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A diversity of localized timescales in 
network activity
Rishidev Chaudhuri1,2, Alberto Bernacchia3, Xiao-Jing Wang2,4*

1Department of Applied Mathematics, Yale University, New Haven, United States; 
2Department of Neurobiology, Yale University, New Haven, United States; 3School of 
Engineering and Science, Jacobs University Bremen, Bremen, Germany; 4Center for 
Neural Science, New York University, New York, United States

Abstract Neurons show diverse timescales, so that different parts of a network respond with 
disparate temporal dynamics. Such diversity is observed both when comparing timescales across brain 
areas and among cells within local populations; the underlying circuit mechanism remains unknown. 
We examine conditions under which spatially local connectivity can produce such diverse temporal 
behavior. 

In a linear network, timescales are segregated if the eigenvectors of the connectivity matrix are 
localized to different parts of the network. We develop a framework to predict the shapes of localized 
eigenvectors. Notably, local connectivity alone is insufficient for separate timescales. However, 
localization of timescales can be realized by heterogeneity in the connectivity profile, and we 
demonstrate two classes of network architecture that allow such localization. Our results suggest a 
framework to relate structural heterogeneity to functional diversity and, beyond neural dynamics, are 
generally applicable to the relationship between structure and dynamics in biological networks.
DOI: 10.7554/eLife.01239.001

Introduction
A major challenge in the study of neural circuits, and complex networks more generally, is under-
standing the relationship between network structure and patterns of activity or possible functions this 
structure can subserve (Strogatz, 2001; Newman, 2003; Honey et al., 2010; Sporns, 2011). A number 
of neural networks show a diversity of time constants, namely different nodes (single neurons or local 
neural groups) in the network display dynamical activity that changes on different timescales. For 
instance, in the mammalian brain, long integrative timescales of neurons in the frontal cortex (Romo 
et al., 1999; Wang, 2001; Wang, 2010) are in striking contrast with rapid transient responses of 
neurons in a primary sensory area (Benucci et al., 2009). Furthermore, even within a local circuit, 
a diversity of timescales may coexist across a heterogeneous neural population. Notable recent exam-
ples include the timescales of reward integration in the macaque cortex (Bernacchia et al., 2011), and 
the decay of neural firing rates in the zebrafish (Miri et al., 2011) and macaque oculomotor integrators 
(Joshua et al., 2013). While several models have been proposed, general structural principles that 
enable a network to show a diversity of timescales are lacking.

Studies of the cortex have revealed that neural connectivity decays rapidly with distance (Holmgren 
et al., 2003; Markov et al., 2011; Perin et al., 2011; Levy and Reyes, 2012; Markov et al., 2014; 
Ercsey-Ravasz et al., 2013) as does the magnitude of correlations in neural activity (Constantinidis 
and Goldman-Rakic, 2002; Smith and Kohn, 2008; Komiyama et al., 2010). This characteristic is 
apparent on multiple scales: in the cerebral cortex of the macaque monkey, both the number of 
connections between neurons in a given area and those between neurons across different brain areas 
decay rapidly with distance (Markov et al., 2011, 2014). Intuitively, local connectivity may suggest 
that the timescales of network activity are localized, by which we mean that nodes that respond with 
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a certain timescale are contained within a particular region of the network. Such a network would show 
patterns of activity with different temporal dynamics in disparate regions. Surprisingly, this is not 
always true and, as we show, additional conditions are required for localized structure to translate into 
localized temporal dynamics.

We study this structure–function relationship for linear networks of interacting nodes. Linear 
networks are used to model a variety of physical and biological networks, especially those where inter-
node interactions are weighted (Newman, 2010). Most dynamical systems can be linearized around a 
point of interest, and so linear networks generically emerge when studying the response of nonlinear 
networks to small perturbations (Strogatz, 1994; Newman, 2010). Moreover, for many neurons the 
dependence of firing rate on input is approximately threshold-linear over a wide range (Ahmed et al., 
1998; Ermentrout, 1998; Wang, 1998; Chance et al., 2002), and linear networks are common 
models for the dynamics of neural circuits (Dayan and Abbott, 2001; Shriki et al., 2003; Vogels 
et al., 2005; Rajan and Abbott, 2006; Ganguli et al., 2008; Ganguli et al., 2008; Murphy and Miller, 
2009; Miri et al., 2011).

The activity of a linear network is determined by a set of characteristic patterns, called eigenvectors 
(Rugh, 1995). Each eigenvector specifies the relative activation of the various nodes. For example, in 
one eigenvector the first node could show twice as much activity as the second node and four times 
as much activity as the third node, and so on. The activity of the network is the weighted sum of 
contributions from the eigenvectors. The weight (or amplitude) of each eigenvector changes over time 
with a timescale determined by the eigenvalue corresponding to the eigenvector. The network archi-
tecture determines the eigenvectors and eigenvalues, while the input sets the amplitudes with which 
the various eigenvectors are activated. In Figure 1, we illustrate this decomposition in a simple 
schematic network with three eigenvectors whose amplitudes change on a fast, intermediate and slow 
timescale respectively.

In general, the eigenvectors are poorly segregated from each other: each node participates signif-
icantly in multiple eigenvectors and each eigenvector is spread out across multiple nodes (Trefethen 
and Embree, 2005). Consequently, timescales are not segregated, and a large number of timescales 
are shared across nodes. Furthermore, if the timescales have largely different values, certain eigenvec-
tors are more persistent than others and dominate the nodes at which they are present. If these slow 

eLife digest Many biological systems can be thought of as networks in which a large number 
of elements, called ‘nodes’, are connected to each other. The brain, for example, is a network of 
interconnected neurons, and the changing activity patterns of this network underlie our experience 
of the world around us. Within the brain, different parts can process information at different speeds: 
sensory areas of the brain respond rapidly to the current environment, while the cognitive areas of 
the brain, involved in complex thought processes, are able to gather information over longer periods 
of time. However, it has been largely unknown what properties of a network allow different regions 
to process information over different timescales, and how variations in structural properties translate 
into differences in the timescales over which parts of a network can operate.

Now Chaudhuri et al. have addressed these issues using a simple but ubiquitous class of networks 
called linear networks. The activity of a linear network can be broken down into simpler patterns 
called eigenvectors that can be combined to predict the responses of the whole network. If these 
eigenvectors ‘map’ to different parts of the network, this could explain how distinct regions process 
information on different timescales.

Chaudhuri et al. developed a mathematical theory to predict what properties would cause such 
eigenvectors to be separated from each other and applied it to networks with architectures that 
resemble the wiring of the brain. This revealed that gradients in the connectivity across the network, 
such that nodes share more properties with neighboring nodes than distant nodes, combined with 
random differences in the strength of inter-node connections, are general motifs that give rise to such 
separated activity patterns. Intriguingly, such gradients and randomness are both common features 
of biological systems.
DOI: 10.7554/eLife.01239.002
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timescales are spread across multiple nodes, they dominate the network activity and the nodes will 
show very similar temporal dynamics. This further limits the diversity of network computation.

In this paper, we begin by observing that rapidly-decaying connectivity by itself is insufficient to 
give rise to localized eigenvectors. We then examine conditions on the network-coupling matrix that 
allow localized eigenvectors to emerge and build a framework to calculate their shapes. We illustrate 
our methods with simple examples of neural dynamics. Our examples are drawn from Neuroscience, 
but our results should be more broadly applicable for understanding network dynamics and the 
relationship between the structure and function of complex systems.

Results
We study linear neural networks endowed with a connection matrix W (j,k) (‘Methods’, Equation 9), 
which denotes the weight of connection from node k to node j. For a network with N nodes, the 
matrix W has N eigenvectors and N corresponding eigenvalues. The time constant associated with 
the eigenvector vλ is ( )1/Re −λ , where λ is the corresponding eigenvalue (‘Methods’, Equation 11). 
This time constant is present at all nodes where the eigenvector has non-zero magnitude. We say 
an eigenvector is delocalized if its components are significantly different from 0 for most nodes. 
In this case, the corresponding timescale is spread across the entire network. On the other hand, 
if an eigenvector is localized then vλ (j) ≈ 0 except for a restricted subset of spatially contiguous 
nodes, and the timescale ( )1/Re −λ  is confined to a region of the network. If most or all of the eigen-
vectors are localized, then different nodes show separated timescales in their dynamical response to 
external stimulation.

Note that even if the eigenvectors are localized, a large proportion of network nodes could respond 
to a given input, but they would do so with disparate temporal dynamics. Conversely, even if the 
eigenvectors are delocalized, a given input could still drive some nodes much more strongly than 

Figure 1. The activity of a linear network can be decomposed into contributions from a set of eigenvectors. On the 
right is shown a sample network along with the activity of two nodes (cyan and yellow). The activity of this network 
is the combination of a set of eigenvectors whose spatial distributions are shown in blue, green and red on the left. 
The nodes are colored according to the contributions of the various eigenvectors. Each eigenvector has an amplitude 
that varies in time with a single timescale given by the corresponding eigenvalue; here the blue, green and red 
eigenvectors have a fast, intermediate and slow timescale, respectively. The cyan node is primarily a combination 
of the blue and green eigenvectors; hence its activity is dominated by a combination of the blue and green amplitudes 
and it shows a fast and an intermediate timescale. Similarly, the yellow node has large components in the green 
and red eigenvectors, therefore its activity reflects the corresponding amplitudes and intermediate and slow 
timescales.
DOI: 10.7554/eLife.01239.003
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others. However, the temporal dynamics of the response will be very similar at the various nodes even 
if the magnitudes are different.

Consider a network with nodes arranged in a ring, as shown in the top panel of Figure 2A. The 
connection strength between nodes decays with distance according to

( ) − −= /
,, cj k lW j k e

where, lc is set to be 1 node so that the connectivity is sharply localized spatially. In Figure 2B we plot 
the absolute values and real parts of three sample eigenvectors. The behavior is typical of all 
eigenvectors: despite the local connectivity they are maximally delocalized and each node contributes 
with the same relative weight to each eigenvector (its absolute value is constant, while its real and 
imaginary parts oscillate across the network). As shown in Figure 2C, the timescales of decay are very 
similar across nodes.

As known from the theory of discrete Fourier transforms, such delocalized eigenvectors are gener-
ically seen if the connectivity is translationally invariant, meaning that the connectivity profile is the 
same around each node (see mathematical appendix [Supplementary file 1], Section 1 or standard 
references on linear algebra or solid-state physics [Ashcroft and Mermin, 1976]). In this case the jth 
component of the eigenvector vλ is

Figure 2. Local connectivity is insufficient to yield localized eigenvectors. (A) The network consists of 100 nodes, 
arranged in a ring. Connection strength decays exponentially with distance, with characteristic length of one node, 
and is sharply localized. The network topology is shown here as a schematic, with six nodes and only nearest-neighbor 
connections. (B) The eigenvectors are maximally delocalized. Three eigenvectors are shown, and the others are 
similar. The absolute value of each eigenvector, shown with the gray dashed lines, is the same at all nodes. The real 
part of each eigenvector, shown in color, oscillates with a different frequency for each eigenvector. (C) Dynamical 
response of the network to an input pulse, shown on a logarithmic scale. All nodes show similar response 
timescales.
DOI: 10.7554/eLife.01239.004
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( ) ω
λ ,

i jj e=v  (1)

where, ω/2π is the oscillation frequency (which depends on λ) and i is the imaginary unit (i2 = −1). Thus 
local connectivity is insufficient to produce localized eigenvectors.

We developed a theoretical approach that enables us to test network architectures that yield 
localized eigenvectors. Although in general it is not possible to analytically calculate all timescales 
(eigenvalues) of a generic matrix, the theory allows us to predict which timescales would be localized 
and which would be shared. For the localized timescales, it yields a functional form for the shape of 
the corresponding localized eigenvectors. Finally, the theory shows how changing network parameters 
promotes or hinders localization. For a further discussion of these issues, see Section 2 of the mathematical 
appendix (Supplementary file 1).

For a given local connectivity, W (j,k), we postulate the existence of an eigenvector vλ that is 
well localized around some position, j0, defined as its center. We then solve for the detailed shape 
(functional form) of our putative eigenvector and test whether this shape is consistent with our prior 
assumption on vλ. If so, this is a valid solution for a localized eigenvector.

Specifically, if vλ is localized around j0 then vλ (k) is small when 
0

k j−  is large. We combine this with 
the requirement of local connectivity, which implies that W (j,k) is small when j k−  is large, and expand 
W and vλ to first-order in 

0
k j−  and j k−  respectively. With this approximation, we solve for vλ across 

all nodes and find (‘Methods’ and mathematical appendix [Supplementary file 1], Section 2)

( )
( )

( )
ω

α ω
λ

2

0

2

02 ,
.

j j
i j

j
j e

−
− +

=v  (2)

The eigenvector is a modulated Gaussian function, centered at j0. The characteristic width is α, 
such that a small α corresponds to a sharply localized eigenvector. Note that j0 and ω depend on 
the particular timescale (or eigenvalue, λ) being considered and hence, in general, α2 will depend on 
the timescale under consideration. For vλ to be localized, the real part of α2 must be positive when 
evaluated at the corresponding timescale. In this case, vλ is consistent with our prior assumption, 
and we accept it as a meaningful solution.

Our theory gives the dependence of the eigenvector width on network parameters and on the 
corresponding timescale. In particular, α depends inversely on the degree of local heterogeneity in the 
network, so that greater heterogeneity leads to more tightly localized eigenvectors (see appendix 
[Supplementary file 1], Section 2). ω is a frequency term that allows vλ to oscillate across nodes, as in 
Equation 1. As shown later, the method is general and a second-order expansion can be used when 
the first-order expansion breaks down. In that case the eigenvector shape is no longer Gaussian.

We now apply this theory to models of neural dynamics in the mammalian cerebral cortex. We use 
connectivity that decays exponentially with distance (Markov et al., 2011, 2014; Ercsey-Ravasz 
et al., 2013) but our analysis applies to other forms of local connectivity.

Localization in a network with a gradient of local connectivity
Our first model architecture is motivated by observations that as one progresses from sensory to 
prefrontal areas in the primate brain, neurons receive an increasing number of excitatory connections 
from their neighbors (Wang, 2001; Elston, 2007; Wang, 2008). We model a chain of nodes (i.e., neurons, 
networks of neurons or cortical areas) with connectivity that decays exponentially with distance.  
In addition, we introduce a gradient of excitatory self-couplings along the chain to account for the 
increase in local excitation.

The network is shown in Figure 3A and the coupling matrix W is given by

( ) ( )

( )

0

/

/

for   (self-coupling)

, for   (feedforwardconnections).

for   (feedback connections)

c

c

r

j k l

f

j k l

b

j j k

W j k e j k

e j k

− −

−

 + == > <

μ
μ
μ

Δ
 (3)

The self-coupling includes a leakage term (μ0 < 0) and a recurrent excitation term that increases 
along the chain with a slope Δr. Nodes higher in the network thus have stronger self-coupling. 
Connection strengths have a decay length lc. μf scales the overall strength of feedforward connections 
(i.e., connections from early to late nodes in the chain) while μb scales the strength of feedback 
connections. In general we set μf > μb.

http://dx.doi.org/10.7554/eLife.01239
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If the gradient of self-coupling (Δr) is strong enough, some of the eigenvectors of the network will 
be localized. As the gradient becomes steeper this region of localization expands. Our theory predicts 
which eigenvectors will be localized and how this region expands as the gradient becomes steeper 
(Figure 3—figure supplement 1).

By applying the theory sketched in the previous section (and developed in detail in the appendix 
[Supplementary file 1]), we find that the value of the eigenvector width for the localized eigenvectors 
(α in Equation 2) is equal to (see Section 3 of Supplementary file 1)

Δ

μ μα −
=

    +        

2
.

1
2 1 cosh

bf

r

c
l

 (4)

This equation asserts that α2 is inversely proportional to the gradient of local connectivity, Δr, so that 
a steeper gradient leads to sharper localization, and α2 increases with increasing connectivity decay 
length, lc. Note that in this case the eigenvector width is independent of the location of the eigen-
vector (or the particular timescale).

Figure 3. Localized eigenvectors in a network with a gradient of local connectivity. (A) The network is a chain of 
100 nodes. Network topology is shown as a schematic with a subset of nodes and only nearest-neighbor connections. 
The plot above the chain shows the connectivity profile, highlighting the exponential decay and the asymmetry 
between feedforward and feedback connections. Self-coupling increases along the chain, as shown by the grayscale 
gradient. (B) Sample eigenvectors (filled circles) in a network with a weak gradient of self-coupling, so that localized 
and delocalized eigenvectors coexist. Localized eigenvectors are described by Gaussians, and predictions from 
Equation 4 are shown as solid lines. Eigenvectors are normalized by maximum value. The network is described by 
Equation 3, with μ0 = −1.9, Δr = 0.0015, μf = 0.2, μb= 0.1 and lc = 4. (C) Sample eigenvectors (filled circles) along 
with predictions (solid lines) in a network with a strong gradient, so that all eigenvectors are localized. Network 
parameters are the same as B, except Δr = 0.01. (D) Heat map of eigenvectors from network in (C) on logarithmic 
scale. Eigenvectors are along rows, arranged by increasing decay time. All are localized, and eigenvectors with 
longer timescales are localized further down in the chain. Edge effects cause the Gaussian shape to break down at 
the end of the chain, but eigenvectors are still localized at the boundary. (E) Dynamical response of the network in 
(C) to an input pulse. Nodes early in the chain show responses that decay away rapidly, while those further in the 
chain show more persistent responses.
DOI: 10.7554/eLife.01239.005
The following figure supplements are available for figure 3:

Figure supplement 1. Co-existence of localized and delocalized eigenvectors in a network with a weak gradient of 
local connectivity. 
DOI: 10.7554/eLife.01239.006
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In Figure 3B, we plot sample eigenvectors for a network with a weak gradient, where localized 
and delocalized eigenvectors coexist. We also plot the analytical prediction for the localized 
eigenvectors, which fits well with the numerical simulation results. For more details on this network see 
Figure 3—figure supplement 1. In Figure 3C, we plot sample eigenvectors for a network with a 
strong enough gradient that all eigenvectors are localized. As shown in Figure 3D, all the remaining 
eigenvectors of this network are localized. In Figure 3E, we plot the decay of this network’s activity 
from a uniform initial condition; as predicted from the structure of the eigenvectors, decay time constants 
increase up the chain.

With a strong gradient of self-coupling, Equation 4 holds for all eigenvectors except those at the 
end of the chain, where edge effects change the shape of the eigenvectors. These eigenvectors are 
still localized, at the boundary, but are no longer Gaussian and appear to be better described as 
modulated exponentials. Equation 4 also predicts that eigenvectors become more localized as feed-
forward and feedback connection strengths approach each other. This is counter-intuitive, since 
increasing feedback strength should couple nodes more tightly. Numerically, this prediction is confirmed 
only when μf − μb is not close to 0. As seen in Figure 4, when μf − μb is small, the eigenvector is no 
longer Gaussian and instead shows multiple peaks. Strengthening the feedback connections leads 

Figure 4. Second-order expansion for partially-delocalized eigenvectors. Same model with a gradient of local connectiv-
ity as in Figure 3. (A) Schematic of the predicted shape. Eigenvectors (black) are the product of an exponential (blue) 
and an Airy function (red). The constant in the exponential depends on the asymmetry between feedback (μb) and 
feedforward (μf) strengths. In the left panel, μf − μb is large and the product is well described by a Gaussian. In the right 
panel, μf − μb is small and the exponential is shallow enough that the product is somewhat delocalized. (B) Analytically 
predicted eigenvector shapes (solid lines) compared to numerical simulations (filled circles) for four values of μb. For each 
value of μb one representative eigenvector is shown. As μb approaches μf, eigenvectors start to delocalize but, as 
per Equation 4, the maximum peak is sharper. β2 is the steepness of the exponential (Equation 5). The network is 
described by Equation 3 with μ0 = −1.9, Δr = 0.01, μf = 0.2, and lc = 4. μb = 0.125, 0.15, 0.175, and 0.19.
DOI: 10.7554/eLife.01239.007
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to the emergence of ripples in the slower modes that modulate the activity of the earlier, faster nodes. 
While the first-order approximation of the shape of vλ breaks down in this regime, Equation 4 is locally 
valid in that the largest peak sharpens with increasing symmetry, as seen in Figure 4B.

We extend our expansion to second-order in vλ (appendix [Supplementary file 1], Sections 5 & 6) 
to predict that the eigenvector is given by

( ) ( ) ( )β ω
λ

β β
β

−
 − +  =    

2 0

2

1 0 2

2/ 3

1

Ai
j j i jj j

j e ev  (5)

with

( )

( )

( )

μ μ
β β

μ μ μ μ

           ∆ −               
= =

+ +

4 3

1 2

1 1 1
csch sinh coth

2 2
and

r bf

c c c

b bf f

l l l
 (6)

where, Ai is the first Airy function (Olver, 2010). The eigenvector is the product of an exponential 
and an Airy function and this product is localized when the exponential is steep (Figure 4A). The 
steepness of the exponential depends on μf − μb. When this difference is small the exponential is 
shallow and the trailing edge of the product is poorly localized. Figure 4B shows that this functional 
form accurately predicts the results from numerical simulations, except when the eigenvector is almost 
completely delocalized.

These results reveal that an asymmetry in the strength of feedforward and feedback projections can 
play an important role in segregation of timescales in biological systems.

The second-order expansion demonstrates that the approach is general and can be extended 
as needed. While the first-order expansion in vλ generically gives rise to modulated Gaussians, the 
functional form of the eigenvectors from a second-order expansion depends on the connectivity 
(appendix [Supplementary file 1], Section 5) and, in general, the asymptotic decay is slower than 
that of a Gaussian.

Localization in a network with a gradient of connectivity range
The previous architecture was a chain of nodes with identical inter-node connectivity but varying local 
connectivity. We now consider a contrasting architecture: a chain with no self-coupling but with a 
location-dependent bias in inter-node connectivity. We build this model motivated by the intuitive 
notion that nodes near the input end of a network send mostly feedforward projections, while nodes 
near the output send mostly feedback projections. The network architecture is shown in Figure 5A.

Connectivity decays exponentially, as in the previous example, but the decay length depends on 
position. Moving along the chain, feedforward decay length decreases while feedback decay length 
increases:

( ) ( )( )

( )( )

0 1

0 1

0 for   (self-coupling)

, for   (feedforwardconnections)

for   (feedback connections)

f f k j k

f

b b k j k

b

j k

W j k e j k

e j k

− + −

− −

 == > <

μ
μ
μ

 (7)

The parameters f0, f1, b0, and b1 control the location-dependence in decay length, μ0 is the leakage 
term, and μf and μb set the maximum strength of feedforward and feedback projections. We also add 
a small amount of randomness to the connection strengths.

As before we calculate the eigenvector width, α. In this case, for a wide range of the parameters in 
Equation 7, α2 is positive and approximately constant for all eigenvectors. Therefore, all eigenvectors 
are localized and have approximately the same width (appendix [Supplementary file 1], Section 4). 
Four eigenvectors are plotted in Figure 5B along with theoretical predictions. Figure 5C shows all of 
the eigenvectors on a heat map and demonstrates that all are localized. The fastest and slowest times-
cales are localized to the earlier nodes while the intermediate timescales are localized towards the end 
of the chain. The earlier nodes thus show a combination of very fast and very slow time courses, 
whereas the later nodes display dynamics with an intermediate range of timescales. Such dynamics 
present a salient feature of networks with opposing gradients in their connectivity profile. In Figure 5D, 
we plot the decay of network activity from a uniform initial condition; note the contrast between nodes 
early and late in the chain.

http://dx.doi.org/10.7554/eLife.01239
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While the eigenvectors are all localized, different eigenvectors tend to cluster their centers near 
similar locations. Near those locations, nodes may participate in multiple eigenvectors, implying that 
time constants are not well segregated. This is a consequence of the architecture: nodes towards the 
edges of the chain project most strongly towards the center, so that small perturbations at either end 
of the chain are strongly propagated inward. The narrow spread of centers (the overlap of multiple 
eigenvectors) reduces the segregation of timescales that is one benefit of localization. We find that 
adding a small amount of randomness to the system spreads out the eigenvector centers without 
significantly changing the shape. This approach is more robust than fine-tuning parameters to 
maximally spread the centers, and seems reasonable in light of the heterogeneity intrinsic to biological 
systems (Raser and O’Shea, 2005; Barbour et al., 2007). Upon adding randomness, most eigenvectors 
remain Gaussian while a minority are localized but lose their Gaussian shape.

The significant overlap of the eigenvectors means that the eigenvectors are far from orthogonal 
to each other. Such matrices, called non-normal matrices, can show a number of interesting transient 
effects (Trefethen and Embree, 2005; Goldman, 2009; Murphy and Miller, 2009). In particular 
we note that the dynamics of our example network show significant initial growth before decaying, 
as visible in the scale of Figure 5D.

Randomness and diversity
As observed in the last section, the heterogeneity intrinsic to biological systems can play a beneficial 
role in computation. Indeed, sufficient randomness in local node properties has been shown to give 
localized eigenvectors in models of physical systems with nearest-neighbor connectivity, and the tran-
sition from delocalized to localized eigenvectors has been suggested as a model of the transition from 
a conducting to an insulating medium (Anderson, 1958; Abou-Chacra et al., 1973; Lee, 1985). 

Figure 5. Localized eigenvectors in a network with a gradient of connectivity range. (A) The network consists of a 
chain of 50 identical nodes, shown here by a schematic. Spatial length of feedforward connections (from earlier to 
later nodes) decreases along the chain while the spatial length of feedback connections (from later to earlier nodes) 
increases along the chain. The network is described by Equation 7, with μ0 = −1.05, μf = 5, μb = 0.5, f0 = 0.2, f1 = 0.12, 
b0 = 6, b1 = 0.11. Normally-distributed randomness of standard deviation σ = 10−5 is added to all connections. 
(B) Five sample eigenvectors, with numerical simulations (filled circles) well fitted by the analytical predictions (solid 
lines). Note the effect of added randomness on the rightmost eigenvector. (C) Heat map of eigenvectors on logarithmic 
scale. Rows correspond to eigenvectors, arranged by increasing decay time. All eigenvectors are localized, but 
timescales are not monotonically related to eigenvector position. (D) Dynamical response of the network to an input 
pulse. Long timescales are localized to nodes early in the network while nodes later in the network show intermediate 
timescales.
DOI: 10.7554/eLife.01239.008
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A similar mechanism should apply in biological systems. We numerically explore eigenvector localiza-
tion in a network with exponentially-decaying connectivity and randomly distributed self-couplings.

The network connection matrix is given by

( )
( )μ σ

μ − −

 + ==  ≠

2

0

/

0, for 
, ,

for 

N

cj k l

c

j k
W j k

e j k
 (8)

where, ( )2
0,N σ  is drawn from a normal distribution with mean zero and variance σ2.

As σ2 increases, the network shows a transition to localization. This transition is increasingly sharp 
and occurs at lower values of σ as the network gets larger. Figure 6 shows a network with sufficient 
randomness for the eigenvectors to localize, with sample eigenvectors shown in Figure 6B. These 
show a variety of shapes and are no longer well described by Gaussians. Importantly, there is no longer 
a relationship between the location of an eigenvector and the timescale it corresponds to (Figure 6C). 
Thus while each timescale is localized, a variety of timescales are present in each region of the network, 
and each node will show a random mixture of timescales. This is in contrast to our previous examples, 
which have a spatially continuous distribution of time constants. The random distribution of time 
constants is also observed in the decay from a uniform initial conditions, as shown in Figure 6D.

Discussion
Local connectivity is insufficient to create localized temporal patterns of activity in linear networks. 
A network with sharply localized but translationally invariant connectivity has delocalized eigenvectors. 
This implies that distant nodes in the network have similar temporal activity, since they share the timescales 
of their dynamics. Breaking the invariance can give rise to localized eigenvectors, and we study conditions 
that allow this. We develop a theory to predict the shapes of localized eigenvectors and our theory 
generalizes to describe eigenvectors that are only partially localized and show multiple peaks. A major 

Figure 6. Localized eigenvectors in a network with random self-coupling. (A) The network consists of 100 nodes 
arranged in a chain. The plot above the chain shows the connectivity profile. Self-coupling is random, as indicated 
by the shading. The network is described by Equation 8 with μ0 = −1, μc = 0.05, lc = 4, σ = 0.33. (B) Four eigenvectors 
are shown, localized to different parts of the network. Note the diversity of profiles. (C) Heat map of eigenvectors 
on logarithmic scale. Rows correspond to eigenvectors, arranged by increasing decay time. All eigenvectors are 
localized, though the extent of localization (the eigenvector width) varies; and there is no relationship between the 
timescale of an eigenvector and its spatial location in the network. (D) Dynamical response of the network to an 
input pulse. Note that the diversity of dynamical responses is more limited, and bears no relationship to spatial 
location.
DOI: 10.7554/eLife.01239.009
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finding of this study is the identification of two network architectures, with either a gradient of local 
connectivity or a gradient of long-distance connection length, that give rise to activity patterns with 
localized timescales.

Our approach to eigenvector localization is partly based on Trefethen and Embree (2005); 
Trefethen and Chapman (2004). The authors study perturbations of translationally invariant matrices 
and determine conditions under which eigenvectors are localized in the large-N limit. We additionally 
assume that the connectivity is local, since we are interested in matrices that describe connectivity of 
biological networks. This allows us to calculate explicit functional forms for the eigenvectors.

We stress that the temporal aspect of the network dynamics should not be confused with selectivity 
across space in a neural network. Even if temporal patterns are localized, a large proportion of network 
nodes may be active in response to a given input, albeit with distinct temporal dynamics. Conversely, 
even if temporal patterns are delocalized, nodes show similar dynamics yet may still be highly selective 
to different inputs and any stimulus could primarily activate only a small fraction of nodes in the network.

Our results are particularly relevant to understanding networks that need to perform computations 
requiring a wide spread of timescales. In general, input along a fast eigenvector decays exponentially 
faster than input along a slow eigenvector. To see this, consider a network with a fast and a slow time-
scale (1/

fast
λ  and 1/

slow
λ ), and having initial condition with components afast and aslow along the fast and 

the slow eigenvectors respectively. As shown in Equation 11, the network activity will evolve as 

+
fast slowt t

slowfast
a e a e

− −λ λ . For a node to show a significant fast timescale in the presence of a slower, more 

persistent timescale, the contribution of this slow timescale to the node must be small. This can 
happen in two ways, corresponding to the terms of Equation 10. If the input contributes little to the 
slower eigenvectors then their amplitudes will be small at all nodes. This requires fine-tuned input 
(exponentially smaller along the slow eigenvectors) and means that the slow timescales do not contrib-
ute significantly to any node. Alternately, as in the architectures we propose, the slow eigenvectors 
could be exponentially smaller at certain nodes; these nodes will then show fast timescales for most 
inputs, with a small slow component.

The architecture with a gradient of local connectivity (Figure 3) may explain some observations in 
the larval zebrafish oculomotor system (Miri et al., 2011). The authors observed a wide variation in the 
time constants of decay of firing activity across neurons, with more distant neurons showing a greater 
difference in time constants. They proposed a model characterized by a chain of nodes with linearly-
decaying connectivity and a gradient of connection strengths, and found that different nodes in the 
model showed different timescales. Furthermore, the introduction of asymmetry to connectivity (with 
feedback connections weaker than feedforward connections) enhanced the diversity of timescales. 
This effect of asymmetry was also seen in an extension of the model to the macaque monkey oculomotor 
integrator (Joshua et al., 2013). Our work explains why such architectures allow for a diversity of 
timescales, and we predict that such gradients and asymmetry should be seen experimentally.

With a gradient of local connections, time constants increase monotonically along the network 
chain. By contrast, with a gradient of connectivity length (Figure 5), the relationship between timescales 
and eigenvector position is lawful but non-monotonic, as a consequence of the existence of two 
gradients (feedforward connectivity decreases while feedback increases along the chain). The small 
amount of randomness added to this system helps segregate the timescales across the network, while 
only mildly affecting the continuous dependence of eigenvector position on timescale. This suggests 
that randomness may contribute to a diversity of timescales.

The connection between structural randomness and localization is well known in physical systems 
(Anderson, 1958; Abou-Chacra et al., 1973; Lee, 1985). We applied this idea to a biological context 
(Figure 6), and showed that localization can indeed emerge from sufficiently random node properties. 
However, in this case nearby eigenvectors do not correspond to similar timescales. A given timescale is 
localized to a particular region of the network but a similar timescale could be localized at a distant region 
and, conversely, a much shorter or longer timescale could be localized in the same part of the network. 
Thus, the timescales shown by a particular node are a random sample of the timescales of the network.

Chemical gradients are common in biological systems, especially during development (Wolpert, 
2011), and structural randomness and local heterogeneity are ubiquitous. We predict that biological 
systems could show localized activity patterns due to either of these mechanisms or a combination 
of the two. Furthermore, local randomness can enhance localization that emerges from gradients or 
long-range spatial fluctuations in local properties. We have focused on localization that yields a smooth 
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relationship between timescale and eigenvector position; such networks are well-placed to integrate 
information at different timescales. However, it seems plausible that biological networks have evolved 
to take advantage of randomness-induced localization, and it would be interesting to explore the 
computational implications of such localization. It could also be fruitful to explore localization from 
spatially correlated randomness.

An influential view of complexity is that a complex network combines segregation and integration: 
individual nodes and clusters of nodes show different behaviors and subserve different functions; 
these behaviors, however, emerge from network interactions and the computations depend on the 
flow of information through the network (Tononi and Edelman, 1998). The localized activity patterns 
we find are one way to construct such a network. Each node participates strongly in a few timescales 
and weakly in the others, but the shape and timescales of the activity patterns emerge from the 
network topology as a whole and information can flow from one node to another. Moreover, as shown 
in Figure 7, adding a small number of long-range strong links to local connectivity, as in small-world 
networks (Watts and Strogatz, 1998), causes a few eigenvectors to delocalize while leaving most 
localized. This is a possible mechanism to integrate computations while preserving segregated activity, 
and is an interesting direction for future research.

Methods
We study the activity of a linear network of coupled units, which will be called ‘nodes’. These represent 
neurons or populations of neurons. The activity of the jth node, ϕj (t), is determined by interactions 
with the other nodes in the network and by external inputs. It obeys the following equation:

( ) ( ) ( ) ( )φ φ
=

= +∑
1

, ,
N

j k j

k

d
t W j k t I t

dt
 (9)

Figure 7. Strong long-range connections can delocalize a subset of eigenvectors. (A) Left panel: connectivity of the 
network in Figure 3 with long-range connections of strength 0.05 added between 10% of the nodes. The gradient 
of self-coupling is shown along the diagonal on another scale, for clarity. Right panel: eigenvectors shown as in 
panel C of Figure 3. (B) Left panel: connectivity of the network in Figure 5 with long-range connections of strength 
0.05 added between 10% of the nodes. Right panel: eigenvectors shown as in panel C of Figure 5.
DOI: 10.7554/eLife.01239.010
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where W (j,k) is the connection strength from node k to node j of the network and Ij is the external 
input to the jth node. W (j,j) is the self-coupling of the jth node and typically includes a leakage term. 
Note that the intrinsic timescale of node j is absorbed into the matrix W.

By solving Equation 9, ϕj (t) can be expressed in terms of the eigenvectors of the connection matrix 
W, yielding

( ) ( ) ( )λ λ
λ

φ =∑j t A t jv  (10)

(Rugh, 1995). Here, λ indexes the eigenvalues of W, and vλ (j) is the jth component of the eigenvector 
corresponding to λ. These are independent of the input. Aλ (t) is the time-dependent amplitude of the 
eigenvector vλ and depends on the input, which determines to what extent different eigenvectors 
are activated. If the real parts of the eigenvalues are negative then the network is stable and, in the 
absence of input, Aλ (t) decays exponentially with a characteristic time of ( )1/ −Re λ .

Aλ (t) consists of the sum of contributions from the initial condition and the input, so that Equation 10 
can be written as

( ) ( ) ( ) ( )
0

.
tt

j

t
t

t a e e I t dt jφ − = +   ∫∑ ɶɶ λλ
λ λ λ

λ
v

′ ′ ′  (11)

aɶλ and Iɶλ are the coefficients for the initial condition and the input, respectively, represented in the 
coordinate system of the eigenvectors. In a stable network, each node forgets its initial condition 
and simultaneously integrates input with the same set of time constants.

In this work, we examine different classes of the connection matrix W, with the constraint that 
connectivity is primarily local, and we identify conditions under which its eigenvectors are localized in 
the network in such a way that different nodes (or different parts of the network) exhibit disparate 
timescales.

The functional form of localized eigenvectors from a first-order 
expansion
We rewrite the connectivity matrix in terms of a relative coordinate, p = j−k, as

( ) ( ), , .W j k c j j k= −  (12)

Thus, c (j,2) = W (j,j − 2) indexes feedforward projections that span two nodes, and c (5,p) = W (5,5 − k) 
indexes projections to node 5. Note that in the translation-invariant case, c (j,p) would be independent 
of j (appendix [Supplementary file 1], Section 1), while the requirement of local connectivity means 
that c (j,p) is small away from p = 0. For any fixed j, c (j,p) is defined from p = j − N to p = j − 1. 
We extend the definition of c (j,p) to values outside this range by defining c (j,p) to be periodic in p, 
with the period equal to the size of the network. This is purely a formal convenience to simplify the 
limits in certain sums and does not constrain the connectivity between the nodes of the network.

Consider the candidate eigenvector vλ (j) = gλ (j) eiωj. The dependence of gλ on j allows the 
magnitude of the eigenvector to depend on position; setting this function equal to a constant returns 
us to the translation-independent case (see appendix [Supplementary file 1], Section 1). Moreover, 
note that gλ (j) depends on λ, meaning that eigenvectors corresponding to different eigenvalues 
(timescales) can have different shapes. For example, different eigenvectors can be localized to 
different degrees, and localized and delocalized eigenvectors can coexist (see Figure 3—figure 
supplement 1 for an illustration). ω allows the eigenvector to oscillate across nodes; it varies between 
eigenvectors and so depends on λ.

Applying W to vλ yields

[ ]( )
1 1

( , ) ( ) ( , ) ( )
N N

i k i k

k k

W j W j k g k e c j j k g k e
= =

= = −∑ ∑v
ω ω

λ λ λ  (13)

( ) ( )
1

,,

j
i p i j

p j N

c j p g j p e e
−

−

= −

  = −   
∑ ω ω

λ  (14)
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here, the term in brackets is no longer independent of j.
So far we have made no use of the requirement of local connectivity and, given that gλ is an arbitrary 

function of position and can be different for different timescales, we have placed no constraints on the 
shape of the eigenvectors. By including an oscillatory term (eiωj) in our ansatz, we ensure that gλ (j) is 
constant when connectivity is translation-invariant; this will simplify the analysis.

We now approximate both c (j,p) and gλ (j − p) to first-order (i.e., linearly):

( ) ( ) ( )
00 , 0, , |j p

c
c j p c j p j j

j
+ −
∂≈
∂

( ) ( ) ( )' ,g j p g j g j p− −λ λ λ≈  (15)

where, j0 is a putative center of the eigenvector.
Substituting Equation 15 into Equation 14 we get

[ ]( ) ( ) ( ) ( ) ( )
0

1

0 , 0, | '
j

i p i j

j p

p j N

c
W j c j p j j g j g j p e e

j

−
−

= −

       = + − −       
∑v

ω ω
λ λ λ

∂
∂

 (16)

We expect these approximations to be valid only locally. However, if connectivity is local then 
the major contribution to the sum comes from small values of p. For large values of p, gλ (j − p) is 
multiplied by connectivity strengths close to 0 and so we only need to approximate gλ for p close to 0. 
Similarly, in approximating c (j,p) around j = j0, we expect our approximation to be good in the vicinity 
of j = j0. However, if our eigenvector is indeed localized around j0, then gλ (k) is small when 

0
k j−  is 

large. For small p, large values of 
0

k j−  approximately correspond to large values of 
0

j j− , and so 
c (j,p) makes a contribution to the sum only when j ≈ j0.

The zeroth-order term in Equation 16 is

( ) ( ) ( ) ( )
1

0 0
, ,

j
i p i j

p j N

c j p e g j e j j
−

−

= −

   =  
∑ v

ω ω
λ λλ ω

The function in parentheses is periodic in p with period N (recall that c (j,p) was extended to be 
periodic in p). Thus to zeroth-order vλ is an eigenvector with eigenvalue

( ) ( )0 0

1

, , .
N

i p

p

j c j p e−

=

=∑ ωλ ω  (17)

For λ to be an exact eigenvalue in Equation 16, the higher-order terms should vanish. By setting 
the first-order term in this equation to 0, we obtain a differential equation for gλ (j):

( ) ( ) ( ) ( )2

0 0
, 'j g j j j g j− = −λ λα ω  (18)

where,

( )
( )

0

02

0
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,
, .

|
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pc j p e
j

c
e

j

−

−
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∑
∑

ω

ω
α ω ∂

∂

 (19)

Thus α2 is a ratio of discrete Fourier transforms at the frequency ω. Note that the denominator is a 
weighted measure of network heterogeneity at the location j0. Also note that α2 can be written in terms 
of λ as (compare the twist condition of Trefethen and Embree, 2005):

( )2

0

0

, .j i

j

=−

λ
ωα ω λ

∂
∂
∂
∂

 (20)

Solving for gλ in Equation 18 yields

( )
( )
( )
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1
,
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g j C e
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−

= α ω
λ
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where, C1 is a constant. Thus, to first-order, the eigenvector is given by the modulated Gaussian 
function

( )
( )
( )

2

0

2

02 ,
.

j j
i j

j
j e

−
− +

=
ω

α ω
λv  (21)

In general, α can be complex. In order for vλ to be localized, ( )2Re α  must be positive for the 
corresponding values of j0 and ω, and we only accept an eigenvector as a valid solution if this is the 
case. Thus the approach is self-consistent: we assumed that there existed a localized eigenvector, 
combined this with the requirement of local connectivity to solve for its putative shape, and then 
restricted ourselves to solutions that did indeed conform to our initial assumption.

For an expanded version of this analysis along with further discussion of what the analysis provides, 
see the appendix (Supplementary file 1), Section 2.
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