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Abstract of the Dissertation

Bayesian Event History Analysis with Applications to

Recurrent Episodes of Illicit Drug Use

by

Adam Jeffrey King

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2014

Professor Robert E. Weiss, Chair

Illicit drug use and concomitant problems such as high incarceration rates pose tremen-

dous challenges to those directly involved and to society as a whole. In recent years, many

medical, public health, and social science researchers have conducted studies to characterize

the nature of these problems and look for potential solutions. These studies often record

events such as subjects relapsing into drug use following periods of abstinence, and interest

centers on finding or assessing the impact of risk factors for event occurrence. While analy-

ses of these studies have often employed advanced statistical techniques borrowed from the

social science literature, there have been few applications of modern Bayesian techniques

or advanced event time models. In this dissertation, we develop a general Bayesian event

history model with supporting computing tools, and we apply this work in a substance abuse

context.

Because the field of survival and event history analysis is so broad, we first provide

an extensive review of concepts and literature relevant to our subsequent methodological

work. We then describe in detail our general Bayesian event history model. This model

combines a number of features which are frequently omitted from analyses because available

event time analysis software does not allow their simultaneous use. These features include

simultaneous semiparametric incorporation of multiple continuous time-varying covariates,

multiple event types or competing risks, and recurrent at-risk episodes. We provide novel
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Markov chain Monte Carlo (MCMC) algorithms for obtaining posterior inferences from this

model, evaluate their performance, and apply them to data on recurrent episodes of cocaine

use in a population of illicit drug users.

Next, we extend our general Bayesian event history model to a full multistate model

for histories in which subjects pass in between discrete states. In these histories, the state

transitions are the events of interest, and the numbers and types of covariates and possible

transition events depend on the subject’s current state. We apply this multistate model to

lifetime histories of cocaine use and incarceration following first use of cocaine. Finally, we

conclude the dissertation with a description of our software implementation of our models

and a discussion of future projects.
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CHAPTER 1

Introduction

We begin this chapter with an overview of the dissertation work, and give the rationale for

the development of our novel models and algorithms. Next, we introduce the Treatment

Utilization and Effectiveness Project (TUE) study, and review previous analyses of the TUE

data. We conclude this chapter with a non-technical description of the methods developed

in later chapters. Subsequent chapters contain an in-depth technical review of event history

analysis, a detailed description of our general Bayesian event history model, an extension of

this model to a full multistate model, and an overview of future work.

1.1 Overview of and Motivation for the Dissertation Work

Event histories consist of records of time points at which subjects experience certain events

of interest. In the classical survival analysis setting, the timing of a single event is recorded

for each subject. The Cox (1972) proportional hazards model has been developed extensively

over the past four decades to analyze such event time outcomes, and we review many of these

developments in the next chapter. In this dissertation, we develop hazard regression models

for complex event histories consisting of observation of recurrent episodes of disease activity,

behaviors, and circumstances. Here, the events of interest are occurrences which start or

terminate episodes. This work is motivated by the Treatment Untilization and Effectiveness

Project (TUE), a longitudinal study of illicit drug use in which all lifetime episodes of several

types of drug use and related traits have been retrospectively recorded from each subject.

A common feature of event history datasets such as TUE is the discrete recording of the

timings of events occurring in continuous time (Burridge, 1981; Allison, 1982). Specifically,
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continuous time is partitioned into non-overlapping intervals (often corresponding to whole

days, weeks, or months), and only the interval in which an event occurs is recorded. This

special case of interval censoring, called grouped time, is responsible for the occurrence of tied

observations in nominally-continuous survival data. To handle grouped time data containing

large numbers of ties, Cox (1972) proposed modeling the discrete hazard λ(t), which is the

probability of event occurrence in the tth interval given the event did not occur in a previous

interval. Specifically, he proposed the discrete time proportional hazards model,

λ(t)

1− λ(t)
≡ λ0(t)

1− λ0(t)
exp(β′x). (1.1)

where λ0(t) is an arbitrary baseline discrete hazard and x is a vector of regressors with

unknown coefficients β. Because discrete hazards are true probabilities bounded between 0

and 1, this model replaces the continuous hazard rate in the continuous Cox model with the

odds of the discrete hazard. Taking logs of both sides of (1.1) and writing β0(t) ≡ logit(λ0(t)),

where logit(·) is the log-odds function, yields a logistic regression model

logit(λ(t)) ≡ β0(t) + β′x (1.2)

with one person-time observation for each discrete time point t each subject was at risk for

event occurrence. If the time grouping intervals are short relative to the typical duration

of follow-up, this approach can yield a very large number of person-time observations, even

with only moderate numbers of subjects (Fahrmeir and Lang, 2001; Browne et al., 2009).

Event history datasets also often contain a large number of distinct event types. In

a competing risks event history, at each time point of follow up, a subject is at risk for

multiple, mutually-exclusive events. For example, in a study following active cocaine users,

subjects are simultaneously at risk for ceasing cocaine use due to arrest and voluntarily

ceasing drug use. In a multistate event history, at each time point a subject is in one of

several discrete states and is at risk for experiencing transition events wherein the subject

passes into a different state. Here, each possible transition from one state to another is a

distinct event type. Furthermore, each type of event may be observed multiple times in the

same subject over the course of follow up. Accounting for the within-subject associations
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between hazards of a single type of event at different follow up times and between the

hazards of distinct types of events requires inclusion of multi-dimensional random effects in

an event history regresson model. However, frequentist maximum likelihood (ML) inference

procedures perform poorly when applied to discrete data with high-dimensional random

effects, as ML inference requires approximating the marginal likelihood of parameters of

interest with high-dimensional numerical integrations (Zeger and Karim, 1991).

A third common feature of event history data is that the hazard of event occurrence

depends on several time-varing covariates, and these dependencies are nonlinear. These

covariates often include time scales such as age, calendar time period, and time-at-risk

(often called duration or gap time). Multistate event history models may have even more

time scales, such as the time since a subject first entered a state or the cumulative amount

of time spent in a state. The Cox (1975) partial likelihood estimation technique cannot be

used when multiple arbitrary functions, representing the effects of multiple time scales, are

simultaneously included (Keiding, 1990; Berzuini and Clayton, 1994). Even when only a

single arbitrary baseline hazard function is required, estimation of the discrete Cox model

via partial likelihood can be computationally intensive when the number of ties is large

(Kalbfleisch and Prentice, 2002, p. 106).

The confluence of these three issues—large numbers of discrete person-time observations,

large numbers of distinct event types requiring high-dimensional random effects, and the

necessity of modeling multiple nonparametric functions—is commonly encountered in event

history problems across many application areas. However, models, inference procedures, and

statistical software are not currently available to simultaneously address all features of such

event history data; the goal of this dissertation is to fulfill this need. We adopt a Bayesian

approach to modeling and inference, with Gaussian Markov random field (GMRF) priors

providing a convenient way to model the nonlinear effects of time scales and other continuous

covariates. Obtaining posterior inferences via Markov chain Monte Carlo (MCMC) then

circumvents the limitations of classical maximum partial and marginal likelihood estimation.
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1.2 The Treatment Utilization and Effectiveness Project

The Treatment Utilization and Effectiveness Project (TUE) was an observational study of

illicit drug users in Los Angeles County, California. It was conducted from 1992 to 1997

by the UCLA Drug Abuse Research Center, now part of the UCLA Integrated Substance

Abuse Programs, and was funded by the National Institute on Drug Abuse. The principal

investigators were Yih-Ing Hser, Douglas Anglin, and Douglas Longshore.

The TUE study was designed to achieve several objectives. First, many studies of drug

users sample subjects from substance abuse treatment programs and facilities. However,

these subjects may not be representative of the larger population of drug users. To examine

the hidden populations of drug users not engaged in treatment, TUE recruited subjects from

three sources thought to have a high prevalence of drug users: sexually transmitted disease

(STD) clinics, hospital emergency rooms (ER’s), and jails. Baseline interviews and urinalysis

tests conducted with 5,168 subjects contacted at these sources confirmed high prevalence of

illicit drug use (Hser et al., 1998). In particular, 8.5% of STD clinic, 18.1% of ER, and 52.8%

of jail subjects tested positive for cocaine use.

A second objective of the TUE study was to obtain lifetime longitudinal records of

drug use and related behaviors. From the 5,168 subjects given the baseline interview, 787

subjects were selected at two years follow-up to complete a Natural History Interview (NHI)

component, described below, to elicit lifetime drug use histories. To be included in the follow-

up sample, subjects 25 years of age or older at initial recruitment must have reported use of an

illegal substance other than marijuana in the year prior to the initial recruitment interview,

while subjects under 25 must have reported use of any drug including marijuana during that

year. In addition, priority for selection was given to subjects reporting dependent use of

an illicit substance and never having received treatment for addiction, as well as subjects

with elevated risk of dependent drug use (due to criminal activity) or HIV infection (due to

intravenous drug use). Among the 787 subjects selected, 14 were deceased, 18 refused to be

interviewed, and 189 were available for interview but were never interviewed. The remaining

566 subjects were given the Natural History Interview, which we now describe in detail.
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Figure 1.1: Complete NHI history from a single TUE subject. Solid colored lines represent

episodes, and dashed black lines represent time spans during which the subject was not in

an active episode of the corresponding trait. The vertical black line represents the time of

interview, which right censors the final incarceration episode of this subject.

1986 1988 1990 1992 1994 1996

Calendar Year

Drug Dealing

Crime

Employment

Alcohol

Marijuana

Amphetamines

Narcotics

Cocaine

Out. Drug Treat.

Parole

Medical Treat.

Inst. Drug Treat.

Incarceration ●● ● ● ● ● ● ● ● ● ●

● ●

●● ● ● ●● ●● ●● ●● ●● ●● ●● ●●

● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ●

● ●

● ●

● ● ● ● ● ●● ● ● ● ● ● ● ●

1.2.1 The Natural History Interview

The goal of the Natural History Interview is to provide a comprehensive picture of the lifetime

drug use, drug treatment, and criminal history of interviewees. For each of a pre-specified

collection of thirteen behaviors, traits, and circumstances, the NHI records all episodes of

that characteristic, which are time spans of contiguous whole calendar months for which that

characteristic was present or active for the subject taking the interview. In particular, for

each episode, the interviewer records the starting and ending months of that episode, as well

as answers to a collection of questions pertaining to that type of episode.
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Figure 1.1 depicts the complete Natural History Interview data from a single TUE subject

age 26 at the time of interview, which is depicted by the vertical black line at August,

1995. We see for example that this subject had six episodes of incarceration and seven

episodes of cocaine use. Following the first episode of cocaine use, the subject began an

outpatient drug treatment program, but each of the remaining cocaine use episodes ended

with the subject’s incarceration. Following each of these incarceration episodes, the subject

immediately resumed cocaine use.

Since this retrospective data collection may involve asking subjects to recall episodes

from many years earlier, a timeline of major life events is first constructed from available

official records and the subject’s memory to aid in recall of episodes around the times of those

events. These events include arrests, incarcerations, parole, treatment, marriages, divorces,

births of children, deaths of family members, employment changes, and geographical moves.

Comparison with another measure, the Addiction Severity Index, suggests the NHI is reliable

(Murphy et al., 2010), but the underreporting of cocaine use observed by Hser et al. (1999)

may indicate limited validity, particularly among the STD and ER subjects.

1.2.2 Previous Analyses of the TUE NHI Data

A number of different statistical analysis methodologies have been used to analyze the TUE

NHI data, and we briefly review them here. Hser et al. (2008) analyze NHI data from five

studies, including TUE, to investigate the drug use and incarceration trajectories of subjects

whose self-reported primary drug is heroin, cocaine, or methamphetamine (meth). For each

subject, they examine all episodes of use of the subject’s primary drug and episodes of

incarceration during the first 10 years following first use of the primary drug. Episodes of

drug use during this time are subclassified into low-use and high-use episodes depending on

whether the subject used more frequently than 11 days per month on average during the

episode. Furthermore, time spans during which the subject was neither using the primary

drug nor incarcerated were considered no-use episodes. Thus, the entire 10-year time span

each subject was examined was partitioned into episodes of four types: no-use, low-use,
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high-use, and incarcerated. Separately for each primary drug type (heroin, cocaine, and

meth), counts and average lengths of episodes of each type were summarized. Episodes

were further subclassified based on the type of episode passed into at the end of the episode

in question, and summaries were computed for each subtype. In addition to summarizing

transitions between episodes, separate Cox models for each drug type were used to analyze

time-to-quitting use of the primary drug, with incarceration and time-of-interview treated

as independent censoring. Both fixed covariates (race, sex, and age of drug use onset) and

time-varying covariates (number of usage episodes up to that point, treatment status, and

legal supervision status) were used.

Prendergast et al. (2008) used NHI data from TUE and two other studies to predict

post-first-treatment drug use, incarceration, and employment trajectories using pre-first-

treatment drug use and incarceration trajectories. They first applied zero-inflated Poisson

growth mixture models to the number of days of drug use and number of months of in-

carceration in each of the five years prior to first entry into drug abuse treatment. These

mixture models identified four latent drug use trajectory classes (low, high, decreasing, and

increasing) and three latent incarceration trajectories (low, high, and increasing). These

categories were collapsed by including the increasing subjects in the high groups and in-

cluding the descreasing subjects in the low groups, and subjects were cross-classified into

four pre-treatment drug-incarceration trajectory classes: low-low, low-high, high-low, and

high-high. This pre-treatment drug-incarceration classification was then used as the primary

predictor variable in Poisson growth curve models of the number of days of drug use, number

of months incarcerated, and number of months employed in the five years following the first

drug treatment episode.

A primary goal of longitudinal studies of drug use and treatment is to assess the causal

effect of past drug treatment on current drug use. In such studies, the time-dependent

covariate of past drug use may be an intermediate variable for the causal effect of past

treatment on current drug use, since past treatment may cause the subject to discontinue

use in the past, and this abstinence may be maintained until the present. In addition,

past drug use may also be a confounder of the relationship between past treatment and
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current use, since past drug use may cause the subject to initiate treatment and this past

use may be maintained until the present. Robins et al. (2000) call such a time-dependent

covariate, which is both an intermediate and a confounder, a time-dependent confounder.

They showed that the standard method of modeling current drug use as a function of both

past drug treatment and past drug use (e.g. by including both in a multiple regression model)

yields biased estimates of the treatment effect. The authors propose an unbiased alternative

estimation method, called marginal structural models (MSM).

Motivated by this work, Li et al. (2010) applied MSM to TUE and two other studies

to assess the effect of cumulative drug treatment on later drug use abstinence. Total drug

use abstinence, defined as the total number of months subjects were neither using nor in-

carcerated during the 11th through 15th years following first use of their primary drug, was

chosen as the outcome variable. Cumulative lifetime number of months of drug use and

cumulative lifetime number of months of drug treatment, tallied at the end of each of the

first 10 years following first use of the drug, were used as the time-dependent confounder and

time-dependent treatment, respectively. The authors fit both MSM and standard regression

models using these variables, and observed that the MSM showed that treatment resulted

in a significant increase in drug use abstinence, while the standard regression showed no

treatment effect.

Liang et al. (2010) jointly model time-to-death and percentage of follow-up time spent

using alcohol and the subject’s primary drug. The authors use a normal linear mixed model

for the percentage of follow-up time (time from use initiation until death or censoring, ex-

cluding time spent incarcerated) that the subjects used alcohol, and a second linear mixed

model for the percentage of follow-up spent using the subject’s primary drug. These lin-

ear models for average usage level are linked to a Weibull proportional hazards model with

frailty for the survival outcome of duration from drug use initiation to death, by including

the usage variables as predictors in the survival model. They combine data from five stud-

ies, including TUE, using separate random effects to capture study-level heterogeneity in

mortality, alcohol use, and drug use. Inferences are obtained from MCMC simlation using

WinBUGS.
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1.3 Non-technical Overview of the Dissertation Work

1.3.1 Event History and Multistate Models

As we saw in the previous section, complex datasets such as TUE may be analyzed with a

number of different approaches. Consider an event history consisting of records of the time

points at which subjects experience transition events, wherein they move from one state to

another. A common practice is to first compute aggregate or summary measures of the event

history, such as the percentage of time a subject spends in a certain state, and then treat

these summaries as outcome variables. In contrast, an event history analysis directly models

the probabilities of event occurrence over every time point of follow up. If we simultaneously

model the probabilities of all possible transitions between states, the event history model is

called a multistate model.

To illustrate, suppose for each subject we have recorded all episodes of cocaine use over

a 10-year period, where an episode is a span of adjacent calendar months during which the

subject was using the drug. A conventional longitudinal analysis might begin with computing

the percentage of time spent using cocaine for each year of each subject’s follow up period.

We then have ten repeated measurements of this summary variable from each subject, which

we can use as a continuous longitudinal outcome variable. An event history analysis of this

dataset would instead model the risks of the subjects switching between the cocaine-using

and non-using states. More specifically, for each month of follow up during which a subject

was using cocaine, we would model the probability of them ceasing drug use the following

month, and for each month during which a subject was not using cocaine, we would model

the probability of them beginning or resuming drug use the next month.

To see why the event history analysis may be preferable to the conventional longitudinal

analysis, suppose subjects are incarcerated for a substantial fraction of the time they are

not using cocaine. In this case, a low value for the longitudinal outcome variable, percent

of the year spent using cocaine, may be due to the subject spending most of the year in

prison. Clearly, this is a much less desirable outcome than the subject spending the year in

question in a state of voluntary abstinence from drug use, and whatever statistical model we
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use should account for this difference.

The traditional longitudinal analysis could be adjusted by redefining the outcome as

the percentage of time spent using cocaine among the part of each year during which the

subject was not incarcerated. However, the outcome variable would then be undefined

for years in which the subject was in prison the entire time, and treating such years as

missing values would ignore the relationship between cocaine use and risk of arrest. A

multivariate longitudinal model in which both the percentage of the year spent incarcerated

and the percentage of non-incarcerated time spent using cocaine may be an improvement,

but problems would still remain. For example, such a model would not be able to distinguish

between a year in which the first half was spent using cocaine and the second half was spent

in prison, and a year with the opposite pattern, with prison time followed by cocaine use.

Observation of the former suggests cocaine use increased the subject’s risk of arrest, while

observation of the later suggests incarceration was not successful in rehabilitating the subject.

In contrast, the event history analysis can be naturally extended to accomodate the addi-

tional state of incarceration. We do this by creating a multistate model for the probabilities

of all possible transitions between the three mutually-exclusive states cocaine use, voluntary

non-use, and incarceration. Then if for example we observe a cocaine-using subject become

incarcerated, our model will infer that the subject’s cocaine use or other traits, such as past

incarceration history, may have increased the subject’s arrest risk.

The challenge, however, of building such an event history model is to specify all important

risk factors for the occurrence of each type of transition event. For example, the risk of a

subject voluntarily ceasing cocaine use in any given month may depend on the current age of

the subject, how long the subject has been continuously using cocaine up to that point, and

how many months the subject has been in drug abuse treatment during the previous year.

Further complicating matters, predictors like age may not have a simple linear or quadratic

relationship with the hazard of event occurrence, as is often assumed by standard regression

models. We require a more flexible means of allowing the probabilities of transition events

to depend on our predictor variables. Statisticians often refer to such flexible formulations

as nonparametric components of a model.
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Classical event time models and inference procedures encounter difficulties when incorpo-

rating multiple nonparametric components. Bayesian models on the other hand allow us to

include arbitrary numbers of smooth, flexible functions to model the relationships between

predictors and the risks of event occurrence. The algorithms for obtaining inferences from

these models also perform better than algorithms for corresponding classical event history

models. We now outline the Bayesian paradigm of statistical modeling and inference.

1.3.2 Bayesian Inference and Markov Chain Monte Carlo Computation

In classical or frequentist statistics, methods of estimation and hypothesis testing are devised

so that if the experiment or study which furnished our data were replicated many times, the

estimation and testing procedures would give us the correct answer a high proportion of

the time. For example, suppose we follow a sample of male and female active cocaine users

until they cease use of the drug, and then conduct a hypothesis test at the 5% significance

level to determine whether the per-month rate of quiting differs between men and women.

Then if there really is no difference in cocaine cessation rates between the sexes, we would

correctly fail to find a significant difference 95% of the time. In addition, if we calculate a

95% confidence interval (CI) for the quitting rate in men, then we know that 95% of the time

we take a sample and calculate such a CI, the interval will contain the true male cessation

rate. This is not, however, the same thing as saying there is a 95% probability that the

CI contains the true rate. To make such direct probability statements, we need a different

paradigm of statistics.

In Bayesian statistics, uncertainty about unknown values, such as the cocaine cessation

rates in men and women, is quantified using probability distributions. First, we specify a

prior probability distribution, or prior for short, capturing our knowledge about the unknown

parameters of our statistical model prior to examining the sample data. For instance, if we

are 95% certain based upon our previous experience studying male cocaine users that their

per-month quitting rate is between 4% and 16%, then we might express this prior belief with

a probability distribution that has 95% of its mass, or concentration, between 0.04 and 0.16.
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Once we have specified a prior distribution and a statistical model for how the unknown

parameters relate to the observed data, we use a mathematical equation called Bayes’ theo-

rem to synthesize the prior and observed data into a posterior probability distribution. The

posterior distribution captures both our prior knowledge about the unknown parameters

and the information gained from the sample data. If after applying Bayes’ theorem to our

cocaine cessation example problem, we find the posterior distribution of the male quitting

rate has 95% of its mass between .06 and .08, then we can say there is a 95% probability

that the true rate at which men are ceasing cocaine use is between 6% and 8% per month.

Any inferences we draw from fitting a Bayesian model are completely determined by the

posterior distribution, and, in turn, the posterior distribution is completely mathematically

determined by Bayes’ theorem. Unfortunately, this does not mean that drawing inferences

from a Bayesian model is always straightforward. Indeed, if our statistical model has many

unknown parameters, then the posterior distribution has a high number of dimensions. In

such cases, calculating the posterior distribution directly using Bayes’ theorem may be very

difficult. However, because the posterior is a probability distribution, we may be able to

learn about this distribution by drawing a sample from it and computing summary statistics

of the sample values. This process is called inference via Monte Carlo simulation.

The most common Monte Carlo simulation technique used for Bayesian inference is called

Markov chain Monte Carlo (MCMC). This technique randomly draws a sequence of sam-

ple points from the posterior distribution, called a Markov chain. The distribution of each

succesive randomly drawn element of the chain is determined by the location of the previ-

ous element of the chain, the posterior distribution we are trying to sample from, and the

particular MCMC algorithm chosen. Because each newly drawn point depends on the loca-

tion of the previous point in the chain, the elements of the sample produced by the Markov

chain are not independent. Instead, they are correlated, and the stronger this correlation is

the less information the Markov chain provides about the posterior distribution. Thus it is

important to design MCMC algorithms to minimize this correlation.

Figure 1.2 shows an example of a 2-dimensional posterior distribution, depicted by the

ellipse-shaped cloud of gray-blue points. In red, we show a sequence of 19 points produced by
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an MCMC algorithm known as the Gibbs sampler ; this algorithm only allows one dimension

(horizontal or vertical) to change at each successive move of the chain. As a result, it takes

the chain many iterations to move from one side of the posterior distribution to the other. In

blue, we show a modified Gibbs sampling MCMC algorithm which allows the chain to move

along the major axis (that is, the longest direction) of the elliptic posterior distribution. By

taking advantage of information about the shape of the posterior distribution, this chain

is able to move further on average at each iteration than the unmodified Gibbs chain, and

therefore produces a posterior sample with lower correlation.

In this dissertation, we develop novel MCMC algorithms for event history models with

high-dimensional posterior distributions. Like in the simple 2-dimensional example above,

our new algorithms will produce posterior samples with lower correlation by using informa-

tion about the approximate shape of the posterior distribution of our event history models.

We describe these algorithms in Chapter 3.
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Figure 1.2: Two Gibbs sampler MCMC algorithms applied to a 2-dimensional multivariate

normal posterior distribution.
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CHAPTER 2

Event History Analysis Review

In this chapter, we provide an extensive review of event history analysis concepts and lit-

erature. We begin by reviewing basic survival analysis concepts. Subsequently, we cover

Cox-type hazard regression models, alternative discrete and continuous survival models,

multivariate survival analysis, and competing risks. Next, we briefly review the social sci-

ence event history analysis literature. Finally, we discuss the issue of multiple time scales,

and describe smoothing of time scale effects using Gaussian Markov random field priors and

MCMC algorithms for obtaining inferences from models with such components.

2.1 Basic Survival Analysis Concepts and Notation

We begin with a brief review of basic survival analysis terminology and notation. More

detailed introductions to survival methods may be found in Kalbfleisch and Prentice (2002)

and Klein and Moeschberger (2003).

2.1.1 Event History Analysis and Survival Analysis

Event history analysis is the study of the timing of the occurrence of events (Tuma and

Hannan, 1979; Aalen et al., 2008). More specifically, we are often interested in the duration of

time a subject persists in a state in which they may possibly experience some predetermined

type event. If, for example, the event of interest is leaving a job, then an event history

analysis would examine the lengths of employment in a single job. Of course, the chances of

a person leaving their current job depend on more than just how long the person has worked

in that position, and an event history analysis may also consider how rates of leaving a job
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depend on additional factors. These could include economic factors, such as current income

or the local unemployment rate, or time variables other than how long the person has been

employed, such as the person’s age.

Methods for studying event times have been developed for and applied to a diverse

collection of disciplines. For example, in medicine they are often used to study risk factors

for death from a disease. Because the case of death being the event of interest is so common

is biomedical applications, event history analysis is usually referred to as survival analysis

by researchers in this field, even when the event is not death. Engineers, on the other hand,

call the study of event times reliability theory, since they are often interested in the time

until a mechanical part fails. This also explains how it became common to refer to event

times as failure times even in cases where we would not usually refer to the event type as

a “failure.” Subsequently, we will use the terms event history analysis and survival analysis

interchangeably. Moreover, we will refer to any kind of event as a failure and speak of the

risk of a failure happening even when the event is a desirable outcome, such as voluntarily

ceasing illegal drug use.

2.1.2 Continuous Time Survival Variables

In the following, we let Y denote a continuous time survival variable. That is, Y is a random

variable denoting the elapsed time from some predefined baseline or origin time point, at

which a subject is first at risk of experiencing an event, until that event occurs. Because this

time is measured on a continuous scale, Y may take on any positive real number value.

Let f(t) and F (t) denote, respectively, the probability density function (pdf) and cumu-

lative distribution function (cdf) of Y ; the survival function is defined

S(t) ≡ Pr[Y > t] =

∫ ∞
t

f(t)dt = 1− F (t). (2.1)

The hazard rate function, alternatively known as the failure rate or force of mortality, is then

defined

λ(t) ≡ lim
h→0+

Pr[t ≤ Y ≤ t+ h|Y ≥ t]

h
=
f(t)

S(t)
. (2.2)
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This quantity measures the “instantaneous risk” a subject experiences in the next instant

after having survived to time t, but it is not a probability, since it may take on any value

between 0 and ∞. However, the probability of a failure occurring in the next ∆t units of

time given that the subject has not already failed may be approximated by λ(t) ·∆t when

∆t is sufficiently small.

Next, we define the cumulative hazard by

Λ(t) ≡
∫ t

0

λ(u)du =

∫ t

0

f(u)

S(u)
du =

∫ t

0

d

du
[− logS(u)]du = − logS(t). (2.3)

Because survival decreases with increasing cumulative hazard according to the equation

S(t) = exp(−Λ(t)) = exp

(
−
∫ t

0

λ(u)du

)
, (2.4)

the hazard rate λ(t) completely determines the distribution of Y ; thus we may specify a

statistical model for Y by giving a prescription for λ(t). This approach will be discussed in

detail in subsequent sections.

2.1.3 Discrete Time Survival Variables

Let the random variable Ỹ represent the time elapsed until some failure event occurs. If the

collection of time points at which a failure may occur is discrete, then we say Ỹ is a discrete

time survival variable. In this case, we may without loss of generality assume the collection

of potential failure times is the positive integers {1, 2, 3, . . .}.

Let f̃(s) and F̃ (s) denote, respectively, the probability mass function (pmf) and cdf of

Ỹ . As in the continuous time case, we define the survival function by

S̃(s) ≡ Pr[Ỹ > s] =
∞∑

k=s+1

f̃(k) = 1− F̃ (s). (2.5)

The discrete hazard rate function is defined as the probability of experiencing the event at

time point s given that the subject has survived up to that point,

λ̃(s) ≡ Pr[Ỹ = s|Ỹ ≥ s] =
f̃(s)

S̃(s− 1)
. (2.6)
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Unlike the continuous time hazard rate, the discrete hazard is a true probability, bounded

between 0 and 1. But similar to the continuous case, the chances of surviving through the

hazard at each successive time point decreases according to the equation

S̃(s) =
s∏

k=1

Pr[Ỹ > k|Ỹ ≥ k] =
s∏

k=1

(1− λ̃(k)), (2.7)

so that the hazard function λ̃(s) completely determines the probability distribution of Ỹ .

2.1.4 Censoring and Grouped Time

Frequently in studies involving time-to-event variables, we may not be able to observe the

precise timing of the event of interest for all subjects. Instead, for some subjects we may

only know that the event occurred in some specific range of times. For example, in a study

where time to relapse of drug use in former users is measured, the study may end before some

subjects experience a relapse. For these people, we know that their survival time is greater

than the time elapsed between when they ceased drug use (at which point they became at

risk for relapse) and the end of the study. When all we are able to observe about a subject’s

event time is that if the event occurred at all, it must have occurred after some time point

t, that observation is said to be right censored at time t.

Alternatively, we may know that the event occurred between two time points t1 and t2

without knowing precisely where in this time interval the event occurred, a situation known

as interval censoring. This could be the case, for instance, if we are measuring time to change

in some clinical sign whose observation requires a laboratory procedure. In such a study all

observations would be censored to the time intervals in between clinic visits.

Omitting censored observations from an analysis can lead to bias and loss of precision

in estimates. In the drug relapse example, excluding the subjects who remained drug-

free throughout the study period would cause a downward bias in survival time estimates.

Moreover, in the example above where all observations were censored to intervals between

lab measurments, removing the censored observations would eliminate the entire sample.

If every observation in a study with continuous time is censored to an interval from a
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collection of possible intervals that is common to all observations, then we say that study

has grouped time. More formally, we have grouped time data if there is a (possibly infinite)

sequence of time points {0 = t0 < t1 < t2 < · · · } such that all observations from all subjects

are interval censored to intervals of the form (ti, tj] or (ti,∞). In such cases, we may either

choose to model the original continuous survival time variable Y using methods that allow

interval-censored observations, or instead derive a discrete survival time variable

Ỹ ≡ min{s|Y ≤ ts}. (2.8)

With this definition, Ỹ = 1 when Y ∈ (t0, t1], Ỹ = 2 when Y ∈ (t1, t2], and so on. Further-

more, the following relationships hold for all s,

Y ≤ ts ⇐⇒ Ỹ ≤ s, (2.9)

Y > ts ⇐⇒ Ỹ > s, (2.10)

F (ts) = F̃ (s), (2.11)

S(ts) = S̃(s). (2.12)

This new discrete time variable Ỹ (which may itself be subject to interval and right censoring)

is easy to compute from grouped time continuous data; in fact, grouped time data is often

already encoded in such a discrete fashion. Moreover, Ỹ retains all the information in

the original grouped-time dataset, since we may recover the original interval membership

information about Y from Ỹ .

2.2 Cox Regression Models for Univariate Outcomes

The most commonly employed method of relating survival outcomes to covariates is re-

gression modeling of the hazard rate function. As equations (2.4) and (2.7) imply, in the

continuous and discrete cases respectively, a specification of the hazard rate is sufficient to

characterize the distribution of a survival time variable. Moreover, regression models for

hazard rates can easily be fit in the presence of right censoring that is independent of the

survival outcome, as censored observations simply do not contribute information about the
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hazard rate beyond their censoring times. In this section, we review both continuous and

discrete versions of this approach.

2.2.1 Continuous Time Proportional Hazards Model

In his seminal 1972 paper “Regression Models and Life-Table,” Sir David Cox introduced his

now-famous proportional hazards model for continuous time outcomes. For an individual

with a p-vector of covariate values X(t) at time t, the Cox proportional hazards (CPH)

model sets the hazard rate λ(t;X(t)) at time t equal to the product of an unknown arbitrary

nonnegative function of time λ0(t) and the exponential of a linear predictor β′X(t),

λ(t;X(t)) ≡ λ0(t) exp(β′X(t)), (2.13)

where β is a vector of unknown regression coefficients. The proportional hazards name is due

to the fact that the ratio of hazard rates for two individuals with respective time-invariant

covariate vectors X1 and X2 does not depend on time, as

λ(t;X1)

λ(t;X2)
=
λ0(t) exp(β′X1)

λ0(t) exp(β′X2)
= exp(β′(X1 −X2)). (2.14)

In particular, the hazard rate ratio for two individuals who differ only with respect to the

jth covariate by the fixed amount ∆X·j ≡ X1j − X2j is exp(βj∆X·j). Conversely, non-

proportionality of covariate effects may be introduced by including interactions between a

covariate and some function of time as an additional time-dependent variable in X.

Because no functional form for the baseline hazard rate λ0(t) is assumed, the CPH model

(2.13) is semiparametric. Often in applications, the regression coefficients β are of primary

interest, and λ0(t) is considered a nuisance parameter. Thus instead of maximizing a full

likelihood, Cox (1972) bases inferences about β on a “conditional likelihood” which does

not contain λ0(t). Specifically, Cox conditions on the elapsed time between events in the

dataset and the amount of censoring that takes place between observed events. The resulting

likelihood of an observed event on subject i is the (conditional) probability that a failure at

time t = Yi belongs to subject i as opposed to any other subject in the collection R(t) of all
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subjects still at risk at time t,

PLi(β) ≡ exp(β′Xi(t))∑
j∈R(t) exp(β′Xj(t))

. (2.15)

However, Kalbfleisch and Prentice (1973) note that the product over all observed events i

of (2.15) is not strictly a marginal likelihood unless we make additional assumptions. Cox

(1975) resolves this issue by defining a generalization of marginal and conditional likelihood

called partial likelihood, for which the usual asymptotic results of ML estimation hold, and

then noting that (2.15) is an instance of a partial likelihood.

2.2.2 Discrete Time Proportional Odds Model

Two distinct observations Y1 = y1 and Y2 = y2 are tied if y1 = y2. In theory, with continuous

time tied observations occur with probability zero. However, in practice ties often occur as

a result of rounding and implicit grouping of the continuous response times. To cover cases

in which the number of ties is too large to address with simple modifications of the partial

likelihood, Cox (1972) proposed a discrete time version of his continuous time proportional

hazards model. The Cox discrete proportional odds (DPO) model

λ̃(s; X̃(s))

1− λ̃(s; X̃(s))
≡ λ̃0(s)

1− λ̃0(s)
exp(β̃′X̃(s)) (2.16)

closely resembles its continuous analogue (2.13). To account for the fact that the discrete

hazards λ̃(s; X̃(s)) at each time point s are probabilities, and thus bounded between 0 and

1, proportionality is now in the odds of the hazard. Writing β̃0(s) ≡ logit(λ̃0(s)), we may

bring the baseline hazard inside the linear predictor, yielding the reformulation

logit(λ̃(s; X̃(s))) ≡ β̃0(s) + β̃′X̃(s). (2.17)

Hence, the DPO model (2.16) relates the discrete hazard rate to covariates in precisely the

same manner as a logistic regression model. This fact leads to a convenient method of fitting

the DPO model using standard logistic regression software.

Suppose for subjects i = 1, . . . , N we observe discrete time survival data (yi, δi, Xi), where

δi is a censoring indicator encoded so that δi = 1 means Ỹi = yi (an observed event) and
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δi = 0 means Ỹi > yi (a right censored observation). The covariate vector Xi may be time

varying, taking the value Xi(s) at discrete time s. Assuming independent censoring and

writing λ̃i(s) ≡ λ̃(s;Xi(s)) for convenience, the likelihood is

L =
N∏
i=1

[
λ̃i(yi)

δi(1− λ̃i(yi))1−δi
yi−1∏
s=1

(1− λ̃i(s))

]
, (2.18)

as the likelihood contribution of each observation i is the probability of surviving through

the first yi − 1 time points times the probability of either failing or surviving at the last

time point, depending on the censoring indicator δi. All terms in the product (2.18) are

probabilities related to covariates through a logit link function. This suggests that we can

create a logistic regression dataset that has the same likelihood. For each subject i, we

expand the data (yi, δi, Xi) to yi logistic regression observations, one for each discrete time

point subject i was followed. These person-time observations have the form (z, s,X), where

z is the binary response variable, s is discrete time at risk, and X is a covariate vector. The

response variable z is set equal to 0 for all observations corresponding to discrete time points

at which the subject was observed to not fail. Conversely, we set z = 1 for time points that

were observed failures; at most one such point is contributed by each survival time.

More formally, given the data (yi, δi, Xi) from each subject i, we first create the (yi − 1)

person-time observations

(0, 1, Xi(1)), (0, 2, Xi(2)), (0, 3, Xi(3)), . . . , (0, yi − 1, Xi(yi − 1)). (2.19)

Second, we create one additional observation for the last time point the subject was observed,

(δi, yi, Xi(yi)). (2.20)

We then have
∑N

i=1 yi logistic regression observations of the form (z, s,X). Before fitting the

model, the variable s denoting discrete time needs to be recoded into (max yi − 1) indicator

variables to allow fitting separate intercepts for each discrete time point, which corresponds to

having an arbitrary baseline hazard β̃0(s). Alternatively, other recodings of s corresponding

to other models for the baseline hazard are possible.
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2.3 Alternate Discrete Models and Relationships Between Models

In this section, we describe several additional models for discrete time survival outcomes, and

we examine relationships that exist between these models. We first compare the continuous

and discrete Cox models (2.13) and (2.16), which leads to a discussion of a modification

of the DPO model (2.16) called the grouped proportional hazards (GPH) model. Next we

compare several ordinal logistic models to models already discussed, as well as to models for

latent continuous failure times, such as the accelerated failure time model.

2.3.1 Grouping Continuous Survival Times

Suppose Y is a continuous time survival variable with associated time-varying covariate

vector X(t) and hazard rate λ(t;X(t)). Assume Y follows the CPH model (2.13), and let

Ỹ be the corresponding grouped time variable, where the grouping intervals have endpoints

chosen among the set of cut points {0 = t0 < t1 < t2 < · · · }. In other words, Ỹ = 1 when

Y ∈ (t0, t1], Ỹ = 2 when Y ∈ (t1, t2], and so on. We assume the time-varying covariates X(t)

are constantly equal to X̃(s) on the sth interval; that is, X(t) = X̃(s) for all t ∈ (ts−1, ts]. Cox

originally proposed the DPO model (2.16) for precisely this circumstance, when rounding or

grouping of a continuous response leads to a large number of tied observations.

Comparison of the Continuous and Discrete Cox Models

Several authors have compared the coefficients β from the continuous model (2.13) to the

estimates of β̃ obtained from the discrete model (2.16). Thompson (1977) applies the DPO

model to the leukemia remission data that Cox (1972) uses to illustrate the CPH model,

where time is grouped into one-week intervals. He obtains similar estimates to the continuous

time analysis, and then sketches a proof illustrating equivalence of Cox’s continuous and

discrete time models as the lengths of the grouping intervals approach zero. Abbott (1985)

argues that the two models should give similar results when the probability of failure in each

interval is small by approximating these probabilities with power series.
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Indeed, we should not expect much descrepancy between odds ratio estimates from the

DPO model (2.16) and hazard ratio estimates from the CPH model (2.13) when event prob-

abilities in each interval are small and grouping intervals are short. This is because the

odds ratio estimate should be approximately equal to the relative risk of event occurrence

in that interval when the probability is small. In turn, the relative risk should be similar

to the hazard ratio when the interval is short (in which case the continuous hazard rates

are roughly constant) and probabilities are small. More succinctly, when intervals are short,

OR ≈ RR ≈ HR, so that β ≈ β̃.

Nevertheless, if the grouping intervals are not short and the discrete hazards are moderate

or high, effect estimates can differ substantially. Kalbfleisch and Prentice (1973) provide a

simple example of a CPH model with a single dichotomous covariate, where the baseline

hazard is constantly equal to 0.2 and the coefficient β = 0.5. If these survival times are

grouped into whole-integer intervals, the corresponding DPO coefficient for the comparison

between the two groups is β̃ = 0.57.

Grouped Proportional Hazards Model

Kalbfleisch and Prentice (1973) and Prentice and Gloeckler (1978) propose addressing this

discrepancy by replacing the logit link function in the DPO model with the complementary

log-log link function cll(p) ≡ log(− log(1− p)). This yields the grouped proportional hazards

(GPH) model

cll(λ̃(s; X̃(s))) = h(s) + β′X̃(s), (2.21)

where h(s) is the baseline discrete hazard on the complementary log-log scale. We use

the same parameter β in (2.21) as in the CPH model (2.13), since it turns out that if the

continuous variable Y follows a CPH model with parameter vector β, then the corresponding

grouped outcome Ỹ follows the GPH model (2.21) with the exact same parameter vector β.

Moreover, the discrete baseline hazard on the linear predictor scale may be expressed in

terms of the continuous baseline hazard,

h(s) ≡ log

(∫ ts

ts−1

λ0(u)du

)
. (2.22)
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To prove this, first note that it follows from (2.4) that

1− λ̃(s; X̃(s)) = Pr[Y > ts|Y > ts−1] = exp

(
−
∫ ts

ts−1

λ(u;X(u))du

)
. (2.23)

Taking negative logs of both sides, we get

− log(1− λ̃(s; X̃(s))) =

∫ ts

ts−1

λ(u;X(u))du

=

∫ ts

ts−1

λ0(u) exp(β′X(u))du

=

∫ ts

ts−1

λ0(u) exp(β′X̃(s))du

=

∫ ts

ts−1

λ0(u)du · exp(β′X̃(s)). (2.24)

Taking logs once more, we obtain

log(− log(1− λ̃(s; X̃(s)))) = log

(∫ ts

ts−1

λ0(u)du

)
+ β′X̃(s) = h(s) + β′X̃(s), (2.25)

which is precisely the GPH model (2.21), as we wished to show.

Since the CPH and DPO models give similar results when the discrete hazards are small,

the equivalence between CPH and GPH illustrated above implies that estimates from the

GPH and DPO models will also not differ greatly. Indeed, Efron (1988) fits two-sample

discrete time survival data with a parametric baseline hazard using both a logit link function

as in the DPO model (2.16) and a complementary log-log link as in the GPH model (2.21).

Estimates of the discrete hazard rate at each time point for each sample agreed between the

two models to within 0.3%.

2.3.2 Ordinal Logistic Regression

Suppose once again that Ỹ is our discrete time survival outcome. Ignoring censoring for

the moment, assume that the integer J is chosen so large that no event time in our dataset

exceeds J , i.e. Ỹ ≤ J for all observations of Ỹ . Then we may think of Ỹ , which assumes

values among the set of integers {1, 2, . . . , J}, as an ordinal outcome, and model it using

ordinal logistic regression techniques. Several different ordinal logistic regression models
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exist, and they may be characterized by the probabilities they model and how they relate

those probabilities to linear predictors.

Continuation Ratio Logit Model

The first class of models we consider specifies the distribution of Ỹ by modeling the con-

ditional probabilities Pr[Ỹ = s|Ỹ ≥ s]. Of course, we recognize that these probabilities

are precisely the discrete hazard rates λ̃(s), which have appeared in the DPO model (2.16)

and GPH model (2.21). When the logit link function is used as in (2.16), Agresti (2002)

refers to this ordinal model as the continuation ratio logit (CRL) model. The more general

class of models where the link function is unspecified is referred to as sequential models in

Tutz (1991). Since these models are equivalent to the discrete hazard approach previously

discussed, we do not consider them further here.

Ordinal Proportional Odds and Proportional Hazards Models

The cumulative link models, introduced in McCullagh (1980), relate the cumulative proba-

bilities Pr[Ỹ ≤ s] to covariates through a link function. In particular, McCullagh introduced

the ordinal proportional odds (OPO) and ordinal proportional hazards (OPH) models, which

relate the cumulative probabilities to linear predictors with the logit and complementary

log-log links respectively,

logit(Pr[Ỹ ≤ s]) ≡ θs + β̄′X (2.26)

cll(Pr[Ỹ ≤ s]) ≡ cs + β′X. (2.27)

The models use different intercept terms for each cumulative probability Pr[Ỹ ≤ s], and

since these probabilities are increasing in s, the models require that the intercept terms

are increasing in s as well. The same covariate coefficient vector is used for each value of

s, and this feature gives the models the properties they are named after. For the ordinal

proportional odds model (2.26), the odds ratio of a given cumulative probability for a ∆-unit

increase in Xi will be exp(∆β̄i) regardless of what s is.
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On the other hand, for the ordinal proportional hazards model (2.27), it is not obvious

what “hazard” the proportionality might be in. It turns out that this model is equivalent to

the grouped proportional hazards model (2.21) for discrete survival outcomes, with the same

covariate coefficient vector β. Since as we saw in the last section the GPH model (2.21) is

implied by a CPH model for the underlying continuous response Y , the OPH model (2.27)

is also implied when a continuous time proportional hazards model underlies the ordinal

outcome.

Equivalence of the OPH and GPH Models

The equivalence of the two discrete proportional hazards models was first explicitly noted

in Laara and Matthews (1985). In this section, we prove this equivalence and provide

expressions for the parameters of each model in terms of those of the other.

To see that the two models are equivalent, first assume the GPH model (2.21) holds,

cll(λ̃(s)) ≡ log(− log(1− λ̃(s))) ≡ hs + β′X. (2.28)

Taking exponentials gives an equation we’ll need momentarily,

− log(1− λ̃(s)) = exp(hs + β′X). (2.29)

Next, by equation (2.7) we have

1− Pr[Ỹ ≤ s] = Pr[Ỹ > s] =
s∏
i=1

(1− λ̃(i)). (2.30)

Taking negative logs and substituting using equation (2.29) gives

− log(1− Pr[Ỹ ≤ s]) =
s∑
i=1

− log(1− λ̃(i)) =
s∑
i=1

exp(hi + β′X) = exp(β′X)
s∑
i=1

exp(hi).

(2.31)

Taking logs once more, we have

log(− log(1− Pr[Ỹ ≤ s])) = β′X + log

(
s∑
i=1

exp(hi)

)
, (2.32)

which is precisely the OPH model (2.27), with cs ≡ log(
∑s

i=1 exp(hi)).
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Conversely, assume the OPH model holds,

cll(Pr[Ỹ ≤ s]) ≡ log(− log(1− Pr[Ỹ ≤ s])) ≡ cs + β′X. (2.33)

We first take exponentials to obtain a more algebraically useful form of the model,

− log(1− Pr[Ỹ ≤ s]) = exp(cs + β′X). (2.34)

Now then, we have

1− λ̃(s) = 1− Pr[Ỹ = s|Ỹ ≥ s] = Pr[Ỹ > s|Ỹ > s− 1] =
1− Pr[Ỹ ≤ s]

1− Pr[Ỹ ≤ s− 1]
. (2.35)

Taking negative logs and using equation (2.34) yields

− log(1− λ̃(s)) = − log(1− Pr[Ỹ ≤ s])− (− log(1− Pr[Ỹ ≤ s− 1])

= exp(cs + β′X)− exp(cs−1 + β′X)

= (exp(cs)− exp(cs−1)) exp(β′X). (2.36)

Finally, taking logs one more time gives us back the GPH model

log(− log(1− λ̃(s))) = log(exp(cs)− exp(cs−1)) + β′X, (2.37)

where hs ≡ log(exp(cs)− exp(cs−1)).

Cumulative Link and Accelerated Failure Time Models

In the preceding sections we defined the OPO model (2.26) and OPH model (2.27) as the

ordinal models which relate the cumulative probabilities Pr[Ỹ ≤ s] to linear predictors with

the logit and complementary log-log links respectively. We may motivate the choice of

other link functions with the following latent variable derivation. Suppose an underlying

continuous random variable Y follows the linear regression model

Y ≡ β′X + ε. (2.38)

As usual, we let Ỹ denote the discretized version of Y , though since Y may now in general

take on negative values, we no longer assume the cut points {t0 < t1 < t2 < · · · < tJ}

defining the discretization are all positive numbers. If the error term ε has cdf G, then

Pr[Ỹ ≤ s] = Pr[Y ≤ ts] = Pr[β′X + ε ≤ ts] = Pr[ε ≤ ts − β′X] = G(ts − β′X), (2.39)
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so Ỹ follows the cumulative link model with link function G−1,

G−1(Pr[Ỹ ≤ s]) = ts − β′X. (2.40)

In particular, Ỹ follows a cumulative probit model whenever it is the discretization of some

latent continuous quantity for which a linear regression model with normal errors holds.

Returning to the survival analysis context, suppose now that Y follows the accelerated

failure time (AFT) model

Y ≡ exp(β′X + ε), (2.41)

where as before ε is an error term with cdf G. Then

Pr[Ỹ ≤ s] = Pr[Y ≤ ts]

= Pr[exp(β′X + ε) ≤ ts]

= Pr[β′X + ε ≤ log(ts)]

= Pr[ε ≤ log(ts)− β′X]

= G(log(ts)− β′X), (2.42)

and so

G−1(Pr[Ỹ ≤ s]) = log(ts)− β′X. (2.43)

Hence, the AFT model (2.41) for the continuous survival time Y implies that the corre-

sponding grouped outcome Ỹ will follow a cumulative link model, where the link function is

the inverse of the cdf of the error term from the AFT model.

2.3.3 Review of Model Naming

As we have just seen, models for discrete survival outcomes often have multiple equivalent

characterizations, and different ways of viewing the models have sometimes lead to redundant

naming. In particular, the discrete time Cox model (2.16), which we have labeled the discrete

proportional odds (DPO) model, has been called several different names in the literature,

and we briefly review these here.

29



First, as previously mentioned, the DPO model is equivalent to the continuation ratio

logit model in the ordinal logistic regression context, as described in Agresti (2002). Cupples

et al. (1988) have characterized the DPO model in the case of a constant baseline hazard

and time-varying covariates as a generalized person-years approach. Because estimation in

this context involves pooling all observations into a single sample before running a logistic

regression routine, they also call this method the pooling of repeated observations (PRO)

approach. For the same reason, D’Agostino et al. (1990) use the phrase pooled logistic

regression. Since the second example in Cox (1975) consists of a grouped life table, Efron

(1988) calls the DPO model partial logistic regression. Finally, Ingram and Kleinman (1989)

call the Cox discrete survival model person-time logistic regression, to distinguish it from

ordinary logistic regression applied to dichotomized survival outcomes.

2.4 Multivariate Survival Analysis

When more than one outcome variable is observed on the same study subject, these ob-

servations will often not be independent. Ignoring this dependence can lead to bias and

underestimation of standard errors in effect estimates. Two broad approaches exist for

obtaining estimates without these problems. First, the dependence between multiple vari-

ables observed on the same subject is explicitly accounted for by including latent variables

known as random effects in the model. The second approach is to fit models which specify

the marginal distributions of the multiple observations without making strong assumptions

about the exact nature of the association between the variables, and then to utilize formulas

for the covariance of the parameter estimates which are asymptotically correct regardless

of the true nature of the variables’ association. In this section, we briefly review these two

approaches in a general survival analysis context, and then review adaptations of these meth-

ods to the discrete time case. More in-depth introductions to these topics may be found in

Hougaard (2000) and Cook and Lawless (2007).
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2.4.1 Random Effects and Frailty

The random effects approach models the association between multiple variables with the

inclusion of latent variables called random effects. These models make a conditional inde-

pendence assumption: conditional on these unobserved random effects, the multiple obser-

vations are presumed independent. Random effects models may in general also be referred

to as mixed effects, hierarchical, multilevel, variance components, or subject-specific models.

In survival analysis specifically, these models are usually called frailty models, since the ran-

dom effect may be thought of as capturing how “frail,” or prone to experiencing failure, the

subject is.

Frailty in Univariate Models

The concept of frailty was initially proposed in Vaupel et al. (1979) in the univariate survival

analysis setting to model unobserved differences between individuals in their “endowment

for longevity.” In particular, these authors define frailty to be a latent random variable z,

distinct for each subject, multiplying the hazard rate function for that subject. Using our

notation, the continuous time Cox proportional hazards model with frailty states that the

subject-specific hazard rate for a subject with frailty term z is

λSS(t;X(t), z) ≡ z · λ0(t) exp(β′X(t)). (2.44)

The purpose of including the frailty term in univariate settings is for that term to capture

the aggregate effect of unobserved variables and factors (such as genetic or lifestyle traits)

on the hazard. This effectively partitions variability in survival times into two sources:

unobserved risk factors captured by frailty and “simple randomness” (Hougaard, 1995). The

hazard rate for a population of individuals may then be derived from a specification such as

(2.44) for the subject-specific hazard (the hazard conditional on the frailty z) by averaging

over the distribution of the frailty z in the population still at risk for event occurrence.

More formally, if g(z; t,X(0, t)) is the density function for the frailty among individuals

with covariate history X(0, t) still alive at time t, then the population-average hazard rate
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is defined as

λPA(t;X(t)) ≡
∫ ∞
0

λSS(t;X(t), z)g(z; t,X(0, t))dz. (2.45)

Unfortunately, given a CPH model (2.44) for the subject-specific hazard, the population-

average hazard (2.45) may no longer follow a CPH model, even if the covariates are constant.

The reason for this is that when a covariate valueX changes, not only does the term exp(β′X)

change, but the conditional distribution g(z; t,X) also changes. If one were to fit a CPH

model not accounting for frailty to data following a frailty model (2.44), the shape of the

fitted baseline hazard function may be quite different from that of the frailty model, and the

parameter estimates from the fitted population-average model will be attenuated compared

to their true underlying subject-specific values. Because experiencing greater hazard in the

past shifts the location of the distribution of the frailty term downward more quickly as time

passes (intuitively, the extra risk weeds out high-frailty individuals more quickly, leaving a

lower average frailty population remaining), the effect of a risk factor on a population hazard

becomes increasingly small as time passes compared to its effect on a particular subject’s

hazard.

Frailty in Multivariate Models

Frailty terms represent unmeasured factors which affect the risk of the occurrence of the event

of interest. When the association among multiple survival observations may be attributed

to the different observations having related frailties, then inclusion of frailty random effects

may be sufficient to account for the association. In the simplest case, different observations

thought to be associated may share the exact same single frailty term, which is fixed over

time. For example, the frailty term may be used to account for genetic similarities of siblings

whose survival times are being observed. This model, which is analogous to the random

intercept linear model, is known as the shared frailty model (Hougaard, 2000, Chap. 7). The

gamma distribution is the most common choice for the distribution of the shared frailty at

time zero, owing to the simple mathematical properties that result from this assumption.

For example, the conditional distribution of the frailty given survival to a certain time point
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is also gamma distributed. The log-normal distribution, on the other hand, is appealing

since it is equivalent to including a normal random effect inside the linear predictor if a CPH

model such as (2.44) is used.

One limitation of the standard shared frailty model is that because the frailty is fixed

in time, it can only model long-term dependence, that is, situations in which increased

risk for one variable implies that the hazard for a different associated variable is always

increased throughout time. In contrast, some collections of variables may exhibit short-term

dependence, where the occurrence of an event for one variable implies only a temporary

increase in the hazard for another variable (Hougaard, 2000, Chap. 11). This may be the

case when subjects share a common changing environment. In this case occurrence of an

event in one subject implies that the shared environment may be especially risky at that

time. We can account for such dependence by replacing the shared random variable z with

a stochastic process z(t) that is shared among associated survival outcomes.

Another extension of the basic shared frailty model is to incorporate different functions of

the random frailty term z into the hazard rates for the different survival outcomes (Hougaard,

2000, Chap. 10). For example, we can model negative association between pairs of variables

by multiplying the hazard for one variable by z as before, and multiplying the hazard of the

other variable by 1/z. More generally, we can model differing effects of the latent covariates

represented by the frailty by multiplying the hazards of each outcome by different powers

of the random variable z, which we estimate from the data. For identifiability purposes, we

must fix one of these powers. Alternatively, we can model different but related frailties with

a bona fide multivariate distribution for the frailty. Common choices for this distribution

include an additive gamma model and a multivariate log-normal distribution.

2.4.2 Marginal Models

The second general approach to accounting for association among survival outcomes is to

specify models for the marginal distributions of the survival times and then utilize standard

error and covariance estimates for the parameters of these models which are asymptoti-
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cally correct regardless of the true association stucture of the survival outcomes (Hougaard,

2000, Chap. 13). The marginal distributions are usually specified with CPH models for the

population-average hazard (2.45), which is the average hazard experienced among individuals

with the given covariate values who are still alive at the given time.

There are two approaches to fitting marginal models. Wei et al. (1989) fit the marginal

CPH models for the different outcomes separately. They show that the joint distribution

of the covariate coefficient estimates is asymptotically multivariate normal, and provide

estimates for the covariances of these coefficients. Alternatively, one may specify a “working

model” for the covariances between the survival times, and utilize a version of the estimating

equations approach introduced in Liang and Zeger (1986) and Zeger and Liang (1986).

2.4.3 Review of Multivariate Discrete Time Survival Literature

Ten Have and Uttal (1994) is the first work addressing multivariate discrete survival out-

comes. They present both random effects and estimating equations approaches for this data,

and the subject-specific and population-average discrete hazards, respectively, are both re-

lated to linear predictors with a logit link function as in the DPO model (2.16). They apply

their models to a dataset consisting of 10 repeated measurements per subject of survival

outcomes where failure may occur at one of three discrete time points, or may be right cen-

sored after the third time point. Due to the small number of discrete time points relative to

the size of the sample, which contained 89 subjects all with complete data, they employ an

arbitrary baseline hazard function for the effect of discrete time.

Their subject-specific model uses a single time-constant 3-dimensional multivariate nor-

mal random effect for each subject. The three components of the random effect are a random

intercept, random measurement occasion number (whose coefficient takes values 1 through

10 for the 10 repeated measurement occasions of the survival outcome for each subject), and

random occasion number squared. Hence, a subject’s frailty is fixed in discrete time within

each survival observation, but varies over each subject’s 10 measurement occasions accord-

ing to a quadratic function whose coefficients are the latent 3-dimensional random effect.
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They fit the random effects model using a Bayesian Gibbs sampling approach with non-

informative priors, and compare the results to those from estimating equations approaches

with both independence and exchangeability working assumptions for the correlation. The

random effects and exchangeability approaches performed similarly, both being superior to

the independence approach.

Guo and Lin (1994) also develop estimating equations methods for discrete survival data,

but utilize the GPH model (2.21) for the marginal survival times instead of the DPO model

(2.16) which Ten Have and Uttal use. They provide simulation results which indicate that

their robust sandwich covariance estimator derived under an independence assumption pro-

duces good estimates, whereas the naive Fisher information covariance estimate produces

results with substantial bias. Since they illustrate their methods with the same dataset as

Ten Have and Uttal use, they do not have to address the problem of estimating a large

number of parameters for the baseline hazard.

Hedeker et al. (2000) treat multivariate discrete survival outcomes by including multi-

variate normal or rectangular random effects in the linear predictor. They model the survival

outcomes by using both the logit and complementary log-log link functions with both dis-

crete hazard probabilities and cumulative probabilities. In other words, they use all four

models (2.16), (2.21), (2.26), and (2.27) introduced earlier for relating discrete outcomes to

covariates. Their example data only uses three discrete timepoints, so as in Ten Have and

Uttal (1994) and Guo and Lin (1994), they use separate baseline hazard parameters for each

discrete time.

2.5 Competing Risks

Often in time-to-event studies, followup for some subjects ends before they experience the

event of interest. When this end to followup results from an inability to observe a subject

who may still be at risk, it is called censoring. However, followup may also end because the

subject experiences a competing risk, an event other than the event of interest which makes

them no longer at risk of experiencing the event of interest. For example, in a study of
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the time to voluntary cessation of cocaine use, a subject may be arrested before voluntarily

quitting the drug. If occurrence of a competing risk is not of substantive interest in the study

and this occurrence may be assumed to be independent of the occurrence of the primary

event of interest, then observations ending with these other events may simply be considered

censored. When this is not the case, the competing risk must be accounted for in the

statistical analysis and interpretation. In this section, we review methods for incorporating

competing risks into survival models.

2.5.1 Competing Risks in Continuous Time

Suppose Y is a continuous survival outcome, which may be terminated by any of R competing

risks, including any primary event of interest. Each observation of Y consists of a pair (y, δ),

where y is the study time and δ is an event-type indicator. For right censored observations

(Y > y), we do not know the type of event the subject experienced, and this is indicated

by δ = 0. For observed events (Y = y), we know the event type r the subject experienced

(where r ∈ {1, . . . , R}), and this is indicated by δ = r. In the special case R = 1, where

there is only one type of event, δ is simply a censoring indicator, coded as δ = 1 for an

observed event and δ = 0 for a censored observation.

One approach to the competing risks problem is to presume the existence of separate

event times Yr for each risk r, at least R− 1 of which are latent, since we may only possibly

observe the timing of the first risk to occur, Y = min(Y1, . . . , YR). This approach however

has two problems. First, the joint distribution of (Y1, . . . , YR) is not identifiable from the

observable data (y, δ) without specifying additional untestable assumptions (Prentice et al.,

1978). Second, it is often not clear what the physical meaning of the latent times Yr > Y is

when an earlier competing risk, such as death, prevents them from ever happening. Giving

them meaning would require specifying a counterfactual circumstance in which the competing

risk that did occur has been removed, or rendered inoperable, in some physical manner.

An alternative approach advocated by Prentice et al. (1978) is to express the problem in

terms of the cause-specific hazards of each risk, which are the instantaneous rates at which
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events of each type are occurring given that no event of any type has occurred up to that

time point. Letting Y be the time of the occurrence of the event and D ∈ {1, . . . , R} denote

which type of event occurred, we formally define the cause-specific hazard λ(r)(t) for risk r

at time t by

λ(r)(t) ≡ lim
h→0+

Pr[t ≤ Y ≤ t+ h,D = r|Y ≥ t]

h
. (2.46)

These hazards are identifiable from competing risks survival data (y, δ). Conversely, Prentice

et al. show that the likelihood of a sample of observations (y, δ) may be written entirely in

terms of the λ(r). Thus, they conclude that these hazards are “the basic estimable quantities

in the competing risks framework.”

The likelihood for continuous time competing risks data factors into separate pieces each

depending on only one of the cause-specific hazards. Each of these factors is precisely the

likelihood that would result from treating all other competing risks as censoring (Prentice

et al., 1978). This implies that the cause-specific hazards may be estimated separately, using

methods designed for single-risk data. In particular, if each of the λ(r)(t) follow a CPH

model (2.13) with separate covariate effect parameters and baseline hazards, then Cox’s

partial likelihood (2.15) may be used to estimate the parameters for each cause-specific

hazard.

2.5.2 Competing Risks in Discrete Time

The discrete time cause-specific hazard λ̃(r)(s) is defined to be the probability that risk r

occurs at time s given that none of the risks has occurred at any previous time point. If

Ỹ ∈ {1, 2, . . . , } is the discrete survival time and D ∈ {1, . . . , R} is the risk that occurs, we

have

λ̃(r)(s) ≡ Pr[Ỹ = s,D = r|Ỹ ≥ s]. (2.47)

Since for each discrete time s, the hazards {λ̃(1)(s), . . . , λ̃(R)(s)} are probabilities of mutually

exclusive events, their sum can be at most 1. This suggests that unlike in the continuous time

case, these hazards cannot be estimated separately. Indeed, the likelihood of an observation

(ỹ, δ) does not factor into separate components for each competing risk, so estimation must
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be performed for all competing risks simultaneously.

For the single-risk DPO model (2.16), we related the single discrete hazard to covariates

with a logit link function. Analogously, we may relate the multiple discrete cause-specific

hazards to covariates in the same manner as a multinomial logistic model, yielding the

multinomial proportional odds (MPO) model

λ̃(r)(s;X(s)) ≡
exp

(
β̃
(r)
0 (s) + β̃(r)X(s)

)
1 +

∑R
m=1 exp

(
β̃
(m)
0 (s) + β̃(m)X(s)

) . (2.48)

This model provides the same benefit as the single-risk DPO model of being able to perform

estimation by first expanding the data to person-time format, with one observation for each

discrete time point each subject was at risk, and then using standard logistic regression

software. This approach was first described in detail in Allison (1982), and has been applied

in competing risks analyses of waiting times for liver transplant and hospital length of stay

(Gibbons et al., 2003; Barnett et al., 2009).

2.5.3 Multistate Models

In a multistate event history, subjects move between different discrete states over the course of

follow up, and the events of interest are those marking transitions between states (Hougaard,

1999; Andersen and Keiding, 2002; Putter et al., 2007). The competing risks are then the

collection of states the subject may directly transition into from the subject’s current state,

which will vary depending on the current state. Consequently, a multistate model for a

multistate history requires a different competing risks survival model for each state a subject

may occupy.

More formally, a multistate model requires three specifications. First, we must specify the

collection of all discrete states the subjects may occupy during the study follow up period.

Usually this collection is finite, in which case we label the states with the positive integers

s = 1, . . . , S. Second, for each state s, we specify the collection of all states r for which it is

possible to directly transition from state s to state r without passing into any other state in

between. We say such states r are directly reachable from s, and write s→ r as a shorthand
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representation of a direct transition. For example, suppose the state of never having used

cocaine is state 1, active cocaine use is state 2, treatment for cocaine abuse is state 3, and

non-treatment abstinence from cocaine use following first use is state 4. Then a transition

from state s = 1 to state r = 3 or r = 4 is not possible, since in either case a subject

must pass through state 2 in between. Third, for each state s we must specify a model for

the durations of episodes subjects spend in s, where each state r directly reachable from s

represents a competing risk for termination of an episode in state s.

The primary challenge in constructing a multistate model lies in specifying the cause-

specific hazards of each competing risks model. These hazards often depend simultaneously

on multiple time scales and functions of the subject’s past state history, such as the time

since the subject last changed states, the number of previous episodes spent in the current

state, the cumulative amount of time spent in the current state, and the time since the

the subject first entered the state. Even after accounting for these and other observable

factors, the hazards of different transition events may be associated within subjects, requiring

introduction of latent random effects. We address these challenges with a Bayesian multistate

model in Chapter 4.

2.6 Review of Event History Analysis Literature

As noted in Section 2.1.1, researchers in many different fields analyze event time data. Much

of the work we have reviewed up to this point has come from the statistics and biostatistics

literature. However, a parallel and somewhat separate literature on event time data has

been developed by statisticians working in the social sciences, where survival analysis is

usually called event history analysis. This event history analysis literature tends to address

problems more similar to the TUE data than the general statistics survival analysis literature;

in particular, they often address discrete time data. Hence we now provide a brief review of

event history analysis publications.

Allison (1982) provides a comprehensive overview of event history analysis. This paper

presents both the DPO model (2.16) and GPH model (2.21), and describes fitting the DPO
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model. The cause-specific hazards approach to discrete time competing risks data using the

MPO model (2.48) is outlined. He also discusses choice of time scale, noting that in principle

one may incorporate more than one time scale into the linear predictor. Finally, he covers

repeated events and explains how to allow the hazard of future events to depend on history

of past events.

Yamaguchi (1990) uses discrete time survival methods to model times until transitions

between two states. He proposes simultaneous modeling of two distinct two-state processes

observed on the same subject using a multinomial logit model for the combined state of the

two processes assumed at each discrete time point. He applies his model to a premarital

cohabitation process (cohabiting or not cohabiting) and a marijuana process (using or not

using), using data obtained from a timeline follow-back interview. The methods proposed do

not account for between-subject heterogeneity or dependence of the transition probabilities

on the history of the processes beyond using the two previous states as covariates.

Singer and Willett (1993) and Willett and Singer (1993) provide introductions to discrete

time survival analysis targeted towards education and psychology researchers, respectively.

These tutorials are similar to Allison (1982), though not as technical or comprehensive. In

addition, Willett and Singer (1995) illustrates the application of discrete survival methods

to repeated spells or episodes of a trait for which subjects pass between the states of the

trait being present and absent. Like Yamaguchi (1990), repeated observation of the time

until entry into the active state and the time until exit from the active state are modeled

together, though heterogeneity is not accounted for.

Steele et al. (2004) address a scenario similar to that in Willett and Singer (1995), in

which transition hazards for entry into and exit from a state are jointly modeled. In Steele

et al.’s work, within-individual association between the hazard of one transition type across

repeated episodes is modeled by sharing the same frailty term across repeated observations.

In addition, frailties for different transition types (e.g., entrance into or exit from a state)

are allowed to be correlated within individuals; the vector of frailty terms on the linear

predictor scale for each individual is assumed to follow a multivariate normal distribution.

The authors also introduce the concept of a transition within the same state, where for one
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or more states, an episode of being in that state may end followed immediately by the start

of another episode in that same state. They apply their model to a contraception use status

process with two states—using contraception and not using contraception. A change of

contraception method is considered a transition within the contraception using state, and

this event is treating as a competing risk for the end of contraception use episodes (the other

risk being termination of contraception use). They handle discrete time competing risks

using the MPO model (2.48).

Steele (2011) generalizes this work to simultaneous modeling of multiple binary state

processes, a situation similar to that treated by Yamaguchi. The models for two (or more)

binary state processes are linked by allowing the random effects for different processes to

be correlated and allowing the transition hazards for one process to depend on the current

state and history of a different process.

2.7 Time Scales

In survival studies, the risk of a subject experiencing the event of interest is often associated

with one or more notions of time. For example, if the event of interest is recurrence of cancer,

then a subject’s risk may be related to the time elapsed between the last remission of cancer

and the current time. In this case, the notion of time is referred to as time-at-risk, since it

measures how long the subject has been at risk of experiencing the event of interest. In this

section, we review issues related to the incorporation of this and other notions of time into

models for survival outcomes.

2.7.1 Age-Period-Cohort Effects

In addition to time-at-risk, age (or time since birth) is also often related to the hazard of event

occurrence. In fact, in studies of mortality from all causes, these two notions of time coincide,

since one becomes at risk for death the moment they are born. Other distinct notions of

time are however also associated with event occurrence rates. The absolute calendar time

the subject is observed, often referred to as the period of observation, may also be related
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to the risk the subject experiences at that moment. For example, the risk of death from

heart disease for a 60-year-old man in the period January, 1950 is most likely higher than

the risk for a 60-year-old man observed in the period January, 2000, due to improvements in

medical treatment for heart disease which occurred during the 50-year span separating the

two periods. Furthermore, the time of birth, called the birth cohort, can have an association

with the risk a subject experiences throughout the rest of their lifetime. This may be due

to differences between birth cohorts in nutrition during infancy and early childhood. As

another example, the 1990 birth cohort will likely have lower cumulative lifetime exposure

to cigarette smoke than the 1940 cohort, even if we compare the groups at common ages or

periods.

In principle, the three time variables age, period, and cohort may represent distinct

underlying effects on a subject’s hazard of event occurrence. Unfortunately, these effects are

in general not identifiable from observable data. The reason for this is that any two of the

variables completely determine the other; in particular it is always true that

cohort + age = period. (2.49)

Hence, we can only observe data on the two-dimensional slice of the three-dimensional age-

period-cohort space defined by equation (2.7.1). Much published work on age-period-cohort

effects has focused on this identifiability problem. Usually, the suggested solution involves

imposition of specific functional forms or restrictions on the effects of these variables (Fien-

berg and Mason, 1979). However, the estimates obtained are sensitive to which particular

restriction is imposed, and choice of the identifiability constraints must be based upon in-

formation external to the sample data.

2.7.2 Incorporation of Multiple Time Scales

The two most widely used survival analysis techniques—namely Kaplan-Meier estimation

(Kaplan and Meier, 1958) and the CPH model (2.13)—only allow nonparametric incorpora-

tion of a single time variable, as their estimation procedures cannot be extended to simul-

taneously include multiple time scales (Keiding, 1990). Thus any additional time variables

42



must be incorporated in a less satisfactory fashion, either by stratification on a discretized

version of that variable or by including a parametric function of the variable inside the linear

predictor of the Cox model. For this reason, research on multiple time scales has focused on

choice of a single time scale (Kom et al., 1997; Thiebaut and Benichou, 2004; Imbens, 1994).

Alternatively, some authors have considered conditions under which multiple time variables

may be collapsed into a single variable (Oakes, 1995).

2.7.3 Nonparametric Bayesian Treatment of Time-Varying Effects

There are several Bayesian approaches to allowing survival outcomes to depend on time.

With a single continuous time scale, one may use a model which leaves the functional form

of this dependence unspecified, and supply prior information about how time relates to sur-

vival. For example, the Dirichlet process prior may be placed on the distribution of survival

times (Susarla and Van Ryzin, 1976; Ferguson and Phadia, 1979), or a gamma process prior

may be placed on the cumulative hazard (Kalbfleisch, 1978). However, these formulations

have several drawbacks, such as discrete realizations of the survival time distributions, con-

tradicting a basic assumption of continuous time. Of greater concern is the fact that the

Dirichlet process prior induces negative association between the risk of event occurrence at

nearby time points. This means, for example, that if an event is observed at time t = 50.0

years of age, then the posterior probability of event occurrence at times t = 49.9 years and

t = 50.1 years of age are lower than if the event at t = 50.0 had not been observed. This

directly contradicts our prior knowledge that the relationship between risk and time should

generally be smooth.

Alternatively, one may assume that the hazard rates are piecewise-constant with respect

to the time variable. Let {t0 < t2 < · · · tM} be a discretization of the single time axis under

consideration such that there is no person-time observation from any subject before t0 or

after tM . We assume that the baseline hazard λ0(t) for the time variable is constantly equal

to λm for t ∈ (tm−1, tm], and we let βm ≡ log λm denote these rates on the log scale. We may

then place independent priors on these hazards, such as λm ∼ Gamma(a, b) or βm ∼ N(µ, σ2)
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(Ibrahim et al., 2001).

However, if some intervals do not contain many observed events, posterior estimates of

the λm may lack precision and vary erratically over nearby intervals. To address this prob-

lem, several authors have suggested introducing prior correlation for the λm, which allows

neighboring λm to borrow strength from one another and prevents implausibly large varia-

tion of the λm over short time spans. We now describe such an approach using multivariate

normal priors specified via sets of conditional distributions, and then review work on MCMC

inference for models incorporating these components.

2.7.4 Dynamic, CAR, and GMRF Models

State space or dynamic generalized linear models extend GLM’s by allowing the regression

parameter vector θ to vary with a single discrete time scale t (Harrison and Stevens, 1976;

West et al., 1985). The states θt of the model are then presumed to follow a stochastic

transition or evolution equation,

θt = Gtθt−1 + wt, (2.50)

where Gt is a known transition matrix and wt is normal with mean zero and known co-

variance. Essentially, this approach places a multivariate autoregressive prior process on

the θt to enable a Bayesian version of a varying-coefficient model (Hastie and Tibshirani,

1993). This approach has seen extensive application in Bayesian survival analysis, where it

is used in piecewise-constant formulations to approximate both smooth baseline hazards and

smoothly varying coefficients (Gamerman, 1991; Fahrmeir, 1994; Fahrmeir and Wagenpfeil,

1996; Fahrmeir and Knorr-Held, 1997).

A more general class of prior distributions was introduced by Besag (1974) and subse-

quent co-authors to model spatial correlation in geostatistical and imaging applications (see,

e.g., Besag et al., 1991). Instead of specifying the distribution of θ = (θ1, . . . , θn) forward

in time t as in (2.50), the distribution of θ is specified implicitly via its full conditionals

p(θt|θ−t), where θ−t = {θs | s 6= t}. Such specifications are called conditional autoregressions

(CAR) or Markov random fields (MRF) (Besag and Kooperberg, 1995). The Markov name
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refers to the feature that the distributions p(θt|θ−t) often only depend on a small number

of elements in θ−t, which correspond to nodes s which are spatially or temporally close to

node t. Typically, the full conditionals p(θt|θ−t) are presumed Gaussian, in which case the

resulting joint distribution is multivariate normal and called a Gaussian Markov random

field (GMRF). The distribution can then be specified using the inverse covariance matrix,

or precision matrix, Q of the multivariate normal,

p(θ|Q) ∝ exp(−1
2
θ′Qθ). (2.51)

The Markov property of the full conditionals ensures that the matrix Q is sparse, which

leads to fast algorithms for sampling θ (Rue, 2001; Rue and Held, 2005).

2.7.5 MCMC for Models with GMRF Components

The specifications (2.50) and (2.51) induce prior correlation among the θt. This leads to

high posterior correlations when the likelihood is weak, making block MCMC updating of

the θt necessary to avoid slow MCMC mixing. Carter and Kohn (1994) observed slow mixing

when using single-site updates for the states in a dynamic model with a normal response

variable, and found that including all state parameters in a single block Gibbs step speeded

mixing dramatically. In the case of a GLM with a non-normal response variable, the full

conditional of a GMRF θ whose elements appear in the linear predictors of the model will

generally not be possible to sample from directly. However, in the special case where each

linear predictor ηi also contains its own independent normal term εi, a reparameterization

replacing {εi} with {ηi} in a Gibbs sampling scheme will result in a multivariate normal full

conditional for θ (Besag et al., 1995). The parameters εi are not always desired in the model

though, and such reparameterizations may slow mixing in cases where the data variance is

high (Gelfand et al., 1995).

Several authors have attempted to devise full conditional approximating block Metropolis-

Hastings (M-H) proposals for θ or its subvectors. Gamerman (1998) proposed sampling from

the normal posterior (calculated with the Kalman filter) of a weighted least squares refor-

mulation of a dynamic GLM. However, he reported very low acceptance rates, suggesting
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inadequacies of his full conditional approximation. Shephard and Pitt (1997) used an itera-

tive procedure at each step to calculate a second-order Taylor series expansion of the log full

conditional density, which is a multivariate normal density and so may be easily sampled

from as a Metropolis-Hastings proposal. They also encountered low acceptance rates with

large block sizes.

Knorr-Held (1999) suggested a much simpler updating strategy, which forgos the goal of

accurate approximation of the full conditional. Proposals for a parameter block θt1 , . . . , θt2

are drawn from the prior distribution conditional on the other parameters in the model

including the other θt (t < t1 or t > t2). These conditional prior proposals are very easy to

sample, being multivariate normal with easy to calculate moments, and result in Metropolis-

Hastings acceptance ratios which simplify to the likelihood ratio. Unfortunately, acceptance

rates are low whenever the likelihood is strong compared to the prior, as the proposal does

not take the observed data into account.

Rue (2001) and Knorr-Held and Rue (2002) constructed full conditional approximating

block M-H proposals of θ for Poisson disease mapping problems. They combined quadratic

approximations of the exponential terms of the Poisson log likelihood with the GMRF prior

densities to produce a GMRF approximate full conditional density that may be sampled

from as an M-H proposal. They reported high acceptance rates of 20–80%, even when

updating blocks of hundreds of parameters. Our M-H algorithms in Chapter 3 employ a

similar strategy of log likelihood approximation, but for a different observation model with

a much larger number of observations. Moreover, whereas the linear predictor specifications

of Knorr-Held and Rue follow strict hierarchical structures with no covariates, our models

allow much more complicated linear predictor specifications with multiple covariates and

arbitrarily crossed factors.
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CHAPTER 3

A General Bayesian Event History Model

In this chapter, we present a general Bayesian event history model, featuring competing

risks, recurrent events, and semiparametric incorporation of time-varying covariates includ-

ing multiple time scales. Smoothing of the arbitrary functions representing the effects of each

continuous covariate is accomplished using Gaussian Markov random field (GMRF) priors.

To overcome computational difficulties due to the large person-time datasets involved, we

provide several novel MCMC algorithms and efficient data structures for their software im-

plementation. As we show in Section 3.2, the fact that these large collections of person-time

observations produce only moderate numbers of observed events simplifies the derivation

and calculation of efficient block Metropolis-Hastings proposals.

The rest of this chapter is organized as follows. In Section 3.1, we detail the semipara-

metric, competing risks, recurrent event history model we use throughout the remainder of

the chapter. Section 3.2 introduces novel computing tools for efficiently obtaining inferences

from this model. In Section 3.3, we apply our model and algorithms to data on recur-

rent episodes of cocaine use from Treatment Utilization and Effectiveness Project subjects.

Extensions of our model are discussed in the next two chapters.

3.1 Bayesian Event History Model

In this section, we outline our discrete time competing risks observation model, which is

based upon the multinomial proportional odds model (2.48) from Section 2.5.2. We then

discuss the components of the linear predictors and their prior specification.
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3.1.1 Discrete Time Competing Risks Observation Model

Let i = 1, . . . , I index subjects, j = 1, . . . , Ji index repeated at-risk episodes, or recurrent

events, within subject i, and t = 1, . . . , Tij index discrete time points at which subject i is

at risk for his jth recurrent event. The value t, often called time-at-risk, duration, or gap

time, always resets to t = 1 at the beginning of each successive episode, so that Tij is the

discrete duration of episode j from subject i. We also let r = 1, . . . , R index the distinct

competing risks under consideration, and let ∆ij ∈ {1, . . . , R} denote the competing risk

which terminates the jth at-risk period from subject i at time t = Tij.

The discrete time cause-specific hazard λ
(r)
ij (t) is the probability that the jth recurrent

event from subject i occurs due to risk r at time t elapsed since the subject became at risk

for the jth recurrence, given that the event had not yet occurred by time t− 1,

λ
(r)
ij (t) ≡ Pr[Tij = t,∆ij = r | Tij ≥ t]. (3.1)

For convenience, we also let λ
(0)
ij (t) denote the probability that none of the competing risks oc-

curs at time t given the subject was still at risk at that point, so that λ
(0)
ij (t) = 1−

∑R
r=1 λ

(r)
ij (t).

For all i, j, and t, the collection {λ(0)ij (t), . . . , λ
(R)
ij (t)} are probabilities of mutually exclusive

events, representing the R + 1 possible outcomes at person-time observation (i, j, t). We

relate these probabilities to R linear predictors {η(1)ij (t), . . . , η
(R)
ij (t)} using the multinomial

logit link function,

η
(r)
ij (t) ≡ log

(
λ
(r)
ij (t)

λ
(0)
ij (t)

)
, r = 1, . . . , R, (3.2)

which allows the λ
(r)
ij (t) to assume any values subject to 0 < λ

(r)
ij (t) < 1 and

∑R
r=0 λ

(r)
ij (t) = 1.

3.1.2 Linear Predictor and Prior Specification

The linear predictors η
(r)
ij (t) can include covariates that vary between subjects, between at-

risk episodes within subjects, and between time points within episodes. Let Xm,ij(t) denote

the value of covariate m for subject i at time t during the jth at-risk episode. The effects

of each covariate Xm are modeled with separate functions β
(r)
m (x) for each competing risk r;
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we also include intercept terms β
(r)
0 , giving

η
(r)
ij (t) ≡ β

(r)
0 +

M∑
m=1

β(r)
m (Xm,ij(t)). (3.3)

The functions β
(r)
m (x) are of three types, depending on the type of covariate. In all cases,

however, the functions assume only a finite number of values, labeled β
(r)
m [1], . . . , β

(r)
m [Km].

Continuous Covariates

For continuous Xm, we use piecewise-constant functions β
(r)
m (x) with GMRF priors to ap-

proximate arbitrary smooth functions. We may then, for example, incorporate duration

dependence by setting X1,ij(t) = t for all i, j, and t, so that β
(r)
1 (t) corresponds to a cause-

specific baseline hazard for r = 1, . . . , R.

Let cm,0 < cm,1 < · · · < cm,Km be a known collection of change points for the effect of

covariate m. We assume β
(r)
m (x) is constant and equal to β

(r)
m [k] for all x in the kth interval

defined by these points,

β(r)
m (x) ≡ β(r)

m [k], for all x ∈ (cm,k−1, cm,k]. (3.4)

We then place a first-order random walk GMRF prior on the parameters β
(r)
m [1], . . . , β

(r)
m [Km],

β(r)
m [k] | β(r)

m [1], . . . , β(r)
m [k − 1] ∼ N(β(r)

m [k − 1], σ(r)
m ), k = 2, . . . , Km, (3.5)

with a flat prior for the first parameter β
(r)
m [1]. This is an improper, or intrinsic, GMRF, as

it is invariant to level shifts added to all the β
(r)
m [k] (Besag and Kooperberg, 1995). Denoting

by IG(a, b) the inverse gamma distribution with shape a and scale b and writing σ = σ
(r)
m ,

we complete the specification by assigning priors σ ∼ IG(a, b), which gives

p(σ|a, b) =
ba

Γ(a)
σ−a−1 exp

(
−b
σ

)
. (3.6)

Categorical Covariates

The second type of covariate is an unordered categorical variable with a small or moderate

number of categories. Suppose Xm may only take on values in the set {xm,1, . . . , xm,Km}. We
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allow the functions β
(r)
m (x), r = 1, . . . , R, to have different values for each of these covariate

values, and we write

β(r)
m (xm,k) ≡ β(r)

m [k], for k = 1, . . . , Km. (3.7)

We require a prior for the column vector of parameters θ = (β
(r)
m [1], . . . , β

(r)
m [Km])′, with three

properties: exchangeability of the components θk = β
(r)
m [k], borrowing of strength among the

θk, and invariance to level shifts. Writing K = Km for convenience, and letting IK denote

the K×K identity matrix and JK the K×K matrix of 1’s, define the singular prior precision

matrix

Q ≡ τ K
K−1

(
IK − 1

K
JK
)
, (3.8)

which then defines an improper prior for θ via equation (2.51). The a priori specified

conditional prior precision parameter τ controls the degree of borrowing of strength in the

prior, which is easy to see from the full conditionals

θk | θ−k ∼ N

(
1

K − 1

∑
l 6=k

θl, τ
−1

)
. (3.9)

Random Effects

Finally, we consider categorical variables with large numbers of categories, in which case it

is desirable to allow the data to inform the between-category variability. For example, we

may use the variable Xm to model associations among recurrent events within subjects by

setting Xm,ij(t) = i for all i, j, and t. The random effects β
(r)
m (i) are then shared frailties, as

described in Section 2.4.1.

As in the fixed effects case, we assumeXm takes values in {xm,k}Km
k=1 and write β

(r)
m (xm,k) ≡

β
(r)
m [k]. Let βm[k] = (β

(1)
m [k], . . . , β

(R)
m [k])′ denote the vector of the kth category’s random

effects for all competing risks r; we allow these effects to be correlated within categories by

assigning a multivariate normal distribution to βm[k],

βm[k]
iid∼ NR(0,Σm), k = 1, . . . , Km. (3.10)

Letting IW (ν, S) denote the inverse Wishart distribution with ν degrees of freedom and
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scale S, we assign hyperpriors Σm ∼ IW (ν, S), so that

p(Σm|ν, S) ∝ |Σm|−(ν+R+1)/2 exp
(
−1

2
trace

(
SΣ−1m

))
(3.11)

and E[Σm] = S/(ν −R− 1).

3.2 Computing

Event history analyses often involve very large person-time datasets with hazards of event

occurrence which continually vary within and between subjects. Obtaining inferences from

such models using MCMC requires repeated evaluation of the log likelihood of these person-

time observations, which is computationally intensive given the dataset sizes. Hence, it is

necessary to ensure that each such traversal of the likelihood is as efficient as possible, both

in terms of computer time required and mixing speed of the resulting MCMC routine. While

much work has been done over the past two decades on MCMC for hierarchical generalized

linear models, the particular problems posed by event history datasets have up to this point

not been addressed.

We now describe three novel MCMC techniques for efficiently obtaining inferences from

the model in the previous section. The first involves creation of several auxiliary data

structures to speed updating and evaluation of the likelihood. The other techniques use

approximations of the log likelihood to construct block Metropolis-Hastings updates.

3.2.1 Data Structures and Likelihood Evaluation

Likelihood

First we establish some notation. Let the pair (tij, δij) be the data observed for the jth

recurrent event from subject i, where δij = r ≥ 1 means risk r was observed at time t = tij

and δij = 0 denotes right censoring at tij. We assume that any right censoring occurs at the

end of the corresponding time interval. For each r = 0, . . . , R, set δ
(r)
ij = 1 if δij = r and

δ
(r)
ij = 0 otherwise, and let y

(r)
ij (t) be person-time level event indicators, where y

(r)
ij (t) = 1 if
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t = tij and r = δij, with y
(r)
ij (t) = 0 otherwise.

Letting θ denote all parameters of our model and D = {(tij, δij)} denote the observed

data, the likelihood is

L(θ|D) =
I∏
i=1

Ji∏
j=1

(
tij−1∏
t=1

λ
(0)
ij (t)

)(
R∏
r=0

(
λ
(r)
ij (tij)

)δ(r)ij

)

=
I∏
i=1

Ji∏
j=1

(
tij∏
t=1

λ
(0)
ij (t)

)(
R∏
r=1

(
exp

(
η
(r)
ij (tij)

))δ(r)ij

)

=
I∏
i=1

Ji∏
j=1

tij∏
t=1

(1 +
R∑
r=1

exp
(
η
(r)
ij (t)

))−1 R∏
r=1

exp
(
y
(r)
ij (t) · η(r)ij (t)

) , (3.12)

where in the second line we used equation (3.2) to replace λ
(r)
ij (tij) with λ

(0)
ij (tij) exp(η

(r)
ij (tij))

and moved the term λ
(0)
ij (tij) into the first product. In the third line, we have replaced

the indicators δ
(r)
ij with y

(r)
ij (tij) and included the exponential terms for t < tij, which is

possible since for those t we have y
(r)
ij (t) = 0. In addition, in the third line we have used

the substitution λ
(0)
ij (t) = (1 +

∑R
r=1 exp(η

(r)
ij (t)))−1 implied by the multinomial logit link

function (3.2).

Unlike the continuous time cause-specific hazards model, the discrete time model likeli-

hood (3.12) does not factor into separate components for each cause-specific hazard. Thus

separate hazard estimation is not possible with the discrete model, which makes sense as

otherwise this could result in incompatible estimates of the λ
(r)
ij (t), which sum over r to

greater than 1.

Person-time Indexing

The likelihood (3.12) is a product over all person-time observations of the expression in

large brackets. Currently, we are using three indices i, j, and t to specify person-time

observations. For convenience, we now pass to a single index n = 1, . . . , N for all person-

time observations, where N =
∑I

i=1

∑Ji
j=1 tij is the total number of person-time observations.

The order in which n indexes these observations can be arbitrary, but for optimal computer

memory access performance, we recommend row major order, where n = 1 corresponds to
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(i, j, t) = (1, 1, 1), n = 2 corresponds to (i, j, t) = (1, 1, 2),. . . , n = J1 + 1 corresponds to

(i, j, k) = (1, 2, 1), and so on. We now replace the ij subscript and function argument t with

the single subscript n in all our notation; e.g., λ
(r)
ij (t) and Xm,ij(t) become simply λ

(r)
n and

Xm,n. Thus the likelihood (3.12) may be re-written

L(θ|D) =
N∏
n=1

(1 +
R∑
r=1

exp
(
η(r)n
))−1 R∏

r=1

exp
(
y(r)n · η(r)n

) . (3.13)

Discretized Predictors and Multinomial Aggregation

For all three types of covariates we consider, the effects are represented by functions β
(r)
m (x)

for each risk r additively included in the appropriate linear predictors. Each of these func-

tions, in turn, is represented by the finite collection of values {β(r)
m [1], . . . , β

(r)
m [Km]} the

function assumes. For each entry x = Xm,n in our set of covariate values, let km,n denote

the integer k such that β
(r)
m (x) = β

(r)
m [k]. Using these discretized predictors km,n and the

person-time index n, the linear predictor specification (3.3) may be rewritten

η(r)n ≡ β
(r)
0 +

M∑
m=1

β(r)
m [km,n]. (3.14)

Depending on the number and types of covariates, as well as the discretizations chosen for

any continuous covariates, for certain subsets {n1, . . . , nb} of person-time observations we will

have km,n1 = · · · = km,nb
for all m. These observations will then always have the same values

for the corresponding linear predictors (3.14). In this case, we can store only one copy of the

covariate vector (k1,n1 , . . . , kM,n1) along with the size b of the subset and the total number of

observed events y(r) ≡ y
(r)
n1 + · · ·+ y

(r)
nb for each competing risk r. The likelihood contribution

of these b person-time observations can then be replaced by the single multinomial likelihood

term (
1 +

R∑
r=1

exp
(
η(r)n1

))−b R∏
r=1

exp
(
y(r) · η(r)n1

)
, (3.15)

which may speed evaluation of the likelihood (3.13) substantially; we call this replacement

multinomial aggregation. For example, the model described in Section 3.3.1 has M = 7

covariates, including subject-specific random effects and three continuous time scales. De-

spite using discretizations of the continuous time scales with around 50 change points each,

53



multinomial aggregation in this case reduced the number of terms in the likelihood by 17%,

yielding a substantial reduction in computation time per MCMC iteration. We recommend

performing this aggregation in practice, especially for models without random effects and

for models with fewer time-varying continuous predictors, but for the sake of simplicity we

ignore its implementation in subsequent algorithm descriptions.

Data Structures for Efficient Computation

We obtain posterior inferences from our model via Metropolis-Hasting (M-H) algorithms,

and we derive efficient proposals for these block updates in the following subsection. Here,

we detail the construction of auxiliary data structures designed to reduce the computational

burden of the log likelihood ratio evaluation step of these M-H updates. In particular, we

avoid the explicit construction and manipulation of very large, sparse design matrices. The

logarithm of the likelihood (3.13) is

l(θ|D) =
N∑
n=1

[
− log

(
1 +

R∑
r=1

exp
(
η(r)n
))

+
R∑
r=1

y(r)n · η(r)n

]
. (3.16)

Due to the large number N of person-time observations in our event history datasets, eval-

uation of the log likelihood ratio l(θ∗|D)− l(θ|D), where θ denotes the current values of the

model parameters and θ∗ is the proposed update, consumes the majority of the computer

time of each MCMC scan.

For each covariate m, we define blocks of linear predictor parameters by specifying con-

tiguous subsets k1 : k2 ≡ {k1, k1 + 1, . . . , k2} of the discretized predictor values 1, . . . , Km

and setting Bk1:k2 ≡ {β
(r)
m [k] | k1 ≤ k ≤ k2, 1 ≤ r ≤ R}. To enable faster calculation of

the log likelihood ratio for updating the parameters in the block Bk1:k2 all at once, we store

three auxiliary data structures:

1. We pre-compute the set nm,k1:k2 ≡ {n | k1 ≤ km,n ≤ k2}, which is the subset of

person-time observations whose hazards depend on any of the parameters in Bk1:k2 ;

we write nm,k ≡ nm,k:k for short when k1 = k2. The expression in brackets in (3.16)

then only needs to be evaluated for n ∈ nm,k1:k2 , as the remaining terms will cancel in
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l(θ∗|D)− l(θ|D). We call the structure {nm,k1:k2 | m = 1, . . . ,M, category subsets k1 :

k2} a doubly-ragged array, because the number of subsets of discretized predictor values

k1 : k2 used in the chosen blocking scheme varies with the covariate m, and in turn the

size of the set nm,k1:k2 varies with both m and k1 : k2.

2. We store the values of all linear predictors η
(r)
n evaluated at the current model param-

eters θ, which we denote by η
(r)
n (θ). Then these values do not need to be re-calculated

from scratch at each step of the MCMC algorithm, and η
(r)
n (θ∗) = η

(r)
n (θ) + ∆β

(r)
m [km,n]

is also simple to evaluate, where ∆β
(r)
m [km,n] ≡ β

(r)
m [km,n]∗ − β

(r)
m [km,n] denotes the

proposed change in the parameter β
(r)
m [km,n].

3. We pre-compute y
(r)
m,k ≡

∑
n∈nm,k

y
(r)
n for each k ∈ k1 : k2, which is the number of

observed events for cause r whose hazards depends on the parameter β
(r)
m [k]. Then we

make the replacement

∑
n∈nm,k1:k2

R∑
r=1

y(r)n η(r)n (θ∗)− y(r)n η(r)n (θ) =
∑

k∈k1:k2

R∑
r=1

y
(r)
m,k ·∆β

(r)
m [k] (3.17)

in the calculation of the log likelihood ratio. Note that a sum over person-time ob-

servations n ∈ nm,k1:k2 on the left-hand side of (3.17) has been replaced with a sum

over categories k ∈ k1 : k2 on the right, which has a much smaller number of terms.

In addition, we show in the next subsection that y
(r)
m,k is a good approximation to the

Fisher information for the parameter β
(r)
m [k], a fact which helps us compute efficient

proposals.

Our novel combination of linear predictor formulation and supporting data structures for

efficient MCMC updates enables fitting of rich event history models to very large person-

time datasets.

3.2.2 Block Random Walk Metropolis Step

We propose two Metropolis-Hasting algorithms for sampling from the posterior. The first is

a block random walk Metropolis (RWM) algorithm which uses multivariate normal proposals
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centered at the current parameter values. We describe this method here, and then provide a

block full conditional approximating (FCA) Metropolis-Hastings algorithm in the following

subsection.

Given a contiguous subset k1 : k2 = {k1, k1+1, . . . , k2} of the discretized values 1, . . . , Km

of the predictor Xm and its associated block of parameters B ≡ {β(r)
m [k] | k1 ≤ k ≤ k2, 1 ≤

r ≤ R}, we need to find a covariance matrix ΣB which ensures that the RWM proposal

B∗ ∼ N(B,ΣB) (3.18)

provides efficient MCMC mixing. Gelman et al. (1996) show that we should choose ΣB pro-

portional to the covariance ΣC of the full conditional distribution p(B | θ\B,D); specifically,

we should set ΣB ≡ (2.4/
√
|B|)2ΣC , where |B| = R·(k2−k1+1) is the dimension of the block

B. Because ΣC is difficult to calculate directly, we approximate the corresponding precision

matrix QC ≡ Σ−1C using the Hession matrix of the log full conditional density with respect to

the parameters in B. The second derivatives of the log conditional prior density p(B | θ\B)

are available immediately, since for all three covariate classes described in Section 3.1.2, the

conditional prior is normal with precision QP which is a simple function of conditioned upon

parameters.

We approximate the second derivatives of the log likelihood (3.16) as follows. Letting

β1 ≡ β
(r1)
m [k̃1] and β2 ≡ β

(r2)
m [k̃2] denote two parameters in B, we first have

∂2l(θ|D)

∂β2
1

=
∑

n∈nm,k̃1

−λ(r1)n (1− λ(r1)n ) ≈
∑

n∈nm,k̃1

−λ(r1)n ≈ −y(r1)
m,k̃1

. (3.19)

The first approximate equality follows from the fact that the hazards λ
(r)
n are generally

small probabilities, and the second is due to the fact that the aggregate hazard λ
(r)
m,k ≡∑

n∈nm,k
λ
(r)
n for a collection nm,k of person-time observations should be roughly equal to the

total number of events y
(r)
m,k ≡

∑
n∈nm,k

y
(r)
n observed among that collection. For the mixed

partial derivatives, when k̃1 = k̃2 and r1 6= r2 we have

∂2l(θ|D)

∂β1∂β2
=

∑
n∈nm,k̃1

λ(r1)n λ(r2)n ≈ 0, (3.20)
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because the product of the hazards λ
(r1)
n λ

(r2)
n is small relative to the sizes of the terms in

(3.19). Finally, the mixed partials are identically 0 when k̃1 6= k̃2, since β
(r1)
m [k̃1] and β

(r2)
m [k̃2]

have no person-time observations in common.

We combine these log likelihood approximations with the conditional prior precision

matrix QP of the block B by adding the numbers of observed events y
(r)
m,k along the diagonal

of QP to produce our approximation Q̂C to the full conditional precision QC . Setting ΣB ≡

(2.4/
√
|B|)2Q̂−1C , we can then sample from the proposal (3.18) using an efficient method

which takes advantage of the sparsity of Q̂C (Rue and Held, 2005, Chap. 2). Importantly,

computing Q̂C and sampling from (3.18) does not require any computation which scales with

N , so computation time in each MCMC scan is still dominated by log likelihood evaluation.

As we show in Section 3.3.2, these proposals result in nearly-optimal acceptance rates with

no tuning or adaptation required and with little increase in computation time per iteration

compared to using fixed proposals.

3.2.3 Block Full Conditional Approximating Metropolis-Hastings Step

The effective sample size for a parameter θ for an MCMC run of a certain length is the size of

an independent sample from the posterior having the same standard error for estimating the

posterior mean of θ as the standard error of the mean from the MCMC run. The efficiency of

the MCMC algorithm for θ is then defined as the effective sample size divided by the length

of the MCMC chain. For example, if an MCMC run of 10,000 iterations provides the same

information about the posterior mean of θ as an independent sample from the posterior of

size 180, then the effective sample size of this run for θ is 180, and the MCMC efficiency is

180/10000 = 1.8%.

It is critical for maximizing MCMC efficiency to update groups of highly-correlated pa-

rameters within the same block. When using GMRF priors with fine discretizations of

continuous covariates, these groups of highly-correlated parameters can be large, necessitat-

ing large blocks B. However, the maximum efficiency of RWM algorithms is roughly 0.3/|B|,

and thus declines with increasing block size |B| (Gelman et al., 1996). We have found in
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practice for our models that as |B| increases, the advantages of block updating of highly-

correlated parameters are often negated by the RWM block size efficiency penalty, leading to

poor performance with MCMC efficiencies of 1% or less. For these circumstances, we have

developed block Metropolis-Hastings proposals which seek to approximate the entire shape,

including location information, of the full conditional distributions, not just their dispersion

as with RWM. Unlike with RWM, these full conditional approximating (FCA) M-H steps

should be nearly as efficient as exact draws from the full conditionals.

Our strategy for creating such proposals is to combine the Gaussian conditional prior with

a multivariate second-order Taylor series approximation of the log likelihood. In particular,

we expand l(B|θ\B,D) as a function of the block parameters B ≡ {β(r)
m [k] | k1 ≤ k ≤ k2, 1 ≤

r ≤ R} about their current values in the chain B̃ ≡ {β̃(r)
m [k] | k1 ≤ k ≤ k2, 1 ≤ r ≤ R}.

Letting =B and ≈B denote equality and approximate equality as a function of B up to an

additive constant, we have

l(B|θ\B,D) ≈B
R∑
r=1

k2∑
k=k1

[
∂l(B̃)

∂β
(r)
m [k]

(
β(r)
m [k]− β̃(r)

m [k]
)

+
1

2

∂2l(B̃)

∂β
(r)
m [k]2

(
β(r)
m [k]− β̃(r)

m [k]
)2]

=B

R∑
r=1

k2∑
k=k1

[(
∂l(B̃)

∂β
(r)
m [k]

− ∂2l(B̃)

∂β
(r)
m [k]2

· β̃(r)
m [k]

)
β(r)
m [k]

+
1

2

(
∂2l(B̃)

∂β
(r)
m [k]2

)
β(r)
m [k]2

]
. (3.21)

We omit the terms of the Taylor expansion with mixed partial derivatives, since by (3.20) and

the associated discussion these derivatives are all either close to zero or identically zero. For

the two fixed effects covariate cases in Section 3.1.2, this allows sampling of the parameters

B(r) ≡ {β(r)
m [k] | k1 ≤ k ≤ k2} separately for each risk r, since the B(r) are then conditionally

independent.

The first derivatives of the log likelihood evaluated at the current parameter values B̃

are given by
∂l(B̃)

∂β
(r)
m [k]

=
∑

n∈nm,k

y(r)n − λ̃(r)n = y
(r)
m,k −

∑
n∈nm,k

λ̃(r)n , (3.22)
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which requires evaluating the hazards λ̃
(r)
n under the current values of the model param-

eters; the second derivatives may then either be approximated as in (3.19), or calculated

exactly from the λ̃
(r)
n . Once the necessary derivatives are calculated, the coefficients of the

linear terms β
(r)
m [k] and quadratic terms β

(r)
m [k]2 in (3.21) are combined with the linear and

quadratic terms from the log prior density to produce a quadratic approximation to the

log full conditional density. Because quadratic log density functions correspond to normal

distributions, we can then sample from this density as our M-H proposal for the block B.

The main difficulty with this approach is that it requires computing the hazards λ̃
(r)
n under

the current parameter values. Furthermore, to calculate the proposal density ratio for the

accept/reject step of the M-H algorithm, we must also compute these hazards under the

proposed values of the block parameters. However, we demonstrate in Section 3.3.2 that the

dramatic improvement in mixing more than makes up for the additional computation time

per M-H update.

3.3 TUE Application

We apply the models and algorithms developed in the previous sections to analyze the du-

rations of repeated episodes of cocaine use from the Treatment Utilization and Effectiveness

Project. The data we utilize comes from a subsample of 408 TUE subjects who completed

the Natural History Interview described in Section 1.2.1 and reported at least one cocaine

use episode. Episodes of cocaine use are recorded as contiguous segments of whole calendar

months. For example, if a subject began using cocaine in January of 1988 and ceased using

in June of the following year, that would be recorded as one episode of cocaine use covering

the 18 discrete time points corresponding to all 12 months of 1988 and the first 6 months of

1989.

3.3.1 Data and Model

In total, the 408 subjects contributed 1,527 episodes and 29,645 person-month observations

of cocaine use. Hence, on average each subject had 1527/408 = 3.74 cocaine use episodes
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with mean duration 29645/1527 = 19.4 months. We consider R = 2 competing causes for

cocaine episode termination. First, subjects may cease using cocaine due to arrest, and we

let competing risk r = 1 be incarceration. Voluntary use cessation, or stop-use for short, is

then risk r = 2. Of the 1527 cocaine use episodes, 689 ended with incarceration, 738 ended

with stop-use, and 100 were right censored due to ongoing cocaine use at the time of the

interview.

We consider M = 7 covariates in total. Sex and race are included as categorical fixed

effects and given the exchangeable priors described in Section 3.1.2, with small conditional

prior precisions τ , making the priors relatively noninformative. Number of episodes of cocaine

use up to and including the current episode is also treated as categorical, with the effect

remaining the same for sixth and subsequent episodes for a total of six categories. Current

duration of the episode is included using the GMRF smoothing prior given in Section 3.1.2.

We allow the duration effect to vary at the ends of each of the first 60 months of cocaine

use and at the ends of each of the sixth through tenth years of use; this discretization

of the duration time scale results in 66 categories. Similarly, we include current age and

current absolute calendar year. Finally, we include subject-specific random effects. Table

3.1 summarizes these covariates.

3.3.2 MCMC Performance Evaluation

We evaluate the performance of the algorithms described in the previous section by com-

paring three MCMC schemes applied to our example dataset. For each predictor m and

category k ∈ {1, . . . , Km}, the single-category RWM (SC-RWM) scheme updates the pa-

rameters {β(1)
m [k], β

(2)
m [k]} together in a block of size R = 2; we do not consider any scheme

which updates the parameters β
(1)
m [k] and β

(2)
m [k] separately, because this would require eval-

uating the log likelihood twice as often as schemes which update these parameters together.

The multi-category RWM (MC-RWM) scheme retains the single-category updating for the

parameters of the categorical covariates and random effects, but uses RWM updates of blocks

of the form B ≡ {β(r)
m [k] | k1 ≤ k ≤ k2, r = 1, 2} for the three time scales (duration, age,
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Table 3.1: Covariate specification used for modeling the durations of repeated episodes of

cocaine use.

m Name Covariate Type Categories Km Values/Discretization

1 Subject ID Random Effect 408 1,. . . ,408

2 Sex Categorical 2 Male, Female

3 Race Categorical 3 Black, Hispanic, White

4 Episode Number Categorical 6 1,. . . ,5, ≥ 6

5 Episode Duration Continuous 66 months 1,. . . ,60,

years 6,. . . ,10, ≥ 10 years

6 Age Continuous 46 10,. . . ,55 years of age

7 Calendar Time Continuous 35 calendar years 1963,. . . ,1997

and calendar time). We use blocks of 6 adjacent categories k (for 12 total parameters per

block), with the exception of the last blocks for age and calendar time, which had 4 and

5 categories respectively. Finally, the multi-category FCA (MC-FCA) scheme replaces the

block RWM updates for the time scale parameters in the MC-RWM scheme with the block

FCA M-H algorithm of Section 3.2.3.

We ran each of the three schemes for 20,000 iterations, following 2,000 iterations discarded

as burn-in. We first examine the adequacy of the approximations used to derive the M-H

proposals by comparing the observed acceptance rates in the three runs to their theoretically

optimal values. For the first scheme, we updated all fixed-effects parameters in 158 blocks

each of size 2; we ignore the random effects in this comparison, as for these parameters we

pre-computed fixed proposal distributions to speed computation. Gelman et al. (1996) show

that the optimal RWM acceptance rate for blocks of size 2 is .352, and our observed rates

summarized in the first line of Table 3.2 are quite close to this value for all 158 blocks.

The rates from the 25 multi-category RWM updates in the second scheme are summarized

in the second line of Table 3.2; all of these blocks are of size 12, except for one block of size

10 and one of size 8. The optimal rate lies in between the ≈ .26 value Gelman et al. give for
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Table 3.2: Summaries of Metropolis-Hastings proposal acceptance rates for fixed-effects pa-

rameters. The first line summaries single-category (block size 2) RWM acceptance rates of all

fixed-effects parameters. The second and third lines summarize acceptance rates for updates

of 25 blocks each containing roughly 12 parameters representing the time scale effects.

Number Optimal Observed Rates

Scheme of Blocks Rate Min. 25th Median 75th Max.

SC-RWM 158 .352 .333 .351 .355 .361 .385

MC-RWM 25 ≈ .25 .245 .254 .257 .260 .276

MC-FCA 25 1.000 .754 .825 .861 .952 .996

blocks of size 8–10 and the asymptotically optimal rate of .234 as the block size increases

indefinitely. As in the single category case, the observed multi-category RWM rates are

very close to optimal. Finally, for the full conditional approximating proposals used in the

MC-FCA scheme, the goal is to accept as many proposals as possible. Typically almost

90% of these proposals are accepted, indicating that our Gaussian approximation to the full

conditionals developed in Section 3.2.3 is quite accurate.

Next, we compare MCMC efficiencies of the three schemes for estimating the posterior

means of the parameters representing the time scale effects. Here efficiency means the

factor by which we must multiply the number of MCMC iterations to obtain the size of

an independent sample from the posterior having the same Monte Carlo standard error for

estimating the posterior mean; we estimate efficiency using the effectiveSize() function

from the coda R package (Plummer et al., 2012). These results are summarized in Table

3.3.

The SC-RWM and MC-RWM algorithms performed very similarly in almost all cases;

it appears the advantages of updating correlated parameters in the same blocks were can-

celed by the ≈ 6-fold lower theoretical maximum efficiency possible when performing RWM

updates of blocks 6-times larger. The only case where the performance of the SC-RWM

and MC-RWM schemes diverged was for the parameters representing the duration effect on
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Table 3.3: Summary statistics of observed MCMC efficiencies of the parameters representing

each time scale effect for each MCMC scheme.

Number of Observed Efficiency

Predictor Parameters Scheme Min. 25th Median 75th Max.

Duration 132 SC-RWM .005 .007 .018 .057 .096

MC-RWM .003 .007 .014 .024 .032

MC-FCA .039 .093 .128 .340 .445

Age 92 SC-RWM .002 .004 .005 .008 .013

MC-RWM .002 .004 .006 .007 .014

MC-FCA .023 .034 .044 .074 .106

Calendar 70 SC-RWM .002 .005 .008 .013 .022

Time MC-RWM .003 .006 .009 .012 .018

MC-FCA .026 .072 .095 .121 .214

the stop-use competing risk. Here, the SC-RWM scheme performs better because too little

smoothing occurs for this effect, leading to reduced posterior correlation of the associated

parameters. We discuss this problem further in the following subsection.

The MC-FCA scheme consistently outperforms the two RWM schemes by a factor of

roughly 10. This Metropolis-Hastings scheme provides the advantages of blocking without

the drawbacks of lower acceptance rates and smaller proposed steps of large-block-size RWM.

However, the dramatically improved MCMC mixing comes at a cost of increased computa-

tion time per MCMC iteration, as this scheme requires evaluation of the first and second

derivatives of the log likelihood under both the current and proposed values of the parame-

ter block being updated. FCA updates appear to take about three times as long as RWM

updates for any blocking scheme; because the MC-FCA scheme used these updates for three

of the seven covariates, we expect it to overall run about twice as slow as the other two

schemes. Indeed, the SC-RWM and MC-RWM schemes ran at 10.75 and 10.85 iterations per

second, respectively, in R 3.0 on a 1.6GHz PC, while the MC-FCA scheme only produced
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5.48 iterations per second. Hence, overall the FCA algorithm is 3-5 times as efficient as

RWM.

3.3.3 Model Selection and Inferences

Our model allows the hazards of each of the two competing risks, incarceration and voluntary

drug use cessation, to depend on seven covariates, as given in Table 3.1. We now consider

whether and how these covariates are related to these risks. We begin by addressing the

lack of smoothing of the duration effect noted in the previous section, and then proceed to

interpret posterior summaries of the covariate effects.

Nonhomogeneous GMRF Duration Effect Prior

The SC-RWM scheme performed better than the MC-RWM scheme for updating the dura-

tion effect parameters, while the two schemes performed similarly for the other time scale

effects. Because we expect MC-RWM, which uses larger blocks than SC-RWM, to perform

better with increasing posterior correlation, this suggests that our GMRF prior induced less

posterior correlation among the duration parameters than was induced for the other time

scale effects. Indeed, the first panel of Figure 3.1 depicts posterior medians and 95% cred-

ible intervals for the duration effect on the stop-use competing risk. We observe a roughly

4-fold decrease in risk of voluntary use cessation following the first month of the cocaine use

episode. This large, well-estimated first-month change results in a high inferred value for

the increment variance σ
(2)
5 of the first-order random walk GMRF prior (3.5), which in turn

leads to the inadequate smoothing evident in the left panel of Figure 3.1.

The source of the problem is that our GMRF prior (3.5) is homogeneous ; that is, the

increment variance σ
(r)
m is the same for all k. A more sensible prior would reflect our prior

knowledge that the hazards should change more rapidly earlier in the cocaine use episodes.

For example, the chances of a subject voluntarily stopping use should change more between

months 1 and 2 of cocaine use than between months 50 and 51. We model this by in-

troducing constant scaling factors s
(r)
m [k], k = 1, . . . , Km − 1, in front of σ

(r)
m , yielding the
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Figure 3.1: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the duration effects on the stop-use competing risk, using the homogeneous GMRF

prior (left panel) and nonhomogeneous prior (right panel).
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nonhomogeneous random walk GMRF prior

β(r)
m [k] | β(r)

m [1], . . . , β(r)
m [k − 1] ∼ N(β(r)

m [k − 1], s(r)m [k − 1]σ(r)
m ), k = 2, . . . , Km. (3.23)

For the duration effect, we choose the constants s
(r)
m [k] so that s

(r)
m [k] ∝ 1/k and

∑
k s

(r)
m [k] =

Km − 1. With this choice, for a given value of σ
(r)
m , the aggregate variance

∑
k s

(r)
m [k]σ

(r)
m of

the random walk prior across the entire time scale is the same as for the homogeneous prior

(3.5), making it sensible to compare inferred values of σ
(r)
m between models using the two

priors.

The right panel of Figure 3.1 shows posterior summaries of the duration effect on the

stop-use risk using the nonhomogeneous prior. At earlier durations of cocaine use, the esti-

mates are similar to those obtained with the homogeneous prior. At later durations, more

borrowing of strength occurs, leading to a smoother inferred relationship with narrower cred-

ible intervals. The posterior mean of σ
(2)
5 decreases 4-fold from 0.163 to 0.042 when passing

from the homogeneous to nonhomogeneous prior, which also shows the nonhomogeneous

prior induces much more smoothing across the time scale. Meanwhile, for the incarceration

competing risk, we observe no dramatic change in hazard during the first month, and the
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two priors give similar results, with the posterior mean of σ
(1)
5 virtually unchanged when

passing between the two formulations. We adopt the nonhomogeneous prior for the duration

effects on both competing risks, and retain the homogeneous formulations for the age and

calendar time effects.

Inferences

We now examine in detail the inferred relationships between each of the covariates and each

of the competing risks. Due to the lack of identifiability of level shifts in the additive linear

predictor formulation (3.14), we first center each set of parameters β
(r)
m [1], . . . , β

(r)
m [Km] by

subtracting from each parameter the set mean. We then plot posterior quantiles (medians

and 95% credible interval endpoints) of the centered β
(r)
m [k] versus k for each risk r and

predictor m. In these plots, the horizontal axis has been labeled with the covariate values

corresponding to the category values k, and the vertical axis has been labeled with the

exponentials of the centered parameter values, so that these labels correspond to approximate

hazard ratios comparing subjects with category value k to the mean hazard of all categories

of that covariate.

Figure 3.2 presents these inference plots for the three categorical covariates. We see from

the plot in the first panel that the hazard of incarceration among active cocaine users does

not depend strongly on the subject’s sex. Because the 95% credible interval endpoints for

the male category are 0.906 and 1.319, the credible interval for the hazard ratio comparing

men to women is (0.9062, 1.3192) = (0.82, 1.74). Thus men have between an 18% lower and

74% higher risk of incarceration during any given month of cocaine use than women with the

same values for the other covariates. On the other hand, women are between 3% and 84%

more likely to voluntarily stop cocaine use in any given month than comparable men. In the

second row of Figure 3.2, we see that Hispanic active cocaine users are incarcerated at a rate

roughly 40% higher than for black or white users, which are incarcerated at similar rates,

though 95% credible intervals for the three groups all overlap substantially. White subjects

stopped using cocaine voluntarily at rate around 75% higher than black or Hispanic users,
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who stopped use at similar rates.

Number of episodes of cocaine use up to and including the current episode appears to be

strongly related to both competing risks, though in opposite ways. The hazard of becoming

incarcerated during an episode of cocaine use for subjects having had three or more previous

episodes of use is roughly 2.5 times higher than for subjects during their first episode of use,

all else equal. On the other hand, the hazard of a subject voluntarily stopping use drops by

almost 80% between the first and sixth episodes of cocaine use. Because we have included

subject-specific random effects, these are subject-specific interpretations. This means for

example that the increased incarceration hazard at later episodes is not due to observing

later episodes more frequently from subjects with higher propensities for arrest; individual

subjects’ risks of incarceration are actually increasing with their number of cocaine use

episodes. These findings underscore the importance of intervening earlier in subjects’ drug

use careers.

The time scale effects are summarized in Figure 3.3. Incarceration risk appears elevated

during the first year of a cocaine use episode, and then steadily drops off thereafter, decreasing

by almost half between month 12 and month 60 of continuous cocaine use. The hazard of a

subject voluntarily ceasing cocaine use are 4.5 times lower in the second month of use than

in the first month. Over the subsequent 30 months of use, the stop-use hazard drops by

another factor of 2, leveling off thereafter. Spikes in the hazard at months 6, 12, and 24 may

represent recall errors due to subjects rounding the durations of episodes they report. These

spikes do not show up in the incarceration hazard plot, because official arrest records were

used to aid recall.

Our model does not provide clear evidence of associations between the current age of the

subjects and the risks of either incarceration or voluntary use cessation. Twenty-year-old

subjects may be roughly one third more likely than forty-year-olds to become incarcerated

while using cocaine, and subjects in their teenage years may be a third more likely to

voluntarily quit than older subjects. In contrast, absolute calendar time has a very strong

relationship with both competing risks. Incarceration rates for active cocaine users increased

4-fold between 1980 and 1995, coinciding with the crack cocaine epidemic in the Los Angeles
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Table 3.4: Mean deviance (D̄), deviance at the posterior mean (D(θ̄)), effective number of

parameters (pD), and deviance information criterion (DIC) for models with all predictors

included or one predictor removed.

Model D̄ D(θ̄) pD DIC

All Predictors 11120.7 10655.8 465.0 11585.7

Sex Removed 11123.9 10659.8 464.1 11588.0

Race Removed 11137.0 10677.9 459.0 11596.0

Episode Removed 11244.8 10834.4 410.5 11655.3

Duration Removed 11128.6 10606.6 522.0 11650.6

Age Removed 11120.4 10660.9 459.5 11579.9

Calendar Time Removed 11353.4 10947.7 405.8 11759.2

region. The chances of a subject voluntarily stopping use appear to have increased even

more during the same time frame. However, this could be partially attributable to recall

bias, with subjects having a more fine-grained recollection of cocaine use episodes (and thus

a greater frequency of reported voluntary termination events) in the years just before the

interviews were conducted in the mid 1990’s.

We conclude based upon these posterior summaries that among our predictors only age

may not be related to the risk of cocaine use termination. To confirm these findings, we

calculated the deviance information criterion (DIC; Spiegelhalter et al., 2002) for the model

with all predictors included and the six models having one of the fixed effects predictors

removed. From Table 3.4, we see that the model excluding age attains the lowest DIC,

beating the model including all predictors by 6. The model excluding sex appears only

slightly worse than the model including all predictors, which makes sense given that the

credible intervals for the sex effect on the stop-use risk just barely miss the null value of

1, while the intervals for the incarceration risk intersect. Removal of any other predictors

results in substantial increases in DIC.
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Figure 3.2: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted lines)

of the categorical covariate effects on the risk of incarceration (left column) and stop-use

(right column).
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Figure 3.3: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the time scale effects on the risk of incarceration (left column) and stop-use (right

column).
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CHAPTER 4

A General Bayesian Multistate Model

In this chapter, we extend the competing risks event history model of the previous chapter to

a multistate model, as defined in Section 2.5.3, for histories in which subjects pass in between

discrete states. We begin by extending the notation and definitions of the previous chapter

to accommodate dependence on state s, and then show how multiple competing risks event

history models may be linked to form a full multistate model. In Section 4.2, we use this

model to analyze lifetime histories of episodes of cocaine use, episodes of abstinence from use,

and episodes of incarceration from Treatment Utilization and Effectiveness Project subjects.

4.1 Multistate Model Specification

To specify a complete model for the state each subject assumes at each discrete time point

of observation, we must, for each state s = 1, . . . , S, give a model for the probabilities of

subjects passing from state s to each state r directly reachable from s. Each of these S

sub-models is a discrete time competing risks event history model of the type considered in

Chapter 3. Thus, we extend the model given by the cause-specific hazards definition (3.1),

the link relationship (3.2), and linear predictor specification (3.3) to a general multistate

model context by allowing the data and parameters to depend on the state s.

Let i = 1, . . . , I index the subjects in our dataset, j = 1, . . . , J
(s)
i index episodes in which

subject i is continually in state s, and t = 1, . . . , T
(s)
ij index the discrete time points that

subject i spends in his jth episode in state s. The variable t resets to the value 1 each time a

subject enters a new state, so that t represents the discrete time since the subject last changed

states; this variable is often called gap time or duration. Finally, we let R(s) ⊂ {1, . . . , S}
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denote the set of all states r directly reachable from s, and ∆
(s)
ij ∈ R(s) denote the state

entered upon termination of subject i’s jth episode in state s.

The transition hazard rate λ
(s,r)
ij (t) is the probability that subject i moves from state s to

state r at the tth discrete time point of i’s jth episode in state s given that i had not exited

s at an earlier time in that episode,

λ
(s,r)
ij (t) ≡ Pr[T

(s)
ij = t,∆

(s)
ij = r | T (s)

ij ≥ t]. (4.1)

As in the competing risks event history model of Chapter 3, for each s, i, j, and t, we relate

the transition hazards {λ(s,r)ij (t) | r ∈ R(s)} to linear predictors η
(s,r)
ij (t) with the multinomial

logit link function,

η
(s,r)
ij (t) ≡ log

(
λ
(s,r)
ij (t)

λ
(s,s)
ij (t)

)
, r ∈ R(s), (4.2)

where λ
(s,s)
ij (t) ≡ 1−

∑
r∈R(s) λ

(s,r)
ij (t) is the probability of remaining in state s at time t.

For each state s, we let the hazard rates for transitions out of s depend on covariates X
(s)
m ,

m = 1, . . . ,M (s). The values of these covariates may vary with subject, episode, and time.

Let X
(s)
m,ij(t) denote the value of X

(s)
m for subject i at time t during his jth episode in state s.

We model the covariate effects with functions β
(s,r)
m (x) included in the linear predictors,

η
(s,r)
ij (t) ≡ β

(s,r)
0 +

M(s)∑
m=1

β(s,r)
m (X

(s)
m,ij(t)). (4.3)

The covariates may be of three types, as described in Section 3.1.2. First, continuous co-

variate effects are modeled using the Gaussian Markov Random Fields smoothing approach

outlined in Section 3.1.2. Second, for categorical covariate effects we allow the function

β
(s,r)
m (x) to take different values for each x, and place an exchangeable prior on these func-

tion values.

The third case is covariates X
(s)
m that correspond to random effects. For example, if

X
(s)
1,ij(t) = i for all s, i, j, and t, then the first covariate for each state is a subject identifier,

and its effects on the transition hazards are subject-specific random effects. Suppose more

generally that covariate m is the same random effects identifier for all states s, and let k be

a value assumed by the X
(s)
m,ij(t). Then for each state s and state r ∈ R(s), β

(s,r)
m (k) is the
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random effect for category k on the s→ r transition hazard. We allow these random effects

to be correlated across all transition types. Let βm(k) be the vector of all category k random

effects β
(s,r)
m (k) listed in some fixed order. We place a multivariate normal prior on βm(k),

βm(k) ∼ Nd(0,Σm), (4.4)

where d =
∑S

s=1 |R(s)| is the number of possible transition types in the multistate model.

We complete the specification by placing the inverse Wishart hyperprior (3.11) on Σm, with

d replacing R as the dimension value.

Obtaining posterior inferences from this model proceeds as in the previous chapter, using

any of the MCMC algorithms from Section 3.2.

4.2 TUE Cocaine and Incarceration History Application

We analyze complete cocaine and incarceration history from the time of first cocaine use

until the time of interview in the sample of 408 TUE subjects used with the event history

model in Section 3.3.1. These histories may be broken into three mutually exclusive states:

active cocaine use (C), incarceration (I), and non-using while not incarcerated (N). Table

4.1 summarizes the number of episodes spent in each state across all subjects. In total,

the subjects contributed 63,492 person-months of follow up, for 13.0 years of observation

per subject on average. Among this time, 47% was spent using cocaine, 13% was spent

incarcerated, and 40% was spent not using cocaine while not incarcerated.

Figure 4.1 shows all episodes of cocaine use (red) and incarceration (blue) occurring

between 1987 and 1997 for ten TUE subjects; spans with neither red nor blue line segments

are episodes of non-use. Patterns of use and imprisonment vary greatly between subjects.

The first subject uses cocaine continually for the entire decade preceding his interview. The

fourth subject never resumes cocaine use following a 2-year incarceration episode, while the

fifth subject frequently passes back and fourth between jail and cocaine use in the five years

prior to the time of interview.
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Table 4.1: Summaries of all episodes of cocaine use (C), incarceration (I), and non-use (N)

following first use of cocaine in 408 TUE subjects. All subject histories began at the time

of first cocaine use and were right censored at the time of interview.

Total Num. Num. Epis. Ending With: Total Person- Avg. Epis.

State of Epis. C I N Censoring Month Obs. Dur. (months)

C 1527 697 729 101 29645 19.4

I 1102 507 512 83 8567 7.8

N 1241 612 405 224 25280 20.4

all 3870 1119 1102 1241 408 63492 16.4

Figure 4.1: Cocaine and incarceration history spanning 1987 to 1997 from ten TUE subjects.

Blue and red line segments represent episodes of incarceration and cocaine use, respectively.

Vertical black lines signify the time of interview, with squares indicating right censoring.
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4.2.1 Covariates

For each of the three states, we model the hazards of transitions into each of the two other

states using all 7 covariates used in the example in Section 3.3.1 plus one additional covariate,

so that we have M (s) = 8 total covariates for each state s. The additional covariate we

include is the previous state just prior to entering the current state, which is categorical

with the categories being the two states other than the current state. Sex and race are

included as categorical fixed effects, with race having three categories (black, Hispanic, and

white). Number of episodes spent in that state up to and including the current episode is

also included as a categorical covariate, with episode numbers of 6 and higher grouped into

the same category. A subject identifier is included, so that our model has subject-specific

random effects for each of the six possible transition types.

Episode duration, also called gap time because it is the gap between transition events,

is included as a continuous covariate with the piecewise-constant nonhomogeneous GMRF

model of Section 3.3.3. For cocaine use and non-use episodes, we use the same discretization

of the duration time scale as we used for the model in Section 3.3, with the duration effect

varying at the ends of each of the first 60 months and at the ends of years 6 through 10.

Because as presented in Table 4.1, incarceration episodes are typically much shorter than

cocaine use and non-use episodes, for this state we allow the duration effect to vary at the

ends of each of the first 36 months and at the ends of years 4 and 5. For all states, age

and calendar time are included with effects varying at the boundaries of whole years and

homogeneous GMRF priors.

4.2.2 Inferences

We obtained inferences from our multistate model applied to the dataset described in Table

4.1 using the single-category random walk Metropolis (SC-RWM) algorithm from Sections

3.2.2 and 3.3.2, with all six random effects from each subject updated in the same block. We

ran this MCMC routine for 220,000 iterations in total, discarding the first 20,000 for burn-in

and storing only every tenth iteration following the burn-in period. Table 4.2 summarizes
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Table 4.2: Summaries of effective sample sizes for all model parameters from 20,000 posterior

samples obtained by thinning 200,000 post-burn-in MCMC iterations.

Parameter Number of Effective Sample Size

Type Parameters Min. 25th Median 75th Max.

Categorical Fixed Effects 78 451 1364 1846 3302 11850

Continuous Fixed Effects 806 190 450 720 1161 5223

Random Effects 2448 322 3433 5101 6753 12220

GMRF Hyperparameters 18 712 997 1412 1638 3242

Random Effects Covariance 21 193 449 617 687 924

effective sample sizes from the resulting 20,000 thinned, post-burn-in samples. Generally,

effective sample sizes range from several hundred to several thousand, which should be

sufficient for accurate inferences.

Posterior summaries of the effects of each of the seven fixed effects covariates on each of

the six transition hazard rates are displayed in Figures 4.2–4.8. In each of these plots, the

vertical axis represents the hazard for a particular covariate value relative to the average

hazard over all values of that covariate. To illustrate, the last panel of Figure 4.2 depicts

posterior summaries of the relationship between sex and the risk of incarceration for subjects

not currently using cocaine. The posterior median for the male category is slightly over 1.4,

which means that all else equal, males have a 40% higher hazard of incarceration than the

average hazard of males and females. Alternatively, male subjects are about 1.4/0.7 = 2

times more likely to become incarcerated than female subjects while not actively using

cocaine.

We now highlight some findings from the inference plots. From Figure 4.2, we see that

women voluntarily cease cocaine use at a higher rate than men, and also exit periods of

incarceration into both cocaine-use and non-use states more quickly than men. Women are

more likely to resume cocaine use during periods of non-use, but are incarcerated at much

lower rates than men while not using cocaine. In Figure 4.3, we observe that Hispanic
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cocaine users are at higher risk for incarceration than black or white cocaine users, while

white cocaine users are more likely to quit using than blacks or Hispanics. Black subjects

transition from incarceration to non-use at a 40% lower rate than Hispanics or whites, and

transition back to incarceration at a roughly 30% lower rate than the other races. Black

subjects also relapse into cocaine use at twice the rate of the other races.

Figure 4.4 shows the effect of the number of episodes spent in the current state on the

hazard of transitions out of that state. In the first row of plots, we see that the chances

of incarceration increase with the number of episodes of cocaine use, while the chances of

voluntarily stopping use decrease with additional cocaine use episodes. Episodes of incarcer-

ation last longer for subjects having had more previous periods of incarceration. In Figure

4.5, we observe that for all transitions s→ r other than non-use to cocaine-use, the hazard

of the transition is higher if the subject’s state just prior to entering s was r.

Turning to the duration effects presented in Figure 4.6, we see that the hazard of in-

carceration among subjects actively using cocaine gradually drops 2-fold from the second

through fifth years of continual use. The hazard of voluntary use cessation drops 4-fold

following the first month of cocaine use, and then is reduced by an additional factor of 2 over

the subsequent two year period. This chances of exiting incarceration into both active-use

and non-use states increase after the first month of incarceration, and then do not change

much thereafter. Finally, the hazards of relapse into cocaine use and incarceration fall with

increasing durations spent in the non-use state. In particular, the relapse risk drops 4-fold

from the second to 26th month of non-use, while incarceration risk drops 2-fold during the

same period.

In Figure 4.7, we observe no significant age effects on the transition hazards, with the

exception of the incarceration to cocaine use transition. Subjects in their 40’s are 3 times

more likely to exit incarceration into a cocaine using state than subjects in their teenage

years. The first and last panels of Figure 4.8 show that from the early 1980’s to early 1990’s,

rates of incarceration quadrupled for active cocaine users and doubled for non-active users.

The rate of voluntarily ceasing use also appears to have quadrupled duing this same decade-

long period, and the rate of relapse into cocaine use for subjects not currently using doubled
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Table 4.3: Posterior summaries of the subject random effects covariance matrix Σ. We give

summaries of the random effect standard deviations for each transition between the cocaine

use (C), incarceration (I), and non-use (N) states. We also give summaries of the random

effects correlations for the five pairs of random effects with the largest magnitude inferred

correlations.

Posterior Quantiles

Parameter Description 2.5th Median 97.5th

√
Σ11 C→ I random effect std. dev. 1.05 1.26 1.51
√

Σ22 C→ N random effect std. dev. 0.67 0.87 1.07
√

Σ33 I→ C random effect std. dev. 0.94 1.20 1.49
√

Σ44 I→ N random effect std. dev. 0.48 0.66 0.86
√

Σ55 N→ C random effect std. dev. 0.61 0.78 0.97
√

Σ66 N→ I random effect std. dev. 1.04 1.33 1.66

Σ16/
√

Σ11Σ66 C→ I and N→ I effect correl. 0.67 0.82 0.92

Σ24/
√

Σ22Σ44 C→ N and I→ N effect correl. -0.05 0.30 0.59

Σ35/
√

Σ33Σ55 I→ C and N→ C effect correl. -0.05 0.28 0.55

Σ45/
√

Σ44Σ55 I→ N and N→ C effect correl. -0.73 -0.45 -0.10

Σ56/
√

Σ55Σ66 N→ C and N→ I effect correl. -0.54 -0.27 0.03

from the 1970’s to 1990’s. However, these last two results may partially reflect recall bias,

with subject better able to recall events nearer to the times of interview in the mid 1990’s.

Finally, posterior summaries of the covariance matrix of the subject random effects appear

in Table 4.3. There is a very large amount of heterogeneity among study subjects with respect

to their hazards of transitioning between states. For example, the posterior median estimate

of the standard deviation of the cocaine to incarceration transition random effect is 1.26. This

means a subject with a propensity for incarceration while using cocaine that is 2 standard

deviations above average has a hazard of incarceration that is roughly exp(2 · 1.26) ≈ 12

times higher than a typical subject with a random effect of 0. Several of the transition
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random effects exhibit moderate or strong correlations with one another. For all three

states, a subject’s propensities to transition into that state from each of the two other states

are positively correlated. The C → I and N → I random effects exhibited an especially

strong correlation, with a posterior median estimate of 0.82, which says that subjects with

a high arrest risk while using cocaine also tend to have a high arrest risk while not using,

and vice versa. The negative correlation between the I → N and N → C effects also makes

sense, as subjects with a higher likelihood of not resuming cocaine use immediately following

incarceration have a lower risk of resuming cocaine use while not incarcerated.
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Figure 4.2: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the effects of sex on the hazards of each transition type. The vertical axis is the

transition hazard rate on a log scale relative to the average hazard over all covariate values

(dashed line).
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Figure 4.3: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the effects of race on the hazards of each transition type. The vertical axis is the

transition hazard rate on a log scale relative to the average hazard over all covariate values

(dashed line).
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Figure 4.4: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the effects of the number of episodes spent in the current state on the hazards of

each transition type. The vertical axis is the transition hazard rate on a log scale relative to

the average hazard over all covariate values (dashed line).
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Figure 4.5: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the effects of the last state just prior to entering the current state on the hazards

of each transition type. The vertical axis is the transition hazard rate on a log scale relative

to the average hazard over all covariate values (dashed line).
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Figure 4.6: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the effects of the current duration of the current episode on the hazards of each

transition type. The vertical axis is the transition hazard rate on a log scale relative to the

average hazard over all covariate values (dashed line).
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Figure 4.7: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the effects of current age on the hazards of each transition type. The vertical axis

is the transition hazard rate on a log scale relative to the average hazard over all covariate

values (dashed line).
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Figure 4.8: Posterior medians (solid lines) and point-wise 95% credible intervals (dotted

lines) of the effects of current calendar time on the hazards of each transition type. The

vertical axis is the transition hazard rate on a log scale relative to the average hazard over

all covariate values (dashed line).
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CHAPTER 5

Ongoing and Future Work

In this chapter, we discuss work in progress as well as plans for future work. First, we

describe the R-language routines used to fit the models from Chapters 3 and 4, and discuss

features to be added to this code prior to its publication as an R package. Next, we describe

future methodological extensions of our event history models.

5.1 R Software Package

5.1.1 Current Functionality

We have implemented the Bayesian competing risks event history model of Section 3.1 and

the Bayesian multistate model of Section 4.1 in the full generality allowed by the notation

in these sections. These implementations consist of R-language routines for performing the

MCMC algorithms of Section 3.2. More specifically, the code allows specifications with:

1. Arbitrary numbers of states, with the competing risks model corresponding to the case

of a single state

2. For each state, arbitrary numbers of competing risks or transition types

3. For each state, arbitrary numbers and types of covariates (categorical or continuous)

4. For each covariate of each state, separate prior hyperparameters for each event type

5. Arbitrary numbers of random effects, which are correlated across all event types

6. For each covariate of each state, choice of MCMC algorithm (random walk Metropolis

or full-conditional-approximating Metropolis-Hastings, with user-selected blocking)
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Although Section 3.3.2 shows the FCA algorithm to be much more efficient than RWM, we

provide the option of using RWM because the FCA algorithm can fail at burn-in, due to

the log likelihood approximations it uses being poor when the parameter values are very far

from regions of high posterior mass.

The generality of our implementation is achieved via extensive use of R list objects and

multidimensional arrays. Compared to an R implementation of a competing risks model

with fixed, hard-coded predictor and outcome variables, our general competing risks code

runs approximately 10% slower on the same model using the same inference algorithms.

In addition, the general multistate model R code applied to a single-state competing risks

model runs about 15% slower than the general competing risks R code; this is due to the

necessity of placing almost all variables from the competing risks model inside another level

of R list objects to enable dependence upon state. In aggregate, there is an approximate

25% slowdown for our fully-general multistate model code compared to an ad-hoc model

implementation using separate variable names for each combination of risk, predictor, and

state, as well separately named auxiliary variables and MCMC parameter storage variables.

We consider this slowdown to be a very modest cost compared to the cost of having to

re-implement the inference algorithms for each new dataset we wish to analyze.

5.1.2 Additional Covariate Options

Interactions between predictor variables is a common and useful regression model feature.

With our current software implemenation, it is possible to include interactions between cat-

egorical covariates by replacing these variables with a single categorical variable taking on

the values of all possible pairs of values of the two predictors. In addition, it is currently

possible to include an interaction between a categorical and continuous variable by creating

one copy of the continuous covariate for each value of the categorical covariate; each contin-

uous covariate copy is then set to be constant for observations with values of the categorical

covariate other than the value that corresponds to that continuous covariate copy. However,

this interaction coding is somewhat cumbersome, and a more direct approach of having a
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separate arbitrary function representing the continuous covariate effect for each categorical

value would be a valuable future addition to our software. General interactions between two

or more continuous covariates are not possible using the current software. However, we could

model arbitrary smooth functions of two continuous covariates using the GMRF approach

described in Section 2.7.4 and extend our MCMC algorithms to this case using the sparse

matrix algorithms of Rue and Held (2005). We could use such an approach to include general

spatial and spatio-temporal covariates as well.

Certain predictor variables may plausibly only affect the hazard of a subset of the com-

peting risks or transition types for a given state. For example, the chances of a non-using

subject relapsing into cocaine use may depend on the current street price of cocaine, but a

non-using subject’s incarceration risk may not be related to cocaine prices. With our cur-

rent model, any predictor variable included for one competing risk for a given state must be

included for all competing risks for that state. A simple modification of our MCMC routines

could fix the parameters representing the covariate effects on a subset of the cause-specific

hazards to zero. This would not leave these cause-specific hazards completely unrelated to

the covariate values though, as with the multinomial logit link function, a change in any of

the linear predictors adjusts all the event probabilites. However, with relatively rare events,

changes to these cause-specific hazards would be small. Finally, we could extend our model

to allow parameters to be shared across competing risks or transition types. For example, a

covariate such as law enforcement presence in a neighborhood may be presumed to have the

same effect on the incarceration hazard of both cocaine-using and non-using subjects.

5.1.3 Alternate Competing Risks Model

With the multistate model of Chapter 4, we modeled the transition hazard rates (4.1), which

are cause-specific hazards for the competing causes of episode termination. Such a modeling

approach is sensible when the different types of transitions represent different causes or

reasons for the current episode to terminate. For example, the two possible transitions out

of the cocaine use state in the model in Section 4.2 are moves to the non-use and incarceration
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states, each of which represents a distinct cause of the subject ceasing cocaine use; in the

former case the subject chooses to quite, while in the later case the subject is forced to quit.

However, for other states, the different states a subject may pass into do not represent

different causes of the subject leaving the current state. A subject leaving the incarceration

state may pass into either the cocaine-use or non-use states, but cocaine-use and non-use are

not competing causes for leaving prison. Instead, subjects are allowed to leave prison, and

then decide whether to resume cocaine use. This issue made interpretation of the transition

hazard rates out of the cocaine use state in Section 4.2.2 unclear. For such cases, we could use

an alternative two-stage competing risks model, where we first model the aggregate hazard

of leaving the current state, and then conditional on the time of leaving the current state,

we model the new state the subject passes into with a multinomial logistic model. Because

our current software implementation is capable of handling both stages of this model, this

extension will only require recoding of the person-time dataset generation.

5.1.4 Interface Development

The current R implementation requires the user to specify, in the notation of Section 3.2.1,

the covariate values Xm,n and competing risks event indicators y
(r)
n for each person-time

observation n = 1, . . . , N . However, this person-time level specification is not necessary

if there are no covariates that vary within episodes other than time scales which may be

computed for each person-time observation based upon the starting and ending times of

each episode. For example, if we know the calendar time of each subject’s birth, then we

can compute their current ages at each time point of each episode so long as we know the

calendar time each episode began and ended. In such cases, we could allow the user to

specify the data at the episode level, with one record for each episode. Expansion of this

dataset to person-time format could then be automated and hidden from the user.

Another user friendly feature, particularly for non-statisticians, would be the inclusion of

default priors. Often in Bayesian statistics, it is not possible to specify a single prior which is

sensible for a wide class of applications. However, in event history problems, linear predictor
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parameters are approximate log hazard ratios; rarely are these hazard ratios greater than

50 or less than 1/50, so linear predictor parameters are usually between -4 and 4. If for

example we have a time scale that has been discretized into 40 values, and across the entire

scale we do not expect the function representing the effect to change by more than 4, then

a sensible value for the first-order random walk GMRF prior increment standard deviation

might be 4/40=0.1, giving an increment variance of 0.01. A scaled inverse chi-squared prior

for this variance could then be supplied with scale hyperparameter 0.01 and a small degrees

of freedom hyperparameter.

5.2 Model Extensions

5.2.1 Inferred Predictor Discretization and Clustering

While many continuous covariates have uniformly smooth relationships with the hazards of

event occurrence, others may have irregular relationships. In Section 3.3.3, we observed a

dramatic decrease in the hazard of voluntary cocaine use cessation following the first month

of cocaine use, with much more gradual changes in the hazard in subsequent months. We

addressed this irregularity by allowing the increment variance of our random walk GMRF

smoothing prior to vary, creating a nonhomogeneous random walk. An alternative approach

to our nonhomogenous formulation would be to allow the change points in the time scale

discretization to be random, as in Haneuse et al. (2008). In this case, a change point for the

duration effect on voluntary cessation would then be inferred to be between the first and

second months of drug use, with change points inferred to be more dispersed in later months.

In addition to allowing random discretizations of the continuous covariates, we could also

extend our model by allowing random clustering for the categorical fixed or random effects.

For example, clustering of similar subjects could replace the multivariate normal subject-

specific random effects.
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5.2.2 New Inference Targets via Simulation

Our event history and multistate models allow us to make inferences about the hazards of

subjects transitioning between states. However, transition hazard rates are not necessarily

the most relevant target of inference. Instead, we may for example wish to predict the

marginal probability that a subject will be using cocaine at a certain future time point, or the

probability that the subject will remain indefinitely abstinent, given the history of the subject

up to the present. We can make inferences about such probabilities and other quantities of

interest by simulating posterior predictive histories of subjects given a hypothetical partial

history of the subject and our observed data.
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