.

One source of difficulty in performing such analysis is that part of structure,
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or the whole structure, may undergo softening because of mechanical deteri-

oration and/or large deformations. For such conditions, the load factor must

decrease to maintain equilibrium as the structure softens. To conduct these

types of analyses, a sophisticated load-adjusting scheme is necessary with an

accompanying solution procedure.

Several such schemes have been proposed, including the well known arc-

length method (Crisfield, 1981; Ramm, 1981). A comprehensive discussion of

load-adjusting schemes can be found in Clarke and Hancock (1990).

Load-adjusting schemes are useful for solving an equilibrium state with

global instability, which manifests itself in a global load-displacement response

that has a negative tangent stiffness and a smooth equilibrium path in load-

displacement space. However, typical global load-adjusting schemes may not

work if the instability is localized because of a severe local nonlinearity and

the equilibrium path is no longer smooth. An example of an analysis that may

address the limitation of such a load-adjusting scheme would be an analysis of

a reinforced concrete structure, where tensile cracks of the concrete result in

randomly distributed local instabilities.

When an external load is applied at only one degree-of-freedom of a struc-

ture, it is convenient to prescribe incremental displacement at this degree-of-

freedom — making the structural response stable — thereby making it easier

to evaluate the load-displacement behavior of the structure. However, if loads
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are to be applied at multiple degrees-of-freedom, prescribing displacements at

all these degrees-of-freedom is not applicable for proportional loads; a priori

displacements needed to maintain the proportional load pattern are unknown

for a nonlinear structure.

For laboratory experiments, several well-developed methods for applying

proportional loads exist. Inspired by these laboratory methods, a new numeri-

cal method is developed for application of proportional loads. The degrees-of-

freedom corresponding to the prescribed proportional loads are called “target

degrees-of-freedom”. In the proposed method, an additional control degree-of-

freedom is introduced, and a multiple point constraint (MPC) involving the con-

trol degree-of-freedom and the target degrees-of-freedom is formulated. By pre-

scribing the displacement of the control degree-of-freedom, proportional loads

can be applied at target degrees-of-freedom without applying a load-adjusting

scheme.

A.2 Experiments with proportional loading

One method used by laboratories to apply proportional loads is through mul-

tiple actuators. Displacement of one actuator is prescribed and the resistance of

this actuator is measured. The loads to be applied at other degrees-of-freedom

are calculated using predefined load proportionality, and then these forces are
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applied by other actuators to maintain the prescribed load distribution. This

method of laboratory testing is described by Okamoto et al. (1982). However,

this method is not suitable for numerical analysis because it needs feedback

control, which does not fit into the standard numerical analysis procedure.

Another method is the Whiffle-Tree load system (Harris and Muskivitch,

1980; Harris and Sabnis, 1999). This mechanical system involves an articulated

set of load distribution bars and one actuator to apply a single concentrated

load (Figure A.1).

Figure A.1: Whiffle-Tree load system (Harris and Muskivitch, 1980)

Note that the articulated system of the Whiffle-Tree is statically determi-

nate. To apply proportional loading with proportions (p1, p2, p3, · · · , pn), where

n is the number of the loads, a Whiffle-Tree load system may be designed as

follows: first, Loads 1 and 2 are combined with a loading beam at one level

below the test structure. At the level below this, another loading beam carries

the previously combined Loads of 1 and 2 on one end, and Load 3 on the other
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end with a resultant of the sum of the first three loads, as shown in Figure A.2.

This procedure can be repeated to include all loads.

d1

p1 p2 p3 p4

l1 l2 d2

l12 l3
d12

d3

l123 l4

d123

d4

d1234

p0

Figure A.2: Articulated system of the Whiffle-Tree

Given that all loading beams are pin-connected, the proportionality of length

can be obtained from moment equilibrium:

l1
l2

=
p2

p1

,
l12

l3
=

p3

p1 + p2

,
l123

l4
=

p4

p1 + p2 + p3

(A.1)

The loading beams can be flexible, and as long as the length proportionalities

are maintained, the load distribution will be maintained even if the loading

beams deform, translate, or rotate. If the loading beams are stiff enough as to

be considered rigid, the relations between displacements can be derived.
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l1 l2

d1

d2

d12

Figure A.3: Interpolation relation for displacements

From Figure A.3 we write

d12 =
l2d1 + l1d2

l1 + l2
=
p1d1 + p2d2

p1 + p2

d123 =
l3d12 + l12d3

l12 + l3
=

(p1 + p2) d12 + p3d3

p1 + p2 + p3

=
p1d1 + p2d2 + p3d3

p1 + p2 + p3

(A.2)

Continuing this derivation reveals that an interesting relation of displacements

implied by the Whiffle-Tree System:

d1234 =
p1d1 + p2d2 + p3d3 + p4d4

p1 + p2 + p3 + p4

(A.3)

or

p1d1 + p2d2 + p3d3 + p4d4 − (p1 + p2 + p3 + p4) d1234 = 0 (A.4)

A.3 Numerical proportional loading

Suppose a linear multiple point constraint is applied to the original struc-

tural system where the proportional loads are applied:

∑
(pidi)−

(∑
pi

)
d0 = 0 (A.5)
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where pi is proportion of load, di is displacement, at the i-th degree-of-freedom,

and d0 is the displacement at the new degree-of-freedom introduced by the

multiple point constraint. Displacement d0 can be considered as a weighted

average displacement:

d0 =

∑
(pidi)∑
pi

(A.6)

where the weight for di is the corresponding load proportion pi. If this kinetic

constraint is satisfied, application of principle-of-virtual-work to the rigid con-

straint will lead to

P0 δd0 +
∑

(−Pi δdi) = 0 (A.7)

where Pi’s are the proportional loads applied on the original structure by the

constraint, and P0 and (−Pi)’s are loads on the constraints corresponding to d0

and di’s. Because the constraint is rigid, the right hand side of Equation (A.7) —

the internal virtual work — is zero. Because δd0 and δdi’s are the corresponding

virtual displacements, they are also required to satisfy the kinetics constraint

in Equation (A.5), i.e.,

∑
(pi δdi)−

(∑
pi

)
δd0 = 0 (A.8)

Combining Equations (A.7) and (A.8) and eliminating d0 leads to

∑{[
piP0 −

(∑
pi

)
Pi

]
δdi

}
= 0 (A.9)

The above derivation is true even if the additional degree-of-freedom d0 is fur-

ther constrained such that δd0 = 0 (e.g., d0 is under displacement control as a
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prescribed time history). As long as all di’s are at free degrees-of-freedom, their

variations δdi’s are arbitrary. Thus their coefficients must vanish:

piP0 −
(∑

pi

)
Pi = 0 ∀i (A.10)

or more usefully

(P1 : P2 : · · · : Pn) = (p1 : p2 : · · · : pn) if
∑

pi 6= 0 (A.11)

In other words, the constraint
∑

(pidi) − (
∑
pi) d0 = 0 enforces load propor-

tionality (P1 : P2 : · · · : Pn) = (p1 : p2 : · · · : pn). The application of the virtual

work principle provides an alternative support for the relation found from dis-

placement interpolation in the previous section, i.e., Equation (A.4) for the case

of four target degrees-of-freedom. The above derivation proves the validity of

the proposed numerical method of applying proportional loads using multiple

point constraints. Because the proof relies only on the linearity and rigidity

of the constraint and principle of virtual work — but does not depend on the

properties of the original system — it can be applied to all linear and nonlinear

structures.

A.4 Linear example

Consider a structure consisting of two independent springs with stiffness

1 and 2, respectively. A load pattern of proportionality 2:1 is applied to the
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springs. The goal is to evaluate the behavior of the structure. For this simple

example, the loading can be directly applied because of linearity, e.g., 4 and 2

(for proportionality 2 : 1). When the displacements of 4 and 1 are obtained, the

behavior can be evaluated (Figure A.4):

P1 = 1d1 and P2 = 2d2 (A.12)

d1 = 4

d2 = 1

P1 = 4

P2 = 2

k1 = 1

k2 = 2

Figure A.4: A linear example

Next, the constraint method developed above is applied. In order to maintain

the loading proportionality of 2 : 1, or p1 = 2 and p2 = 1, the linear constraint

would be:

2d1 + 1d2 − 3d0 = 0 (A.13)

where again d0 is displacement at the additional degree-of-freedom introduced

by this constraint. As shown in the previous section, application of principle of

virtual work to the rigid constraint will lead to

P0 δd0 − P1 δd1 − P2 δd2 = 0 (A.14)
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Virtual displacements δd0, δd1 and δd2 are also required to satisfy the kinetics

constraint in Equation (A.13), i.e.,

2δd1 + 1δd2 − 3δd0 = 0 (A.15)

Combining Equations (A.14) and (A.15) and eliminating d0 leads to

(2P0 − 3P1) δd1 + (P0 − 3P2) δd2 = 0 (A.16)

where d1 and d2 are free degrees-of-freedom, so their variation δd1 and δd2 are

arbitrary. Thus their coefficients must vanish:

2P0 − 3P1 = P0 − 3P2 = 0 or P1 : P2 = 2 : 1 (A.17)

The constraint 2d1 + 1d2 − 3d0 = 0 is rewritten as

g(d) = Qd− d̄g = 0 (A.18)

where Q = {2 1}, d = {d1 d2}T , and d̄g = 3d0. If the Lagrange multiplier

method is used, then the general equation to solve the constrained problem isK QT

Q 0



d

λ

 =


P

d̄g

 (A.19)

for the above linear example, this equation becomes
1 0 2

0 2 1

2 1 0




d1

d2

λ


=


0

0

3d0


(A.20)
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Solving this system of equations with weighted average displacement d0 = 3 [d0

is introduced in Equation (A.13)] will result in displacements d1 = 4, d2 = 1

and loads P1 = 4, P2 = 2. The loads satisfy proportionality of 2 : 1.

A.5 Nonlinear softening examples

In this section the multiple point constraint method is demonstrated for two

inelastic systems: one consists of nonlinear springs and the other is the biaxial

tension of a shell element with nonlinear material response.

A.5.1 Nonlinear springs

Consider a system consisting of three springs, all with a stiffness of 1000

(Figure A.5). Spring 1 and Spring 2 are linear. Spring 3 yields at a strength of

50 and has a post-yield stiffness of −200.

Load proportionality at Springs 1, 2 and 3 are 1 : 2 : 3. Therefore, the

constraint is

d1 + 2d2 + 3d3 − 6d0 = 0 (A.21)

where d0 is time-varying weighted average displacement prescribed as

d0 = t/100 (A.22)
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P1

P2

P3

d1

d2

d3

Figure A.5: Nonlinear springs

The system is solved by using LS-DYNA (LSTC, 2007), the constraint is ap-

plied using keyword constrained linear global. The results are shown in

Figures A.6 to A.8. Figure A.6 shows that Spring 3 yields and softens at about

four second, but the other two springs unload elastically. Figure A.7 shows con-

sistent results: d3 increases and d1 and d2 decrease around the same time. The

load proportionality 1 : 2 : 3 is kept constant and shown in Figure A.8.
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Figure A.6: Load versus displacement for nonlinear springs
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Figure A.8: Load histories of nonlinear springs
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A.5.2 Biaxial tension of a shell element with nonlinear

material

A single shell element system is subjected to biaxial tension (Figure A.9).

The size of the shell element is 1 × 1, and the thickness is 1. The Young’s

modulus of the material is 10, 000, and the yield stress and post-yield modulus

in uniaxial tension test is 50 and −2, 000, respectively.

d1 P1

d2 P2

d'1

d'2

Figure A.9: Biaxial tension of a shell element

The load proportionality specified in the two directions is 2 : 1. When the

displacements are small, the stress proportionality is approximately 2 : 1. The

constraints are

2d1 + d2 − 3d0 = 0 and d′1 − d1 = d′2 − d2 = 0 (A.23)
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or

2d1 + 2d′1 + d2 + d′2 − 6d0 = 0 (A.24)

where d0 is the time-varying weighted average displacement prescribed as

d0 = t/10000 (A.25)

The system is again solved using LS-DYNA. The results are shown in Figures

A.10 and A.11. Figure A.10 shows that ε11 increases and ε22 decreases after

the material yields and softens at around 40 seconds. The approximate stress

proportionality 2 : 1 is kept constant, as shown in Figure A.11.

A.6 Practical example for pushover analysis

The proposed method applying proportional loads using multiple point con-

straints is further illustrated with a pushover analysis of a three-story steel

braced frame. The prescribed first-mode load distribution is 0.32 : 0.71 : 1.00

(Table 6.3, Figure A.12). The story shear-roof displacement response for each

story solved in LS-DYNA is shown in Figure A.13. The story shear propor-

tionality, 2.03 : 1.71 : 1.00, is constant and consistent with the applied load

distribution before and after the highly nonlinear responses, such as buckling

and fracture of the brace, and fracture of the column.
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Figure A.12: Pushover analysis model of braced frame
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Figure A.13: Story shears versus roof displacement of braced frame
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A.7 A special case

Consider the following constraint:

∑
(pidi)− cd0 = 0 (A.26)

where c is a non-zero constant. If
∑

(pidi) = 0, specifically if
∑
pi = 0 and

the di’s are identical, then d0 must be zero. Following the same procedure in

Section A.3, it is still possible to prove that the specified load proportions are

satisfied. It is valid to apply a load at the degree-of-freedom corresponding to

d0 and maintain load proportionality. However, it is not possible to prescribe a

time-varying non-zero displacement at this degree-of-freedom as it will conflict

with the constraint. Fortunately, the structural system can be extended by

adding another “dummy” degree-of-freedom at which a non-zero stiffness pivot

is provided, e.g., a “dummy” linear spring connecting this degree-of-freedom

and a fixed degree-of-freedom. The multiple point constraint is then extended

to the additional degree-of-freedom such that
∑

(pidi) 6= 0.

For example, if loads are applied to the two identical springs (Figure A.14)

with proportionality 1 : −1, the linear constraint would be

d1 − d2 − cd0 = 0 (A.27)

To avoid the singular stiffness when prescribing the displacement at d0, a

“dummy” spring and a “dummy” degree-of-freedom are added at d3, shown
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in Figure A.14. For the new system, the revised constraint is

d1 − d2 + d3 − d0 = 0 (A.28)

Then the constraint conflict can be solved.

P1

P2

P3

d1

d2

d3
Dummy spring

Figure A.14: A two-spring system and a ‘dummy’ spring

A.8 Concluding remarks

A numerical method for applying proportional loading using multiple point

constraints is developed based on the principle of virtual work. It is applicable

for an arbitrary number of loads, in arbitrary directions, and for an arbitrary

type of structure. Some examples demonstrate the application and accuracy

of the multiple point constraint method. This method provides a stable and

efficient way to evaluate structures that may undergo softening.
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Appendix B

Discussion on Instability of

Newmark Integrator

B.1 Introduction

The Newmark integrator (Newmark, 1959) is one of the most popular classes

of time integrators. It has been considered unconditionally stable if parameters

γ ≥ 1/2 and β ≥ γ/2 are used (Hughes, 1987); β = 1/4 and γ = 1/2 are the

most widely used combination of parameters. However, there is one situation

that has been generally ignored: if the mass is zero, and parameters β = 1/4

and γ = 1/2 are used, the integrator becomes unstable.

Zero modal mass is not rare in structural dynamic analyses. It is common
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to assign zero (distributed) mass density to finite elements but a lumped mass

at the nodes. In this case, there is no rotary inertia at the nodes, and modal

analysis shows a mode with zero mass. If the whole system is solved without

static condensation, the zero-mass mode is excited when force is applied, and

instability will occur.

In this chapter, the linear stability of Newmark integrator for zero mass is

analyzed, and the instability is demonstrated with a numerical example.

B.2 Linear stability analysis

Consider a linear single-degree-of-freedom mass-damper-spring system,

which can be described by equation

mai+1 + cvi+1 + kui+1 = 0 (B.1)

at time ti+1, where m is mass, c is damping coefficient, k is stiffness, a, v

and u are acceleration, velocity and displacement, respectively. If a Newmark

integrator with parameters β = 1/4 and γ = 1/2 is applied, then
ui+1 = ui + vih+

h2

4
(ai + ai+1)

vi+1 = vi +
h

2
(ai + ai+1)

(B.2)
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where h is the integration time step. If ai+1 from Equation (B.1) is substituted

into (B.2), then
mui+1 = mui +mvih−

h2

4
(cvi + kui + cvi+1 + kui+1)

mvi+1 = mvi −
h

2
(cvi + kui + cvi+1 + kui+1)

(B.3)

This system of equations can be rearranged into the recursion form

yi+1 = Ayi (B.4)

where vector y = [u, v]T and A is the amplification matrix

A =
1

4m+ 2hc+ h2k

4m+ 2hc− h2k 4hm

−4hk 4m− 2hc− h2k

 (B.5)

The eigenvalues of the amplification matrix are

r =
[4m− h2k]± 2h

√
c2 − 4mk

4m+ 2hc+ h2k
(B.6)

Linear stability of recursion requires that these eigenvalues lie within the unit

circle in the complex plane, and those on the circle have multiplicities of 1

(Iserles, 1996). In other words, if ‖r‖ ≤ 1 and those roots with ‖r‖ = 1 are not

repeated, then the integrator is stable. If mass is larger than zero m > 0 and

parameters γ ≥ 1/2 and β ≥ γ/2 are used, the integrator is unconditionally

stable (Hughes, 1987).

But if mass is zero (m = 0), the eigenvalues become

r1,2 =
−hk ± 2c

2c+ hk
⇒ r1 = −1 and r2 = 1− 2hk

2c+ hk
(B.7)
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If c > 0 and h > 0, then r2 ∈ (−1, 1), and there is only one eigenvalue r1 = −1

lying on the unit circle. Numerical error will propagate from one step to the next

constantly. If the damping coefficient is also zero, c = 0, then both eigenvalues

become −1. They both lie on the unit circle and the multiplicity is 2. For this

case, the Newmark’s method becomes unstable. The numerical error will grow

linearly (instead of exponentially).

B.3 Demonstration

Figure B.1 shows a system with three nodes connected by two truss elements.

Node 1 is fixed. The mass at the Node 3 is 0.001. The stiffness of truss elements

is 1. Loads are applied at Node 2 and 3, and P2 = P3 = 0.0016t, where t is

time. The system stiffness and mass matrixes are

K =

 1.6 −0.8

−0.8 0.8

 , M =

0 0

0 0.001

 (B.8)

k1 = 0.8 k2 = 0.8
m3 = 0.001

P2 P3

1 2 3

m2 = 0

Figure B.1: System for demonstration

For the damped system, stiffness proportional damped is applied using

Rayleigh damping c = aM + bK, with a = 0 and b = 0.005. This results
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in a damping ratio ζ1 = 5% for the first mode (ω1 = 20). Modes of the sys-

tem are φ1 = [0.5, 1]T , and φ2 = [1, 0]T . Mode 1 has non-zero modal mass

(M1 = 0.001), whereas Mode 2 has zero modal mass (M2 = 0). Based on the

linear stability analysis in previous section, if the Newmark integrator is used to

solve this dynamics system, Mode 1 is stable and Mode 2 is unstable. Because

Mode 2 contributes only to the displacement of Node 2 (φ22 = 0), Node 3 will

be stable and Node 2 will be unstable.

The analytical solution of acceleration for system mq̈ + cq̇ + kq = αt is

q̈ =


α

k
exp−ζωnt

ωn√
1− ζ2

sinωdt (m 6= 0)

0 (m = 0)

(B.9)

where ωn =
√
k/m, ζ = c/(2mωn) < 1 and ωd = ωn

√
1− ζ2. By superposition,

the accelerations for undamped system in Figure 2 are

a2 = 0.06 sin 20t

a3 = 0.12 sin 20t

(B.10)

and analytical solutions of accelerations for ζ = 5% under-damped system are

a2 =
0.06√
0.9975

exp(−t) sin(20
√

0.9975t)

a3 =
0.12√
0.9975

exp(−t) sin(20
√

0.9975t)

(B.11)

Figures B.2 and B.3 compare the results for the undamped system. Figures

B.2a and B.3a are the analytical solutions; accelerations at Node 2 and 3 are

both sinusoidal curve. If zero mass at Node 2 is specified, the error for Mode 2
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will grow linearly, shown in Figure B.2b for a time step of 0.005. Figures B.2b

and B.3b also show that the instability is at Node 2 only. This is because Mode

2 has no component at Node 3. If a small mass is assigned at Node 2, then as

shown in Figure B.2c, the instability is diminished. The oscillation at Node 2 is

expected because high-frequency vibration of Mode 2 is not damped out. Figures

B.4 and B.5 compare the results for the damped system. Figures B.4a and B.5a

show the analytical solution of ever-decreasing oscillation of acceleration at

Node 2 and 3. If the mass at Node 2 is zero, the absolute error of Mode 2 will

propagate constantly and the numerical solution oscillates about the analytical

solution. The numerical result for this case is shown in Figure B.4b. The high-

frequency part (Mode 2) of acceleration at Node 2 never decreases, even if its

low-frequency part (Mode 1) at Node 2 does because of damping. If a small

mass is assigned at Node 2, then the numerical result will quickly converge to

the analytical one, as observed in Figure B.4c.

B.4 Discussion

B.4.1 Source of initial numerical error

The truncation error is small for a second order integrator and it decreases

with decreasing step sizes. The round-off error is negligible for double precision

evaluation. Therefore, they are not the major source of the initial numerical er-
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ror that linearly grows, as observed in Figure B.2b, or propagates constantly, as

observed in Figure B.4b. One possible source of the major initial numerical error

comes from the discrepancy of zero initial velocity in the numerical solution and

non-zero initial velocity in analytical solution. For a system with non-singular

mass, zero initial velocity is commonly specified as the initial condition. This is

compatible with the analytical result. For a mode with zero mass, however, the

analytical solution of velocity may be non-zero. If zero initial velocities in nu-

merical solution are still adopted, then there can be an initial numerical error.

The error in velocity is amplified when differentiated into acceleration.

B.4.2 Other values of parameter β

If parameters γ = 1/2, β > γ/2 are used, the eigenvalues of the amplification

matrix are

r =
2m+ (2β − 1)h2k ±

[
h
√
c2 − 4mk − (4β − 1)h2k2

]
2m+ hc+ 2βh2k

(B.12)

If mass is zero, m = 0, the eigenvalues become

r1,2 =
(2β − 1)hk ±

√
c2 − (4β − 1)h2k2

2 + 2βhk
(B.13)

If c > 0 and h > 0, then the integrator is unconditionally stable, even when

m = 0. But if c = 0, then

r1,2 =
(2β − 1)± i

√
4β − 1

2β
(B.14)
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where i is the imaginary unit. It can be calculated that ‖r‖ = 1, therefore

a numerical error will propagate from one step to the next constantly. It is

interesting to find that if γ = 1/2, β > 1/4, the Newmark integrator is stable

even if the mass is zero. The most commonly used parameter set — γ = 1/2,

β = 1/4 — is, in fact, the worse case if mass is zero. Numerical results for

parameters γ = 1/2, β = 1/4 + 0.01 are shown in Figures B.6 and B.7. One can

observe from the figures that even if the mass is zero at Node 2, the results are

stable provided β is strictly larger than γ/2.

B.5 Concluding remarks

If the mass is zero, the second order equation is infinitely stiff (in fact, it

is a first order equation, but is solved as a second order one). Previously it

was commonly believed that an implicit numerical integrator was adequate to

address this situation and that Newmark integrator is unconditionally stable if

parameters γ ≥ 1/2 and β ≥ γ/2 are used. This chapter analyzed the linear

numerical stability of Newmark integrator, and demonstrated that even if New-

mark integrator is implicit, it can be unstable for the case of zero mass. It is

better to apply a small amount of mass and/or a small amount of damping to

all degrees-of-freedom in a structural system to avoid this instability.
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(a) Analytical result
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(b) Numerical result, zero mass m2 = 0
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(c) Numerical result, small mass m2 = 1× 10−4

Figure B.2: Accelerations at Node 2 (undamped, γ = 1/2, β = 1/4)
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(b) Numerical result, zero mass m2 = 0
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(c) Numerical result, small mass m2 = 1× 10−4

Figure B.3: Accelerations at Node 3 (undamped, γ = 1/2, β = 1/4)
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(a) Analytical result
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(b) Numerical result, zero mass m2 = 0
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(c) Numerical result, small mass m2 = 1× 10−4

Figure B.4: Accelerations at Node 2 (damped, γ = 1/2, β = 1/4)
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(a) Analytical result
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(b) Numerical result, zero mass m2 = 0
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(c) Numerical result, small mass m2 = 1× 10−4

Figure B.5: Accelerations at Node 3 (damped, γ = 1/2, β = 1/4)
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(a) Numerical result, undamped, zero mass m2 = 0
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(b) Numerical result, damped, zero mass m2 = 0

Figure B.6: Accelerations at Node 2 (γ = 1/2, β = 1/4 + 0.01)
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(a) Numerical result, undamped, zero mass m2 = 0
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(b) Numerical result, damped, zero mass m2 = 0

Figure B.7: Accelerations at Node 3 (γ = 1/2, β = 1/4 + 0.01)
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