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ABSTRACT OF THE DISSERTATION 

Vehicle-Bridge Interaction and Vibration Suppression Using 

Magnetorheological Nanocomposites  

by 

Yongxue Li 

Doctor of Philosophy in Civil Engineering 

University of California, Irvine, 2015 

Professor Lizhi Sun, Chair 

 

The objective of the research in this dissertation is to use novel adaptive materials called 

magnetorheological nanocomposites (MRNs) to build semi-active structures, and further apply 

such smart structures into the vehicle-bridge coupling system of high-speed rail so that the dynamic 

responses of the bridge can be controlled and suppressed significantly.  

 

First, the dynamic behavior of a simplified double-beam system interconnected by an elastic layer 

is investigated. A semi-analytical method is developed to analyze the natural frequencies and 

corresponding mode shapes. The dynamic responses of forced system vibration are determined by 

the modal-expansion method using the natural frequencies and mode shapes obtained from the free 

vibration analysis.  



xvii 

 

 

Second, considering the damping effect of the viscoelastic layer, a double-beam system with a 

viscoelastic layer between two beams is observed. An iteration algorithm with modal-expansion 

method is used to analyze the dynamic responses of forced system vibration. 

 

Third, an active control structure, a semi-active control structure and corresponding control 

algorithms are developed to suppress the vibration of the double-beam system with elastic layer or 

viscoelastic layer. In the active control structure, the independent modal space control and linear 

quadratic regulator are adopted to determine the active control force. With the mode shape filter 

and dynamic mechanical model, the determinations of stiffness increase and damping increase are 

obtained. 

 

Fourth, a co-simulation method is proposed to complete the dynamic simulation of vehicle-bridge 

coupling system. The Matlab/Simulink is used to build a platform to ensure MSC/NASTRAN for 

bridge model and MSC/ADAMS for vehicle model working together. The vehicle-bridge coupling 

relationships are coded as a program block and inputted into that platform. 

 

Finally, the semi-active control structure based on MRNs is inputted into the vehicle-bridge 

coupling system of high-speed railway to control and suppress the vibration of the bridge. MRNs 

are applied as the viscoelastic layer between floating slab track and bridge main beam to build the 
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semi-active control structure for bridges. The semi-active control algorithm for MRNs is 

developed and inputted into that co-simulation platform. Numerical experiments have been made 

to illustrate and verify the efficiency of the proposed semi-active control structure in the end. 



1 

 

Chapter 1 Introduction 

1.1 Introduction 

With the fast developing economy, more and more high-speed rails have been built in the world. 

First, the trains passing the bridge induce dynamic impact to bridge structures, reducing their safety 

and service life. Second, the vibration of bridges in turn affects the running stability and safety of 

the trains. And thus, the dynamic responses of bridges in railway engineering under the high-speed 

train loads become one of the fundamental problems needed to be solved in the research and design 

works. 

 

In order to reduce the vibration of the structures, several methods have been studied deeply, and 

among of them, structural vibration control has been observed more than 40 years. Yao (1972) 

firstly introduced the modern control theory into civil engineering in 1972, from when the research 

about structural vibration control started. Until now, the main structural vibration control could be 

classified as three parts: active control, passive control and semi-active control. Many theoretical 

and experimental works about different types of the structures have been made to show the 

efficiency of those vibration control methods. 

 

In those structural vibration control methods, many smart materials are applied to realize the 

control effects. Magnetorheological (MR) materials are just a group of those smart materials whose 
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mechanical and rheological properties can be controlled rapidly and reversibly by applied external 

magnetic fields. The main MR materials include MR fluid (MRF), MR foam, MR gel, and MR 

elastomers (MREs). The mechanism of the field-dependent controllability of MR materials is the 

magnetic interaction among the ferromagnetic particles contained in these materials, which can be 

adjusted by the applied magnetic fields. 

 

In those three research topics introduced above, researchers have been facing two challenges. First, 

there are very few works about applying the vibration control structure into vehicle-bridge 

coupling system, especially into the high-speed rail bridge structures. The abundant existed 

structural vibration control works are for buildings. Several researches that are about bridge 

structures are observed for earthquake effects. The vibration control on bridges for vehicle-bridge 

coupling system is still a new research area. Second, the adjustable ability of the MR materials is 

still weak and it is hard to apply it to make best control effects in structural vibration control. Due 

to the limit of the matrix, the adjustable range of the MR materials, especially the MREs, is still 

small and it is not enough to apply it to do the structural vibration control effectively. 

 

The two posted challenges lead to this research on applying novel adaptive materials 

magnetorheological nanocomposites (MRNs) to build semi-active control structures which can be 

applied into vehicle-bridge coupling system of high-speed rail to control and reduce the vibration 

of bridges. MRNs are improved MREs by adding carbon nanotubes (CNTs) to reinforce 
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conventional MREs, and their initial and adjustable stiffness and damping are better than MREs. 

The advantages of MRNs make it possible to use them in structural vibration control. Considering 

the ballastless track structure, which chooses floating slab track as the main constituent part, is 

widely existed in modern bridges of high-speed rail, the MRNs are able to be installed as the 

viscoelastic layer between floating slab track and bridge main beam to build a semi-active control 

structure. With a corresponding control algorithm, the vibration control based on MRNs for high-

speed rail bridges can be completed successfully.  

 

It is expected that when the MRNs are applied as the viscoelastic layer between floating slab track 

and bridge main beam, the semi-active control can work effectively to suppress the vibration of 

bridge structures when the high-speed trains are passing. 

 

1.2 Scope 

The research in this dissertation is the first attempt to use novel adaptive materials 

magnetorheological nanocomposites (MRNs) to build semi-active control structures, and further 

apply such smart structures into vehicle-bridge coupling system of high-speed rail so that the 

vibration of the whole system could be controlled effectively and the dynamic responses of bridge 

can be reduced significantly. The dynamic behavior of a simplified double-beam system with 

elastic layer or viscoelastic layer is studied firstly, which is the theoretical basis for the control 
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structure research on the same mechanic models. In next step, the active control and semi-active 

control are developed for those double-beam systems and the specific control algorithms are 

derived. A co-simulation method is proposed to simulate the vehicle-bridge coupling system, and 

it is built successfully in Matlab/Simulink platform. Last but not least, the semi-active control 

based on MRNs is inputted into the co-simulation platform, and the its application in vehicle-

bridge coupling system of high-speed rail is completed successfully to control and reduce the 

bridge dynamic responses and protect the whole system safety. 

 

This dissertation is organized as follows. 

 

Chapter 2 investigate the dynamic behavior of a double-beam system interconnected by elastic 

layer. First, a semi-analytical method is developed to analyze the natural frequencies and 

corresponding mode shapes of that double-beam system. Second, the dynamic responses of forced 

system vibration are determined by the modal-expansion method using the natural frequencies and 

mode shapes obtained from the free vibration analysis. Finally, various double-beam system 

models are studied to verify the semi-analytical method and conduct the systematic parametric 

analysis of the structural resonance condition and dynamic responses.  

 

Chapter 3 observes a double-beam system interconnected by a viscoelastic layer, in which the 

damping effect cannot be ignored. First, the natural frequencies and corresponding mode shapes 
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are analyzed by a similar semi-analytical method. Second, an iteration algorithm with modal-

expansion method is used to analyze the dynamic responses of forced system vibration. Finally, 

the semi-analytical method and iteration algorithm are verified by the calculations of various 

double-beam system models and the systematic parametric analysis is conducted .  

 

Chapter 4 and Chapter 5 develop an active control structure, a semi-active control structure and 

corresponding control algorithms to suppress the vibration of the double-beam system with elastic 

layer and viscoelastic layer, respectively. First, in the active control structure, independent modal 

space control and linear quadratic regulator are adopted to decouple equations of motion with 

active control and determine the active control force in physical space. Second, a linear model is 

assumed as the dynamic mechanical model of the adjustable viscoelastic layer and the relationship 

between stiffness, damping coefficient with inputted currents is also defined as a linear model. 

Third, in the semi-active control structure, based on that semi-active control force is assumed to 

be close to active force and with the mode shape filter, the determination methods of stiffness 

increase and damping increase are derived. Fourth, the calculation methods for double-beam 

system with that active control and that semi-active control are developed. Finally, several double-

beam system with active control structure or semi-active control structure models are calculated 

to illustrate the efficiency of the proposed active control and semi-active control. 

 

Chapter 6 proposes a co-simulation method to complete the dynamic simulation of vehicle-bridge 
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coupling system. First, bridge structures are modelled by finite element method software 

MSC/NASTRAN, and dynamics of multibody system software MSC/ADAMS is used to simulate 

the vibration of vehicle system. Second, the vehicle-bridge coupling relationships are introduced 

and the classical theories about them are adopted, including wheel-rail contact geometric 

parameters, wheel-rail contact forces and track irregularity. Third, the Matlab/Simulink is used to 

build a platform to ensure MSC/NASTRAN and MSC/ADAMS working together, and the vehicle-

bridge coupling relationships are coded as a program block and inputted into that platform. Finally, 

numerical examples of vehicle-bridge coupling system are calculated to illustrate the practicability 

of the proposed co-simulation method. 

 

Chapter 7 inputs the semi-active control structure based on MRNs into the vehicle-bridge coupling 

system of high-speed rail to control vibration of the whole system and reduce the dynamic 

responses of bridge. First, MRNs are applied as the viscoelastic layer between floating slab track 

and bridge main beam to build the semi-active control structure for high-speed rail bridges. Second, 

the dynamic mechanical model of MRNs is derived based on their properties. Third, the semi-

active control algorithm developed for double-beam system with viscoelastic layer is used to 

derive the semi-active control algorithm for MRNs. Fourth, that semi-active control is inputted 

into the co-simulation platform of vehicle-bridge coupling system, and the simulation of the whole 

system with semi-active control is completed. Finally, numerical examples are demonstrated to 

prove the efficiency of the semi-active control structure proposed in this research by MRNs for the 
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vehicle-bridge coupling system of high-speed rail. 

 

Chapter 8 concludes the dissertation by summarizing the major contributions. In addition, some 

suggestions for the future work are also discussed. 
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Chapter 2 Dynamic Behavior of Undamped Double-Beam Systems 

Interconnected with Elastic Layers 

2.1 Introduction 

The main research objective in this dissertation is to apply novel adaptive materials as a semi-

active control in high-speed rail bridge, and the vibration of bridge can be controlled and reduced 

when the trains are passing. In order to realize that objective, the novel adaptive materials will be 

used as the viscoelastic layer between floating slab track and bridge main beam, which will be 

introduced specifically in Chapter 6 and Chapter 7. In that case, the floating slab track and bridge 

main beam with the viscoelastic layer between them will form a kind of double-beam system, 

consisting of two one-dimensional continuous beams connected by a uniformly distributed elastic 

or viscoelastic layer. To that structure, it should aim to find what exactly the characteristics of 

structural vibration is, and then, indicate a means to reduce or control vibration into an accepted 

level. Therefore, in this chapter, the dynamic behavior of an undamped double-beam system 

interconnected by elastic layer is investigated firstly, which will be the theoretical basis for the 

control structure research works studied in Chapter 4 and Chapter 5.  

 

In fact, the double-beam system is an ideal model for special structures discussed and applied in 

engineering, such as sandwich or composite beam, continuous dynamic vibration absorber, active 

constrained layer damping, and so on. Due to its potentially wide applications in many engineering 
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areas, the free and forced vibrations of the double-beam system have been studied by many 

investigators in the past decades. A theory for the free vibration of elastically connected parallel 

beams has been developed by Seelig and Hoppmann (1964a), who studied the natural frequencies 

and mode shapes for a double-beam system. They further extended the research into the forced 

vibration (Seelig and Hoppmann 1964b) under impact load condition. Dublin and Friedrich (1956) 

presented a method of obtaining the forced vibration response for two elastic beams interconnected 

by spring-damper, and the exciting force is a sinusoidal load. Resonance conditions of a double-

beam system under a moving load oscillating longitudinally along the beam about a fixed point is 

derived by Kessel (1966), who also considered the damping effect in the same system later (Kessel 

and Raske 1967). Rao (1974) added the rotary inertia and shear deformation effects into the 

elastically connected parallel system flexural vibration, the double-beam system results are 

compared with some experimental values. Chonan (1976) moved his attention to the mass of the 

spring which is the connection between two beams, by the method of the Laplace transformations, 

dynamic behaviors of the double-beam system related to spring mass are investigated. Irie et al. 

(1982) discussed the steady-state responses of a double-beam system with internal damping under 

sinusoidal force, and a transfer matrix technique is adopted for solving the differential equations. 

Free and forced vibrations of a double-beam system with unequal masses and unequal flexural 

rigidities are investigated by Hamada et al. (1983) who applied finite integral transformation and 

Laplace transformation. Cottle (1990) analyzed the layered beam with mixed boundary conditions, 

and a general solution assumption and a semi-analytical method are applied to solve the equations. 



10 

 

Chen and Sheu (1995) studied the free vibration, dynamic response and static buckling of two 

identical parallel beams with a viscoelastic material layer in between, the boundary conditions of 

those two beams can be different, and a dynamic stiffness matrix, which is based on their another 

work (Chen and Sheu 1993), is established to solve the problem. A same layered beam without 

axial forces is also discussed by Chen and Sheu (1994) by using same method. Kukla and 

Skalmierski (1994) considered the transverse free vibration of an axially loaded double-beam 

system too, but one beam is compressed under the axial force and another beam is under a tensile 

force. Oniszczuk (2000c, 2003c) presented the analytical solutions for free and forced vibrations 

of an undamped elastically connected complex double-beam system with simply supported 

boundary condition, based on his similar research for the double-string system (Oniszczuk 2000a, 

2000b, 2003b). Oniszczuk also conducted similar vibration studies for other structures (Oniszczuk 

1999, 2000d, 2002a, 2002b, 2003a, 2004), but the basic method to solve the equations is same as 

in the double-beam system. Vu et al. (2000) presented an exact method to analyze a two identical 

beams system subject to harmonic excitation, and boundary conditions on the same side of the 

system must be same. Li and Hua (2007) introduce a spectral finite element method for a more 

general double-beam system, which could have unequal masses, unequal flexural rigidities and 

arbitrary boundary conditions. Zhang et al. (2008) discussed the effects of compressive axial load 

on the forced vibrations of the double-beam system under two particular excitation loadings. Xin 

and Gao (2011) applied the double-beam system into a specific engineering structure, a bridge 

with a slab track on it, and use finite element method and multibody dynamics theory to solve the 
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problem. Some other structures, which are similar to double-beam system, are also analyzed by 

many researchers, such as sandwich beam (Lu and Douglas 1974; Douglas and Yang 1978; Frostig 

and Baruch 1993 and 1994; Macé 1994), continuous dynamic vibration absorber (Yamaguchi 1985; 

Vu 1987; Aida et al. 1992; Chen and Lin 1998; Kawazoe et al. 1998), and composite layered 

foundation (Yankelevsky 1991), the methods solving equations among all of them are also useful 

and helpful for double-beam system.  

 

Although there have been research efforts investigating the dynamic responses of double-beam 

systems as shown above, they are limited to simplified cases that the two beams must be either the 

same, have same transverse deformation, and/or have the simply supported boundary conditions. 

Due to unequal masses, unequal flexural rigidities of the beams, and variety of possible 

combinations of the boundary conditions for the system, the vibration analysis for those general 

double-beam systems is indeed complicated. On the other hand, in real engineering practices, such 

as the floating slab track on bridge which is the main structure studied in this research, the double-

beam system cannot always have two same beams or same boundary conditions. Therefore, a 

general double-beam system must be considered. This chapter presents a semi-analytical method 

to obtain the natural frequencies and corresponding mode shapes for the general double-beam 

system, which may have unequal masses, unequal flexural rigidities, and arbitrary boundary 

conditions. In addition, for the same double-beam model, the forced vibration excited by arbitrary 

loading is analyzed by the classical modal expansion method, based on the natural frequencies and 
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mode shapes obtained from the free vibration analysis, and a specific orthogonality condition for 

that double-beam system is derived and applied to decouple differential equations. The natural 

frequencies and mode shapes are calculated by the semi-analytical method for three cases of 

arbitrary masses, arbitrary flexural rigidities and arbitrary boundary conditions models. 

Furthermore, various double-beam system models are studied with a concentrated harmonic force 

in the midspan of upper beam to conduct the systematic parametric analysis of the structural 

resonance condition and dynamic responses. 

  

2.2 Formulation of the Problem 

As shown in Fig. 2-1, the physical model of a double-beam system with elastic layer is composed 

of an upper beam and a lower beam joined by a uniformly distributed-connecting elastic layer. In 

this chapter, both beams are homogeneous, prismatic and have the same length L, however, they 

can have different mass, flexural rigidity and boundary conditions, which makes the model to be 

more real in engineering projects. 

a 

 

b

 

Fig. 2-1. The physical model of a double-beam system: (a) free vibration model; (b) forced vibration model. 
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Applying the Bernoulli-Euler beam theory, the free and forced transverse vibrations of a double-

beam system with an elastic layer, as shown in Fig. 2-1, are described by the governing equations 

of motion as follows: 

   
2 22

1 1
1 1 1 2 1 1 12 2 2

,
W W

E I K W W A f x t
x x t


  

    
   

                                (2-1a) 

   
2 22

2 2
2 2 1 2 2 2 22 2 2

,
W W

E I K W W A f x t
x x t


  

    
   

                              (2-1b)   

where  1 1 ,W W x t and  2 2 ,W W x t are transverse beam deflections of the upper and lower 

beams, respectively; x  and t  are the spatial co-ordinate and the time; 1E  and 
2E  are the 

Young moduli of elasticity of the upper beam and lower beam; 
1I  and 2I  are the moment of 

inertia of the beam cross section for upper beam and lower beam; 1  and 
2  are the mass 

density of the upper beam and lower beam; 1A  and 
2A  are the cross-sectional area of the upper 

beam and lower beam; K is the stiffness of the elastic layer; and  1 ,f x t  and  2 ,f x t  are the 

exciting force acting on the upper and lower beams, respectively. 

 

If    1 2, , 0f x t f x t  ,  Eq. (2-1) is the governing equation of motion for free vibration of a 

double-beam system; otherwise, it is the governing equation for forced vibration. 

 

Considering the two beams are uniform and homogeneous, let us assume: 

1 1 1E I e , 2 2 2E I e , 
1 1 1A m  , 

2 2 2A m                                        (2-2)                                                                                                  

where 
1e  and 2e  are the flexural rigidity of the upper beam and lower beam, and 

1m  and 2m  
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are the mass per unit length of the upper beam and lower beam. 

 

With the assumption of Eq. (2-2), Eq. (2-1) become 

   
4 2

1 1
1 1 2 1 14 2

,
W W

e K W W m f x t
x t

 
   

 
                                        (2-3a)                                                                            

   
4 2

2 2
2 1 2 2 24 2

,
W W

e K W W m f x t
x t

 
   

 
                                       (2-3b)                                                                            

 

The initial conditions in general form are as follows: 

   1 10,0W x W x ,    2 20,0W x W x ,    1 10,0W x V x ,    2 20,0W x V x            (2-4)                                                     

 

As to the boundary conditions at the ends ( 0x  , L ) of the two beams, since it can analyze different 

kinds of them in this chapter, so some common ones are listed as follows: 

Simply supported:        0, , 0, , 0i i i iW t W L t W t W L t                           (2-5a)                                                                                          

Clamped:        0, , 0, , 0i i i iW t W L t W t W L t                                  (2-5b)                                                                                    

Free:        0, , 0, , 0i i i iW t W L t W t W L t                                      (2-5c)                                                                              

Spring supported:    0, , 0i iW t W L t   ,    0, 0,i i i iE I W t KW t   ,  

   , ,i i i iE I W L t KW L t                                                      (2-5d)  

where i =1 or 2 represents upper beam or lower beam. 
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2.3 Solution of the Problem for Free Vibration 

Based on the previous research results, it can be easily understood that the solutions for Eq. (2-3) 

are separable in time and space. The solutions can be assumed in the form as follows 

     1 1, i t pxW x t T t X x De Ae  ,      2 2, i t pxW x t T t X x De Be                    (2-6)                                                                   

 

where   i tT t De   is time function;  1

pxX x Ae  and  2

pxX x Be  is the mode shape 

function of the upper beam and lower beam, respectively;   is the natural frequency of the 

double-beam system;  A, B, D, P are unknown constants; and 1i    is imaginary unit. 

 

With Eq. (2-6), the differential Eq. (2-3) become a set of algebraic ones and can be written in 

matrix form as follows 

4 2

1 1

4 2

2 2

0

0

Ae P K m K

BK e P K m





       
    

       
                                   (2-7)                                                                              

 

It is understandable that finding the solutions to Eq. (2-7) is an eigenvalue problem. The nontrivial 

solution for Eq. (2-7) requires the determinant of the coefficient matrix equal to 0, which derives 

out an eighth order polynomial equation in terms of P: 

   8 2 2 4 4 2 2

1 2 1 2 1 2 2 1 1 2 1 2 0e e P e K e K m e m e P m m m K m K                        (2-8)                                                      

 

Defining 4Q P , Eq. (2-8) can be changed into a second order polynomial equation 
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   2 2 2 4 2 2

1 2 1 2 1 2 2 1 1 2 1 2 0e e Q e K e K m e m e Q m m m K m K                         (2-9)                                                       

 

Since the discriminant of this algebraic equation is positive 

   
2

2 2

1 2 2 1 1 2 1 24 0m e m e K e e e e K                                          (2-10)                                                                                   

 

Therefore the two roots of Eq. (2-9) are 

 2 2

1 2 1 2 2 1

1,2

1 22

e K e K m e m e
Q

e e

      
                                      (2-11)                                                                             

 

The eight roots of Eq. (2-8), that are also the values of constant P, can be written as 

4
1 1P Q , 4

2 1P Q  , 4
3 1P Q i , 4

4 1P Q i  , 4
5 2P Q , 4

6 2P Q  , 4
7 2P Q i , 

4
8 2P Q i                                                                 (2-12) 

 

Using Eq. (2-7), the relationship among the constants A and B is given by 

4 2

1 1

4 2

2 2

e P K mK
B A A

e P K m K





 
   

 
                                  (2-13)                                                                                     

 

Considering there are eight roots 
jP ( 1,2...8j  ) for Eq. (2-8), so there should be eight values in 

constants A and B, which makes Eq. (2-13) to be written specifically as 

4 2

1 1

4 2

2 2

j

j j j j j

j

e P K mK
B A A A

e P K m K






 
    

 
                          (2-14)                                                                         
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Finally, the solution of Eq. (2-3) can be obtained in the form as follows 

   
8

1

1 1

, njn
P xi t

n nj

n j

W x t D e A e




 

 
  

 
                                              (2-15a)                                                                                       

     
8 8

2

1 1 1 1

, nj njn n
P x P xi t i t

n nj n nj nj

n j n j

W x t D e B e D e A e
  

 

   

   
    

   
                         (2-15b)                                                                

where 
n is the nth natural frequency; and 

njA , 
njB , nD , 

njP , 
nj  are the unknown constants 

corresponding to nth natural frequency. 

 

Substituting Eq. (2-15) into the real boundary conditions defined in Eq. (2-5) results in a set of 

eight algebraic equations with eight unknown constants 
njA ( 1,2...8j  ) under each natural 

frequency. In matrix form, it can be represented as  

     
8 1 8 18 8

0E A
 
                                                         (2-16)                                                                                                                          

where    1 2 3 4 5 6 7 88 1

T

n n n n n n n nA A A A A A A A A

  is unknown constants vector;  

   
8 1

0 0 0 0 0 0 0 0 0
T


  is zero vector;  

8 8
E


 is boundary conditions coefficient 

matrix. 

 

As to  
8 8

E


 matrix, it depends on specific boundary conditions of upper and lower beams, and 

will be different when considering different boundary conditions. Meanwhile, in this chapter, the 

method adopting  
8 8

E


 matrix makes it is possible to discuss all kinds of boundary conditions 

and calculate the model that upper beam boundary conditions are different from lower beam, which 
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is an obvious advantage from previous research. The specific  
8 8

E


 matrix for several typical 

boundary conditions of double-beam system is demonstrated in Appendix 1.  

 

The theory is same as in Eq. (2-7), nontrivial solutions for Eq. (2-16) will exist only when the 

determinant of the boundary conditions coefficient matrix  
8 8

E


 is equal to 0, so it makes  
8 8

E


 

to be the frequency characteristic matrix.  

0E                                                                     (2-17)  

 

Based on the Equations derived above, a semi-analytical method is developed to determine the 

natural frequencies and mode shapes of the whole double-beam system. The semi-analytical 

method can be generally expressed in a flowchart form as shown in Fig. 2-2. Once the frequency 

range is determined, all the natural frequencies and corresponding mode shapes in that range can 

be obtained by the semi-analytical method.  

 

Due to the possible error of natural frequency by the finite step  , it is impossible to obtain the 

precise   satisfying 0E   directly. A searching process is needed, in which a classical 

numerical analysis method called Secant Method is adopted in this chapter and it is demonstrated 

specifically in Appendix 2.                                                                                                             
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Fig. 2-2. Flowchart of the semi-analytical method to determine natural frequencies and mode shapes of double-beam 

with elastic layer system. 

 

Although the natural frequencies and mode shapes have been obtained by the semi-analytical 

method introduced above, it is still needed to find the final form of the free vibration, which 

requires determining the value of constant nD  from the initial conditions defined in Eq. (2-4).  

 

If the unknown variable is  , the solution of the Eq. (2-13) will be 

   4 4

2 1

2 1

e P K B AK e P K A BK

m B m A


   
                                   (2-18)                                                                               
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It is easy to find out that there are actually two roots value for each  . Although the negative 

value is meaningless for real structure, it is meaningful for solving the equations of motion and 

obtaining the final form of free vibration. Based on Eq. (2-18), the two roots for each 
n  can be 

in the form 

1n n  , 
2n n                                                           (2-19)                                                                                                          

 

The assuming final solutions for free vibration can be written as 

             
8

1 1 2 1 2 1 1

1 1 1 1

, njn n n n
P xi t i t i t i t

n n nj n n n n n

n j n n

W x t D e D e A e D e D e x T t x
     

  
 

   

 
     

 
      

                                                                        (2-20a)                                  

         

   

8

2 1 2 1 2 2

1 1 1

2

1

, njn n n n
P xi t i t i t i t

n n nj nj n n n

n j n

n n

n

W x t D e D e A e D e D e x

T t x

    



 
 

  





 
    

 



  



      (2-20b)            

where   1n x  and  2n x  are the mode shape functions under nth natural frequency for the 

upper and lower beams, respectively, and  nT t  is time function corresponding to nth natural 

frequency. 

 

Substituting Eq. (2-20) into Eq. (2-4), the initial conditions could be denoted as 

     1 2 1 10

1

n n n

n

D D x W x




                                                 (2-21a)                                                                                                                           

     1 2 2 20

1

n n n

n

D D x W x




                                                 (2-21b)                                                                                                                      
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     1 2 1 10

1

n n n n n

n

i D i D x V x  




                                             (2-21c)                                                                                                              

     1 2 2 20

1

n n n n n

n

i D i D x V x  




                                            (2-21d)                                                                                                              

 

In order to apply modal expansion method to solve Eq. (2-21), it is necessary to derive the 

orthogonality condition for different mode shapes of the double-beam system with elastic layer. 

The governing equations Eq. (2-3) for free vibration (    1 2, , 0f x t f x t  ) can be written as  

 
2 4

1 1
1 1 1 22 4

W W
m e K W W

t x

 
   

 
                                             (2-22a)                                                                                                     

 
2 2

2 2
2 2 1 22 2

W W
m e K W W

t x

 
   

 
                                            (2-22b)                                                                                                  

 

The left terms 
2

1
1 2

W
m

t





 and 

2

2
2 2

W
m

t





 are due to acceleration, so they are a kind of inertial 

force  1 ,If x t and  2 ,If x t . The right terms are related to displacement, so they can be treated as 

a sort of elastic force. When considering the whole double-beam system, which consists of upper 

beam and lower beam, an energy equilibrium equation will be obtained as 

               1 1 2 2 1 1 2 2
0 0

, , , , , , , ,
L L

m I n m I n n I m n I mW x t f x t W x t f x t dx W x t f x t W x t f x t dx            

                                                                         (2-23)                         

 

Substituting Eq. (2-20) into Eq. (2-23), and applying the definitions of  1 ,If x t  and  2 ,If x t , 

Eq. (2-23) reads 
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                 

                 

2 2

1 1 1 2 2 2
0 0

2 2

1 1 1 2 2 2
0 0

L L

m m n n n m m n n n

L L

n n m m m n n m m m

T t x m T t x dx T t x m T t x dx

T t x m T t x dx T t x m T t x dx

     

     

        

         

 

 
    (2-24)                                         

 

Merging the similar items, the Eq. (2-24) will be simplified as 

             2 2

1 1 1 2 2 2
0 0

0
L L

n m n m m n m nm x x dx m x x dx T t T t                          (2-25)                                                

 

Since for different natural frequencies, 2 2

m n  , so the orthogonality condition for different mode 

shapes of the double-beam system with elastic layer is 

       1 1 1 2 2 2
0

L

n m n m n mnx m x x m x dx M                                        (2-26)                                                                                         

where 
nM  is the generalized mass in the nth mode, 

mn  is the Kronecker delta function. 

 

Once the orthogonality condition is derived, go back to the initial condition Eq. (2-21). 

       1 1 2 2. 2 21 . 2 21m mEq a x m Eq b x m      , and integrate it respect to x from 0 to L 

           

       

1 1 1 2 1 2 2 1 2 2
0 0

1 1

1 1 10 2 2 20
0 0

L L

m n n n m n n n

n n

L L

m m

x m D D x dx x m D D x dx

x mW x dx x m W x dx

   

 

 

 

  

 

  

 

              (2-27)                                                        

 

The orthogonality condition is applied into Eq. (2-27), and it will be transferred as 

       

       

1 1 10 2 2 20
0

1 2

1 1 1 2 2 2
0

L

n n

n n L

n n n n

x mW x x m W x dx
D D

x m x x m x dx

 

   

  
 

  




                             (2-28)                                                                                  
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       1 1 2 2. 2 21 . 2 21m mEq c x m Eq d x m      , and integrate it respect to x from 0 to L; apply 

orthogonality condition like in Eq. (2-27), it will be 

       

       

1 1 10 2 2 20
0

1 2

1 1 1 2 2 2
0

1
L

n n

n n L

n
n n n n

x mV x x m V x dx
D D

i x m x x m x dx

 

    

  
 

  




                          (2-29)                                                                        

 

Solving Eq. (2-28) and Eq. (2-29), the solution of 
1nD  and 2nD  can be 

1

1 1

2

n n
n

n n n

W V
D

M i M

 
    

 
                                                 (2-30a)                                                                                                                           

2

1 1

2

n n
n

n n n

W V
D

M i M

 
    

 
                                                 (2-30b)                                                                                                                          

       1 1 1 2 2 2
0

L

n n n n nM x m x x m x dx                                         (2-30c)                                                                                        

       1 1 10 2 2 20
0

L

n n nW x mW x x m W x dx                                       (2-30d)                                                                                       

       1 1 10 2 2 20
0

L

n n nV x mV x x m V x dx                                        (2-30e)                                                                                        

where 
nM , 

nW , 
nV  is the generalized mass, displacement and velocity in the nth mode. 

 

Until here, all constants in the assumed solutions in Eq. (2-6) or Eq. (2-20) have been determined. 

Therefore the free vibration of a double-beam system with elastic layer is solved successfully. 

 

2.4 Solution of the Problem for Forced Vibration 

Once the natural frequencies and mode shapes of a double-beam system are obtained by the 
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analysis of free vibration, it is possible to determine the response of the forced vibration in the 

same model. It is similar to the solutions of free vibration, particular solutions of forced vibration 

in the same model could be assumed in the following form 

         
8

1 1

1 1 1

, njP x

n nj n n

n j n

W x t T t A e T t x
 

  

 
  

 
                                  (2-31a)                                                                                 

         
8

2 2

1 1 1

, njP x

n nj nj n n

n j n

W x t T t A e T t x 
 

  

 
  

 
                               (2-31b)                                                                             

where    
8

1

1

njP x

n nj

j

x A e


  is mode shape function of upper beam corresponding to nth natural 

frequency;    
8

2

1

njP x

n nj nj

j

x A e 


  is mode shape function of lower beam corresponding to nth 

natural frequency;  nT t  is time function corresponding to nth natural frequency;  1n x  and 

 2n x  are known from the free vibration analysis, but  nT t  is unknown function which need 

to be solved. 

 

Substituting the assumed solutions Eq. (2-31) into motion equations of the whole system Eq. (2-

3), so they become 

 
 

     
 

   
4 2

1

1 1 2 1 1 14 2
1 1 1

,
n n

n n n n n

n n n

d x d T t
e T t K T t x x m x f x t

dx dt


  

  

  

              (2-32a)                                          

 
 

     
 

   
4 2

2

2 1 2 2 2 24 2
1 1 1

,
n n

n n n n n

n n n

d x d T t
e T t K T t x x m x f x t

dx dt


  

  

  

              (2-32b)                                       

 

Introducing free vibration equations in here can simplify the motion equations of forced vibration. 
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Substituting Eq. (2-20) into Eq. (2-22), eliminating the same term  1 2
n ni t i t

n nD e D e
 

  and 

multiplying the  nT t  in each term, the Eq. (2-22) will be in form of:  

 
 

         
4

1 2

1 1 2 1 14
1 1 1

n

n n n n n n n

n n n

d x
e T t K T t x x m T t x

dx


   

  

  

                     (2-33a)                                                        

 
 

         
4

2 2

2 1 2 2 24
1 1 1

n

n n n n n n n

n n n

d x
e T t K T t x x m T t x

dx


   

  

  

                    (2-33b)                                                    

 

Introducing Eq. (2-33) into Eq. (2-32) yields:  

 
 

     
2

2

1 1 1 1 12
1

,
n

n n n n

n

d T t
m x m x T t f x t

dt
  





 
  

 
                               (2-34a)                                                                   

 
 

     
2

2

2 2 2 2 22
1

,
n

n n n n

n

d T t
m x m x T t f x t

dt
  





 
  

 
                              (2-34b)                                                                 

 

       1 2. 2 34 . 2 34m mEq a x Eq b x      , integrate it respect to x from 0 to L, and apply 

orthogonality condition Eq. (2-26), so it will be 

 
   

2

2

2

n

n n n

d T t
T t F t

dt
                                                    (2-35a)                                                                                                  

 
       

       

1 1 2 2
0

1 1 1 2 2 2
0

, ,
L

n n

n L

n n n n

x f x t x f x t dx
F t

x m x x m x dx

 

   

  


  




                               (2-35b)                                                                       

 

Using Duhamel's integral, particular solution of Eq. (2-35) can be obtained as   

     
0

1
sin

t

n n n

n

T t F t d   


                                              (2-36)                                                                                   
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Until here,  nT t  is solved,  1n x and  2n x  are known functions from free vibration analysis, 

by assuming solutions Eq. (2-31), so the forced vibration of a double-beam system with elastic 

layer is solved successfully. 

 

2.5 Numerical Examples 

In order to illustrate the semi-analytical method presented in this chapter, some numerical 

examples are discussed in detail. In this section, free vibration and forced vibration numerical 

examples are demonstrated, respectively. Since the method proposed in this chapter is able to 

calculate the natural frequencies and mode shapes of a double-beam system with arbitrary 

boundary conditions, several typical boundary conditions of double-beam system are analyzed in 

free vibration part. The model with upper beam simply supported-simply supported and lower 

beam simply supported-simply supported (Fig. 2-3(a)), is applied to verify the correctness and 

accuracy of the proposed method. In the forced vibration part, upper beam spring supported-spring 

supported and lower beam simply supported-simply supported (Fig. 2-3(b)) is the main boundary 

condition simulated because it is realistic in engineering projects.  

a 

 

b 

 

K

2W

1W1 1 1e E I

2 2 2e E I

1 1 1m A

2 2 2m A

L

K

2W

1W

   1 , sin( ) 0.5f x t f t x L  
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c 

 

d 

 

Fig. 2-3. The model of a double-beam system: (a) free vibration model with same boundary condition for upper and 

lower beam: simply supported-simply supported; (b) forced vibration model with a concentrated harmonic force in 

midspan of upper beam; (c) free vibration model with boundary condition: upper beam clamped-free and lower beam 

clamped-free; and (d) free vibration model with boundary condition: upper beam clamped-clamped and lower beam 

free-free. 

 

2.5.1 Free Vibration 

The values for the basic parameters of the double-beam system from reference (Oniszczuk 2000c) 

are used in the numerical calculations. 

10 21 10E Nm  , 
4 44 10I m  , 

3 32 10 kgm   , 
2 25 10A m  , 10L m ,  

6 24 10e EI Nm   , 2 11 10m A kgm    ,   5 21 ~ 5 10K Nm  . 

 

Five cases are investigated in here for verification and discussion: 

Case 1: upper beam simply supported-simply supported and lower beam simply supported-simply 

supported (Fig. 2-3(a)), 
1 2e e e  , 

1 2m m m  ; 

Case 2: upper beam spring supported-spring supported and lower beam simply supported-simply 

supported (Fig. 2-1(a)), 
1 2e e e  , 

1 2m m m  ; 

Case 3: upper beam spring supported-spring supported and lower beam simply supported-simply 

supported (Fig. 2-1(a)), 
1 0.8e e , 2e e , 

1 0.2m m , 2m m ; 

K

2W

1W1 1 1e E I

2 2 2e E I

1 1 1m A

2 2 2m A

L

K

2W

1W1 1 1e E I

2 2 2e E I

1 1 1m A

2 2 2m A

L
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Case 4: upper beam clamped-free and lower beam clamped-free (Fig. 2-3(c)), 
1 2e e e  , 

1 2m m m  ; 

Case 5: upper beam clamped-clamped and lower beam free-free (Fig. 2-3(d)), 
1e e , 2 0.8e e , 

1m m , 2 0.2m m . 

 

The natural frequencies and mode shapes of the five cases are calculated by the semi-analytical 

method presented in this chapter, the first six natural frequencies and normal mode shapes of each 

case are summarized in Tables 2-1 to 2-5, Fig. 2-4 and Fig. 2-13 to Fig. 2-16, respectively. The 

comparative results available in reference (Oniszczuk 2000c) are also summarized in Table 2-1. 

Some of the specific results are shown in Appendix 3. 

 

Table 2-1. Natural Frequencies of double-beam system n  ( 1s ); Case 1 

510K 

 2Nm  

1n   2n   3n   4n   5n   6n   

Present Ref.  Present Ref.  Present Ref.  Present Ref.  Present Ref.  Present Ref.  

1 19.74 19.7 48.88 48.9 78.96 79 90.74 90.7 177.65 177.7 183.20 183.2 

2 19.74 19.7 66.25 66.3 78.96 79 101.16 101.2 177.65 177.7 188.58 188.6 

3 19.74 19.7 78.94 79 79.96 79.9 110.61 110.6 177.65 177.7 193.81 193.8 

4 19.74 19.7 78.96 79 91.59 91.6 119.31 119.3 177.65 177.7 198.90 198.9 

5 19.74 19.7 78.96 79 101.93 101.9 127.41 127.4 177.65 177.7 203.86 203.9 
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a

 

b

 

c

 

d

 

e

 

f

 

Fig. 2-4. The first six normal mode shapes of the double-beam system for Case 1, 51 10K   : (a) mode 1; (b) mode 

2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6. 

 

In Table 2-1, it can be seen that the natural frequencies calculated by the semi-analytical method 

presented in this chapter, are in excellent agreement with the analytical solutions from previous 

research in reference (Oniszczuk 2000c). Therefore, the correctness and accuracy of the semi-

analytical method are proved and demonstrated by the comparison above in Table 2-1. 

 

The data in Table 2-2 to Table 2-5 are also plotted in Fig. 2-5, which indicate the effects of elastic 
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layer stiffness K on the natural frequency 
n  of whole double-beam system. In general, as shown 

in Fig. 2-5, there is a tendency to increase the natural frequency 
n  in case of increasing the elastic 

layer stiffness K. However, some natural frequencies are not so sensitive to the elastic layer 

stiffness, such as 1  in each case and 
2 , 

5  in Case 4. It can be explained by their 

corresponding mode shapes: for 1  in each case and 
2 , 

5  in Case 4, the corresponding mode 

shapes are symmetric mode shapes which vibrate as a single beam. The elastic layer does not 

deform much and it cannot produce significant force to affect two-beam vibrations. Therefore, the 

change of elastic layer stiffness cannot change their natural frequencies apparently. For the mode 

shapes of other natural frequencies are of antisymmetric mode shape, large deformation will be 

produced in elastic layer and its internal force is significant to affect two-beam vibrations. 

Therefore those natural frequencies are sensitive to the stiffness of elastic layer. In addition, in 

Case 2 and Case 3, the increase of higher natural frequencies is greater than the lower ones. On 

the other hand, in Case 1, Case 4, and Case 5, the increase of higher natural frequencies is smaller 

although 
n  is increasing with the increase of K. The primary reason for that difference is due to 

the boundary conditions of the two-beam system, as shown in Case 2 and Case 3 which are better 

for adjusting the higher frequencies than those in Case 1, Case 4 and Case 5. When 

5 24 10K Nm   in Case 3, the values of 
4  and 

5  are very close, and it also can be seen for 

4  and 
5  in Case 5 when 5 22 10K Nm  . It means that the two different natural frequencies 

may have same values when K reaches some special values, and this phenomenon is also illustrated 

in previous research work (Chen and Sheu 1994). To avoid the resonance and protect the safety of 
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the whole system, those K values cannot be choosen when design it.  

 

From Case 1 and Case 2, when the boundary condition of upper beam is spring supported-spring 

supported, the natural frequencies of whole double-beam system are smaller than it is simply 

supported-simply supported (see Table 2-1 and Table 2-2), so the higher natural frequencies could 

be avoided effectively by the boundary condition presented in this chapter. From Case 2 and Case 

3, when the upper beam is smaller than lower beam, the natural frequencies become higher (see 

Table 2-2 and Table 2-3), that could help to solve some low frequency domain vibration problems 

in engineering projects. The models in Case 3 and Case 5 are two typical beam-type vibration 

suppression structures, which can be recognized as floating slab and beam-type dynamic vibration 

absorber, respectively, and it can be found that changing the stiffness of the elastic layer can alter 

the natural frequencies of whole double-beam system apparently (see Table 2-3 and Table 2-5), 

demonstrating that those two structures are able to avoid the resonance situation occurred in normal 

structures and potentially to reduce the original structural vibrations. 

a

 

b
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c

 

d

 

Fig. 2-5. Natural frequencies of double-beam system n  versus elastic layer stiffness K: (a) Case 2; (b) Case 3; (c) 

Case 4; (d) Case 5. 

 

2.5.2 Forced Vibration 

The values for the basic parameters of the double-beam system are the same from reference 

(Oniszczuk 2000c) as in free vibration. 

 

a. Analytical Model Result by Proposed Method  

 

b. FEM Model Result by MSC/NASTRAN 

 

Fig. 2-6. Displacement at midspan point of two beams. 

 

A forced vibration of a double-beam system model is calculated and compared with the same 
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model analyzed by the finite element method software MSC/NASTRAN. The boundary conditions 

of the double-beam system are simply supported-simply supported for the upper beam and simply 

supported-simply supported for the lower beam, and the exciting forces are 

   1 , 10000sin 37.68f x t t ,  2 , 0f x t  . As shown in Fig. 2-6, it can be seen that the dynamic 

responses calculated by the method presented in this chapter, are in excellent agreement with the 

finite element method solutions. Therefore, the correctness and accuracy of the proposed method 

are proved and demonstrated by the comparison.   

 

Then, several cases are calculated and analyzed in here, all of them are with the same boundary 

condition: upper beam spring supported-spring supported and lower beam simply supported-

simply supported (Fig. 2-3(b)), which is more realistic in engineering projects. Among all of those 

cases; the exciting force of the double-beam system is      1 , sin 0.5f x t f t x L   , 

 2 , 0f x t  , (Fig. 2-3(b)), where f  is amplitude and   is frequency of a concentrated 

harmonic force acted on the midspan of the upper beam;  x  is Dirac delta function. 

 

2.5.2.1 Resonance Condition 

The solution for double-beam system forced vibration is derived as Eq. (2-31), Eq. (2-35) and Eq. 

(2-36), considering the exciting force is      1 , sin 0.5f x t f t x L   ,  2 , 0f x t  , so the 

specific solution becomes 
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     
   

 1 1 12 2
1 1

sin sin
,

n n

n n n

n n n n

t tf H
W x t T t x x

   
 

  

 

 

    


                   (2-37a)                                                        

     
   

 2 2 22 2
1 1

sin sin
,

n n

n n n

n n n n

t tf H
W x t T t x x

   
 

  

 

 

    


                  (2-37b)                                                     

where 
   

       

1
0

1 1 1 2 2 2
0

0.5
L

n

L

n n n n

x x L dx
H

x m x x m x dx

 

   




  




                              (2-38)                                                                          

 

In Eq. (2-37), the denominator is  2 2

n  , so when the harmonic force frequency   is close 

to the natural frequency of double-beam system 
n , the dynamic responses of the two beams, W1 

and W2, both of them will be unlimited, which is called resonance phenomenon. Therefore, the 

resonance condition for double-beam system is  

n  , 1,2,3,...n                                                         (2-39)                                                                                                       

 

Two cases are calculated in here for verifying the resonance condition: 

Case 1: two identical beams, 
1 2e e e  ,

1 2m m m  , 5 21 10K Nm  ; 

Case 2: smaller upper beam, 
1 0.8e e , 2e e , 

1 0.2m m , 2m m , 5 21 10K Nm  . 

 

The frequency responses at the midspan of the two beams are calculated by the equations presented 

in this chapter, and the absolute amplitude of the frequency responses at the two beams midspan 

points are shown in Fig. 2-7. 
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a 

 

b 

 

Fig. 2-7. Frequency response at midspan point of two beams: (a)Two identical beams; (b) Smaller upper beam. 

 

From Fig. 2-7, Table 2-2 and Table 2-3, it can be easily seen that the dynamic response of two 

beams reach some peak values when the exciting force frequencies   is close to the natural 

frequencies of double-beam system 
n , which is just the resonance phenomenon and verifies the 

resonance condition derived above. When designing the double-beam system, it is supposed to 

make the natural frequencies of system being far away from the frequency of exciting force, and 

avoid the resonance phenomenon happened.  

 

Also in Fig. 2-7, when the resonance frequency 62.22  in Case 1, and 80.75,130.86   in 
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Case 2, only the upper beam has the peak values, and in contrast, lower beam doesn't have. The 

main reason for that is the corresponding mode shapes. Checking the mode shapes in Fig. 2-13(d), 

Fig. 2-14(c) and Fig. 2-14(e), it is found that the deformation amplitude of lower beam is very 

small comparing with the upper beam, so in those resonance frequencies, the lower beam dynamic 

response is not as great as upper beam, although there is still resonance happened to lower beam. 

 

2.5.2.2 Effect of Elastic Layer Stiffness 

An important parameter in the double-beam system is the stiffness of elastic layer, K, which is the 

connection between upper beam and lower beam, so it is necessary to make some discussions 

about the effect of elastic layer stiffness K on two beams dynamic responses. 

 

Three cases are investigated in here for discussion: 

1 2e e e  , 
1 2m m m  ; Case 1: 4 21 10K Nm  ; Case 2: 4 22 10K Nm  ; Case 3: 

4 23 10K Nm  . 

 

The absolute amplitude of frequency responses at the midspan of the two beams are shown in a 

form of semi-log plots in Fig. 2-8.  

 

As to the upper beam, from Fig. 2-8(a), with the increase of layer stiffness K, the dynamic response 

is generally reduced. Although the resonance frequencies is increase with K, the peak values at 
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resonance frequencies are also decreased. Upper beam in here is a kind of a beam on elastic 

foundation, when the elastic layer becomes stiffer, the restrict to the upper beam gets stronger, so 

the upper beam vibrates smaller under same exciting force. 

  

a 

 

b 

 

Fig. 2-8. Frequency response at midspan point of two beams: (a) upper beam; (b) lower beam. 

 

From Fig. 2-8(b), the lower beam has an opposite changes comparing with upper beam. The 

dynamic response is generally increased with the increase of layer stiffness K, and the peak values 

at resonance frequencies are also increased. Elastic layer is the connection between upper beam 

and lower beam, and it transfers the vibration energy from upper beam to lower beam. When elastic 
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layer is softer, it deforms larger and upper beam can absorb more exciting energy, so the energy 

transferred to lower beam is less; when the elastic layer gets stiffer, its deformation is smaller and 

less energy absorbed by upper beam itself, so more and more energy is transferred to lower beam 

and makes the vibration of it increased. 

 

2.5.2.3 Effect of Upper Beam Mass 

In many real engineering projects, the upper beam and lower beam are not identical in a double-

beam system. Considering reducing the dynamic vibration of lower beam, the upper beam is often 

designed as a kind of vibration absorber, so the physical property of the upper beam has significant 

effects in dynamic vibration reduction. Among those physical properties, the mass of the upper 

beam is discussed in here. 

 

Three cases are investigated in here for discussion: 

1 0.8e e , 2e e , 2m m , 5 21 10K Nm  ; Case 1: 
1 0.1m m ; Case 2: 

1 0.5m m ; Case 

3: 
1m m . 

The frequency response at the midspan of the lower beam is shown in semi-log plots in Fig. 2-9.  

 

The general tendency for the dynamic response of lower beam is decreased in the case of increasing 

upper beam mass, which can be found from Fig. 2-9. In the whole double-beam system, upper 

beam accept the exciting energy firstly, absorbs some of them and then transfer the others to lower 
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beam by elastic layer. If the mass of upper beam becomes larger, when upper beam vibrates, it will 

absorb more exciting energy to complete its own vibration, so the energy left for lower beam is 

reduced and the vibration of lower beam gets smaller. However, the mass of upper beam cannot 

grow to very large, since when it exceeds a limit value, the vibration energy of upper beam itself 

will be too huge and it will be transferred to lower beam by elastic layer too, so the lower beam 

vibration is not reduced anymore in that case. 

 

 

Fig. 2-9. Frequency response at midspan point of lower beam. 

 

2.5.2.4 Effect of Upper Beam Flexural Rigidity 

The mass and flexural rigidity are two main physical properties for a beam structure neglecting the 

shear effect. The effect of upper beam mass on double-beam system dynamic responses is 

discussed and shown in the section above, so this section is used to explain how the upper beam 

flexural rigidity affects the vibration responses in both beams and how it works to reduce the 

dynamic response.  
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Also, three cases are investigated in here for discussion: 

2e e , 
1 0.2m m , 2m m ,

5 21 10K Nm  ; Case 1: 1 0.1e e ; Case 2: 
1 0.5e e ; Case 3: 

1e e . 

 

 

Fig. 2-10. Frequency response at midspan point of lower beam. 

 

The frequency response at the midspan of the lower beam is shown in semi-log plots in Fig. 2-10. 

According to the simulation results shown in Fig. 2-10, the dynamic response of lower beam is 

generally decreased with the increase of upper beam flexural rigidity. The principle for that 

phenomenon is similar to the one in upper beam mass effect discussion: when upper beam is soft, 

less energy could let it deform and vibrate, so more energy is transferred to lower beam; when 

upper beam gets stiffer and flexural rigidity gets larger, more exciting energy is needed to complete 

upper beam deformation and vibration, so less energy could be obtained by lower beam and its 

dynamic response gets smaller. But if the flexural rigidity of upper beam exceeds a limit value, 

upper beam will be treated as a rigid body and it will not absorb any energy, all the exciting energy 

will be accepted by lower beam and its dynamic response will be very large. 
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2.5.2.5 Double-Beam System Dynamic Parameter 

After completing a larger number of simulation works on double-beam system, four parameters

1 1

4

1 1

E I

L m
, 

2 2

4

2 2

E I

L m
, 

1

K

m
and 

2

K

m
, which could determine the system dynamic responses, are 

summarized and figured out. If the values of those four parameters are the same in two different 

double-beam systems with same boundary conditions, the natural frequencies and corresponding 

mode shapes will be same, and the Dynamic Factor 
 

 
,

,0

,n MAX

n

W x t

W x
 (  , ,n MAXW x t  is maximum 

dynamic displacement at location n of upper beam< 1n  > or lower beam< 2n  >;  ,0nW x  is 

static displacement at location x of the same beam under a static force whose amplitude is equal to 

maximum value of the exciting force) of each beam under an exciting force will have same values. 

Therefore, those four parameters have a key role in determining the dynamic response of double-

beam system, and it is necessary to show some simulation results on them.  

 

In order to illustrate the dynamic factor 
 

 
,

,0

,n MAX

n

W x t

W x
 under those four dynamic parameters, four 

cases are investigated in here: 

Two identical beams: 
1 2m m m  , 

3 6 21 10 ~1 10K Nm   ; Case 1: 
1 2e e e  ; Case 2: 

1 2 10e e e  ; 

Smaller upper beam: 
1 0.2m m , 2m m , 

3 6 21 10 ~1 10K Nm   ; Case 3: 
1 0.8e e , 2e e ; 
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Case 4: 1 8e e , 2 10e e . 

 

In each case itself, all basic parameters are constant except K, so the dynamic parameters 
1 1

4

1 1

E I

L m

and 
2 2

4

2 2

E I

L m
are consistent but 

1

K

m
and 

2

K

m
 are variables; combining the exciting force with 

different frequencies, it is better to plot the dynamic factor in a form of plane in 3-D coordinate. 

The frequency responses of dynamic factor 
 

 
,

,0

,n MAX

n

W x t

W x
 at the midspan ( 0.5x L ) of the two 

beams are plotted in a 3-D coordinate system, which are shown in a form of semi-log planes plots 

in Fig. 2-11 and Fig. 2-12.  

 

a 

 

b 

 

Fig. 2-11. Frequency response at midspan point of two beams for Case 1 and Case 2: (a) upper beam; (b) lower beam. 

 

From Fig. 2-11 and Fig. 2-12, it can be seen that the dynamic factor of each beam indeed forms a 
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plane in the 3-D coordinate. It is useful to engineers when they design a double-beam system: once 

they get the four dynamic parameters values of a double-beam system, they can check the standard 

figures and find out the right plane, then they can read out the Dynamic Factor of each beam under 

the specific exciting force frequency directly instead of doing difficult calculation works.  

 

a 

 

b 

 

Fig. 2-12. Frequency response at midspan point of two beams for Case 3 and Case 4: (a) upper beam; (b) lower beam. 

 

2.6 Conclusions 

A semi-analytical method is developed in this chapter to analyzing the natural frequencies and 

corresponding mode shapes of an undamped double-beam system, which may have arbitrary beam 

mass, beam flexural rigidity and/or boundary condition. The initial conditions are considered to 

find the free vibration final form, which are the exact solutions of the motion differential equations 

formulated by the classical Bernoulli-Fourier method. The correctness and accuracy of the semi-
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analytical method presented in this chapter has been demonstrated by comparing the results with 

analytical solutions from previous research in the literature; and the models, which have different 

beam mass, beam flexural rigidity and different boundary condition, are also calculated to show 

their natural frequencies and corresponding mode shapes. A discussion about the effect of elastic 

layer stiffness on double-beam system natural frequencies is further accomplished.  

 

The dynamic response of forced vibration in the same undamped double-beam system is 

determined by the modal-expansion method using the natural frequencies and mode shapes 

obtained from the free vibration analysis. The specific orthogonality condition for a double-beam 

system is derived, and then applied to decouple the motion differential equations. Various double-

beam system models with a concentrated harmonic force in the midspan of upper beam have been 

calculated with systematic parametric studies showing the following conclusions:  

1. Effect of elastic layer stiffness: Increase elastic layer stiffness in a range, dynamic responses of 

upper beam are reduced, but dynamic responses of lower beam are increased. 

2. Effect of upper beam mass: Dynamic responses of lower beam are significantly decreased when 

increase the mass of upper beam in a range. 

3. Effect of upper beam flexural rigidity: Dynamic responses of lower beam are reduced if increase 

the flexural rigidity of upper beam in a range. 

 

All of those parametric study conclusions, including the four dynamic parameters defined in this 
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chapter for double-beam system, can be helpful to engineers to design the complex double-beam 

systems in engineering practice. 

 

Appendix 1. Matrix  
8 8

E


 for Several Typical Boundary Conditions of 

Double-Beam System  

The matrix  
8 8

E


 is the frequency characteristic matrix for calculating the natural frequencies of 

a double beam system, so it is very important and it should be demonstrated precisely for each 

boundary conditions. The specific matrix  
8 8

E


for several typical boundary conditions of double-

beam system is denoted as follows. 

 

(1) If the boundary conditions of lower beam and upper beam are both simply supported - simply 

supported, the  
8 8

E


 matrix will be denoted as 

 

1 2 3 4 5 6 7 8

1 2 3 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

2 2 2 2

1 1 2 2 3 3 4 4 5 5

n n n n n n n n

n n n n

n n n n n n n n

P L P L P L P L P L P L P L P L

n n n n n n n n

n n n n n n n n n n n n n n n n

P L P L P L P L

n n n n n n n n n n

e e e e e e e e

P P P P P P P P

P e P e P e P e P
E

       

       

       

    


5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 2 2 2

6 6 7 7 8 8

2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1

n n n n

n n n n n n n n

n n n n n n n n

P L P L P L P L

n n n n n n

P L P L P L P L P L P L P L P L

n n n n n n n n

P L P L P L P L P L P L P L P L

n n n n n n n n

e P e P e P e

e e e e e e e e

P P P P P P P P

P e P e P e P e P e P e P e P e

  















 
 
 
 
 
 
 

                    

(2-40) 

 

(2) If the boundary conditions of lower beam are simply supported - simply supported, and upper 



46 

 

beam are spring supported - spring supported, the  
8 8

E


 matrix will be denoted as 

 

1 2 3 4 5 6 7 8

1 2 3 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

2 2 2 2

1 1 2 2 3 3 4 4 5 5

n n n n n n n n

n n n n

n n n n n n n n

P L P L P L P L P L P L P L P L

n n n n n n n n

n n n n n n n n n n n n n n n n

P L P L P L P L

n n n n n n n n n n

e e e e e e e e

P P P P P P P P

P e P e P e P e P
E

       

       

       

    


5 6 7 8

1 2 3 4 5 6 7 8

2 2 2 2

6 6 7 7 8 8

2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

3 3 3 3 3 3 3

1 1 1 2 1 3 1 4 1 5 1 6 1 7

n n n n

n n n n n n n n

P L P L P L P L

n n n n n n

n n n n n n n n

P L P L P L P L P L P L P L P L

n n n n n n n n

n n n n n n n

e P e P e P e

P P P P P P P P

P e P e P e P e P e P e P e P e

e P K e P K e P K e P K e P K e P K e P

  

     

               1 2 3 4 5 6 7 8

3

1 8

3 3 3 3 3 3 3 3

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8
n n n n n n n n

n

P L P L P L P L P L P L P L P L

n n n n n n n n

K e P K

e P K e e P K e e P K e e P K e e P K e e P K e e P K e e P K e

 
 
 
 
 
 
 
 
 
  
 
        
 
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(3) If the boundary conditions of lower beam are clamped - free, and upper beam are clamped - 

free, the  
8 8

E


 matrix will be denoted as 

 

1 2 3 4 5 6 7 8

1 2

1 2 3 4 5 6 7 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

3 3

1 1 2 2 3 3

n n n n n n n n

n n

n n n n n n n n

n n n n n n n n n n n n n n n n
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(2-42) 

 

(4) If the boundary conditions of lower beam are free - free, and upper beam are clamped - clamped, 

the  
8 8

E


 matrix will be denoted as 
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 
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Appendix 2. Natural Frequency Roots Search Method - Secant Method  

If the determinant of frequency characteristic matrix  
8 8

E


 is denoted as a function of  , 

 f  , so the real natural frequency   is the root of   0f   . Based on the semi-analytical 

method introduced in this chapter, an approximation root 
,1n  is determined, and the specific 

algorithm based on secant method can be applied as follows:  

(1) Calculate distinct values of 
,0n , and function values of  ,0nf  ,  ,1nf  : 

,0 ,1n n    ,                                                           (2-44)                                                                                            

 
,0

,0
n

nf E
 




 ,  
,1

,1
n

nf E
 




                                           (2-45)                                                                                           

(2) Calculate: 

 
   

 ,

, 1 , , , 1

, , 1

n i

n i n i n i n i

n i n i

f

f f


   

 
 



  


                                    (2-46)                                                                          

 
,

,
n i

n if E
 




 ,  
, 1

, 1
n i

n if E
 




 
 , 1,2,3,...i                                 (2-47)                                                                 

(3) If , 1 ,n i n i     , then the final root 
, 1n n i   ; else continue iteration process in step (2).  

where 
n  is nth natural frequency; 

,n i  is the ith distinct value of 
n , 1,2,3,...i  ;   is the 
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allowable error defined by user. 

 

Appendix 3. Numerical Examples Results Data - Natural Frequency and Mode 

Shape  

The first six natural frequencies and normal mode shapes of Case 2 to Case 5, are summarized as 

follows: 

 

Table 2-2. Natural Frequencies of double-beam system 
n  ( 1s ); Case 2 

510K   2Nm  1n   2n   3n   4n   5n   6n   

1 17.03 38.09 46.85 62.22 85.51 130.65 

2 18.11 50.65 64.63 75.75 92.80 137.87 

3 18.56 57.93 78.44 86.90 100.77 144.89 

4 18.82 62.44 90.02 96.46 109.04 151.67 

5 18.97 65.41 104.99 117.23 158.18 191.80 

 

 

Table 2-3. Natural Frequencies of double-beam system 
n  ( 1s ); Case 3 

510K   2Nm  1n   2n   3n   4n   5n   6n   

1 21.73 75.18 80.75 96.60 130.86 180.87 

2 22.62 80.70 112.89 129.53 159.37 186.58 

3 23.02 82.99 137.32 156.03 173.88 200.61 

4 23.26 84.58 157.80 178.09 178.97 220.37 

5 23.41 85.81 175.28 182.17 197.21 239.86 
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Table 2-4. Natural Frequencies of double-beam system 
n  ( 1s ); Case 4 

510K   2Nm  1n   2n   3n   4n   5n   6n   

1 7.03 44.07 45.45 62.79 123.39 131.25 

2 7.03 44.07 63.68 77.08 123.39 138.66 

3 7.03 44.07 77.79 89.11 123.39 145.69 

4 7.03 44.07 89.72 99.71 123.39 152.40 

5 7.03 44.07 100.25 109.28 123.39 158.83 

 

Table 2-5. Natural Frequencies of double-beam system 
n  ( 1s ); Case 5 

510K   2Nm  1n   2n   3n   4n   5n   6n   

1 42.31 69.30 77.85 114.64 127.86 243.89 

2 43.76 94.38 107.44 134.43 135.64 246.05 

3 44.34 108.35 130.17 144.84 154.03 248.31 

4 44.68 115.34 148.87 158.34 170.65 250.74 

5 44.92 119.06 164.73 173.20 186.02 253.41 

 

 

a

 

b

 

c

 

d
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e

 

f

 

Fig. 2-13. The first six normal mode shapes of the double-beam system for Case 2, 51 10K   : (a) mode 1; (b) mode 

2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6. 

 

a

 

b

 

c

 

d

 

e

 

f

 

Fig. 2-14. The first six normal mode shapes of the double-beam system for Case 3, 51 10K   : (a) mode 1; (b) mode 

2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6. 
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f

 

Fig. 2-15. The first six normal mode shapes of the double-beam system for Case 4, 51 10K   : (a) mode 1; (b) mode 

2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6. 

 

 

 

 

 

a

 

b
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c

 

d

 

e

 

f

 

Fig. 2-16. The first six normal mode shapes of the double-beam system for Case 5, 51 10K   : (a) mode 1; (b) mode 

2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6. 
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Chapter 3 Dynamic Behavior of Double-Beam Systems 

Interconnected with Viscoelastic Layers 

3.1 Introduction 

In Chapter 2, the undamped double-beam system interconnected by elastic layers has been studied 

carefully, and the free vibration and forced vibration of it has been calculated and analyzed 

specifically. In fact, in real engineering practices, the materials applied to connect the floating slab 

track and bridge main beam are usually rubbers or other viscoelastic materials whose damping 

cannot be ignored. In addition, one advantage of the novel adaptive materials applied in this 

research to build the semi-active control structure is that its damping is controllable, so it means 

the damping effects of the material must be considered and used. Based on the works in Chapter 

2, in this chapter, the double-beam system interconnected by viscoelastic layers is analyzed and 

the damping effects of the viscoelastic layers on the dynamic behavior of whole double-beam 

system is studied. The research works in this chapter will be the theoretical basis for the control 

structure studies in Chapter 5 and Chapter 7. 

 

It is similar to the introduction in Chapter 2, most research efforts in the literature have simplified 

the double-beam systems as two identical beams, and/or with simply supported boundary 

conditions for both beams, and/or same transverse deformations in two beams. Among those, the 

viscoelastic damping characteristics of the connecting layer between the two beams is often 
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ignored (Seelig and Hoppmann 1964a, 1964b; Kessel 1966; Rao 1974; Chonan 1976; Hamada, 

Nakayama and Hayashi 1983; Kukla and Skalmierski 1994; Oniszczuk 2000, 2003; Zhang, Lu and 

Ma 2008; Stojanovic and Kozic 2012; Zhang, Huang, Zhang and Hua 2014; Mao and 

Wattanasakulpong 2015; Li and Sun 2015). To take into account the damping effect, researchers 

frequently make some assumptions to reduce the difficulty of solving. For example, based on their 

early work on the axially-loaded damped Timoshenko beam on a viscoelastic foundation (Chen 

and Sheu 1993), Chen and Sheu (1994, 1995) studied the free vibration, dynamic response and 

static buckling of two identical beams with a viscoelastic material layer in between. Li and Hua 

(2007) introduced a finite element numerical method for a double-beam system which could have 

unequal masses, unequal flexural rigidities and arbitrary boundary conditions; but for damping 

issue, they also assumed the two beams must be identical. Kessel and Raske (1967) solved a 

double-beam system under the cyclic moving load with both individual damping and relative 

damping. Although the two beams can be different, they must have same simply supported 

boundary conditions. Abu-Hilal (2006) investigated the dynamic response of a double-beam 

system with viscoelastic layer damping traversed by a constant moving load and obtained the 

dynamic deflections of both beams in analytical closed forms. By using the direct Lyapunov 

method and simplifying the damping as viscous damping of each beam itself, the stability and 

instability of a double-beam system subjected to compressive axial loading is investigated by 

Pavlovic et al. (2012). In those two papers, the two beams are identical with same simply supported 

boundary condition. Vu et al. (2000) presented an exact method to analyze a two-beam system 
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with a viscoelastic layer, with boundary conditions on the same side of the system being same and 

the two identical beams. Irie et al. (1982) discussed the steady-state responses of a double-beam 

system under the sinusoidal force and a transfer matrix technique is adopted for solving the 

differential equations, but the damping considered in it is beam internal damping instead of the 

viscoelastic layer damping. Cottle (1990) explored the layered beam with mixed boundary 

conditions and a semi-analytical method was applied to solve the equations with the assumption 

of same lateral displacements in beams. Xin and Gao (2011) applied the double-beam system into 

a specific engineering structure, a bridge with a viscoelastic layer and a slab track on it, and used 

the finite element method and multibody dynamics theory to solve the problem. Dublin and 

Friedrich (1956) obtained the forced vibration responses for two elastic beams interconnected by 

spring-damper system, with two spring-damper systems between two beams instead of uniformly 

distributed spring-damper systems. Other similar structures have also been analyzed, such as 

sandwich beams (Lu and Douglas 1974; Douglas and Yang 1978; Frostig and Baruch 1993, 1994; 

Mace 1994), continuous dynamic vibration absorbers (Yamaguchi 1985; Vu 1987; Aida, Toda, 

Ogawa and Imada 1992; Chen and Lin 1998; Kawazoe, Kono, Aida, Aso and Ebisuda 1998), and 

composite layered foundations (Yankelevsky 1991).  

 

While there have been plenty of research efforts investigating the double-beam systems as shown 

above, most of them treat the viscoelastic layer damping as zero. Some limited efforts consider the 

damping effect with simplified double-beam systems. In real engineering practices, such as 
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floating slab track on bridge which is mainly studied in this research, the damping is an inherent 

properties of the materials for viscoelastic layer and its value cannot be ignored and the structure 

cannot be always simplified as above. Therefore, a general double-beam system with arbitrary 

viscoelastic layer damping must be considered. This chapter presents a semi-analytical method to 

obtain the natural frequencies and corresponding mode shapes for a general double-beam system, 

in which the viscoelastic layer damping is nonzero and two beams may have unequal masses, 

unequal flexural rigidities and arbitrary boundary conditions. In addition, to the double-beam 

system with viscoelastic layer, the forced vibration excited by arbitrary loading is analyzed using 

the classical modal expansion method and a proposed iteration algorithm, based on the natural 

frequencies and mode shapes obtained from the free vibration analysis. A specific orthogonality 

condition for that double-beam system is derived and applied to decouple differential equations. 

The natural frequencies and mode shapes are calculated by the semi-analytical method for four 

cases of arbitrary masses, arbitrary flexural rigidities and arbitrary boundary conditions models. 

Furthermore, various double-beam system models are studied with a concentrated harmonic force 

in the midspan of upper beam to conduct the systematic parametric analysis of the structural 

resonance condition and dynamic responses. 

 

3.2 Formulation of the Problem  

As shown in Fig. 3-1, the physical model of a double-beam system discussed in this chapter 
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includes an upper beam and a lower beam joined by a uniformly distributed-connecting 

viscoelastic layer. Both beams are homogeneous, prismatic and have the same length L, but they 

could have different mass, flexural rigidity, and boundary conditions. The governing equations of 

motion for transverse vibrations of the double-beam system with viscoelastic layer, are derived by 

Bernoulli-Euler beam theory as follows:  

   
4 2

1 1 2 1
1 1 2 1 14 2

,
W W W W

e K W W C m f x t
x t t t

    
      

    
                         (3-1a)                                                                   

   
4 2

2 1 2 2
2 1 2 2 24 2

,
W W W W

e K W W C m f x t
x t t t

    
      

    
                        (3-1b)                                                                

where  ,i iW W x t  is transverse beam deflections, x, t are the spatial co-ordinate and the time, 

ie  and im  are the beam flexural rigidity and beam mass per unit length, i=1 or 2 represents upper 

beam or lower beam, K  and C  are the stiffness and damping coefficients of the viscoelastic 

layer, and  1 ,f x t ,  2 ,f x t  are the exciting force acting on the upper and lower beams. 

 

If    1 2, , 0f x t f x t  , Eq. (3-1) is the governing equation of motion for free vibration of a 

double-beam system; otherwise, it is the governing equation for forced vibration. 

 

The initial conditions in general form are as follows: 

   1 10,0W x W x ,    2 20,0W x W x ,    1 10,0W x V x ,    2 20,0W x V x           (3-2)                                                      

 

As to the boundary conditions at the ends ( 0x  , L) of the two beams, since it can analyze 
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different kinds of them in this chapter, so some common ones are listed as follows: 

Simply supported:        0, , 0, , 0i i i iW t W L t W t W L t                          (3-3a)                                                                                                                                                                          

Clamped:        0, , 0, , 0i i i iW t W L t W t W L t                                  (3-3b)                                                                         

Free:        0, , 0, , 0i i i iW t W L t W t W L t                                      (3-3c)                                                                                                                                                                                    

Spring supported:    0, , 0i iW t W L t   ,    0, 0,i i i iE I W t KW t   ,  

   , ,i i i iE I W L t KW L t                                                      (3-3d)           

where i =1 or 2 represents upper beam or lower beam. 

a b 

 
 

Fig. 3-1. The physical model of a double-beam system: (a) free vibration model; (b) forced vibration model. 

 

3.3 Solution of the Problem for Free Vibration 

Based on the previous research results and experiences, the solutions for Eq. (3-1) is supposed to 

be separable in time and space, and therefore, they can be assumed in the form as follows 

     1 1, i t pxW x t T t X x De Ae  ,      2 2, i t pxW x t T t X x De Be                    (3-4)                                                                 

where   i tT t De   is time function,  1

pxX x Ae  and  2

pxX x Be  is the mode shape 

function of the upper beam and lower beam, respectively,   is the natural frequency of the 

double-beam system, A, B, D, P are unknown constants, and 1i    is imaginary unit. 

 

K

2W

1W1 1 1e E I

2 2 2e E I

1 1 1m A

2 2 2m A

L

C K

2W

1W

 1 ,f x t

 2 ,f x t

C
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Introducing the general solutions Eq. (3-4) into Eq. (3-1) and    1 2, , 0f x t f x t   for free 

vibration, the differential Eq. (3-1) becomes a set of algebraic equations and they can be written in 

matrix form as follows 

4 2

1 1

4 2

2 2

0

0

Ae P K Ci m K Ci

BK Ci e P K Ci m

  

  

         
    

         

                         (3-5)                                                                      

 

It can be easily understood that finding the solutions to Eq. (3-5) is an eigenvalue problem, the 

nontrivial solutions for Eq. (3-5) require the determinant of the coefficient matrix is equal to 0, 

which derives out an eighth order polynomial equation in P. 

     8 2 2 4 4 2

1 2 1 2 1 2 2 1 1 2 1 2 0e e P e e K Ci m e m e P m m K Ci m m                     (3-6)                                 

 

The eight roots of Eq. (3-6), that are also the values of constant P, can be solved as 

4
1 1P Q , 4

2 1P Q  , 4
3 1P Q i , 4

4 1P Q i  , 4
5 2P Q , 4

6 2P Q  , 4
7 2P Q i ,  

4
8 2P Q i                                                                   (3-7) 

   2 2

1 2 1 2 2 1

1,2

1 22

e e K Ci m e m e
Q

e e

                                          (3-8)                                                                        

     
2 22 2

1 2 2 1 1 24e K Ci m e K Ci m e e K Ci             
 

                   (3-9)                                                            

 

Using Eq. (3-5), considering there are eight roots 
jP ( 1,2...8j  ), the relationship among the 

constants A and B is given by 
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4 2

1 1

4 2

2 2

j

j j j j j

j

e P K Ci mK Ci
B A A A

e P K Ci m K Ci

 


  

  
    

   
, ( 1,2...8j  )      (3-10)                                      

 

Finally, the solution of Eq. (3-1) can be obtained in the form as follows 

   
8

1

1 1

, njn
P xi t

n nj

n j

W x t D e A e




 

 
  

 
                                              (3-11a)                                                                                                   

     
8 8

2

1 1 1 1

, nj njn n
P x P xi t i t

n nj n nj nj

n j n j

W x t D e B e D e A e
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 

   

   
    

   
                         (3-11b)                                                                     

where 
n is nth natural frequency, and 

njA , 
njB , nD , 

njP , 
nj  are the unknown constants 

corresponding to nth natural frequency. 

 

Substituting Eq. (3-11) into the real boundary conditions defined in Eq. (3-3) results in a set of 

eight algebraic equations with eight unknown constants 
njA ( 1,2...8j  ) under each natural 

frequency. In matrix form, it can be represented as  

     
8 1 8 18 8

0E A
 
                                                         (3-12)                                                                                                                  

where    1 2 3 4 5 6 7 88 1

T

n n n n n n n nA A A A A A A A A

  is unknown constants vector,  

   
8 1

0 0 0 0 0 0 0 0 0
T


  is zero vector, and  

8 8
E


 is boundary conditions 

coefficient matrix. 

 

Due to the method adopting  
8 8

E


 matrix which depends on specific boundary conditions, this 

chapter can analyze arbitrary boundary conditions and upper beam boundary conditions can be 
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different from lower beam, which is an obvious advantage from previous researches. If lower beam 

is simply supported - simply supported and upper beam is spring supported - spring supported, the 

 
8 8

E


 matrix can be denoted as Eq. (3-13). 

 

1 2 3 4 5 6 7 8

1 2 3 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

2 2 2 2

1 1 2 2 3 3 4 4 5 5

n n n n n n n n

n n n n

n n n n n n n n

P L P L P L P L P L P L P L P L

n n n n n n n n

n n n n n n n n n n n n n n n n

P L P L P L P L

n n n n n n n n n n

e e e e e e e e

P P P P P P P P

P e P e P e P e P
E

       

       

       

    


5 6 7 8

1 2 3 4 5 6 7 8

2 2 2 2

6 6 7 7 8 8

2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

3 3 3 3

1 1 1 2 1 3 1 4 1

n n n n

n n n n n n n n

P L P L P L P L

n n n n n n

n n n n n n n n

P L P L P L P L P L P L P L P L

n n n n n n n n

n n n n n n n n

e P e P e P e

P P P P P P P P

P e P e P e P e P e P e P e P e

e P K Ci e P K Ci e P K Ci e P K Ci e

  

          

               1 2 3 4 5 6 7 8

3 3 3 3

5 1 6 1 7 1 8

3 3 3 3 3 3 3 3

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8
n n n n n n n n

n n n n n n n n

P L P L P L P L P L P L P L P L

n n n n n n n n n n n n n n n n

P K Ci e P K Ci e P K Ci e P K Ci

e P K Ci e e P K Ci e e P K Ci e e P K Ci e e P K Ci e e P K Ci e e P K Ci e e P K Ci e

   

       







       

               








 
 
 
 
 
 
 



              

(3-13) 

From Eq. (3-12), boundary conditions coefficient matrix  
8 8

E


 is frequency characteristic matrix, 

and the nontrivial solutions for Eq. (3-12) will exist only when 0E  .   

 

Based on the equations derived above, a semi-analytical method is developed to determine the 

natural frequencies and mode shapes of the whole double-beam system: (1) start from 0.1  , 

solve eighth order polynomial equation Eq. (3-6) and obtain 
jP . (2) based on Eq. (3-10), obtain 

the relationship parameter 
j . (3) according to real boundary conditions, build frequency 

characteristic matrix  
8 8

E


. (4) calculate the determinant of matrix  
8 8

E


. (5) if 0E  , the   

is outputted as the natural frequency, solve Eq. (3-12) to obtain 
jA , and determine the 

corresponding mode shape by Eq. (3-11). (6) if 0E  , modify the value of   by      

and start doing the calculation from step (1) again until the right value of   is founded. Due to 

the error of natural frequency increase step  , it is impossible to obtain the precise  , which 

can satisfy 0E  , directly. Therefore, a searching process is needed in here. If the determinant 
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of frequency characteristic matrix  
8 8

E


 is denoted as a function of  ,  f  , the real natural 

frequency   value should be the root of   0f   . Therefore, in the searching process, a 

numerical analysis method, Secant Method, can be adopted to solve that problem after an 

approximation roots 
,1n  are determined by the semi-analytical method.  

 

In order to find the final form of the double-beam system free vibration, initial conditions defined 

in Eq. (3-2) are applied to determine the values of constants nD . Before that, a specific discussion 

on natural frequency   in double-beam system is shown here. In this chapter, the double-beam 

system with zero viscoelastic layer damping is called undamped double-beam system, and the one 

with nonzero viscoelastic layer damping is called damped double-beam system. Considering the 

undamped double-beam system ( 0C  ), the equations about natural frequency, which are from 

Eq. (3-5), will be written as follows 

 2 4

1 1 0Undampedm A K A B e P A                                              (3-14a)                                                                                                       

 2 4

2 2 0Undampedm B K A B e P B                                             (3-14b)                                                                                                    

 

Substituting Eq. (3-14),   4 2

1 1 UndampedK A B e P A m A   and   4 2

2 2 UndampedK A B e P B m B    , 

into Eq. (3-5) with 0C  , and defining 
 

 2 1 Undamped

C B A

m B m A




 



, the Eq. (3-5) will be 

2 22 0Undamped Undampedi                                                    (3-15)                                                                                                                     
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The solution for Eq. (3-15) can be written as  

21 Undamped Undamped Damped Undampedi i                                       (3-16)                                                              

where   is natural frequency of damped double-beam system, 
21Damped Undamped     is real 

natural frequency of damped double-beam system, Undamped  is natural frequency of undamped 

double-beam system, and 
 

 2 1 Undamped

C B A

m B m A




 



 is damping ratio of damped double-beam 

system. 

 

Based on Eq. (3-16), the assuming final solutions for double-beam system free vibration can be 

written as 

         , , , 1 2

8

1 1 2 1 2 1

1 1 1

, n Damped n Damped n Undamped nj n n
i t i t t P x i t i t

n n nj n n n

n j n

W x t D e D e e A e D e D e x
     

 
 

  

 
    

 
     

                                                                        (3-17a)                                                              

         , , , 1 2

8

2 1 2 1 2 2

1 1 1

, n Damped n Damped n Undamped nj n n
i t i t t P x i t i t

n n nj nj n n n

n j n

W x t D e D e e A e D e D e x
     

 
 

  

 
    

 
        

                                                                        (3-17b)                                                                                                                                                                 

1 , ,n n Damped n Undampedi                                                     (3-17c)                                                                                          

2 , ,n n Damped n Undamped i                                                     (3-17d)                                                                                        

where  1n x  and  2n x  are the mode shape functions under nth natural frequency for the 

upper and lower beams, respectively, ,n Undamped  and ,n Damped  are nth natural frequency for 

undamped double beam system and nth real natural frequency for damped double-beam system, 
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defined in Eq. (3-16), and 
1n , 

2n  are two roots of nth natural frequency for damped double-

beam system. 

 

Substituting Eq. (3-17) into Eq. (3-2), the initial conditions could be denoted as 

     1 2 1 10

1

n n n

n

D D x W x




                                                  (3-18a)                                                                                     

     1 2 2 20

1

n n n

n

D D x W x




                                                 (3-18b)                                                                                      

     1 1 2 2 1 10

1

n n n n n

n

i D i D x V x  




                                            (3-18c)                                                                                

     1 1 2 2 2 20

1

n n n n n

n

i D i D x V x  




                                            (3-18d)                                                                               

 

In order to apply modal expansion method to solve Eq. (3-18), it is necessary to derive the 

orthogonality condition for different mode shapes of double-beam system with viscoelastic layer. 

The governing equations Eq. (3-1) with    1 2, , 0f x t f x t   can be written in the form of:  

 
2 4

1 1 1 2
1 1 1 22 4

W W W W
m e K W W C

t x t t

    
      

    
                              (3-19a)                                                                                                    

 
2 2

2 2 1 2
2 2 1 22 2

W W W W
m e K W W C

t x t t

    
      

    
                             (3-19b)                                                                                                     

 

The left terms 
2

1
1 2

W
m

t





 and 

2

2
2 2

W
m

t





 are due to acceleration, so they are a kind of inertial 
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force  1 ,If x t  and  2 ,If x t . The right terms 
4

1
1 4

W
e

x




, 

2

2
2 2

W
e

x




 and  1 2K W W are related to 

displacement, so they can be treated as a sort of elastic force. Although the right term 

1 2W W
C

t t

  
 

  
 is damping force which is related to two beams velocities, it also can be treated 

as an outer force which produces two beams displacements, therefore, it can be treated as a special 

sort of elastic force. According to Bitti Theory, when considering the whole double-beam system, 

which consists of upper beam and lower beam, an energy equilibrium equation will be obtained as 

               1 1 2 2 1 1 2 2
0 0

, , , , , , , ,
L L

m I n m I n n I m n I mW x t f x t W x t f x t dx W x t f x t W x t f x t dx            

                                                                         (3-20)                          

 

Substituting Eq. (3-19) into Eq. (3-20), applying the definitions of  1 ,If x t   2 ,If x t  and 

merging the similar items, the Eq. (3-20) will be 

             2 2

1 1 1 2 2 2
0 0

0
L L

n m n m m n m nm x x dx m x x dx T t T t                          (3-21)                                              

 

Since for different natural frequencies, 2 2

m n  , so the orthogonality condition for different mode 

shapes of the double-beam system with viscoelastic layer is 

       1 1 1 2 2 2
0

L

n m n m n mnx m x x m x dx M                                        (3-22)                                                                  

where 
nM  is the generalized mass in the nth mode, and 

mn  is the Kronecker delta function. 

 

Go back to the initial conditions Eq. (3-18),        1 1 2 2. 3 18 . 3 18m mEq a x m Eq b x m      , 
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and integrate it respect to x from 0 to L 

           

       

1 1 1 2 1 2 2 1 2 2
0 0

1 1

1 1 10 2 2 20
0 0

L L

m n n n m n n n

n n

L L

m m

x m D D x dx x m D D x dx

x mW x dx x m W x dx

   

 

 

 

  

 

  

 

              (3-23) 

 

The orthogonality condition is applied into Eq. (3-23), and it will be transferred as 

       

       

1 1 10 2 2 20
0

1 2

1 1 1 2 2 2
0

L

n n

n n L

n n n n

x mW x x m W x dx
D D

x m x x m x dx

 

   

  
 

  




                            (3-24)                                                                  

 

       1 1 2 2. 3 18 . 3 18m mEq c x m Eq d x m      , and integrate it respect to x from 0 to L; apply 

orthogonality condition like in Eq. (3-23), it will be 

       

       

1 1 10 2 2 20
0

1 1 2 2

1 1 1 2 2 2
0

1
L

n n

n n n n L

n n n n

x mV x x m V x dx
D D

i x m x x m x dx

 
 

   

  
 

  




                       (3-25)                                                                      

 

Solving Eq. (3-24) and Eq. (3-25), the solution of 
1nD  and 2nD  can be 

 
1 2

2 1

1 1n n
n n

n n n n

W V
D

M i M


 

 
    

  
                                        (3-26a)                                                                                                                                                                       

 
2 1

1 2

1 1n n
n n

n n n n

W V
D

M i M


 

 
    

  
                                        (3-26b)                                                                                                                                                                        

       1 1 1 2 2 2
0

L

n n n n nM x m x x m x dx                                         (3-26c)                                                                       

       1 1 10 2 2 20
0

L

n n nW x mW x x m W x dx                                      (3-26d)                                                                      

       1 1 10 2 2 20
0

L

n n nV x mV x x m V x dx                                        (3-26e)                                                                       

where 
nM , 

nW , 
nV  is the generalized mass, displacement and velocity in the nth mode. 
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Until here, all constants in the assumed solutions Eq. (3-17) have been determined. Therefore, the 

free vibration of a double-beam system with viscoelastic layer is solved successfully. 

 

3.4 Solution of the Problem for Forced Vibration 

It is similar to the solutions of free vibration, particular solutions of forced vibration in the double-

beam system could be assumed in the following form 

         
8

1 1

1 1 1

, njP x

n nj n n

n j n

W x t T t A e T t x
 

  

 
  

 
                                  (3-27a)                                                                     

         
8

2 2

1 1 1

, njP x

n nj nj n n

n j n

W x t T t A e T t x 
 

  

 
  

 
                               (3-27b)                                                                  

where    
8

1

1

njP x

n nj

j

x A e


 ,    
8

2

1

njP x

n nj nj

j

x A e 


  are mode shape functions of upper beam 

and lower beam corresponding to nth natural frequency, and  nT t  is time function corresponding 

to nth natural frequency.  1n x  and  2n x  are known from the free vibration analysis, and 

 nT t  is unknown function which need to be solved. 

 

Substituting the assumed solutions Eq. (3-27) into Eq. (3-1), so they become 

 
 

     
 

   

 
   

4

1

1 1 2 1 24
1 1 1

2

1 1 12
1

,

n n

n n n n n n

n n n

n

n

n

d x dT t
e T t K T t x x C x x

dx dt

d T t
m x f x t

dt


   



  

  





         

 

  



       (3-28a)                                             
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 
 

     
 

   

 
   

4

2

2 1 2 1 24
1 1 1

2

2 2 22
1

,

n n

n n n n n n

n n n

n

n

n

d x dT t
e T t K T t x x C x x

dx dt

d T t
m x f x t

dt


   



  

  





         

 

  



       (3-28b)                                         

 

Introducing free vibration equations of undamped double-beam system in here can simplify the 

motion equations of forced vibration. In undamped double-beam system, damping ratio 

 

 2 1

0
Undamped

C B A

m B m A




 
 


, from Eq. (3-16), 

Undamped   , the solutions for free vibration can 

be obtained from Eq. (3-17) and written as 

     , ,

1 1 2 1

1

, n Undamped n Undampedi t i t

n n n

n

W x t D e D e x
 








                                  (3-29a)                                                                  

     , ,

2 1 2 2

1

, n Undamped n Undampedi t i t

n n n

n

W x t D e D e x
 








                                  (3-29b)                                                                    

where  1n x  and  2n x  are undamped double-beam system ( 0C  ) mode shapes, and 

,n Undamped  is nth natural frequency for undamped double beam system. 

 

Substituting Eq. (3-29) and 0C   into Eq. (3-1) with    1 2, , 0f x t f x t  , eliminating the 

same term  , ,

1 2
n Undamped n Undampedi t i t

n nD e D e
 

  and multiplying the  nT t  in each term, the Eq. (3-1) 

will be in form 

 
 

         
4

1 2

1 1 2 1 , 14
1 1 1

n

n n n n n Undamped n n

n n n

d x
e T t K T t x x m T t x

dx


   

  

  

                (3-30a)                                            

 
 

         
4

2 2

2 1 2 2 , 24
1 1 1

n

n n n n n Undamped n n

n n n

d x
e T t K T t x x m T t x

dx


   

  

  

               (3-30b)                                             
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Introducing Eq. (3-30) into Eq. (3-28) produces 

 
 

     
2

2 1 2
1 1 1 , 1 12

1

,
n

n n Undamped n n

n

d T t W W
m x m x T t f x t C

dt t t
  





    
      

   
            (3-31a)                                                                                               

 
 

     
2

2 1 2
2 2 2 , 2 22

1

,
n

n n Undamped n n

n

d T t W W
m x m x T t f x t C

dt t t
  





    
      

   
           (3-31b)                                                         

 

       1 2. 3 31 . 3 31m mEq a x Eq b x      , integrate it respect to x from 0 to L, and apply 

orthogonality condition Eq. (3-22), so it will be 

 
     

2

2

,2

n

n Undamped n n Dn

d T t
T t F t F t

dt
                                         (3-32a)                                                                                

 
       
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x f x t x f x t dx
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 

   

  


  




                                (3-32b)                                                                         

 
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x x C dx

t t
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 

   

     
           

  




                             (3-32c)                                                                     

 

Using Duhamel's integral, particular solution of Eq. (3-32a) can be obtained as   

       ,
0

,

1
sin

t

n n Dn n Undamped

n Undamped

T t F F t d    


                              (3-33)                                                                

 

In Eq. (3-32) and Eq. (3-33), the unknown damping force 1 2W W
C

t t

  
 

  
 is included, therefore, 
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they are a kind of implicit equations and it is hard to solve them directly. An iteration method, 

which could be generally expressed in a flowchart form as in Fig. 3-2, is developed in this chapter 

to solve that problem. By the iteration method, the forced vibration of a double-beam system with 

viscoelastic layer is solved successfully. 

Start 

Define           , solve Eqs. (3-32), obtain Undamped Double-Beam System forced vibration response

&& 

Output damped double-beam system forced vibration responses at this time point

               ,               ,                ,               ,               ,

YES

NO

From Eqs. (3-27), obtain               ,                

Calculate                  , 

Recover     to its real value, calculate damping force: 

End

              ,       : Total Time Steps Number

YES

NO

0n 

t n t 

0C 

 1 ,W x t  2 ,W x t

 1 ,W x t

t





 2 ,W x t

t





   1 2, ,
D

W x t W x t
F C

t t

  
  

  
C

Solve Eqs. (3-32), obtain Damped Double-Beam System forced vibration response

From Eqs. (3-27), obtain               ,                 1 ,W x t

   1 1, ,W x t W x t    2 2, ,W x t W x t

   1 1, ,W x t W x t

   2 2, ,W x t W x t

 1 ,W x t  2 ,W x t

 2 ,W x t

 1 ,W x t  2 ,W x t  1 ,W x t  2 ,W x t

n N N

1n n 

 

Fig. 3-2. Flowchart of the iteration method to calculate forced vibration responses of a double-beam system with 

viscoelastic layer. 
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3.5 Numerical Examples 

In order to illustrate the semi-analytical method and the iteration method presented in this chapter, 

some numerical examples are discussed in detail. Upper beam spring supported-spring supported 

and lower beam simply supported-simply supported (Fig. 3-1(a)) is the main boundary condition 

simulated in here. The model with upper beam and lower beam both simply supported-simply 

supported, is applied to verify the correctness and accuracy of the proposed method. 

 

3.5.1 Free Vibration 

The values for the parameters of the double-beam system are from (Oniszczuk 2000c) as follows 

10 21 10E Nm  , 
4 44 10I m  , 

3 32 10 kgm   , 
2 25 10A m  , 10L m ,  

6 24 10e EI Nm   , 2 11 10m A kgm    ,   5 21 ~ 5 10K Nm  ,   4 10 ~ 1 10C Nsm   

 

Four cases are investigated in here for verification and discussion. The boundary condition for 

Case 1 is upper beam simply supported-simply supported and lower beam simply supported-

simply supported, and the ones for Case 2 to Case 4 are the same as upper beam spring supported-

spring supported and lower beam simply supported-simply supported. The specific parameter 

values of all cases are as follows 

Case 1: 
1 2e e e  , 

1 2m m m  ,   5 21 ~ 5 10K Nm  , 
10C Nsm . 

Case 2: 
1 2e e e  , 

1 2m m m  , 
4 21 10K Nm  ,   4 10 ~ 1 10C Nsm  . 
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Case 3: 1 0.08e e , 2e e , 
1 0.2m m , 2m m , 

4 21 10K Nm  ,   2 10 ~ 5 10C Nsm  . 

Case 4: 1 0.08e e , 2e e , 
1 0.2m m , 2m m ,   4 21 ~ 5 10K Nm  , 

1100C Nsm . 

 

The natural frequencies and mode shapes of those four cases are calculated by using the semi-

analytical method presented in this chapter, the first several natural frequencies and normal mode 

shapes of each case are summarized in Tables 3-1 to 3-4 and Fig. 3-3 to Fig. 3-9, respectively. The 

comparative results available in (Oniszczuk 2000c) are also summarized in Table 3-1.  

 

In Table 3-1, the natural frequencies calculated by the semi-analytical method presented in this 

chapter, are in excellent agreement with the analytical solutions in (Oniszczuk 2000c). Therefore, 

the correctness and accuracy of the semi-analytical method are apparently proved and 

demonstrated by the comparison in Table 3-1. 

 

The data in Table 3-2 and Table 3-4 are also plotted in Fig. 3-9, which indicate the effects of 

viscoelastic layer damping C and stiffness K on the natural frequency 
n  of whole double-beam 

system. As shown in Fig. 3-9(a), viscoelastic layer damping C doesn't change the natural frequency 

n  significantly in a certain range, but if the damping C reach a large value, some natural 

frequencies will be vanished. When the viscoelastic layer damping C reach a certain relative large 

value, it makes the viscoelastic layer becoming a kind of rigid connection between two beams, the 

whole system will behave like a single beam instead of two beams. Therefore, some antisymmetric 
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mode shapes and corresponding natural frequencies will be eliminated, and the symmetric mode 

shapes and their frequencies, which are similar to the single beam mode shapes, will exist. The 

Fig. 3-5 and Fig. 3-7, which are the mode shapes under large viscoelastic damping C and are 

similar to the single beam mode shapes, just confirm the conclusion and explanations above. 

Different from the damping, in general, there is a tendency to increase the natural frequency 
n  

in case of increasing the viscoelastic layer stiffness K (as shown in Fig. 3-9(b)). Therefore, it is 

effective to adjust the natural frequencies of whole double-beam system by changing the 

viscoelastic layer stiffness K, that can help people to avoid the resonance phenomenon happened 

in the double-beam structure during it is under some dynamic loads with specific frequencies.  

 

From Case 2 and Case 3, the data are as shown in Table 3-2 and Table 3-3, if the viscoelastic layer 

damping and stiffness are the same, when the upper beam is smaller than lower beam, the natural 

frequencies become a little higher, and that could help to solve some low frequency domain 

vibration problems in engineering practices. 

Table 3-1. Natural Frequencies of double-beam system ,n Undamped  ( 1s ); Case 1: 10C Nsm  

510K   

 2Nm  

1n   2n   3n   4n   5n   6n   

Present Ref.  Present Ref.  Present Ref.  Present Ref.  Present Ref.  Present Ref.  

1 19.74 19.7 48.88 48.9 78.96 79 90.74 90.7 177.65 177.7 183.20 183.2 

2 19.74 19.7 66.25 66.3 78.96 79 101.16 101.2 177.65 177.7 188.58 188.6 

3 19.74 19.7 78.94 79 79.96 79.9 110.61 110.6 177.65 177.7 193.81 193.8 

4 19.74 19.7 78.96 79 91.59 91.6 119.31 119.3 177.65 177.7 198.90 198.9 

5 19.74 19.7 78.96 79 101.93 101.9 127.41 127.4 177.65 177.7 203.86 203.9 
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Table 3-2. Natural Frequencies of double-beam system ,n Damped  ( 1s ); Case 2: 4 21 10K Nm   

 1C Nsm    1n   2n   3n   4n   5n   6n   

0 0 9.90 12.60 22.58 46.73 79.59 124.08 

102 0.013 9.90 12.57 22.55 46.72 79.59 124.07 

103 0.108 9.86 10.18 19.10 45.53 79.20 123.35 

104 0.537 - - 19.05 - 78.59 - 

 

Table 3-3. Natural Frequencies of double-beam system ,n Damped  ( 1s ); Case 3: 4 21 10K Nm   

 1C Nsm    1n   2n   3n   4n   5n   6n   

0 0 17.52 24.49 27.26 41.57 79.47 83.82 

50 0.016 17.54 24.45 27.20 - 79.46 - 

100 0.032 17.59 24.31 27.02 - 79.43 - 

500 0.156 18.33 - - - 78.50 - 

 

Table 3-4. Natural Frequencies of double-beam system ,n Damped  ( 1s ); Case 4: 1100C Nsm  

 4 210K Nm   1n   2n   3n   4n   5n   6n   

1 17.59 24.31 27.02 79.43 155.77 177.90 

2 18.25 34.51 36.54 79.59 158.67 178.21 

3 18.43 42.32 44.10 80.13 161.53 178.54 

4 18.51 50.51 52.28 81.19 164.35 178.92 

5 18.55 56.18 57.30 83.37 167.13 179.33 

Mode 1

 

Mode 2

 

Mode 3

 

Mode 4

 

Mode 5

 

Mode 6

 
Fig. 3-3. The first six normal mode shapes of the double-beam system for Case 1, 51 10K   , 0C  . 
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Mode 1

 

Mode 2

 

Mode 3

 

Mode 4

 

Mode 5

 

Mode 6

 

Fig. 3-4. The first six normal mode shapes of the double-beam system for Case 2, 41 10K   , 100C  . 

 

Mode 1

 

Mode 2

 

 

Fig. 3-5. The first two normal mode shapes of the double-beam system for Case 2, 41 10K   , 410C  . 

 

 

Mode 1

 

Mode 2

 

Mode 3

 

Mode 4

 

  

Fig. 3-6. The first four normal mode shapes of the double-beam system for Case 3, 41 10K   , 50C  . 

 

 

Mode 1

 

Mode 2

 

 

Fig. 3-7. The first two normal mode shapes of the double-beam system for Case 3, 41 10K   , 500C  . 
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Mode 1

 

Mode 2

 

Mode 3

 

Mode 4

 

Mode 5

 

Mode 6

 

Fig. 3-8. The first six normal mode shapes of the double-beam system for Case 4, 41 10K   , 100C  . 

 

Case 2

 

Case 4

 

Fig. 3-9. Natural frequency n  versus viscoelastic layer damping C and stiffness K. 

 

3.5.2 Forced Vibration 

Various models are calculated and analyzed in here, all of them are with the same boundary 

condition: upper beam spring supported-spring supported and lower beam simply supported-

simply supported, which is more realistic in engineering practices. Among all of those models, the 

exciting force of the double-beam system is      1 , sin 0.5f x t f t x L   ,  2 , 0f x t  , 
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where 10000f N  is amplitude and   is frequency of a concentrated harmonic force acted 

on the midspan of the upper beam, and  x  is Dirac delta function. The values for the basic 

parameters of the double-beam system are also the same from (Oniszczuk 2000c). 

 

3.5.2.1 Resonance Condition 

Resonance Phenomenon is an important issue in structure vibration problems, and it is so 

dangerous which must be avoided. According to abundant previous research conclusions, the 

resonance phenomenon will happen when the frequency of exciting force is close to the structure 

natural frequency. Due to the complexity of the double-beam system with viscoelastic layer, it is 

hard to derive the resonance condition in formulation format, but it is still reasonable to conclude 

as follows: if the frequency of exciting force   is equal to real natural frequency of damped 

double-beam system 
Damped , the dynamic responses of the two beams, 

1W and 2W , will be 

unlimited, which is resonance phenomenon. Therefore, the resonance condition for double-beam 

system with viscoelastic layer is  

,n Damped  ,     1,2,3,...n                                                 (3-34)                                                                                                  

 

Two cases are calculated in here for verifying the resonance condition: Case 1: two identical beams,

1 2e e e  , 
1 2m m m  , 4 21 10K Nm  , 1100C Nsm ; Case 2: smaller upper beam, 

1 0.08e e , 2e e , 
1 0.2m m , 2m m , 4 21 10K Nm  , 1100C Nsm . The frequency 

responses at the midspan of the two beams are calculated by the equations presented in this chapter, 
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and the absolute amplitude of them are shown in Fig. 3-10. 

  

a. Case 1: Two Identical Beams

 

b. Case 2: Smaller Upper Beam

 

Fig. 3-10. Frequency response at midspan point of two beams. 

 

From Fig. 3-10, Table 3-2 and Table 3-3, it can be easily seen that the dynamic response of two 

beams reach some peak values when the exciting force frequencies   is close to the real natural 

frequencies of the damped double-beam system 
,n Damped , which is just the resonance 

phenomenon and verifies the resonance condition shown above. When designing the double-beam 

system, it is supposed to make the natural frequencies of system being far away from the frequency 

of exciting force, and avoid the resonance phenomenon happened. 

 

Also in Fig. 3-10, when the resonance frequency 46.72   in Case 1, and 27.02   in Case 2, 

only the upper beam has the peak values, and in contrast, lower beam doesn't have. The main 

reason for that is the corresponding mode shapes. Checking the mode shapes in Fig. 3-4(d) and 

Fig. 3-6(c), it is found that the deformation amplitude of lower beam is very small comparing with 



79 

 

the upper beam, therefore in those resonance frequencies, the lower beam dynamic response is not 

as great as upper beam, although there is still resonance happened to lower beam. 

 

3.5.2.2 Effect of Viscoelastic Layer Stiffness K 

Viscoelastic layer is the connection between upper beam and lower beam in double-beam system, 

therefore, its properties will affect the dynamic responses of two beams apparently. Some 

discussions about the effect of viscoelastic layer stiffness K on two beams dynamic responses are 

shown in here. Three cases are investigated in here for discussion: 
1 2e e e  , 

1 2m m m  , 

1100C Nsm ; Case 1: 4 21 10K Nm  ; Case 2: 4 22 10K Nm  ; Case 3: 

4 23 10K Nm  . The deformation response factor of frequency response at the midspan of the 

two beams are shown in a form of semi-log plots in Fig. 3-11.  

 

a. Upper Beam

 

b. Lower Beam

 

Fig. 3-11. Frequency response at midspan point of two beams. 

 

With the increase of viscoelastic layer stiffness K, the dynamic response of upper beam is generally 
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decreased (as shown in Fig. 3-11(a)). Upper beam in here is a kind of a beam on viscoelastic 

foundation, when the viscoelastic layer becomes stiffer, the restrict to the upper beam gets stronger, 

therefore the upper beam vibrates smaller and smaller under same exciting force. From Fig. 3-

11(b), the dynamic response of lower beam is generally increased with the increase of layer 

stiffness K, which is opposite to upper beam. Since  2 , 0f x t  , therefore the energy which let 

lower beam vibrate is all from viscoelastic layer. Once the viscoelastic layer gets stiffer, its 

deformation will be smaller and less energy will be absorbed by upper beam, therefore more 

exciting energy will be obtained by lower beam and makes its dynamic response increased. 

 

3.5.2.3 Effect of Viscoelastic Layer Damping C 

Another parameter of viscoelastic layer in the double-beam system is the damping, C, which is an 

important issue to reduce the vibrations of both beams. Three cases are investigated in here for 

discussion of damping effects on two beams dynamic responses: 
1 2e e e  , 

1 2m m m  , 

4 21 10K Nm  ; Case 1: 10C Nsm ( 0  ); Case 2: 1100C Nsm ( 0.0196  ); Case 3: 

1500C Nsm ( 0.151  ). The deformation response factor of frequency response at the midspan 

of the two beams are shown in a form of semi-log plots in Fig. 3-12. 
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a. Upper Beam

 

b. Lower Beam

 

Fig. 3-12. Frequency response at midspan point of two beams. 

 

As shown in Fig. 3-12, for both upper beam and lower beam, the dynamic responses are generally 

reduced with the increase of damping C. Damping is a kind of vibration energy absorber, when 

increase the damping value, more energy will be absorbed and less energy will be applied to make 

structure vibration. In double-beam system, the viscoelastic layer is just between upper beam and 

lower beam, so its damping can effectively absorb the energy when exciting energy is applied to 

the whole system. Therefore, with the increase of viscoelastic layer damping, more exciting energy 

could be absorbed and less of them will be applied to upper beam and lower beam, that’s why both 

of them have a reduction on dynamic responses. But the viscoelastic layer damping cannot adopt 

a very large value, since when it reaches a relative large value, it will become a rigid connection 

between upper and lower beam, the whole system will vibrate as a single beam system instead of 

two beams system, which is also proved in the free vibration discussions and shown in Fig. 3-5 

and Fig. 3-7, the damping cannot help to absorb energy and reduce the dynamic responses of two 

beams any more in that case. Therefore, increasing the viscoelastic layer damping value in a 
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reasonable range could effectively help people to reduce the dynamic responses of both upper 

beam and lower beam in double-beam system. 

 

3.5.2.4 Effect of Upper Beam Mass 

In plenty of engineering projects, the double-beam system usually doesn't have same upper beam 

and lower beam. To reduce the dynamic responses of the lower beam, the upper beam is designed 

as vibration absorber. Therefore, the physical property of upper beam has significant effects in 

dynamic vibration reduction, and the mass of upper beam is discussed firstly in here. Three cases 

are investigated for discussion: 
1 20.08 0.08e e e  , 2m m , 4 21 10K Nm  , 1100C Nsm ; 

Case 1: 
1 0.1m m ; Case 2: 

1 0.5m m ; Case 3: 
1m m . The deformation response factor of 

frequency response at the midspan of lower beam is shown as semi-log plots in Fig. 3-13. 

 

From Fig. 3-13, except the resonant frequency domain, when increasing upper beam mass, the 

dynamic response of lower beam is generally decreased. Since the double-beam system in here is 

with      1 , sin 0.5f x t f t x L   ,  2 , 0f x t  , therefore upper beam accepts the exciting 

energy firstly, absorbs some of them and then transfers the left ones to lower beam by viscoelastic 

layer. If the upper beam is heavier, more exciting energy are needed to complete its own vibration, 

the energy left for lower beam is reduced and lower beam vibrates smaller. However, the mass of 

upper beam cannot grow to very large. If upper beam mass exceeds a limit value, the vibration 

energy of upper beam itself will be too huge and it will be transferred to lower beam by viscoelastic 



83 

 

layer too, the lower beam vibration will not be reduced anymore in that case. 

 

  

Fig. 3-13. Frequency response at midspan point of lower 

beam for upper beam mass discussion. 

Fig. 3-14. Frequency response at midspan point of lower 

beam for upper beam flexural rigidity discussion. 

 

However, in resonant frequency domain which is also the small exciting force frequency area in 

Fig. 3-13, the dynamic response of lower beam is larger when the upper beam mass is larger, which 

is an opposite tendency comparing with it in non-resonant domain. It is because the change of 

upper beam mass leads to the apparent difference of natural frequency, and the one with larger 

upper beam mass has smaller natural frequency. Therefore, the model with larger upper beam mass 

reaches resonant vibration status at smaller exciting force frequency, and it makes the dynamic 

response of lower beam has larger value than other cases in that frequency domain. Although the 

tendency is different due to the resonant vibration, the dynamic response peak value at resonant 

frequency of the model with smaller upper beam mass is also larger, which is still the same 

tendency as in non-resonant domain. 
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3.5.2.5 Effect of Upper Beam Flexural Rigidity 

In this section, it will explain how the upper beam flexural rigidity affects the vibration responses 

in lower beam and how it works to reduce its dynamic response. Also, three cases are investigated 

in here for discussion: 2e e , 
1 20.2 0.2m m m  , 4 21 10K Nm  , 1100C Nsm ; Case 1: 

1 0.01e e ; Case 2: 1 0.1e e ; Case 3: 
1e e . The deformation response factor of frequency 

response at the midspan of lower beam is shown in Fig. 3-14.   

 

In Fig. 3-14, it is demonstrated that the general tendency for the dynamic response of lower beam 

is decreased with the increase of upper beam flexural rigidity. When upper beam is soft, less energy 

can let it deform and vibrate, more energy is obtained by lower beam. When the upper beam 

flexural rigidity gets larger, more exciting energy is used to complete its deformation and vibration. 

Thus less energy is transferred to lower beam and its dynamic response gets smaller.  If the 

flexural rigidity exceeds a limit value, the upper beam will become a rigid body and it will not 

absorb any energy, and all the exciting energy will be transferred to lower beam and make larger 

dynamic response in lower beam. 

 

3.6 Conclusions 

In this chapter, considering the viscoelastic layer damping existed in real engineering practices, a 

semi-analytical method is developed to analyze the natural frequencies and corresponding mode 
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shapes of the general double-beam system, which may have arbitrary viscoelastic layer damping, 

arbitrary beam mass, beam flexural rigidity and/or boundary condition. The free vibration final 

forms, which are the exact solutions of the motion differential equations formulated by the classical 

Bernoulli-Fourier method, can be solved based on the initial conditions. Comparing the numerical 

experiments results with analytical solutions from previous research in the literature, the 

correctness and accuracy of the semi-analytical method presented in this chapter has been proved. 

Various models, which have different beam mass, beam flexural rigidity and different boundary 

condition, are also calculated to show their natural frequencies and corresponding mode shapes. 

The effects of viscoelastic layer damping and stiffness on double-beam system natural frequencies 

are further discussed.  

 

The modal-expansion method and an iteration method are applied to find the dynamic response of 

forced vibration in a double-beam system using the natural frequencies and mode shapes obtained 

from the free vibration analysis. The specific orthogonality condition for a double-beam system is 

derived, and then applied to decouple the motion differential equations. Various double-beam 

system models with a concentrated harmonic force in the midspan of upper beam have been 

calculated with systematic parametric studies showing the following conclusions:  

1. Effect of viscoelastic layer stiffness K: Increase viscoelastic layer stiffness in a range, dynamic 

responses of upper beam are reduced, but dynamic responses of lower beam are increased. 

2. Effect of viscoelastic layer damping C: To both upper beam and lower beam, the dynamic 
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responses of forced vibration are decreased with the increase tendency of viscoelastic layer 

damping value in a range. 

3. Effect of upper beam mass: Dynamic responses of lower beam are significantly decreased when 

increase the mass of upper beam in a range. 

4. Effect of upper beam flexural rigidity: Dynamic responses of lower beam are decreased if 

increase the flexural rigidity of upper beam in a range. 

 

Finally, the vibration problem of a double-beam system with viscoelastic layer is solved 

successfully, and all of those parametric study conclusions can be helpful to engineers to design 

the double-beam system. 
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Chapter 4 Active and Semi-Active Vibration Control of Undamped 

Elastically Connected Double-Beam Systems 

4.1 Introduction 

In the researches about structural vibration control, the core issue of them is the control algorithm 

which determines how to apply the control force or how to adjust the parameters of the control 

structure to reduce the vibration into an accepted level. Due to the complexity of the real structures, 

it is very hard to derive the control algorithms directly from those real structures. In order to solve 

that problem, the real structures are usually simplified as some basic mechanical models which 

can represent their dynamic characteristics. The control algorithms are studied and obtained based 

on those basic mechanical models, and then, they are inputed into the real structures and verified 

by some numerical or experimental tests. In this research, the proposed semi-active control is to 

apply novel adaptive materials as the viscoelastic layer between floating slab track and bridge main 

beam, and the mechanical model of that whole structure system is just the double-beam system 

which has been introduced in Chapter 2 and Chapter 3. In this chapter, the active control algorithm 

and semi-active algorithm are proposed and derived for the double-beam system, which will be 

theoretical foundation for the studies of the active control and semi-active control in high-speed 

rail bridges. It is the same as the Chapter 2, in order to start the research from a simple model, the 

double-beam system interconnect by elastic layers is chosen to be studied firstly in this chapter. 
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In fact, there have been abundant research efforts in the literature about the dynamic behaviors of 

the double-beam system in recent years. Those research works include the double-beam system 

with elastic layer in which the damping is ignored (Seelig and Hoppmann 1964a, 1964b; Kessel 

1966; Rao 1974; Chonan 1976; Hamada, Nakayama and Hayashi 1983; Kukla and Skalmierski 

1994; Oniszczuk 2000, 2003; Zhang, Lu and Ma 2008; Stojanovic and Kozic 2012; Zhang, Huang, 

Zhang and Hua 2014; Mao and Wattanasakulpong 2015; Li and Sun 2015), and the one with 

viscoelastic layer in which the damping characteristics of the connecting layer must be considered 

(Chen and Sheu 1994, 1995; Li and Hua 2007; Kessel and Raske 1967; Abu 2006; Pavlovic, Kozic 

and Pavlovic 2012; Vu, Ordonez and Karnopp 2000; Cottle 1990). Although almost all of them 

have made some simplifications for the structure in order to solve the coupling equations of motion, 

they are still the fundamental works for the vibration control problem in double-beam system. On 

the other hand, great progress in the field of structural vibration control has been achieved over the 

past few decades. Yao (1972) firstly introduced the modern control theory into civil engineering 

in 1972, from when the research about structural vibration control started. Until now, the main 

structural vibration control could be classified as three main parts: active control, passive control 

and semi-active control (Housner et al. 1997; Soong and Spencer 2002). The active control is 

studied by many scholars for more than 40 years, many achievements have been obtained and there 

are some real engineering practices applied with it, therefore, it is a more proven control 

technology (Soong 1990). The essential aspects for the design of an active control structure are 

reviewed and many topics involved in it are introduced by Alkhatib and Golnaraghi (2003). Yang 
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et al. (Yang, Akbarpour and Ghaemmaghami 1987; Yang, Long and Wong 1988; Yang, Li and Liu 

1991; Yang, Li and Liu 1992) proposed many active control algorithms for the control of structures 

under seismic load, and some experiments were completed to verify the control efficiency. Li et 

al. (Li, Liu, Fang and Tam 2000; Li, Liu, Tang, Zhang and Tam 2004) developed some active 

control algorithms based on genetic algorithm and apply them in the structures under winds, which 

is another main exciting force to structures. Soong et al. (1991) and Reinhorn et al. (1993) installed 

full-scale active control structures in actual structures and obtained the control results in an 

expected level. A type of active control for mechanics and structures, active modal control, is 

generally reviewed by Inman (2001). Experiments based on the modal control are carried out to 

verify its feasibility (Meirovitch, Baruh, Montgomery and Williams 1984; Schafer and Holzach 

1985). Meirovitch and Silverberg (Meirovitch and Silverberg 1983; Meirovitch 1987) developed 

the independent modal space control (IMSC), which is an important modal control method, for the 

distributed systems vibration control. Sadek and Esfandiari (1990) applied an open-closed-loop 

control for distributed parameter systems to a single Rayleigh beam with damping and it is 

effective. As to some elastically connected complex systems, Kucuk and Sadek (2005) firstly used 

optimal control method to actively control the elastically connected rectangular plate-membrane 

system, and then, they studied the active control for the elastically connected double-string 

continuous system (Kucuk and Sadek 2007). As shown above, it is easy to find out that there are 

very few research papers about the active vibration control or semi-active vibration control on 

double-beam system and very few scholars or engineers consider to apply an efficient active 
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control structure or semi-active control structure in it. However, in many real engineering practices, 

such as the floating slab track on bridge which is studied in this paper, the double-beam system 

has been widely used, therefore, how to use active control structure or semi-active control structure 

to suppress its vibration for protecting the structure itself is supposed to be a valuable research 

topic. 

 

This chapter proposes an active control structure installed in the elastic layer location of the 

double-beam system and a semi-active control structure which adopts the adjustable elastic layer 

to control the vibration and reduce the dynamic responses of whole structure. The double-beam 

system with an elastic layer is considered in this chapter, and the active control structure is a 

distributed control structure with many actuators along the elastic layer which can affect both of 

beams at same time. By synthesizing IMSC and linear quadratic regulator (LQR), an active control 

algorithm is developed for the proposed active control structure. IMSC is used to transfer the 

coupling motion equations of structure in physical space into the decoupled equations in modal 

space, and the vibration control is also transferred to modal control on each mode. The modal 

active control force in each mode is determined by LQR, and the final active control force in 

physical space that can be applied on real structure is finally calculated based on those modal 

active forces. The semi-active control structure adopts the adjustable elastic layer to take the place 

of traditional elastic layer between two beams. The active control force produced by the active 

control structure is set up as the objective and the equivalent semi-active control force is assumed 
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to be close to that active force. Based on that principle and with the mode shape filter derived in 

this chapter, the stiffness increase of the adjustable elastic layer which is used to realize the semi-

active control is determined. Various models of uncontrolled, active controlled and semi-active 

controlled double-beam system, which have a concentrated harmonic force in the midspan of upper 

beam, are calculated and presented to illustrate the efficiency of the proposed active control and 

semi-active control. 

 

4.2 Formulation of the Vibration Control Problem 

In this chapter, the physical model (as shown in Fig. 4-1(a)) of a double-beam system with an 

active control structure includes an upper beam and a lower beam joined by a uniformly 

distributed-connecting elastic layer, and is actively controlled by a distributed control structure 

with many actuators along the elastic layer. And as shown in Fig. 4-1(b), another physical model 

of a double-beam system with a semi-active control structure consists of the same two beams 

connected by a uniformly distributed adjustable elastic layer. Both beams are homogeneous, 

prismatic and have the same length L, but they could have different mass, flexural rigidity, and 

boundary conditions. The motion governing equations for transverse vibrations of the double-

beam system with the active control (Fig. 4-1(a)), can be derived by Bernoulli-Euler beam theory 

as follows: 

     
4 2

1 1
1 1 2 1 14 2

, ,c

W W
e K W W m f x t f x t

x t

 
    

 
                               (4-1a)                                                                                     
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     
4 2

2 2
2 1 2 2 24 2

, ,c

W W
e K W W m f x t f x t

x t

 
    

 
                              (4-1b)                                                                                   

 

And the motion governing equations for transverse vibrations of the double-beam system with the 

semi-active control (Fig. 4-1(b)) are as follows: 

    
4 2

1 1
1 1 2 1 14 2

,
W W

e K K W W m f x t
x t

 
     

 
                                 (4-2a)                                                                                     

    
4 2

2 2
2 1 2 2 24 2

,
W W

e K K W W m f x t
x t

 
     

 
                                (4-2b)                                                                                   

where  ,i iW W x t is transverse beam deflections, x , t  are the spatial co-ordinate and the time, 

ie  and im  are the beam flexural rigidity and beam mass per unit length, i =1 or 2 represents 

upper beam or lower beam, K is the stiffness of the elastic layer, K  is the stiffness increase of 

the adjustable elastic layer,  ,cf x t  is the active control force produced by the distributed control 

actuators, and  1 ,f x t ,  2 ,f x t  are the exciting force acting on the upper and lower beams, 

respectively. 

 

The initial conditions in general form are as follows: 

   1 10,0W x W x ,    2 20,0W x W x ,    1 10,0W x V x ,    2 20,0W x V x           (4-3)                                                      

 

Based on the research in Chapter 2 and Chapter 3, it could analyze arbitrary boundary conditions 

at the ends ( 0x  , L) of the two beams in here, and some common ones can be listed as follows: 
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Simply supported:        0, , 0, , 0i i i iW t W L t W t W L t                          (4-4a)                                                                                                                                                                                

Clamped:        0, , 0, , 0i i i iW t W L t W t W L t                                  (4-4b)                                                                     

Free:        0, , 0, , 0i i i iW t W L t W t W L t                                      (4-4c)                                                                                                                                                                                       

Spring supported:    0, , 0i iW t W L t   ,    0, 0,i i i iE I W t KW t   , 

   , ,i i i iE I W L t KW L t                                                      (4-4d) 

where i =1 or 2 represents upper beam or lower beam. 

a

 

b

 

Fig. 4-1. The physical model of a double-beam system: (a) with an active control structure; (b) with a semi-active 

structure. 
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4.3 Active Control Algorithm for Actuators in Active Control Structure 

In Eq. (4-1), the active control force  ,cf x t  is produced by the actuators in the active control 

structure, therefore, in order to totally solve and obtain the dynamic responses of the double-beam 

system with active control structure presented in this chapter, the active control force  ,cf x t  

must be determined firstly. As to the active control force, it is the final performance of the active 

control structure on the whole double-beam system: on one hand, it determines the control effects 

of the active control structure; on the other hand, it is determined and calculated by the active 

control algorithm adopted in the active control structure. To the double-beam system with a 

distributed active control structure discussed in this research, based on abundant advanced control 

algorithms, a suitable and effective active control algorithm, which synthesizes independent modal 

space control and linear quadratic regulator, is developed in here. 

 

4.3.1 Independent Modal Space Control Algorithm (IMSC) 

Eq. (4-1) are typical linear partial differential equations, in which the method of separation of 

variables can be applied. Thus, the solutions for Eq. (4-1) could be separable in time and space, 

and they can be assumed in a form as:  

     1 1

1

, n n

n

W x t T t x




                                                     (4-5a)                                                                                                         

     2 2

1

, n n

n

W x t T t x




                                                     (4-5b)                                                                                                       
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where  1n x ,  2n x  are mode shape functions of upper beam and lower beam corresponding 

to nth natural frequency, and  nT t  is time function corresponding to nth natural frequency. 

 1n x  and  2n x  can be determined from a free vibration analysis which is developed in the 

Chapter 2, and  nT t  is unknown function which need to be solved. 

 

Substituting the assumed solutions Eq. (4-5) into Eq. (4-1), so they become 

 
 

     
 

     
4 2
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1 1 1

, ,
n n

n n n n n c

n n n

d x d T t
e T t K T t x x m x f x t f x t

dx dt


  

  

  

          

                                                                         (4-6a)                                                                             
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 
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d x d T t
e T t K T t x x m x f x t f x t

dx dt


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  

  

          

                                                                         (4-6b)                             

 

As shown in Chapter 2, if the free vibration of the same double-beam system is considered, the 

solutions for the free vibration can be written as: 

     1 1 2 1

1

, n ni t i t

n n n

n

W x t D e D e x
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




                                          (4-7a)                                                                             

     2 1 2 2

1

, n ni t i t

n n n

n

W x t D e D e x
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




                                          (4-7b)                                                                             

where 
n  is the nth natural frequency,  1 2

n ni t i t

n nD e D e
 

  is the time function for free vibration 

corresponding to nth natural frequency, and  1n x ,  2n x  are the same mode shape functions 

as the ones in Eq. (4-5). 
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Substituting Eq. (4-7) into Eq. (4-1) with free vibration conditions      1 2, , , 0cf x t f x t f x t   , 

eliminating the same term  1 2
n ni t i t

n nD e D e
 

  and multiplying the  nT t  in each term, the Eq. 

(4-1) will be in form of: 

 
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Introducing free vibration equations Eq. (4-8) into them, the motion equations of forced vibration 

with active control, Eq. (4-6), can be simplified as:  

 
 

       
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As derived in Chapter 2, the orthogonality condition for different mode shapes of the double-beam 

system with elastic layer is: 

       1 1 1 2 2 2
0

L

n m n m n mnx m x x m x dx M                                        (4-10)                                                                              

where 
nM  is the generalized mass in the nth mode, and 

mn  is the Kronecker delta function. 

 

       1 2. 4 9 . 4 9m mEq a x Eq b x      , integrate it respect to x from 0 to L, and apply 
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orthogonality condition Eq. (4-10), so it will be 

 
     

2

2

2
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                                               (4-11a)                                                                                                 
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Based on the derivations above, the Eq. (4-1), which are the coupling motion equations of double-

beam system with an active control structure in the physical space, are transferred as Eq. (4-11), 

which are the decoupled motion equations of the same structure in modal space. Therefore, the 

vibration control of the infinite freedom system in physical space is also transferred as the vibration 

control of several modes in modal space, and this is called Modal Space Control (MSC). Defining 

the state vector      
T

n n nZ t T t T t    , the state-space form of the decoupled equation of 

motion, Eq. (4-11a), can be written as 

       n n n n n n ncZ t J Z t K F t L F t                                             (4-12)                                                                                                                
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. 

 

independent modal space control (IMSC), in which each vibration mode is controlled separately, 

is just one widely used type of MSC and it is applied in here. According to IMSC and to avoid re-
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coupling the double-beam system with an active control structure descried as Eq. (4-12), each nth 

mode shape is controlled by its own control modal force, and the nth control modal force which 

adopts linear state feedback control law can be calculated as 

       1 2nc n n n n n nF t G Z t g T t g T t                                            (4-13)                                                                                       

where  1 2n n nG g g  is feedback gain matrix, 1ng  is displacement gain, 
2ng  is velocity gain, 

and all of them are control gains needed to be determined. 

 

By means of the linear quadratic regulator control method, the feedback gain matrix 

 1 2n n nG g g  can be determined, therefore, the active control force  ncF t  and  ,cf x t  can 

be obtained, and the dynamic responses of the double-beam system with an active control structure 

can be totally calculated eventually. 

 

4.3.2 Linear Quadratic Regulator (LQR) 

In fact, the linear quadratic regulator (LQR) control algorithm is an optimal control algorithm: it 

defines a quadratic performance index  J t , which combines the state vector of the whole system 

and control command together, as the objective function, and finds the optimal control force by 

minimizing the objective function  J t  under all specific constrained conditions. According to 

LQR and the linear differential equations Eq. (4-12) which represent the whole structure system 

in state-space form, the quadratic performance index  J t  for the active control on double-beam 

system is as follows 
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               2

0 0

f ft t
T T T

n n nc nc n n ncJ t Z t QZ t F t RF t Z t QZ t RF t                         (4-14)                                                            

where  nZ t  is state vector for the structure model,  ncF t  is active control force, Q is a positive 

definite or a semi-positive definite weight matrix for state vector, and R is a positive definite weight 

matrix for control force vector. 

 

The mathematic model for the whole double-beam system optimal control can be denoted as: 

Find active control force  ncF t ,  

to satisfy the objective function        2

0
min

ft
T

n n ncJ t Z t QZ t RF t     , 

with constrained conditions:        n n n n n n ncZ t J Z t K F t L F t     and   00n nZ Z . 

 

The mathematic model is a functional extremum question with constrained conditions. Applying 

the Lagrange Multiplier Method, Hamiltonian Function and Variation Method, a Riccati matrix 

equation is finally derived: 

11
0

2

T T

n n n nPJ J P PL R L P Q                                                 (4-15)                                                                                                    

 

In this chapter, the weight matrices can be calculated as 

2 0

0 1

nQ



 

  
 

 and R  , in where α 

and β are positive constants. Due to nJ  and nL  are also known, the matrix 
11 12

21 22

P P
P

P P

 
  
 

 can 

be obtained by solving Riccati matrix equation Eq. (4-15). And then, the active control force 

 ncF t  is determined as: 
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     
 

 
   11 121 1 1

21 22

21 22

1 1 1
0 1

2 2 2

nT

nc n n n n

n

T tP P
F t R L PZ t R R P T t P T t

T tP P

  
    

           
    

 (4-16)                                     

 

Comparing Eq. (4-16) with Eq. (4-13), the feedback gain matrix is finally solved by LQR: 

  1 1

1 2 21 22

1 1

2 2
n n nG g g R P R P  
   

 
                                         (4-17)                                                                                         

 

By applying an active control algorithm which synthesizes IMSC and LQR, the active control 

force for each mode shape of the double-beam system,  ncF t , is determined successfully. 

However,  ncF t  is just a kind of modal control force in the modal space, it cannot be used in the 

real structure to complete the control work. Therefore, the active control force in physical space, 

 ,cf x t , should be obtained in next step. 

 

4.3.3 Calculation of Active Control Force in Physical Space 

Considering Eq. (4-11c) and Eq. (4-16), the active control force in physical space can be assumed 

in a form as: 

              1 1 2 2 1 2

1

,
N

c n n n n n n n n

n

f x t G x x T t G x x T t   


                          (4-18)                                                           

where 
1nG , 

2nG  are the control gains for each mode,    1 2n nx x   is used to make the 

 ,cf x t  is related to the responses of both beams , and N is total number of modes which are 

considered to be controlled.   
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In IMSC, each modal control force can only control that mode and it doesn’t affect other modes. 

Therefore, when substituting Eq. (4-18) into Eq. (4-11c), only 

             1 1 2 2 1 2,nc n n n n n n n nf x t G x x T t G x x T t              is used to calculate the nth 

modal control force  ncF t  as: 

 
    

       
   

2

1 2
0

1 2

1 1 1 2 2 2
0

L

n n

nc n n n nL

n n n n

x x dx
F t G T t G T t

x m x x m x dx

 

   

   
    

  




             (4-19)                                                           

 

Comparing Eq. (4-19) with Eq. (4-16), the control gains 
1nG  and 

2nG  can be calculated by 

       

    
1 1 1 2 2 21 0

1 21 2

1 2
0

1

2

L

n n n n

n L

n n

x m x x m x dx
G R P

x x dx

   

 


  

 
   




                          (4-20a)                                                                           

       

    
1 1 1 2 2 21 0

2 22 2

1 2
0

1

2

L

n n n n

n L

n n

x m x x m x dx
G R P

x x dx

   

 


  

 
   




                         (4-20b)                                                                             

 

Until here, control gains 
1nG  and 

2nG  are solved, and by the assumptions as in Eq. (4-18), the 

active control force in physical space,  ,cf x t  , is determined. Then, it is possible to apply that 

active control force in the real double-beam system and obtain dynamic responses of it with active 

control structure which uses that active control algorithm. 
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4.4 Semi-Active Control Algorithm for Adjustable Elastic Layer in Semi-Active 

Control Structure 

The semi-active vibration control problem of a double-beam system with adjustable elastic layer 

is described as Eq. (4-2), and the stiffness increase K  of the adjustable elastic layer in Eq. (4-2) 

is controlled and determined by the semi-active control structure and algorithm. Therefore, the 

semi-active control in here is a kind of active variable stiffness (AVS) system. Based on previous 

research works, an active control and corresponding active control force is supposed to be set up 

as an objective, and the semi-active control force is need to be close to that active control force. In 

this section, the active control and active control force presented in Section 4.3 is chosen as the 

objective, a semi-active control which makes the semi-active control to be close to that active 

control and a mode shape filter are developed to calculate K  in here. 

 

4.4.1 The Determination of Stiffness Increase in Adjustable Elastic Layer 

Based on Eq. (4-2), move the terms, which are related to K , to the right side of the equations, 

then the Eq. (4-2) can be denoted as 

     
4 2

1 1
1 1 2 1 1 1 24 2

,
W W

e K W W m f x t K W W
x t

 
     

 
                          (4-21a)                                                                                                        

     
4 2

2 2
2 1 2 2 2 1 24 2

,
W W

e K W W m f x t K W W
x t

 
      

 
                         (4-21b)                                                                                                      
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As shown in Eq. (4-21),  1 2K W W   could be treated as a semi-active control force. Comparing 

Eq. (4-21) with Eq. (4-1), in order to make the semi-active control being close to the active control, 

it can assume the semi-active control structure can provide the same control force value as active 

control structure as follows  

   1 2 ,cK W W f x t                                                        (4-22) 

 

Introducing Eq. (4-11c) and substituting Eq. (4-22) into it, it can be transferred as 

 
        

       

2 1 1 2
0

1 1 1 2 2 2
0

, ,
L

n n

nc L

n n n n

x x W x t W x t dx
F t K

x m x x m x dx

 

   

       
 

  




                        (4-23) 

 

According to the active control algorithm presented in Section 4.3, the nth modal active control 

force  ncF t  is determined as Eq. (4-16). Therefore, comparing Eq. (4-23) with Eq. (4-16), the 

ideal value for the stiffness increase K  can be calculated as 

   
       

        

1 1 1 2 2 21 0
21 22

2 1 1 2
0

1

2 , ,

L

n n n n

n n L

n n

x m x x m x dx
K R P T t P T t

x x W x t W x t dx

   

 


  

      
       




       (4-24) 

 

Due to the limit of the adjustable elastic layer material, the stiffness increase K  cannot reach 

any value, and there must be a maximum stiffness value maxK  and minimum stiffness value minK  

for the adjustable elastic layer. Considering about that, the final determination of the stiffness 

increase dK  can be defined as: 

If maxK K K   , then 
maxdK K K   ;                                      (4-25a) 
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If 
minK K K   , then mindK K K   ;                                       (4-25b) 

If 
min maxK K K K K     , then 

dK K   .                                  (4-25c) 

where maxK  is maximum stiffness value and minK  is minimum stiffness value of the adjustable 

elastic layer, and K  is the calculating stiffness increase value defined as in Eq. (4-24). 

 

Applying Eq. (4-24) and Eq. (4-25), the stiffness increase value dK  is determined and could be 

adopted by semi-active control structure. But there are two points should be declared in here: First, 

as shown in Eq. (4-24), K  is calculated by one mode of the vibration and it will obtain several 

different K  values based on different modes, therefore, only one main mode will be chosen to 

be controlled for the semi-active control structure. Second, dK  is supposed to be determined at 

each time step, therefore, dK  will be changed during the whole vibration process and it should 

be continually calculated with real time. 

 

4.4.2 The Mode Shape Filter for the Double-Beam System 

Checking Eq. (4-24) carefully, in order to calculate the value of K , the parameters R , 21P , 

22P ,  1n x ,  2n x ,  1 ,W x t ,  2 ,W x t ,  nT t  and  nT t  must be known. Among those 

parameters, R , 21P  and 22P  are calculated by Riccati matrix equation Eq. (4-15),  1n x  and 

 2n x  are obtained by free vibration analysis in Chapter 2,  1 ,W x t  and  2 ,W x t  are 

displacement of the two beam detected by the sensors in the structure, therefore, only  nT t  and 
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 nT t  should be determined by another method. In this section, a specific mode shape filter for 

the double-beam system is just introduced to calculate the  nT t  and  nT t . 

 

As shown in Eq. (4-5),  nT t  and  nT t  are a kind of generalized coordinates in modal space 

and they are related to each mode. Therefore, the calculation of them from the detected value of 

displacement and velocity is just to decompose those from physical space to each mode in modal 

space and that is why it can be called mode shape filter.  

 

Considering the time is at t, the displacement and velocity of both beams are detected by the 

sensors and are known as  1 ,W x t ,  2 ,W x t ,  1 ,V x t  and  2 ,V x t . According to Eq. (4-5), 

they can be denoted as 

     1 1

1

, n n

n

W x t T t x




                                                   (4-26a)                                                                                                         

     2 2

1

, n n

n

W x t T t x




                                                   (4-26b)                                                                                                       

     1 1

1

, n n

n

V x t T t x




                                                    (4-26c)                                                                                                         

     2 2

1

, n n

n

V x t T t x




                                                    (4-26d)                                                                                                       

 

       1 1 2 2. 4 26 . 4 26m mEq a m x Eq b m x        , integrate it respect to x from 0 to L, and 

apply orthogonality condition Eq. (4-10), the  nT t  can be derived as 
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 
       

       

1 1 1 2 2 2
0

1 1 1 2 2 2
0

, ,
L

n n

n L

n n n n

x mW x t x m W x t dx
T t

x m x x m x dx

 

   

  


  




                              (4-27) 

 

Then,        1 1 2 2. 4 26 . 4 26m mEq c m x Eq d m x        , integrate it respect to x from 0 to 

L, and apply orthogonality condition Eq. (4-10), the  nT t  can be derived as 

 
       

       

1 1 1 2 2 2
0

1 1 1 2 2 2
0

, ,
L

n n

n L

n n n n

x mV x t x m V x t dx
T t

x m x x m x dx

 

   

  


  




                               (4-28) 

 

Once  1n x  and  2n x  are obtained by free vibration analysis in Chapter 2, and displacement 

and velocity of the two beam are detected by the sensors in the structure, then, the  nT t  and 

 nT t  can be determined by the displacement mode shape filter as Eq. (4-27) and velocity mode 

shape filter as Eq. (4-28), respectively. 

 

In addition, the mode shape filter for calculating  nT t  and  nT t  is not only useful in the 

determination of stiffness increase K  as discussing at the beginning of this section, but also is 

very important for the calculation of the transverse vibration of the whole double-beam system 

with semi-active control structure, which will be introduced in next section. 
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4.5 Solution of the Transverse Vibration for Double-Beam System with 

Vibration Control Structure 

Once the active control force or semi-active control parameter is determined by the control 

algorithm developed in this chapter, the solutions of the transverse vibration for double-beam 

system with active control structure or semi-active control structure, which is described in Eq. (4-

1) or Eq. (4-2), can be solved and the dynamic responses of whole structure system can be obtained. 

 

4.5.1 Solution of the Transverse Vibration for Double-Beam System with Active Control 

Structure 

The active control force is calculated by the active control algorithm as Eq. (4-16), and then, 

substituting it into Eq. (4-11), the decoupled motion equations of the double-beam system with 

active control structure will be 

   
   

2

1 1 2

22 212

1 1

2 2

n n

n n n

d T t dT t
R P R P T t F t

dt dt
  

    
 

                         (4-29a)                                                                                                                                                                                 

 
       

       

1 1 2 2
0

1 1 1 2 2 2
0

, ,
L

n n

n L

n n n n

x f x t x f x t dx
F t

x m x x m x dx

 

   

  


  




                               (4-29b)                                                                           

 

Using Duhamel's integral, particular solution of Eq. (4-29a) can be obtained as   

       
0

1
sinn n

t t

n n nd

nd

T t F e t d
  

   


 
                                      (4-30)                                                                             
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where 
2 1

21

1

2
n n R P    , 

1 221

4
n

n

P
R






 , and 

21nd n n     are the calculation 

parameters. 

 

 nT t  is solved by Eq. (4-30),  1n x  and  2n x  are known mode shape functions. By 

assuming solutions Eq. (4-5), the transverse vibration equations of a double-beam system with 

active control structure are solved successfully. 

 

4.5.2 Solution of the Transverse Vibration for Double-Beam System with Semi-Active 

Control Structure 

As introduced in Section 4.4, the semi-active control presented in this chapter for the double-beam 

system is a kind of Active Variable Stiffness (AVS) system, therefore, it requires that the adjustable 

elastic layer which is under control should be changed with time during the whole vibration process. 

It leads to three requirements for the vibration calculation of double-beam system with that semi-

active control structure:  

1. The vibration calculation must be carried out one time step by one time step, because the 

structure may be different in each time step.  

2. In each time step, the analysis of the structure vibration property must be done due to the change 

of the adjustable elastic layer stiffness.  

3. In each time step, the calculation of the forced vibration of double-beam system is generally 
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same as the method derived in Section 2.4, but the stiffness of the elastic layer must be LK K   

( LK  is the stiffness value in last time step, and K  is calculated by Section 4.4.1 based on the 

structure and responses from last time step) and the dynamic responses of the two beams in last 

time step must be applied as the initial condition. 

 

According to the third requirement, the solutions of the forced transverse vibration of double-beam 

system with semi-active control in time step 
1i iT t T t    can be calculated as follows:  

1. Defining the value of elastic layer stiffness as LK K   ( LK  is the stiffness value in last time 

step, and K  is calculated by Section 4.4.1 based on the structure and responses from last time 

step) instead of LK , then, the same derivation works as Eq. (2-31) to Eq. (2-35) are completed. 

2. Based on the dynamic responses of two beams in last time step:  1 1, iW x t 
,  2 1, iW x t 

, 

 1 1, iV x t 
 and  2 1, iV x t 

, and applying the mode shape filter presented as Eq. (4-27) and Eq. (4-

28), the initial condition  1n iT t 
 and  1n iT t 

 can be obtained. 

3. Using Duhamel's integral and considering the initial condition  1n iT t 
,  1n iT t 

, particular 

solution of Eq. (2-35) in time step 
1i iT t T t    (

1i it t t    ) can be finally obtained as 

 
 

         1

1
0

1
sin cos sin

t
n i

n i n n i n n n

n n

T t
T t t T t t F t d     

 




                 (4-31) 

 

Based on those three requirements and Eq. (4-31), a calculation method which could be generally 

expressed in a flowchart form as in Fig. 4-2, is developed in this chapter to solve and obtain the 
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dynamic responses of the whole double-beam system with semi-active control structure. 

 

Start 

End

                ,     : Total Time Steps Number

YES
NO

1i N  N

Forced vibration analysis as in Section 2.4, obtain the dynamic response                 ,                  ,                   ,

                ,             ,              at                     when
 1 ,W x t  2 ,W x t  1 ,W x t

 2 ,W x t  nT t  nT t

From last time step                                 , draw the natural frequencies and 

corresponding mode shapes:       ,           ,         

 1t i t i t    

n  1n x  2n x

Input       into Eq. (4-15), solve and get n P

Based on Eq. (2-31), obtain final dynamic responses                           ,                             , 

                          ,                             in time step

Input P,                   ,                   ,              ,              ,            ,            into Eq. (4-24) and Eq. (4-25), solve          for each 

mode, choose the one which has the maximum value of                as the final           to the semi-active control system

 1 ,W x i t  2 ,W x i t  1n x nT i t  nT i t  2n x
dK

 nT i t dK

Substitute                   and                into Eq. (4-2), do the free vibration analysis of the new structure as in 

Section 2.3, obtain the        ,            ,              in time step
dK K  

n  1n x  2n x

Substitute                   and                into Eq. (4-2), do the forced vibration analysis of the new structure as in 

Section 2.4, solve Eq. (4-31) to get                         and                       in time step
dK K  

From last time step                                 , draw the dynamic responses:                    ,                    ,                 ,                   , 

apply Eq. (4-27) and Eq. (4-28) to get initial condition for this time step:               and 
 1 ,W x i t  2 ,W x i t  1 ,W x i t  2 ,W x i t

 nT i t  nT i t

 1t i t i t    

 1t i t i t    

 1nT i t     1nT i t     1t i t i t    

 1 , 1W x i t   
 1 , 1W x i t   

 

 2 , 1W x i t   
 2 , 1W x i t     1t i t i t    1i i 

Free vibration analysis as in Section 2.3, obtain       ,                 ,                   at                    whenn  1n x  2n x 0t t   0K 

0t t   0K 

1,2,3,......, 1i N   

LK K

LK K

 
Fig. 4-2. Flowchart of the calculation method to solve and obtain the dynamic responses of double-beam system with 

semi-active control structure. 

 

Finally, applying the method shown as flowchart in Fig. 4-2 and doing the calculation one time 

step by one time step until the end, the dynamic responses of whole double-beam system with 
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semi-active control are solved and obtained successfully.  

 

4.6 Numerical Examples 

In order to illustrate the active control structure, semi-active control structure and the 

corresponding control algorithm presented in this chapter for double-beam system, some 

numerical examples of uncontrolled, active controlled and semi-active controlled double-beam 

system are investigated in detail. The values for the parameters of the double-beam system are as 

follows 

10 21 10E Nm  , 
4 44 10I m  , 3 32 10 kgm   , 

2 25 10A m  , 
6 24 10e EI Nm   , 

2 11 10m A kgm    , 10L m , 
5 21 10K Nm  , 5 2

max 1.4 10K Nm  , 4 2

min 7 10K Nm   

 

The exciting force of the double-beam system is      1 , sin 0.5f x t f t x L   ,  2 , 0f x t  , 

where 10000f N  is amplitude and 10Hz   is frequency of a concentrated harmonic 

force acted on the midspan of the upper beam, and  x  is Dirac delta function. Three cases are 

investigated in here for discussion: 

Case 1: upper beam spring supported-spring supported and lower beam simply supported-simply 

supported, 
1 2e e e  , 

1 2m m m  ; 

Case 2: upper beam spring supported-spring supported and lower beam simply supported-simply 

supported, 
1 0.8e e , 2e e , 

1 0.2m m , 2m m ; 
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Case 3: upper beam clamped-clamped and lower beam free-free, 
1e e , 2 0.8e e , 

1m m , 

2 0.2m m . 

 

The dynamic responses of uncontrolled, active controlled and semi-active controlled double-beam 

system at the midspan of the two beams are shown in Fig. 4-3 to Fig. 4-5. The active control force 

which is applied at the midspan of both beams,  0.5 ,cf L t , is shown in Fig. 4-6. The variation 

stiffness K of the adjustable elastic layer is shown in Fig. 4-7. 

 

a. Upper Beam Displacement

 

b. Lower Beam Displacement

 

c. Upper Beam Velocity

 

d. Lower Beam Velocity

 

e. Upper Beam Acceleration

 

f. Lower Beam Acceleration

 

Fig. 4-3. Dynamic responses at midspan point of two beams for Case 1. 
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a. Upper Beam Displacement

 

b. Lower Beam Displacement

 

c. Upper Beam Velocity

 

d. Lower Beam Velocity

 

e. Upper Beam Acceleration

 

f. Lower Beam Acceleration

 

Fig. 4-4. Dynamic responses at midspan point of two beams for Case 2. 

 

 

 

a. Upper Beam Displacement

 

b. Lower Beam Displacement

 

c. Upper Beam Velocity

 

d. Lower Beam Velocity
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e. Upper Beam Acceleration

 

f. Lower Beam Acceleration

 

Fig. 4-5. Dynamic responses at midspan point of two beams for Case 3. 

a. Case 1

 

b. Case 2

 

c. Case 3

 

 

Fig. 4-6. Active control force applied at midspan point of two beams for each case. 

 

a. Case 1

 

b. Case 2

 

c. Case 3

 

 

Fig. 4-7. Variation stiffness K of the adjustable elastic layer for each case. 
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As shown in Fig. 4-3 to Fig. 4-5, the active control structure designed for the double-beam system 

and the corresponding active control algorithm developed in this chapter are effective to suppress 

the vibrations of both beams, and all the dynamic responses, including displacement, velocity and 

acceleration, are reduced significantly. Meanwhile, the semi-active control structure and semi-

active control algorithm also works well, although it doesn’t reduce the dynamic responses of two 

beams so perfectly as the active control structure in Fig. 4-3 and Fig. 4-4, it also could suppress 

the vibrations of whole system apparently. Since there are three different boundary conditions in 

those 3 cases and all the models with them have smaller dynamic responses under the active control 

or semi-active control, therefore, the active control and semi-active control proposed in this 

research have the capability to control the double-beam system with arbitrary boundary conditions. 

 

In case 1 (Fig. 4-3), resonance phenomenon is happened in upper beam without active control 

structure or semi-active control structure, but it is controlled and eliminated when the active control 

or semi-active control is applied. In case 3 (Fig. 4-5), upper beam and lower beam both meet the 

resonance conditions and the dynamic responses of them increase gradually, but they are also 

reduced apparently under the active control or semi-active control. Therefore, the active control 

and semi-active control proposed in this chapter can effectively avoid the resonance happening in 

the double-beam system and protect the safety of the whole structure. 
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From Fig. 4-6, it is shown the value of active control force at midspan of both beams in physical 

space for 3 cases. Although it is just part of the whole active control force, the existence and 

presentation of it denote the operability of the proposed active control structure which could 

control the whole structure by applying that real force and it is very possible for the engineers to 

apply it in the real engineering practices. Also in Fig. 4-7, the value of variation stiffness K of the 

adjustable elastic layer is shown for all 3 cases, and it is easy to find out that the stiffness K has 

obvious changes under the semi-active control. Comparing with previous classical control 

algorithms, the change of stiffness K is very close to the ones under switch on – switch off control 

algorithm, therefore, it proves that the semi-active proposed in this chapter is reasonable and it is 

practical to apply it in the real structures.    

4.7 Conclusions 

In this chapter, an active control structure, a semi-active control structure and corresponding 

control algorithms are proposed to suppress the vibration of the elastically connected double-beam 

system, which may have arbitrary beam mass, beam flexural rigidity and/or boundary condition. 

Based on the vibration analysis methods developed in Chapter 2, the calculation methods for 

double-beam system with that active control and that semi-active control are also developed.   

 

In the active control structure, independent modal space control (IMSC) is applied to decouple the 

motion equations of double-beam system with the active control, which are coupling partial 
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differential equations, and transfer them as some decoupled equations in modal space. The 

vibration control of the infinite freedom system in physical space is also transferred as the vibration 

control of several modes in modal space by IMSC. linear quadratic regulator is adopted to 

determine the specific modal active control force for each mode. Then, the active control force in 

physical space which can be loaded in real structure is obtained by modal active control forces.  

 

In the semi-active control structure, the active control force produced by the active control 

structure presented above is set up as the objective and the equivalent semi-active control force is 

assumed to be close to that active force. Based on that principle and with the mode shape filter 

derived in this chapter, the determination method of stiffness increase is derived. 

 

Various double-beam system with active control structure or semi-active control structure models 

are calculated to illustrate the efficiency of the proposed active control and semi-active control, 

and the resonance in the structure is also shown to be avoided by them. Although the semi-active 

control is not so perfect as the active control, it still can suppress the vibration of the whole double-

beam system significantly. Finally, the proposed active control and semi-active control for double-

beam system are derived and verified successfully. 
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Chapter 5 Active and Semi-Active Vibration Control of Double-

Beam Systems Interconnected with Viscoelastic Layers 

5.1 Introduction 

In Chapter 4, the active vibration control for double-beam system interconnected by elastic layer 

and the semi-active vibration control which changes the stiffness of the elastic layer to reduce the 

structural vibration, have been derived and introduced specifically. However, as demonstrated in 

Chapter 3, in real engineering practices, the materials used to connect the upper beam and lower 

beam in the double-beam system are usually the viscoelastic materials and their damping cannot 

be ignored. When determining the active control force by the active control algorithm in the 

double-beam system with viscoelastic layer, the damping effects should be considered. Meanwhile, 

it will be introduced in the Chapter 7 that the novel adaptive materials applied to complete the 

semi-active control in this research for vehicle-bridge coupling system of high-speed rail are 

magnetorheological nanocomposites (MRNs), which are also viscoelastic materials. Under 

different applied magnetic field, both of their stiffness and damping can be changed and then the 

structural vibrations could be controlled. In this way, the semi-active control algorithm for MRNs 

or other adjustable viscoelastic materials cannot just change the stiffness only, but also should 

change the damping at the same time. In this chapter, based on the research works completed in 

Chapter 4 and counting the damping of the viscoelastic layer as stated above, the corresponding 

active control, semi-active control and their control algorithms are introduced and derived to 
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reduce the dynamic responses of the double-beam system with a viscoelastic layer. 

 

It is totally the same as introduced in Chapter 4, there have been abundant research efforts in the 

literature about the dynamic behaviors of the double-beam system in recent years. As to the double-

beam system with viscoelastic layer in which the damping characteristics must be considered, there 

are also several important research results (Chen and Sheu 1994, 1995; Li and Hua 2007; Kessel 

and Raske 1967; Abu 2006; Pavlovic, Kozic and Pavlovic 2012; Vu, Ordonez and Karnopp 2000; 

Cottle 1990). Meanwhile, great progress in the field of structural vibration control has been 

achieved over the past few decades as demonstrated specifically in Chapter 4 (Yao 1972; Housner 

et al. 1997; Soong and Spencer 2002; Soong 1990; Alkhatib and Golnaraghi 2003; Yang, 

Akbarpour and Ghaemmaghami 1987; Yang, Long and Wong 1988; Yang, Li and Liu 1991; Yang, 

Li and Liu 1992; Li, Liu, Fang and Tam 2000; Li, Liu, Tang, Zhang and Tam 2004; Soong et al. 

1991; Reinhorn et al. 1993; Inman 2001; Meirovitch, Baruh, Montgomery and Williams 1984; 

Schafer and Holzach 1985; Meirovitch and Silverberg 1983; Meirovitch 1987; Sadek and 

Esfandiari 1990; Kucuk and Sadek 2005, 2007). However, it is easy to find out that there are very 

few research papers about the active vibration control or semi-active vibration control on double-

beam system with viscoelastic layer and very few scholars or engineers consider to apply an 

efficient active control structure or semi-active control structure in it. 

 

In this chapter, it proposes an active control structure installed in the viscoelastic layer location of 
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the double-beam system and a semi-active control structure which adopts the adjustable 

viscoelastic layer to control the vibration and reduce the dynamic responses of whole system. The 

double-beam system with an viscoelastic layer is considered in this chapter, and the active control 

structure is a distributed control structure with many actuators along the viscoelastic layer which 

can affect both of beams at same time. By synthesizing independent modal space control (IMSC) 

and linear quadratic regulator (LQR), an active control algorithm is developed for the proposed 

active control structure. IMSC is used to transfer the coupling motion equations of system in 

physical space into the decoupled equations in modal space, and the vibration control is also 

transferred to modal control on each mode. The modal active control force in each mode is 

determined by LQR, and the final active control force in physical space is finally calculated based 

on those modal active forces. The semi-active control structure adopts the adjustable viscoelastic 

layer between two beams and the dynamic mechanical model of that adjustable viscoelastic 

material is assumed as the linear model based on the experiments results from previous research 

works. The active control force produced by the active control structure is set up as the objective 

and the equivalent semi-active control force is assumed to be close to that active force. Based on 

that principle and with the mode shape filter derived in this chapter, the stiffness increase and the 

damping increase of the adjustable viscoelastic layer which are used to realize the semi-active 

control are determined. Various models of uncontrolled, active controlled and semi-active 

controlled double-beam system, which have a concentrated harmonic force in the midspan of upper 

beam, are calculated and presented to illustrate the efficiency of the proposed active control and 



121 

 

semi-active control. 

 

5.2 Formulation of the Vibration Control Problem 

As shown in Fig. 5-1(a), in this chapter, the physical model of a double-beam system with an active 

control structure includes an upper beam and a lower beam connected by a uniformly distributed-

connecting viscoelastic layer, and is actively controlled by a distributed control structure with 

many actuators along the viscoelastic layer. Another physical model (as shown in Fig. 5-1(b)) of a 

double-beam system with a semi-active control structure consists of the same two beams joined 

by a uniformly distributed adjustable viscoelastic layer. Both beams are homogeneous, prismatic 

and have the same length L, but they could have different mass, flexural rigidity, and boundary 

conditions. The motion governing equations for transverse vibrations of the double-beam system 

with the active control (Fig. 5-1(a)), can be derived by Bernoulli-Euler beam theory as follows: 

     
4 2

1 1 2 1
1 1 2 1 14 2

, ,c

W W W W
e K W W C m f x t f x t

x t t t

    
       

    
                 (5-1a)                                                                                                            

     
4 2

2 1 2 2
2 1 2 2 24 2

, ,c

W W W W
e K W W C m f x t f x t

x t t t

    
       

    
                (5-1b)                                                                                                        

 

And the motion governing equations for transverse vibrations of the double-beam system with the 

semi-active control (Fig. 5-1(b)) are as follows: 

      
4 2

1 1 2 1
1 1 2 1 14 2

,
W W W W

e K K W W C C m f x t
x t t t

    
         

    
             (5-2a)                                                                                                                 
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      
4 2

2 1 2 2
2 1 2 2 24 2

,
W W W W

e K K W W C C m f x t
x t t t

    
         

    
            (5-2b)                                                                                                            

where  ,i iW W x t is transverse beam deflections, x , t  are the spatial co-ordinate and the time, 

ie  and im  are the beam flexural rigidity and beam mass per unit length, i =1 or 2 represents 

upper beam or lower beam, K and C are the stiffness and damping coefficients of the viscoelastic 

layer, K  and C  are the stiffness increase and damping increase of the adjustable viscoelastic 

layer,  ,cf x t  is the active control force produced by the distributed control actuators, and 

 1 ,f x t ,  2 ,f x t  are the exciting force acting on the upper and lower beams, respectively. 

 

The initial conditions in general form are as follows: 

   1 10,0W x W x ,    2 20,0W x W x ,    1 10,0W x V x ,    2 20,0W x V x          (5-3)                                                      

 

Based on the research in Chapter 2 and Chapter 3, it could analyze arbitrary boundary conditions 

at the ends ( 0x  , L) of the two beams in here, and some common ones can be listed as follows: 

Simply supported:        0, , 0, , 0i i i iW t W L t W t W L t                         (5-4a)                                                                                                                                                                                

Clamped:        0, , 0, , 0i i i iW t W L t W t W L t                                 (5-4b)                                                                     

Free:        0, , 0, , 0i i i iW t W L t W t W L t                                     (5-4c)                                                                                                                                                                                       

Spring supported:    0, , 0i iW t W L t   ,    0, 0,i i i iE I W t KW t   , 

   , ,i i i iE I W L t KW L t                                                     (5-4d) 

where i =1 or 2 represents upper beam or lower beam. 
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a

 

b

 

Fig. 5-1. The physical model of a double-beam system: (a) with an active control structure; (b) with a semi-active 

structure. 

 

5.3 Active Control Algorithm for Actuators in Active Control Structure 

It is similar to the discussion about the active control algorithm in Section 4.3, although the double-

beam system under a distributed active control structure in this chapter is with viscoelastic layer 

instead of elastic layer, a similar active control algorithm which also synthesizes independent 

modal space control and linear quadratic regulator is developed in here. 
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5.3.1 Independent Modal Space Control Algorithm (IMSC) 

The solutions for Eq. (5-1) could be separable in time and space, and can be assumed in a form as:  

     1 1

1

, n n

n

W x t T t x




                                                     (5-5a)                                                                                                         

     2 2

1

, n n

n

W x t T t x




                                                     (5-5b)                                                                                                       

where  1n x ,  2n x  are mode shape functions of upper beam and lower beam corresponding 

to nth natural frequency, and  nT t  is time function corresponding to nth natural frequency. It 

must be noticed that the  1n x  and  2n x  are determined from a free vibration analysis 

developed in the Chapter 2 which is about the double-beam system with elastic layer instead of 

viscoelastic layer in Chapter 3, but the elastic layer has same stiffness K value as the viscoelastic 

layer discussed in here.  nT t  is unknown function which need to be solved. 

 

Substituting the assumed solutions Eq. (5-5) into Eq. (5-1), so they become 

 
 

     
 

   

 
     

4

1

1 1 2 1 24
1 1 1

2

1 1 12
1

, ,

n n

n n n n n n

n n n

n

n c

n

d x dT t
e T t K T t x x C x x

dx dt

d T t
m x f x t f x t

dt


   



  

  





         

  

  



        (5-6a)                                                                                                                                                   

 
 

     
 

   

 
     

4

2

2 1 2 1 24
1 1 1

2

2 2 22
1

, ,

n n

n n n n n n

n n n

n

n c

n

d x dT t
e T t K T t x x C x x

dx dt

d T t
m x f x t f x t

dt


   



  

  





         

  

  



       (5-6b)                                                                                                 
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Still considering the free vibration of the double-beam system with elastic layer having same 

stiffness K value as the viscoelastic layer discussed in this chapter, and as shown in Chapter 3 and 

Eq. (3-29), the solutions for the free vibration can be written as: 

     , ,

1 1 2 1

1

, n Undamped n Undampedi t i t

n n n

n

W x t D e D e x
 








                                  (5-7a)                                                                                                       

     , ,

2 1 2 2

1

, n Undamped n Undampedi t i t

n n n

n

W x t D e D e x
 








                                  (5-7b)                                                                             

where 
,n Undamped  is the nth natural frequency of the double-beam system with elastic layer 

defined above,  , ,

1 2
n Undamped n Undampedi t i t

n nD e D e
 

  is the time function for free vibration 

corresponding to nth natural frequency, and  1n x ,  2n x  are same mode shape functions as 

the ones in Eq. (5-5). 

 

Substituting Eq. (5-7) into Eq. (5-1) with free vibration conditions      1 2, , , 0cf x t f x t f x t   , 

eliminating the same term  , ,

1 2
n Undamped n Undampedi t i t

n nD e D e
 

  and multiplying the  nT t  in each 

term, the Eq. (5-1) will be in form of: 

 
 

         
4

1 2

1 1 2 1 , 14
1 1 1

n

n n n n n Undamped n n

n n n

d x
e T t K T t x x m T t x

dx


   

  

  

                 (5-8a)                                                      

 
 

         
4

2 2

2 1 2 2 , 24
1 1 1

n

n n n n n Undamped n n

n n n

d x
e T t K T t x x m T t x

dx


   

  

  

                (5-8b)                                                    

 

Introducing free vibration equations Eq. (5-8) into them, the motion equations of forced vibration 

with active control, Eq. (5-6), can be simplified as:  
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 
 

       
2

2 1 2
1 1 1 , 1 12

1

, ,
n

n n Undamped n n c

n

d T t W W
m x m x T t f x t f x t C

dt t t
  





    
       

   
     (5-9a)                                                                                                                                  

 
 

       
2

2 1 2
2 2 2 , 2 22

1

, ,
n

n n Undamped n n c

n

d T t W W
m x m x T t f x t f x t C

dt t t
  





    
       

   
    (5-9b)                                                                                     

 

As derived in Chapter 2, the orthogonality condition for different mode shapes of the double-beam 

system with elastic layer is: 

       1 1 1 2 2 2
0

L

n m n m n mnx m x x m x dx M                                       (5-10)                                                                              

where 
nM  is the generalized mass in the nth mode, and 

mn  is the Kronecker delta function. 

 

       1 2. 5 9 . 5 9m mEq a x Eq b x      , integrate it respect to x from 0 to L, and apply 

orthogonality condition Eq. (5-10), so it will be 

 
       

2

2

,2

n

n Undamped n n nc nD

d T t
T t F t F t F t

dt
                                   (5-11a)                                                                                                 

 
       

       

1 1 2 2
0

1 1 1 2 2 2
0

, ,
L

n n

n L

n n n n

x f x t x f x t dx
F t

x m x x m x dx

 

   

  


  




                               (5-11b)                                                                                   

 
      

       

2 1
0

1 1 1 2 2 2
0

,
L

n n c

nc L

n n n n

x x f x t dx
F t

x m x x m x dx

 

   

  


  




                               (5-11c) 

 

   

       

1 2
2 1

0

1 1 1 2 2 2
0

L

n n

nD L

n n n n

W W
x x C dx

t t
F t

x m x x m x dx

 

   

     
           

  




                             (5-11d)                                                                                                                                                               

 

Based on the derivations above, the Eq. (5-1), which are the coupling motion equations of double-
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beam system with an active control structure in the physical space, are transferred as Eq. (5-11), 

which are the decoupled motion equations of the same structure in modal space. Therefore, the 

vibration control of the infinite freedom system in physical space is also transferred as the vibration 

control of several modes in modal space, and this is called Modal Space Control (MSC). Defining 

the state vector      
T

n n nZ t T t T t    , the state-space form of the decoupled equation of 

motion, Eq. (5-11a), can be written as 

         n n n n n nD n ncZ t J Z t K F t F t L F t                                      (5-12)                                                                                                                

where 
2

0 1

0
n

n

J


 
  

 
, 

0

1
n nK L

 
   

 
, and  

 

 
n

n

n

T t
Z t

T t

  
  
  

. 

 

It is like in Section 4.3.1, independent modal space control (IMSC), in which each vibration mode 

is controlled separately, is applied in here. According to IMSC and to avoid re-coupling the double-

beam system with an active control structure descried as Eq. (5-12), each nth mode shape is 

controlled by its own control modal force, and the nth control modal force which adopts linear 

state feedback control law can be calculated as 

       1 2nc n n n n n nF t G Z t g T t g T t                                            (5-13)                                                                                       

where  1 2n n nG g g  is feedback gain matrix, 1ng  is displacement gain, 
2ng  is velocity gain, 

and all of them are control gains needed to be determined. 

 

By means of the linear quadratic regulator control method, the feedback gain matrix 
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 1 2n n nG g g  can be determined, therefore, the active control force  ncF t  and  ,cf x t  can 

be obtained, and the dynamic responses of the double-beam system with an active control structure 

can be totally calculated eventually. 

 

5.3.2 Linear Quadratic Regulator (LQR) 

It is similar to the derivation works in Section 4.3.2, according to LQR and the linear differential 

equations Eq. (5-12) which represent the whole structure system in state-space form, the quadratic 

performance index  J t  for the active control on double-beam system is as follows 

               2

0 0

f ft t
T T T

n n nc nc n n ncJ t Z t QZ t F t RF t Z t QZ t RF t                         (5-14)                                                            

where  nZ t  is state vector for the structure model,  ncF t  is active control force, Q is a positive 

definite or a semi-positive definite weight matrix for state vector, and R is a positive definite weight 

matrix for control force vector. 

 

The mathematic model for the whole double-beam system optimal control can be denoted as: 

Find active control force  ncF t ,  

to satisfy the objective function        2

0
min

ft
T

n n ncJ t Z t QZ t RF t     , 

with constrained conditions:          n n n n n nD n ncZ t J Z t K F t F t L F t       and   00n nZ Z . 

 

The mathematic model is a functional extremum question with constrained conditions. Applying 

the Lagrange multiplier method, Hamiltonian function and variation method, a Riccati matrix 



129 

 

equation is finally derived: 

11
0

2

T T

n n n nPJ J P PL R L P Q                                                 (5-15)                                                                                                    

 

In this chapter, the weight matrices can be calculated as 
2 0

0 1

nQ



 

  
 

 and R  , in where α 

and β are positive constants. Due to nJ  and nL  are also known, the matrix 
11 12

21 22

P P
P

P P

 
  
 

 can 

be obtained by solving Riccati matrix equation Eq. (5-15). And then, the active control force 

 ncF t  is determined as: 

     
 

 
   11 121 1 1

21 22

21 22

1 1 1
0 1

2 2 2

nT

nc n n n n

n

T tP P
F t R L PZ t R R P T t P T t

T tP P

  
    

           
    

 (5-16)                                     

 

Comparing Eq. (5-16) with Eq. (5-13), the feedback gain matrix is finally solved by LQR: 

  1 1

1 2 21 22

1 1

2 2
n n nG g g R P R P  
   

 
                                         (5-17)                                                                                         

 

By applying an active control algorithm which synthesizes IMSC and LQR, the active control 

force for each mode shape of the double-beam system,  ncF t , is determined successfully. 

However,  ncF t  is just a kind of modal control force in the modal space, it cannot be used in the 

real structure to complete the control work. Therefore, the active control force in physical space, 

 ,cf x t , should be obtained in next step. 
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5.3.3 Calculation of Active Control Force in Physical Space 

Considering Eq. (5-11c) and Eq. (5-16), the active control force in physical space can be assumed 

in a form as: 

              1 1 2 2 1 2

1

,
N

c n n n n n n n n

n

f x t G x x T t G x x T t   


                          (5-18)                                                           

where 
1nG , 

2nG  are the control gains for each mode,    1 2n nx x   is used to make the 

 ,cf x t  is related to the responses of both beams , and N is total number of modes which are 

considered to be controlled.   

 

In IMSC, each modal control force can only control that mode and it doesn’t affect other modes. 

Therefore, when substituting Eq. (5-18) into Eq. (5-11c), only 

             1 1 2 2 1 2,nc n n n n n n n nf x t G x x T t G x x T t              is used to calculate the nth 

modal control force  ncF t  as: 

 
    

       
   

2

1 2
0

1 2

1 1 1 2 2 2
0

L

n n

nc n n n nL

n n n n

x x dx
F t G T t G T t

x m x x m x dx

 

   

   
    

  




             (5-19)                                                           

 

Comparing Eq. (5-19) with Eq. (5-16), the control gains 
1nG  and 

2nG  can be calculated by 

       

    
1 1 1 2 2 21 0

1 21 2

1 2
0

1

2

L

n n n n

n L

n n

x m x x m x dx
G R P

x x dx

   

 


  

 
   




                          (5-20a)                                                                           
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       

    
1 1 1 2 2 21 0

2 22 2

1 2
0

1

2

L

n n n n

n L

n n

x m x x m x dx
G R P

x x dx

   

 


  

 
   




                         (5-20b)                                                                             

 

Until here, control gains 
1nG  and 

2nG  are solved, and by the assumptions as in Eq. (5-18), the 

active control force in physical space,  ,cf x t  , is determined. Then, it is possible to apply that 

active control force in the real double-beam system and obtain dynamic responses of it with active 

control structure which uses that active control algorithm. 

 

5.4 Semi-Active Control Algorithm for Adjustable Viscoelastic Layer in Semi-

Active Control Structure 

The semi-active vibration control problem of a double-beam system with adjustable viscoelastic 

layer is described as Eq. (5-2), the stiffness increase K  and the damping increase C  of the 

adjustable viscoelastic layer in Eq. (5-2) is controlled and determined by the semi-active control 

structure and algorithm. It is similar to the work in Section 4.4, the active control and active control 

force presented in Section 5.3 is chosen as the objective, a semi-active control algorithm, which 

makes the semi-active control to be close to that active control, and a mode shape filter are 

developed to calculate K  and C  in here. 
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5.4.1 The Dynamic Mechanical Model of the Adjustable Viscoelastic Layer 

The adjustable viscoelastic layer is applied in this chapter to complete the semi-active control, 

therefore, its stiffness and damping coefficients should be both changed by the control signal. In 

order to use the adjustable viscoelastic layer to do the semi-active control effectively, the dynamic 

mechanical model of itself must be figured out firstly, especially, the calculation model for stiffness 

and damping coefficients of it must be declared.  

 

According to Eq. (5-2), a simple pseudo linear model (as in Fig. 5-2(a)) is adopted to represent the 

dynamic mechanical model of the adjustable viscoelastic layer and it can be defines as: 

       1 2
1 2,ViscoelasticLayer

W W
f x t K K W W C C

t t

  
        

  
                     (5-21) 

where   1 2K K W W    and   1 2W W
C C

t t

  
   

  
 is the elastic force and damping force 

of the viscoelastic layer, respectively,  1 2W W  is the viscoelastic layer deformation 

displacement, and 
1 2W W

t t

  
 

  
 is the viscoelastic layer deformation velocity. 

 

Since this research is discussing the semi-active control on the high speed railway bridge vibrations 

by applying the magnetorheological nanocomposites (MRNs), therefore, the characters of MRNs 

material should be considered in here for the study of the adjustable viscoelastic layer dynamic 

model which is adopted by the semi-active control structure. It is like the traditional MREs material, 
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the changes of the stiffness and damping coefficients of MRNs depend on the applied magnetic 

field strength which is produced by the current in the device. Thereupon, the stiffness and damping 

coefficients of the adjustable viscoelastic layer are assumed to have a linear relation with the 

applied current, whose calculation models (as shown in Fig. 5-2(b) and Fig. 5-2(c)) are linear 

model as follows 

 min max minT

m

I
K K K K

I
                                                    (5-22a) 

 min max minT

m

I
C C C C

I
                                                    (5-22b)   

where TK  and TC  are the stiffness and damping coefficients of the adjustable viscoelastic layer 

under specific current, maxK  and maxC  is maximum stiffness value and maximum damping value 

of the adjustable viscoelastic layer, minK  and minC  is minimum stiffness value and damping 

value of the adjustable viscoelastic layer, 
mI  is the saturation current for the device, and I is the 

inputted current determined by semi-active control. 

 

a. Linear Model for Adjustable 

Viscoelastic Layer Dynamic 

Mechanical Model 

 

b. Linear Model of Adjustable 

Viscoelastic Layer Stiffness with 

Applied Current 

 

c. Linear Model of Adjustable 

Viscoelastic Layer Damping 

Coefficient with Applied Current 

Fig. 5-2. Linear model for adjustable viscoelastic layer dynamic mechanical model and linear model of adjustable 

viscoelastic layer stiffness and damping coefficients with applied current. 



134 

 

 

If the default current inputted is 0I  and the default stiffness and damping coefficients of the 

adjustable viscoelastic layer are K and C, respectively, the stiffness increase K  and damping 

increase C  (as shown in Fig. 5-2(b) and Fig. 5-2(c)) could be controlled by the current as 

 0
max minT

m

I I
K K K K K

I


                                                (5-23a)            

 0
max minT

m

I I
C C C C C

I


                                                (5-23b)                

 

Although the simple linear model does not represent the actual behavior of the adjustable 

viscoelastic layer material or even the MRNs material, it helps us to study the dynamic 

performance of the controllable viscoelastic layer and a suitable semi-active control algorithm for 

semi-active control structure in next section, and so, it is proper to adopt it in the discussion in 

here. 

 

5.4.2 The Determination of Stiffness Increase and Damping Increase in Adjustable 

Viscoelastic Layer 

Based on Eq. (5-2), move the terms, which are related to K  and C , to the right side of the 

equations, then the Eq. (5-2) can be denoted as 

     
4 2

1 1 2 1 1 2
1 1 2 1 1 1 24 2

,
W W W W W W

e K W W C m f x t K W W C
x t t t t t

        
            

        
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                                                                        (5-24a)                                                                                                                                     

     
4 2

2 1 2 2 1 2
2 1 2 2 2 1 24 2

,
W W W W W W

e K W W C m f x t K W W C
x t t t t t

        
             

        
  

                                                                        (5-24b)                                                                                                                                 

 

As shown in Eq. (5-24) and the dynamic mechanical model of the adjustable viscoelastic layer  

introduced in Eq. (5-21),    1 2
1 2 ,ViscoelasticLayer

W W
K W W C f x t

t t

  
      

  
 could be treated as 

a semi-active control force. Comparing Eq. (5-24) with Eq. (5-1), in order to make the semi-active 

control being close to the active control, it can assume the semi-active control structure can provide 

the same control force value as active control structure. However, due to the limit of adjustable 

viscoelastic layer, the semi-active control force  ,ViscoelasticLayerf x t  cannot reach very value as 

 ,cf x t  calculated by active-control algorithm, therefore, the semi-active control force 

 ,ViscoelasticLayerf x t  is supposed to be defined as follows  

(1) If    1 2
max 1 2 max ,c

W W
K W W C f x t

t t

  
      

  
, 

   then     1 2
max 1 2 max,ViscoelasticLayer

W W
f x t K W W C

t t

  
      

  
                 (5-25a)             

(2) If      1 2 1 2
max 1 2 max min 1 2 min,c

W W W W
K W W C f x t K W W C

t t t t

      
              

      
,  

then    , ,ViscoelasticLayer cf x t f x t                                              (5-25b)                        

(3) If    1 2
min 1 2 min ,c

W W
K W W C f x t

t t

  
      

  
, 



136 

 

  then     1 2
min 1 2 min,ViscoelasticLayer

W W
f x t K W W C

t t

  
      

  
                   (5-25c)                   

where 
max maxK K K   , 

max maxC C C   , min minK K K   , min minC C C   , and K, C are 

the default stiffness and damping coefficients of the viscoelastic layer. 

 

As to the case (2) shown as Eq. (5-25b), introducing Eq. (5-11c) and substituting Eq. (5-25b) into 

it, it can be transferred as 

 ncF t H K J C                                                      (5-26a) 

        

       

2 1 1 2
0

1 1 1 2 2 2
0

, ,
L

n n

L

n n n n

x x W x t W x t dx
H

x m x x m x dx

 

   

       


  




                              (5-26b) 

   
   

       

1 2

2 1
0

1 1 1 2 2 2
0

, ,L

n n

L

n n n n

W x t W x t
x x dx

t t
J

x m x x m x dx

 

   

    
          

  




                            (5-26c) 

 

Considering the calculation model for stiffness and damping coefficients of adjustable viscoelastic 

layer introduced in Section 5.4.1, and substituting Eq. (5-23) into Eq. (5-26), it will be 

     0 0
max min max minnc

m m

I I I I
F t H K K J C C

I I

 
                                (5-27) 

 

In Eq. (5-27), the active control force  ncF t  is calculate by Eq. (5-16) in active control 

algorithm derived in Section 5.3, therefore, the unknown parameter, current I, can be calculated as 
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   
  0

max min max min

m
nc

I
I F t I

H K K J C C
 

  
                                  (5-28) 

 

Once the current I for the semi-active control is obtained as Eq. (5-28), then, the stiffness increase 

K  and damping increase C  can be obtained by Eq. (5-23). 

  

In summary, combing the case (1) and case (3) shown as Eq. (5-25a) and Eq. (5-25c), the stiffness 

increase and damping increase of the adjustable viscoelastic layer under the semi-active control 

presented in this chapter can be determined as  

(1) If    1 2
max 1 2 max

0 0 0
,

L L L

c

W W
K W W dx C dx f x t dx

t t

  
      

  
   , 

   then 
maxdK K   , maxdC C                                            (5-29a)             

(2) If    1 2
max 1 2 max

0 0 0
,

L L L

c

W W
K W W dx C dx f x t dx

t t

  
      

  
    and  

        1 2
min 1 2 min

0 0 0
,

L L L

c

W W
K W W dx C dx f x t dx

t t

  
      

  
   ,  

   then  0
max mind T

m

I I
K K K K K

I


     ,  0

max mind T

m

I I
C C C C C

I


     ,   (5-29b) 

   
  0

max min max min

m
nc

I
I F t I

H K K J C C
 

  
                              (5-28) 

     1

21 22

1

2
nc n nF t R P T t P T t                                            (5-16)                  

(3) If    1 2
min 1 2 min

0 0 0
,

L L L

c

W W
K W W dx C dx f x t dx

t t

  
      

  
   , 
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  then mindK K   , 
mindC C                                             (5-29c)                   

where L is the total length of each beam in double-beam system. 

 

Applying Eq. (5-29), Eq. (5-16) and Eq. (5-28), the stiffness increase dK  and damping increase 

dC  are determined and could be adopted by semi-active control structure. It is the same as the 

discussion in Section 4.4.1, only one main mode will be chosen to be controlled for the semi-active 

control structure, dK  and dC  should be determined at each time step and changed during the 

whole vibration process. 

 

5.4.3 The Mode Shape Filter for the Double-Beam System 

The discussion is totally same as the one in Section 4.4.2, therefore, the mode shape filter for the 

double-beam system is as follows  

 
       

       

1 1 1 2 2 2
0

1 1 1 2 2 2
0

, ,
L

n n

n L

n n n n

x mW x t x m W x t dx
T t

x m x x m x dx

 

   

  


  




                              (5-30a) 

 
       

       

1 1 1 2 2 2
0

1 1 1 2 2 2
0

, ,
L

n n

n L

n n n n

x mV x t x m V x t dx
T t

x m x x m x dx

 

   

  


  




                               (5-30b) 

where  1 ,W x t ,  2 ,W x t ,  1 ,V x t  and  2 ,V x t  is the displacement and velocity of upper 

beam and lower beam detected at time t, respectively,  1n x  and  2n x  are mode shape 

functions of upper beam and lower beam corresponding to nth natural frequency, which are the 

same as the ones defined in Eq. (5-5). 
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Once  1n x  and  2n x  are obtained by free vibration analysis in Chapter 2, and displacement 

and velocity of the two beam are detected by the sensors in the structure, then, the  nT t  and 

 nT t  can be determined by the displacement mode shape filter as Eq. (5-30a) and velocity mode 

shape filter as Eq. (5-30b), respectively. The mode shape filter for calculating  nT t  and  nT t  

is not only useful in the determination of stiffness increase K  and damping increase C  as 

discussing at the beginning of this section, but also is very important for the calculation of the 

transverse vibration of the whole double-beam system with semi-active control structure, which 

will be introduced in next section. 

 

5.5 Solution of the Transverse Vibration for Double-Beam System with 

Vibration Control Structure 

Once the active control force or semi-active control parameter is determined by the control 

algorithm developed in this chapter, the solutions of the transverse vibration for double-beam 

system with active control structure or semi-active control structure, which is described in Eq. (5-

1) or Eq. (5-2), can be solved and the dynamic responses of whole structure system can be obtained. 

 

5.5.1 Solution of the Transverse Vibration for Double-Beam System with Active Control 

Structure 

The active control force is calculated by the active control algorithm as Eq. (5-16), and then, 
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substituting it into Eq. (5-11), the decoupled motion equations of the double-beam system with 

active control structure will be 

   
     

2

1 1 2

22 212

1 1

2 2

n n

n n n nD

d T t dT t
R P R P T t F t F t

dt dt
  

     
 

                  (5-31a)                                                                                                                                                                                                  

 
       

       

1 1 2 2
0

1 1 1 2 2 2
0

, ,
L

n n

n L

n n n n

x f x t x f x t dx
F t

x m x x m x dx

 

   

  


  




                               (5-31b) 

 

   

       

1 2
2 1

0

1 1 1 2 2 2
0

L

n n

nD L

n n n n

W W
x x C dx

t t
F t

x m x x m x dx

 

   

     
           

  




                             (5-31c)                                                                                                                                                                                                                                         

 

Using Duhamel's integral, particular solution of Eq. (5-31a) can be obtained as   

         
0

1
sinn n

t t

n n nD nd

nd

T t F F e t d
  

    


 
                                 (5-32)                                                                                                

where 
2 1

21

1

2
n n R P    , 

1 221

4
n

n

P
R






 , and 

21nd n n     are the calculation 

parameters. 

 

In Eq. (5-31) and Eq. (5-32), the unknown damping force 
1 2W W

C
t t

  
 

  
 is included, therefore, 

they are a kind of implicit equations and it is hard to solve them directly. An iteration method, 

which could be generally expressed in a flowchart form as in Fig. 5-3, is developed in this chapter 

to solve that problem. By the iteration method, the transverse vibration equations of a double-beam 

system with active control structure presented in this chapter are solved successfully. 
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Start 

Define           , solve Eqs. (5-31), obtain Undamped double-beam system with active control system 

transverse vibration response

&& 

Output transverse vibrations of double-beam system with active-control system at 

this time point               ,               ,                ,               ,               ,

YES

NO

From Eqs. (5-5), obtain               ,                

Calculate                  , 

Recover     to its real value, calculate damping force: 

End

              ,       : Total Time Steps Number

YES

NO

0n 

t n t 

0C 

 1 ,W x t  2 ,W x t

 1 ,W x t

t





 2 ,W x t

t





   1 2, ,
D

W x t W x t
F C

t t

  
  

  
C

Solve Eqs. (5-31), obtain Damped double-beam system with active control system 

transverse vibration response

From Eqs. (5-5), obtain               ,                 1 ,W x t

   1 1, ,W x t W x t    2 2, ,W x t W x t

   1 1, ,W x t W x t

   2 2, ,W x t W x t

 1 ,W x t  2 ,W x t

 2 ,W x t

 1 ,W x t  2 ,W x t  1 ,W x t  2 ,W x t

n N N

1n n 

Solve Riccati matrix equation Eq. (5-15), get P

 
Fig. 5-3. Flowchart of the iteration method to calculate transverse vibration responses of a double-beam system with 

active control structure. 

 

5.5.2 Solution of the Transverse Vibration for Double-Beam System with Semi-Active 

Control Structure 

It is the same as the discussion in Section 4.5.2, so it also requires that the adjustable viscoelastic 

layer which is under control should be changed with time during the whole vibration process. The 
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same three requirements should be satisfied for the vibration calculation of double-beam system 

with that semi-active control structure:  

1. The vibration calculation must be carried out one time step by one time step, because the 

structure may be different in each time step.  

2. In each time step, the analysis of the structure vibration property must be done due to the change 

of the adjustable viscoelastic layer stiffness and damping coefficients.  

3. In each time step, the calculation of the forced vibration of double-beam system with semi-

active control is generally same as the method derived in Section 3.4, but the stiffness and damping 

coefficients of the viscoelastic layer must be LK K   and 
LC C  ( LK , LC  are the 

stiffness and damping coefficients value in last time step, and K , C  are calculated by Section 

5.4.2 based on the structure and responses from last time step), and the dynamic responses of the 

two beams in last time step must be applied as the initial condition. 

 

According to the third requirement, the solutions of the forced transverse vibration of double-beam 

system with semi-active control in time step 
1i iT t T t    can be calculated as follows:  

1. Defining the value of viscoelastic layer stiffness as LK K   instead of LK  and damping 

coefficient as 
LC C  instead of LC  ( LK , LC  are the stiffness and damping coefficients 

values in last time step, and K , C  are calculated by Section 5.4.2 based on the structure and 

responses from last time step), then, the same derivation works as Eq. (3-27) to Eq. (3-32) are 

completed. 
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2. Based on the dynamic responses of two beams in last time step:  1 1, iW x t 
,  2 1, iW x t 

, 

 1 1, iV x t 
 and  2 1, iV x t 

, and applying the mode shape filter presented as Eq. (5-30), the initial 

condition  1n iT t 
 and  1n iT t 

 can be obtained. 

3. Using Duhamel's integral and considering the initial condition  1n iT t 
,  1n iT t 

, particular 

solution of Eq. (5-31) in time step 
1i iT t T t    (

1i it t t    ) can be finally obtained as 

 
 

           1

1
0

1
sin cos sin

t
n i

n i n n i n n nD n

n n

T t
T t t T t t F F t d      

 




                 

                                                                         (5-33)       

 

Based on those three requirements, Eq. (5-33) and the iteration method proposed in Section 3.4, a 

calculation method which could be generally expressed in a flowchart form as in Fig. 5-4, is 

developed in this chapter to solve and obtain the dynamic responses of the whole double-beam 

system with semi-active control structure. 

 

Finally, applying the method shown as flowchart in Fig. 5-4 and doing the calculation one time 

step by one time step until the end, the dynamic responses of whole double-beam system with 

semi-active control are solved and obtained successfully.  
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Start 

End

                ,     : Total Time Steps Number

YES
NO

1i N  N

Define C=0, forced vibration analysis as in Section 3.4, obtain the dynamic response                      ,                       ,                     ,

                   ,               ,                at                     when               ，
 1 ,W x t  2 ,W x t  1 ,W x t

 2 ,W x t  nT t  nT t

From last time step                                 , draw the natural frequencies and 

corresponding mode shapes:       ,           ,         

 1t i t i t    

n  1n x  2n x

Input       into Eq. (5-15), solve and get n P

Input P,                    ,                   ,              ,              ,            ,            into Eq. (5-28) and Eq. (5-29), solve           ,           for each 

mode, choose the one which has the maximum value of                as the final            ,            to the semi-active control system

 1 ,W x i t  2 ,W x i t  1n x nT i t  nT i t  2n x
dK

 nT i t dK

Define                    , substitute                    and                 into Eq. (5-2), do the free vibration analysis of the new 

structure as in Section 2.3, obtain the       ,            ,              in time step
dK K  

n  1n x  2n x

From last time step                                 , draw the dynamic responses:                    ,                    ,                 ,                   , 

apply Eq. (5-30) to get initial condition for this time step:               and 
 1 ,W x i t  2 ,W x i t  1 ,W x i t  2 ,W x i t

 nT i t  nT i t

 1t i t i t    

 1t i t i t    

1i i 
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0t t   0K 

1,2,3,......, 1i N   

0C 

0C 

Recover C to its real value, calculate damping force: 

Forced vibration analysis of damped model as in Section 3.4, obtain the dynamic response                   ,                    ,                  ,

                   ,               ,                at                     when               ，
 1 ,W x t  2 ,W x t  1 ,W x t

 2 ,W x t  nT t  nT t 0t t   0K  0C 
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dC

dC
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Define                    , substitute                   and                  into Eq. (5-2), do the forced vibration analysis of the new 
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model, obtain the dynamic response                            ,                           ,                           ,                           at         1 , 1W x i t     2 , 1W x i t     1 , 1W x i t     2 , 1W x i t   

L dK K K K    
L dC C C C    

 
 1t i t i t    

  &&    1 1, 1 , 1W x i t W x i t              2 2, 1 , 1W x i t W x i t          

Output transverse vibrations of double-beam system with semi-active control system :                             ,

                           ,                           ,                          ,                         at  1nT i t     1nT i t   

 1 , 1W x i t     2 , 1W x i t   

 1 , 1W x i t   

 

 2 , 1W x i t     1t i t i t    

YES

NO

   

   

1 1

2 2

, 1 , 1

, 1 , 1

W x i t W x i t

W x i t W x i t

          

          

LK K

LK K
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Fig. 5-4. Flowchart of the calculation method to solve and obtain the dynamic responses of double-beam system with 

semi-active control structure. 

 

5.6 Numerical Examples 

In order to illustrate the active control structure, semi-active control structure and the 

corresponding control algorithms presented in this chapter for double-beam system, some 

numerical examples of uncontrolled, active controlled and semi-active controlled double-beam 

system are investigated in detail. The values for the parameters of the double-beam system are as 

follows 

10 21 10E Nm  , 4 44 10I m  , 
3 32 10 kgm   , 2 25 10A m  , 6 24 10e EI Nm   , 

2 11 10m A kgm    , 10L m , 5 21 10K Nm  , 
5 2

max 1.4 10K Nm  , 
4 2

min 7 10K Nm    

 

The exciting force of the double-beam system is      1 , sin 0.5f x t f t x L   ,  2 , 0f x t  , 

where 10000f N  is amplitude and 10Hz   is frequency of a concentrated harmonic 

force acted on the midspan of the upper beam, and  x  is Dirac delta function. Three cases are 

investigated in here for discussion: 

Case 1: upper beam spring supported-spring supported and lower beam simply supported-simply 

supported, 
1 2e e e  , 

1 2m m m  , 2 11 10C Nsm  , 2 1

max 1.4 10C Nsm  , 

1

min 70C Nsm ; 

Case 2: upper beam spring supported-spring supported and lower beam simply supported-simply 
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supported, 
1 0.8e e , 2e e , 

1 0.2m m , 2m m , 150C Nsm , 
1

max 70C Nsm , 

1

min 35C Nsm ; 

Case 3: upper beam clamped-clamped and lower beam free-free, 
1e e , 2 0.8e e , 

1m m , 

2 0.2m m , 2 11 10C Nsm  , 
2 1

max 1.4 10C Nsm  , 
1

min 70C Nsm . 

 

The dynamic responses of uncontrolled, active controlled and semi-active controlled double-beam 

system at the midspan of the two beams are shown in Fig. 5-5 to Fig. 5-7. The active control force 

which is applied at the midspan of both beams,  0.5 ,cf L t , is shown in Fig. 5-8. The variation K 

and variation C of adjustable viscoelastic layer are shown in Fig. 5-9. 

 

 

 

a. Upper Beam Displacement

 

b. Lower Beam Displacement

 

c. Upper Beam Velocity

 

d. Lower Beam Velocity
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e. Upper Beam Acceleration

 

f. Lower Beam Acceleration

 

Fig. 5-5. Dynamic responses at midspan point of two beams for Case 1. 

 

a. Upper Beam Displacement

 

b. Lower Beam Displacement

 

c. Upper Beam Velocity

 

d. Lower Beam Velocity

 

e. Upper Beam Acceleration

 

f. Lower Beam Acceleration

 

Fig. 5-6. Dynamic responses at midspan point of two beams for Case 2. 
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a. Upper Beam Displacement

 

b. Lower Beam Displacement

 

c. Upper Beam Velocity

 

d. Lower Beam Velocity

 

e. Upper Beam Acceleration

 

f. Lower Beam Acceleration

 

Fig. 5-7. Dynamic responses at midspan point of two beams for Case 3. 

 

 

 

 

 

 

 

a. Case 1

 

b. Case 2
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c. Case 3

 

 

Fig. 5-8. Active control force applied at midspan point of two beams for each case. 

 

a. Case 1 - K

 

b. Case 2 - K

 

c. Case 3 - K

 

d. Case 1 - C

 

e. Case 2 - C

 

f. Case 3 - C

 

Fig. 5-9. Variation stiffness K and variation damping coefficient C of adjustable elastic layer for each case. 
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a. Upper Beam Displacement

 

b. Lower Beam Displacement

 

c. Upper Beam Velocity

 

d. Lower Beam Velocity

 

e. Upper Beam Acceleration

 

f. Lower Beam Acceleration

 

Fig. 5-10. Dynamic responses at midspan point of two beams for Case 1 comparing with Case 1 in Chapter 4. 

 

As shown in Fig. 5-4 to Fig. 5-7, the active control structure designed for the double-beam system 

and the corresponding active control algorithm developed in this chapter are effective to suppress 

the vibrations of both beams. The semi-active control structure and semi-active control algorithm 

also works well, although it doesn’t reduce the dynamic responses of two beams so perfectly as 

the active control structure in Case 1 and Case 2, it also could suppress the vibrations of whole 

system apparently. Since there are two different boundary conditions in those 3 cases and all the 

models with them have smaller dynamic responses under the active control or semi-active control, 

therefore, the active control and semi-active control proposed in this research have the capability 
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to control the double-beam system with arbitrary boundary conditions. 

 

In case 1 (Fig. 5-5), resonance phenomenon is happened in upper beam without active control 

structure or semi-active control structure, but it is controlled and eliminated when the active control 

or semi-active control is applied. Therefore, the active control and semi-active control proposed in 

this chapter can effectively avoid the resonance happening in the double-beam system and protect 

the safety of the whole structure. 

 

From Fig. 5-8, it is shown the value of active control force at midspan of both beams in physical 

space for 3 cases. Although it is just part of the whole active control force, the existence and 

presentation of it denote the operability of the proposed active control structure which could 

control the whole structure by applying that real force and it is very possible for the engineers to 

apply it in the real engineering practices. Also in Fig. 5-9, the value of variation stiffness K and 

variation damping coefficient C of the adjustable viscoelastic layer are shown for all 3 cases, and 

it is easy to find out that the stiffness K and damping coefficient C have obvious changes under the 

semi-active control. Comparing with previous classical control algorithms, the changes of stiffness 

K and damping coefficient C are very close to the ones under switch on – switch off control 

algorithm, therefore, it proves that the semi-active proposed in this chapter is reasonable and it is 

practical to apply it in the real structures. 
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As shown in Fig. 5-10, the dynamic responses at midspan of two beams for Case 1 are compared 

with Case 1 in Chapter 4. The two double-beam system models are almost the same except the 

damping control is considered in this chapter. From Fig. 5-10, the semi-active control with 

damping reduces the dynamic responses of two beams a little better than the semi-active control 

which only changes stiffness of elastic layer. Therefore, the damping control can help to do the 

vibration control in whole system better, and the semi-active control proposed in this chapter which 

adopts adjustable viscoelastic layer is better to suppress the vibrations of whole system.     

 

5.7 Conclusions 

In this chapter, an active control structure, a semi-active control structure and corresponding 

control algorithms are proposed to suppress the vibration of the double-beam system with 

viscoelastic layer, which may have arbitrary beam mass, beam flexural rigidity and/or boundary 

condition. Based on Chapter 3, the calculation methods for double-beam system with that active 

control and that semi-active control are also developed.   

 

In the active control structure, independent modal space control (IMSC) is applied to decouple the 

motion equations of double-beam system with the active control, which are coupling partial 

differential equations, and transfer them as some decoupled equations in modal space. The 

vibration control of the infinite freedom system in physical space is also transferred as the vibration 
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control of several modes in modal space by IMSC. Linear quadratic regulator is adopted to 

determine the specific modal active control force for each mode, then, the active control force in 

physical space, which can be loaded in real structure, is obtained by modal active control forces.  

 

In the semi-active control structure, the active control force produced by the active control 

structure presented above is set up as the objective and the equivalent semi-active control force is 

assumed to be close to that active force. A linear model is assumed as the dynamic mechanical 

model of the adjustable viscoelastic layer and the relationships between stiffness, damping with 

inputted currents are also defined as linear models. Based on that calculation principle, the linear 

model for adjustable viscoelastic layer and with the mode shape filter derived in this chapter, the 

determination methods of stiffness increase and damping increase are derived. 

 

Various double-beam system with active control or semi-active control models are calculated to 

illustrate the efficiency of the proposed active control and semi-active control, and the resonance 

in the structure are also shown to be avoided by them. Although the semi-active control is not so 

perfect as the active control, it still can suppress the vibration of the whole double-beam system 

significantly. Finally, the proposed active control and semi-active control for double-beam system 

are derived and verified successfully. 
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Chapter 6 Analysis of High-Speed Rail Vehicle - Bridge Coupling 

Vibration 

6.1 Introduction 

In Chapter 2 and Chapter 3, the dynamic behaviors of the double-beam system with elastic layer 

and viscoelastic layer between two beams are calculated and analyzed carefully. And then, the 

active control and semi-active control for those two kinds of double-beam system are all introduced 

and derived specifically in Chapter 4 and Chapter 5. The theoretical preparation works of the high-

speed rail bridges with floating slab track on them have been completed in those four chapters as 

stated above. In this chapter, the research works will come back to the real structure: vehicle-bridge 

coupling system of high-speed rail, and a co-simulation method will be proposed to simulate the 

whole system. The co-simulation platform built in this chapter will supply a basis for the works in 

next chapter: applying novel adaptive materials magnetorheological nanocomposites as a semi-

active control structure into the vehicle-bridge coupling system of high-speed rail and controlling 

the vibrations of whole bridge. 

 

The vibration behavior of railway bridges under train loads is a fundamental problem for 

researchers and engineers to solve in study and design. First, the trains passing the bridge induce 

dynamic impact to bridge structures, reducing their safety and service life. Second, the vibration 

of bridges in turn affects the running stability and safety of the trains. 
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The relative research could date back to the works of Willis (1849) and Stokes (1849) in the mid-

19th century in investigating the collapse of Chaster Rail Bridge in England in 1847. In the early 

works, researchers on bridge dynamics mainly try to get analytical or approximate solutions for 

some simple problems (Timoshenko 1922; Jeffcott 1929; Inglis 1934). After the computer was 

invented, researches are able to observe more realistic bridge and vehicle models in analysis. In 

some structure dynamics texts, people begin to discuss the vibration of structures under moving 

load (Biggs 1964; Fryba 1972; Fryba 1996). Starting from 1975, Ting and his co-workers update 

the related researches on vehicle-guideway interactions from time to time (Ting 1975; Genin and 

Ting 1979; Ting and Genin 1980; Ting and Yener 1983; Taheri 1990). Now, by using powerful 

numerical methods, the related research has been done more deeply and the models of bridge and 

vehicle have been more complicated (Yang, Yau and Wu 2004).  

 

Bridge Models (Yang, Yau and Wu 2004) 

Almost all the bridges can be simulated as two main methods: finite element method (FEM) and 

modal expansion method (MEM). MEM can effectively reduce the degree of the bridge and obtain 

the dynamic response of bridge much faster, but it could only be adopted in linear question and 

only for simple bridge structure. On contrary, FEM could be widely used in every types of bridge 

structure and complete the nonlinear analysis on it, but the analysis time will be very long and the 

process will be difficult (Xia and Zhang 2002). 
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Until now, various types of bridges can be simulated in vehicle-bridge coupling system, including 

truss bridges, multispan uniform or nonuniform bridges, girder bridges, continuous beams, curved 

girder bridges steel plate girder bridges and arch bridges (Wiriyachai 1982; Yang 1995; Kou and 

DeWolf 1997; Cheung 1999; Huang 193; Cai 1994; Yang 2001; Kawatani and Kim 2001; Ju and 

Lin 2003; Yang, Yau and Wu 2004). With the development of long span bridge, dynamic response 

of cable-stayed bridges and suspension bridges to moving vehicles has also been studied 

(Meisenholder 1974; Wang and Huang 1992; Yang and Fonder 1998; Guo and Xu 2001; Chatterjee 

1994; Xia 2000; Xu 2003; Yang, Yau and Wu 2004).  

 

Vehicle Models (Yang, Yau and Wu 2004) 

Until now, moving load, moving mass, moving sprung mass and multi degree of freedom models 

are the main models applied to simulate the vehicles in the majority of literatures. 

 

The moving load model is the simplest model, which is still used in the simple analysis questions 

or at the beginning of the work. However, the effect of interaction between bridge and moving 

vehicle is ignored, so this model could be used when the mass of vehicle is much smaller than 

bridge (Timoshenko 1922; Ayre and Jacobsen 1950; Chen 1978; Wu and Dai 1987; Galdos 1993; 

Gbadeyan and Oni 1995; Wang 1997; Zheng 1998; Rao 2000; Chen and Li 2000; Dugush and 

Eisenberger 2002; Yang, Yau and Wu2004). The moving mass model is used to surpass the 
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limitation of moving load model (Jeffcott 1929; Stanisic and Hardin 1969; Ting 1974; Stanisic 

1985; Akin and Mofid 1989; Yang, Yau and Wu 2004). In order to simulate the vehicle better, 

people consider to add the elastic and damping effects into the models, which then forms a model 

called sprung mass model (Biggs 1964; Fryba 1972; Pesterev 2001; Pesterev 2003; Yang, Yau and 

Wu 2004). Later, vehicle models that contain several degrees of freedom (DOFs) have been used 

to represent the dynamic properties of freight cars or high speed trains. In those models, not only 

the elastic and damping effect, but also the rotation and vibration inside the vehicle, are all been 

considered (Chu 1986; Wang 1991; Xia, Xu and Chan 2000; Zhang 2001; Wu 2001; Yang, Yau 

and Wu 2004). 

 

Vehicle-Bridge Coupling Relationship 

The main vehicle-bridge coupling relationship consists of contact displacements and contact forces. 

As to the contact displacements at the contact area, it is assumed that the bridge ones has the same 

values as the vehicle ones, and all of the displacements satisfy the specific geometric relationships 

(Xia, De, Zhang and Zhang 2001; Xu, Zhang and Xia 2004; Guo, Deng and Luo 2009). The contact 

forces at the contact area are defined as the function of wheel-rail relative motion and they also 

satisfy the force equivalent conditions (Zhai, Cai and Guo 1996; Zhang, Xia and Guo 2010; 

Torstensson, Nielson and Baeza 2011; Fayos, Baeza, Denia and Tarancon 2007). 

 

Another coupling relationship between vehicle and bridge is rail irregularities. Since people find 
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it will produce significantly effect when discussing the interaction between vehicle and bridge, so 

many people have gotten relative conclusion and model for it, including road profile modeled as a 

stationary Gaussian random process, power spectral density function, cross level and vertical 

profile (Gupta 1980; Chu 1986; Wang 1991; Paultre 1992; Wang and Huang 1992; Yang and Lin 

1995; Chatterjee 1994; Chang and Lee 1994; Pan and Li 2002; Yang, Yau and Wu 2004). 

 

Railway Bridges and Vehicles (Yang and Yau 2004) 

In the research of railway bridges and vehicles, the loading is often a sequence of moving load 

instead of a single or very small number of loads. The loads produced by a moving train are 

repetitive in nature, implying that certain frequencies of excitation will be applied on the bridge 

and the dynamic responses of bridges will be apparently different (Bolotin 1964; Fryba 1972; 

Kurihara and Shimogo 1978; Chu 1979; Wu and Dai 1987; Savin 2001; Yang, Yau and Wu 2004). 

As to high-speed rail, scholars try to use other methods to simulate real high-speed train (Matsuura 

1976; Chu 1986; Diana and Cheli 1989; Cai 1994; Hsu 1996; Yau 1996; Wu 2000). Researchers 

also discuss some other issues in high-speed rail, such as: effect of column stiffness (Hsu 1996), 

effect of elastic bearing (Yau 1996; Yau 2001), influence of sleepers and ballast layers (Museros 

2002), and phenomena of resonance and cancellation for elastically supported (Yang 2004). 

 

The previous research works about each aspect of the vehicle-bridge coupling system have been 

demonstrated specifically as above. Although there have been abundant results in this topic, the 
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bridge model, vehicle model or vehicle-bridge coupling relationships built in those works have 

many simplifications and the simulation results are limited in some special cases. In order to 

simulate the whole vehicle-bridge coupling system precisely and obtain its accurate dynamic 

responses results, it is necessary to continue to do some further work in that topic. 

  

In this chapter, it proposes a co-simulation method to complete the simulation of vehicle-bridge 

coupling system in high-speed rail. Bridge structures are the traditional civil engineering structures 

and they are modeled by finite element method software MSC/NASTRAN to analyze. Vehicle 

system is a mechanical system, its nature is a multibody system and it is modeled by using 

dynamics of multibody system software MSC/ADAMS to simulate. The vehicle-bridge coupling 

relationships including wheel-rail contact geometric parameters, wheel-rail contact forces and 

track irregularity, are all introduced specifically in this chapter. The Matlab/Simulink is used to 

build a platform to make MSC/NASTRAN and MSC/ADAMS working together, and the vehicle-

bridge coupling relationships are coded as a program block inputted into that platform. A co-

simulation by using that Matlab/Simulink platform is realized and the simulation of whole vehicle-

bridge coupling system in high-speed rail is completed. Various numerical examples of vehicle-

bridge coupling system are calculated to illustrate the practicability and efficiency of the proposed 

co-simulation method.  
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6.2 Bridge Model Simulation - Finite Element Method 

Bridge structure is an important subsystem in the whole vehicle-bridge coupling system, and it is 

actually a civil engineering structure. According to abundant simulation and analysis works about 

the civil engineering structures, especially, the research works about the bridge structures dynamic 

problems, there are mainly two methods to build the models of bridge structures: finite element 

method and modal expansion method. 

 

In finite element method (FEM), the bridge structures are divided into finite number elements and 

the equilibrium equations for each element are established, then, the whole equilibrium equations 

of the whole structure are assembled by those element equations. With the help of the computer, 

the equilibrium equations are solved and the force and deformation in each element could be 

obtained. FEM is very accurate to simulate the civil engineering structures, but the solving 

difficulty will increase apparently if the elements number is increasing to very large. 

 

In modal expansion method (MEM), the modal orthogonality condition is applied to decouple the 

structures motion partial differential equations, the responses under each mode are solved then, 

and the final dynamic responses will be obtained by modal superposition method. MEM could 

decrease the calculation degrees of freedom significantly, but its disadvantages are also apparent: 

(1) it can only be applied in linear vibration problems, (2) it cannot calculate the vibration 
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responses of some small parts in the structures, (3) it doesn’t work well to the complex structures 

since there may be many modes needed to be considered.  

 

In order to analyze large-size and complex bridges, and the deformations in them may be nonlinear, 

therefore, FEM is chosen in this research to simulate bridges and calculate their dynamic responses. 

With the fast developments in recent decades, there are many reliable and advanced FEM softwares 

in engineering areas, such as ANSYS, ABAQUS, and MSC/NASTRAN. Because it is easy and 

convenient to build models, the calculation is accurate, the analysis speed is fast, and the 

calculation results are reliable by using those FEM softwares, they are widely accepted and used 

in engineering areas. In this research, the MSC/NASTRAN is applied to build the bridge models 

and complete the dynamic responses calculation and analysis works. 

 

6.2.1 FEM for Simulating the Bridge System 

The basic process of the FEM for simulating the bridge system could be denoted as following steps: 

1. Discretization of the continuous area  

In dynamic problems of bridge structure, the questions are 4 dimensional equation since the time 

coordinate t is introduced into the problem. But when the FEM is applied, it only disperse the 

structure equations in space area whose coordinate is just x, y, z. After dispersing the structure in 

space, many basic elements are obtained from the original bridge structure.  
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2. Establishment of the interpolating function in each element 

As to each element dispersed from the original bridge structure in step 1, the interpolating function 

for its displacement could be denoted as 

eu Nu                                                                    (6-1) 

where      , , , , , , , , , , ,
T

u u x y z t v x y z t w x y z t     is the displacement vector in the element, 

 1 2 nN N N N  is the shape function matrix, and 
eu  is node displacement vector in the 

same element. 

 

3. Motion equations of the whole bridge system 

Base on Eq. (6-1), the strain vector and stress vector of each element can be derived as 

e eu Nu Bu                                                              (6-2) 

e eD DBu Su                                                           (6-3) 

where   is the differential operator matrix, B is element strain matrix, D is elastic matrix, and S 

is stain matrix.  

 

The strain energy and kinetic energy of the element can be written as 

 1 1 1 1

2 2 2 2

T T Te T e T e e T e e e e

V V V
V dv u B DBu dv u B DBdv u u K u                     (6-4)   

 1 1 1

2 2 2

T Te T e T e e e e

V V
T u udv u N Ndv u u m u                                  (6-5) 

where 
e T

V
K B DBdv   is element stiffness matrix, and 

e T

V
m N Ndv   is element 

generalized mass matrix. 
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The equivalent nodal forces of the element body force and element damping force also can be 

denoted as  

e T e

V
R N q dv                                                               (6-6) 

     e T e T T e T e e e

f f
V V V V

R N q dv N u dv N Nu dv N Ndv u C u                      (6-7) 

where 
e T

V
C N Ndv   is the damping matrix. 

 

Using coordinate transformation matrix, the element displacement vector and element force vector 

are transferred from local coordinate system to global coordinate system, then, total strain energy 

V, kinetic energy T, and total virtual work of exciting force and damping force W  can be 

1 1 1

2 2 2

Te e e e T e T

e e e

V V u K u u K u u Ku
 

    
 

                                  (6-8) 

1 1 1

2 2 2

Te e e e T e T

e e e

T T u m u u m u u Mu
 

    
 

                                  (6-9) 

   
T e

e e e e T e e T

f f f

e e e e

W W u R R u R R u R R    
 

       
 

                 (6-10) 

where 
e

e

K K  is the total stiffness matrix of bridge structure, 
e

e

m m  is the total mass 

matrix of bridge structure. 

 

The total damping force of the bridge structure can be derived based on Eq. (6-7) as follows 

e e e e

f f

e e e

R R C u C u Cu
 

       
 

                                        (6-11) 
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where 
e

e

C C  is total damping matrix of bridge structure. 

 

Substituting Eq. (6-8), Eq. (6-9), Eq. (6-10) and Eq. (6-11) into Lagrange equations, it will be 

Mu Ku R Cu Mu Cu Ku R                                            (6-12) 

and Eq. (6-12) is the motion equations of the whole bridge structure in global coordinate system. 

 

4. Solution of the bridge system motion equations 

With the help of the mathematics, the motion equations of the whole bridge structure are solved 

by many advanced numerical methods.  

 

5. Strain and stress calculation of the bridge system 

After the motion equations of the whole bridge structure are solved in step 4 and the nodal 

displacements are obtained, they can be transferred from global coordinate system to local 

coordinate system and the 
eu  are determined. Based on Eq. (6-2) and Eq. (6-3), the strain and 

stress of each element in bridge system can be calculated finally.  

 

6.2.2 Modeling and Simulation of Bridge Structures in MSC/NASTRAN 

A typical high-speed rail bridge structure is chosen to be simulated in this research, and the sketch 

of it is as shown in Fig. 6-1.   
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Side View of Bridge Main Beam (Unit: m) 

 

Side View of Floating Slab Track (Unite: m) 

 

Side View of Rail (by Chinese Standard GB2585, Unit: 

mm) 

 

Front View of Bridge Structure (Unit: m) 

Fig. 6-1. The sketch of bridge structure. 

 

By using MSC/NASTRAN, that high-speed rail bridge structure shown in Fig. 6-1 is built as a 

FEM model which is as in Fig. 6-2. 
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Fig. 6-2. The FEM model of bridge structure. 

 

After the modeling work of bridge structure is completed as above, the bridge structure is 

transferred as a FEM model and it can be applied into the co-simulation of whole vehicle-bridge 

coupling system which will be introduced in Section 6.5. 

 

6.3 Vehicle Model Simulation - Dynamics of Multibody System 

Vehicle system is actually a mechanical system and it is also another important subsystem in the 

whole vehicle-bridge coupling system. Due to the limit of the major, in existed research works 

about the vehicle-bridge coupling system, the civil engineers and scholars make many 

simplifications on vehicle model and use the simple mechanical models to calculate the vehicle’s 

vibration responses. In general, the development of vehicle model simulation is able to be denoted 

as several stages as follows 

(1) Ignoring the vibrations of vehicle itself, the vehicle is simplified as moving constant forces; 

(2) Considering the harmonic vibrations in vehicle but they have no coupling effects with bridge 
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vibrations, the vehicle is simplified as moving harmonic forces; 

(3) Considering the coupling effects of vehicle vibrations and bridge vibrations, the vehicle is 

modeled as moving mass; 

(4) The vibrations in all three dimensions are considered, and the vehicle is modeled as a multiple 

degrees of freedom system of train body, bogies and wheels interconnected by spring and damper.    

Until now, the model of mass blocks connected by spring and damper is still widely applied in the 

research works in civil engineering now. The accuracy of the model is only improved by increase 

the number of the degree of freedom in the model. 

 

With the development of relative research works, the requirements on the accuracy of vehicle 

model will be more and more, and the existed method used to simulate the vehicle will be not 

enough. Based on the nature that the vehicle system is actually a multibody system and it is better 

to use mechanical engineering view to think about it, therefore, the dynamics of multibody system 

will be applied to simulate and analyze the vehicle system in this research.  

 

Dynamics of multibody system (DMS), is a subject to study the motion and dynamics of the 

multibody system which consists of interconnected rigid and deformable bodies. It is based on 

analytical mechanics and is applied to engineering systems such as a wide variety of machines and 

all kind of vehicles. In mechanical engineering and automobile engineering, the engineers and 

scholars just use this theory to simulate and analyze the machines and vehicles and it is much better 
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and more accuracy than the method used in civil engineering as introduced above.  

 

There are also many reliable and advanced DMS softwares in engineering areas, such as 

RECURDYN, SIMPACK, and MSC/ADAMS. As the professional software for analyzing the 

mechanical system, all of those softwares are easy and convenient to build models, the calculation 

is accurate, the analysis speed is fast, and the calculation results are reliable. In this research, the 

MSC/ADAMS is applied to build the vehicle models and complete the dynamic responses 

calculation and analysis works. 

 

6.3.1 DMS for Simulating the Vehicle System 

In multibody system, the bodies are rigid or flexible bodies, and the link which is the connection 

of two or more bodies is defined as certain constraints that restrict the relative motion of those 

bodies. The motion of the constrained bodies is described by equations that result from Newton’s 

second law, and those equations are usually derived from the Newton-Euler equation or Lagrange’s 

equations. In general, the motion equations of the multibody system can be denoted as 

     , , , , 0T

qM q t q q t Q q q t                                            (6-13a) 

 , 0q t                                                                (6-13b) 

where q , q , 
nq R  are the generalized coordinates and their first order derivatives and second 

order derivatives, respectively, 
mR  is the Lagrange multiplier, 

n nM R   is the mass matrix 
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which depends on the generalized coordinates, 
m n

q R    is constraint Jacobi matrix respect to 

the coordinates, 
nQ R  is exciting force matrix, 

mR  is the constraint conditions.  

 

Once those motion equations of the whole vehicle systems are established as Eq. (6-13), abundant 

advanced numerical solution methods could be applied to solve them and the dynamic responses 

of the vehicle systems can be obtained finally. This is just the basic theory and process to show 

how the DMS softwares simulate vehicle systems and solve their vibration problems. 

 

6.3.2 Modeling and Simulation of Vehicle Structures in MSC/ADAMS 

Since this research is about the high-speed rail engineering, a typical high-speed rail train, CRH5, 

is chosen to be simulated in here and the simple sketch of it is as shown in Fig. 6-3.   

 

Fig. 6-3. The sketch of CRH5 high-speed rail train system (by Xin and Gao 2011). 
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By using MSC/ADAMS, that high-speed rail train system shown in Fig. 6-3 is built as a DMS 

model which is as in Fig. 6-4 and Fig. 6-5. 

 

 

Front View 

 

Plan View 

 

Side View 

 

Isometric View 

Fig. 6-4. The DMS model of CRH5 high-speed rail train system. 
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Front View 

 

Side View 

 

Plan View 

 

Isometric View 

Fig. 6-5. The DMS model of CRH5 high-speed rail train suspension system. 

 

The modeling work of vehicle system can be completed by MSC/ADAMS as introduced above. 

In this way, the train system is transferred as a DMS model and it can be applied into the co-

simulation of whole vehicle-bridge coupling system which is introduced in Section 6.5. 

 

6.4 Vehicle-Bridge Coupling Relationship 

As shown in Section 6.2 and Section 6.3, the bridge subsystem and vehicle subsystem are 

simulated and analyzed, respectively. In this section, the vehicle-bridge coupling relationship will 
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be introduced and link those two subsystems together to form the final vehicle-bridge coupling 

system. 

 

In fact, the main vehicle-bridge coupling relationship is the coordinative relationship of the 

displacement and force between vehicle and bridge, and it can be denoted as follows 

1. At the wheel and rail contact area, the displacement of vehicle and the displacement of bridge 

are coordinative;  

2. At the wheel and rail contact area, the force and reacting force between wheel and rail are 

equivalent. 

The vehicle-bridge coupling system just uses those two coordinative relationships to combine the 

vehicle subsystem and bridge subsystem together, and complete the vibration analysis of the whole 

system. 

 

Except those two coordinative relationships, the track irregularity is another important issue in the 

vehicle-bridge coupling relationship and it must be considered in whole system vibration analysis.  

 

6.4.1 Wheel-Rail Contact Geometric Parameters 

When the train is running on rails, the wheels will do horizontal motion and sidewinder motion 

relative to rails and the wheel-rail contact point location will be changed with the time. If the 

contact point location is different, the wheel-rail contact geometric parameters are also changed 
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since they depends on the specific contact point location. The main wheel-rail contact geometric 

parameters are shown in Fig. 6-6 and they include: 

1. Contact angle of left wheel and right wheel: L , R ; 

2. Real rolling radius of left wheel and right wheel: Lr , Rr ; 

3. Wheel radius of curvature for left wheel and right wheel at wheel-rail contact point: wL , wR ; 

4. Rail radius of curvature for left rail and right rail at wheel-rail contact point: tL , tR . 

 

Fig. 6-6. The diagrammatic sketch of wheel-rail contact geometric relationship. 

 

In this section, the profiles for both wheel and rail tread are introduced firstly, then, a left-right 

wheel-rail equidistant iteration method is applied to determine the specific location of wheel-rail 

contact point and the wheel-rail contact geometric parameters at that location can be obtained. 

 

6.4.1.1 Profile of Wheel Tread 

All wheels in trains follow the national standards and their tread profiles are made as the same. 

The profile of the train wheel tread consists of several arcs and straight lines, and one typical wheel 

tread profile which is adopted in this research can be shown as in Fig. 6-7. 
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Fig. 6-7. The profile of LM train wheel tread. 

 

The specific details about the wheel tread profile are described as the following formulations: 

   
1 2

2

1 4.2265 529 23f x x    
 

,  0.0000,6.5714x                         (6-14a) 

   
1 2

2

2 9.1255 256 18f x x    
 

,  6.5714,16.0000x                        (6-14b) 

   
1 2

2

3 9.0313 256 15f x x    
 

,  16.0000, 29.3351x                       (6-14c) 

   
1 2

2

4 5.1822 2304 13.6701f x x     
 

,  29.3351,31.2716x                (6-14d)          

   
1 2

2

5 17.9996 324 48.1247f x x    
 

,  31.2716,48.0000x                 (6-14e) 

   6 0.05 48f x x   ,  48.0000,100.0000x                                 (6-14f) 

   7 0.1 100 2.6f x x    ,  100.0000,129.8623x                            (6-14g) 

   
1 2

2

8 11.5565 36 129.2653f x x     
 

,  129.8623,135x                   (6-14h) 

 

Significantly, the wheel-rail contact point can be only located between point P1 and point P6. 
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6.4.1.2 Profile of Rail Tread 

It is the same as the train wheel tread profile introduced in Section 6.4.1.1, the profiles of rail tread 

are also the same according to the national standards. One typical rail tread profile is chosen in 

this research and it is shown as in Fig. 6-8. 

 
Fig. 6-8. The profile of standard rail tread. 

 

The specific details about the rail tread profile are also described as the following formulations: 

 
1 2

2 2

1 250 250f x x      ,  0.0000,10.0000x                              (6-15a) 

   
1 2

22

2 80.1573 80 7.3874f x x     
 

,  10.0000,25.3500x                  (6-15b)                   

   
1 2

22

3 14.8648 13 22.4795f x x     
 

,  25.3500,35.4000x                 (6-15c)                   

   4 20 35.4 14.2f x x    ,  35.4000,36.5000x                             (6-15d)                   

and the profile in  36.5000,0x   is just the symmetry comparing with the one above. 

 

From Fig. 6-8, the wheel-rail contact point can be only located between point P1 and point P6. 



176 

 

 

6.4.1.3 Determination of Wheel-Rail Contact Geometric Parameters 

The details about the wheel tread and rail tread are shown in Section 6.4.1.1 and Section 6.4.1.2, 

and all geometric parameters of those profiles are already given. In order to determine the wheel-

rail contact geometric parameters at each time, the key problem is how to confirm the exact 

location of the wheel-rail contact point. In this research, a left-right wheel-rail equidistant iteration 

method is adopted to solve that problem and determine the wheel-rail contact geometric parameters.  

 

The theoretical principle for that left-right wheel-rail equidistant iteration method is: the vertical 

distance between wheel and rail must be zero at the location of wheel-rail contact point, otherwise, 

it must be nonzero at other locations. Based on that principle, if the wheels are moved up a certain 

distance, the condition for wheel-rail contact point location will be changed as that the vertical 

distance between wheel and rail must be the minimum one, which is as shown in Fig. 6-9. 

 

Fig. 6-9. The calculation principle of left-right wheel-rail equidistant iteration method. 
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According to Fig. 6-9 and assuming the wheels are in one horizontal location, the horizontal 

coordinate y can be divided into several small distances and the vertical distances ΔzL and ΔzR 

between wheel and rail corresponding to each horizontal distance yL and yR can be calculated. 

Checking the values of all ΔzL and ΔzR, and the minimum values ΔzLmin and ΔzRmin can be found 

and their corresponding y coordinate can be obtained as yLmin and yRmin. 

 

If 
min minL Rz z   , then, the left wheel and right wheel can both touch the rail at the same time, 

and yLmin, yRmin are the exact wheel-rail contact point locations. 

 

If 
min minL Rz z   , the left wheel and right wheel cannot touch the rail at the same time and yLmin, 

yRmin are not the real wheel-rail contact point locations. In this case, a rotation of the wheels 

according to longitudinal axis must be done to modify the sidewinder angle. When 
min minL Rz z   , 

the counterclockwise rotation angle γ can be chosen as 

min min

min min

R L

R L

z z

y y


 



                                                         (6-16) 

 

After rotating the wheels as the rotation angle γ, the process introduced above need to be repeated 

and it needs to check if the minimum values ΔzLmin and ΔzRmin are equal. But due to the numerical 

error, it is impossible to achieve the absolute equivalent condition and it usually can be accepted 

once the condition 
min minR Lz z     (ε is providing error) is satisfied.  



178 

 

 

The iteration process as shown above should be done several times, and it can be stopped once 

min minR Lz z     is satisfied. In this way, the exact location of the wheel-rail contact point yLmin 

and yRmin can be determined, and the final sidewinder angle can be calculated by 

0

1

k

W W i

i

  


                                                             (6-17) 

 

When the exact location of the wheel-rail contact point yLmin and yRmin are obtained, according to 

the specific geometric parameters given in Section 6.4.1.1 and Section 6.4.1.2, the wheel-rail 

contact geometric parameters can be determined finally and they will be applied to calculate the 

wheel-rail contact forces introduced in next section. 

 

6.4.2 Determination of Wheel-Rail Contact Forces 

The wheel-rail contact forces are the acting and reacting forces between wheel and rail when they 

contact each other, and they are just located at the wheel-rail contact area. The wheel-rail contact 

forces which act on wheels are equivalent as the ones acting on rails but their directions are 

opposite. There are two kinds of contact forces in wheel-rail contact forces: wheel-rail normal 

contact force and wheel-rail tangential contact force. The Hertz contact theory will be applied to 

calculate the wheel-rail normal contact force and the wheel-rail tangential contact force will be 

determined by Kalker linear theory and Shen’s theory in this research. 
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6.4.2.1 Determination of Wheel-Rail Normal Contact Force 

The wheel-rail normal contact force depends on the normal compression displacement between 

wheel and rail, therefore, according to Hertz nonlinear contact theory, it can be calculated as 

   
2 3

1
p t Z t

G


 
  
 

                                                        (6-18) 

where G is the wheel-rail contact constant,  
2 30.115 83.86 10 /G R m N   , R is radius of the 

wheel,  Z t  is the compression displacement between wheel and rail. 

 

Once the compression displacement between wheel and rail is obtained by the analysis as shown 

in Section 6.4.1, the wheel-rail normal contact force can be calculated as Eq. (6-18) directly. If 

  0Z t  , it means that the wheel breaks away from the rail and   0p t   in this case.  

 

6.4.2.2 Determination of Wheel-Rail Tangential Contact Force 

When two rigid bodies repress each other and a trundle between them is allowed, the creep 

phenomenon will be existed and a contact area, whose shape is an oval according to Hertz theory, 

will be produced around their contact point. The wheel-rail tangential contact force is located in 

that oval contact area and can be calculated by Kalker linear theory and Shen’s theory in here. 

 

Before calculating the major semiaxis a and minor semiaxis b of the oval contact area, the 
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parameters ρ and β are introduced and defined as 

1 1 1 1 1

4 w tr  

  
    

  
                                                     (6-19) 

1 1 1
arccos

4 w tr




 

 
   

 
                                                 (6-20) 

where r is rolling radius of the wheel, w  is the wheel radius of curvature at wheel-rail contact 

point, t  is rail radius of curvature at wheel-rail contact point. 

 

With the β obtained by Eq. (6-20) and checking the Table. (6-1), the values of the parameters m, n 

can be determined. 

 

Table 6-1. The relationship of β and the values of m, n 

β 0° 10° 20° 30° 35° 40° 45° 50° 

m ∞ 6.612 3.778 2.731 2.397 2.130 1.926 1.754 

n 0 0.319 0.408 0.493 0.530 0.567 0.604 0.641 

β 55° 60° 65° 70° 75° 80° 85° 90° 

m 1.611 1.486 1.378 1.284 1.202 1.128 1.061 1.000 

n 0.678 0.717 0.759 0.802 0.846 0.893 0.944 1.000 

 

When the wheel and rail contact each other, and both of them are made of steel which have Poisson 

ratio 0.3   and Young’s modulus 200E Gpa , the intermediate variable ea , eb  are defined: 

If 2r  : 

1 3

30.1506 10ea m
r

  
  

 
, 

1 3

30.1506 10eb n
r

  
  

 
                 (6-21a) 

If 2r  : 

1 3

30.1506 10ea n
r

  
  

 
, 

1 3

30.1506 10eb m
r

  
  

 
                 (6-21b) 
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and the multiplying constant is always existed as 

2 3

922.68 10e ea b mn
r

  
  

 
        (6-21c)  

 

The major semiaxis a and minor semiaxis b of the oval contact area are determined as follows 

 
1 3

ea a Nr ,  
1 3

eb b Nr ,  
2 3

e eab a b Nr , 
e ea b a b                       (6-22) 

where N is the wheel-rail normal contact force calculated in Section 6.4.2.1 as Eq. (6-18). 

 

The creep parameters 
ijf  are calculate as follows 

11 11f C Eab , 
22 22f C Eab ,  

3 2

23 23f C E ab ,  
2

33 33f C E ab                   (6-23) 

where the constants 
ijC  are Kalker parameters and they can be checked out from Table. (6-2). 

 

Table 6-2. The calculation table for Kalker parameters ijC  ( 0.3  ) 

a/b C11 C22 C23 C33 a/b C11 C22 C23 C33 

0.1 1.35 0.98 0.195 3.34 0.9 1.70 1.49 0.628 0.425 

0.2 1.37 1.01 0.242 1.74 0.8 1.75 1.56 0.689 0.396 

0.3 1.40 1.06 0.288 1.18 0.7 1.81 1.65 0.768 0.366 

0.4 1.44 1.11 0.328 0.925 0.6 1.90 1.76 0.875 0.336 

0.5 1.47 1.18 0.368 0.766 0.5 2.03 1.93 1.04 0.304 

0.6 1.50 1.22 0.410 0.661 0.4 2.21 2.15 1.27 0.275 

0.7 1.54 1.28 0.451 0.588 0.3 2.51 2.54 1.71 0.246 

0.8 1.57 1.32 0.493 0.533 0.2 3.08 3.26 2.64 0.215 

0.9 1.60 1.39 0.535 0.492 0.1 4.60 5.15 5.81 0.183 

1.0 1.60 1.43 0.579 0.458 - - - - - 

 

The nominal velocity of the wheel on the rail is calculated as 



182 

 

1
cos

2
ZW

W

r
V V V R

R

 
   

 
                                                   (6-24) 

where V is the velocity of the vehicle, r is rolling radius of the wheel, WR  is real rolling radius of 

wheel at contact point, and 
ZWR  is panning angle of the wheels. 

 

Since the velocities of wheel and rail at their contact surface are different, the creep ratio in the 

local coordinate is existed and is calculated by 

W t
x

X X

V






, 

W t
y

Y Y

V






, 

ZW Zt
sp

R R

V






                                   (6-25) 

where 
WX , 

WY , 
ZWR  are the local velocities of wheel in x, y and panning angle direction, and 

tX , 
tY , 

ZtR  are the local velocities of rail deformation in x, y and panning angle direction. 

 

Finally, according to Kalker linear creep theory, the wheel-rail tangential contact force in linear 

range can be determined by the equations as follows 

11X xF f                                                                (6-26a) 

22 23Y y spF f f                                                           (6-26b) 

23 33Z y spM f f                                                          (6-26c) 

 

Kalker linear creep theory as shown above is only applied in small creep ratio case, but it cannot 

calculate the creep force accurately when there is large creep happened in the wheel-rail contact 

area. In this research, Shen’s theory is applied to modify the Kalker linear creep theory to determine 
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the wheel-rail tangential contact force in nonlinear range. Based on Eq. (6-26), the total creep force 

is combined the longitudinal creep force XF  and horizontal creep force 
YF  as 

2 2

X YF F F                                                              (6-27) 

 

A creep force parameter F  is defined as 

If 3F fN , then 

2 3

1 1

3 27

F F F
F fN

fN fN fN

    
       

     

                         (6-28a) 

If 3F fN , then F fN                                                   (6-28b) 

where 0.25f   is friction factor between wheel and rail. 

 

Introducing compensation factor F F  , the modified wheel-rail tangential contact force in 

nonlinear range are calculated as follows 

X XF F  , Y YF F  , 
Z ZM M                                              (6-29) 

 

6.4.3 Track Irregularity 

Track irregularity is the geometric dimension error of the two rail tracks, on which trains are 

running, comparing with their ideal locations. Based on abundant real engineering projects, there 

are mainly four types of the track irregularity and they can be shown as in Fig. 6-10. Due to the 

limit of the construction precision and the effects of the railway operation, it is impossible to 

eliminate the track irregularity totally and it is existed in all rail tracks objectively. 
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Track gauge irregularity Horizontal irregularity 

  

Vertical irregularity Longitudinal irregularity 

Fig. 6-10. The four types of track irregularity (by Li 2000). 

 

Track irregularity brings the vibrations to vehicles which are running on the track and it is the main 

excitation for the vehicle vertical vibration. Track irregularity is also the main reason to produce 

the track structure vibrations and failures. Specifically speaking, track irregularity changes the 

wheel-rail contact relationships and affects the dynamic properties of wheel-rail system. The 

vibrations produced by track irregularity will be transferred to both vehicle system and bridge 

system at the wheel-rail contact point, and the whole vehicle-bridge coupling system will be 

affected significantly. Therefore, it is very necessary and important to analyze and calculate track 

irregularity, and input it into the whole vehicle-bridge coupling system in here. 
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According to previous research works, all kinds of the track irregularity existed in real rail tracks 

are the superposition of several random rough waves which have different wavelength, phase and 

amplitude, and it is just a complicated random process relative to rail line. In this way, only the 

statistical parameters in random process theory can be applied to describe the track irregularity. In 

this research, a track irregularity power spectrum which is formulated by U.S. Department of 

Transportation – Federal Railroad Administration (FRA) is adopted as follows 

Longitudinal irregularity:  
 

2

2 2 2

a c
a

c

k A
S

 
 

  
                                (6-30a) 

Vertical irregularity:  
 

2

2 2 2

v c
v

c

k A
S

 
 

  
                                    (6-30b) 

Horizontal and track gauge irregularity:    
  

2

2 2 2 2

4 v c
c g

c s

k A
S S

 
   

   
        (6-30c) 

where  S   is track power spectrum (  2 / /cm rad m ),   is the space angular frequency of 

track irregularity ( /rad m), k is safety factor (0.25-1.0, usually choose 0.25), c , s  are cut 

frequency ( /rad m ), vA , aA  are roughness constant (
2 /cm rad m ). The values for those 

parameters are divided as six grades and they are shown as in Table. (6-3). 

 

Based on track irregularity power spectrum shown in Eq. (6-30), a numerical method can be used 

to calculate the track irregularity analog quantity. Since the track irregularity random function is a 

stable Gauss random process, the triangle series superposition method can be applied in here as 

     
1

2 cos
N

k k k

k

x S x    


                                           (6-31) 
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where  x  is track irregularity produced by power spectrum,  kS   is the track irregularity 

power spectrum, k  ( 1,2, ,k N ) is the considered frequency,   is the frequency 

bandwidth, k  is the phase corresponding to kth frequency.  

 

Table 6-3. The parameters for U.S. track irregularity power spectrum. 

Parameters 
Line grade 

1 2 3 4 5 6 

vA  ( 2 /cm rad m ) 1.2107 1.0181 0.6816 0.5376 0.2095 0.0339 

aA  ( 2 /cm rad m ) 3.3634 1.2107 0.4128 0.3027 0.0762 0.0339 

s  ( /rad m ) 0.6046 0.9308 0.8520 1.1312 0.829 0.4380 

c  ( /rad m ) 0.8245 0.8245 0.8245 0.8245 0.8245 0.8245 

Maximum velocity 

( /km h ) 

Freight train 16 40 64 96 128 176 

Passenger train 24 48 96 128 144 176 

 

Until here, according to the track irregularity power spectrum formulated by national standard, the 

track irregularity in different directions can be calculated by using the triangle series superposition 

method, and they can be inputted into the vehicle-bridge coupling system now. 

 

6.4.4 Vehicle-Bridge Coupling Relationship for Whole System Analysis 

As introduced at the beginning of this Section 6.4, the main vehicle-bridge coupling relationship 

is the coordinative relationship of the displacement and force between vehicle and bridge. The 

introductions about the wheel-rail contact geometric parameters, wheel-rail contact forces, and 

track irregularity are shown in the sections above, hence, the vehicle-bridge coupling relationship 



187 

 

for the final calculation works in the whole system can be denoted as follows. 

 

1. In one time step, the wheel-rail contact forces calculated from Section 6.4.2 will act and react 

on both vehicle system and bridge structure at the same time. As the exciting forces to each 

subsystem, it will produce the corresponding dynamic responses in those two subsystems. The 

force equivalent condition can be denoted as a general equations as follows 

i i

bv vbF F                                                                  (6-32) 

where 
i

bvF  are the wheel-rail contact forces acted on vehicle system at wheel-rail contact point i, 

and 
i

vbF  are the wheel-rail contact forces acted on bridge structure at wheel-rail contact point i. 

 

2. In one time step, the bridge structure deformation obtained from Section 6.2, vehicle wheel 

deformation calculated from Section 6.3 and the track irregularity obtained from Section 6.4.3 

satisfy displacement coordinative condition at wheel-rail contact point. 

i i

v b su u y                                                                 (6-33) 

where 
i

vu  is vehicle wheel deformation at wheel-rail contact point i, 
i

bu  is bridge deformation at 

wheel-rail contact point i, and sy  is the track irregularity at wheel-rail contact point i. 

    

Based on those two specific coupling relationships introduced above and synthesizing the 

calculation methods in Section 6.4.1 to Section 6.4.2, the simulation and calculation of vehicle 

system in Section 6.3 and bridge system in Section 6.2 can be linked together and the unified 
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simulation for the whole vehicle-bridge coupling system can be completed. That whole system 

simulation will be done by co-simulation method which is introduced in next section. 

 

6.5 Co-Simulation of Vehicle-Bridge Coupling System 

This section will introduce how to use co-simulation method to complete the simulation and 

calculation works of the whole vehicle-bridge coupling system. 

 

As shown in Section 6.2 to Section 6.4, the bridge structures are molded by FEM software 

MSC/NASTAN, the vehicle systems are simulated by DMS software MSC/ADAMS, and the 

coupling relationships between those two subsystems are also introduced already. Then, the main 

problems are how to link those two different softwares together, make them work with each other 

at the same time and how to input and consider the coupling relationships of them in the whole 

simulation system. In this research, a co-simulation method is adopted to solve those problems and 

realize the simulation and operation of the whole vehicle-bridge coupling system. 

 

Co-simulation, is a method to make multiple different softwares working together and exchanging 

the needed data with each other, and finally output the response results of each subsystem from its 

own software under the constraint conditions. The core problem of the co-simulation is just how 

to make multiple different softwares working together at the same time. Based on those 
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requirements, since Matlab/Simulink platform is able to control the operation of both 

MSC/NASTRAN and MSC/ADAMS, the co-simulation is achieved by coding the program in 

Matlab/Simulink platform and the coupling relationships of those two subsystems are also inputted 

in Matlab/Simulink platform to ensure the data from each software could be output, processed and 

exchanged with another software. In this way, the simulation of the whole vehicle-bridge coupling 

system can be realized and the general process is as the flowchart in Fig. 6-11. 
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Fig. 6-11. Flowchart of the whole vehicle-bridge coupling system simulation. 
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As shown in Fig. 6-11, the bridge model built by MSC/NASTRAN is sealed as a M file module, 

and the vehicle model simulated by MSC/ADAMS is saved as a mechanic module in 

Matlab/Simulink platform. The vehicle-bridge coupling relationships are coded as M files and 

inputted into Matlab/Simulink platform. Therefore, those two subsystems and their coupling 

relationships are all realized on Matlab/Simulink platform, and the simulation of whole vehicle-

bridge coupling system can be completed by that platform now.   

 

6.6 Numerical Examples 

In order to illustrate the co-simulation method presented in this chapter for simulating the vehicle-

bridge coupling system, some numerical examples are investigated in detail. The values for the 

parameters of the vehicle-bridge coupling system are as follows. 

1. The parameters for bridge structure. 

The specific size details about the bridge structure are as shown in Fig. (6-1), and the FEM model 

built by MSC/NASTRAN is totally based on those sizes. In addition, the bridge main beam and 

floating slab track are made of concrete which has 
10 23.45 10cE Nm  , 

32500c kgm  , 

0.2c  , the rail track is made of steel which has 
11 22 10sE Nm  , 

37850s kgm  , 0.2s  , 

and the rubber for connecting rail and floating slab track has 
8 21 10rK Nm  , 

4 13 10rC Nsm  . The stiffness and damping of the viscoelastic layer between bridge main beam 

and floating slab track are variables and their effects on the dynamic behavior of bridge structure 
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will be discussed in this section. 

 

2. The parameters for train system. 

A high-speed rail train, CRH5, is adopted in this research for the simulation of train system, and 

the specific details about CRH5 size and other parameters are as shown in Table. (6-4). 

 

Table 6-4. The parameters for CRH5 train system. 

Parameters Notation Unit Value 

Mass of car body cm  kg 46.2904 10  

Mass of bogie frame bm  kg 32.929 10  

Mass of wheel-set wm  kg 31.95 10  

Moment of inertia of car body frame about the x-axis cxI  2kg m  47.55 10  

Moment of inertia of car body frame about the y-axis cyI  2kg m  63.1598 10  

Moment of inertia of car body frame about the z-axis czI  2kg m  63.1598 10  

Moment of inertia of bogie frame about the x-axis bxI  2kg m  32.247 10  

Moment of inertia of bogie frame about the y-axis byI  2kg m  35.045 10  

Moment of inertia of bogie frame about the z-axis bzI  2kg m  32.806 10  

Moment of inertia of wheel-set about the x-axis wxI  2kg m  900 

Moment of inertia of wheel-set about the y-axis wyI  2kg m  96 

Moment of inertia of wheel-set about the z-axis wzI  2kg m  900 

Vertical stiffness of primary suspension 1zK  /N m  62.1216 10  

Vertical damping of primary suspension 1zC  /N s m  41.77 10  

Horizontal stiffness of primary suspension 1yK  /N m  61.2944 10  
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Horizontal damping of primary suspension 1yC  /N s m  41.77 10  

Longitudinal stiffness of primary suspension 1xK  /N m  61.2944 10  

Longitudinal damping of primary suspension 1xC  /N s m  41.77 10  

Vertical stiffness of secondary suspension 2zK  /N m  61.86 10  

Vertical damping of secondary suspension 2zC  /N s m  41.00 10  

Horizontal stiffness of secondary suspension 2 yK  /N m  67.00 10  

Horizontal damping of secondary suspension 2yC  /N s m  41.00 10  

Horizontal stiffness of secondary suspension 2xK  /N m  67.00 10  

Horizontal damping of secondary suspension 2zC  /N s m  41.00 10  

Radius of wheel wR  m 0.445 

Full length l  m 10 

Half-distance between two bogies bd  m 4 

Half-distance between wheel-sets wd  m 0.5 

Half-distance between rolling circularity rd  m 0.748 

Half-distance between first suspension system 1d  m 1.10 

Half-distance between second suspension system 2d  m 1.10 

Distance between car body and second suspension system 1h  m 1.80 

Distance between second suspension system and bogie 2h  m 0.20 

Distance between bogie and wheel-set 3h  m 0.645 

 

6.6.1 Effect of Viscoelastic Layer Stiffness K 

Viscoelastic layer is the connection between floating slab track and bridge main beam in high-

speed rail bridge structures, therefore, its properties will affect the dynamic responses of bridge 

structures apparently. Some discussions about the effect of viscoelastic layer stiffness K on 

dynamic responses of floating slab track and bridge main beam are shown in here. Three cases are 

investigated in here: 40 /V m s , 35000 /C N s m  , Case 1: 
61 10 /K N m  , 

62 10 /K N m  , 
63 10 /K N m  . Only one train is simulated to pass the bridge. The dynamic 

responses at the midspan of the floating slab track and bridge main beam are shown in Fig. 6-12.  
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a. Floating Slab Track Displacement 

 

b. Bridge Main Beam Displacement 

 

c. Floating Slab Track Velocity 

 

d. Bridge Main Beam Velocity 

 

e. Floating Slab Track Acceleration 

 

f. Bridge Main Beam Acceleration 

 

Fig. 6-12. Dynamic responses at midspan point of floating slab track and bridge main beam. 

 

The dynamic responses of floating slab track is apparently decreased with the increase of 

viscoelastic layer stiffness K (as shown in Fig. 6-12). It is the same as the analysis in Section 

3.5.2.2, floating slab track in here is a kind of a beam on viscoelastic foundation, when the 

viscoelastic layer becomes stiffer, the restrict to it gets stronger, therefore the it vibrates smaller 

and smaller. From Fig. 6-12, the dynamic responses of bridge main beam is generally increased 

with the increase of layer stiffness K. The energy which let bridge main beam vibrate is all from 

viscoelastic layer. Once the viscoelastic layer gets stiffer, its deformation will be smaller and less 
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energy will be absorbed by floating slab track, therefore, more exciting energy will be obtained by 

bridge main beam and makes its dynamic responses increased. 

 

6.6.2 Effect of Viscoelastic Layer Damping C 

Another parameter of the viscoelastic layer is the damping coefficient, C, which is an important 

issue to reduce the vibrations of both floating slab track and bridge main beam. Three cases are 

investigated in here for discussion of the damping effects on bridge dynamic responses: 

40 /V m s , 
61 10 /K N m  , Case 1: 10000 /C N s m  , Case 2: 20000 /C N s m  , Case 3: 

35000 /C N s m  . Only one train is simulated to pass the bridge. The dynamic responses at the 

midspan of the floating slab track and bridge main beam are shown in Fig. 6-13. 

 

a. Floating Slab Track Displacement 

 

b. Bridge Main Beam Displacement 

 

c. Floating Slab Track Velocity 

 

d. Bridge Main Beam Velocity 
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e. Floating Slab Track Acceleration 

 

f. Bridge Main Beam Acceleration 

 

Fig. 6-13. Dynamic responses at midspan point of floating slab track and bridge main beam. 

 

As shown in Fig. 6-13, for both floating slab track and bridge main beam, the dynamic responses 

are generally reduced with the increase of damping C. It is the same as the explanation in Section 

3.5.2.3, damping is a kind of vibration energy absorber, when increase the damping value, more 

energy will be absorbed and less energy will be applied to make structure vibrations. The 

viscoelastic layer is just between floating slab track and bridge main beam, its damping can 

effectively absorb the energy when the trains are passing the bridge. Therefore, with the increase 

of viscoelastic layer damping, more exciting energy could be absorbed and less of them will be 

applied floating slab track and bridge main beam, that’s why both of them have a reduction on 

dynamic responses. 

 

6.7 Conclusions 

In this chapter, a co-simulation method is proposed to complete the dynamic simulation of vehicle-

bridge coupling system. Bridge structures are the traditional civil engineering structures which are 

better to use finite element method (FEM) to analyze, and the FEM software MSC/NASTRAN is 
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applied in here to build the bridge model. Vehicle system is actually a mechanical system, its nature 

is a multibody system which is better to use dynamics of multibody system (DMS) to analyze, and 

the professional DMS software MSC/ADAMS is used in this research to simulate the vibration of 

vehicle system. The vehicle-bridge coupling relationships are introduced specifically in this 

chapter and the classical theories about them are adopted in this research, including wheel-rail 

contact geometric parameters, wheel-rail contact forces and track irregularity. The 

Matlab/Simulink is used to build a platform to ensure MSC/NASTRAN and MSC/ADAMS 

working together, and the vehicle-bridge coupling relationships are coded as a program block and 

inputted into that platform. In this way, a co-simulation by using that Matlab/Simulink platform is 

realized and the simulation of whole vehicle-bridge coupling system is completed. 

 

Various numerical examples of vehicle-bridge coupling system are calculated to illustrate the 

practicability and efficiency of the proposed co-simulation method. Parametric studies about the 

effects of stiffness and damping of viscoelastic layer, which is between floating slab track and 

bridge main beam, on the dynamic responses of bridge are completed. The results not only are 

helpful to engineers to design, but also show the potentiality of the semi-active control based on 

novel adaptive materials which will be introduced in Chapter 7.    

 

Finally, the proposed co-simulation method is derived, and the corresponding platform by using 

Matlab/Simulink is built and verified successfully. 
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Chapter 7 Semi-Active Control in High-Speed Rail Vehicle-Bridge 

Coupling System with Magnetorheological Nanocomposites 

7.1 Introduction 

The main topic of the research in this dissertation is using novel adaptive materials 

magnetorheological nanocomposites (MRNs) to build a semi-active control structure, and further 

apply it into the vehicle-bridge coupling system of high-speed rail so that the vibration of the whole 

system could be controlled effectively and the dynamic responses of bridge can be reduced 

significantly. In Chapter 4 and Chapter 5, the semi-active controls of the double-beam system with 

elastic layer and viscoelastic layer have been introduced and derived. In Chapter 6, a co-simulation 

platform based on Matlab/Simulink for the whole vehicle-bridge coupling system has been built 

successfully. In this chapter, the semi-active control algorithm is needed to be inputted and applied 

in the co-simulation platform, and the semi-active control for vehicle-bridge coupling system 

should be completed to reduce the bridge dynamic responses and protect the whole system safety. 

 

As introduced in Chapter 4 and Chapter 5, from that Yao (1972) firstly introduced the modern 

control theory into civil engineering in 1972, great progress in the field of structural vibration 

control has been achieved over the past few decades (Yao 1972; Housner et al. 1997; Soong and 

Spencer 2002; Soong 1990; Alkhatib and Golnaraghi 2003; Yang, Akbarpour and Ghaemmaghami 

1987; Yang, Long and Wong 1988; Yang, Li and Liu 1991; Yang, Li and Liu 1992; Li, Liu, Fang 
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and Tam 2000; Li, Liu, Tang, Zhang and Tam 2004; Soong et al. 1991; Reinhorn et al. 1993; Inman 

2001; Meirovitch, Baruh, Montgomery and Williams 1984; Schafer and Holzach 1985; Meirovitch 

and Silverberg 1983; Meirovitch 1987; Sadek and Esfandiari 1990; Kucuk and Sadek 2005, 2007). 

 

In those research works about the structural vibration control, applying smart materials to build 

control structure to reduce the structural dynamic responses is just one popular and valuable 

research topic. Among plenty of existed smart materials, magnetorheological fluids (MRFs) and 

magnetorheological elastomers (MREs) have been studied for a long time and there have been 

many valuable research results (Ginder, Nichols, Elie and Tardiff 1999; Ginder, Nichols, Elie and 

Clark 2000; Ramallo, Johnson and Spencer 2002; Yoshioka, Ramallo and Spencer 2002; Koo, 

Sung, Lee and Jung 2008; Deng and Gong 2007; Koo, Jang, Usman and Jung 2009; Hoang, Zhang 

and Du 2009; Opie and Yim 2009; Dong, Yu, Liao and Chen 2009; Jung, Park and Koo 2010; Du, 

Li and Zhang 2011; Behrooz, Wang and Gordaninejad 2014).  

 

Many research works about the vehicle-bridge coupling system have been stated specifically in 

Chapter 6, however, in most of those previous studies, the effects of the track structures on the 

bridges have been completely neglected or only partially accounted. Several researchers take into 

consider the elastic properties of the track structures by computing the combined stiffness of track 

and bridge (Wiriyachai, Chu and Garg 1982; Chu, Garg and Wang 1986; Wang, Garg and Chu 

1991). Yang and Yau (1997) study the ballast stiffness of the track by continuously distributed 
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springs while implicitly neglecting the stiffness of the rail, and the similar work is done by Yau et 

al. (1999). Le et al. (1999) make some numerical work and field measurements on ballast mats on 

high-speed bridges, the track and bridge are modelled by conventional Timoshenko beam finite 

elements, and sleepers and ballast are modelled as spring-damper system. Cheng, Au and Cheung 

(2001) develop a new finite element called bridge-track-vehicle element to investigate the 

interactions among a moving train, supporting railway track and bridge, and the effect of track 

structure on the dynamic responses of bridge structure is shown. 

 

As to the real bridge structures in railway engineering, several researchers also make some efforts 

to control and reduce their vibration when the trains are passing on the bridge. Minsili, Zhong and 

Xia (2002) suggest to install supplemental diagonal elements in truss bridges connected to original 

braces by Slotted Friction Connections, in order to reduce the vibrations induced by traffic or 

earthquake. Martinez-Rodrigo, Lavado and Museros (2010a) propose and evaluate a solution, 

which is based on retrofitting the bridge with fluid viscous dampers connected to the slab and to 

an auxiliary structure, to reduce inadmissible levels of deck vertical acceleration. Another similar 

work is also completed by the same researchers (Martinez-Rodrigo, Lavado and Museros 2010b).  

 

As shown above, although the structural vibration control and the control by using smart materials 

have been studied for a long time, there are few research works on the vibration control of bridge 

structures in vehicle-bridge coupling system. The effect of track structure on the dynamic 
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responses of bridge is not considered in many works, so there is not any research considering to 

use track structure to realize the bridge vibration control. In this way, installing the vibration 

control structure on track structure and using the vibration of track to control and reduce the 

dynamic responses of the bridges in bridge-vehicle coupling system is really a new topic.  

 

In this chapter, considering the ballastless track structure, which chooses floating slab track as the 

main constituent part, is widely existed in modern high-speed rail engineering, MRNs with 

corresponding electromagnetic field devices are applied as the viscoelastic layer between floating 

slab track and bridge main beam to realize the semi-active control on vehicle-bridge coupling 

system of high-speed rail. Simplifying the connection between rail and floating slab track, the 

simply supported bridge with floating slab track in real high-speed rail project is actually a double-

beam system. It means that the semi-active control developed in Chapter 4 and Chapter 5 based 

on double-beam system can be used in here. After introducing the MRNs and their dynamic 

mechanical model, the specific semi-active control algorithm for MRNs applied in high-speed rail 

bridge is derived according to the works in Chapter 5. That semi-active control algorithm is coded 

as a program block and inputted into the co-simulation platform which is built in Chapter 6. Finally, 

the simulation of the whole vehicle-bridge coupling system with semi-active control in high-speed 

rail can be completed. Numerical examples are demonstrated and discussed in details to verify the 

efficiency of the semi-active control structure proposed in this research by MRNs, which may be 

applied in real engineering practices in future.  
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7.2 Introduction of Ballastless Track and Floating Slab Track 

In modern railway engineering, especially in high-speed rail engineering, the ballastless track 

structure is widely used in railway constructions and gradually becomes the main current structural 

style. Comparing with traditional railway track structure ballast track (as shown in Fig. 7-1(a)), the 

most obvious difference of the ballastless track is that it adopts the overall concrete bed structure 

to take the place of the ballast bed (as shown in Fig. 7-1(b)). The biggest advantages of using 

ballastless track consist of : (1) Stability, precision, and ride comfort; (2) Flexibility and end-to-

end effectiveness in application; (3) Long life cycles and practically no maintenance. That is why 

it is so popular in high-speed rail engineering and is constructed over the world now. 

  

 

a. Ballast Track (by Lechner 2011) 

 

b. Ballastless Track (by Wang 2011) 

Fig. 7-1. The railway track structure: ballast track and ballastless track. 

 

In ballastless track, the floating slab track is the most important part and it is used in almost all 

ballastless tracks to reduce the vibrations produced by trains and transferred to ground or bridge 
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under it. As shown in Fig. 7-2, floating slab track is usually a overall concrete slab with rails 

installed on it, and it is connected with ground or bridge main beam under it by viscoelastic layer. 

Considering the floating slab track on bridge main beam is basically a long concrete slab, they can 

form a mechanical model as shown in Fig. 7-3. 

 

a. Floating Slab Track on Bridge (by Wilson 2004) 

 

b. Floating Slab Track on Bridge 

 

c. Floating Slab Track on Ground (by SSF Ingenieure) 

 

d. Floating Slab Track on Ground 

Fig. 7-2. Floating slab track. 

 

 

Fig. 7-3. Mechanical model of bridge main beam with floating slab track. 
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If we simplify the connections between rails and floating slab track, assume that they are joined 

by rigid connections and they can be treated as just one substructure, in fact, the floating slab track 

and bridge main beam will form a typical double-beam system as shown in Fig. 7-4. In this way, 

the analysis on the vibrations and dynamic responses of double-beam system in Chapter 2 and 

Chapter 3, the active control and semi-active control for double-beam system in Chapter 4 and 

Chapter 5, all of them, can be applied in the real structure in here. 

 

 

Fig. 7-4. Mechanical model of bridge main beam with simplified floating slab track: a double-beam system. 

 

In this research, the simplified double-beam system formed by bridge main beam and floating slab 

track as introduced above and shown in Fig. 7-4 will be used to study the semi-active control in 

vehicle-bridge coupling system of high-speed rail by novel adaptive materials MRNs. The specific 

derivations about the semi-active control algorithm will be introduced in Section 7.4. 

 

7.3 The Introduction and Dynamic Mechanical Model of the 

Magnetorheological Nanocomposites 

It is well known that the magnetorheological elastomers (MREs) are smart materials whose 

mechanical behavior can be controlled by external magnetic fields rapidly and reversibly, showing 
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abilities for wide use in structural control applications. However, due to matrix materials, MREs 

have comparatively inferior mechanical properties. In order to make up those limits of MREs, 

some other smart materials are developed by many scholars, and magnetorheological 

nanocomposites (MRNs) are just one kind of those new smart materials. In this section, the 

microstructure and dynamic mechanical model of MRNs will be introduced and derived.  

7.3.1 Introduction of Magnetorheological Nanocomposites 

A research group led by Professor Lizhi Sun at University of California, Irvine (UCI) developed 

the novel adaptive materials MRNs, which use carbon nanotubes (CNT) to enhance and increase 

stiffness, strength and damping performances of the elastomers. In another word, MRNs are a kind 

of improved MREs by adding CNT to enhance the matrix materials. It is similar to MREs, for 

MRNs, magnetic particles are aligned in chains in nonmagnetic matrix along the direction of 

curing magnetic fields (as shown in Fig. 7-5(a)), and when it is exposed to external magnetic fields, 

the bulk mechanical properties of MRNs can be changed by controlling the magnetic field strength 

due to the interaction between the magnetic particles. The microstructures of MREs and MRNs by 

scanning electron microscope are shown in Fig. 7-5 (b, c). 

 

a. The formation of chain structure in MREs and MRNs by curing magnetic field. 
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b. Microstructure of MREs by scanning electron 

microscope, the direction of iron particle chains are 

shown by arrow in the figure. 

 

c. Microstructure of MRNs by scanning electron 

microscope, the direction of iron particle chains are 

shown by arrow in the figure. 

Fig. 7-5. Microstructure of MREs and MRNs (by Li 2011). 

 

Dr. Rui Li in Professor Sun’s group at UCI completed plenty of experiment works on MRNs and 

discovered several very important results about the dynamic properties of those novel adaptive 

materials (Li 2011). Some of those experiment works can be shown as in Fig. 7-6 and Fig. 7-7. 

 

 

Compression Test 

 

Shear Test 

Fig. 7-6. Dynamic stiffness of MRNs with and without magnetic field (by Li 2011). 
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Compression Test 

 

Shear Test 

Fig. 7-7. Dynamic damping of MRNs with and without magnetic field (by Li 2011). 

 

From those experiment works, one most important result about the dynamic properties of MRNs 

can be concluded as: adding CNTs significantly increase the dynamic stiffness and damping of the 

conventional MREs and clearly enhances the MR effect in both compression and shear mode. 

Because of that result, the MRNs has larger dynamic stiffness and damping, and the MR effect in 

it is stronger, therefore, MRNs has more potentialities than MREs to be applied in structural control.  

 

7.3.2 Dynamic Mechanical Model of Magnetorheological Nanocomposites 

It is the same as the discussion in Section 5.4.1, the dynamic mechanical model of MRNs is the 

basis for its corresponding semi-active control algorithm, and it is very important to identify it 

firstly in order to apply MRNs in structural vibration control. 

 

In plenty of existed research works about the dynamic mechanical model of traditional MREs, the 
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linear model is just an easy but still practical one for the MREs’ application in structural vibration 

control (Jung, Park and Koo 2010; Behrooz, Wang and Grodaninejad 2014; Usman, Jang, Kim, 

Jung and Koo 2009; Yang, Du, Li, Li, Li, Sun and Deng 2013). Based on the research results of 

MRNs obtained by Dr. Rui Li (Li 2011) and comparing them with MREs, a simple pseudo linear 

model (as shown in Fig. 7-8(a)) is adopted to represent the dynamic mechanical model of MRNs 

and it can be defined as introduced in Section 5.4.1 as: 

   MRNsf K K W C C W                                                   (7-1) 

where  K K W    and  C C W    is the elastic force and damping force of the MRNs, 

respectively, K and C are the stiffness and damping coefficients of MRNs, K  and C  is the 

stiffness increase and damping increase of MRNs, W  is the MRNs deformation displacement, 

and W  is the MRNs deformation velocity. 

 

The stiffness and damping coefficients of the MRNs are assumed to have a linear relation with the 

applied current, whose calculation model is a linear model (as shown in Fig. 7-8(b) and Fig. 7-

8(c)) as follows 

 min max minT

m

I
K K K K

I
                                                    (7-2a) 

 min max minT

m

I
C C C C

I
                                                     (7-2b)   

where TK  and TC  are the stiffness and damping coefficients of the MRNs under specific 

current, maxK  and maxC  is maximum stiffness value and maximum damping value of the MRNs, 
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minK  and minC  is minimum stiffness value and damping value of the MRNs, 
mI  is the 

saturation current for the device, and I is the inputted current determined by semi-active control. 

 

a. Linear Model for MRNs 

Dynamic Mechanical Model 

 

b. Linear Model of MRNs Stiffness 

with Applied Current 

 

c. Linear Model of MRNs Damping 

Coefficient with Applied Current 

Fig. 7-8. Linear model for MRNs dynamic mechanical model and linear model of MRNs stiffness and damping 

coefficients with applied current. 

 

If the default current inputted is 0I  and the default stiffness and damping coefficients of the 

MRNs are K and C, respectively, the stiffness increase K  and damping increase C  (as 

shown in Fig. 7-8(b) and Fig. 7-8(c)) could be controlled by the current as 

 0
max minT

m

I I
K K K K K

I


                                                 (7-3a)            

 0
max minT

m

I I
C C C C C

I


                                                  (7-3b)                

 

Although the simple linear model does not represent the actual behavior of MRNs, it helps us to 

study a suitable semi-active control algorithm for the semi-active control structure in next section, 

and so, it is proper to adopt it in the discussion in here.  
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7.4 Semi-Active Control Algorithm based on MRNs for High-Speed Rail 

Vehicle-Bridge Coupling System 

As introduced in Section 7.2, with the simplification of the connections between rails and floating 

slab track, the floating slab track with rails on it and the bridge main beam will form a double-

beam system. Considering the semi-active control of double-beam system with viscoelastic layer 

studied in Chapter 5, in this research, the semi-active control in vehicle-bridge coupling system of 

high-speed rail is proposed by applying the controllable MRNs in the viscoelastic layer between 

bridge main beam and floating slab track (as shown in Fig. 7-9). In this section, the specific semi-

active control algorithm based on MRNs applied in vehicle-bridge coupling system of high-speed 

rail will be studied. 

 

 

Fig. 7-9. Double-beam system of floating slab track and bridge main beam with controllable MRNs as viscoelastic 

layer between them. 

 

From Fig. 7-9, the floating slab track with rails on it and the bridge main beam form a double-

beam system. It means that the semi-active control algorithm derived in Chapter 5, which is for 

the double-beam system with viscoelastic layer, can be applied in here. Meanwhile, the dynamic 

mechanical model of MRNs defined in Section 7.3 is also the same linear model as the one in 

Section 5.4.1. Therefore, based on the research works in Chapter 5, the semi-active control 
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algorithm based on MRNs in vehicle- bridge coupling system can be: 

(1) If    1 2
max 1 2 max

0 0 0
,

L L L

c

W W
K W W dx C dx f x t dx

t t

  
      

  
   , 

   then maxdK K   , maxdC C                                             (7-4a)             

(2) If    1 2
max 1 2 max

0 0 0
,

L L L

c

W W
K W W dx C dx f x t dx

t t

  
      

  
    and  

        1 2
min 1 2 min

0 0 0
,

L L L

c

W W
K W W dx C dx f x t dx

t t

  
      

  
     

   then  0
max mind T

m

I I
K K K K K

I


     ,  0

max mind T

m

I I
C C C C C

I


     ,     (7-4b) 

(3) If    1 2
min 1 2 min

0 0 0
,

L L L

c

W W
K W W dx C dx f x t dx

t t

  
      

  
   , 

   then mindK K   , mindC C                                             (7-4c)                   

where max maxK K K   , max maxC C C   , min minK K K   , min minC C C   , K, C are the 

default stiffness and damping coefficients of the MRNs, respectively,  ,cf x t  is the active 

control forced determined as in Section 5.3.3,  ,i iW W x t  is transverse displacements, 

 ,ii
W x tW

t t




 
 is transverse velocities, i=1 or 2 represents floating slab track or bridge main 

beam, and L is the length of bridge main beam or floating slab track. 

 

The parameters in Eq. (7-4b) are calculated as in Section 5.4.2 as follows 

   
  0

max min max min

m
nc

I
I F t I

H K K J C C
 

  
                                  (7-5a) 
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     1

21 22

1

2
nc n nF t R P T t P T t                                                 (7-5b) 

        

       

2 1 1 2
0

1 1 1 2 2 2
0

, ,
L

n n

L

n n n n

x x W x t W x t dx
H

x m x x m x dx

 

   

       


  




                                (7-5c) 

   
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       

1 2

2 1
0

1 1 1 2 2 2
0

, ,L

n n

L

n n n n

W x t W x t
x x dx

t t
J

x m x x m x dx

 

   

    
          

  




                             (7-5d) 

where  ncF t  is modal active control force in the modal space which is determined as in Section 

5.3.2, 
1m , 2m  are the beam mass per unit length of floating slab track and bridge main beam, 

and  1n x ,  2n x  are mode shape functions of floating slab track and bridge main beam 

corresponding to nth natural frequency. 

 

The specific derivation works of the semi-active control algorithm based on MRNs in vehicle-

bridge coupling system, which are shown as Eq. (7-4) and Eq. (7-5) above, can be referred to the 

derivation works in Chapter 5.  

 

Until here, based on the semi-active control algorithm introduced in this section, the stiffness 

increase dK  and damping increase dC  of MRNs are determined and could be adopted by 

semi-active control structure. It is the same as the discussion in Section 5.4.2, only one main mode 

will be chosen to be controlled for the semi-active control structure, dK  and dC  should be 

determined at each time step and changed during the whole vibration process when the trains are 
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passing the bridge.    

              

7.5 Co-Simulation Platform for Vehicle-Bridge Coupling System with Semi-

Active Control 

The semi-active control algorithm based on MRNs for semi-active control in vehicle-bridge 

coupling system has been introduced and determined in Section 7.4, in this section, that semi-

active control structure and corresponding semi-active control algorithm will be inputted into the 

co-simulation platform of vehicle-bridge coupling system and the final simulation of whole system 

with semi-active control will be completed. 

 

In Section 6.5, the co-simulation platform has been built successfully by Matlab/Simulink, 

MSC/NASTRAN and MSC/ADAMS. The semi-active control algorithm derived in Section 7.4 

can be coded as a program block and inputted into the Matlab/Simulink platform, and then, it could 

work in the co-simulation platform. In this way, the simulation of the whole vehicle-bridge 

coupling system with semi-active control based on MRNs can be realized and the general process 

is as the flowchart in Fig. 7-10. And the simulation of the semi-active control structure based on 

MRNs in the co-simulation platform can be denoted as the flowchart in Fig. 7-11.  
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Fig. 7-10. Flowchart of the simulation for whole vehicle-bridge coupling system with semi-active control based on 

MRNs. 

 

In the real high-speed rail engineering projects, during each time step when the trains are passing 

the bridge, the displacements and velocities of the bridge main beam and floating slab track can 

be detected by the sensors installed on bridge structure, and then inputted into the central control 

computer. The central computer will calculate and determine the semi-active control signals dK , 

dC  and applied current I  following the calculation procedure as shown in the flowchart in Fig. 

7-11. Those semi-active control signals will be outputted to the electromagnetic field devices 
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designed for MRNs. According to those control signals, the stiffness and damping coefficients of 

MRNs can be changed to complete the semi-active control in this time step. Repeating that control 

process one time step by one time step until the train passes the whole bridge, the semi-active 

vibration control for whole vehicle-bridge coupling system of high-speed rail is just completed.  
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Fig. 7-11. Flowchart of the semi-active control structure based on MRNs in co-simulation platform for vehicle-bridge 

coupling system of high-speed rail. 

 

7.6 Numerical Examples 

In order to illustrate the effectiveness of the semi-active control based on MRNs in vehicle-bridge 

coupling system of high-speed rail, which is proposed in this chapter and is also the main objective 
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of this research, some numerical examples are investigated in detail. The values for parameters of 

the vehicle-bridge coupling system with semi-active control are as follows. 

 

1. The parameters for bridge structure. 

The specific size details about the bridge structure are the same as shown in Fig. 6-1. In addition, 

the bridge main beam and floating slab track are made of concrete which has 
10 23.45 10cE Nm  , 

32500c kgm  , 0.2c  , the rail track is made of steel which has 
11 22 10sE Nm  , 

37850s kgm  , 0.2s  , and the rubber for connecting rail and floating slab track has 

8 21 10rK Nm  , 
4 13 10rC Nsm  . The stiffness and damping of the viscoelastic layer which 

is made of MRNs and between bridge main beam and floating slab track are controlled and 

changed by semi-active control structure. The specific value of MRNs layer stiffness and damping 

will be shown in Fig. 7-14.  

 

2. The parameters for train system. 

A high-speed rail train, CRH5, is adopted in this research for the simulation of train system, and 

the specific details about CRH5 size and other parameters are as shown in Table. (7-1). 

 

Table 7-1. The parameters for CRH5 train system. 

Parameters Notation Unit Value 

Mass of car body cm  kg 46.2904 10  

Mass of bogie frame bm  kg 32.929 10  

Mass of wheel-set wm  kg 31.95 10  
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Moment of inertia of car body frame about the x-axis cxI  2kg m  47.55 10  

Moment of inertia of car body frame about the y-axis cyI  2kg m  63.1598 10  

Moment of inertia of car body frame about the z-axis czI  2kg m  63.1598 10  

Moment of inertia of bogie frame about the x-axis bxI  2kg m  32.247 10  

Moment of inertia of bogie frame about the y-axis byI  2kg m  35.045 10  

Moment of inertia of bogie frame about the z-axis bzI  2kg m  32.806 10  

Moment of inertia of wheel-set about the x-axis wxI  2kg m  900 

Moment of inertia of wheel-set about the y-axis wyI  2kg m  96 

Moment of inertia of wheel-set about the z-axis wzI  2kg m  900 

Vertical stiffness of primary suspension 1zK  /N m  62.1216 10  

Vertical damping of primary suspension 1zC  /N s m  41.77 10  

Horizontal stiffness of primary suspension 1yK  /N m  61.2944 10  

Horizontal damping of primary suspension 1yC  /N s m  41.77 10  

Longitudinal stiffness of primary suspension 1xK  /N m  61.2944 10  

Longitudinal damping of primary suspension 1xC  /N s m  41.77 10  

Vertical stiffness of secondary suspension 2zK  /N m  61.86 10  

Vertical damping of secondary suspension 2zC  /N s m  41.00 10  

Horizontal stiffness of secondary suspension 2 yK  /N m  67.00 10  

Horizontal damping of secondary suspension 2yC  /N s m  41.00 10  

Horizontal stiffness of secondary suspension 2xK  /N m  67.00 10  

Horizontal damping of secondary suspension 2zC  /N s m  41.00 10  

Radius of wheel wR  m 0.445 

Full length l  m 10 

Half-distance between two bogies bd  m 4 

Half-distance between wheel-sets wd  m 0.5 

Half-distance between rolling circularity rd  m 0.748 
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Half-distance between first suspension system 1d  m 1.10 

Half-distance between second suspension system 2d  m 1.10 

Distance between car body and second suspension system 1h  m 1.80 

Distance between second suspension system and bogie 2h  m 0.20 

Distance between bogie and wheel-set 3h  m 0.645 

 

In this chapter, three trains are simulated to pass the bridge one by one, and the velocities of them 

are all the same as 80V m s  for Case 1 and 100V m s  for Case 2. The dynamic responses 

at the midspan of the floating slab track and bridge main beam with passive control and semi-

active control are shown in Fig. 7-12 and Fig. 7-13. The variation stiffness K and variation damping 

coefficient C of MRNs layer controlled by semi-active control structure are shown in Fig. 7-14, 

and the current applied to control MRNs are also shown in Fig. 7-14. 

 

 

 

a. Floating Slab Track Displacement 

 

b. Bridge Main Beam Displacement 

 

c. Floating Slab Track Velocity 

 

d. Bridge Main Beam Velocity 
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e. Floating Slab Track Acceleration 

 

f. Bridge Main Beam Acceleration 

 

Fig. 7-12. Dynamic responses at midspan point of floating slab track and bridge main beam for Case 1: V=80m/s. 

 

a. Floating Slab Track Displacement 

 

b. Bridge Main Beam Displacement 

 

c. Floating Slab Track Velocity 

 

d. Bridge Main Beam Velocity 

 

e. Floating Slab Track Acceleration 

 

f. Bridge Main Beam Acceleration 

 

Fig. 7-13. Dynamic responses at midspan point of floating slab track and bridge main beam for Case 2: V=100m/s. 

 

a. Case 1 - K

 

b. Case 2 - K
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c. Case 1 - C

 

d. Case 2 - C

 

e. Case 1 - Current

 

f. Case 2 - Current

 

Fig. 7-14. Variation stiffness K and variation damping coefficient C of MRNs layer controlled by semi-active control 

structure, and current applied to MRNs for each case. 

 

As shown in Fig. 7-12 and Fig. 7-13, comparing with the viscoelastic layer with constant stiffness 

and damping called passive control in here, the semi-active control structure based on MRNs and 

the corresponding semi-active control algorithm developed in this research are more effective to 

suppress the vibrations and reduce the dynamic responses of both floating slab track and bridge 

main beam. Although the acceleration is not controlled so well as displacement and velocity, the 

reduction effects of it on both floating slab track and bridge main beam are still apparent.   

 

In case 1 (Fig. 7-12), resonance phenomenon is happened in bridge main beam with passive control, 

but it is controlled and eliminated when the semi-active control is applied. Therefore, the semi-

active control proposed in this research can effectively avoid the resonance happening in the bridge 

structure when the trains are passing and protect the safety of the whole structure. 
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In Fig. 7-14, the value of variation stiffness K and variation damping coefficient C of the MRNs 

layer are shown for all cases, and it is easy to find out that both of them have obvious changes 

under the semi-active control. The range of those two parameters are 
6 75 10 ~ 2 10 /K N m    

and 
4 42 10 ~ 8 10 /C N s m    . The maximum value of each parameter is just 4 times of the 

minimum value, which could be reached by existed MRNs material. The current applied to MRNs 

and determined by semi-active control algorithm is also shown in Fig. 7-14, and the existence and 

presentation of it denote the operability of the proposed semi-active control. In summary, from Fig. 

7-14, it proves that the semi-active based on MRNs proposed in this research is reasonable and it 

is practical to apply it in the real bridge structures in high-speed rail engineering. 

 

7.7 Conclusions 

The main objective of the research in this dissertation is applying the novel adaptive materials 

magnetorheological nanocomposites (MRNs) to build a semi-active control structure in vehicle-

bridge coupling system of high-speed rail, controlling the vibration and reducing the dynamic 

responses of the bridge by that semi-active control. In this chapter, that main objective is completed 

and the semi-active control based on MRNs for vehicle-bridge coupling system of high-speed rail 

is presented.  

 



221 

 

Considering the ballastless track structure, which chooses floating slab track as the main 

constituent part, is widely existed in high-speed rail engineering, the MRNs are applied as the 

viscoelastic layer between floating slab track and bridge main beam to build the semi-active control 

structure. The dynamic mechanical model of MRNs is derived by their properties from 

experiments. Simplifying the connection between rail and floating slab track, the simply supported 

bridge with floating slab track is actually a double-beam system. Combining the linear model of 

MRNs dynamic mechanical model which is the same as the viscoelastic layer in Chapter 5, the 

semi-active control developed in Chapter 5 can be used in here. That semi-active control algorithm 

is inputted into the co-simulation platform of whole vehicle-bridge coupling system, and the 

simulation of that coupling system with semi-active control based on MRNs is completed finally.  

 

Numerical examples are demonstrated and discussed in details to verify the efficiency of the MRNs 

semi-active control structure proposed in this research for the vehicle-bridge coupling system of 

high-speed rail. Comparing with the passive control that the viscoelastic layer has constant 

stiffness and damping, the semi-active control based on MRNs can suppress the vibrations of both 

floating slab track and bridge main beam more effectively. That semi-active control can also 

eliminate the resonance happened in bridge structure when the trains are passing, and protect the 

safety of the whole structure. The acceptable changes of stiffness and damping of MRNs layer 

prove that the semi-active structure is reasonable and it is practical to apply it in the real bridge in 

high-speed rail. In the end, the main objective of this research is accomplished successfully. 
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Chapter 8 Conclusions and Future Work 

8.1 Conclusions 

In the present dissertation, a novel adaptive materials magnetorheological nanocomposites (MRNs) 

are used to build a semi-active control structure, which is applied into the vehicle-bridge coupling 

system of high-speed rail so that the vibration of the whole system could be controlled effectively 

and the dynamic responses of bridge can be reduced significantly. Both theoretical and numerical 

experimental efforts have been made to analyze the dynamic behavior of the basic mechanical 

model, design and derive the control algorithms for the structure system, and simulate the whole 

structure system with vibration control. As a final remark, some achievements in this dissertation 

are summarized as follows. 

 

As the first major contribution, the dynamic behavior of an undamped double-beam system 

interconnected by elastic layer is investigated. A semi-analytical method is developed to analyze 

the natural frequencies and corresponding mode shapes of that undamped double-beam system, 

which may have arbitrary beam mass, beam flexural rigidity and/or boundary condition. The initial 

conditions are considered to find the free vibration final form, which are the exact solutions of the 

motion differential equations formulated by the classical Bernoulli-Fourier method. The dynamic 

responses of forced system vibration are determined by the modal-expansion method using the 

natural frequencies and mode shapes obtained from the free vibration analysis. The specific 
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orthogonality condition for a double-beam system is derived, and then applied to decouple the 

motion differential equations. Various double-beam system models are studied to verify the semi-

analytical method and conduct the systematic parametric analysis of the structural resonance 

condition and dynamic responses.  

 

Second, considering the viscoelastic layer damping existed in real engineering practices, the 

double-beam system interconnected by viscoelastic layer is analyzed and the damping effects of 

the viscoelastic layer on the dynamic behavior of whole system are studied. A similar semi-

analytical method is developed to analyze the natural frequencies and corresponding mode shapes 

of the general double-beam system, which may have arbitrary viscoelastic layer damping, arbitrary 

beam mass, beam flexural rigidity and/or boundary condition. The free vibration final forms, 

which are the exact solutions of the motion differential equations formulated by the classical 

Bernoulli-Fourier method, are solved based on the initial conditions. An iteration algorithm with 

the modal-expansion method is applied to find the dynamic responses of forced system vibration 

using the natural frequencies and mode shapes obtained from the free vibration analysis. Various 

double-beam system with viscoelastic layer models are studied to verify the semi-analytical 

method and the iteration method, and conduct the systematic parametric analysis of the structural 

resonance condition and dynamic responses.  

 

Third, an active control structure, a semi-active control structure and corresponding control 
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algorithms are proposed to suppress the vibration of the elastically connected double-beam system. 

In the active control structure, independent modal space control is applied to decouple the motion 

equations of double-beam system with the active control, and transfer the vibration control of the 

infinite freedom system in physical space into the vibration control of several modes in modal 

space. Linear quadratic regulator is adopted to determine the specific modal active control force 

for each mode and the active control force in physical space. In the semi-active control structure, 

the active control force produced by the active control structure presented above is set up as the 

objective and the equivalent semi-active control force is assumed to be close to that active force. 

Based on that principle and with the mode shape filter derived, the determination method of 

stiffness increase is derived. Various double-beam system with active control structure or semi-

active control structure models are calculated to illustrate the efficiency of the proposed active 

control and semi-active control. 

 

Fourth, an active control structure, a semi-active control structure and corresponding control 

algorithms are proposed to suppress the vibration of the double-beam system with viscoelastic 

layer, since the materials used to connect the upper beam and lower beam in the double-beam 

system are usually the viscoelastic materials and their damping cannot be ignored in real 

engineering practices. In the active control structure, independent modal space control and linear 

quadratic regulator are also applied to decouple motion equations with active control and 

determine the active control force in physical space. In the semi-active control structure, the active 



225 

 

control force produced by the active control structure presented above is still set up as the objective 

and the equivalent semi-active control force is assumed to be close to that active force. A linear 

model is assumed as the dynamic mechanical model of the adjustable viscoelastic layer and the 

relationships between stiffness, damping with inputted currents are also defined as linear models. 

Based on that calculation principle, the linear model for adjustable viscoelastic layer and the mode 

shape filter, the determination methods of stiffness increase and damping increase are derived. The 

calculation methods for double-beam system with that active control and that semi-active control 

are also developed. The efficiency of the proposed active control and semi-active control for 

double-beam system with viscoelastic layer is illustrated by various numerical models. 

 

Fifth, a co-simulation method is proposed to complete the dynamic simulation of vehicle-bridge 

coupling system of high-speed rail. Bridge structures are modelled by finite element method 

software MSC/NASTRAN, and dynamics of multibody system software MSC/ADAMS is used to 

simulate the vibration of vehicle system. The vehicle-bridge coupling relationships are all 

introduced and the classical theories about them are adopted, including wheel-rail contact 

geometric parameters, wheel-rail contact forces and track irregularity. The Matlab/Simulink is 

used to build a platform to ensure MSC/NASTRAN and MSC/ADAMS working together, and the 

vehicle-bridge coupling relationships are coded as a program block and inputted into that platform. 

In this way, the co-simulation by using that Matlab/Simulink platform is realized and the 

simulation of whole vehicle-bridge coupling system is completed. Various numerical examples of 
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vehicle-bridge coupling system are calculated to illustrate the practicability and efficiency of the 

proposed co-simulation method. 

 

Finally, the semi-active control structure based on MRNs is developed and applied into the vehicle-

bridge coupling system of high-speed rail so that the vibration of the whole system could be 

controlled effectively and the dynamic responses of bridge can be reduced significantly. MRNs are 

applied as the viscoelastic layer between floating slab track and bridge main beam to build the 

semi-active control structure for high-speed rail bridges. The dynamic mechanical model of MRNs 

is derived based on their properties obtained from experiments. Simplifying the connection 

between rail and floating slab track, the simply supported bridge with floating slab track is actually 

a double-beam system. The semi-active control algorithms developed for double-beam system 

with viscoelastic layer is used to derive the semi-active control algorithm for MRNs. That semi-

active control is inputted into the co-simulation platform of vehicle-bridge coupling system, and 

the simulation of the whole system with semi-active control is completed. Numerical examples are 

demonstrated to prove the efficiency of the MRNs semi-active control structure proposed in this 

research for the vehicle-bridge coupling system of high-speed rail. 

 

8.2 Suggestions for Future Work 

In the future research on MRNs and its application for semi-active control in vehicle-bridge 
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coupling system of high-speed rail, there are several suggestions summarized as follows. 

 

First, the fabrication techniques of MRNs should be improved, and the better MRNs materials with 

wider adjustable range in stiffness and damping should be developed to make better control effects 

for their application in civil engineering structural vibration control. 

 

Second, the specific electromagnetic devices for MRNs should be invented so that the semi-active 

control devices based on MRNs could be installed and used in real structures. 

 

Third, the theoretical research on the dynamic behavior of double-beam system should be 

continued. The double-beam system with non-uniformly distributed elastic layer or viscoelastic 

layer should be studied carefully, since it will be the basis for the decentralized control in future. 

 

Fourth, the semi-active control algorithms based on MRNs for vehicle-bridge coupling system of 

high-speed rail should be improved. Several specific semi-active control algorithms should be 

developed based on the properties of MRNs and the bridge structure with floating slab track. And 

a decentralized control method and correspond algorithm should be observed. 

 

Fifth, the co-simulation platform should be improved so that the calculation and simulation will 

be faster and more accurate, especially when simulating some complex bridges and vehicles. 
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Finally, the semi-active control based on MRNs and developed in this research is needed to be 

applied on real bridge structures and do some field tests, and their control effects should be proved 

by those field tests so that they can be used in real engineering projects in future. 
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