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Abstract 

Understanding virtual solvent through large-scale ligand discovery 

Reed Stein 

 Predicting new ligands and their binding poses for a protein target relies on an 

understanding of the physical forces that exist between the water-submerged protein 

and ligand. The relative favorability of these molecular and atomic interactions between 

the protein and ligand compared with their interactions with water determine the binding 

affinity, which in turn can be converted into a binding free energy. Protein-ligand binding 

energetics are, with varying levels of success, encoded into scoring functions, which at 

their best, can only partially emulate the true binding affinity of a protein-ligand binding 

event. In the context of virtually screening millions or hundreds of millions of drug-like 

ligands, molecular docking algorithms take advantage of scoring functions to rank the 

binding energies of these molecules relative to one another to help prioritize the most 

promising ligands. 

The focus of this dissertation is the balance between scoring function energy 

terms with an emphasis on water energetics, specifically the desolvation of the protein 

upon ligand binding. It is thought that our limited understanding of water is largely 

responsible for our limitations in discovering and designing drugs. This is due to the 

large number of roles that water can play, as well as its significant, and even dominant, 

contribution to protein-ligand binding energetics, which in the realm of molecular 

docking, is typically under-modeled or completely neglected.  
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 First, I focus on the incorporation of receptor desolvation into the standard 

DOCK3.7 scoring function to more accurately model protein-ligand binding interactions 

by including further contributions of water. This is the original implementation of Grid 

Inhomogeneous Solvation Theory applied to the model cavity, cytochrome c peroxidate, 

and spearheaded by Trent Balius and Marcus Fischer. Second, I discuss an extension 

of GIST in DOCK3.7, a new implementation that relies on pre-computed Gaussian-

weighted GIST receptor desolvation enthalpies. This results in negligible slowdown of 

the standard DOCK3.7 scoring function, similar performance to the original 

implementation of GIST, and the identification of new ligands for the drug-like model 

system, AmpC β-lactamase. The work on receptor desolvation contained within these 

two chapters inspires the name of this thesis, and were started in my rotation and have 

continued until the end. Third, I focus on the use of property-matched and property-

unmatched decoys for use in retrospective enrichment calculations prior to running a 

large-scale molecular docking virtual screen. Decoy molecules share the same physical 

properties as ligands that bind a protein but are topologically dissimilar to ensure that 

they do not actually bind the protein. What we found was that charge mismatching 

between ligands and decoys could bias one’s docking setup towards artifactually strong 

performance. Chapter 3 focuses on how we both decreased and increased the property 

space of decoys relative to ligands to safeguard against these docking setup biases. 

Fourth, I employ this knowledge of protein-ligand binding affinities to identify novel 

selective melatonin receptor ligands that are active in in vivo circadian rhythm assays. 

Finally, I discuss my current project on the CB1 cannabinoid receptor in the context of 

analgesia, followed by future directions.   
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Introduction 

 In college, I was captivated by the interactions and reactions that occurred 

between molecules in my organic chemistry class. This led me to two summers at Mayo 

Clinic Scottsdale, where I was doing basic programming, molecular modeling, docking 

with Molsoft’s ICM software, and judging docking performance by ICM’s ability to 

reproduce crystallographic binding poses of ligands. My project was focused on judging 

the success of docking calculations after the incorporation of receptor flexibility, and 

was inspired by work done in the Abagyan lab1. I remember reading their work and 

attempting to understand such terms as “Biased Probability Monte Carlo stochastic 

optimizer”, “0.5 Å spacing potential grid maps”, “6-12 Lennard Jones potential”, and 

“distance dependent dielectric constant”. I felt I had only gotten a preview of the 

molecular modeler’s techniques, and was determined to understand more, regardless of 

the difficulty. Those summers solidified my interest in modeling protein-ligand 

interactions and understanding the physics and forces involved in doing so. This pushed 

me to join UCSF with its strong foundation in computational chemistry, and the 

Pharmaceutical Sciences & Pharmacogenomics program, with its rigorous 

pharmacology and pharmacokinetics emphases so I could understand drug discovery 

and development. 

 After joining the Shoichet lab in 2015, I was already well underway in my project 

on receptor desolvation. But what is receptor desolvation? Why is it important in protein-

ligand binding? Shape and electrostatic complementarity between the ligand and 

protein is not sufficient to predict binding as various players are involved in the binding 
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event including cofactors, ions, and hundreds to thousands of water molecules2. Thus, 

complex formation becomes a competition between favorable interactions between the 

ligand and bulk solvent, the protein binding site and solvent, and between the ligand 

and the protein binding site -- values large in magnitude whose difference is small and 

prone to error using our current modeling methods3,4.  

The loss of ligand-solvent interactions when the ligand binds a protein has 

already been incorporated into the physics-based DOCK3.7 scoring function5, but the 

loss of protein-solvent interactions has not. This is because the energetics of binding 

site-bound water are difficult to calculate, though multiple programs have been 

employed to do so including 3D-RISM6, SPAM7, JAWS8, WaterMap9, and STOW10. It is 

also unclear which waters to displace, retain, or ignore when identifying potential 

ligands. A variety of algorithms are available that classify hydration sites as conserved 

or nonconserved, i.e. displaceable, and these include Consolv11, GRID12, PyWater13, 

and WaterFLAP14. These conserved waters are typically tightly bound, making multiple 

favorable interactions with the protein and are potentially necessary for protein structure 

or function. Displaceable waters, on the other hand, are high energy and mobile and 

thus, thought to be easy to displace2.  

Additionally, the presence of bridging waters between protein and ligand is 

difficult to anticipate, though various docking programs have attempted to model them 

including FleXX 1015. Adding to the complexity is the fact that water that forms 

interactions with biological interfaces or that is confined in microenvironments such as 

binding sites exhibits different translational and rotational diffusion rates, residence 

times, hydrogen bond energies, polarity, pH, density, and viscosity compared to bulk 
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solvent16-19. Besides the water that mediates protein-ligand interactions, the energetics 

of water reorganizing around a ligand after binding is also difficult to evaluate, depends 

on the specific ligand binding, and can significantly affect the thermodynamics20. The 

quantity and different foci of these water-modeling algorithms highlights both the 

difficulty in modeling water’s many behaviors accurately, but also how much research is 

still needed.  

 There are several examples from the literature regarding the importance of water 

and its multiple roles in protein-ligand binding. The classic example is that of cyclic urea 

inhibitors of HIV protease that were specifically designed to displace a conserved water 

molecule, while also maintaining the hydrogen bond that the water contributed21. This 

served to boost the potency more strongly than previous inhibitors, presumably due to 

an entropy increase from the release of this water into bulk solvent. However, this 

displace-and-replace approach isn’t always successful, in some cases exhibiting no 

change in affinity22, or in others, decreasing affinity23,24.  

Another example of water’s difficult-to-model behavior is its involvement with the 

periplasmic oligopeptide binding protein OppA, which is capable of binding thousands of 

two to five amino acid peptides. Its ability to bind these diverse peptides is not due to 

protein conformational changes nor different protein-ligand contacts, but rather the 

inclusion of different numbers of water molecules that coordinate interactions between 

the peptide and protein25.  

In addition to displace-and-replace and coordination, water can also affect the 

affinity of molecules by being destabilized. In the adenosine A2A G protein-coupled 

receptor, researchers found a correlation between the residence time of a series of 
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structurally related antagonists and the number and position of high energy trapped 

solvent molecules within the first shell of the ligand26. Similarly, a selective PI3Kβ 

inhibitor was shown to be more selective over PI3Kδ because of a less destabilized 

ligand-associated water that interacts with the charged Asp856 in PI3Kβ, compared with 

the neutral Asn836 in PI3Kδ27 at the same position. In still other cases including R67 

dihydrofolate reductase, it has been shown that it is water’s reorganization after ligand 

binding that dominates the enthalpy of binding28. 

 This multifaceted process of protein desolvation, establishment of new bridging 

water-interactions between the protein and ligand, and reorganization of water and its 

associated energetics flies in the face of molecular docking methods, which are typically 

utilized for rapidly calculating binding energies between a rigid protein and a large 

library of compounds to narrow down the list to a set of plausible compounds with which 

to move forward. Molecular docking cannot usually calculate affinities accurately or 

reliably rank order high-scoring molecules due to tradeoffs between accuracy and 

speed29. This is likely why successful incorporation of all of water’s roles into 

computational methods, especially molecular docking methods, hasn’t been fully 

realized. Water models currently used focus on computational efficiency at the expense 

of accuracy, only partially modeling water’s behavior, and thus fail at reproducing key 

properties of liquid water30.  

Thus, the question becomes: how can we incorporate receptor desolvation in an 

approximate, quick way that will meaningfully account for water’s role in protein-ligand 

binding? In addition, how can we fit this new scoring function term into the current 

DOCK3.7 scoring function, which is itself composed of a combination of different force 
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fields (Merck molecular force field 94, united atom AMBER force field to name a few), 

charge models (MMFF94 partial charges, AM1BCC, and united atom AMBER partial 

charges), and theories (Poisson-Boltzmann and Generalized Born Surface Area 

continuum electrostatics), and whose energies are approximate and entangled? If we 

can successfully incorporate this receptor desolvation term, how do we know that it is 

right for the right reasons? Do we know that the balance of energies in the DOCK3.7 

scoring function as it is now is the best it can be, or can it be optimized further? 

My first approach to incorporate receptor desolvation into DOCK3.7 involved 

taking advantage of the numerical Poisson-Boltzmann equation solver, QNIFFT, already 

utilized for calculating electrostatic energies. The goal was to pre-compute the receptor 

desolvation energy by placing a low-dielectric probe atom at each position in the binding 

site prior to docking and calculating the electrostatic energy of the system. By taking the 

difference in total electrostatic energy of the low-dielectric protein in high dielectric 

solvent and the low-dielectric protein and probe in high dielectric solvent, one could get 

the work associated with the change in charge-solvent interaction energies31 – the 

electrostatic component of the solvation free energy. The electrostatic component of the 

solvation free energy is the interaction of a charged atom and the polarization it induces 

in the solvent. Thus, by placing a low-dielectric probe at each position in the binding 

site, we see how the lack of solvent, and thus, modified atomic-solvent interactions and 

solvent screening, at that position affects the total electrostatic energy of the system.  

These electrostatic receptor desolvation energies were stored on a grid and read 

in during docking. This involved writing a new receptor desolvation scoring scheme in 

the DOCK source code that used trilinear interpolation, which is what the three other 
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scoring function terms use. What was assuring was that these electrostatic receptor 

desolvation energies, computed with the numerical Poisson-Boltzmann equation, for 

ligands were about the same magnitude as the ligand desolvation energies computed 

with AMSOL, which is based on Generalized Born theory. However, because pre-

computing involved placing individual probes with radius 1.9 Å at each position in the 

binding site with a 1 Å grid spacing, this meant double-counting a substantial amount of 

the receptor desolvation energy when the individual atom’s energies were summed up. 

In general, a ligand pose’s receptor desolvation energies during docking reached 3-fold 

higher energies than the energies generated from the full ligands themselves, outside of 

docking. I tried a variety of different scaling factors to down-weight the desolvation 

energies, but in all cases, performance diminished relative to the standard scoring 

function.  

The main problem was that introducing a probe, and thus, removing favorable 

protein-solvent interactions and solvent screening always increased the electrostatic 

energy of the system, and was therefore, always a penalty. Though this makes sense in 

terms of the theory, we know that water can be both favorable and unfavorable in 

protein cavities, and this seemed to be too big of an approximation. In terms of docking, 

this resulted in DOCK prioritizing molecules that were hanging out of the binding pocket 

as there would be fewer penalties there. What this suggested to me was that the ligand 

desolvation term was too strong, potentially compensating for the lack of accounting for 

receptor desolvation in the scoring function, and this is what motivated the parameter 

scanning in Chapter 3. Because of these issues, the PB-derived receptor desolvation 
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scoring scheme was abandoned, and a new implementation of the explicit solvent-

based Grid Inhomogeneous Solvation Theory (GIST)32-34 was pursued.  

While I was working on the PB-derived receptor desolvation term, I was also 

running molecular dynamics simulations and GIST calculations on DUD-E systems to 

determine how GIST affected enrichment performance. My mentors, Trent Balius and 

Marcus Fischer, and I showed that incorporating GIST’s receptor desolvation enthalpies 

into DOCK3.7 could be successful in a simplified model cavity with a single charged 

aspartate, in terms of prioritizing molecules that bind, predicting the correct binding 

pose, and predicting water-mediated interactions between ligand and protein35. This is 

highlighted in Chapter 1 of this thesis.  

However, there were several drawbacks. The implementation of GIST required 

finding all GIST voxels (three-dimensional pixels) or grid points contained within the van 

der Waals radii of each atom in each pose of each ligand sampled during docking. With 

a 0.5 Å grid spacing for the GIST grids, this amounted to hundreds of voxels to identify 

on the fly, which slowed down the standard scoring function by 6-fold. As the lab was 

moving towards screening hundreds of millions of small molecules, this slowdown would 

guarantee that GIST could only be used for smaller screens. Second, the GIST term 

only accounted for 8% of the total docking energy, suggesting again that the ligand 

desolvation energy was likely too large, and potentially entangled with receptor 

desolvation. Lastly, a Simplex minimizer was incorporated into DOCK3.736,37, that 

customarily went through up to 500 minimization steps before convergence, which, 

coupled with the slowdown caused by GIST, could not be incorporated into the current 

implementation.  
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Trent had been working on different implementations of GIST for scoring 

including a way to pre-compute GIST desolvation enthalpies by applying a Gaussian-

weighting and summing up desolvation enthalpies at voxels contained within a 

pseudoatom that he called “blurry GIST”. We found that combining this blurry GIST 

scheme with the new trilinear interpolation receptor desolvation scoring I implemented 

into DOCK captured similar enrichment trends as the original displacement 

implementation of GIST, exhibited negligible slowdown in docking, and could be readily 

incorporated into Simplex minimization. This implementation of blurry GIST, its 

retrospective testing, and prospective testing after a 270 million screen to AmpC β-

lactamase is described in Chapter 2.  

 

Guide to the Chapters 

 I have adapted one second author paper, one published co-first author paper, 

and two other soon-to-be published first author papers in the following chapters. Before 

each chapter, I introduce some context around the project with a short gloss.  

 In the first chapter, I discuss my contributions to Trent Balius’ and Marcus 

Fischer’s project on incorporating grid inhomogeneous solvation theory (GIST) into the 

DOCK3.7 scoring function. This work was performed on the cytochrome c peroxidase 

gateless mutant (CcP-ga) and was the first data that showed that receptor desolvation 

in DOCK could meaningfully improve prioritization of binding compounds and pose 

geometry in prospective screens. Next, I describe my efforts to incorporate the faster, 

Gaussian-weighted blurry GIST into DOCK3.7, and its application to identifying new 

ligands for AmpC β-lactamase. We ran retrospective enrichments on 40 DUD-E 



9 

 

systems with and without blurry GIST, ran a 300 million molecule prospective screen on 

AmpC, bought molecules prioritized and de-prioritized by GIST, and characterized them 

experimentally with kinetic binding assays and X-ray crystallography. In chapter 3, I 

describe parameter scanning of the DOCK scoring function on 41 DUD-E systems and 

DRD4 and MT1, which was an attempt to identify a better balance of the scoring 

function terms. This exercise came directly out of our work done on receptor desolvation 

as I hoped to find a better balance of the terms that would allow us to incorporate GIST 

more readily. In chapter 4, I move away from optimizing and extending the scoring 

function and describe our work on the melatonin receptors to identify type-selective 

molecules for the MT1 receptor in collaboration with Bryan Roth’s lab at University of 

North Carolina at Chapel Hill, Margarita Dubocovich’s lab at the State University of New 

York at Buffalo, and Vadim Cherezov’s lab at the University of Southern California. In 

that work, we were able to identify picomolar and nanomolar agonists and inverse 

agonists of the melatonin receptors and optimize these into MT1-selective inverse 

agonists that exhibited agonist and inverse agonist phenotypes in vivo. I then finish off 

with a description of what I have been working on in the last years of my PhD – docking 

to the CB1 cannabinoid receptor for agonists that may be involved in analgesia – as well 

as a chapter focused on future directions and projects. 
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Gloss to Chapter 1 

 This chapter marks my introduction to receptor desolvation and the Shoichet lab. 

I remember sitting in Brian’s office with Trent and Marcus in my first year to discuss a 

potential rotation and though I wanted to focus on experimental work at that time, I was 

quite intrigued by the idea of implementing and testing a new term in the scoring 

function. After hearing Brian’s pitch of the project, I asked a question regarding the 

different roles of the scoring function terms, and though the conversation is fuzzy, I 

remember him answering that though the terms were modeled separately, they were 

intertwined in reality, competing, blending, and participating together. This was a 

fascinating insight to me and sparked a lot of the questions I had and have about the 

approximations we use in molecular modeling and how they all fit together to create a 

flawed, yet partially correct version of reality.  

 My contributions to this project involved choosing the 25 DUD-E systems to be 

used for retrospective enrichment calculations. This included scouring PDB structures 

and finding proteins with no missing loops, no cofactors, and that contained water 

molecules in their binding sites, running 50 nanosecond molecular dynamics 

simulations, then GIST calculations, and then docking to these proteins with different 

GIST weightings. Through this, I learned a lot about parameterizing systems for 

molecular dynamics and docking, and since there wasn’t an easy way to prepare a 

protein for AMBER, or convert that protein from AMBER to DOCK format, a lot of this 

preparation was done manually. I spent many nights, several of these over winter break 

2015, going through PDB files, adding charge-capping groups, disulfide bonds, and 
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ions, checking them in Chimera, as well as making sure the alignment between protein 

structures from the AMBER MD simulation were the same as those I prepared with our 

automated docking preparation pipeline, Blastermaster. I have pages and pages of 

explanations and commands in my first lab notebook on preparing these 25 DUD-E 

systems. After docking to the 25 DUD-E systems, we found that a -0.5 GIST weighting 

performed the best retrospectively with a mild enrichment improvement of +0.53, though 

we chose to use a weighting of -1.0 for the prospective screen as it had a larger 

contribution to the total DOCK score.  

 On the experimental side, I was responsible for dissolving compounds and 

running the binding assays on CcP-ga, as well as setting up some crystal trays to 

identify optimal conditions for growth, though this was mainly for practicing 

crystallography for my thesis project. With Marcus’ help, I was also able to refine one of 

the crystal structures of CcP-ga in complex with a new ligand (PDB: 5UG2).  

 I gained both computational and experimental experience, but it was the 

computational side that really sparked my curiosity. Thus, the code became my focus 

during my PhD. Overall, we found that of the 14 molecules prioritized by GIST (Pro-

GIST), 13 of these bound, while none of the 3 molecules deprioritized by GIST (Anti-

GIST) bound. In terms of geometry, GIST predicted 6 of 9 crystallographic poses 

correctly, while the standard scoring function succeeded in 5 of 9 structures. Most 

exciting was the fact that a GIST-predicted water mediated the interaction between the 

ligand and protein in one of these correctly predicted crystal structures. Though GIST’s 

contribution to the total docking score was small, it seemed to have a meaningful effect, 

which motivated the work featured in Chapter 2.   
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1.1 Abstract   

Binding site water is often displaced upon ligand recognition, but is commonly 

neglected in structure-based ligand discovery.  Inhomogeneous Solvation Theory (IST) 

has become popular to treat this effect, but it has not been tested in controlled 

experiments at atomic resolution.  To do so, we turned to a Grid-based version of this 

method, GIST, readily implemented in molecular docking.  Whereas the new term only 

improves docking modestly in retrospective ligand enrichment, it could be added without 

disrupting performance.  We thus turned to prospective docking of large libraries to 

investigate GIST’s impact on new ligand discovery, geometry, and water structure in a 

model cavity site well-suited to exploring these terms.  Although top-ranked docked 

molecules with and without the GIST term often overlapped, many ligands were 

meaningfully prioritized or deprioritized; some these were selected for testing.  

Experimentally, 13/14 new molecules prioritized by GIST did bind while none of the 

molecules that it deprioritized were observed to bind.  Nine crystal complexes were 

determined: in six the ligand geometry corresponded to that predicted by GIST, for one 

of these the pose without the GIST term was wrong, three crystallographic poses 

differed from both predictions.  Notably, in one structure an ordered water molecule with 

a high GIST displacement penalty by GIST was observed to stay in place. Inclusion of 

this water-displacement term can substantially improve the hit rates and ligand 

geometries from docking screens, though the magnitude of its effects can be small, and 

its impact in drug binding sites merits further controlled studies.   

  



22 

 

1.2 Significance Statement.  

Water molecules play a crucial role in protein-ligand binding.  Calculating the 

energetic consequences of displacing water upon ligand binding has challenged the 

field for many years. Inhomogeneous Solvation Theory (IST) is one of the most popular 

methods to distinguish favorable from unfavorable water molecules, but little controlled, 

prospective testing, at atomic resolution, has been done to evaluate the method.  Here, 

we compare molecular docking screens with and without an IST term to gauge its 

impact on ligand discovery.  We test predictions that include an IST term in prospective 

experiments for new ligands, using crystallography and direct binding.   
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1.3 Introduction 

The treatment of receptor-bound water molecules, which are crucial for ligand 

recognition, is a widely recognized challenge in structure-based discovery.1-4 The more 

tightly bound a water in a site, the greater the penalty for its displacement upon ligand 

binding, ultimately leading to its retention and the adoption of ligand geometries that do 

not displace it.  More problematic still are when a new bridging water mediates 

interactions between the ligand and the receptor.  Because the energetics of bound 

water molecules have been challenging to calculate, and bridging waters hard to 

anticipate, large-scale docking of chemical libraries have typically been conducted 

against artificially desolvated sites, or have kept a handful of ordered water molecules 

that are treated as part of the site, based on structural precedence.5-8 

 

Recently, several relatively fast approaches, pragmatic for early discovery, have 

been advanced to account for the differential displacement energies of bound water 

molecules,9-20 complementing more rigorous but computationally expensive approaches 

18-22.  Among the most popular of these has been Inhomogeneous Solvation Theory 

(IST).23-25 IST uses populations from molecular dynamics simulations on protein (solute) 

surfaces to calculate the cost of displacing individual water molecules (solvent) on that 

surface. IST has been used to calculate ligand SAR,26-29 to map protein binding sites for 

solvent energetics,28,30,31 to quantify the energetic contribution of structural waters,25,32 

and to understand water networks and how they rearrange in the presence of ligands.33  

There have been several implementations of IST including WaterMap 26,27,31 and STOW 
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32, and the approach has been integrated into library docking programs such as 

Glide34,35, DOCK3.5.54,36 and Autodock.37   

 

Notwithstanding its popularity, IST has rarely been tested in prospective library 

screens for its ability to predict new ligands, their bound geometries, and the water 

molecules that they either do or do not displace.4  Here, we do so in a model cavity in 

Cytochrome c Peroxidase (CcP-ga),  a highly-defined buried site, but partially open to 

bulk solvent, that binds small heterocyclic monocations.  We and others have used this 

and related cavities as model systems for docking, owing to their small size, the 

dominance of one or two interaction terms in ligand binding, and the existence of 

thousands of plausible ligands among commercially available, dockable small 

molecules.38-41  

 

The CcP-ga cavity is particularly well suited to explore the impact of ordered 

waters on the prospective discovery of novel ligands (Figure 1.1).  On binding, ligands 

displace between three and eight waters observed in apo-structures,38,39 while new 

waters can be recruited to bridge between the cavity and the ligands. The limited 

number of these waters and the tight definition of the site makes exploration of the 

problem tractable. Also, the affinities of newly predicted ligands may be determined 

quantitatively and their structures may be determined to high resolution, making atomic 

resolution testing plausible.   
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Figure 1.1.  Receptor desolvation using GIST.   
(A) Upon ligand binding, ordered water can be displaced, remain unaffected, or bridge 
between ligand and protein.  (B) The CcP-gateless apo cavity (transparent surface) is 
filled with 9 crystallographic water molecules (red spheres, pink spheres indicate half 
occupancy) (4NVA) and compared to GIST enthalpy grid maps representing 
unfavorable water positions (red mesh, >0.25 kcal/mol/Å3) and favorable water positions 
(blue mesh, <-0.25 kcal/mol/Å3).  (C) Ligand benzamidine (4NVC) displaces four apo 
cavity waters (red spheres) and reorders several of the remaining waters (cyan 
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spheres) about the ligand.  (D)  The GIST grids are calculated by post-processing a 
molecular dynamics (MD) simulation of a restrained apo protein in a box of water. 

 

We integrated GIST, the grid implementation of IST,30 into DOCK3.7.  In GIST, 

MD simulations of the hydrated receptor are analyzed to yield spatially resolved 

information about water density and thermodynamics over the voxels (cubic grid cells) 

of a three-dimensional grid covering the protein binding site (Figure 1.1). The grid basis 

of GIST lends itself to docking because water displacement energies can be pre-

calculated and stored on a lattice of points, supporting the rapid scoring necessary for 

large library screens.  These water energies can then be combined with the other terms 

of the DOCK3.7 physics-based scoring function.  

We first tested including GIST in retrospective controls against 26 targets drawn 

from the DUD-E benchmark42, composed of about 6600 annotated ligands and 400,000 

property matched decoys42.  These enrichment calculations investigate the weighting of 

the new GIST term (Erec,desol) with other DOCK3.7 terms43: van der Waals (EvdW), 

electrostatic (Ees), ligand desolvation (Elig,desol), and protein conformational energies 

(Erec,conf) (eq 1.1).   

  (Equation 1.1) 

These retrospective calculations helped calibrate the new term, assess its 

computational cost, and establish that it could be used without disrupting the balance of 

the other scoring terms.   

 

More illuminating are prospective tests that we prosecuted against the model 

cavity.  In screens of between 0.2 to 1.8 million compounds, we prioritize molecules by 

confrecdesolligesvdwdesolrecscore EEEEEE ,,, ++++=
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three criteria: 1) they are previously untested, 2) they rank substantially better or worse 

with the GIST term than without it, or 3) they bind differently due to the displacement of 

GIST-defined water molecules.  A total of 17 new molecules were purchased and tested 

experimentally for binding, and nine ligand-CcP-ga crystal structures were determined.  

From these studies, several advantages of IST for ligand discovery emerge; the method 

meaningfully improved the selection of new ligands, and was often right for the right 

reasons, correctly capturing the role of displaceable or implicitly bridging water.  Still, 

and notwithstanding the great advantages of IST seen in other studies,26-29,34 in 

controlled prospective discovery, at atomic resolution its liabilities also emerge.  

 

1.4 Results 

Inhomogeneous Solvation Theory methods use a molecular mechanics potential 

energy function and water occupancies to calculate thermodynamic properties of water 

in the context of the receptor.  In GIST, the energies of solute-water enthalpy (Es,w), 

water-water enthalpy (Ew,w), translational (TStrans), and orientational (TSorient) entropy are 

represented spatially into grid voxels.  The receptor desolvation cost is calculated by 

summing the voxels displaced by a docked ligand and added to the DOCK3.7 scoring 

function (cf. eq 1.1).  To investigate how the new GIST energies are best weighted, and 

which GIST terms are most useful— as there are questions on this point in the 

literature28,37 — we began with retrospective calculations against the CcP-ga cavity, 

docking 46 known ligands against 3,338 property matched decoys.  We explored four 

different combinations of the GIST grids: (1) unscaled Free Energy (EGIST= Es,w + Ew,w + 

TStrans + TSorient), (2) unscaled Enthalpy (EGIST= Es,w + Ew,w), (3) scaled Free Energy 
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(EGIST= Es,w + 2 × Ew,w + TStrans + TSorient), and (4) scaled Enthalpy (EGIST= Es,w + 2 × 

Ew,w); both with the water-water term scaled by two (Figure A.1.3, and Table A.1.1).  

Here, enthalpy was not normalized by occupancy, in contrast to previous studies,28,37 

but still referenced to bulk water energy, as this produced the best enrichments.  

Following convention negative GIST energies reflect favorable, costly-to-displace 

waters. We used Adjusted Log AUC to measure docking enrichment,43-47 this metric 

weights each factor of ten in docking rank order equally, beginning from the top 0.1%, 

prioritizing the performance of the very top-ranking ligands or decoys in the docking 

screen.44  Scaled Enthalpy performed the best (Adjusted log AUC of 57.46±1.84), 

closely followed by unscaled Free Energy (56.08±1.42). Enthalpy alone performed the 

worst with (49.50±1.34).  Setting EGIST = Es,w + 2 × Ew,w sets aside several GIST terms, 

but has precedence in earlier studies.28,30  

 

We next explored the receptor desolvation term and the best scaling factor (α, eq 

A.1.8) to bring the GIST value into balance with the other terms in eq 1 (Figure A.1.4 

and Table A.1.2).  Staying with the CcP-ga system, we considered eight scaling factors 

ranging from -8.0 to +8.0 for the weighting of EGIST.  Reassuringly, we found that the 

scaling factors of -1.0 (log AUC = 57.46±1.84) and -0.5 (log AUC = 56.54±2.10) behave 

better than overweighting the term by a factor of -8.0 (log AUC = 36.91±1.52) or +8.0 

(log AUC =46.94±2.07).  At a scaling of -1.0, the absolute GIST energy averaged 1.99 

kcal/mol for the top-ranking 100 docked molecules, about 8% of the value of the overall 

docking energy score in this cavity.  Here, as in all calculations in this study, we based 

the GIST energies on MD simulations of 50 ns.  These appeared to be sufficiently 
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converged for docking, based on the small variance in performance using GIST grids 

from each of ten 5 ns sub-trajectories (Figure A.1.5 and Table A.1.3).   

Using the same GIST terms used in the cavity (equation 1), we examined the 

impact of scaling factors on 25 DUD-E systems for which solvation likely plays a role.  

These 25 targets bind a diverse range of cationic (CXCR4, ACES, TRY1), anionic 

(PUR2, AMPC, PTN1), and neutral ligands (ITAL, KITH, and HS90a), and make water-

mediated interactions (AMPC, EGFR).  In these systems, we noticed that there were a 

very few voxels in the GIST grids—on average 58 out of 210,000 total voxels—with 

extremely high magnitude absolute energies, ranging from 14.6 to 119.7 kcal/mol/Å3, 

between 101 and 391 σ (standard deviations) away from the mean voxel energies.  

These extrema seem to reflect the restrained MD simulations used for the GIST 

calculations, as when we allowed even side chains to move in the MD, they were much 

attenuated or entirely eliminated.  Accordingly, we truncated the maximum absolute 

magnitude of the GIST grids at 3 kcal/mol/Å3 in these retrospective calculations (a value 

still on average 12 σ away from the mean voxel energies); we also scaled the GIST 

energy by -0.5 when combining it with the other terms in the DOCK3.7 scoring function, 

which we found to perform slightly better than a simple weighting of 1.0 (Table A.1.4 

further describes the origins of the energy extrema and the retrospective docking 

performance under different weighting of the GIST term).  In the retrospective docking 

screens, 13 of the 25 DUD-E systems had better enrichment versus docking without the 

GIST term, 6 had worse enrichment, and 6 were within +/- 0.5 Log AUC difference 

(unchanged).  The average log AUC difference over all systems is 0.53 better than no-

GIST (Table A.1.4, and Figure A.1.6).  To get a sense of the impact of the GIST 
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energies, the absolute value of the GIST term was about 6 kcal/mol for the top 100 

ranked docked molecules in the 25 DUD-E targets, about 12% of the total docking score 

for these molecules. For the CcP-ga cavity, to which we will turn for prospective screens, 

the absolute GIST energy was about 8% of the total docking score for the top 100 

docked molecules.  The overall impact of GIST on the DUD-E benchmarks is modest, 

and perhaps the most important result to emerge from these retrospective controls is 

that the GIST term may be added without disrupting the docking scoring function, 

retaining physically sensible results.   

 

We next turned to prospective docking screens against the CcP-ga cavity, with 

and without an unweighted (-1.0) GIST term, looking to predict new cavity ligands and 

their geometries.  The GIST grids identified four favorable water sites in the pocket, 

including one close to Asp233, and three unfavorable water sites, including two regions 

close to the heme, and one near Gly178, a residue that can hydrogen bond with ligands 

through its backbone (Figure A.1.7, and Table A.1.5).  We docked two purchasable 

fragment libraries, one straight from ZINC of ~200,000 molecules prepared at pH 6.4 

(VS1), and 1.8 million molecules built at a pH of 4.0 (VS2), which favors positively 

charged molecules typically recognized by the cavity Asp233.  We sampled, in VS1, 

462.5 million orientations of the library molecules and ~15 billion scored conformations; 

95,000 of the 200,000 molecules could be fit in the site.  From the larger VS2 screen 5.9 

billion orientations and about 319 billion scored conformations were sampled; 1.09 

million molecules could be fit in the site.  To isolate the effect of the GIST term on our 

screening performance we ran each screen twice, with and without the GIST term.  
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Most of the top-ranking 1000 molecules are shared between the GIST and non-

GIST screens, 667 are shared in VS1 while 532 are shared in the larger VS2 (Figure 

1.2), reflecting the comparatively small magnitude of the GIST energies relative to the 

overall docking score (below).  We focused on those molecules that experienced rank 

changes of a half-log (3.16-fold) or better.  For instance, a molecule that changed rank 

from 30th to 100th, or from 400th to 1300th on including the GIST term would be 

prioritized.  From the smaller screen (VS1) 217 docking hits improved ranks by at least 

half-a-log order with the GIST term while 282 had ranks that were better by at least this 

amount without the GIST term.  For the larger VS2 screen, 2421 had half-log improved 

ranks with GIST while 2869 had ranks that improved by at least half-a-log order without 

it. There were also several molecules for which the inclusion of the GIST term greatly 

changed the docked geometry; these we also considered for testing.   
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Figure 1.2.  Comparison of GIST and non-GIST screens.   
(A) Results from the virtual screen (VS) 1 of 200,000 molecules.  (B) Results from VS2 
of 1.8 million molecules.  Top right panel shows a Venn diagram of the top 1000 ranked 
molecules from the GIST screen in red and non-GIST in blue.  Bottom left panel is the 
overlapping region.    
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Based on these criteria, 17 molecules were acquired for experimental testing. 

Compounds 3 to 14 were selected because their ranks improved with GIST (Pro-GIST), 

while compounds 15 to 17 were selected because of better ranks without the GIST term 

(Anti-GIST) (Table 1.1). We also looked for molecules where a substantial pose change 

occurred between the two scoring functions (e.g. compounds 1 and 2, Tables 1.1 and 

A.1.6).  Finally, we considered implicit water-mediated interactions to be favorable 

regions in the GIST grid within hydrogen-bonding distance to ligand and protein, though 

no explicit water molecules were used.  This occurred with compounds 3, 4, 5, and 6 

(Table 1.1).  In selecting these compounds, we were sometimes led to compounds that 

we expected, based on past experience with this cavity, to be GIST failures.  For 

instance, compounds 3 through 6 adopted an unusual geometry in the site, giving up a 

direct ion-pair with Asp233 to hydrogen bond with backbone carbonyls, owing to a large 

implicit desolvation cost for docked orientations where the ion pair was formed.  These 

poses were relatively favored by the GIST term, but we expected them either not to bind 

or to bind to form the ion pair.  Conversely, we expected the molecules deprioritized by 

GIST to bind, in contrast with the new term, also based on precedence of other 

molecules.  For both classes of molecules it was the GIST prediction that was 

confirmed, to our surprise.   
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Table 1.1.  New candidate CcP ligands  
Cmpd 

# 
ZINC id Structure GIST 

Rank 
Non-
GIST 
rank 

GIST 
energy 

(kcal/mol) 

a 

Kd (μM) b RMSD 
to xray 

Compounds with different docked geometries 

1 2564381 

 

490 180 1.46 n.d.         G = 

1.90 Å 

      NG 

= 3.00 Å 

 

2 6557114 

 

664 740 2.03 154 ±19           G 

= 0.28 Å 

       NG 

= 3.19 Å 

 

Compounds prioritized by GIST 

3 4705523 

 

13 249 -1.67 3472 

±172 

1.34 Å 

4 6869116 

 

112 464 0.60 809 ±99 -- 

5 6855945 

 

869 2550 -0.07 1606 

±287 

-- 

6 19439634 

 

91 355 0.86 3435 

±860 

-- 
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Cmpd 

# 

ZINC id Structure GIST 
Rank 

Non-
GIST 
rank 

GIST 
energy 

(kcal/mol) 

a 

Kd (μM) b RMSD 

to xray 

7 1827502 

 

5 19 2.12 114 ±20 -- 

8 42684308 

 

601 1916 0.04 1962 

±554 

0.79 Å 

9 20357620 

 

98 745 -0.65 522 ±21 1.72 Å 

10 74543029 

 

1128 4923 0.46 ~712 

±231 

1.81 Å 

11 161834 

 

358 1212 0.28 1.30 

±0.03 

0.44 Å 

12 2389932 

 

118 645 -0.02 619 ±63 0.60 Å 

13 39212696 

 

147 1462 -1.82 n.d. -- 

14 112552 

 

747 4380 0.01 29.6 ±2.5 0.46 Å 

Compounds prioritized by non-GIST 

15 2534163 

 

9487 906 8.56 NB -- 

CH2
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Cmpd 

# 

ZINC id Structure GIST 
Rank 

Non-
GIST 
rank 

GIST 
energy 

(kcal/mol) 

a 

Kd (μM) b RMSD 

to xray 

16 156254 

 

1482

8 

1657 8.70 NB -- 

17 22200625 

 

6000 577 8.09 n.d. -- 

a positive GIST values are penalties.  
b n.a., not available - molecule not in assayable form.  n.d., not determinable - 
compound interferes with absorbance peaks.  NB, non-binder <5mM. “~”, assay 
interference of compound 10 before saturation was reached. 
c RMSDs are calculated with the Hungarian algorithm (lower bound): GIST pose G, 
non-GIST pose NG, “--“ no crystal structure available, single values for same G vs 
NG pose.  

 

Pro-GIST.  We tested the binding of 14 GIST-favored molecules, determining X-

ray crystal structures for nine of them. All crystallographic datasets were collected to at 

least 1.6 Å resolution and refined to Rfree values under 20%, indicating good global 

model quality.  Locally, electron density maps for the ligands in the cavity were 

unambiguous as early as unrefined initial Fo-Fc maps. Final 2mFo-DFc composite omit 

maps 48 show unbiased electron density for the binding site ligand and water molecules 

(Figure 1.3).  This allowed ready placement of the ligands and ordered water molecules 

in the final stages of refinement. Automatic refinement of ligand and water occupancies 

showed that ligands are unequivocally present in the binding site (between 88-93% 

occupancy); the complex with compound 14 refined to 73% occupancy in the presence 

of 26% MES from the crystallization buffer (Figure A.1.8 and Table A.1.7).  We 

OH

N
H

+

N

NH2

N

N N
H
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modeled all ligands in a single conformation, with only compound 2 showing difference 

density for an alternative ligand conformation. Electron densities of binding site waters 

are generally well defined (Figure 1.3), indicating extensive water networks that interact 

with both ligand and protein.   
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Figure 1.3. Comparison of experimental and predicted binding poses. 
Superposition of crystallographic (green) and predicted ligand poses (GIST docking 
poses in purple; differential non-GIST docking poses for compounds 1 and 2 in orange). 
2mFo-DFc omit electron density maps (blue mesh) are shown at 1σ for binding site 
ligand and water molecules (red spheres), with hydrogen bonds shown as red dashed 
lines. Nine compounds are shown (with PDB-IDs): (A) compound 1, 5u60; (B) 
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compound 2, 5u5w; (C) compound 3, 5u5z; (D) compound 8, 5u61; (E) compound 9, 
5u5y; (F) compound 10, 5ug2; (G) compound 11, 5u5x; (H) compound 12, 5u5u; and (I) 
compound 14, 5u5v.  For clarity, co-crystallized MES for compound 14 is omitted (cf. 
Figure A.1.7).   

 

Of the 14 docked molecules favored by the GIST term, 13 (93%) could be shown 

to bind, typically by a UV-Vis Soret band perturbation assay (Figure 1.4 and Figure 

A.1.9).49  Affinities for 11 ligands were determined at least in duplicate and fit to a one-

site binding model with R2 values of at least 95%.  Two molecules were only observed 

bound in their co-complexed crystal structures, owing to assay interference (Table 1.1).  

The Kd values of the GIST-prioritized molecules ranged from 1.3 PM to 3.5 mM, with 

eight better than 1 mM.  For these fragments the ligand efficiencies (LEs) ranged from 

1.0 to 0.28 kcal/mol/atom.   

 

 

Figure 1.4.  Three representative ligand binding curves.  
The Soret band shift is shown as a function of ligand concentration (µM).  The plots for 
compounds 3 and 9) are on a linear scale while, for clarity, the x-axis of the plot for 
compound 11 is on the log-scale.  The dashed line indicates the Kd.  The circles and 
bars are the mean and estimated error of two observations.   
 

Compound 11, ranking 358 with GIST but 1212 without GIST, had a Kd value of 

1.3 μM.  Compound 11 has a slightly unfavorable GIST energy of 0.28 kcal/mol, owing 
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to its calculated displacement of a bound water.  Nevertheless, its rank improved 

relative to the non-GIST docking screen, reflecting even larger penalties for other, 

formerly higher-ranking molecules. On determination of its structure to 1.54 Å resolution, 

the crystallographic geometry corresponded closely to that predicted by docking, with 

an RMS deviation of 0.44 Å (Table 1.1, Figure 1.3). Similar effects were seen for 

compounds 8, 10, 12, and 14, whose energy scores were only modestly affected by 

GIST, and for which docking well-predicted the subsequently determined 

crystallographic geometry.   

 

Unexpectedly, compounds 3 through 6 were predicted by the GIST docking to 

interact indirectly with the critical Asp233 via an implicitly ordered water molecule (i.e., 

an area with a high water displacement penalty).  Such a geometry, though not 

unprecedented for CcP cavity ligands, is rare, as cationic ligands typically ion-pair with 

this aspartate.  In the apo-cavity this aspartate is solvated by one bound water 39,40 

whose displacement by cationic moieties, though typical, undoubtedly has an energy 

cost.  Indeed, according to GIST such penalty is incurred by molecules like 7, which 

dock to maximally displace these waters and ion-pair with the aspartate.  Conversely, 

compounds 3 through 6 dock so as to retain these waters, and compound 3, instead of 

ion-pairing with Asp233, the molecule flips its imidazole to hydrogen bond with the 

carbonyl oxygen of Leu177 and only interacts, via the other side of the imidazole, with 

Asp233 through a water network.  This surprising prediction was confirmed 

crystallographically: the imidazole interacts with the Leu177 and an ordered water 

molecule is unambiguously present in the electron density (Figure 1.3). Indeed, even 
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the placement of this bridging water substantially agrees with the GIST calculation, 

differing only by 0.7 Å.  The relatively poor ranks of molecules like 3 when the GIST 

term is left out is explained by their more distant electrostatic interaction with Asp233 

versus molecules that ion pair with it, uncompensated by the advantage of leaving the 

ordered water molecules undisplaced—a term only modeled by including the GIST 

penalty.  That said, inclusion of the GIST term did not always get this balance correct.  

Compounds 1 and 9, though predicted to interact directly with the aspartate, also flip to 

interact with the Leu177 carbonyl crystallographically (Figure 1.3); i.e., even with the 

GIST term, the correct balance between ion-pairing and water displacement was not 

achieved.  We also note that compounds that do ion-pair with Asp233 typically bind 10-

fold tighter than those that bind via water-mediated interactions (Table A.1.8).   

 

Compounds 1 and 2 were chosen because inclusion of the GIST term changed 

their docked geometries.  Compound 2 docks to hydrogen-bond with Asp233 while only 

partly impinging on what are, according to GIST, hard-to-displace water molecules (still 

incurring a GIST penalty of 2 kcal/mol).  In the non-GIST docking, conversely, 2 flips 

and shifts such that its quinolone nitrogen hydrogen-bonds with the backbone oxygen of 

Gly178 while its amine hydrogen-bonds with Asp233 and its methyl occupies an 

unfavorable water site near the heme.  The two poses differ by an RMSD of 3.2 Å.  In 

the subsequently determined CcP-ga/2 crystal structure, 2 adopts a geometry that 

closely agrees with the GIST pose (RMSD of 0.3 Å), but differs by 3.2 Å from the non-

GIST docking pose (Figure 1.3, Table 1.1).  For three compounds, 1, 9 and 10, 

however, we consider the crystallographic complexes to be different from either the 
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with- or the without-GIST docking pose, although none exceed the commonly-used cut-

off of 2 Å RMSD (Table 1.1, Figure 1.3).  

 

Anti-GIST.  Compounds 15, 16, and 17 ranked much better without the GIST 

term than with it, and their GIST-based ranks, between 6000 and 15,000, would have 

put them outside the range normally considered as viable for screens of this size; all 

three sterically complemented the binding site well.  Whereas we could determine 

neither an affinity nor a crystal structure under high soaking concentrations for 

compound 17, compounds 15 and 16 either bound very weakly, worse than 5 mM, or 

undetectably.  This is consistent with their GIST-based deprioritization, owing to their 

displacement of well-bound water molecules from the cavity.  It is interesting to note that 

the benzimidazole of 15 and the imidazole of 16 are both common among CcP-ga 

ligands (Table 1.1 and previous studies38,39,41). Hence, this anti-prediction is not simply 

a matter of trivial functional group bias or ionization, indeed, we ourselves expected 

these molecules to bind, but seems to reflect detailed assessment of fit and presumably 

water displacement.   

 

1.5 Discussion 

Inhomogeneous Solvation Theory (IST) has been enthusiastically greeted as a 

way to model the role of bound water molecules in ligand discovery25,27,28,31; it has been 

widely incorporated into discovery methods.34-37  Despite its successes,4,26,27,29 the 

method has not been tested in prospective, controlled discovery screens at atomic 

resolution.  Three key observations emerge from this study.  First, the inclusion of a 
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water displacement energy noticeably improved the prospective docking screens.  Of 

the molecules prioritized by the water-displacement term, 13 of 14 bound when tested, 

and one of these, compound 11, was the most potent ligand yet found for the CcP-ga 

cavity, with a Kd of 1.3 PM (ligand efficiency of 1.0 kcal/mol/atom).  Correspondingly, of 

the three molecules ranked higher by the non-GIST versus the GIST docking, none 

could be shown to bind.  Second, the newly-predicted molecules were often right for the 

right reasons.  The docking poses that were based on the water-displacement term 

corresponded closely to the crystallographic results in six of nine structures.  

Compellingly, in the CcP-ga/3 complex, the ligand adopts an unusual pose that does 

not interact directly with the crucial Asp233, but rather docks to conserve a hard-to-

displace, bridging water, as predicted by the GIST energetics.  Third, and 

notwithstanding these favorable results, the IST term, at least in this implementation, 

had a modest effect in overall ranking, and can introduce its own errors.  The term had 

little effect on retrospective enrichment against the DUD-E benchmark, and there 

remained remarkable overlap between the top 1000 docking-ranked ligands with and 

without the term in the CcP-ga screens (Figure 1.2 Venn diagrams). Also, in three of 

the nine new crystal structures there were important differences between the GIST-

based docking poses and the experimental results.  While several of the newly 

predicted molecules were potent both by the standards of the site and by ligand 

efficiency, several others were of modest affinity compared to other ligands previously 

discovered for this cavity.  
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The ability to prioritize new molecules and to deprioritize unlikely ones is among 

the strongest results to emerge from this study. Compellingly, 13/14 molecules selected 

using GIST bind, while none of the GIST-deprioritized molecules did so. Including the 

GIST term accounts for penalties of displacing water upon ligand binding, which can 

change both rank and pose. These changes can reveal molecules that would otherwise 

not have been prioritized for testing. Such molecules include those that replace the 

hallmark hydrogen bond with Asp233 with an alternative pose that exploits a costly-to-

displace water to mediate this ionic interaction, as for compounds 3, 9 and 10. Just as 

important, including the GIST term deprioritizes decoys we would otherwise have 

ranked highly, like molecules 15-17.  

 

Often, the GIST-predicted molecules were right for the right reasons; six of nine 

crystal structures corresponded closely to the docking predictions.  This is most striking 

in those structures in which the GIST term correctly predicted an ordered water 

molecule that would be costly to displace, favoring a ligand geometry where such a 

water would be included in the complex with the ligand.  Two notable examples are 

compound 2, where the GIST-predicted pose differed substantially from that without the 

GIST term, and was confirmed by subsequent crystallography, and compound 3, whose 

crystal structure confirms a water-mediated interaction with Asp233 and an unusual 

interaction with the carbonyl oxygen of Leu177 (Figure 1.3).  The water site that 3 

retains is one of the most favorable in the cavity; summing up the voxels that contribute 

to it leads to 4.3 kcal/mol in the GIST calculation.  Similarly, compounds 8, 11, and 12 

interact with a water network toward the pocket entrance that is implicitly predicted by 
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the GIST grids (Figure A.1.7, regions s5-s7); in the CcP-ga/8 complex three 

crystallographic waters correspond to regions s5-s7 from those predicted by GIST.   

 

Notwithstanding these successes, inclusion of an inhomogenous solvation term 

only improves docking so far.  The GIST term failed to correctly predict the poses of 

compounds 9 and 10, and several compounds prioritized by GIST, like 3, 5, 6, and 8, 

had Kd values >1mM, which is weak for cavity ligands, if still decent by ligand efficiency 

(Tables 1.1).  Retrospectively, at best a modest improvement in enrichment was 

observed in the benchmarking screens on 25 DUD-E42 targets (Figure A.1.6), and there 

was substantial overlap among the top-scoring ligands in docking screens with and 

without the GIST term (Figure 1.2).  Partly these effects reflect the small magnitude of 

the net GIST energies: for the top 100 docked molecules from a library screen the term 

averaged 12% of the overall DOCK3.7 43 energy score in these systems (6 kcal/mol at a 

0.5 GIST weighting).  This is small enough that the term could be overwhelmed by the 

errors in other docking terms,50 reducing its impact.  Intriguingly, its beneficial effects 

were greatest in those benchmarking sets that had a mixture of favorable and 

unfavorable water sites.  Mechanically, at least as implemented here, the GIST term is 

costly, increasing the time of a docking screen by on average six-fold (Table A.1.9), 

though there may be ways to avoid this cost.   

 

These caveats should not distract from the main observations of this study – the 

ability of GIST to meaningfully improve large library docking screens.  The inclusion of a 

water displacement term successfully prioritized molecules that did bind on testing, and 
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it deprioritized those that were found not to, in the teeth of high rankings from the 

identical scoring function that did not include the GIST term and even our own 

expectations. Overall, docking with the GIST term led to a 93% hit-rate, with 6-of-9 

crystallographic structures in agreement with the docking predictions. The contrast 

between successful prospective and mediocre retrospective prediction partly reflects the 

biases towards good performance already baked into the benchmarking sets, however 

unintentionally.  It also reflects our reluctance to optimize the weighting of the scoring 

function terms for optimal retrospective performance, aware of the oft-described trade-

offs between retrospective optimization and prospective prediction.51   Finally, it is worth 

noting that in implementing GIST we only considered the energetic consequences of 

displacing ordered waters, and did not model the specific interactions between ligands 

and such waters, which play a role in most protein-ligand complexes.6,7,38,52,53 Here, 

such interacting waters, which can appear with a ligand to bridge between it and the 

protein surface, were only implicitly modeled as high-energy, hard-to-displace regions.  

Including bridging waters explicitly would add new favorable interactions to ligand 

recognition, adding to the currently small magnitude water term.  Even without such 

bridging waters, this study does support the pragmatism of including a displaceable 

water energy term like IST, which can materially improve the success of docking ligand 

prediction and geometry.   
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1.6 Methods 

Experimental affinities and structures.  The protein was purified and crystallized as 

described39.  The crystallographic protein-ligand complexes were deposited at the PDB 

as 5U60 (1), 5U5W (2), 5U5Z (3), 5U61 (8), 5U5Y (9), 5UG2 (10), 5U5X (11), 5U5U 

(12), 5U5V (14).  Affinities were measured at least in duplicate, by monitoring the shift of 

the heme Soret band.   

 

Molecular dynamics.  MD was conducted and analyzed with AMBER14.54  The 

program tleap was used to prepare all proteins for the simulations: the protein systems 

were placed in a box of TIP3P water, such that all atoms were at least 10 Å from the 

boundary of the box.  For CcP-ga, 10 crystallographically-observed waters were 

included in or near the binding site. The heme was parameterized as previously 55 

(Table A.1.10).   

The module PMEMD.cuda56 was used to carry out simulations on GPUs 

(GeForce GTX 980).  The equilibration run consisted of two minimizations of up to 6000 

steps followed by six 20 ps runs at constant volume where the temperature of the 

simulation was raised from 0 K to 298.15 K (Figure 1.1D).  Langevin dynamics57 were 

used to maintain the temperature of the simulation with a collision frequency of 2.0 ps-1.  

Next, a constant pressure (NPT) run allowed the volume of the box adjust for 5 ns to 

maintain 1 bar of pressure.  Finally, constant volume (NVT) simulations were performed 

for 5 ns, under the same conditions as the subsequent production simulations.  

Production NVT simulations were performed for 50ns.  All protein heavy atoms were 

restrained with a 5 kcal/mol/Å2 force constant.  The Shake algorithm58 was used with a 
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2 fs time step.  Periodic boundary conditions were applied and the Particle Mesh 

Ewald59 method was used to calculate long-range electrostatics.   

 

GIST grids. GIST grids were generated using the Cpptraj60,61  trajectory analysis 

program from Ambertools14 54 by processing the 50 ns trajectories with a grid spacing 

of 0.5 Å.  The grids were combined using python scripts that are available at 

https://github.com/tbalius/GIST_DX_tools and will be made available with the next 

DOCK release.   

 

Docking.  Scripts and programs in the DOCK3.7 distribution43 were used to prepare the 

receptors and ligand databases for docking and to carry out the library screens.  

Blastermaster.py was used to prepare the protein.  For GIST, proteins were aligned 

using Chimera62 into the simulation’s frame of reference before DOCK preparation.  

Root-mean-square deviations (RMSDs) were calculated with the Hungarian algorithm in 

DOCK6.6.63  
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Gloss to Chapter 2 

 Though the original implementation of GIST seemed to be successful, there were 

several drawbacks that limited its regular usage in the lab. These drawbacks were its 

slowdown of the standard scoring function by 6-fold on average, its inability to be 

incorporated into Simplex minimization, whose addition significantly improved docking 

performance, and its small magnitudes that were dwarfed by the other scoring function 

terms. Trent had different implementations of GIST that he was working on including 

what he called “blurry sphere GIST”. In this implementation, a new “blurry GIST” grid is 

generated before docking that takes in the GIST grid as input. In the blurry GIST grid, 

each voxel, instead of containing the receptor desolvation enthalpy at that individual 

position, contains the sum of Gaussian-weighted receptor desolvation enthalpies of its 

neighboring voxels contained within some sphere radius. In this way, the enthalpy at 

voxels is what a ligand atom would see during docking in the original displacement 

implementation, but with a Gaussian weighting so that the enthalpies at voxels closer to 

the center were weighted more, and voxels further away were weighted less heavily. 

This was done to reduce double-counting of GIST receptor desolvation enthalpies. We 

decided to generate two blurry GIST grids, one for heavy atoms (1.8 Å radius) and one 

for hydrogens (1.0 Å radius) to be consistent with the ligand desolvation grids, but also 

because using two grids instead of one exhibited better agreement with the 

displacement GIST enthalpies. Because the receptor desolvation enthalpies were pre-

computed on the blurry GIST grid, we could use the trilinear interpolation scheme I had 

implemented for my Poisson-Boltzmann-derived receptor desolvation method described 
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in the Introduction, resulting in almost no slowdown in docking. Similarly, the quick 

trilinear interpolation scoring scheme for blurry GIST ensured that it was readily 

incorporated into the Simplex minimization scheme, which scored molecules by trilinear 

interpolation of the other three scoring function terms. Thus, we had successfully solved 

two of the issues of the original displacement GIST scheme – the slowdown in docking 

time and implementation of GIST into Simplex minimization. However, though we had 

reached similar magnitudes of GIST enthalpies and similar performance compared with 

GIST in enrichments, the blurry GIST enthalpies were still quite small relative to the 

other scoring function energies. This is what inspired Chapter 3 of this thesis.  

In further tests, I noticed that when comparing screens of molecules scored with 

the standard and blurry GIST scoring functions that the addition of Simplex minimization 

resulted in different minimization paths, such that a substantial amount of molecules 

could find their best scoring pose in the opposite scoring function. To correct this, I 

rewrote the DOCK source code so that each pose of each molecule was scored by both 

scoring functions in a single docking run, thereby cutting the screening time in half by 

running one virtual screen instead of two, as was done with displacement GIST.  

In the following chapter, we run enrichments on 40 DUD-E systems using this 

fast Gaussian-weighted blurry GIST implementation, compare it to the original 

displacement GIST scheme in terms of performance and speed, where it performs 

similarly with no slowdown in docking time. Then we then run a 300 million molecule 

large scale docking screen on the drug-like model system, AmpC β-lactamase, and 

experimentally characterize molecules that score better in the blurry GIST scoring 

function and worse in the standard scoring function (Pro-bGIST), molecules that score 
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better in the standard scoring function and worse in the blurry GIST scoring function 

(Anti-bGIST), and molecules that rank in the top 10,000 of either scoring function but 

whose geometries change. What we find is that the Anti-bGIST and pose-changing 

molecules have a higher hit rate than the Pro-bGIST molecules, suggesting that only 

incorporating for desolvation may be insufficient to account for the water energetics in 

the solvent-exposed AmpC binding site. However, we did have success in using blurry 

GIST to predict the correct binding geometry for at least one molecule, as confirmed by 

X-ray crystallography. Further such studies are now underway, and I hope to complete 

them in the next several weeks. Were this trend to continue over more molecules, 

without substantial confounds, it may suggest that blurry GIST can be helpful with 

geometric fidelity of the docking predictions, even though it struggles to improve 

prioritizing molecules as likely binders. Proper accounting of water energetics may 

require including the reorganization of water around the protein-ligand complex, which 

we do in collaboration with Tom Kurtzman’s lab at CUNY Lehman. Thus, further work 

remains in determining how much of water’s behavior needs to be modeled in the 

DOCK3.7 scoring function, and how this relates to the properties of the protein binding 

site targeted.  
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2.1 Abstract. 

 Ordered water in protein binding sites is both displaced and rearranges upon 

ligand binding, but capturing this behavior is challenging in structure-based ligand 

discovery. To do so, the statistical mechanics-based inhomogeneous solvation theory 

has found wide use but the method has seen limited prospective testing. In one set of 

prospective tests in a simple model cavity, the method did show promise. Here, we 

extend our previous implementation of a grid-based version of this method, GIST, 

making it amenable to ultra large library docking, and testing it in a more relevant, drug-

like binding site, that of AmpC β-lactamase. This optimized version of GIST, which we 

call blurry GIST, relies on Gaussian-weighting to precompute GIST desolvation 

energies prior to docking and can recapitulate the behavior of our previous 

implementation of GIST with a 12-fold speed up in docking time. While retrospective 

enrichment was only moderately improved with the addition of blurry GIST, we turned to 

prospective docking of over 300 million molecules on AmpC to understand how blurry 

GIST impacts ligand discovery and geometry in this difficult, solvent-exposed site. We 

selected molecules that were both prioritized and deprioritized on addition of the blurry 

GIST term for testing. In activity assays, 2/31 molecules prioritized by blurry GIST were 

found to bind, 8/18 molecules deprioritized by blurry GIST were found to bind, and 9/18 

molecules highly ranked in both scoring functions but exhibiting different docking 

geometries were found to bind. Two crystal structures have been determined with one 

pose corresponding to that predicted by blurry GIST, whereas the second structure 

differed from both predictions. While the incorporation of receptor desolvation via blurry 

GIST may not substantially improve hit rates in complicated solvent-exposed binding 
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sites, it may accurately predict binding geometries, a topic which we are delving into 

further by solving more crystal structures and performing protein-ligand complex GIST 

calculations to understand differences in solvation free energies between docked poses. 

 

2.2 Introduction.  

 Water molecules play significant roles in protein-ligand binding events, 

contributing to the hydrophobic effect1-3, stabilization of protein-ligand complexes 

through water-mediated interactions4-6, as well as entropy-enthalpy compensation 

through burial and displacement7-10. There is a plethora of computational approaches to 

characterize the location and energetics of water around proteins and ligands including 

WaterMap11,12, STOW13, GIST14-16, JAWS17, and SPAM18, and they have been used to 

predict water structure and compute energetics in and around protein binding sites19-23, 

to characterize changes in ligand potency and selectivity24-28, and to predict water 

reorganization location and energies upon ligand binding29,30. Although these methods 

have been incorporated into docking programs including WaterMap into Glide31, solvent 

properties analysis (SPA) into DOCK3.5.5432, grid inhomogeneous solvation theory 

(GIST) into AutoDock33, and recently in our lab, GIST into DOCK3.734, they have not 

been used in ultra-large prospective library docking screens in drug-like cavities35.  

One barrier to GIST’s incorporation into ultra-large library docking screens is its 

speed, which we found slows down the performance of DOCK3.7 by 6-fold on average. 

Another potential issue is the magnitudes of GIST energies, which comprise only 8-12% 

of the total docking score over 25 Directory of Useful Decoys – Enhanced (DUD-E)36 

systems and cytochrome c peroxidase. We wondered whether these small energies 
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would be meaningful in drug-like cavities where there are more complicated surfaces, 

polar and charged residues, and water dynamics, or whether they would wash out in the 

noise of the other three scoring function terms. Lastly, code changes in DOCK3.7 

included the incorporation of a Simplex minimization procedure35,37, an upgrade that we 

believed would significantly increase docking time if GIST was incorporated into this 

scheme.  

 Given GIST’s success in predicting correct binders and poses in the mostly 

buried model site, cytochrome c peroxidase gateless mutant, where 13 of 14 GIST 

predicted molecules bound, and six of nine crystal structures of ligand complexes 

corroborated the geometries predicted by GIST, we felt it a worthwhile endeavor to 

correct these drawbacks. Here, we have implemented a new GIST scoring scheme into 

DOCK3.7 termed blurry GIST, that eliminates the slowdown and speeds up docking 

time by 2-fold, matches the magnitudes of GIST energies of the original implementation, 

and that is readily incorporated into Simplex minimization. We applied this new GIST 

implementation to 40 DUD-E systems to quantify its effect on ligand enrichment, and 

then prospectively screened over 300 million molecules against the bacterial enzyme, 

AmpC β-lactamase, a rigid, solvent-exposed active site containing several polar and 

charged residues that binds anions. We have previously used this as a model system 

for understanding new docking methods and for identifying new ligands35,38-43. This 

presents a more challenging system than the mostly buried site of cytochrome c 

peroxidase gateless mutant as AmpC’s charged active site directly interacts with 

solvent, and allows us to determine whether the static representation of water from 
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blurry GIST can both account for the behavior of water in this site, but also integrate 

successfully into the current DOCK3.7 scoring function.  

After our prospective screen, we purchased molecules that: i) were previously 

untested at AmpC, ii) experienced substantial rank changes upon addition of the blurry 

GIST term, or iii) changed geometries after the addition of blurry GIST, resulting in a 

total of 68 molecules being tested and two crystal structures being solved. We find that 

molecules that are highly ranked in the docking hit lists have a higher likelihood of 

binding AmpC, and these molecules are typically penalized and deprioritized upon 

addition of blurry GIST, but that poses predicted by blurry GIST may be more accurate 

over the current DOCK scoring function. Regardless, our results suggest that 

desolvation alone may be insufficient to quantify solvent effects in open sites, and 

solvent reorganization effects may need to be incorporated.  

 

2.3 Results.  

Inhomogeneous solvation theory methods rely on energies from a molecular 

mechanics potential function and snapshots from MD trajectories to calculate water 

thermodynamics in and around a protein. GIST represents the water thermodynamics of 

solute-water enthalpy (Es,w), water-water enthalpy (Ew,w), translational entropy (TStrans), 

and orientational entropy (TSorient), by discretizing them onto a three-dimensional grid 

(Figure 2.1). In the original implementation of GIST into DOCK3.734, the total receptor 

desolvation of each molecular pose was calculated by identifying the voxels contained 

within the van der Waals radii, and then summing up the energies stored at those 

voxels. The GIST grids most useful in producing the best enrichments included the 
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solute-water enthalpy and water-water enthalpy grids, with the GIST term set as EGIST = 

Es,w + 2 x Ew,w, which includes favorable interactions between water and the protein 

(Es,w), as well as between pairs of waters within the context of the protein binding site 

(Ew,w), which is referenced to the density-weighted bulk solvent water-water energy for 

each voxel (see Methods). The water-water energies are multiplied by two to account 

for the fact that energies at each voxel contain only half the water-water interaction 

energy, and thus, need to be multiplied by two to recover the full interaction energy. 

This term does not include the entropy energies, but it has been suggested that the 

enthalpy terms are more predictive and meaningful10,16. As before, the maximum 

absolute magnitudes of GIST voxels were capped at 3 kcal/mol/Å3 to reduce the effect 

of extreme GIST energies and to enhance performance.  

 To decrease the average time of docking, we devised a scheme for which the 

receptor desolvation energies could be pre-computed prior to docking, and these pre-

computed receptor desolvation energies could be stored on a new grid, which we call 

the blurry sphere GIST grid (bGIST). In this scheme, the GIST grid serves as an input 

(Figure 2.1). For each voxel in the original GIST grid, a sphere with radius 1.8 Å 

(representing a heavy atom) or 1.0 Å (representing a hydrogen atom) is overlaid onto 

the voxel. For each voxel contained within this pseudo-atom, we calculate the distance 

between that voxel and the central voxel and calculate a Gaussian scaling factor. The 

receptor desolvation energy of each voxel within the pseudo-atom is scaled by the 

Gaussian scaling factor and then added onto the central voxel. Thus, each voxel 

becomes a sum of Gaussian-weighted receptor desolvation energies contained within a 

pseudo-atom of a specified radius. We use a Gaussian distribution to reduce the 
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amount of double counting of voxels, as the 0.5 Å grid spacing ensures that voxels will 

be within the volume of multiple pseudo-atoms’ radii. Once the new blurry sphere GIST 

grids are computed, they can be read in during docking, and the GIST energies can be 

calculated using trilinear interpolation on the heavy atom blurry sphere GIST grid for 

heavy atoms, and the hydrogen atom blurry sphere GIST grid for hydrogen atoms. We 

tried various values for σ and found that the radius divided by 1.3 and with a weighting 

of -2.0 for blurry GIST in DOCK3.7 provided the best agreement with dGIST energies 

(Figure A.2.1). Since the implementation of displacement GIST (dGIST), we 

incorporated a Simplex minimizer into DOCK3.735. Given the simplicity of the new 

bGIST scoring scheme by utilizing trilinear interpolation, we also ensured that all poses 

for each molecule would be minimized with blurry GIST energies in addition to van der 

Waals, electrostatics, and ligand desolvation.  
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Figure 2.1. Scheme for incorporating grid inhomogeneous solvation theory. A) 
Water fills protein binding sites and surrounds ligands, and must be displaced, or 
coordinate protein and ligand upon complex association. B) As part of GIST, a 50ns 
molecular dynamics simulation is run on a rigid protein, and the MD trajectory is 
analyzed to output a GIST grid containing densities, enthalpies, or entropies at voxel 
positions. In the blurry GIST scheme, a GIST grid is read in as an input and a Gaussian 
weighting scheme is used (see Methods) to store GIST receptor desolvation energies at 
voxels. During docking, trilinear interpolation is used to score each atom, and the atomic 
blurry GIST desolvation energies are summed.  
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Retrospective DUD-E results 

 We had previously prepared 25 DUD-E systems for enrichment calculations and 

extended this to 40 DUD-E systems for which we identified water molecules in the 

binding site. In the retrospective docking screens, the standard scoring function without 

minimization reached an average adjusted log AUC of 17.56, whereas dGIST with a 

weighting of -0.5 improving upon this by 0.47 with an average adjusted log AUC of 

18.03 (Table 2.1). Blurry GIST with a weighting of -1.0 in DOCK3.7 and without 

minimization improved enrichment by 0.39 over the standard scoring function with an 

average adjusted log AUC of 17.95. After including minimization in the standard scoring 

function, enrichment improved to 20.26 average adjusted log AUC, while bGIST with a 

weighting of -1.0 and minimization improved to an average adjusted log AUC of 20.75, 

an improvement of 0.49. Thus, blurry GIST improvement is additive with the 

improvement from Simplex minimization. Blurry GIST with minimization improves over 

the original standard scoring function without minimization by 3.19, and the original 

dGIST implementation, which isn’t compatible with Simplex minimization, by 2.72.  
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Table 2.1. Adjusted logAUC values comparing GIST performance 
DOCK Type Better (>1%) Same Worse (<1%) Average 

adjusted 
logAUC 

Average 
adjusted 

logAUC relative 
to STD without 
minimization 

STD no min    17.56  
Displacement 
GIST (-0.5x) 

14 9 17 18.03 +0.47 

STD + min 28 5 7 20.26 +2.70 
bGIST no min 16 7 17 17.95 +0.39 
bGIST + min 34 1 5 20.75 +3.19 

STD 
combinatorial 

(1x) 

29 5 6 20.26 +2.70 

STD 
combinatorial 

(2x) 

31 4 5 20.44 +2.89 

bGIST 
combinatorial 

(1x) 

34 2 4 20.79 +3.23 

bGIST 
combinatorial 

(2x) 

31 4 5 20.50 +2.94 

 

After docking, we noticed that when including minimization, some molecules that 

were scored using the standard scoring function, which does not include blurry GIST 

energies, could attain better energetic poses after rescoring with blurry GIST than the 

same molecule when scored using the blurry GIST scoring function during docking 

(Figure A.2.2). We found that this was due to the Simplex minimization, as this effect 

does not occur with the minimization turned off, and this was likely due to the energy 

landscape changing with the incorporation of blurry GIST. To potentially correct this, we 

attempted Monte Carlo optimization using the Metropolis criterion44 instead of Simplex 

minimization, but found that it suffered from the same issues, though it could reduce the 

number of high energy difference outliers. We then modified DOCK3.7 to score each 

pose of each molecule for both scoring functions in a single docking run (see Methods 

and Figure A.2.3) .The benefits of this scheme are two-fold: one, it ensures that the 
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best scoring pose for both scoring functions is chosen, regardless of whether the pose 

was originally generated in the standard or blurry GIST docking; two, it speeds up the 

docking calculation by two-fold, making it so we only need to run one docking screen, 

instead of two separate screens for the two scoring functions, as we did previously. 

After incorporating this change, the retrospective docking was performed again with -1.0 

and -2.0 docking weights. The combinatorial standard scoring function with minimization 

reached an average adjusted log AUC of 20.26 and the combinatorial blurry GIST 

scoring function with -1.0 weighting and with minimization reached an average adjusted 

log AUC of 20.79, a 0.53 improvement, while with the -2.0 weighting, the improvement 

was almost negligible at 0.05 average adjusted log AUC. The absolute value of the 

blurry GIST term at a weighting of -1.0 was about 4.4 kcal/mol for the top 100 ranked 

docked molecules in the 40 DUD-E targets, amounting to about 5% of the total docking 

score of these molecules, while for a blurry GIST weighting of -2.0, the absolute value 

was 7.8 kcal/mol which amounts to about 9% of the total docking score for these 

molecules. Thus, though the energetic contribution of blurry GIST remains similar to the 

original implementation of displacement GIST, blurry GIST’s improvement in average 

adjusted log AUC mirrored that of dGIST’s modest improvement. 
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Prospective AmpC results 

 Given the fact that the new blurry GIST did not diminish performance, and that 

GIST was now fast enough to use for large scale docking, we chose to perform an ultra-

large library docking screen on the bacterial enzyme, AmpC, to predict novel ligands 

and their geometries. This protein has been heavily studied for mechanism and 

biophysics, and we have consistently used it to understand ligand binding in a drug-like 

cavity39,41-43,45. The binding site is open to solvent, contains anionic and cationic 

residues, and binds anionic ligands, many containing a carboxylate or phenolate moiety 

interacting with the oxyanion hole, which would allow us to determine if the new blurry 

GIST energies were in balance with the electrostatics, van der Waals, and ligand 

desolvation energies in the standard scoring function. Multiple crystal structures have 

been determined of AmpC, and waters from 96 of these structures were collected 

(Figure 2.2), showing that most of these water clusters are well-predicted by GIST 

including the water site coordinated by the backbone amides of Ser64 and Ala318 

termed the “oxyanion hole”, where anionic charges of AmpC ligands bind. Interesting to 

note is that due to the polar and charged nature of the active site, almost all these 

GIST-predicted water sites are more favorable enthalpically than bulk solvent, such that 

ligands that displace waters in the AmpC active site will be penalized by GIST. We 

found that even with the majority penalty site from displacement and blurry GIST, we 

could improve enrichment by over 2% adjusted log AUC relative to the standard scoring 

function. In the prospective screen, we utilized the combinatorial scoring function with a 

-2.0 bGIST weighting as this exhibited a higher improvement in enrichment (+2.31) than 

the -1.0 bGIST weighting for AmpC retrospective results, and the magnitude of the 
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bGIST energies were larger, which we reasoned, would generate larger differences 

between the two scoring functions. For a fair comparison and to understand the specific 

contribution of the blurry GIST term to docking, we compare standard combinatorial (2x) 

and blurry GIST combinatorial (2x) in our prospective screen molecule ranks, which 

have a small 0.05 difference in enrichment retrospectively (Table 2.1).  

 

Figure 2.2. Comparing experiment to GIST-predicted hydration sites. 
A) The GIST enthalpy (Es,w + 2 Ew,w) grid referenced to bulk solvent. Red spheres, 
orange spheres, and yellow spheres are crystallographic water oxygens from 96 AmpC 
β-lactamase crystal structures with B-factors less than 10 Å2, between 10 and 20 Å2, 
and between 20 and 30 Å2, respectively. Green mesh represents favorable GIST 
enthalpies and red mesh represents unfavorable GIST enthalpies, relative to bulk 
solvent. Units are in kcal/mol/Å3. B) The blurry GIST hydrogen grid using a pseudo-atom 
radius of 1.0 Å using the GIST enthalpy grid referenced to bulk solvent as an input. C) 
The blurry GIST heavy grid using a pseudo-atom radius of 1.8 Å using the GIST 
enthalpy grid referenced to bulk solvent as an input.  
 

We docked a subset of the ZINC15 (http://zinc15.docking.org) that had favorable 

physical properties (cLogP ≤ 3.5 and MW ≤ 400 Da) with the combinatorial scoring 

scheme, which minimizes poses generated from the standard and blurry GIST scoring 

functions, rescores them against the opposite scoring function, and chooses the best 

scoring pose for each molecule and scoring function. This library contained over 300 

million molecules, most of which were make-on-demand compounds from the Enamine 
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REAL set from ZINC1546. Of these, more than 271 million molecules successfully 

scored. An average of 4082 orientations, and for each orientation, an average of 563 

conformations was sampled, amounting to over 198 trillion protein-ligand complexes, 

that were scored against both scoring functions. The calculation time was 161,230 core 

hours, or 4.49 calendar days on 1,500 cores. 

 In the top 1,000 molecules of the standard screen, 762 of these molecules were 

also found in the top 1,000 of the blurry GIST screen, while in the top 1 million 

molecules of the standard screen, over 740,000 molecules were shared, though the 

correlation in the molecules’ ranks was weak, and the two scoring functions share 

similar ranks only within the top 100 molecules (Figure 2.3). We focused on molecules 

that experience rank changes of a half-log (3.16-fold) or better, such that a molecule 

whose rank changes from 35,000th to 6345th, or from 38,055th to 9,121st after addition of 

the blurry GIST term would be prioritized. When considering only the top 1% of the 

screen (2.7 million molecules), upon addition of blurry GIST, 154,256 molecules were 

prioritized, while 159,071 molecules were de-prioritized. Additionally, we focused on 

molecules that ranked in the top 10,000 from either scoring function, and whose 

geometries changed between the scoring functions.  
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Figure 2.3. Comparison of large-scale docking molecule ranks. 
Heat plot showing the correlation of molecule ranks within the best scoring 1,000 (A) 
and 1,000,000 molecules from the 300 million molecule prospective screen of AmpC 
using standard and blurry GIST scoring functions. Venn diagrams of molecules shared 
within the best scoring 1,000 (C) and top 1,000,000 (D). 
 

 With these criteria, we initially bought 36 molecules comprising 12 molecules 

whose ranks improved with blurry GIST (pro-bGIST) as well as 18 molecules whose 

poses changed substantially between the two scoring functions. Thirty of these 

molecules were successfully synthesized (83% success rate) and after testing for 

binding, we identified only 1 molecule from the 12 pro-bGIST molecules and 9 of 18 

pose changing molecules that substantially inhibited (≥50%) hydrolysis of CENTA by 
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AmpC at 300 μM as monitored by UV-Vis spectrophotometry (Table 2.2, Figure 2.4). Of 

the 9 pose changing molecules, two molecules, ZINC324284771 and ZINC5550110611, 

had IC50s of 2.4 and 2.2 μM, respectively (Figure 2.5). 

  

Figure 2.4. Comparison of pro-bGIST, anti-bGIST, and pose-changing molecules.  
Ranks of molecules in the standard and blurry GIST scoring functions that were 
prioritized (red), that changed poses (green) and that were deprioritized upon addition of 
blurry GIST (blue). Filled circles and open circles represent tested molecules that 
showed ≥50% and ≤50% inhibition of AmpC at 300μM, respectively. B) Log ranks of 
tested Pro-bGIST, pose-changing, and Anti-bGIST molecules. C) DOCK Energies for 
tested Pro-bGIST, pose-changing, and Anti-bGIST molecules. 
 



77 

 

 

Figure 2.5. Representative inhibition curves for AmpC inhibitors.  
Inhibition curves and Lineweaver-Burk plots for ZINC324284771 (A), ZINC550110611 
(B), and ZINC650447472 (C), which are pose-changing molecules that rank within the 
top 3,000 in both scoring functions (see Table A.2.1).  
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Regardless, the one pro-bGIST molecule, ZINC905040387, represents a new 

chemotype for AmpC, a cyclobutyl carboxylate whose closest known AmpC ligand is 

0.29 by Extended Connectivity Fingerprint 4 (ECFP4) Tanimoto coefficient (Tc). We 

reasoned that the higher hit rate for pose changing molecules was due to their higher 

Tanimoto coefficients to known AmpC ligands compared with the pro-bGIST molecules 

(Figure A.2.4). Thus, we decided to extract anionic molecules that contained 

carboxylates and phenolates and resembled known AmpC molecules from ZINC15, 

dock these to AmpC with both scoring functions, and re-order them into the original 

docking hit lists to identify more rank changing molecules within this subset. After this 

new docking, we found that blurry GIST prioritized 1129 carboxylate- and 79 phenolate-

containing molecules, compared to the 6 carboxylate- and 85 phenolate-containing 

molecules it deprioritized, suggesting that blurry GIST was correctly identifying 

molecules with strong enough electrostatic interactions with AmpC to overcome the 

blurry GIST desolvation enthalpies (Figure A.2.4). From these we ordered 19 new pro-

bGIST molecules as well as 18 molecules that had better ranks without the blurry GIST 

term (anti-bGIST) and ensured that they overlapped in Tanimoto coefficient space to 

known AmpC inhibitors. Of these new molecules, only 1 of the 19 pro-bGIST molecules 

and 8 of the 18 anti-bGIST molecules substantially inhibited (≥50%) hydrolysis of 

CENTA by AmpC at 300 μM (Figure 2.4). We noted that of the molecules that 

substantially inhibited AmpC, the majority of these being pose-changers and anti-bGIST 

molecules, many of these resembled known ligands, but also that they ranked highly in 

both scoring functions and had highly favorable DOCK energies. These higher rankings 

and more favorable energies are consistent with the volume occupied by the molecules 
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that were prioritized or deprioritized by blurry GIST (Figure A.2.5). Molecules that were 

prioritized by blurry GIST were typically restricted in the space they occupied in the 

active site, limiting their contact with AmpC to reduce blurry GIST penalties, while 

deprioritized molecules were more likely to fill the pocket, and make more van der 

Waals contacts and electrostatic interactions. These new binders ranked from 80 to 

127,809 in the standard scoring function, and from 50 to 27,133 in the bGIST scoring 

function (Table A.2.1). Eighteen of the nineteen binding molecules were in the top 

10,000 molecules in one or both scoring functions. 
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Table 2.2. A selection of binding molecules. 
Molecule Inhibition 

at 300μM 
Rank in 

Standard 
Scoring 

Rank in 
bGIST 

Scoring 

Rank Log 
Difference 

Closest Known AmpC 
Inhibitor (ECFP4 Tanimoto 

Coefficient) 
PRO bGIST      

 
Z3989663601, ZINC001474992853 

74.13 182 50 0.56 

ZINC000549719284 
0.43 

 
Z2903948616, ZINC000905040387 

65.21 127809 27133 0.67 

 
ZINC000580868636 

0.29 
Anti-bGIST      

 
Z2275041991, ZINC000450990100 

87.59 165 1600 0.99 

ZINC000581714578 
0.71 

 Z3989661637, ZINC001561899653 

80.03 170 691 0.61 

 ZINC001208058246 
0.48 

Pose Changer    RMSD 
between STD 

and bGIST 
poses (Å) 

 

 
Z2027054051, ZINC000339202812 

81.77 296 244 1.5 

 
ZINC000559249118 

0.76 

 
Z1993712482, ZINC000324284771 

98.61 865 1047 1.1 

 
CHEMBL370041 

0.56 
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 To determine whether the unforeseen data was due to the molecular dynamics 

parameter choices we made, we ran molecular dynamics on AmpC, followed by GIST 

analysis using different force fields and solvent models, rescored the blurry GIST poses, 

and re-sorted them based on these new blurry and displacement GIST energies (Figure 

A.2.6). We find that these same pro-bGIST molecules and anti-bGIST molecules 

reappear, suggesting that the molecular dynamics parameters chosen do not 

significantly affect the choice of molecules purchased.  

We were able to crystallize two molecules that exhibited different geometries 

upon addition of the blurry GIST term (Figure 2.6). These included two nitrile moiety-

containing molecules – ZINC37748240, which coordinates the oxyanion hole of AmpC 

through a carboxylate, and ZINC339208618, which coordinates the oxyanion hole 

through a phenolate. In the crystal structure of ZINC37748240, we see two poses of the 

ligand at 20% and 80% occupancies, and in both cases, neither scoring function 

predicts an identical pose. However, the pose predicted by the standard scoring 

function is closer to the crystallographic poses than that of the blurry GIST pose, being 

1.4 Å and 1.6 Å root mean squared deviation (RMSD) away from the crystallographic 

pose versus blurry GIST’s 3.5 Å and 3.6 Å RMSD. On the other hand, for 

ZINC339208618, which also contains two poses both at 50% occupancy, we find that 

blurry GIST predicts an almost identical pose to the crystallographic structure at 0.7 Å 

RMSD, as it rotates the nitrile benzene roughly 90° relative to that of the standard 

scoring function’s orientation.  
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Figure 2.6. Crystallography of pose-changing molecules.  
ZINC37748240 (1.75 Å) exhibits two conformations (A, 20%, B, 80%) and 
ZINC339208618 (1.7 Å) exhibits two conformations (C, 50%, D, 50%). The crystal 
structure poses are shown in grey, while the blurry GIST and standard poses are shown 
in orange and green, respectively. Root mean squared deviations to the crystal 
structure poses were calculated using the Hungarian algorithm incorporated into 
DOCK6.6.  
 

 Given the uncertain utility of the blurry GIST term in the DOCK scoring function 

for predicting binders and poses, we thought that this may be due to the fact that we 

only considered receptor desolvation of the solvent-exposed AmpC binding site. We 

reasoned that analyzing the water networks around the poses of the ligands might 
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potentially help us differentiate binders versus nonbinders. It is known that significant 

effects on affinity and kinetics can be due to water networks that are not involved in 

protein-ligand interactions47. Additionally, rearrangement of waters and the 

establishment of new hydrogen bonding networks around the new protein-ligand 

complex significantly affects the thermodynamics of binding2,4,9,29,48,49. Therefore, we 

ran 150ns ligand-bound molecular dynamics simulations followed by GIST calculations 

to understand the water energetics around the standard and blurry GIST poses of the 

ligands (Figure 2.7).   

 

Figure 2.7. Comparison of GIST desolvation and reorganization enthalpies 
The desolvation cost of the standard and blurry GIST poses of pose-changing 
molecules was computed by running GIST on a 150ns molecular dynamics simulation 
of the AmpC protein alone, summing up the energies of the voxels displaced using in-
house Python scripts. The reorganization enthalpies were determined by running GIST 
on 150ns molecular dynamics simulations of standard and blurry GIST poses in the 
context of the AmpC protein and summing up the voxels within 3 Å (A), 6 Å (B), and 8 Å 
(C) from the ligand pose. We then take the difference in desolvation and reorganization 
energies between the standard and blurry GIST poses. Negative values indicate that 
the blurry GIST is more enthalpically favorable.  



84 

 

 In this scheme, both standard and blurry GIST poses of the pose-changing 

molecules are simulated in the presence of the protein for 150 ns, and the GIST grids 

are generated of these ligand-bound MD simulations. To compute reorganization 

energies, we sum the enthalpies of the voxels within some distance cutoff outside of the 

volume of the molecule poses. We used 3, 6, and 8 Å from the ligand surfaces, 

representing roughly one, two, and three solvation shells from the ligand surfaces. From 

the receptor alone simulation, we can obtain the desolvation cost of the standard and 

blurry GIST poses by summing up the voxels contained within the van der Waals radii of 

the poses in the exact same way that was done for the original implementation of 

displacement GIST. Taking the difference between the reorganization and desolvation 

energies for the standard and blurry GIST poses provides us with the difference in 

solvation enthalpy between these poses. When considering reorganization enthalpies 

up to 8 Å from the poses in addition to desolvation enthalpies, the blurry GIST pose is 

favored in only four of the fifteen molecules that we considered for crystallography. 

Three poses are identical from the standard and blurry GIST scoring functions, thus 

exhibiting identical desolvation and reorganization energies, while the standard pose is 

favored for seven molecules. We find that for ZINC37748240, where the 

crystallographic poses align more closely with the standard scoring function pose, the 

blurry GIST pose has a less unfavorable desolvation cost, but the standard pose has a 

much more favorable reorganization enthalpy, such that the sum of the reorganization 

and desolvation enthalpies strongly favors the pose from the standard scoring function. 

For ZINC339208618, where the blurry GIST pose is more predictive of the 

crystallographic geometry, the desolvation cost is less unfavorable for the pose from the 
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standard scoring function, but the reorganization energies strongly favor the blurry GIST 

pose, suggesting that again, the reorganization energies determine the pose observed 

crystallographically, rather than just the desolvation cost alone.  

 

2.4 Discussion.  

 Four key observations emerge from this study. First, a new implementation of 

grid inhomogeneous solvation theory that we call blurry GIST can capture the behavior 

of displacement GIST while speeding up the calculation by 12-fold.  The original 

implementation of GIST by displacement of voxels decreased docking time by 6-fold on 

average. Here we have incorporated a Gaussian blurring procedure to store the sum of 

Gaussian-weighted receptor desolvation energies in a grid prior to docking. During 

docking, trilinear interpolation is utilized to interpolate the receptor desolvation energies 

at atomic positions, leading to a negligible slowdown compared to the standard scoring 

function. Finally, DOCK3.7 was rewritten to score each pose of each molecule for both 

scoring functions, producing two ranked lists for the standard and blurry GIST scoring 

functions in a single docking run, thus cutting the docking time in half. Second, blurry 

GIST prioritizes molecules that contain chemotypes that are known to bind AmpC. 

These include phenolates and carboxylates that coordinate the oxyanion hole of AmpC. 

Given the penalizing nature of the AmpC receptor desolvation energies, molecules that 

do not make favorable electrostatic interactions with the protein via a negatively 

charged moiety are ranked lower, and only those molecules that can form these 

favorable electrostatic interactions can counteract the penalizing receptor desolvation 

energies. Reassuringly, this is what we see when manually inspecting the molecules 
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that rank highly, as well as those that are prioritized in the blurry GIST screen. 

Molecules that are in high receptor desolvation penalty areas are deprioritized if they do 

not have a concomitant increase in favorable electrostatic and van der Waals 

interactions. In standard molecular docking screens, van der Waals energies are 

unchecked and one may see a bias towards higher molecular weight molecules50, while 

blurry GIST is able to counteract this bias. Third, it seems that blurry GIST can correctly 

predict binding geometry over the standard scoring function, identifying the correct pose 

for one of the two crystal structures by less than 1 Å RMSD. Fourth, molecules that are 

highly ranked in both scoring functions are likely to bind. Though only 2 of the 31 

molecules prioritized by blurry GIST did bind, these molecules were mainly taken from 

far outside the top 10,000 molecules, suggesting that AmpC has very stringent 

requirements for binders. Molecules must form favorable electrostatic interactions with 

the oxyanion hole through negatively charged moieties, but they must also form 

favorable van der Waals with the protein, leaving only those molecules within the 

highest ranked binders satisfying these criteria. This suggests that though blurry GIST 

did prioritize molecules that we judged visually to be potential binders, it is only those 

molecules within the top scoring molecules that have enough of these favorable 

interactions to bind. This may shape how we think about choosing molecules for 

purchase from AmpC, but also suggests that different proteins will have different hit rate 

curves35.  

 It is necessary to consider how the form of GIST may have affected performance. 

In full GIST, we were calculating full ligand displacement by summing up all voxels 

contained within the van der Waals radii of the ligand poses. In blurry GIST, we are 
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applying a Gaussian so that the extremities are weighted less heavily than the center of 

the atom. It is unclear whether full displacement would have performed better, but 

rescoring the blurry GIST poses with full displacement GIST and reranking them based 

on these new GIST energies suggests we would have found similar molecules, and thus 

similar results (Figure A.2.6). There are also different functional forms of 

inhomogeneous solvation theory12,16,31,51,52, and it is unclear which is the most accurate 

representation of water desolvation. Here, we only include solute-solvent and solvent-

solvent enthalpy referenced to bulk solvent, potentially suggesting that entropy, which 

we have completely neglected and have essentially modeled waters as having no 

entropy change when they interact with protein relative to bulk solvent, may make a 

substantial contribution in this site. A possible future direction might be to test a different 

functional form of GIST that may integrate more successfully into the DOCK3.7 scoring 

function and see how it performs prospectively.  

Our results here also suggest that displacement energies alone may not be able 

to capture the water energetics in solvent-exposed sites. Previously, we applied GIST to 

cytochrome c peroxidase, a buried model cavity with 6-8 organized water molecules 

that is only partially exposed to bulk solvent, finding that GIST was able to predict 

binders correctly, as well as correct geometry. In the solvent-exposed AmpC site with 

multiple water clusters and water singlets seen in crystal structures, it may be that 

molecular dynamics simulations and GIST are unable to capture the solvent dynamics 

and energetics accurately. It has been suggested that more buried sites exhibit more 

divergent energies because the water energetics deviate more from bulk 

thermodynamic properties53. It is possible that because the AmpC site is not buried and 
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substantially interacts with bulk solvent, the water energetics here do not deviate 

enough from bulk thermodynamics to achieve meaningful GIST energies. Additionally, 

even if meaningful GIST energies are obtained, it may be that they need to be 

supplemented with reorganization energies to capture the full contribution of water 

energetics given the substantial contact with bulk solvent.  

Our system here, AmpC, is also almost completely penalizing in terms of GIST 

enthalpies. Cytochrome c peroxidase had both favorable and unfavorable water sites34, 

and displacement of unfavorable water sites for boosting ligand affinity has been a large 

focus in the literature27,54-56. It is likely that success when using inhomogeneous 

solvation theory-based methods is system-dependent and hydration-site-dependent. As 

we see here, larger molecules are deprioritized because they are penalized more by 

GIST, and while this can correct the high van der Waals bias in docking, it penalizes 

high affinity binders as these are the molecules that have enough van der Waals 

contacts and electrostatic interactions to bind to the AmpC active site and compete with 

the significant numbers of water molecules that fill the site.  

Overall, our results suggest that though blurry GIST may not be able to prioritize 

molecules that bind, the molecules that did bind in this study are highly ranked in both 

scoring functions, and thus still captured by blurry GIST. Additionally, we are hopeful 

that blurry GIST can accurately predict binding geometry compared with the standard 

scoring function, which will require more crystal structures that we are currently solving.  
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2.5 Methods.  

MD simulation and GIST generation.  

Chain B of AmpC β-lactamase (PDB: 1L2S) was processed using tLeAP part of 

the Amber 14 release. AmpC, as with the other 39 DUD-E systems, were placed in a 

box of TIP3P water such that all atoms were at least 10 Å from the boundary of the box. 

PMEMD.cuda was used to carry out simulations on graphics processing units (GeForce; 

GTX 980). The equilibration run consisted of two minimizations of up to 6,000 steps 

followed by six 20-ps runs at constant volume where the temperature of the simulation 

was raised from 0 to 298.15 K. Langevin dynamics maintained the temperature of the 

simulation with a collision frequency of 2.0 ps-1. A constant-pressure (NPT) run was 

then run to allow the volume of the box to adjust for 5 ns to maintain 1 bar of pressure. 

Finally, constant-volume (NVT) simulations were performed for 5 ns, under the same 

conditions as the subsequent production simulations. Production NVT simulations were 

for 50 ns. All protein heavy atoms were restrained with a 5 kcal/mol/Å2 force constant 

and the Shake algorithm was used with a 2-fs time step. Periodic boundary conditions 

were applied, and the particle mesh Ewald method was used to calculate long-range 

electrostatics.  

 

GIST grids. GIST grids were generated using the CPPTRAJ trajectory analysis 

program from AmberTools 14 by processing the 50-ns trajectories with a grid spacing of 

0.5 Å. The grids were combined with Python scripts that are available at 

https://github.com/tbalius/GIST_DX_tools. As previously, the receptor desolvation is 
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estimated using GIST grids that are outputted by the CPPTRAJ trajectory analysis 

program. These are: 

• Enthalpy between solvent (water) and solute (receptor) (𝐸𝑠,𝑤
𝑑𝑒𝑛𝑠) 

• Enthalpy of solvent with solvent (𝐸𝑤,𝑤
𝑑𝑒𝑛𝑠) 

• Translational entropy between water and receptor (𝑇𝑆𝑠,𝑤
𝑡𝑟𝑎𝑛𝑠) 

• Orientational entropy between water and receptor (𝑇𝑆𝑠,𝑤
𝑜𝑟𝑖𝑒𝑛𝑡) 

• Density of water around the receptor (go) 

All grids’ energies are in kcal/mol/Å3, while the density grid is unitless (density/bulk 

density). We found previously that the enthalpy grids (𝐸𝑠,𝑤
𝑑𝑒𝑛𝑠) and (𝐸𝑤,𝑤

𝑑𝑒𝑛𝑠) referenced to 

bulk solvent performed the best in terms of enrichment. To estimate the enthalpy 

difference of desolvation, we subtract the energy of water in bulk from the energy of 

water on the surface of the protein.  For each voxel, i, the bulk solvent energy was 

computed as: 

𝐸𝑤,𝑤
𝑑𝑒𝑛𝑠_𝑟𝑒𝑓(𝑖) = 2 × (𝐸𝑤,𝑤

𝑑𝑒𝑛𝑠(𝑖) + 0.3184 × 𝑔𝑜(𝑖)) 

Here, the constant is computed from parameters taken from the Amber14 manual, the 

mean energy of TIP3P solvent model, Cbulk = -9.533 kcal/mol/water, and the number 

density of the TIP3P solvent model, Cnum_dens = 0.0334 waters/Å3, where Cbulk x Cnum_dens 

= -0.3184 kcal/mol/Å3. The factor of two accounts for the fact that each water interacts 

with every other water during the simulation, but only retains half of the interaction 

energy to avoid double counting. Thus, by multiplying by two, we recover the full water-

water interaction energy. The GIST enthalpy stored at each voxel then becomes: 
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𝐸𝑡𝑜𝑡
𝑟𝑒𝑓2(𝑖) =  𝐸𝑠,𝑤

𝑑𝑒𝑛𝑠(𝑖) + 𝐸𝑤,𝑤
𝑑𝑒𝑛𝑠_𝑟𝑒𝑓(𝑖) 

 For the other solvent models used (TIP4PEw, TIP5P, SPCE, OPC), the 

formulation remains the same, but the Cbulk and Cnum_dens values change to reflect their 

specific values in the Amber14 manual. As previously, we truncated the GIST energies 

at the absolute magnitude of 3 kcal/mol/Å3 as these high magnitude voxels typically 

diminished enrichment performance.  

 

Blurry GIST grids.   

To speed up our DOCK calculations, we need a way to precompute displacement 

without double counting. In Blurry GIST scoring, we weight the grid points closer to the 

center of the atom higher than those points near the surface. To this end we use a 

Gaussian function as follows:  

𝑔𝑤(𝑑) =
1

√2𝜋𝜎2
𝑒

−𝑑2

2𝜎2  

Here d a distance, π is the mathematical constant the quotient of circumference to 

diameter and σ is the sharpness of the peak of the function (this is the standard 

deviation for the normal distribution).  

𝑏𝐺𝑓𝑢𝑙𝑙 = ∑ ∑ 𝑔𝑤(𝑑𝑖𝑠𝑡(𝑝, 𝑎)) ∗ 𝐺𝐼𝑆𝑇(𝑝)
𝑝 ∈𝑔𝑑(𝑎)𝑎𝜖𝐿𝑖𝑔

 

The blurry gist score is a double summation: we sum over all atoms in the ligand.  And 

we have a weighted sum over the grid points displaced (gd(a)) by each atom (a).  The 

weight is determined by the proximity of grid point (p) to the center of the atom (a) using 

the Gaussian function.  The displacement function is dependent on the radius or the 
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atom. We experimented with various σ values, finding that the radius / 1.3 provides the 

best agreement with the full GIST displacement energies. By the blurry GIST definition, 

we do not need to worry about double counting and, so can pre-compute 

displacements.  These GIST displacements were precalculated by placing a dummy 

atom with a specified radius at each grid point (a margin of grid points is excluded 

because the sphere goes outside the grid box). Grid points that are contained within the 

radius of the dummy atom are identified and are summed with a weighting factor 

assigned to each point based on its distance from the center of the dummy atom using 

the Gaussian function. The new summed value is stored at that grid point.  Two of these 

per-computed displacement grids are generated, one with a radius of 1.8 Å for heavy 

atoms and 1.0 Å for hydrogens.   

𝑏𝐺𝑡𝑟𝑖𝑙𝑖𝑛𝑒𝑎𝑟 = ∑ 𝑡𝑟𝑖𝑙𝑖𝑛𝑒𝑎𝑟(𝑎, 𝐺𝐼𝑆𝑇𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒)
𝑎𝜖𝐿𝑖𝑔

 

Blurry GIST in docking.  The blurry GIST scoring function method was implemented into 

the DOCK 3.7 distribution.  This method is much faster GIST calculation than that 

previously described34.  In the implementation, the two precomputed blurry gist grids 

(heavy and hydrogen) are read into DOCK.  Trilinear interpolation is used to combine 

the information of the 8 closest grid point to approximate the value at the center of the 

ligand atom.  With this method there is virtually no slowdown in the calculations when 

compared to running DOCK3.7 without GIST.   
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Monte Carlo Optimization 

 A Monte Carlo optimization method was implemented into the DOCK source 

code based on the example Python code available at:  

https://chryswoods.com/intro_to_mc/part1/metropolis.html.  

In this new DOCK scheme, a translational or rotational move was randomly selected, 

and either a translation up to 0.2 Å or rotation up to 10 Å was applied to the best scoring 

pose of each molecule. The new pose was rescored for electrostatics, van der Waals, 

ligand desolvation, and if applicable, blurry GIST. The new pose was accepted if its 

energy was better than the previous pose’s energy. However, if the energy was worse, 

the exponential of the difference between the new energy and old energy divided by the 

thermal energy (kT) was calculated. If this value was greater than or equal to a random 

value generated between 0 and 1, then the pose was accepted, and a new rotational or 

translational move was generated for 1000 Monte Carlo steps. The temperature was set 

to 1 K to limit the poses from moving too far from the DOCK-generated pose. An 

alternative scheme was also implemented that terminated Monte Carlo optimization if 

500 Monte Carlo steps were accepted.  

 

Combinatorial Scoring 

This scheme was implemented into the DOCK source code. Since sampling is 

identical between the standard and blurry GIST scoring functions when the same grids 

and matching spheres are used, we implemented a new scoring scheme that only 

performs sampling once to reduce redundant calculations. First, poses are generated, 

and then are scored with the blurry GIST scoring function, which includes electrostatics, 
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van der Waals, and ligand desolvation, which comprises the standard scoring function 

terms. Thus, to obtain the standard score of each of these poses, one only needs to 

subtract the blurry GIST energy from the total score. The best scoring poses from both 

standard and blurry GIST scoring functions are then minimized with their own scoring 

function terms using Simplex minimization. The minimized poses are then rescored with 

the other scoring function, and the energies of the poses are compared. If a better 

scoring pose for each molecule was found in the other scoring function after 

minimization, that pose replaced the current best scoring pose for that molecule. This 

ensures that the best scoring pose for both scoring functions was found, regardless of 

whether it was generated from standard or blurry GIST Simplex minimization (see 

Figure A.2.3) 

 

Enrichment Calculations.  

Three dimensional dockable ligand and decoy files for the 40 DUD-E targets 

were downloaded from http://autodude.docking.org. The PDB structures assigned to 

forty DUD-E targets were retrieved and prepared in an automated fashion by in-house 

scripts based on the DOCK blaster pipeline65 for generating docking grids. For all 

systems besides AmpC, the default DOCK blaster preparation was used in which the 

full binding site was filled with low-dielectric spheres of radius 1.9 Å for Poisson-

Boltzmann calculations, thereby modeling the full binding site as low dielectric solute. 

The DUD-E assigned PDB ligand was used for generating 45 matching spheres, to 

which molecules are matched to during docking. Docking calculations were performed 

with DOCK3.766. Ligand conformations were generated by OpenEye’s Omega67. 
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Ligands were only scored if the number of ligand heavy atoms contained within the 

ligand ranged from 4 to 100. For each ligand hierarchy (each rigid fragment contained 

within the ligand), the maximum number of matches generated was set to 5000. Up to 

500 Simplex minimization37 steps were performed for each top scoring pose of each 

docked molecule, starting with initial translations of 0.2 Å and initial rotations of 5°. To 

judge performance, the adjusted log AUC was used, which is analogous to the area 

under the receiver operator characteristic curve68. The adjusted log AUC subtracts the 

log AUC of the random curve (14.462%) to ensure random enrichment is 0%. 

 

Virtual Screen.  

Chain B of AmpC PDB code 1L2S, was used in the docking calculations. To 

prepare the structure for docking, atoms of the co-crystallized ligand, were used to seed 

the matching sphere calculation in the active site; these spheres represent favorable 

positions for individual ligand atoms to dock; 45 spheres were used in total. DOCK3.7 

orients flexibases of pre-calculated ligand conformations into the orthosteric site by 

overlaying atoms of each library molecule onto these matching spheres. The receptor 

structure was protonated by REDUCE57 and assigned AMBER united atom charges58. 

The magnitudes of the partial atomic charges of the residues Ser64, Ala318, and 

Asn152 were increased without changing the net charge of the residues, as described 

previously35,41,42. The volume of the low protein dielectric, which defines the boundary 

between solute and solvent in Poisson–Boltzmann electrostatic calculations, was 

extended out 1.5 Å from the protein surface using spheres calculated by SPHGEN. 

Scoring grids were pre-calculated using CHEMGRID for AMBER van der Waals 
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potential, QNIFFT for Poisson–Boltzmann-based electrostatic potentials, and 

SOLVMAP for ligand desolvation.  

The resulting potential grids and ligand-matching parameters were evaluated for 

their ability to enrich known AmpC ligands over property-matched decoys. Decoys 

share the same physical properties as known ligands but are topologically dissimilar 

and are therefore unlikely to bind to AmpC. The ligands and decoys were taken from the 

Directory of Useful Decoys - Enhanced36 benchmark, which contains 48 AmpC ligands 

and 2,850 property-matched decoys. Docking success was judged based on the ability 

to enrich the known ligands over the decoys by docking rank, using adjusted logAUC 

values, as is widely done in the field. We also ensured that molecules with extreme 

physical properties were not enriched, as can happen when only counter-screening 

against property-matched decoys. In particular, we wanted to ensure that anionic 

molecules were enriched over neutral and cationic molecules. The docking parameters 

were also judged on how well they reproduced the expected binding modes of the 

known ligands. In addition to these criteria, docking parameters that had the largest 

impact in terms of rank changes of molecules upon addition of blurry GIST were 

prioritized.   

The ‘lead-like’ subset of ZINC15 (http://zinc15.docking.org), characterized by 

favourable physical properties (for example, with calculated octanol-water partition 

coefficients (cLopP) ≤ 3.5 and with molecular mass ≤ 400 Da), was then docked against 

the AmpC active site using DOCK3.7. This library contained more than 300 million 

molecules, most of which were make-on-demand compounds from the Enamine REAL 

set. Of these, more than 271 million molecules successfully docked. An average of 
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4,082 orientations was calculated for each, and for each orientation, an average of 563 

conformations was sampled. A simplex minimizer was used for rigid-body minimization 

on the best-scored pose for each ligand. Overall, about 198 trillion complexes were 

sampled and scored. The calculation time was 161,230 core hours, or 4.49 calendar 

days on 1,500 cores. 

The ranks for molecules in the top 1% (2.7 million molecules) for both scoring 

functions were retrieved, and any molecule that had a half-log order rank change (3.16-

fold) was retained. This included 154,256 molecules that ranked more highly in the 

blurry GIST scoring function hit list and lower in the standard scoring function (pro-

bGIST), and 159,071 molecules that ranked more highly in the standard scoring 

function hit list and lower in the blurry GIST scoring function (anti-GIST). Molecules that 

were identical by ECFP4-based Tanimoto coefficients to the known >200 AmpC 

inhibitors or molecules previously tested were removed. To identify molecules whose 

geometries changed between the two scoring functions, the union of the top 10,000 

molecules from both the standard and blurry GIST scoring functions was collected. The 

root mean squared deviation (RMSD) using the Hungarian algorithm in DOCK6.659,60 

was calculated on the standard and blurry GIST poses, and any molecule that had a 

substantial RMSD change were retained.  

After filtering, the pro-bGIST, anti-bGIST, and pose changing docked poses of 

these molecules were filtered by the proximity of their anionic charges, if any, to the 

oxyanion hole in AmpC, which is coordinated by the backbone atoms of residues Ser64 

and Ala318. Molecules were manually inspected for favorable geometry and 
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interactions. In the first round, 36 molecules were purchased, 30 of which were 

successfully synthesized.  

In the second round of docking, we wanted to buy molecules that had a higher 

likelihood of inhbiting AmpC to attain a better comparison of prioritized versus 

deprioritized blurry GIST hit rates. Therefore, 60,216 molecules with the SMARTS 

patterns:  

• [ND2]S(=O)(=O)c1ccsc1C(=O)[OD1] for carboxylates 

• [ND2]S(=O)(=O)c1cccc([F,Cl,I,Br])c1[OD1] for phenolates  

were retrieved from ZINC15 and built using the lab’s ligand building pipeline. These new 

molecules were docked to the AmpC docking grids with the same parameters as above, 

except the match goal sampling value was increased to 5000 from the 1000 used for 

the large-scale screen. The energies of the best scoring poses from these molecules 

were extracted and incorporated into the original standard and blurry GIST docking hit 

lists. With these new docking hit lists, the poses of molecules that were prioritized or 

deprioritized with a half-log order rank change cut-off were collected. Molecules that 

were identical by ECP4 Tanimoto coefficients to known AmpC inhibitors or molecules 

previously bought were discarded. As before, the poses were manually inspected for 

favorable geometry and interactions, and 19 molecules prioritized by blurry GIST and 18 

molecules deprioritized by blurry GIST were chosen for synthesis and testing.  
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Ligand-Bound Molecular Dynamics and GIST 

Ligand forcefield parameters were assigned with the general AMBER force field 

(GAFF)61 using the Antechamber package in AmberTools. Antechamber assigns 

charges, missing bonds, angles and dihedral angles. Ligand charges were assigned 

using AM1-BCC62.  The produced files are loaded into tleap to produce the ligand lib file 

of the ligand. Each system was solvated in a box TIP3P water molecules with Amber 

ff14SB forcefield for the protein-ligand structure. The box was created such that there is 

10 Å between any atom of the protein and the edge of the box. The solvated system 

was minimized with an initial 1500 steps of steepest descent with all atoms except 

hydrogens restrained harmonically using a force constant of 100 kcal/mol Å2 followed by 

another 1500 steps of steepest descent with all atoms except hydrogens restrained 

harmonically using a force constant of 5 kcal/mol Å2. This was followed by heating the 

system from 50 K to 298.15 K over 120 picoseconds under the conditions of constant 

number of particles, volume, and temperature (NVT) with all atoms restrained except 

hydrogens with a force constant of 5 kcal/mol Å2. An equilibration simulation was then 

run in constant NPT conditions for 5 ns with temperature of 298.15 K, pressure of 1 

atmosphere and same atom restraints as described in the NVT equilibration step. 

Temperature was regulated using the Langevin thermostat with a collision frequency of 

2.0 ps−1, and pressure was regulated using the Berendsen barostat44 with isotropic 

scaling and a coupling constant of 2.0 ps-1. The snapshots of system coordinates were 

saved every 1 picosecond, resulting in a trajectory file with 150,000 frames. All MD 

simulations were performed using AMBER 18. In the production runs, all atoms except 

hydrogens were restrained with a force constant of 5 kcal/mol Å2. GIST maps were 
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produced in a 37x35x45 Å rectangular box using the GPU version of 

CPPTRAJ_GIST63,64 on the entire 150ns of the production run.   

 

AmpC Enzymology.  

All potential inhibitors were initially dissolved in DMSO at 30mM, and more dilute 

stocks were prepared if necessary, maintaining the DMSO concentration at 1% v/v in 

50mM sodium cacodylate buffer at pH 6.5. AmpC activity and inhibition was monitored 

spectrophotometrically using CENTA as a substrate38. All assays included 0.01% Triton 

X-100 to reduce aggregation artifacts. Active compounds were investigated more fully 

by IC50 curves, which reflect the percentage inhibition fit to a dose-response equation in 

GraphPad Prism. For these compounds, Ki values were calculated from Lineweaver-

Burk plots.  

 

AmpC Crystallography.  

 The two inhibitors were cocrystallized from 1.7 M potassium phosphate with 

microseeding at pH values that varied from 8.7 and 8.9, as previously described35,38. 

Crystals were cryo-cooled in a solution that contained a reservoir solution and 25% 

sucrose. Reflections were measured at beamline 8.3.1 of the Advanced Light Source 

with a wavelength of 1.11583 nm at a temperature of 100 K. Complexes with 

ZINC339208618 and ZINC37748240 were measured to a resolution of 1.7 Å and 1.75 

Å, respectively.  
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Gloss to Chapter 3 

 This chapter came out of the work on blurry GIST and my efforts to incorporate it 

more readily into the DOCK scoring function. Since increasing the weight of GIST or 

blurry GIST decreased enrichment performance on average and I thought that the 

ligand desolvation term in its current weighting may be entangled with receptor 

desolvation as highlighted in the Introduction, I thought another approach might to 

weight the three other scoring function terms differently. If we could find a similar or 

better performing set of weights compared to the standard scoring function, we might be 

able to incorporate blurry GIST more readily so that it would be more impactful, while 

preserving its performance.  

This involved altering the weights of the scoring function terms so that there were 

sixteen different weighting combinations, and then running each of these combinations 

on 41 DUD-E systems to determine enrichment performance. What we found was that 

down-weighting the ligand desolvation by half while keeping the other terms the same 

provided the best improvement in average enrichment over the standard scoring 

function. However, upon closer inspection, we found that one reason for this was 

because of charge mismatches in the molecule database files, with ligands having more 

extreme charges, thus artificially improving in rank over the less extreme charged decoy 

molecules. This was most notable in AmpC and PUR2. This inspired me to write a new 

pipeline for generating decoys from input ligands, in a similar fashion as Michael 

Mysinger’s decoy generation pipeline, but one that was compatible with ZINC15. In my 

pipeline, one could input their own property ranges for decoys to share with their 
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ligands, even finding decoys that were identical in charge, which I thought at the time, 

might be less susceptible to scoring function weighting changes. This new pipeline and 

its resulting decoys were named “DUDE-Z”. The decoys themselves are not important, 

but rather the ability to customize decoys for ligands readily.  

 Additionally, the inability to differentiate good performance with just log AUC 

values provided motivation for a new set of control tests before virtual screening so that 

we would not be deceived in future screens. We name these control tests “Goldilocks”, 

“Extrema”, and “bootstrapping”. In Goldilocks, a small subset of ZINC15 with a wide 

array of properties was retrieved that matches the database at large in terms of charge, 

molecular weight, and clogP. When screening this subset to one’s protein preparation, 

the goal is to identify any flaws in parameterization before a large-scale screen that may 

be hidden when only screening against a set of ligands and property-matched decoys. 

In Extrema, one generates a set of molecules in a specific molecular weight and cLogP 

range, typically that of your ligands, with an equivalent number of -2, -1, 0, +1, and +2 

charged molecules. The goal of this test is to identify which charges rank the best 

against one’s protein preparation. This can motivate one to continue to the screen with 

their current setup or conclude that one’s preparation is incorrect and is simply 

prioritizing charge instead of differentiating between ligands and decoys. In 

bootstrapping, one generates 50 different enrichments by choosing ligands and decoys 

at random from one’s docking hit list with replacement, re-ranking them, and re-

calculating the log AUC. This provides one with a measure of how much variation there 

is in their enrichment performance, as well as to compare multiple setups against one 

another to determine if one performs better. 
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 These new control tests were applied to 41 DUD-E systems and the D4 

dopamine and MT1 melatonin receptors to identify parameterization errors and liabilities 

in each system’s setups, and to compare the standard scoring function to the 

reweighted scoring function with down-weighted ligand desolvation. The data show that 

down-weighting the ligand desolvation term results in charge priority issues, and 

although this optimized scoring function performs better in enrichment, the differences 

in enrichment become insignificant when using bootstrapping. The ease of use of these 

new tools has made them accessible and heavily used by all members of the lab before 

running large virtual screens.   
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3.1 Abstract 

Enrichment of ligands versus property-matched decoys is widely used to test and 

optimize docking library screens.  However, the unconstrained optimization of 

enrichment alone can mislead, leading to false confidence in prospective performance.  

This can arise by over-optimizing for enrichment against property-matched decoys, 

without considering the full spectrum of molecules to be found in a true large library 

screen.  Adding decoys representing charge extrema helps mitigate over-optimizing for 

electrostatic interactions.  Adding decoys that represent the overall characteristics of the 

library-to-be-docked allows one to sample molecules not represented by ligands and 

property-matched decoys, but that one will encounter in a prospective screen.  We also 

explore the variability one can encounter in enrichment calculations, and how that can 

temper one’s confidence in small enrichment differences.  All such controls are 

ultimately sanity checks, and the investigator must remain vigilant to avoid being misled 

by artifacts. The new tools are freely available at http://tldr.docking.org.   
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3.2 Introduction 

In large library docking screens, the goal is to discover new, typically 

unprecedented chemotypes for a target based on molecular fit.  Calculation speed has 

been crucial since the field’s inception1-8, and to ensure it several biophysical terms are 

approximated or ignored entirely.  While this led to programs that can screen libraries 

now approaching9 or exceeding10 a billion molecules, discovering novel ligands for 

multiple targets9,11-21, the emphasis on throughput has forced docking into compromises 

that make predicting absolute binding energies, or even rank ordering compounds, 

implausible.  While molecular docking screens are thus pragmatic, and while docking 

remains among the methods most subjected to experimental testing in computational 

biophysics, it is also among the biophysical methods that have most surrendered 

“ground truth”.   

 

Accordingly, to evaluate new docking methods, or to evaluate how well docking 

might perform prospectively on a new target, benchmarking studies are often 

performed.  For a new docking method, these benchmarks evaluate the key outcomes 

expected of a library screen: can the method reproduce the binding orientations of 

known ligands for a range of targets, can it enrich known ligands from among a set of 

decoys over a range of disparate targets?  For a particular target campaign, when an 

established method is being used, such benchmarks are also crucial, here focusing on 

the poses and the enrichment of ligands, and when available known non-binders, for 

that target.  Optimizing sampling and the weighting of energy terms—ideally constrained 

by physical reasonableness—can improve performance of these retrospective controls.  
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Admittedly, favorable performance on retrospective benchmarks does not predict 

prospective success in predicting new chemotypes—the goal of library docking—but 

without them the likelihood of success is reduced, as is our ability to understand failure.  

In this sense, running detailed benchmarks on a new method or a new target fulfills the 

same role as controls in the experimental biological sciences, which often also lack 

“ground truth”, and so must rigorously control all new experiments.  

 

Among the most widely-used benchmarks in library docking is the enrichment of 

annotated ligands versus property-matched “decoy” molecules22-24.  A decoy molecule 

is one that is expected not to bind to a protein of interest; enrichment measures 

docking’s ability to highly rank (enrich) the annotated ligands vs. such decoys.  The idea 

of using decoys in benchmarks follows from analogous use in protein structure-

prediction25-27, and initially drew on random molecules28-30 .  As is true for folding 

decoys, it was found that it was important that decoy molecules physically resemble the 

known ligands, otherwise the docking program might be optimized to simply recognize 

gross physical differences, such a molecular weight, hydrophobicity, or charge31.   

Property-matched decoys match ligands by physical properties but are otherwise 

topologically unrelated and so presumed not to bind.  Enrichment of ligands against 

property matched decoys, in sensible geometries, thus offers some assurance that the 

docking program is recognizing ligands by their detailed interactions, and not just gross 

physical differences.  Several benchmarking sets of ligands and property matched 

decoys have been introduced32-37, including the DUD and DUD-E sets22,23, which are 

widely used to test new methods, while the method of matching ligands to decoys, on 
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which DUD-E is based, is widely called upon to construct bespoke benchmarks as 

controls for individual target campaigns.   

 

The DUD-E benchmark covers 102 disparate proteins, 66,695 ligands, and 1.4 

million property-matched decoys (about 50 decoys per ligand for any given target—

some ligands share decoys with those from another target).  Notwithstanding the 

importance of using property-matched decoys31, benchmarking on them alone exposes 

one to subtle but crucial biases, which can mislead optimization of both methods and 

parameterization for a particular campaign.  A key challenge is that property-matched 

decoys do not represent the full spectrum of molecules that will be encountered in 

docking a diverse library of 109 molecules.  For instance, they will not expose one to 

extreme physical differences, nor will they necessarily represent even the typical 

molecular properties of a large library.  Here we investigate the pathologies that can 

emerge from optimizing from even a large and diverse set of targets, ligands and 

property-matched decoys, and investigate additional properties that can control for 

these pathologies, providing a fuller set of benchmarks to complement property-

matched decoy sets, which do remain crucial.   
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3.3 Methods 

DUD-E. Three dimensional dockable ligand and decoy files for the 41 DUD-E targets 

were downloaded from http://autodude.docking.org. For D4 dopamine and melatonin 

MT1 receptors, DUD-E decoys were generated from http://dude.docking.org/generate, 

and built using an in-house ligand building pipeline. 

 

Binders & Nonbinders. Three dimensional dockable files for binders and nonbinders 

for D4 dopamine and MT1 melatonin receptors were downloaded from ZINC15. This 

included 81 binders and 468 nonbinders, and 105 binders and 65 nonbinders for D4 

and MT1, respectively. Enrichment calculations were performed for all 16 scoring 

function coefficient combinations (see Docking Calculations). 

 

DUDE-Z. Several DUD-E systems had large numbers of ligands and decoys, so to 

reduce the number of ligands for more rapid docking calculations, targets that had over 

100 ligands had their ligands sorted by molecular weight and were clustered by an 

ECFP4 Tanimoto coefficient of 0.7. Ligands were sorted by molecular weight as 3D 

molecules are more likely to be in lead-like space, and so to ensure that ligands could 

find 3D property-matched decoys, the smallest ligand was chosen in each cluster. For 

targets that had less than 100 ligands, all ligands were retained for generating property-

matched decoys.  

 

As in DUD-E, decoys were matched to ligands based on molecular weight, water-

octanol partition coefficient (cLogP), number of rotatable bonds, number of hydrogen 
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bond donors and acceptors, and net charge. We generated all protonation states for 

each ligand using ChemAxon’s Jchem38 at physiological pH and computed molecular 

properties using RDKit. For each protomer, the optimal goal was to find 50 property-

matched decoys, but we also accepted as few as 20 decoys if the number of decoys in 

ZINC15 were limited in this property space. To identify matching decoys, the ZINC15 

website was cURLed for up to 10,000 3D molecules matching the ligand protomer for 

the molecular properties listed above. Once thousands of decoys for a target were 

retrieved, ECFP4 Tanimoto calculations were performed using in-house programs 

(located at https://github.com/docking-org/ChemInfTools) between all ligands and all 

potential decoys for that target. Any decoy that had greater than 0.35 ECFP4 Tanimoto 

coefficient to any ligand was discarded. Next, the decoys were sorted by molecular 

weight, and decoys were clustered by an ECFP4 Tanimoto coefficient of 0.8, with the 

smallest decoy being retained from each cluster. This ensured that property-matched 

decoys would not contain duplicates, and that the decoys would contain relatively 

different scaffolds. The remaining decoys were sorted by ECFP4 Tanimoto coefficients 

to all ligands and were assigned such that the ligand with the least number of decoys 

assigned would be assigned the decoy in an iterative procedure. If more than 50 decoys 

could be assigned to all ligands, the remaining decoys were kept as replacements. If 

fewer than 50 decoys could be assigned to all ligands, the highest number of decoys 

that could be assigned to the ligand protomers was computed. If it was difficult to find 

3D decoys for a target, an alternative approach that queries ZINC15 for molecular 

SMILES was used. The procedure was largely the same, except that up to 750 potential 

decoys were retrieved for each ligand protomer based on molecular weight and cLogP 
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of the decoy SMILES. Then an additional step was performed in which ChemAxon’s 

Jchem was used to generate protonation states for these decoys’ SMILES, followed by 

calculation of the remaining molecular properties by RDKit to determine whether they 

matched the ligands in property space.  

 

Extrema. To generate extrema sets for all 43 targets, the molecular weight and cLogP 

values of the DUD-E ligand set were calculated using RDKit, and the interquartile range 

was calculated. For each charge, we retrieved a minimum of 1000 “in-stock” or “make-

on-demand” molecules, built at physiological pH of 7.4, from ZINC15 in readily dockable 

format in this molecular weight and cLogP property space. Most of these molecules fall 

within charge ranges from -2 to +2, but there exist molecules with outlier charges as 

well. These dockable molecules were docked to their protein targets, and enrichment 

calculations were performed (see Docking Calculations).  

 

Goldilocks. For generating the single Goldilocks decoy set, which is used for all 43 

targets, the same procedure as with Extrema was used. However, instead of matching 

the decoys to an input ligand set, “in-stock” 3D-built molecules for each charge ranging 

from -2 to +2 within the property space (300 Da ≤ MW ≤ 350 Da, 2 ≤ cLogP ≤ 3) were 

retrieved. For each charge, 3D-built molecules were retained until they reached half of 

the total number of 3D molecules with that charge, and within that molecular weight and 

cLogP property space (on December 10th, 2019). These dockable molecules were 

docked to their protein targets, and enrichment calculations were performed (see 

Docking Calculations). 
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Docking Calculations. The PDB structures assigned to forty DUD-E targets were 

retrieved and prepared in an automated fashion by in-house scripts based on the DOCK 

Blaster pipeline39 (blastermaster.py in the DOCK3.7 distribution) for generating docking 

grids. The docking preparations for AmpC9,40,41, DRD49,13 (PDB:5WIU), and MT142 

(PDB: 6ME3) were manually prepared. Thin sphere layers were utilized for AmpC, 

DRD4, and MT1 to extend the dielectric boundary from the solute surface for Poisson-

Boltzmann calculations43 with radii of 2.0 Å, 1.0 Å, and 1.9 Å, respectively. For all other 

systems, the default DOCK Blaster preparation was used in which the full binding site 

was filled with low-dielectric spheres of radius 1.9 Å for Poisson-Boltzmann calculations, 

thereby modeling the full binding site as low dielectric solute. The magnitudes of the 

partial charges of five AmpC residues and two MT1 residues were increased without 

changing the net residue charges41. For all DUD-E targets, their DUD-E assigned PDB 

ligand was used for generating 45 matching spheres, to which molecules are matched 

to during docking. For DRD4 and MT1, matching spheres were generated based on the 

atomic coordinates of nemonapride, and 2-phenylmelatonin, respectively. Docking 

calculations were performed with DOCK3.7.244. Ligand conformations were generated 

by OpenEye’s Omega45. Ligands were only scored if the number of ligand heavy atoms 

contained within the ligand ranged from 4 to 100. For each ligand hierarchy (each rigid 

fragment contained within the ligand), the maximum number of matches generated was 

set to 5000. For AmpC and DRD4, the large-scale docking setup was used, in which the 

target number of ligand hierarchy matches was set to 1000, and up to 500 Simplex 

minimization46 steps were performed for each top scoring pose of each docked 

molecule, starting with initial translations of 0.2 Å and initial rotations of 5°. For MT1, the 
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target number of ligand hierarchy matches was set to 5000, and up to 500 Simplex 

minimization steps were performed for each top scoring pose of each docked molecule. 

All other DUD-E systems did not use Simplex minimization. To judge performance, the 

adjusted log AUC was used, which is analogous to the area under the receiver operator 

characteristic curve43. The adjusted log AUC subtracts the log AUC of the random curve 

(14.462%) to ensure random enrichment is 0%. For the DUD-E benchmarking 

calculations, the DUD-E ligands for each target are used as the ligand set for 

enrichment calculations. For all plots for DUDE-Z, Extrema, and Goldilocks, the reduced 

ligand set after clustering by ECFP4 Tanimoto coefficient of 0.7 is used for enrichment 

calculations.  

 To prepare different scoring function coefficient combinations, the 

“electrostatic_scale” and “ligand_desolv_scale” parameters of the INDOCK files for 

each target were modified to be 0.3, 0.5, 0.7, or 1.0, generating 16 different 

combinations of DOCK scoring weights. The van der Waals scoring function coefficient 

was maintained at 1.0 for all docking calculations. All other parameters in the INDOCK 

file, docking grids, and matching spheres were kept identical. 

 

Bootstrapping. For each bootstrap replicate (50 total for each system), ligands and 

decoys were chosen at random with replacement until the same sample size as the 

original enrichment set was reached. Each new hitlist was then sorted by the original 

docking energy, and a new adjusted log AUC is calculated. Z-tests were performed to 

test the significance of the difference between the means of two bootstrapped 

distributions. With the p value smaller than 0.05, the null hypothesis of equal mean and 
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distribution is rejected. The Z-test is chosen since the number of bootstrap replicates is 

larger than 30 and the bootstrapped distribution follows the normal distribution. 

 

3.4 Results 

DOCK scoring function optimization using property-matched decoys 

We were confronted with the liabilities of relying on property matched decoys in 

an investigation of different weighting terms in the DOCK3.7 scoring function43,44.  We 

initially tried to use enrichment to guide the optimization of the scoring function by 

varying the coefficients of the electrostatics and ligand desolvation contributions to the 

total docking score. We scanned across electrostatics and ligand desolvation weighting 

for 41 DUD-E targets, and for the MT1 melatonin receptor (MT1) and D4 dopamine 

receptor (DRD4), which have the advantage of hundreds of experimentally tested 

docking predictions9,42 (Figure 3.1). To measure enrichment, we used a log-weighted 

area under the curve approach, subtracting from this enrichment expected at random 

(adjusted Log AUC43, Figure 3.1, Table 3.1). This approach equally weights enrichment 

in the top 0.1 to 1% of the library with that within the top 1 to 10% and the top 10% to 

100% of the library, thus up-weighting early enrichment.  Sampling sixteen 

combinations of weights (four electrostatics, four ligand desolvation with constant van 

der Waals) revealed that enrichment correlated with the electrostatics and ligand 

desolvation terms (Figure 3.1, Table 3.1, but see Sensitivity Analysis, below, for the 

significance of these differences). In most DUD-E targets, increasing the electrostatic 

coefficient increased enrichment. This included systems such as GAR transformylase 

(PUR2), which had its best enrichments with weights of 1.0 for electrostatics and 0.3 for 
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ligand desolvation (Figure 3.1). These same coefficients, however, negatively impacted 

other systems, such as C-X-C chemokine receptor type 4 (CXCR4), where the same 

weights that were optimal for AmpC led to worse performance.   Instead, CXCR4 had its 

highest enrichment with weights of 0.5 on the electrostatics and of 1.0 on the ligand 

desolvation terms (Figure 3.1).  

 

Figure 3.1. Ligand desolvation and electrostatics weights alter enrichment. a) For 
each electrostatic coefficient (0.3, 0.5, 0.7, 1.0), the average adjusted log AUC value 
and standard error for the four ligand desolvation coefficients (0.3, 0.5, 0.7, 1.0) is 
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plotted. Individual enrichment plots for each electrostatic and ligand desolvation 
coefficient combination for PUR2 (b), and CXCR4 (c). Enrichments for PUR2 diminish 
as the ligand desolvation coefficient increases, while enrichments for CXCR4 improve 
as the ligand desolvation coefficient increases.  
 

Table 3.1. Enrichments for DOCK3.7 Scoring Coefficients over 43 Targets 
 0.3ES 0.5ES 0.7ES 1.0ES 

0.3LD 16.3 (11, 7, 25) 13.88 (8, 10, 25) 11.84 (6, 8, 29) 9.95 (6, 8, 29) 

0.5LD 19.23 (17, 10, 16) 17.94 (12, 12, 19) 15.82 (8, 14, 21) 12.71 (4, 14, 25) 

0.7LD 20.09 (18, 14, 11) 19.76 (18, 18, 7) 18.65 (10, 22, 11) 15.94 (4, 17, 22) 

1.0LD 19.84 (16, 14, 13) 20.2 (18, 17, 8) 20.01 (17, 21, 5) 19.05 

Values outside the parentheses are the average adjusted log AUC enrichment values, 
while those within the parentheses refer to those targets that improved by 1 adjusted log 
AUC value, stayed within +1 log AUC, and diminished by 1 adjusted log AUC value vs. 
the standard scoring function (1.0ES+1.0vdW+1.0LD).   
 

Closer inspection revealed that the enrichment differences, and the sensitivity to scoring 

coefficients, were often explained by different formal charge distributions between 

ligands and decoys. For instance, for AmpC, larger weighting of electrostatic 

interactions improved enrichments because AmpC’s ligands are all anionic, whereas 

35% of AmpC’s DUD-E decoys are neutral (Figure 3.2). Thus, as the weight on the 

ligand desolvation term, which scales with net charge, decreases, AmpC’s anionic 

ligands are penalized less (Figure 3.2). When unconstrained, as with an electrostatics 

weighting of 1.0 and ligand desolvation weighting of 0.5, the “optimized” scoring 

function, i.e. the coefficients that maximize enrichment, prioritizes charge over other 

molecular properties versus the unweighted, standard scoring function. Similarly, most 

PUR2 ligands are dianions, while its decoys are mainly mono-anionic or neutral (Figure 
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3.2) and docking with reduced ligand desolvation coefficients favor the ligands over the 

decoys (Figure 3.2). Even if all our molecular properties, besides charge, are well-

matched in the DUD-E benchmarking sets, altering the scoring function weights of 

electrostatics and ligand desolvation allows DOCK to simply recognize gross physical 

differences between ligands and decoys, rather than detailed molecular interactions, 

reflecting an imbalance in the DUD-E ligand and decoy properties.    
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Figure 3.2. Proportion of charged molecules in DUD-E sets affects enrichment. 
Percentage of ligands or decoys in the DUD-E set with a given charge for AmpC β-
lactamase (AmpC, a) and GAR transformylase (PUR2, b). Comparison of DOCK energy 
and molecule charge for AmpC β-lactamase (AmpC, c) and GAR transformylase 
(PUR2, d) for the electrostatic coefficient of 1.0 and the four ligand desolvation weights 
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(0.3, 0.5, 0.7, 1.0). Central dotted lines of DOCK energies represent the medians, upper 
dotted lines represent the third quartiles, and lower dotted lines represent the first 
quartiles for both scoring functions. The lowest points represent the minimum DOCK 
energies and the highest values represent the maximum DOCK energies. The AmpC 
ligands in DUD-E are predominantly anionic (a), and while this is also true of the 
decoys, the latter harbor a higher ratio of neutral molecules. Increasing the ligand 
desolvation coefficient ranks neutral molecules higher (as sorted by total DOCK 
energy), favoring decoys, and enrichment decreases (c). Conversely, increasing the 
electrostatic coefficient favors the anionic ligands, increasing the enrichment. The large 
majority of PUR2 ligands are di-anionic while the decoys are monoanionic (b), providing 
an advantage to the ligands at lower ligand desolvation coefficients (as sorted by total 
DOCK energy) (d), as they can form more favorable electrostatic interactions with the 
protein without a large ligand desolvation cost.  
 

New Property-Matched Decoy Method 

The original DUD-E benchmarking set23 was built to correct the charge 

imbalance in the original DUD set22 by including net charge during property matching. 

However, there remains a disconnect between the charges contained within the 2D 

SMILES, and the charges present in 3D dockable molecules from DUD-E. For example, 

calculating the formal charges of the AmpC ligand and decoys SMILES contained within 

the DUD-E benchmarking set suggest that 60% and 38% of ligands are neutral and 

monoanionic, respectively, while 43% and 56% of decoys are di- and mono-anionic, 

respectively, compared with the actual charge representation in the dockable set 

(Figure 3.2). During molecular building, the charge populations change based on which 

protomers are predicted to exist at physiological pH, producing charge imbalances that 

were not present in the SMILES representation.  

 

To address this, we created a new decoy preparation pipeline that better charge-

matched ligands to decoys (freely available at http://tldr.docking.org), such that ligand 
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and decoy protomers are only considered in their dockable, 3D representation so that 

there is no likelihood of charge imbalances occurring. Up to 50 decoys are generated 

for each ligand taking into account charge, molecular weight, calculated LogP, number 

of rotatable bonds, number of hydrogen bond acceptors and donors, while ensuring that 

these decoys are structurally dissimilar to each other and to the ligands to which they 

are matched (Table 3.2). By default, and always for proteins with more than 100 

ligands, the ligands are first clustered by an ECFP4 Tc of 0.7 to reduce the dominance 

of narrow congeneric series.  The ligand with the smallest molecular weight from each 

cluster is chosen for property-matching.  These changes improve the DUD-E design, 

without changing its underlying logic. 

 

Table 3.2: Ligand and Decoy Properties for 43 Protein Targets 
 DUD-E DUDE-Z Extrema Goldilocks 
# Unique Ligands 8267 2312 - - 

# Unique Decoys 477924 69994 732309 1145472 

# Unique Decoy Scaffolds 162286 33292 143423 317316 
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Improved property-matched decoys reduce false enrichment  

With these changes in hand, we compared the scoring function with a 0.5 weight on 

ligand desolvation, the “optimized” scoring function, to the standard, unweighted scoring 

function to determine whether the improved enrichments stood up to better charge-

matching between ligands and decoys.  Competition with the better charge-matched 

decoys reduced the enrichment differences between the standard and the “optimized” 

0.5 ligand desolvation scoring functions from >1 with the original DUD-E set, to 0.35, 

supporting the hypothesis that more closely property-matched decoys would be less 

susceptible to imbalances in electrostatics and ligand desolvation energies (Figure 3.3, 

and see Sensitivity Analsysis, below, for the significance of such differences). For 

instance, AmpC, whose enrichment was better with the optimized scoring function by 

more than 6 log adjusted AUC, with the new property-matched decoy background now 

much favors the standard scoring function, attaining an enrichment of 20.92 over the 

“optimized” scoring function’s 8.93. Similarly, the DUD-E enrichment difference for 

PUR2 was also greater than 6 log adjusted AUC, but the difference becomes 0.35 in the 

new decoy set. Similar behavior where complete charge-matching reduces preference 

for the optimized scoring function is seen in multiple systems including fatty acid binding 

protein 4 (FABP4), protein-tyrosine phosphatase 1 (PTN1), tryptase beta-1 (TRYB1), 

and trypsin I (TRY1). The opposite also occurs, where preference for the standard 

scoring function is diminished in the presence of better charge-matched decoys such as 

in Rho-associated protein kinase 1 (ROCK1), C-X-C chemokine receptor type 4 

(CXCR4), and epidermal growth factor receptor (EGFR). Overall, the average adjusted 

log AUC values for the 42 targets dropped from 19.05 and 20.2 for the standard and 



132 

 

“optimized” scoring functions, respectively, with the original DUD-E benchmarking sets, 

to 14.82 and 15.17 with the new, better-matched decoy sets (Table 3.3).  This 

enrichment drop reflects the better choice of decoy molecules in the new benchmarks, 

making the challenge harder, appropriately, for the docking program.   

Table 3.3: Average Enrichment log AUC values for Different Decoy Sets 
 DUD-E DUDE-Z Extrema Goldilocks 
   DUD-E 

Ligands 
DUDE-Z 
Ligands 

DUD-E 
Ligands 

DUDE-Z 
Ligands 

Optimized 
(1.0ES+1.0vdW+0.5LD) 

20.2 15.17 25.80 15.97 41.84 28.33 

Standard 
(1.0ES+1.0vdW+1.0LD) 

19.05 14.82 25.85 15.72 41.31 27.74 

Difference -1.15 -0.35 0.05 -0.25 -0.53 -0.59 
 

 
Figure 3.3. Enrichment comparison between DUD-E and DUDE-Z. a) Enrichment 
differences between the standard, unweighted scoring function and the optimized 
scoring function (1.0ES + 1.0vdW + 0.5LD), comparing the original DUD-E decoys (blue 
bars) and decoys prepared with the new DUDE-Z pipeline (orange bars), in which 
decoys are better charge-matched. Apparent advantages for the weighted scoring 
function dissipate on better charge matching. 
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Beyond property-matched decoys: charge extrema 

Given the sensitivity to even small differences in charge matching between ligands and 

decoys, we thought it worthwhile to investigate how sensitive the docking was not only 

to property matching, but to extremes intentionally outside the property range of the 

ligands.  We reasoned that docking parameters might be unintentionally optimized to 

weight particular energetic terms at the expense over others.  Such blind spots might 

only be illuminated when comparing the performance of physically extreme molecules.   

Based on our experience with the impact of electrostatic and desolvation weighting 

above, we focused on ligands representing charge extremes, probing for over-weighted 

electrostatic interactions, or underweighted desolvation penalties, in our scoring 

function.   These charge-extrema sets were populated with decoys that have similar 

physical properties (molecular weight, cLogP) to the ligands queried, but include all 

charges from -2 to +2, taken from “in-stock” and “make-on-demand” libraries in 

ZINC1547.  If many molecules bearing a net charge of -2 score better than AmpC’s 

mono-anions, for instance, this would indicate a bias in the scoring that would have 

been concealed by the charge-matched decoys.  We generated sets of property-

matched charge-extreme decoys for 43 targets.  These charge outlier decoys (≤ -2 and 

≥+2) comprised on average 37% (272K of 732K molecules) of benchmarks, ranging 

from 15% (tryptase beta-1, TRYB1) to 57% (neuraminidase, NRAM).  For a well-

balanced scoring function, which properly captures molecular interactions, including 

charge extrema should improve ligand enrichment, since decoys bearing unreasonable 

charges should be readily recognized, which is indeed what we see, though 

performance improves only slightly (Figure 3.4, Table 3.3, and see Sensitivity Analysis, 
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below for the significance of such differences), with systems with charged ligands being 

affected significantly. For example, GAR transformylase (PUR2, Figure 3.4) recognizes 

tri- and di-anionic ligands. When screened against a large extrema set with down-

weighted desolvation, cations begin to dominate, behavior that the standard scoring 

function is, at least, partially, able to combat (Figure 3.4). Similar behavior is seen with 

protein-tyrosine phosphatase 1b (PTN1), which predominantly binds mono- and di-

anions in the standard scoring function but begins to prioritize tri- and tetra-anions when 

the optimized scoring function is utilized. As with GAR transformylase, the increased 

desolvation cost in the standard scoring function actually diminishes performance 

relative to the “optimized” scoring function as it penalizes both extreme-charged ligands 

and decoys. On the other hand, epidermal growth factor receptor (EGFR) and 

macrophage colony stimulating factor (CSF1R, Figure 3.4), which perform better with 

the standard scoring function over the optimized scoring function with extrema, both 

recognize neutral ligands. When these two targets are screened with charge extrema, 

the standard scoring function is more equipped to penalize inappropriate charges over 

the optimized scoring function, which in the presence of charge extrema is flooded with 

anions and cations. Each of these cases can be explained by the underweighting of the 

ligand desolvation penalty in a scoring function optimized against the DUD-E set that i. 

had a discrepancy between ligand and decoy charges and ii. was not challenged with 

charged extrema, as we show here.   
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Figure 3.4. Enrichments and charge priority of DUDE-Z and Extrema. a) 
Enrichment differences between the standard scoring function and the weighted scoring 
function using the new DUDE-Z decoy pipeline and the charge extrema decoys. b,c) 
through e). Comparing DOCK energy and molecule charge of the standard and 
optimized scoring functions using DUDE-Z ligands and using charge extrema decoys for 
b) protein-tyrosine phosphatase 1 (PTN1) and c) macrophage colony stimulating factor 
receptor (CSF1R).  Central dotted lines of DOCK energies represent the medians, 
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upper dotted lines represent the third quartiles, and lower dotted lines represent the first 
quartiles. The lowest points represent the minimum DOCK energies and the highest 
values represent the maximum DOCK energies for both scoring functions. As ligand 
desolvation is downweighted in the optimized scoring function, more extreme charges 
score better, which is advantageous for targets that have extreme charged ligands like 
PUR2 and PTN1. However, this becomes problematic and decreases enrichment for 
systems whose ligands are less extreme like EGFR and CSF1R.   

 

If charge extrema can reveal cryptic pathologies in docking scoring, so too can 

testing against molecules that are intentionally unmatched from the physical properties 

of the ligands, but instead reflect the molecules of the overall library itself.  Since each 

receptor will have its own ligand preferences, certainly with the biases from the 

medicinal chemistry literature, for any given receptor, the average library molecule may 

well-represent a physical property outside those of the receptor’s ligands, exposing the 

docking screen to new, previously unsampled physical properties.  Thus, we 

investigated control calculations with a set of 1.1 million ZINC molecules.  These 

comprised over 300,000 Bemis-Murcko scaffolds48 representing the middle of the range 

of physical parameters of the library; not too big, not too small, not too polar, and not too 

greasy (Goldilocks).  Docking these to the 43 targets resulted in log adjusted AUC 

values of 27.84 and 28.33 for the standard and “optimized” scoring functions, 

respectively (Table 3.3).  These are higher than the enrichments with the property-

matched sets, as expected owing to its non-property-matched nature; the differences 

between the two scoring functions against the Goldilocks set are small (see Sensitivity 

Analysis below).   

 

Even against a background of high enrichment, there are targets for which 

performance varies between the two scoring functions. Here we focus on illustrative 
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targets where the differences are substantial and significant (see Sensitivity Analysis, 

below).  In AmpC E-lactamase, tests against the DUDE-Z set suggest that the standard, 

unweighted scoring function led to better enrichments than the putatively optimized one 

where ligand desolvation was down-weighted by 0.5 (Figure 3.3), in contrast to the 

DUD-E benchmark test that had led to this new weighting. Against the Goldilocks 

benchmark, however, the situation reverts, with the optimized scoring function 

performing better than the standard scoring function, with an enrichment difference over 

11 in adjusted log AUC (Figure 3.5).  This difference is only partly captured by the 

extrema set, where the difference is only slightly larger than 2 adjusted log AUC. 

Similarly, GAR transformylase (PUR2) sees the relative enrichment of the optimized 

scoring function rise by almost 10 units of adjusted log AUC versus the standard scoring 

function with the Goldilocks set vs. DUDE-Z, while with trypsin I (TRY1), ligands favor 

the optimized scoring function using the Goldilocks benchmark by almost 4 adjusted log 

AUC units versus the less than 1 unit difference using the DUDE-Z set.  A few targets, 

such as FK506-binding protein 1A (FKB1A) and polo-like kinase 1 (PLK1) see the 

opposite effect—the optimized scoring function performs noticeably worse with the 

Goldilocks benchmark versus DUDE-Z.  These differences are explained by differences 

in the properties of the decoys in the different benchmarks.  In DUDE-Z, the decoy 

physical properties are tightly calibrated to those of the ligands.  Conversely, Goldilocks 

represents the physical properties of the library to-be-docked.  For targets recognizing 

ligands with physical properties much different than “lead-like”49 molecules, which 

dominate the Goldilocks benchmark and the library it represents, such as AmpC, GAR 

transformylase (PUR2), and trypsin I (TRY1), the DUDE-Z set will be a more stringent 
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test (Figure 3.5).  However, scoring term weights that optimize performance against it 

will not always translate to a lead-like benchmark like Goldilocks.  For these systems, 

the key differences are in the distribution of charge states of the ligands and the decoys: 

in DUDE-Z, these are well matched, while in Goldilocks, and the ultra-large library that it 

represents, mono-, di-, and tri-anions, as well as di-cations, are far less common than 

among the known inhibitors of these targets (Figure 3.5), providing opportunities for 

these ligands to exploit the optimized scoring function with its down-weighted ligand 

desolvation term and score well. For systems that bind molecules within lead-like space, 

such as peroxisome proliferator-activated receptor alpha (PPARA), urokinase-type 

plasminogen activator (UROK), and epidermal growth factor receptor (EGFR), the 

enrichment differences between the standard and optimized scoring functions diminish, 

and even begin to favor the standard scoring function (Figure 3.5), as outlier charges 

are unable to exploit liabilities within the optimized scoring function. 
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Figure 3.5: Enrichments and charge priority of DUDE-Z, Extrema, and Goldilocks. 
a) Enrichment differences between the standard scoring function and optimized scoring 
function comparing the new DUDE-Z benchmarks, charge extrema decoys, and the 
Goldilocks benchmarks, with a focus on the enrichment changes in specific targets (b). 
Comparison of net charge of ligands and benchmark decoys for AmpC β-lactamase 
(AmpC, c), GAR transformylase (PUR2, d), trypsin I (TRY1, e), peroxisome proliferator-
activated receptor alpha (PPARA, f), urokinase-type plasminogen activator (UROK, g), 
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and epidermal growth factor receptor (EGFR, h). For systems whose ligands have more 
extreme charges, there is typically small overlap in ligand charges and decoy charges, 
providing an advantage to the extreme charged ligands with the optimized scoring 
function. However, in systems where the ligand charges overlap more significantly with 
the decoy charges, the standard scoring function begins to perform better as there are 
no extreme charged ligands to exploit the lower desolvation cost and rank more 
favorably.  
 

Up until now, we have seen results shift as we change the benchmark from DUDE to 

the optimized DUDE-Z to Extrema to Goldilocks.  A natural reaction might be to despair 

of benchmarking entirely.  Our own view is that each of these benchmarks is useful, and 

together can inure developers and users from false conclusions around scoring function 

and docking parameter optimization.  The different lessons that each benchmark 

teaches reflect weaknesses of enrichment as a metric; it nevertheless remains a crucial 

criterion for docking performance.  These are points to which we will return. 

 

Sensitivity Analysis & Statistical Significance 

 Area Under the Curve (AUC) and its variants are widely used as a single value 

measure of docking performance43,44,50-54. In comparing an innovation with the current 

best practice, it is common to see improvements in enrichment across a benchmarking 

set.  It is important to understand when such improvements are significant beyond the 

variation one might see with small changes to docking parameters.  To assess 

confidence intervals on enrichment plots, we turned to an empirical bootstrapping 

approach.  In this method, we calculate enrichments multiple times for any given 

benchmark, each time picking a random subset of the ligands and decoys in the set, 

retaining the same sample size as the original set. For many of the DUDE-Z targets, this 

is readily done, as only a subset of the possible ligands is typically represented, and 



141 

 

many more property-matched decoys are typically available from ZINC.  With the new 

benchmark, whose ligands closely resemble the canonical ones, and whose decoys 

reflect the same property matching, a new enrichment is calculated.   

 

Repeated for 50 random subsets of ligands and decoys for each target, this approach 

allows one to calculate confidence intervals of enrichment (adjusted log AUC).  We did 

so for the same 43 targets, recording the variance of the enrichments.  Based on these 

bootstrapping calculations, we find that the average 95% and 75% confidence interval 

over the 43 systems is about 9.4 and 5.8 adjusted log AUC units, respectively. 

Naturally, individual systems varied in their confidence levels: from a relatively tight 

distribution for Androgen Receptor (ANDR, 95% CI of 3.0), to a much wider distribution 

for fatty acid binding protein-4 (FABP4, 95% CI of 15.6) (Figure A.3.1). Bootstrapping 

can also be used to compare the performance of two docking methods or two scoring 

functions. The Z-test and corresponding p-values are used here, since the number of 

bootstrap replicates is over 30, and the bootstrapped distribution follows the normal 

distribution.  

 

Figure 2.6 shows the bootstrapped distribution comparison between the standard (STD) 

and “optimized” (0.5LD) scoring functions with DUD-E, DUDE-Z, Extrema, and 

Goldilocks as decoy sets on 41 DUD-E targets, as well as the melatonin MT1 receptor 

and the dopamine D4 receptor where we have not only experimentally measured 

docking true but also docking false positives (Fig. A.3.2). Innovations that we might 

have otherwise considered successful are often found to be statistically 
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indistinguishable, or to be significant against one background but not another. 

Screening poly-ADP-ribose polymerase 1 (PARP1) with DUD-E, DUDE-Z, and 

Goldilocks decoy sets shows significant improvement with the optimized scoring 

function over the standard scoring function, whereas performance is significantly worse 

with Extrema (Figure 3.6). In adenosine 2A receptor (AA2AR, Figure 3.6), ligands in 

the presence of DUD-E and DUDE-Z decoy sets significantly favor the optimized 

scoring function, but flip to favoring the standard scoring function in the presence of 

Extrema and Goldilocks sets, versus in Coagulation Factor VII (FA7, Figure 3.6), 

ligands always significantly favor the optimized scoring function regardless of the decoy 

background (see Fig. A.3.3 for difference distributions and Fig. A.3.4 for bootstrapping 

plots of all 43 systems). However, we note that only when screened with the DUD-E 

decoys are the enrichment differences in these scoring functions significantly different 

(Figure 3.6), showing for all other decoys sets insignificant differences. When all decoy 

sets are combined, the bootstrapping enrichment differences remain insignificant.  
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Figure 3.6. Bootstrapping enrichment differences using different decoy 
backgrounds. Applying bootstrapping to the different decoy backgrounds demonstrates 
that while there may be statistically significant differences in terms of performance 
between the scoring functions for particular systems, if all the bootstrapping 
enrichments are combined for all decoy sets over all 43 systems, there is no statistically 
significant difference between the standard and optimized scoring functions, 
demonstrating that one can be deceived by significant differences between the two 
scoring functions when only considering one decoy background. Average bootstrapping 
statistics on the enrichments for DUD-E, DUDE-Z, Extrema, Goldilocks, and all Decoy 
sets (Combined) for all 43 systems (a). Individual bootstrapping statistics (50 for each) 
on the enrichments (adjusted log AUC values) for DUD-E, DUDE-Z, Extrema, and 
Goldilocks decoy backgrounds for poly-ADP-ribose polymerase I (PARP1, b), 
adenosine 2A receptor (AA2AR, c), and coagulation factor VII (FA7, d).  From the 50 
bootstrapped adjusted log AUC values generated, central dotted lines represent the 
medians, upper dotted lines represent the third quartiles, and lower dotted lines 
represent the first quartiles. The lowest points represent the minimum adjusted log AUC 
values and the highest points represent the maximum adjusted log AUC values 
generated from bootstrapping. 
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3.5 Discussion 

Four themes emerge from this work.  First, for all their strengths, property-matched 

decoys alone can mislead in evaluating docking performance.  Scoring functions can 

exploit physical property differences between ligands and decoys even in relatively well-

balanced sets, as we see comparing the original DUD-E and the refined DUDE-Z sets.  

Decoys that are intentionally non-property matched, such as the Extrema set that 

explores ligands with high molecular charges, and the Goldilocks set, whose decoys 

can be far different from the known ligands, but which represent the properties of the 

ultra-large database to be docked, reveal liabilities that are hidden by the property-

matched sets.  Second, enrichment, which is perhaps the key critierion for library 

docking assessment, remains a weak metric, ungrounded in physical theory or 

observables.  Third, our understanding of this metric can be strengthened with 

confidence intervals, which can be readily estimated.  These confidence margins are 

often surprisingly large, and apparently different enrichments are often statistically 

indistinguishable.  Finally, we make the new tools developed here, including generation 

of better property-matched decoys (DUDE-Z), charge Extrema, Goldilocks, and 

bootstrapping adjusted log AUC ranges, available and free to use for the community.  

 

Property-matched decoys remain crucial for docking evaluation22,23,31, reducing the 

ability of scoring functions to exploit gross physical property differences between ligands 

and the random molecules that had initially been used in the field28.  But property-

matching has its own liabilities, revealed by other backgrounds.  For instance, property 

matching decoys to the GAR transformylase, AmpC E-lactamase, or trypsin I receptor 
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ligands will result in decoys that have charge ranges tightly distributed around -2, -1, 

and +1 to +2 formal charges, respectively.  A scoring function that overweights 

electrostatic interaction energies, or underweights desolvation energies, may not be 

revealed by such property matched decoys.  This is what we observed with what 

appeared to be an “optimized” function that down-weighted ligand desolvation, 

improving average enrichment over 43 systems.  This apparent improvement was 

eliminated not only by better charge matching in the optimized DUDE-Z set, its basis in 

an over-weighted electrostatic interactions was illuminated by a charge Extrema set 

(Figure 4).  Similarly, benchmarks that are well-matched around ligands with unusual 

physical properties—in this study, highly charged ligands—will not reveal liabilities that 

a background representing the properties of the overall library can illuminate.  This is 

what we observe for the Goldilocks benchmark (Figure 3.5).   

 

Enrichment of ligands over property matched decoys23,50,51,55-59  is widely used for 

parameter optimization and scoring function development43,60-62.  Because enrichment is 

ungrounded in physical theory, it is sensitive both to changes in the decoy background, 

which are usually only reasonable guesses, and to the ligands, which represent 

experimental observables, flawed though these too can be.  We do not wish to undercut 

enrichment as a metric of docking—weak as it is, it remains crucial to progress in the 

field.  What this study teaches is that our confidence in enrichment can be much 

strengthened by using multiple decoy backgrounds.  Correspondingly, the significance 

of enrichment differences with different docking parameterization, and with different 

scoring functions, should be controlled for.  One way to do so is via the bootstrapping 
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method we outline here (Figure 3.6), which can insulate one from false conclusions 

about differences that fall within the variation expected from small changes in the 

ligands and decoys used (scripts to implement this are available at 

http://tldr.docking.org). 

 

Confronted with ever more decoy benchmarks, and the time it takes to run a full set of 

controls, it is natural to wonder if there is no end to the cottage industry of new 

benchmarks.  One can imagine spending too much time on these sanity checks, and 

too little on the actual prediction of new chemical matter with prospective docking.  

Nevertheless, the time and expense of sourcing and physically testing new chemical 

matter, and for eliminating experimental artifacts47,63,64  still far exceeds the cost of 

running these computational controls.  Property-matched benchmarks are rarely 

composed of more than a few thousand molecules for a given target, and even the 

Goldilocks set comprises less than 2 million molecules, less than 1% the size of the 

ultra-large libraries now being prosecuted9,10,42.  To make these controls accessible to 

the community, we provide the optimized DUDE-Z benchmarks at 

http://dudez.docking.org.  We also provide a web service that allows investigators to 

create bespoke Extrema and Goldilocks sets, and enables bootstrapping tests for 

statistical significance—freely available at http://tldr.docking.org.   
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3.7 Abbreviations 

AA2AR, Adenosine A2a receptor; ABL1, Tyrosine-protein kinase ABL; ACES, 

Acetylcholinesterase; ADA, Adenosine deaminase; ADRB2, Beta-2 adrenergic receptor; 

AMPC, Beta-lactamase; ANDR, Androgen Receptor; CSF1R, Macrophage colony 

stimulating factor receptor; CXCR4, C-X-C chemokine receptor type 4; DEF, Peptide 

deformylase; DRD4, D4 Dopamine receptor; EGFR, Epidermal growth factor receptor 

erbB1; FA10, Coagulation factor X; FA7, Coagulation factor VII; FABP4, Fatty acid 

binding protein adipocyte; FGFR1, Fibroblast growth factor receptor 1; FKB1A, FK506-

binding protein 1A; GLCM, Beta-glucocerebrosidase; HDAC8, Histone deacetylase 8; 

HIVPR, Human immunodeficiency virus type 1 protease; HMDH, HMG-CoA reductase; 

HS90A, Heat shock protein HSP 90-alpha; ITAL, Leukocyte adhesion glycoprotein LFA-

1 alpha; KIT, Stem cell growth factor receptor; KITH, Thymidine kinase; LCK, Tyrosine-

protein kinase LCK; MAPK2, MAP kinase-activated protein kinase 2; MK01, MAP 



148 

 

kinase ERK2; MT1, Melatonin MT1 receptor; NRAM, Neuraminidase; PARP1, Poly 

[ADP-ribose] polymerase-1; PLK1, Serine/threonine-protein kinase PLK1; PPARA, 

Peroxisome proliferator-activated receptor alpha; PTN1, Protein-tyrosine phosphatase 

1B; PUR2, GAR transformylase; RENI, Renin; ROCK1, Rho-associated protein kinase 

1; SRC, Tyrosine-protein kinase SRC; THRB, Thrombin; TRY1, Trypsin I; TRYB1, 

Tryptase beta-1; UROK, Urokinase-type plasminogen activator; XIAP, Inhibitor of 

apoptosis protein 3 
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Gloss to Chapter 4 

 While I was working on incorporating blurry GIST into the DOCK scoring function, 

Brian and I had discussed me taking on an applications project to identify novel ligands 

for G protein-coupled receptors. In the beginning of my fourth year, he pitched me a 

project on identifying type-selective ligands for the melatonin receptors, which were 

recently crystallized by Vadim Cherezov’s lab at USC, but not yet published. This was 

part of the Illuminating the Druggable Genome (IDG) project, whose goal was to find 

ligands for “orphan receptors”, proteins that had no known endogenous ligand.  

There are two melatonin receptors in mammals, MT1 and MT2, whose biological 

functions overlap, providing a need for selective molecules to disentangle their 

differences. Interestingly, both receptors do, in fact, have a known endogenous ligand – 

melatonin. However, while there were a handful of MT2-selective ligands, there were no 

reliable MT1-selective ligands in functional assays or in vivo, potentially explaining its 

inclusion in the IDG. Of those MT1-selective ligands, it wasn’t immediately clear why 

they were selective. Complicating the situation further was that there were no obvious 

binding site differences of which we could take advantage. Of the 21 residues in the 

orthosteric sites, 20 of them are identical, and the difference is a valine to leucine 

mutation, a replacement that we were not confident the DOCK scoring function could 

capitalize on. With this in mind, we docked only to the MT1 crystal structure and as 

usual, focused on chemical novelty for purchasing and testing, selecting molecules that 

did not look like known melatonin receptor ligands, and made different interactions with 
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the sites than those in the known ligands. If we couldn’t find selective molecules, we 

wanted molecules that had interesting functional activity. 

 What we found was all of the above – MT1- and MT2-selectivity, inverse agonism, 

signaling bias, and potency at picomolar and low nanomolar concentrations. We 

successfully analogued one of the initial 15 docking hits, an MT2-selective inverse 

agonist, into both MT2-selective agonists and MT1-selective inverse agonists, and it was 

these MT1-selective inverse agonists that were taken in vivo. In a model of jet-lag, 

consistent with their in vitro characterization as inverse agonists, they behaved like the 

gold standard known nonselective antagonist, luzindole, at a ten-fold lower dose, 

increasing the number of days it takes mice to acclimate to a new light-dark schedule 

after a 6-hour advance in darkness. Surprisingly, in a circadian rhythm phase shift 

assay, the inverse agonists behave like the agonist melatonin, advancing the phase of 

the mouse internal circadian clock by 1.3-1.5 hours. This project was a glorious success 

and unveiled some amazing new biology that needs to be further elucidated. There are 

caveats, however. We do not know where the MT1-selectivity or the inverse agonism 

arises from. However, binding and functional assays with our new molecules with 

mutant receptors as done in the crystallography paper from the Roth and Cherezov 

labs, may help determine whether the docked poses are correct, explain which residues 

are involved, and whether on- and off-rates of the ligands determine the activity, which 

seems to explain some of the differences in affinity between the two receptors. 

Regardless, we were able to find completely novel molecules, never synthesized before 

to our knowledge, that have interesting biological effects, and that can be used to tease 

apart the pharmacological and functional differences of these two receptors.   
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4.1 Summary Paragraph  

The neuromodulator melatonin synchronizes circadian rhythms and related 

physiological functions via actions at two G protein-coupled receptors: MT1 and MT2.  

Circadian release of high nighttime levels of melatonin from the pineal gland activates 

melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing  

physiology and behavior to the light-dark cycle1-4. The two receptors are established 

drug targets for aligning circadian phase in disorders of sleep5,6 and depression7,1-4,8,9. 

Despite their importance, few if any in vivo active MT1 selective ligands have been 

reported2,8,10-12, hampering both the understanding of circadian biology and the 

development of targeted therapeutics. We docked over 150 million virtual molecules 

against an MT1 crystal structure, prioritizing structural fit and chemical novelty. Thirty-

eight high-ranking molecules were synthesized and tested, revealing ligands in the 470 

pM to 6 μM range.  Structure-based optimization led to two selective MT1 inverse 

agonists, topologically unrelated to previously explored chemotypes, that were tested in 

mouse models of circadian behavior. Unexpectedly, the MT1-selective inverse agonists 

advanced the phase of the mouse circadian clock by 1.3-1.5 hrs when given at 

subjective dusk, an agonist-like effect eliminated in MT1- but not in MT2-knockout mice. 

This study illustrates opportunities for modulating melatonin receptor biology via MT1-

selective ligands, and for the discovery of new, in vivo-active chemotypes from 

structure-based screens of diverse, ultra-large libraries. 
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4.2 Results  

Ultra-large library docking for new melatonin receptor ligands.  The recent 

determination of the MT1 and MT2 receptor crystal structures13,14 afforded us the 

opportunity to seek new chemotypes with new functions, including MT1-selective 

ligands, by computational docking of an ultra-large make-on-demand library15, seeking 

molecules that complemented the main ligand binding (orthosteric) site of the receptor. 

Given the similar MT1 and MT2 sites, where 20 of 21 residues are identical, and the 

challenges of docking for selectivity16, we sought to prioritize new, high-ranking 

chemotypes from the docking screen, unrelated to known melatonin receptor ligands, 

expecting these to differentially interact with the two melatonin receptor types17-19.  

 

 We docked over 150 million “lead-like” molecules, characterized by favorable 

physical properties, from ZINC (http://zinc15.docking.org)15,20. These largely make-on-

demand molecules have not been previously synthesized, but are usually accessible by 

two component reactions.  Use of complex building blocks in these reactions biases 

toward diverse, structurally interesting molecules15,20.  Each library molecule was 

sampled in an average of over 1.6 million poses (orientations x conformations) in the 

MT1 orthosteric site13 by DOCK3.721, more than 72 trillion complexes for the library 

overall, scoring each for physical complementarity to the receptor site21.  Seeking 

diversity, the top 300,000 scoring molecules were clustered by topological similarity, 

resulting in 65,323 clusters, and those that were similar to known MT1 and MT2 ligands 

from ChEMBL2322 were eliminated (see Methods) (Fig. 4.1, Table A.4.1).  
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Figure 4.1. Large library docking finds novel, potent melatonin receptor ligands. 
a, Docking for new melatonin receptor chemotypes from the make-on-demand library. 
b, Docked pose of ‘0207, an hMT1/hMT2 non-selective agonist with low nanomolar 
activity. c, Docked pose of ‘5999, an MT2-selective inverse agonist. In b-c, the 
crystallographic geometry of 2-phenylmelatonin is shown in transparent blue, for 
context. d, The initial 15 docking actives are shown, highlighting groups that correspond 
to melatonin’s acetamide side chain (blue) and its 5-methoxy-indole (red) in their 
docked poses and receptor interactions. Shaded molecules are inverse agonists. 
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 The best scoring molecules from each of the top 10,000 clusters were inspected 

for engagement with residues that recognize ligands in the MT1 crystal structure13,14, 

and for new polar partners in the MT1 site. In the docked complexes, these included 

hydrogen bonds with Q181ECL2, N1624.60, T178ECL2, N2556.52, and with the backbone 

atoms of A1584.56, G1043.29, and F179ECL2. Conformationally strained molecules and 

those with unsatisfied hydrogen bond donors were deprioritized23. Within the best-

scoring clusters, all members were inspected and the one that best fit these criteria was 

prioritized. Ultimately, 40 molecules with ranks ranging from 16 to 246,721, or the top 

0.00001% to top 0.1% of the over 150 million docked, were selected for de novo 

synthesis and testing. Of the 38 molecules successfully synthesized (a 95% fulfillment 

rate), 15 had activity at either or both of the human MT1 and MT2 receptors in functional 

assays (Table A.4.1, Fig. 4.1), a hit rate of 39% (number-active/number-physically-

tested).  

 

In vitro pharmacology reveals new chemotypes with multiple functions.  

These active molecules included both agonists and inverse agonists, consistent with the 

emphasis on chemotype novelty (Table A.4.1, Fig. 4.1).  This novelty is supported 

quantitatively by their low topological similarity to known melatonin receptor ligands24, 

and visually by comparison of the new ligands to their closest analogs among the 

knowns (Table A.4.1). The different chemotypes often engaged the same residues that 

recognize 2-phenylmelatonin in the crystal structures.  Examples include the hydrogen-

bond interactions with N1624.60 made by the methoxy group of 2-phenylmelatonin, but in 
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the docked models by esters (ZINC92585174), pyridines (ZINC151209032), and 

benzodioxoles (ZINC301472854).  Similarly, while 2-phenylmelatonin stacks an indole 

with F179ECL2, the docked ligands stack benzoxazines (ZINC482850041), thiophenes 

(ZINC419113878), and furans (ZINC433313647). While 2-phenylmelatonin hydrogen 

bonds with Q181ECL2 via its acetamide, the docked ligands use esters or even pyridines 

(Fig. 1). The new ligands also dock to interact with new residues, including hydrogen 

bonds with T178ECL2, N2556.52, A1584.56, G1043.29, and F179ECL2 (Fig. 4.1b,c, Fig. 

A.4.3).  

 

Consistent with docking against an agonist-bound MT1 structure, four of the new 

ligands were MT1-selective agonists (Fig. A.4.1a,b), with EC50 values in the 2 to 6 PM 

range, and without detectable MT2 activity up to 30 μM: ‘3878, ‘9032, ZINC353044322, 

and ZINC182731037. Strikingly, ZINC159050207, although non-selective between the 

receptor types, is a 1 nM MT1 agonist, among the most potent molecules found directly 

from a docking screen25-30 (Table A.4.1, Fig. 4.1b,  Fig A.4.1c,d). Admittedly, many 

ligands were just as active at the MT2 receptor, or even selective for it (Table A.4.1, Fig 

A.4.1).  Thus, whereas the initial docking against the MT1 structure found new, potent 

chemotypes, and some of these were type selective, they were just as likely to prefer 

the MT2 type as the MT1 type. This attests to both the strengths and weaknesses of 

chemotype novelty as a strategy for compound prioritization, and to the need for further 

optimization. 
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 We sought to improve twelve of these chemotype families, selecting analogs 

from the make-on-demand library.  Several thousand such were docked into the MT1 

site (Table A.4.2) (see Methods). Of the 131 synthesized and tested, 94 analogs had 

activity at either or both MT1 or MT2 melatonin receptors at concentrations ≤ 10 μM 

(Table A.4.2, Fig. A.4.2); of the twelve chemotype families, five saw improved potency. 

While this structure-based analoging could often find more potent ligands, their efficacy, 

selectivity, and bias were sensitive to small structural changes (Fig. A.4.3).  

 

We were particularly interested in type-selective ligands with in vivo efficacy, as 

these are unreported in the field.  We investigated two MT1-selective inverse agonists, 

ZINC555417447 and ZINC157673384, and a selective MT2 agonist, ZINC128734226 

(from here on referred to as UCSF7447, UCSF3384 and UCSF4226, respectively), for 

their affinities (Fig. 4.2, Fig. A.4.11), in vitro signaling, pharmacokinetics (Table A.4.3), 

selectivity on mouse as well as the human  receptors (hMT1 and hMT2) (Fig. 4.2, Figs. 

A.4.10 and A.4.11), and for their efficacies in mouse models of circadian behavior (Fig. 

4.3, Figs. A.4.4-5, Fig. A.4.7).  As expected, UCSF7447 and UCSF3384 competed for 

2-[125I]-iodomelatonin binding with higher affinity for the hMT1 receptors.  Ki values in the 

absence of GTP, 304 nM and 938 nM, respectively, were improved by uncoupling G 

protein from the receptor by GTP addition, with Ki values improving to 7.5 nM and 63 

nM, respectively, supporting their status as inverse agonists (Fig. 4.2a-b, Fig. A.4.6 and 

Fig. A.4.10). Both UCSF7447 and UCSF3384 increased basal cAMP, also as expected 

for inverse agonists, with EC50 values of 41 and 21 nM at hMT1, selectivity for hMT1 

over hMT2 of 53- and 31-fold, and hMT1 inverse agonist efficacies of 62% and 47%, 
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respectively (Fig. 4.2c-d, Fig. A.4.6).  The third molecule, UCSF4226 was an hMT2-

selective agonist with an MT2/MT1 selectivity of 54 in 2-[125I]-iodomelatonin binding 

assays and a selectivity of 91 in BRET assays; in isoproterenol-stimulated cAMP 

inhibition, the agonist had an EC50 of 7.1 nM at hMT2, a value closely matched by an 

EC50 of 6.3 nM in BRET assays (Fig. A.4.11).  Upon intravenous administration in mice, 

the three molecules were CNS permeable, with brain/plasma ratios ranging from 1.4 to 

3.0.  Plasma half-lives ranged from 0.27 to 0.32 hours (Table A.4.3), similar to 

melatonin2.  Against mouse MT1 and MT2 receptors (mMT1, mMT2) in vitro, the 

selectivity of the two inverse agonists improved over the human receptors being over 

158 and over 100 times more selective for the mMT1 receptor to increase basal cAMP  

with no activity observed against the mMT2 receptor up to 10 PM for either compound 

(Fig. 4.2e-f; Fig. A.4.10).  Conversely, while the agonist UCSF4226 lost little activity on 

the mouse receptor, its selectivity for the mMT2 receptor was much diminished (Fig. 

A.4.11). Accordingly, we moved forward to mouse in vivo experiments with the two 

selective MT1 inverse agonists.   
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Figure 4.2. Affinity, efficacy, and potency of MT1-selective inverse agonists 
 (a,b) Affinity (pKi) of inverse agonists  ‘7447 (a) and ‘3384 (b) by 2-[125I]-iodomelatonin 
competition for hMT1, hMT2, mMT1, and mMT2 receptors stably expressed in CHO cells. 
Binding was measured in the absence and presence of 100 μM GTP, 1 mM EDTA.Na2, 
and 150 mM NaCl. GTP uncouples G proteins from melatonin receptors promoting 
inactive conformations31 and higher affinity for inverse agonists; thus, the solid bars 
show higher affinity than the paired checker bars. Connected symbols represent pKi 
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values of individual determinations run in parallel. Ki values were derived from 
competition binding curves (see Fig. A.4.10). Bars represent the averages of five 
independent determinations. Statistical significance between pKi averages were 
calculated by two-tailed paired student t test (t, df and P values under described under 
Data Analysis in Methods). 
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 when compared with corresponding 
pKi averages values derived in the absence of GTP. 
(c - f) Concentration-response curves on hMT1, hMT2, mMT1, and mMT2 receptors 
transiently-expressed in HEK cells, monitoring isoproterenol-stimulated cAMP 
production with ‘7447 c: hMT1 pEC50: 7.39 ± 0.10, Emax: −62 ± 13%, n = 8; hMT2 pEC50: 
5.66 ± 0.10, Emax: −84 ± 9%, n = 8, and e: mMT1 pEC50: 7.20 ± 0.17, Emax: -56 ± 5 %, n 
= 5; mMT2 pEC50: n/d, n=5, Emax: n/d, n = 5) and d: ‘3384: hMT1pEC50: 7.68 ± 0.09, 
Emax: −47 ± 12%, n = 13; hMT2 pEC50: 6.18 ± 0.04, Emax: −153 ± 14 %, n = 12; and f: 
mMT1 pEC50: 7.00 ± 0.22, Emax: -49 ± 3 %, n = 5; and mMT2 pEC50: n/d, Emax: n/d, n = 5) 
treatment. Data for ‘7447 and ‘3384 was normalized to isoproterenol-stimulated basal 
activity. Inset graphs represent data normalized to maximal ligand effect. Data represent 
mean ± s.e.m. from the indicated number (n) of biologically independent experiments 
run in triplicate. 
UCSF7447 (‘7447); UCSF3384 (‘3384) 

 
In vivo pharmacology reveals new MT1-selective activities.   

We first examined the in vivo activity of the two MT1-selective inverse agonists in 

a mouse model of re-entrainment. In this “east-bound jet-lag” model, mice are subjected 

to an abrupt six-hour advance of the light-dark cycle and treated at the new dark onset 

for three consecutive days to assess re-entrainment rate.  At 30 Pg/mouse, the agonist 

melatonin accelerates re-entrainment to the new cycle, consistent with its use in the 

treatment of east-bound human jet-lag (Fig. 4.3b).  Conversely, the prototypical non-

selective antagonist/inverse agonist luzindole, administered at 300 Pg/mouse, 

decelerates re-entrainment, measured by the number of days to adapt to the new dark 

onset, as expected for an inverse agonist43,32,33,34.  The selective MT1 inverse agonists 

UCSF7447 and UCSF3384, dosed 30 Pg/mouse (about 1 mg/Kg), also decelerated re-
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entrainment (Fig. 4.3a,b, Fig. A.4.4c,d,l), phenocopying luzindole (encouragingly, at a 

10-fold lower dose).   

 

Superficially, the shared effect of decelerating re-entrainment by UCSF7447,  

UCSF3384 (Fig. 4.3a-c, Fig. A.4.4c,d,l)  and luzindole34 might seem expected, as they 

all share the same function as melatonin receptor antagonists/inverse-agonists.  

However, luzindole is MT1/MT2 non-selective, unlike UCSF7447 and UCSF3384.  Their 

phenocopying of luzindole suggests that deceleration of re-entrainment by all three 

molecules—slowing “jet-lag” accommodation—is mediated via the MT1 receptor alone.  

Supporting this, the effect of UCSF7447 was eliminated in an MT1KO mouse (Fig. 4.3c, 

Fig. A.4.4h,i,m), but not in an MT2KO mouse, where its effect was actually increased, 

adding to the deceleration afforded by deletion of the MT2 receptor alone (Fig. 4.3c, 

Fig. A.4.4j,k,n).,  

 

The effect of the MT1-selective inverse agonists on circadian phase was even 

more unexpected.  Here, we measured their effects on circadian phase by monitoring 

the running wheel activity onset of freely running mice in constant darkness35-37 and 

administering them at subjective dusk (circadian time 10, CT 10). Both inverse agonists 

phase-advanced circadian wheel running rhythm onset, an effect characteristic of 

melatonin, the endogenous, non-selective agonist, and of non-selective agonist drugs 

like ramelteon38 and agomelatine9,39 (Fig. 4.3d-f, Fig. A.4.5b-d,g,h).  Whereas MT1-

selective inverse agonists have few if any precedents in vivo, we would have ordinarily 

expected the opposite effect of the agonist40,41, delaying rather than advancing circadian 
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phase. Instead, UCSF7447 advanced the onset of activity by approximately 1 hour at 

0.9 Pg/mouse (about 0.03 mg/Kg), an effect similar to that of melatonin at its ED50 (0.72 

Pg/mouse)35 (Fig. 4.3d, Fig. A.4.5g,h).  At a higher dose (30 Pg/mouse, about 1 

mg/Kg), both UCSF7447 and UCSF3384 advanced the onset of running wheel activity 

with an amplitude similar to melatonin35 at this circadian time (CT 10). Intriguingly, 

whereas melatonin and ramelteon advance phase when dosed at dusk (CT 10), and 

delay phase when given at dawn (CT 2)36-38,42, UCSF7447 did not affect phase at dawn 

(Fig. 4.3f, Figure A.4.5r-w), only working at dusk (Fig. A.4.7a-c).  

 

The phenocopying of the non-selective agonist melatonin by the MT1-selective 

inverse agonists, in shifting circadian phase, motivated us to investigate mechanism of 

action and the role of off-targets.  Accordingly, both molecules, as well as the hMT2-

selective agonist UCSF4226, were tested against a panel of common off-targets (Fig. 

A.4.8).  By radioligand competition, no activity was seen up to a concentration of 10 PM 

for the new ligands.  Against a panel of 318 GPCRs, activity was observed for only 

seven receptors when screened at a single concentration, none of which replicated in 

full concentration-response (Fig. A.4.9).  Consistent with activity via the MT1 receptor, 

the advance in the onset of running wheel activity at dusk (CT 10) by UCSF7447 was 

eliminated in MT1KO mice but not in MT2KO mice (Fig. 4.3e, Fig A.4.5l-q).  These 

observations suggest that the MT1-selective inverse agonists UCSF7447 and 

UCSF3384 are not only potent, with effects on phase shift for UCSF7447 at 0.9 

Pg/mouse (about 0.03 mg/Kg) (Fig 4.3d) and efficacies resembling the long-established 

reagent luzindole in the jet-lag model at 10-fold lower doses, but that their unexpected 
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activity in circadian phase is via the MT1 receptor.  We note that the lack of precedence 

for this behavior reflects a lack of MT1 selective inverse agonists to probe for it, 

something addressed by this study.  
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Figure 4.3. MT1-selective inverse agonists behave as agonists and inverse 
agonists 
a - b, Inverse agonists ‘3384 and ‘7447 decelerate re-entrainment rate [a, VEH vs ‘7447 
(30 μg/mouse); mixed-effect two-way repeated measures ANOVA (treatment x time 
interaction: F16,735 = 3.39 P = 8.20 x 10-6], and increase number of days to re-
entrainment after 6 h advance of dark onset in the “east-bound jet-lag” paradigm [b, 
VEH vs. MLT, ‘3384, and ‘7447 (30 μg/mouse) or LUZ (300 μg/mouse); one-way 
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ANOVA (F4,92 = 16.97 P = 1.86 x 10-10)]. c, Inverse agonist ‘7447 targets MT1 receptors 
to increase number of days to re-entrainment [VEH (white) vs. ‘7447 (blue; 30 
μg/mouse); two-way ANOVA (treatment: F1,120 = 24.82 P = 2.14 x 10-6, genotype: F2,120 
= 23.44 P = 2.55 x 10-9)]. d, Inverse agonists ‘3384 and ‘7447 phase advance circadian 
wheel activity onset in constant dark at CT 10 (dusk), resembling agonist melatonin 
[left: VEH vs. MLT or ‘7447 (0.9 μg/mouse); one-way ANOVA (F2,26 = 13.60 P = 9.08 x 
10-5); center: VEH vs. MLT, ‘3384 or ‘7447 (30 μg/mouse); one-way ANOVA (F3,52 = 
32.05 P = 7.15 x 10-12); right: VEH vs LUZ (300 μg/mouse); two-tailed unpaired 
students t test (t = 0.92 df = 7 P = 0.39)]. e, The phase advance of wheel activity onset 
by ‘7447 is mediated via the MT1 receptor at CT 10 (dusk) [VEH (white) vs. ‘7447 (blue; 
30 μg/mouse); two-way ANOVA (treatment x genotype interaction: F2,49 = 4.46 P = 
0.0166)]. f, Inverse agonist ‘7447, unlike melatonin, did not phase delay in constant 
dark at CT 2 (dawn) [VEH (white) vs. ‘7447 (blue; 30 μg/mouse); two-way ANOVA 
(treatment x genotype interaction: F2,49 = 0.384 P = 0.684)]. Panel f has 1 value not 
shown due to scale, but is included in the analysis (value = 0.91 h). Data shown 
represent mean + s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001 for comparisons to WT 
VEH. &P < 0. 001 for comparisons to MT2KO VEH. Post-test analysis used Sidak’s (a), 
Tukey’s (c, e, f), or Dunnet’s (b & d; all P < 0.05). Details for all statistical analyses and 
reporting of n values for each condition (depicted as scatter dot plots where appropriate) 
are found in Methods (Statistics & Reproducibility). Vehicle (VEH), melatonin (MLT), 
luzindole (LUZ), UCSF7447 (‘7447), UCSF3384 (‘3384). All treatments were given via 
s.c. injection. 

 
4.3 Discussion 

 From a large library docking screen emerged multiple new chemotypes for 

melatonin receptors (Fig. 4.1), with new signaling and new pharmacology. Three 

features of this study merit emphasis.  First, docking a library of over 150 million 

diverse, make-on-demand molecules found ligands topologically unrelated to known 

melatonin receptor ligands, with picomolar and nanomolar activity on the melatonin 

receptors.  Second, the chemical novelty of these molecules translated functionally, 

conferring melatonin receptor type selectivity.  Whereas the deceleration of re-

entrainment (jet-lag model) by the new inverse agonists resembled that of the classic 

non-selective antagonist/inverse agonist luzindole, their high selectivity for the MT1 

receptor, and the chemical-genetic epistasis in the MT1KO mouse, convincingly 

implicates the MT1 receptor in this response.  Unexpectedly, the new inverse agonists 
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conferred an agonist-like effect in circadian phase shift experiments when administered 

at dusk, perhaps suggesting previously unknown signaling control for the MT1 receptor 

in the SCN, which has known time of day dependent receptor mediated signaling 

pathways43. Third, these are the first MT1-selective inverse agonists active in vivo, with 

efficacy at doses as low as 0.9 Pg/mouse in circadian phase shift.  Their efficacy in 

modulating time-dependent circadian entrainment supports their potential as leads 

towards therapeutics in conditions and diseases affected by alterations in phase5-7,44. 

 

Certain caveats bear airing. While we sought MT1-selective ligands, we found 

ligands for both melatonin receptor types, reflecting their conserved orthosteric sites. 

Indeed, rather than adopting a structure-based strategy for type selectivity, we simply 

focused on chemical novelty among the high-ranking docked molecules15,17.  While the 

39% docking hit rate was high, and the hits were potent, this likely reflects a site that is 

unusually well-suited to ligand binding: it is small, solvent-occluded, and largely 

hydrophobic.  These high hit rates and potencies may not always translate to other 

targets45,46.   

 

The key observations of this work should nevertheless be clear.  From a 

structure-based screen of a diverse, 150 million compound virtual library sprang 15 new 

chemical scaffolds, topologically unrelated to known melatonin receptor ligands and 

synthesized de novo for this project. From their chemical novelty emerged new 

activities, including inverse agonists and ligands with melatonin receptor type-selectivity. 

The potency, brain exposure, and selectivity of these new ligands enable one to begin 

to disentangle the physiological role of the MT1 receptor.  Accordingly, we are making 

the MT1-selective inverse agonist UCSF7447, and the hMT2 selective agonist 

UCSF4226, openly available to the community, as probe pairs coupled with a close 
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analog that has no measurable activity on the melatonin receptors (Table A.4.4). We 

note that only a small fraction of even the highest-ranking chemotypes from the docking 

were tested here; it is likely that hundreds-of-thousands of melatonin receptor ligands, 

representing tens-of-thousands of new chemotypes15, remain to be discovered from the 

make-on-demand library, which continues to grow (http://zinc15.docking.org).  This 

study suggests that not only potent ligands may be revealed by docking such a library, 

but also that the new chemotypes explored can illuminate new in vivo pharmacology.    
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4.5 Methods 

Molecular docking  

The MT1 receptor bearing nine thermostabilizing point mutations, as determined 

crystallographically13, was used in the docking calculations. To prepare the structure for 

docking, atoms of the co-crystallized ligand, 2-phenylmelatonin, were used to seed the 

matching sphere calculation in the orthosteric site; these spheres represent favorable 

positions for individual ligand atoms to dock; overall 45 spheres were used. DOCK3.7 

orients flexibases of pre-calculated ligand conformations into the orthosteric site by 

overlaying atoms of each library molecule onto these matching spheres. The receptor 

structure was protonated by REDUCE47 and assigned AMBER united atom charges48. 

For residues N1624.60 and Q181ECL2, the partial atomic charges of the side chain amide 

was increased without changing residue net charge, as previously49. The volume of the 

low protein dielectric, which defines the boundary between solute and solvent in 

Poisson-Boltzmann electrostatic calculations, was extended out 1.9 Å from the protein 

surface using spheres calculated by SPHGEN. Scoring grids were pre-calculated by 

CHEMGRID for AMBER van der Waals potential, QNIFFT50 for Poisson-Boltzmann-

based electrostatic potentials, and SOLVMAP51 for ligand desolvation.  

 

 The resulting potential grids and ligand matching parameters were evaluated for 

their ability to enrich known MT1 ligands over property-matched decoys. Decoys share 
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the same physical properties as known ligands but are topologically dissimilar and so 

unlikely to bind. Thirty-one known MT1 melatonin receptor ligands, both agonists and 

antagonists, were extracted from the IUPHAR database52, and 1550 property-matched 

decoys were generated using the DUD-E pipeline. Docking success was judged on the 

ability to enrich the known ligands over the decoys by docking rank, using adjusted 

logAUC; this is widely done in the field.  We also ensured that molecules with extreme 

physical properties were not enriched, as can happen when only counter-screening 

against property-matched decoys.  In particular, we wanted to ensure that neutral 

molecules were enriched over charged ones. The docking parameters were also judged 

on how well they reproduced the known ligands’ expected binding modes and their 

ability to hydrogen-bond with N1624.60 and Q181ECL2.  

 

 The “lead-like” subset of ZINC15 (http://zinc15.docking.org), characterized by 

favorable physical properties (e.g., with calculated octanol-water partition coefficients 

(cLopP) ≤3.5, and with molecular weights ≤350),  was then docked against the MT1 

orthosteric site, using DOCK3.721. This library contained over 150 million molecules, 

mostly make-on-demand from the Enamine REAL set15. Of these, over 135 million 

molecules successfully docked, with over 36 million receiving a favorable score (<0 

kcal/mol). An average of 3,445 orientations were calculated for each, and for each 

orientation, an average of 485 conformations were sampled. A simplex minimizer was 

used for rigid-body minimization on the best-scored pose for each ligand. Overall, about 

72 trillion complexes were sampled and scored. The calculation time was 45,020 core 

hours, or 1.25 calendar days on 1,500 cores.  
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To reduce redundancy of the best-ranking docked molecules, the top 300,000 

ranked molecules were clustered by ECFP4-based Tanimoto coefficient (Tc) of 0.5, and   

the best-scoring member was used to represent the cluster. The resulting 65,323 

clusters were filtered for novelty by calculating ECFP4-based Tcs against >1,100 MT1 

and MT2 receptor ligands from the CHEMBL2322 database. Molecules with Tc ≥0.38 to 

known MT1/MT2 ligands were not further pursued.  

 

After filtering for novelty, the docked poses of the best-scoring members of each 

cluster were filtered by the proximity of their polar moieties to N1624.60 or Q181ECL2, and 

manually inspected for favorable geometry and interactions. Of the best-scoring 

molecules so prioritized, all members of its cluster within the top 300,000 molecules 

were also inspected, and sometimes one of these was chosen if they exhibited more 

favorable poses or chemical properties. Ultimately, forty compounds were chosen for 

testing, thirty-eight of which were successfully synthesized.  To our knowledge, none of 

these compounds has been previously available and we are unaware of reports of them 

being previously synthesized.   

 

Make-on-demand synthesis  

Compounds were synthesized using 72,000 qualified in stock building blocks and 

130 well-characterized, two component reactions at Enamine.  Historically, molecules 

have been synthesized in three to four weeks with an 85% fulfilment rate; in this project 

delivery time was six weeks, but with a 95% fulfilment rate for the 40 molecules 
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prioritized from the initial docking screen. Each reaction is tested for conditions including 

temperatures, completion time, and mixing53. Typically, compounds are made in parallel 

by combining reagents and solvents in a single vial in the appropriate conditions to 

allow the reaction to proceed to completion. The product-containing vial is filtered by 

centrifugation into a second vial to remove precipitate and the solvent is evaporated 

under reduced pressure; the product is then purified by HPLC. Identity and purity are 

assessed by LC/MS and, as appropriate, 1H NMR. All compounds were shipped 90% 

pure or better, and the main three compounds UCSF7447, UCSF3384 and UCSF4226 

were independently confirmed to be >95% pure by LC/MS in secondary confirmation 

analyses at a second lab (Fig. A.3.12). 

 

Structure-based ligand optimization 

After experimental testing (below), 12 of the 15 active ligands from docking were 

prioritized for optimization, representing a range of activities and type selectivity (Table 

A.4.2).  Several thousand analogs of these ligands, each bearing the same scaffold as 

the parent molecule and with Tc <0.38 to annotated melatonin receptor ligands, were 

selected from the ZINC database and docked to the MT1 binding site, again using 

DOCK3.7. The resulting docked poses were manually evaluated for interactions with 

N1624.60 or Q181ECL2, and 132 analogs were selected for de novo synthesis at Enamine, 

in two iterations.  Of these, 131 were successfully synthesized, a >99% fulfillment rate.   
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Cell Culture 

HEK293T cells were maintained with complete Dulbecco's modified Eagle's 

medium (DMEM), supplemented by 10% fetal bovine serum (FBS), 2 mM L-glutamine, 

100 units/ml penicillin G and 100 μg/ml streptomycin. Cells were maintained at 37°C in 

the presence of 5% CO2. 

 

Tango arrestin recruitment assay 

MT1 and MT2 Tango constructs were designed and assays were performed as 

previously described54. Briefly, HTLA cells stably expressing TEV protease fused ß-

arrestin (kindly provided by Dr. Richard Axel) and tTA dependent luciferase reporter 

gene were transfected with MT1 or MT2 Tango construct. The next day, transfected cells 

were seeded into poly-L-lysine coated 384-well white clear bottom cell culture plates 

with DMEM containing 1% dialyzed FBS at a density of 20,000 cells per well in 40 μl for 

another six hours. Drug solution was prepared in the same media used for cell plating at 

5X final concentration and 10 μl per well was added for overnight incubation. The next 

day, media and drug solutions were discarded and loaded with 20 μl per well of Bright-

Glo reagent (Promega). Plates were incubated for 20 mins in the dark followed by being 

counting using SpectraMax luminescence reader (Molecular Device). Data were 

analyzed using GraphPad Prism 6.0. 
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cAMP assay  

MT1 and MT2 receptors were tested using Promega’s split luciferase based 

GloSensor cAMP biosensor technology. HEK293T cells were plated in 15 cm cell 

culture dish (at a ~50% cell confluency) with DMEM supplemented with 10% dialyzed 

FBS, 2 mM L-glutamine, 100 units/ml penicillin G and 100 μg/ml streptomycin for 4-6 

hour. Then, cells were co-transfected with 8 μg of construct which encodes either MT1 

or MT2 (de-Tango-ized constructs) and 8 μg of Glosensor DNA. Next day, transfected 

cells were seeded into poly-L-lysine coated 384-well white clear bottom cell culture 

plates with complete DMEM supplemented with 1% dialyzed FBS at a density of 20,000 

cells per well for another 24 h. The next day, cell medium was discarded and loaded 

with 20 μl of assay buffer (1× HBSS, 20 mM HEPES, pH 7.4, 0.1% BSA). To measure 

agonist activity of MT1 or MT2 receptor, 10 μl of test compound solution at 3X final 

concentration was added for 15 minutes followed by addition of 10 μl of 

luciferin/isoproterenol mixture (at a final concentration of 4 mM and 200 nM respectively) 

for another 15 mins for luminescence quantification. Then, plates were counted using 

SpectraMax luminescence reader (Molecular Device). Data were analyzed using 

GraphPad Prism 8 (Graphpad Software Inc., San Diego, CA). 

 

Log(Emax/EC50) calculation and ligand bias quantification   

The ΔLog(Emax/EC50) was calculated with melatonin as a reference agonist for 

G protein and ß-arrestin pathway, and the ΔΔLog(Emax/EC50) was calculated between 

two pathways for each ligand55, as were corresponding bias plots56.  The bias factor is 

unitless and defined as 10ΔΔLog(Emax/EC50).  
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GPCR-ome counter-screen  

Screening of compounds in the PRESTO-Tango GPCR-ome was accomplished 

as previously described54 with several modifications. First, HTLA cells were plated in 

DMEM with 10% FBS and 10 U/mL penicillin-streptomycin.  Next, the cells were 

transfected using an in-plate PEI method57. PRESTO-Tango receptor DNAs were 

resuspended in OptiMEM and hybridized with PEI prior to dilution and distribution to 

384-well plates and subsequent addition to cells.  After overnight incubation, drugs were 

added to cells without replacement of the medium.  The remaining steps of the 

PRESTO-Tango protocol were followed as previously described. For those six receptors 

where activity was reduced to less than 0.5 fold of basal (RLU) or for the one receptor 

where basal signaling was increased greater than 3-fold of basal, assays were repeated 

in full dose-response.  None of the seven confirmed, and we discount the apparent 

activity seen in the single-point assay.   

 

Inhibition screen 

Binding assays were performed by the NIMH Psychoactive Drug Screening 

program as detailed previously58. Detailed binding assay protocols are available on-line 

at: https://pdspdb.unc.edu/pdspWeb/content/UNC-CH%20Protocol%20Book.pdf  

 

BRET recruitment assay 

 To measure G protein recruitment BRET assay, HEK293T cells were co-

transfected in a 1:1:1:1 ratio of Gαi3-RLuc, Gβ3, GFP2-Gγ9, and hMT1or hMT2  (de-

Tango-ized constructs) respectively. After 24 hours, transfected cells were plated in 
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poly-L-lysine coated 96-well white clear bottom cell culture plates with DMEM containing 

1% dialyzed FBS, 100 units/ml Penicillin G, and 100 μg/ml Streptomycin at a density of 

40,000 cells in 200 μL per well and incubated overnight. The following day, media was 

removed and cells were washed once with 100 μL of assay buffer (1X HBSS, 20 mM 

HEPES, pH 7.4, 0.1% BSA). Then 60 μL of assay buffer was loaded per well followed 

by addition of 10 μL of the RLuc substrate, Coelenterazine 400a (Nanolight) at 5 μM 

final concentration for 5 mins. Drug stimulation was performed with the addition of 30 μl 

of 3X drug dilution of melatonin or UCSF4226 in assay buffer supplemented with 0.01% 

(w/v) ascorbic acid per well and incubated at RT for another 5 mins. Both luminescence 

(400 nm) and fluorescent GFP2 emission (515 nm) were read for the plate for 1 second 

per well using Mithras LB940. The ratio of GFP2/RLuc was calculated per well and 

analyzed using “log (agonist) vs. response” in Graphpad Prism 8 (Graphpad Software 

Inc., San Diego, CA). 

 

Radioligand Binding 

Reagents and Ligands  

2-[125I]-Iodomelatonin (SA: 2,200 ci, 81.4TBq/mmol) was purchased from Perkin 

Elmer (Shelton, CT, USA). Guanosine 5’-triphosphate sodium salt hydrate (GTP), 

melatonin and all other chemicals and reagents were obtained from Sigma-Aldrich (St. 

Louis, MO, USA).  
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Compound Preparation 

For receptor binding studies, UCSF7447 was dissolved in 50% DMSO/50% 

ethanol for 13 mM stock solution, diluted 1/10 in 100% ethanol then 1/10 again in 50% 

ethanol/50% Tris-HCl buffer, pH 7.4 25 deg C. Both UCSF3384 and UCSF4226 were 

dissolved in 100% ethanol for 13 mM stock solutions and then diluted 1/10 in 50% 

ethanol/50% Tris-HCl buffer, pH 7.4. Further dilutions were done in the same Tris-HCl 

buffer. 

 

2-[125I]-Iodomelatonin Competition Binding 

CHO cells stably expressing FLAG-tagged recombinant hMT1, hMT2, mMT1, or 

mMT2 melatonin receptors were grown in culture as monolayers in Ham’s F12 media 

supplemented with fetal calf serum (10%), penicillin (1%; 10,000 I.U/ml)/streptomycin 

(5%; 10,000 μg/ml) in CO2 at 37°C as described. Cells were grown for 4 days to 90–

95% confluence, then washed with PBS (potassium phosphate buffer, 10 mM, pH 7.4), 

detached with PBS containing 0.25 M sucrose and 1 mM EDTA, and pelleted by 

centrifugation (1,700 x g, 5 min) as described59. Cell pellets were suspended and 

homogenized in control buffer (50 mM Tris-HCl, 10 mM MgCl2; pH 7.4 at 25°C) and 

washed twice by centrifugation (17,000 x g, 15 min) in control or inactive conformation 

buffer (50 mM Tris-HCl, 10 mM MgCl2, 100 μM GTP, 1 mM EDTA.Na2, 150 mM NaCl, 

pH 7.4 at 25°C) as described59. 2-[125I]-Iodomelatonin binding affinity was determined on 

membranes from CHO-hMT1 (9.6 ± 0.3 μg protein/assay; Bmax: 1,154 ± 38 fmol/mg 

protein, n = 3), CHO-hMT2 (15 ± 1 μg protein/assay; Bmax: 352 ± 19 fmol/mg protein, n = 

3), CHO-mMT1 (6.0 + 0.022 μg protein/assay (n=3); Bmax: 1,705 ± 337 fmol/mg protein, 
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n = 3) and CHO-mMT2 (6.4 + 0.7 μg protein/assay (n=3); Bmax: 725 + 93 fmol/mg 

protein, n = 3) cells. Ligand competition (10 pM to 100 μM) for 2-[125I]-iodomelatonin 

(104 ± 2 pM, n = 30) binding was performed in control or inactive conformation buffer in 

a total volume of 0.26 mL as described59. Assays were incubated for 1 hour at 25°C. 

Bound radioligand was separated from free by rapid vacuum filtration using glass 

microfiber filters (Whatman, Krackeler Scientific, Inc., Albany NY, USA) saturated in 

0.5% polyethylenimine solution. Total radioactivity bound to the filters was determined 

on a gamma counter59.  

 

Data Analysis 

Ki values were calculated from IC50 values using GraphPad PRISMTM 8.0 

according to the Cheng-Prusoff equation60: Ki = IC50/(1 + [L]/KD) where L is the 

concentration of radioligand, KD is the dissociation constant of 2-[125I]-iodomelatonin in 

control or inactive conformation buffer for the hMT1 (control KD = 116 pM; Inactive KD = 

280 pM) and hMT2 receptors (control KD = 80 + 13 pM; GTP KD = 461 + 159 pM), and 

for mMT1 receptors (control KD = 87 + 6 pM; GTP KD = 201 + 67 pM) (n=3). Affinity 

shifts induced by G protein uncoupling were measured by subtracting pKi(inactive) from 

pKi(Control) (ΔpKi) and normalization by melatonin ΔpKi (CHO-hMT1: 1.19; CHO-hMT2: 

0.41). Affinity shifts or lack thereof with G protein uncoupling indicate apparent efficacy31 

as ligands are classified as agonists (ΔpKi % MLT > 20 %), antagonists (ΔpKi % MLT < 

20 %, > -20 %), or inverse agonists (ΔpKi % MLT < -20 %) accordingly. Individual data 

points were excluded from cell based when meeting the exclusion criteria for the outliers 

Grubbs test. 
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Data shown in Fig. 4.2a and b were analyzed by two-tailed paired student t test.   

 

 In-vivo Methods 

Animals and Housing 

Male and female C3H/HeN (C3H) wild-type (WT), MT1 knockout (MT1KO), and 

MT2 knockout (MT2KO) mice (average 6.28 months) used in this study were raised in 

our breeding colony at University at Buffalo. C3H/HeN mice homozygous for the MT1 

and MT2 melatonin receptor gene deletion and their WT controls were generated from 

breeding pairs donated by Dr. S. M. Reppert (University of Massachusetts Medical 

School, Worcester, MA, USA) and backcrossed with C3H/HeN mice (Harlan, now 

Envigo, Indianapolis, IN, USA) for at least seven generation as described in detail61. 

Genotype was confirmed using tail samples at the end of each experiment and was 

verified periodically during the tenure of the colony. The strains of mice in our breeding 

colony were re-derived periodically by backcrossing with WT mice to reduce genetic 

drift.  

 

Mice were group housed (3 - 5 per cage) with corncob bedding in polycarbonate 

translucent cages (30 X 19 cm) and maintained in a 14/10 light-dark (LD) cycle 

(Zeitgeber time 0 or ZT 0 corresponds to lights on and ZT 14 to lights off) in temperature 

and humidity controlled rooms with ad libitum access to food and water in the 

Laboratory Animal Facility at the University at Buffalo. Light levels were 200 - 300 lux at 

the level of the cage. Treatments and animal care performed in the dark were under a 

dim red safelight (15 watts, Kodak 1A filter) with illuminance of less than 3 lux36. All 
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experimental procedures using mice were conducted in accordance with guidelines set 

forth by the National Institutes of Health and approved by the University at Buffalo 

Institutional Animal Care and Use Committee. 

 

Circadian Rhythm Measurement 

Circadian rhythm phase was determined for each mouse using the onset of 

running wheel activity defined as CT 12 (circadian time 12: onset of wheel activity). 

Running wheel activity was measured continuously via magnetic microswitches 

detecting wheel revolutions with a computer equipped with Clocklab data collection 

software™ (Actimetrics: Wilmette, IL). All actigraphy data was visualized and analyzed 

using ClockLab™ and MATLAB™ software. All mice were individually housed in cages 

(33 x 15 cm) equipped with running wheels in light-tight ventilated cabinets with 

controlled temperature and LD cycles (Phenome Technologies: Skokie, IL). Male and 

female mice were housed in separate cabinets for all experiments. 

 

Phase Shift  

Changes in circadian phase induced by vehicle or drugs administered at various 

circadian times were assessed in WT, MT1KO, and MT2KO male and female C3H/HeN 

mice (3 to 8 months) using methods and protocols previously described35,36.  Following 

a period of 14 days in a LD cycle mice were placed in constant dark (DD) beginning at 

Zeitgeber Time (ZT) 12 (dark onset) (ZT 0 = lights on).  Mice were kept in DD (2 - 3 

weeks) until a stable free-running phase of running wheel activity rhythm onset was 

established.   Circadian times of treatment were predicted from best fit lines of running 
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wheel activity onsets for of running either pre (7 - 14 days) and post (7 - 14 days) 

treatment. Treatment times were within a 2-hour window at CT 2 (CT 1 - 3), CT 6 (CT 5 

- 7), or CT 10 (CT 9 - 11).  Mice were treated (0.1 ml/mouse, s.c.) with vehicle (30% 

ethanol saline, s.c.) or drugs (melatonin, UCSF3384, UCSF7447, at 0.9 μg and 30 

μg/mouse or luzindole at 300 μg/mouse in vehicle) for three consecutive days at the 

appropriate circadian time under dim red light. Vehicle or drug treatments were 

repeated for 3 consecutive days at the selected circadian time following the three-pulse 

treatment protocol described36.  Phase shifts were quantified using the best-fit lines for 

onsets of activity during pre and post treatment periods. Differences are characterized 

as phase delays (pre-treatment ahead of post treatment best fit line onset) or phase 

advances (post treatment ahead of pre-treatment best fit line onset) of running wheel 

activity onset rhythms.  

 

Re-entrainment Experiments  

Male and female C3H/HeN WT, MT1KO, and MT2KO mice (3 to 6 months) were 

maintained under a 12:12 LD cycle for at least 2 weeks prior experimental 

manipulations to allow stable entrainment to dark onset before advance of the LD cycle. 

Actigraphy data was recorded as described above and all experimental protocols 

performed as described62. On the first day of treatment, the dark onset was advanced 6 

hours.  This resulted in a short night and mice were treated (0.1 ml / mouse s.c.) with 

vehicle (30% ethanol/70%saline, s.c.) or drugs (melatonin, UCSF3384 or UCSF7447 at 

30 μg /mouse, or luzindole 300μg /mouse, in vehicle) for three consecutive days 10 - 30 

minutes prior to the new dark onset. Post treatment, mice were given 14 - 20 days to re-
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entrain running wheel activity onsets to the new dark onset. Using exported running 

wheel activity onsets from actograms, onset hours advanced each day were determined 

by subtracting this value each day from the average onset of running wheel activity for 3 

days prior to treatment for each mouse. Further, using the data from this calculation 

combined with visualization of actograms, the number of days to reach stable re-

entrainment was determined for each mouse. 

 

In vivo Compound Preparation  

All compounds were administered in fixed doses of either 0.9 μg or 30 μg 

subcutaneously (s.c.) in a volume of 0.1 ml per mouse, which are equivalent to doses of 

0.03 or 1 mg/Kg for a 30 g mouse, respectively.  Vehicle (VEH) was 30% ethanol/70% 

saline for all doses. Melatonin, UCSF7447, and UCSF3384 were prepared as stock 

solutions of 3 mg/mL (100% ethanol) using sonication and vortexing to ensure each 

drug was dissolved. Subsequently, stock solutions were diluted to 0.3 mg/mL (30 μg/0.1 

mL injection) or 0.009 mg/mL (0.9 μg/0.1 mL injection) in vehicle. Luzindole was 

prepared similarly except the starting stock solution was 30 mg/mL in 100% ethanol and 

it was administered from a solution of 3 mg/mL (300 μg/0.1 mL injection) in vehicle.  

Treatment dilutions were prepared just before use under sonication with intermittent 

vortexing between steps and used within 5 minutes of preparation.  

 

Biostatistics and Reproducibility 

All statistical analyses as described in further detail for each experiment were 

conducted using GraphPad Prism 8™ (La Jolla, CA). For phase shift and re-
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entrainment experiments we determined statistical power a-priori (α error probability = 

0.05) based on data for a known effect size for melatonin in these paradigms (G-power 

3.0.10)35,62. Individual actograms of wheel running activity were excluded from analysis 

based on the exclusion criteria described below, which was completed by at least two 

individuals blind to treatment before data analysis was started.  For re-entrainment 

actograms exclusion criteria includes: a) low running, sporadic activity, significant 

missing wheel activity data and/or lack of entrainment prior to treatment; b) entrainment 

of running activity more than 1 h before or after the “old” or “new dark” onset; c) re-

entrainment to new dark onset before administration of the third injection (entrainment 

to injection). For phase shift actograms exclusion criteria includes: a) low 

running, sporadic activity, missing wheel activity data and/or lack of free running activity 

rhythms; b) tau change > 0.3 h; c) at least 2 out of 3 injections occurred outside of the 

target pre-determined time-range for treatment (CT 1 - 3, 5 - 7, 10 - 12).  All data sets 

were visualized for normality using QQ plots of predicted vs. actual residuals. 

Actigraphy data was generated for visualization blind to treatment prior to the 

quantification and statistical analysis stages. Comparisons for Fig. 4.3a, Fig. A.4.4l, m, 

n were made by mixed effect two-way repeated measures ANOVA (treatment x time) 

with Sidak’s post hoc test (P < 0.05). Number of days to re-entrainment was compared 

via one-way ANOVA or two-way ANOVA for Fig. 3b, c with a Dunnet’s or Tukey’s post 

hoc test (P < 0.05) respectively. Group comparisons for phase shift in Fig. 4.3d (left & 

center) & Fig. A.4.7a - c were made by one-way ANOVA (P < 0.05) comparing hours 

shifted of circadian running wheel activity rhythm onsets (Fig. 3.3d left: 3 groups - 

vehicle, melatonin, UCSF7447; Fig. 4.3d center: 4 groups - vehicle, melatonin, 
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UCSF7447, UCSF3384; Fig. A.4.7a - c: 4 groups - vehicle, melatonin, UCSF7447, 

luzindole) accompanied with post-hoc analyses by Dunnet’s to determine individual 

group differences compared to vehicle (P < 0.05). Fig. 4.3d (right) comparisons 

between vehicle and luzindole were made via a two-tailed unpaired students t test (P < 

0.05). Data in Fig. 4.3e & f were compared via a two-way ANOVA (3 x 2: genotype x 

treatment) with Tukey’s post hoc analyses (P < 0.05). Either the overall interaction or 

the main effects were reported and interpreted for two-way ANOVAs as appropriate for 

assumptions of each data set. No sex differences in treatment effects were evident in 

any data set when assessed via two-way ANOVA or three-way ANOVA where 

appropriate; therefore, data were pooled between male and female mice for analyses 

described. The n values represent the number of individual mice per condition or 

independent biological replicates in each experiment. Each data set represents 2 - 4 

independent experiments. The n value for each in vivo experiment is listed below: 

Figure 3.3a, vehicle (n = 28 mice#) vs. UCSF7447 (n = 21 mice#). Figure 3.3b, vehicle (n 

= 28) vs. melatonin (n = 21), UCSF7447 (n = 21), UCSF3384 (n = 16), or luzindole (n = 

11). Figure 3.3c, WT (n = 28 vehicle; n = 21 UCSF7447), MT1KO (n = 16 vehicle; n = 16 

UCSF7447), and MT2KO (n = 20 vehicle; n = 25 UCSF7447). Figure 3.3d, (left panel) - 

vehicle (n = 8) vs. melatonin (n = 8) or UCSF7447 (n = 13). Figure 3.3d, (center panel) - 

vehicle (n = 15) vs. melatonin (n = 10), UCSF3384 (n = 16), or UCSF7447 (n = 15). 

Figure 3.3d, (right panel) - vehicle (n = 6) vs luzindole (n = 3). Figure 3.3e, WT (n = 9 

vehicle; n = 10 UCSF7447), MT1KO (n = 8 vehicle; n = 8 UCSF7447), and MT2KO (n = 

11 vehicle; n = 9 UCSF7447). Figure 3.3f, WT (n = 8 vehicle; n = 8 UCSF7447), MT1KO 

(n = 6 vehicle; n = 7 UCSF7447), and MT2-KO (n = 10 vehicle; n = 13 UCSF7447).  
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Fig. A.3.4h, C3H WT - vehicle (n = 28 mice#) vs. UCSF3384 (n = 16 mice#).  

Fig. A.3.4i, C3H MT1KO - vehicle (n = 16 mice#) vs. UCSF7447 (n = 16 mice#). Fig. 

A.3.4j, C3H MT2KO - vehicle (n = 21 mice#) vs. UCSF7447 (n = 25 mice).  

Fig. A.3.7a, CT 2 - vehicle (n = 3), melatonin (n = 3), luzindole (n = 6), or UCSF7447 (n 

= 3). Fig. A.3.7b, CT 6 - vehicle (n = 8), melatonin (n = 4), luzindole (n = 9), or 

UCSF7447 (n = 9). Fig. A.3.7c, CT 10 - vehicle (n = 6), melatonin (n = 8), luzindole (n = 

3), or UCSF7447 (n = 4)  

   

Pharmacokinetics  

Pharmacokinetic experiments were performed by Sai Life Sciences Limited 

(Hyderabad, India). Plasma pharmacokinetics and brain distribution for UCSF7447, 

UCSF3384, and UCSF4226 were investigated following a single intravenous dose of 2 

mg/kg in nine male C57BL/6 mice. Each compound was formulated in 5% N-methyl 

pyrrolidone, 5% Solutol HS-15, and 90% normal saline.  Blood samples (approximately 

60 μL from each of three mice) were collected under light isoflurane anesthesia from 

retro orbital plexus at 0.08, 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hr. Immediately after 

collection, plasma was harvested by centrifugation and stored at -70°C until analysis.  

For blood collected at 0.5, 4, and 24 hr, animals were euthanized with excess CO2 

asphyxiation and brain samples were collected and homogenized in ice-cold phosphate 

buffer saline (pH-7.4). Total homogenate volume was three times the brain weight.  

 

All samples were processed for analysis by protein precipitation using acetonitrile 

and analyzed with fit-for-purpose LC/MS/MS method (Lower limit of quantification = 2.01 
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ng/mL for plasma and 6.03 ng/g for brain for UCSF7447, 5.01 ng/mL for plasma and 

3.00 ng/g for brain for UCSF3384, 1.01 ng/mL for plasma and 6.09 ng/g for brain for 

UCSF4226). The non-compartmental analysis module in Phoenix WinNonlin® (Version 

7.0) was used to assess the pharmacokinetic parameters. Maximum concentration 

(Cmax) and time to reach maximum concentration (Tmax) were measured. The areas 

under the concentration time curve (AUClast and AUCinf) and elimination half-life was 

calculated by the linear trapezoidal rule. The terminal elimination rate constant, ke, was 

determined by regression analysis of the linear terminal portion of the log plasma 

concentration-time curve. The terminal half-life (T1/2) was estimated as 0.693/ke. 

 

Code Availability: DOCK3.7 is freely available for non-commercial research 

http://dock.compbio.ucsf.edu/DOCK3.7/.  A web-based version is freely available to all 

at http://blaster.docking.org/ 

 

Data Availability Statement: Probe pairs (two similar ligands with and without 

activity) of inverse agonists selective for MT1 and agonists selective for hMT2 are 

available by arrangement with Sigma (Table A.3.4).  The identities of the compounds 

docked in this study are freely available from the ZINC database, 

http://zinc15.docking.org, and active compounds may be purchased from Enamine.  

Figures with associated raw data include: Fig. 4.1, Tables A.4.1&2, Figs. A.4.1&2, Table 

A.4.1, for which further data are included in Table A.4.5 (compound purity information); 

Fig. A.3.3, for which bias information is included in Table A.4.6; Fig. 4.2, for which 

GPCRome screening, concentration-response curves, competition binding, and LC/MS 
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data is included in Figs. A.4.1-5; Fig. 4.3, for which further data is included in Figs. 

A.4.4-5; Fig. A.4.7. 
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Gloss to Chapter 5 

 With the success of docking to the melatonin receptors, Brian pitched me and 

Chase Webb, a new graduate student, the challenge of finding novel ligands for the CB1 

cannabinoid receptor, in collaboration with the Skiniotis and Kobilka labs at Stanford 

and Roth lab at UNC Chapel Hill. CB1 is the target of phytocannabinoids like THC, the 

main psychoactive ingredient in marijuana, as well as cannabidiol, endocannabinoids 

like the lipid-based anandamide and 2-arachidonoyl glycerol, as well as dangerous 

synthetic cannabinoids like “Spice”. Though there were crystal structures for the CB1 

receptor, the Skiniotis lab had just solved the structure in complex with the G protein by 

cryoEM, and the initial goal was to determine whether we could find novel ligands from 

a cryoEM structure. Chase and I parameterized the system and had the first round of 

molecules tested in the summer of 2018, with Sam Slocum and XP Huang from the 

Roth lab finding that none of the molecules had reproducible potency in the PRESTO-

Tango assay. We were skeptical of the results, but Brian suggested that they may have 

reflected our focus on buying lead-like (MW ≤ 350, cLogP ≤ 3.5) molecules for this lipid 

receptor that typically binds large, greasy molecules. We planned for a second go at the 

receptor, but it would take time to build these kinds of molecules as lead-like molecules 

are prioritized for building in ZINC15. Thus, this project was put on hold for a few 

months for these large, greasy molecules to be built.  

 After enough large, greasy molecules were built, the cryoEM structure of CB1 in 

complex with the G protein was officially released in Cell, though this structure was 

different from the one we initially received from the Skiniotis lab. In this published 
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structure, roughly 40 of the residues were incompletely modeled (“stubbed”), with 

several of these residues in the binding site. With Tia Tummino, a new graduate student 

in the lab, we decided to take advantage of the crystal structures previously published 

and prioritize finding analgesics as part of a new focus in the lab, as CB1 may be a 

promising therapeutic target for pain. After parameterizing the crystal structure for 

docking, we focused on molecules in a higher molecular weight and cLogP property 

space. In this second round, XP found similar results as before, irreproducible Tango 

and now, GloSensor assay curves. Given that we’ve had difficulties with lipid receptors 

previously, we thought that these data may be due to high nonspecific binding and the 

“stickiness” of the receptor. We were also worried that the data from the Roth lab were 

problematic, with a lack of reproducibility that they usually achieve. Additionally, the 

control molecules exhibited large variance, and there were expression problems with 

the receptors. We therefore turned to the Makriyannis lab at Northeastern, experts in 

cannabinoid binding assays. They tested our second round of molecules and found that 

8 of the 46 molecules may be high affinity molecules. This project is still ongoing, as we 

now have 12 more molecules that they haven’t tested from the second round. 

Additionally, the 8 potential hits need dose response curves, but we are planning to do 

analog-by-catalog, as well as determine why these molecules aren’t picked up in Tango 

or GloSensor assays, so we can get functional data, and relate this to pain phenotypes. 

We may even re-purchase molecules from the first round of docking and determine if 

these hit the receptor in the binding assays. 
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5.1 Abstract 

Cannabis, whose psychoactive constituent Δ9-tetrahydrocannabinol (THC) 

targets the CB1 cannabinoid receptor, has been used recreationally and medicinally for 

millennia1. Activation of CB1, one of the most abundant G protein-coupled receptors in 

the central nervous system, by cannabinoids is implicated in analgesic2, anxiolytic3, anti-

obesity4,5, and anti-nausea6 effects. Regardless, the usage of cannabinoids as 

therapeutics has been limited by their psychotropic effects, memory and cognition 

impairment, motor disturbances, as well as legislative barriers7,8. Here, we performed 

two virtual screens with the goal of identifying agonists to treat neuropathic pain that 

would lack these negative side effects. We initially performed a virtual screen of more 

than 225 million lead-like molecules to a CB1 cryoEM prioritizing those molecules that 

favorably complemented the orthosteric site, and that were chemically unrelated to 

known cannabinoids. Of these compounds, 55 molecules were synthesized and tested, 

revealing no molecules that were functionally active. We then turned to a CB1 crystal 

structure, and docked over 74 million large, greasy molecules, with 58 molecules 

synthesized and tested. Though none were reproducibly active in functional assays, 8 of 

46 tested in radioligand displacement assays exhibited high affinity. Re-testing of all 113 

molecules, followed by dose-response curves are currently underway, with a goal 

towards structure-based optimization of these hits, and in vivo testing of analgesia.  

  



210 

 

5.2 Introduction.  

  The usage of cannabinoids for therapeutic applications has been riddled with 

controversy, as well as seemingly more effective, and less negative side-effect-inducing 

alternatives9,10. Widespread prohibition in the early 20th century resulted in the 

termination of essentially all research on cannabis as a therapeutic, and it was only the 

popularity of its recreational use during the 1960s that spurred a newfound interest in its 

research, with researchers identifying Δ9-tetrahydrocannabinol (THC) as the main 

psychoactive component of cannabis in 19641. It wasn’t until 1990 that researchers 

identified the receptor responsible, the CB1 cannabinoid receptor11, which was followed 

by the characterization of the homologous CB2 cannabinoid receptor12, both G protein-

coupled receptors. There is significant interest in using cannabinoids as therapeutics for 

multiple indications such as nausea, anxiety, obesity, multiple sclerosis, seizures, and 

pain, and there are currently three marketed synthetic cannabinoids: two for treating 

chemotherapy-induced nausea and one for treating neuropathic pain and multiple 

sclerosis symptoms8,13. However, despite these potential avenues for treatment, the 

field of cannabis research is riddled with inconclusive results regarding the efficacy of 

cannabinoids due to variability in research methods. Similarly, cannabinoids are 

plagued by negative side effects, including psychoactivity, respiratory and 

cardiovascular disorders, addiction, psychosis, mood disorders, and suicidal ideation14-

17. Researchers have proposed various strategies for reducing these negative side 

effects including the development of peripherally restricted CB1 agonists for neuropathic 

pain2,18-20. Additionally, ajulemic acid, a synthetic analog of THC, activates both CB1 and 

CB2 receptors, and has been shown to be effective in reducing chronic neuropathic 
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pain, while showing no psychotropic effects or dependency21, suggesting that molecules 

that target the orthosteric site can maintain analgesic effects with no negative side 

effects. However, the high lipophilicity of ajulemic acid and related phytocannabinoids 

limits their optimization as drug candidates. Here, we attempt to identify novel 

cannabinoids in drug-like space that can sidestep these negative side effects and treat 

neuropathic pain.  

 

5.3 Results 

With the recent determination of crystal and cryoEM structures of both 

cannabinoid receptors22-26, we sought previously undescribed chemotypes with new 

functions by docking an ultralarge make-on-demand library27 to the orthosteric site of 

the CB1 receptor. We prioritized high-ranking chemotypes that were unrelated to known 

cannabinoid receptor ligands with the hope that these new chemotypes would interact 

differently with the CB1 receptor, conferring signaling properties with new biological 

effects28-30.  

In the first screen, we docked more than 225 million ‘lead-like’ molecules, which 

are characterized by favorable calculated octanol-water partition coefficients (cLogP ≤ 

3.5) and molecular masses (MW ≤ 350) from ZINC (http://zinc15.docking.org). Each 

library molecule was sampled in an average of more than 1.4 million poses (orientations 

x conformations) in the CB1 orthosteric site using DOCK3.731, with a total of 123 trillion 

complexes being generated and scored for complementarity to the site. The top 

300,000 molecules were clustered by topological similarity, resulting in 51,365 clusters, 
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and molecules that were similar to known CB1 and CB2 ligands from ChEMBL2432 were 

removed from further inspection.  

The best-scoring molecules from the top 10,000 clusters were inspected for 

interaction with important residues in the CB1 site, including hydrogen bonds with 

S3837.39 and H1782.65, as well as other polar partners including T2013.37. 

Conformationally strained molecules, as well as those with unsatisfied hydrogen-bond 

donors, were eliminated33. If a representative cluster member fit these criteria, all its 

cluster members were inspected, and the best molecule in terms of geometry and 

chemical properties was chosen for synthesis and testing. This resulted in 60 molecules 

for purchase, with 55 being synthesized for testing. Of the 55 tested, none of these 

molecules had activity in PRESTO-Tango functional assays, which we believed to be 

due to assay artifacts, but also the ‘lead-like’ nature of the library we docked, which lies 

at the periphery in property space compared to known CB1 ligands (Figure 5.1-2).  

We therefore turned to a larger, greasier subset of ZINC ranging from cLogP of 

3.5 to >5, and molecular mass ranging from 350 to >500 Daltons, which comprised over 

74 million molecules. Docking again to the CB1 orthosteric site, and prioritizing novel 

chemotypes unrelated to known cannabinoid ligands, we focused on molecules that 

overlapped significantly with known CB1 ligands in terms of physical properties like 

molecular weight and cLogP (Figure 5.1), as well as interaction properties like the 

number of proposed hydrogen bonds in the orthosteric site, and similar chemical 

moieties such as gem-dimethyl groups and halogen-containing benzene rings making 

stacking interactions with W2795.43 (Figure 5.2). Of these, we purchased 60 molecules, 

58 being successfully synthesized. As before, none of the molecules were reproducibly 
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active in functional assays, prompting us to perform radioligand displacement assays. 

Of 46 molecules in the second virtual screen, 8 exhibited high affinity in single-point 

radioligand displacement assays (Table 5.1). One of the most potent ligands, 

ZINC1341460450, demonstrated inverse agonist activity in Tango assays (Figure 5.2), 

but this activity could not be reproduced. Similarly, this molecule showed activity at 

unrelated targets like the muscarinic acetylcholine M5 and D1 dopamine receptors, 

suggesting that it may be promiscuous, or that the formulation of the compound in the 

functional assays affects its activity. Re-testing of all 58 compounds from the second 

screen and original 55 compounds in light of these new data are currently underway. In 

the future, we hope to determine why these compounds are not reproducible in 

functional assays and use structure-based optimization to improve potency and 

functional outputs of the 8 high affinity binders.  

  



214 

 

 

Figure 5.1. Comparison of properties of predicted and known CB1 ligands. 
Calculated octanol-water partition coefficients (cLogP) and molecular weight (MWT) of 
known CB1 ligands (blue) and purchased molecules in the first virtual screen (red, A) 
and purchased molecules in the second virtual screen (yellow, B). 
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Figure 5.2. Poses and functional dose response curves of novel ligands. A) 
CryoEM pose of MDMB-Fubinaca (PDB: 6N4B), a synthetic cannabinoid agonist, which 
interacts with both S3837.39 and H1782.65 and makes stacking interactions with W2795.43. 
B) Crystallographic pose of AM-841 (PDB: 5XR8), a synthetic phytocannabinoid-like 
agonist that interacts with S3837.39. Docked poses of ZINC1341460450 (C) and 
ZINC504609243 (D), which both have halogen-containing benzene rings stacking with 
W2795.43. PRESTO-Tango functional assays of ZINC1341460450 (D,E). PRESTO-
Tango functional assays of ZINC1341460450 muscarinic acetylcholine receptor 5 (F) 
and D1 dopamine receptor (G).  
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Table 5.1. Active molecules from single-point radioligand displacement assay. 
Active Molecule Predicted IC50 

(μM, after 1 
point) 

Closest Known CB1/CB2 Molecule 
(ECFP4 Tanimoto Coefficient) 

 

ZINC537551486 

1 

 

CHEMBL3922344 (0.30) 

 

ZINC1341460450 

2 

 

CHEMBL519214 (0.36) 

 

ZINC749087800 

2 

 

CHEMBL3116279 (0.28) 

ZINC518437019 

4 

CHEMBL472680 (0.24) 

ZINC656437337  

8 

CHEMBL259699 (0.29) 
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Active Molecule Predicted IC50 
(μM, after 1 
point) 

Closest Known CB1/CB2 Molecule 
(ECFP4 Tanimoto Coefficient) 

ZINC538517902  

8 

CHEMBL3915046 

0.32 

ZINC618737218 

9 

CHEMBL3347301 

0.31 

ZINC506941038  

9 

CHEMBL3890211 

0.28 
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5.4 Discussion 

 Though we may have identified an inverse agonist when our goal was to find 

agonists, it is possible that an inverse agonist may be useful in pain indications. It has 

been shown that CB1 antagonists like rimonabant can reduce CFA-induced arthritis pain 

behavior, as well as reduce thermal hyperalgesia and mechanical allodynia in rodents34. 

Similarly, another antagonist, SR141716, is capable of counteracting neuropathic pain 

by reducing neurogenic inflammation via downregulation of TNF-α expression35.  

 If these molecules prove to be true hits, we have devised several analog 

schemes to improve potency and modify functional activity. This includes extending the 

length between the central scaffold and the moiety interacting with W2795.43, as well as 

changing or adding a halogen on this moiety, which has been shown to increase 

potency to picomolar affinities36. Similarly, we have considered substituting the 

hydrogen bond donor that interacts with S3837.39 with various groups as outlined 

previously37,38. Inspection of the antagonist-bound crystal structure also demonstrates a 

doubling of the binding site volume22,23, which, if ZINC1341460450 is an inverse 

agonist, provides a justification for reducing the size of the moiety interacting with 

H1782.65, such that its analog stays within the agonist binding site volume. This location 

is partially exposed to solvent, allowing for charged moieties in CB1 ligands39, which 

could serve as the basis for novel, peripherally restricted CB1 molecules. Similarly, 

peripherally restricted cannabinoids have been identified by focusing on compounds 

with higher calculated polar surface area, such that they do not pass the blood-brain 

barrier40. Overall, this project is still in its early stages, but given the exciting data we 
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have now, there are a lot of paths forward, which should result in an interesting set of 

molecules to test in vivo.  

 

5.5 Methods 

Docking Calculations and Virtual Screens. 

In the first screen, a cryoEM structure of the human CB1 cannabinoid receptor 

was used in the docking calculations. Atoms of the cryogenic ligand, MDMB-Fubinaca, 

were used to seed the matching sphere calculation in the orthosteric site. These 

spheres represent favorable positions for ligand atoms to dock, with 45 total being used. 

The receptor structure was protonated using REDUCE41 and assigned AMBER united 

atom charges42. The volume of the low protein dielectric, which defines the boundary 

between solute and solvent in Poisson-Boltzmann electrostatic calculations, was 

extended out 0.8 Å from the protein surface. These pseudo-atom positions represent 

possible ligand atom positions. The desolvation volume of the site was also increased 

using similar atom positions using a radius of 1.0 Å. Scoring grids were precalculated 

using CHEMGRID43 for AMBER van der Waals potential, QNIFFT44 for Poisson-

Boltzmann-based electrostatic potentials, and SOLVMAP45 for ligand desolvation.  

These potential grids and ligand-matching parameters were evaluated for their 

ability to enrich known CB1 ligands over property-matched decoys. We extracted 199 

known CB1 ligands – both agonists and antagonists – from the IUPHAR database46, 

CHEMBL2432, and ZINC15, and generated 14,929 property-matched decoys using an 

in-house pipeline. Docking success was judged based on the ability to enrich known 

ligands over the decoys by docking rank, using adjusted logAUC values. We also 
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ensured that molecules with extreme physical properties were not enriched, such that 

we wanted neutral molecules to be prioritized in the best-scoring molecules. The 

docking setup was also judged for how well it reproduced the expected and known 

binding modes of the known ligands.  

 The “lead-like” subset of ZINC15 (http://zinc15.docking.org) with calculated 

octanol-water partition coefficients (cLogP) ≤ 3.5 and with molecular mass ≤ 350 Da, 

was docked against the CB1 orthosteric site using DOCK3.731. This library contained 

over 225 million molecules, most of which were make-on-demand compounds from the 

Enamine REAL set27. Of these, more than 181 million successfully docked. An average 

of 3,283 orientations, and for each orientation, an average of 441 conformations was 

sampled. Overall, about 123 trillion complexes were sampled and scored. The total time 

was about 70,470 core hours, or 1.96 calendar days on 1,500 cores.   

 To reduce redundancy of the top scoring docked molecules, the top 300,000 

ranked molecules were clustered by ECFP4-based Tanimoto coefficient (Tc) of 0.5, and 

the best scoring member was chosen as the cluster representative molecule. These 

51,365 clusters were filtered for novelty by calculating the ECFP4-based Tanimoto 

coefficient against >7,000 CB1 and CB2 receptor ligands from the CHEMBL2432 

database. Molecules with Tanimoto coefficients ≥ 0.38 to known CB1/CB2 ligands were 

not pursued further.  

 After filtering for novelty, the docked poses of the best-scoring members of each 

cluster were filtered by the proximity of their polar moieties to S3837.39, T2013.37, or 

H1782.65, and manually inspected for favorable geometry and interactions. Of the most 

visually favorable molecules, all members of its cluster within the top 300,000 molecules 
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were inspected, and one of these was chosen to replace the cluster representative if 

they exhibited more favorable poses or chemical properties. Of these, 60 compounds 

were chosen for testing, 55 of which were successfully synthesized.  

 In the second screen, a crystal structure of the CB1 receptor (PDB: 5XR8)22 was 

used in the docking calculations. The coordinates of M3636.55 were modified slightly, 

while still maintaining the residue within the electron density, and the full structure with 

MDMB-Fubinaca overlaid into the orthosteric site was minimized with Schrӧdinger’s 

Maestro. Atoms of the crystal ligand, AM-841, and the cryogenic ligand, MDMB-

Fubinaca, were combined and used to seed the matching sphere calculation in the 

orthosteric site, with 45 total spheres used. As before, the structure was protonated with 

REDUCE and assigned AMBER united atom force field charges. The volume of the low 

protein dielectric was increased by 1.5 Å from the protein surface, and the desolvation 

volume was increased by 1.9 Å. The desolvation volume was removed around S3837.39 

and H1782.65 to decrease the desolvation cost near these residues and to increase the 

number of molecules that would form polar contacts with them. As in the first setup, this 

new docking setup was judged based on its ability to enrich known 199 CB1 ligands 

over 14,929 property-matched decoys, to prioritize neutral over charged molecules, and 

to reproduce the expected and known binding modes of CB1 ligands. 

 A larger, greasier subset of ZINC15 with cLogP ranging from 3 to >5 and 

molecular mass ranging from 350 to >500 was docked against the CB1 orthosteric site 

using DOCK3.7. This library contained over 74 million molecules. Of these, more than 

18 million successfully docked. An average of 4,713 orientations, and for each 

orientation, an average of 645 conformations was sampled. Overall, about 63 trillion 
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complexes were sampled and scored. The total time was about 25,432 core hours, or 

0.71 calendar days on 1,500 cores.   

 As before, the top 300,000 ranked molecules were clustered by ECFP4-based 

Tanimoto coefficient (Tc) of 0.5, and the best scoring member was chosen as the 

cluster representative. This resulted in 60,420 clusters, which were filtered for novelty 

by calculating the ECFP4-based Tanimoto coefficient against >7,000 CB1 and CB2 

receptor ligands from the CHEMBL24 database. Molecules with Tanimoto coefficients ≥ 

0.38 to known CB1/CB2 ligands were not pursued further.  

 The docked poses were again filtered for proximity to S3837.39, T2013.37, or 

H1782.65, manually inspected for favorable geometry and interactions, and the full 

cluster within the top 300,000 molecules was inspected for more favorable 

replacements. Of these, 60 compounds were chosen for testing, 58 of which were 

successfully synthesized. 

  

In vitro pharmacology 

 The PRESTO-Tango47 and GloSensor assays using the human CB1 cannabinoid 

receptor construct, were used to determine agonist and inverse agonist activity. Single-

point assays were performed as described previously22,23, using the agonist, 

[3H]CP55,940 as a positive control. 
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Chapter 6: Future Directions 
 So where are we now? What have we learned? What happens next? In the 

preceding chapters, I have presented some data that generate more questions. 

Inevitably, some questions that I initially had are still left unanswered, but to be fair, 

these are difficult questions that don’t have straightforward answers. How is it that a 

weighting of 1.0 for all three scoring function terms generates the best, most reliable 

performance? How is it that all these different theories, charge models, and parameter 

choices fit together even when neglecting key energetic terms like entropy and receptor 

desolvation? How are we still able to find ligands that hit a protein? How is it that our hit 

rate seems to be increasing? How can we best balance the scoring function if we only 

rely on the weak, unphysical criterion of enrichment and log AUC values? What is the 

relationship between enrichment and identification of new ligands? How does docking 

setup choice affect this relationship? Why have many of my supposedly more physically 

correct fixes to the DOCK scoring function and pipeline, such as using the all-atom 

AMBER parameters and charges, diminished performance? A key passage from the 

DOCK ligand desolvation paper1, and also a key refrain in many lab members’ 

presentations (“it’s a miracle it works!”), has permanently fixed itself in my mind for the 

past few years: 

“At first blush it may seem surprising that docking programs ever discover new 

ligands for proteins, so many are the approximations made by their scoring 

functions. That they do reflects, at least partly, a cancellation of errors among 

approximations. Whenever a term is improved by making it physically more 
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correct it is easy to image that the new model may perform worse than the old by 

upsetting this prior cancellation of errors.” 

 

But how do we identify this “cancellation of errors”? Is it possible to identify how 

these incomplete approximations of physical phenomena fit together in an incomplete 

way, yet successfully, in some cases, model reality? Where does approximation end 

and reality begin? I think these questions address the difficulties we had in Chapters 1, 

2, and 3 of incorporating blurry GIST and identifying the correct setup after running 

parameter scanning in the scoring function weights.  

 

6.1 A new methods development pipeline 

Out of necessity and to save our future selves, we created tools to help one from 

deceiving themselves after preparing a setup – using different decoy backgrounds with 

various properties, but also using bootstrapping to identify significant differences. I think 

this is a step in the right direction, as we need more ways to convince ourselves that our 

results are right for the right reasons.  

In the last few months of my PhD, I have been helping Jiankun Lyu, Stefan 

Gahbauer, and John Irwin with a new ligand building pipeline. We have taken a multi-

pronged approach to measuring performance of the ligands built with the new pipeline 

and the previous pipeline: strain energies, enrichment performance, quantifying number 

of dockable molecules built, and RMSD values to crystallographic ligand poses and 

poses we judged to be good. I think this is an effective approach – looking at the 

problem from different perspectives to identify any problems before we commit to it. I 
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think this kind of approach should be implemented in a pipeline for new methods 

development projects. The tests will change with the type of new implementation being 

tested, of course – for example, the tests we are doing on the ligand building pipeline 

could be applied to a new ligand charge model, or the inclusion of individual ligand 

desolvation energies for each conformer of a ligand – ideas that have been, or have 

been planned to be, toyed with in the lab. This would be a “ligand-based” pipeline. 

In terms of a new scoring function term, we could have another set of tests – 

enrichment as a first step with low dielectric and ligand desolvation thin sphere 

parameter scanning, weighting the new scoring function term differently to determine 

change in performance, RMSD calculations to crystallographic and good poses, 

comparison of energies in DOCK versus actual energies from the program this new 

scoring function term comes from, an alternative set of benchmarks with different 

preparations, among other tests. For example, I created a version of 40 DUD-E systems 

that were all built with chloroform ligand desolvation energies instead of hexadecane to 

check whether blurry GIST could be incorporated more readily with smaller ligand 

desolvation energies. This would be a more “protein-based” pipeline. Basically, all the 

tests that are or should be performed once something new is implemented becomes a 

pipeline. Just as applications projects follow the common path of matching sphere 

scanning, thin sphere scanning, charge extrema decoys, Goldilocks decoys, pose 

viewing, with modifications as necessary, so too should methods projects follow a 

common path of a series of tests that would get at the heart of whether this new method 

is right for the right reasons before a prospective screen is run. I think methods 

development will always have a place in the Shoichet lab and having a battery of tests, 
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a set of tools, and benchmarks that the methods developer could turn to or take ideas 

from would be extremely useful and save a lot of time. This is one reason why I have 

consistently added my scripts to the lab wiki (http://wiki.docking.org), so that others may 

use them and modify them as desired. 

 

6.2 A new receptor desolvation method 

What’s next for receptor desolvation? I think we would have had more success, 

had we focused on a buried binding site rather than one that is solvent-exposed, but this 

is one important and interesting lesson we learned from the blurry GIST work – that it 

may be system- and binding site-dependent. Thus, I think if blurry GIST would be 

applied to a different system, potentially a GPCR for which desolvation is important, and 

that has only partial or no exposure to bulk solvent, and thus little reorganization energy, 

we might find that blurry GIST has a more beneficial effect. Identifying a protein for 

which desolvation contributes most of the water energetics, as we did with cytochrome c 

peroxidase, may lead to better outcomes.  

The extra effort involved in running a molecular dynamics simulation and then 

GIST, followed by “blurring” the grids, and then thin sphere scanning with blurry GIST 

weight scanning, all for a mild enrichment improvement, as well as the intimidating GIST 

papers, has limited its acceptance in the lab. Perhaps the more streamlined tools 

available2 could give people a better idea of what GIST is capable, and how to more 

easily use it. If this is not enough, I referenced multiple water location and energy 

prediction programs in the Introduction, many of which may be easier or faster to use 

and can be applied to binding sites where water is important. Some of these programs 
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that predict water energies are grid-based and can, in theory, be easily incorporated into 

my trilinear interpolation receptor desolvation scheme in the DOCK code. Thus, it 

should be quick to test other solvation energy methods to determine if they fit into the 

DOCK scoring function as well as GIST does or better.  

Many lab members that choose to include water in their docking setups include 

key crystallographic waters and minimize them in the presence of the ligand and protein 

to identify low energy water orientations. This is a simple way to find molecules with 

water-mediated interactions in a screen but restricts the size of the binding site, as the 

waters now become part of the protein, and therefore, doesn’t allow one to find 

molecules that displace these water molecules. The goal was to get around this 

situation by combining GIST with turning waters on and off3 – by including displaceable 

waters and also including the desolvation cost of those waters. It wasn’t until I had 

stopped working on this project that I found a bug in the flexible receptor docking code, 

such that the van der Waals and ligand desolvation grids were being double counted. 

This bug has been fixed, but I did not have the time to re-test the 10 or so DUD-E 

systems to which I applied the combination of GIST and displaceable waters. Another 

issue that has arisen is that Simplex minimization does not work with the flexible 

receptor docking code. Thus, future developers should first reconcile this in the DOCK 

source code, as minimization improves enrichment significantly, before trying the 

combination of displaceable waters and GIST desolvation energies.  

Once this is completed, I think continuing with the same trajectory as I had – 

including crystallographic or computationally-predicted waters and a desolvation grid 

from GIST or some other program – can be attempted again. Early during this project, 
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Trent and I had ideas of running GIST on multiple protein-ligand complexes, where the 

ligands had different chemotypes, and thus should have different mediating water 

locations, energies, and surrounding solvent shells. Then when docking, multiple GIST 

grids could be read into DOCK for scoring, thereby extending the flexible receptor 

docking code to receptor desolvation. This is not physically accurate, as the specific 

ligand that you run with the protein would have its own set of ligand-specific GIST 

energies, but in the inaccurate world of docking energies, it’s possible that these 

energies might be transferable.  

We have seen that the reorganization energy is very important for protein-ligand 

binding from the blurry GIST work and from others4. We could potentially even include 

the first shell solvent energies from the different protein-ligand complex GIST 

calculations, much as we did with the reorganization energy in Chapter 2 – by just 

adding it on to the desolvation energy. However, as identifying voxels outside of each 

protein-ligand complex to determine the reorganization energy would suffer from the 

same issues as the original displacement GIST, careful thought would have to go into 

how to precompute the first shell energies, and how best to incorporate them during 

docking, as different ligand poses would undoubtedly overlap with the surrounding 

solvent that was calculated using a different ligand. The details would need to be 

worked out, but it might be worth exploring. If we show that reorganization energy is a 

significant contribution to AmpC binding from our blurry GIST work, it could be used as 

a great model system to use for testing this method. 
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As in the Introduction, implementing a new water method in docking boils down 

to: how can we incorporate water energetics in an approximate, quick way that will 

meaningfully account for water’s role in protein-ligand binding? 

 

6.3 A generalized form of combinatorial scoring 

I was quite happy with the combinatorial scoring code from Chapter 2, in which 

sampling is performed once, the poses are scored with the two scoring functions 

sequentially, minimized, and then swapped if a better scoring pose is found with the 

other scoring function. As it is written now, it only works for standard and blurry GIST 

scoring functions, which only differ in the blurry GIST term. However, with some effort, 

the code can be modified so that this scheme could be applied to different, new scoring 

function terms. This ensures that only one screen must be performed and when docking 

ever-increasing small molecule libraries, would save a lot of time. Perhaps in the future, 

an INDOCK argument would allow users to specify the new scoring function term they 

want to compare to the standard scoring function, or maybe even some combination of 

terms that they want to compare to the standard scoring function, and then my scheme 

above would be performed during docking. This could be a set of terms separate from, 

or added onto, the standard scoring function. Then one could get a direct comparison of 

the benefits of this new scoring function term or set of scoring function terms relative to 

the standard scoring function.  

  



236 

 

References 
1.  Mysinger, M. M. & Shoichet, B. K. Rapid context-dependent ligand desolvation in 

molecular docking. J Chem Inf Model 50, 1561-1573, doi:10.1021/ci100214a 

(2010). 

2.  Ramsey, S. et al. Solvation thermodynamic mapping of molecular surfaces in 

AmberTools: GIST. J Comput Chem 37, 2029-2037, doi:10.1002/jcc.24417 

(2016). 

3.  Huang, N. & Shoichet, B. K. Exploiting ordered waters in molecular docking. J Med 

Chem 51, 4862-4865, doi:10.1021/jm8006239 (2008). 

4.  Mahmoud, A. H., Masters, M. R., Yang, Y. & Lill, M. A. Elucidating the multiple roles 

of hydration for accurate protein-ligand binding prediction via deep learning. 

Communications Chemistry 3, 19, doi:10.1038/s42004-020-0261-x (2020). 

 



237 

 

Appendix A: Supplementary Figures and Tables 
A1. Supplementary Material for Chapter 1 

Retrospective docking. 

Enrichment.  We quantified enrichment by calculating the area under the curve 

(AUC) and the log-adjusted AUC (logAUC) values with respect to the receiver operator 

characteristic (ROC) curves: ligand and  property-matched decoys (PMD) were 

generated based on actives using the DUD-E method.  Enrichment studies were 

performed on 25+1 systems: CcP-ga consisting of 46 ligands and 3,338 decoys and 25 

DUD-E systems (AA2AR, ACES, ADA, AMPC, CXCR4, EGFR, FA10, FABP4, GLCM, 

HIVPR, HMDH, HS90A, ITAL, KIT, KITH, LCK, NRAM, PARP1, PLK1, PPARA, PTN1, 

PUR2, SRC, THRB, and TRY1) consisting of 6571 ligands and 397,864 decoys in total.  

See ref for more details of the DUD-E benchmark set.   

Pose reproduction.  We post-processed the ligands from our enrichment 

calculations and compared their poses to the crystallographic conformations.  All crystal 

complexes were aligned into the docking frame using UCSF Chimera.  DOCK6.6 was 

used to calculate the symmetry-corrected root mean square deviation (RMSD) using the 

Hungarian algorithm.  We looked at two measures of pose fidelity: (1) average RMSD; 

and (2) the percent docking success (# of poses < RMSD threshold / # molecules × 

100).   
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GIST grids and how to combine them.   

In docking, two tasks are performed: sampling and scoring.  In this paper the 

objective is to improve the scoring aspect by adding a receptor desolvation (Erec,desol) 

term to the DOCK scoring function (eq 1, main document).  The receptor desolvation 

term is estimated by using GIST grids.  Here, we focus on how to generate GIST grids 

for use in docking by combining the five GIST components that are output by the 

Cpptraj program (cf. Ambertools14):  

• Enthalpy between solvent (water) and solute (receptor) ( dens
,wsE );  

• Enthalpy of water with water ( dens
,wwE ), also called the two-body term;  

• Translational entropy between water and receptor ( trans
,wsTS );  

• Orientational entropy between water and receptor ( orient
,wsTS ); 

• Density of water in the context of the receptor ( og ).   

 

The four energy values are in kcal/mol/Å3.  The density is unitless (density/bulk 

density).  The GIST nomenclature has undergone a development over time, particularly 

whether the enthalpies are to be scaled by one-half, as discussed previously, and here.  

The GIST grids used here are obtained using Amber14 and Ambertools14.   

We combine the GIST terms (outlined above) in four physically meaningful ways 

to be used in docking.  There are two issues to explore regarding this new GIST term:  

(1) the best way to combine the GIST components;  and (2) the best scaling factor to 

bring the GIST term into balance with the other scoring function terms.   
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Figure A.1.1. GIST Combinations.  
Illustration of how the GIST grids are combined in this work.  For enthalpy and free 
energy contributions > 0.5 kcal/mol/Å3, regions are coloured red. For the case < -0.5 
kcal/mol/Å3, the regions appear blue.  Tan colored are regions with entropy 
contributions > 0.5 kcal/mol/Å3.  Regions of water density go > 6.0 units (6 times that of 
bulk) are displayed in grey.   

 

To estimate the free energy difference of water transfer (desolvation), we need to 

subtract the energy of water in bulk from the energy on the surface of the protein.  This 

is done by referencing the water-water term to bulk (eq A.1.1):  

( ) ( ) ( )igiEiE owwww u+= 0.3184dens
,

dens_ref
,    (Equation A.1.1) 
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Here, the i refers to a grid position, a voxel.  The constant was calculated using 

two parameters (taken from the Amber manual): mean energy, Cbulk = - 9.533 

kcal/mol/water, and number density, Cnum_dens = 0.0334 waters / Å3.  Cbulk × Cnum_dens = - 

0.3184 kcal/mol/ Å3.     

In this study, we include displacement from all voxels: both high and low 

occupied sites.  In previous IST displacement studies voxels only received a score if the 

density was above a cutoff.  This ignores contributions from low density regions that 

may have a considerable contribution.  Also in prior work, the energy normalized to 

density (eq A.1.2) was used.   

( ) ( )
( ) 533.9

0334.0

dens
,norm_ref

, +
u

=
ig

iE
iE

o

ww
ww     (Equation A.1.2) 

The normalized value is the average energy per water in the voxel and thus the units of 

normalized energies ( norm_ref
,wwE ) are in kcal/mol/water.  Although we did consider the 

normalized grid (preliminary enrichment experiments yielded poor results), we chose to 

use the referenced grid (eq A.1.1).  The units also indicate that the un-normalized grids 

are more compatible with our scoring function.   

The GIST grids may be combined to produce the total enthalpy grid (eq A.1.3) 

and the total free energy grid (eq A.1.4).   

( ) ( ) ( )iEiEiE wwwstot
dens_ref
,

dens
,

ref +=       (Equation A.1.3) 

( ) ( ) ( ) ( ) ( )( )iTSiTSiEiEiG wswswwwstot
trans
,

orient
,

dens_ref
,

dens
,

ref +−+=   (Equation A.1.4) 

In addition, we scaled the water-water term by two (eqs A.1.5 and A.1.6, and Figure 

A.1.1).   
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( ) ( ) ( )iEiEiE wwwstot
dens_ref
,

dens
,

ref2 2u+=     (Equation A.1.5) 

( ) ( ) ( ) ( ) ( )( )iTSiTSiEiEiG wswswwwstot
trans
,

orient
,

dens_ref
,

dens
,

ref2 2 +−u+=  (Equation A.1.6) 

In-house Python scripts were used to combine grids and are available at 

https://github.com/tbalius/GIST_DX_tools.  

In eqs A.1.5-A.1.6, the factor of two results from every water interacting with 

every other water.  Each water involved in the interaction retains half the energy (eq 

A.1.7).  

¦
z
�

=

kl
Wl

lkk EE ,2
1       (Equation A.1.7) 

Here, k and l denote waters and W is the set of all waters.  The water-water term in eqs 

A.1.5 and A.1.6 has the full interaction energy at every voxel.   

 

GIST Displacement Algorithm.   

To estimate the cost of desolvating the receptor upon binding, we first identify the 

voxels displaced by the ligand ( ^ `ligandv|v �= iiV ).  A voxel is considered to be 

displaced if it is contained within the van der Waals radius of an atom during the 

docking calculation.  We sum up the energies of those voxels (eq A.1.8) and multiply 

the sum by the volume of the voxel (vol = 0.125 Å3) to get a value in kcal/mol. 

( )¦
�

uu=
V

iGISTdesolrec
i

EvolE
v

, vD     (Equation A.1.8) 

Here, α is a scaling factor.   The algorithm is made available in the source code of the 

new release of the DOCK3.7 program.   
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To make estimating the GIST component fast and compatible with DOCK 3.7, 

some approximations were made.  Double counting occurs only rarely when non-

connected parts of the molecules overlap (Figure A.1.2, right panel).  We determined 

that there was very good agreement between the GIST energies calculated with double-

counting during docking and the exact GIST energies calculated by a rescoring 

procedure (Figure A.1.2, left panel).   

 

 

Figure A.1.2.  GIST in docking is a good approximation.   
The left panel shows a correlation between the top scoring molecules from two screens, 
where the poses and scores are taken from the virtual docking screen with the GIST 
term.  The GIST component is taken from the screening results (y-axis) and from 
rescoring the poses.  The right panel shows a molecule for which double counting has 
occurred.    
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Comparison of GIST combinations.   

We explored which of the four combinations of the GIST components (discussed 

above) is best for estimating receptor desolvation during docking.  We performed 

retrospective tests on the four GIST grids, Enthalpy1 (eq A.1.3), Free Energy1 (eq 

A.1.4), Enthalpy2 (eq A.1.5), and Free Energy2 (eq A.1.6), used to estimate the 

desolvation component (where α = 1 in eq A.1.8).   

For each GIST grid we ran ten docking calculations to obtain a mean value and 

standard deviation. Because DOCK is deterministic, we modified our sampling (by 

perturbing the spheres used to orient the molecules into the binding site during docking) 

to obtain different results.  Ten runs were used to better gauge the confidence in our 

results in the same way as performing a wet lab experiment in triplicate.   

Here, the Enthalpy2 (eq A.1.8) performed the best with log AUC of 57.46 (Figure 

A.1.3 and Table A.1.1) followed by Free Energy1 (eq A.1.7) as the second best with log 

AUC of 56.08.  The Enthalpy2 grids were used for the remainder of this study.   
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Figure A.1.3.  Comparison of GIST combinations. 
CcP-ga docking enrichment values (panels A and B) and pose reproduction (panels C 
and D) shown using different combinations of the GIST grids incorporated into the 
DOCK3.7 scoring function.  The error bars are generated by running DOCK3.7 ten 
times with modified sampling.   
  



245 

 

Table A.1.1.  Comparison of GIST combinations.  

 LogAUC AUC avg RMSD (Å) success (%) a   

 mean std mean std mean std mean std 

Enthalpy2 57.46 1.84 92.51 1.19 1.38 0.10 31.03 6.72 

Enthalpy1 49.50 1.34 90.09 1.01 1.52 0.13 21.72 4.89 

Free Energy2 50.35 2.02 92.05 1.13 1.38 0.14 33.10 9.66 

Free Energy1 56.08 1.42 92.04 1.20 1.47 0.14 28.62 7.24 
a Success percent of systems with RMSD less than 1.0 Å 

 

Retrospective analysis for CcP-ga.   

Next, we explored what the best scaling factor (α in eq A.1.8) is for weighting the 

receptor desolvation term in the DOCK3.7 scoring function (main text eq 1).  All other 

terms in eq 1 (besides Erec,desol) have scaling factors of one.   
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Figure A.1.4. GIST Weighting Factors.  
Retrospective analysis of CcP-ga is shown. (A, B) Enrichment analysis. Panel (A) 
shows log AUC. Panel (B) shows the AUC.  (C, D) Pose reproduction analysis. Panel 
(C) shows RMSD averaged over all ligands. Panel (D) shows the success rate (number 
of ligand with RMSD <1.0 Å).  The blue squares represent the mean of 10 docking runs 
and the error bars show the standard deviation indicating the variance in distribution of 
values.    
  



247 

 

Table A.1.2.  CcP-ga retrospective analysis for GIST weight.   
GIST scale (α) logAUC AUC avg RMSD (Å) success (%) a  

 mean std mean std mean std mean std 

-8.0 36.91 1.52 88.33 0.69 1.51 0.08 10.34 5.77 

-4.0 51.16 1.38 91.20 0.91 1.42 0.09 18.97 4.15 

-2.0 57.36 1.16 92.38 1.14 1.40 0.11 22.41 4.43 

-1.0 (full GIST) 57.46 1.84 92.51 1.19 1.38 0.10 31.03 6.72 

-0.5 56.54 2.10 92.50 1.22 1.39 0.12 34.83 8.92 

0.0 (non-GIST) 55.43 2.00 92.43 1.26 1.53 0.15 29.66 9.02 

2.0 54.20 2.11 92.24 1.33 2.71 0.10 8.28 2.29 

4.0 51.52 2.12 91.69 1.30 2.84 0.10 6.90 1.54 

8.0 46.94 2.07 90.25 1.23 2.99 0.09 4.83 1.69 
a Success percent of systems with RMSD less than 1.0 Å 

 

GIST convergence analysis.   

To gauge if we ran the simulations long enough, the full simulation was divided 

into ten 5ns sub-trajectories and GIST grids were generated for each for comparison. 

First, we calculated the second-norm between pairs of GIST grids to quantify how 

similar the corresponding voxels are to one another between two grids; second, we 

docked to the different GIST grids (as the receptor desolvation component of the 

scoring function in eq 1) and quantified the variability in enrichment (log AUC). 

Sub-trajectory GIST grids were compared to the full simulation GIST grid (Figure 

A.1.5, top panel), and to neighboring sub-trajectory GIST grids (Figure A.1.5, bottom).  

The oscillating behavior in both curves (Figure A.1.5) indicates convergence.   
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Figure A.1.5.  Comparison of GIST grids from sub-trajectories. 
The combined GIST grid of solute-water enthalpy and water-water enthalpy scaled by 
two are evaluated here. Top, each sub-trajectory is compared to the full simulation.  
Bottom, each sub-trajectory is compared to its immediate neighbors.  
 

We examined the variance of docking performance when using the sub-trajectory 

GIST grids (0.19 log AUC units, Table A.1.3).  As a control, we looked at the variance 

by modifying the sampling (1.84 log AUC units, Table A.1.3).  When compared to the 

modified sampling, the sub-trajectory docking varied little (9.6 times less).  These data 

show that docking with the GIST grids of the 5 ns long simulations gave very similar 

docking results as the full 50 ns simulation (differing at most by 0.36 log AUC units).   
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Table A.1.3.  Impact of modified sampling and subtrajctory on enrichment  
Trajectory Spheres mean std max min diff 

Sub a original 58.51 0.19 58.76 58.12 0.64 

Full b original 58.40 -- -- -- -- 

Full modified 

c 

57.46 1.84 62.24 55.16 7.08 

a 10 GIST grids generated from 5 ns sub-trajectory;  
b One GIST grid from the 50 ns trajectory;  
c 10 perturbed spheres 
 

Retrospective analysis for 25 DUD-E systems.   

When comparing GIST to no-GIST results across the 25 DUD-E systems, GIST 

performs worse (average log AUC difference is -1.33, Table A.1.4), unlike CcP-ga 

which performs best with a weighting of -1.0.  However, when we lower the weighting of 

GIST component to -0.5 the results got slightly better than the no-GIST enrichments 

(avg. Δlog AUC = 0.28, Table A.1.4).  When examining the GIST grids, we observed 

extrema of very high energies at specific voxels.  For example, ADA had the most 

extreme voxel of any system with a value of -119.73 kcal/mol/Å3 that if displaced would 

penalize the score by +14.97 kcal/mol.  Such a large penalty seems to be unreasonable 

in the contexed of our scoring.  Thus, we truncate these peaks to ±3.0 kcal/mol/Å3 

(which remains a high value, 5 to 19 fold higher than the standard deviation of the 

210,000 voxels in the grid).  This truncation impacts only 0.03% of the voxels, ranging 

from 17 to 88 for the favorable water voxels and 0 to 10 for unfavorable voxels.  When 

truncation of extrema is combined with a weighting of -0.5 there is an additional 

improvement of GIST compared with no-GIST (avg. Δlog AUC = 0.53, Table A.1.4, 

Figure A.1.6).  AA2AR and AMPC both change classification from same to better when 
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truncated grids are used, FXA likewise shifts but this is due to very slight change in log 

AUC.  We believe that the extrema are artificially high due to the following: (1) The 

simulations are run with the protein’s heavy atoms strongly restrained (5 kcal/mol/Å2).  

Since waters interact with the restrained atoms, their densities and energies are more 

concentrated than if the residue/atoms could move.  The waters that are interacting with 

a moving atom would also move smearing the water’s densities and energies across 

more voxels. (2)  Entropy is neglected and the positions that have the highest energies 

are also those position where the waters are most frozen, so there is likely an entropic 

cost to having the water there.   

 

Table A.1.4. DUD-E evaluation of GIST contribution on enrichment calculations.   
Analysis of different weighting factors on enrichments. a 

 better Same worse avg. 

ΔlogAUC 

weight: -0.5 10 9 6 0.28 

weight: -1.0 8 5 12 -1.33 

weight: -2.0 5 4 16 -6.55 

weight: -0.5, truncate 3.0 13 6 6 0.53 

Weight: -1.0, truncate 3.0 11 3 11 -0.39 

a Each row sums to the 25 systems.   
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Figure A.1.6.  Enrichment analysis of CcP-ga and 25 DUD-E systems.  
Bar graphs of logAUC values for six docking types are shown: non-GIST in purple and 
GIST in blue (with the GIST component weighted by -0.5 and the GIST grids truncated 
at 3.0 kcal/mol/Å3 results).  The bottom panels show the total enrichment values for No-
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GIST and GIST, while the top two panels show the difference (GIST - non-GIST).  CcP 
results are shown for 10 perturbed results (error bars show standard deviation as an 
indication of the distribution of the results) and for the original sphere set.  ADA was 
prepared by hand.  All other systems were prepared with an automated procedure.   

 
Binding site analysis.   

We examine the CcP-ga closed binding site to understand the nature of solvent 

in the site.  In Figure A.1.7 the enthalpy with water-water term scaled by two (Enthalpy2, 

eq A.1.5) is shown. The regions of unfavorable energy for waters (>1.0 kcal/mol/Å3) are 

shown in red, which are favorable to displace according to the GIST scoring function. 

The favorable regions for water (>-1.0 kcal/mol/Å3) are shown in blue, which are 

unfavorable to displace according the GIST scoring function.  The favorable site (s1) 

proximal to Asp233, is the most favorable water location in the site.  The region closest 

to the heme has two unfavorable water locations (s2 and s3) (Figure A.1.7).  There is 

also an unfavorable location (s4) proximal to Gly178.  Finally, there is a region close to 

the cavity entrance that encompasses three additional favorable water locations (s5, s6, 

and s7).  Decreasing the cutoff value to 0.01 kcal/mol/Å3 reveals the irregular shapes of 

the hydration sites (Figure A.1.7).  Note that the majority of the solvation energy is 

concentrated at these seven sites.  However, just accounting for the most intense sites 

(as WaterMap does) will neglect the lower magnitude regions, which do add up (-1.47, 

and +2.42, Table A.1.5) and contribute to the score.   
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Figure A.1.7.  Hydration of CcP-ga with the GIST enthalpy grid.  
A. Here, GIST enthalpy grids with a cutoff of 1.0 kcal/mol/Å3 are shown.  The only 
opening to the closed cavity is indicated by an arrow.  Seven hydration sites are 
indicated, s1 though s7.  B.  The cutoff value is decreased to 0.01.  
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Table A.1.5.  Site energetics of subregions.  
Subsite name Energies 

(kcal/mol) 

s1 -4.27 

s2 2.58 

s3 1.63 

s4 1.67 

s5 -2.36 

s6 -2.20 

s7 -1.22 

Sum positive 5.88 

Sum negative -10.05 

  

Whole site positive 8.30 

Whole site negative -11.52 

Total  -3.22 

  

Remainder positive -1.47 

Remainder negative 2.42 
a Sites are spheres with a radius of 1.4Å 
located at the centers of intensities of the 
energies.  
 

 
Prospective testing.   

The behavior of the 17 tested molecules (Table A.1.6) is presented in the 

following, including ranks and energies.  Ligand occupancies are presented in Table 

A.1.6; for compound 14, MES was not completely removed from the binding site and its 

partial occupancy is shown in Figure A.1.8.  Ligand efficacy is determined from the 

affinity (Figure A.1.9) and ranges from -1.0 to -0.22. The ligands that make water-
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mediated interactions with Asp233 on average bind more weakly than the molecules 

that bind with a direct electrostatic interaction (Table A.1.7).  

From among those molecules substantially changing rank or pose due to 

including GIST, 17 were purchased for experimental testing.  Compounds 3 to 14 were 

acquired and tested because their ranks improved with GIST, while compounds 15 to 

17 were acquired and tested because of better ranks without the GIST term (Table 1.1).  

Molecules that ranked higher by GIST scored more favorably than without GIST by up 

to -1.8 kcal/mol, but could also be more unfavorable by as much as +2.0 kcal/mol out of 

a total docking score that ranged from -42.8 to -35.4 kcal/mol among the top-scoring 

1000 molecules of VS1.  The observation that GIST can improve ranks while reducing 

scores reflects its global effects on other high-ranking molecules that were affected 

more substantially still, emphasizing the role of decoy molecules in docking.  For 

molecules whose rank was substantially better without GIST, the GIST term ranged 

from 8.1 to 8.7 kcal/mol (unfavorable), showing that GIST strongly disfavored these 

otherwise high-ranking molecules.  We also looked for molecules where a substantial 

pose change occurred between the two scoring functions (e.g. compounds 1 and 2, 

Table 1.1).  Finally, we considered implicit water-mediated interactions to be favorable 

regions in the GIST grid within hydrogen-bonding distance to ligand and protein, though 

no explicit water molecules were used.  This occurred with compounds 3, 4, 5, and 6 

(Table 1.1).  We now consider the 14 molecules prioritized by including GIST (pro-

GIST), and then turn to those 3 prioritized by excluding GIST (anti-GIST).   

 Intriguingly, GIST penalties on these deprioritized molecules, at around +8 

kcal/mol, had a much stronger impact on reducing their ranks than favorable GIST 
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energies had on improving them; as with most scoring terms in docking, deprioritizing 

decoys is as or even more important than highly scoring what turns out to be true 

ligands.  

Table A.1.6.  Detailed properties of selected molecules.   
Cmpd # Name Rank1 

GIST 
Rank2 
Non-GIST 

Δlogrank RMSD a kd (μM) b 

3 ZINC4705523 13 249 1.28 0 3472±172 

6 ZINC19439634 91 355 0.59 0 3435±860 

9 ZINC20357620 98 745 0.88 0 522±21 

4 ZINC6869116 112 464 0.62 0 809.7±99 

12 ZINC2389932 118 645 0.74 0 619±63 

13 ZINC39212696 147 1462 1 0 n.d. 

11 ZINC161834 358 1212 0.53 0 1.3±0.03 

1 ZINC2564381 490 180 -0.43 3.21  n.d. 

8 ZINC42684308 601 1916 0.5 0 1962±554 

-- ZINC95079390 615 2612 0.63 0 n.a. 

2 ZINC6557114 664 740 0.05 3.17  154±19 

5 ZINC6855945 869 2550 0.47 0 1606±287 

7 ZINC1827502 5 19 0.58 0 113.7±20.05 

14 ZINC112552 747 4380 0.77 0 29.6±2.5 

10 ZINC74543029 1128 4923 0.64 0 ~712±231 

ANTI-GIST 

17 ZINC22200625 6000 577 -1.02 0 n.d. 

15 ZINC2534163 9487 906 -1.02 0 NB 

16 ZINC156254 14828 1657 -0.95 0 5464±2694 (NB) 

a RMSD uses the Hungarian algorithm 
b n.a., not available - molecule not in assayable form.  n.d., not determinable - 
compound interference with absorbance peaks.  NB, non-binder. “~”, assay interference 
of compound 10 before saturation was reached.  
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Figure A.1.8. Compound 14 with MES. 
Compound 14 was refined to 73% in the presence of 26% MES from the crystallization 
buffer 
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Figure A.1.9.  Ligand binding curves.   
The Soret band shift is shown as a function of ligand concentration (µM).  
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Table A.1.7.  Ligand occupancies after automatic refinement. 
Cmpd # Ligand occupancy 

1 0.88 

2 0.90 (one conformation 

modeled) 

3 0.93 

8 0.92 

9 0.90 

10 0.92 

11 0.87 

12 0.93 

14 0.73 (+MES @ 0.26) 

While the occupancy for the major pose of 2 refined to 90%, the alternative pose would 
sterically clash with a nearby protein loop that has insufficient electron density to allow 
explicit modeling of alternative conformations.   
 

Table A.1.8.  Comparison of affinities for compounds with different interactions  
WM 

 
NonWM 

 

Cmpd # Affinity 

(µM) 

Cmpd # Affinity 

(µM) 

1 n.d. 2 154 

3 3472 7 114 

4 810 8 1962 

5 1606 11 1 

6 3435 12 619 

9 522 14 30 

10 712 
  

    

average 1759.5 average 480 

median 1208 median 134 
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Timings.   

The GIST-scoring algorithm is more time- and memory-intensive than trilinear 

interpolation, which is used in the other scoring components.  To determine how GIST 

affects the speed of docking calculations, we ran one set of ligands from each system 

ten times on the same, dedicated machine (Table A.1.9).  This results in a 1.5 to 16.4 

times (on average six-fold) slowdown in runtime.  However, we anticipate that using 

good GIST approximations will result in no slowdown and little impact on docking 

quality.   

Table A.1.9. DOCK3.7 run time slowdown with GIST referenced to non-GIST.   
PDB code DUD-E name Avg number  

of 
heavy atoms  

Slowdown a 

1B9V NRAM 25.34 3.87 

1E66 ACES 29.48 2.21 

1L2S AMPC 20.19 5.21 

1NJS PUR2 33.29 7.30 

1UYG HS90A 27.95 4.67 

1XL2 HIVPR 41.06 4.37 

1YPE THRB 34.88 7.97 

2AYW TRY1 33.66 16.40 

2AZR PTN1 39.93 12.97 

2B8T KITH 30.24 3.14 

2E1W ADA 24.77 3.78 

2ICA ITAL 36.38 13.27 

2NNQ FABP4 30.30 4.27 

2OF2 LCK 34.70 9.34 

2OWB PLK1 33.08 6.76 

2P54 PPARA 32.18 2.92 

2RGP EGFR 31.39 4.45 
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PDB code DUD-E name Avg number  
of 
heavy atoms  

Slowdown a 

2V3F GLCM 27.26 1.15 

3CCW HMDH 36.66 4.05 

3EL8 SRC 34.62 4.43 

3EML AA2AR 31.97 2.65 

3G0E KIT 38.77 2.44 

3KL6 FA10 33.52 9.94 

3L3M PARP1 30.30 5.34 

3ODU CXCR4 26.67 5.16 

 CcP-ga 12.01 1.51 

Average  31.18 5.75 
a Slowdown = (timing from GIST docking) / (timings from non-GIST docking) 

 

Supplemental Methods.   

Experimental affinities and structures.  The protein was purified and 

crystallized as described.  To reach high ligand occupancies, crystals were transferred 

into increasing ligand concentrations up to 100 mM (compound solubility permitting) and 

soaked for several minutes in each drop containing 25% 2-Methyl-2,4-pentanediol 

(MPD) as a cryoprotectant.  

Diffraction images of flash-frozen crystals were collected at beamline 8.3.1. at the 

Advanced Light Source, Berkeley CA, and processed automatically with the Xia2 

pipeline.  Initial phases were obtained by Phaser molecular replacement using a model 

structure lacking several flexible residues and the loop region (residues 186-194).  To 

avoid bias these regions were also excluded from early rounds of refinement using 

phenix.refine.  The ligand and binding site water molecules were only added in the final 
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stage of crystallographic refinement and their occupancies were set to a value below 1 

to automatically refine to their final values via phenix.refine without manual intervention. 

Ligand restraint dictionaries were generated from SMILES strings via phenix.elbow, 

using either automatic or CSD-Mogul geometry optimization. Composite 2mFo-DFc 

OMIT maps excluding the ligand fraction were calculated using 

phenix.composite_omit_map and converted to 2mFo-DFc FFT maps in ccp4 format in 

order to generate figures using PyMOL.   

Crystallographic models were tested with phenix, Coot and the PDB validation 

tool before depositing the protein-ligand complexes at the PDB as 5U60 (1), 5U5W (2), 

5U5Z (3), 5U61 (8), 5U5Y (9), 5UG2 (10), 5U5X (11), 5U5U (12), 5U5V (14) (Table 

A.1.7). 

Experimental affinities were measured at least in duplicate by monitoring the shift 

of the heme Soret band on ligand binding and plotted using a one-site binding least 

squares fitting method (GraphPad Prism 6.03). 

  

Preparing the receptor for MD.  The protein preparation is described in the 

main text’s method section, but further details are explained here.  The proteins were 

assigned FF12SB (CcP-ga protein) or FF14SB (all DUD-E proteins) force field 

parameters.  At the time CcP-ga simulations were run, the FF14SB parameters were 

not yet released.  The proteins were placed in a box of TIP3P waters such that every 

atom of protein was 10 Å from the boundary of the box. The number of waters is 

presented in Table A.1.10.  For CcP-ga (4NVA, the apo structure), ten crystallographic 

waters were retained for the simulation.  No crystallographic waters were retained for 
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the simulations of the DUD-E systems.  For CcP-ga, use of these crystallographic 

waters alters the GIST grids, particularly for occluded water locations.  Some cofactors 

and structural ions were kept and disulfide bonds were defined (Table A.1.10).  

Tutorials, which describe (1) running Molecular dynamics for GIST grid generation; and 

(2) docking with GIST grids, are available at 

[http://wiki.docking.org/index.php/DOCK_3.7_with_GIST_tutorials].   

For CcP-ga, the heme force field was downloaded from the web.  The heme 

parameters were originally prepared for hemoglobin and myoglobin, and thus needed to 

be adapted for Cytochrome c Peroxidases.  The heme parameters were modified by 

adding a positive charge to the iron (iron Fe III has a 1.25 charge).  Amber preparation 

(prep and frcmod) files for the heme are available at 

https://github.com/tbalius/GIST_DX_tools.   
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Table A.1.10. CcP-ga and DUD-E simulation details 
Protein 
name 

PDB code Residues Waters Atoms Ions / cofactor / 
disulfides /  
capping groups a 

CcP-ga 4NVA (closed) 290 11,013 4614 Heme 

      

AA2AR 3EML 290 14514 4569 Disulfides, caps 

ACES 1E66 532 16481 8346 Disulfides 

ADA 2E1W 349 9775 5536 ZN 

AMPC 1L2S 358 12080 5581  

CXCR4 3ODU 306 15546 4988 Disulfides, caps 

EGFR 2RGP 257 12374 4120 Caps 

FA10 3KL6 282 13069 4331 Disulfides 

FABP4 2NNQ 131 5372 2059  

GLCM 2V3F 497 14611 7765 Disulfides, caps 

HIVPR 1XL2 198 7841 3128  

HMDH 3CCW 842 36285 12608  

HS90A 1UYG 209 8014 3295  

ITAL 2ICA 179 6917 2901  

KIT 3G0E 332 13892 5298  

KITH 2B8T 206 11994 3290  

LCK 2OF2 271 12925 4392  

NRAM 1B9V 391 11140 5979 Disulfides,  Ca ion 

PARP1 3L3M 348 12689 5510  

PLK1 2OWB 294 16083 4828  

PPARA 2P54 267 11020 4282  
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Protein 
name 

PDB code Residues Waters Atoms Ions / cofactor / 
disulfides /  
capping groups a 

PTN1 2AZR 297 12120 4811  

PUR2 1NJS 200 9464 3056  

SRC 3EL8 263 9783 4200 Caps 

THRB 1YPE 250 8567 4023 Disulfides, caps  

TRY1 2AYW 223 8042 3221 Disulfides 

a NME and ACE were added to cap breaks (missing residues). 

 

Docking.  Scripts and programs in the DOCK3.7 distribution were used to prepare the 

receptors and ligand databases for docking and to carry out the library screens.  

Blastermaster.py was used to prepare the protein: hydrogens were added with Reduce, 

spheres were generated with sphgen and by converting the crystallographic ligand 

atoms to spheres (spheres are used to orient molecules into the binding site); 

electrostatic grids were generated by solving the Poisson-Boltzmann equation with the 

Qnifft program; van der Waals grids were calculated using Chemgrid, the ligand 

desolvation grids were produced with solvmap, all distributed within the DOCK3.7 

program suite.  A GIST component to the scoring function was integrated in a new 

release of DOCK3.7 (Figure A.1.2). Default parameters were otherwise used for 

docking.  CcP-ga was prepared as a flexible receptor with 16 different conformations, as 

described.  All other systems used a single receptor conformation.  To use GIST, 

proteins were aligned using Chimera into the simulation’s frame of reference before 

DOCK preparation.   
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Enrichment calculations.  Log AUC is described in Mysinger and Shoichet.  We 

specify a lower bound of 0.001 FPR to avoid infinitely negative values of log(0).  The 

maximum area under the curve is 3, we then convert this value to a percent (maximum 

area) and subtract the area under the random curve.  Thus, Log AUC ranges from -14.5 

to 85.5 where 0 is random and anything above 0 is better than random, and below, 

worse.  Note that these values will change for other lower bounds (the lambda 

parameter in Mysinger et al.).  The CcP-ga ligand datebases where generated as 

described below at ph4, while the DUD-E databases were obtained from the Autodude 

webpage (http://autodude.docking.org) .  Protein structures were prepared for docking 

described above (docking section).   

 

Database generation.  The databases were generated using the DOCK3.7 ligand 

generation pipeline.  ChemAxon (molconvert) was used to generate a 3D molecule from 

SMILES.  The protonated states of the ligands are generated using Marvin of 

ChemAxon. Protonation states of the molecule were generated at pH 4.0 (greater than 

20% occupancy).  AMSOL7.1 was used to calculate the partial charges and per atom 

decomposition of ligand desolvation, Openeye Omega was used to generate an 

ensemble of conformations of each ligand.  These conformations are stored in db2 

format using the db2 generation program distributed with DOCK 3.7.  Ligand databases 

downloaded from ZINC15 used the same pipeline but were generated at pH 6.4.   

  



267 

 

A2. Supplementary Material for Chapter 2 

 

Figure A.2.1. Correlations between GIST energies. Roughly 297,000 ligand and 
decoy poses from the 40 DUD-E systems were rescored outside of DOCK using the 
displacement GIST scoring scheme and the blurry GIST scoring scheme for sigma (σ) 
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values of pseudo-atom radius / 0.5 (A),  pseudo-atom radius / 1.0 (B), pseudo-atom 
radius / 1.2 (C), pseudo-atom radius / 1.3 (D), pseudo-atom radius / 1.4 (E), pseudo-
atom radius / 1.5 (F), pseudo-atom radius / 2.0 (G). The pseudo-atom radius is 1.0 Å for 
hydrogen atoms and 1.8 Å for heavy atoms. Line equations, R2 values, mean absolute 
errors (MAE), mean squared error (MSE) and root mean squared error (RMSE) are 
reported.  
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Figure A.2.2. Insufficient minimization scrambles best scoring poses.  
A) Two different poses are reported as the best scoring pose for this specific 

molecule. However, the standard pose scores better for the blurry GIST scoring 
function, and the blurry GIST pose scores better for the standard scoring function 
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with DOCK energy differences of 0.72 kcal/mol and 0.77 kcal/mol, respectively. 
B) Hundreds of molecules exhibit this behavior for the 3000 molecule AmpC 
DUD-E set after docking for Simplex minimization and Monte Carlo optimization, 
with some of these energy differences rising over 20 kcal/mol. Temperature for 
Monte Carlo optimization was set at 1 K.  
  



271 

 

 

Figure A.2.3. A new scoring scheme fixes insufficient minimization.  
In the previous implementation of GIST, we performed two screens – one with the 
standard scoring function, one with the GIST scoring function – where the exact same 
sampling is performed twice. A) In this new scheme, the sampling is only done once. 
Molecules are first scored for the blurry GIST scoring function and sorted by energy. 
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These blurry GIST poses are minimized with the blurry GIST scoring function. To obtain 
the standard scoring function poses, the blurry GIST score is subtracted from the poses 
initially scored by blurry GIST. These standard poses are then sorted by the standard 
energy and minimized with the standard scoring function. The minimized poses from 
both scoring functions are then rescored with the other scoring function, and if a better 
energy pose is found, that pose now becomes the best scoring pose for that scoring 
function. In this case, it does not matter which scoring function generated the pose, as 
all poses generated are scored with both scoring functions and each scoring function 
takes its best scoring pose. B) Docking of roughly 2,000 molecules to AmpC with nine 
replicates. Combinatorial docking performs with the same speed as the standard or 
blurry GIST scoring functions alone, but produces the output of both, thus cutting the 
docking time in half. 
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Figure A.2.4. Choosing molecules similar to known AmpC inhibitors  
A) ECFP4 Tanimoto coefficients to known AmpC inhibitors for pro-bGIST and pose-
changing molecules from the first round of testing. B) ECFP4 Tanimoto coefficients to 
known AmpC inhibitors for pro-bGIST and anti-bGIST molecules from the second round 
of testing. C) Molecules with the carboxylate and phenolate SMARTS patterns were 
retrieved from ZINC15, docked, and resorted into the original docking hit lists. 
Molecules were purchased from this subset. This included 1129 carboxylates and 79 
phenolates that were prioritized by blurry GIST (pro-bGIST) and 6 carboxylates and 85 
phenolates that were deprioritized by blurry GIST (anti-bGIST).  
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Figure A.2.5. Volume occupation of pro- and anti-bGIST molecules 
A) Most frequently displaced voxels from 154,256 pro-bGIST molecules (A) and 
159,071 anti-bGIST molecules (B). Voxels were counted if they were contained within 
the van der Waals radii of a molecule’s pose and then binned based on frequency of 
displacement.  
 

 

Figure A.2.6. Parameter and solvent choice do not affect rank changing 
molecules. A) The 50ns molecular dynamics simulation was initially performed with the 
TIP3P solvent model and ff14SB force field, but was extended to a neutralized TIP3P 
setup with 3 chloride ions, TIP3P with the ff99SB force field, TIP4PEw, TIP5P, SPCE, 
and OPC solvent models. The GIST enthalpies show the medians and interquartile 
ranges after rescoring the top 150,000 poses outputted from the blurry GIST scoring 
function screen using the displacement (Full) or blurry GIST (blurry) scoring schemes 
using rescoring scripts. B) Number of molecules that change ranks (pro- or anti-bGIST) 
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with a 0.5 log order rank difference after rescoring the top 150,000 poses outputted from 
the blurry GIST scoring function screen with different molecular dynamics water models 
and parameter choices. Even after altering the parameter choices, the same molecules 
that were chosen from the screen (“Screen”) tend to have 0.5 log order rank differences 
and would have been chosen again. This suggests that the choice of parameters in the 
MD simulation is unlikely to have changed our results substantially.  
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Table A.2.1. All molecules tested against AmpC. 
Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

Log Diff 

Change 

Closest Known  

(ECFP4 Tanimoto Coefficient) 

PRO GIST      

  
Z227878108, ZINC000035126609 

31.04 4947 1469 0.53 

 
3-(4-Chloro-phenylsulfamoyl)-
thiophene-2-carboxylic_acid 
(0.48) 

  
Z2721494698, ZINC000530155910 

9.08 35000 6345 0.74 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.26) 

  
Z1835990482, ZINC000436994974 

1.13 35724 8940 0.6 

 
ZINC000580868636 (0.25) 

  
Z2437416709, ZINC000231345804 

38.12 38046 7900 0.68 

 
3-(4-Bromo-phenylsulfamoyl)-
thiophene-2-carboxylic_acid 
(0.51) 

 
 Z2437289226, ZINC000516925327 

16.76 38055 9121 0.62 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.30) 

  
Z2903948290, ZINC000905038806 

4.13 51683 / 
512614 

15297 / 
63688 

0.53 / 
0.91 

 
ZINC000547933290 (0.27) 
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Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

Log Diff 

Change 

Closest Known  

(ECFP4 Tanimoto Coefficient) 

 
Z1614639933, ZINC000070600835 

27.12 63066 14354 0.64 

 
ZINC000548260732 (0.21) 

  
Z2903947513, ZINC000905035036 

11.13 90516 17239 0.72 

 ZINC000681580748 (0.35) 

  
Z2903948616, ZINC000905040387 

65.21 127809 27133 0.67 

 
ZINC000580868636 (0.29) 

  
Z2607540718, ZINC000663035453 

-4.72 203696 44934 0.66 

 ZINC000237985875 (0.33) 

  
Z2607839654, ZINC000663152888 

-0.47 295024 47632 0.79 

 
ZINC000547933290 (0.23) 

 
Z3231982467, ZINC000071182697 

-0.9 1973615 382284 0.71 

 CHEMBL289526 (0.29) 
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POSE CHANGERS      
Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

RMSD Closest Known  

(ECFP4 Tanimoto Coefficient) 

  
Z2027054565, ZINC000339208618 

49.23 81 84 1.4 

ZINC000581714578 (0.61) 

 
Z2027054051, ZINC000339202812 

81.77 296 244 1.5 

 ZINC000559249118 (0.76) 

  
Z1993712482, ZINC000324284771 

98.61 865 1047 1.1 

 
CHEMBL370041 (0.56) 

  
Z2773172198, ZINC000230467629 

16.71 871 524 2.0 

 
ZINC000753018188 (0.57) 

  
Z2027055215, ZINC000550110611 

99.6 1496 2051 2.7 

 
ZINC000436480025 (0.58) 

  
Z2476040032, ZINC000650447472 

80.6 2072 1012 3.9 

 CHEMBL371148 (0.45) 

 
Z1796548044, ZINC000327717846 

61.61 2151 1642 2.0 

 
CHEMBL370041 (0.37) 
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Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

RMSD Closest Known  

(ECFP4 Tanimoto Coefficient) 

  
Z1971843402, ZINC000231978561 

27.28 3540 2180 2.0 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.55) 

 
Z2774472128, ZINC000632389912 

40.17 3728 1872 2.3 

 ZINC000339204163 (0.43) 

 
Z2851435096, ZINC000641595024 

65.46 4796 4824 3.7 

 
ZINC000632456968 (0.52) 

 
Z2755451606, ZINC000600870692 

40.19 7849 10101 4.1 

 
CHEMBL84953 (0.2) 

 
Z910652810, ZINC000066048697 

-1.1 
(50uM) 

9573 38827 2.8 

 
ZINC000753016232 (0.30) 

 
Z3228473727, ZINC000037748240 

57.11 9793 5631 3.7 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.71) 

  
Z2774693635, ZINC000632470191 

0.21 10945 5008 1.4 

 ZINC000559249118 (0.49) 
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Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

RMSD Closest Known  

(ECFP4 Tanimoto Coefficient) 

  
Z3226605788, ZINC000038090806 

57.15 11707 4879 2.2 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.59) 

  
Z2827899976, ZINC000716800583 

15.92 14586 6715 2.6 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.60) 

  
Z2721503949, ZINC000530153418 

37.28 15422 8091 2.1 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.48) 

  
Z2721488292, ZINC000530149216 

4.99 15595 7477 1.9 

ZINC000282068144 (0.32) 

SECOND ROUND      
PRO-bGIST      
Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

Log Diff 

Change 

Closest Known  

(ECFP4 Tanimoto Coefficient) 

  
Z3989663601, ZINC001474992853 

74.13 182 50 0.56 

ZINC000549719284 (0.43) 

 
Z3989663634, ZINC001666572192 

12.87 226 41 0.74 

 ZINC001186508157 (0.69) 
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Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

Log Diff 

Change 

Closest Known  

(ECFP4 Tanimoto Coefficient) 

  
Z3989663625, ZINC001662044468 

23.23 
(50uM) 

424 118 0.56 

 ZINC000436479530 (0.47) 

 
Z3989661636, ZINC001561256162 

33.71 448 127 0.56 

 ZINC001208058246 (0.48) 

  
Z3989661646, ZINC001666656536 

29.50 
(100uM) 

739 212 0.54 

 
ZINC000559252749 (0.44) 

 
Z3989661608, ZINC001593345874 

25.71 46134 12194 0.58 

 
3-(3,4-Dichloro-
phenylsulfamoyl)-thiophene-2-
carboxylic_acid (0.47) 

 
Z355256356, ZINC001608246713 

44.05 67792 16238 0.62 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.72) 

 
Z2774444392, ZINC000632381004 

11.56 68587 20483 0.52 

 ZINC000559249118 (0.45) 

 
Z445512790, ZINC000319717798 

16.13 78880 21981 0.55 

 
3-(3,4-Dichloro-
phenylsulfamoyl)-thiophene-2-
carboxylic_acid (0.46) 
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Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

Log Diff 

Change 

Closest Known  

(ECFP4 Tanimoto Coefficient) 

  
Z3989663574, ZINC001364842415 

6.97 111315 32955 0.53 

 ZINC000436479530 (0.48) 

 
Z3989661610, ZINC000384192320/ 
ZINC000384192319 

9.42 113040 / 
94882 

28140 / 
15185 

0.6 / 0.8 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.51) 

  
Z3989663523, ZINC001607844684 

32.08 113043 16393 0.84 

 
3-Benzylsulfamoyl-thiophene-2-
carboxylic_acid (0.47) 

  
Z3989663551, ZINC001209231438 

11.92 
(50uM) 

118216 33214 0.55 

 
ZINC000581714578 (0.44) 

  
Z2940234968, ZINC001251429491 

14.77 135153 42125 0.51 

 
ZINC000632456968 (0.37) 

  
Z3989661629, ZINC001423901557 

27.76 177139 44621 0.6 

 ZINC000549722993 (0.47) 

  
Z2940498999, ZINC001251428895 

13.94 246886 68196 0.56 

 ZINC001186508157 (0.42) 
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Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

Log Diff 

Change 

Closest Known  

(ECFP4 Tanimoto Coefficient) 

  
Z2940312243, ZINC001251387861 

12.57 263612 71846 0.56 

 ZINC001186508157 (0.49) 

  
Z3989661628, ZINC001414219141 

7.59 267329 61449 0.64 

 ZINC001186508157 (0.53) 

  
Z3989663580, ZINC001434557893 

1.29 272507 85961 0.5 

 ZINC000436479530 (0.44) 
ANTI-bGIST      

 
Z2940307649, ZINC001251419289 

77.01 80 427 0.73 

ZINC000581714578 (0.52) 

 
Z3989661624, ZINC001309062817 

67.44 110 481 0.64 

ZINC000563543464 (0.60) 

 
Z2275041991, ZINC000450990100 

87.59 165 1600 0.99 

ZINC000581714578 (0.71) 

 
Z3989661637, ZINC001561899653 

80.03 170 691 0.61 

 ZINC001208058246 (0.48) 

 
Z2234688146, ZINC000436478328 

75.02 240 963 0.6 

ZINC000581714578 (0.55) 
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Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

Log Diff 

Change 

Closest Known  

(ECFP4 Tanimoto Coefficient) 

 
Z3989661639, ZINC001653645310 

20.58 
(50uM) 

268 3367 1.1 

ZINC000550111357 (0.44) 

 
Z3989661641, ZINC001655188929 

77.11 
(100uM) 

318 1500 0.67 

ZINC001208288320 (0.45) 

 
Z3989661632, ZINC001463030415 

18.8 
(100uM) 

326 1037 0.5 

 ZINC001208058246 (0.48) 

 
Z3989661621, ZINC001195214804 

59.22 354 1296 0.56 

 ZINC000559249118 (0.58) 

 
Z3989661643, ZINC001664179432 

23.16 360 1429 0.6 

 ZINC001190919234 (0.58) 

 
Z3989661623, ZINC001309057083 

35.14 379 2275 0.78 

 ZINC001208058246 (0.60) 

 Z3989661635, ZINC001475074721 

27.1 400 1651 0.62 

 ZINC000339204163 (0.52) 

 
Z3989663559, ZINC001309078396 

3.89 
(100uM) 

431 2104 0.69 

 ZINC001186508157 (0.50) 
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Enamine ID, ZINC ID Inhibition 

@ 300uM 

(%) 

STD 

Rank 

GIST 

Rank 

Log Diff 

Change 

Closest Known  

(ECFP4 Tanimoto Coefficient) 

 
Z3989661638, ZINC001621709274 

20.5 434 1485 0.53 

ZINC000555530101 (0.54) 

  
Z2774428723, ZINC000632377095 

-2.26 475 2125 0.65 

ZINC000581714578 (0.41) 

 
Z3989661626, ZINC001309413210 

29.33 
(100uM) 

618 3201 0.71 

 ZINC001208058246 (0.47) 

 
Z3989663630, ZINC001664302212 

43.22 
(100uM) 

1859 7590 0.61 

ZINC000581714578 (0.46) 

 Z3989661631, ZINC001462737746 

8.52 
(50uM) 

2329 11521 0.69 

ZINC000563498328 (0.46) 
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A3. Supplementary Material for Chapter 3 

 

Figure A.3.1. Examples of bootstrapping enrichment distribution. ROC curves with 
15 bootstrap replicas are shown on the left. Tight distribution for Androgen Receptor 
(ANDR, a) where 95% confidence interval is 3 adjusted log AUC units. Wider 
distribution for Fatty acid binding protein adipocyte (FABP4, b) with 95% confidence 
interval of 15.6 adjusted log AUC units. 

  



287 

 

 

Figure A.3.2. Bootstrapping on Binders/Nonbinders. Bootstrapping enrichment 
distributions of all scoring function coefficient combinations for binders and nonbinders 
for a) D4 dopamine (81, 486), and b) MT1 melatonin (105, 65) receptors. The left 
panels (REF, blue) are different bootstrapping enrichment distributions of the standard 
scoring function whereas the right panels (NEW, orange) represent the bootstrapped 
enrichment distribution of the scoring function coefficient combination labeled. Mean log 
AUC differences and p-values are reported below.   
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Figure A.3.3. Bootstrapping Enrichment Differences. Examples of bootstrapping 
enrichment distribution where the difference for each the pairs of log AUC is calculated 
and then the distribution is plotted, and the z-test performed comparing to the 
distribution about zero. 
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Figure A.3.4. Bootstrapping statistics for all 43 systems. 
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A4. Supplementary Material for Chapter 4 

Table A.4.1. Active molecules from the initial docking screen. 
Compound Cluster rank a 

(global rank) 
hMT1b 
pEC50 

(% Emax) 
n 

hMT2c 
pEC50 

(% Emax) 
n 

Tcd Nearest ChEMBL23e 
MT1/MT2 Ligand 

ZINC157665999 

167 

(197) 

4.89±0.38 
(63±6) 

n=3 

 
Inverse 7.29±0.16 
(Inverse 90±16) 

n=3 

0.33 

 
CHEMBL398017 

 
ZINC419113878 

 
396 

 
(522) 

 
5.20±0.08 

(84±4) 
n=4 

 
< 4.5 

 
n=4 

 
0.22 

CHEMBL494566 

ZINC433313647 

875 

(1242) 

6.81±0.32 
(42±2) 

n=3 

 
7.77±0.02 

(96±5) 
n=3 

 

0.19 

CHEMBL125226 

 
ZINC159050207 

1559 

(2474) 

 
9.00±0.15 

(99±1) 
n=4 

 
8.70±0.25 

(83±3) 
n=4 

0.24 

 
CHEMBL1223128 

 
ZINC151209032 

1981 

(3583) 

5.70±0.11 
(88±4) 

n=4 

 
< 4.5 

 
n=4 

0.31 

 
CHEMBL394676 

 
ZINC442850041 

 
4123 

 
(7872) 

 
7.91±0.04 

(99±3) 
n=3 

 
9.33±0.33 

(97 ± 2) 
n=3 

0.29 

CHEMBL344242 

 
ZINC353044322 

5764 

(28,258) 

 
5.48±0.05 

(87±6) 
n=4 

 
< 4.5 

 
n=4 

0.33 

 
CHEMBL218225 

 
ZINC603324490 

7612 

(53,767) 

Inverse 
5.92±0.29 

 
Inverse (37±5) 

n=3 

Inverse 
6.20±0.08 

 
Inverse (202±30) 

n=4 

0.27 

 
CHEMBL3260982 

ZINC182731037 

7840 

(17,095) 

 
5.30±0.09 

(82±2) 
n=4 

 
< 4.5 

 
n=4 

0.29 

 
CHEMBL3612457 

ZINC92585174 1836 (3010) 7.80±0.17 (98±1) 
n=4 

7.68±0.14 (74±8) 
n=4 

0.23 CHEMBL1760949 

ZINC432154404 1849 (3035) 6.63±0.17 (95±2) 
n=4 

7.00±0.17 (74±4) 
n=4 

0.27 CHEMBL1760956 

ZINC664088238 2248 (3816) < 5 
n=4 

5.85±0.06 (75±8) 
n=4 

0.20 CHEMBL435032 

ZINC576887661 4161 (14,292) 7.10±0.19 (83±0) 
n=4 

7.28±0.36 (68±5) 
n=4 

0.27 CHEMBL491605 
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Compound Cluster rank a 
(global rank) 

hMT1b 
pEC50 

(% Emax) 
n 

hMT2c 
pEC50 

(% Emax) 
n 

Tcd Nearest ChEMBL23e 
MT1/MT2 Ligand 

ZINC301472854 5033 (10,022) 6.03±0.10 (95±5) 
n=4 

7.00±0.21 (88±6) 
n=4 

0.26 CHEMBL115444 

ZINC580731466 8503 (19,003) 5.70±0.13 (71±3) 
n=4 

7.55±0.10 (98±5) 
n=4 

0.26 CHEMBL115444 

a. Cluster rank, Global rank (Methods) 
b. The log half maximal concentration (pEC50) for inhibition of isoproterenol-stimulated 
cAMP production on hMT1 or hMT2 melatonin receptors transiently expressed in HEK 
cells. Values in parenthesis represent the percentage of the maximal inhibition 
normalized to % melatonin response, except for inverse agonists, indicated by 
(Inverse), where data is normalized to % basal induced by isoproterenol. Data represent 
mean ± S.E.M. from the indicated number (n) of biologically independent experiments 
run in triplicate. 
d. ECFP4 Tanimoto coefficient (Tc) to the most similar known MT1 or MT2 ligand in 
ChEMBL23. 
e. MT1/MT2 ligand in ChEMBL23 most similar to docking active. 
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Table A.4.2. Some of the potent analogs from initial hits 
Initial Hita Analogb hMT1c 

pEC50 
(% Emax) 

n 

hMT2 d 
pEC50 

(% Emax) 
n 

ZINC157665999 
 

ZINC864032792 

7.49 ± 0.04 
(57 ± 3) 

n=3 

Inverse 6.66 ± 0.08 
(Inverse 35 ± 5) 

n=3 
 

ZINC157665999 
 

ZINC555417447 

Inverse 7.39 ± 0.10 
(Inverse 62 ±13) 

n=8 
 

Inverse 5.66 ± 0.10 
(Inverse 84 ± 9) 

n=8 

ZINC157665999  
ZINC157673384 

Inverse 7.68 ± 0.09 
(Inverse 47 ± 12) 

n=13 
 

Inverse 6.18 ± 0.04 
(Inverse 153 ± 14) 

n=12 
 

ZINC157665999 

 
ZINC5586789 

6.81 ± 0.72 
(37 ± 8) 

n=3 
 

8.07 ± 0.15 
(51 ± 3) 

n=4 

ZINC157665999  
ZINC128734226 

6.83 ± 0.17 
(79 ± 3) 

n=4 

8.15 ± 0.09 
(89 ± 3) 

n=4 

ZINC419113878 ZINC602421874 

4.70 ± 0.11 
(51 ± 3) 

n=4 

5.35 ± 0.10 
(66 ± 7) 

n=4 
 

ZINC159050207 ZINC713465976 

7.75 ± 0.22 
(101 ± 0) 

n=4 
 

8.23 ± 0.11 
(94 ± 3) 

n=4 

ZINC151209032 ZINC497291360 

7.05 ± 0.10 
(92 ± 2) 

n=4 

7.48 ± 0.05 
(75 ± 5) 

n=4 

ZINC151209032 
 

ZINC151192780 

5.18 ± 0.22 
(54 ± 4) 

n=4 
 

7.13 ± 0.12 
(95 ± 5) 

n=4 

ZINC151209032 
 

ZINC485552623 

< 5 
 

n=4 

5.80 ± 0.06 
(107 ± 5) 

n=4 

 
ZINC442850041 

ZINC608506688 

9.78 ± 0.13 
(99 ± 1) 

n=4 

8.60 ± 0.10 
(89 ± 3) 

n=4 
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Initial Hita Analogb hMT1c 
pEC50 

(% Emax) 
n 

hMT2 d 
pEC50 

(% Emax) 
n 

 
ZINC301472854  

ZINC223593565 

6.40 ± 0.18 
(86 ± 4) 

n=4 

6.45 ± 0.20 
(58 ± 5) 

n=4 

a. Compound selected directly from the primary docking screen and found to be active 
on in vitro testing 
b. Analog from initial hit 
c, d. The log half maximal concentration (pEC50) for inhibition of isoproterenol-
stimulated cAMP production on hMT1 or hMT2 melatonin receptors transiently 
expressed in HEK cells. Values in parenthesis represent the percentage of the maximal 
inhibition normalized to % melatonin response, except for inverse agonists, indicated by 
(Inverse), where data is normalized to % basal induced by isoproterenol. Data represent 
mean ± S.E.M. from the indicated number (n) of biologically independent experiments 
run in triplicate. 
UCSF7447 (‘7447), UCSF3384 (‘3384), UCSF4226 (‘4226) 

  

Table A.4.3. Pharmacokinetics of three melatonin receptor type-selective ligands 
Compound pIC50 (Emax %) 

pEC50 (IA) 
Cmaxa 

(ng/mL) 
AUCb 

(hr*ng/mL) 
T1/2c (hr) CLd 

(mL/min/kg) 
Vsse Brain/Plasma 

ratio 

 
ZINC128734226 
MT2-selective agonist 

pIC50 
MT1 – 6.8 (48%) 
MT2 – 8.2 (80%) 

1922.8 282.1 0.29 117.9 1.11 1.58 (30’) 

ZINC555417447 
MT1-selective inverse agonist 

pEC50 
MT1 – 7.4 (IA) 
MT2 – 5.8 (IA) 

1948.6 494.5 0.27 67.11 1.11 3.03 (30’) 

ZINC157673384 
MT1-selective inverse agonist 

pEC50 
MT1 – 7.7 (IA) 
MT2 – 6.2 (IA) 

1299.6 563.8 0.32 58.48 1.38 1.43 (30’) 

a. Cmax: Maximum concentration 
b. AUC: Area under plasma concentration-time curve 
c. Half-life 
d. Clearance 
e. Volume of distribution at steady-state 
UCSF4226 (‘4226), UCSF7447 (‘7447), UCSF3384 (‘3384) 
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Table A.4.4: Probe pairs of in vivo tested molecules 
Active Selective Probe 

(Sigma RefCode) 
hMT1 pEC50a 

(% Emax) 
n 

hMT2 pEC50b 
(% Emax) 

n 

Inactive analog  
(Sigma RefCode) 

hMT1 pEC50a 

 

n 

hMT2 pEC50b 

 

n 

 
ZINC555417447 

(SML2751) 

Inverse 7.4 ± 0.10 
(Inverse 62 ± 13) 

n=8 

Inverse 5.7 ± 0.10 
(Inverse 84 ± 9) 

n=8 

 
ZINC37781618 

(SML2752) 

< 4.5 
 

n=3 

< 4.5 
 

n=3 

 
ZINC128734226 

(SML2753) 

6.8 ± 0.2  
(79 ± 3) 

n=4 

8.2 ± 0.1  
(89 ± 3) 

n=4 

 
Z3670677764 

(SML2754) 

< 4.5 
 

n=3 

< 4.5 
 

n=3 

a, b. The log half maximal concentration (pEC50) for inhibition of isoproterenol-
stimulated cAMP production on hMT1 or hMT2 melatonin receptors transiently expressed 
in HEK cells. Values in parenthesis represent the percentage of the maximal inhibition 
normalized to % melatonin response for ‘4226, and to % basal activity for ‘7447. 
Compounds were tested at concentrations up to 30μM. Data represent mean ± S.E.M. 
from the indicated number (N) of biologically independent experiments run in triplicate. 
UCSF4226 (‘4226), UCSF7447 (‘7447) 
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Figure A.4.1. Concentration-response curves of initial 15 compounds. 
hMT1- (a,c,e) or hMT2-mediated (b,d,f) inhibition of isoproterenol-stimulated cAMP in 
HEK cells by melatonin and 15 initial compounds. Data normalized to melatonin 
response represent mean ± s.e.m. of four biologically independent experiments (n=4) 
run in triplicate, unless otherwise indicated, which is indicated in parenthesis next to 
each compound name. 
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Figure A.4.2. Concentration-response curves of interesting analogs.  
hMT1- (a,c,e) or hMT2-mediated (b,d,f) inhibition of isoproterenol-stimulated cAMP in 
HEK cells by melatonin and select analogs. Data normalized to melatonin response 
represent mean ± s.e.m. of four biologically independent experiments (n=4) run in 
triplicate, unless otherwise indicated, which is indicated in parenthesis next to each 
compound name. 
  



298 

 

 

Figure A.4.3. Small ligand changes have large effects on activity and selectivity. 
a, Docked pose of ‘9032, an MT1-selective direct docking hit. b, Docked pose of ‘1360, 
a close analog of ‘9032 that switches 2-fold selectivity for MT2 over MT1. c, Docked 
pose of ‘2780, an analog where MT2 selectivity climbs to 89-fold over MT1. d, Docked 
pose of ‘2623, which adds a bulkier 2-chloro-3-methylthiophene into a proposed MT2-
selective hydrophobic cleft, resulting in a fully MT2-selective agonist without detectable 
MT1 activity. All docked poses are overlaid onto the crystallographic pose of 2-
phenylmelatonin in transparent blue. e, Concentration-response curves the four analogs 
at MT1 and MT2. Data normalized to melatonin response represent mean ± s.e.m. of 
four biologically independent experiments (n=4) run in triplicate.  f, Bias plots of ‘0041 
and '6688 relative to melatonin signaling. Mean values (Table A.3.6) are presented as 
solid lines and the 95% confidence interval for the line is shaded. Data are normalized 
to melatonin response and represent mean ± s.e.m. of three biologically independent 
experiments (n=3) run in triplicate, except for ‘6688 for Gi activation (n=4).  
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Figure A.4.4. MT1-selective inverse agonists decelerate re-entrainment rate in 
vivo.  
a - e, Representative actograms of running wheel (RW) activity in wild type (WT) 
C3H/HeN (C3H) mice treated with VEH (a), 30 μg/mouse MLT (b), UCSF7447 (c), 
UCSF3384 (d), as well as 300 μg/mouse LUZ (e) just prior to the new dark onset (black 
dots) following an abrupt 6h advance of dark onset in a 12:12 light-dark cycle (gray: 
dark phase; white: light phase). Compounds were administered once a day for 3 days 
(see Methods for additional details). Corresponding quantification found in Fig. 3b,c. f - 
k, Representative actograms of RW activity for VEH [WT (a), MT1KO (c), MT2KO (e)] or 
inverse agonist ‘7447 [WT (b), MT1KO (d), MT2KO (f)] treated C3H mice following a 6 h 
advance of dark onset. Mice were kept in a 12:12 light-dark cycle. ‘7447 (30 μg/mouse) 
was administered for 3 consecutive days just prior to the new dark onset (black dots). l, 
Inverse agonist ‘3384 decelerates the rate of re-entrainment of RW activity rhythm 
onset in C3H WT mice. Data expressed in hours advanced each day for VEH vs. ‘3384 
(two-way repeated measures ANOVA; treatment x time interaction: F16,647 = 1.99 P = 
0.0122). m, Inverse agonist ‘7447 does not modulate the rate of re-entrainment of RW 
activity rhythm onset in C3H MT1KO mice. Data expressed in hours advanced each day 
for MT1KO mice treated with VEH vs. ‘7447 (mixed-effect two-way repeated measures 
ANOVA; treatment x time interaction: F16,474 = 1.44 P =0.117). n, Inverse agonist ‘7447 
decelerates the rate of re-entrainment of RW activity rhythm onset in C3H MT2KO mice. 
Data expressed in hours advanced each day for MT2KO mice treated with VEH vs. 
‘7447 (mixed-effect two-way repeated measures ANOVA; treatment x time interaction: 
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F16,683 = 2.57 P = 0.000686. Data represents mean + s.e.m. *P < 0.05, **P < 0.01, for 
multiple comparisons by Tukey’s post test (P < 0.05). Dotted line in j - k refers to the 
new dark onset. Additional details of all statistical analyses as well as n for each 
condition can be found in Methods (Statistics & Reproducibility). Vehicle (VEH), 
melatonin (MLT), luzindole (LUZ), UCSF7447 (‘7447), UCSF3384 (‘3384). All 
treatments were given via s.c. injection. 
 

 

Figure A.4.5. MT1-selective inverse agonists phase advance circadian activity at 
MT1.  
a - e, Representative actograms of RW activity from individual C3H WT mice kept in 
constant dark (gray bars) treated with VEH (a), MLT (b), UCSF7447 (c), UCSF3384 (d) 
or LUZ (e). All treatments were 30 μg/mouse except for LUZ which was 300 μg/mouse 
as described in Methods. Mice were treated at dusk (CT 10; 2 hours prior to onset of 
RW activity) for three consecutive days (black dots). Red lines indicate best-fit line of 
pre-treatment onsets and blue lines indicate best-fit line of post treatment onsets both 
used for phase shift determinations (see Methods for more details). Corresponding 
quantification found in Fig. 3.3d. f - h, Representative actograms of RW activity from 
individual C3H WT mice kept in constant dark treated with VEH (f), MLT (g), or ‘7447 
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(h, all treatments 0.9 μg/mouse) at CT 10. Corresponding quantification found in Fig. 
3.3d. i - k, Representative actograms of RW activity from individual C3H WT mice kept 
in constant dark treated with MLT (i) at CT 2 (10 hours prior to RW onset) or VEH (j) vs. 
‘7447(k, all treatments at 30 μg/mouse) at CT 6 (6 hours prior to RW onset). 
Corresponding quantification found in Fig. A.3.7.l - q, Representative actograms of 
running wheel (RW) activity from individual C3H WT (l, m), MT1KO (n, o), and MT2KO 
(p, q) mice kept in constant dark treated with VEH (white; l, n, p) or UCSF7447(blue; m, 
o, q; 30 μg/mouse) at CT 10. Corresponding quantification found in Fig. 3.3e. r - w, 
Representative actograms of RW activity from individual C3H WT (r, s), MT1KO (t, u), 
and MT2KO (v, w) mice kept in constant dark treated with VEH (white; r, t, v) or 
UCSF7447(blue; s, u, w; 30 μg/mouse) at CT 2. Corresponding quantification found in 
Fig. 3.3f. Vehicle (VEH), melatonin (MLT), luzindole (LUZ), UCSF7447 (‘7447), 
UCSF3384 (‘3384). All treatments were given via s.c. injection.  
 

 

Figure A.4.6. Concentration-response curves of the inverse agonists. 
a-d, Modulation of hMT1- (a,d) or hMT2- (b,e) mediated inhibition of isoproterenol-
stimulated cAMP in HEK cells by melatonin in the presence of ‘7447 (a,b) or ‘3384 (d,e) 
over a range of concentrations. Data normalized to effect of isoproterenol alone 
represent mean ± s.e.m. of three biologically independent experiments (n=3) run in 
triplicate.  c,f. Schild plots depicting competitive antagonism of melatonin by ‘7447 (c) 
and ‘3384 (f).   Schild analysis at hMT1 (purple) and hMT2 (teal) reveal competitive 
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antagonism for ‘7447 (hMT1 pKB: 7.4 ± 0.1, slope: 0.98 ± 0.03; hMT2 pKB: 6.2 ± 0.1, 
slope: 1.3 ± 0.4) (c),  and ‘3384 (hMT1 pA2: 7.9 ± 0.1, slope: 0.80 ± 0.04; hMT2pKB: 6.7 
± 0.1, slope: 1.0 ± 0.1 ) (f). Data represent mean ± s.e.m. of three biologically 
independent experiments (n=3) run in triplicate. UCSF7447 (‘7447), UCSF3384 (‘3384) 
 

 

Figure A.4.7. Phase shift profiles of ‘7447, melatonin, and luzindole. 
a - c, C3H/HeN mice were kept in constant dark and treated with VEH, MLT, LUZ, or 
‘7447 (all treatments 30 μg/mouse except for LUZ which was 300 μg/mouse, s.c.). Mice 
were treated at CT 2, 6, or 10 (10, 6, or 2 hours prior to onset of RW activity) for three 
consecutive days (see details in Methods). a, CT 2 phase shift data was compared via 
one-way ANOVA (F3,11 = 28.16 P = 1.85 x 10-5). b, CT 6 phase shift data was compared 
via one-way ANOVA (F3,26 = 0.61 P = 0.61). c, CT 10 phase shift data was compared 
via one-way ANOVA (F3,17 = 35.13 P = 1.66 x 10-7). All multiple comparisons made to 
VEH using Dunnet’s post hoc test (P < 0.05).  
Values for MLT & ‘7447 at CT 10 pooled from previous data for comparison to LUZ. 
Data shown represent mean + s.e.m. ****P < 0.0001 for comparisons with VEH. Vehicle 
(VEH), melatonin (MLT), luzindole (LUZ), UCSF7447 (‘7447). All treatments were given 
via s.c. injection.  
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Table A.4.5. Purity information of potent MT1/MT2 compounds & probe pairs 
ZINC ID Vendor ID Purity (%) 

ZINC000037781618 Z1480757072 100 
Not assigned Z3670677764 100 

ZINC000301472854 Z1329100179 99 
ZINC000159050207 Z1407773472 99 
ZINC000353044322 Z1424428911 99 
ZINC000157665999 Z1480758141 93 
ZINC000157673384 Z1480758218 99 
ZINC000555417447 Z1514261971 99 
ZINC000092585174 Z1576575036 97 
ZINC000128734226 Z1610979660 99 
ZINC000182731037 Z1643514089 90 
ZINC000151209032 Z1711618470 99 
ZINC000433313647 Z1918348063 99 
ZINC000442850041 Z1997668124 94 
ZINC000580731466 Z2091863999 97 
ZINC000432154404 Z2214014068 94 
ZINC000419113878 Z2365412762 99 
ZINC000576887661 Z2589323319 99 
ZINC000664088238 Z2613947763 99 
ZINC000603324490 Z2850918676 98 
ZINC000864032792 Z2748808877 99 
ZINC000157676497 Z1480758254 100 
ZINC000516666069 Z1514262713 100 
ZINC000005586789 Z1405137567 97 
ZINC000037781620 Z1481194448 100 
ZINC000091496083 Z1601049071 92 
ZINC000602421874 Z2824473301 96 
ZINC000713465976 Z2769133462 100 
ZINC000497291360 Z2277188345 100 
ZINC000151192780 Z1250569092 100 
ZINC000485552623 Z1848085028 100 
ZINC000608506688 Z1289702161 100 
ZINC000223593565 Z1329102065 95 
ZINC000502746614 Z512511068 100 
ZINC000342894794 Z2223030428 100 
ZINC000448569837 Z2252737042 100 
ZINC000533223031 Z1463977047 95 
ZINC000278402888 Z1873642200 96 
ZINC000153979406 Z1660206648 98 
ZINC000679873307 Z1643528542 97 
ZINC000427909834 Z1747659963 100 
ZINC000935325763 Z2958373897 95 
ZINC000782844129 Z1645267832 98 
ZINC000053552068 Z805386112 96 
ZINC000111617751 Z1159133201 95 
ZINC000795260077 Z1958698304 97 
ZINC000092689376 Z1576993936 100 
ZINC000771256264 Z1576993627 100 
ZINC000657415258 Z2589999587 100 
ZINC000433339262 Z1918345355 100 
ZINC000171411960 Z1021618304 91 
ZINC000295670104 Z2273909585 100 
ZINC000343738565 Z231663050 100 
ZINC000440646486 Z1376027177 98 
ZINC000362026289 Z2191432527 95 
ZINC000603335604 Z2851050870 100 
ZINC000603329297 Z2850976570 100 
ZINC000603283923 Z2850356925 100 
ZINC000603288243 Z2850437507 100 
ZINC000769913802 Z1570930696 97 
ZINC000463058770 Z1694152724 96 
ZINC000527535107 Z2654515526 100 
ZINC000075955186 Z1289701628 100 
ZINC000268578884 Z1421406889 100 
ZINC000340193755 Z1289700543 100 
ZINC000467388371 Z1804092730 90 
ZINC000283765277 Z2034608220 100 
ZINC000596286623 Z2613821040 90 
ZINC000883020057 Z2852703286 97 
ZINC000574060358 Z2365411510 100 
ZINC000713466047 Z2769131474 100 
ZINC000412984585 Z2344648963 100 
ZINC000713485663 Z2769133977 100 
ZINC000286577892 Z2092146945 100 
ZINC000769901394 Z1570866145 99 
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ZINC ID Vendor ID Purity (%) 
ZINC000092827989 Z1567844459 98 
ZINC000157686563 Z1573248969 97 
ZINC000019884129 Z1405137410 100 
ZINC000037678131 Z1405138337 100 
ZINC000075955166 Z1289701578 91 
ZINC000428250445 Z2206671038 100 
ZINC000294945150 Z2261597750 100 
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Figure A.4.8. PRESTO-Tango GPCRome & off-target screening.  
‘7447 (a), ‘3384 (b) and ‘4226 (c) were screened against 320 non-olfactory GPCRs for 
agonism in the arrestin recruitment Tango assay. Data were normalized to the basal 
level of luminescence and represent mean ± s.e.m of a single representative biological 
replicate using technical quadruplicates, and a second confirmatory biological replicate 
(again using technical quadruplicates) was also run for each compound. For the primary 
binding assay, each compound was tested at 10µM final concentration against 42 
molecular targets and data (% inhibition) represent mean ± s.e.m. of 4 biologically 
independent experiments (d,f,h). Targets with <50% inhibition at 10,000 nM indicate 
IC50 values >10,000 nM. For the targets >50% inhibition, Ki was determined in full 
concentration responses and data (-Log(Ki)) represent mean ± s.e.m.  of 3 biologically 
independent experiments run in triplicate (e, g, i). (See Methods). UCSF7447 (‘7447), 
UCSF3384 (‘3384) and UCSF4226 (‘4226).  
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Figure A.4.9. Dose-response curves for off-target receptors. 
‘7447 (red circles), ‘3384 (orange squares), and ‘4226 (green triangles) were screened 
against MT1 (a), MT2 (b), and GPCRs that showed activity less than 0.5 fold of basal 
(RLU) (c-h) or greater than 3.0 fold of basal (RLU) (i) in the PRESTO-TANGO 
GPCRome. Targets include ADRA1D (c), GPR75 (d), TAAR2 (e), ADRB3 (f), SSTR5 
(g), GPR64 (h), and 5HT2C (i). Data were normalized to the basal level of 
luminescence and represent the mean ± S.E.M. of three biologically independent 
experiments run in triplicate. UCSF7447 (‘7447), UCSF3384 (‘3384), and UCSF4226 
(‘4226). 
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Table A.4.6. Biased Analogs 
Compound Gi ß-arrestin   

 Log(Emax/EC50) Log(Emax/EC50) ΔΔLog(Emax/EC50) ß-arrestin Bias 
Melatonin (reference) 10.10 (9.85~10.3) 8.56 (8.3~8.8)   

ZINC442850041 9.32 (9.20~9.56) 6.50 (6.2~6.7) -1.34 
(-0.89~-1.8) 

0.046 
(0.016~0.13) 

ZINC608506688 8.60 (8.3~8.8) 7.90 (7.7~8.2) 0.92 
(0.46~1.37) 

8.2 
(2.9~23.4) 
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Figure A.4.10. Competition binding of inverse agonists against melatonin 
receptors.  
Competition of compounds ‘7447 (a,c,e,g) and ‘3384 (b,d,f,h) for 2-[125I]-iodomelatonin 
binding to hMT1 (a,b), hMT2 (c,d), mMT1 (e,f), or mMT2 (g,h) receptors stably 
expressed in CHO cells in the absence (closed symbols) and presence (open symbols) 
of 100 μM GTP, 1 mM EDTA.Na2, and 150 mM NaCl (‘7447: hMT1 pKi: 6.55 ± 0.08; 
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hMT1-GTP pKi: 8.15 ± 0.06; hMT2 pKi: 5.85 ± 0.07; hMT2-GTP pKi: 6.30 ± 0.07; mMT1 
pKi: 6.54 ± 0.12; mMT1-GTP pKi: 7.64 ± 0.24; mMT2 pKi: 5.66 ± 0.08; mMT2-GTP pKi: 
6.58 ± 0.21; ‘3384: hMT1 pKi: 6.07 ± 0.09; hMT1-GTP pKi: 7.21 ± 0.03; hMT2 pKi: 5.43 ± 
0.08; hMT2-GTP pKi: 6.21 ± 0.04; mMT1 pKi: 6.51 ± 0.07; mMT1-GTP pKi: 7.01 ± 0.04; 
mMT2 pKi: 5.67 ± 0.03; mMT2-GTP pKi: 6.17 ± 0.08). pKi values were derived from 
competition curves fitted to a one-site model (control: solid lines, GTP: dashed lines), 
however a comparison of fits determined that a two-site model (dotted lines) was 
preferred for ‘7447 binding to the hMT1 (a: pIC50Hi: 7.12 ± 0.10, pIC50Lo: 4.75 ± 0.15) and 
mMT1 (e: pIC50Hi: 6.71 ± 0.15, pIC50Lo: 4.87 ± 0.31) in control conditions. Leftward shift 
in affinity for G protein-decoupled (due to GTP and Na+) versus coupled receptors 
indicates inverse agonist apparent efficacy for competitive compounds. Data represent 
mean ± s.e.m. of five independent determinations  
UCSF7447 (‘7447), UCSF3384 (‘3384).  
 

  



311 

 

 

Figure A.4.11. Affinity, efficacy, and potency of MT2-selective agonist.  
(a-d) Competition of ‘4226 for 2-[125I]-iodomelatonin binding on CHO cells stably 
expressing either the hMT1 (a), hMT2 (c), mMT1(b), or mMT2 (d) receptors in the 
absence (hMT1 pKi: 6.46±0.07; hMT2 pKi: 8.16± 0.03; mMT1 pKi: 6.49 ± 0.08; mMT2 pKi: 



312 

 

6.69± 0.07) and presence (hMT1-GTP pKi: 6.23± 0.05; hMT2-GTP pKi:7.38± 0.05; 
mMT1-GTP pKi: 5.91 ± 0.06; mMT2-GTP pKi: 5.99 ± 0.03) of 100 μM GTP, 1 mM 
EDTA.Na2,and 150 mM NaCl. GTP and Na+ uncouples G proteins from melatonin 
receptors promoting inactive conformations. Inactive receptor conformations lower 
affinity for agonists (rightward shifts). Data represent mean ± S.E.M. of five independent 
determinations. (e,f) Concentration-response curves on hMT1 or hMT2 receptors (e) and 
mMT1 or mMT2 (f) transiently-expressed in HEK cells, monitoring isoproterenol-
stimulated cAMP production for hMT1 (pEC50: 6.83 ± 0.17, Emax: 79 ± 3 %; n = 4), 
hMT2 (pEC50: 8.15 ± 0.09, Emax: 89 ± 3 %; n = 4), mMT1 (pEC50: 7.77 ± 0.11, Emax: 65 ± 
3 %; n = 8), and mMT2 (pEC50: 8.23 ± 0.16, Emax: 39 ± 2 %; n = 8). Data were 
normalized to maximal melatonin effect and represent mean ± S.E.M. of indicated 
number (n) of biologically independent experiments run in triplicate.(g) Dose-response 
curves for Gαi3 activation using BRET2 assay for the endogenous ligand melatonin 
(MLT) (pEC50 = 9.33 ± 0.12 and 8.93 ± 0.16 at hMT1 and hMT2, respectively) and for 
‘4226 (pEC50 = 6.26 ± 0.33 and 8.22 ± 0.27 at hMT1 and hMT2, respectively). Net BRET 
ratio was calculated by subtracting the GFP/RLuc ratio per well from the GFP/RLuc ratio 
in wells stimulated with buffer. Data represent mean ± s.e.m. of three biologically 
independent experiments run in triplicate. UCSF4226 (‘4226) 
 

Figure A.4.12. LC/MS of Three In vivo-tested Molecules.  
Expected/observed masses with >95% purity: a) ‘7447: 363.6/363.0 (retention time 4.77 
min), b) ‘3384: 292.4/293.2 (retention time 4.73 min), c) ‘4226: 293.2/293.0 (retention 
time 3.59 min) 
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