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Abstract

The Prime Spectrum and Representation Theory of Generalized Weyl Algebras, with

Applications to Quantized Algebras

by

Ebrahim Ebrahim

This work develops the theory of generalized Weyl algebras (GWAs) in order to study

generic quantized algebras. The ideas behind the classification of simple modules over

GWAs are used to describe the noncommutative prime spectrum for certain GWAs. The

primary example studied is the 2× 2 reflection equation algebra A = Aq(M2) in the case

that q is not a root of unity, where the R-matrix used to define A is the standard one

of type A. Simple finite dimensional A-modules are classified, finite dimensional weight

modules are shown to be semisimple, Aut(A) is computed, and the prime spectrum of

A is computed along with its Zariski topology. It is shown that A satisfies the Dixmier-

Moeglin equivalence and that it satisfies a Duflo-type theorem to some extent. The

notion of a Poisson GWA is developed and used to explore the semiclassical limit of A.

For some other quantized algebras and their classical counterparts, the GWA theory is

demonstrated as a means to study the prime spectrum.
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Chapter 1

Introduction

Generalized Weyl algebras, henceforth known as GWAs, form a class of noncommutative

rings that was introduced by Bavula in [3]. Examples include the ordinary Weyl algebra

and the classical and quantized universal enveloping algebras of sl2. We shall focus on

aspects of GWAs that provide tools for working with various quantized algebras. Quan-

tized algebras are always constructed in terms of parameters, and their study typically

splits into two realms depending on the parameters. When the parameters satisfy certain

algebraic relations (which often amount to the parameters being roots of unity) the struc-

ture and representation theory of a quantized algebra take on a vastly different character

than it would in the “generic parameters” case. There is a similar split in the theory of

GWAs. One ingredient used in the construction of a GWA is an automorphism σ of its

base ring. When σ has finite order, or when it acts with finite order on some maximal

ideals of the base ring, there is a similar loss of “noncommutative rigidity” to that which

occurs for quantized algebras at roots of unity. This work is focused on applications to

generic quantized algebras, so it develops the side of GWA theory that typically has σ

1



Introduction Chapter 1

acting with infinite order.

Outline The theory of GWAs is laid out in Chapter 2, and the applications to specific

algebras are given in Chapter 3. Sections 2.1 through 2.5 build up the needed background

and notation, some of which is a collection of results that could be found in [4], [5], [6],

and [14]. A description of homogeneous ideals of GWAs is given in section 2.2, and

localization is explored in section 2.3. Section 2.4 addresses GK dimension by transport-

ing the arguments of [29] for skew Laurent rings into the GWA setting. It is shown in

Theorem 28 that the GK dimension of a GWA is one more than the GK dimension of

its base ring, given a certain assumption on σ. Section 2.5 explores some of the finite

dimensional representation theory of GWAs, focusing on the setting that will apply to

generic quantized algebras.

Section 2.6 develops a powerful tool for working with the noncommutative prime spec-

trum of a GWA. Theorem 70 says that under some rather specific conditions, every prime

ideal of a GWA arises as the annihilator of one of the simple modules from the classifica-

tion of section 2.5. While the hypotheses of this theorem look restrictive at first glance, it

has wide applicability due to the approach that it suggests: given a GWA, use quotients

and localizations to partition its prime spectrum into pieces to which Theorem 70 can be

applied. The theory of section 2.6 is demonstrated on a host of examples in Chapter 3.

The most completely worked out example, to which the entirety of Chapter 2 is applied,

is the 2× 2 reflection equation algebra Aq(M2). (The reason is that this algebra was the

case study that launched the author’s work on GWAs.) Normal elements are identified

and then used to compute the automorphism group in Theorem 89. Theorem 90 provides

a classification of the finite dimensional simple Aq(M2)-modules that are not annihilated

by the element u22. We also find in Theorem 92 that finite dimensional Aq(M2)-modules

2



Introduction Chapter 1

on which u22 acts invertibly are semisimple. The prime spectrum of Aq(M2) is fully

worked out in section 3.1.4, and some consequences are explored. The prime spectrum

appears in Theorem 105, and the primitive spectrum appears in Theorem 113, where

it is shown that A satisfies the Dixmier-Moeglin equivalence. The semiclassical limit of

Aq(M2) is studied in section 3.1.6, and the concept of a Poisson GWA is developed in

section 2.7 to aid this study.

The initial determination of the prime spectrum of Aq(M2) was done without the general

theory of section 2.6. Section 3.1.5 provides the simpler approach afforded by Theorem

70.

Notation All rings are rings with 1, and they are not necessarily commutative. The

symbol k always denotes a field. Given a ring R and an automorphism σ of R, we use

R[x;σ] to denote the skew polynomial ring and R[x±;σ] to denote the skew Laurent

ring. Our convention for the twisting is such that xr = σ(r)x for r ∈ R. If there is

further twisting by a σ-derivation δ, then the notation becomes R[x;σ, δ]. We will also

use R((x±;σ)) to denote the skew Laurent series ring. Given a subset G of a ring R, we

indicate by 〈G〉 the two-sided ideal of R generated by G. When there is some ambiguity

as to the ring in which ideal generation takes place, we resolve it by using a subscript

〈G〉R or by writing 〈G〉 / R.

Basic Definitions A regular element of a ring is an element that is neither a left nor

a right zero divisor. A normal element of a ring R is an element r for which rR = Rr.

A prime ideal of a ring R is a proper ideal P / R with the property that IJ ⊆ P ⇒

(I ⊆ P or J ⊆ P ) for all I, J / R. For I / R, define V (I) to be the set of prime ideals of

R that contain I. The prime spectrum of R, denoted by spec(R), is defined to be the set

of prime ideals of R. The family {V (I) | I / R} forms the collection of closed sets of the

3
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Zariski topology ; we consider spec(R) to be a topological space in this way. The subspace

of spec(R) consisting of only the maximal ideals is called the maximal spectrum, and it is

denoted by max spec(R). The subspace of spec(R) consisting of only the primitive ideals

is called the primitive spectrum, and it is denoted by prim(R). If R is a graded ring, then

the subset of spec(R) consisting of only the homogeneous prime ideals is called the graded

spectrum, and it is denoted by gr-spec(R). Given an ideal I of a commutative ring R, we

use V̂ (I) to denote the set of maximal ideals containing I. (This is to avoid confusion

with V (I), the set of prime ideals containing I.) If S ⊆ max spec(R) or S ⊆ spec(R), we

denote by I(S) the intersection
⋂
S (the “ideal of S”).

4



Chapter 2

Generalized Weyl Algebras

We shall define GWAs by presenting them as rings over a given base ring. A ring S over

a ring R, also known as an R-ring, is simply a ring homomorphism R→ S. A morphism

S → S ′ of rings over R is a ring homomorphism such that

S S ′

R

commutes. Given any set X , one can show that a free R-ring on X exists. This provides

meaning to the notion of a presentation of a ring over R; it can be thought of as a ring

over R satisfying a universal property described in terms of the relations.

Definition 1: Let R be a ring, σ an automorphism of R, and z an element of the center

of R. The GWA based on this data is the ring over R generated by x and y subject to

5
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the relations

yx = z xy = σ(z)

xr = σ(r)x yr = σ−1(r)y ∀ r ∈ R.
(2.1)

We denote this construction by

R[x, y;σ, z]

and we adapt some useful notation from [4] as follows. Define

vn =


xn n ≥ 0

y(−n) n ≤ 0

for n ∈ Z, and define

σ[j,k](z) =
k∏
l=j

σl(z)

for integers j ≤ k. We take a product over an empty index set to be 1. Define the

following special elements of Z(R):

[[n,m]] =



σ[n+m+1,n](z) n > 0, m < 0, |n| ≥ |m|

σ[1,n](z) n > 0, m < 0, |n| ≤ |m|

σ[n+1,n+m](z) n < 0, m > 0, |n| ≥ |m|

σ[n+1,0](z) n < 0, m > 0, |n| ≤ |m|

1 otherwise

(2.2)

for n,m ∈ Z. Now we have vnvm = [[n,m]]vn+m for n,m ∈ Z.

6
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2.1 Basic Properties

This section lays down some basic ring-theoretic properties of GWAs, ones which we will

need to reference in later sections. The following two propositions are easy observations.

Proposition 2: There is an R-ring homomorphism φ : R[x, y;σ, z] → R[x±;σ] sending

x to x and y to zx−1. There is also an R-ring homomorphism φ′ : R[x, y;σ, z]→ R[x±;σ]

sending x to xz and y to x−1.

Proof: Observe that the skew Laurent ring R[x±;σ] is an R-ring with x and zx−1

satisfying the defining relations for the GWA, and similarly for xz and x−1. �

Proposition 3: R[x, y;σ, z] has the alternative expression R[y, x;σ−1, σ(z)], and

R[x, y;σ, z]op can be expressed as Rop[x, y;σ−1, σ(z)].

Proof: Check, carefully, that the GWA relations hold where needed. �

Proposition 3 roughly means that if we prove something (ring-theoretic) about x, then

we get a y version of the result by swapping x and y, replacing σ with σ−1, and replacing

z with σ(z). And if we prove something left-handed, then we get a right-handed version

of the result by replacing σ with σ−1 and replacing z with σ(z).

Proposition 4: Consider a GWA R[x, y;σ, z].

1. It is a free left (right) R-module on {vi | i ∈ Z}.

7
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2. It has a Z-grading with homogeneous components Rvn = vnR:

R[x, y;σ, z] =
⊕
n∈Z

Rvn

3. It contains a copy of the ring R as the subring of degree zero elements. The subring

generated by R and x is a skew polynomial ring R[x;σ], and the subring generated

by R and y is R[y;σ−1].

4. It is left (right) noetherian if R is left (right) noetherian.

Proof: See [38, Lemma II.3.1.6] for a proof of assertion 1. Assertions 2 and 3 are then

easily shown. For assertion 4 let S be the subring generated by R and x. Observe that

R[x, y;σ, z] is an over-ring of S generated by S and y such that

Sy + S = yS + S. (2.3)

By the skew Hilbert basis theorem, S = R[x;σ] is left (right) noetherian if R is. Using

(2.3), one can write a version of the Hilbert basis theorem that applies to R[x, y;σ, z]

over S; see for example [32, Theorem 2.10]. That is, R[x, y;σ, z] is left (right) noetherian

if S is. �

The following results are now routine.

Proposition 5: Let W = R[x, y; z, σ] be a GWA. The homomorphisms of Proposition

2 are injective if and only if z ∈ R is regular, and they are isomorphisms if and only if

z ∈ R is a unit.

Proof: Assume that z is regular. Let φ, φ′ be as in 2. Consider any w =
∑

i∈Z aivi ∈ W

8
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and assume that φ(w) = 0. Then

0 = φ(w) =
∑
i≥0

aix
i +
∑
i<0

aiz
−ixi,

so all ai must vanish, since z is regular. Thus φ is injective. Assume for the converse

that φ is injective. Then for any a ∈ R,

az = 0 ⇔ 0 = azx−1 = φ(ay) ⇔ ay = 0 ⇔ a = 0,

so z is regular.

If z is a unit, then φ is injective by the above, and it is surjective because its image contains

x and x−1. Assume for the converse that φ is an isomorphism. Then x−1 = φ(w) for

some w ∈ W . Clearly w = ay for some a ∈ R. Now x−1 = φ(ay) = (az)x−1, so az = 1.

The proof regarding φ′ is similar. (Actually, φ and φ′ are related via Proposition 3 and

the isomorphism R[x±;σ] ∼= R[x±;σ−1] sending x 7→ x−1. So the result for φ′ follows

from symmetry.) �

Corollary 6: A GWA W = R[x, y;σ, z] is a domain if and only if R is a domain and

z 6= 0.

Proof: Proposition 5 shows that if R is a domain and z 6= 0 then W embeds into the

domain R[x±;σ]. The converse follows from Proposition 4 and the fact that yx = z. �

Proposition 7: Let W = R[x, y;σ, z] be a GWA. Then x, y ∈ W are regular if and only

if z ∈ R is regular.

9
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Proof: If x and y are regular in W , then so is yx = z. Suppose for the converse that z

is regular in R. By Proposition 5, W can be considered to be a subring of R[x±;σ] with

y = zx−1. Since x ∈ R[x±;σ] is regular, we conclude that x and y are regular. �

The center of a GWA is often easily described when its coefficient ring is a domain:

Proposition 8: Let R be a domain, and let σ be an automorphism of R such that

σ|Z(R) : Z(R) → Z(R) has infinite order. Then Z(R[x, y;σ, z]) is Z(R)σ, the subring of

Z(R) fixed by σ.

Proof: If a ∈ Z(R)σ, then a commutes with R, x, and y and is therefore central. Suppose

for the converse that a =
∑

m∈Z amvm is central. Then xa = ax and ya = ay require

that σ(am) = am for all m ∈ Z. Given any nonzero m ∈ Z, our hypothesis ensures that

there is some r ∈ Z(R) such that σm(r) 6= r. Now ra = ar requires ram = amσ
m(r), so

am = 0. Thus a = a0 ∈ Rσ. Finally, a commutes with R, so a ∈ Z(R)σ. �

There are similar and easily verified facts about skew Laurent polynomials and skew

Laurent series:

Proposition 9: Let R be a domain, and let σ be an automorphism of R such that

σ|Z(R) : Z(R) → Z(R) has infinite order. Then Z(R[x±;σ]) = Z(R)σ, the subring of

Z(R) fixed by σ. Similarly, Z(R((x±;σ))) = Z(R)σ.

Under some stronger conditions, one can also characterize the normal elements of a GWA:

Proposition 10: Let R be a domain, and let σ be an automorphism of R such that there

is an r ∈ Z(R) which is not fixed by any nonzero power of σ. Then the normal elements

of W = R[x, y;σ, z] are homogeneous.

10
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Proof: Suppose that a =
∑
amvm ∈ W is a nonzero normal element. Then ra = ab

for some b ∈ W . Looking at the highest degree and lowest degree terms of ra, and

considering that R is a domain, b must have degree 0 in order for ab to have the same

highest and lowest degree terms as ra. Thus b ∈ R. Now ra = ab becomes

ram = amσ
m(b)

for all m ∈ Z. Since r is central, we may cancel the am whenever it is nonzero. If am is

nonzero for multiple m ∈ Z, then r = σm(b) = σm+n(b) for some m,n ∈ Z with n 6= 0.

But r = σn(r) would contradict our assumption on r, so a must be homogeneous. �

Proposition 11: Let R be a commutative domain, σ an automorphism, and z ∈ R such

that σm(z) is never a unit multiple of z for nonzero m ∈ Z. Then the normal elements

of W = R[x, y;σ, z] are the r ∈ R such that σ(r) is a unit multiple of r.

Proof: Suppose that r ∈ R and σ(r) = ur, where u ∈ R×. Then rR = Rr because

R is commutative, xr = r(ux), rx = (u−1x)r, yr = r(yu−1), and ry = (yu)r. Thus

r is normal in W . Now assume for the converse that a ∈ W is normal and nonzero.

By Proposition 10, using the fact that z is not fixed by any nonzero powers of σ, a is

homogeneous. Write it as a = amvm.

Suppose that m ≥ 0, so that a = amx
m. For some b ∈ W , ax = ba. Clearly b must have

the form b1x for some b1 ∈ R, so we have am = b1σ(am). Thus amR ⊆ σ(am)R. For

some c ∈ W , xa = ac. Then c must have the form c = c1x for some c1 ∈ R, so we have

σ(am) = amσ
m(c1). Thus σ(am)R ⊆ amR. We conclude that σ(am)R = amR.

If m ≤ 0, then we may use the x ↔ y symmetry of Proposition 3 to apply the above

11
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argument and conclude that σ−1(am)R = amR. So in either case, σ(am) = uam for some

u ∈ R×.

Suppose that m > 0, so that a = amx
m. For some d ∈ W , ay = da. Clearly d must have

the form d−1y for some d−1 ∈ R, so we have

amσ
m(z) = d−1σ

−1(am)z = d−1σ
−1(u−1)amz.

Thus, cancelling the am, σm(z)R ⊆ zR. For some e ∈ W , ae = ya. Then e must have

the form e = e−1y for some e−1 ∈ R, so we have

amσ
m(e−1)σm(z) = σ−1(am)z = σ−1(u−1)amz.

Thus, cancelling the am, zR ⊆ σm(z)R. We conclude that zR = σm(z)R, contradicting

the hypothesis on z. Therefore one cannot have m > 0.

If m < 0, then we may use x↔ y symmetry to apply the above argument and conclude

that σ(z)R = (σ−1)m(σ(z))R. But this is equivalent to the contradiction zR = σ−m(z)R,

so one cannot have m < 0 either. Therefore m = 0, and a = a0 ∈ R with σ(a) = ua. �

2.2 Ideals

We will establish in this section a notation for discussing the homogeneous ideals of a

GWA. We will also explore a portion of the prime spectrum of a GWA. First, note that

quotients by ideals in the coefficient ring work as they ought to:

12
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Proposition 12: Let W = R[x, y;σ, z] be a GWA, with J/R an ideal such that σ(J) = J .

Let I / W be generated by J . Then there is a canonical isomorphism

W/I ∼= (R/J)[x, y; σ̂, z + J ], (2.4)

where σ̂ is the automorphism of R/J induced by σ.

Proof: Extend

R � R/J ↪→ (R/J)[x, y; σ̂, z + J ]

to W by sending x to x and y to y and checking that the needed GWA relations hold.

Since the kernel of the resulting map contains J , it contains the ideal I generated by J .

This defines one direction of (2.4). For the other, observe that the kernel of

R ↪→ W � W/I

contains J , and pass to the induced map R/J → W/I. Extend this to (R/J)[x, y; σ̂, z+J ]

by sending x to x and y to y and checking that the needed GWA relations hold. The two

homomorphisms just defined are inverse isomorphisms. �

We will generally abuse notation and reuse the labels “σ” and “z” instead of using σ̂ or

z + J .

Definition 13: Whenever I is a subset of a GWA R[x, y;σ, z] and m ∈ Z, Im shall

denote the subset

Im := {r ∈ R | rvm ∈ I}

13
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of R and Iop
m shall denote

Iop
m := {r ∈ R | vmr ∈ I}.

Remark 14: Iop
m is a notational device for working with the symmetry R[x, y;σ, z]op =

Rop[x, y;σ−1, σ(z)]. It transfers the definition of Im to the GWA structure on the opposite

ring. Note that the relation is that Iop
m = σ−m(Im) for all m ∈ Z.

Propositions 15 to 18 were essentially observed in [6].

Proposition 15: Let I be a right R[x;σ]-submodule of R[x, y;σ, z]. The In are right

ideals of R, and they satisfy

I−(n+1)σ
−n(z) ⊆ I−n In ⊆ In+1 (2.5)

for all n ∈ Z≥0. Thus, a homogeneous right R[x;σ]-submodule I of R[x, y;σ, z] has the

form
⊕

n∈Z Invn for a family (In)n∈Z of right ideals of R satisfying (2.5). Further, any

such family (In)n∈Z defines a right R[x;σ]-submodule of R[x, y;σ, z] in this way.

Proof: Let I be a right R[x;σ]-submodule of R[x, y;σ, z], and let n ∈ Z≥0. The In are

right ideals of R because rsvn = rvnσ
−n(s) ∈ I whenever rvn ∈ I and s ∈ R. If a ∈ In,

then

I 3 (axn)x = axn+1,

so a ∈ In+1. And if a ∈ I−(n+1), then aσ−n(z)yn = ayn+1x ∈ I, so aσ−n(z) ∈ I−n. This

establishes (2.5). For the final assertion, assume that (In)n∈Z is a family of right ideals

of R satisfying (2.5), and let I =
⊕

n∈Z Invn. The ring R[x;σ] is generated by R ∪ {x},

so one only needs to verify that I is stable under right multiplication by R and x. The

former follows from the fact that the In are right ideals of R, and the latter is ensured

14
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by (2.5). �

Proposition 16: Let I be a right ideal of R[x, y;σ, z]. The In are right ideals of R, and

they satisfy

I−(n+1) ⊇ I−n In ⊆ In+1

I−(n+1)σ
−n(z) ⊆ I−n In ⊇ In+1σ

n+1(z)
(2.6)

for all n ∈ Z≥0. Thus, a homogeneous right ideal I of R[x, y;σ, z] has the form
⊕

n∈Z Invn

for a family (In)n∈Z of right ideals of R satisfying (2.6). Further, any such family (In)n∈Z

defines a right ideal of R[x, y;σ, z] in this way.

Proof: To be a right ideal of R[x, y;σ, z] is to be stable under the right multiplication by

both of the subrings R[x;σ] and R[y;σ−1]. We shall extend the assertions of Proposition

15 using the symmetries indicated in Proposition 3. We take R[y, x;σ−1, σ(z)] to be

equal to the ring R[x, y;σ, z], with our focus merely shifted to a different GWA structure.

Applying Proposition 15 to R[y, x;σ−1, σ(z)] is a matter of swapping x and y, replacing

σ by σ−1, and replacing z by σ(z). The conditions in (2.5) become:

In+1σ
n+1(z) ⊆ In I−n ⊆ I−n+1. (2.7)

Thus this Proposition is a consequence of Proposition 15 applied to both R[x, y;σ, z] and

R[y, x;σ−1, σ(z)]. �

Proposition 17: Let I be a left ideal of R[x, y;σ, z]. The In are left ideals of R, and

they satisfy

σn+1(I−(n+1)) ⊇ σn(I−n) σ−n(In) ⊆ σ−(n+1)(In+1)

σn+1(I−(n+1))σ
n+1(z) ⊆ σn(I−n) σ−n(In) ⊇ σ−(n+1)(In+1)σ−n(z)

(2.8)

15
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for all n ∈ Z≥0. Thus, a homogeneous left ideal I of R[x, y;σ, z] has the form
⊕

n∈Z Invn

for a family (In)n∈Z of left ideals of R satisfying (2.8). Further, any such family (In)n∈Z

defines a left ideal of R[x, y;σ, z] in this way.

Proof: We again take advantage of the symmetries indicated in Proposition 3. Applying

Proposition 16 to R[x, y;σ, z]op = Rop[x, y;σ−1, σ(z)] is a matter of replacing σ by σ−1,

and replacing z by σ(z). The conditions in (2.6) become:

Iop
−(n+1) ⊇ Iop

−n Iop
n ⊆ Iop

n+1

Iop
−(n+1)σ

n+1(z) ⊆ Iop
−n Iop

n ⊇ Iop
n+1σ

−n(z),
(2.9)

Making the adjustment in Remark 14 to (2.9) yields (2.8). Thus this proposition is a

consequence of Proposition 16 applied to Rop[x, y;σ−1, σ(z)]. �

Proposition 18: Let I be an ideal of R[x, y;σ, z]. The In are ideals of R, and they satisfy

(2.6) and (2.8) for all n ∈ Z≥0. Thus, a homogeneous ideal I of R[x, y;σ, z] has the form⊕
n∈Z Invn for a family (In)n∈Z of ideals of R satisfying (2.6) and (2.8). Further, any

such family (In)n∈Z defines an ideal of R[x, y;σ, z] in this way.

Proof: Use Propositions 16 and 17. �

We may depict (2.6) and (2.8) by the following diagrams:

· · · ⊇ I−2 ⊇ I−1 ⊇ I0 ⊆ I1 ⊆ I2 ⊆ · · ·

· · · ⊇ σ2(I−2) ⊇ σ(I−1) ⊇ I0 ⊆ σ−1(I1) ⊆ σ−2(I2) ⊆ · · · .

σ−1(z) z σ(z)
σ2(z)

σ2(z) σ(z)
z

σ−1(z)

16
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We may also depict an alternative way of stating (2.8),

I−(n+1) ⊇ σ−1(I−n) σ(In) ⊆ In+1

σ(I−(n+1))σ(z) ⊆ I−n In ⊇ σ−1(In+1)z,

by the following diagram:

· · · I−2 I−1 I0 I1 I2 · · · .

σ−1 σ−1 σ σ

σ, σ(z) σ, σ(z) σ−1, z σ−1, z

Lemma 20 below will be useful for working out the prime spectrum for certain GWAs.

We first establish the following proposition, which identifies one situation in which the

upcoming condition (2.13) of Lemma 20 holds for a given family of ideals.

Proposition 19: Let A ⊆ B be rings such that B is a free left A-module with a basis

(bj)j∈J for which Abj = bjA for all j ∈ J . Let (Iα)α∈A be a family of ideals of A satisfying

bjIα ⊆ Iαbj for all j and α. Then

⋂
α∈A

BIαB = B

(⋂
α∈A

Iα

)
B. (2.10)

Proof: We begin by showing that bj (
⋂
α Iα) ⊆ (

⋂
α Iα) bj for all j. Consider any j ∈ J

and any r ∈
⋂
α Iα. There is, for each α ∈ A, an r′α ∈ Iα such that bjr = r′αbj. Since

bj came from a basis for AB, all the r′α are equal, and so we’ve shown that bj (
⋂
α Iα) ⊆

(
⋂
α Iα) bj for all j.

Let I be any ideal of A satisfying bjI ⊆ Ibj for all j. Observe that
⊕

j∈J Ibj is then an

ideal of B, and hence it is the extension of I to an ideal of B. Applying this principle to

17
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I = Iα for α ∈ A, and also applying it to I =
⋂
α Iα, (2.10) follows from the fact that

⋂
α∈A

(⊕
j∈J

Iαbj

)
=
⊕
j∈J

(⋂
α∈A

Iα

)
bj. �

Lemma 20: Let W = R[x, y;σ, z] be a GWA such that Rσ ⊆ R has the following prop-

erty:

∀I / Rσ, RIR ∩Rσ = I. (2.11)

Then there are mutually inverse inclusion-preserving bijections

{I | I / Rσ} ↔ {WIW | I / Rσ}

I 7→ WIW

I ∩Rσ ←[ I.

(2.12)

Now let S = {WpW | p ∈ spec(Rσ)} and assume that S ⊆ spec(W ). Assume also that

extension of ideals to R preserves intersections in the following sense: for any family

(Iα)α∈A of ideals of Rσ, ⋂
α∈A

RIαR = R(
⋂
α∈A

Iα)R. (2.13)

Then (2.12) restricts to a homeomorphism

spec(Rσ) ≈ S.

Proof: Given any I / Rσ,

WIW =
⊕
m∈Z

RIR vm, (2.14)

18
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because the right hand side satisfies the conditions of Proposition 18 needed to make it

an ideal of W . Given I, J /Rσ with WIW ⊆ WJW , we have RIR ⊆ RJR from looking

at the degree zero component. From (2.11) we can then deduce that I ⊆ J . The converse

of this is clear: I ⊆ J ⇒ WIW ⊆ WJW . Putting this information together, we have

the inclusion-preserving correspondence (2.12).

Now assume that S ⊆ spec(W ) and that (2.13) holds. Let φ : spec(Rσ) → S be the

restriction of (2.12). We show that the bijection φ is a homeomorphism.

φ is a closed map: Given any I / Rσ, one has that p ⊇ I if and only if WpW ⊇ WIW ,

for all p ∈ spec(Rσ). That is, the collection of p ∈ spec(Rσ) that contain I is mapped by

φ onto the collection of P ∈ S that contain WIW .

φ is continuous: Let K /W . Define J := {J / Rσ |K ⊆ WJW} and I :=
⋂
J (with an

intersection of the empty set being Rσ). For p ∈ spec(Rσ), if WpW ⊇ K, then p ∈ J ,

so p ⊇ I. And if I ⊆ p, then

K ⊆
⋂
J∈J

WJW = W

(⋂
J∈J

RJR

)
W = WIW ⊆ WpW,

where the first equality is an application of Proposition 19 to R ⊆ W , and the second

equality is due to the assumption (2.13). We have therefore shown that the collection of

P ∈ S that contain K pulls back via φ to the collection of p ∈ spec(Rσ) that contain I.

�
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2.3 Localizations

Proposition 21: Let W = R[x, y;σ, z] be a GWA with z regular. Then S := {1, x, x2, . . .}

is an Ore set of regular elements, and the corresponding ring of fractions is given by the

homomorphism φ : W → R[x±;σ] of Proposition 2.

Proof: That the elements of S are regular comes from Proposition 7. If we can show

that φ is the localization homomorphism for a right ring of fractions of W with respect

to S, then by [21, Theorem 6.2] we will have that S is a right Ore set. Then it will

also be a left Ore set due to Proposition 3, of course with the same ring of fractions,

by [21, Proposition 6.5].

So we have only two things to verify: that φ(S) is a collection of units and that elements

of R[x±;σ] have the form φ(w)φ(s)−1 with w ∈ W and s ∈ S. The former statement is

obvious. For the latter, consider an arbitrary p ∈ R[x±;σ]. There is some n ∈ Z≥0 such

that pxn ∈ R[x;σ]. Observe that, by Proposition 5, φ maps the R-subring R[x;σ] of W

generated by x isomorphically to the R-subring R[x;σ] of R[x±;σ]. So

p = φ(φ−1(pxn))φ(xn)−1,

proving that φ gives a right ring of fractions. That φ also works as a left ring of fractions

then follows from Proposition 3. �

Proposition 22: Let W = R[x, y;σ, z] be a GWA. Let S ⊆ R be a right denominator

set, and assume that σ(S) = S. Then S is a right denominator set of W , and the

associated localization map has the following description: Let φ0 : R → RS−1 be the

localization map for the right ring of fractions of R. Let σ̂ be the automorphism of RS−1
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induced by σ, and let ẑ = φ0(z). Let φ : W → RS−1[x, y; σ̂, ẑ] be the extension of

R
φ0−→ RS−1 ↪→ RS−1[x, y; σ̂, ẑ] to W that sends x to x and y to y. This is the desired

localization map. In short,

WS−1 = (RS−1)[x, y; σ̂, ẑ].

An analogous statement holds for left denominator sets.

Proof: Note that σ̂ exists due to our hypothesis σ(S) = S. And the extension φ of

φ0 exists because GWA relations hold where needed. If we can show that φ really does

define a right ring of fractions of R[x, y;σ, z] with respect to S, then it will follow that

S is a right denominator set in R[x, y;σ, z] (by [21, Theorem 10.3] for example). Thus,

three things need to be verified: that φ(S) is a collection of units, that elements of

RS−1[x, y; σ̂, ẑ] have the form φ(w)φ(s)−1 with w ∈ W and s ∈ S, and that the kernel of

φ is {w ∈ W | ws = 0 for some s ∈ S}. That φ(S) is a collection of units is obvious.

Let
∑

i∈Z aivi be an arbitrary element of RS−1[x, y; σ̂, ẑ]. Get a “common right denomi-

nator” s ∈ S and elements ri of R so that ai = φ0(ri)φ0(s)−1 for all i ∈ Z (see [21, Lemma

10.2a], noting that all but finitely many of the ai vanish). Then

∑
aivi =

∑
φ0(ri)φ0(s)−1vi =

∑
φ0(ri)viσ̂

−i(φ0(s)−1) =
∑

φ(rivi)φ0(σ−i(s))−1

=
∑

φ(rivi)φ(σ−i(s))−1.

After a further choice of common denominator, we see that
∑

i∈Z aivi has the needed

form. It remains to examine the kernel of φ. Let w =
∑
rivi be an arbitrary element of

W . If ws = 0 with s ∈ S, then φ(w) must vanish because φ(s) is a unit. Assume for

the converse that 0 = φ(w) =
∑
φ0(ri)vi. Then ri ∈ ker(φ0) for all i, so there are si ∈ S
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such that risi = 0 for all i. By [21, Lemma 4.21], there are bi ∈ R such that the products

σ−i(si)bi are all equal to a single s ∈ S. Then

ws =
∑

riviσ
−i(si)bi =

∑
risivibi = 0.

Thus ker(φ) = {w ∈ W | ws = 0 for some s ∈ S}, and this completes the proof of

the right-handed version of the theorem. The left-handed version then follows from

Proposition 3. �

We will generally abuse notation and reuse the labels “σ” and “z.”

Corollary 23: The localization of W = R[x, y;σ, z] at the multiplicative set S generated

by {σi(z) | i ∈ Z} is a skew Laurent ring (RS−1)[x±;σ], where the localization map

extends the one R→ RS−1 by sending x to x and y to zx−1.

Proof: Use Proposition 22 to describe the localization. Then observe that it is isomor-

phic to a skew Laurent ring by Proposition 5, since z has become a unit. �

We will often use localization to adjust the base ring of a GWA so that it becomes easier

to determine prime ideals. Prime ideals can then be pulled back to the original GWA,

but actually describing them in terms of generators can be tricky. The following lemma

can aid this situation for homogeneous primes with a commutative base ring.

Lemma 24: Let W = R[x, y;σ, z] be a GWA over a commutative noetherian ring R. Let

S ⊆ R be a denominator set such that σ(S) = S. Using Proposition 22, identify the lo-

calization WS−1 with the GWA RS−1[x, y;σ, z]. Let P =
⊕

m∈Z Pmvm be a homogeneous
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prime ideal of WS−1. Then the contraction P c of P to W can be described as

P c =
⊕
m∈Z

P c
mvm,

where each P c
m is the contraction of the ideal Pm / RS−1 to R.

Proof: Let φ : W → RS−1[x, y;σ(z)] denote the localization map. Define G =⊕
m∈Z P

c
mvm. By Proposition 18, the family (Pm)m∈Z satisfies the conditions (2.6) and

(2.8). Note that the σ that appears in these expressions is the automorphism of RS−1

induced by our present σ ∈ Aut(R), and the z that appears is the image of our present

z in RS−1. With this in mind, it follows easily that the conditions (2.6) and (2.8) hold

for the family (P c
m)m∈Z. Thus G is a two-sided ideal of W , by Proposition 18.

We have φ (G) =
⊕

m∈Z φ(P c
m)vm, so since φ(P c

m) ⊆ Pm for all m ∈ Z, we have 〈φ(G)〉W ⊆

P . We also have 〈φ(P c
m)〉RS−1vm ⊆ 〈φ(G)〉W . For each m ∈ Z, the ideal Pm is the

extension of its contraction: Pm = 〈φ(P c
m)〉RS−1 . So Pmvm ⊆ 〈φ(G)〉W for all m ∈ Z. It

follows that 〈φ(G)〉W = P .

The goal is now to apply Lemma 143 (in Appendix A) to conclude that G is P c, but

we must verify its hypotheses 2 and 3. We will use a left-handed version of Lemma

143. For hypothesis 2, we will show that W (W/G) is S-torsionfree. Given an s ∈ S and

w =
∑

m∈Z rmvm ∈ W such that sw ∈ G, we get srm ∈ P c
m for all m ∈ Z. Hence the

problem is reduced to showing that R(R/P c
m) is S-torsionfree for each m ∈ Z. But this

follows immediately from the fact that each P c
m is a contraction of an ideal of RS−1.

For hypothesis 3 of Lemma 143, consider any g ∈ G and s ∈ S. We must show that

Sg ∩ Gs is nonempty. Write g as
∑

m∈J rmvm, where J ⊆ Z is a finite index set and
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rm ∈ P c
m for m ∈ J . Let s′ =

∏
m∈J σ

m(s) and let r′m = rm
∏

n∈J\{m} σ
n(s) for m ∈ J .

Then it is clear that s′ ∈ S and
∑

m∈J r
′
mvm ∈ G. Further, we have

s′g =
∑
m∈J

s′rmvm =
∑
m∈J

σm(s)r′mvm =

(∑
m∈J

r′mvm

)
s ∈ Sg ∩Gs.

Thus Lemma 143 applies and G = P c. �

2.4 Gelfand-Kirillov Dimension

Throughout this section, R denotes an algebra over a field k, z a central element, σ :

R→ R an algebra automorphism, and W the GWA R[x, y;σ, z].

Definition 25: If A is a finitely generated k-algebra then we define its Gelfand-Kirillov

dimension GK(A) to be

lim sup logn dim(V n),

where V is any choice of finite dimensional generating subspace for A such that 1 ∈ V .

If A is not finitely generated, then we take GK(A) to be the supremum of GK(A′) for all

affine subalgebras A′ of A. For more details and to see that Gelfand-Kirillov dimension

is well defined, see [32, Chapter 8] or [27].

Proposition 26: GK(W ) ≥ GK(R) + 1

Proof: Since W contains a copy of the skew polynomial ring R[x;σ], the problem reduces

to showing that GK(R[x;σ]) ≥ GK(R) + 1. The proof is standard (c.f. [27, Lemma 3.4]).

We provide it for completeness.
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Let A be any affine subalgebra of R. Let V be a finite dimensional generating subspace

for A with 1 ∈ V . Let X = V + kx. Then for n ≥ 1,

X2n = (V + kx)2n ⊇ V n + V nx+ · · ·+ V nxn,

so dim(X2n) ≥ (n+ 1) dim(V n). Thus,

GK(W ) ≥ lim sup logn dim(X2n)

≥ lim sup logn((n+ 1) dim(V n))

= lim
n→∞

logn(n+ 1) + lim sup logn(dim(V n))

= 1 + GK(A).

Since A was an arbitrary affine subalgebra of R, this gives GK(W ) ≥ GK(R) + 1. �

Under what conditions can Proposition 26 be upgraded to an equality? We look to the

skew Laurent case, i.e. the case in which z is a unit, for some guidance.

Definition 27: An algebra automorphism σ : R → R is locally algebraic if and only if

for each r ∈ R, {σn(r) | n ≥ 0} spans a finite dimensional subspace of R. Equivalently,

σ is locally algebraic if and only if every finite dimensional subspace of R is contained in

some σ-stable finite dimensional subspace of R.

It was shown in [29, Prop. 1] that if σ is locally algebraic, then GK(R[x±;σ]) = GK(R)+

1. The locally algebraic assumption was also shown to be partly necessary in [41], for

example when R is a commutative domain with finitely generated fraction field. So we

should at least adopt the locally algebraic assumption. Unfortunately, it is difficult to

apply the result of [29] to a general GWA; the process of inverting z, as in Corollary 23,
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does not make it simple to carry along GK dimension information. For one thing, z is

typically not central or even normal in W . Also, a locally algebraic σ can fail to induce

a locally algebraic automorphism of the localized algebra. So we instead proceed with a

direct calculation:

Theorem 28: Assume that the automorphism σ : R→ R is locally algebraic. Then

GK(W ) = GK(R) + 1.

Proof: Given Proposition 26, it remains to show that GK(W ) ≤ GK(R) + 1. Let Z

denote the linear span of {σi(z) | i ∈ Z} ∪ {1}. Consider any affine subalgebra of W ; let

X be a finite dimensional generating subspace for it. We first enlarge X to a subspace

X̄ of the form

X̄ :=
⊕
|m|≤m0

U vm, (2.15)

where U is a finite dimensional σ-stable subspace of R with Z ⊆ U . Here is a procedure

for doing this: for m ∈ Z, let πm : W → R denote the mth projection map coming from

the left R-basis (vm)m∈Z of W . Let m0 = max{|m| | πm(X) 6= 0}. Now
∑
|m|≤m0

πm(X)

is a finite dimensional subspace of R, so it is contained in a finite dimensional σ-stable

subspace U of R. It is harmless to include Z in U (note that Z is finite dimensional

because σ, and hence also σ−1, is locally algebraic). This gives us X̄ defined by (2.15),

with X ⊆ X̄.

Next, we show that

X̄n ⊆
⊕

|m|≤nm0

Un+(n−1)m0vm (2.16)

for n ≥ 1. It holds by definition when n = 1, so assume that n > 1 and that (2.16) holds
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for X̄n−1. Then the induction goes through:

X̄n = X̄n−1X̄ ⊆

 ⊕
|m|≤(n−1)m0

Un−1+(n−2)m0vm

 ⊕
|m|≤m0

U vm


=

⊕
|m|≤nm0

∑
m1+m2=m
|m1|≤(n−1)m0

|m2|≤m0

Un−1+(n−2)m0vm1 U vm2

⊆
⊕

|m|≤nm0

∑
m1+m2=m
|m1|≤(n−1)m0

|m2|≤m0

Un+(n−1)m0vm1+m2 =
⊕

|m|≤nm0

Un+(n−1)m0vm.

For the inclusion in the final line we used the fact, evident from (2.2), that [[m1,m2]] ∈

Zmin(|m1|,|m2|) ⊆ Umin(|m1|,|m2|). With (2.16) established, we have

dim(X̄n) ≤ (2nm0 + 1) dim(Un+(n−1)m0)

for all n ≥ 1. The theorem follows:

GK(k〈X〉) ≤ GK(k
〈
X̄
〉
) ≤ 1 + GK(R). �

2.5 Representation Theory

Modules over GWAs have been explored and classified under various hypotheses by sev-

eral authors. A classification of simple R[x, y;σ, z]-modules is obtained in [5] for R a

Dedekind domain with restricted minimum condition and with a condition placed on σ:

that maximal ideals of R are never fixed by any nonzero power of σ. These results are
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expanded in [7] and further in [14], where indecomposable weight modules with finite

length as R-modules are classified for R commutative. In the latter work, the authors

introduce chain and circle categories to handle maximal ideals of R that have infinite and

finite σ-orbit respectively. Another expansion of the work of [5] was carried out in [35],

where the simple R-torsion modules were classified relaxing all assumptions on R (even

commutativity), but with the assumption that σ acts freely on the set of maximal left

ideals of R. In order to establish notation and put the spotlight on a particular setting

that will be of use to us, we proceed with our own development.

2.5.1 Simple Modules

Let R be a commutative k-algebra and let W = R[x, y;σ, z] be a GWA. Let WV be a finite

dimensional simple left W -module. It contains some simple left R-module V0, which has

an annihilator m := annR V0 ∈ max specR. The automorphism σ acts on max specR,

and the behavior of V depends largely on whether m sits in a finite or an infinite orbit.

We would like to deal with the infinite orbit case, so assume that σi(m) = σj(m)⇒ i = j

for i, j ∈ Z.

Let e0 be a nonzero element of V0, so we have m = annR e0. For i ∈ Z, let ei = vi.e0.

Notice that for i ∈ Z and r ∈ m, we have

σi(r).ei = σi(r)vi.e0 = vir.e0 = 0,

so σi(m) ⊆ annR ei. So whenever ei 6= 0, σi(m) = annR ei. We use this to argue that the
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subspaces Rei are independent: Consider a vanishing combination

∑
i∈I

riei = 0 (2.17)

where I ⊆ Z is finite and ei 6= 0 for i ∈ I . For any j ∈ I , choose a cj ∈(∏
i∈I \{j} σ

i(m)
)
\ σj(m), and apply it to (2.17). The result is cjrjej = 0, which implies

that cjrj ∈ σj(m), so rj ∈ σj(m) and rjej = 0.

Since we assumed V to be finite dimensional, only finitely many of the ei may be nonzero.

In particular, there is some ei0 6= 0 such that ei0−1 = 0 (a “lowest weight vector”). We

may as well shift our original indexing so that this ei0 is e0. (After all, e0 was only

assumed to be a nonzero element of some simple R-submodule of V with annihilator

having infinite σ-orbit, and ei0 would have fit the bill just as well.) Similarly, on the

other end, there is some n ≥ 0 so that en−1 6= 0 and en = 0. Note that these definitions

imply that ei = xi.e0 is nonzero for 0 ≤ i ≤ n− 1.

It is now clear that
⊕n−1

i=0 Rei is a W -submodule of V :

x(rei) = σ(r)xei = σ(r)ei+1

y(rei) = σ−1(r)yei = σ−1(r)zei−1.
(2.18)

So, since WV is simple,
⊕n−1

i=0 Rei = V . Each Rei for 0 ≤ i ≤ n − 1 is isomorphic as

an R-module to R/σi(m). Knowing this and knowing that the W -action is described by

(2.18), we have pinned down WV up to isomorphism. Let us also pin down e0 and m.
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Applying xy and yx to the extreme “edges” of the module shows that σ(z), σ−n+1(z) ∈ m:

σ(z).e0 = x.(y.e0) = 0 ⇒ σ(z) ∈ m

z.en−1 = y.(x.en−1) = 0 ⇒ z ∈ σn−1(m).

Further, n > 0 is minimal with respect to this property: if we had 0 < i < n with

σ−i+1(z) ∈ m, then y.ei = 0, so Rei + · · ·+Ren would be a proper nontrivial submodule

of V .

The following definition will be useful throughout this work.

Definition 29: Given a commutative ring R, an automorphism σ, an element z, and a

maximal ideal m, define:

n(m, σ, z) = min{n ∈ Z | n > 0 and σ−n+1(z) ∈ m}

n′(m, σ, z) = min{n′ ∈ Z | n′ > 0 and σn
′
(z) ∈ m},

where min(∅) is taken to be ∞. When the context is clear, we drop some notation and

simply write n(m) or n′(m).

We may now characterize Re0 as annV (y), as follows. The inclusion Re0 ⊆ annV (y) is

obvious since y normalizes R. Suppose that y.
(∑n−1

i=0 riei
)

= 0, where ri ∈ R. Then

0 =
∑n−1

i=1 σ
−1(ri)zei−1, so for each 1 ≤ i ≤ n − 1 we have σ−1(ri)z ∈ σi−1(m). The

minimality of n discussed above implies that z /∈ σi−1(m), so we have σ−1(ri) ∈ σi−1(m),

and hence ri ∈ σi(m) = annR(ei), for 1 ≤ i ≤ n − 1. So
∑n−1

i=0 riei = r0e0 ∈ Re0,

proving that annV (y) = Re0. We have also gained a nice internal description for m: it is

annR(annV (y)). Let us record what has been established so far:
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Lemma 30: Let WV be a finite dimensional simple left W -module, where W =

R[x, y;σ, z] and R is a commutative k-algebra. Assume that V contains some simple

R-submodule with annihilator having infinite σ-orbit. Then annV (y) is just such an R-

submodule. Let m = annR(annV (y)). Then n′(m) = 1, we have that n := n(m) is

finite,and V is isomorphic to
n−1⊕
i=0

R/σi(m) (2.19)

as an R-module. Let ei denote 1 ∈ R/σi(m) as an element of (2.19) for 0 ≤ i ≤ n − 1,

and let e−1 = en = 0. Then WV is isomorphic to (2.19) if (2.19) is given the following

W -action:

x(rei) = σ(r)ei+1

y(rei) = σ−1(r)zei−1.

One could check explicitly that forming the R-module (2.19) and defining actions of x and

y according to (2.18) yields a well-defined, simple, and finite-dimensional module over

W . But we can learn a bit more about W by instead realizing these modules as quotients

by certain left ideals. We will run into a family of infinite dimensional simple modules

along the way; the construction mimics the Verma modules typical to the treatment of

representations of sl2 [22, II.7] and Uq(sl2) [8, I.4].

Definition 31: Let R be a commutative ring, W = R[x, y;σ, z], and m a maximal ideal

of R with infinite σ-orbit. Define Im := Wm to be the left ideal of W that m generates,

and define Mm to be the Z-graded left W -module Mm := W/Im. Define ei to be the image

of vi in Mm for i ∈ Z.

Note that

Im =
⊕
i∈Z

σi(m)vi;
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the inclusion ⊇ is due to the fact that vim = σi(m)vi, and ⊆ holds because the right

hand side is a left ideal of W (condition (2.8) is satisfied).

Lemma 32: Let R be a commutative k-algebra, W = R[x, y;σ, z], and m a maximal

ideal of R with infinite σ-orbit. The submodules of Mm are of the following types:

1. 0 or Mm

2.
⊕

i≥j Rei for some j > 0 with σ−j+1(z) ∈ m

3.
⊕

i≤−j′ Rei for some j′ > 0 with σj
′
(z) ∈ m

4. a sum of a submodule of type 2 and one of type 3.

Proof: Let S be a proper nontrivial submodule of Mm. We first show that S is homoge-

neous, so that if
∑
aiei ∈ S with a certain ajej 6= 0, then ej ∈ S.

Claim: S is homogeneous.

Proof: Suppose that a ∈ S, say a =
∑

i∈I aiei with I ⊆ Z finite and ai ∈ R \

σi(m) for i ∈ I . Let j ∈ I , and choose an element c of
(∏

i∈I \{j} σ
i(m)

)
\σj(m).

Then ca = cajej ∈ S. Since c, aj ∈ R \ σj(m), caj is a unit mod σj(m). Hence

ej ∈ S.

Define vector subspaces M+ :=
⊕

i>0Rei and M− :=
⊕

i<0Rei of Mm. Since S is proper

and homogeneous,

S = (S ∩M+)⊕ (S ∩M−).

To show that S is of type 2, 3, or 4, then, it suffices to show that S ∩M+ is a type 2

submodule when it is nonzero, and that S∩M− is a type 3 submodule when it is nonzero.
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Assume that S ∩M+ 6= 0. Then ej ∈ S for some j > 0; let j > 0 be minimal such that

this happens. By applying powers of x, we see that S ∩M+ =
⊕

i≥j Rei. Since ej−1 /∈ S,

yej = zej−1 must vanish. This happens if and only if z ∈ σj−1(m), i.e. if and only if

σ−j+1(z) ∈ m. (2.20)

Now assume that S ∩M− 6= 0. Let j′ > 0 be minimal such that e−j′ ∈ S. By applying

powers of y, we see that S ∩M− =
⊕

i≤−j′ Rei. Since e−j′+1 /∈ S, xe−j′ = σ(z)e−j′+1

must vanish. This happens if and only if σ(z) ∈ σ−j′+1(m), i.e. if and only if

σj
′
(z) ∈ m. (2.21)

Finally, it is routine to check that 1-4 are actually submodules of Mm, considering the

equivalences mentioned in (2.20) and (2.21). �

This shows that Mm has a unique largest proper submodule, Nm, given by

Nm :=
⊕

i≤−n′(m)

Rei ⊕
⊕
i≥n(m)

Rei. (2.22)

Note that the n(m), n′(m) in the above expression could be ∞. For example, if m is

disjoint from {σi(z) | i ∈ Z}, then Nm = 0 and Mm is simple.

Throughout this work, it will be useful to have notation for certain subsets of max spec(R):

Definition 33: Given a commutative ring R, an automorphism σ, and an element z,
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define:

M (R, σ) = {m ∈ max specR | m has infinite σ-orbit}

MI(R, σ, z) = {m ∈M | n(m, σ, z) =∞ or n′(m, σ, z) =∞}

MII(R, σ, z) = {m ∈M | n(m, σ, z), n′(m, σ, z) <∞}

M ′
II(R, σ, z) = {m ∈M | n′(m, σ, z) = 1 and n(m, σ, z) <∞}.

When the context is clear, we will drop some notation and simply write M , MI , MII,

and M ′
II.

We now state the classification theorem for simple modules.

Theorem 34: Let R be a commutative k-algebra and W = R[x, y;σ, z].

1. Let m ∈ M . Assume that R is affine. The simple module Vm := Mm/Nm is finite

dimensional if and only if m ∈MII.

2. Any finite dimensional simple left W -module V that contains a simple R-submodule

with annihilator having infinite σ-orbit is isomorphic to Vm for exactly one m ∈M ′
II,

namely m = annR(annV (y)).

3. Let m ∈M ′
II and let n := n(m). Then Vm ∼= W/(Wm +Wy +Wxn).

Proof: Assertion 1 follows from Lemma 32, the definition of Nm, and the fact (due

to the Nullstellensatz) that each R/σi(m) is finite dimensional when R is affine. For

assertion 2, suppose that WV is simple, finite dimensional, and contains a simple R-

submodule with annihilator having infinite σ-orbit. Lemma 30 pins V down as isomorphic

to the left W -module in (2.19). This construction is in turn isomorphic to Vm, where
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m = annR(annV (y)), and the lemma guarantees that σ(z), σ−n+1(z) ∈ m for some n > 0.

Hence m ∈M ′
II and V ∼= Vm. Since m = annR(annVm(y)), no two Vm for m ∈M ′

II can be

isomorphic. Assertion 3 amounts to the fact that, under the given hypotheses, Nm is the

submodule of Mm generated by the cosets y + Im and xn + Im. �

Given a commutative ring R, the support SuppX of an R-module X is defined to be

the collection of maximal ideals m of R such that annX m is nonzero. Before ending this

section, we take a moment to record an explicit description of the support of a Vm-type

module. This will be useful in section 2.6, where Vm will make another appearance.

Proposition 35: Let W = R[x, y;σ, z] be a GWA over a commutative k-algebra R. For

any m ∈ max spec(R), we have Supp(RMm) = {σj(m) | j ∈ Z}.

Proof: Fix j ∈ Z. Proposition 4 tells us that W is a free right R-module on the basis

(vm)m∈Z. It follows that vj /∈ vjm. Hence the image of vj in

(Mm)R ∼=
⊕
m∈Z

vmR/(vmm)

is nonzero. Since the image of vj in Mm lies in the component Rvj/(Rvjm) (which is

Rvj/(σ
j(m)vj)), it is annihilated by σj(m) on the left. This shows that {σj(m) | j ∈

Z} ⊆ Supp(RMm). The reverse inclusion is clear. �

Proposition 36: Let W = R[x, y;σ, z] be a GWA over a commutative k-algebra R. For

any m ∈M ,

Supp(RVm) = {σj(m) | − n′(m) < j < n(m)}. (2.23)

Proof: This follows from the expression (2.22) for Nm and Proposition 35. �
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2.5.2 Weight Modules

In further pursuit of finite dimensional modules, we now explore a class of modules that

includes the semisimple ones. We continue with the notation W = R[x, y;σ, z] and

the assumption that R is a commutative k-algebra. Let WX be finite dimensional and

semisimple. Consider the R-submodule spanned by annihilators of maximal ideals,

S :=
∑

m∈max specR

annX m.

It is in fact a W -submodule of X, since x and y map annX m into annX σ(m) and

annX σ
−1(m) respectively. Since we assumed X to be semisimple, S has a direct sum

complement S ′ in WX. If S ′ were nonzero, then it contains some simple R-submodule

which is then annihilated by some maximal ideal of R, contradicting S ′∩S = 0. Thus our

assumption that WX is semisimple requires X = S. We now wonder when this condition

is sufficient for semisimplicity.

Definition 37: Let R be a commutative k-algebra. A W -module where W = R[x, y;σ, z]

is a weight module if and only if it is semisimple as an R-module. Note that this is

equivalent to saying that X is spanned by annihilators of maximal ideals of R.

Let us collect some elementary facts about weight modules for use in the coming semisim-

plicity theorem.

Proposition 38: Let R be a commutative k-algebra, X a semisimple R-module, and

RY ≤ RX. Then

X =
⊕

m∈max specR

annX m
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and the canonical map X → X/Y induces an isomorphism of R-modules

(annX m)/(annY m) ∼= annX/Y m

for each m ∈ max specR.

Proof: By assumption, X is a direct sum of simple R-submodules. Each simple R-

submodule is isomorphic to R/m for some m ∈ max specR. Thus X is a direct sum

of the annX m; each annX m is actually just the (R/m)-homogeneous component of X.

Since Y is a submodule of X, it is semisimple and has its own decomposition

Y =
⊕

m∈max specR

annY m =
⊕

m∈max specR

Y ∩ annX m. (2.24)

Fix an m ∈ max specR. It is clear that the canonical map X → X/Y restricts to

an R-homomorphism annX m → annX/Y m with kernel Y ∩ annX m = annY m. To see

that it is surjective, consider any x + Y ∈ annX/Y m. Write x as
∑

n∈max specR xn, where

xn ∈ annX n. Since mx ⊆ Y , the decomposition (2.24) gives mxn ⊆ Y for all n. When

n 6= m, this implies that xn ∈ Y since m contains a unit mod n. Thus x+ Y is the image

of xm under annX m→ annX/Y m. �

Since we only focused on simple finite dimensional W -modules of a certain type, we will

only attempt to get at the weight modules whose composition factors are of that type.

Adapting the “chain” and “circle” terminology from [14]:

Definition 39: Let R be a commutative k-algebra and let W = R[x, y;σ, z]. A finite

dimensional module WX is of chain-type if and only if SuppX ⊆M .

Proposition 40: Let R be a commutative k-algebra, W = R[x, y;σ, z], and WX a chain-
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type finite dimensional weight module. Then each composition factor of X has the form

Vm for some m ∈M ′
II, and

SuppX ∩M ′
II = {m ∈M ′

II | Vm is a composition factor of WX}. (2.25)

Proof: Choose a W -module composition series 0 = X0 ( X1 ( · · · ( Xr = X. It can

be refined into a composition series for RX, so since RX is semisimple we have:

RX ∼=
r⊕
i=1

⊕
{(R/m)(k) | R/m is a composition factor of Xi/Xi−1 with multiplicity k}.

(2.26)

In particular, each Xi/Xi−1 contains some simple R-submodule whose annihilator comes

from SuppX and therefore has infinite σ-orbit. Theorem 34 applies: for 1 ≤ i ≤ r,

Xi/Xi−1
∼= Vmi

for a unique mi ∈M ′
II. The right hand side of (2.25) is then {m1, . . . ,mr}.

Knowing that Xi/Xi−1
∼= Vmi

, we can read off the support of X from (2.26):

SuppX = {σ`(mi) | 1 ≤ i ≤ r and 0 ≤ ` ≤ n(mi)− 1}.

Suppose that σ`(mi) ∈M ′
II, with 1 ≤ i ≤ r and 0 ≤ ` ≤ n(mi)− 1. Then σ(z) ∈ σ`(mi),

so σ−`+1(z) ∈ mi. The minimality of n(mi) forces ` = 0. This proves that SuppX∩M ′
II =

{m1, . . . ,mr}, and the latter is the right hand side of (2.25). �

Next, we identify a condition on SuppX∩M ′
II that we will show guarantees semisimplicity

for WX.

Definition 41: Let R be a commutative k-algebra, σ an automorphism, and z ∈ R. A

subset S ⊂M ′
II has separated chains if m ∈ S ⇒ σn(m)(m) /∈ S for all m.
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Proposition 42: Let R be a commutative k-algebra, σ an automorphism, and z ∈ R.

Assume that S ⊂M ′
II has separated chains. Then given m,m0 ∈ S and letting n := n(m)

and n0 := n(m0),

1. m0 ∈ {m, σ(m), . . . , σn−1(m)} only if m0 = m

2. σ−1(m0), σn0(m0) /∈ {m, σ(m), . . . , σn−1(m)}.

Proof: Suppose that m0 = σ`(m), where 0 ≤ ` ≤ n − 1. Then σ(z) ∈ σ`(m), so

σ−`+1(z) ∈ m. The minimality of n then forces ` = 0, whence m0 = m.

Suppose that σ−1(m0) = σ`(m), where 0 ≤ ` ≤ n − 1. Then σ(z) ∈ m0 = σ`+1(m), so

σ−(`+1)+1(z) ∈ m. The minimality of n then forces `+1 = n, which gives σn(m) = m0 ∈ S.

This contradicts the assumption that S has separated chains.

Suppose that σn0(m0) = σ`(m), where 0 ≤ ` ≤ n− 1. Then we have σ−`+1(z) ∈ m, since

σ−n0+1(z) ∈ m0. The minimality of n then forces ` = 0, which gives σn0(m0) = m ∈ S,

contradicting the assumption that S has separated chains. �

Theorem 43: Let R be a commutative k-algebra, let W = R[x, y;σ, z], and let X be

a chain-type finite dimensional weight left W -module. If SuppX ∩M ′
II has separated

chains, then X is semisimple.

Proof: Assume the hypotheses. Choose a composition series for WX:

0 = X0 ( X1 ( · · · ( Xr = X.

For 1 ≤ i ≤ r, Xi/Xi−1
∼= Vmi

for a unique mi ∈ M ′
II, and {m1, . . . ,mr} has separated

chains (Proposition 40). Let n1, . . . , ns be the distinct items among m1, . . . ,mr, with
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respective multiplicities t1, . . . , ts. For each 1 ≤ j ≤ s, let nj := n(nj).

For any a ∈ max specR, we iteratively apply Proposition 38 to obtain:

dimR/a annX a = dimR/a annXr/Xr−1 a + dimR/a annXr−1 a

= · · · =
r∑
i=1

dimR/a annXi/Xi−1
a =

r∑
i=1

dimR/a annVmi
a (2.27)

Fix a j with 1 ≤ j ≤ s. Apply (2.27) to the case a = nj and use Proposition 42.1 to

obtain

dimR/nj annX nj = tj.

Apply (2.27) to the cases a = σ−1(nj) and a = σnj(nj) and use Proposition 42.2 to obtain

annX(σ−1(nj)) = annX(σnj(nj)) = 0.

Let bj1, . . . , b
j
tj be an (R/nj)-basis for annX nj. Each Wbju is a nonzero homomorphic image

of WW in which nj, y, and xnj are killed: nj is killed because bju came from annX nj, and

y and xnj are killed because they map annX nj into annX(σ−1(nj)) and annX(σnj(nj))

respectively. By Theorem 34.3, it follows that each Wbju is isomorphic to Mnj/Nnj =: Vnj .

Do this for all j. Let

S =
s∑
j=1

tj∑
u=1

Wbju,

a semisimple W -submodule of X. Since annX nj is R-spanned by bj1, . . . , b
j
tj , we have (by

Proposition 38)

annX/S nj ∼= (annX nj)/(annS nj) = 0

for all j. By the Jordan-Hölder theorem, any simple W -submodule of X/S is isomorphic
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to Vnj for some j. Therefore X/S must be 0. That is, X = S is semisimple. �

If M ′
II as a whole has separated chains, then we conclude from this theorem that all

chain-type finite dimensional weight modules are semisimple. There is a converse:

Proposition 44: Let R be an affine commutative k-algebra and let W = R[x, y;σ, z]. If

M ′
II does not have separated chains, then there is a chain-type finite dimensional weight

left W -module that is not semisimple.

Proof: If M ′
II does not have separated chains, there is some m ∈ M ′

II such that

σn(m)(m) ∈M ′
II. Let n := n(m) and let n1 = n(σn(m)). Then m contains σ(z), σ−n+1(z),

and σ−(n+n1)+1(z). Hence

S :=

(⊕
i≤−1

Rei

)
⊕

( ⊕
i≥n+n1

Rei

)

is a submodule of Mm, by Lemma 32. Let WX = Mm/S. This is isomorphic to⊕
0≤i<n+n1

R/σi(m) as an R-module, so WX is a chain-type finite dimensional weight

left W -module. Since Mm contains a unique largest proper submodule

Nm =

(⊕
i≤−1

Rei

)
⊕

(⊕
i≥n

Rei

)

and Nm properly contains S, X contains a unique largest proper nontrivial submodule

Nm/S. Therefore X cannot be semisimple. �

Theorem 45: Let R be an affine commutative k-algebra and let W = R[x, y;σ, z]. The

following are equivalent:

1. All chain-type finite dimensional weight left W -modules are semisimple.
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2. M ′
II has separated chains.

3. For any m ∈M , there are no more than two integers i such that σi(z) ∈ m.

4. For any m ∈M ′
II, there is exactly one n > 0 such that σ−n+1(z) ∈ m.

Proof: The equivalence between 1 and 2 is due to Theorem 43 and Proposition 44.

2 ⇒ 4: Assume that 4 fails. Let m be in M ′
II and let i < j be positive integers such that

σ−i+1(z), σ−j+1(z) ∈ m. We may assume that i > 0 is minimal such that σ−i+1(z) ∈ m.

Observe that σ(z), σ−(j−i)+1(z) ∈ σi(m). This implies that σi(m) ∈M ′
II, so M ′

II does not

have separated chains.

4 ⇒ 3: Assume that 3 fails; let m be a maximal ideal of R with infinite σ-orbit and

with σi(z), σj(z), σk(z) ∈ m, where i < j < k are integers. We may assume that j > i

is minimal such that σj(z) ∈ m and that k > j is minimal such that σk(z) ∈ m. Let

n := σ−k+1(m). Observe that n ∈ M ′
II since σ(z) ∈ n and σ−(k−j)+1(z) ∈ n. Since

σ−(k−i)+1(z) ∈ n as well, with k − i 6= k − j, we see that 4 fails.

3 ⇒ 2: Suppose that M ′
II does not have separated chains. Then there is some m ∈M ′

II

such that σn(m)(m) ∈M ′
II. Since σ(z), σ−n(m)+1(z), σ−(n(m)+n(σn(m)(m)))+1(z) ∈ m, 3 fails to

hold. �

2.6 Prime Ideals

We now focus on understanding the homogeneous prime ideals of a GWA. Actually, we

already have some at hand– the annihilators of the simple modules Vm defined in section
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2.5.1. Our approach will be to seek out strict conditions that force a GWA to have only

these as its homogeneous prime ideals, with the plan to later address other GWAs by

using quotients and localizations to get the strict conditions to hold. The approach taken

here was inspired by the work of [34, Section 3].

We will have to take a detour from GWAs to a somewhat more general class of algebras.

One problem with GWAs is that a GWA mod a homogeneous ideal is often not a GWA.

This makes it difficult to recursively apply our arguments to quotients. Thus we focus

on the class of algebras satisfying the following hypotheses:

Hypothesis 46: Let A be a Z-graded k-algebra and let D be a commutative k-algebra.

Assume that D is essentially of finite type over k (meaning that it is some localization of

an affine commutative k-algebra) and thatD is a Jacobson ring (meaning that every prime

ideal of D equals the intersection of the maximal ideals containing it). Let φ : D → A0

be a surjection of k-algebras, making A a D-D-bimodule. Let σ be an automorphism of

D. Assume that whenever a ∈ Am and f ∈ D, we have a.f = σm(f).a. Assume that

there are vm ∈ Am for all m ∈ Z such that Am = D.vm (that is, assume that each Am is

cyclic as a left D-module).

These assumptions are almost enough to force A to be a GWA, but the crucial deviation

is that σ need not preserve the kernel of φ and so σ cannot necessarily be thought of as

an automorphism of A0. The advantage of using Hypothesis 46 is that taking a quotient

of A by a homogeneous ideal yields another set of data that satisfies Hypothesis 46.

Assume Hypothesis 46. In this more general context, we shall repeat some of the def-

initions made in section 2.5.1. There is no ambiguity because the definitions will be

equivalent when A is a GWA.
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Define for m ∈ max specD the left A-module Mm := A/Am. Recall that the nota-

tion V̂ (I) stands for the set of maximal ideals containing an ideal I. Let M = {m ∈

V̂ (ker(φ)) | m has infinite σ-orbit}.

Proposition 47: Mm 6= 0 if and only if m ∈ V̂ (ker(φ))

Proof: We have Mm = 0 ⇔ Am = A ⇔ 1 ∈ Am ⇔ 1 ∈ A0m, and A0m = φ(D)φ(m) =

φ(Dm) = φ(m), so Mm = 0 ⇔ 1 ∈ φ(m). Now if φ(f) = 1 for some f ∈ m, then

f − 1 ∈ ker(φ) \ m, so m /∈ V̂ (ker(φ)). Conversely, if m /∈ V̂ (ker(φ)), then 1 ∈ A0 =

φ(D) = φ(m + ker(φ)) = φ(m). So Mm = 0⇔ 1 ∈ φ(m)⇔ m /∈ V̂ (ker(φ)). �

Define O to be the full subcategory of A-Mod consisting of modules AM such that for

some m ∈M , the D-module DM is a homomorphic image of
⊕

m∈ZD/σ
m(m).

Proposition 48: For m ∈M , the A-module Mm is an object of O.

Proof: We have

DMm = (
⊕
m∈Z

Am)/(
⊕
m∈Z

Amm) ∼=
⊕
m∈Z

Am/(Amm) =
⊕
m∈Z

Am/(σ
m(m)Am)

=
⊕
m∈Z

Dvm/(σ
m(m)(Dvm)) =

⊕
m∈Z

Dvm/(σ
m(m)vm).

For any m ∈ Z, the left D-homomorphism

D
·vm−−→ Dvm � Dvm/(σ

m(m)vm)

descends to a surjection D/σm(m) � Dvm/(σ
m(m)vm). It follows that DMm is a homo-

morphic image of
⊕

m∈ZD/σ
m(m). �
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Note that
⊕

m∈ZD/σ
m(m) is a semisimple D-module, so every submodule of it is a direct

summand. It follows that every submodule of
⊕

m∈ZD/σ
m(m) is also a homomorphic

image of
⊕

m∈ZD/σ
m(m), and hence is in O. One easily obtains:

Proposition 49: O is closed under subquotients.

Proposition 50: For m ∈M , all submodules of Mm are homogeneous.

Proof: Let S be an A-submodule of Mm and consider any element
∑

i∈Z ai of S, where

ai ∈ (Mm)i for i ∈ Z. Let S = {i ∈ Z | ai 6= 0}, a finite set. Then for any m ∈ Z, there is

some f ∈
(∏

k∈S \{m} σ
k(m)

)
\σm(m), since m has infinite σ-orbit. Now for k ∈ S \{m}

we have f(Mm)k = 0 since f.Ak ⊆ σk(m).Ak = Akm. We have S 3 f
(∑

i∈Z ai
)

= f.am.

Since f is a unit mod σm(m) and am is annihilated by σm(m), we have am ∈ S. �

Proposition 51: For m ∈M , the A-module Mm has a unique maximal proper submod-

ule.

Proof: Let S be the set of proper submodules of Mm. A submodule of Mm is proper

if and only if it has trivial intersection with (Mm)0 = A0/(A0m) = A0/φ(m) ∼= D/m,

for D/m is a simple D-module and Mm is generated by (Mm)0. So (
∑

N∈S N)0 =∑
N∈S N0 = 0 (here we are also using Proposition 50). Thus

∑
N∈S N is a proper

submodule of Mm. �

For m ∈M , we define Vm to be the unique simple quotient of Mm, and we define J(m)

to be annA(Vm).

Proposition 52: Let m be a maximal ideal of D with infinite σ-orbit, and let AX be a

simple A-module with annX m being nonzero. Then m ∈M and X is isomorphic to Vm.
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Proof: Let x ∈ annX m be nonzero. Then A
·x−→ X (the left A-map that sends 1 to x) is

surjective (since X is simple) and it descends to a surjective left A-map Mm → X (since

Am is in its kernel). This realizes X as a simple quotient of Mm. Since Mm could not

be zero, we have m ∈M by Proposition 47. We are done since Vm is the unique simple

quotient of Mm. �

Corollary 53: Any simple object of O is isomorphic to Vm for some m ∈M .

Proof: Let AX be a simple object of O, say with a left D-linear surjection

ψ :
⊕
m∈Z

D/σm(m) � X,

where m ∈ M . Then there is some m ∈ Z and some f ∈ D/σm(m) so that ψ(f) 6= 0.

Then ψ(f) ∈ annX(σm(m)) and σm(m) has infinite σ-orbit, so Proposition 52 applies and

we get that X ∼= Vσm(m) and that σm(m) ∈M . �

We define the support of an A-module M by Supp(M) = {m ∈ max spec(D) | annM m 6=

0}. For m ∈M , the support of Vm would be {σj(m) | j ∈ Z and (Vm)j 6= 0}.

Proposition 54: For m1,m2 ∈M , we have Vm1
∼= Vm2 ⇔ Supp(Vm1) ∩ Supp(Vm2) 6= ∅.

Proof: The implication ⇒ is obvious. Assume for the converse that n ∈ Supp(Vm1) ∩

Supp(Vm2). Note that n has infinite σ-orbit, since it is σj(m1) for some j ∈ Z. Since

annVmi
(n) is nonzero for i ∈ {1, 2}, Proposition 52 implies that Vm1

∼= Vn ∼= Vm2 . �

Before proving the main theorem of this section, we will need a technical lemma.

46



Generalized Weyl Algebras Chapter 2

2.6.1 Preparation for the Main Theorem

The main lemma proven in this section is essentially [34, Lemma 3.2.1]. However, we

provide a detailed treatment here both for completeness and for the sake of allowing the

lemma to apply to the more general setting that we need.

For the proof we will need the notion of GK-homogeneity from [27, Chapter 5]: a module

over a k-algebra is said to be GK-homogeneous when all its nonzero submodules have

the same GK-dimension.

Proposition 55: If R is a commutative noetherian k-algebra such that RR is GK-

homogeneous and has finite GK-dimension, then a prime ideal P of R is a minimal

prime if and only if GK(R/P ) = GK(R).

Proof: If P is a non-minimal prime of R then there is some prime Q ( P . Then

GK(R/P ) = GK((R/Q)/(P/Q)) ≤ GK(R/Q) − 1 by [32, 8.3.6(i)]. We also have

GK(R/Q) ≤ GK(R) by [32, 8.3.2(ii)]. Thus GK(R/P ) < GK(R).

Suppose for the converse that P is a minimal prime of R. By [26, Theorem 86], there

is some nonzero r ∈ R such that P = annR(r). Since RR/P ∼= Rr and RR is GK-

homogeneous, we conclude that GK(R/P ) = GK(R). �

Proposition 56: Assume that R is commutative and essentially of finite type over k.

Then GK(R) = GK(R/P ) for some minimal prime P of R.

Proof: Let R be TE−1, where T is a commutative affine k-algebra and E is a multiplica-

tive subset of T . Without loss of generality, we may take E to consist of only regular

elements (replace T by a suitable quotient). Using [27, Theorem 4.5], we have that
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GK(T ) = GK(T/P ) for some minimal prime P of T . Since E consists of only regular

elements, it is disjoint from P , and so PE−1 is clearly a minimal prime of R. Finally,

using [27, Proposition 4.2], we have

GK(R) = GK(TE−1) = GK(T ) = GK(T/P ) = GK(TE−1/PE−1) = GK(R/(PE−1)). �

Lemma 57: Assume that R is a commutative noetherian k-algebra and that S is com-

mutative and essentially of finite type over k. Assume also that R and S are GK-

homogeneous as modules over themselves and that they have the same GK dimension.

Let φ : R → S be a surjective algebra homomorphism. Then φ(rad(R)) = rad(S), where

rad(·) denotes the nilradical of a ring.

Proof: The inclusion φ(rad(R)) ⊆ rad(S) is automatic: the preimage under φ of a

semiprime ideal is semiprime, so in particular φ−1(rad(S)) is semiprime. It follows that

φ−1(rad(S)) ⊇ rad(R), and hence that φ(rad(R)) ⊆ rad(S). Now by passing to the

quotient by rad(R) we may assume that R is semiprime. Our goal is now to show that

S is semiprime.

We first show that minimal primes pull back to minimal primes under φ. Let P be a

minimal prime ideal of R. Note that Proposition 55 applies to both R and S. We have

R/φ−1(P ) ∼= S/P , so GK(R/φ−1(P )) = GK(S/P ) = GK(S) = GK(R), and it follows

that φ−1(P ) is a minimal prime of R.

We now show that φ takes regular elements to regular elements. Suppose that t ∈ R and

φ(t) is not regular. Choose a nonzero s ∈ S such that sφ(t) = 0. Let I = annS(s). Since S
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is GK-homogeneous and S/I ∼= Ss as S-modules, we have GK(S) = GK(S/I). Applying

Proposition 56 to S/I, we have GK(S/I) = GK(S/P ) for some prime P minimal over

I. Since GK(S) = GK(S/P ), Proposition 55 tells us that P is a minimal prime of S.

Thus φ(t) ∈ P for a minimal prime P of S. The argument above showed that φ−1(P ) is

a minimal prime of R, so t ∈ φ−1(P ) cannot be regular. Thus φ takes regular elements

to regular elements.

Let R′ and S ′ respectively be the localizations of R and S at their sets of regular elements.

Then R′ is semiprime and artinian, so it is a product of fields. Since φ induces a surjective

homomorphism R′ → S ′, it follows that S ′ is also a product of fields and is therefore

semiprime. Since S ⊆ S ′, we conclude that S is semiprime. �

The following appears as [34, Lemma 3.2.1] with slightly different hypotheses.

Lemma 58: Let A =
⊕

m∈Z be a Z-graded k-algebra. Assume that A is graded-prime

and graded-left noetherian. Assume that for each m ∈ Z, there is some vm ∈ Am such

that Am = vmA0 = A0vm. Assume that A0 is commutative and essentially of finite type

over k. Then A0 is semiprime, and for all m ∈ Z the A0-module Am, viewed either as a

left or as a right A0-module, is a semiprime quotient of A0.

Proof: We first show that all the Am are GK-homogeneous and have the same GK-

dimension. Let t = GK(A0). For m ∈ Z, let Im denote the unique left A0-submodule of

Am that is maximal among submodules that have GK-dimension less than t.

Claim: For m ∈ Z, the submodule Im is also maximal as a right A0-submodule of

Am that has GK-dimension less than t.

Proof: For any x ∈ A0, the left A0-submodule Imx of Am, being a homomorphic
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image of Im, has GK-dimension less than t. It follows that Imx ⊆ Im, so Im is a

right A0-submodule of Am. Let Jm denote the unique maximal right A0-submodule

of Am that has GK-dimension less than t. Note that A0(Im) and (Im)A0 are both

homomorphic images of ideals of A0 and are therefore finitely generated modules.

Since Im is an A0-A0 bimodule that is finitely generated on both sides, it follows

from [27, Corollary 5.4] that the GK-dimension of Im as a right A0-module equals

its GK-dimension as a left A0-module. Since Im is a right A0 submodule of Am and

has GK-dimension less than t, we have Im ⊆ Jm. Applying the same arguments

with a left-right reversal leads to Jm ⊆ Im.

For any m1,m2 ∈ Z we have that Im1Am2 = Im1vm2 is a homomorphic image of A0(Im1)

and hence has GK-dimension less than t. It follows that Im1Am2 ⊆ Im1+m2 , and similarly

we get Am2Im1 ⊆ Im1+m2 . Hence I :=
⊕

m∈Z Im is a homogeneous ideal of A. Let

J = r. annA(I). Since A is graded-left noetherian, we have I = Ax1 + · · · + Axn for

some homogeneous left generators xi. Choose mi so that xi ∈ Imi
for i ∈ {1, . . . , n}.

Since A0/r. annA0(xi) embeds into Imi
as a right A0-module, it has GK-dimension less

than t. By [32, Proposition 8.3.2(iv)], it follows that J0 =
⋂
i r. annA0(xi) is nonzero.

Since A is graded-prime and IJ = 0, we get I = 0. This shows that every nonzero

left or right A0-submodule of each Am has GK-dimension at least t. Since each Am is a

homomorphic image of A0 as a left and as a right A0-module, we obtain equality: all the

Am are GK-homogeneous as left or right A0-modules, and they all have GK-dimension t.

For m ∈ Z, let Xm = l. annA0(vm) and let Ym = r. annA0(vm). Let Bm = A0/Xm and

let Cm = A0/Ym. Define a family of isomorphisms σm : Cm → Bm by vmc = σm(c)vm.

Let δ : A0 → Bm and ε : A0 → Cm be the quotient maps. Note that A0Bm
∼= A0Am and
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(Cm)A0
∼= (Am)A0 , so Lemma 57 applies to δ and ε. Using Lemma 57, we have

Am(radA0) = Amε(radA0) = Am(radCm)

= σm(radCm)Am = (radBm)Am = δ(radA0)Am = (radA0)Am

for m ∈ Z. Thus Arad(A0) = rad(A0)A is an ideal of A. It is easy to see that this is a

nilpotent ideal, so since A is graded-prime we conclude that rad(A0) = 0. By Proposition

57 we also conclude that rad(Bm) and rad(Cm) are 0 for all m ∈ Z. �

2.6.2 The Main Theorem

We are finally equipped to prove our main theorem on prime ideals in GWAs, Theorem

60 and its later specialization to GWAs, Theorem 70.

We take the length of a module to be its composition length, when it is finite, and we

take the length of a module to be ∞ otherwise.

Lemma 59: Assume Hypothesis 46, and assume the following:

1. A is graded left noetherian.

2. There is a uniform finite upper bound on the length of Mm for m ∈M .

3. The set {J(m) | m ∈M } is finite.

4. M = V̂ (ker(φ)). That is, all m ∈ V̂ (ker(φ)) have infinite σ-orbit.

5. A is graded-prime.

Then 0 = J(m) for some m ∈M .
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Proof: For any m ∈M , we have annA(Mm) ⊆ Am. Let us show that these intersect to

zero.

Claim:
⋂

m∈M Am = 0.

Proof: Since
⋂

m∈M Am is a homogeneous subspace, we can show that it is zero

by showing that it is zero in each degree. Its component in a given degree m ∈ Z

is
⋂

m∈M Amm. Note that Hypothesis 46 does imply that Am = A0vm = vmA0 for

m ∈ Z, so Lemma 58 applies and we have that A0 is semiprime and that each Am

is isomorphic to a semiprime quotient of A0 as a left and as a right A0-module.

Let ψ′ : A0 � Am be a right A0-homomorphism with kernel a semiprime ideal of

A0. Let ψ : D � Am be ψ′ ◦ φ; then this is a right D-homomorphism with kernel

a semiprime ideal of D. For m ∈ M , we have ψ−1(Amm) = m if ker(ψ) ⊆ m and

ψ−1(Amm) = D otherwise. Thus

ψ−1

( ⋂
m∈M

Amm

)
=
⋂

m∈M

ψ−1(Amm) =
⋂

m∈M∩V̂ (ker(ψ))

m.

Now M ∩ V̂ (ker(ψ)) = V̂ (ker(ψ)), since V̂ (ker(ψ)) ⊆ V̂ (ker(φ)) = M . So since

ker(ψ) is semiprime and A0 is a Jacobson ring, we get:

ψ−1

( ⋂
m∈M

Amm

)
=

⋂
m∈V̂ (ker(ψ))

m = ker(ψ);

in other words we get that
⋂

m∈M Amm = 0.

Hence
⋂

m∈M annA(Mm) = 0. Let N be a uniform finite upper bound on the length of

the Mm, for m ∈M . For each m ∈M , the left A-module Mm has a composition series of

length at most N . Consider the composition factors. They are subquotients of Mm, and

hence they are simple objects of O (since Mm is an object of O and O is closed under

52



Generalized Weyl Algebras Chapter 2

subquotients). By Corollary 53, each composition factor is isomorphic to a Vn for some

n ∈M . The product of their annihilators should annihilate Mm. Thus, for each m ∈M ,

there are nm1 , . . . , n
m
km
∈M such that

J(nm1 ) · · · J(nmkm) ⊆ annA(Mm),

where km ≤ N . Since
⋂

m∈M annA(Mm) = 0, it follows that

0 =
⋂

m∈M

J(nm1 ) · · · J(nmkm).

Each km is at most N , and there are only finitely many distinct J(n). It follows that

there are only finitely many possible products J(nm1 ) · · · J(nmkm). This means that the

intersection above can be done over only finitely many m ∈ M . Since the J(n) are

homogeneous ideals and A is graded-prime, it follows that some J(n) is zero. �

At this point, we will take advantage of our detour from GWAs and benefit from the fact

that Lemma 59 can be applied recursively to quotients. The following theorem may be

compared to [34, Theorem 3.2.4].

Theorem 60: Assume Hypothesis 46 and assume the following:

1. A is graded left noetherian.

2. There is a uniform finite upper bound on the length of Mm for m ∈M .

3. The set {J(m) | m ∈M } is finite.

4. M = V̂ (ker(φ)). That is, all m ∈ V̂ (ker(φ)) have infinite σ-orbit.
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Then every homogeneous prime ideal of A is J(m) for some m ∈M .

Proof: Let P be any homogeneous prime ideal of A; define A′ = A/P . We will prove the

theorem by showing that the graded-prime algebra A′ = A/P satisfies the hypotheses of

Lemma 59. First, A′ is Z-graded, and we identify it with
⊕

m∈ZAm/Pm. Let φ′ be the

k-algebra surjection

D
φ−→ A0

quo−−→ A0/P0.

It is easy to see that the objects A′, D, φ′, and σ satisfy Hypothesis 46. We also have

that A′ is graded left noetherian. Let M ′ = {m ∈ V̂ (ker(φ′)) | m has infinite σ-orbit}

and let M ′
m be the left A′-module A′/A′m, for any m ∈ M ′. Since ker(φ) ⊆ ker(φ′)

and M = V̂ (ker(φ)), we get that M ′ = V̂ (ker(φ′)). For any m ∈ M ′, the module

M ′
m
∼= (A/Am)/(P/Am) is a quotient of Mm, so its unique simple quotient is isomorphic

to Vm, the unique simple quotient of Mm. Thus the annihilator in A′ of the unique simple

quotient of each M ′
m, for m ∈ M ′ ⊆ M , is J(m)/P ; so there are finitely many distinct

ones. Since the M ′
m are quotients of the Mm, the length of the M ′

m is uniformly bounded

over m ∈M ′ ⊆M . Lemma 59 now implies that J(m)/P = 0 for some m ∈M ′ ⊆M .

�

The hypotheses of this theorem are not very friendly to check. Let us specialize back to

GWAs and find more manageable conditions that are equivalent to these hypotheses.

Hypothesis 61: Let A = D[x, y;σ, z] be a GWA. Assume that D is a commutative

k-algebra that is essentially of finite type over k and that is a Jacobson ring.

Obviously,

Proposition 62: Hypothesis 61 implies Hypothesis 46, with φ taken to be id : D → D.
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In the Hypothesis 61 setting, we adopt the same notations developed above for the Hy-

pothesis 46 setting (M , Mm, Vm, J(m), etc.). We will also use the notation of Definitions

29 and 33. Note that the use of M , Mm, and Vm in section 2.5.1 agrees with their current

usage in the Hypothesis 61 setting. For the sake of having consistent notation through-

out this section, an integer subscript on a homogeneous ideal of a GWA will continue

to denote the corresponding graded component (rather than following the convention of

Definition 13).

Proposition 63: Assume Hypothesis 61. The following are equivalent:

1. There is a uniform finite upper bound on the length of the Mm, for m ∈M .

2. There is a uniform finite upper bound on the cardinality of the sets {i ∈ Z | σi(z) ∈

m}, for m ∈M .

Proof: Fix m ∈M . In this setting we know all the submodules of Mm due to Lemma 32.

If {i ∈ Z | σi(z) ∈ m} is finite with cardinality N , then Mm has at most 2 +N +N +N2

submodules (adding up the possibilities for the four different types described in Lemma

32). Therefore 2⇒1.

For the converse, assume that 2 fails. Let N ∈ Z≥0; we will see that some Mm has length

exceeding N . Either there is some m ∈M for which {i ≤ 0 | σi(z) ∈ m} has at least N

elements, or there is some m ∈M for which {i > 0 | σi(z) ∈ m} has at least N elements.

In the first case one can build a properly descending chain of submodules of type 2 (from

the enumeration of Lemma 32) which exceeds N in length. In the second case one can

build a properly descending chain of submodules of type 3 which exceeds N in length.

�
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Running over all m ∈M , many of the J(m) are actually equal. The following proposition

will help us sift through them.

Proposition 64: In the Hypothesis 61 setting, if m ∈MII, then J(m) = J(n) for some

n ∈M ′
II.

Proof: By Proposition 36, the support of Vm contains σ1−n′(m)(m). Proposition 54 now

tells us that J(m) = J(σ1−n′(m)(m)). It is clear that n = σ1−n′(m)(m) has the desired

properties. �

The following proposition further helps to describe the J(m), and it applies in the more

general setting (c.f. [34, Proposition 3.2.2]). For a set of maximal ideals S ⊂ max specD

we denote by I(S) the intersection
⋂
S (the ideal of “functions” vanishing at all “points”

in S). We denote by S the closure of S in terms of the Zariski topology on max specD.

Proposition 65: Assume Hypothesis 46. Then

1. For any m ∈M , we have

J(m) =
⊕
m∈Z

I(σm(SuppVm) ∩ Supp(Vm))vm,

where σm(SuppVm) denotes {σm(m) | m ∈ SuppVm}.

2. If m ∈M such that

I(SuppVm ∩ σm(SuppVm)) = I(SuppVm) + I(σm(SuppVm)), (2.28)

for all m ∈ Z, then J(m)0 is semiprime and V̂ (φ−1(J(m)0)) = SuppVm. And for
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m ∈ Z we have J(m)m = J(m)0vm + vmJ(m)0.

3. If m1,m2 ∈M and m1,m2 both satisfy (2.28) for all m ∈ Z, then J(m1) = J(m2)⇔

SuppVm1 = SuppVm2.

Proof: Fix m ∈M . The ideal J(m) is homogeneous, so it can be written as
⊕

m∈Z Im.vm,

where each Im is an ideal of D containing ker(φ). Specifically,

Im = {f ∈ D | (f.vm)(Vm)k = 0 ∀k ∈ Z}

for m ∈ Z.

Claim: For m ∈ Z, vm(Vm)k is nonzero if and only if σk(m), σk+m(m) ∈ SuppVm,

and in this case we have vm(Vm)k = (Vm)m+k.

Proof: If σk(m) /∈ SuppVm then (Vm)k = 0, so vm(Vm)k = 0. If σk+m(m) /∈ SuppVm

then (Vm)k+m = 0, so vm(Vm)k ⊆ (Vm)k+m = 0. This shows one direction; for the

converse assume that σk(m), σk+m(m) ∈ SuppVm. Then (Vm)k 6= 0 and (Vm)k+m 6= 0

so

0 6= (Vm)k+m = (A(Vm)k)k+m = Am(Vm)k

= (A0vm)(Vm)k.

It follows that vm(Vm)k 6= 0. In this situation we indeed have (Vm)m+k = vm(Vm)k,

because the latter is a nonzero D-submodule of the simple left D-module (Vm)m+k.
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Now we have

Im = {f ∈ D | ∀k ∈ Z with σk(m), σk+m(m) ∈ SuppVm, f.(Vm)m+k = 0}

= {f ∈ D | ∀k ∈ Z with σk(m), σk+m(m) ∈ SuppVm, f ∈ σk+m(m)}

=
⋂
{σk+m(m) | k ∈ Z and σk(m), σk+m(m) ∈ SuppVm }

=
⋂

({σk+m(m) | k ∈ Z and σk(m) ∈ SuppVm }∩

{σk+m(m) | k ∈ Z and σk+m(m) ∈ SuppVm })

=
⋂

(σm(SuppVm) ∩ SuppVm)

= I (σm(SuppVm) ∩ SuppVm) ,

proving assertion 1 of the Proposition. Notice that the fourth line uses the fact that m

has infinite σ-orbit. Continuing the calculation while making the assumption (2.28), we

get

Im = I
(
σm(SuppVm) ∩ SuppVm

)
= I

(
σm(SuppVm)

)
+ I

(
SuppVm

)
= σm(I(SuppVm)) + I

(
SuppVm

)
.

for m ∈ Z. The final line uses the fact that m 7→ σm(m) is an isomorphism of varieties

to pull the σm through the closure operation. A special case of the above is that I0 =

I
(
SuppVm

)
, so J(m)0 = φ(I0) is semiprime and V̂ (φ−1(J(m)0)) = V̂ (I0) = SuppVm.

Other m ∈ Z can be viewed in terms of the m = 0 case:

Im = σm(I(SuppVm)) + I
(
SuppVm

)
= σm(I0) + I0.
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It follows that J(m)m = (σm(I0)+I0).vm = vm.I0 +I0.vm = vmJ(m)0 +J(m)0vm, for m ∈

Z. Thus we have proven assertion 2 of the Proposition. Notice that this implies that J(m)

is generated as an ideal in degree zero. For the last part of the Proposition, assume that

m1,m2 ∈M satisfy the criterion (2.28) for all m ∈ Z. Assume that J(m1) = J(m2). Then

SuppVmi
= V̂ (φ−1(J(mi)0)) for i ∈ {1, 2}, so SuppVm1 = SuppVm2 . Conversely, assume

that SuppVm1 = SuppVm2 . Then φ−1(J(mi)0) = I(V̂ (φ−1(J(mi)0))) = I(SuppVmi
), so

J(m1)0 = J(m2)0. Since J(m1), J(m2) are generated in degree zero, this gives J(m1) =

J(m2). �

We can now give a fairly explicit description of the J(m) in the GWA setting, and we

are about to obtain a much friendlier criterion to replace hypothesis 3 of Theorem 60.

Proposition 66: Assume Hypothesis 61. For any m ∈M ,

J(m) =
⊕
m∈Z

(⋂
{σj(m) | −n′(m) < j < n(m) and −n′(m) +m < j < n(m) +m}

)
vm.

Proof: Use assertion 1 of Proposition 65 and use Proposition 36. �

Proposition 67: Assume Hypothesis 61. For m1,m2 ∈MI, we have J(m1) = J(m2)⇔

SuppVm1 = SuppVm2.

Proof: By assertion 3 of Proposition 65, the present Proposition is established if we

can show that (2.28) is satisfied for all m ∈ MI and m ∈ Z. Fix m ∈ MI and m ∈ Z.

Using Proposition 36 and the fact that one of n(m), n′(m) is infinite, one of SuppVm and

σm(SuppVm) must be contained in the other. The criterion (2.28) follows easily. �

Proposition 68: Assume Hypothesis 61. For m1,m2 ∈M ′
II, we have J(m1) = J(m2)⇔

59



Generalized Weyl Algebras Chapter 2

m1 = m2.

Proof: Assume that m1,m2 ∈M ′
II and J(m1) = J(m2). By Proposition 66 we have

J(mi)m =
⋂
{σj(mi) | 0 ≤ j < n(mi) and m ≤ j < n(mi) +m}vm (2.29)

for m ∈ Z and i ∈ {1, 2}. It follows that n(mi) = min{` > 0 | J(mi)` = D} for

i ∈ {1, 2}, so n(m1) = n(m2). Let n := n(m1) = n(m2). From (2.29) we also have that

J(mi)n−1 = σn−1(mi)vn−1 for i ∈ {1, 2}. It follows that σn−1(m1) = σn−1(m2), and thus

that m1 = m2. �

Proposition 69: Assume Hypothesis 61. The following are equivalent:

1. The set {J(m) | m ∈M } is finite.

2. The sets M ′
II and {SuppVm | m ∈MI} are finite.

Proof: Since M = MI ∪MII, the set {J(m) | m ∈ M } is finite if and only if the

sets {J(m) | m ∈ MI} and {J(m) | m ∈ MII} are finite. By Proposition 67, the set

{J(m) | m ∈ MI} is finite if and only if {SuppVm | m ∈ MI} is finite. By Proposition

64, we have {J(m) | m ∈MII} = {J(m) | m ∈M ′
II}. By Proposition 68, the latter set is

finite if and only if M ′
II is finite. �

Let us restate Theorem 60 in terms of GWAs, with the nicer versions of the hypotheses.

Theorem 70: Assume Hypothesis 61 and assume the following:

1. The sets M ′
II and {SuppVm | m ∈MI} are finite.

2. All maximal ideals of D have infinite σ-orbit.
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Then every homogeneous prime ideal of A is J(m) for some m ∈ max specD.

Proof: We just need to check that the hypotheses of Theorem 60 hold in the present situ-

ation. Hypothesis 61 implies that D is noetherian, and so A is noetherian by Proposition

4. By Proposition 69, the set {J(m) | m ∈M } is finite.

Fix m ∈ M and let B = {i ∈ Z | σi(z) ∈ m}. Define a function f : B → M by f(i) =

σ−i+1(m). If i ∈ B is not a minimum element of B, then σi(z) ∈ m and σi−n(z) ∈ m for

some n > 0. We can rewrite this conclusion as follows: σ(z) ∈ f(i) and σ−n+1(z) ∈ f(i)

for some n > 0. In other words, if i ∈ B is not a minimum element of B then f(i) ∈M ′
II.

Since f is an injection, we have obtained a bound |B| ≤ |M ′
II| + 1 on the cardinality of

B. By Proposition 63, it follows that there is a uniform finite upper bound on the length

of the Mm, for m ∈M . Therefore Theorem 60 applies to the present situation. �

One hypothesis of Theorem 70 becomes automatic for a GWA over a domain of Krull

dimension 1:

Corollary 71: Assume in addition to Hypothesis 61 that D is a domain of Krull di-

mension 1, that z 6= 0, and that all maximal ideals of D have infinite σ-orbit. Then

gr-spec(A) = {0} ∪ {J(m) | m ∈M ′
II}.

Proof: Since D is a noetherian domain of Krull dimension 1, any infinite intersection

of maximal ideals of D is 0. In other words, infinite subsets of max specD are dense.

So whenever SuppVm is infinite, its closure is all of max specD. By Proposition 36, the

set SuppVm is infinite whenever m ∈MI. Thus {SuppVm | m ∈MI} = {max specD} is

finite. For every m ∈M ′
II, we have σ(z) ∈ m. Since σ(z) 6= 0, it cannot be that σ(z) is

in infinitely many distinct maximal ideals of D. Thus M ′
II must be finite.
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Applying Theorem 70, every homogeneous prime ideal of A is J(m) for some m ∈ M .

Using Proposition 64 we have

{J(m) | m ∈M } = {J(m) | m ∈MI} ∪ {J(m) | m ∈MII}

= {J(m) | m ∈MI} ∪ {J(m) | m ∈M ′
II}.

If m ∈MI then, using Proposition 66 and the fact that infinite intersections of maximal

ideals of D are 0, we get that J(m) = 0. So {J(m) | m ∈MI} = {0}. We conclude that

{J(m) | m ∈M } = {0} ∪ {J(m) | m ∈M ′
II}. �

2.6.3 Contraction to σ-Primes

The hypotheses of Theorem 70 are fairly specific, and this seems at first glance to severely

restrict its applicability. In practice, Theorem 70 often does not apply directly to a

given GWA. Instead, it applies to quotients and/or localizations of GWAs that make

the base ring sufficiently simple. This suggests a general technique: use quotients and

localizations to partition the prime spectrum of a GWA into pieces that look like prime

spectra of GWAs to which Theorem 70 applies. This technique vastly widens the range

of applicability for Theorem 70. We saw in Propositions 12 and 22 that the “nicest”

quotients and localizations are the ones by σ-stable ideals and σ-stable multiplicative

systems.

Let D be a ring and let σ be an automorphism of D. An ideal I of D is called a σ-ideal

if σ(I) ⊆ I. By directly using the ascending chain condition on ideals of D, it is easy

to show that σ(I) = I when I is a σ-ideal and D is noetherian (see [17, Section 2]). In

other words, the notion of σ-ideal is equivalent to the notion of σ−1-ideal, in a noetherian
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ring. We say D is σ-simple if it has no proper nonzero σ-ideals. A σ-prime ideal is a

proper σ-ideal P such that whenever IJ ⊆ P , where I and J are σ-ideals, we get I ⊆ P

or J ⊆ P . We denote by σ-spec(D) the set of σ-prime ideals of D. The σ-core of an

ideal I of D is the largest σ-ideal contained in I, denoted by (I : σ). It is easy to see

that (I : σ) can be expressed as I ∩ σ−1(I) ∩ σ−2(I) ∩ · · · or, if D is noetherian, as

I ∩ σ(I) ∩ σ2(I) ∩ · · · .

Proposition 72: Let A = D[x, y;σ, z] be a GWA with D noetherian and let P be a

prime ideal of A. Then (P ∩D : σ) is a σ-prime ideal of D.

Proof: Observe that whenever I is a σ-ideal of D, its extension 〈I〉 to A is
⊕

m∈Z Ivm.

Let p = (P ∩D : σ). Suppose that I1 and I2 are σ-ideals of D and I1I2 ⊆ p. Then

〈I1〉〈I2〉 =

(⊕
m∈Z

I1vm

)(⊕
m∈Z

I2vm

)
=

(⊕
m∈Z

I1I2vm

)
= 〈I1I2〉 ⊆ 〈p〉 ⊆ P.

Note that in the second equality we needed to have σ(Ii) = Ii for each i, and this works

because D is noetherian. Now since P is prime, we have 〈Ii〉 ⊆ P for some i ∈ {1, 2}.

Thus Ii = (〈Ii〉 ∩D : σ) ⊆ (P ∩D : σ) = p. We conclude that p is σ-prime. �

For a GWA over a σ-simple base ring, one part of the hypotheses of Theorem 70 is

automatic:

Corollary 73: Assume in addition to Hypothesis 61 that D is noetherian and σ-simple.

Assume that all maximal ideals of D have infinite σ-orbit and that the set M ′
II is finite.

Then gr-spec(A) = {J(m) | m ∈MI ∪M ′
II} and J(m) = 0 for m ∈MI.

Proof: Given any m ∈MI, the ideal I(SuppVm) is clearly σ-stable, given the description

63



Generalized Weyl Algebras Chapter 2

in Proposition 36. So I(SuppVm) = 0 and therefore SuppVm = max specD. This ensures

that {SuppVm | m ∈ MI} is finite, which means we can apply Theorem 70 to get that

gr-spec(A) = {J(m) | m ∈M }. We have {J(m) | m ∈M } = {J(m) | m ∈MI∪M ′
II} due

to Proposition 64. If m ∈MI, then we see from Proposition 66 that J(m)m is a proper

σ-ideal for all m ∈ Z. This forces J(m) = 0. �

2.7 Poisson GWAs

Definition 74: A Poisson k-algebra is an algebra equipped with a Lie bracket that is

also a biderivation (see Definition 150 in the appendix). The Lie bracket of a Poisson

algebra is called a Poisson bracket.

The semiclassical limit of a quantum algebra is the commutative Poisson algebra one

obtains by “setting q equal to 1.” More precisely:

Definition 75: Let F be a subring of the rational function field k(τ) that contains the

polynomial ring k[τ ], and let A be an F-algebra. Assume that τ − 1 is regular in A and

that A/〈τ − 1〉 is commutative. Then the semiclassical limit A1 of A is defined to be the

commutative k-algebra A/〈τ − 1〉 with Poisson bracket given by

{
a, b
}

=

(
ab− ba
τ − 1

)
,

where a denotes the coset of any a ∈ A in A/〈τ − 1〉.

A GWA R[x, y;σ, z] over a commutative R is commutative when the automorphism σ

is chosen to be the identity map on R. As an algebra, this is what a Poisson GWA
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ought to be. What Poisson bracket should it have? We will know we have the correct

construction if the following happens: whenever a GWA built from that data (R, σ, z)

has a semiclassical limit, that semiclassical limit is a Poisson GWA that can be built

from data that is suitably derived from (R, σ, z). This section is devoted to defining

Poisson GWAs and then showing that the construction is correct. We begin by finding a

convenient way to express commutative (“trivial”) GWAs:

Proposition 76: The trivial GWA R[x, y; id, z] is isomorphic as an R-ring to

R[x, y]/〈yx− z〉. Specifically, there is an isomorphism that extends

R ↪→ R[x, y]
quo−−→ R[x, y]/〈yx− z〉

to R[x, y; id, z] in such a way that maps x 7→ x+ 〈yx− z〉 and y 7→ y + 〈yx− z〉.

Proof: Define the specified homomorphism R[x, y; id, z]→ R[x, y]/〈yx− z〉 by checking

that the GWA relations (2.1) hold where needed, and also define its inverse in the obvious

way, checking that yx− z is sent to zero. �

Next we show that the Poisson bracket we will need exists.

Definition 77: Let R be a commutative Poisson k-algebra. A derivation α : R → R is

called a Poisson derivation if it satisfies

α({a, b}) = {α(a), b}+ {a, α(b)}

for all a, b ∈ R.

Lemma 78: Let R be a commutative Poisson k-algebra, let z ∈ R, and define W =
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R[x, y; id, z]. Let α : R→ R be any function. The following are equivalent:

1. The map α is a Poisson derivation of R, and z is a Poisson central element of R.

2. There is a (unique) Poisson bracket {−,−} for W that extends the one for R and

has

• {x, r} = α(r)x for r ∈ R,

• {r, y} = α(r)y for r ∈ R,

• {x, y} = α(z).

Proof: 2⇒ 1: Assume 2. For any r ∈ R, we have

{z, r} = {yx, r} = y {x, r}+ x {y, r} = α(r)xy − α(r)xy = 0,

so z is Poisson central in R. Recall from Proposition 4(1) that in W we have rx = 0⇒

r = 0 for r ∈ R. We can use this to show that α is a Poisson derivation. For a, b ∈ R

and c ∈ k we have

α(ca+ b)x = {x, ca+ b} = c {x, a}+ {x, b} = (cα(a) + α(b))x,

so α is k-linear. For a, b ∈ R we have

α(ab)x = {x, ab} = a {x, b}+ b {x, a} = (aα(b) + bα(a))x
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and

α({a, b})x = {x, {a, b}} = {a, {x, b}}+ {{x, a}, b} = {a, α(b)x}+ {α(a)x, b}

= {a, α(b)}x+ {a, x}α(b) + {α(a), b}x+ {x, b}α(a)

= {a, α(b)}x− α(a)α(b)x+ {α(a), b}x+ α(a)α(b)x

= ({a, α(b)}+ {α(a), b})x,

so α is a Poisson derivation.

1 ⇒ 2: Assume 1. By Proposition 76, we may work with R[x, y]/〈yx− z〉 when con-

structing the required Poisson bracket. The construction will automatically be unique

by Proposition 152.

Let {−,−}1 : R × R → R[x, y] be the Poisson bracket of R, viewed as a biderivation

into the R-module R[x, y]. By Proposition 154, the biderivation {−,−}1 has a unique

extension {−,−}2 : R[x]×R[x]→ R[x, y] satisfying the prescription

{x,−}2 = α(−)x, {−, x}2 = −α(−)x, and {x, x}2 = 0.

(Note that since α is a derivation, the mapping R
α(−)x−−−→ R[x, y] and its negative are

derivations, a fact we needed in order to apply Proposition 154.) Define the derivation

δly : R[x] → R[x, y] to be the extension of R
−α(−)y−−−−→ R[x, y] that sends x to −α(z)

(using Proposition 148). Similarly, define the derivation δry : R[x] → R[x, y] to be the

extension of R
α(−)y−−−→ R[x, y] that sends x to α(z). Now use Proposition 154 again;

the biderivation {−,−}2 has a unique extension {−,−}3 : R[x, y] × R[x, y] → R[x, y]
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satisfying the prescription

{y,−}3 = δly, {−, y}3 = δry, and {y, y}3 = 0.

According to Proposition 156, in order to show that {−,−}3 is a Poisson bracket it

suffices to check the needed identities on a generating set such as R∪{x, y}. For a, b ∈ R

we have

{a, b}3 = {a, b}1 = −{b, a}1 = −{b, a}3

{x, a}3 = {x, a}2 = α(a)x = −{a, x}2 = −{a, x}3

{y, a}3 = δly(a) = −α(a)y = −δry(a) = −{a, y}3

{x, y}3 = δry(x) = α(z) = −δly(x) = −{y, x}3

{x, x}3 = {x, x}2 = 0

{y, y}3 = 0,

so antisymmetry holds for elements of the generating set R ∪ {x, y}. For a, b, c ∈ R we

have

{a, {b, c}3}3 + {b, {c, a}3}3 + {c, {a, b}3}3

= {a, {b, c}1}1 + {b, {c, a}1}1 + {c, {a, b}1}1 = 0

{a, {b, x}3}3 + {b, {x, a}3}3 + {x, {a, b}3}3

= {a,−α(b)x}3 + {b, α(a)x}3 + {x, {a, b}1}3

= −α(b) {a, x}3 + {a,−α(b)}3 x+ α(a) {b, x}3 + {b, α(a)}3 x+ α({a, b}1)x

= α(b)α(a)x− {a, α(b)}1 x− α(a)α(b)x

− {α(a), b}1 x+ α({a, b}1)x
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= −{a, α(b)}1 x− {α(a), b}1 x+ α({a, b}1)x

= 0 (because α is a Poisson derivation)

{a, {b, y}3}3 + {b, {y, a}3}3 + {y, {a, b}3}3

= {a, α(b)y}3 + {b,−α(a)y}3 + {y, {a, b}1}3

= α(b) {a, y}3 + {a, α(b)}3 y − α(a) {b, y}3

− {b, α(a)}3 y − α({a, b}1)y

= α(b)α(a)y + {a, α(b)}1 y − α(a)α(b)y

+ {α(a), b}1 y − α({a, b}1)y

= {a,−α(b)}1 y + {α(a), b}1 y − α({a, b}1)y

= 0 (because α is a Poisson derivation)

{a, {x, y}3}3 + {x, {y, a}3}3 + {y, {a, x}3}3

= {a, α(z)}1 + {x,−α(a)y}3 + {y,−α(a)x}3

= {a, α(z)}1 − {x, α(a)}3 y − {x, y}3 α(a)

− {y, α(a)}3 x− {y, x}3 α(a)

= {a, α(z)}1 − α
2(a)xy + α2(a)3xy

= 0 (α(z) is Poisson central by Proposition 157)

{a, {y, x}3}3 + {y, {x, a}3}3 + {x, {a, y}3}3

= −({a, {x, y}3}3 + {y, {a, x}3}3 + {x, {y, a}3}3)

= 0 (by the above case).

This covers all the needed cases in order to verify the Jacobi identity on the generating

set R ∪ {x, y}; all remaining cases are either already covered by the above due to the

cyclic symmetry of the Jacobi identity, or they they involve a repeated item, in which case
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the Jacobi identity reduces to an antisymmetry statement. Thus {−,−}3 is a Poisson

bracket for R[x, y].

We now make the observation that yx− z is Poisson central in R[x, y]; we have

{yx− z, r}3 = {y, r}3 x+ {x, r}3 y − {z, r}3 = −α(r)yx+ α(r)xy = 0

{yx− z, x}3 = {y, x}3 x− {z, x}3 = −α(z)x+ α(z)x = 0

{yx− z, y}3 = {x, y}3 y − {z, y}3 = α(z)y − α(z)y = 0

for r ∈ R, so by Proposition 147 we conclude that {yx− z,−}3 equals the zero derivation.

The fact that yx− z is Poisson central makes it easy to check that

{I, R[x, y]}3 + {R[x, y], I}3 ⊆ 〈yx− z〉,

where I := 〈yx− z〉. Finally, we can apply Proposition 155 to obtain an induced bideriva-

tion {−,−} : R[x, y]/I × R[x, y]/I → R[x, y]/I. This is clearly a Poisson bracket (since

{−,−}3 was) and it has the properties needed for assertion 2. �

Now we can make our definition and prove that it operates properly.

Definition 79: Let R be a commutative Poisson k-algebra, let z ∈ R be a Poisson

central element, and let α : R→ R be a Poisson derivation. We denote by R[x, y;α, z]P

the Poisson k-algebra R[x, y; id, z] with the Poisson bracket from Lemma 78(2). We refer

to R[x, y;α, z]P as a Poisson generalized Weyl algebra, or PGWA.

When a GWA has a semiclassical limit, that semiclassical limit is a PGWA:

Theorem 80: Let F be a subring of the rational function field k(τ) that contains the
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polynomial ring k[τ ], let R be an F-algebra, let σ : R→ R be an F-algebra automorphism,

and let z ∈ Z(R). Consider the GWA W := R[x, y;σ, z]. Assume that τ − 1 is regular

in W and that W/〈τ − 1〉 is commutative. Then

W1
∼= R1[x, y;α, z]P

where (−)1 denotes semiclassical limit, z denotes the image of z in R1, and α is a Poisson

derivation of R1 given by

α(r) = (τ − 1)−1(σ(r)− r)

for r ∈ R.

Proof: In order for the expression R1[x, y;α, z]P to be defined, we need to show that

R1 exists (i.e. that the conditions of Definition 75 are met), that z is Poisson central in

R1, and that α exists and is a Poisson derivation of R1. We use the notation h := τ − 1

throughout this proof.

Since

〈h〉W =
⊕
m∈Z

〈h〉Rvm,

the homomorphism

R/〈h〉R → W/〈h〉W (2.30)

induced by R ↪→ W is an embedding. Hence R/〈h〉R is commutative. And h is regular

in R since it is regular in W . So the semiclassical limit R1 exists. The element z of R1

is Poisson central because z ∈ R is central.
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Since W/〈h〉W is commutative,

(σ(r)− r)x = [x, r] ∈ 〈h〉W =
⊕
m∈Z

〈h〉Rvm

for r ∈ R. It follows that

σ(r)− r ∈ 〈h〉R (2.31)

for r ∈ R, so there is a well-defined F-linear map R→ R1 given by r 7→ (h−1(σ(r)− r)).

Since this map sends any hr to σ(r)− r = 0, it induces the desired α : R1 → R1. The

k-linear map α is a derivation:

α(ab)− aα(b)− bα(a) = h−1(σ(ab)− ab)− h−1a(σ(b)− b)− h−1(σ(a)− a)b

= h−1(σ(ab)− aσ(b)− σ(a)b+ ab)

= h−1(σ(a)− a)(σ(b)− b)

= 0 (because h2 divides (σ(a)− a)(σ(b)− b) due to (2.31))

for a, b ∈ R. And further α is a Poisson derivation:

α(
{
a, b
}

)−
{
α(a), b

}
−
{
a, α(b)

}
= h−1(σ(h−1[a, b])− h−1[a, b])− h−1[h−1(σ(a)− a), b]− h−1[a, h−1(σ(b)− b)]

= h−2(σ([a, b])− [a, b]− [σ(a)− a, b]− [a, σ(b)− b])

= h−2([σ(a), σ(b)] + [a, b]− [σ(a), b]− [a, σ(b)])

= h−2[σ(a)− a, σ(b)− b]

= 0 (because h3 | [σ(a)− a, σ(b)− b] due to (2.31)

and the fact that W/〈h〉 is commutative)
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for a, b ∈ R.

Now Lemma 78 provides us with a Poisson k-algebra R1[x, y;α, z]P . We define a homo-

morphism ψ : W1 → R1[x, y;α, z]P . Start with

R
quo−−→ R1 ↪→ R1[x, y;α, z]P ,

and extend it to R[x, y;σ, z] by sending x 7→ x and y 7→ y; this works because the needed

GWA relations (2.1) hold inside R1[x, y;α, z]P :

yx = z xy = z = σ(z)

xr = rx = σ(r)x yσ(r) = σ(r)y = ry ∀ r ∈ R

(here we have made use of (2.31), i.e. σ(r) = r for r ∈ R). Since h 7→ 0, we may define

ψ : W1 → R[x, y;α, z]P to be the induced homomorphism.

Now we define a homomorphism φ : R[x, y;α, z]P → W1 in the opposite direction. To

make things simpler, we identify R[x, y;α, z]P with R[x, y]/〈yx− z〉, as in Proposition

76. Start with the embedding R1 ↪→ W1 from (2.30) and extend it to R1[x, y] by sending

x 7→ x and y 7→ y; this works because W1 is commutative. Since yx − z 7→ 0, we may

define φ : R[x, y;α, z]P → W1 to be the induced homomorphism.

It is clear that φ and ψ are mutually inverse, so φ is an isomorphism of k-algebras. It

remains only to show that the Poisson bracket is preserved. For clarity of notation we
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write out cosets fully in the calculation that follows. We have for r ∈ R:

{φ(x), φ(r + 〈h〉R)} = {x+ 〈h〉W , r + 〈h〉W} = xr−rx
h

+ 〈h〉W = σ(r)−r
h

x+ 〈h〉W

= φ(σ(r)−r
h

+ 〈h〉R)φ(x) = φ(α(r + 〈h〉R)x) = φ({x, r + 〈h〉R})

{φ(r + 〈h〉R), φ(y)} = {r + 〈h〉W , y + 〈h〉W} = ry−yr
h

+ 〈h〉W = y σ(r)−r
h

+ 〈h〉W

= φ(y)φ(σ(r)−r
h

+ 〈h〉R) = φ(α(r + 〈h〉R)y) = φ({r + 〈h〉R, y})

{φ(x), φ(y)} = {x+ 〈h〉W , y + 〈h〉W} = xy−yx
h

+ 〈h〉W = σ(z)−z
h

+ 〈h〉W

= φ(σ(z)−z
h

+ 〈h〉R) = φ(α(z + 〈h〉R)) = φ({x, y}).

Thus (by Proposition 153) φ is an isomorphism of Poisson k-algebras. �
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Applications

Our main and most completely worked out example is the 2 × 2 reflection equation

algebra. The other examples that appear below were mainly used to further test and

demonstrate the theory presented in section 2.6. Before jumping into the examples, we

give here a few observations that will help us to apply that theory.

The following linear algebra observation will be useful to reference later on:

Proposition 81: Let A be a Z-graded k-algebra. Suppose there is some k-linear operator

L : A → A such that the graded components of A are precisely the distinct eigenspaces

for L. Any two-sided ideal of A that is L-invariant is homogeneous.

Next we verify that maximal ideals have infinite orbit with respect to automorphisms

that scale something (by a non-root-of-unity) or shift something (in characteristic zero).

These Propositions would be more obvious if k were algebraically closed.
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Proposition 82: Let D be a commutative affine k-algebra, let u be an element of D, and

let σ an automorphism of D such that σ(u) = αu, where α ∈ k is not a root of unity. If

m ∈ max specD has finite σ-orbit, then u ∈ m. Thus, if u is a unit then every maximal

ideal of D has infinite σ-orbit.

Proof: Let m ∈ max specD such that σn(m) = m, where n > 0. An automorphism τ

of the field K := D/m is induced by σn. The field extension K is finite over k. Let u

be the image of u in K, and let f ∈ k[x] be the minimal polynomial of u over k. Since

u, τ(u), τ 2(u), . . . are roots of f , there must be some i > 0 such that τ i(u) = u. Then

(αni − 1)u = 0 while ni > 0, so u = 0. �

Proposition 83: Assume k has characteristic 0. Let D be a commutative affine k-

algebra, let h be an element of D, and let σ an automorphism of D such that σ(h) = h+α

, where α ∈ k×. Then every maximal ideal of D has infinite σ-orbit.

Proof: Let m ∈ max specD such that σn(m) = m, where n > 0. An automorphism τ

of the field K := D/m is induced by σn. The field extension K is finite over k. Let h

be the image of h in K, and let f ∈ k[x] be the minimal polynomial of h over k. Since

h, τ(h), τ 2(h), . . . are roots of f , there must be some i > 0 such that τ i(h) = h. Then we

have the contradiction (ni)α = 0, with ni > 0. �

In order to apply Theorem 70, one must verify that the commutative base ring is a

Jacobson ring. One often uses localization to make Theorem 70 applicable, so here is

one tool for dealing with the localizations that come up in this work. The proof of the

following proposition is adapted from the ideas on [40, page 157].

Proposition 84: Let R =
⊕

m∈Zn Rm be a Zn-graded commutative ring, where n ≥ 1.
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Let T be the localization of R at the set of nonzero homogeneous elements. Then T is an

affine algebra over some field.

Proof: For m ∈ Zn, let Tm denote the set of r/s ∈ T for which r, s ∈ R are homogeneous

with deg(r)−deg(s) = m. It is clear that each Tm is an additive subgroup of T and that

TmTm′ ⊆ Tm+m′ for m,m′ ∈ Zm. Thus
∑

m∈Zn Tm is a subring of T . It is easy to see

that
∑

m∈Zn Tm must be the entire localization T . The set I := {m ∈ Zn | Tm 6= 0} is a

subgroup of Zn. Therefore I has a basis m1, . . . ,mt. Choose a nonzero element yi of each

Tmi
. For any m ∈ Zn and any nonzero a ∈ Tm, we may write m as c1m1 + · · ·+ ctmt for

some c1, . . . , ct ∈ Z and then we have a = (ay−c11 · · · y−ctt )yc11 · · · yctt ∈ T0y
c1
1 · · · yctt . Thus T

is generated as a ring over T0 by the elements y±1
1 , . . . , y±1

t . This makes T a commutative

affine algebra over the field T0. �

Surprisingly often, we will find ourselves in the following specific situation:

Proposition 85: Let A = D[x, y;σ, z] be a GWA over a commutative noetherian k-

algebra D. Assume that D is a direct sum of σ-eigenspaces, and further that D has a Zn-

grading for some n ≥ 1 such that the graded components coincide with the σ-eigenspaces.

Let p ∈ σ-spec (D) and let D′ = D/p. Let E be the set of nonzero σ-eigenvectors in D′.

Let D′′ = D′E−1. Using Propositions 12 and 22, identify A′ := A/〈p〉 with D′[x, y;σ, z]

and identify A′′ := A′E−1 with D′′[x, y;σ, z]. Then:

1. D′′ is a σ-simple affine algebra over some field.

2. Pullback along the localization and quotient maps A→ A′ → A′′ defines a bijection

spec(A′′)→ {P ∈ spec(A) | (P ∩D : σ) = p}.
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Proof: The assumptions imply that “σ-ideal” and “homogeneous ideal” are the same

notion in D. Hence D′ inherits the Zn-grading from D, and E can be described as its

set of nonzero homogeneous elements. Proposition 84 then tells us that D′′ is an affine

algebra over some field. If I is a nonzero σ-ideal of D′′, then its contraction Ic to D′

is also nonzero and σ-invariant. In other words, Ic is a nonzero homogeneous ideal. It

must then contain an element of E , so I must have been the unit ideal. Therefore D′′ is

σ-simple.

Pullback along the quotient map A→ A′ provides a bijection

{P ∈ spec(A′) | (P ∩D′ : σ) = 0} → {P ∈ spec(A) | (P ∩D : σ) = p}.

We claim that an ideal I of D′ has (I : σ) = 0 if and only if I is disjoint from E . Indeed,

if I contains a nonzero σ-eigenvector x then one has x ∈ (I : σ) 6= 0. And if (I : σ) 6= 0,

then I contains the nonzero homogeneous ideal (I : σ) and therefore contains an element

of E . It follows that given a P ∈ spec(A′), the conditions (P ∩D′ : σ) = 0 and P ∩E = ∅

are equivalent. Thus, pullback along the localization map A′ → A′′ provides a bijection

spec(A′′)→ {P ∈ spec(A′) | (P ∩D′ : σ) = 0}.

Putting the two bijections together gives the one claimed by the Proposition. �

3.1 The 2× 2 Reflection Equation Algebra

We begin with an origin story and definition for the algebra Aq(M2). Throughout this

section, q ∈ k× is not a root of unity.
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Let n be a positive integer. Consider the action by right conjugation of the algebraic

group GLn(k) of invertible n× n matrices on the space Mn(k) of all n× n matrices:

M
g∈GLn(k)7−−−−−→ g−1Mg.

At the level of coordinate rings, the action map becomes an algebra homomorphism

O(Mn)→ O(Mn)⊗O(GLn), (3.1)

where we have dropped mention of the base field k to simplify notation. This gives

O(Mn) the structure of a comodule-algebra over the Hopf algebra O(GLn). We shall

consider what happens when this picture is carried into a quantum algebra setting. The

construction of [37] yields a noncommutative deformation Oq(Mn) of O(Mn), using the

the R-matrix

Rik
jl =



q if i = j = k = l

1 if i = j, k = l, and i 6= k

q − q−1 if i > j, i = l, and j = k

0 otherwise.

(3.2)

More precisely, the k-algebra Oq(Mn) has a presentation with n2 generators {tij | 0 ≤

i, j ≤ n} and the relations

Rik
abt

a
j t
b
l = Rab

jl t
k
b t
i
a.

Here, and throughout this section, we have adopted a convention in which a repeated

index in an expression indicates an implicit summation from 1 to n. The algebra Oq(Mn)

is a bialgebra in a way that matches the comultiplication on O(Mn) induced by matrix
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multiplication in Mn:

∆(tij) = tik ⊗ tkj

ε(tij) = δij,

where δij is the Kronecker delta, which equals 1 ∈ k when i = j and otherwise equals 0 ∈ k.

Inverting a suitable central determinant-like element in Oq(Mn) yields a noncommutative

deformation Oq(GLn) of O(GLn); see [8, I.2.4] for example. The bialgebra Oq(GLn) is a

Hopf algebra; we use S to denote its antipode.

One may attempt to mimic the map of (3.1) for Oq(Mn) with the hope of making this

algebra a comodule-algebra over Oq(GLn),

Oq(Mn) → Oq(Mn)⊗Oq(GLn)

tij 7→ tkl ⊗ S(tik)t
l
j,

(3.3)

but such a prescription yields only a coaction map and not an algebra homomorphism.

The remedy is to replace the Oq(GLn)-comodule Oq(Mn) by a different noncommutative

deformation of O(Mn). The needed construction is provided by the transmutation theory

of Majid, presented in [31]; it is a k-algebra Aq(Mn) with n2 generators {uij | 0 ≤ i, j ≤ n}

and the relations

Rli
mnR

pm
qr u

k
l u

n
p = Rki

mlR
nm
qp u

l
nu

p
r, (3.4)

where the R-matrix is still (3.2), the same one used to build Oq(Mn). Replacing (3.3)

with

Aq(Mn) → Aq(Mn)⊗Oq(GLn)

uij 7→ ukl ⊗ S(tik)t
l
j

does give an algebra homomorphism, making Aq(Mn) a comodule-algebra over Oq(GLn)

80



Applications Chapter 3

and providing a more suitable “quantization” of (3.1). The algebra Aq(Mn) is referred

to as a braided matrix algebra by Majid, and as a reflection equation algebra elsewhere

in the literature.

We shall focus on the case n = 2, the 2×2 reflection equation algebra, denoted throughout

this section by A := Aq(M2). Using uij in place of uij, the algebra A is generated by uij

for i, j ∈ {1, 2} with the relations given in (3.4), which simplify to:

u11u22 = u22u11

u11u12 = u12(u11 + (q−2 − 1)u22) u21u11 = (u11 + (q−2 − 1)u22)u21

u22u12 = q2u12u22 u21u22 = q2u22u21

u21u12 − u12u21 = (q−2 − 1)u22(u22 − u11).

(3.5)

Observe that u12 and u21 normalize the subalgebra generated by u11 and u22, and they

do so via inverse automorphisms of that subalgebra. This suggests that A is a GWA.

Brief History The “reflection equation” (3.4) was first introduced by Cherednik in

his study [11] of factorizable scattering on a half-line, and reflection equation algebras

later emerged from Majid’s transmutation theory in [30]. In [28], Kulish and Sklyanin

prove several things about A = Aq(M2). They show that A has a k-basis consisting of

monomials in the generators uij. They compute the center ofA. They find a determinant-

like element of A and they show that inverting u22 and setting the determinant-like

element equal to 1 yields Uq(sl2), and they note that this can be used to pull back

representations of Uq(sl2) to representations of A. (We shall see in this thesis that all

irreducible representations that are not annihilated by u22 arise in this way.) Domokos

and Lenagan addressAq(Mn) for general n in [13]. They show thatAq(Mn) is a noetherian

domain, and that it has a k-basis consisting of monomials in the generators uij.
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3.1.1 First Results

Define an automorphism σ of the polynomial ring k[u22, u11, z] by

σ(u22) = q2u22

σ(u11) = u11 + (q−2 − 1)u22

σ(z) = z + (q−2 − 1)u22(u22 − u11).

(3.6)

Proposition 86: The algebra A is a GWA over the above polynomial algebra, with x

being u21 and y being u12:

A ∼= k[u22, u11, z][x, y;σ, z].

Proof: This can be verified by defining mutually inverse homomorphisms in both direc-

tions using universal properties. One checks that the reflection equation relations (3.5)

hold in the GWA, and that the GWA relations (2.1) hold in A. �

Proposition 87: A is a noetherian domain of GK dimension 4.

Proof: In [13, Proposition 3.1], polynormal sequences and Gröbner basis techniques are

used to show that Aq(Mn) is a noetherian domain for all n. Proposition 4 and Corollary

6 give an alternative way to see this for A = Aq(M2).

It is also observed in [13] that the Hilbert series of Aq(Mn) can be determined using [31,

(7.37)]. One may deduce from the Hilbert series that the GK dimension of Aq(Mn) is

n2. Theorem 28 gives an alternative way to see this for A = Aq(M2), since σ is locally

algebraic. �

By a change of variables in k[u22, u11, z] we can greatly simplify the expression of A as a
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GWA. Consider the change of variables:

u = u22

t = u11 + q−2u22

d = z − q−2u11u22

(3.7)

Now we have

A ∼= k[u, t, d][x, y;σ, z], (3.8)

where z = d+ q−2tu− q−4u2 and

σ(u) = q2u

σ(t) = t

σ(d) = d.

(3.9)

The special elements t and d of A are, up to a scalar multiple, the quantum trace and

quantum determinant explored in [30].

Since q is not a root of unity, σ has infinite order. We may therefore apply Proposition

8 to determine the center of A:

Proposition 88: Z(A) = k[t, d].

This was also computed in [28], and a complete description of the center of Aq(Mn) for

arbitrary n is given in [23].

Using the fact that q is not a root of unity, the elements

σm(z) = d+ q2m−2tu− q4m−4u2
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of k[u, t, d], for m ∈ Z, are pairwise coprime. This allows us to get at the normal elements

of A, which gives us a handle on its automorphism group:

Theorem 89: The automorphism group of A is isomorphic to (k×)2, with (α, γ) ∈ (k×)2

corresponding to the automorphism given by

u11 u12 αu11
α
γ
u12

7→

u21 u22 αγ u21 αu22 .

Proof: Let ψ : A → A be an automorphism. By Proposition 11, the nonzero normal

elements of A are the σ-eigenvectors in k[u, t, d]. That is, they all have the form uif(t, d)

for some polynomial f(t, d) and some i ∈ Z≥0. Since k[u, t, d] is the linear span of such

elements, it is preserved by ψ. Since u is normal, ψ(u) = uif(t, d) for some i and f , and

similarly ψ−1(u) = ujg(t, d) for some j and g. Note that k[t, d], being the center of A, is

also preserved by ψ. Therefore u = ψ(ψ−1(u)) = uijf jψ(g) implies that i = 1 and f is a

unit. So ψ(u) = αu for some α ∈ k×.

Observe that ψ(x)u = α−1ψ(xu) = α−1q2ψ(ux) = q2uψ(x). Any a ∈ A with the property

that au = q2ua is a sum of homogeneous such a’s, and a homogeneous such a is bvm for

some b ∈ k[u, t, d] and some m ∈ Z such that

q2ubvm = bvmu = q2mbuvm.

This equation requires that either b = 0 or m = 1. Therefore ψ(x) = bx for some nonzero

b ∈ k[u, t, d]. The same argument applies to ψ−1, and it is easy to deduce from this that

b must be a unit, i.e. b ∈ k×. Similarly, using the fact that ψ(y)u = q−2uψ(y), we get
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that ψ(y) = cy for some c ∈ k×.

For any m > 0, we have

bm−1ψ(σm(z))xm−1 = ψ(σm(z)xm−1)

= ψ(xmy)

= bmcxmy

= bmcσm(z)xm−1.

It follows that ψ(σm(z)) = bcσm(z) for all m > 0. Considering that σm(z) = d+q2m−2tu−

q4m−4u2, the linear span of {σ(z), σ2(z), σ3(z)}, for instance, contains {d, tu, u2}. So

bc u2 = ψ(u2) = α2u2, i.e. bc = α2. And bc tu = ψ(tu) = αψ(t)u, so ψ(t) = αt. And

bc d = ψ(d), so ψ(d) = α2d. Letting γ = bα−1, so that ψ(x) = (αγ)x and ψ(y) = (αγ−1)y,

we see that ψ is the automorphism corresponding to (α, γ) in the theorem statement.

One easily checks that there is such an automorphism for every (α, γ) ∈ (k×)2, and that

composition of automorphisms corresponds to multiplication in (k×)2. �

3.1.2 Finite Dimensional Simple Modules

The finite dimensional simple modules over A come in two types: the ones annihilated

by u22 and the ones on which u22 acts invertibly. This observation follows from the fact

that since u22 is normal, its annihilator in any A-module is a submodule. The former

are modules over A/〈u22〉, a three-variable polynomial ring. The latter are addressed by

Theorem 34 given the GWA structure (3.8). They will turn out to be pullbacks of simple

modules over Uq(sl2), the k-algebra defined in [8, I.3]. We proceed to apply Theorem 34

and state a classification.
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Assume that k is algebraically closed. Let R denote the coefficient ring k[u, t, d] of A

as a GWA. Maximal ideals of R take the form m(u0, t0, d0) := 〈u− u0, t− t0, d− d0〉 for

some scalars u0, t0, d0 ∈ k. They get moved by σn to m(q−2nu0, t0, d0) for n ∈ Z, so

m(u0, t0, d0) has infinite σ-orbit if and only if u0 6= 0. Therefore a finite dimensional

simple left A-module contains a simple R-submodule with annihilator having infinite

σ-orbit if and only if u = u22 acts nontrivially. Theorem 34 requires us to consider the

condition σ−n+1(z), σn
′
(z) ∈ m(u0, t0, d0) where n, n′ > 0. Since

σ−n+1(z) = d+ q−2ntu− q−4nu2

σn
′
(z) = d+ q2n′−2tu− q4n′−4u2,

a straightforward calculation shows that, as long as u0 6= 0, one has σ−n+1(z), σn
′
(z) ∈

m(u0, t0, d0) if and only if

d0 = −q2(n′−n−1)u2
0 t0 = (q−2n + q2(n′−1))u0. (3.10)

Define for u0 ∈ k× and t0, d0 ∈ k the left A-module M(u0, t0, d0) := A/(Am(u0, t0, d0)).

For all i ∈ Z, let ei denote the image of vi in M(u0, t0, d0). Let N(u0, t0, d0) be the

submodule
⊕

i≤−n′ Rei ⊕
⊕

i≥nRei, where n > 0 is chosen to be minimal such that

d0+q−2nt0u0−q−4nu2
0 = 0 (or∞ if this does not occur), and n′ > 0 is chosen to be minimal

such that d0 +q2n′−2t0u0−q4n′−4u2
0 = 0 (or∞ if this does not occur). We observed in the

general setting (2.22) that this is the unique largest proper submodule of M(u0, d0, t0).

Define V (u0, t0, d0) to be the simple left A-module M(u0, t0, d0)/N(u0, t0, d0). As an
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R-module, this is isomorphic to

⊕
−n′<i<n

R/σi(m(u0, t0, d0)),

so it has dimension n+n′−1 when n and n′ are finite. Putting together our observations

and applying Theorem 34, we have:

Theorem 90: Assume that k is algebraically closed.

1. Let u0 ∈ k× and let t0, d0 ∈ k. The simple left A-module V (u0, t0, d0) is finite

dimensional if and only if there are n, n′ > 0 such that (3.10) holds.

2. Let n > 0. Any n-dimensional simple left A-module V that is not annihilated by

u = u22 is isomorphic to

Vn(u0) := V (u0, t0 = (q−2n + 1)u0, d0 = −q−2nu2
0)

for a unique u0 ∈ k×, namely the eigenvalue of u22 on annV (u12).

These simple modules are all pullbacks of simple Uq(sl2)-modules along homomorphisms.

Define, for each α ∈ k×, an algebra homomorphism ψα : A → Uq(sl2):

u11 u12 q−1(q − q−1)2αEF + αK−1 αE

7→

u21 u22 q−1(q − q−1)2αKF αK .

(3.11)

Such homomorphisms can be shown to exist by checking that the relations (3.5) hold

inside Uq(sl2) for the desired images of the uij. For n > 0, consider the n-dimensional

simple left Uq(sl2)-module V (n−1,+) defined in [8, I.4]. By using x and y as “raising” and
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“lowering” operators in the usual way, one can easily verify that the pullback V (n−1,+)

of V (n − 1,+) along ψα is a simple A-module. Identifying annV (n−1,+)(u12) as “m0”

from [8, I.4], which has a u-eigenvalue of αqn−1, we conclude that V (n−1,+) ∼= Vn(αqn−1).

This gives:

Theorem 91: Assume that k is algebraically closed. Every finite dimensional simple left

A-module that is not annihilated by u = u22 is the pullback of some simple left Uq(sl2)-

module along ψα for some α ∈ k×.

3.1.3 Finite Dimensional Weight Modules

Keep the notation and assumptions of the previous section. The weight A-modules are

the ones that decompose into simultaneous eigenspaces for the actions of u, t, and d; this

is what it means to be semisimple over R = k[u, t, d] when k is algebraically closed. In

this section, we simply apply Theorem 45 to A.

We observed in the previous section that the only maximal ideals m(u0, t0, d0) of R with

finite σ-orbit are ones with u0 = 0. Hence the chain-type finite-dimensional weight

A-modules are exactly the ones on which u acts as a unit.

In the previous section we identified the set M ′
II of Definition 33 as

M ′
II = {m ∈ max specR | m ∈M , σ(z) ∈ m, and σ−n+1(z) ∈ m for some n > 0}

= {m(u0, t0 = (q−2n + 1)u0, d0 = −q−2nu2
0) | u0 ∈ k× and n > 0}.

We will show that statement 4 of Theorem 45 holds for A. Let m = m(u0, (q
−2n +
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1)u0,−q−2nu2
0) be an element of M ′

II. Suppose that σ−n
′+1(z) ∈ m, where n′ > 0. Then,

using (3.10), we have:

(q−2n + 1)u0 = (q−2n′ + 1)u′0 (3.12)

q−2nu2
0 = q−2n′u′20 . (3.13)

Using (3.12) to eliminate u′0 from (3.13), we obtain

q−2n = q−2n′
(
q−2n + 1

q−2n′ + 1

)2

,

which simplifies to

(q2n − q2n′) = q−2n−2n′(q2n − q2n′).

This requires that n = n′. Therefore Theorem 45 applies to A and gives:

Theorem 92: Assume that k is algebraically closed. Finite-dimensional weight left A-

modules on which u = u22 acts as a unit are semisimple.

3.1.4 Prime Spectrum - Direct Approach

Much of this section documents the author’s original approach to working out the prime

spectrum of A, which was done before the theory of section 2.6 became available. Section

3.1.5 below then provides a simpler, revised approach to the content here leading up

Theorem 105. Many of the details here are still needed because they lead to a description

of spec(A) as a topological space and not just as a set.
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We rely on the expression of A as a GWA in (3.8):

k[u, t, d][x, y;σ, z]

σ : u 7→ q2u, t 7→ t, d 7→ d

z = d+ q−2tu− q−4u2.

We can get at all the prime ideals of A by considering various quotients and localizations.

Let us begin by laying out notation for the algebras to be considered:

• A/〈u〉 is simply a polynomial ring,

A/〈u〉 ∼= k[u11, u12, u21].

A glance at the reflection equation relations (3.5) is enough to see this.

• Let Au denote the localization of A at the set of powers of u, a denominator set

because u is normal. By Proposition 22, this is k[u±, t, d][x, y;σ, z]. By Proposition

12, Au/〈t, d〉 = k[u±][x, y;σ, z]. In this quotient, z is a unit: z = −q−4u2. Hence,

by Proposition 5,

Au/〈t, d〉 = k[u±][x±;σ].

• Let Aud denote the localization of Au at the set of powers of d, a denominator set

because d is central. By Proposition 22, this is k[u±, t, d±][x, y;σ, z]. By Proposition

12,

Aud/〈t〉 = k[u±, d±][x, y;σ, z].

• Let Aut denote the localization of Au at the set of powers of t, a denominator

set because t is central. By Proposition 22, this is k[u±, t±, d][x, y;σ, z]. Let Autx
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denote the localization of the latter algebra at the set of powers of x; by Proposition

21, the set of powers of x is indeed a denominator set, and we obtain Autx =

k[u±, t±, d][x±;σ]. Then

Autx/〈d〉 = k[u±, t±][x±;σ].

• Let Autxd denote the localization of Autx at the set of powers of d:

Autxd = k[u±, t±, d±][x±;σ].

What will turn out to be missing from this list is an algebra that gives us access to those

prime ideals of Aut that contain some power of x. We cover this in the next section.

Primes of Aut That Contain a Power of x

We write Aut as

Aut = R[x, y;σ, z],

where R = k[u±, t±, d]. A reminder about our notation: a subscript on a subset of a

GWA indicates a certain subset of its base ring, seen in Definition 13. Define

rn = (q2n + 1)2d+ q2nt2 (3.14)

for n ∈ Z; these elements of R will help us to understand the ideal of Aut generated by

a power of x:
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Proposition 93: Let n ∈ Z>0. Then

n∏
j=n−i+1

rj ∈ 〈xn〉n−i (3.15)

for all 0 ≤ i ≤ n.

Proof: The induction will rely on the following observations:

1. For n ≥ 1, rn ∈ 〈σn(z), z〉R.

2. Let I be an ideal of a GWA R[x, y;σ, z]. For n ≥ 1, (Rσ ∩ In)〈σn(z), z〉R ⊆ In−1.

Direct calculation verifies observation 1,

rn =
q2n+2

q2n − 1
tu−1(σn(z)− z) +

q2n + 1

q2n − 1
(q4nz − σn(z)),

and observation 2 follows from Proposition 18. The i = 0 case, 1 ∈ 〈xn〉n, is trivial.

Assume that 0 ≤ i < n and that (3.15) holds for i. Then a := rnrn−1 · · · rn−(i−1) ∈

〈xn〉n−i. By observation 2, a〈σn−i(z), z〉R ⊆ 〈xn〉n−(i+1). Hence, by observation 1, arn−i ∈

〈xn〉n−(i+1), proving (3.15) for i+ 1. �

Proposition 94: Assume that n ≥ 1 and P ∈ spec(Aut). If xn ∈ P and xn−1 /∈ P , then

rn ∈ P .

Proof: From the i = n case of Proposition 93,

r1r2 · · · rn ∈ P.
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Since this is a product of central elements in Aut, we conclude that that rn′ ∈ P for

some n′. In particular, rn′ ∈ Pn−1. Applying Proposition 93 with i = 1, we also have

rn ∈ Pn−1. Since t is a unit, and since q is not a root of unity, it is clear from (3.14) that

1 ∈ 〈rn, rn′〉R if n 6= n′. We assumed that xn−1 /∈ P , so n′ = n. �

So when considering homogeneous prime ideals P of Aut that contain a power of x, we

can eliminate a variable by factoring out the ideal generated by one of the ri. Namely,

we may factor out 〈rn〉 if n ≥ 1 is taken to be minimal such that xn ∈ P , and we may

then consider P as a prime ideal of A(n) := Aut/〈rn〉. Using Proposition 12, this algebra

is isomorphic to

k[u±, t±][x, y;σ, zn],

where

zn =
−q2n

(q2n + 1)2
t2 + q−2ut− q−4u2. (3.16)

Let R(n) denote k[u±, t±], thought of as R/〈rn〉R. The ideal generated by xn can be

pinned down completely in A(n). We again start by defining some special elements of the

base ring that will help us break things down. Make the following definitions:

snj = u− q2j

q2n + 1
t for n, j ∈ Z,

J n
m = {j ∈ Z | 1 ≤ j ≤ n−m}

J n
−m = {j ∈ Z |m+ 1 ≤ j ≤ n}

for m ≥ 0, n > 0,

πnm =
∏

j∈J n
m
snj for m ∈ Z, n > 0.

(3.17)

Here is a way to visually organize these definitions for the example n = 3:
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s3
2

s3
2

s3
2

s3
1

s3
1

s3
1

s3
3

s3
3

s3
3

·

··

·

= π3
2

= π3
1

= π3
0

= π3
−1

= π3
−2

1 = π3
3

1 = π3
−3

Observe that σ(zn) = −snnsn0 and that

σ−1(snj ) = q−2snj+1, (3.18)

so that

σi(zn) = −q4i−4snn−i+1s
n
1−i (3.19)

for n, i ∈ Z. Finally, observe that the snj are pairwise coprime over various j, since q is

not a root of unity.

For the next results, we abstract this situation.

Proposition 95: Let n be an integer with n ≥ 1. Consider an arbitrary GWA A =

R[x, y;σ, z] over a commutative ring R. Assume that (sj)j∈Z is a sequence of elements

of R with the following properties:

1. z is a unit multiple of s1sn+1.

2. σ−1(sj) is a unit multiple of sj+1, for all j ∈ Z.

3. 〈si, sj〉R = R for all distinct i, j ∈ Z.
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Define Jm as J n
m is defined in (3.17) and let πm =

∏
j∈Jm

sj. Then we have

〈xn〉m = 〈πm〉R

for m ∈ Z.

Proof: The sequence of ideals 〈πm〉R satisfies the conditions needed in Proposition 18 in

order for
⊕

m∈Z 〈πm〉Rvm to define an ideal of A, as can be checked using our assumptions

1 and 2. Since πn = 1, the latter ideal contains xn. This gives the inclusion 〈xn〉m ⊆ 〈πm〉R

for m ∈ Z. To get equality we must show that

πm ∈ 〈xn〉m (3.20)

for all m ∈ Z.

For m ≥ n, (3.20) holds trivially. Assume that (3.20) holds for a given m, with 1 ≤ m ≤

n. Then:

〈xn〉m−1 ⊇
〈
πmσ

m(z), σ−1(πm)z
〉
R

(3.21)

=

〈(
n−m∏
j=1

sj

)
(sn−(m−1)s1−m),

n−(m−1)∏
j=2

sj

 (sn+1s1)

〉
R

(3.22)

= πm−1〈s1−m, sn+1〉R = πm−1R. (3.23)

Line (3.21) is due to the induction hypothesis and Proposition 18. Line (3.22) uses

assumptions 1 and 2. And line (3.23) uses assumption 3. Hence, by induction, (3.20)

holds for m ≥ 0.

Now assume that 1 − n ≤ m ≤ 0 and that (3.20) holds for m. We can apply a similar
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strategy to what was done for (3.21)-(3.23):

〈xn〉m−1 ⊇
〈
πm, σ

−1(πm)
〉
R

=

〈
n∏

j=−m+1

sj ,

n+1∏
j=−m+2

sj

〉
R

= πm−1〈s−m+1, sn+1〉R = πm−1R.

Hence, by induction, (3.20) holds for all m ≥ −n. In particular (the case m = −n),

yn ∈ 〈xn〉. Thus (3.20) holds trivially for m < −n. �

Corollary 96: In the setup of Proposition 95, 〈xn〉 = 〈yn〉.

Proof: We shall make use of Proposition 3 to exploit symmetries in the hypotheses of

Proposition 95. Let us use hats to denote our new batch of input data to Proposition

95. Consider A as a GWA R[x̂, ŷ; σ̂, ẑ], with elements (ŝj)j∈Z of R, where

x̂ = y ŷ = x ẑ = σ(z)

σ̂ = σ−1 ŝj = sn+1−j

(3.24)

This satisfies the hypotheses of Proposition 95. Following along the notations needed to

state the conclusion, define

π̂m =
∏

j∈Jm
ŝj

and also define

Îm = I−m (which is {r ∈ R | rv−m ∈ I}) (3.25)

whenever I ⊆ A, to match Definition 13 with the new GWA structure. Observe that

{n+ 1− j | j ∈ Jm} = J−m (3.26)
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for all m ∈ Z, so that π̂m = π−m. The conclusion of Proposition 95 is then that 〈̂x̂n〉m =

〈π̂m〉R. That is,

〈yn〉−m = 〈π−m〉R

for all m ∈ Z. �

In order to get at the homogeneous primes of A(n) that contain xn, we now seek to

describe all the homogeneous ideals of A(n) that contain xn. Statements of the next few

results remain in a general GWA setting, in order to continue taking advantage of the

symmetry of GWA expressions.

Proposition 97: Assume the setup of Proposition 95. Fix arbitrary integers `1 ≤ `2.

There is an element e0 of R such that, setting ej = σ−j(e0) for j ∈ Z, the family (ej)j∈Z

satisfies:

1. ej ≡ 1 mod sj for j ∈ Z.

2. ej ≡ 0 mod si for distinct i, j ∈ {`1, . . . , `2}.

3. ē`1 , . . . , ē`2 is a collection of orthogonal idempotents that sum to 1, where bars denote

cosets with respect to
〈∏`2

i=`1
si

〉
.

Proof: The sj, for j ∈ Z, are pairwise coprime as elements of R. The Chinese Remainder

Theorem (CRT) provides an e0 ∈ R which is congruent to 1 mod s0 and congruent to 0

mod si for all nonzero i ∈ {`1 − `2, . . . , `2 − `1}. Then for j ∈ Z we have that σ−j(e0) is

congruent to 1 mod sj and congruent to 0 mod si for all i ∈ {`1− `2 + j, . . . , `2− `1 + j}

with i 6= j. Setting ej = σ−j(e0) gives us 1 and 2. Part of the CRT says that

〈
`2∏
i=`1

si

〉
=

`2⋂
i=`1

〈si〉,
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and 3 easily follows from this using 1 and 2. �

Proposition 98: Assume the setup of Proposition 95. Let (ej)j∈Z be as in Proposition

97 with `1 = 1 and `2 = n. There are mutually inverse inclusion-preserving bijections


homogeneous right R[x;σ]-

submodules I of A containing

xn

 ↔


families (Imj |m ∈ Z, j ∈ Jm)

of ideals of R satisfying (3.28)

with sj ∈ Imj for all m, j


I 7→ (Im + 〈sj〉 |m ∈ Z, j ∈ Jm)⊕

m∈Z

(
〈πm〉+

∑
j∈Jm

Imjej

)
vm ← [ (Imj |m ∈ Z, j ∈ Jm),

(3.27)

where the condition (3.28) is that

I−(m+1),j ⊆ I−m,j ∀j ∈ J−(m+1) and Imj ⊆ Im+1,j ∀j ∈ Jm+1
(3.28)

for all m ∈ Z≥0.

Proof: Combining Propositions 15 and 95, we obtain the following correspondence:


homogeneous right R[x;σ]-

submodules I of A containing

xn

 ↔



sequences (Im)m∈Z of ideals of R

satisfying the conditions (2.5) of

Proposition 15 with πm ∈ Im for

all m


I 7→ (Im)m∈Z⊕

m∈Z Imvm ← [ (Im)m∈Z.

(3.29)

The sj, for j ∈ Z, are pairwise coprime as elements of R. So an ideal Im of R containing
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πm corresponds, via the CRT, to a collection of ideals (Imj)j∈Jm such that sj ∈ Imj for

j ∈ Jm. Using Proposition 144, the correspondence is:

{
sequences (Im)m∈Z of ideals of R

with πm ∈ Im for all m

}
↔


families (Imj |m ∈ Z, j ∈ Jm)

of ideals of R with sj ∈ Imj for

all m, j


(Im)m∈Z 7→ (Imj = Im + 〈sj〉 |m ∈ Z, j ∈ Jm)(

〈πm〉+
∑

j∈Jm
Imjej

)
m∈Z

←[ (Imj |m ∈ Z, j ∈ Jm).

(3.30)

In order to make use of this with (3.29), we need to express the condition (2.5) of

Proposition 15 in terms of the Imj. Let (Im)m∈Z be a sequence of ideals of R with

πm ∈ Im for all m, and let (Imj |m ∈ Z, j ∈ Jm) be the family of ideals it corresponds

to in (3.30). For m ∈ Z≥0,

Im ⊆ Im+1 ⇔ 〈πm〉+
n−m∑
j=1

Imjej ⊆ 〈πm+1〉+
n−m−1∑
j=1

Im+1,jej (3.31)

⇒ 〈si〉+ Imi ⊆ 〈si〉+ Im+1,i ∀i ∈ Jm+1 (3.32)

⇒ Imi ⊆ Im+1,i ∀i ∈ Jm+1 (3.33)

⇒ Im ⊆ Im+1. (3.34)

Line (3.32) is obtained by adding 〈si〉 to both sides of the inclusion in line (3.31), and

using the properties of the ej from Proposition 97. Line (3.33) is due to the fact that

si ∈ Im+1,i. Line (3.34) can be seen by looking at (3.31) and noting that en−m ∈ 〈πm+1〉

because en−m vanishes mod sj for j ∈ Jm+1. For similar reasons we also have, for
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m ∈ Z≥0,

I−(m+1)σ
−m(z) ⊆ I−m

⇔

(〈
π−(m+1)

〉
+

n∑
j=m+2

I−(m+1),jej

)
sn+m+1sm+1 ⊆ 〈π−m〉+

n∑
j=m+1

I−m,jej

⇔ sn+m+1〈π−m〉+
n∑

j=m+2

I−(m+1),jsn+m+1sm+1ej ⊆ 〈π−m〉+
n∑

j=m+1

I−m,jej

⇒ 〈si〉+ I−(m+1),isn+m+1sm+1 ⊆ 〈si〉+ I−m,i ∀i ∈ J−(m+1)

⇒ I−(m+1),i ⊆ I−m,i ∀i ∈ J−(m+1) (3.35)

⇒ I−(m+1)σ
−m(z) ⊆ I−m.

The only subtlety this time is that line (3.35) relies on the fact that sn+m+1 and sm+1

are units modulo si for all i ∈ J−(m+1).

We conclude that the condition (2.5) of Proposition 15 holds for (Im)m∈Z if and only

if the condition (3.28) holds for (Imj |m ∈ Z, j ∈ Jm). Combining this fact with the

correspondences (3.29) and (3.30) yields the desired correspondence (3.27). �

Corollary 99: Assume the setup of Propositions 95 and 98. There are mutually inverse

inclusion-preserving bijections


homogeneous right R[y;σ−1]-

submodules I of A containing

yn

 ↔


families (Imj |m ∈ Z, j ∈ Jm)

of ideals of R satisfying (3.37)

with sj ∈ Imj for all m, j


I 7→ (Im + 〈sj〉 |m ∈ Z, j ∈ Jm)⊕

m∈Z

(
〈πm〉+

∑
j∈Jm

Imjej

)
vm ←[ (Imj |m ∈ Z, j ∈ Jm),

(3.36)
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where the condition (3.37) is that

I−(m+1),j ⊇ I−m,j ∀j ∈ J−(m+1) and Imj ⊇ Im+1,j ∀j ∈ Jm+1
(3.37)

for all m ∈ Z≥0.

Proof: We shall apply Proposition 98 while viewing A as a GWA with the alternative

GWA structure R[y, x;σ−1, σ(z)]. Make the definitions (3.24)-(3.25), and also define

êj = en+1−j.

These data satisfy the hypotheses of Proposition 98, and allows us to conclude that there

is a correspondence

{
homogeneous right R[y;σ−1]-

submodules I of A containing yn

}
↔


families (Îmj |m ∈ Z, j ∈ Jm)

of ideals of R satisfying (3.38)

with ŝj ∈ Îmj for all m, j


I 7→ (Îm + 〈ŝj〉 |m ∈ Z, j ∈ Jm)⊕

m∈Z

(
〈π̂m〉+

∑
j∈Jm

Îmj êj

)
vm ←[ (Îmj |m ∈ Z, j ∈ Jm),

where the condition (3.38) is that

Î−(m+1),j ⊆ Î−m,j ∀j ∈ J−(m+1) and Îmj ⊆ Îm+1,j ∀j ∈ Jm+1
(3.38)

for all m ∈ Z≥0. Using the observation (3.26) and reindexing by (m, j) 7→ (−m,n+1−j),

this becomes the correspondence (3.36). �

The following Proposition is not strictly needed to eventually see that all ideals of Au
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are homogeneous– it is sufficient to observe that conjugation by u in a linear map Au →

Au that has the graded components of Au as distinct eigenspaces (see Proposition 81).

However, it is interesting to note that homogeneity is guaranteed even in the abstract

setup of Proposition 95.

Proposition 100: Assume the setup of Proposition 95. All ideals of A containing xn

are homogeneous.

Proof: Let (ej)j∈Z be as in Proposition 97 with `1 = −n + 2 and `2 = 2n − 1. Let I

be any ideal of A containing xn, and let
∑

m∈Z amvm ∈ I be an arbitrary element. Then

since 〈xn〉 = 〈yn〉, from Corollary 96, we have vm ∈ I for m ≥ n and for m ≤ −n, and

the problem is reduced to considering

n−1∑
m=−n+1

amvm ∈ I

and needing to show that amvm ∈ I for m ∈ {−n + 1, . . . , n − 1}. Consider any j, j′ ∈

{1, . . . , n}. Multiplying on the left by ej and on the right by ej′ yields

I 3
n−1∑

m=−n+1

ejamvmej′ =
n−1∑

m=−n+1

amejσ
m(ej′)vm =

n−1∑
m=−n+1

amejej′−mvm.

When −n+ 1 ≤ m ≤ n− 1 and 1 ≤ j′ ≤ n, we have −n+ 2 ≤ j′−m ≤ 2n− 1. So, since

π0 ∈ I (due to Proposition 95), the product ejej′−m that appears above vanishes mod I

unless j′ −m = j, in which case it is congruent to ej mod I. Thus we have

aj′−jejvj′−j ∈ I

for all j, j′ ∈ {1, . . . , n}. When j ∈ Jm, we have j,m+ j ∈ {1, . . . , n}, so this shows that
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amejvm ∈ I, for all m ∈ {−n+ 1, . . . , n− 1} and j ∈ Jm, and in particular that

∑
j∈Jm

amejvm ∈ I.

Fix an m ∈ {−n + 1, . . . , n− 1}. Since πm ∈ Im (due to Proposition 95),
∑

j∈Jm
ej ≡ 1

mod Im. Hence amvm ∈ I. �

Corollary 101: Assume the setup of Propositions 95 and 98. There are mutually inverse

inclusion-preserving bijections

{ ideals I of A containing xn } ↔


families (Imj |m ∈ Z, j ∈ Jm)

of ideals of R satisfying (3.40)

with sj ∈ Imj for all m, j


I 7→ (Im + 〈sj〉 |m ∈ Z, j ∈ Jm)⊕

m∈Z

(
〈πm〉+

∑
j∈Jm

Imjej

)
vm ← [ (Imj |m ∈ Z, j ∈ Jm),

(3.39)

where the condition (3.40) is that

I−(m+1),j = I−m,j ∀j ∈ J−(m+1), Imj = Im+1,j ∀j ∈ Jm+1,

σ(I−(m+1),j) = I−m,j−1 ∀j ∈ J−(m+1), and σ(Im,j+1) = Im+1,j ∀j ∈ Jm+1

(3.40)

for all m ∈ Z≥0.

Proof: We shall deduce left-handed versions of (3.27) and (3.36) by viewing Aop as

a GWA R[x, y;σ−1, σ(z)]. Recall the notation Iop
m from Definition 13 and Remark 14.
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Defining

x̂ = x ŷ = y ẑ = σ(z)

σ̂ = σ−1 ŝj = sn+1−j êj = en+1−j π̂m =
∏

j∈Jm
ŝj,

we may now write Aop = R[x̂, ŷ; σ̂, ẑ]. These data satisfy the hypotheses of Proposition

98 and Corollary 99, so we obtain correspondences


homogeneous left R[x;σ]-

submodules of A containing

xn

 ↔


families (Îmj |m ∈ Z, j ∈ Jm)

of ideals of R satisfying (3.42)

with ŝj ∈ Îmj for all m, j




homogeneous left R[y;σ−1]-

submodules of A containing

yn

 ↔


families (Îmj |m ∈ Z, j ∈ Jm)

of ideals of R satisfying (3.43)

with ŝj ∈ Îmj for all m, j


I 7→ (Iop

m + 〈ŝj〉 |m ∈ Z, j ∈ Jm)⊕
m∈Z σ

m
(
〈π̂m〉+

∑
j∈Jm

Îmj êj

)
vm ←[ (Îmj |m ∈ Z, j ∈ Jm),

(3.41)

where the specified conditions are that

Î−(m+1),j ⊆ Î−m,j ∀j ∈ J−(m+1), Îmj ⊆ Îm+1,j ∀j ∈ Jm+1, (3.42)

Î−(m+1),j ⊇ Î−m,j ∀j ∈ J−(m+1), and Îmj ⊇ Îm+1,j ∀j ∈ Jm+1
(3.43)

for all m ∈ Z≥0. To make this useful, we transform the expression for the families of

ideals in the right hand side of (3.41) as follows:

Imj = σm(Îm,n+1−(j+m)).

The index sets Jm have symmetries that can be used to reindex sums and products
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after applying this transformation: Jm = {n + 1 − j | j ∈ J−m} = {j −m | j ∈ J−m}.

A consequence is that σm(π̂m) is a unit multiple of πm. One now makes the routine

substitutions and reindexings in (3.41)-(3.43) to obtain correspondences


homogeneous left R[x;σ]-

submodules of A containing

xn

 ↔


families (Imj |m ∈ Z, j ∈ Jm)

of ideals of R satisfying (3.45)

with sj ∈ Imj for all m, j




homogeneous left R[y;σ−1]-

submodules of A containing

yn

 ↔


families (Imj |m ∈ Z, j ∈ Jm)

of ideals of R satisfying (3.46)

with sj ∈ Imj for all m, j


I 7→ (Im + 〈sj〉 |m ∈ Z, j ∈ Jm)⊕

m∈Z

(
〈πm〉+

∑
j∈Jm

Imjej

)
vm ←[ (Imj |m ∈ Z, j ∈ Jm),

(3.44)

where the specified conditions are now that

σ(I−(m+1),j) ⊆ I−m,j−1 ∀j ∈ J−(m+1), σ(Im,j+1) ⊆ Im+1,j ∀j ∈ Jm+1, (3.45)

σ(I−(m+1),j) ⊇ Î−m,j−1 ∀j ∈ J−(m+1), and σ(Im,j+1) ⊇ Im+1,j ∀j ∈ Jm+1
(3.46)

for all m ∈ Z≥0.

Note that, by Corollary 96, an ideal of A contains xn if and only if it contains yn. And

note that, by Proposition 100, all ideals of A are homogeneous. Hence we may combine

(3.27), (3.36), and (3.44) to obtain the correspondence (3.39), and the condition in (3.40)

is just the conjunction of conditions (3.28), (3.37), (3.45), and (3.46). �

We now specialize back to the algebra A(n) = Aut/〈rn〉. Corollary 101 applies to A(n)
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with the elements of R(n) defined in (3.17).

Proposition 102: For n ≥ 1, there are mutually inverse inclusion-preserving bijections

{ ideals I/〈xn〉 of A(n)/〈xn〉 } ↔
{

ideals Ĩ·· of k[t±]
}

I/〈xn〉 7→ (I0 + 〈sn1 〉R(n)
) ∩ k[t±](⊕

m∈Z

(
〈πnm〉+

〈
Ĩ··
〉)

vm

)
/〈xn〉 ← [ Ĩ·· .

(3.47)

Proof: Let enj for j ∈ Z be as in Proposition 97 with `1 = 1 and `2 = n. In particular

they are elements of R(n) such that enj is congruent to 1 mod snj for j ∈ Z and congruent

to 0 mod sni for all distinct i, j ∈ {1, . . . , n}, and σ−1(enj ) = enj+1 for all j ∈ Z. For j ∈ Z,

the algebra R(n)/
〈
snj
〉

is isomorphic to k[t±], and the isomorphism is the composite

k[t±] ↪→ R(n) � R(n)/
〈
snj
〉
.

We obtain from this a correspondence of ideals for each j:

{
ideals of R(n) containing snj

}
↔ {ideals of k[t±]}

J 7→ J̃ = J ∩ k[t±]

J̃ +
〈
snj
〉

←[ J̃ .

(3.48)
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This allows us to restate the correspondence that we obtain from Corollary 101 as

{ ideals I of A(n) containing xn } ↔

{
families (Ĩmj |m ∈ Z, j ∈ J n

m)

of ideals of k[t±] satisfying (3.50)

}

I 7→ ((Im +
〈
snj
〉
) ∩ k[t±] |m ∈ Z, j ∈ J n

m)⊕
m∈Z

(
〈πnm〉+

∑
j∈J n

m
(Ĩmj +

〈
snj
〉
)enj

)
vm ←[ (Ĩmj |m ∈ Z, j ∈ J n

m),

(3.49)

where the condition (3.50) is that

Ĩ−(m+1),j = Ĩ−m,j ∀j ∈ J n
−(m+1), Ĩmj = Ĩm+1,j ∀j ∈ J n

m+1,

Ĩ−(m+1),j = Ĩ−m,j−1 ∀j ∈ J n
−(m+1), and Ĩm,j+1 = Ĩm+1,j ∀j ∈ J n

m+1

(3.50)

for all m ∈ Z≥0. The σ has disappeared from the condition (3.40) because σ fixes k[t±].

Notice that (3.50) simply says that all the ideals in the family (Ĩmj |m ∈ Z, j ∈ J n
m) are

equal. So we may as well give them all one name, Ĩ·· := Ĩ01. We may also simplify the

expression of the left hand side of (3.49): for m ∈ Z, we have

〈πnm〉+
∑
j∈J n

m

(Ĩ··+
〈
snj
〉
)enj = 〈πnm〉+ 〈snj enj | j ∈ J n

m〉+
∑
j∈J n

m

〈
Ĩ··
〉
enj

= 〈πnm〉+ 〈snj enj | j ∈ J n
m〉+

〈
Ĩ··
〉

(3.51)

= 〈πnm〉+
〈
Ĩ··
〉
. (3.52)

Line (3.51) is due to the fact that
∑

j∈J n
m
enj is congruent to 1 mod πnm. Line (3.52) is due

to the fact that snj e
n
j is congruent to 0 mod πnm for all j ∈ J n

m. Thus we obtain (3.47). �

Proposition 103: Products of ideals are preserved by the correspondence (3.47).
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Proof: Let a, b be ideals of k[t±], and let I/〈xn〉, J/〈xn〉 be the respective corresponding

ideals of A(n)/〈xn〉 via (3.47). We must show that the product ab corresponds via (3.47)

to (I/〈xn〉)(J/〈xn〉) = (IJ + 〈xn〉)/〈xn〉. That is, we must show that ((IJ + 〈xn〉)0 +

〈sn1 〉) ∩ k[t±] = ab. Using the fact that all of the ideals on the right hand side of (3.49)

are equal,

(Im +
〈
snj
〉
) ∩ k[t±] = a

(Jm +
〈
snj
〉
) ∩ k[t±] = b

(3.53)

for all m ∈ Z, j ∈ J n
m. The contraction (IJ)0 of the product IJ consists of sums of

products of homogeneous terms of opposite degree; i.e. terms of the form

(avm) · (bv−m) = aσm(b)[[m,−m]]

for m ∈ Z. Hence (IJ + 〈xn〉)0 + 〈sn1 〉 can be written as

(IJ+〈xn〉)0 +〈sn1 〉 = (IJ)0 +〈πn0 〉+〈sn1 〉 = (IJ)0 +〈sn1 〉 =
∑
m∈Z

[[m,−m]]Imσ
m(J−m)+〈sn1 〉.

Observe the following:

Claim: If m ∈ {0, . . . , n − 1}, then [[m,−m]] is a unit mod 〈sn1 〉R(n)
. Otherwise,

it is in 〈sn1 〉R(n)
.

Proof: If m < 0, then [[m,−m]] = σ[m+1,0](zn) is divisible by zn, which is divisible

by sn1 . If m > n− 1, then [[m,−m]] = σ[1,m](zn) is divisible by σn(zn), which is also

divisible by sn1 . If m = 0, then [[m,−m]] = 1 is a unit mod sn1 . Finally, assume that

m ∈ {1, . . . , n− 1}. Then [[m,−m]] = σ[1,m](zn) is a unit multiple of the product

m∏
i=1

snn−i+1

m∏
i=1

sn1−i.
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Observe that the assumption 1 ≤ m ≤ n − 1 precludes sn1 from being a factor in

the product above. Since the snj are pairwise coprime, it follows that [[m,−m]] is a

unit mod sn1 .

This simplifies the expression above:

∑
m∈Z

[[m,−m]]Imσ
m(J−m) + 〈sn1 〉 =

n−1∑
m=0

Imσ
m(J−m) + 〈sn1 〉.

Now we calculate what is needed:

((IJ + 〈xn〉)0 + 〈sn1 〉) ∩ k[t±] =

(
n−1∑
m=0

Imσ
m(J−m) + 〈sn1 〉

)
∩ k[t±]

=

(
n−1∑
m=0

(Im + 〈sn1 〉)σm(J−m +
〈
snm+1

〉
) + 〈sn1 〉

)
∩ k[t±]

=

(
n−1∑
m=0

(a + 〈sn1 〉)σm(b +
〈
snm+1

〉
) + 〈sn1 〉

)
∩ k[t±] (3.54)

=

(
n−1∑
m=0

ab + 〈sn1 〉

)
∩ k[t±]

= (ab + 〈sn1 〉) ∩ k[t±]

= ab. (3.55)

Line (3.54) uses (3.53), and lines (3.54) and (3.55) both make use of the correspondence

(3.48). �

Corollary 104: For n ≥ 1, there is a homeomorphism

spec(A(n)/〈xn〉) ≈ spec(k[t±])
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given by

P/〈xn〉 7→ (P0 + 〈sn1 〉R(n)
) ∩ k[t±]⊕

m∈Z (〈πnm〉+ 〈p〉) vm / 〈xn〉 ← [ p .
(3.56)

Proof: This follows from Propositions 102 and 103. �

The Prime Spectrum of A

Express the algebra A as a GWA according to (3.8). Let X denote the set of positive

powers of x. Define rn ∈ A for n ≥ 1 as in (3.14). Also define snj , J n
m, and πnm for n ≥ 1

and j,m ∈ Z as in (3.17), but with everything taking place in A. Define the following

subsets of spec(A):

T1 = {P ∈ spec(A) | u ∈ P},

T2 = {P ∈ spec(A) | P = 〈P ∩ k[t, d]〉}, and

T3n = {P ∈ spec(A) | u, t /∈ P , P ∩X = {xn, xn+1, . . .}} for n ≥ 1.

Theorem 105: The prime spectrum of A is, as a set, the disjoint union of T1, T2,

and T3n for n ≥ 1. Each of these subsets is homeomorphic to the prime spectrum of a

commutative algebra as follows:

• spec(k[u11, u12, u21]) ≈ T1 via p 7→ 〈u〉+ 〈p〉.

• spec(k[t, d]) ≈ T2 via p 7→ 〈p〉.

• spec(k[t±]) ≈ T3n via p 7→ 〈πnmvm | − n ≤ m ≤ n〉+ 〈rn〉+ 〈p ∩ k[t]〉, for all n ≥ 1.

Our proof will make use of the localizations and quotients of A that were described in
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the introduction to section 3.1.4. Many of them are quantum tori, so it will help that

the prime spectrum of a quantum torus is known.

Definition 106: A quantum torus over a field k is an iterated skew Laurent algebra

k[x±1 ][x±2 ; τ2] · · · [x±n ; τn]

for some n ∈ Z≥0 and some automorphisms τ2, . . . , τn such that τi(xj) is a nonzero scalar

multiple of xj for all i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}.

Lemma 107: [20, Corollary 1.5b] Contraction and extension provide mutually inverse

homeomorphisms between the prime spectrum of a quantum torus and the prime spectrum

of its center.

Proof of Theorem 105: Consider the partition of spec(A) into subsets S1, . . . , S6 given

by the following tree, in which branches represent mutually exclusive possibilities:

P ∈ spec(A)

u ∈ P

P ∈ S1

u /∈ P

t, d ∈ P

P ∈ S2

d /∈ P , t ∈ P

P ∈ S3

t /∈ P

X ∩ P = ∅

d ∈ P

P ∈ S4

d /∈ P

P ∈ S5

X ∩ P 6= ∅

P ∈ S6
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It is easy to verify that

S1 = T1,

S6 =
⊔
n≥1

T3n.

To establish that {T1, T2} ∪ {T3n | n ≥ 1} is a partition of spec(A), we will show that

S2 ∪ S3 ∪ S4 ∪ S5 = T2. (3.57)

Let P ∈ T2 and let p = P ∩ k[t, d]. Then, using the same reasoning as in (2.14),

Pm = p k[u, t, d] for all m ∈ Z. In particular, u /∈ P , so P /∈ S1, and Pn = P0 for all

n ≥ 1, so P /∈ S6. This establishes the inclusion ⊇ of (3.57). We now address the reverse

inclusion.

S2 ⊆ T2: Since u is normal, a prime ideal of A that excludes u also excludes any power

of u. So S2 ≈ spec(Au/〈t, d〉). Since Au/〈t, d〉 = k[u±][x±;σ] is a quantum torus, Lemma

107 and Proposition 9 give that S2 ≈ spec(k). Let p be the single point of spec(k).

It corresponds to the zero ideal of k[u±][x±;σ], which corresponds to 〈t, d〉 / Au. Now

〈t, d〉 / A is prime because A/〈t, d〉 = k[u][x, y;σ, z] and z /∈ 〈t, d〉. So by Lemma 143

(appendix), p corresponds to 〈t, d〉 /A, and we have

S2 = {〈t, d〉} ⊆ T2.

S3 ⊆ T2: Since d is central, a prime ideal of A that excludes d also excludes any power

of d. So S3 ≈ spec(Aud/〈t〉).

Claim: In the algebra Aud/〈t〉 = k[u±, d±][x, y;σ, z], one has 〈xn〉 = 〈1〉 for all
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n ∈ Z≥0.

Proof: Let n ≥ 1. Multiplying xn by y on either side shows that 〈xn〉n−1 contains

z and σn(z). Here these are d− q−4u2 and d− q4n−4u2. Since u is invertible and q

is not a root of unity, this implies that 〈xn〉n−1 = 〈1〉; i.e. xn−1 ∈ 〈xn〉. This works

for all n ≥ 1, so we conclude by induction that 1 ∈ 〈xn〉.

Thus all prime ideals of k[u±, d±][x, y;σ, z] are disjoint from the set of powers of x. There-

fore by localization, using Proposition 21 and Theorem 142, spec(k[u±, d±][x, y;σ, z]) ≈

spec(k[u±, d±][x±;σ]). Lemma 107 and Proposition 9 give that S3 ≈ spec(k[d±]). Let

us start with a p ∈ spec(k[d±]) and follow it back to S3: p corresponds to its exten-

sion 〈p〉 / k[u±, d±][x±;σ]. Now 〈p〉 / Aud/〈t〉 is prime because the quotient by it is

(k[u±, d±]/〈p〉)[x, y;σ, z], a GWA over a domain with z 6= 0. Hence by Lemma 143, p

corresponds to 〈p〉/Aud/〈t〉. This in turn corresponds to 〈t〉+〈p〉 = 〈t〉+〈p ∩ k[d]〉/Aud.

Now 〈t〉+〈p ∩ k[d]〉/A is prime because the quotient by it is (k[u, d]/〈p ∩ k[d]〉)[x, y;σ, z],

a GWA over a domain with z 6= 0. Hence by Lemma 143, p corresponds to 〈t〉+〈p ∩ k[d]〉/

A. So

S3 = {〈t〉+ 〈p ∩ k[d]〉 | p ∈ spec(k[d±])} ⊆ T2.

S4 ⊆ T2: Since t is central, S4 ≈ spec(Autx/〈d〉). Since Autx/〈d〉 = k[u±, t±][x±;σ]

is a quantum torus, Lemma 107 and Proposition 9 give that S4 ≈ spec(k[t±]). Let p ∈

spec(k[t±]), and let us follow p back to S4: p corresponds to its extension 〈p〉 /Autx/〈d〉,

which in turn corresponds to 〈d〉+ 〈p〉 = 〈d〉+ 〈p ∩ k[t]〉 /Autx. Now 〈d〉+ 〈p ∩ k[t]〉 /A

is prime because the quotient by it is (k[u, t]/〈p ∩ k[t]〉)[x, y;σ, z], a GWA over a domain

with z 6= 0. Hence by Lemma 143, p corresponds to 〈d〉+ 〈p ∩ k[t]〉 /A. So

S4 = {〈d〉+ 〈p ∩ k[t]〉 | p ∈ spec(k[t±])} ⊆ T2.
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S5 ⊆ T2: We have S5 ≈ spec(Autxd). Since Autxd = k[u±, t±, d±][x±;σ] is a quantum

torus, Lemma 107 and Proposition 9 give S5 ≈ k[t±, d±]. Let p ∈ spec(k[t±, d±]), and let

us follow it back to S5: p corresponds to its extension 〈p〉 = 〈p ∩ k[t, d]〉 / Autxd. Now

〈p ∩ k[t, d]〉 /A is prime because the quotient by it is (k[u, t, d]/〈p ∩ k[t, d]〉)[x, y;σ, z], a

GWA over a domain with z 6= 0. Hence by Lemma 143, p corresponds to 〈p ∩ k[t, d]〉/A.

So

S5 = {〈p ∩ k[t, d]〉 | p ∈ spec(k[t±, d±])} ⊆ T2.

We have established (3.57), proving that

spec(A) = T1 t T2 t
⊔
n≥1

T3n.

The remainder of the proof establishes homeomorphisms of T1, T2, and the T3n to spectra

of commutative algebras.

T1: Clearly, T1 is homeomorphic to the prime spectrum of A/〈u〉 ∼= k[u11, u12, u21] via

p 7→ 〈u〉+ 〈p〉.

T2: Note that the ring extension k[u, t, d]σ = k[t, d] ⊆ k[u, t, d] satisfies the condition

(2.11). It also satisfies the condition (2.13), due to Proposition 19. We may therefore

apply Lemma 20 to conclude that T2 ≈ spec(k[t, d]), with p ∈ spec(k[t, d]) corresponding

to 〈p〉 /A.

T3n: Let n ≥ 1. We have T3n ≈ spec(A(n)/〈xn〉). By Corollary 104, we in turn have

spec(A(n)/〈xn〉) ≈ spec(k[t±]). Let p ∈ spec(k[t±]), and let us follow it back to T3n. In
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Corollary 104, p corresponds to

⊕
m∈Z

(〈πnm〉+ 〈p〉)vm / Aut/〈rn〉,

which pulls back to ⊕
m∈Z

(〈πnm, rn〉+ 〈p〉)vm / Aut. (3.58)

Applying Lemma 143 to pull back further is not trivial this time, so we instead reference

Lemma 24 to see that the pullback of (3.58) is

⊕
m∈Z

(〈πnm, rn〉+ 〈p ∩ k[t]〉)vm / A,

which is another way of writing

〈πnmvm | − n ≤ m ≤ n〉+ 〈rn〉+ 〈p ∩ k[t]〉 / A.

�

With this description of the prime ideals, we can answer some questions about the algebra

A. The notion of a noetherian UFD was introduced in [10]. A ring A is said to be a

noetherian UFD if it is a noetherian domain in which every nonzero prime ideal contains

a nonzero principal prime ideal, and in which every height one prime ideal is completely

prime.

Corollary 108: The algebra A is a noetherian UFD.

Proof: Having just listed all the prime ideals of A, we simply check off the needed

conditions:
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• A is a noetherian domain.

• Every nonzero prime ideal of A contains a nonzero principal prime ideal. (Here a

principal ideal is one generated by a single normal element). Proof: For T1 and T2

this is obvious. For P ∈ T3n, n ≥ 1, note that P contains 〈rn〉 ∈ T2.

• Height one primes of A are completely prime. Proof: Since 〈rn〉 is properly con-

tained in any P ∈ T3n for n ≥ 1, the primes in T3n are not height one. We check that

all the other primes are completely prime. Suppose P ∈ T2. Then P is generated in

the commutative coefficient ring k[u, t, d] of the GWA A = k[u, t, d][x, y;σ, z] and

it does not contain z, so Proposition 12 shows that A/P is a GWA over a domain,

and hence a domain. For P = 〈u〉 + 〈p〉 ∈ T1, A/P is k[u11, u12, u21]/p, which is a

domain.

�

Since A is noetherian, every closed subset of spec(A) is a finite union of irreducible closed

subsets. The topology of spec(A) is therefore known if all inclusions of prime ideals are

known. We address in the following proposition those inclusions that are not already

expressed in Theorem 105.

Proposition 109: The inclusions among the prime ideals of A are as follows:

1. Inclusions coming from the homeomorphisms T1 ≈ spec(k[u11, u12, u21]), T2 ≈

spec(k[t, d]), and T3n ≈ spec(k[t±]) for n ≥ 1.

2. Let P ∈ T1. No prime in T2 contains P , and no prime in T3n contains P for any

n.

3. Let P ∈ T2, say P = 〈p〉 with p ∈ spec(k[t, d]).
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(a) The set of primes in T1 that contain P is

{〈u〉+ 〈q〉 | q ∈ spec(k[u11, u12, u21]) and p ⊆ φ−1(q)},

where φ is the homomorphism φ : k[t, d] → k[u11, u12, u21] that sends t to u11

and d to u12u21.

(b) Let n ≥ 1. The set of primes in T3n that contain P is

{〈πnmvm | − n ≤ m ≤ n〉+〈rn〉+〈q ∩ k[t]〉 | q ∈ spec(k[t±]) and p ⊆ η−1
n (q)},

where ηn is the homomorphism ηn : k[t±, d]→ k[t±] that sends t to t and d to

−q2n
(q2n+1)2

t2.

4. Let n ≥ 1 and let P ∈ T3n, say

P = 〈πnmvm | − n ≤ m ≤ n〉+ 〈rn〉+ 〈p ∩ k[t]〉

with p ∈ spec(k[t±]). If p = 0, then the only prime in T1 containing P is

〈u11, u22, u21, u12〉.

If p 6= 0, then no prime in T1 or T2 contains P , and no prime in T3n′ contains P

for any n′ 6= n.

Proof: The inclusions of assertion 1 are addressed by the homeomorphisms in Theorem

105.

2: If P ∈ T1, then u ∈ P . If Q ∈ T2 then Q0 (using the notation of Definition 13) is
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generated in k[u, t, d] by elements of k[t, d], so Q cannot contain u and therefore cannot

contain P . If Q ∈ T3n, then by definition Q cannot contain u and therefore cannot

contain P .

3a: Assume the setup of assertion 3a. Suppose that Q ∈ T1, and write it as 〈u〉+ 〈q〉

with q ∈ spec(k[u11, u12, u21]). Then P ⊆ Q if and only if 〈u〉 + 〈p〉 ⊆ Q, which holds

if and only if (〈u〉 + 〈p〉)/〈u〉 ⊆ Q/〈u〉 holds in A/〈u〉. The following composite is the

homomorphism φ that we defined:

k[t, d] ↪→ A � A/〈u〉 ∼= k[u11, u12, u21]

p Q 7→ Q/〈u〉 ↔ q.

We see that P ⊆ Q if and only if φ(p) ⊆ q. This holds if and only if p ⊆ φ−1(q), so

assertion 3a is proven.

3b: Assume the setup of assertion 3b. Suppose that Q ∈ T3n, and write it as

〈πnmvm | − n ≤ m ≤ n〉+ 〈rn〉+ 〈q ∩ k[t]〉

with q ∈ spec(k[t±]). Then

Q =
⊕
m∈Z

(〈πnm, rn〉+ 〈q ∩ k[t]〉)vm;

the inclusion ⊇ is clear and the inclusion ⊆ follows from the fact that the right hand

side is an ideal of A, which can be verified by using (3.18) and (3.19) to check that the

conditions of Proposition 18 are met. In particular, Q0 = 〈πn0 , rn〉 + 〈q ∩ k[t]〉. Now

118



Applications Chapter 3

assertion 3b is proven as follows:

P ⊆ Q ⇔ p ⊆ Q0 = 〈πn0 , rn〉+ 〈q ∩ k[t]〉

⇔ p ⊆ 〈rn〉k[t,d] + 〈q ∩ k[t]〉 (3.59)

⇔ p ⊆ 〈rn〉k[t±,d] + 〈q〉 (3.60)

⇔ (〈rn〉k[t±,d] + 〈p〉k[t±,d])/〈rn〉k[t±,d] ⊆ (〈rn〉k[t±,d] + 〈q〉)/〈rn〉k[t±,d]

⇔ ηn(p) ⊆ q (3.61)

⇔ p ⊆ η−1
n (q).

Line (3.59) is due to the fact that Q0 ∩ k[t, d] = 〈rn〉k[t,d] + 〈q ∩ k[t]〉. Line (3.60) is due

to the fact that k[t, d] mod the ideal 〈rn〉k[t,d] + 〈q ∩ k[t]〉 is t-torsionfree. Line (3.61) is

due to the fact that ηn is the following composite:

k[t±, d] � k[t±, d]/〈rn〉 ∼= k[t±]

〈q〉+ 〈rn〉 ↔ q.

4: Assume the setup of assertion 4. Let Q ∈ T1 such that P ⊆ Q, say Q = 〈u22〉+ 〈q〉

with q ∈ spec(k[u11, u12, u21]). Then Q contains a power of x and a power of y, so q con-

tains u21 and u12. Q also contains rn, which is equivalent to q2nu11 modulo 〈u22, u12, u21〉.

So Q contains, and therefore equals, the maximal ideal 〈u11, u22, u21, u12〉. The contain-

ment P ⊆ 〈u11, u22, u21, u12〉 clearly holds if p = 0. But if p is nonzero, then it contains

some polynomial in t with nonzero constant term, which is not in 〈u11, u22, u21, u12〉.

Thus, nothing in T1 contains P when p 6= 0.

If Q ∈ T2, then Q =
⊕

m∈ZQ0vm does not contain any power of x. So nothing in T2

contains P .
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Now suppose that Q ∈ T3n′ with n′ 6= n, and suppose for the sake of contradiction that

P ⊆ Q. Then Q contains rn and rn′ . Since n 6= n′, it follows that t, d ∈ Q. Write Q as

Q =
〈
πn
′

mvm | − n′ ≤ m ≤ n′
〉

+ 〈rn′〉+ 〈q ∩ k[t]〉

with q ∈ spec(k[t±]). Since t ∈ Q, we must have q = 0. We have a contradiction:

d ∈ Q0 =
〈
πn
′

0 , rn′
〉
/ k[u, t, d]. �

The prime spectrum of a ring A is said to satisfy normal separation if for every pair of

distinct comparable primes P ( Q, the ideal Q/P of A/P contains a nonzero normal

element. A ring is said to be catenary when for every pair of prime ideals P ⊆ Q, all

saturated chains of prime ideals between P and Q have the same length. An algebra A

is said to satisfy Tauvel’s height formula if height(P ) + GK(A/P ) = GK(A) for every

prime ideal P of A. These three properties have been shown to be related under certain

homological and GK dimension hypotheses; see [8, II.9.5] for details. We will show that

all three properties fail to hold for the algebra A.

Proposition 110: The algebra A does not have normal separation.

Proof: Let P = 〈π1
0, x, y, r1〉 and let Q = 〈r1〉, both prime ideals of A. We will show

that no element of P \Q is normal modulo Q. Note that k[u, t, d]/〈r1〉 ∼= k[u, t], and let

R = k[u, t]. Using Proposition 12, A/Q is isomorphic to

W := R[x, y;σ, z = −q−4s1
1s

1
2],

120



Applications Chapter 3

and P/Q becomes

P :=
〈
π1

0, x, y
〉

=
⊕
m>0

Rym ⊕
〈
s1

1

〉
R
⊕
⊕
m>0

Rxm.

By Proposition 11, the nonzero normal elements of W are the σ-eigenvectors in R. Thus,

they are all of the form uif(t) for some polynomial f(t) and some i ∈ Z≥0. But P cannot

contain such elements, since P 0 = 〈s1
1〉R. �

Proposition 111: The algebra A is not catenary.

Proof: Let n ≥ 1. The information in Proposition 109 implies that the following two

chains of primes are saturated:

〈rn〉

〈rn, u22〉

〈u11, u22, u21〉

〈πnmvm | − n ≤ m ≤ n〉+ 〈rn〉

〈u11, u22, u21, u12〉

�

Proposition 112: The algebra A does not satisfy Tauvel’s height formula.

Proof: Fix any n ≥ 1 and consider the prime ideal P = 〈πnmvm | − n ≤ m ≤ n〉 + 〈rn〉.

The information in Proposition 109 implies that heightP = 2. Since P contains xn and

yn, the algebra A/P is finitely generated as a k[u, t, d]-module. Let R be the image of
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k[u, t, d] in A/P . Using [32, 8.2.9(ii)] and [32, 8.2.13], we have

GK(A/P ) = GK(R) = GK(Ru),

where the subscript indicates localization. Note that P0 = 〈πn0 , rn〉. We have

Ru
∼= (R/P0)u ∼= k[u±, t]/〈πn0 〉 ∼=

n∏
j=1

k[u±, t]/
〈
snj
〉 ∼= k[u±]×n

by the Chinese remainder theorem. Viewing the latter product of rings as a direct sum

of left regular modules, we may apply [32, 8.3.2(i)] to obtain

GK(Ru) = GK(k[u±]) = 1.

Hence GK(A/P ) = 1, and we have a violation of the height formula:

ht(P ) + GK(A/P ) = 2 + 1 6= GK(A) = 4. �

One reason to compute the prime spectrum of an algebra is to make progress towards the

lofty goal of knowing its complete representation theory. The idea is to make progress

by trying to know the algebra’s primitive ideals, those ideals that arise as annihilators of

irreducible representations. Since primitive ideals are prime, one approach is to determine

the prime spectrum of the algebra and then attempt to locate the primitives living in

it. The Dixmier-Moeglin equivalence, when it holds, provides a topological criterion for

picking out primitives from the spectrum; see [8, II.7-II.8] for definitions.

Theorem 113: The algebra A satisfies the Dixmier-Moeglin equivalence, and its primi-
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tive ideals are as follows:

• The primitive ideals in T1 are 〈u〉+ 〈p〉 for p ∈ max spec k[u11, u12, u21].

• The primitive ideals in T2 are 〈p〉 for p ∈ max spec k[t, d].

• The primitive ideals in T3n are 〈πnmvm | − n ≤ m ≤ n〉+ 〈rn〉+ 〈p ∩ k[t]〉 for n ≥ 1

and p ∈ max spec k[t±].

Proof: We first observe, by using Proposition 161, that A satisfies the Nullstellensatz

over k. It then follows from [8, II.7.15] that the following implications hold for all prime

ideals of A:

locally closed =⇒ primitive =⇒ rational.

To establish the Dixmier-Moeglin equivalence for A, it remains to close the loop and

show that rational primes are locally closed. We shall deal separately with the three

different types of primes identified in Theorem 105.

T1: Suppose that P ∈ T1, say P = 〈u〉 + 〈p〉 with p ∈ spec(k[u11, u12, u21]). Then

A/P ∼= k[u11, u12, u21]/p. It follows that P is rational if and only if p is a maximal ideal

of k[u11, u12, u21]. In this case P will be maximal and therefore locally closed. Thus,

rational primes in T1 are locally closed.

T2: Suppose that P ∈ T2, say P = 〈p〉 with p ∈ spec(k[t, d]). Then, using Proposition

12, A/P is a GWA R[x, y;σ, z], where R := k[u, t, d]/〈p〉. Since z = d + q−2tu − q−4u2

is regular in R, Proposition 5 tells us that R[x, y;σ, z] embeds into the skew Laurent

polynomial algebra R[x±;σ]. Let K denote the fraction field of R. The skew Laurent

polynomial algebra R[x±;σ] embeds into the skew Laurent series algebra K((x±;σ)).

(We are abusing notation and writing σ for the induced automorphism of K.) Since the
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skew Laurent series algebra is a division ring, we obtain an induced embedding of the

Goldie quotient ring Fract(A/P ) into it:

Fract(A/P ) ↪→ K((x±;σ)).

For something to be in the center of Fract(A/P ) ∼= Fract(R[x, y;σ, z]), it must at least

commute with R and x. This is sufficient to place it in the center of K((x±;σ)), so

Z(Fract(A/P )) ∼= Z(K((x±;σ))) ∩ Fract(A/P ). (3.62)

According to Proposition 9, the center of K((x±;σ)) is the fixed subfield Kσ. Since K is

wholly contained in Z(Fract(A/P )) ∼= Z(Fract(R[x, y;σ, z])), (3.62) becomes

Z(Fract(A/P )) ∼= Kσ.

Now to compute Kσ. Since

R = k[u, t, d]/〈p〉 ∼= (k[t, d]/p)[u],

K is the rational function field L(u), where L is the fraction field of k[t, d]/p.

Claim: Kσ = L.

Proof: Observe that σ fixes L and sends u to q2u. Consider any nonzero f/g ∈

Kσ = L(u)σ, where f, g ∈ L[u] are coprime. We have σ(f)g = fσ(g). Since f and

g are coprime, it follows that f | σ(f). Similarly, since σ(f) and σ(g) are coprime,

σ(f) | f . It follows that σ(f) = αf for some α ∈ L. From σ(f)g = fσ(g) it follows

that also σ(g) = αg. We have an eigenspace decomposition for the action of σ as
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an L-linear operator on L[u]; it is
⊕

i≥0 Lu
i, with distinct eigenvalues since q is

not a root of unity. Since f and g are σ-eigenvectors with the same eigenvalue α,

there is some i ≥ 0 such that f = f0u
i and g = g0u

i, where f0, g0 ∈ L. Thus,

f/g = f0/g0 ∈ L.

We have found that

Z(Fract(A/P )) ∼= L.

The fraction field L of k[t, d]/p is algebraic over k if and only if p / k[t, d] is maximal.

Thus, P is rational if and only if p is maximal.

Now assume that P is rational and hence that p is maximal. For any q ∈ spec(k[t±]) and

any n ≥ 1, define

Qq,n := 〈πnmvm | − n ≤ m ≤ n〉+ 〈rn〉+ 〈q ∩ k[t]〉 ∈ T3n.

If no Qq,n contains P , then by using Proposition 109 we can see that {P} = V (P ) ∩

(spec(A) \ V (u)), so P is locally closed. Suppose, on the other hand, that Qq,n contains

P for some q ∈ spec(k[t±]) and n ≥ 1. We claim that this can occur for at most one n.

Claim: If Qq,n and Qq′,n′ both contain P , then n = n′.

Proof: According to assertion 3b of Proposition 109, we have

p ⊆ η−1
n (q) and p ⊆ η−1

n′ (q′),

where ηn, ηn′ are the homomorphisms defined there. Since p generates a maximal

ideal of k[t±, d], this forces

η−1
n (q) = η−1

n′ (q′).

125



Applications Chapter 3

We have

d+
q2n

(q2n + 1)2
t2, d+

q2n′

(q2n′ + 1)2
t2 ∈ η−1

n (q) = η−1
n′ (q′),

so (
q2n

(q2n + 1)2
− q2n′

(q2n′ + 1)2

)
t2 ∈ η−1

n (q) = η−1
n′ (q′).

Since we cannot have η−1
n (q) = k[t±, d], the quantity in parentheses must vanish.

This leads to the equation

0 = q2n(q2n′ + 1)2 − q2n′(q2n + 1)2 = (qn
′ − qn)(qn

′
+ qn)(qn+n′ − 1)(qn+n′ + 1).

Since q is not a root of unity, it follows that n = n′.

Hence {P} = V (P ) ∩ (spec(A) \ (V (u) ∪ V (xn))), and again we see that P is locally

closed. Thus we have shown that all rational primes in T2 are locally closed.

T3n: Suppose that n ≥ 1 and P ∈ T3n, say P = 〈πnmvm | − n ≤ m ≤ n〉 + 〈rn〉 +

〈p ∩ k[t]〉 with p ∈ spec(k[t±]). We will show that if P is rational, then p must be

maximal. Assume that P is rational, but p is not maximal (i.e. p = 0). Then t ∈

Z(Fract(A/P )) is algebraic over k, so for some nonzero polynomial f(T ) ∈ k[T ] we must

have f(t) = 0 ∈ Z(Fract(A/P )). For the element t of A, this means that f(t) ∈ P . Since

P =
⊕
m∈Z

〈πnm, rn〉vm,

we have f(t) ∈ 〈πn0 , rn〉k[u,t,d]. Pushing this fact into k[u, t, d]/〈rn〉 ∼= k[u, t] gives

f(t) ∈ 〈πn0 〉k[u,t]
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which is clearly false.

Thus we have shown that when P is rational, p/k[t±] must be maximal. Using Proposition

109, we see that in this case {P} = V (P ). So all rational primes in T3n are locally closed.

We have now shown that all rational prime ideals of A are locally closed, and we conclude

that A satisfies the Dixmier-Moeglin equivalence. Further, we have pinpointed which

primes are rational in T1 and T2. As for T3n, we have found for P = 〈rn〉 + 〈p ∩ k[t]〉 +

〈πnmvm | − n ≤ m ≤ n〉 that

P rational =⇒ p maximal =⇒ P locally closed.

Putting this information together and applying the Dixmier-Moeglin equivalence, we

conclude that the primitive ideals of A are as stated in the theorem. �

There is a classical theorem by Duflo (see [15]) which states that for the universal en-

veloping algebra of a semisimple Lie algebra, every primitive ideal is the annihilator of

some highest weight module. An analogue of this property for GWAs was considered

in [33]. We will investigate the extent to which this property holds for A.

Definition 114: Let W = R[x, y;σ, z] be a GWA over a commutative k-algebra R. A

highest weight left W -module is defined to be a weight module WV for which there is

some m ∈ max specR such that annm V generates V and is annihilated by x.

Definition 115: Let R be a commutative k-algebra. A GWA W = R[x, y;σ, z] is said

to have the Duflo property when every primitive ideal of W is the annihilator of a simple

highest weight left W -module.
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By Proposition 3, a GWA over a commutative ring is isomorphic to its own opposite ring

(via the map that swaps x and y). So the Duflo property is left-right symmetric, despite

the appearance of the word “left” in the definition.

Proposition 116: The algebra A, viewed as a GWA as in (3.8), does not have the Duflo

property.

Proof: Let P = 〈u, t, y, x− 1〉, a primitive ideal of A by Theorem 113. Any nonzero left

A-module annihilated by P has x acting as the identity map. Such a module could not

be a highest weight module. �

What seems to be causing problems is the vanishing of u, which breaks down the rigid

GWA structure. Let us shift our attention to the localization Au. Make the definitions

in (3.14) and (3.17) using the same notation that appears there, except with everything

taking place in Au. We will write the primitive spectrum and then show that the Duflo

property almost holds.

Proposition 117: The algebra Au satisfies the Dixmier-Moeglin equivalence and its

primitive spectrum is as follows:

prim(Au) = {〈p〉 | p ∈ max spec k[t, d]}t⊔
n≥1

{〈p ∩ k[t]〉+ 〈rn〉+ 〈πnmvm | − n ≤ m ≤ n〉 | p ∈ max spec k[t±]}.

Proof: By Proposition 161, Au satisfies the nullstellensatz over k. Since A satisfies the

Dixmier-Moeglin equivalence and Au satisfies the nullstellensatz over k, we may apply

Proposition 162 to conclude that Au satisfies the Dixmier-Moeglin equivalence and that

its primitive ideals are simply the extensions of primitive ideals of A that do not contain
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u. �

Proposition 118: Let W = R[x, y;σ, z] be a GWA over a commutative k-algebra R.

Let m be a maximal ideal of R with infinite σ-orbit. If n(m) < ∞, then Vm is a simple

highest weight module.

Proof: Of course Vm is a simple left W -module by its construction. This makes it

automatically a weight module, as observed at the beginning of section 2.5.2. Let ei

denote the image of vi in Vm for i ∈ Z. Now

Vm =
⊕

−n′(m)<i<n(m)

Rei.

If n(m) <∞, then annσn(m)−1(m) Vm = Ren(m)−1 is nonzero and it is annihilated by x. �

Theorem 119: The algebra Au almost has the Duflo property, but fails only due to the

primitive ideal 〈t, d〉. That is,

prim(Au) \ 〈t, d〉 = {annihilators of simple highest weight Au-modules}.

Proof: From Proposition 117 we know all the primitive ideals. Consider a primitive ideal

P of the form P = 〈p〉, where p ∈ max spec k[t, d]. Assume that p 6= 〈t, d〉. Consider

the obvious isomorphism k[u±, t, d]/〈p〉 ∼= K[u±], where K is the field k[t, d]/p. Define

A := Au/P = K[u±][x, y;σ, z]. Note that if we can construct a simple faithful highest

weight left A-module, then as an Au-module it would be a simple highest weight module

with annihilator P .

Claim: For some m ∈ max specK[u±], we have n(m) = 1 and n′(m) =∞.
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Proof: Suppose to the contrary that all m ∈ max specK[u±] for which n(m) = 1

(i.e. for which z ∈ m) have n′(m) < ∞. Since z is not a unit in K[u±], there is

at least some m for which n(m) = 1. Fix such an m. Note that z can only be in

finitely many maximal ideals (at most two, in fact). Since m has infinite σ-orbit

(Proposition 82), there is some minimum ` ∈ Z such that z ∈ σ`(m). By our

supposition, we have n′ := n′(σ`(m)) <∞. Thus σn
′
(z) ∈ σ`(m), contradicting the

minimality of `.

Let m be as in the claim. Since n(m) < ∞, the simple module Vm is highest weight

by Proposition 118 (as noted in the claim, Proposition 82 tells us that m has infinite

σ-orbit). Proposition 66 provides a description of the annihilator of Vm. Considering

that n′(m) =∞ and that an infinite intersection of maximal ideals in a PID is zero, we

see that Vm is faithful. Thus P is the annihilator of a simple highest weight Au-module.

Now let P be a primitive ideal of the form P = 〈p ∩ k[t]〉+〈rn〉+〈πnmvm | − n ≤ m ≤ n〉,

where p ∈ max spec k[t±] and n ≥ 1. Using Proposition 12, we have that Au/(〈p ∩ k[t]〉+

〈rn〉) is isomorphic to A := K[u±][x, y;σ, z = −q−4snn+1s
n
1 ], where K is the field

k[t]/〈p ∩ k[t]〉 ∼= k[t±]/p and where we are reusing the notation snj to refer to the im-

ages of the snj in K[u±]. We must find a simple highest weight left A-module with

annihilator
⊕

m∈Z 〈πnm〉K[u±]vm = 〈πnmvm | − n ≤ m ≤ n〉 / A. Let m = 〈snn〉, a maximal

ideal of K[u±] with infinite σ-orbit. Given the observations (3.18) and (3.19) it is easy

to see that n′(m) = 1 and n(m) = n. Using the Chinese remainder theorem,

〈πnm〉 =

〈∏
j∈J n

m

snj

〉
=
⋂
j∈J n

m

〈
snj
〉

=
⋂
j∈J n

m

σn−j(m) =
⋂
{σj(m) | n− j ∈ J n

m}

=
⋂
{σj(m) | 0 ≤ j < n and m ≤ j < n+m}
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form ∈ Z. This matches the description of J(m)m in Proposition 66, so Vm has annihilator⊕
m∈Z 〈πnm〉vm, as an A-module. It follows that P is the annihilator of Vm as an Au-

module, which is a highest weight module because n(m) = n (Proposition 118).

We now argue that 〈t, d〉Au
cannot be the annihilator of a highest weight module.

If it were, then one would have a nonzero highest weight module over Au/〈t, d〉 ∼=

k[u±][x, y;σ, z = −q−4u2]. In such a module, there is a nonzero element annihilated

by x, and hence by yx = z. This is not possible because z is a unit. �

3.1.5 Prime Spectrum - New Approach

We demonstrate here how the laborious part of section 3.1.4 can be greatly simplified by

using the theory of section 2.6.

We first get some notation and calculation in place. Let Au again denote the 2× 2 REA

localized at the set of powers of u, a GWA k[t, d, u±][x, y;σ, z] as before. For n > 0 and

m ∈ Z, define πnm as in (3.17). For convenience in this section, we write out πnm in the

following format:

πnm =
∏{(

u− q−2j

q−2n + 1
t

)
| 0 ≤ j < n and m ≤ j < n+m

}
.

For n > 0 and t ∈ spec(k[t±]), define

P (n, t) = 〈πnmvm |m ∈ Z〉+ 〈rn〉+ 〈t ∩ k[t]〉 / Au,

where rn is defined just as in (3.14).
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Proposition 120: Let n be a positive integer. Assume that A is a k-algebra and d, t, u ∈

A with u being a unit. Then the ideal of A generated by d+tu−u2 and d+q−2ntu−q−4nu2

contains

(q2n + 1)2d+ q2nt2.

Proof: Define z1 = d + tu − u2, z2 = d + q−2ntu − q−4nu2, and I = 〈z1, z2〉. Now

I 3 u−1(z1− z2) = (1− q−2n)t− (1− q−4n)u, so u ≡ (1 + q−2n)−1t modulo I. Substituting

for u in z1 then gives I 3 d+ ((1 + q−2n)−1 − (1 + q−2n)−2)t2 = d+ q2n

(q2n+1)2
t. �

Theorem 121: As a set, spec(Au) = T2 ∪ T3, where T2 = {〈p〉 | p ∈ spec(k[t, d])} and

T3 =
{
P (n, t) | n ≥ 1 and t ∈ spec(k[t±])

}
.

Proof: Since q is not a root of unity, the linear operator a 7→ u−1au has the graded com-

ponents of Au as its distinct eigenspaces. It follows that every ideal of Au is homogeneous

(Proposition 81). Let Z = k[t, d].

Since Z is central, the contraction P ∩ Z of any prime P of Au is a prime ideal of Z.

Thus

spec(Au) =
⋃

p∈spec(Z)

Fp,

where Fp := {P ∈ spec(Au) | P ∩ Z = p} = {P ∈ gr-spec(Au) | P ∩ Z = p}.

Fix a p ∈ spec(Z). Define Z ′ = Z/p and let Z ′′ denote the fraction field of Z ′. We identify

A′ := Au/〈p〉 with Z ′[u±][x, y;σ, z] using Proposition 12. We identify the localization A′′

of A′ at Z ′ \ {0} with Z ′′[u±][x, y;σ, z], using Proposition 22. Now Fp is in bijection with

gr-spec(A′′) via pullback along the quotient and localization maps A→ A′ → A′′.
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By Proposition 82 and the fact that q is not a root of unity, every maximal ideal of

Z ′′[u±] has infinite σ-orbit. Thus we may apply Corollary 71 to A′′. (To apply these

things, view A′′ as an algebra over the field Z ′′, so that the base ring Z ′′[u±] is an

affine algebra). This gives gr-spec(A′′) = {0} ∪ {J(m) | m ∈ M ′
II}, where M ′

II = {m ∈

max spec(Z ′′[u±]) | σ(z), σ−n+1(z) ∈ m for some n > 0}.

If M ′
II 6= ∅, then Proposition 120 tells us that, for some n > 0, the image of rn lies in

some maximal ideal of Z ′′[u±]. Since also rn ∈ Z, it would follow that rn vanishes in the

field Z ′′. In other words, if M ′
II 6= ∅, then rn ∈ p for some n > 0. So if rn /∈ p for all

n > 0, then Fp = {〈p〉}.

If rn ∈ p and also t ∈ p, then d ∈ p and p = 〈t, d〉Z . In this case, z becomes a unit in

Z ′′[u±]. Then obviously M ′
II = ∅ and we see that F〈t,d〉 = {〈t, d〉}.

Suppose now that rn ∈ p for some n > 0, and that t /∈ p. Using the fact that Z/〈rn〉

is isomorphic to k[t] by an isomorphism that fixes t, we obtain the following bijective

correspondence:

{p ∈ spec(Z) | rn ∈ p and t /∈ p} ∼= spec(k[t±])

p 7→ 〈p ∩ k[t]〉k[t±]

〈t ∩ k[t]〉Z + 〈rn〉Z ←[ t.

(3.63)

Thus we can express p as 〈rn〉+ 〈t ∩ k[t]〉, where t = 〈p ∩ k[t]〉k[t±] ∈ spec(k[t±]).

Fix m ∈ M ′
II. Knowing that the image of rn vanishes in Z ′′[u±] allows us to rewrite
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σ(z), σ−n+1(z) ∈ m such that we can factor them:

σ(z) = −q2n(q2n + 1)−2t2 + tu− u2

= −
(
u− (q−2n + 1)−1t

) (
u− (q2n + 1)−1t

)
(3.64)

σ−n+1(z) = −q2n(q2n + 1)−2t2 + q−2ntu− q−4nu2

= −q−4n
(
u− (q−2n + 1)−1t

) (
u− q2n(q−2n + 1)−1t

)
.

It follows that m = 〈u− αt〉 where either α = (q−2n + 1)−1 or α = (q2n + 1)−1 =

q2n(q−2n + 1)−1. The latter case is impossible, for it leads to

0 = q6n + q4n − q2n − 1 = (q2n + 1)2(q2n − 1).

Hence m = 〈u− (q−2n + 1)−1t〉. So gr-spec(A′′) = {0, J(〈u− (q−2n + 1)−1t〉)}. Let P ′′ =

J(〈u− (q−2n + 1)−1t〉). Let P ′ be the pullback of P ′′ to A′, and let P be the pullback to

A. Applying the Chinese Remainder Theorem, we get from Proposition 66 that

P ′′m =
〈∏{(

u− q−2j(q−2n + 1)−1t
)
| 0 ≤ j < n and m ≤ j < n+m

}〉
Z′′[u±]

for m ∈ Z. Contracting these ideals of Z ′′[u±] to Z ′[u±], Lemma 24 tells us that

P ′m =
〈∏{(

u− q−2j(q−2n + 1)−1t
)
| 0 ≤ j < n and m ≤ j < n+m

}〉
Z′[u±]

for m ∈ Z. Hence

Pm = 〈πnm〉+ 〈p〉 = 〈πnm〉+ 〈rn〉+ 〈t ∩ k[t]〉.

for m ∈ Z. It follows that P = P (n, t). Thus we have shown that Fp = {〈p〉, P (n, t =

〈p ∩ k[t]〉k[t±])}.
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It is now clear that spec(Au) ⊆ T2∪T3. If p ∈ spec(Z) then 〈p〉 ∈ Fp, so T2 ⊆ spec(Au). If

n ≥ 1 and t ∈ spec(k[t±]), then P (n, t) ∈ Fp, where p = 〈p ∩ k[t]〉k[t±]. Thus spec(Au) =

T2 ∪ T3. �

3.1.6 The Semiclassical Limit

We now explore the semiclassical limit A1 of A. Assume throughout this section that k

has characteristic zero.

Remark 122: In this development, we defined the k-algebra A = Aq(M2) in terms of a

fixed non-root-of-unity q ∈ k. Another approach would be to start with a k[τ±]-algebra

and then specialize to τ = q. To do this, let Â be the k[τ±]-algebra generated by uij

for i, j ∈ {1, 2}, with the relations coming from a formal replacement of the q in (3.5)

by τ . Then, just as in Proposition 86, we observe that Â is a GWA over the polynomial

ring k[τ±][u22, u11, z] and hence that Â is a domain (Corollary 6). In particular, τ − 1

is regular in Â. It is clear from an inspection of the relations for Â that Â/〈τ − 1〉 is

commutative; hence it is a semiclassical limit Â1 (that is, it has a Poisson bracket as in

Definition 75). And the algebra A may be recovered by forming the quotient Â/〈τ − q〉

and then viewing it as a k-algebra. For convenience of notation and terminology, we shall

denote Â1 by A1 and refer to it as “the semiclassical limit of A.”

Let us describe A1. As a k-algebra, it is just the polynomial algebra k[u11, u22, u21, u12].
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One easily computes the Poisson bracket:

{u11, u22} = 0 {u11, u21} = 2u21u22 {u11, u12} = −2u12u22

{u22, u21} = −2u21u22 {u22, u12} = 2u12u22

{u21, u12} = 2u22(u11 − u22).

Since a Poisson bracket is determined by the values it takes on algebra generators, this

data determines it. But there is a better way to describe what is going on. Just as we

understood A by viewing it as a GWA, we can understand A1 by viewing it as a Poisson

GWA.

Let us apply Theorem 80 to the 2 × 2 REA. The k[τ±]-algebra Â of Remark 122 is a

GWA k[τ±][u22, u11, z][x, y;σ, z], where σ is defined just as in (3.6), but with the q formally

replaced by τ . As with A, a change of variables like (3.7) gives a simpler expression for

Â as a GWA,

Â ∼= k[τ±][u, t, d][x, y;σ, z],

where z = d + τ−2tu − τ−4u2 and σ is defined just as in (3.9), but with the q formally

replaced by τ . Theorem 80 tells us that Â1 is

k[u, t, d][x, y;α, z]P , (3.65)

where k[u, t, d] has a trivial Poisson bracket, the element z is d + tu − u2, and α is the
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derivation of k[u, t, d] given by

α(u) =
σ(u)− u
τ − 1

∣∣
τ=1

=
τ 2u− u
τ − 1

∣∣
τ=1

= (τ + 1)u|τ=1 = 2u

α(t) =
σ(t)− t
τ − 1

∣∣
τ=1

= 0

α(d) =
σ(d)− t
τ − 1

∣∣
τ=1

= 0.

As mentioned in Remark 122, we continue to simply refer to Â1 as A1 and as “the

semiclassical limit of A.”

The Poisson Prime Spectrum of A1

Let A be a Poisson algebra. We will denote by ZP (A) the Poisson center of A. A Poisson

ideal P of A is an ideal of A which is also a Lie ideal (i.e. {A,P} ⊆ P ). A proper

Poisson ideal P is called Poisson-prime if, for all Poisson ideals I and J , one has IJ ⊆ P

only if I ⊆ P or J ⊆ P . A Poisson ideal which is also a prime ideal obviously must be

Poisson-prime. When A is noetherian, Poisson-prime ideals are prime (see [19, Lemma

6.2]). In this case we may use the terminology “Poisson prime” (omitting the hyphen)

without ambiguity.

The set of Poisson prime ideals of A is denoted by P. spec(A), and it is given a topology

in which closed sets are those of the form

VP (I) := {P ∈ P. spec(A) | P ⊇ I}

for ideals I of A. One obtains the same closed sets by considering only Poisson ideals

for I, since replacing I by the Poisson ideal it generates yields the same VP (I).
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The following facts are standard:

Proposition 123: The quotient of a Poisson algebra A by a Poisson ideal I is again a

Poisson algebra, with a well-defined induced Poisson bracket. Pullback of ideals provides

a bijective correspondence between Poisson ideals of A/I and the Poisson ideals of A

that contain I, and it provides a homeomorphism between P. spec(A/I) and the subset of

P. spec(A) consisting of Poisson primes that contain I.

Proposition 124: The localization of a Poisson algebra A at a multiplicative set S

is again a Poisson algebra with an induced Poisson bracket. Pullback of prime ideals

provides a homeomorphism between P. spec(AS−1) and the subset of P. spec(A) consisting

of Poisson primes that are disjoint from S.

If α is a Poisson derivation of a Poisson algebra R and J is a Poisson ideal of R such that

α(J) ⊆ J , then α induces a derivation α̂ of the quotient R/J (Proposition 149), and it is

clear that α̂ is a Poisson derivation. We have an an obvious analogue to Proposition 12:

Proposition 125: Let W = R[x, y;α, z]P be a PGWA, with J / R a Poisson ideal such

that α(J) ⊆ J . Let I / W be generated by J . Then I is a Poisson ideal and there is a

canonical isomorphism

W/I ∼= (R/J)[x, y; α̂, z + J ]P , (3.66)

where α̂ is the Poisson derivation of R/J induced by α.

Proof: Since α(J) ⊆ J , we have {vm, J} ⊆ I for m ∈ Z. Therefore {W,J} ⊆ I, and it

follows easily that I is a Poisson ideal of W . The rest of the Proposition is routine. �

We also have an analogue to Propositions 2 and 5. For this we refer to the notion of a
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Poisson polynomial ring R[x;α]P developed in [36], and the notion of Poisson Laurent

polynomial ring R[x±;α]P that arises by localization. Our convention differs from [36]

in that R[x;α]P stands for what is called R[x;−α]P in [36]. We will later also use the

notation R(x;α)P to refer to the “Poisson function field” (this is again just constructed

by applying localization to Poisson polynomial rings).

Proposition 126: Let R[x, y;α, z]P be a Poisson GWA. The homomorphisms φ, φ′ :

R[x, y;α, z]P → R[x±;α]P of Proposition 2 are Poisson algebra homomorphisms. They

are injective when z is regular and they are isomorphisms when z is a unit.

Finally, we put down the obvious Poisson versions of Propositions 21 and 22:

Proposition 127: Let W = R[x, y;α, z]P be a Poisson GWA with z regular. Then the

localization of W at the multiplicative set S := {1, x, x2, . . .} is given by the Poisson

algebra homomorphism φ : W → R[x±;α]P of Proposition 126.

Proposition 128: Let W = R[x, y;α, z]P be a Poisson GWA and let S ⊆ R be a

multplicative set. Let α̂ be the derivation of RS−1 induced by α, and let ẑ be the image

of z in RS−1. The localization of W at S is given by the map φ : W → RS−1[x, y; α̂, ẑ]P

of Proposition 22, and this map is a Poisson algebra homomorphism.

It often happens that the prime spectrum of a quantized algebra lines up with the Poisson

prime spectrum of its semiclassical limit. “Lines up” here means only that there is

some bijection that matches up ideals that are expressed using the same notation; it is

difficult to find general theoretical grounds for such bijections. The pattern, however,

has been that a correspondence exists when the prime ideals of a quantized algebra

are all completely prime. Since Poisson prime ideals are in particular prime ideals of
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a commutative algebra, one would not expect them to ever accurately resemble non-

completely-prime primes of a noncommutative algebra. In the case of our REA, the

primes in T3n for n > 1 are not completely prime, and indeed we will see that they have

no analogue in P. spec(A). As for other primes of the REA, they will have analogous

Poisson primes.

For the rest of this section, fix the notation R = k[u, t, d]. Define the following subsets

of P. spec(A):

T P1 = {P ∈ P. spec(A1) | u ∈ P},

T P2 = {P ∈ P. spec(A1) | P = 〈P ∩ k[t, d]〉}, and

T P3,1 = {P ∈ P. spec(A1) | u, t /∈ P , x ∈ P}.

Theorem 129: Assume that char(k) = 0. The Poisson spectrum of the semiclassical

limit A1 of A is, as a set, the disjoint union of T P1 , T P2 , and T P3,1. Each of these subsets

is homeomorphic to a commutative prime spectrum as follows:

• spec(k[u11, u12, u21]) ≈ T P1 via p 7→ 〈u〉+ 〈p〉.

• spec(k[t, d]) ≈ T P2 via p 7→ 〈p〉.

• spec(k[t±]) ≈ T P3,1 via p 7→ 〈x, y, t− 2u〉+ 〈p ∩ k[t]〉.

Proof: Consider the partition of P. spec(A1) into subsets S1, . . . , S6 given by the follow-

ing tree, in which branches represent mutually exclusive possibilities:
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P ∈ P. spec(A1)

u ∈ P

P ∈ S1

u /∈ P

t, d ∈ P

P ∈ S2

d /∈ P , t ∈ P

P ∈ S3

t /∈ P

x /∈ P

d ∈ P

P ∈ S4

d /∈ P

P ∈ S5

x ∈ P

P ∈ S6

It is clear that S1 = T P1 and S6 = T P3,1. To show that {T P1 , T P2 , T P3,1} is a partition of

P. spec(A1). we can show that

T P2 = S2 ∪ S3 ∪ S4 ∪ S5. (3.67)

For the inclusion ⊆, consider a P = 〈p〉A1
∈ T P2 , where p ∈ spec(k[t, d]). Note that

P =
⊕

m∈Z 〈p〉Rvm (the inclusion ⊆ is clear, and ⊇ follows from the fact that the right

hand side is an ideal). Now it’s clear that u /∈ P , since u ∈ P ⇒ u ∈ P0 = 〈p〉R, and it’s

clear that x /∈ P , since P1 = 〈p〉R is proper. Hence P cannot be in S1 or S6, proving ⊆

in (3.67). For the reverse inclusion, we will show individually that each of S2, . . . , S5 is

contained in T P2 .

S2 ⊆ T P2 : Let (A1)u denote the localization of A1 at u. By Propositions 123 and 124,

elements of S2 correspond to Poisson primes of (A1)u/〈t, d〉. By Propositions 128 and 125,

the algebra (A1)u/〈t, d〉 is isomorphic to k[u±][x, y;α, z = −u2]P . This is in turn isomor-

phic to k[u±, x±] by Proposition 126. According to [19, 9.6(b)], contraction and extension
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give inverse homeomorphisms between P. spec(k[u±, x±]) and spec(ZP (k[u±, x±])). It is

also observed in [19, 9.6(b)] that since the Poisson bracket respects the standard Z2-

grading of k[u±, x±], the Poisson center ZP (k[u±, x±]) is spanned by the monomials that

it contains. In order for a monomial uixj to be Poisson central, one needs 0 = {uixj, u} =

jxj−1ui {x, u} = 2jxjui+1 and 0 = {uixj, x} = iui−1xj {u, x} = −2iuixj+1, which re-

quires i = j = 0 (using the characteristic zero hypothesis). Thus ZP (k[u±, x±]) = k,

and k[u±, x±] has only one Poisson prime, 〈0〉, which pulls back to 〈t, d〉 / A1. Hence

S2 = {〈t, d〉} ⊆ T P2 .

S3 ⊆ T P2 : Let (A1)ud denote the localization of A1 at u and d. By Propositions 123

and 124, elements of S3 correspond to Poisson primes of (A1)ud/〈t〉. By Propositions

128 and 125, the algebra (A1)ud/〈t〉 is isomorphic to k[u±, d±][x, y;α, z = d − u2]P . A

Poisson prime ideal of k[u±, d±][x, y;α, z = d− u2]P cannot contain x, because it would

then contain the unit {x, y} = α(d − u2) = −4u2. By Proposition 127, elements of

S3 therefore correspond to Poisson primes of k[u±, d±, x±]. Again using [19, 9.6(b)],

contraction and extension give inverse homeomorphisms between P. spec(k[u±, d±, x±])

and spec(ZP (k[u±, d±, x±])). And again ZP (k[u±, d±, x±]) is spanned by the monomials

that it contains. In order for a monomial uidjxl to be Poisson central, one needs 0 ={
uidjxl, u

}
= 2lui+1djxl and 0 =

{
uidjxl, x

}
= −2iuidjxl+1, which require i = l = 0.

Thus ZP (k[u±, d±, x±]) = k[d±]. Any prime p ∈ spec(k[d±]) corresponds, via our chain

of correspondences, to the Poisson prime 〈p ∩ k[d]〉 + 〈t〉 / A1. Since this is in T P2 , we

conclude that S3 ⊆ T P2 .

S4 ⊆ T P2 : Let (A1)utx denote the localization of A1 at u, t, and x. By Propositions 123

and 124, elements of S4 correspond to Poisson primes of (A1)utx/〈d〉. By Propositions

128, 127, and 125, the algebra (A1)utx/〈d〉 is isomorphic to k[u±, t±, x±]. The Poisson
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algebra structure of k[u±, t±, x±] is identical to that of k[u±, d±, x±] in the preceding para-

graph, if one replaces the t by d. Therefore we have P. spec(k[u±, t±, x±]) ≈ spec(k[t±])

by the preceding paragraph. Any prime p ∈ spec(k[t±]) corresponds, via our chain of cor-

respondences, to the Poisson prime 〈p ∩ k[t]〉+ 〈d〉 /A1. Since this is in T P2 , we conclude

that S4 ⊆ T P2 .

S5 ⊆ T P2 : By Propositions 123 and 124, elements of S5 correspond to Poisson primes

of (A1)utdx, the localization of A1 at u, t, d, and x. By Propositions 128, 127, and 125,

the algebra (A1)utdx is isomorphic to k[u±, t±, d±, x±]. Again using [19, 9.6(b)], contrac-

tion and extension give inverse homeomorphisms between P. spec(k[u±, t±, d±, x±]) and

spec(ZP (k[u±, t±, d±, x±])). And again ZP (k[u±, t±, d±, x±]) is spanned by the monomi-

als that it contains. In order for a monomial uitjdlxm to be Poisson central, one needs

0 =
{
uitjdlxm, u

}
= 2mui+1tjdlxm and 0 =

{
uitjdlxm, x

}
= −2iuitjdlxm+1, which re-

quire i = m = 0. Thus ZP (k[u±, t±, d±, x±]) = k[t±, d±]. Any prime p ∈ spec(k[t±, d±])

corresponds, via our chain of correspondences, to the Poisson prime 〈p ∩ k[t, d]〉 / A1.

Since this is in T P2 , we conclude that S5 ⊆ T P2 .

We now have the equality (3.67), and thus we’ve shown that P. spec(A1) = T P1 t

T P2 t T P3,1 as a set. It remains to address the homeomorphisms. The homeomorphism

T P1 ≈ P. spec(k[u11, u12, u21]) = spec(k[u11, u12, u21]) comes from the fact that A1/〈u〉 is

k[u11, u12, u21] with a trivial Poisson bracket.

Consider the partition of spec(k[t, d]) into the subspaces

S ′2 := {〈t, d〉} S ′3 := {p ∈ spec(k[t, d]) | t ∈ p, d /∈ p}

S ′4 := {p ∈ spec(k[t, d]) | t /∈ p, d ∈ p} S ′5 := {p ∈ spec(k[t, d]) | t /∈ p, d /∈ p},

which are respectively homeomorphic to spec(k), spec(k[d±]), spec(k[t±]), and
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spec(k[t±, d±]). For each i ∈ {2, 3, 4, 5}, we showed above (in the paragraph labeled

“Si ⊆ T P2 ”) that the mapping p 7→ 〈p〉 / A1 sends S ′i bijectively to Si. It follows, given

(3.67), that the mapping p 7→ 〈p〉 / A1 gives a bijection φ : spec(k[t, d]) → T P2 . For

φ to be a homeomorphism, it suffices, by [19, Lemma 9.4a], for φ and φ−1 to preserve

inclusions. It is obvious that φ preserves inclusions. To make it clear that φ−1 preserves

inclusions, note that

〈p〉A1
=
⊕
m∈Z

⊕
n≥0

punvm

for p ∈ spec(k[t, d]), so 〈p〉 ∩ k[t, d] = p. Hence φ is a homeomorphism.

Now for the final homeomorphism. Consider any P ∈ T P3,1. Since x ∈ P , we have

P 3 {x, y} = α(z) = 2tu − 4u2. Since u /∈ P , it follows that t − 2u ∈ P . From this

it follows that P 3 {y, t− 2u} = 4uy, and again since u /∈ P we have y ∈ P . Simi-

larly, from P 3 {t− 2u, x} = 4ux we conclude that x ∈ P . Therefore any element of

T P3,1 contains the Poisson ideal 〈x, y, t− 2u〉. Let (A1)ut denote the localization of A1 at

u and t. By Propositions 123 and 124, the subspace T P3,1 of P. spec(A1) is homeomor-

phic to P. spec((A1)ut/〈x, y, t− 2u〉). Observe that (A1)ut/〈x, y, t− 2u〉 is isomorphic

to k[t±] with a trivial Poisson bracket. Hence we have P. spec((A1)ut/〈x, y, t− 2u〉) ≈

spec(k[t±]). Following a p ∈ spec(k[t±]) along our chain of homeomorphisms T P3,1 ≈

P. spec((A1)ut/〈x, y, t− 2u〉) ≈ spec(k[t±]), we see that p corresponds to 〈p ∩ k[t]〉 +

〈x, y, t− 2u〉 ∈ T P3,1. �

There is a Poisson analogue to the Dixmier-Moeglin equivalence, in terms of the following

notions. A Poisson primitive ideal of a Poisson algebra is defined to be any ideal that

arises as the largest Poisson ideal contained in a maximal ideal. Poisson primitives can

be shown to be Poisson prime (see [19, Lemma 6.2]). A Poisson rational ideal P of a

Poisson algebra A is a Poisson prime ideal such that ZP (Fract(A)/P ) is algebraic over
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k. A Poisson algebra A satisfies the Poisson Dixmier-Moeglin equivalence when these

conditions are equivalent for any P ∈ P. spec(A) and are equivalent to {P} being locally

closed.

Theorem 130: Assume that char(k) = 0. The semiclassical limit A1 of A satisfies the

Poisson Dixmier-Moeglin equivalence and its Poisson primitive ideals are as follows:

• The Poisson primitive ideals in T P1 are 〈u〉+ 〈p〉 for p ∈ max spec k[u11, u12, u21].

• The Poisson primitive ideals in T P2 are 〈p〉 for p ∈ max spec k[t, d].

• The Poisson primitive ideals in T P3,1 are 〈p ∩ k[t]〉+ 〈x, y, t− 2u〉 for

p ∈ max spec k[t±].

Proof: Since A1 is affine, we have by [18, Proposition 1.2] that the following implications

hold for all prime ideals of A:

locally closed =⇒ Poisson primitive =⇒ Poisson rational.

To establish the Poisson Dixmier-Moeglin equivalence for A1, it remains to close the loop

and show that Poisson rational primes are locally closed. We shall deal separately with

the three different types of Poisson primes identified in Theorem 129.

T P1 : Suppose that P ∈ T P1 , say P = 〈p〉 + 〈u〉, with p ∈ spec(k[u11, u12, u21]). Since

ZP (A1/P ) = A1/P ∼= k[u11, u12, u21]/p, the ideal P is Poisson rational if and only if p is

maximal. In this case, P would be maximal and therefore locally closed in P. spec(A1).

T P2 : Suppose that P ∈ T P2 , say P = 〈p〉, with p ∈ spec(k[t, d]). By Proposition 125,

A1/P ∼= (k[u, t, d]/〈p〉)[x, y;α, z = d+ tu− u2]P .
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Since z is regular in k[u, t, d]/〈p〉, we have by Proposition 126 an embedding

A1/P ↪→ (k[u, t, d]/〈p〉)[x±;α]P = (k[t, d]/p)[u][x±;α]P

of Poisson algebras. There is a corresponding embedding of fraction fields:

Fract(A1/P ) ↪→ Fract(k[t, d]/p)(u)(x;α)P .

Let L = Fract(k[t, d]/p). In order for f to be an element of ZP (L(u)(x;α)P ), it is enough

for {f,−} to vanish on L, on u, and on x. Since L ∪ {u, x} ⊆ Fract(A1/P ), it follows

that

ZP (Fract(A1/P )) = ZP (L(u)(x;α)P ) ∩ Fract(A1/P ). (3.68)

We can compute ZP (L(u)(x;α)P ):

Claim: ZP (L(u)(x;α)P ) = L

Proof: Consider any nonzero element f
g
∈ ZP (L(u)(x;α)P ), where f, g ∈ L[u, x]

are taken to be nonzero and coprime. Since
{
f
g
,−
}

= 0, we have f {g,−} =

g {f,−}. Applying this identity to u and cancelling 2ux gives

f
∂g

∂x
= g

∂f

∂x
,

and applying it to x and cancelling −2ux gives

f
∂g

∂u
= g

∂f

∂u
.

Since we assumed f and g to be coprime, this implies that f | ∂f
∂x

, that g | ∂g
∂x

, that

f | ∂f
∂u

, and that g | ∂g
∂u

. Considering degrees of polynomials, this can only happen
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if 0 = ∂f
∂x

= ∂g
∂x

= ∂f
∂u

= ∂g
∂u

. Thus f, g ∈ L.

Using (3.68) we now have ZP (Fract(A1/P )) = L. Note that L is algebraic over k if

and only if p is maximal. Hence P is Poisson rational if and only if p is maximal. Now

assume that P is Poisson rational. By Theorem 129, any Poisson prime of A1 that

doesn’t contain u or x must be in T P2 ≈ spec(k[t, d]). This makes T P2 an open subset of

P. spec(A1). Since p is maximal, it is a closed point of spec(k[t, d]); it follows that P is

a closed point of T P2 . Therefore P is locally closed in P. spec(A1).

T P3,1: Suppose that P ∈ T P3,1, say P = 〈p ∩ k[t]〉 + 〈x, y, t− 2u〉, with p ∈ spec(k[t±]).

Viewing A1 as k[u11, u22, u21, u12] = k[u, t, x, y] (recall that t = u11 + u22), it is easy to

see that

k[t] ↪→ A1
quo−−→ A1/〈x, y, t− 2u〉

is an isomorphism of algebras which have a trivial Poisson bracket. So A1/P ∼= k[t]/(p∩

k[t]). Hence ZP (Fract(A1/P )) = Fract(A1/P ) is algebraic over k if and only if p∩k[t]/k[t]

is maximal. This occurs if and only if p / k[t±] is maximal. Thus P is Poisson rational

if and only if p is maximal. Now assume that P is Poisson rational, and let us use

the description of Poisson primes in Theorem 129 to show that P is locally closed. No

element of T P2 contains P , for elements of T P2 cannot contain x. Since p is maximal, we

have that P is maximal inside T P3,1. Therefore {P} = VP (P ) \ T P1 = VP (P ) \ VP (u) is

locally closed.

We have now shown that all Poisson rational prime ideals of A1 are locally closed, and

we conclude that A1 satisfies the Poisson Dixmier-Moeglin equivalence. Further, we

have pinpointed which Poisson primes are Poisson rational in each of T P1 , T P2 , and T P3,1.

Putting this information together and applying the Poisson Dixmier-Moeglin equivalence,
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we conclude that the Poisson primitive ideals of A1 are as stated in the theorem. �

3.2 Weyl Algebra

In this section we treat the classical and quantum Weyl algebras.

The classical Weyl algebra A1(k) is defined to be the k-algebra generated by x and y

with the relation xy − yx = 1. It is well known that A1(k) is a simple ring when k

has characteristic 0. This can be shown using the theory of skew polynomial rings, for

example (see [21, Chapter 2]). The Weyl algebra is a GWA k[z][x, y;σ : z 7→ z + 1, z],

and we can also apply GWA theory to see that it is simple:

Theorem 131: Assume k has characteristic 0. Then A1(k) is a simple ring.

Proof: Let A := A1(k) = k[z][x, y;σ : z 7→ z + 1, z]. All ideals of A are homogeneous

because the commutator [·, z] is a linear operator that has the graded components of

A as eigenspaces with distinct eigenvalues (see Proposition 81). By Proposition 83,

Corollary 71 applies to A. Clearly M ′
II = ∅, since the σi(z) are pairwise coprime. Thus

spec(A) = gr-spec(A) = {0}, and it follows that A is simple. �

Now consider the quantized Weyl Algebra A1(k, q), where q ∈ k× is not a root of unity.

This is defined to be the k-algebra generated by x and y with the relation xy − qyx =

1. The prime spectrum of A1(k, q) was studied in [17]. Here we use GWA theory to

determine the prime spectrum, reproducing [17, Theorem 8.4b].

The quantized Weyl algebra is a GWA k[z][x, y;σ : z 7→ qz + 1, z]. By a change of

variables to u = z − 1
1−q , we can express A1(k, q) as k[u][x, y;σ : u 7→ qu, z = u + 1

1−q ].
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Define an algebra homomorphism η : A→ k[x±] by u 7→ 0, x 7→ x, and y 7→ 1
1−qx

−1.

Theorem 132: Assume that q ∈ k× is not a root of unity. As a set,

spec(A1(k, q)) = {η−1(p) | p ∈ spec(k[x±])} ∪ {0}.

Proof: Consider any prime ideal P of A := A1(k, q). If P contains u, then P corresponds

to a prime ideal of A/〈u〉 ∼= k[x, y;σ = id, z = 1
1−q ]
∼= k[x±] (here we have used Proposi-

tions 12 and 5). If P corresponds to p ∈ spec(k[x±]), then P = η−1(p) ∈ {η−1(p) | p ∈

spec(k[x±])} ∪ {0}.

Suppose now that P does not contain u. Then P corresponds to some prime ideal P ′

of the localization Au := k[u±][x, y;σ, z]. Since q is not a root of unity, conjugation by

u is a linear operator on Au that has the graded components of Au as eigenspaces with

distinct eigenvalues. It follows that P ′ is homogeneous (Proposition 81). By Proposition

82, every maximal ideal of k[u±] has infinite σ-orbit. Hence Corollary 71 applies and

we have P ′ ∈ {0} ∪ {J(m) | m ∈ max spec k[u±]}. Using the fact that q is not a root of

unity, it is easy to calculate that
〈
σn
′
(z), σ−n+1(z)

〉
k[u±]

= 〈1〉 for any integers n, n′ ≥ 1.

It follows that M ′
II = ∅, so P ′ = 0 and therefore P = 0.

Thus we have proven that spec(A) ⊆ {P (p) | p ∈ spec(k[x±])} ∪ {0}. It is clear that

{η−1(p) | p ∈ spec(k[x±])} ⊆ spec(A). Finally, 0 ∈ spec(A) because A is a domain

(Corollary 6). �
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3.3 Weyl-Like Algebras with General z

Consider a GWA of the form GWA A(z) := k[H][x, y;σ : H 7→ H − 1, z] with arbitrary

nonzero z ∈ k[H] \ {0}. This is the main object of study in [4], but the prime spectrum

was not determined. Assuming that k has characteristic zero and that z splits into linear

factors, we will write down the prime spectrum of A(z).

It is more convenient to work with a splitting of σ(z) into linear factors– say σ(z) is a

unit multiple of (H − λ1)α1 · · · (H − λd)αd , where the λi are distinct elements of k and

where the αi are in Z≥1. Let

I = {i | 1 ≤ i ≤ d and λi + n ∈ {λ1, . . . , λd} for some n ∈ Z>0}.

For i ∈ I and m ∈ Z, define

πm(i) =
∏
{H − (λi + `) | 0 ≤ ` < n(i) and m ≤ ` < n(i) +m} ∈ k[H],

where n(i) := min{n > 0 | λi+n ∈ {λ1, . . . , λd}}. Define also P (i) = 〈πm(i)vm |m ∈ Z〉/

A(z) for i ∈ I .

Theorem 133: Assume that k has characteristic 0 and that z ∈ k[H] is nonzero and

splits into linear factors as described above. Then as a set, spec(A(z)) = {P (i) | i ∈

I } ∪ {0}.

Proof: The linear operator [·, H] on A(z) has the graded components as eigenspaces

with distinct eigenvalues; hence all ideals of A(z) are homogeneous (Proposition 81).

By Proposition 83, all maximal ideals of k[H] have infinite σ-orbit. Hence Corollary
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71 applies and we have spec(A(z)) = {0} ∪ {J(m) | m ∈ M ′
II}. Fix m ∈ M ′

II, and let

n = n(m). Since σ(z) ∈ m, we have m = 〈H − λi〉 for some i with 1 ≤ i ≤ d. Since

σ−n(σ(z)) ∈ m = 〈H − λi〉, we have λi = λj−n for some j with 1 ≤ j ≤ d. Hence i ∈ I .

We also have

J(m)m =
⋂
{σ`(m) | 0 ≤ ` < n and m ≤ ` < n+m}

=
⋂
{H − (λi + `) | 0 ≤ ` < n and m ≤ ` < n+m}

=
〈∏
{H − (λi + `) | 0 ≤ ` < n and m ≤ ` < n+m}

〉

for m ∈ Z, by Proposition 66 and the Chinese remainder theorem. Since n = n(m) =

min{n > 0 | λi + n ∈ {λ1, . . . , λd}} = n(i), the final line is 〈πm(i)〉. Thus J(m) = P (i).

Conversely to the above, we clearly have for any i ∈ I that 〈H − λi〉 ∈ M ′
II. Thus

M ′
II = {〈H − λi〉 | i ∈ I }, and we have proven that spec(A(z)) = {P (i) | i ∈ I } ∪ {0}.

�

Let us also look at a variation on A(z) that is analogous to the quantized Weyl algebra.

Consider a GWA of the form A(q, z) := k[h±][x, y;σ : h 7→ qh, z], where q ∈ k× and

z ∈ k[h±] \ {0}. This algebra makes an appearance as A(a(h), q) in [12], where its

semiclassical limit is explored. The prime spectrum has a very similar description to that

of A(z)– in fact the result and proof are almost identical modulo notation!

Let D = k[h±]. Assume that q ∈ k× is not a root of unity. Assume z is any nonzero

element of D that splits into linear factors. It is more convenient to work with a splitting

of σ(z) into linear factors– say σ(z) is a unit multiple of (h− λ1)α1 · · · (h− λd)αd , where
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the λi are distinct elements of k and where the αi are in Z≥1. Let

I = {i | 1 ≤ i ≤ d and q−nλi ∈ {λ1, . . . , λd} for some n ∈ Z>0}.

For i ∈ I and m ∈ Z, define

πm(i) =
∏
{h− q−`λi | 0 ≤ ` < n(i) and m ≤ ` < n(i) +m},

where n(i) := min{n > 0 | q−nλi ∈ {λ1, . . . , λd}}. Define P (i) = 〈πm(i)vm |m ∈ Z〉 for

i ∈ I .

Theorem 134: Assume that q is not a root of unity and that z ∈ k[h±] is nonzero and

splits into linear factors as described above. Then as a set, spec(A(q, z)) = {P (i) | i ∈

I } ∪ {0}.

Proof: The linear operator on A(q, z) given by a 7→ h−1ah has as eigenspaces the

graded components of A(q, z) (with distinct eigenvalues because q is not a root of unity);

hence all ideals of A(q, z) are homogeneous (Proposition 81). By Proposition 82, all

maximal ideals of D have infinite σ-orbit. Hence Corollary 71 applies and we have

spec(A(z)) = {0} ∪ {J(m) | m ∈M ′
II}. Fix m ∈M ′

II, and let n = n(m). Since σ(z) ∈ m,

we have m = 〈h− λi〉 for some i with 1 ≤ i ≤ d. Since σ−n(σ(z)) ∈ m = 〈h− λi〉, we

have λi = qnλj for some j with 1 ≤ j ≤ d. Hence i ∈ I . We also have

J(m)m =
⋂
{σ`(m) | 0 ≤ ` < n and m ≤ ` < n+m}

=
⋂
{h− q−`λi | 0 ≤ ` < n and m ≤ ` < n+m}

=
〈∏

{h− q−`λi | 0 ≤ ` < n and m ≤ ` < n+m}
〉
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for m ∈ Z, by Proposition 66 and the Chinese remainder theorem. Since n = n(m) =

min{n > 0 | q−nλi ∈ {λ1, . . . , λd}} = n(i), the final line is 〈πm(i)〉. Thus J(m) = P (i).

Conversely to the above, if i ∈ I then it is clear that 〈h− λi〉 ∈ M ′
II. Thus M ′

II =

{〈h− λi〉 | i ∈ I }, and we have proven that spec(A(q, z)) = {P (i) | i ∈ I } ∪ {0}. �

3.4 Classical and Quantized U(sl2)

Let U = U(sl2), the classical enveloping algebra of the Lie algebra sl2. It is the k-algebra

generated by E,F,H subject to

[H,E] = 2E [H,F ] = −2F [E,F ] = H,

and it is also a GWA k[H, z][F,E;σ : [H 7→ H + 2, z 7→ z −H], z]. The prime spectrum

of U is known (see for example [9, Theorem 4.5]); we shall recover the result using the

GWA viewpoint. By changing variables to C = z + 1
4
H(H − 2), get a much nicer GWA

expression for U :

U = k[C,H][F,E;σ : [C 7→ C,H 7→ H + 2], z = C − 1

4
H(H − 2)].

Let Z = k[C]. For n,m ∈ Z, define

πnm =
∏
{H − (n− 1− 2j) | 0 ≤ j < n and m ≤ j < n+m}

and

rn = 4C − (n+ 1)(n− 1).

153



Applications Chapter 3

For n > 1, define

P (n) := 〈πnmvm |m ∈ Z〉+ 〈rn〉 / U.

Theorem 135: Assume that k has characteristic 0. As a set, spec(U) = T2 ∪ T3, where

T2 = {〈p〉 | p ∈ spec(Z)} and T3 = {P (n) | n ∈ Z, n > 1}.

Proof: All ideals of U are homogeneous because [·, H] is a linear map that has the graded

components of U as eigenspaces with distinct eigenvalues (Proposition 81).

Let P ∈ spec(U) and let p := P ∩ Z ∈ spec(Z). The prime P corresponds to a prime

P ′ / U/〈p〉 =: U ′ = Z ′[H][F,E;σ, z], where Z ′ := Z/p. Let S = Z ′ \ {0} and let Z ′′

be the fraction field of Z ′. Since P ′ ∩ Z ′ = 0, the prime P ′ corresponds to a prime

P ′′ / U ′S−1 =: U ′′ = Z ′′[H][F,E;σ, z].

By Proposition 83, all maximal ideals of Z ′′[H] have infinite σ-orbit. Thus Corollary 71

applies and we have either P ′′ = 0, in which case P = 〈p〉 ∈ T2, or P ′′ = J(m) for some

m ∈M ′
II. Suppose we are in the latter case and let n = n(m). From σ−n+1(z), σ(z) ∈ m,

we calculate that H − (n− 1), rn ∈ m. It follows that m = 〈H − (n− 1)〉. Since rn ∈ Z ′′

it follows that rn vanishes in Z ′′, and so p = 〈rn〉. By the Chinese remainder theorem

and Proposition 66, we have P ′′m = 〈πnm〉 for m ∈ Z (where πnm stands for the image of

πnm in U ′′). Using Lemma 24 to pull back to U ′, we get P ′m = 〈πnm〉 for m ∈ Z (where

πnm stands for the image of πnm in U ′). And pulling back to A we get Pm = 〈πnm, rn〉 for

m ∈ Z. Thus P = P (n) ∈ T3. We have now shown that spec(U) ⊆ T2 ∪ T3.

To see that T2 ⊆ spec(U), note that U/〈p〉 = (Z/p)[H][F,E;σ, z] is a domain for all

p ∈ spec(Z).
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To see that T3 ⊆ spec(A), let n ≥ 1. Now P (n) is the pullback of P ′ :=
⊕

m∈Z 〈πnm〉vm /

U/〈rn〉 = Z ′[H][F,E;σ, z], where Z ′ = Z/〈rn〉. Let m = 〈H − (n− 1)〉 ∈ max specZ ′[H].

In Z ′[H], it is easy to see by calculation that σj(z) is a unit multiple of (H − (n + 1 −

2j))(H − (−n + 1 − 2j)) for j ∈ Z. It follows that n′(m) = 1 and n(m) = n. From the

description of J(m) in Proposition 66, we then see that P ′ = J(m). Thus P (n) is prime.

�

We now shift to the quantized picture. Let q ∈ k× be a non-root-of-unity. Let Uq =

Uq(sl2) denote the standard quantization of the enveloping algebra of sl2). Drawing the

definition from [8, I.3], it is the k-algebra generated by E,F,K,K−1 subject to

KEK−1 = q2E KFK−1 = q−2F [E,F ] = (q − q−1)−1(K −K−1).

It is a GWA k[K±, z][F,E;σ : [K 7→ q2K, z 7→ z − K−K−1

q−q−1 ], z]. We can express Uq more

nicely by changing variables to C := z + q−1K+qK−1

(q−q−1)2
:

Uq = k[C,K±]

[
F,E;σ : [K 7→ q2K,C 7→ C], z = C − q−1K + qK−1

(q − q−1)2

]
.

In the following theorem, we determine the prime ideals of Uq. These have already

appeared in [16, Example 3.16], where the authors also take advantage of the GWA

viewpoint. We will use essentially the same approach from Theorem 121. This approach is

not really necessary, since (3.11) may be used to express Uq as a quotient of a localization

of the 2× 2 REA, where we already know the primes. But we leave this here as another

demonstration of the machinery of section 2.6.
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Let Z = k[C]. For n > 0 and m ∈ Z, define

πnm(±) =
∏{(

qK ± qn−2j
)
| 0 ≤ j < n and m ≤ j < n+m

}
.

For n > 0 define

rn(±) = C ± qn − q−n

(q − q−1)2

and

P (n,±) = 〈πnm(±)vm |m ∈ Z〉+ 〈rn(±)〉 / Uq.

Theorem 136: Assume that q is not a root of unity. As a set, spec(Uq) = T2∪T3, where

T2 = {〈p〉 | p ∈ spec(Z)} and

T3 = {P (n,±) | n ≥ 1 and ± ∈ {+,−}} .

Proof: Since q is not a root of unity, the linear operator a 7→ K−1aK has the graded com-

ponents of Uq as its distinct eigenspaces. It follows that every ideal of Uq is homogeneous

(Proposition 81).

Since Z is central, the contraction P ∩ Z of any prime P of Uq is a prime ideal of Z.

Thus

spec(Uq) =
⋃

p∈spec(Z)

Fp,

where Fp := {P ∈ spec(Uq) | P ∩ Z = p} = {P ∈ gr-spec(Uq) | P ∩ Z = p}.

Fix a p ∈ spec(Z). Define Z ′ = Z/p and let Z ′′ denote the fraction field of Z ′. We identify

U ′ := Uq/〈p〉 with Z ′[K±][F,E;σ, z] using Proposition 12. We identify the localization

of U ′′ := Uq/〈p〉 at Z ′ \ {0} with Z ′′[K±][F,E;σ, z], using Proposition 22. Now Fp
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is in bijection with gr-spec(U ′′) via pullback along the quotient and localization maps

Uq → U ′ → U ′′.

By Proposition 82 and the fact that q is not a root of unity, every maximal ideal of

Z ′′[K±] has infinite σ-orbit. Thus we may apply Corollary 71 to U ′′ (viewing U ′′ as

an algebra over the field Z ′′, so that the base ring Z ′′[K±] is an affine algebra). This

gives gr-spec(U ′′) = {0} ∪ {J(m) | m ∈ M ′
II}, where M ′

II = {m ∈ max spec(Z ′′[K±]) |

σ(z), σ−n+1(z) ∈ m for some n > 0}.

Fix m ∈M ′
II, and let n = n(m). Let P ′′ = J(m). From σ(z), σ−n+1(z) ∈ m we calculate

that

(qK − qn)(qK + qn) ∈ m.

Since m is maximal, it follows that m = 〈(qK ± qn)〉 for some ± ∈ {+,−}. By the

Chinese remainder theorem and Proposition 66, P ′′m = 〈πnm(±)〉 for m ∈ Z (where we are

reusing the notation πnm(±) to refer to the image of πnm(±) in U ′′). Hence, using Lemma

24, the ideals P ′m have the same expression: P ′m = 〈πnm(±)〉 for m ∈ Z (where we are

again reusing the notation πnm(±) to refer to the image of πnm(±) in U ′). Finally, we have

Pm = 〈πnm(±)〉+ 〈p〉 for m ∈ Z. Now we can also calculate from σ(z) ∈ m = 〈(qK ± qn)〉

that rn(±) vanishes in Z ′′[K±]. This implies that rn(±) ∈ p, and so p = 〈rn(±)〉. We

conclude that P = P (n,±).

Thus for all p ∈ spec(Z), we have Fp ⊆ {〈p〉, P (n,+), P (n,−)} for some n ≥ 1. It is now

clear that spec(Uq) ⊆ T2 ∪ T3. If p ∈ spec(Z) then 〈p〉 ∈ Fp, so T2 ⊆ spec(Uq).

To see that T3 ⊆ spec(Uq), let n ≥ 1 and let ± ∈ {+,−}. Now P := P (n,±) is

the pullback of P ′ :=
⊕

m∈Z 〈πnm(±)〉vm / Uq/〈rn(±)〉 = Z ′[K±][F,E;σ, z], where Z ′ :=

Z/〈rn(±)〉. Define m := 〈qK ± qn〉 ∈ max specZ ′[K±]. In Z ′[K±], it is easy to see by
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calculation that σj(z) is a unit multiple of (qK ± qn−2j+2)(qK ± q−n−2j+2) for j ∈ Z. It

follows that n′(m) = 1 and n(m) = n. From the description of J(m) in Proposition 66,

we then see that P ′ = J(m). Thus P is prime. �

3.5 Some Quantized Coordinate Rings

Assume that q ∈ k× is not a root of unity. Let A = Oq(SL2(k)), the standard quantized

coordinate ring of the Lie group SL2(k). This is defined in [8, I.1.9] as the k-algebra

generated by a, b, c, d subject to

ab = qba ac = qca bc = cb

bd = qdb cd = qdc ad− da = (q − q−1)bc

ad− qbc = 1.

This is a GWA

A = k[b, c][a, d;σ : [b 7→ qb, c 7→ qc], z = 1 + q−1bc].

See [24, Example 7.3] for an exploration of this algebra as a GWA. Here we compute

its prime spectrum using GWA theory, recovering the known result obtained using other

techniques.

Theorem 137: As a set,

spec(A) = {〈p〉 | p ∈ σ-spec (k[b, c]) and p 6= 〈b, c〉} ∪ {η−1(p) | p ∈ spec(k[a±])},
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where η : A→ k[a±] is given by b, c 7→ 0, a 7→ a, and d 7→ a−1.

Proof: Let D = k[b, c]. For p ∈ σ-spec(D), let Fp denote the set of P ∈ spec(A) such

that (P ∩D : σ) = p. By Proposition 72, we have spec(A) =
⋃

p∈σ-spec (D) Fp.

Consider first the case p = 〈b, c〉. It is clear that F〈b,c〉 equals the set of prime ideals

of A that contain 〈b, c〉, so F〈b,c〉 is in bijection with spec(A/〈b, c〉). We have A/〈b, c〉 ∼=

k[a, d; id, 1] ∼= k[a±] (using Propositions 12 and 5). The homomorphism η is the composite

of maps A
quo−−→ A/〈b, c〉 ∼= k[a±], so we get F〈b,c〉 = {η−1(p) | p ∈ spec(k[a±])}.

Now fix any p ∈ σ-spec(D) \ {〈b, c〉}. If we show that Fp = {〈p〉} then the theorem

will be proven. Let D′ = D/p and let A′ = A/〈p〉 ∼= D′[a, d;σ, z]. Let E denote the set

of nonzero σ-eigenvectors in D′. Let D′′ = D′E−1 and let A′′ = A′E−1 ∼= D′′[a, d;σ, z].

Consider the Z-grading of D by total degree of polynomials. Graded components are

exactly the distinct σ-eigenspaces, so we can apply Proposition 85 to see that D′′ is a

σ-simple affine algebra over some field and Fp is in correspondence with spec(A′′). At

least one of b, c must not be in p, and this element winds up being a unit in D′′. This

(and the fact that q is not a root of unity) achieves two things for us. First, conjugation

by that element is a linear operator on A′′ that has the graded components of A′′ as

distinct eigenspaces. Thus spec(A′′) = gr-spec(A′′) (Proposition 81). Second, we can

apply Proposition 82 (with k possibly replaced by a different field) to conclude that all

prime ideals of D′′ have infinite σ-orbit. Since the σi(z) are pairwise coprime in A, the

same holds for their images in A′′. Thus we get M ′
II = ∅ in A′′. Finally, Corollary 73

applies and we get gr-spec(A′′) = {0}. Thus Fp = {〈p〉} and the theorem is proven. �

Let us be more explicit. Assume for the moment that k is algebraically closed. Consider

the Z-grading of k[b, c] by total degree. The graded components of k[b, c] are exactly
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the distinct σ-eigenspaces, so σ-spec(k[b, c]) is just the collection of graded-prime ideals

of k[b, c]. When a Z-grading is involved, the notions of “graded-prime” and “graded

prime” coincide, so σ-spec(k[b, c]) consists of 〈b, c〉 (the so called irrelevant ideal), the

ideals 〈b− λc〉 for λ ∈ k along with 〈c〉 (the closed points of one dimensional projective

space) and the ideal 0 (the generic point). Now consider the homomorphism η defined in

the theorem statement above. If µ ∈ k× then η−1(〈a− µ〉) = 〈b, c, a− µ, d− µ−1〉. And

η−1(0) = 〈b, c〉. Feeding all this information into the theorem above, we have found that

spec(A) = {〈b− λc〉 | λ ∈ k} ∪ {
〈
b, c, a− µ, d− µ−1

〉
| µ ∈ k×} ∪ {0, 〈c〉, 〈b, c〉}.

This agrees with the result obtained in [8, Example II.2.3].

Now let A = k[H,C][x, y;σ : [H 7→ q2H,C 7→ C], z = C + H2/(q(1 + q2))]. This GWA

appears in [2] as the quantized coordinate ring Oq2(so3). The original construction can

be found in [39, Example 4].

Theorem 138: As a set,

spec(A) = {〈p〉 | p ∈ σ-spec (k[H,C]) and H /∈ p} ∪ {η−1(p) | p ∈ spec(k[x, y])},

where η : A→ k[x, y] is given by H 7→ 0, C 7→ yx, x 7→ x, and y 7→ y.

Proof: Let D = k[H,C]. For p ∈ σ-spec(D), let Fp denote the set of P ∈ spec(A) such

that (P ∩D : σ) = p. By Proposition 72, we have spec(A) =
⋃

p∈σ-spec (D) Fp.

We have
⋃
{Fp | p ∈ σ-spec(D) and H ∈ p} = {P ∈ spec(A) |H ∈ P}, which is in bi-

jection with spec(A/〈H〉). Now A/〈H〉 ∼= k[C][x, y; id, z = C] ∼= k[C, x, y]/〈yx− C〉 ∼=

k[x, y]. Via these isomorphisms, the map η is exactly the quotient map A → A/〈H〉 ∼=
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k[x, y]. Thus

⋃
{Fp | p ∈ σ-spec(D) and H ∈ p} = {η−1(p) | p ∈ spec(k[x, y])}.

Now fix any p ∈ σ-spec(D) such that H /∈ p. If we show that Fp = {〈p〉} then the theorem

will be proven. Let D′ = D/p and let A′ = A/〈p〉 ∼= D′[x, y;σ, z]. Let E denote the set

of nonzero σ-eigenvectors in D′. Let D′′ = D′E−1 and let A′′ = A′E−1 ∼= D′′[x, y;σ, z].

Consider the Z-grading of D in which H has degree 1 and C has degree 0. Graded

components are exactly the distinct σ-eigenspaces, so we can apply Proposition 85 to

see that D′′ is a σ-simple affine algebra over some field and Fp is in correspondence

with spec(A′′). Since H /∈ p, it becomes invertible in D′′. This (and the fact that q

is not a root of unity) achieves three things for us. First, conjugation by H is a linear

operator on A′′ that has the graded components of A′′ as distinct eigenspaces. Thus

spec(A′′) = gr-spec(A′′) (Proposition 81). Second, we can apply Proposition 82 (with k

possibly taken to be a different field) to conclude that all prime ideals of D′′ have infinite

σ-orbit. Third, the σi(z) are now pairwise coprime in A′′, so we get M ′
II = ∅ for A′′.

Finally, Corollary 73 applies and we get gr-spec(A′′) = {0}. Thus Fp = {〈p〉} and the

theorem is proven. �

3.6 Quantized Heisenberg Algebra

Let A = A(q, ρ) = k[t, z][x, y;σ : [t 7→ q−1t, z 7→ t + ρz], z], where q, ρ ∈ k×. This is

the quantized Heisenberg algebra, which appears in [25, Example 6.13]. It also appears
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in [1], but with different parameters. It can be expressed more nicely as a GWA

k[H,C][x, y;σ : [H 7→ q−1H,C 7→ ρC], z = C −H/(ρ− q−1)]

by the change of variables H = t, C = z + (ρ− q−1)−1t. Of course, this requires ρ 6= q−1,

but we are actually going to assume much more:

Assume that the group 〈ρ, q〉 ⊆ k× is free abelian of rank 2. This way we can be sure

that the σ-eigenspaces in k[H,C] are exactly the graded components with respect to the

Z2-grading on k[H,C] (where H has degree (1, 0) and C has degree (0, 1)).

Theorem 139: Assume that ρiqj = 1 only if i = j = 0. Then

spec(A) = {〈p〉 | p ∈ σ-spec (D) and H /∈ p} ∪ {〈C,H〉, 〈H〉}.

Proof: The set of prime ideals of A that contain H is in correspondence with spec(B),

where B = A/〈H〉 = k[C][x, y;σ : C 7→ ρC, z = C] (Proposition 12). The set spec(B)

consists of 〈C〉 and the prime ideals that correspond to ones in the localization Bc =

k[C±][x, y;σ : C 7→ ρC, z = C] ∼= k[C±][x±;σ] (Propositions 22 and 5). The latter

algebra is simple (Lemma 107 and Proposition 9, so putting all the information together

we have {〈C,H〉, 〈H〉} as the set of prime ideals of A that contain H.

Let D = k[H,C]. For p ∈ σ-spec(k[H,C]), let Fp = {P ∈ spec(A) | (P ∩ D : σ) =

p}. The set of prime ideals of A that do not contain H can be written as
⋃
{Fp |

p ∈ σ-spec(D) and H /∈ p} (see Proposition 72). If we can show that Fp = {〈p〉} when

H /∈ p, then the theorem will be proven.
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Fix p ∈ σ-spec(D) with H /∈ p. Let D′ = D/p and let A′ = A/〈p〉 = D′[x, y;σ, z].

Let E denote the set of nonzero σ-eigenvectors in D′. Let D′′ = D′E−1 and let A′′ =

A′E−1 = D′′[x, y;σ, z]. Consider the Z2-grading of D in which H has degree (1, 0) and C

has degree (0, 1). Graded components are exactly the distinct σ-eigenspaces, so we can

apply Proposition 85 to see that D′′ is a σ-simple affine algebra over some field and Fp is

in correspondence with spec(A′′). Since H /∈ p, the image of H ends up being a unit in

D′′. Hence all maximal ideals of D′′ have infinite σ-orbit (Proposition 82, with a possibly

different field in place of k). Also, conjugation by H is a linear operator on A′′ that has the

graded components of A′′ as distinct eigenspaces, so spec(A′′) = gr-spec(A′′) (Proposition

81). Since the σi(z) are pairwise coprime in A′′ (again because H is a unit), the set M ′
II

is empty for A′′. Finally, we can apply Corollary 73 to get spec(A′′) = gr-spec(A′′) = {0}.

It follows that Fp = {〈p〉}. �

3.7 Witten-Woronowicz Algebra

Let A be the GWA

k[H,C][x, y;σ : [H 7→ r2H,C 7→ r4C], z = C − α],

where r ∈ k× is not a root of unity and where

α =

(
H − r

1− r2

)(
H − r3

1− r2

)
1

r2(r + r−1)
.
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This is the Witten-Woronowicz Algebra, studied in [2]. Let D = k[H,C]. For integers

n ≥ 1, define

γn =
1

r(r2 + 1)
− r2 + 1

r3(rn + r−n)2
,

Hn = (r2n + 1)
r

1− r4
,

and

cn = γnH
2 + C.

For n ≥ 1 and m ∈ Z, define

πnm =
∏
{H − r−2jHn | 0 ≤ j < n and m ≤ j < n+m}.

We will often use the same symbols to refer to the images of these elements of D in

various quotients and localizations.

Theorem 140: Assume that r is not a root of unity. Then

spec(A) ={η−1(p) | p ∈ spec(k[x±])}

∪ {〈p〉 | p ∈ σ-spec (k[H,C]) \ {〈H,C〉}}

∪ {
⊕
m∈Z

〈πnm, cn〉vm | n ≥ 1},

where η : A → k[x±] is the homomorphism given by H,C 7→ 0, x 7→ x, and y 7→
−r3

(1−r2)2(1+r2)
x−1.

Proof: For p ∈ σ-spec(D), define Fp = {P ∈ spec(A) | (P ∩ D : σ) = p}. We have

spec(A) =
⋃

p∈σ-spec (D) Fp, due to Proposition 72.
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Consider first the case p = 〈H,C〉. Since 〈H,C〉 / D is maximal, a prime ideal of P

contains 〈H,C〉 if and only if (P ∩ D : σ) equals 〈H,C〉. It follows that F〈H,C〉 is in

correspondence with spec(A/〈H,C〉). Now we have a chain of isomorphisms

A/〈H,C〉 ∼= k[x, y; id, z = −r3
(1−r2)2(1+r2)

] ∼= k[x±]

coming from Propositions 12 and 5, and the homomorphism η is exactly the quotient

map A → A/〈H,C〉 followed by these isomorphisms. Thus F〈H,C〉 = {η−1(p) | p ∈

spec(k[x±])}.

Now consider any p ∈ σ-spec(D) \ {〈H,C〉}. Make the following definitions and identi-

fications:

D′ = D/p A′ = A/〈p〉 = D′[x, y;σ, z] E = {nonzero σ-eigenvectors in D′}

D′′ = D′E−1 A′′ = A′E−1 = D′′[x, y;σ, z].

We consider D to be Z-graded such that H has degree 1 and C has degree 2. Then the

σ-eigenspaces of D are exactly graded components, so we may apply Proposition 85 to

see that D′′ is a σ-simple affine algebra and spec(A′′) is in correspondence with Fp. One

of H,C must not be in p, and whichever it is becomes a unit in D′′. Conjugation by that

element defines a linear operator on A′′ that has the Z-graded components of A′′ as its

eigenspaces. It follows (Proposition 81) that spec(A′′) = gr-spec(A′′). One also has, due

to whichever of H,C became a unit in D′′, that every maximal ideal of D′′ has infinite

σ-orbit (Proposition 82).

Claim: Suppose that n ≥ 1 and cn ∈ p. Then p = 〈cn〉, no other cn′ ∈ p for n′ ≥ 1,

and 〈H −Hn〉D′′ ∈M ′
II.

Proof: Since cn ∈ p, the ideal p corresponds to an ideal of D/〈cn〉, which is
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isomorphic (as a Z-graded algebra) to k[H] (with its usual grading). The only

nonzero graded-prime ideal of k[H] is 〈H〉, which pulls back to 〈H,C〉 along D
quo−−→

D/〈cn〉 ∼= k[H]. Since p 6= 〈H,C〉, it follows that p = 〈cn〉.

Now suppose that also cn′ ∈ p, where n′ ≥ 1. Then cn, cn′ ∈ p gives (γn−γn′)H2 ∈ p.

We cannot haveH2 ∈ p since p is σ-prime andH ∈ p would lead to the contradiction

p = 〈H,C〉. Thus γn = γn′ . This implies that (rn+r−n)2 = (rn
′
+r−n

′
)2. Expanding

and rearranging, we get

r2n − r2n′ = r−2n′ − r−2n = r−2(n+n′)(r2n − r2n′).

If n′ 6= n, this gives r−2(n+n′) = 1, which is a contradiction since n, n′ ≥ 1. Thus

n′ = n.

Note that Hn 6= 0. Again using the graded-isomorphism D′ ∼= k[H], we see that

〈H −Hn〉D′ is a maximal ideal of D′ that contains no nonzero homogeneous poly-

nomial. Thus m := 〈H −Hn〉D′′ is a maximal ideal of D′′. By a calculation (that

can be found in Appendix E), one can show that the polynomials σ(z), σ−n+1(z)

vanish at the point given by H = Hn and C = γnH
2
n. Considering that cn = 0 in

D′′, this means we have σ(z), σ−n+1(z) ∈ m. Thus m ∈M ′
II.

Claim: Suppose that m ∈ M ′
II and let n = n(m). Then m = 〈H −Hn〉D′′ and

p = 〈cn〉.

Proof: In D, a calculation (that can be found in Appendix E) shows that the

ideal generated by σ(z) and σ−n+1(z) contains H −Hn and cn. So it follows from

σ(z), σ−n+1(z) ∈ m that H − Hn, cn ∈ m. It follows that cn ∈ p, for cn is a σ-

eigenvector and otherwise would have become a unit in D′′. Using the previous
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claim we may now conclude that p = 〈cn〉 and m = 〈H −Hn〉D′′ .

From the two claims above we deduce the following: If p contains no cn for n ≥ 1, then

M ′
II = ∅. On the other hand if cn ∈ p for some n ≥ 1, then M ′

II = {〈H −Hn〉}D′′ ,

we have p = 〈cn〉, and we have n(〈H −Hn〉D′′) = n. So if p contains no cn for n ≥ 1

then we may apply Corollary 73 to get gr-spec(A′′) = {0}, from which it follows that

Fp = {〈p〉}. Suppose now that cn ∈ p for some n ≥ 1. Since p = 〈cn〉, there is an

isomorphism D′ ∼= k[H] that fixes H and preserves the Z-grading (where k[H] has its

usual grading). Identifying D′ with k[H] using this isomorphism, we see that D′′ =

k[H±], and so A′′ is a domain and 0 ∈ gr-spec(A′′). By Corollary 73, we now have

gr-spec(A′′) = {0, J(〈H −Hn〉D′′)}. Observe that the H − r−2jHn are pairwise coprime

in D′′ as j ∈ Z varies. Using the Chinese remainder theorem and Proposition 66, we see

that J(〈H −Hn〉D′′)} =
⊕

m∈Z 〈πnm〉D′′vm. Using Lemma 24 to pull back J(〈H −Hn〉D′′)

along the localization A′ → A′′, and then pulling back along the quotient A → A′, we

get Fp =
{
p,
⊕

m∈Z 〈πnm, cn〉vm
}
.

The theorem follows from our descriptions of all the Fp. �
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Localization

There are a few aspects of noncommutative localization that make an appearance through-

out this work and that rely on the noetherian hypothesis. For the reader’s convenience,

we lay them out here. Proposition 141 says that localization “commutes” with factoring

out an ideal, and it is a standard fact. Theorem 142 says that the usual correspondence

of prime ideals along a localization is a homeomorphism, also a standard fact. Finally,

Lemma 143 provides a way to describe the pullback of a prime ideal along a localization

by using a “nice” generating set.

Proposition 141: Let S be a right denominator set in a right noetherian ring R. Let I

be an ideal of R, with extension Ie to RS−1. Then:

• Ie is an ideal of RS−1.

• S̄ := {s+ I | s ∈ S} is a denominator set of R/I.

• The canonical homomorphism φ : R/I → (RS−1)/Ie gives a right ring of fractions
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for R/I with respect to S̄. That is, there is an isomorphism φ̄ : (R/I)S̄−1 ∼=

(RS−1)/Ie making the following diagram commute:

R RS−1 RS−1/Ie

R/I (R/I)S̄−1

loc quo

loc

∃!φ ∼=φ̄

Proof: By [21, Theorem 10.18a], I extends to an ideal of RS−1. It is clear that S̄ is a

right Ore set of R/I. It is automatically right reversible due to the noetherian hypothesis;

see [21, Proposition 10.7]. We will use the universal property that characterizes rings

of fractions (e.g. see [21, Proposition 10.4]). The homomorphism φ is uniquely defined

because I is in the kernel of the upper row of the diagram. Since φ maps S̄ to a collection

of units, φ̄ is uniquely defined such that the diagram commutes. It is surjective because

rs−1 + Ie is the image of (r + I)(s + I)−1 for r ∈ R and s ∈ S. For injectivity, suppose

that rs−1 ∈ Ie. Then r1−1 ∈ Ie, so r ∈ Iec, the contraction of Ie to R. By [21, Theorem

10.15b], this implies that rs′ ∈ I for some s′ ∈ S. That is, 0 = (r + I)1−1 ∈ (R/I)S̄−1.

�

Theorem 142: Let S be a right denominator set in a right noetherian ring R. Then

contraction and extension of prime ideals are inverse homeomorphisms:

spec(RS−1) ≈ {Q ∈ spec(R) | Q ∩ S = ∅}. (A.1)

Proof: The bijection of sets in (A.1) is given to us by [21, Theorem 10.20], so we only need

to show that closed sets are preserved. The closed subsets of {Q ∈ spec(R) | Q∩ S = ∅}

are

VS(J) := {Q ∈ spec(R) | Q ⊇ J and Q ∩ S = ∅},
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for ideals J of R. Observe that (A.1) preserves finite unions and inclusions of prime ideals.

Since R is right noetherian, every ideal of R has finitely many minimal primes over it, and

the same goes for RS−1. It follows that the topological spaces in (A.1) are noetherian, so

every closed set is a finite union of irreducible closed sets. Hence it suffices to show that

(A.1) preserves irreducible closed sets. Irreducible closed sets of spec(RS−1) are of the

form V (P ) for primes P /RS−1. Irreducible closed sets of {Q ∈ spec(R) | Q∩S = ∅} are

of the form VS(P ) for primes P /R such that P ∩S = ∅. Since (A.1) preserves inclusions

of prime ideals, it sends any VS(P ) to V (PS−1). �

Lemma 143: Let R be a right noetherian ring, S ⊆ R a right denominator set, and

φ : R→ RS−1 the localization map. Let G ⊆ R and assume the following:

1. The right ideal P generated by G is a two-sided ideal of R.

2. Either P is a prime ideal of R disjoint from S, or 〈φ(G)〉 is a prime ideal of RS−1

and (R/P )R is S-torsionfree.

3. For all g ∈ G and s ∈ S,

gS ∩ sP 6= ∅.

Then

P = φ−1(〈φ(G)〉).

That is, the ideal of RS−1 generated by φ(G) contracts to the ideal of R generated by G.

Proof: Assumption 3 guarantees that the right ideal of RS−1 generated by φ(G) is a

two-sided ideal. Let superscripts “e” and “c” denote extension and contraction of ideals
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along φ. Observe that

〈φ(G)〉 = {
n∑
i=1

φ(gi)φ(ri)φ(si)
−1 | n ∈ Z≥0, ri ∈ R, si ∈ S, gi ∈ G for 1 ≤ i ≤ n}

= {
n∑
i=1

φ(giri)φ(s)−1 | s ∈ S, n ∈ Z≥0, ri ∈ R, gi ∈ G for 1 ≤ i ≤ n} (A.2)

= {φ(a)φ(s)−1 | s ∈ S, a ∈ 〈G〉} = P e.

In line (A.2), we used the fact that it is possible to get a “common right denominator”

for a finite list of right fractions; see [21, Lemma 10.2]. Now assumption 2 implies that

P is a prime ideal of R disjoint from S, either trivially or by [21, Theorem 10.18b]. To

finish, we use the correspondence between prime ideals disjoint from S and prime ideals

of RS−1:

P = P ec = 〈φ(G)〉c = φ−1(〈φ(G)〉). �

Note that assumption 3 of Lemma 143 holds trivially whenever G or S is central.
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Chinese Remainder Theorem

This appendix serves to clarify the way in which the Chinese Remainder Theorem (CRT)

gets applied in section 3.1.4.

Let R be a commutative ring with pairwise comaximal ideals I1, . . . , In, and let Π :=

I1 · · · In denote their product. The CRT says that the homomorphism

R/Π→ R/I1 × · · · ×R/In, (B.1)

whose components are induced by canonical projections, is an isomorphism. This implies

that there is a bijective correspondence between ideals J of R that contain Π, and tuples

(J1, . . . , Jn) of ideals of R such that Ji ⊇ Ii for all i. Let us describe the correspondence

explicitly.

There are e1, . . . en ∈ R such that ei ≡ 1 mod Ii and ei ≡ 0 mod Ij for j 6= i. These are

just the pairwise orthogonal idempotents (when taken modulo Π) corresponding to the
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ring decomposition in (B.1); they also satisfy

e1 + · · ·+ en ≡ 1 mod Π.

The ring (R/Π)(ei + Π) is the copy of the ring R/Ii that is (non-unitally) contained in

R/Π via (B.1). Explicitly, the correspondence of elements is given by

(rei + Π) ↔ (r + Ii). (B.2)

Let J be an ideal of R that contains Π. Projecting J/Π to the copy (R/Π)(ei + Π) of

R/Ii yields (J/Π)(ei+Π), which corresponds to (J+Ii)/Ii / R/Ii via (B.2). Going back

in the other direction, suppose that J1, . . . , Jn are ideals of R such that Ji ⊇ Ii for all i.

Then Ji/Ii is an ideal of R/I1×· · ·×R/In, and it corresponds to (Jiei+Π)/Π / R/Π via

(B.2). The sum of these over i is the ideal of R/Π corresponding to the tuple (J1, . . . , Jn).

Thus we have the following explicit description of how ideals are carried across (B.1):

Proposition 144: Let R be a commutative ring with pairwise comaximal ideals

I1, . . . , In, and let Π := I1 · · · In denote their product. Let e1, . . . en ∈ R be such that

ei ≡ 1 mod Ii and ei ≡ 0 mod Ij for j 6= i. There is a bijective correspondence between

ideals J of R that contain Π, and tuples (J1, . . . , Jn) of ideals of R such that Ji ⊇ Ii for

all i, and it is given by:

J 7→ (J + I1, . . . , J + In)

J1e1 + · · ·+ Jnen + Π ←[ (J1, . . . , Jn).
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Derivations and Poisson Brackets

This appendix contains tools that are used to build Poisson GWAs from the ground up,

in section 2.7.

Definition 145: Given a k-algebra R and a bimodule RMR, we denote the upper trian-

gular matrix algebra 
 a b

0 c

 | a, c ∈ R, b ∈M


by [ R M
0 R ]. Given a function δ : R→M , we define δH : R→ [ R M

0 R ] to be the function

r →

 r δ(r)

0 r

 .

Given a function φ : R → [ R M
0 R ], we define φD : R → M to be π12 ◦ φ, where π12 :

[ R M
0 R ]→ M is the projection. Observe that δH

D
= δ, and that φDH

= φ if φ(r) has the

form [ r ·0 r ] for all r ∈ R.
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This notation has been introduced to make it convenient to apply the following standard

trick for constructing derivations:

Proposition 146: Let R be a k-algebra and let RMR be a bimodule. A function δ : R→

M is a k-derivation if and only if δH : R→ [ R M
0 R ] is an algebra homomorphism.

Proof: It is obvious that δ is k-linear if and only if δH is k-linear. Observe that for

a, b ∈ R one has

δH(a)δH(b) =

 a δ(a)

0 a


 b δ(b)

0 b

 =

 ab aδ(b) + δ(a)b

0 ab

 ,

δH(ab) =

 ab δ(ab)

0 ab

 .

Thus δ has the Leibniz property if and only if δH is multiplicative. �

Proposition 147: A derivation (from a k-algebra R to an R-R-bimodule) is determined

by the values it takes on a generating set for the algebra.

Proof: This is an easy consequence of Proposition 146, since algebra homomorphisms

are determined by their values on generators. �

Throughout this appendix, the notation R[x] denotes a polynomial ring.

Proposition 148: Let R be a commutative k-algebra and M an R-module. Let δ :

R → M be a derivation and let x′ be any element of M . There is a unique derivation

δ1 : R[x]→M extending δ and sending x 7→ x′.
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Proof: Define φ1 : R[x]→
[
R[x] M

0 R[x]

]
to be the extension of

R
δH−→ [ R M

0 R ] ↪→
[
R[x] M

0 R[x]

]
(C.1)

to R[x] that sends x to  x x′

0 x

 . (C.2)

This is a well-defined algebra homomorphism because (C.1) is a homomorphism by Propo-

sition 146, and because (C.2) commutes with matrices of the form

 r δ(r)

0 r

 .

The desired δ1 is then simply φ1
D, a derivation by Proposition 146. The uniqueness of

δ1 is guaranteed by Proposition 147. �

Proposition 149: Let R be a commutative k-algebra and M an R-module. Let δ : R→

M be a derivation and I be an ideal of R. If δ(I) ⊆ IM , then δ induces a derivation

R/I →M/IM

Proof: Consider the algebra homomorphism q : [ R M
0 R ] →

[
R/I M/IM

0 R/I

]
that acts as the

standard quotient map in each coordinate. Define φ1 : R →
[
R/I M/IM

0 R/I

]
to be the

homomorphism q ◦ δH. If δ(I) ⊆ IM , then φ1 annihilates I and therefore induces a

homomorphism φ2 : R/I →
[
R/I M/IM

0 R/I

]
. The desired derivation would then be φ2

D. �

Definition 150: Given a k-algebra R and a bimodule RMR, we denote by Derk(R,M)

the vector space of k-derivations R→ M . A k-biderivation from R to M is a k-bilinear
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map R×R→M which is a derivation in each argument. We shall refer to k-derivations

and k-biderivations simply as derivations and biderivations.

When R is commutative, Derk(R,M) becomes an R-module in an obvious way. Bideriva-

tions can then be expressed as iterated derivations:

Proposition 151: Let R be a commutative k-algebra and let M be an R-module.

A biderivation from R to M is equivalent to a derivation from R to the R-module

Derk(R,M). That is, a given function {−,−} : R×R→M is a biderivation if and only

if the mapping a 7→ (b 7→ {a, b}) is an element of Derk(R,Derk(R,M)).

Proof: Let {−,−} be any function R × R → M and let ∆ denote the mapping a 7→

(b 7→ {a, b}), a function from R to HomSet(R,M), the set of functions R→M . The set

HomSet(R,M) is an R-module in an obvious way.

The function {−,−} is k-bilinear if and only if ∆ is an element of Homk(R,Homk(R,M))

(using the well known natural isomorphism Homk(R⊗kR,M) ∼= Homk(R,Homk(R,M))).

For {−,−} to satisfy the Leibniz condition in its right argument, the necessary and

sufficient condition is that

∆(a)(bc) = {a, bc} = c {a, b}+ b {a, c} = c∆(a)(b) + b∆(a)(c)

for all a, b, c ∈ R. In other words, one needs exactly that ∆(a) is derivation for all

a ∈ R. For {−,−} to satisfy the Leibniz condition in its left argument, the necessary

and sufficient condition is that

∆(ab)(c) = {ab, c} = a {b, c}+ b {a, c} = a∆(b)(c) + b∆(a)(c) = (a∆(b) + b∆(a))(c)
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for all a, b, c ∈ R. In other words, one needs exactly that ∆(ab) = a∆(b) + b∆(a)

for all a, b ∈ R. Thus if {−,−} is k-bilinear, then it is a biderivation if and only if

∆ ∈ Derk(R,Derk(R,M)). �

Proposition 152: A biderivation (from a k-algebra R to an R-R-bimodule) is deter-

mined by the values it takes on ordered pairs of elements from a generating set.

Proof: Using Proposition 151 to express biderivations in terms of derivations, apply

Proposition 147. �

One consequence is that for a homomorphism to preserve Poisson brackets it is enough

for it to do so on algebra generators:

Proposition 153: Let R, S be commutative Poisson k-algebras and let φ : R → S be

an algebra homomorphism. Let G be an algebra generating set for R. If φ({a, b}) =

{φ(a), φ(b)} for all a, b ∈ G, then φ is a Poisson homomorphism.

Proof: View S as an R-module via φ. To say that φ preserves Poisson brackets is to

say that the biderivations {φ(−), φ(−)} and φ({−,−}) from R to S coincide. The result

follows from Proposition 152. �

Proposition 154: Let R be a commutative k-algebra with a biderivation {−,−}R to an

R-module M . Let δlx, δ
r
x : R→M be derivations and let ξ be an element of M . There is a

unique biderivation {−,−} from R[x] to M extending {−,−}R such that {x,−} |R = δlx,

{−, x} |R = δrx, and {x, x} = ξ.

Proof: Let ∆0 ∈ Derk(R,Derk(R,M)) be the derivation given by a 7→ (b 7→ {a, b}R), as

in Proposition 151. Define a function ∆1 : R→ Derk(R[x],M) as follows: for a ∈ R, let
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∆1(a) be the unique extension of ∆0(a) to R[x] that sends x to δrx(a), which exists by

Proposition 148. Let us check that ∆1 is a derivation: for a, b, c ∈ R and β ∈ k we have

∆1(βa+ b)(c) = ∆0(βa+ b)(c) = β∆0(a)(c) + ∆0(b)(c)

= β∆1(a)(c) + ∆1(b)(c) = (β∆1(a) + ∆1(b))(c)

∆1(βa+ b)(x) = δrx(βa+ b) = βδrx(a) + δrx(b) = β∆1(a)(x) + ∆1(b)(x)

= (β∆1(a) + ∆1(b))(x),

so ∆1 is k-linear. For a, b, c ∈ R we have

∆1(ab)(c) = ∆0(ab)(c) = a∆0(b)(c) + b∆0(a)(c)

= a∆1(b)(c) + b∆1(a)(c) = (a∆1(b) + b∆1(a))(c)

∆1(ab)(x) = δrx(ab) = aδrx(b) + bδrx(a)

= a∆1(b)(x) + b∆1(a)(x) = (a∆1(b) + b∆1(a))(x),

so ∆1 is indeed a derivation. Again using Proposition 148, define the derivation δ̂lx :

R[x] → M to be the extension of δlx to R[x] that sends x to ξ. Finally, use Proposition

148 for a third time to define ∆2 ∈ Derk(R[x],Derk(R[x],M)) to be the extension of

∆1 that sends x to δ̂lx. The desired {−,−} is ∆2(−)(−), which is a biderivation by

Proposition 151. The uniqueness of this biderivation is given by Proposition 152. �

Proposition 155: Let R be a commutative k-algebra with a biderivation {−,−} to an

R-module M . Let I be an ideal of R such that {I, R} + {R, I} ⊆ IM . Then {−,−}

induces a biderivation from the quotient R/I to the quotient M/IM .

Proof: Define ∆1 : R → Derk(R/I,M/IM) by letting ∆1(r) be, for each r ∈ R,
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the derivation from R/I to M/IM induced by {r,−} via Proposition 149; this works

because {R, I} ⊆ IM . It is easily checked that ∆1 is a derivation. Since {I, R} ⊆ IM ,

we have ∆1(I) = 0. Hence Proposition 149 applies again to give an induced derivation

∆2 : R/I → Derk(R/I,M/IM) (note that I Derk(R/I,M/IM) = 0). The derivation ∆2

corresponds, via Proposition 151, to the desired biderivation from R/I to M/IM . �

Proposition 156: Let R be a commutative k-algebra with generating set G, and let

{−,−} be a biderivation of R. Assume that

{a, b} = −{b, a} and

{a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0

for all a, b, c ∈ G. Then {−,−} is a Poisson bracket on R.

Proof: For any a ∈ R let Sa = {b ∈ R | {a, b} = −{b, a}}. Since {−,−} is a biderivation,

it is easy to check that Sa is a linear subspace of R which contains 1. It is also closed

under multiplication; assuming that b, b′ ∈ Sa we have:

{a, bb′} = {a, b} b′ + {a, b′} b = −({b, a} b′ + {b′, a} b) = −{bb′, a} .

Thus Sa is a subalgebra of R for any a ∈ R. By our assumption we then have that

Sg = R for g ∈ G. That is, {g, b} = −{b, g} for all b ∈ R and g ∈ G. Fixing any b ∈ R

and moving the minus sign, we can express this by saying that {b, g} = −{g, b} for all

g ∈ G. It follows that Sb = R. Since this holds for arbitrary b ∈ R, we have shown that

{−,−} is antisymmetric.

For any a, b ∈ R, let Sa,b = {c ∈ R | {a, {b, c}} + {b, {c, a}} + {c, {a, b}} = 0}. Since
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{−,−} is a biderivation, it is easy to check that Sa,b is a linear subspace of R which

contains 1. It is also closed under multiplication. To show this, it helps to use the

notation δa = {a,−} and the fact that a commutator of derivations is a derivation.

Assuming that c, c′ ∈ Sa we have:

{a, {b, cc′}}+ {b, {cc′, a}}+ {cc′, {a, b}} = [δa, δb](cc
′) + {cc′, {a, b}}

= c′[δa, δb](c) + c[δa, δb](c
′) + c′ {c, {a, b}}+ c {c′, {a, b}}

= −c′ {c, {a, b}} − c {c′, {a, b}}+ c′ {c, {a, b}}+ c {c′, {a, b}}

= 0.

Thus Sa,b is a subalgebra of R for any a, b ∈ R. By our assumption we then have that

Sg,g′ = R for g, g ∈ G. That is, a ∈ Sg,g′ for all a ∈ R and g, g′ ∈ G Using the symmetry

of the Jacobi identity, this implies that g′ ∈ Sg,a for all a ∈ R and g, g′ ∈ G. It follows

that Sg,a = R for all a ∈ R and g ∈ G. That is, b ∈ Sg,a for all a, b ∈ R and g ∈ G. Again

using the symmetry of the Jacobi identity, this means that g ∈ Sa,b for all a, b ∈ R and

g ∈ G. It follows that Sa,b = R for all a, b ∈ R. Thus we have shown that {−,−} satisfies

the Jacobi identity. �

Proposition 157: Poisson derivations preserve Poisson centers.

Proof: Let R be a commutative Poisson k-algebra with α : R→ R a Poisson derivation.

If z ∈ R is Poisson central, then for any r ∈ R we have:

{α(z), r} = α({z, r})− {z, α(r)} = 0. �
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Appendix D

The Dixmier-Moeglin Equivalence

and Localization

We show here two useful facts: First, it is often automatic for GWAs to satisfy one direc-

tion of the Dixmier-Moeglin equivalence. Second, the full Dixmier-Moeglin equivalence

for an algebra is often preserved by localization.

Definition 158: A noetherian k-algebra A satisfies the nullstellensatz over k if the fol-

lowing two conditions hold. First, A must be a Jacobson ring– this means that all its

prime factor rings have zero Jacobson radical. Second, for every simple left A-module,

its division ring of endomorphisms must be algebraic over k.

The following definitions appear in [32, 1.6.10 and 9.1.4].

Definition 159: Let R ⊆ S be k-algebras. If S is generated over R by x1, . . . , xn, each xi

satisfies Rxi+R = xiR+R, and each [xi, xj] is in
∑n

`=1 x`R+R, then S is called an almost
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normalizing extension of R. If S can be obtained from R by a finite number of extensions,

each being either a finite module extension or an almost normalizing extension, then S

is said to be constructible from R. If S is constructible from k, then S is simply called a

constructible k-algebra. For example, any affine commutative algebra is constructible.

Remark 160: Definition 158 appears in [32, 9.1.4] and in [8, II.7.14] with a slight dif-

ference, but in the noetherian setting there is no difference due to [32, Lemma 9.1.2].

To avoid worrying about the difference, we will only deal with the nullstellensatz in a

noetherian setting.

Proposition 161: If a noetherian k-algebra R is constructible, then any GWA

R[x, y;σ, z] satisfies the nullstellensatz over k.

Proof: It is easy to see that any GWA W = R[x, y;σ, z] is an almost normalizing

extension of R and hence is constructible from R. Since we assumed R is constructible

from k, we have that W is constructible from k. Note that W is noetherian since R is

(Proposition 4), so we need not worry about the point made in Remark 160. By [32,

Theorem 9.4.21], we have that W satisfies the nullstellensatz over k. �

Proposition 162: Let A be a noetherian k-algebra satisfying the Dixmier-Moeglin equiv-

alence, and let S ⊆ A be a right denominator set consisting of regular elements. Assume

that the localization AS−1 satisfies the nullstellensatz over k. Then AS−1 satisfies the

Dixmier-Moeglin equivalence and its primitive ideals correspond, via extension and con-

traction, to the primitives of A that are disjoint from S.

Proof: Let P ∈ spec(A) with P ∩ S = ∅, and let Q ∈ spec(AS−1) be its extension.

Claim: If P is locally closed, then Q is locally closed.
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Proof: From Theorem 142, contraction of primes gives a continuous injection

spec(AS−1) → spec(A). The preimage of a locally closed set under a continuous

map is locally closed. Since Q maps to P , it follows that Q is locally closed when

P is.

Claim: P is rational if and only if Q is rational

Proof: Let S denote the image of S in A/P . The claim follows from the fact that

Z(Fract(A/P )) = Z(Fract((A/P )S
−1

)) = Z(Fract((AS−1)/Q)).

Consider the following implications:

P locally closed P primitive P rational

Q locally closed Q primitive Q rational

The top row is the Dixmier-Moeglin equivalence for A. The bottom row follows from the

fact that AS−1 satisfies the nullstellensatz over k (see [8, II.7.15]). The left and right

sides are the claims above. The Dixmier-Moeglin equivalence for AS−1 follows, and P is

primitive if and only if Q is primitive. �
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Appendix E

Calculations

This appendix includes some mathematica code to help verify certain statements in

section 3.7.

185



In[43]:= α[H_] = H -
r

1 - r2
H -

r3

1 - r2

1

r2 r + r-1
;

z[H_, C_] := C - α[H];
(*This is σj(z) evaluated at a given H and C*)
sigmajz[j_, H_, C_] = zr2 j H, r4 j C;

γ[n_] =
1

r r2 + 1
-

r2 + 1

r3 (rn + r-n)2
;

H[n_] = r2 n + 1
r

1 - r4
;

In[48]:= (* If the following evaluates to 0, then σ(z) is in the maximal ideal <H-Hn> of D'' *)
Simplifysigmajz1, H[n], γ[n] H[n]2
(* If the following evaluates to 0, then σ-n+1(z) is in the maximal ideal <H-Hn> of D'' *)

Simplifysigmajz-n + 1, H[n], γ[n] H[n]2

Out[48]= 0

Out[49]= 0

In[50]:= (* The following calculation verifies that H-Hn is in the ideal <σ(z),σ-n+1(z)> of D *)

Simplify
r2 -1 + r22 1 + r2
-1 + r4 -1 + r2 n

r-4 sigmajz[1, H, C] - r4 n-4 sigmajz[-n + 1, H, C] ⩵H - H[n]

Out[50]= True

In[51]:= (* Using the fact that H-Hn is in <σ(z),σ-n+1(z)>, we find that γnH2-C is also in <σ(z),σ-n+1(z)> *)

Simplify(H - H[n]) (H + H[n]) H[n]-2
r2 - r2 n - r4+2 n + r2+4 n

r -1 + r22 1 + r23
- r-4 sigmajz[1, H[n], C] ⩵ γ[n] H2 - C

Out[51]= True
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