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NADPH oxidases and oxidase crosstalk in cardiovascular 
diseases: novel therapeutic targets

Yixuan Zhang, Priya Murugesan, Kai Huang, Hua Cai*

Division of Molecular Medicine, Department of Anesthesiology, Division of Cardiology, 
Department of Medicine, Cardiovascular Research Laboratories, David Geffen School of 
Medicine at University of California Los Angeles, Los Angeles, CA, USA

Abstract

Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, 

which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, 

aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac 

ischaemia–reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. 

Interactions between different oxidases or oxidase systems have been intensively investigated for 

their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the 

pathobiology of each oxidase component, the complex crosstalk between different oxidase 

components and the consequences of this crosstalk in mediating cardiovascular disease processes, 

focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in 

specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate 

the development of novel therapeutic agents targeting these oxidase systems and their interactions, 

which could be effective in the prevention and treatment of cardiovascular disorders.

Accumulating evidence indicates that the major enzymatic sources of reactive oxygen 

species (ROS) in the cardiovascular system are NADPH oxidase (NOX), uncoupled 

endothelial nitric oxide synthase (eNOS; also known as NOS3), mitochondria and xanthine 

oxidase (XO)1. NOX is distinct from other enzymatic sources because its primary function is 

to produce ROS. Low levels of ROS produced by certain NOX isoforms (such as NOX2) 

have been implicated in physiological processes, including cell proliferation, migration, 

differentiation and cytoskeletal organization2. However, excessive production of ROS from 

activated NOXs contributes to cardiovascular pathogenesis. Of note, NOX-derived ROS, 

such as superoxide and hydrogen peroxide (H2O2), can trigger ROS production through the 

activation of other enzymatic systems3–8. For example, ROS produced from NOX can 

induce oxidative inactivation of tetrahydrobiopterin (H4B), an essential cofactor for eNOS, 

resulting in eNOS uncoupling and the production of superoxide rather than nitric oxide 

(NO)9–37. In addition, ROS can stimulate the conversion of xanthine dehydrogenase (XDH) 
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to XO by oxidation of the sulfhydryl residue. ROS produced by NOX can also cause 

mitochondrial DNA damage, oxidation of components of the membrane permeability 

transition pore and opening of the redox-sensitive mitochondrial ATP-sensitive K+ channel 

(mitoKATP), all of which contribute to mitochondrial uncoupling and ROS 

production1–7,38–42. Important mechanistic pathways of ROS amplification or propagation to 

mediate cardiovascular pathogenesis, particularly those centred on NOX-dependent 

uncoupling of eNOS and consequent mitochondrial dysfunction, are shown in FIG. 1. 

Indeed, NOX has emerged as the primary oxidase system underlying oxidative stress in 

vascular diseases, such as hypertension43, aortic aneurysms34,44, hypercholesterolaemia45, 

atherosclerosis46,47 and diabetic vascular complications46,47, as well as in cardiac diseases, 

including ischaemia–reperfusion (IR) injury48, myocardial infarction (MI)49,50, heart 

failure51,52 and cardiac arrhythmias53. In this Review, we discuss the crosstalk between 

NOXs and the other ROS-generating systems in the pathogenesis of cardiovascular diseases 

(CVDs), the targeting of which could reveal novel therapeutic strategies for the treatment 

and prevention of CVDs.

Oxidases in CVD pathogenesis

NOX family of enzymes

Accumulating evidence indicates that NOXs are the predominant sources of ROS in 

CVDs1,5–8,34,43–55. Genetic modifications of NOX isoforms have specific effects on 

cardiovascular phenotypes in animal models26,56–60, indicating a central role of NOXs in the 

development of CVDs.

Discovery.—The first member of the NOX family of enzymes to be discovered was NOX2 

(also known as gp91phox or cytochrome b-245 heavy chain); NOX2 was discovered in 

phagocytes as the enzyme complex underlying the oxidative burst in response to the invasion 

of microorganisms61,62. In 1978, the protein responsible for ROS production in phagocytes 

was found to be cytochrome b558 (composed of NOX2 and p22phox (also known as 

cytochrome b-245 light chain))63,64. After the successful cloning of NOX2 in 1986, other 

subunits and isoforms of NOXs were identified and cloned between 1986 and 2006 

(REFS65–84). So far, seven isoforms of NOXs (NOX1–NOX5, dual oxidase 1 (DUOX1) and 

DUOX2) have been identified. The historical discovery and characterization of the NOX 

family oxidases have been thoroughly reviewed previously85 and are summarized in BOX 1. 

The development of pharmaceutical inhibitors of the NOXs is summarized in BOX 2, and 

the latest agents are discussed below. The genetic modification of NOXs in animal models of 

CVDs is summarized in BOX 3.

Structure.—NOXs are multi-transmembrane proteins (NOX1–NOX5 are six-

transmembrane proteins, whereas DUOX1 and DUOX2 are seven-transmembrane proteins), 

with the C-terminus exposed to the cytosol. NOXs share common structural domains, 

including six conserved transmembrane domains, four conserved haem-binding histidines, 

the FAD-binding domain and the NADPH-binding domain80. NOXs sequentially transfer 

electrons from NADPH to FAD, haem groups and then to molecular oxygen, leading to 

superoxide production86. Mutation of one proline residue in the NADPH-binding domain 

Zhang et al. Page 2

Nat Rev Cardiol. Author manuscript; available in PMC 2021 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inactivates NOX2 (Pro415 in human NOX2)87, NOX3 (Pro413 in human NOX3)88 and 

NOX4 (Pro437 in human NOX4)60,89, indicating an important role of the NADPH-binding 

domain in the activation of NOXs. Of note, both NOX1 and NOX2 (also known as CYBB) 

are located on chromosome X, whereas other NOX genes are located on autosomes.

The crystal structures of the NOXs have been reported. In 2009, the crystal structure of the 

N-terminal regulatory domain of a plant NOX in rice (a homologue of mammalian NOX2) 

was published90. Plant NOX proteins have a cytosolic N-terminal region with two EF hands 

that bind to Ca2+ (REF.90). These motifs are absent from the mammalian NOX2, but are 

present in NOX5, DUOX1 and DUOX2 (REF.90). In 2017, the crystal structures of the FAD-

binding and NADPH-binding domains (known as the C-terminal cytosolic dehydrogenase 

(DH) domain when combined) of NOX5 from Cylindrospermum stagnale were reported91. 

Of note, this DH domain is common to all seven members of the NOX family91. The C-

terminus was shown to function as a toggle switch and to regulate access ofthe NADPH to 

NOX91. The structure of the NADPH-binding domain reported in this NOX5 DH domain is 

very similar to that of the NADPH-binding domain of human NOX2 (REF.91) previously 

deposited in the RCSB Protein Data Bank (ID: 3A1F).

Activation.—Each NOX isoform contains one catalytic subunit and other subunits, except 

for NOX5, which consists of one catalytic subunit alone. As the only membrane-bound 

subunit, p22phox is required for the stability and activation of NOX1–NOX4 (REF.92). Given 

that NOX2 was the first NOX isoform to be discovered and has been the subject of more 

mechanistic studies of activation, we first discuss the activation of this isoform. Under 

resting conditions, NOX2 and p22phox locate at the membrane as an inactive complex, 

whereas the p40phox (also known as neutrophil cytosol factor 4), p67phox (also known as 

neutrophil cytosol factor 2) and p47phox (also known as neutrophil cytosol factor 1) subunits 

are in the cytosol56,93. Activation of NOX2 also requires the small GTPase p21-RAC1 (also 

known as Ras-related C3 botulinum toxin substrate 1) to assemble with NOX2 on the 

membrane for full activity. Whereas RAC1 is ubiquitously distributed, RAC2 is reportedly 

required for the activation of NOX2 in differentiated granulocytes derived from the HL60 

cell line and in neutrophils94–96. Upon NOX2 activation, RAC1 or RAC2 is recruited to the 

membrane, followed by recruitment of other cytosolic components. p47phox is then 

phosphorylated by protein kinase C (PKC)97–99 and translocated to the membrane, together 

with p67phox and p40phox. Next, phosphorylation of p47phox leads to a conformational 

change in its structure and subsequent interaction with p22phox, when the tandem SRC 

homology 3 (SH3) domain in p47phox can bind to the proline-rich region in the cytosolic C-

terminus of p22phox (REF.100). These assembly processes result in the activation of NOX2. 

The initial ROS production (especially of H2O2) activates proto-oncogene tyrosine-protein 

kinase Src, leading to epidermal growth factor receptor (EGFR) transactivation and PI3K-

dependent activation of RAC1, which further amplifies NOX2 activation39,101.

NOX1 activation also requires the assembly of multiple subunits85. In the process of NOX1 

activation, either NADPH oxidase organizer 1 (NOXO1) or p47phox can be phosphorylated 

by PKC and translocated to the membrane to bind to p22phox (REFS26,92). Another 

difference in NOX1 activation compared with that of NOX2 is the replacement of p67phox 

with an alternative subunit, NADPH oxidase activator 1 (NOXA1)85,92.
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Owing to the limited expression of NOX3 (only in fetal tissue and the inner ear), the 

mechanism of NOX3 activation has been studied only in overexpression systems43,80,92. 

Activation of NOX3 reportedly requires p22phox (REFS88,92). In the presence of p22phox, 

NOX3 is active without cytosolic subunits88,92. Interestingly, the activity of NOX3 can be 

increased by RAC1 and the subunits NOXO1–p47phox and NOXA1–p67phox (REFS88,92).

The activation of NOX4 does not require cytosolic regulatory subunits other than the 

membrane partner p22phox. NOX4 is mainly regulated at the expression level92,102,103. 

Polymerase δ-interacting protein 2 (POLDIP2) has been shown to associate with p22phox 

and to regulate NOX4 activity in vascular smooth muscle cells104. POLDIP2 increases 

NOX4 enzymatic activity and ROS production, leading to increased focal adhesion turnover 

and vascular smooth muscle cell migration104.

NOX5 is unique among NOX isoforms in that it contains an N-terminal calmodulin-like 

domain with four binding sites for Ca2+ (EF hands)105–107. The activation of NOX5 is Ca2+-

dependent and does not require interaction with known subunits106,108. In response to an 

increase in Ca2+ concentration, the N-terminus of NOX5 undergoes conformational changes 

and exposes its hydrophobic patch105. This patch provides an interface for intramolecular 

interaction between the N-terminus and the C-terminus, resulting in the activation of NOX5 

(REF.105). In the C-terminus, NOX5 has a binding site for the Ca2+-modulated and Ca2+-

binding protein calmodulin109. Calmodulin is reported to bind to NOX5 in a Ca2+-dependent 

fashion, resulting in increased Ca2+ sensitivity of NOX5 (REFS109,110). The activity of 

NOX5 can also be positively regulated through phosphorylation by PKC (at Ser490, Ser494 

and Thr498), Ca2+/calmodulin-dependent protein kinase II (CaMKII; at Ser475, Thr494, 

Ser498, Ser502 and Ser659) and mitogen-activated protein kinases (MAPKs; at 

Ser498)111–114.

DUOX1 and DUOX2 are composed of the basic NOX5-like structure, but fused with an 

additional transmembrane domain and an extracellular N-terminus102,115. The association of 

DUOX1 with dual oxidase maturation factor 1 (DUOXA1) and of DUOX2 with DUOXA2 

enables the translocation of DUOX1 and DUOX2 from the endoplasmic reticulum to the 

plasma membrane102,115. DUOX1 and DUOX2 are activated by the binding of Ca2+ to their 

intracellular domain102,115.

The composition of all the NOX isoforms is summarized in FIG. 2. In summary, the 

activation of NOX1 requires p22phox, RAC1, p47phox and/or NOXO1, and NOXA1. The 

activation of NOX2 requires p22phox, RAC1 or RAC2, p47phox, p67phox and p40phox. The 

activation of NOX4 requires p22phox, and the activity of NOX4 can also be regulated by 

POLDIP2. The activation of NOX5 is primarily dependent on Ca2+. DUOX1 and DUOX2 

require DUOXA1 and DUOXA2, respectively, and Ca2+ for their activation, and are not 

expressed in the cardiovascular system.

Subcellular localization.—The NOX isoforms each have a specific cellular expression 

pattern and subcellular localization that determines the types of ROS from each isoform 

detectable by currently available techniques116. NOX1, NOX2, NOX4 and NOX5 are 

expressed in cardiovascular cells51,103,117. Endothelial cells contain NOX1 (REF.118), NOX2 
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(REF.119), NOX4 (REF.118) and NOX5 (REFS108,120). Vascular smooth muscle cells express 

NOX1 (REF.73), NOX4 (REF.121) and NOX5 (REFS79,120). Cardiomyocytes express NOX1 

(REFS122,123), NOX2 (REFS124,125), NOX4 (REF.89) and NOX5 (REF.126). The cell-

specific expression of NOX isoforms in the cardiovascular system is summarized in FIG. 2.

The subcellular localization of NOX isoforms varies between cell types. NOX2 is localized 

at the perinuclear cytoskeleton63 and endoplasmic reticulum93, whereas NOX4 

(REFS93,127,128) and NOX5 (REF.108) are localized at the endoplasmic reticulum in 

endothelial cells. NOX1 is localized in the caveolae of vascular smooth muscle cells129. 

Interestingly, NOX4 has been reported to localize in the nucleus, focal adhesions and stress 

fibres in vascular smooth muscle cells under normal conditions129–131 and might translocate 

to the endoplasmic reticulum in hypertension132. NOX5 was found in the plasma membrane 

in vascular smooth muscle cells47. In cardiomyocytes, NOX2 is localized in the plasma 

membrane and the cytosol125, whereas NOX4 is localized in the mitochondria133 and 

nuclei134.

NOX1, NOX2 and NOX5 produce superoxide directly. Distinct from other NOX isoforms, 

NOX4 has been shown to produce H2O2 through the rapid dis-mutation of superoxide into 

H2O2 because of a highly conserved histidine residue in NOX4 (REFS135–137). Conversely, 

NOX4 production of H2O2 is thought to be the consequence of the localization of NOX4 at 

the mitochondria in cardiomyocytes and at the endoplasmic reticulum in endothelial cells; 

superoxide cannot cross the membranes of these subcellular organelles, so only the 

superoxide dismutated product, H2O2, is releasable to the cytoplasm and detectable by 

currently available methods138.

Importantly, one of the major consequences of NOX activation is the activation of other 

oxidase systems to sustain oxidative stress in a process known as ROS-dependent ROS 

production. These secondary oxidase systems include, but are not limited to, uncoupled 

eNOS, dysfunctional mitochondria, XO and the endoplasmic reticulum.

Uncoupled eNOS

There are three isoforms of nitric oxide synthase (NOS): eNOS, neuronal NOS (nNOS; also 

known as NOS1) and inducible NOS (iNOS; also known as NOS2). For the synthesis of NO, 

L-arginine is required as the substrate, whereas molecular oxygen and reduced NADPH 

(harbouring one extra electron) are required as co-substrates. H4B is an essential cofactor for 

the synthesis of NO because its presence stabilizes the dimeric state of eNOS. L-arginine, 

H4B, haem and molecular oxygen bind to the N-terminal oxygenase domain of eNOS, 

whereas NADPH binds to its C-terminal reductase domain. Under physiological conditions, 

eNOS catalyses electron transfer from reduced NADPH of one monomer to the haem-

containing oxygenase domain of the other monomer. At this site, oxygen is reduced by the 

electrons and incorporated into the terminal guanidine group of L-arginine to generate NO 

and L-citrulline. eNOS exists as a dimer under normal conditions; however, when H4B is 

deficient because of oxidative inactivation, the dimer breaks down, resulting in electron 

transfer to the molecular oxygen to generate superoxide instead of 

NO9–11,15,17,22,23,26–29,31,34,35,37,139,140. This state is referred tO as eNOS uncoupling.
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H4B can be generated through two enzymatic path-ways: the de novo synthetic pathway and 

the salvage pathway, which regenerates H4B from its oxidized form, dihydrobiopterin 

(H2B). In the de novo synthesis pathway, H4B is generated from GTP sequentially by the 

enzymes GTP cyclohydrolase 1 (GTPCH1; the rate-limiting synthetic enzyme), 6-pyruvoyl 

tetrahydrobiopterin synthase and sepiapterin reductase (SPR)24,141. H4B can also be 

regenerated from its oxidized form H2B in a process catalysed by the rate-limiting, salvage 

enzyme dihydrofolate reductase (DHFR); H2B can be converted from the exogenous 

precursor sepiapterin by SPR.

eNOS uncoupling can occur downstream of NOX activation. Activated NOXs produce ROS, 

which leads to H4B deficiency and eNOS uncoupling15. The crosstalk and interaction 

between NOXs and eNOS uncoupling in CVDs is discussed below.

H4B deficiency-induced eNOS uncoupling has been implicated in various CVDs, including 

hypertension and aortic aneurysms13,21,27,29,37, atherosclerosis18, diabetes 

mellitus17,26,142,143, cardiac IR injury144 and heart failure16,145. Specifically, H4B deficiency 

and eNOS uncoupling can be induced through DHFR depletion. Knockdown of Dhfr leads 

to eNOS uncoupling15. Dhfr+/− mice (the homozygous knockout is embryonically lethal) 

have reduced H4B levels in the aorta at baseline and a low-level eNOS uncoupling that is 

well compensated for37, similar to what is observed in Apoe−/− mice12,29 and hph-1 mice (a 

model of GTPCH1 deficiency)27,32. However, angiotensin II infusion into Dhfr+/− mice 

resulted in marked hypertension and development of abdominal aortic aneurysm (AAA)37. 

Conversely, upregulation of DHFR recoupled eNOS in animals with hypertension and aortic 

aneurysms23,27,36 or diabetes26, details of which are discussed in the following section.

Additionally, H4B deficiency and eNOS uncoupling can be caused by deficiency of SPR or 

GTPCH1, as shown in deoxycorticosterone acetate (DOCA)–salt hypertensive 

mice20,21,28,146. Overexpression of GTPCH1 restored the H4B level and recoupled eNOS in 

DOCA–salt hypertensive mice20,146. These data indicate that modulation of H4B metabolic 

enzymes might be a robust strategy to recouple eNOS as a therapeutic strategy in CVDs.

In addition to H4B deficiency, other mechanisms have been implicated in inducing eNOS 

uncoupling99. All three isoforms of NOS have a zinc tetrathiolate (ZnS4) cluster at the dimer 

interface147–149. Oxidants (such as peroxynitrite and hypochlorous acid) disrupt the ZnS4 

cluster of eNOS and result in eNOS uncoupling150,151. In addition, S-glutathionylation of 

cysteine residues of eNOS has been shown to induce eNOS uncoupling152. In particular, S-

glutathionylation of aortic eNOS was increased in animal models of hypertension152, nitrate 

tolerance153,154 and streptozotocin (STZ)-induced diabetes155. Normalization of S-

glutathionylation of eNOS in these models reduced eNOS uncoupling and improved 

vasorelaxation152–155.

In addition to eNOS uncoupling, uncoupling of nNOS and iNOS has been reported. The first 

report suggesting that NOS might produce ROS was in the early 1990s, when purified nNOS 

produced superoxide (then converted to H2O2 by superoxide dismutase (SOD)) owing to 

H4B or L-arginine deficiency156,157. Later, iNOS was shown to catalyse superoxide 
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production under L-arginine-depleted conditions or H4B deficiency158,159. Of note, 

deficiency of L-arginine is rare under physiological conditions.

Dysfunctional mitochondria

Mitochondria are the cellular energy factory where ATP is synthesized by oxidative 

phosphorylation43. This process relies on a proton gradient generated by the mitochondrial 

electron transport chain. The electron transport chain comprises a series of complexes that 

pump protons across the mitochondrial inner membrane to generate a proton gradient, whilst 

transferring electrons from electron donors (NADH or succinate from the citric acid cycle) 

to oxygen to generate water. Under normal conditions, electron transportation is efficient 

and the electron leak is maintained at low, physiological levels160.

Under conditions of oxidative stress, mitoKATP is activated by redox-sensitive PKC to 

transduce redox signals from the cytosol to the mitochondria39,161,162. Opening of the 

mitoKATP increases the K+ influx into the mitochondrial matrix, leading to mitochondrial 

ROS production from the electron transport chain163–165. Incubation with 5-

hydroxydecanoate, a specific inhibitor of mitoKATP, prevented mitochondrial ROS 

production, suggesting that K+ influx has an important role in regulating mitochondrial ROS 

production41,166. At the same time, more electron donors were generated from the citric acid 

cycle and were pushed into the electron transport chain167. Under these conditions, the 

mitochondrial electron transport chain generates superoxide through electron leakage, when 

electrons react with oxygen to form superoxide167,168. In addition, mitochondrial DNA is 

damaged by oxidative stress169, which causes ROS production and apoptosis. The generated 

superoxide is then rapidly dismutated into H2O2 by the mitochondrial isoform of SOD 

(SOD2), followed by diffusion out of the mitochondria167,170–172. Complex I and complex 

III are reported to be the major sites at which superoxide is generated164,167,169.

Dysfunctional mitochondria are considered the intracellular source of ROS in various CVDs. 

Mitochondrial dysfunction has been reported in hypertension173, atherosclerosis174, 

diabetes175,176, heart failure177–179 and AAA37. The mitochondria-targeted antioxidant 

MitoQ attenuated cardiac hypertrophy in stroke-prone spontaneously hypertensive rats173. 

MitoQ also reduced ROS production and leukocyte–endothelial cell interactions in 

leukocytes isolated from patients with diabetes180. Sod2+/− mice with apolipoprotein E 

deficiency had greater impairment of vessel relaxation and increased formation of 

atherosclerotic lesions compared with Apoe−/− mice174,181, implying a critical role of 

mitochondrial ROS in the development of vascular dysfunction. Overexpression of 

mitochondrial brown fat uncoupling protein 1 (UCP1) disrupted the mitochondrial electron 

transport chain and completely inhibited hyperglycaemia-induced mitochondrial superoxide 

production in mice182. Attenuation of mitochondrial ROS by the mitochondria-targeted 

peptide antioxidant SS-31 preserved insulin sensitivity in rats fed a high-fat diet176. In mice, 

inhibition of mitochondrial ROS production by SS-31 or genetic transfer of catalase targeted 

to the mitochondria prevented angiotensin II-induced cardiac hypertrophy and diastolic 

dysfunction178,183. Of note, NOX-derived ROS have been shown to enter the mitochondria 

and promote electron leak and mitochondrial ROS production4,41, suggesting that 

dysfunctional mitochondria lie downstream of NOXs.
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Xanthine oxidase

Xanthine oxidoreductase is an enzyme initially synthesized in the dehydrogenase form 

(XDH), which can be rapidly converted into the oxidase form (XO) by oxidation. XDH and 

XO are interconvertible. Xanthine oxidoreductase is involved in the last two reactions of the 

purine degradation pathway, converting hypoxan-thine to xanthine and then touric 

acid184–186. In these reactions, XDH favours NAD+ as the electron acceptor and generates 

NADH, whereas XO uses oxygen as an electron acceptor and generates superoxide.

Studies suggest that XO is involved in the progression of various CVDs. The administration 

of an XO inhibitor was beneficial in animal models of hypertension187–189, myocardial IR 

injury190,191 and chronic heart failure192,193. However, use of an XO inhibitor (300–600 mg 

per day) did not show benefits in patients with hypertension or chronic heart failure194–196. 

A retrospective analysis in patients with hyperuricaemia and acute MI suggested that the 

combination of an XO inhibitor and an angiotensin-converting enzyme (ACE) inhibitor 

protected against major cardiovascular events (death or hospitalization for cardiovascular 

causes) after acute MI compared with treatment with an ACE inhibitor alone197. These data 

suggest that XO inhibition might have limited beneficial effects only in patients with 

hyperuricaemia and CVDs. Given that inhibition of NOX activity suppresses XO activation 

and superoxide production198, the roles of NOX–XO crosstalk in the pathogenesis of CVDs 

are discussed below.

Cardiovascular oxidase crosstalk

NOXs have been shown to be the primary oxidases activated in the cardiovascular system, 

but accumulating data indicate that complex crosstalk exists between NOXs and other ROS-

generating enzymes or enzymatic systems, including uncoupled eNOS, dysfunctional 

mitochondria and XO. These secondary oxidase systems can also activate NOXs and/or each 

other. The interactions between these oxidases in the cardiovascular system are introduced in 

this section; the contributions of oxidase crosstalk to particular CVDs are then discussed in 

detail in the next section.

NOXs and uncoupled eNOS

Transient exposure (30 min) of bovine endothelial cells to angiotensin II in vitro increased 

the production of superoxide, which was attenuated by the RAC1 inhibitor NSC23766, 

indicating NOX-derived ROS production15. However, after 24 h of angiotensin II treatment, 

superoxide production was completely blocked by administration of L-NAME (a NOS 

inhibitor), whereas NSC23766 did not significantly reduce superoxide production15. These 

data suggest that uncoupled eNOS is predominantly responsible for ROS production after 

prolonged exposure of endothelial cells to angiotensin II, and that eNOS uncoupling occurs 

as a consequence of angiotensin II-induced activation of NOX15.

NOX activation induces uncoupling of eNOS through E2F1-dependent, E2F2-dependent or 

E2F3a-dependent downregulation of Dhfr expression15,36. In bovine endothelial cells, 

angiotensin II-induced NOX activation leads to H2O2 production15. In turn, H2O2 

downregulated the expression of E2F1, E2F2 and E2F3a, the main transcription factors 
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required to activate Dhfr transcription in endothelial cells36. As a result, the expression and 

activity of DHFR were attenuated, leading to persistent H4B deficiency and eNOS 

uncoupling15,36. In mouse models, angiotensin II infusion induces endothelial DHFR 

deficiency and eNOS uncoupling27,29,32. Restoration of endothelial DHFR expression and 

activity with oral folic acid administration or in vivo transfection of Dhfr recoupled eNOS 

and improved NO bioavailability in angiotensin II-infused animals, resulting in lowered 

blood pressure15,27,29. Similarly, adenovirus-delivered E2F1 overexpression in mice 

significantly increased DHFR protein abundance and H4B bioavailability and recoupled 

eNOS36. NO bioavailability was also restored, resulting in reduced blood pressure36. These 

data reveal a novel pathway of NOX–H2O2–E2F–DHFR-dependent regulation of eNOS 

uncoupling and its role in elevating blood pressure.

In addition, eNOS uncoupling develops in DOCA–salt hypertensive mice and rats and is 

associated with H4B deficiency13,20,28,199. This deficiency has been shown to result from 

decreased SPR expression and GTPCH1 activity, both of which lead to impaired H4B 

bioavailability86,88. NOX activity was also reported to be upregulated in DOCA–salt 

hypertensive mice200. Application of the NOX inhibitor 4’-hydroxy-3’-

methoxyacetophenone (apocynin; later shown to be a nonspecific inhibitor of all flavin-

containing enzymes, including NOXs) or deletion of p47phox restored H4B bioavailability 

and eNOS coupling in DOCA–salt hypertensive mice13,28. These data demonstrate an 

upstream role of NOXs in eNOS uncoupling in a salt-sensitive model of hypertension. Of 

note, different H4B metabolic enzymes are involved in different types of hypertension, with 

DHFR deficiency underlying eNOS uncoupling and hypertension in angiotensin II-infused 

mice, and SPR and GTPCH1 deficiency accounting for hypertension in DOCA–salt 

hypertensive animals.

The interaction between NOXs and uncoupled eNOS has also been studied in STZ-injected 

animals. STZ injection in mice downregulated aortic DHFR expression and H4B 

bioavailability resulting in eNOS uncoupling17,26. Attenuation of angiotensin II signalling in 

STZ-injected mice by oral administration of the angiotensin II receptor type 1 (AT1) blocker 

candesartan or the ACE inhibitor captopril recoupled eNOS through inhibition of NOX 

activity and restoration of DHFR protein expression17. Further investigation demonstrated 

that knockout of either Nox1 or Ncf1 (encoding p47phox), or in vivo knockdown of Noxo1 
by RNA interference, improved endothelium-dependent vasodilatation in STZ-induced 

diabetic mice26. This improvement was attributed to recoupling of eNOS as a result of the 

restoration of DHFR function and H4B bioavailability26. These data strongly implicate a 

selective role of NOX1 in activating eNOS uncoupling via angiotensin II signalling in STZ-

injected type 1 diabetic mice. By contrast, in db/db type 2 diabetic mice, infusion of the 

bone morphogenetic protein 4 (BMP4) antagonist noggin attenuated eNOS uncoupling 

through inhibition of NOX1 (REF.35). Together, these results strongly indicate NOX-

dependent uncoupling of eNOS through NOX-derived ROS production and oxidation of 

H4B.
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NOXs and mitochondria

Angiotensin II-induced NOX activation has been reported to induce mitochondrial ROS 

production and mitochondrial dysfunction in endothelial cells41,201,202. Inhibition of NOX 

activity with apocynin or with small interfering RNA (siRNA) targeted to Cyba (encoding 

p22phox) in bovine endothelial cells in vitro reduced angiotensin II-provoked mitochondrial 

ROS production, indicating NOX-dependent modulation of mitochondrial dysfunction41,202. 

This modulation seems to be mediated by uncoupling of eNOS. Treatment with the NOS 

inhibitor L-NAME prevented angiotensin II-induced mitochondrial dysfunction41. 

Angiotensin II-stimulated mitochondrial ROS production is also reported to involve the 

opening of mitoKATP in both endothelial cells and vascular smooth muscle cells41,166.

Conversely, feedback regulation of mitochondria on NOXs has also been reported. Opening 

of mitoKATP by treatment with diazoxide results in NOX activation166. Moreover, treatment 

with the mitoKATP-specific inhibitor 5-hydroxydecanoate reduced superoxide production 

(generated by NOXs and uncoupled eNOS) in angiotensin II-treated endothelial cells in 

vitro, suggesting feedback regulation of NOX and eNOS activity by mitoKATP 

(REFS38,39,41). As discussed above, PKC and Src induce NOX activation through p47phox 

phosphorylation and the EGFR–PI3K–RAC1 axis, respectively39,97–99,101. In mice, direct 

clearance of mitochondrial superoxide by either overexpression of SOD2 or the 

administration of the mitochondria-targeted antioxidant MitoTEMPO inhibited NOX activity 

in endothelial cells203. Of note,SOD2 or MitoTEMPO had no effects on basal NOX activity 

and inhibited NOX activation only in angiotensin II-stimulated cells39,203.

Uncoupled eNOS and mitochondria

An interaction between uncoupled eNOS and mitochondria has been reported in endothelial 

cells41. Superoxide reacts with NO to form peroxynitrite, which can damage mitochondria 

through oxidation of membrane lipids and electron transport chain complexes204,205. 

Administration of uric acid, a scavenger of peroxynitrite, or L-NAME protected against 

angiotensin II-induced mitochondrial dysfunction in cultured endothelial cells, indicating 

eNOS-dependent mitochondrial dysfunction41. Angiotensin II-infused Dhfr+/− mice have 

dramatically increased mitochondrial superoxide production in the aorta, suggesting that 

DHFR deficiency-dependent eNOS uncoupling induces mitochondrial dysfunction37. An 

upstream role of uncoupled eNOS in mediating mitochondrial dysfunction has also been 

reported in the heart206. Uncoupling of eNOS induced by treatment of mice with 2,4-

diamino-6-hydroxypyrimidine (DAHP; an inhibitor of GTPCH1) resulted in H4B depletion, 

impaired mitochondrial function in the heart, and cardiac contractile dysfunction206. In mice 

with cardiac IR injury, treatment with sepiapterin (a precursor of H4B) recoupled eNOS to 

reduce mitochondrial superoxide production, resulting in preserved cardiac mitochondrial 

function and cardiac function31.

Conversely, mitochondrial ROS production might also regulate eNOS coupling–uncoupling 

activity. In humans, restoration of mitochondrial electron transport by supplementation with 

antioxidant coenzyme Q10 recoupled eNOS and resulted in improved endothelial function in 

diabetes and atherosclerosis207,208. Additionally, inhibition of mitoKATP by 5-

hydroxydecanoate completely restored NO production in angiotensin II-treated endothelial 
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cells41. Although eNOS uncoupling was not directly measured in this study, restored NO 

production indicated improved eNOS function and a reduced uncoupling status41.

NOXs, XO and mitochondria

Apocynin treatment reportedly prevented XO activation and superoxide production in IR-

injured guinea pig hearts198. However, inhibition of XO by allopurinol or tungsten did not 

modulate NOX activity198, suggesting that XO acts downstream of NOX in IR injury.

An interaction between XO and mitochondria has been reported in vivo. In a rat model of 

cocaine-induced cardiac dysfunction, treatment with allopurinol significantly reduced 

mitochondrial ROS production and improved cardiac function209. In left ventricular 

cardiomyocytes isolated from adult rats, application of the mitochondrial inhibitor MitoQ 

prevented stretch-induced XO activation, indicating a self-perpetuating cycle between XO 

and mitochondria210. The mechanisms might involve hypoxanthine, a metabolic product of 

ADP and AMP, both of which are produced by the breakdown of ATP from 

mitochondria210. Hypoxanthine reacts with XO to produce superoxide, which in turn causes 

damage to mitochondria210.

Oxidase crosstalk in CVDs

Emerging evidence indicates that oxidase crosstalk is a major mechanism underlying 

sustained oxidative stress during cardiovascular pathogenesis. The primary oxidase system 

that is first activated seems to be NOXs, which can activate downstream oxidases or oxidase 

systems, such as uncoupled eNOS, dysfunctional mitochondria or XO, resulting in 

secondary production of ROS. The detailed molecular pathways and pathophysiological 

relevance of the oxidase crosstalk in CVDs, including hypertension, AAA, 

hypercholesterolaemia, atherosclerosis, diabetic vascular dysfunction, cardiac IR injury, 

heart failure and cardiac arrhythmias, are discussed below. The investigations of animal 

models with genetic modifications of various NOX isoforms and subunits discussed in this 

section are summarized in TABLE 1.

Hypertension

Increased vascular ROS production in hypertension has long been reported in animal models 

treated with angiotensin II211,212, DOCA–salt28,213,214 or L-NAME215. The association 

between elevated vascular ROS production and hypertension has also been reported in 

animals with genetic modifications or in inbred strains, including Dahl salt-sensitive rats216 

and spontaneously hypertensive rats217. NOX and uncoupled eNOS have important roles in 

the elevation of blood pressure23,27,36,218–220. Angiotensin II is a potent vasoconstrictive 

peptide that induces hypertension through the activation of vascular NOX and NOX-derived 

ROS15,23,27,32,37,211. Specifically, increased levels of Nox1, Nox2 and Nox4 mRNA were 

reported in aortas from angiotensin II-infused animals221,222. In vitro, angiotensin II has 

been shown to upregulate Nox1 mRNA and NOX1 protein levels as well as Nox4 mRNA 

levels in vascular smooth muscle cells223,224 and to upregulate both NOX2 and NOX4 

protein levels and activity in endothelial cells225,226. Expression of NOX5 was also found to 

be upregulated by angiotensin II in human cultured endothelial cells227. Previous studies 
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have demonstrated that angiotensin II activates NOX via AT1-dependent phosphorylation of 

p47phox through a signalling pathway involving Src, PKC and phospholipase D101,228,229. 

Conversely, Src-induced EGFR transactivation and PI3K activation lead to the activation of 

RAC1, an essential event in the activation of NOX101. The detailed mechanisms of 

activation of NOX by angiotensin II have been previously reviewed5,230–232.

Infusion of angiotensin II increases aortic superoxide production and blood pressure in wild-

type mice212,222,233. Overexpression of p22phox in vascular smooth muscle cells exacerbated 

angiotensin II-induced hypertension in mice234. Overexpression of NOX1 in vascular 

smooth muscle further increased angiotensin II-induced aortic superoxide production and 

hypertension in mice, both of which were corrected by administration of the antioxidant 

Tempol235. Deletion of Nox1 attenuated oxidative stress and hypertension in angiotensin II-

infused mice222,233. Given that NOX1 was shown to be upregulated by angiotensin II only in 

vascular smooth muscle cells, and not in endothelial cells223,224, vascular smooth muscle 

NOX1 might have a more important role than endothelial NOX1 in the development of 

hypertension. Moreover, knockout of Nox2 in mice attenuated aortic superoxide production 

and blood-pressure elevation in response to angiotensin II56. Endothelium-specific 

overexpression of NOX2 in mice exacerbated the angiotensin II-induced increase in blood 

pressure236,237. Although NOX2 was not reported to be regulated by angiotensin II in 

vascular smooth muscle cells, endothelial NOX2 might, however, be involved in the 

regulation of angiotensin II-induced hypertension.

The role of NOX4 in hypertension has been studied, with inconsistent results. Nox4−/− mice 

had a lower blood pressure increase in response to angiotensin II infusion than wild-type 

mice238. However, another study showed that inducible deletion of Nox4 had no effect on 

basal blood pressure or angiotensin II-induced hypertension (conditional Nox4 deletion after 

initiation of angiotensin II infusion)239. These results suggest that NOX4 might be involved 

in the initiation rather than the maintenance of angiotensin II-induced hypertension in mice. 

Interestingly, cardiac-specific overexpression of NOX4 did not modulate blood pressure in 

angiotensin II-infused mice240, suggesting that vascular rather than cardiac NOX4 has an 

important role in the regulation of blood pressure. Contrary to the results in Nox4−/− mice, 

endothelium-specific overexpression of NOX4 in mice decreased the angiotensin II-induced 

rise in blood pressure owing to increased H2O2 production and endothelium-dependent 

vasorelaxation241. Perhaps these results can be interpreted as a compensatory response of 

H2O2-dependent vasodilatation on blood pressure242–244.

Rodents do not have NOX5. In transgenic mice with vascular smooth muscle-specific 

expression of human NOX5, baseline blood pressure levels and the angiotensin II-induced 

elevation in blood pressure were not different from levels in wild-type mice245,246. Given 

that angiotensin II induces the upregulation of NOX5 expression and activity in human 

cultured endothelial cells, investigation of endothelial NOX5 in angiotensin II-dependent 

hypertension in patients is important227. Basal blood pressure levels in mice with endothelial 

knock-in of human NOX5 with the use of a Tie2 promoter was not different from that in 

wild-type animals247. Interestingly, transgenic mice expressing human NOX5 specifically in 

podocytes had elevated blood pressure, which was further exacerbated by STZ-induced 

diabetes owing to severe renal damage248. Taken together, these data suggest that activation 
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of NOXs has an important role in the development of angiotensin II-induced hypertension in 

animal models. Global knockout of either Nox1, Nox2 or Nox4 protected against 

angiotensin II-induced hypertension56,222,233,238, implicating an upstream role of NOX1, 

NOX2 and/or NOX4 in the development of this type of hypertension.

In addition to angiotensin II-dependent hypertension, NOXs have been shown to be involved 

in the regulation of blood pressure in other models of hypertension. In mice and rats with 

DOCA–salt hypertension, aortic expression of p22phox and superoxide production were both 

increased28,213. Treatment with apocynin significantly reduced superoxide production and 

decreased blood pressure in these animals28,213. Global deletion of Ncf1 abrogated aortic 

superoxide production and hypertension in DOCA–salt mice13. In addition, deletion of 

Nox4 has been shown to attenuate renal oxidative stress and hypertension in Dahl salt-

sensitive rats249.

As discussed above, NOX-dependent ROS production leads to eNOS uncoupling. In vivo 

evidence also supports the upstream role of NOX in inducing eNOS uncoupling in the 

development of hypertension222,233. Deletion of Nox1 protected against vascular 

dysfunction and hypertension in response to angiotensin II infusion in mice34,37,222,233. 

Interestingly, administration of L-NAME diminished the protective effects of Nox1 
deletion222, strongly indicating an intermediate role of eNOS uncoupling in the NOX1-

triggered development of angiotensin II-induced hypertension. Moreover, recoupling of 

eNOS has been reported to attenuate hypertension in angiotensin II-infused or DOCA–salt-

treated mice13,20,27,33,36. Adenovirus-mediated overexpression of E2F1 led to eNOS 

recoupling and normalized blood pressure in angiotensin II-infused mice36. Endothelial 

overexpression of GTPCH1 improved H4B bioavailability, recoupled eNOS and reduced 

blood pressure in DOCA–salt-treated mice20. Direct supplementation of H4B recoupled 

eNOS and reduced blood pressure in DOCA–salt mice13, hph-1 mice have a mutation in 

Gch1 (encoding GTPCH1) and have a phenotype of modest eNOS uncoupling that is well 

compensated for by H2O2-dependent vasodilatation27. Blood pressure in these mice is 

elevated by only 10 mmHg at baseline compared with wild-type mice27. With angiotensin II 

infusion, eNOS uncoupling was tripled in hph-1 mice, which resulted in severe vascular 

remodelling and the formation of AAA27. Oral administration of folic acid to restore 

endothelial DHFR function and recouple eNOS normalized blood pressure in angiotensin II-

infused wild-type mice and prevented aneurysm-related blood pressure decline in hph-1 
mice27. These findings suggest that NOX-dependent eNOS uncoupling has an important role 

in the development of hypertension and AAA (discussed further below).

Dhfr+/− mice have an exaggerated elevation in blood pressure in response to angiotensin II 

infusion owing to exacerbated eNOS uncoupling activity and mitochondrial dysfunction37. 

Administration of MitoTEMPO in these mice significantly reduced angiotensin II-induced 

high blood pressure and AAA formation37, implicating eNOS uncoupling-dependent 

mitochondrial dysfunction in the development of hypertension and AAA.

In SOD2-deficient mice, angiotensin II-induced NOX activation, eNOS uncoupling and high 

blood pressure were further elevated compared with wild-type animals receiving the same 

treatment, suggesting crosstalk between mitochondrial ROS, NOX activation and eNOS 
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uncoupling250. Importantly, angiotensin II-induced NOX activation, eNOS uncoupling and 

hypertension can be blocked by inhibition of the mitochondrial membrane permeability 

transition pore (by cyclophilin D deficiency or sanglifehrin A treatment), implying an 

essential role of mitochondrial ROS in the modulation of NOX activity and eNOS 

uncoupling in angiotensin II-induced hypertension250.

Aortic aneurysms

Whereas a certain degree of eNOS uncoupling mediates hypertension, more extensive eNOS 

uncoupling induces the formation of AAA. As mentioned above, angiotensin II-infused 

hph-1 mice had a threefold increase in eNOS uncoupling, accompanied by a 79% incidence 

of AAA and a 14% rate of AAA rupture within 2 weeks27. This mouse is a novel and robust 

model of AAA. The traditional models of AAA, such as angiotensin II-infused Apoe−/− 

mice, usually take 4 weeks to develop AAA, and the aneurysms rarely rupture. 

Administration of folic acid, which restores endothelial DHFR expression and activity to 

recouple eNOS, completely prevented the development of AAA in angiotensin II-infused 

hph-1 mice27, indicating a causal role of uncoupled eNOS in the formation of AAA. In 

addition, eNOS uncoupling mediates AAA formation in the angiotensin II-infused Apoe−/− 

mouse model of AAA29. Similar to hph-1 mice, Apoe−/− mice have minimal eNOS 

uncoupling activity at baseline and a compensated phenotype of normal vasodilatation27,29. 

With angiotensin II infusion, aortic eNOS uncoupling was markedly increased in these mice, 

accompanied by severe vascular remodelling and the development of AAA (92% 

incidence)29. Recoupling of eNOS by restoration of endothelial DHFR function through 

folic acid supplementation substantially reduced angiotensin II-induced AAA formation to 

22%29. In Dhfr+/− mice, angiotensin II infusion also resulted in a significantly higher 

incidence of AAA compared with wild-type littermates with the same genetic background37. 

These findings strongly indicate a central causal role of eNOS uncoupling in the 

development of AAA. Furthermore, we have established in mice that circulating H4B levels 

can be used as a novel and powerful biomarker for AAA development and response to 

treatment30. Circulating levels of H4B are accurately and linearly correlated with aortic H4B 

levels in angiotensin II-treated hph-1 mice and Apoe−/− mice30. Reduced circulating H4B 

levels are associated with an increased incidence of AAA, whereas prevention of AAA with 

folic acid dietary supplementation is associated with fully restored circulating H4B levels30.

As an upstream activator of uncoupled eNOS, the NOX family has been studied for their 

roles in the formation of AAA. NOX activity was upregulated in aortic tissues from AAA in 

patients251. NOX inhibitors (diphenyliodonium and apocynin) potently reduced superoxide 

production in patients with AAA, indicating an important role of NOXs in AAA 

formation252,253. Expression of p22phox, p47phox, NOX2 and NOX5 was found to be 

upregulated in AAA in patients251,252. Two novel NOX4 mutations were identified in 

patients with AAA34. These mutations are associated with a markedly increased H2O2 

production34. In hph-1 mice, deletion of Nox1, Nox2, Nox4 or Ncf1 was sufficient to 

prevent AAA formation with angiotensin II infusion34. Consistent with our previous 

findings of a critical role of eNOS uncoupling in AAA formation in angiotensin II-infused 

hph-1 mice27, deletion of Nox1, Nox2, Nox4 or Ncf1 on the hph-1 background restored 

endothelial DHFR function and recoupled eNOS to attenuate AAA formation34. These data 
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establish an essential role of NOX1-dependent, NOX2-dependent and/or NOX4-dependent 

eNOS uncoupling in the development of AAA. Recoupling of eNOS by targeting DHFR 

deficiency or NOX1, NOX2, or NOX4 might be a novel therapeutic approach for the 

prevention and treatment of AAA.

Our findings in Dhfr+/− mice have shown that mitochondria act downstream of eNOS 

uncoupling in modulating the development of AAA37. Application of MitoTEMPO 

completely blocked the development of AAA in angiotensin II-infused Dhfr+/− mice37. 

These data indicate that eNOS uncoupling induces AAA formation through mitochondrial 

dysfunction, targeting of which might be a novel and effective therapeutic strategy for AAA. 

Consistent with the notion that eNOS uncoupling has a causal role in AAA formation, we 

have shown that two doses of nifedipine (an L-type Ca2+-channel blocker) treatment 

prevented AAA formation in angiotensin II-infused hph-1 mice via inhibition of NOX 

activity and eNOS uncoupling32. Whereas a low dose of nifedipine is ineffective in reducing 

blood pressure, a high dose of nifedipine is effective in reducing both blood pressure and the 

formation of AAA in mice. These data indicate that nifedipine might be a particularly useful 

treatment for patients with coexisting hypertension and AAA.

Hypercholesterolaemia and atherosclerosis

NOX-derived oxidative stress has been shown to be a major mediator of atherosclerosis254. 

LDL oxidation, a major event during early atherogenesis, can be induced by NOX-derived 

ROS255. Roles of NOXs in atherosclerosis have been investigated in genetically modified 

animal models on the background of Apoe−/−, a widely used model of atherogenesis. In 

Apoe−/− mice, knockout of Ncf1 protected against lesion formation, which suggests that 

either NOX1 or NOX2 or both are required for the development of atherosclerosis57. 

Specifically, deletion of Nox1 in Apoe−/− mice reduced aortic superoxide production, 

macrophage infiltration and lesion formation256,257. Administration of GKT137831, an 

inhibitor of NOX1 and NOX4, had similar effects to those of Nox1 deletion in Apoe−/− 

mice257. Likewise, deletion of Nox2 in Apoe−/− mice resulted in decreased aortic superoxide 

production, reduced lesion formation and increased NO bioavailability258. Of note, 

endothelium-specific overexpression of NOX2 did not further accelerate the progression of 

atherosclerosis in Apoe−/− mice, although superoxide production and macrophage 

recruitment were increased259. These results indicate that NOX1 and NOX2 have critical 

roles in atherogenesis, and cell type-specific contributions of NOXs and NOX-derived ROS 

warrant further investigation.

Several studies have produced evidence to support a protective role of NOX4 in 

atherosclerosis243,260–262. Global Nox4 knockout or induced deletion of Nox4 increased 

atherosclerosis in Apoe−/− mice260,261. Although H2O2 production was reduced, increased 

inflammation, macrophage accumulation and fibrosis were noted in the aortas of 

Nox4−/−Apoe−/− mice260,261. The researchers concluded that NOX4-produced H2O2 has 

anti-atherosclerotic functions260,261. In accordance with these results, endothelial 

overexpression of NOX4 protected Apoe−/− mice from the formation of atherosclerotic 

lesions, primarily through attenuated inflammatory responses262. In Ldlr−/− mice, deletion of 

Nox4 resulted in increased atherosclerotic lesion formation mediated by H2O2 deficiency 
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and endothelial dysfunction243. Together, these results suggest that NOX4-derived H2O2 

might mediate beneficial effects in atherosclerosis via inhibition of inflammation, which is 

contrary to the deleterious effects of ROS produced by NOX1 and NOX2. These findings in 

mouse models are in agreement with the findings that NOX4 mRNA levels were decreased 

whereas NOX1 mRNA levels were increased in endarterectomy specimens from patients 

with CVDs (compared with individuals without CVDs) or diabetes (compared with 

individuals without diabetes)260.

Finally, NOX5 is an important source of ROS in atherosclerosis. NOX5 is localized in the 

lesion area (in both endothelial and vascular smooth muscle cells) in the coronary arteries 

from patients with coronary artery disease undergoing cardiac transplantation120. Expression 

of NOX5 is very low in coronary arteries from patients undergoing cardiac transplantation 

who do not have coronary artery disease; however, NOX5 expression (both mRNA levels 

and protein levels) is significantly upregulated in patients with coronary artery disease 

undergoing cardiac transplantation120. Moreover, NOX5 has been shown to increase the 

proliferation of vascular smooth muscle cells, further suggesting a role of NOX5 in 

atherosclerosis263. So far, no direct evidence on the role of NOX5 in atherogenesis is 

available from animal models because rodents do not have NOX5.

Of note, eNOS uncoupling occurs in Apoe−/− mice12,14,29. Endothelial transgenesis of eNOS 

was reported to increase the formation of atherosclerotic lesions in Apoer−/− mice owing to 

increased eNOS uncoupling18,264. Strategies to recouple eNOS by supplementation with 

H4B or endothelial-specific overexpression of GTPCH1 significantly reduced lesion 

formation in Apoe−/− mice, accompanied by decreased superoxide production, improved 

vasorelaxation and NO bioavailability, and reduced inflammation14,18,19,25,264. Angiotensin 

II induces atherogenesis in Apoe−/− mice, which was attenuated by the upregulation of 

eNOS phosphorylation and NO production when animals were fed with mitochondria-

targeted aesculetin (6,7-dihydroxycoumarin)265, implying a beneficial effect of eNOS 

recoupling on the prevention of atherogenesis in Apoer−/− mice. Angiotensin II infusion 

causes eNOS uncoupling in Apoe−/− mice, resulting in AAA formation29. In addition, NOX 

activation and NOX-derived ROS mediate angiotensin II-induced eNOS uncoupling in hph-1 
mice, leading to hypertension and AAA27,32,34. However, direct evidence as to whether 

eNOS uncoupling in atherosclerosis lies downstream of NOX activation requires further 

investigation.

Diabetic vascular complications

NOX activation has been implicated in endothelial dysfunction in diabetes. Expression of 

NOX1 was induced by high glucose levels in human aortic endothelial cells in vitro in 

accordance with upregulation of superoxide production257. The superoxide production 

induced by high glucose levels was attenuated by NOX1 siRNA or GKT137831 (REF.257). 

NOX activation has also been reported in animal models of both type 1 diabetes mellitus 

(T1DM) and type 2 diabetes mellitus (T2DM). In particular, we have shown that NOX1 

protein levels were upregulated threefold in T1DM26. Knockdown of Nox1 or Noxo1 or 

deletion of Ncf1 reduced eNOS uncoupling in STZ-induced diabetic animals26. However, 

knockout of Nox2 or knockdown of Nox4 did not alter eNOS uncoupling26. Taken together, 
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these data indicate a NOX1-specific induction of eNOS uncoupling in T1DM. Nox1 
knockout also reversed the impaired endothelium-dependent vasodilatation in T1DM26. 

Blocking angiotensin II signalling in vivo with an AT1 receptor antagonist or an ACE 

inhibitor attenuated NOX activity and eNOS uncoupling in STZ-treated T1DM mice17. In 

addition, Nox1 deletion resulted in eNOS recoupling through preservation of DHFR 

function and restoration of H4B bioavailability26. These findings indicate a pathological role 

of the angiotensin II–NOX1–eNOS uncoupling axis in the induction of vascular dysfunction 

in T1DM.

The roles of NOX activation and eNOS uncoupling in vascular dysfunction and 

inflammation have also been studied in db/db mice, a model of T2DM. These mice have 

impaired vascular relaxation compared with wild-type littermates, which is restored by 

treatment with apocynin266. Aortic mRNA and protein levels of p22phox and NOX1, but not 

NOX2, were elevated in db/db mice compared with wild-type mice, accompanied by 

increased superoxide production and impaired vasorelaxation35,266, suggesting a role of 

NOX1 activation in inducing vascular dysfunction in T2DM. Additionally, eNOS 

uncoupling has been reported in db/db mice35, indicating that NOX1-dependent eNOS 

uncoupling might be the cause of endothelial dysfunction in T2DM. However, the upstream 

mechanism of NOX1 activation in T2DM is different from that in T1DM. Circulating BMP4 

levels were robustly elevated in both db/db mice and wild-type mice fed a high-fat diet (in 

contrast to the elevated angiotensin II levels in plasma observed in T1DM mice)35. 

Interestingly, noggin, a BMP4 antagonist, attenuates eNOS uncoupling and endothelial 

dysfunction in db/db mice35, indicating BMP4-dependent eNOS uncoupling. siRNA 

targeting Nox1 blocked BMP4-induced eNOS uncoupling35. These findings suggest that 

BMP4–NOX1 mediates eNOS uncoupling in T2DM. Furthermore, upregulation of the levels 

of the inflammatory regulators prostaglandin G/H synthase 2 (also known as COX2) and 

vascular cell adhesion protein 1 (VCAM1) in db/db mice was significantly blocked by 

noggin infusion35. Of note, BMP4-dependent COX2 upregulation was normalized by 

administration of sepiapterin, an eNOS-recoupling agent, indicating that COX2 lies 

downstream of BMP4-induced uncoupling of eNOS35. Taken together, these findings 

demonstrate that BMP4–NOX1-dependent eNOS uncoupling and subsequent COX2–

VCAM1 activation mediate vascular dysfunction and inflammation in T2DM.

To examine whether vascular NOX-derived oxidative stress has a role in the development of 

obesity and metabolic syndrome, our group used transgenic mice with vascular smooth 

muscle-specific expression of Cyba that were fed a high-fat diet242,267. Of note, the Cyba 
transgene increased vascular superoxide and H2O2 production at baseline, which has a 

compensatory vasodilatory effect, such that the animals had no obvious pathological 

phenotype but a minimally increased blood pressure at baseline242. When fed a high-fat diet, 

these transgenic mice developed marked obesity, insulin resistance, leptin resistance and 

glucose intolerance compared with wild-type mice267. The underlying mechanisms involve 

mitochondrial dysfunction and elevated mitochondrial ROS production in skeletal muscle, 

impaired spontaneous activity, as well as increased adipogenesis and perivascular 

inflammation267. Targeted deletion of Cyba in vascular smooth muscle prevented obesity 

and leptin resistance induced by a high-fat diet via restoration of skeletal muscle 

mitochondrial function and attenuation of adipogenesis and perivascular inflammation267. 
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These findings are paradigm-shifting in establishing a novel concept that vascular-driven 

oxidative stress is a cause of obesity and metabolic syndrome rather than a consequence.

Diabetic vascular complications have been examined in both large vessels (such as the aorta) 

and small vessels (such as skeletal muscle arterioles and adipose microvessels). In human 

primary isolated skeletal muscle arterioles and human adipose microvascular endothelial 

cells, treatment with insulin induced vascular dysfunction via VAS2870-inhibitable 

superoxide production and eNOS uncoupling268. In this study, VAS2870 was used as a 

NOX2 inhibitor268. Although VAS2870 was later shown to be an inhibitor of all NOXs269, 

these data suggest that insulin induces vascular dysfunction via NOX activation and 

superoxide production in small vessels. A thorough examination of three types of 

microvessels in db/db mice demonstrated that NOX activity (measured by lucigenin 

chemiluminescence in the presence of NADPH) was increased in diabetes in coronary 

arteries, mesenteric resistance arteries and femoral arteries270. This increased NOX activity 

was blocked by in vivo Cyba-targeted siRNA or SOD treatment270. In vivo knockdown of 

Cyba with siRNA also improved vascular relaxation in the three types of microvessels270, 

again implying an intermediate role of NOX-dependent ROS production in mediating 

vascular dysfunction in diabetes.

Cardiac IR injury and MI

Cardiac IR induces ROS production when oxygen supply is restored after an ischaemic 

event271–273. Data have shown that NOX isoforms have important roles in IR injury. NOX2 

protein levels were found to be elevated in cardiomyocytes from individuals who had died 

from acute MI125. In animal models, increased protein expression of NOX2 and NOX4 has 

been reported during IR (30 min of ischaemia followed by 24 h of reperfusion for in vivo 

experiments; 20–25 min of ischaemia followed by 1 h of reperfusion for ex vivo 

experiments)31,58. Reduced infarct size after IR was reported in mice with global knockout 

of Nox2 or Nox4 via inhibition of superoxide production58. Endothelial-specific deletion of 

Smarca4, which encodes the transcription factor BRG1 that regulates Nox2 and Nox4 
transcription, attenuated IR-induced Nox2 and Nox4 expression, reduced superoxide 

production and decreased infarct size274, indicating that endothelial NOX2 and NOX4 might 

have an important role in cardioprotection against IR injury. However, overexpression of 

NOX2 in cardiomyocytes or endothelial cells had no effect on infarct size in a mouse model 

of MI at 4 weeks275. Conversely, cardiac transgenesis of Nox4 in mice increased oxidative 

stress and infarct size in response to IR using an ex vivo Langendorff system276. 

Consistently, protection from IR injury in mice with cardiac-specific Nox4 knockout has 

been reported58. In accordance with these findings, we have shown that inhibition of NOX4 

in vivo with the use of siRNA attenuated IR-induced infarct size in mice31. IR-induced 

upregulation of NOX4 levels increased cardiac ROS production, eNOS uncoupling and 

mitochondrial dysfunction, resulting in cardiac injury31. However, we did not observe 

cardioprotection in Nox1−/− or Nox2−/− mice subjected to IR31, indicating a NOX4-specific 

role in IR injury. Our data established a critical role of the NOX4–uncoupled eNOS–

mitochondrial dysfunction axis in mediating IR-induced cardiac injury31. Infusion of 

netrin-1 into Langendorff-perfused mouse hearts stimulates NO production from coupled 
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eNOS, resulting in NO-dependent inhibition of NOX4, reduced oxidative stress, preserved 

mitochondrial function and markedly reduced infarct size31.

Intriguingly, global Nox2 knockout combined with cardiac-specific Nox4 knockout resulted 

in increased cardiac injury in response to IR, despite reduced superoxide production58. A 

similar phenotype was observed in transgenic mice with cardiac-specific expression of a 

dominant-negative form of NOX4, which has been shown to suppress both NOX4 and 

NOX2 in cardiomyocytes58,276. The researchers suggested that mild downregulation of 

oxidative stress (by Nox2 or Nox4 deletion) is protective, whereas marked downregulation 

of oxidative stress (by combined Nox2 and Nox4 knockout or overexpression of a dominant-

negative form of NOX4) increases cardiomyocyte death58. Markedly reducing the levels of 

oxidative stress is thought to lead to reduced levels of hypoxia-inducible factor 1α (HIF1α) 

and increased levels of peroxisome proliferator-activated receptor-α (PPARα) after IR58,277. 

Elevated levels of PPARα then stimulate free fatty acid metabolism, which in turn induces 

triglyceride accumulation in the heart and lipotoxicity58. Taken together, these studies 

suggest that a basal level of ROS can be cardioprotective and is required to maintain cardiac 

homeostasis, although high levels of ROS are deleterious and can result in MI58,276,278.

Treatment with folic acid is reported to ameliorate ROS production and attenuate IR injury 

in rats144, suggesting an important role of eNOS recoupling in cardiac protection against IR. 

Our studies have shown that NOX4, but not NOX1 or NOX2, was significantly upregulated 

and activated by IR, resulting in eNOS uncoupling, mitochondrial dysfunction and cardiac 

injury31. Given that NO effectively downregulates NOX4 expression, loss of NO as a result 

of initial ROS production during IR leads to persistent NOX4 expression and activity31. We 

have previously reported that netrin-1 prevents IR-induced cardiac injury through elevated 

NO production ex vivo and in vivo279–281. This effect is via netrin receptor DCC-dependent 

activation of ERK1 (also known as MAPK3), ERK2 (also known as MAPK1) and 

eNOS279,282. Netrin-1–NO signalling also robustly inhibits the E3 ubiquitin-protein ligases 

SIAH1 and SIAH2 (which mediate the proteasome-dependent degradation of the netrin 

receptor DCC) thereby potentiating netrin-1-induced cardioprotection283. In addition, 

netrin-1 inhibits post-MI autophagy to limit cardiac remodelling31. Therefore, netrin-1 

abrogates IR-induced cardiac mitochondrial dysfunction and infarction through NO-

dependent downregulation of Nox4 expression and recoupling of eNOS31. These data 

indicate important crosstalk between NOX4, uncoupled eNOS and mitochondrial 

dysfunction in mediating cardiac IR injury, the interruption of which by netrin-1 is 

cardioprotective. Moreover, small netrin-1-derived peptides (9–11 amino acids) are highly 

effective in protecting against IR injury via production of NO, making these peptides a 

pharmacologically novel approach for the treatment of acute MI284.

NOX5 is absent in rodents, but transgenic animals with the human isoform have been 

created. In a humanized mouse model with endothelial-specific (Tie2 promoter-driven) 

knock-in of human NOX5, the IR-induced infarct size in the heart was not significantly 

different from that in wild-type controls, but the brain infarct size after stroke was increased 

through ROS-dependent blood–brain barrier leakage247.
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Heartfailure

Heart failure is a chronic, progressive condition that often occurs as a result of maladaptive 

changes to compensate for cardiac hypertrophy285. The role of different NOX isoforms in 

the development of cardiac hypertrophy has been assessed in various genetically modified 

animal models, mostly focusing on NOX2 and NOX4 (REFS286,287). Multiple research 

groups have reported that NOX4 expression in the heart is upregulated in response to 2–4 

weeks of transverse aortic constriction (TAC) to induce pressure overload, or after 

phenylephrine or angiotensin II infusion89,134,240,288. Indeed, cardiac-specific knockout of 

Nox4 was found to be effective in attenuating TAC-induced or phenylephrine-induced 

cardiac hypertrophy59,134, and cardiac-specific overexpression of Nox4 potentiated the 

hypertrophic phenotype59,134. In animals with TAC-induced cardiac hypertrophy, NOX4 

activation leads to mitochondrial superoxide production, resulting in apoptosis and cardiac 

dysfunction59. TAC-dependent and phenylephrine-dependent upregulation of NOX4 leads to 

superoxide accumulation in the nuclei and oxidation of histone deacetylase 4 (HDAC4)134. 

The oxidation of cysteine residues in HDAC4 induces cardiac hypertrophy through 

activation of nuclear factor of activated T cells (NFAT)134,289. Cardiac-specific 

overexpression of Nox4 in mice potentiated angiotensin II-induced cardiac hypertrophy, 

which was significantly inhibited by GKT137831 administration240. The mechanisms of 

angiotensin II-induced hypertrophy involve upregulation of NOX4 levels, NOX4-dependent 

ROS production and subsequent increased phosphorylation of RACα serine/threonine-

protein kinase (AKT)240. Phosphorylation of the two downstream effectors of AKT, 

mechanistic target of rapamycin (mTOR) and nuclear factor-κB (NF-κB; specifically, the 

p65 subunit), was upregulated in the hearts of angiotensin II-infused mice240.

Angiotensin II has also been shown to promote H2O2 production in isolated 

cardiomyocytes290. In vivo generation of H2O2 in the heart induced heart failure in rats291. 

In this study, cardiac H2O2 was produced from the conversion of orally administered D-

alanine to pyruvate, catalysed by a virally delivered D-amino acid oxidase (driven by the 

Tnnt2 promoter)291. Interestingly, studies have shown that ageing or TAC impaired cardiac 

function in mice with cardiac-specific overexpression of Nox4, without significant changes 

in cardiac hypertrophy at the organ level48,78. However, left ventricular cardiomyocyte 

cross-sectional size was increased in Nox4-transgenic mice59,89, suggesting a compensatory 

response of the heart against cardiac dysfunction. The inconsistent phenotypes of Nox4 
transgenesis in cardiac hypertrophy models might be caused by different time points of 

Nox4 expression induction in these animal models59,89,240. In the inducible transgenic 

model (in cardiomyocytes), Nox4 expression was induced 7 days before angiotensin II 

infusion240. In this model of transient overexpression of Nox4 in the heart, NOX4 

exacerbated angiotensin II-induced hypertrophy via increased ROS production240. By 

contrast, in animals with embryonic cardiac overexpression of Nox4, no further exaggeration 

in hypertrophy was developed after TAC, suggesting that adaptation to Nox4 overexpression 

had been established in these animals59,89,134.

Of note, another research group observed that global knockout of Nox4 exaggerated 

hypertrophy during exposure to chronic pressure overload (6 weeks of suprarenal aortic 

constriction)288. Deletion of Nox4 inhibited expression of Hif1a and Vegf, which blocked 
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angiogenesis of myocardial capillaries and contributed to hypertrophy288. In addition to the 

different strategies applied to induce hypertrophy, the discrepancy between this global 

knockout model288 and the previously discussed cardiac-specific knockout model59,134 

suggests that NOX4 in different cell types might have opposing roles in the development of 

hypertrophy, which warrant further investigation.

The role of NOX2 in the development of cardiac hypertrophy has also been studied. At a 

lower dose of angiotensin II infusion (0.3 mg/kg per day), which did not alter blood 

pressure, Nox2 deletion protected against angiotensin II-induced cardiac hypertrophy 

through reduced ROS production292. The protein level of NOX2 was reportedly not 

modulated by angiotensin II in the mouse heart240. These data suggest that angiotensin II 

induces hypertrophy through activation of NOX2 rather than upregulation of its expression 

level. Moreover, cardiac NOX2 protein levels were reported to be upregulated after aortic 

banding293,294 or MI295,296. Of note, NOX2 protein levels were elevated in left ventricular 

myocardial tissue from patients with end-stage heart failure and dilated cardiomyopathy 

compared with that of individuals without heart failure294. The same research group has 

reported that deletion of Nox2 in mice prevented TAC-induced oxidative stress and 

development of hypertrophy through inhibition of MAPK signalling294, suggesting a 

pathogenic role of NOX2 in heart failure. Similarly, a potential role of NOX2 in MI-induced 

hypertrophy was also studied in genetically modified Nox2 mice. Global knockout of Nox2 
protected against post-MI cardiac hypertrophy and restored cardiac function295. As 

expected, cardiac-specific overexpression of Nox2 increased chronic MI (left coronary 

artery ligation)-induced cardiomyocyte hypertrophy compared with wild-type littermates, in 

accordance with elevated superoxide production, whereas endothelial-targeted 

overexpression of Nox2 did not alter cardiac remodelling after MI275, indicating that cardiac 

but not endothelial NOX2 is involved in cardiac remodelling after MI.

eNOS uncoupling has been reported to occur in mouse hearts in response to TAC16,297. 

Supplementation with H4B recoupled eNOS in wild-type mice after TAC, whereas knockout 

of Nos3 (encoding eNOS) reduced TAC-induced hypertrophy and cardiac remodelling16,145. 

These results are consistent with the observation that NOX2-dependent and NOX4-

dependent ROS production has an important role in the development of cardiac hypertrophy 

and that NOX-derived ROS lead to eNOS uncoupling. Another downstream effector of 

NOX-derived ROS is mitochondria. Excessive ROS production derived from mitochondria 

has been shown to contribute to heart failure124,179,297–299. Treatment of a healthy 

myocardium sample from dogs with antimycin A (a mitochondrial complex III inhibitor) 

reproduced the increase in superoxide production seen in the failing heart298. In angiotensin 

II-infused animals, ROS scavenging with N-acetylcysteine was less effective than 

mitochondria-targeted scavenging with peptide SS-31 in the prevention of cardiac 

hypertrophy, suggesting that mitochondrial ROS have an important role in modulating 

cardiac remodelling in angiotensin II-infused animals183,300. A positive correlation has been 

reported between myocardial ROS and left ventricular contractile dysfunction298. In a 

guinea pig model, heart failure was induced by ascending aorta constriction and daily 

infusion of the β-adrenergic agonist isoprenaline299,301. With an adenovirus-delivered H2O2 

sensor (roGFP-ORP1) targeting the cytoplasm and mitochondria, the researchers showed 

that levels of both cytoplasmic and mitochondrial ROS were significantly increased in 

Zhang et al. Page 21

Nat Rev Cardiol. Author manuscript; available in PMC 2021 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



freshly isolated cardiomyocytes from failing hearts compared with cardiomyocytes from 

sham control hearts299,302. Administration of MitoTEMPO to clear mitochondrial ROS 

effectively normalized both cytoplasmic and mitochondrial ROS in cardiomyocytes from 

failing hearts299, indicating crosstalk between mitochondria and oxidases in the cytoplasm. 

Administration of MitoTEMPO from the day of ascending aorta constriction or after heart 

failure is already present (3 weeks after the surgery) prevented or reversed heart failure299, 

suggesting an important role of mitochondrial ROS in the development of heart failure. 

Taken together, these results indicate that eNOS uncoupling and mitochondrial ROS 

production contribute to NOX activation-induced pathogenesis of heart failure.

Cardiac arrhythmias

Cardiac arrhythmia is associated with elevated production of ROS. A growing number of 

studies have shown that NOXs are emerging sources of excessive production of ROS in the 

pathogenesis of arrhythmia53,103,303,304. A study in pigs showed increased NOX2 expression 

after MI in line with the development of arrhythmia, whereas reducing NOX2 protein levels 

by acute unloading of the left ventricle decreased the incidence of arrhythmia296. Atrial 

fibrillation (AF) is the most common cardiac arrhythmia. Expression of NOX2 and NOX4 

and production of ROS were found to be upregulated in atrial tissue from patients with AF 

compared with that from individuals in sinus rhythm303,304. We have previously reported 

upregulated NOX4 expression and H2O2 levels (the detectable product of NOX4) in the 

cardiac tissues of patients with AF, whereas NOX2 expression was not significantly 

changed304. However, a potential causal role of NOX4 activation in the development of AF 

remained uncertain. To address this question, we examined arrhythmogenesis in zebrafish 

embryos with acute induction of nox4 (REF.60). Overexpression of nox4, instead of nox2, 

induced ROS production and cardiac arrhythmia (in the form of irregular heartbeats) in 

zebrafish embryos, both of which were blocked by nox4 antisense morpholino 

oligonucleotide co-injection, treatment with poly(ethylene glycol)-SOD or NOX4 inhibitors 

6-(dimethylamino)fulvene, fulvene-5 or proton sponge blue60. Overexpression of Nox4-

P437H protein, a dominant negative form of Nox4, did not induce ROS production or an 

arrhythmic phenotype60. Nox4 overexpression induced arrhythmia through ROS-dependent 

activation of CaMKII60. These data demonstrate a causal role of Nox4-derived ROS in 

arrhythmogenesis in zebrafish60. The emerging roles of NOXs as a source of ROS 

production in inducing the development of AF has been previously reviewed53.

Moreover, uncoupled eNOS and mitochondrial dysfunction have been reported to be 

involved in cardiac arrhythmia. Pretreatment with a NOS inhibitor significantly (although to 

a lower extent than a NOX inhibitor) reduced superoxide production in atrial homogenates 

from patients with AF, implicating uncoupling of eNOS303. Additionally, a mitochondrial 

complex I inhibitor lowered the basal levels of superoxide production in atrial homogenates 

from patients with AF, suggesting that mitochondrial ROS might contribute to the 

development of AF303. These data suggest that uncoupled eNOS and mitochondrial 

dysfunction are likely to underlie the development of AF downstream of NOX activation.
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NOX inhibitors

Given the critical roles of NOXs in the pathogenesis of CVDs, they have been considered as 

prominent targets for the development of novel therapeutic agents305. The long quest to 

develop specific NOX inhibitors is illustrated in BOX 2.

Small-molecule inhibitors

Initially, several nonspecific small molecules were used as NOX inhibitors306; 

diphenyleneiodonium (DPI) and apocynin are the most widely studied28,213,307–310. DPI is a 

general, nonreversible inhibitor of all NOX isoforms with an inhibitory constant (Ki) of 10–

70 nmol/l (REFS311–313). However, off-target effects have been reported with DPI, which 

also inhibits other ROS-generating enzymes and systems, including XO, NOS and the 

mitochondrial electron transport chain314–318. Apocynin inhibits the membrane translocation 

of p47phox and p67phox (REFS102,319–321) in leukocytes and was initially considered to be a 

specific inhibitor of NOXs (but was later found to inhibit all flavin-containing enzymes). 

Apocynin is activated after the formation of apocynin dimers in leukocytes321,322; however, 

in endothelial and smooth muscle cells, these dimers do not form and, therefore, apocynin is 

not activated in these cell types322. Nevertheless, apocynin has intrinsic antioxidant activity 

as a ROS scavenger, which explains the inhibitory effects of apocynin treatment on ROS 

levels in endothelial cells and smooth muscle cells102,318,322,323.

Other small-molecule NOX inhibitors have also been investigated and used. 4-(2-

Aminoethyl)-benzenesulfonyl fluoride, an inhibitor of serine proteases, has been used as a 

NOX inhibitor324,325. As a nonspecific inhibitor, 4-(2-aminoethyl)-benzenesulfonyl fluoride 

has low inhibitory potency for NOX (100 μmol/l) compared with DPI (10 μmol/l) and is, 

therefore, not frequently used102,326. A synthetic polyphenol, S17834, reduced tumour 

necrosis factor-induced NOX activity in endothelial cells and inhibited atherosclerotic lesion 

formation in the aortas of Apoe−/− and Ldlr−/− mice327,328. S17834, which targets 5’ AMP-

activated protein kinase102, did not change superoxide production by XO and is not a 

scavenger of superoxide. Statins — inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A 

reductase that are used for the lowering of blood lipid levels — inhibit NOX activity by 

targeting RAC1 (REFS329–332). However, statins also upregulate eNOS and NO 

production333. NSC23766, a RAC1 inhibitor, has been used as a NOX inhibitor15,334,335. 

VAS2870 and VAS3947 have also been used as NOX inhibitors336–338. Whereas VAS2870 

inhibits NOX2, NOX4 and NOX5, VAS3947 targets NOX1, NOX2 and NOX4 (REF.102). 

The lack of specificity of these two inhibitors has limited their use for isoform-specific 

evaluation of NOXs in disease development. An inhibitor thought to be selective for NOX1, 

2-acetylphenothiazine (known as ML171), was identified by high-throughput 

screening316,323; however, this inhibitor was soon demonstrated to inactivate all NOX 

isoforms, including NOX1, and interferes with the Amplex Red Assay for H2O2 

detection339. Owing to their chemical similarity to DPI, triphenylmethane dyes have been 

tested for their NOX inhibitory capacity340. Brilliant green and gentian violet have displayed 

effective inhibition of NOX2 and NOX4, and imipramine blue inhibited NOX4-derived ROS 

in vitro341. In addition, fulvene derivatives have been synthesized and been shown to inhibit 
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NOX2 and NOX4 activity in vivo342. In particular, 6-(dimethylamino) fulvene, fulvene-5 

and proton sponge blue blocked NOX4-induced ROS production in vivo60.

Peptide-based inhibitors

Peptide-based inhibitors have been designed to target NOXs. NOX2 docking sequence (ds)-

tat (originally known as gp91ds-tat) is a chimeric peptide designed to interfere with the 

interaction between NOX2 and p47phox (REF.343). NOX2ds-tat contains nine amino acids 

(NOX2ds) corresponding to the human and mouse NOX2 sequence but with one substituted 

amino acid (isoleucine for valine at position 89)343. To ensure the in vivo delivery of this 

peptide, a specific nine-amino acid peptide of the human immunodeficiency virus coat (HIV-

tat) was linked343. NOX2ds-tat completely inhibited angiotensin II-induced aortic 

superoxide production and blood pressure increase, suggesting effective attenuation of 

angiotensin II-induced NOX activation343. The specificity of peptide NOX2ds has been 

examined by the same researchers, who showed that NOX2ds did not change the activity of 

NOX1, NOX4 or XO; NOX2ds is, therefore, considered to be a specific inhibitor of NOX2 

(REF.344). Similarly, an 11-amino acid peptide, NOXA1ds, which mimics the activation 

domain of NOXA1, was designed to block NOX1 activity (without fusion to another peptide 

to facilitate cellular delivery)345. In this peptide, the phenylalanine at position 199 was 

changed to alanine345. NOXA1ds disrupted the association between NOX1 and NOXA1 and 

specifically inhibited NOX1-dependent superoxide production, without changing ROS 

production by NOX2, NOX4, NOX5 or XO345. NOXA1ds significantly inhibited hypoxia-

induced or angiotensin II-induced ROS production in endothelial cells and vascular smooth 

muscle cells, respectively132,345. NOXA1ds also blocked vascular endothelial growth factor 

(VEGF)-induced wound healing in cultured endothelial cells345. Given that both NOX2ds-

tat and NOXA1ds are peptide-based inhibitors that are subject to degradation in the gut, 

further modifications might be needed to improve their oral bioavailability and 

efficacy345,346. Given the limitations of the existing agents, the development of new classes 

of NOX inhibitor is urgently needed. Ideally, an agent should inhibit a specific NOX 

isoform, because different NOX isoforms are selectively involved in the pathogenesis of 

different CVDs.

Small-molecule inhibitors of GKT family

Several novel small molecules have been identified and characterized as NOX 

inhibitors316,347–350. These inhibitors seem to target NOX isoforms selectively. During a 

high-throughput screening campaign, several potent pyrazolopyridine dione derivatives were 

identified as NOX4 inhibitors347. Following investigation of the structure–activity 

relationship around the pyrazolopyridine dione core, two NOX inhibitors (GKT136901 and 

GKT137831) were discovered347. These inhibitors preferentially target NOX1, NOX4 and 

NOX5 (Ki = 10–100 nmol/l) over other NOX isoforms (Ki > 1 μmol/l for NOX2 and Ki > 

100 μmol/l for XO)311–313,351,352. In one report, vascular smooth muscle cell-specific 

overexpression of human NOX5 increased vascular contractile function, which was blocked 

by administration of N-acetylcysteine, a ROS scavenger, but not by GKT137831 (10 μmol/

l)245. These data suggest that GKT137831 preferentially targets NOX1 and NOX4 over 

NOX5 (REF.245). GKT136901 and GKT137831 did not show off-target effects when tested 

on G protein-coupled receptors, kinases, ion channels and other ROS-producing and redox-
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sensitive enzymes312,313, making them very specific inhibitors of NOX1 and NOX4. Further 

studies have shown that GKT136901 did not interact with NO, superoxide or hydroxyl 

radicals353, but scavenged peroxynitrite through direct interaction353 and decreased the 

Amplex Red fluorescent signal102, weakening its potential as a selective and direct NOX 

inhibitor, although the clearance of free radicals might be beneficial. GKT136901 was also 

reported to inhibit DUOX-dependent ROS production at micromolar concentrations in 

cells354. The capacity of GKT137831 to clear free radicals directly has not been reported.

Both GKT136901 and GKT137831 showed high plasma concentrations in vivo347,355. The 

half-life of GKT137831 is longer than that of GKT136901 in both rodents and 

humans355,356. Oral administration of GKT136901 (10 mg/kg of body mass) in Apoer−/− 

mice fed a high-fat diet reduced aortic lesion formation to a similar level to that previously 

reported in Apoe−/−Nox1−/− double knockout animals256,357. This decrease was 

accompanied by reduced aortic superoxide production and systematic oxidative stress in 

GKT136901-treated Apoe−/− mice357. Likewise, administration of GKT137831 (60 mg/kg 

of body mass) in STZ-induced diabetic Apoe−/− mice completely reduced aortic lesion size 

to basal levels257,358. Similarly, treatment with GKT137831 mimicked the anti-

atherosclerotic effect of Nox1 deletion in reducing aortic superoxide production, aortic 

inflammation and fibrosis257,358. In the same study, Nox4 deletion was also examined but 

had no effect on atherosclerosis257, indicating the potency of GKT137831 for NOX1 

inhibition and a selective role of NOX1 in atherogenesis in this model. This observation is 

consistent with our findings that NOX1 has an essential role in inducing vascular 

dysfunction in mice with either T1DM or T2DM26,35.

Moreover, the effect of GKT137831 has been compared with that of Nox4 deletion on 

cardiac remodelling in vivo. Angiotensin II is known to induce cardiac remodelling in wild-

type mice51,52,240. In mice with cardiac-specific overexpression of Nox4, infusion of 

angiotensin II induced severe cardiac remodelling and fibrosis through ROS production and 

the AKT–mTOR and NF-κB signalling pathways240. Administration of GKT137831 (40 

mg/kg per day) abolished the increase in oxidative stress, suppressed AKT–mTOR and NF-

κB signalling, and attenuated cardiac remodelling and fibrosis240. These data suggest that 

GKT137831 is a potent inhibitor of NOX4 in vivo.

The effects of GKT compounds have also been examined in angiogenesis. In mouse cultured 

primary lung endothelial cells, either administration of GKT136901 or Nox1 deletion 

inhibited VEGF-induced ROS production311. In vivo data in mice showed that GKT136901 

administration (40 mg/kg per day) was more potent than Nox1 deletion in inhibiting 

angiogenesis in implanted Lewis lung carcinoma 1 tumours311. In addition, GKT137831 is 

currently under phase II clinical testing in patients with T2DM and albuminuria 

(NCT02010242) and patients with primary biliary cholangitis receiving ursodeoxycholic 

acid (NCT03226067). Therefore, GKT137831 is one of the most promising NOX inhibitors 

to date.

Newly reported inhibitors

GLX compounds were identified as NOX inhibitors by high-throughput screening348,349. 

GLX351322 was reported to inhibit NOX1, NOX2, NOX4 and NOX5 (REFS348,349). 
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However, its lack of specificity greatly reduced its potential application. Two novel GLX 

compounds (GLX481372 and GLX7013114) have been identified as NOX4 inhibitors and 

tested in vitro349. These GLX compounds were also identified by high-throughput screening 

and were developed in a structure–activity relationship campaign349. Whereas GLX481372 

selectively targets NOX4 and NOX5, GLX7013114 is, so far, the first-reported highly 

selective inhibitor of NOX4 (REF.349); GLX7013114 at concentrations <1 μmol/l reportedly 

inhibits only NOX4 (REF.349). GLX7013114 protects islet cells against high glucose

+palmitate and cytokine-induced cell death349. The researchers believe that GLX7013114 

targets a unique domain of NOX4 that makes it selective in inhibiting NOX4, whereas 

previous NOX inhibitors target a common site shared by more than one NOX isoform349. 

GLX7013114 did not show activity as a direct ROS scavenger or as an inhibitor of XO or 

glucose oxidase349.

GSK2795039 is the first small molecule identified that selectively inhibits NOX2 over other 

NOX isoforms350. GSK2795039 does not show inhibition of PKC, XO or eNOS at 

concentrations that are efficacious for NOX2 inhibition350. Systemic administration of 

GSK2795039 (intraperitoneal injection of 100 mg/kg) mimics the effect of Nox2 deletion in 

the attenuation of ROS production in mice in vivo350. Further investigation is needed to 

characterize GSK2795039 as a selective inhibitor of NOX2. A nonspecific NOX inhibitor, 

APX-115, has been shown to inhibit NOX1, NOX2 and NOX4 in animal models in vivo and 

to protect against kidney injury in animal models of T1DM and T2DM359–361.

Epigenetic modulation of NOXs

Methylation-dependent and acetylation-dependent regulation of NOX gene expression has 

been studied. Methylation-mediated downregulation of DUOX1, DUOX2 and NOX5 
expression has been reported in cancer cells362–364. Incubation with a methyltransferase 

inhibitor (5′-aza-2′-deoxycytidine) increased DUOX1, DUOX2 and NOX5 expression in 

cancer cells362,363.

Conversely, deficiency of the histone acetyltransferase KAT2A dramatically downregulated 

NOX2 transcription and superoxide production365. In addition, inhibition of HDACs with 

pharmacological inhibitors (scriptaid, suberoylanilide hydroxamic acid, trichostatin A and 

valproic acid) reduced NOX1, NOX2, NOX4 and NOX5 mRNA levels and ROS 

production366–369. The underlying mechanism involves HDAC inhibitors decreasing binding 

of the histone acetyltransferase p300 to the NOX promoter regions, reducing accessibility of 

RNA polymerase II and attenuating transcription efficiency368. HDAC inhibitors also 

increased expression of SOD3 through acetylation and methylation of histones in its 

promoter region367. Therefore, epigenetic modulation regulates oxidative stress via both 

NOXs and SOD.

Surprisingly, application of suberoylanilide hydroxamic acid (an HDAC inhibitor) inhibited 

STZ-induced upregulation of Nox1, Nox2 and Nox4 expression as well as ROS production 

in mouse aorta369. This change is caused by inhibition of glucose-stimulated interaction 

ofHDAC1, HDAC2 and p300 with the promoter regions of NOX1, NOX4 and NOX5, and of 

glucose-stimulated acetylation and NOX1, NOX4 and NOX5 transcription in human 

vascular smooth muscle cells369. In endothelial cells, high glucose levels activate 
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hydroxymethylating enzymes, leading to increased levels of 5-hydroxymethylcytosine 

(generated from 5-methylcytosine) and its binding to the RAC1 promoter region as well as 

activation of RAC1 transcription in diabetes370. Moreover, in an animal model of cardiac IR 

injury, macrophage expression of myocardin-related transcription factor A recruited the 

histone acetyltransferase KAT8 to the promoters of Nox1, Nox2 and Nox4 to activate 

transcription371. Inhibition of KAT8 with MG149 significantly downregulated Nox1 and 

Nox4 expression and ROS production and restored myocardial function in mice exposed to 

IR injury371. These studies have revealed an emerging mechanism of epigenetic regulation 

of NOX gene transcription and NOX-derived ROS production in CVDs369–371, the targeting 

of which might provide alternative therapeutic strategies to NOX inhibition.

In addition to the challenge of developing isoform-specific inhibitors of NOXs, it is 

important to note that basal ROS production is required for many physiological processes, as 

discussed above2,58. Removing basal levels of ROS might compromise these physiological 

functions. Furthermore, tissue-specific or cell-specific roles of NOX isoforms need to be 

targeted in different cardiovascular conditions. Therefore, details of NOX inhibitor 

application (that is, timing, dosing and cell-specific or tissue-specific targeting) are of great 

importance in the prevention and treatmentof CVDs.

Conclusions

During the pathogenesis of CVDs, ROS are generated by various sources, particularly 

NOXs. The interactions between different ROS-producing systems demonstrate a critical 

role of NOXs and NOX-dependent activation of secondary oxidase systems in sustaining 

oxidative stress, leading to the development of CVDs. Upon activation, NOX-derived ROS 

induce eNOS uncoupling, mitochondrial dysfunction and, to a lesser extent, XO activation, 

resulting in further release of ROS and tissue injury. Systematic evaluations of interactions 

between ROS-producing systems have provided new insights into the mechanistic details of 

CVDs, especially isoform-specific activation of NOXs under different disease conditions. 

Targeting specific NOX isoforms selectively to correct eNOS uncoupling and mitochondrial 

dysfunction might prove to be highly beneficial as a novel therapeutic strategy for the 

treatment of various CVDs, including hypertension, aortic aneurysms, diabetic vascular 

dysfunction, atherosclerosis, cardiac IR injury, heart failure and cardiac arrhythmias. 

Therefore, the development of novel, effective and isoform-specific NOX inhibitors, as well 

as the development of novel strategies targeting uncoupled eNOS and mitochondrial 

dysfunction, are essential in realizing the therapeutic value of targeting NOX isoforms and 

downstream oxidase systems for the prevention and treatment of CVDs.
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Key points

• Activation of NADPH oxidase (NOX) has a critical role in the pathogenesis 

of cardiovascular diseases.

• Activation of NOX induces activation of downstream secondary oxidase 

systems, including uncoupled endothelial nitric oxide synthase, dysfunctional 

mitochondria and xanthine oxidase.

• Crosstalk between oxidases or oxidase systems sustains oxidative stress to 

mediate the development of cardiovascular diseases.

• Targeting NOXs as well as interactions between NOXs and secondary oxidase 

systems might be a novel therapeutic strategy for the prevention and treatment 

of cardiovascular diseases.
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Box 1 |

Identification of NOXs and subunits

1960s–1970s

• Presence of oxidase system in phagocytes (1964)62

• Cytochrome b558 as a component of the oxidase system (1978)63,64

1980s

• Catalytic subunit (now known as NOX2) of NOX in phagocytes (1986)65

• p22phox (1987)66

• p47phox and p67phox (1988)67, 68

1990s

• Role of RAC1 and RAC2 (1991)69,70

• p40phox (1993)71

• NOX in ECs and VSMCs (1994)72

• NOX1 (1999–2000)73–74

2000s

• NOX3 (2000)75

• NOX4 (2000)76

• DUOX1 and DUOX2 (2000–2001)77–78

• NOX5 (2001)79–80

• NOXA1 and NOXO1 (2003)81–83

• DUOXA1 and DUOXA2 (2006)84

DUOX, dual oxidase; DUOXA, dual oxidase maturation factor; EC, endothelial cell; 

NOX, NADPH oxidase; NOXA1, NADPH oxidase activator 1; NOXO1, NADPH 

oxidase organizer 1; VSMC, vascular smooth muscle cell.
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Box 2 |

Development of NOX inhibitors

1980s

• DPI (1986–1988)307–308

1990s

• Apocynin (1990–1992)309–310

• AEBSF (1995–1997)324–325

2000s

• NOX2ds-tat (2001)343

• S17834 (2001)327

• HMG-CoA reductase inhibitor (2002)329,330

• NSC23766 (2004–2005)15,334

• VAS2870 (2006)336,337

• Brilliant green and Gentian violet (2006)340

• Fulvene-5 (2009)342

2010–2012

• GKT136901 and GKT137831 (2010–2012)347,352,357

• ML171 (2010–2015)316, 339

• VAS3947 (2010)338

• Imipramine blue (2012)341

2013–2015

• NOXA1ds (2013–2018)132, 345

• 6-(Dimethylamino)fulvene (2014)60

• Proton sponge blue (2014)60

• GLX351322 (2015)348

• GSK2795039 (2015)350

2016–2019

• APX-115 (2016–2017)359, 360

• GLX481372 and GLX7013114 (2018)349

AEBSF, 4-(2-aminoethyl)benzenesulfonyl fluoride; apocynin, 4′-hydroxy-3′-
methoxyacetophenone; DPI, diphenyleneiodonium; HMG-CoA, 3-hydroxy-3-
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methylglutaryl coenzyme A; NOX, NADPH oxidase; NOXA1, NADPH oxidase activator 

1.
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Box 3 |

Transgenic NOX animal models of CVDs

2000s

• Nox2−/y (hypertension) (2001)56

• Ncf1−/− (atherosclerosis) (2001)57

• Nox2−/y (heart failure) (2002)292

• Ncf1−/− (hypertension) (2003)13

• Nox1−/y (hypertension) (2005–2006)222,223

• VSMC-specific Nox1-Tg (hypertension) (2005)235

• VSMC-specific Cyba-Tg (hypertension) (2005)234

• EC-specific Nox2-Tg (hypertension) (2007)236

2010–2012

• Nox2−/y (atherosclerosis) (2010)258

• Nox4−/− (heart failure) (2010)288

• Cardiac-specific Nox4−/− (heart failure) (2010)59

• Cardiac-specific Nox4-Tg (heart failure) (2010)59,288

• Cardiac-specific Nox4-Tg, cardiac-specific Nox4-DN-Tg (heart failure) 

(2010)89

• EC-specific Nox4-Tg (hypertension) (2011)241

• Nox1−/y (diabetic vascular function) (2012)26

• EC-specific Nox2-Tg (atherosclerosis) (2012)259

• Ncf1−/− (diabetes) (2012)26

2013–2015

• Nox1−/y (atherosclerosis) (2013)257

• Nox2−/y, Nox4−/−, cardiac-specific Nox4−/−, Nox2−/y plus cardiac-specific 

Nox4−/− (ischaemia–reperfusion injury) (2013)58

• Cardiac-specific Nox4-Tg, cardiac-specific Nox4-DN-Tg (ischaemia–

reperfusion injury) (2013–2014)58,276

• Nox4 or Nox4-DN transient overexpression (arrhythmia) (2014)60

• VSMC-specific Cyba-Tg, VSMC-specific Cyba−/− (obesity and diabetes) 

(2014)267

• Nox4−/− (atherosclerosis) (2015)261
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• EC-specific Nox4-Tg (atherosclerosis) (2015)262

• Podocyte-specific human NOX5-Tg (hypertension, diabetic nephropathy) 

(2014)248

2016–2019

• Nox4−/− (hypertension) (2016)249

• Ncf1−/−, Nox1−/y, Nox2−/y, Nox4−/− (abdominal aortic aneurysm) (2017)34

• VSMC-specific human NOX5-Tg (diabetic nephropathy) (2017)246

• Nox4−/− (hypertension) (2018)238

• VSMC-specific human NOX5-Tg (vasorelaxation) (2018)245

• EC-specific human NOX5-knock-in (stroke) (2019)247

CVD, cardiovascular disease; DN, dominant negative; EC, endothelial cell; NOX, 

NADPH oxidase; Tg, transgenic; VSMC, vascular smooth muscle cell.
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Fig. 1 |. NADPH oxidase-dependent oxidase crosstalk in the pathogenesis of cardiovascular 
diseases.
NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces 

endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, 

resulting in sustained oxidative stress and the development of cardiovascular diseases. 

Reference numbers are given in square brackets. AAA, abdominal aortic aneurysm; AKT, 

RACα serine/threonine-protein kinase; ANGII, angiotensin II; BBB, blood–brain barrier; 

BMP4, bone morphogenetic protein 4; BRG1, transcription activator BRG1; DHFR, 

dihydrofolate reductase; DOCA, deoxycorticosterone acetate; GTPCH1, GTP 

cyclohydrolase 1; H2O2, hydrogen peroxide; H4B, tetrahydrobiopterin; HDAC4, histone 

deacetylase 4; HIF1α, hypoxia-inducible factor 1α; IR, ischaemia–reperfusion; LTCC, L-

type calcium channel; MAPK, mitogen-activated protein kinase; Mito, mitochondrial; Mito-

ROS, mitochondria-derived reactive oxygen species; mTOR, mechanistic target of 
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rapamycin; NFAT, nuclear factor of activated T cells; NF-κB, nuclear factor-κB; N if, 

nifedipine; NO, nitric oxide; PE, phenylephrine; PO, pressure overload; PPARα, peroxisome 

proliferator-activated receptor-α; SPR, sepiapterin reductase; T1DM, type 1 diabetes 

mellitus; T2DM, type 2 diabetes mellitus; VEGF, vascular endothelial growth factor.
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Fig. 2 |. Composition and cell-specific expression and activity of NOX isoforms in the 
cardiovascular system.
a | NADPH oxidase 1 (NOX1). b | NOX2. c | NOX4. d | NOX5. e | Dual oxidase 1 

(DUOX1). f | DUOX2. CaM, calmodulin; DUOXA, dual oxidase maturation factor; HSP90, 

heat shock protein 90; NOXA1, NADPH oxidase activator 1; NOXO1, NADPH oxidase 

organizer 1; POLDIP2, polymerase δ-interacting protein 2.
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