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Abstract

Statistical Learning Theory of Protein Dynamics

by

Kevin Richard Haas

Doctor of Philosophy in Chemical and Biomolecular Engineering

University of California, Berkeley

Professor Jhih-Wei Chu, Chair

This thesis establishes a comprehensive statistical learning framework to ex-
tract from single-molecule Förster resonance energy transfer (smFRET) experi-
ments the potential of mean force and diffusion coefficient that characterize the
measured protein dynamics. To enable a fundamental understanding of how
deterministic mean force and stochastic diffusion combine to affect conforma-
tional transitions, we first developed a general trajectory entropy functional for
over-damped Langevin dynamics. This functional allows for evaluation of the
information content in the dynamic trajectory ensemble. Next, we present a
path integral statistical learning approach to infer the hidden trajectory from
the data of smFRET measurements of protein dynamics. This methodology also
yields a likelihood for the parameters of the equation of motion that can then
be optimized to deduce the most probable profiles of mean force and diffusion
coefficient for describing the observed dynamical data.

To provide a solid foundation for regularizing the parameters derived from
experimental trajectories through statistical learning, the Fisher information
metric of Langevin dynamics trajectories is derived via an eigenbasis repre-
sentation of the time propagator. Using this Fisher information, the maximum
entropy distributions for various kinetic constraints can derived for the first
time. Finally the knowledge of trajectory entropy and likelihood of smFRET
measurements is combined to present a new calculus of representing the In-
formation Thermodynamics in statistical learning. Bayesian analysis using
this methodology shows that in the balance between entropy, likelihood, and
fluctuations given at the critical point in the phase diagram of information, the
ideal force profile and diffusion can be determined from smFRET experiments
in a systematic and robust manner.
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C H A P T E R 1
Introduction

Engineers are masters of manipulating the dynamics of systems. From the
design of airplanes to the coordination of data through a computer network,
we must understand the manner in which system evolve through time in
order to control and direct these systems to achieve our desired ends. For
chemical engineers, our domain is the regulation of reactions which transform
the structure of molecules, and many of the applications of modern bimolecular
engineering require a deep understating of protein dynamics. Some of the
grand challenges in the field can be surmised as making an enzymatic reaction
faster, for example with the goal of converting cellulosic biomass to alternative
fuels[1], or conversely slowing down the rate of conformational change in such
pathologies as the amyloid-beta peptide fragments which lead to Alzheimer’s
disease[2].

We develop our understanding of these complex systems by converting
data into models for dynamics and this operation demands a robust and com-
prehensive methodology. Statistical Learning Theory is a branch of computer
science and statistics that formulates mathematical algorithms which recreate
human’s natural ability to synthesize statistical data into models of speech,
vision, and classification[3, 4]. This thesis presents a statistical learning theory
for protein dynamics.

Fully comprehending the nature of condensed phases systems like proteins
at first seems futile[5–8]. Thousands of protein atoms are acted upon by a
myriad of different forces and millions of solvent molecules on timescales that
span the femtoseconds of hydrogen bond vibrations to the milliseconds of large
scale protein conformational change[9]. Even if it was computationally feasible
to simulate such physics on biologically relevant timescales, the raw deluge of
trajectory data would overwhelm our ability to contemplate the nature of the
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dynamics. Yet out of this chaos comes clarity. These many degrees of freedom
aggregate to produce an average affect on the time evolution of the reaction.
For a generalized coordinate of interest xt that evolves through time and tracks
the progress of the reaction, one can conduct the necessary model reduction
and construct a phenomenological Langevin dynamics description[10]

dxt = βD〈F〉xt dt +
√

2DdWt (1.1)

where the average force 〈F〉xt at a given position is constructed from the addi-
tive effect of all other degrees of freedom in the system.[11] As the force pushes
the system towards low energy states, the random impulses of the fluctuations
dWt energize the system to maintain thermal equilibrium. The diffusion D sets
the timescale for this dynamics and may depend on positions[12]. Discovering
this governing coordinate—or coordinates—and calculating the average force
profile and diffusion along a reaction path is therefore of upmost importance.

LID 

NMP 

ATP 

Figure 1.1: Cartoon of the transformation from a molecular dynamics model of
the adynalate kinase (AK) protein to a free energy surface of two generalized
coordinates. (left) The AK protein undergoes conformational transitions by
which the LID and NMP binding domains collapse around the ATP active site.
(Right) The hypothetical free energy contours for the reduced coordinates of
LID-ATP and NMP-ATP distances. The dual reaction pathways are mapped out
along with perpendicular planes which indicate the sampling of the degrees of
freedom which contribute to the average force along this path. Also pictured
are the red “acceptor” and green “donor” dyes from the subsequent smFRET
study of this system[13].
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Theoretical approaches to understanding these systems, I argue, have tra-
ditionally taken a generative model approach by which we include all atoms,
forces, and physics that could possibly be relevant to the explanation of the
desired system outcomes and observations. From these molecular/quantum
dynamics simulations, one then perform some degree of importance sampling
to extract out the most relevant statistics or interesting features of dynamics.
This can be achieved by (for example):

• Sampling the transition path ensemble between meta-stable reactant and
product states [14–16]

• Improving the speed of MD simulation to enable greater search of confor-
mation space[17–19]

• Creating Markov state models between states to bridge timescales[20–22]

• Defining a reaction coordinate to compress the dimensionality of the
system dynamics[23–25]

• Free energy and work decompositions including contributions from the
author himself and co-workers [26–28]

Figure 1.1 is a cartoon representing the aim of this transformation. Although
much progress has been made on these fronts, at the very least the demands
on computational resources is immense and at the end of the day, there are
still questions of the validity of the underlying physical parameters used to
formulate the model.

However the statistical learning approach is different; we will flip the arrow
to Figure 1.2 and work from data to a discriminative model. Groundbreaking
experiments[29–31] of single-molecule force spectroscopy and single-molecule
Förster resonance energy transfer[32, 33] (smFRET) have motivated a new
class of statistical theory. In smFRET, the focus of this thesis, florescent dyes
attached to different domains of the protein are excited with blue laser light.
The donor dye absorbs this blue light and then can either release a lower energy
green photon or transfer the energy to the acceptor dye which emits a red
photon. The efficiency of this transfer is dependent on distance E(x) = (r/R0)

6,
therefore measuring the photon emissions gives a report on the current distance
of the tagged coordinate. The time series measurement of photon emission
is a statistical output of the underlying dynamic process we are interested in
studying. However the observation time required for precision measurement
from this experiment is on the order of the general relaxation time of the system
meaning that the dynamics of the system is convoluted with the dynamics of
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Figure 1.2: Cartoon of the transformation from experimentally observed sm-
FRET time series data of dynamics to a phenomenological model which core-
sponds to the same free energy surface gleaned from molecular theory in Figure
1.1.

the experiment. As a result attempts to predict the distribution of equilibrium
states is fraught with pitfalls and inaccuracy (see Appendix D and [34, 35]).

Our challenge is to develop a comprehensive, robust, and practical method-
ology to extract the potential of mean force and diffusion constant from single
molecule experiment. This work will leverage many techniques from the fields
of machine learning, statistical mechanics, and quantum mechanics.

This thesis is organized into five chapters which establish the comprehensive
statistical framework necessary to solve this problem.

Entropy of trajectory ensemble (Chapter 2)
Before we set out to find the potential of mean force from smFRET, we
would like to develop an understanding of what information is contained
within the parameters we are seek to find. How do those functions of force
and diffusion actual define the nature of dynamics for a system and what
distinguishing features arise from such a parameterization? Through our
efforts, we have discovered a fundamental and general property of all
systems which obey Langevin dynamics: the trajectory entropy.

Path Integral Likelihood for FRET (Chapter 3)
How do the statistics of the time series data from experiment couple with
the stochastic time evolution of the system? We account for the statistics
of the Poisson process for photon emission and the Langevin dynamics
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of the system with an exact and general path integral description which
is solved using the eigenbasis of the time propagator. This gives an
inferred system trajectory and the parameter likelihood which can then
be optimized for force and diffusion profiles.

Fisher metric and max entropy models (Chapter 4)
Our solutions and dynamic models live in a parameter space characterized
by the Fisher information metric. What is this metric for general Langevin
dynamics and how can it be used to develop least informative models for
given kinetic constraints?

Information Thermodynamics and Bayesian optimization (Chapter 5)
Combining our knowledge of entropy, likelihood, and Fisher information,
we propose a new calculus of Information Thermodynamics. This allows
us to perform Bayesian optimization to give the most robust and reliable
estimates of parameters from experiment. The development also intro-
duces the extension of the bundle method[36] to functional analysis to
provide exponential convergence of our model parameters.

Conclusions and Future Perspectives (Chapter 6)
Armed with this statistical learning toolkit, we introduce and motivate
future applications and protein engineering strategies. Finally we discuss
the broader applicability of this approach to developing dynamic models
from experimental data.
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C H A P T E R 2
Elements of the Trajectory Entropy
in Continuous Stochastic Processes

at Equilibrium

2.1 Abstract
We propose to define the trajectory entropy of a dynamic system as the Kullback-
Leibler divergence of its path distribution against that of free diffusion. The
space-time trajectory is now the dynamic variable and its path probability
is given by the Onsager-Machlup action. For the time propagation of the
over-damped Langevin equation, we solved the action path integral in the
continuum limit and arrived at an exact analytical solution that emerged as a
simple functional of the deterministic mean force and the stochastic diffusion.

2.2 Introduction
A dynamic system subjected to random influences explores its possible out-
comes and evolves to exhibit a dispersion over state space and time that contains
contributions from both deterministic and stochastic forces (Figure 2.1). One
finds examples of this nature in areas including physics, chemistry, biology, as
well economics. Resolving the physical origin of the space-time dispersion in
dynamics and the quantification thereof will thus be illuminating. Here, we
investigate this general problem using the over-damped Langevin equation as
a model.
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Figure 2.1: The space-time dispersion of a dynamic system. The equilibrium
entropy is completely determined by the potential of mean force (PMF, the
left-most plane with contour lines), which contains only the static dispersion
(the shaded gradients on the PMF plane). Jaynes’ caliber evaluates the extent
over which the system can explore over a slice of finite width in time, ∆t (the
slice defined by the two gray panes in the middle). The trajectory entropy from
this work resolves the system’s static and dynamical dispersions over the full
observation volume from t = 0 to tobs, and quantifies them analytically.

The Langevin equation has been widely used to describe the dynamical
behavior for a variety of applications. Let x represent a fluctuating degree of
freedom (or a set of stochastic variables of interest) for which the stochastic
differential equation is

dxt = DF(xt)dt +
√

2DdWt (2.1)

, where the energy is non-dimensionalized by the thermal energy kBT, D is
the diffusion coefficient, F(x) = −dV(x)/dx the deterministic mean force, and√

2DdWt the stochastic force of amplitude
√

2D exerted by a Wiener process
satisfying 〈dWtdWt′〉 = δ(t− t′)dt. Evolving the Langevin equation generates
a trajectory X(t), which is a continuous but non-differentiable function of time
that gives a value of xt at time t with t starting from 0 and ending at tobs. In
the ergodic limit, the system reaches an equilibrium distribution, peq(x) =
exp (−V(x)) /Zeq, where V(x) is the potential of mean force (PMF), and Zeq
the equilibrium partition function [37]. The static dispersion of the system at
equilibrium can be quantified using an entropy measure

S[peq(x)] = −
∫

dxpeq(x) ln peq(x). (2.2)



CHAPTER 2. ENTROPY OF TRAJECTORY ENSEMBLE 8

The equilibrium entropy Seq is thus completely determined by the PMF profile
and contains no information regarding the dynamics [38–42].
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Figure 2.2: Model systems of the same equilibrium entropy but different dy-
namics information. (top) The PMF V(x) of three systems with 1, 2, or 3 minima.
(bottom-left) A simulated Langevin trajectory for the three models with D = 1
in dimensionless units. (bottom-right) The Boltzmann equilibrium probability
density of the three models.

To consider the dispersion in dynamics, one may use Jaynes’s caliber to
evaluate the statistics of the conditional propagator, p(x∆t|x0) [43–45]. Caliber
was originally defined for finite-state Markov models as the conditional entropy
of time propagation probability S(∆t) ≡ ∑N

i,j πiri,j log ri,j [46]. The transition
probability from state i to state j per unit time ∆t is ri,j and the equilibrium
probability of state i is πi. Caliber may be generalized to the continuous space
as the conditional entropy for the propagator p(x∆t|x0) at a time resolution ∆t,

S(∆t) =
∫

dx0dx∆t p(x∆t, x0) ln p(x∆t|x0). (2.3)
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The caliber thus quantifies both the static and the dynamical dispersion the
system exhibits within a time slice of ∆t.

The evaluation of Eq. (2.3) entails solving the corresponding Fokker-Planck
equation or numerically averaging over stochastic trajectories [37]. While the
caliber does take into account dynamics information, the relative contributions
from the deterministic mean force and the stochastic random force is by no
means apparent from the caliber integral. The problem is further exacerbated
by the fact that S(∆t) depends on the particular choice of ∆t. For coarser
time resolutions, the conditional probability density converges to peq(x) as
∆t → ∞ and the information about dynamics is lost. In the continuum limit
of ∆t → 0+, the conditional entropy diverges at a rate of ∼ ln(D∆t) due to
the non-differentiability of the Weiner process [47, 48]. In this chapter, we
show how these issues can be overcome by using the Kullback-Leibler (KL)
divergence to quantify the dispersion over the full volume of the trajectory
space (rather than analyzing only a slice of it, cf. Figure 2.1). The resulting
analytical expression reveals the manner by which the deterministic mean
force and the stochastic diffusion contribute to the dynamical dispersion in
equilibrium trajectories.

2.3 Kullback-Leibler divergence for trajectory
entropy

The KL divergence represents the extra information required to encode a prob-
ability density relative to the reference distribution. It is strictly positive and
becomes zero only when the queried distribution is identical to that of the
reference and is often used to characterize the relaxation of non-equilibrium
states back to equilibrium and the entropy production involved [49, 50]. We
propose to define the trajectory entropy S as

S ≡ −
∫
DX(t) P [X(t)] ln

P [X(t)]
Q[X(t)]

(2.4)

P(X(t)) is the probability density of obtaining trajectory X(t), Q(X(t)) is
the probability density for obtaining the same trajectory from the reference
dynamics, and the integration DX(t) is a path-integral over all continuous
functions. Immediately, one sees that the KL divergence removes the ∼ ln ∆t
divergence of the path integral.

The choice of reference dynamics plays the role of further accentuating the
information content in P(X(t)) through the path integral of Eq. (2.4). Our
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Figure 2.3: Conditional entropy of the time propagator. (top) The contours
of the transition probability density p(x∆t|x0) for the BD time propagation
of Model 1, 2, and 3 with ∆t = 10−3. (bottom) The conditional entropy as a
function of ∆t for the 3 model systems. Annotated are the limiting values of
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strategy is to use the most structureless Brownian dynamics with zero force
Fref(x) = 0. The diffusion coefficient Dref for reference dynamics is then set
to help in separating out each the elements in the Langevin equation that
contribute to S . The dissection of trajectory entropy outlined below can be
understood as a two step thermodynamic integration along (1) the mean force
coordinate as the KL divergence between the trajectory probabilities for the
Langevin dynamics and those for the Brownian dynamics at the same diffusion
coefficient Dref = D and (2) the diffusion coefficient coordinate as the KL
divergence of the Brownian dynamics with D to that of Dref. That is,

S [F(x), D; Dref] = SFref→F(x)(D) + SDref→D(Fref = 0). (2.5)

2.4 Path integral of the Onsager-Machlup (OM)
action

The probability density of a Langevin trajectory of duration tobs is proportional
to the exponential of the OM action EOM[X(t)] [51–53]

P [X(t)] = e−V(x0)/Zeq

(
e−EOM[X(t)]/Z

)
(2.6)

EOM[X(t)] =
1
4

∫ tobs

0
dt

ẋ2
t

D
+ DF2(xt) + 2DF′(xt) (2.7)

+
1
2
(V(xtobs)−V(x0)) (2.8)

where the trajectory partition function of P [X(t)] is Z =
∫
DX(t)e−EOM[X(t)].

Applying the definition of OM action into Eq. (2.5) with the Brownian dy-
namics reference results in the following expression for the trajectory entropy1

S =
1
2
〈
V(x0) + V(xtobs)

〉
X(t) + ln Zeq (2.9)

+
D
4

〈∫ tobs

0
dt F2(xt) + 2F′(xt)

〉
X(t)

(2.10)

+
1
4

〈∫ tobs

0
dt

ẋ2
t

D
− ẋ2

t
Dref

〉
X(t)

+ ln
Z
Zref

. (2.11)

1For the Fref = 0 reference dynamics we have discarded Vref and set (Zeq)ref = 1 to ignore
the unnecessary scalar offsets.
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The expectations in Eqs. (2.9)–(2.11) are taken over the distribution of trajectories
of the system dynamics. For an arbitrary functional of X(t), 〈g[X(t)]〉X(t) =∫
DX(t)P [X(t)]g[X(t)].

An important consequence of equilibrium dynamics in evaluating the terms
of S in Eq. (2.5) is that for the expectation of any single-time function over the
equilibrium trajectories, the result can be obtained by switching the order of
integrating over time

∫
dt and path

∫
DX(t) such that 〈

∫
dtg(xt)〉X(t) becomes∫

dt〈g(xt)〉peq(xt). The single-time terms of the trajectory entropy thus have an
explicit extensivity of trajectory length tobs timing an integrand that is time
invariant after taking the path expectation. This result can also be reached via
the Feynman-Kac theorem [54].

2.5 The trajectory entropy functional
The analytical form of the trajectory partition function can be obtained by taking
its functional derivative with respect to the mean force

δZ
δF(y)

=
D
2

〈∫ tobs

0
dt F(xt)δ(xt − y) + δ′(xt − y)

〉
X(t)

(2.12)

where δ′(x) is the derivative of the delta function. Transforming the path
expectations to integral over the equilibrium distribution of states and applying
integration by parts to the δ′ term cancels the term with F(xt) as dpeq(x)/dx =
F(x)peq(x) and the functional derivative in Eq. (2.12) is thus zero. Since Z does
not depend on F(x), the partition functions of the Langevin trajectories are
equivalent to those of the force-free Brownian dynamics [47, 48],

Z(D) = (4πD∆t)(tobs/2∆t). (2.13)

That is, Eq. (2.13) is the normalization for the Weiner process with variance
2D∆t. The exponent, tobs/∆t, is the time steps used to discretize the trajectory
and is the dimensionality of the path integral (see Supplementary Information
for more details of this result).

Next, as the trajectory partition function is the cumulant generator of the
OM action, the velocity-squared terms in Eq. (2.11) can be obtained by applying
d ln(Z)/d(1/D) to the right hand side of Eq. (2.13) and imposing the definition



CHAPTER 2. ENTROPY OF TRAJECTORY ENSEMBLE 13

of Z to arrive at

D
tobs

2∆t
=

1
Z

∫
DX(t)

d(EOM[X(t)])
d(1/D)

e−EOM[X(t)] (2.14)

=
1
4

〈∫ tobs

0
dt ẋt

2 − D2F2(xt)− 2D2F′(x)
〉

X(t)
. (2.15)

Since integration by parts leads to 〈F′(x)〉eq = −〈F2(x)〉eq, solving Eq. (2.15)
gives the result of the path integral of ẋ2

t〈
ẋ2

t

〉
X(t)

=
2D
∆t
− D2

〈
F2(x)

〉
eq

. (2.16)

The non-differentiability of Brownian trajectories does cause the velocity-
squared term to diverge as expected.

For the components in Eq. (2.10), taking the expectation with the help of
integration by parts yields another force squared factor −tobsD

〈
F2(x)

〉
eq /4.

Finally, the boundary terms of the trajectory entropy in Eq. (2.9) are just the
equilibrium entropy since 〈V(x)〉eq + ln Zeq = Seq.

Combining the path-integral results of Eqs. (2.9)–(2.11), the dependence of
trajectory entropy on F(x) can be recognized as

SFref→F(x) = Seq + tobsD
[

D
4Dref

− 1
2

] 〈
F2(x)

〉
eq

. (2.17)

Along the diffusion coefficient coordinate, taking the ratio of trajectory partition
functions and adding the ∼ 2D/∆t terms from the path integral of square
velocity leads to the asymptote

SDref→D = lim
∆t→0+

tobs

2∆t

[
ln
(

D
Dref

)
+ 1− D

Dref

]
. (2.18)

It ought be noted that extending the result of Eqs. (2.17) and (2.18) to multiple
dimensions only requires a generalized path action and careful integration by
parts to give the force expectation term 〈~F(x) · ~F(x)〉eq.

The arbitrariness of reference dynamics in the trajectory entropy functional
derived above can in fact be eliminated by employing the most disordered
dynamics of Fref(x) → 0 and Dref → ∞ as the reference model. Discarding
the scalar constants irrelevant to F(x) and D in Eqs. (2.18) and (2.17) gives the
principal result of this chapter: the trajectory entropy functional,

S [F(x), D] = Seq −
tobs

2

〈
DF2(x)

〉
eq
+ lim

∆t→0+

tobs

2∆t
ln D. (2.19)
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What emerges from the trajectory entropy in Eq. (2.19) is the firm connection
between the spread in Langevin paths and their contributing elements, namely,
the statically dispersing potential of mean force (Seq), as well the dynamically
dispersing mechanisms resulting from the deterministic mean force (F(x)) and
the stochastic diffusion (D). The analytical expression clarifies how these two
forces of different physical origins are coupled. The stochastic Wiener process
with diffusion D alone causes the trajectory entropy to increase in a power-
law order equal to the dimensionality of the temporal domain for dynamics.
Information being the alter ego of entropy, Eq. (2.19) also sheds new light on the
information content in the trajectories of a dynamic system: One sees that each
element conducive to the apparent disorder carries a unique and quantifiable
piece of information—and those pieces of information are additive.

2.6 Numerical studies of 3 model systems
As an independent validation of the analytical result via numerical calcula-
tions, we consider the three examples shown in Figure 2.2. The models were
purposely designed to have identical equilibrium entropy, Seq = 1.683, but
markedly different dynamical behaviors even with the same diffusion coeffi-
cient. In addition to numerically verify the analytical functionals in Eq. (2.19),
we show how the visually distinct dynamical features can be quantified.

We start by discussing the conventional caliber measure. Figure 2.3 shows
the contours of the time propagation probability density p(x∆t|x0) for the three
examples at a fixed ∆t and the corresponding caliber profiles, S(∆t). The
∆t → ∞ and ∆t → 0+ limits of S(∆t) discussed earlier are clearly seen in the
numerical results. Evidently, it is necessary to scan the ∆t in the caliber measure
to assess the dynamical contents. Importantly, the relative contributions due
to elements of the dynamical system—the static PMF, the deterministic force,
and the stochastic force—are scrambled in the integral. The issues of obscured
physical origin and degeneracy remain even if one recasts the caliber measure
in the form of KL divergence relative to the Brownian dynamics:

SKL(∆t) = −
∫

dx0dx∆t p(x∆t, x0) ln
p(x∆t|x0)

q(x∆t|x0)
(2.20)

(see insert in Figure 2.4).
The analytical expression (Eq. (2.19)) for the proposed trajectory entropy,

on the other hand, is seen to be in quantitative agreement with the numerical
simulations, summarized in Table 2.1 and Figure 2.4. The dynamical dispersion
in Model 3 is approximately ten times more “complex” than that in Model 1.
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Figure 2.4: Comparison of numerical and analytical approaches of calculating
SKL(∆t). The values of (1/∆t)SKL(∆t) for the three model systems at different
levels of time resolution ∆t. The horizontal lines indicate the analytic prediction
of −D/4〈F2(x)〉eq in the continuum limit.

Importantly, the trajectory entropy enables a direct and immediate identification
for the origin of the differing complexity—the deterministic forces. Indeed,
since the diffusion coefficients of the models are identical, it is due to the
additional forces required for making three minima instead of one within the
region. More illustrative examples can be found in Supplementary Information.

Table 2.1: Numerical calculations of SKL(∆t) for the three model systems and
analytic entropy functional. The reference state q(x∆t|x0) is from the force-free
BD with the same diffusion constant D = 1 in reduced units as the queried
time propagator. When Dref=D, the relation between the trajectory entropy
and SKL(∆t) leads to lim∆t→0 SKL(∆t)/∆t = −D/4

〈
F2(x)

〉
eq as derived in

Supplementary Information.

Functionals Model 1 Model 2 Model 3∫
dxpeq(x) ln peq(x) 1.683 1.683 1.683

2 −∆t−1SKL(∆t) 123.6 558.6 1210
3D/4〈F2(x)〉eq 123.5 558.7 1211
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2.7 Concluding perspective
This work illustrates how the path integration of the entire continuous stochas-
tic trajectory ensemble can be compressed into an analytic functional. The
results provide a foundation for understanding the physical origins of the
dynamical dispersion due to fluctuations in systems that can be modeled by
an over-damped Langevin equation. The simplicity of the analytical results
makes it appealing for immediate practical applications. In optimization and
statistical learning, for instance, they may be used for Bayesian estimation of
time-propagation parameters from data generated by experiments or simula-
tions [55, 56], where the trajectory entropy may be used to deduce the most
reduced dynamics representation in cases where the observables were obtained
with insufficient information. Another potential application is to use them as
design equations to engineer the information processing in dynamic systems.
For systems that propagate quantum information, for example, the commonly
employed modeling equations are isomorphic to the Langevin equation dis-
cussed here [57]. Finally, it shall be enlightening to generalize the ideas to
non-equilibrium cases.
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C H A P T E R 3
Path Integral Statistical Learning

Theory: Extracting Force and
Diffusion from single-molecule

FRET

3.1 Abstract
We present a comprehensive theoretical framework to extract the potential of
mean force (PMF) and diffusion coefficient from single-molecule FRET (sm-
FRET) experiments. The likelihood for such an experiment is developed by
exactly solving a continuous path integral of the Poisson statistics of photon
emission and the Langevin dynamics of the system under study. The solution is
aided by an eigen-decomposition of the Fokker-Planck operator which governs
the propagation of system probabilities. Optimization of the parameterizing
PMF and diffusion constant for arbitrary functions required the adaptation
of the expectation-maximization algorithm to the calculus of variations. The
solution space is regularized by highlighting the parameters of dynamics which
produce maximum entropy equilibrium trajectories. Results are presented for
a hypothetical test cases which reproduces many experimentally relevant time
and energy scales under feasible conditions for the smFRET apparatus.
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3.2 Introduction
Direct observation of individual proteins is the most straightforward way of
elucidating the driving forces of conformational dynamics. Without the in-
formation loss due to measuring the summed behaviors of an ensemble of
entities, single-molecule fluctuations provide first-hand data of the free-energy
landscape and stochastic diffusion underlying the transitions in biomolecule
conformation. However, the currently available single-molecule methods rely
on attaching probes to the system to direct the focus on one molecule at a time
and only offer a convoluted view of the dynamics of the tagged molecule.[58, 59]
As a result, the recorded data need to be decoded to resolve the time propaga-
tion of the protein of interest. This inference depends on the statistics of the
dynamic coupling between the tracked degree of freedom and the reporting
signal as well as the temporal resolution and duration of the trajectory recorded
in experiments. The heavily fluctuating dynamics at the single-molecule level
makes the data analysis of extracting maximum information from indirect
measurements a very challenging task.[34, 60–64]

Taking smFRET as an example, a typical setup is using a pair of fluorescent
dyes, a donor and an acceptor, to attach to the ends of a surface-immobilized
protein, Figure 3.1. Following laser excitation at the relevant frequency, an
excited donor dye can relax to its ground state by emitting a “green” photon or
transferring the energy to the nearby acceptor dye that may then emit a “red”
photon to go back to the ground state. The energy-transfer efficiency between
dyes depends on the donor-acceptor distance r as ζ(x) = 1/(1 + x6) with
x = r/R0 and R0 being the Förster radius for the acceptor-donor pair. In this
case, the donor-acceptor distance r, or equivalently, x, is the protein dynamics
degree of freedom that one wishes to learn about. The photons emitted from
the tagged molecule can be captured by confocal microscopy and recorded by
avalanche photodiode [33]. The statistics of photon arrival times follows that
of a Poisson process with the density depending x parametrically:

Ia(x) = I0
a ζ(x) + Ba (acceptor) (3.1)

Id(x) = I0
d(1− ζ(x)) + Bd (donor). (3.2)

Here, I0
a,d are the maximum intensities and Ba,d are the background signals of

the two types of photons.
Since the arrival time of each emitted photon is recorded,[65] the waiting-

time distributions of the acceptor (a) and donor (d) photons, ∆ta,d, following
the exponential probability density function with intensities Ia,d describe the
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statistical coupling between the latent variable and the observed signal:

p(∆ta,d|Ia,d) = Ia,de−Ia,d∆ta,d . (3.3)

Within an infinitesimal time slice dt, one of the three observations would occur
with the probability densities depending on the latent variable of the system
state at the moment, xt. The following list of the three outcomes and their
probability characteristics involve the parameter of total intensity defined as
I(xt) = Id(xt) + Ia(xt).

1. An acceptor photon arrives, and the probability density of this event is:

p(∆ta = dt|xt)p(∆td > dt|xt) = Ia(xt)e−I(xt)dt. (3.4)

2. A donor photon arrives, and the probability density of this event is:

p(∆td = dt|xt)p(∆ta > dt|xt) = Id(xt)e−I(xt)dt. (3.5)

3. No photon arrives. This dt instance is considered “dark”, and the proba-
bility of this event is given by:

P(∆ta,d > dt|xt) = e−I(xt)dt. (3.6)

The probability of observing both acceptor and donor photons in dt is extremely
rare and this event is hence ignored.

Therefore, the information of protein dynamics along x is encoded in the
sequence of the colors and arrival times of photons that depend on the system
state probabilistically according to Eqs. 3.4-3.6. To what extent of the dynamics
of x can be learned from the photon sequences recorded in a particular sm-
FRET experiment? The guiding dynamics model we employ in this work for
addressing this question is the over-damped Langevin equation:

dxt = DF(xt)dt +
√

2DdWt. (3.7)

In this model of time propagation, the potential of mean force (PMF) is related
to the equilibrium probability density of x, peq(x), as V(x) = − ln(peq(x)). The
mean force F(x) = −∇V(x) is the deterministic component in the equation
of motion. The stochastic force component is parameterized by the diffusion
coefficient D and the Weiner process dWt has the average 〈dWt〉 = 0 and the
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variance 〈dWt · dWt′〉 = δ(t− t′)dt.1 Although the theoretical development and
numerical illustration presented in this work focus on the Langevin dynamics
with a constant diffusion coefficient, generalization to x dependent diffusion is
expected to be straightforward. The Langevin dynamics of Eq. 3.7 captures the
continuous nature of protein conformational fluctuations and the low Reynolds
number of biomolecular systems in the condensed phase.

Ideally, one would like to learn about the PMF and diffusion coefficient
in Eq. 3.7 from the sequence of photon colors and arrival times recorded
in a smFRET experiment. Under the assumption that x is stagnant until a
sufficient number of photons is collected to estimate the value of the latent
variable with a satisfactory certainty, a histogram of the values of x inferred
at the specified level of uncertainty can be generated from a photon trajectory.
Although this approach is general, free from limiting x to a set of discrete
states, and readily applicable to process experimental data, information loss
is inevitable by the single-value coarse-graining of the fluctuations during
the counting time for reaching the set criterion of certainty. The ever-present
movements in protein conformation can in theory be faithfully retained in the
inference problem by setting up a statical learning model with x as the latent
variable. However, the development of this approach has been limited to a
coarse-grained description of system dynamics as jumping between discrete
states[66–69] instead of the continuous stochastic dynamics of the Langevin
equation. This treatment mixes the contributions from the deterministic and
stochastic forces that govern protein dynamics into a rate constant matrix
connecting different states. In addition to the information loss due to model
simplification, the number of stable states along the x coordinate is in general
unknown a priori. As a result, the practical applicability of discrete statistical
learning in retrieving mechanistic understanding from smFRET data is severely
limited.

Retrieving the dynamics parameters of protein conformational changes
from single-molecule experiments thus relies on using a guiding model that can
capture the essence of biomolecule fluctuations. The joining of deterministic
and stochastic forces in the Langevin equation has a sound physical origin of
the projection operator formalism and retains the spatial and temporal con-
tinuity of molecular mechanics and dynamics. However, the difficulties of
infinite dimensionality, non-differentiability in time, and path integral need

1Throughout the text, the physical variables presented are nondimensionalized by the
thermal energy kBT at a fixed temperature T as the characteristic energy, the Föroster radius
R0 as the characteristic length, and the timescale t̄ = 1s as the characteristic time. That is,
V̄(r/R0)/kBT → V(x), F̄(r/R0)R0/kBT → F(x), D̄t̄/R2

0 → D, and Ia,d t̄(r/R0) → Ia,d(x).
Variables with an overbar are the actual quantities before nondimensionalization.
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to be overcome in order to employ Eq. 3.7 as the latent dynamics model for
statistical learning. This work presents our analytical, numerical, and statistical
developments that make possible this goal. Although the methodology was
devised for the specific case of using smFRET to study protein conformational
changes, the established foundation for statistical leaning of continuous stochas-
tic dynamics may as well be applied to other single-molecule methods such as
pulling using atomic force microscope or optical tweezer through molecular
tags to transmit forces. Since the free-energy landscape and diffusion coeffi-
cient of conformational dynamics can also be constructed from the bottom up
via performing molecular simulations with path-based methods of sampling
and optimization, [27, 28, 70] the availability of experimental data of the same
type can greatly facilitate cross-validation and tracing the atomistic origin and
controlling amino acids of protein dynamics.

The rest of this paper is organized as the following. We first present the
Bayesian inference framework that we employed for the statistical learning of
Langevin dynamics from smFRET data. Theoretical developments for calcu-
lating the likelihood function of the PMF and diffusion coefficient through a
trajectory path integral are presented next. This procedure can also be used to
infer the trajectory probability densities of the latent variable, X(t). We then
derive the functional derivatives of the likelihood function with respect to the
Langevin dynamics parameters given the observed photon trajectory. With
these elements established, an expectation-maximization optimization of the
Langevin model can be performed to derive the optimal PMF and diffusion
coefficient that best describe the observed photon sequence. Application of this
methodology to a highly non-trivial test case is presented at the end followed
by the conclusion.

3.3 The Bayesian Inference Framework of smFRET
for Continuous Stochastic Dynamics

Behind the scene of photon recording, the trajectory of the tagged protein degree
of freedom, X(t), was not observed directly. The statistics regarding the PMF
profile and diffusion coefficient are thus not explicit in the photon trajectory.
The structure of this convolution is best represented via a Bayesian Graphical
Model (BGM) as shown in the bottom panel of Fig. 3.1. Vertical arrows in
the BGM link the experimental observable at time t, yt=donor, acceptor, or
darkness, and the latent protein conformation variable at the same time, xt, as
the conditional probability density of p(yt|xt). Following Eqs. 3.4 to 3.6, there
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Figure 3.1: A schematic representation of smFRET experiments. (Top-left)
The dye-attached structure of Mycobacterium tuberculosis protein tyrosine
phosphatase, PtpB[71]. The structural segments of PtpB that cover the active
site (blue balls) of the enzyme, α7, α8, and α3a, are highlighted. The acceptor
and donor dyes are attached at the ends of α7 and α11, respectively. (Top-
right) The Jablonski diagram of the energy states in the FRET flourophores and
the energy transfer event. The efficiency of energy transfer depends on the
inter-dye distance r and the Förster radius R0. The dimensionless distance x is
r/R0. (Bottom) The graphical model of the continuous Bayesian inference for
Langevin dynamics from smFRET measurements. Clear circles represent the
latent observables of the system trajectory, X(t). X(t) is a continuous function
of time that gives the value of x at a specific time t, i.e., xt. The filled circles
represent Y(t), the experimentally recorded photon trajectory. At a specific time,
the readout of the photon trajectory, yt, is either a donor photon, an acceptor
photon, or darkness. Horizontal arrows represent the conditional probability
densities of the time evolution of the non-demensionalized inter-dye distance,
p(xt+dt|xt), and vertical arrows represent the probabilities of photon emission,
p(yt|xt).
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are two different classes of observations. The instantaneous event of observing a
photon is represented by taking the limit of dt→ 0, and the position dependent
probability density functions of p(yt|xt) are:

p(yt|xt) =

{
Ia(xt) yt = acceptor photon
Id(xt) yt = donor photon.

(3.8)

Alternatively, if the state of darkness was observed over the infinitesimally
small, but nonzero interval dt, performing time integration in the BGM frame-
work spans a dark duration of the specified size along the trajectory. This
observation also depends on x with the probability of:

P(yt|xt) =
{

e−I(xt)dt yt = darkness. (3.9)

On the other hand, the horizontal arrows in the BGM indicate the conditional
probability densities the time propagation of the latent variable, p(xt+dt|xt),
and embody the dynamics of interest. The Langevin parameters that determine
p(xt+dt|xt) can only be learned from the trajectory of yt.

The inversion of smFRET measurements into the PMF and diffusion coeffi-
cient of the Langevin equation via the BGM framework comes down to solving
the following two problems:

Inference What is the probability density of the dynamic trajectory of the
protein degree of freedom of interest, i.e., X(t), given a sequence of photon
arrival times and colors recorded via smFRET, Y(t)? In other words, with
a trial mean force profile F(x) and diffusion coefficient D of the Langevin
equation, one aims to calculate:

P(X(t)|Y(t); F(x), D). (3.10)

Optimization What is the optimal profiles of force F(x) and diffusion coef-
ficient D for describing the observed photon trajectory? The answer is
finding the supremum of (maximizing) the likelihood functional:

sup
F(x),D

P(Y(t); F(x), D). (3.11)

Solving the inference and optimization problems stated above requires a
path integral over the coordinate space of the probability density of a system
trajectory X(t) given the smFRET observation of Y(t):

P(Y(t); F(x), D) =
∫
DX(t)P(X(t), Y(t); F(x), D). (3.12)
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The differential volume of the trajectory space is DX(t). The theoretical devel-
opment presented later illustrates how to perform such calculation based on the
specific time stamps and colors of the arriving photons that also incorporates
the intermediate times of “dark” periods into consideration. The capability of
performing smFRET inference with the continuous profile of F(x) as the basis
eliminates the requirement of prior knowledge of the number of metastable
conformational states. This information would simply emerge as a result of the
optimization. Based on the BGM of Fig. 3.1 and the conditional independencies
of probabilities prescribed therein, the joint probability density of the latent
trajectory X(t) and the recorded photon trajectory Y(t) can be factorized as:

P(X(t), Y(t); F(x), D) = P(Y(t)|X(t))P(X(t); F(x), D). (3.13)

Although the theoretical developments are general, we perform analysis
and illustration of the statistical learning algorithm with the model potential
shown in Fig. 3.2. The PMF contains two barriers of around 5kBT that are
biologically relevant for proteins conformational changes. The two barriers
connect two metastable states corresponding to a short and long inter-dye
distance with an intermediate region locating at the value of the Föster radius,
x = r/R0 ≈ 1. The diffusion coefficient is D = 500 in the dimensionless unit
that is approximately 1× 10−14cm2/s. Photon trajectories of smFRET exper-
iments are simulated by propagating the Langevin equation with the afore-
mentioned PMF and D coupled with a Kinetic Monte-Carlo (KMC) scheme for
simulating the processes of photon emission; the Supplementary Information
contains more details of this numerical procedure.

3.4 Calculation of the Trajectory Probability
Density of Langevin Dynamics with Photon
Data and the Likelihood Function

Eq. 3.13 indicates that the joint probability density of X(t) and Y(t) can be
calculated based on the knowledge of the equation of motion which determines
the trajectory probability distribution P(X(t); F(x), D) and the waiting time
distributions of photon events using Eq. 3.8 and Eg. 3.9. Since both the
Langevin equation and the dark snapshot probability (Eg. 3.9) do not have
explicit time dependence, they can be propagated forward in time together
in the calculation of P(X(t), Y(t)) as shown later. At the specific instances of
having bright milestones, {tτ | ∀τ ∈ [0, NP]} where NP is the total number
of recorded photons, the probability density discussed in Eq. 3.8 is used to
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Figure 3.2: The potential of Mean force and the corresponding equilibrium
probability density distribution of x used for simulating smFRET trajectories
and applying the statistical learning algorithms developed in this work.

Table 3.1: The simulation parameters of smFRET employed in this work. These
values were motivated by the typically encountered numbers in experiments.
NP is the number of photons observed before the first photo bleaching event
occurred and 〈texp〉 is the average duration of a trajectory with these intensities
and the number of photons.

Intensity (s−1)

I0
d 15 000

I0
a 8000

Bd 10
Ba 20

NP 40 000
〈texp〉 3.3s
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mark P(X(t), Y(t)). The complete likelihood function, or P(X(t), Y(t)), for a
trajectory of duration texp can be expressed as:

P(X(t), Y(t)) = p(xt0)
NP

∏
τ=1

p(ya,d
tτ
|xtτ)p(xtτ , ydark

[tτ ,tτ−1]
|xtτ−1). (3.14)

The notation of ydark
[tτ ,tτ−1]

in this equation indicates that during the time win-
dow between the arrivals of photon τ and photon τ − 1, ∆tτ = tτ − tτ−1, the
recorded observation in the smFRET experiment is dark. On the other hand, ya,d

tτ

denotes the photon color (acceptor or donor) observed at the time tτ. A similar
construction was offered in[72] for a desecrate state Markov representation.

An important message from the above analysis is that in the inference from
smFRET measurements, observing the τth photon also involves the statistical
information on the latent variable for the dark period of ∆tτ. Effective and
accurate calculation of p(xtτ , ydark

[tτ ,tτ−1]
|xtτ−1) is thus essential to the success of

the statical learning algorithm. To evaluate this term, the dark period is divided
into ∆tτ/dt slices to perform the path integral over xti , i = (1, ..., ∆tτ/dt− 1),
and ti = tτ−1 + idt:

p(xtτ , ydark
[tτ ,tτ−1]

|xtτ) =
∫
· · ·

∫ ∆tτ/dt−1

∏
i=1

dxti

p(ydark|xti)p(xti |xti−1)δ(X(∆t)− xtτ). (3.15)

Here, p(xti |xti−1) is the dynamic propagator over a time step dt. Taking the limit
of dt→ 0 and considering p(ydark|xti) = exp(−I(xti)dt) is the exponential of a
Riemann integral over time, the following path expectation is arrived:

p(xtτ , ydark
[tτ ,tτ−1]

|xtτ−1) =

EX(t)

[
e−
∫ ∆tτ

0 dt′ I(X(t′))δ(X(∆t)− xtτ) | X(0) = xtτ−1

]
. (3.16)
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Figure 3.3: Comparison of Brownian Dynamics simulation and the resulting inferred trajectory from smFRET
path integral with x2 resolution starting with p0 = cos2(x/L) initial distribution. (top-left) Trace of photon
arrivals per millisecond for the donor and acceptor channel. (bottom-right) Time-averged position peq =

1/trxn
∫ trxn

0 δ(x− x′). (bottom-left) Contours of the 〈α(t)|x〉 and 〈x|β(t)〉 vectors in log space of color intensity.
Lines are the raw Brownian dynamics simulation of the system on the free energy surface. Points (X) are the
estimates from the MIM with standard error of σ = 0.1.
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Following the Feynman-Kac theorem[34, 73], the probability density defined
in Eq. 3.16 can also be obtained by solving the following partial differential
equation (PDE) with the no-flux boundary conditions:

∂p(x, t)
∂t

=
(

D∇2 −∇DF(x)− I(x)
)

p(x, t). (3.17)

Here, p(x, t) is a shorthand notation of p(xtτ , ydark
[tτ ,tτ−1]

|xtτ−1). The variable x at
time t corresponds to xtτ , i.e., tτ ≡ t, and is the object of the gradient operators
in Eq. 3.17. The initial distribution of probability density p(x, 0) represents the
condition at tτ−1 in Eq. 3.16, and tτ−1 ≡ 0 in this convention. Without the I(x)
term, Eq. 3.17 is the Fokker-Plank equation of the Langevin equation of motion
defined in Eq. 3.7. The dark operator I(x) implies ydark

[tτ ,tτ−1]
for the solution of

Eq. 3.17.
A key advancement made this work is the recognition that a symmetric

version of the PDE in Eq. 3.17 can drastically simplify the calculation of the
likelihood function Eq. 3.12 via the path integral over X(t). In particular, a new

variable is defined as ρ(x, t) = p(x, t)/
√

peq(x) to transform the PDE such that
a Hermitian operator of time propagation emerges:

∂

∂t
ρ(x, t) = −Hρ(x, t) (3.18)

H = −D∇2 + D
∇F(x)

2
+

DF(x)2

4
+ I(x). (3.19)

The solution of this Hermitian PDE can be simply written as:

ρ(x, t) = e−Htρ(x, 0). (3.20)

Along the same token, the photon arrival probability densities of Eq. 3.8 can
be written in an operator form in the evaluation of the likelihood function of
(F(x), D) ≡ θ(x). The bright operator, yτ, would appear NP times at the time
stamps of {tτ, τ ∈ [1, NP]}:

yτ =

{
ya ≡ Ia(x) ytτ = acceptor photon

yd ≡ Id(x) ytτ = donor photon.
(3.21)

Performing the path integral of Eq. 3.12 via the factorization of Eq. 3.14 can
now be represented via the Dirac notation[74] as a series of time propagations
in the dark followed by the event of recording a photon:

P(Y(t)|F(x), D) = P(Y(t)|θ(x)) = L[θ(x)] =

〈α0|e−H∆t1y1e−H∆t2y2 . . . e−H∆tNPyNP |βtexp〉. (3.22)
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In this representation, the “bra” state 〈ατ| carries the probability amplitude of
the system state at tτ given all the photon data in between [0, τ] and the “ket”
state |βτ〉 contains the probability density of the latent variable at the same time
given all of the future points of the smFRET recordings. Path integral across the
entire duration from smFRET initiation to the collection of the last photon is just
the inner product of these “bra-ket” pairs. Therefore, inferring the trajectory of
the latent variable x via all of the recorded photon data, i.e., solving the inference
problem defined in Eq. 3.10, one can follow the Copenhagen interpretation in
Quantum Mechanics[75] to obtain:

p(xt|Y(t)) =
α(xt, y[0,t])β(y(t,texp]|xt)

P(Y(t)) =
1
L〈αt|x〉〈x|βt〉. (3.23)

The parametric dependence of the terms in Eq. 3.23 on θ(x) has been ignored
to avoid over-complication of the notation.

Under the external-force free operation of smFRET, the initial and final state,
〈α0| and |βtexp〉, respectively, are assumed to follow the equilibrium distribution

ρeq(x) =
√

peq(x):

〈α0|x〉 = ρeq(x) and 〈x|βtexp〉 = ρeq(x). (3.24)

The initial and final states can also be constructed by using the Hamiltonian
propagator of the Langevin equation without the dark operator, H0, and ex-
tending the temporal domain to infinite times since

〈1|e−H0t|x〉|t→∞ →
√

peq(x). (3.25)

As such, the likelihood function can be written as:

L = tr

[
e−H

0∞e−H∆t0

(
NP

∏
τ

yτe−H∆tτ

)
e−H

0∞

]
. (3.26)

Much of this formulation resembles the structure of quantum dynamics in the
form of the density matrix.[76]

Progress in evaluating the path integral of Eq. 3.22 or the trace operation of
Eq. 3.26 can be made by seeking eigen-decomposition of the Hermitian operator
of Eq. 3.18 to obtain the eigenbasis ψi(x) that resolves the identity operator,
1 = ∑i |ψi(x)〉〈ψi(x)|. Inserting this identity in between each operator in Eq.
3.22 transforms the path integral or trace operation into matrix multiplications
for collecting statistics. This exploitation of the Hermitian nature of the time
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propagator plays a critical role in making possible the statistical learning of
continuous stochastic dynamics. Although the operation in Eq. 3.22 or Eq. 3.26
can be performed forward or backward in time, we generally start from time
zero with the vector given by Eq. 3.24 and perform the matrix operation to
the right. Next, we present the procedure we devised for eigen-decomposition
of the Hermitian time propagator, evaluation of the likelihood function, and
inference of the latent trajectory given the recorded photon sequence.

3.5 Diagonalization ofH for eigenbasis
The procedure presented below for eigen-decomposition is not unique but
allows for computational feasibility of the path integral. Diagonalization of the
Hermitian operator was performed by using a spectral element method(sFEM).[77]
First, we solve the symmetric Fokker-Planck equation of the Langevin dynam-
ics listed below and use the resulting eigen-basis to solve the PDE of Eq. 3.18
with the dark operator.

∂ρ(x, t)
∂t

= −H0ρ(x, t) (3.27)

H0 = −D∇2 + Ve f f (x) (3.28)

Ve f f =
DF′(x)

2
+

DF2(x)
4

(3.29)

The Hermitian H0 gives a set of orthonormal basis 〈ψ0
i | that resolves the

identity operator 1 = ∑i |ψ0
i 〉〈ψ0

i |. The time dependence of ρ(x, t) in Eq. 3.27
can be accounted for as:

ρ(x, t) = ∑
i

ci〈x|ψ0
i 〉e−λ0

i t. (3.30)

The coefficients ci’s are time invariant and can be determined, for example,
based on the initial distribution of ρ(x, 0). The eigen-values satisfy:

H0|ψ0
i 〉 = λ0

i |ψ0
i 〉. (3.31)

The finite-time propagation ofH0 can be represented by constructing the matrix
Ψ0 that contains the eigenvectors as the columns and the diagonal matrix Λ0

composed of the eigenvalues:

e−H
0∆t = Ψ0e−Λ0∆tΨ0†

. (3.32)
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Given a PMF profile and diffusion coefficient for the Langevin equation, the
eigenvalues and eigenvectors via a highly accurate spectral element method
with localized polynomials as the interpolation function in the elements. Details
of this numerical solution are provided in the Supplementary Information.
We found robust convergence with NE = 256 elements with NL = 7 order
polynomials for all of the systems we have analyzed. In particular, the spectral
elements, un(x)’s, are used to expand the scaled eigen-vectors by the square
root of the equilibrium probability density, ρeq(x):

ψ0
i (x) =H0(x)φ0

i (x) (3.33)

φ0
i (x) = ∑

n
c0

nun(x). (3.34)

In this case, a generalized eigenvalue problem is solved with the zero-flux
boundary conditions:

∑
n
〈umρeq|H0|ρequn〉c0

n = λ0 ∑
n
〈um|peq|un〉c0

n. (3.35)

The Hamiltonian matrix K0
nm = 〈um|H0|un〉 and the overlap matrix S0

nm =
〈um|peq|un〉 are then calculated with analytical differentiation and numerical
integration to lead to the algebraic equation K0c0 = λ0S0c0 for solution.

The eigenbasis ofH0 is then used to solve the eigenvalue problem involving
the dark operator: (

H0 +H I
)
|ψi〉 = λi|ψi〉. (3.36)

Here,H I = I(x),2 and the new eigen-vector is then constructed as a linear com-
bination of |ψ0

i 〉, |ψi〉 = ∑j cij|ψ0
j (x)〉. The algebraic equation of this problem,

Kc = λc, is then solved. The matrix elements of K are:

Kij = 〈ψ0
i |H0 +H I |ψ0

j (x)〉 = λiδij + 〈ψ0
i |H I |ψ0

j 〉. (3.37)

After obtaining the eigenbasis ofH , the photon arrival operators would adopt
the matrix elements:

〈ψi|ya,d|ψj〉 =
∫

dx ψi(x)Ia,d(x)ψj(x). (3.38)

2The summplemenary information details how the Jeffery’s prior, or square root of fisher
information for the smFRET experiment, can be added to I(x) to account for the disparity in
the information content from photons at different positions in the domain when the acceptor
and donor intensities are not equivalent.
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Figure 3.4: Eigenvectors and Eigenvalues for the test case potential V(x) and
D = 500. The first eigenvector is simply the equilibrium density ρeq(x) with
eigenvalue λ1 = 0 for the stationary state. The second eigenvector shows the
slowest process of system reaction between the state at x = 0.8 and x = 1.2; the
second eigenvalue gives the overall system relaxation time 1/λ2 = τ ≈ 0.5ms.
The third eigenvector is entrance and escape from the intermediate state of
x = 1.0. Higher order modes show diffusion within each well.

With the elements developed thus far, the likelihood function of Eq. 3.22 can
now be evaluated via a series of matrix algebra starting at either the α or β end.
After each matrix-vector multiplication, the state vector αt or βt is normalized to
prevent numerical underflow and these normalizations are collected according
to Eq. 3.39 to record the log-likelihood as well as the inferred trajectory.[78]

` = lnL = ∑
τ=1

ln
‖ατ‖
‖ατ−1‖

+ ln
〈αNP |βNP〉
‖αNP−1‖

. (3.39)
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3.6 Inference of the Latent Trajectory from
smFRET Data

Given the sequence of photon colors and arrival times in a specific round of
smFRET measurement, the probability density of the latent variable at different
times can be evaluated via Eq. 3.23. A simulated sequence of photon emission
of a smFRET process using the PMF and diffusion coefficient outlined in Fig. 3.2
was used as the data set to perform the inference calculation. Other parameters
of the photon trajectory data are listed in Table 3.1. The inferred result regard-
ing the latent trajectory depends on the model parameters F(x) and D of the
Langevin dynamics used to calculate the likelihood function. Using a default
trial profile for the equilibrium probability density, p0 = cos2(x/L), where L is
the size of spatial domain of x, Fig. 3.3 plots the inferred trajectory as contour
lines. In this inference, the diffusion coefficient of the actual dynamics model
was used, i.e., perfect knowledge on D. The trial profile of p0 = cos2(x/L)
gives the least informative dynamics without any prior knowledge of the time
propagation of x.[79]

Comparing the contours inferred using p0(x) to the actual Langevin dynam-
ics trajectory in the simulation of the smFRET output as shown in Fig. 3.2, it can
be seen that the temporal instances of the transitions between metastable states
can be captured rather accurately by the inference algorithm. This agreement
would worsen if the knowledge on D deteriorates. However, the time-averaged
distribution of x from the inferred trajectory probability density, p(x) ∼ peq(x),
deviates significantly from the three-well PMF of the actual latent dynamics. It
is because the trial PMF is far from that of the actual latent variable. As shown
later, the agreement between the inferred and the actual trajectory is system-
atically improved by performing the maximization step of statistical learning,
Eq 3.11. The Maximum Information Method (MIM) of constant uncertainty
binning[60, 63] gives a similar profile of x histogram as that of the inferred
result using p0. Other details of the smFRET simulation and MIM analysis are
reported in Supplementary Information.

The remaining sections of this paper detail the optimization step of the
statistical learning algorithm after solving the inference problem. The optimal
PMF upon the convergence of the expectation-maximization iteration is shown
in Fig. 3.5 to illustrate the feasibility.
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Figure 3.5: Comparison of Brownian Dynamics simulation and the resulting inferred trajectory from smFRET
path integral with x2 resolution and converged parameters F∗(x). (top-left) Trace of photon arrivals per
millisecond for the donor and acceptor channel. (bottom-right) Time-averged position peq = 1/trxn

∫ trxn
0 δ(x−

x′). (bottom-left) Contours of the 〈α(t)|x〉 and 〈x|β(t)〉 vectors in log space of color intensity. Lines are the raw
Brownian dynamics simulation of the system on the free energy surface. Circles (o) are the estimates from
time-binned maximum information method.
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3.7 Expectation-Maximization Optimization of
Langevin Dynamics from smFRET

Maximizing the log-likelihood for the optimal parameter set θ∗ = arg max `[θ]
requires taking the derivative of the likelihood function in Eq. 3.22 and solves
the Euler-Lagrange equation:

δ`[θ]

δθ(x)
=

δ

δθ
ln
∫
DX(t)P(X(t), Y(t); θ(x)) = 0. (3.40)

This task appears nearly impossible because the functional dependence on the
Langevin parameters is buried within the path integral. This operation can
be recast by alternatively calculating the functional derivative of the expected
logarithm of the joint probability for both the system position trajectory X(t)
and the photon trajectory Y(t) and expected over the path probability

δ

δθ(x)
EX|Y [lnP(X(t), Y(t); θ(x))] (3.41)

This Expectation-Maximization algorithm[80] (EM) necessarily has two steps
that are repeated until convergence:

1. Expect the trajectory of hidden state X(t)

2. Optimize the parameters θ to give the best likelihood for the expected
trajectory

This derivative can be found more naturally from the immediate definition
of the likelihood. What remans is to show that these operations are equivalent.
First, the likelihood we seek to optimize can be split up into

lnP(Y|θ) = lnP(Y, X|θ)− ln
P(Y, X|θ)
P(Y|θ) (3.42)

= lnP(Y, X|θ)− lnP(X|Y, θ) (3.43)

where Y = Y(t), X = X(t) and θ = F(x), D to collapse notation. Then
we can take the expectation over the hidden states to both sides EX|Y[·] =∫
DX(t)P(X(t)|Y(t), θk) for a particular parameter set at optimization step

number k. The left hand size has no X dependence so acts like a constant
through the expectation. The first term on the right hand side is the expected
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log joint probability we proposed as a surrogate for optimization, and the
second term on the right hand side is the “entropy” for the hidden states

lnP(Y|θ) = Q(θ; θk) + S(θ; θk) (3.44)

Q(θ; θk) =
∫
DX P(X|Y, θk) lnP(Y, X|θ) (3.45)

S(θ; θk) = −
∫
DX P(X|Y, θk) lnP(X|Y, θ) (3.46)

Because the relationship in Equation 3.44 holds for any value of θ including
θ = θk we subtract lnP(Y|θk) = Q(θk; θk) + S(θk; θk) from 3.44 to give the
changes

∆`k(θ) = ∆Qk(θ) + ∆Sk(θ) (3.47)

where ∆Qk(θ) = Q(θ; θk)−Q(θk; θk). It can be shown from the Gibbs inequality
that ∆Sk(θ) ≥ 0 ∀ θ such that the change in log-likelihood must be greater than
the change in the expected log-likelihood for the joint probability

∆`k(θ) ≥ ∆Qk(θ) (3.48)

so we can achieve the updated parameters

θk+1 = arg max
θ

Qk(θ) (3.49)

Translating these theoretical developments into a practical algorithm to
calculate likelihoods, infer the trajectory, and optimize the parameters, recall
that the likelihood is the abstract path integral from Equation 3.22 which after
inserting a resolution of the identity between each operator becomes

L = ∑
{i(τ)}
{j(τ)}

NP

∏
τ

〈φi(τ−1)|yτ|φj(τ)〉〈φj(τ)|e−H∆tτ |φi(τ+1)〉 (3.50)

where the sum is taken over all indices of the eigenbasis at every photon arrival
time τ. This means that the equivalent construction to the joint probability
is just the product of all the bra-ket groupings P(Y, X|θ) ← ∏τ〈|〉 as if the
specific eigenstate at each time was known.3 By translating Equation 3.42 to
the eigenbasis, the log-likelihood P(Y|θ)← ` = lnL can be re-write as

` = ln ∏
τ

〈|〉 − ln ∏τ〈|〉
L (3.51)

3∏τ〈|〉 is shorthand for the summand in Equation 3.50
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The expectation of states for a given parameter set θk now involves taking the
following of the right hand side

EX|Y[·]← ∑
{i(τ)}
{j(τ)}

∏τ〈|〉k
Lk (3.52)

where now the likelihood and bra-operator-ket terms are indexed by iteration
step k. This leaves the equivalent operation to optimize the likelihood from the
inference of eigenstates by inspecting the equivalent Qk(θ) term

θk+1 = arg max
θ

∑
{i(τ)}
{j(τ)}

∏τ〈|〉k
Lk ∑

τ′
ln〈|〉(θ) (3.53)

More concretely the functional dependence on the hamiltonian from the force
and diffusion is parameters is realized in the exponential of the time propaga-
tion operator and the expectation gives back

Qk(θ) =
1
Lk ∑

τ

〈αk
τ|e−H(θ)∆tτ |βk

τ+1〉 (3.54)

where the expected states

〈αk
τ| = ∑

j
ak

j(τ)〈ψj(x)| (3.55)

|βk
τ〉 = ∑

i
bk

i(τ)|ψi(x)〉 (3.56)

are expanded in their coefficients of the eigenbasis inferred from the path
integral.

ak
j(τ′) = ∑

{i(τ<τ′)}
{j(τ<τ′)}

∏
τ<τ′
〈|〉k〈φi(τ−1)|yτ|φj(τ)〉 (3.57)

bk
i(τ′) = ∑

{i(τ>τ′)}
{j(τ>τ′)}

〈φi(τ−1)|yτ|φj(τ)〉∏
τ>τ′
〈|〉k (3.58)

The coefficients {a} are derived purely from photon information before the
current time step and thus convey forward information, the coefficients {b} con-
tain future information. This construction is known for finite Hidden Markov
Models and the forward-backward Baum-Welch algorithm.[61]
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Finally, it is shown in the supplementary information, how the necessary
property analogous to the Gibbs inequality that ∆Sk(θ) ≥ 0 ∀ θ is preserved for
the eigenbasis treatment which is fundamentally different from the typical anal-
ysis with probability distributions because the coefficients for each eigenvector
at a particular time can be negative.

3.8 Pertubation theory for Hamiltonian and
Time-Averaged Derivatives

The maximization step of the EM algorithm requires the maximization of terms
of the form

Qk(θ) =
1
Lk ∑

τ

〈ατ|e−H(θ)∆tτ |βτ+1〉 (3.59)

where the expected states α and β sandwich the exponential of the time propa-
gator HamiltonianH(θ) which depends parametrically on the parameter set θ.
This optimization of Qk then requires a functional derivative with respect to the
parameter θ which is subsequently equated to 0 to solve for the next optimal
parameter set θ∗

0 =
1
Lk ∑

τ

δ

δθ(x)
〈ατ|e−H(θ)∆tτ |βτ+1〉

∣∣∣∣∣
θ∗

(3.60)

Unfortunately the functional dependence on θ is buried within the expo-
nential of the operator inhibiting a direct extraction of the functional derivative.
However, it is possible to develop an equality to a line integral of the derivative
kernel[81]. (Details in Supplementary Information)

δ

δθ(x)
〈ατ|e−H(θ)∆tτ |βτ+1〉 =

−
∫ ∆tτ

0
dt′〈ατ|e−Ht′ δH

δθ(x)
e−H(∆tτ−t′)|βτ+1〉 (3.61)

Essentially, the derivative of the operator exists within a moving window that
integrates from one side of τ to the other τ + 1 by adding onto one operators
time and removing from the latter.

This integral can then be computed by inserting the eigenbasis 1 = ∑i |ψi〉〈ψi|
around all of the operators and recalling that the diagonalization gives 〈ψi|e−Ht|ψj〉
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= δi,je−λitto give the derivative element

−∑
i,j

∫ ∆tτ

0
dt′〈ατ|ψi〉e−λit′

δ〈ψi|H |ψj〉
δθ(x)

e−λj(∆tτ−t′)〈ψj|βτ+1〉 (3.62)

All of the time dependence is left to the two exponentials, so much of the
complex functional derivative can be brought outside the integral

−∑
i,j

ai(τ)bj(τ+1)
δ

δθ(x)
〈ψi|H |ψj〉

∫ ∆tτ

0
dt′e−λit′e−λj(∆tτ−t′)︸ ︷︷ ︸

Γi,j(∆t)

(3.63)

The time integral can be computed directly to give

Γτ
i,j =


∆tτe−λi∆tτ i = j

e−λi∆tτ − e−λj∆tτ

λj − λi
i 6= j

(3.64)

Because the functional derivative is invariant to time in the path integral,
we have derive the equivalent of a “transfer function” which can give the
likelihood derivative as an expectation over the path integral

δQk

δθ(x)
=
−1
Lk ∑

i,j

δ〈ψi|H |ψj〉
δθ(x)

Ek
X|Y[aibj] (3.65)

where the combined time-average quantity inferred at iteration k is

Ek
X|Y[aibj] = ∑

τ

Γτ
i,ja

k
i(τ)b

k
j(τ+1) (3.66)

3.9 Functional derivaitve of Hamiltonian for F(x)
and D

This functional derivative considers a perturbation to the function parameters
εΘ′(x) which results in a perturbation to the Hamiltonian of dynamics εH′.
The functional derivative is defined a distribution such that for all test functions
f (x),
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〈
δ`[Θ(x)]

δΘ(x)
, f (x)

〉
=
∫

δ`[θ(x)]
δθ(x′)

f (x′)dx′ (3.67)

= lim
ε→0

`[θ(x) + ε f (x)]− `[θ(x)]
ε

(3.68)

=
d
dε

`[θ + ε f ]
∣∣∣∣
ε=0

. (3.69)

The steps to finding this distribution of interest requires two operations.

1. Carry out the operation of equation (3.69): take the derivative of the log
posterior evaluated with the functional perturbation

2. Seperate out the pertubative function from the inner product in equation
(3.67) to identify the remaining integrand as the functional derivative.

The Euler-Lagrange equation is best used to get derivative of path integral
element with respect to the governing parameterizing functions

δ〈ψi|H |ψj〉
δθ(x)

=
∂(ψi(x)Hψj(x))

∂θ(x)
− d

dx
∂(ψi(x)Hψj(x))

∂θ′(x)
(3.70)

which plugging in the form of the hamiltonian gives the functional derivative
with respect to force profile

δ〈ψi|H |ψj〉
δF(x)

= F(x)
D
2

ψi(x)ψj(x)− D
2
(
ψi(x)ψj(x)

)′ (3.71)

Alternatively, the derivative with respect to diffusion constant, is a simple
scalar derivative and because the Hamiltonian and corresponding eigenvalues
scale linearly with the diffusion constant, the result is simply

d〈ψi|H |ψj〉
dD

=
λi

D
δi,j (3.72)

3.10 Optimization Algorithm
After calculating the derivative with respect to force, the optimum is found by
setting the expected derivative from equation 3.65 to 0

EX|Y

[
F∗(x)

D
2

ψi(x)ψj(x)− D
2
(
ψi(x)ψj(x)

)′]
= 0 (3.73)
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and solving for the optimal F∗(x).

F∗(x) =
d/dx(EX|Y[δ(x− X)])

EX|Y[δ(x− X)]
(3.74)

Substituting for the definition of equilibrium probability, can arrive at the
update step where

p∗(x) = EX|Y [δ(x− X)] = pk
eq(x)∑

i,j
Ek

X|Y[aibj]φi(x)φj(x) (3.75)

The optimization for diffusion coefficient is found by a simple line search[82]
to optimize the likelihood after the new optimal F∗(x) has been applied. Since
the diffusion is just a single scalar number, this procedure is trivially fast.

Watkins and Yang showed how to use Bayesian information criteria to
determine number of states from change point analysis [83]. Because the
optimization is naturally underdetermined,there are thousands of photons
per experiment but the parameters we are solving for are functions that have
an uncountable number of points which dine fine them. Therefore, we add in a
Bayesian prior P(F(x), D) which breaks the degeneracy in the parameter set
and highlights the desired outputs from the algorithm [84].

L(F(x), D) = P(Y(t)|F(x), D)
P(F(x), D)

P(Y(t)) (3.76)

P(θ(x)) = exp
(
−ηFD〈F2(x)〉eq

)
(3.77)

where the ensemble average is approximated by the path expectation

−ηFD〈F2(x)〉eq ' −ηFEX|Y

[
DF2(x)

]
(3.78)

such that it may naturally fit into the EM framework and give the modified
update equation

p∗(x) =
(

EX|Y [p(x)]
)1/(1+ηF)

(3.79)

The calculation of averages EX|Y[δ(x−X)] and derivatives d/dx(EX|Y[δ(x−
X)]), can be quickly computed by matrix multiplication if the matrix Ψ is
constructed with the eigenvectors oriented as columns in the matrix and the
inferred state matrix Ek

X|Y[aibj] as

p∗(x) = tr(ΨEk
X|Y[aibj]Ψ†) (3.80)
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Algorithm 1 smFRET Expectation-Maximization Learning algorithm for Force
and Diffusion

procedure E M(Tad)
Initialize ρeq ∝ cos(x)
Diagonalize Ψ, Λ←S F E M(F(x),D)
Photon matrix Ya,d = Ψya,dΨ†

Multiply matrices Ye−ΛtY . . . e−ΛtY
Normalize coefficients ` = ∑τ |ατ|
Infer states 〈α(t)|, |β(t)〉
Collect statistic Ek

X|Y[aibj] = ∑τ Γτ
i,j

Run EM ρk+1
eq ← pk

eq(x)∑i,j Ek
X|Y[aibj]φi(x)φj(x)

Line search Dk+1 = arg max `[ρk+1
eq , D]

end procedure

3.11 Results of EM Estimation Test System
For 12 runs of synthetically produced experimental smFRET trajectories, we
applied the EM algorithm for 10,000 steps of optimization beginning with an
arbitrary initial guess of F(x) = 0 to arrive at the following results pictured in
the Figures 5-10. The potential of mean force and the equilibrium probability
are plotted for each trajectory along with the ensemble averaged result over
experimental trials 〈p(x)〉 = ∑n p∗n(x) and 〈V(x)〉 = − ln〈p(x)〉. These results
are compared to the profile of the reference system used to generate the smFRET
trajectories.

Although the low resolution of the experiment does allow for a few outlier
solutions, the locations of meta-stable states, the number of these states, the
relative population fractions of each well, and the barriers between wells are
all accurately reproduced.

The converged results for the diffusion constant seen in Figure 3.8 shows
systematic bias towards lower values caused by the Bayesian maximum entropy
prior. Although the diffusion constants will change with the magnitude of the
optimization temperature ηF, for a wide range of values from 10−4 → 10−7, the
results were not appreciably different. A rough bootstrap error estimate can
be offered by comparing the average of the trajectories to the variance of the
distribution in converged profiles.
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Figure 3.6: Converged p∗eq(x) from the EM algorithm on 12 test case data sets
of 40,000 photons with ηF = 1× 10−6 with 2x Resolution.
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Figure 3.7: Converged V∗(x) from the EM algorithm on 12 test case data sets
of 40,000 photons with ηF = 1× 10−6 with 2x Resolution.
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Figure 3.8: Converged D∗ from the EM algorithm run on 12 test case data sets
of 40,000 photons with ηF = 1× 10−6 at all resolutions 1-10x.

3.12 Mean First Passage Time and Reaction Rates
The kinetic rates between states are determined by running a Mean First Passage
Time calculation as a post-processing step on the optimized free energy surfaces
at the optimum diffusion constant. From [37], mean first passage time from
state (position) xA to xB is the nested cumulative integral

τrxn(xA → xB) = k−1
A→B =

1
D

∫ xB

xA

dx eV(x)
∫ x

xL

dx′ e−V(x′) (3.81)

for the reverse direction the formula reads

τrxn(xB → xA) = k−1
B→A =

1
D

∫ xA

xB

dx eV(x)
∫ x

xR

dx′ e−V(x′) (3.82)

which can be implemented using the previously computed integrals by flipping
the bounds of integration and recasting the cumulative integral

∫ R
x =

∫ R
L −

∫ x
L

to give

k−1
B→A =

1
D

∫ xB

xA

dx eV(x)
(∫ xR

xL

dx′ e−V(x′) −
∫ x

xL

dx′ e−V(x′)
)

(3.83)

The first passage time calculation on the test case gives relaxation rates be-
tween state “A” centered around x = 0.8 and state “B” centered around x = 1.2
shown in Table 3.2. These are then compared to the kinetic rates calculated off



CHAPTER 3. PATH INTEGRAL LIKELIHOOD FOR FRET 45

of the converged potential of mean force for 12 different trajectories at various
levels of resolution above that of the baseline FRET experimental emission rates.
Box-plot summaries of the results are shown in Figure 3.9.

Table 3.2: Relaxation rates and reaction rates for model potential with D = 500.

τA→B 1.9592× 10−3 s
τB→A 0.9394× 10−3 s

kA→B 0.5104× 103 s−1

kB→A 1.0645× 103 s−1

kA→B/kA→B 0.4795

400

600

800

1000

1200

1x 2x 5x 10x Ref 1x 2x 5x 10x Ref
Resolution

R
ea

ct
io

n 
R

at
e 

k

 

 
kab
kba

Figure 3.9: Reation rates ka→b and kb→a from Mean First Passage Time of the
results on V(x), D from the EM algorithm on test case data of 40,000 photons
with ηF = 1× 10−6 at all resolutions 1-10x.

3.13 Results Disscussion
The expectation-maximization has many features of self-consistent field the-
ory optimization, in that convergence is attained when the derivative in the
expected field of observed states is zero. The convergence is unfortunately
sub-linear[85] meaning that over 10,000 iterations are required to converge
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the optimized force profiles and diffusion constants when starting from an
arbitrary guess potential of zero force. However, the fundamental property that
likelihood is an every increasing quantity in the EM algorithm with iteration,
means that these optimization are stable, robust and reliable.

When inspecting the test case results, the diffusion constant is systematically
low because of the suppression caused by the entropy regularization term
〈F2(x)〉. This biases the results towards profiles with lower barrier heights,
and to preserve the correct reaction rates between states the diffusion constant
must be lower. This Bayesian approach reduces the variance between possible
solutions (which are infinite) but does induce bias into the final solution.[86]
However, the reaction rate are within margin of error and without bias because
D itself is determined by an unbiased maximum likelihood search for a given
free energy surface. In effect, this D optimization seeks to find the correct
reaction rates from the smFRET because D ∝ k.

Although there can be a fair amount of variance at low resolutions for the
diffusion constant, the reaction rates are accurately reproduced at even the
lowest levels of resolution seemingly without bias. The precision in the reaction
rate estimates actually doesn’t increase with resolution because at at set number
of photons NP, the total trajectory time is reduced and there are less reactive
events to make an estimate of this Poisson process (σ2

k ∼ 1/texp).
Most importantly, the resulting converged potentials V(x) and equilibrium

probabilities peq(x), show some variance between different experimental tra-
jectories, but the sum of all runs shows very good agreement with the actual
reference potential. The algorithm manifests a result with the correct number
of states in the potential and the location of these states is quite accurate. The
highest magnitude error is in the actual barrier height of between these states
which couples to the diffusion constant to give alternate versions of the same
rate constant (high diffusion and high barrier or low diffusion and low barrier).

3.14 Conclusion
Practically speaking, we have adopted the framework of the Hidden Markov
Model, which traditionally exists for system with desecrate numbers of states[72,
87, 88] with a transition rate matrix and generalized it to the realm of contin-
uum dynamics in space and time which is governed by the Fokker-Planck
PDE. This translation is accomplished by making the eigenvectors the new
desecrate states of our system with the eigenvalues serving as the rate constants.
Alternatively, one can think of this development as extending the Kalman filter
which is used for statistical inference on system with state space models,[3, 89]



CHAPTER 3. PATH INTEGRAL LIKELIHOOD FOR FRET 47

to the realm of arbitrary and non-linear driving potentials while still allowing
for exact calculation of both the inference and optimization problem in the limit
of infinite basis set.

This general framework can be extended into multiple dimensions as ex-
perimental apparatus and the smFRET phlorophore dyes developed to allow
simultaneous measurement of two or more distances [90, 91]. All of the diffi-
culty is buried in the diagonalization of the system Hamiltonian to construct
the eigenbasis. After that procedure, the entire problem maps to a familiar set
of matrix-matrix multiplications.

Moreover the presentation in this article can be readily extended to other
classes of experiment or simulation study. The only smFRET specific feature
of the derivation was the exact nature of the information operator y. For
single-molecule pulling, our information is instead the approximate force and
position of the bead at different time points.[92] For replica-exchange molecular
dynamics, we would have many short bursts of trajectory information to feed
into this dynamic model.[93] Due to the underlying similarities in the path
integral development with many Von Neumann experimental systems, there
is possibly great applicability to quantum systems and the discovery of the
underlying potential energy of a system beyond the limitations of the traditional
RKR inversion.[94]

Measuring the governing dynamics and driving forces for complex systems
is now possible with the smFRET experiment by applying this statistical learn-
ing approach. The development is completely general to any system which
undergoes over-damped Langevin dynamics. Although the experiment is still
imprecise in establishing the exact profiles, signature features of the dynamics
such as reaction rates and the number and location of any intermediate states
have been reliably reproduced. Ultimately this serves to aid ones understand-
ing of complex systems and the mechanisms and deriving forces which govern
its dynamics. From engineering an increase in enzymatic activity or increas-
ing the robustness of a protein machine[95], the interplay between forces and
dynamics can now be elucidated through the smFRET experimental approach
and this statistical learning algorithm.
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C H A P T E R 4
Fisher Information Metric for the

Langevin Equation and Least
Informative Models of Continuous

Stochastic Dynamics

4.1 Abstract
The evaluation of the Fisher Information matrix for the probability density
of trajectories generated by the over-damped Langevin dynamics at equilib-
rium is presented. The framework we developed is general and applicable to
using an arbitrary potential of mean force as the parameter set. Leveraging
an innovative Hermitian form of the corresponding Fokker-Plank equation
allows for an eigenbasis decomposition of the time propagation probability
density. This formulation motivates the use of the square root of the equilib-
rium probability density as the basis for evaluating the Fisher information of
trajectories with the essential advantage that the Fisher information matrix
in the specified parameter space is constant. This outcome greatly eases the
calculation of information content in the parameter space via a line integral. In
the continuum limit, a simple analytical form can be derived to explicitly reveal
the physical origin of the information content in equilibrium trajectories. This
methodology also allows deduction of least informative dynamics models from
known or available observables that are either dynamical or static in nature.
The minimum information optimization of dynamics is performed for a set of
different constraints to illustrate the generality of the proposed methodology.
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4.2 Introduction
Complex molecular systems are often studied by tracking the temporal evo-
lution of important coordinates to reveal the hidden metastable states and to
characterize the transitions between them. A central objective of many ex-
perimental and theoretical endeavors is thus to resolve the system dynamics
from the measured data.[96–98] In this regard, the information content for the
parameters of interest in a particular measurement is of prime interest and is
the central focus of the present work. For biomolecular conformational changes,
the over-damped Langevin equation is often employed as the model for a mech-
anistic understanding.[12, 99, 100] On top of the deterministic potential of mean
force (PMF), the Langevin model incorporates the solvent-induced stochastic
fluctuations via the diffusion coefficient[10] to describe system dynamics along
a set of chosen coordinates or order parameters.[101–103] Unless specified
otherwise, this work addresses the quantification of information content for
Langevin dynamics.

A major difficulty of understanding biomolecular dynamics is that the com-
monly used characterization methods are often limited to processes with dis-
tinct temporal and spatial scales. For example, the computer simulation of
molecular dynamics can be used to record the coordinates and velocities of the
atoms of biomolecules as well as the surrounding solvent molecules but has
limited ability to access structural transitions on longer time scales (> µs).[104–
106] Different techniques of nuclear magnetic resonance (NMR) can be used to
acquire the transition rates of the different aspects of biomolecule conforma-
tional changes on different time scales (usually with the necessary assumption
of a two-state model)[107–109] but the ensemble averaging nature washes away
the rich mechanistic details in molecular individualities. Single-molecule meth-
ods such as those via the Förster resonance energy transfer (FRET)[13, 32, 110]
do away with the issues of ensemble averaging but face the challenge of the
low signal-to-noise ratio convoluted with photon-counting statistics.[111, 112]

As a result, not only the data analysis in each category of measurements
is complicated, but also the systematic combination of information across
different techniques is a challenging issue. We reason that the foundation for
the quantitatively integrating the knowledge from different data types could be
based on an information measure for the dynamics parameters from the time
trajectories. In this regard, the Fisher information provides a framework with a
clear statistical picture and straightforward linkage to thermodynamics;[113–
115] therefore, it is employed here to quantify the information underlying the
Langevin dynamics model. With this information metric, the determination
of the parameters of time propagation can serve as a common objective over
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different data types for cross validation and knowledge integration between
fields.[116]

Here, we develop numerical and analytical methods to determine the Fisher
information of the PMF and diffusion coefficient in the trajectories of Langevin
dynamics. This capability not only concerns single-molecule methods but
also the other ways of characterizing biomolecule conformational changes
mentioned above. Instead of devising various statistics to learn about the time-
dependent properties of the system,[117, 118] Fisher information of trajectories
(FIT) allows systematically deducing the optimal dynamics model under the
constraints of observables.

Since FIT quantifies the disorder inscribed in the probability function of
the data, or the likelihood function of model parameters, it can be applied to
deduce the properties of the equation of motion such as the PMF and diffusion
coefficient in Langevin dynamics under the constraints given by the selected
statistics of observables.[42, 119, 120] If entropy was used as the metric, this
approach results in the maximum entropy principle that is widely used to
determine the static distribution of system states. For retrieving parameters
relating to time propagation, the constrained optimization approach has been
addressed for Markov states systems.[88, 121] For continuous stochastic dynam-
ics, however, acquiring an explicit functional form of the information content in
trajectories faces the challenges of infinite dimensionality, non-differentiability
with respect to time of the Winer process, and path integral. This work pro-
vides numerical and analytical solutions for determining the FIT of Langevin
dynamics at equilibrium.

The rest of the paper is organized as the following. The application of Fisher
information to continuous but not differentiable trajectories at equilibrium is
established in Section 4.3 with the selection of basis discussed in Section 4.4.
Section 4.5 outlines a numerical procedure we developed to calculate FIT for
continuous stochastic dynamics and Section 4.6 derives the analytical form of
FIT in the continuum limit. Section 4.7 applies the analytic form of FIT for
measuring information content in trajectories and the result of which is used in
section 4.8 to derive the least informative dynamics under various constraints
of based on the Langevin equation. The similarity of our particular approaches
in evaluating FIT with the Quantum von Neumann entropy and matrix trace
of power spectrum is then discussed in section 4.9 followed by our conclusion.
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4.3 The Fisher Information Matrix for Langevin
Dynamics

The Fisher information defines a size measure (Riemannian manifold) for
the volume element of information content for a corresponding set of model
parameters. The line integral of a parameter change with the Fisher informa-
tion matrix is formally the dissipation function for moving in the space of
parameters.[114, 122, 123] This metric translates between the parameter space
of system dynamics and the information content of the resulting probability
distribution of system trajectories. Therefore, Fisher information can be used to
assess the manner by which changing the properties of time propagation may
vary the information content in system dynamics.[124]

Using a general coordinate x to describe the dynamics of a system, the con-
cern of our analysis is the information content for the mean force profile F(x)
and diffusion coefficient D(x) contained in the Langevin trajectories X(t) with
ẋ = βD(x)F(x) +

√
2D(x)dWt; t is time and β is one over the Boltzmann con-

stant kB multiplying the system temperature T. The Wiener process specifying
the stochastic force in this equation of motion satisfies 〈dWtdWt′〉 = δ(t− t′)dt.
The profile of the deterministic mean force is related to the PMF, V(x), as
F(x) = −dV(x)/dx. The equilibrium distribution of system states in the con-
tinuous space of x is related to the PMF as peq(x) ∝ exp(−V(x)/kBT). A
trajectory, X(t); t ∈ [0, tobs], in this case is a continuous but non-differentiable
function of time. In a measurement, this stochastic trajectory is generally
realized at specific instances separated by a time resolution ∆t to create a vec-
tor ~Xt = [X(0), X(∆t), X(2∆t), . . . , X(tobs)]. This vector exists in a trajectory
space of dimensionality N = T/∆t with the coordinates denoted as the set
{xτ|τ = 0, 1, 2, . . . , N}. With this setup, we aim to find the Fisher information
of the deterministic and stochastic components in the Langevin equation in
a multidimensional vector space. The the lim∆t→0 will be performed on the
final results to recover the complete information content in trajectories in the
continuum limit.

The collection of function parameters of the Langevin equation is now
combined into ~θ = {θi} for the convenience of derivation. Here, i may go to
infinity for describing the parameters associated with the dense set of points
for a continuous functions. The Fisher information metric is defined as the
expectation value for the product of the derivatives of the log probability density
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of the trajectory with respect to~θ:

Ii,j(~θ) = E~Xt

[
∂ ln P(~Xt)

∂θi

∂ ln P(~Xt)

∂θj

∣∣∣∣∣~θ
]

. (4.1)

The E~Xt
[·] in the above equation denotes the expectation evaluated by path

integration over ~Xt,
∫

D~XtP(~Xt)[·]. The Fisher information is thus a matrix for
the (i, j) pairs of parameters evaluated at the current values of~θ.

In calculating this path integral, the Markovian nature of the Langevin
equation can lead to tremendous simplification. In particular, the probability
density of ~Xt can be factored via the probability densities of time propagation
that connect two consecutive time slices,

P(~Xt) = p(x0)
N−1

∏
τ=0

p(xτ+1|xτ). (4.2)

In this equation, p(x0) is the static distribution of system states at time zero.
For equilibrium trajectories, p(x0) → peq(x0) is employed for specifying the
probability densities of the initial states. Therefore, each component in the
Fisher information matrix becomes:

Iij =
tobs/∆t

∑
τ,τ′=−1

∫
D~Xt

[
∂ ln p(xτ′+1|xτ′)

∂θi

∂ ln p(xτ+1|xτ)

∂θj

]
P(~Xt). (4.3)

The contribution from peq(x0) is included by setting p(x0|x−1) = peq(x0). For
the path integral in Eq. (4.3), the time indices that do not appear in the deriva-
tives are marginalized out so that P(~Xt)→ p(τ, τ + 1, τ′, τ′ + 1). Furthermore,
unless τ = τ′, the other terms in the double sum of Eq. (4.3) contribute zero
to Iij due to the ability to isolate a normalization condition of the conditional
probability densities p(xτ+1|xτ), τ = 0 . . . N:∫

dx
∂ ln p(x)

∂θ
p(x) =

∂
∫

dxp(x)
∂θ

= 0. (4.4)

The only contributing terms to Iij thus come from the Fisher information ma-
trix of the equilibrium distribution, Ieq, and that of the conditional probability
of time propagation, I∆t:

Ieq =
∫

dx0
∂ ln peq(x0)

∂~θ

∂ ln peq(x0)

∂~θ
peq(x0) (4.5)

I∆t =
∫

dxtdx0
∂ ln p(xt|x0)

∂~θ

∂ ln p(xt|x0)

∂~θ
p(xt, x0). (4.6)
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Here, the notation of coordinates was simplified by implying that t = ∆t and
noting that there are tobs/∆t equivalent terms of I∆t. As a result, the Fisher
information of P(~Xt) is:

I = Ieq +
tobs

∆t
I∆t. (4.7)

The calculation of FIT via Eq. (4.7) thus comes down to evaluating the
derivatives and integrals defined for the static distribution in Eq. (4.5) and the
dynamic propagator in Eq. (4.6). An essential key toward achieving this goal
is the selection of the parameter set. The strategy we followed is trying to
eliminate the dependence of the matrix elements on other parameters because a
constant Fisher information matrix is convenient for evaluating the information
content via a line integral.[114, 122, 123] It turns out that the most natural basis
for the deterministic components of the Langevin equation is the square root of
the equilibrium probability density[125]:

ρeq(x) =
√

peq(x) ∝

√
exp

(∫ x
F(x)/kBT

)
. (4.8)

The Fisher information is now defined with respect to a composite quantity
of the functions for density and diffusion ~θ → {ρeq(x), D(x)}. Because of
this treatment, the derivatives are now functional derivatives and the Fisher
information is a scalar field over the x, y arguments of the parameterizing
functions rather than a matrix.

One starts from the following term for the equilibrium term:

Ieq(x, y) =
∫

dx0
δ ln peq(x0)

δρeq(x)
δ ln peq(x0)

δρeq(y)
peq(x0). (4.9)

Using peq(x) = ρ2
eq(x), the functional derivatives in Eq. (4.9) can be easily

calculated:

δ ln ρ2
eq(x0)

δρeq(x)
= 2

δ(x0 − x)
ρeq(x0)

. (4.10)

Therefore, the equilibrium Fisher information is just the integral of delta func-
tions:

Ieq = 4
∫

dx0δ(x0 − x)δ(x0 − y) = 4δ(y− x). (4.11)
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Using ρeq(x) to define the parameter space of the Fisher information, Ieq is thus
constant in the sense that it is invariant to the values of the parameter set; that
is, Ieq is not a functional of ρ.

As will be shown later, the property of ρeq(x) in making Ieq constant also
facilitates the evaluation of I∆t defined in Eq. (4.6). The remaining task of
calculating FIT with respect to the deterministic components of the Langevin
equation is then evaluating the Fisher information of the conditional probability
density with respect to ρeq(x):

I∆t(x, y) =
∫

dxtdx0
δ ln p(xt|x0)

δρeq(x)
δ ln p(xt|x0)

δρeq(y)
p(xt, x0). (4.12)

This Fisher information matrix is a rank 2 tensor field over the space coordinate
and is also a functional of ρeq(x).

For evaluating the functional derivatives of p(xt|x0), we rely on the Fokker-
Planck equation (FPE) that governs the temporal evolution of p(xt|x0):

∂p(xt|x0)

∂t
= −∇ · J(xt), (4.13)

and

J(xt) = −∇ ·
(

D(xt)∇p(xt|x0)−
D(xt)(F(xt)

kBT
p(xt|x0)

)
. (4.14)

In this formulation, x can in general be a multidimensional vector and the
gradients in the FPE apply to the xt coordinate. The initial condition of this
partial differential equation is p(xt|x0)|t=0 = δ(xt − x0) and the no-flux bound-
ary conditions J(xt = L) = J(xt = −L) = 0 are employed to conserve the total
probability.

The FPE can be equivalently expressed in terms of peq(x):

∂p(xt|x0)

∂t
= ∇ ·

(
D(xt)peq(xt)∇

p(xt|x0)

peq(xt)

)
. (4.15)

Next, the unique features of expressing the FPE via the equilibrium density
ρeq(x) are discussed in preparation for the evaluation of I∆t(x, y).
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4.4 The Hermitian Operator in the FPE
Corresponding to Langevin Dynamics

With ρeq(x) being the square root of peq(x), the probability density of time
propagation can symmetrized in time to become:

ρ(xt, x0) = p(xt|x0)

√
peq(x0)

peq(xt)
, (4.16)

such that the probability density of a trajectory also has the temporal symmetry:

P(~Xt) = ρeq(x0)
N−1

∏
τ=0

ρ(xτ+1, xτ)ρeq(xN). (4.17)

Re-expressing Eq. (4.12) via the symmetric time propagator[122] gives addi-
tional factors for I∆t(x, y):

I∆t =

Iρ
∆t︷ ︸︸ ︷∫

dxtdx0
δ ln ρ(xt, x0)

δρeq(x)
δ ln ρ(xt, x0)

δρeq(y)
p(xt, x0)

+ 2δ(x− y)− 2ρ(x, y). (4.18)

Details of this derivation can be found in Appendix C.2.
In the continuum limit of ∆t→ 0+, the limit of ρ(xt, x0)→ δ(xt − x0) leads

to cancellation of the last two terms in Eq. (4.18). Therefore, we will focus on
the first term, an integration in a two-dimensional space, Iρ

∆t. After expanding
the functional logarithms therein, we will evaluate FIT according to:

Iρ
∆t(x, y) =

∫
dxtdx0

δρ(xt, x0)

δρeq(x)
δρ(xt, x0)

δρeq(y)
ρeq(xt)ρeq(x0)

ρ(xt, x0)
. (4.19)

The FPE of the symmetric propagator ρ(xt, x0) can be found by substituting
the expression in Eq. (4.16) into Eq. (4.15):

∂ρ(xt, x0)

∂t
= −Hρ(xt, x0) (4.20)

H = − 1
ρeq(x)

∇ ·
(

D(x)ρ2
eq(x)∇ 1

ρeq(x)

)
(4.21)

The boldface font is used to denote operators in this work.
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With the proof shown in Appendix C.3, it can be seen that theH operator
in the FPE of Eq. (4.20) is Hermitian. Therefore, ρ(x∆t, x0) can be expressed via
the matrix elements ofH with the Dirac notation as:

ρ(x∆t, x0) = 〈x∆t|e−H∆t|x0〉. (4.22)

In the following section, a procedure for calculating Iρ
∆t based on the Hermitian

version of the FPE of the Langevin equation is developed.

4.5 Numerical Calculations of FIT via an
Eigenbasis Expansion

The Hermitian nature ofH means that there exist real eigenvalues λi for which
the eigenvectors ψi are orthogonal, 〈ψi|H |ψj〉 = λiδij. Based on this property,
we performed an eigen-decomposition of the symmetric operator of the FPE
(sFPE) via a spectral finite element method.[77] In particular, we assume a
form for the eigenvectors ψi(x) = ρeq(x)φi(x) with the modifying function
φi(x) determined from the input of ρeq and diffusion coefficient by using spec-
tral elements to solve the generalized eigenvalue problem 〈φiρeq|H |ρeqφj〉 =
λiδij〈φiρeq|ρeqφj〉.1 By inserting the completeness property of ∑i |ψi〉〈ψi| = 1
that resolves the identity operator, and noting the orthogonality of the eigenba-
sis, ρ(x∆t, x0) can now be decomposed as:

ρ(x∆t, x0) = ∑
i,j
〈x∆t|ψi〉〈ψi|e−H∆t|ψj〉〈ψj|x0〉 (4.23)

= ∑
i

ψi(x∆t)e−λi∆tψi(x0). (4.24)

To illustrate the resulting values of ρ(x∆t, x0) for a model system containing
three wells separated by 5 kBT barriers in the PMF (Fig. 4.1) the two-dimensional
density field ρ(x∆t, x0) calculated from the eigen-decomposition method dis-
cussed above is shown as log-contours in Fig. 4.2 at an intermediate time res-
olution of ∆t = 0.025 s which is also on the same order of the relaxation time
(∆t 0.036 s) out of the middle intermediate state.

For calculating the FIT according to Eq. (4.19), the functional derivative of
the density field with respect to ρeq needs to be determined. By employing an

1The φ(x) modifying functions are in fact the eigenfunctions of the backward Kolmogrov
equation
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Figure 4.1: The reference potential of mean force and the corresponding equi-
librium probability density for illustrating the calculations of the Fisher infor-
mation of trajectories. The model has 3 local minima with approximately 5 kBT
barriers separating these metastable states
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Figure 4.2: The contours of ln ρ(x∆t, x0) at ∆t = 0.025 s for the reference PMF
shown in Fig. 4.1 at D = 1 in the corresponding unit. The high-density regions
along the diagonal axis around the three local minima are clear. However,
off-diagonal densities representing transitions between states within the time
window are also clear.
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arbitrary test function f (x), the functional derivative is defined as:∫
dx

δρ(x∆t, x0)

δρeq(x)
f (x) =

d
dε
〈xt|e−∆tH [ρeq+ε f ]|x0〉

∣∣∣∣
ε=0

. (4.25)

Since the reference Hamiltonian does not necessarily commute with the
operator perturbed by f (x), i.e., [H0,H ′] 6= 0, the exponential in Eq. (4.25) is
not necessarily factorizable for taking the derivative. To overcome this difficulty,
we employ the approximate Trotter splitting formalism:[126]

e−∆t(H0+εH ′) = e−∆tH0/2e−ε∆tH ′e−∆tH0/2 +O(∆t3), (4.26)

wherein the errors due to approximation decrease as ∆t goes towards the
continuum limit. The effect of the perturbation is thus evaluated effectively at
the time midpoint between xt and x0. Performing the derivative with respect
to ε as prescribed by Eq. (4.25) to the approximate form in Eq. (4.26) leads to:

∫
dx

δρ(x∆t, x0)

δθ(x)
f (x) ≈ −∆t〈x∆t|e−∆tH0/2H ′e−∆tH0/2|x0〉

= −∆t ∑
i,j

ψi(x∆t)e−λi∆t/2〈ψi|H ′|ψj〉e−λj∆t/2ψj(x0). (4.27)

The completeness ∑i |ψi〉〈ψi| = 1 is inserted between all operators and orthog-
onality 〈ψk|H0|ψi〉 = λiδik of the eigenbasis is applied to lead to the second
line of Eq. (4.27).

The Hamiltonian of the first order perturbation with respect to ρeq,H ′, in
Eq. (4.27) can be found by tracking ε in the total Hamiltonian:

H [ρeq + ε f ] =
−1

(ρeq + ε f )(x)
∇·(

D(x)(ρeq + ε f )2(x)∇ 1
(ρeq + ε f )(x)

)
. (4.28)

The coefficient of the first order Taylor expansion ofH can then be evaluated
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to obtainH ′:

H ′ =
d
dε
H [ρeq + ε f ]

∣∣∣∣
ε=0

(4.29)

H ′ =− 2
ρeq(x)

∇ ·
(

D(x) f (x)ρeq(x)∇ 1
ρeq(x)

)
(4.30)

+
f (x)

ρ2
eq(x)

∇ ·
(

D(x)ρ2
eq(x)∇ 1

ρeq(x)

)
(4.31)

+
1

ρeq(x)
∇ ·

(
D(x)ρ2

eq(x)∇ f (x)
ρ2

eq(x)

)
. (4.32)

With the knowledge of H ′, the error in Eq. (4.27) is purely due to the Trotter
splitting approximation.

The only remaining factors for calculating FIT are the 〈ψi|H ′|ψj〉 terms in
the second line of Eq. (4.27). For Eqs. (4.30) and (4.32), integration by parts
can be performed to isolate the test function f (x) in the integral. Utilizing the
relation of φi(x) = ψi(x)/ρeq(x) and recognizing the existence of terms of the
form −φi(x)Hψj(x), one obtains:

〈ψi|H ′|ψj〉 =
∫

dx f (x)
[
2∇φj(x) · (D(x)ρeq(x)∇φi(x))

− φj(x)λiψi(x)− φi(x)λjψj(x)
]
. (4.33)

Therefore,

δ〈ψi|H |ψj〉
δρeq(x)

= 2∇φi(x) · (D(x)ρeq(x)∇φj(x))

− ρeq(x)(λi + λj)φi(x)φj(x). (4.34)

Along the same token, one can find the functional derivative ofH with respect
to the diffusion coefficient:

δ〈ψi|H |ψj〉
δD(x)

= ∇φi(x) · ρ2
eq(x)∇φj(x). (4.35)

In the case that the diffusion coefficient is not a function of x, i.e., a constant,
the functional derivative reduces to:

d〈ψj|H |ψi〉
dD

=
λi

D
δij. (4.36)
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Combining the information in Eqs. (4.27) and (4.34), the functional derivative
of ρ(xt, x0) with respect to ρeq(x) can be calculated as:

δρ(xt, x0)

δρeq(x)
≈ −∆t ∑

i,j
ψi(xt)e−λi∆t/2 δ〈ψi|H |ψj〉

δρeq(x)
e−λj∆t/2ψj(x0). (4.37)

Armed with the knowledge of the functional derivatives from the eigenbasis
construction, the key terms of Fisher information in Eq. (4.19) can be expressed:

Iρ
∆t(x, y)
(∆t)2 = ∑

i,j
∑
k,l

δ〈ψi|H |ψj〉
δρeq(x)

δ〈ψk|H |ψl〉
δρeq(y)

Ωik
jl (∆t). (4.38)

For all of the functional dependence on (xt, x0) that are integrated away in
Eq. (4.38) is captured in the “overlap” integral over two consecutive time slices:

Ωik
jl (∆t) ≡

∫
dx∆tdx0 e−(λi+λk)∆t/2ψi(x∆t)ψk(x∆t)(

∑
n

φn(x∆t)e−λn∆tφn(x0)

)−1

e−(λj+λl)∆t/2ψj(x0)ψl(x0). (4.39)

According to Eqs. (4.38) and (4.39), Algorithm 2 below is used to calcu-
late the Fisher information matrix of trajectories for the Langevin equation
parametrized by the equilibrium density ρeq and constant diffusion coefficient
D.

Algorithm 2 FIT calculation using the eigenbasis resolved via applying a spec-
tral finite element method (sFEM) to solve the Hermitian FPE of Eq. 4.20.

procedure F I S H E R(ρeq(x), D; ∆t)
Obtain λi and φi via sFEM
Perform the 2D integral in Ωik

jl (∆t)
Calculate functional derivatives
Go through the 4-loop summation for Iρ

∆t
end procedure

For the reference model shown in Fig. 4.1, Algorithm 2 is used to calculate
the Fisher information metric of Langevin trajectories at various time resolu-
tions. Fig. 4.3 shows a contour plot of Iρ

∆t(x, y)/∆t as well as the cross deriva-
tives with respect to the spatial coordinates of ρeq and the diffusion coefficient.
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The matrix element of D alone is also shown as the actual numerical value in
the figure.

At a low time resolution of ∆t ≈ 0.15 s that is on the order of the slowest
timescale of system relaxation, the major component affecting the FIT is the low
probability transition state in ρeq caused by the barrier located at x = 1.1 in the
PMF. Therefore, reducing this barrier would lead to a faster system relaxation
and hence a less prescriptive or informative dynamics model.

At an intermediate time resolution of ∆t ≈ 0.02 s, the dependence of FIT on
the existence of the low density states at x = 0.9 and 1.1 is still significant, but
off-diagonal negative couplings emerge. This pattern indicates that a flatter
potential barrier would also result in a less informative time propagator.

At a high time resolution of ∆t ≈ 0.002 s, the importance and details of
the underlying equilibrium probability of states seems to vanish, leading to a
nearly tri-banded matrix with positives values along the diagonal terms and
negative numbers for the off–diagonal elements. At this timescale, FIT begins
to capture the behaviors of the diffusion processes within individual wells
and the roles of ρeq are not as prominent in comparison. As we extend the
analysis of FIT into the continuum limit of ∆t→ 0+ analytically, the origin of
the tri-banded nature of the Fisher information matrix becomes explicit.
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Figure 4.3: The contour of the Fisher information matrix of Iρ
∆t(x, y)/∆t for ∆t = 0.15, 0.02, and 0.002 s. The

upper band in contour is the Fisher information metric with respect to D and ρ, I(D, y). Corner value is the
Fisher element for diffusion I(D, D′).
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4.6 Fisher Information of Trajectories in the
Continuum Limit

The Fisher information of p(x∆t|x0) can also be written as:[125]

I∆t =
∫

dx∆tdx0
δ2 ln p(x∆t|x0)

δρeq(x)ρeq(y)
p(x∆t, x0). (4.40)

In the continuum limit of ∆t → 0+, p(x∆t|x0) looses its dependence on the
parameters because it approaches to the delta function p(x∆t|x0) = δ(x∆t − x0).
Therefore, I∆t goes to 0 in the continuum limit. Regarding the FIT for the entire
trajectory, I , though, the denominator of Eq. (4.7) also goes to zero as ∆t→ 0+.
Applying the L’Hopital rule, utilizing the ∆t = t simplification again, and
letting t = 0 leads to:

I − Ieq = tobs

∫
dxtdx0

δ2(∂p(xt|x0)/∂t)
δρeq(x)ρeq(y)

peq(x0)

∣∣∣∣
t=0

. (4.41)

The fact that p(xt|x0) has no dependence on ρeq(x) in the continuum is also
employed in arriving at this equation.

Applying p(xt|x0)|t=0 = δ(xt − x0) into the FPE, one obtains:

∂p(xt|x0)

∂t

∣∣∣∣
t=0

= ∇ ·
(

D(xt)ρ
2
eq(xt)∇

δ(xt − x0)

ρ2
eq(xt)

)
. (4.42)

Using the result of Eq. (4.42) in Eq. (4.41), one obtains:

I − Ieq = tobs

∫
dxtdx0

δ2ρ2
eq(x0)

δρeq(x)ρeq(y)
∇ · (D(xt)∇δ(xt − x0)). (4.43)

With Eq. (4.43), the functional derivative therein becomes straightforward:

I − Ieq = 2Dtobs

∫
dxtdx0δ(xt − y)∇ · (D(xt)∇δ(xt − x0))δ(x0 − x). (4.44)

Finally, performing the integration gives the answer of FIT in the continuum
limit:

I(x, y)[ρeq] = 4δ(y− x) + 2tobs∇ · (D(x)∇δ(x− y)). (4.45)

This Laplacian kernel[127] is indeed seen in the numerical studies shown in
Fig. 4.3 as the time resolution increases (∆t decreases).
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4.7 Fisher information as a measure of change in
information

If a ξ ∈ [0, 1] variable is employed to specify the state of model parameters and
interpolate between two different sets of parameters, the Fisher information
metric can be used to quantify the information change in varying the parameter
set:[114, 128]

J =
∫ 1

0
dξ ∑

i,j

∂θi

∂ξ
Ii,j(~θ)

∂θj

∂ξ
. (4.46)

The arc length along the ξ curve in the information space can also be calculated
via the Fisher information:

S =
∫ 1

0
dξ

√√√√∑
i,j

∂θi

∂ξ
Ii,j(~θ)

∂θj

∂ξ
. (4.47)

The triangle inequality states that J ≥ S2; here, the equality is true if the
integrand is constant along the curve. For FIT via the basis of ρeq, constant
Fisher information matrix is satisfied in the continuum limit, Eq. (4.45).

To perform the line integral of FIT, we define a linear path interpolating a
flat reference model with ρeq = 0 and the desired profile that is only denoted
as ρ∗eq(x) for now. Similarly, a linear path can also be defined for the diffusion
coefficient coordinate that goes from a reference value Dref to the optimized D∗.
Therefore,

ρeq(ξ) = ξρ∗eq(x) (4.48)

D(ξ) = Dref(x) + (D∗(x)− Dref(x))ξ, (4.49)

where ξ ∈ [0, 1].
From the fisher information matrix in the continuum limit given by Eq. (4.45)

where ∑i,j →
∫

dxdy, performing the line integral over dξ with integration by
parts gives the analytical form of the information dissipation measure:

J = S2 =
∫

dx ∇ρeq(x) · (D(x)∇ρeq(x)). (4.50)

Expressing ρeq(x) in terms of the mean force F(x) in the case of a constant
diffusion coefficient, Eq. (4.50) becomes:

J [F(x)] =
D
4

〈
F2(x)

〉
eq

. (4.51)
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The same information expression can also be obtained by using an entropy
measure of the probability densities of trajectories and taking the continuum
limit.[79]

4.8 The Equilibrium Distributions of Least
Informative Dynamics

The analytical form of information can be used to deduce the least informative
dynamics models (LID) with various constraints.[4, 125, 129] In fact, to the
best of our knowledge, the LID models for continuous stochastic dynamics
have never been resolved. In this section, we use several examples to illustrate
how the analytical results derived in this work, e.g., Eq. (4.50) can be used for
deducing such models.

Finding the least informative distribution under a set of constraints can be
performed via minimizing a free energy functional or the Lagrangian:

L(ρ(x), ~ω, η) = −η 〈ρ|∇2|ρ〉︸ ︷︷ ︸
Entropy

+(〈ρ|E|ρ〉︸ ︷︷ ︸
Energy

−E) (4.52)

+ ∑
i

ωi (〈ρ|Ci|ρ〉 − Ci)︸ ︷︷ ︸
Constraint

. (4.53)

E is a log-likelihood energy operator for dynamic observables, η is the opti-
mization temperature which includes the factor of tobsD, ωi are the Lagrange
multipliers of constraints, Ci are the constraint operators, and E, Ci are the de-
sired values for the energy and constraints, respectively. In the case of C1 = 1,
i.e., the operator of summing all probabilities, C1 = 1 is the targeted value to
ensure proper normalization of the equilibrium distribution.

Minimization of the Lagrangian is accomplished by setting the functional
derivative δL/δρ to zero to reach a solution ρ∗(x; η, ω) that depends paramet-
rically on the Lagrange multipliers:

L∗(~ω, η) = inf
ρeq(x)

L(ρ(x), ~ω, η). (4.54)

The solution requires the Lagrange multipliers to satisfy the Karush–Kuhn–
Tucker (KKT) conditions of optimality.[82] Alternatively, the Lagrange multipli-
ers can also be determined by optimizing the two-dimensional Lagrangian:

ω∗ = arg max
ω

L∗(~ω, η) (4.55)

η∗ = arg max
η

L∗(~ω, η). (4.56)
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Typically, the desired value of “energy” is not known a priori and the “tempera-
ture” η is set instead. This is similar in flavor to the derivation of the maximum
entropy Boltzmann distribution for the canonical ensemble.[130]

If all of the constraints can be expressed in the form of linear operators
as in Eq. (4.52), the numerical techniques of solving partial differential equa-
tions can be utilized to determine the optimal profiles of LID. Applications
of using the analytical form of FIT to derive the least informative parameters
for Gaussian processes with a constant force and diffusion coefficient as well
as the Ornstein-Uhlenbeck process are presented in Appendix C.4 and C.5,
respectively. Several examples of using the procedure outlined above to deduce
continuous PMF profiles is presented next to highlight the generality of the
developed method. The diffusion coefficient is treated as a constant in these
calculations. The least informative dynamics models also illustrate how the
criterion of reducing trajectory information differs from the static objective of
maximizing the entropy of the state distribution.

LID constraining on the domain bounds

If the only observation regarding the dynamics of a system is that x is bounded
in between [−L, L], the least informative dynamics model with constant diffu-
sion is found by setting the functional derivative of the Lagrangian in Eq. (4.52)
with respect to ρ to zero which gives:

δL
δρ(x)

= −2η∇2ρ(x) + ω1ρ = 0. (4.57)

The normalization constraint is achieved by setting C1 = 1. With restriction
of the boundary conditions ρ(x)|−L,L = 0, the solution of this Strum-Louiville
problem is:

ρ∗(x) = c1 cos(ω′x) (4.58)

ω′ =
nπ

2L
; n ∈N, (4.59)

with n as natural numbers and c1 set for normalization.
After substituting ρ∗(x) into the definition for L, the choice of ω′ can be

achieved by performing the maximization:

ω∗ = arg max
ω

L∗(~ω, η) = arg max
ω

−c1

(nπ

2L

)2
. (4.60)
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This maximization simply selects the smallest possible n, and as a result,

p∗eq =
1
L

cos2
(xπ

2L

)
(4.61)

F∗(x) =
π

L
tan

(xπ

2L

)
. (4.62)

Fig. 4.4 plots the least informative state distribution in comparison with the max-
imum entropy profile from the static entropy measure Seq =

∫
peq(x) ln peq(x)

which is a flat distribution in the domain and a force that diverges at the bound-
aries. Because the Fisher information of trajectories includes a measure of the
deterministic force in dynamics, a diverging value at the boundaries is not
desirable. Alternatively, a distribution cos2(x) that smoothly decays to a zero
gradient at the domain edges is selected instead.

LID constraining on the mean and variance of peq

The least informative dynamics model based the observed mean µ and variance
σ2 of x can be found by setting the two constraintsC1 = x1 andC2 = x21. This
optimization can be performed in the Fourier space as well and that approach is
adopted here to illustrate the capability offered by having an analytical form of
FIT. Because the Lagrangian is essentially a set of inner products, the Parseval’s
theorem[131] says that the Fourier transforms (FT) of functions f (x) and g(x),
f̃ (k) and g̃(k), respectively, satisfy:∫

dx f (x)g†(x) =
∫

dk f̃ (k)g̃†(k). (4.63)

The † sign indicates complex conjugation. Because the FT of ∇ρ(x) is ikρ̃(k),
where i is the imaginary number, the FT of the information measure in Eq. (4.50)
reads:

J = −D
∫

dk k2ρ̃2(k). (4.64)

This functional form is isomorphic to the square curvature potential when using
the Green’s function analysis to determine the power spectrum of a density
field, where the magnitude of the Fourier components decays with the wave
number k as ρ̃(k) ∝ 1/(1 + k2).[132]

For the constraint on mean, g(x) = xρ(x), g(k) = idρ̃(k)/dk and variance
h(x) = x2ρ(x), h̃(k) = −d2ρ̃(k)/dk2, the FT version of the Lagrangian is thus:

L(ρ̃(k)) =
∫

dk ρ̃(k)
(
−ηDk2ρ̃(k)−ω1i

dρ̃

dk
(k)−ω2

d2ρ̃

dk2 (k)
)

. (4.65)
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Figure 4.4: Maximum entropy distributions. (Top) Bounded domain constraint
x ∈ [0.7, 1.3] for the traditional equilibrium entropy Seq = 〈ln peq(x)〉eq which
gives a flat profile and the trajectory entropy SFIT = 〈ρ|∇2|ρ〉 which gives
a distribution that scales as p∗FIT ∼ cos2((x − µ)π/2L). (Bottom) Maximum
entropy distribution under the constraint on the average 〈x〉 = µ and variance
〈(x− µ)2〉 = σ2 which are equivalent for the static and trajectory information
measure as p∗FIT = p∗Seq

∼ exp(−(x− µ)2/2/σ2).
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The functional derivative δL/δρ̃(k) in the Fourier space then gives the differen-
tial equation for optimization:

ω2
d2ρ̃

dk2 (k) + ω1i
dρ̃

dk
(k) + ηDk2ρ̃(k) = 0. (4.66)

By utilizing the translation operation in the Fourier space, we assume the
functional form of the solution as ρ̂(k) = e−ω1ik/2ω2 ρ̃(k) to eliminate the first
derivative in the equation:

d2ρ̂

dk2 (k) +

(
ηD
ω2

k2 −
ω2

1
4ω2

2

)
ρ̂(k) = 0. (4.67)

The solutions are the Hermite functions, same as those for the wave function of
a quantum harmonic oscillator. The maximization step of Eq. (4.56) selects the
temperature η for of the ground state vibrational mode and the mode with the
least information of that has the form of a Gaussian:

p̃(k) ∝ e−ω′1ike−ω′2k2
, (4.68)

where the requirement of constraints is incorporated into ω′ for simplicity.
Inverse Fourier transform then takes Eq. 4.68 to the real-space solution:

ρ∗eq(x) = F−1( p̃(k)) ∝ e−ω′′2 (x−ω′1)
2
. (4.69)

With the constants determined to satisfy the constraints of the observed mean
and variance as well as probability normalization, the final result for the equi-
librium probability is a Gaussian as shown in Fig. 4.4:

p∗eq(x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (4.70)

This result of LID model is the same as that obtained by maximizing the
static entropy Seq despite the use of trajectory information. However, it can be
rationalized by inspecting the two different information measures and their
corresponding inequality bounds which similarly are optimal when the equi-
librium probability density becomes Gaussian:[133]

Dynamic :
(∫

dx x2ρ2(x)
)(∫

dk k2ρ̃2(k)
)
≥ 1

16π2 (4.71)

Static : −
∫

dx ρ2(x) ln ρ2(x)−
∫

dk ρ̃2(k) ln ρ̃2(k) ≥ 1− ln(2). (4.72)
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The inequality of Eq. (4.71) can be viewed as an uncertainty principal of con-
tinuous stochastic dynamics.[133] It contains a static measure of the variance
in position multiplied by the dynamic information J . Here, J plays the
analogous role of the variance of velocity in the Heisenberg uncertainty of
quantum mechanics.[75] The inequality of Eq. (4.72) is the Hirschman uncer-
tainty principle[134] which adds a static measure of equilibrium entropy Seq
with the Shannon information measure of the velocity distribution. In both
cases a balance is reached between a static and dynamic measure of information,
and in fact the Gaussian distribution is optimal and achieves equality in both
instances for normalized distributions peq(x) ∈ L2.

LID constraining on the mean first passage time

If the transition between two meta-stable states locating at xA, xB with the
reaction rate of kA→B is known, the mean first passage time between the two
states is τrxn(xA → xB) = k−1

A→B. This knowledge can be used as the constraint
to find the corresponding LID model. According to Gardiner[37] the mean first
passage time from xA to xB can be expressed as

τxA→xB = k−1
A→B =

1
D

∫ xB

xA

dx ρ−2(x)
∫ x

xL

dx′ ρ2(x′)

τxB→xA = k−1
B→A =

1
D

∫ xA

xB

dx ρ−2(x)
∫ x

xR

dx′ ρ2(x′). (4.73)

using ρeq as the variable within the finite domain x ∈ [xL, xR].
The constraints of Eq. (4.73) are non-linear and do not follow the advan-

tageous linear mode of Eq. (4.52). Using τxB→xA and τxA→xB to represent the
operation on ρ in Eq. (4.73), the Lagrangian of LID becomes:

L = η
∫

dx(∇ρ(x))2 + ω1

(∫
dxρ2(x)− 1

)
+ ω2

(
τxB→xA [ρ]− k−1

B→A

)
+ ω3

(
τxA→xB [ρ]− k−1

A→B

)
. (4.74)

The optimization requires setting the functional derivative with respect to ρ to
zero:

2η∇2ρ(x) + ω12ρ(x) + ω2
δτxB→xA

δρ
+ ω3

δτxA→xB

δρ(x)
= 0. (4.75)

Ultimately the functional derivatives of the mean first passage times depend
on the actual place within the domain; only the integrals which are active in
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the inner product with f (x) at a given position will manifest in the functional
derivative. The functional derivatives of the mean first passage time in this
equation depend on the specific locations within the domain:

δτxA→xB

δρ(x)
=



2
D

ρ
∫ xB

xA

ρ−2(x′)dx′ x ≤ xA

2
D

ρ(x)
∫ xB

x
dx′ρ−2(x′)− 2

D
ρ−3(x)

∫ x

xL

dx′ρ2(x′) xA < x ≤ xB

0 x > xB.
(4.76)

The derivation of this equation is shown in Appendix C.6. The non-linear
optimization problem of Eq. (4.75) can be solved numerically by using a quasi-
Newton method iteratively.[82] The resulting PMFs and equilibrium distribu-
tions for three sets of reaction rates are shown in Fig. 4.5.

The LID profiles constrained on mean first passage times generally fol-
low Kramer’s type of reactions[135] that have quadratic potentials for stable
states connected by an inverted quadratic barrier, Fig. 4.5. The LID models
also produce the Hammond-Leffler postulate that the transition state x‡ of
an “endothermic” reaction is closer to the product.[136] This example shows
that the analytical form of FIT can effectively utilize the information contained
in dynamic observables to stitch together a least informative profile of the
equilibrium densities. This approach strengthens our ability to model the phe-
nomenology of reactive systems and estimate the underdetermined continuous
parameters of a function from the subset of experimental data.

4.9 Similarity of FIT to Bures metric and trace of
power spectrum matrix

Finally, we observe that the Hermitian formulation developed in this work for
the Langevin equation adopts properties of the density matrix formulation of
quantum mechanics. The symmetric operator of the FPE of a specific ρeq and
diffusion coefficient,H , defines the time propagation operator as ρ = e−H∆t.
The Hermitian FPE of the Langevin equation also delivers an eigenbasis that
assembles the unitary matrix 1 = Ψ†Ψ such that

ρ = Ψe−tΛΨ†. (4.77)
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Figure 4.5: Least informative dynamic models for using the mean first passage
times as constrains. (Top) The optimal equilibrium probability density p∗eq(x)
for the constraint of rate constant / mean first passage time between two states
located at xA = 0.8 and xB = 1.2 with diffusion constant D = 1. (Bottom) The
corresponding potential of mean force V∗(x) = − ln p∗eq(x). The constrained
values of rate constants in the unit of s−1 are labeled as the legend of each
profile.
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The density matrix formulation of quantum mechanics (QM) has an isomor-
phic symmetrized form in the density operator time evolution:

ρ(t) = e−Ht/2ρ(0)e−Ht/2 (4.78)

when initially the operator is the diagonal delta function:

ρ(0) = 1̂ =
∫

dx |x〉〈x| ; 〈xt|ρ(0)|x0〉 = δ(xt − x0). (4.79)

The power spectrum of the QM density operator, i.e., the collection of its
eigenvalues, is an optimal basis from which to calculate the information content
for mixed states with the Von Neumann entropy,[137, 138] or the Sinai entropy
of transitions.[139, 140] Similarly from classical mechanics, Lyoponov stability
analysis shows the importance of this spectral decomposition.[141–143] The
QM version of the information metric between density matrices, the Bures
distance, takes on the general features of the QM operator trace to give:[144–
146]

S = 2− 2 Tr
(√√

ρ1ρ2
√

ρ1

)
(4.80)

to measure the change in information content between two density matrices ρ1
and ρ2.

The Bures metric distance is the QM analog of the Fisher information, which
can be calculated from the eigenbasis of the density operator:[147]

IQM(x, y) = ∑
i,j

1
2(λi + λj)

δ〈ψi|H |ψj〉
δρeq(x)

δ〈ψi|H |ψj〉
δρeq(y)

. (4.81)

We note the correspondence with the FIT we calculated in the continuum limit
with

I = ρeq(x)ρeq(y)IQM. (4.82)

It can be seen in in Fig. 4.6 that the contours of I defined in Eq. (4.82) ap-
proach the shape and magnitude of the tri-banded matrix from the numerical
calculations of the Laplacian kernel from the operator analysis presented in
Eq. (4.45). Therefore, in the continuum limit of ∆t → 0+, the information
contents in QM and Langevin dynamics appear to be isomorphic.
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Figure 4.6: Contours of the QM Fisher Information I = ρeq(x)ρeq(y)IQM, or
Bures metric, calculated with 32 eigenvectors to illustrate the behavior of the
tri-banded Laplacian kernel in approaching the continuum limit. Using a
greater number of eigenvectors gives a narrower tri-banded matrix and closer
resemblance to the Laplacian kernel. Eigenvectors were calculated for the
reference three-well PMF shown in Fig. 4.1 but the results are invariant to
choice of the potential since the Fisher and Bures metrics are constant.

4.10 Conclusion
For trajectories following the Langevin equation at equilibrium, a theoretical
framework is developed in this work to evaluate the Fisher information. The
corresponding Fokker-Planck equation of Langevin dynamics is transformed
into a Hermitian form to allow an eigenbasis decomposition of the time propa-
gator. Essential to the success of this approach is using the square root of the
equilibrium probability density as the form on model parameters. This unique
choice of basis not only symmetrizes the FPE, it also makes the Fisher informa-
tion matrix constant, resulting in tremendous simplification in the calculation of
the information metic of trajectories in the parameter space. In the continuum
limit, we show that the analytical form of the Fisher information matrix for
Langevin trajectories is a Laplacian kernel. With this constant-information ma-
trix, a line integral in the parameter space can be devised to give an analytical
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measure of dynamics information given the PMF and diffusion coefficient of
the Langevin equation. An immediate impact of this derivation is enabling the
imputation of least informative dynamics model constrained on the observables
that are known or available. Although the examples of LID models presented in
this work were limited to scalar constraints, generalization to using an arbitrary
functional in describing the observable of interest, such as the likelihood of
single-molecule FRET measurements,[60, 83, 148] other properties measured
by single-molecule methods, or molecular simulation results, is expected to
be equally applicable. The methodology developed in this work can be used
to systematically utilize the measurable data to formulate a dynamics model
based the principle of the least informative description.
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C H A P T E R 5
Information Thermodynamics for

Bayesian Optimization: Applications
to Single-Molecule FRET

5.1 Abstract
We present a systematic Bayesian framework for developing models of dy-
namics by extracting information from experimental or simulation data. These
models are derived within the formalism of information thermodynamics
which balances the inputs of empirical likelihood with the inherent entropy
of the resulting model of dynamics. The specific choice of the balance be-
tween entropy and likelihood produces the equivalent of a phase diagram for
optimization where the ideal results are generated at a critical point. Applica-
tions are presented specifically for deriving the potential of mean force (PMF),
equilibrium probability density, and diffusion coefficient for systems modeled
with over-damped Langevin dynamics. The single-molecule FRET experiment
provides a statistical sampling of these dynamics and provides the likelihood
information. The optimal PMFs and diffusion from this algorithm are shown
for FRET data from the adenylate-kinase enzyme studied with and without
inhibitor binding.

5.2 Introduction
In the statistical learning paradigm, we seek to use data to develop models
of physical systems. Experiments and simulation offer insights into the pro-
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gression of a systems dynamics and are statistical reporters to the underlying
process that is the goal of the study. However there are inherent limitations to
the precision and resolution of the experiment and the timescales accessible
through simulation. Directly translating experimental results into a dynamic is
therefore difficult because the full details and rich features of the true system
are naturally blurred. Thus when performing the inverse mapping of data to
model, the problem is inherently underdetermined. Ideally, a machine learn-
ing algorithm would produce the least descriptive model which still contains
the full information from the data granting confidence that the true system’s
behavior is at least as complicated and feature rich as the optimal result. A
prototypical example is the de-noising of photographs from a telescope for the
reconstruction of details in the night sky.[149] Naturally the images are blurred
and convoluted with specific optics of the instrument, but the de-convolution
operation is an ill-posed problem because a myriad of complex features could
give rise to the same blurred image. Therefore the operation requires a reg-
ularization to produce images which only show significant features that are
confidently evidenced by the data.

Our focus is on studying the dynamics of condensed phase system and we
seek to find parameters for the time evolution of general coordinates of inter-
est. The over-damped Langevin equation which governs the coarse-grained
dynamic behavior of the physical system is given by

ẋ = −D(x)∇V(x)
kBT

+∇D(x) +
√

2D(x)dWt (5.1)

where V(x) is the potential of mean force for the reduce coordinate system x,
and D(x) = kBT/ζ is the diffusion coefficient with collision frequency ζ. The
random motion is driven by the Weiner process dWt with the expected average
〈dWt〉 = 0 and variance 〈dWt · dWt′〉 = δ(t− t′). The diffusion coefficient can
be position dependent for systems where barriers to reactivity aren’t contained
within the probed coordinate [12]. Because we don’t necessarily study the
actual reactive pathway, diffusion may be positionally varying and reflective of
the non-markovian nature of coordinate [150].

5.3 Information Thermodynamics
Effectively the approach outlined in this work seeks a Bayesian optimization of
the parameters for Langevin Dynamics [151]. The information from experiment
comes in the form of an internal energy is also the negative log-likelihood
E[θ] = − ln P(Y(t)|θ) where θ are the parameters and Y(t) are the experimental
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observations in time. For over-damped Langevin dynamics, the likelihood is a
functional of the parameters of V(x) which is the PMF of the underlying system
giving rise to the microstates of the system which are the dynamic trajectories
X(t).

P(Y(t)|θ) =
∫

DX(t)P(Y(t)|X(t))P(X(t)|θ) (5.2)

In this decomposition, the specific experimental outputs depend on the actual
micro states of the system P(Y(t)|X(t)) while the time evolution of the system
is governed by the parameters of interest. Maximum likelihood optimization
would aim to optimize the parameter set θ to maximize this quantity. How-
ever, as discussed previously , this optimization is underdetermined and the
degeneracy of solutions will create huge variance in the possible outcomes.

To make direct analogy with thermodynamics we can define the following
function for internal energy E(S, D̃) where the arguments are the extensive
variables of entropy S and log-diffusion ln(D) = D̃ which sets the timescale
for the dynamics. The differential of internal energy is

dU = ηFdS + ηDdD̃ (5.3)

where ηF is an intensive quantity of “temperature” and ηD is the diffusion
temperature; both of which are intensive parameters of the system. As shown
in [79], the trajectory entropy for dynamic systems can also be related to a
functional of the order parameters by SF[θ] = −D〈F2(x)〉. This functional
captures the actual degree of information generated by a given parameter set
onto the ensemble of equilibrium trajectories.

The remaining thermodynamic functionals can then be found the following
ensembles. First the Helmholtz free energy which is found by subtracting the
factor of entropy for the Legendre transformation

A(ηF, D) = E− ηFS (5.4)

dA = −SdηF + ηDdD̃ (5.5)

Now the thermodynamic function is parameterized by the temperature and
diffusion coefficient and the parameterizing PMF is allowed to fluctuate to
achieve its optimal equilibrium result. The Gibbs free energy is found by a
second transformation recognizing that the diffusion part of trajectory entropy
SD[θ] = ln D is equivalent to the extensive “volume” in an N-P-T system thus
the term added to generate the free energy G(ηF, ηD) is

G(ηF, ηD) = A− ηDD̃ (5.6)

dG = −SdηF − D̃dηD (5.7)
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And for completeness the enthalpy is

H(S, ηD) = E− ηDD̃ (5.8)

dH = SdηF −−D̃dηD (5.9)

These thermodynamic functionals are essential the log of a hierarchical
Bayesian model of the system parameters and the optimization of the free
energy amounts to a maximum a posteriori estimation problem.

arg max
θ

p(θ|y) = p(Y(t)|θ)p(θ)
p(y)

(5.10)

p(θ) = exp(−ηS[θ]) (5.11)

Free energy A can also be composed of the functionals for likelihood and
entropy for a given parameter set. At equilibrium, free energy is minimized
meaning that we set a temperature ηF and allow force to fluctuate, however the
force achieves an equilibrium value in the thermodynamic limit. This translates
to solving an optimization problem over force

A(ηF, D) = inf
F(x)

− ln P(Y(t)|θ) + ηFD〈F2(x)〉 (5.12)

5.4 Bundle Method Optimization
The likelihood can be approximated by the bundle method [36, 152] which
constructs a convex hull approximation of the likelihood surface by a bundle of
hyperplanes which are the derivatives evaluated at points along the course of
the minimization

`(θ) ≤ lCP(θ) = min
i
〈θ(x), δi

θ〉+ bi (5.13)

where θ are the parameters for the time propagation probability distributions, δi
θ

are the gradients of log-likelihood evaluated at point θi and bi are the intercepts
bi = `(θi)− 〈θ(x), δi

θ〉. The parameter ε = maxi l(Θi)− supΘ lCP measures the
precision of this convex hull and is strictly positive during the convergence of
the convex optimization.

For the study of dissipative systems which undergo Langevin dynamics, the
ideal parameter set for minimum free energy optimization is the square root
of equilibrium probability ρ(x) =

√peq and diffusion constant D[153] because
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Figure 5.1: Bundle approximation to the likelihood constructed from δθ hyper-
planes. The blue line is the actual likelihood of the data as a function of model
parameter(s) `(θ) which in this case is a linear multiplier to the correct system
force F = θF∗. The circles (o) indicate where a likelihood evaluation and gradi-
ent has been calculated. The dotted black lines (–) are the resulting bounding
hyper-planes and the red line is the minimum of this bundle which gives the
closest bound to the true likelihood. The yellow box shows the deviation in ε
and the variance in the optimal θ∗ in finding the maximum likelihood using
the current set of bundles.

the entropy is a simple linear functional S[ρ(x)] = 〈ρ|∇2|ρ〉. Therefore the
likelihood bundle is constructed from

− ln P(Y(t)|θ) ≈ max
k
〈δk

ρ2 |ρ2〉+ 〈δk
D̃|D̃〉+ bk (5.14)

which is an approximation of the likelihood surface by hyperplanes k defined
by the slopes δk and intercept bk.

After inserting into the free energy equation, the bundle method effec-
tively solves the minimization by introducing the slack variable ξ ≤ 〈δk

ρ2 |ρ2〉+
〈δk

D̃|D̃〉+ bk ∀k which is satisfied by introducing the Lagrange multipliersω > 0
for each k. The resulting optimization problem is recast with the Lagrangian

A[ρ(x), ξ, D,ω] = ξ + ηF〈ρ|∇2|ρ〉

−ω ·
(

ξ1− 〈δρ2 |ρ2〉 − 〈δD̃ − b|D̃〉
)

(5.15)
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where the thermodynamic quantity A(ηF, D) = infρA is achieved by perform-
ing the functional optimization which is the Fenchel dual of the fully specified
functional A.[3] where δρ2 is a matrix of where each row is the gradients δk

ρ2

and b is the vector of intercepts. Using the principals of convex optimization,
we first optimize with respect to ξ to give 1−ω1 = 0 which means ‖ω‖1 = 1.
Then we do the functional optimization over ρ(x) by taking the functional
derivative of the Lagrangian δA

δρ(x) which is equivalent to finding by variational
calculus

inf
ρ

∫
ω · δρ2ρ2 − ηFD

∫ (
ρ′
)2

+ λ

(∫
ρ2 − 1

)
(5.16)

which includes the condition that the distribution must sum to 1 with Lagrange
multiplier λ. Preforming the functional derivative with respect to ρ and setting
equal to 0 gives an eigenfunction differential equation

ηFDρ′′ −ω · δρ2ρ = λρ , ρ|−L,L = 0 (5.17)

with Dirichlet boundary conditions. Using a spectral element method[154],
the eigenfunctions and eigenvalues can be determined. Only the first eigen-
vector which contains no nodes satisfies the condition that ρ > 0 with the
first eigenvalue λ0(ω; ηF, D) which depends on the bundle weights. Inserting
this solution back into the Lagrangian gives the free energy desired up to the
parametric dependence on bundle weights.

Finally these coefficients ωk can be determined by solving the dual problem
for finding the equilibrium free energy parameters

A(ηF, D) = max
ω

‖ω‖1=1
ω�0

λ0(ω) + 〈ω · δD̃|D̃〉 (5.18)

The remaining optimization over the bundles ω is solved by a sequential
quadratic program (SQP) in MATALB where free energy is approximated by its
second order Taylor series at each iteration and solved by a quadratic program
(QP) with linear constraints on ω to give an approximation of free energy at a
given number of bundles k and the optimum bundle vector

ωk = arg max
ω

‖ω‖1=1
ω�0

ω ·
(
∇ωλ0(ω; ηF, D) + 〈δD̃|D̃〉+ b

)

+
1
2

ω> (∇ω∇ωλ0(ω; ηF, D)ω (5.19)
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The derivatives of the eigenvalues A0 from the θ(x) optimization problem are
given by perturbation theory using the higher order eigenvectors θn(x).

∇ω A0(ω; ηF) = 〈θ0|δθ2 |θ0〉 (5.20)

∇ω∇ω A0(ω; ηF) =
∞

∑
n=1

〈θn|δθ2 ⊗ δθ2 |θn〉
An − A0

(5.21)

Convergence of the bundle is tested by tracking the difference between the
actual and approximate values of free energy εk = A(ηF, D, ρ∗)− Ak(ηF, D).
Since the problem is convex, this epsilon will always be greater than one and
reach zero when the bundle accurately describes the likelihood surface. In
practice, the convergence of ε is nearly exponential which is a marked improve-
ment over the sub-linear convergence from the Expectation-Maximization (EM)
algorithm used in the authors previous study of single-molecule FRET[155].
Typically 5 iterations are required for convergence of the bundle at a given
temperature and the total operation of finding the optimal temperature stop-
ping point requires 300 iterations. In contrast the EM algorithm required 50,000
iterations.

The optimal bundle coefficients give the next best guess for the optimal
profile ρk+1(x) which is then used to construct an improved representation of
the bundle. This operation is iterated until convergence of the ε at which point
the regularization temperature ηF is lowered to explore lower energy regions
of the phase space.

The ηD − D̃− ηF equation of state (EOS) can be mapped out by calculating
the derivative of A at each value of diffusion at a set force temperature

∂A
∂D̃

=ηD (5.22)

ηD = D
(
ω · δD + ηF

dλ0

dD

)
(5.23)

where the change in eigenvalue is given by perturbation theory

dλ0

dD
= 〈ρ∗|∇2|ρ∗〉 (5.24)

5.5 Optimization of G(ηF, ηD)

To do optimization in the ηF, ηD ensemble, it is advantageous to introduce
the composite variables θ(x) =

√
Dρ(x) such that the trajectory entropy S =
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D〈ρ|∇2|ρ〉 is converted to S = 〈θ|∇2|θ〉. The resulting Lagrangian is slightly
modified to

G(ηF, ηD; ω, θ, D) = 〈ωδθ2 |θ2〉 − ηF〈θ|∇2|θ〉+ λ (〈θ|θ〉 − D)

+ 〈ωδD|D〉+ ηD ln(D) + ωb (5.25)

where essential the only difference is that the new θ should be normalized to
D instead of 1. Doing the minimization over θ yield the similar eigenvalue
problem (

ηF
d2

dx2 −ω · δθ2

)
θ = λθ (5.26)

Naturally the eigenvector solution will have 〈θ∗|θ∗〉 = 1 for eigenvalue λ0 so
the result is scaled by D to satisfy the constraint in the Lagrangian. Substituting
this optimum θ∗ yields

G∗(ω, D; ηF, ηD) = inf
θ
G = Dλ0(ω; ηF) + 〈ωδD|D〉+ ηD ln(D) + ωb (5.27)

Performing the minimization over D involves inverting the equation

−ηD
1
D

= λ0(ω; η) + ωδD (5.28)

and solving for the optimum diffusion

D∗ =
ηD

λ0(ω; ηF) + ω · δD
(5.29)

and the resulting Lagrangian or “Free Energy” including the bundle intercepts
E is

L∗(ω; ηF, ηD) = ηD − ηD ln ηD + ηD ln(λ0(ω; ηF) + ω · δD) + ωb (5.30)

With these Lagrangians, can produce a quadratic approximation with re-
spect to ω then apply the newton solver to maximize and get the ω∗. The
gradients for the newton solver with respect to ω are

∇ωL∗(ω; ηF, ηD) = E + ηD
∇ωλ0(ω; ηF) + δD

λ0(ω; ηF) + ωδD
(5.31)

with Hessian

∇ω∇ωL∗(ω; ηF, ηD) = ηD
∇ω∇ωλ0(ω; ηF)

λ0(ω; ηF) + ωδD

− ηD

(
∇ωλ0(ω; ηF) + δD

λ0(ω; ηF) + ωδD

)
⊗
(
∇ωλ0(ω; ηF) + δD

λ0(ω; ηF) + ωδD

)
(5.32)
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Figure 5.2: Application of bundle approximation to the FRET log-likelihood.
Plotted is the log-likelihood loss for the 3-well model with D = 500 evaluated
using exact path integral at parameters which are a linear fraction of the ideal
3-well potential and diffusion coefficient Θ = [0 . . . 2]D∗p∗eq. The gradients are
evaluated at 10 of these points and then a linear extrapolation constructs a
hyper-plane approximation of the likelihood that is always lower than the exact
likelihood for convex problems. The maximum of these hyper-planes is the
“Bundle”.

5.6 The Hyper-plane derivatives from smFRET
The information thermodynamics formalism presented thus far is invariant to
the specific type of simulation of experiment. The specifics of the approach is
codified into the calculation of the actual likelihood derivatives. For the smFRET
experiment, a robust means of calculating the likelihood was presented in[155]
with the main results summarized here that the likelihood can be reprinted by
a path integral

` = ln〈α0|e−H∆t1y1e−H∆t2y2 . . . e−H∆tNPyNP |βtexp〉. (5.33)

with operators that describe the system dynamics H and depend on the pa-
rameterizations of ρ by

H =
1

ρ(x)
·
(
∇D(x)ρ2(x)∇ 1

ρ(x)

)
(5.34)
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and the information input from the smFRET experiment y.
The derivative of log-likelihood from this path integral with respect to an

arbitrary parameter of the hamiltonian is

δ`k

δθ(x)
= ∑

i,j

δ〈ψi|H |ψj〉
δθ(x)

Ek
X|Y[aibj] (5.35)

where Ek
X|Y[aibj] is the magnitude of the coefficients for those eigenvectors

during the inference of the dynamic trajectory.
Specifically for the factors explored in this work, the gradients with respect

to Θ = θ2 are

δθ2(x) = δΘ(x) =
1
2

Φ′(x)
dx

+
F(x)

2
Φ′(x)− αT(x) + β0(x)

2Dρ(x)
(5.36)

The gradients with respect to D(x) are

δD(x) = ρ(x)Φ′′(x)ρ(x) +
(αT(x) + β0(x))ρeq(x)

2D(x)
(5.37)

where the derivative for constant D is found by taking the integral

δD =
∫

dxδD(x) (5.38)

The symbols of Φ are shorthand for the path expectations of space derivatives
of the eigenvectors for the dynamic operator.

Φ′(x) = ∑
i,j
(φ′i(x)φj(x) + φi(x)φ′j(x))EY[αiβ j] (5.39)

and

Φ′′(x) = ∑
i,j
(φ′i(x)φ′j(x))EY[αiβ j] (5.40)

5.7 Temperature selection
Maximum entropy optimization is a balance between the entropy of the result-
ing dynamic model and energetic of the likelihood. The temperature sets the
balance between these two terms and must be determined to satisfy our desire
for the least informative model that is explained by the data. Stated differently,
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we wish that the solution we find is universal in that if the experiment was
repeated, we would arrive at a similarly detailed picture of the underlying
dynamics of the process. To be avoided are situations where arbitrary addi-
tional states or dynamical features are presented that are beyond the possible
resolution of the experiment itself.

Numerically, we seek the least perturbed solution of highest likelihood that
still converges to one convex solution. This point represents a critical point in
free energy space where for any lower temperature, the solution would bifurcate
into multiple solutions who’s extra detail is whole arbitrary. Effectively the ω’s
are like mole fractions so, by analogy with multicomponent distillation we are
looking for the azeotrope.

Looking to approximate at each iteration empirical Bayesian model selection
of temperature

p(η|y) =
∫

dθp(Y(t)|θ, η)p(θ|η)p(η)
p(y)

(5.41)

where p(Y(t)|θ, η) is the likelihood and p(θ|η) = exp(ηS[θ]) is the entropic reg-
ularizer. Then the task is to maximize the marginal with respect to temperature
1

η∗ = arg max
η

p(η|y) (5.42)

Because the logarithm is a convex function, it’s equivalent to maximizing
the logarithm to give

η∗ = arg max
η

log
∫

dθ exp
(
ly(θ) + ηS[θ]

)
(5.43)

Where ly(θ) is the log-likelihood for the observed data.
Multivariate LaPlace approximation will allow this integration assuming

gaussian statistics[156]∫
dxe−Nh(x) ' e−Nh(x̂)(2π)d/2|Σ|1/2N−d/2 (5.44)

where Σ = (∇∇h(x̂))−1 is the inverse of the Hessian at the optimum x̂ =
arg minx h(x).

1This approach is sometimes presented without the treatment of the temperature as a
function parameter and instead the marginal p(y) itself, called the experimental ”evidence”, is
maximized. These methods are termed Maximum Evidence and have been used to select the
number of states for a HMM treatment of FRET[67]
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At critical point the Hessian H % 0 is essentially singular and the determi-
nant of covariance matrix can be express in terms of product of eigenvalues of
matrix

|Σ| =
d

∏
i=1

σλi = ∏(σH)
−1 (5.45)

When maximizing the log of marginal likelihood the determinant reduces
to sum of log of eigenvalues to give

η∗ = arg min
η

A(θ∗) + 1/2 ∑
i

log σi
A(θ
∗) (5.46)
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Figure 5.3: Trial optimization of temperature on 50 bundles using Equation
5.46. This would imply an ideal temperature of ηF = 1x10−3. Because there
is no divergence in this optimization plot, the system is still above the critical
point.

Therefore at a critical point, there is the maximum in marginal likelihood
and thus ideal temperature. Critical points are also the inception in a bifurcation
of the solution into separate local minimum or “phases”. By choosing a temper-
ature above the critical point we are guaranteed a universal and global solution,
but in balance, the lower the temperature the more detail in the proposed
solution. Therefore the problem works to find the lim supε→0 η.
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To get the ideal temperature from empirical Bayesian theory we desire a
balance between the maximum in free energy with the flatness of the posterior
distribution so applying equation 5.46 we get

η∗ = arg max
η

L∗(η, ω∗) +
1
2

ln |∇ω∇ωL∗(η, ω∗)| (5.47)

For the diffusion temperature this gives

0 = − ln η∗D + ln(λ0(ω
∗) + ω∗ · δD) +

N
2η∗D

(5.48)

where N is the number of rows in the Hessian, we get to remove the constant
multiple ηD. However, if the Hessian is singular, we would apply the pseudo-
determinant in which case N = rank(∇ω∇ωL) is the rank of the Hessian
matrix.

5.8 Test for Binodal Decomposition
During the course of optimization, can test for the property that the minimiza-
tion of free energy at constant D when δA(ηF, D) ≥ 0 matches the optimization
for free energy at constant ηD when δG(ηF, ηD) ≥ 0. Inside of the binodal, when
phase splitting exists, if the optimal ω is fed between the two optimizations,
should receive matching diffusion temperature and diffusion constant between
them. Only situation when they should diverge is when in the binodal region
of phase diagram in which the constant ηD optimization will change to one of
the coexisting phases.

Points of binodal decomposition are situations in which multiple classes
of solutions to the optimization problem exist. This is not desirable because
one would like to have a unified picture of the possible system parameters.
Going to a low temperature where phase splitting occurs means that features
are beginning to appear in the solution space that are not necessarily implied
by the data and may be spurious.

5.9 Critical Point Search
For the information thermodynamics formulation which works in the space of
θ and the logarithm of diffusion LD, the critical point at which the empirical
Bayes formula is a maximum due to the degeneracy of the correlations at all
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length scales, can be found from normal thermodynamic manipulations. The
critical point is when (

∂ηD

∂LD

)
ηF

=

(
∂2ηD

∂LD2

)
ηF

= 0 (5.49)

Thus by knowing the functional dependence of the free energy with respect
to the two intensive temperatures, we can find the critical point by

1. Optimize at given ηF and D and converge bundle

2. Invert 5.30 to get η∗D

3. Run again at D± ∆D

4. Take the first and second derivatives of ηD w.r.t. D

5. If first derivative negative, within spinodal of mechanical instability. Raise
ηF

6. If second derivative negative, reduce D. If second derivative positive,

increase D to tend towards critical point when d2ηD
d(LD)2 = 0 When set-

ting just D the 1st and 2nd derivative are dηD
d(LD)

= 1
D

dηD
dD and d2ηD

d(LD)2 =

1
D

(
−1
D2

dηD
dD + 1

D
d2ηD
dD2

)
One can also leverage triple product rule expression to relate compressibility

to derivatives with respect to ηF in the constant D and constant ηD ensembles(
∂ηD

∂D̃

)
ηF

= −
(

∂ηD

∂ηF

)
D̃

/(
∂D̃
∂ηF

)
ηD

(5.50)

5.10 Constrained Optimization Techniques
The actual optimization of the bundle coefficients is handled with a constrained
Newton-Raphson solver in MATLAB where at each iteration the local approx-
imation of the dual-space Lagrangian L∗(ω) around ω0 to give a proposed
optimum point ω∗ = ω0 + ∆ω then the Hessian and gradients are updated and
a test for first-order optimality is ensured∥∥∥∇L(ω) + λ∑ ω<1~1−~λω>0

∥∥∥
∞
< 10−9 (5.51)
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and the method is cycled for self-consistency.
For numerical stability purposes, the constraint that ∑ ω = 1 is ensured

by defining a modified variable ω′ where ω[1,n−1] = ω′ and ωn = 1− ∑ ω′.
This modified coordinate set has one less degree of freedom and the sum to 1
constraint is implemented as a restraint ∑ ω′ < 1.

This also modifies the gradients and Hessian such that

∇ω′L∗ = ∇ω[1,n−1]L
∗ −∇ωnL∗ (5.52)

and

∇ω′i
∇ω′j
L∗ = ∇ωi∇ωjL

∗ −∇ωi∇ωnL∗ −∇ωn∇ωjL
∗ +∇ωn∇ωnL∗ (5.53)

Algorithm 3 Minimum free energy optimization using the bundle method.
k← 0
loop

while ε > 1x10−3 do
Update k← k + 1
Calculate likelihood and derivative `k(ρk, D) , δk(ρk, D)
while ∇ω 6= 0 do

From sFEM get λ(ω)
Get derivative ∇ωL and Hessian ∇ω∇ωL
Run constrained Newton-Raphson to get ω∗ . Using M AT L A B

end while
Update ρk+1 ← arg minL and Dk+1 ← arg minL
Adjust ηD to remain near maximum likelihood D

end while
Adjust ηF towards critical point

end loop

5.11 Analysis of smFRET experiments of
Adenylate Kinase

The Bundle method for optimization of the equilibrium probability and dif-
fusion constant is applied to the experimental smFRET data captured when
studying the conformational transitions of adynlate-kinase (AK) enzyme using
prior methods in [13]. The AK enzyme binds ATP while undergoing a con-
formational transition of having a LID domain fold over the binding pocket.
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advances, the functional roles of conformational dynamics re-
main elusive. For example, because the forward and reverse
reactions of this enzyme have distinct rates [kcat(forward) ! 3 "
kcat(reverse) (12)], it is unclear how lid dynamics are involved in
the overall reaction mechanism based on bulk results alone (19).
Furthermore, these bulk experiments assume that AK only exists
in its open form and that a two-state model is applicable when
it interacts with substrates, assumptions that remain to be
validated. Here, we demonstrate that data-driven, single-
molecule experiments can resolve these issues and provide
quantitative information about the functional roles of
conformational dynamics in enzymes such as AK.

Results and Discussion
Conformational Distribution and Flexibility of AK. A mutant protein
was constructed to allow measurement of distance changes
between AK’s core and lid domains using single-molecule FRET
(see Fig. 1). To characterize AK’s innate flexibility, we per-
formed experiments on the substrate-free enzyme. A sample
emission intensity vs. time trace for a single substrate-free AK
molecule, averaged every 10 ms, is displayed in Fig. 2a. This
figure shows anticorrelated donor and acceptor emission that is
indicative of conformational changes. Although fluorescence
single-molecule methods have unveiled many dynamical aspects
in nucleic acid interactions by following the on–off-like switching
behavior in the signal (26–28), there are no apparent discrete
transitions in AK’s trajectories, underscoring the difficulties in
analyzing protein single-molecule experiments. We attribute the
lack of discrete states to the complexity of the energy landscape
governing conformational motions in AK, a property that ap-
pears to be common in proteins (29). It is challenging to quantify
rapid motions along a fluorescence single-molecule time trace
(for a recent review, see ref. 30) because it generally requires
20–25 photons to make a statistically meaningful FRET mea-
surement. To overcome experimental limitations, we have de-
veloped advanced statistical methods using ideas from informa-
tion theory (31) that quantitatively resolve conformational
dynamics, photon by photon, from counting-noise-limited, sin-
gle-molecule data without any presumed kinetic model [see
supporting information (SI) Materials and Methods for details].
When applied to the substrate-free AK intensity–time trace in
Fig. 2a, this unbiased analysis yields the dye separation vs. time
trajectory in Fig. 2b (x # R/R0 is the normalized distance, where
R is the dye separation), showing fast transitions in the enzyme’s
conformation as defined by the lid–core distance. Our direct

Fig. 1. Modeling of AK with FRET dyes attached. Open (a) and closed (b) form
E. coli AK illustrating the lid, NMPbind, and core domains, as well as the labeling
positions used in single-molecule experiments (A127C and A194C). The closed
form shows substrates modeled into the binding site. The distances between
the center of mass of the two dyes are !44 Å (high-FRET state) and !53 Å
(low-FRET state), respectively. Details of the modeling and computer simula-
tion are included in SI Materials and Methods.

Fig. 2. Raw single-molecule data and subsequent analysis. (a) Single-molecule FRET emission intensities for substrate-free AK (kcps, 1,000 counts per second)
as a function of time averaged every 10 ms. Both acceptor (orange) and donor (green) dyes eventually photobleach (indicated by arrows in the trajectory), after
which the background counts detected in each channel are displayed. (b) Donor–acceptor distance–time trajectory for substrate-free AK intensity trajectory in
a, analyzed by using the kinetic-model-free maximum-likelihood method (31). The vertical and horizontal widths of each box (gray) represent the uncertainties
in the distance and time resolution of the analysis. Larger distances come from more open enzyme conformations, and shorter distances come from closed
conformations. R/R0 is the normalized distance, where R is the distance and R0 is the Förster radius characteristic of the dye pair that was used (R0 $ 51 Å). (c)
Probability distribution for substrate-free AK constructed using the Gaussian kernel density estimator (dashed line) and after entropy-regularized deconvolution
(32) to remove broadening due to photon-counting noise (solid line) analyzed at a 2-ms time resolution. (d and e) Single-molecule intensity trajectory (d) and
subsequent distance–time trajectory (e) for AK in the presence of 0.5 mM AMP-PNP and 0.5 mM AMP. ( f) Comparison of deconvolved probability distributions
at an !2-ms time resolution for substrate-free AK (blue line) and ligand-bound enzyme with 0.5 mM AMP-PNP (nonhydrolysable ATP analog) and 0.5 mM AMP
(red), showing how the population of conformational states is shifted upon ligand binding.

18056 ! www.pnas.org"cgi"doi"10.1073"pnas.0708600104 Hanson et al.

Figure 5.4: Adynalyate Kinase (AK) system which shows the conformational
transition of (AK) and the location of the FRET dyes. Figure reproduced here
from the original PNAS work by Jeff Hanson and co-workers.[13]

The distance of this LID domain to the core of the enzyme is tracked by the
smFRET dyes. Figure 5.5 shows a comparison of these results and elucidates the
wealth of additional knowledge that can be gleaned from this new information
thermodynamics approach. We see a clear delineation between two states in
PMF along with the diffusion coefficient which has converged to D/R2

0 = 3.77
in reduced units or D = 12x10−12cm2/s in physical units.

A mean first passage time calculation[37] is also run between the states
xA = 0.8 and xB = 1.0 to give kinetic rate constants kA→B = 18.5s−1 and
kB→A = 36.4s−1 for the conformational transition. The diffusion temperature is
adjusted such that the diffusion constant remains in the region of maximum
likelihood such that these kinetic estimates are most likely given the smFRET
data.

5.12 Conclusion
In the quest to extract models of dynamics from the limited information of
convoluted data, we must substitute our lack of data with a desire to produce
models that do not reflect features beyond what can be substantiated by the
data. Naturally the missing information should be substituted by the maximum
entropy profiles. This this approach provides a practical and exponentially
converging bundle method to achieve maximum free energy optimization. At
the same time, there is now a fundamental understanding of the interplay of
the likelihood information from the data and the Bayesian priors of maximum
entropy to combine into a full information thermodynamics analysis. With
this approach there is a fundamental justification for the derivation of ideal
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Figure 5.5: The preliminary results for minimum free energy optimization of
smFRET data of AK applying the bundle method to 1 of the 415 smFRET
trajectories used in the original publication and comparison with the profiles
derived from that work.

temperatures and the resultant optimal PMF and diffusion constant from single-
molecule FRET. The framework of information thermodynamics is general to
all classes of problems where one seeks to generate dynamic models from data.
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C H A P T E R 6
Conclusion

Many of the developments in this work have been motivated by examples from
protein dynamics, however the insights gleaned are universal and fundamental
to uncovering properties of stochastic systems and extracting dynamic model
data from time series measurements.

For starters, we have discovered a fundamental property of the entropy
for the distribution of equilibrium trajectories from Langevin dynamics. This
functional will enable a deep understanding of the nature of this very per-
vasive class of dynamics. Next, the path integral likelihood was developed
for the smFRET experiment through a precise accounting of the statistics of
the observed experimental process and the hidden stochastic trajectory of the
system of interest. We also presented a robust toolkit of practical approaches
to inferring theses trajectories and optimizing the paramaterizing force and
diffusion through the eigenbasis expansion and the Expectation-Maximization
algorithm. The Fisher information metric was derived into the limit of contin-
uum trajectories to define the parameter space of dissipative dynamics and
permit the wealth of analysis that is possible with this metric[157]. Finally
these efforts synthesized into a comprehensive Bayesian analysis package that
permuted exponential convergence of the optimal force profiles and diffusion
constants for an ensemble of real experimental trajectories of the Adenylate
Kinase enzyme.

Although this thesis was motivated as an alternative approach to molecular
simulation, using statistical learning theory to extract model parameters from
experiments should be used in harmony with molecular theory and simulation
to produce the deepest understanding and insight about a problem. Our pro-
posed approach to protein engineering is necessarily synergistic as depicted in
Figure 6.1:
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Figure 6.1: Cartoon of the integrated approach between molecular simulation
and statistical learning theory of single molecule experiments to protein engi-
neering.

• Target systems are studied with single molecule experiments to construct
a dynamic model following the procedure from this work

• Free energy barriers are identified as targets for mutagenesis[30, 158]

• The coarse grained dynamic model is then reconstructed into it’s all
atom analog [132, 159] to identify the responsible amnio acid residues or
secondary structures

• The relevance of the coordinate under study can be tested. Lack of free
energy barriers and low diffusion constants are indicative that it is not
the most relevant reactive coordinate [91, 160]

• Multi-coordinate smFRET[90] can also drive the search for the atomic
level description of the reactive mechanism[161, 162]

• For confirmation, candidate alterations to the protein sequence can be
simulated for their effects and these predictions verified by the single
molecule data on the real system[163]

Ultimately this works makes possible a new level of detailed analysis of
single molecule experiments starting from the very general and fundamental
description of Langevin dynamics. We only hope in anticipation of the future
advances and discoveries in biophysics that will be enabled by this work.
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A P P E N D I X A
Elements of the Trajectory Entropy
in Continuous Stochastic Processes

at Equilibrium

A.1 Numerical Integration of Fokker-Planck
Equation for p(xt|x0)

The conditional probabilities are calculated by integrating the Fokker-Planck
equation (FPE) that specifies the time evolution of p(xt|x0) as the divergence of
a flux J(xt)

∂p(xt|x0)

∂t
= ∇ · J(x) =

∂

∂xt

(
D

∂p(xt|x0)

∂xt
− DF(xt)

kBT
p(xt|x0)

)
(A.1)

with initial condition p(xt|x0)|t=0 = δ(xt − x0) and the zero-flux boundary
conditions J(xt = L) = J(xt = −L) = 0. To numerically integrate these equa-
tions we followed the procedure outlined in Gardiner [37] and performed an
eigen-decomposition of the FP operator. The eigenvectors ψi(x) for eigenvalue
λi are found using a spectral finite element method [77]. The time dependent
probability is then given by

p(x∆t|x0) = ∑
i

ψi(x∆t)
ψi(x0)

peq(x0)
exp (−λi∆t) (A.2)
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Figure A.1: Power spectrum of the eigenvalues of the statistical time evolution
Hamiltonian for the 3 model systems with D = 1.

A.2 Calculation of Trajectory Partition Function Z
The partition function for the trajectory has no force dependence because when
evaluating the functional derivative

δZ
δF(y)

=
δ

δF(y)

∫
DX(t)e−EOM[X(t)] (A.3)

one can move the linear operator of derivative through the path integral,

δZ
δF(y)

= −
∫
DX(t)

δEOM[X(t)]
δF(y)

e−EOM[X(t)] (A.4)

where the derivative of the OM action is given by the Euler-Lagrange equation

δEOM[X(t)]
δF(y)

=
D
2

(
F(xt)δ(xt − y) +

dδ(xt − y)
dxt

)
+
∫ x0

dx′0 δ(x′o − y)

−
∫ xtobs dx′tobs

δ(x′tobs
− y) (A.5)

The path integral of the derivative times the exponent of the OM action is
essentially the trajectory expectation up to the scalar

δZ
δF(y)

= −Z
∫
DX(t)

δEOM[X(t)]
δF(y)

P(X(t)) = −Z
〈

δEOM[X(t)]
δF(y)

〉
X(t)

(A.6)
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Because derivative contains only terms which are local in time the
∫ x dx′δ(x′ −

y) terms are equivalent and thus cancels each other. The resulting trajectory
expectation thus reduces to just an expectation over the equilibrium distribution
of position

δZ
δF(y)

= −Z
∫

dx
D
2

(
F(x)δ(x− y) +

dδ(x− y)
dx

)
peq(x) (A.7)

We apply integration by parts on the second term which contains the derivative
of the delta function, noting that dpeq(x)/dx = F(x)peq(x) for the domain
x ∈ R and normalized equilibrium probability peq|−∞,∞ = 0, the bound-
ary term F(x)peq(x)|−L,L = 0. Entropy formula can be extended to include
F′(x)peq(x)|−L,L 6= 0 if necessary. We finally arrive at the cancellation

δZ
δF(y)

= −ZD
2
(F(y)− F(y)) peq(x) = 0 (A.8)

Since the partition function is not functionally dependent upon force Z 6=
Z [F(x)], the partition function at any force must be equal to the partition
function at zero force which is the case of a purely diffusive process when
the OM-action is simply a convolution of many Gaussian into a multivariate
Gaussian Process. That partition function is know and is equal to

Z(D) = (4πD∆t)(tobs/2∆t) (A.9)

where tobs/∆t is essentially the number of steps in the Gaussian Process and√
4πD∆t is the partition function for each step with variance 2D∆t.[47, 48]

A.3 Numerical Studies of Entropy on Model
Systems

Validation plot of analytical trajectory entropy versus numerical 2-D integral
at different diffusion constants for all 3 models. Agreement is reached in the
continuum limit when ∆t → 0. For system in which D = Dref the theoretical
curves approach from below to reach a finite limit. For system when D < Dref
the curves approach from below but reach asymptotic convergence of the
1/∆t scaling. For systems when D > Dref the curves first overshoot and then
converge from above. For system when D � Dref the reference diffusion term
dominates.
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(a) D = 2, Dref = 2
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(b) D = 1.5, Dref = 2
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(c) D = 3, Dref = 2
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(d) D = 1.3, Dref = 1000
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Figure A.2: Comparison between numerical calculation of SKL(∆t) represented
by (◦,�,♦) and the analytic formula SFref→F(x) + SDref→D show as curves for
a few combinations of D and Dref. Scale of axis is adjusted for each figure to
highlight nature of convergence in continuum limit.



APPENDIX A. ENTROPY OF TRAJECTORY ENSEMBLE 99

In the case where D � Dref we also plot the limiting trajectory entropy
behavior where

S [F(x), D] = Seq −
tobs

4

〈
DF2(x)

〉
eq
+ lim

∆t→0

tobs

2∆t
ln D (A.10)

in comparison to the numerical calculations with the diverging offset (1 −
ln(Dre f ))/(2∆t) removed.
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Figure A.3: Limiting behavior of trajectory entropy when D � Dref. (top)
Plotting against the numerical calculation (SKL(∆t)− 1/2+ ln(Dref)/2)/∆t for
D = 1.3 , Dref = 1000. (bottom) Comparison between numerical calculation of
SKL(∆t)− SDref→D represented by (◦,�,♦) and the analytic formula SFref→F(x)
show as curves for D = 3 and Dref = 2.

For a final numerical test, we can check just the evaluation of SFref→F(x) for
instances in which D 6= Dref by removing the diffusion contribution SDref→D
from both the theoretical and numerical calculations.
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A.4 Functional Form of Model Potentials
The models were constructed from low order polynomials with coefficients
manually adjusted in order to create three systems that had equivalent equilib-
rium entropy Seq =

∫
dx peq(x) ln peq(x) = 1.683. The barriers between local

minimum are approximately 5kBT and with a diffusion constant D = 1, the
first order relaxation rate is approximately τrxn = 1ms.

V(x) =



494.29836
2

(x− 1)2︸ ︷︷ ︸
Model 1

4.6139373
(

15000
4

(x− 1)4 − 265
2

(x− 1)2
)

︸ ︷︷ ︸
Model 2

1
15.47

[(
x− 1
13.9

)6

− 15
(

x− 1
13.9

)4

+ 53
(

x− 1
13.9

)2

+ 2
(

x− 1
13.9

)
− 15

]
︸ ︷︷ ︸

Model 3
(A.11)

A.5 Derivation of lim∆t→0
SKL(∆t)

∆t = −D
4

〈
F2(x)

〉
eq

The continuous stochastic trajectory X(t); t ∈ [0, tobs] of duration tobs can
be realized at specific instances in time separated by a time resolution ∆t to
create a segmented trajectory Xt = [X(0), X(∆t), X(2∆t), . . . , X(tobs)]. This
composite vector exists in a space of dimensionality N = T/∆t with coordi-
nates {xτ|τ = 0, 1, 2, . . . , N}. The proposed formulation will utilize this time
segmentation such that the problem is recast to finding the KL-Divergence of a
multidimensional vector space with integrations taken at every time point. The
the lim∆t→0 will be performed on the final results to recover the information
metric in the continuum limit.

S = lim
∆t→0

∫
dx0

∫
dx1· · ·

∫
dxT P(XT) ln

P(XT)

Q(XT)
(A.12)

The logarithm in the KL-divergence formula allows us to exploit this mem-
oryless time factorization to reduce the effectively infinite product to a summa-
tion of logarithms of functions with two dependent coordinates ln P(XT) =
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ln p(x0) + ∑N
τ=0 ln p(xτ+1|xτ). Installing the factorized distributions into Equa-

tion A.12 gives (Note the separate indexing τ′ for the product and τ for the
sum)

S =
∫ N

∏
τ′=0

dxτ′ p(x0)p(xτ′+1|xτ′)

(
ln

p(x0)

q(x0)
+

N

∑
τ=0

ln
p(xτ+1|xτ)

q(xτ+1|xτ)

)
(A.13)

By reorganization this equation to bring the summation outside the integral
and explicitly grouping the integral operations with and without logarithm in
the integrand gives the following

S =
N

∑
τ=0

∫ N

∏
τ′ 6=τ

τ′ 6=τ+1

dxτ′ p(x0)p(xτ′+1|xτ′)


∫

dxτ+1dxτ p(xτ+1|xτ) ln
p(xτ+1|xτ)

q(xτ+1|xτ)

+
∫

dx0

(∫ N

∏
τ′

dxτ′ p(x0)p(xτ′+1|xτ′)

)
ln

p(x0)

q(x0)
(A.14)

For the products grouped by the parenthesis not containing the coordinates
in the logarithms, the integration over the normalized probabilities leave only
the marginalized probability

∫
∏N

τ′ 6=ττ+1 dxτ′ p(x0)p(xτ′+1|xτ′)→ p(xτ). The
remaining non-trivial integrals are formally invariant to the actual choice of in-
dex τ leaving N equivalent terms of 2-D integration to determine the trajectory
entropy.

S = N
∫

dx0dxτ p(xτ, x0) ln
p(xτ|x0)

q(xτ|x0)
+
∫

dx0p(x0) log
p(x0)

q(x0)
(A.15)

For the Langevin dynamics considered in this work, dynamic parameters
are time invariant in the equation of motion. The marginal probability of
finding the system at a given position at a given time is equal to the equilibrium
probability such that p(x0) = peq(x) and the second term from Equation A.15
is equal to equilibrium entropy Seq.

S = lim
∆t→0

tobs

∆t

∫
dx0dxτ p(xτ, x0) ln

p(xτ|x0)

q(xτ|x0)
+ Seq (A.16)

The 1-D contribution from the equilibrium distributions itself can be separated
from the contribution from purely 2-D dynamic integral. This 2-D integral is
SKL(∆t) defined in the main text.
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In the short time limit at ∆t→ 0 the two dynamic processes become equiva-
lent in that at no time separation, one simply recovers the initial delta function
condition for the Fokker-Planck equation p(xt|x0) = q(xt|x0) = δ(xt − x0)
and consequently the remaining expectation in equation A.15 is taken over
ln(δ(xt − x0)/δ(xt − x0)) = ln 1 = 0. What remains to be developed however,
is how this limit reacts when calculating the full path KL-divergence when
there is a competing factor of ∆t in the denominator.

lim
∆t→0

SKL(∆t)
∆t

= lim
∆t→0

∫
dx0dxτ p(xτ, x0) ln p(xτ |x0)

q(xτ |x0)

∆t
(A.17)

Because both the top and bottom of the fraction go to zero, we apply the
L’Hopital’s rule to realize the limit as the time derivative of the expectation
evaluated at t = 0+.

lim
∆t→0

SKL(∆t)
∆t

=
∂

∂∆t

∫
dx0dxτ p(xτ, x0) ln

p(xτ|x0)

q(xτ|x0)

∣∣∣∣
∆t=0

(A.18)

By inserting the definition of the KL-divergence, and taking the time deriva-
tive, this asymptotic gives

lim
∆t→0

SKL(∆t)
∆t

= Ep(x0)

[
∂

∂t

∫
dxt p(xt|x0) ln

p(xt|x0)

q(xt|x0)

∣∣∣∣
t=0

]
(A.19)

= Ep(x0)

[∫
dxt

∂p(xt|x0)

∂t
ln

p(xt|x0)

q(xt|x0)
+

∂p(xt|x0)

∂t
− p(xt|x0)

q(xt|x0)

∂q(xt|x0)

∂t

∣∣∣∣
t=0

]
(A.20)

At the initial evaluation condition t = 0+, the two conditional probabilities
are equivalent p(xt|x0) = q(xt|x0) = δ(xt − x0). This makes the quotient of
these two probabilities equal to unity and leaves the simplified equation

lim
∆t→0

SKL(∆t)
∆t

= Ep(x0)

[∫
dxt

∂p(xt|x0)

∂t
− ∂q(xt|x0)

∂t

∣∣∣∣
t=0

]
(A.21)

The time derivatives in Equation A.21 are given by the Fokker-Planck
partial differential equation (Equation A.1). To aid in the calculation, we ac-
tually multiply each time derivative by peq(x0)/peq(xt) (equaling to one in
the continuum limit) to give the symmeterized Fokker-planck equation for
ρ(xt, x0) = p(xt|x0)peq(x0)/peq(xt)

∂ρ(xt, x0)

∂t
= D∇2ρ−

(
F2(x)D

4
+

F′(x)D
2

)
(A.22)
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For the case in which the diffusion coefficient is equivalent from the refer-
ence process and the system of interest, D = Dref, the second derivative terms
cancel and the reference process Fre f = 0 leaving

lim
∆t→0

SKL(∆t)
∆t

= −Epeq(x0)

[∫
dxt

(
F′(xt)D

2
+

F2(xt)D
4

)
δ(xt − x0)

]
with the delta function initial condition inserted. Doing the xt integral trivially
eliminates the delta function to make xt = x0 and consequently

lim
∆t→0

SKL(∆t)
∆t

= −Epeq(x0)

[
F′(x0)D

2
+

F2(x0)D
4

]
Doing the expectation by integrating against equilibrium probability requires
the integration

lim
∆t→0

SKL(∆t)
∆t

= −
∫

dx0peq(x0)

(
F′(x0)D

2
+

F2(x0)D
4

)
where integrating the first term by parts and using dpeq(x)/dx = F(x)(peq(x))
gives the same result as the path partition function analysis of the OM-action

lim
∆t→0

SKL(∆t)
∆t

=
∫

dx0peq(x0)

(
F2(x0)D

2
− F2(x0)D

4

)
(A.23)

lim
∆t→0

SKL(∆t)
∆t

= −D
4

〈
F2(x)

〉
eq

(A.24)

A.6 KL-Divergence for Finite-State Continuous
Time Markov Process

A continuous-time Markov Process involves jumps between a finite number of
N discrete states is parameterized by the transition rate matrix P with elements
pi,j that give the probability of making a transition from state i to sate j per unit
of time ∆t such that P (xt+∆t = j|xt = i) = pi,j∆t +O(∆t2) under the condition
that pi,i = −∑j 6=i pi,j. The time evolution of the system probability is given by
the differential equation ṗ = pP which has the formal solution in terms of a
matrix exponential pt = p0ePt with initial distribution over states p0.

The KL-divergence, also know as relative entropy, for an continuous time
Markov process Ep(x0) {DKL(p(x∆t|x0)||q(x∆t|x0))} can be computed by insert-
ing the definition of the time propagator probability to yield

DKL = lim
∆t→0

T
∆t

N

∑
i,j=1

πi

(
eP∆t

)
i,j

log

(
eP∆t)

i,j

(eQ∆t)i,j
(A.25)
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The ratios of exponentials above won’t become a simple exponential of
difference because the matrix operations don’t normally commute, [P, Q] 6=
0. To perform the limit we take the short time expansion of the operator
exponentials eP∆t ' I + P∆t +O(∆t2) where I = δi,j is the identity operator.
Plugging the short time expansion into equation A.25 gives two groupings of
terms for the summand for the diagonal and off-diagonal elements from the
transition matrix

DKL = lim
∆t→0

T
∆t

{
N

∑
i=j

πi
(
1 + pi,j∆t

)
log

(
1 + pi,j∆t

)(
1 + qi,j∆t

) +
N

∑
i 6=j

πi pi,j∆t log
pi,j∆t
qi,j∆t

}
(A.26)

where the higher order terms in ∆t are omitted because we will eventually be
taking the short time limit. Making use of the approximation log(1 + x) ' x,
we simplify to

DKL = lim
∆t→0

T
∆t

{
N

∑
i=j

πi
(
1 + pi,j∆t

) (
pi,j∆t− qi,j∆t

)
+

N

∑
i 6=j

πi pi,j∆t log
pi,j

qi,j

}
(A.27)

we are then allowed to take explicit cancelation of the ∆t terms and preform
the limit to give

DKL = T

{
N

∑
i

πi (pi,i − qi,i) +
N

∑
i 6=j

πi pi,j log
pi,j

qi,j

}
(A.28)

Recalling that for conservation of probability there exists the restriction pi,i =

−∑j 6=i pi,j, the first sum can be rewritten as ∑N
i 6=j πi

(
qi,j − pi,j

)
given the modi-

fied formula

DKL = T
N

∑
i 6=j

πi

{(
qi,j − pi,j

)
+ pi,j log

pi,j

qi,j

}
(A.29)

Again, as expected, for equivalent processes where qi,j = pi,j we get DKL =
0. Unlike the previous result for the general ODLD process, this divergence
measure doesn’t diverge at a rate lim∆t→0

T
∆t . However, when attempting to

relate the matrix elements pi,j, we see that the matrix elements themselves are
not constant with time-step and will similarly diverge.
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A P P E N D I X B
Path Integral Statistical Learning

Theory: Extracting Free Energy and
Diffusion from single-molecule

FRET

B.1 Analysis of Estimator Variance from Fisher
Information Metric

We can calculate the Fisher Information Metric[114, 164] to get a sense of the
order of accuracy of our EM method and approximate an error bound on
the final results. The fisher information metric is a 2-D scalar field over the
functional values of force and the diffusion constant evaluated at a given set of
parameters θ∗

Jθ∗ [θ(x), θ(x′)] = EY

[(
δ`

δθ(x)

)(
δ`

δθ(x′)

) ∣∣∣θ∗] (B.1)

where the expectation is taken over all possible smFRET experiments.
By inverting this metric, the Cramer-Rao bound[125] estimates the mini-

mum variance of our maximum-likelihood optimized parameters

〈∆θ(x)∆θ(x′)〉 ≥
(

Jθ∗ [θ(x), θ(x′)]
)−1 (B.2)

It’s probably most convenient to think of the Fisher information as a matrix
where the rows/columns correspond to the Force values along the x axis and
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Figure B.1: The Fisher information for the smFRET likelihood constructed
from evaluating the derivative at p∗ = pre f from 48 simulated experiments to
sample the distribution of experiments at x1 resolution. The coordinates for
the Fisher information metric are the force function along the space coordi-
nate F(x) appended by the diffusion constant D. This four quadrant matrix
is plotted (lower-left) Jθre f [F(x), F(x′)] (lower-right) Jθre f [D, F(x′)] (upper-left)
Jθre f [F(x), D′] (upper-right) Jθre f [D, D′]

the last entry is the diffusion constant. We calculate the fisher information
matrix for our model system by evaluating the derivative for each of the 12 ex-
perimental runs at the correct θ∗ = θre f and average the results to approximate
the expectation over experiments.

The strong correlation in force occurs between the points of x = 0.9, 1.1
which are the free energy barriers. These points also correlate strongly with
the diffusion coefficient which governs relaxation rates. The largest amplitude
eigenvector of the covariance matrix (which is not singular) reflects the physics
that one can achieve the same relaxation rate between the metastable wells by
having a small diffusion constant with small force (free energy barrier) or high
diffusion and high free energy barrier at transition state.

When attempting to invert this matrix however, we note that it is very
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singular due to the low probability in the boundaries of the domain. Therefore
we could expect a pure maximum likelihood EM-algorithm to have nearly
unbounded oscillation and variance of the force in the wings. Once we do
add in the average of force squared, the likelihood is supplemented by the
regularizer which has the derivative

δ〈F2(x)〉
δF(x)

=
∫

dx F2(x)
exp(−

∫ x′ dx′F(x′))∫
dx′ exp(

∫ x′ dx′′F(x′′))
(B.3)

= 2F(x)peq(x) +
∫ x

dx peq(x)
(

F2(x)− 〈F2(x)〉
)

(B.4)

When adding in the regularization, the term in fisher information goes from
likelihood `→ `− ηFD〈F2(x)〉, these added terms make the fisher information
take on information in the wings remove the hard singularity to the solution.
Although the addition of the maximum entropy term biases our EM algorithm
to produce solutions with less force and less diffusion, there is less variance and
we can be confident that the actual system contains at least as much complexity
as is afforded by the optimization. This is the bias-variance tradeoff prevalent
in statistical learning algorithms that fit a parameter space which could contain
more information and precision than the actual raw statistically noisy data.

The choice of parameter ηF actually only requires making it large enough
such that we can converge within a feasible amount of computation time.
Fisher information says that the likelihood is actually degenerate for all of these
singular fluctuations so any finite perturbation by the regularizer will produce
a low-variance biases answer. However the rate of convergence suffers when
ηF is too low.

B.2 Reference Potential of Mean Force
The potential of mean force V(x)/kBT is constructed using the piecewise cubic
Hermite interpolation polynomial pchip() in M AT L A B with the following
points

Table B.1: Interpolation points for V(x)

Position 0.5 0.8 0.9 1 1.1 1.2 1.5
V(x) 60 0 4 ln(4) 5 ln(2) 60



APPENDIX B. PATH INTEGRAL LIKELIHOOD FOR FRET 108

B.3 Proof of ∆S ≥ 0 for Expectation-Maximization
algorithm

For the EM algorithm to hold, the property that the hidden state “entropy” must
be strictly greater than zero must be confirmed. From the EM development, we
are left to show that ∆S(θ) ≥ 0 ∀ θ where

∆S(θ) = ∑
{i(τ)}
{j(τ)}

∏τ〈|〉k
Lk

(
ln ∏τ〈|〉k
Lk − ln ∏τ〈|〉(θ)

L(θ)

)
(B.5)

= − ∑
{i(τ)}
{j(τ)}

∏τ〈|〉k
Lk

(
ln
Lk

∏τ〈|〉k
∏τ〈|〉(θ)
L(θ)

)
(B.6)

and k is the index of the current parameters and the terms without a k super-
script are functionally dependent on new parameters θ. To test the inequality,
the relationship for logarithms that ln(x) ≤ x− 1 is used to remove the loga-
rithm in the above equation and give

∆S(θ) ≥ ∑
{i(τ)}
{j(τ)}

∏τ〈|〉(θ)
L(θ) − 1 = 0 (B.7)

because the summation of the numerator is just the definition of the denomina-
tor.

B.4 Maximum Information Method
The Maximum Information Method [60] estimates the current position of the
system is constructed by counting photons for a short time window tw of
approximately 1ms. The Poisson distribution for the number of acceptor pho-
tons Na and donor photons Nd within the time window is maximized for the
time-averaged position

(
x6
)∗

w
=

[
Bd
Ba

Na − Iβ
a Nd/Bd

Nd − Iβ
d Na/Ba

]
(B.8)

The exact time window duration is set to give a constant standard error in the
estimate ∆x = 0.1.
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The collection of these estimates {x(j)} are weighted by the time window
tw(j) when performing the histogram reconstruction so that time average
matches the ensemble average.

hi = ∑
j

tw(j) [xi < x(j) < xi+1] (B.9)

B.5 Eigenvector Numerical Methods
The spectral element basis functions are constructed from a set of NE = 128 non-
overlapping spectral elements of polynomial order NL = 7. The element are
constructed of Lagrange interpolation polynomials Lk(s) where k ∈ [0 . . . NL].

Lk(s) = ∏
l 6=k

s− xm

sl − sm
(B.10)

where sk are the Legendre-Gauss-Lobatto points of numerical quadrature de-
fined by the zeros of the derivative of the Legendre polynomial P′NL

(s) (see
Figure B.2)

s0 = −1 ; P′NL
(s[1,NL−1]) = 0 ; sNL = 1 (B.11)

which after substation gives the equivalent formula

Lk(s) =
−1

NL(NL + 1)PNL(sk)

(1− s2)P′NL
(s)

s− sk
(B.12)

where PNL(s) is the Legendre polynomial of order NL and it derivative with
respect to affine position P′NL

(s).
An affine mapping function Mn : x ∈ [−xL, xR] → s ∈ [−1, 1]n takes

real space positions and maps them to coordinates with the element s and
indicates which element corresponds to this position n. Given the expansion
coefficients {cn

k} for element n and polynomial k, and summing over elements
and polynomials, functions are approximated by the interpolant

f (x) '
NE

∑
n=1

NL

∑
k=0

cn
k Lk (Mn(x)) (B.13)

For the set of node points over the entire domain {xn
k }, the interpolant evaluated

at those points are the Kronecker deltas Ll
(

Mm(xn
k )
)
= 1δn,mδl,k so that the

expansion coefficients are simply given by

cn
k = f (xn

k ) (B.14)
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Figure B.2: (top) Spectral element constructed of Legendre-Gauss-Lobatto-
Lagrange interpolation polynomials Li(s) for NL = 8 and (O) the interpolation
points si. (bottom) Derivative of the spectral element L′i(s).

The solution of the eigenvector problem are necessarily continuous functions
of the C0 manifold so to ensure continuity, cn

NL
= cn+1

0 ∀ n ∈ [1 . . . NE].
Integration over the domain of an element is performed by Gauss-Lobatto

integration (which is exact for polynomials up to order 2NL − 1)∫ 1

−1
ds f (s) = ∑

k
f (sk)wk (B.15)

where the functional value at the interpolation points are weighted by

wk =
2

NL(NL + 1)
1

(PNL(sk))2 (B.16)

which are tabulated for NL = 7 in Table B.2.
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Table B.2: Legendre-Gauss-Lobatto-Lagrange element node points and the
corresponding Gauss-Lobatto integration weights

Nodes sk Weights wk

−1 0.035 714
−0.871 740 0.210 704
−0.591 700 0.341 123
−0.209 299 0.412 459

0.209 299 0.412 459
0.591 700 0.341 123
0.871 740 0.210 704
1 0.035 714

For integration over the actual domain of the system, we sum over elements
and nodes while multiplying by the inverse Jacobian of the affine mapping
function ∫ xR

xL

dx f (x) = M−1 ∑
l

∑
k

f (xl
k)wk (B.17)

B.6 Brownain Dynamics and smFRET simulation
The Brownian Dynamics trajectories are run by numerically integrating the
differential equation

dx = DF(x)dt +
√

2DdWt (B.18)

with a time step dt = 1× 10−9 by drawing a random number R(t) ∼ N (0, σ2)

from a zero mean normal distribution with variance σ2 = (dt)−1 such that the
time update equation is

x(t + dt) = x(t) + DF(x(t))dt +
√

2DR(t) (B.19)

To simulate the Poisson process of photon emission, we employ the Next
Reaction Method [165] version of Kinetic Monte Carlo which generates the
events of donor/acceptor photon emission separated by a dwell time between
donor/acceptor arrival. These {∆ti ∼ Exp(Ii) | i ∈ a, d} are exponentially
distributed according to the time varying rates which are dependent upon
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position

Ia(x(t)) = I0
a

1
1 + x6(t)

+ Ba (acceptor) (B.20)

Id(x(t)) = I0
d

x6(t)
1 + x6(t)

+ Bd (donor) (B.21)

The method begins by selecting two uniformly distributed random numbers
ua, ud ∈ (0, 1] then monitoring two separator integrations to find the ∆ti ∀i
such that ∫ ∆ti

0
Ii(t′)dt′ = − ln(ui) (B.22)

recording the event, then reseting that integration and ui while the other con-
tinues unaffected. This procedure is summarized in Algorithm 4.

Algorithm 4 Brownian dynamics and smFRET simulation of length texp

procedure S M F R E T(texp)
u0 ← U (0, 1)
x ←S O LV E(

∫ x
−∞ peq(x′)dx′ = u0) . Find initial starting point from

equilibrium distribution
ua, ud ← U (0, 1)
t, Σa, Σd ← 0 . Keep track of axproximate integral Σ for Equation B.22
dt = 1× 10−9

repeat
R← N (0, dt−1)
x ← x + DF(x)dt +

√
2DR

Σa ← Σa + Ia(x)dt
Σd ← Σd + Ia(x)dt
if Σa > − ln(ua) then R E C O R D(t, x,“acceptor”) . Record photon

detection times to output file
ua ← U (0, 1)
Σa ← 0

end if
if Σd > − ln(ud) then R E C O R D(t, x,“donor”)

ud ← U (0, 1)
Σd ← 0

end if
t← t + dt

until t > texp
end procedure
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B.7 Jeffery’s Prior for Exponential Distribution of
Inter-Photon Times

The jeffery’s prior is optimum for parameter estimation in reducing bias in
experimental procedures where the probability information is a member of the
exponential family of models. This prior is given by the Fisher information[86,
166]

π(x) ∝
√

J(x) (B.23)

and estimations using this prior give Bayesian Maximum a posteriori estimation
(MAP).

The Fisher information for estimating position based upon smFRET data is

J(x) = E∆t

[(
∂ ln p(∆t|x)

∂x

)2

|x
]

(B.24)

For the exponential distribution p(∆t|x) = I(x)e−I(x)∆t with intensity I(x),
doing the derivative gives

J(x) = E∆t

[(
I′(x)− I(x)I′(x)∆t

I(x)

)2

|x
]

(B.25)

Doing the expectation over the distribution of ∆t gives the properties of the
exponential distribution namely E[∆t] = (I(x))−1 and E[(∆t)2] = 2(I(x))−2

gives the fisher information and Jeffery’s Prior

J(x) =
(

I′(x)
I(x)

)2

(B.26)

π(x) ∝
∣∣∣∣ I′(x)

I(x)

∣∣∣∣ (B.27)

For acceptor intensity Ia(x) = I0
a /(1+ x6)+ Ba and I′a(x) = −(6I0

a x5)/(1+ x6)2

we derive acceptor contribution to the prior

πa(x) =
6I0

a x5

(1 + x6)

1
I0
a + Ba(1 + x6)

(B.28)

For donor intensity Id(x) = I0
d x6/(1 + x6) + Bd and I′d(x) = −(6I0

d x11)/(1 +

x6)2 + 6I0
d x5/(1 + x6) we derive donor contribution to the prior

πd(x) =
6I0

d x5

(1 + x6)

1
I0
d x6 + Bd(1 + x6)

(B.29)
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For the independent channels acceptor and donor, the Fisher information is
just the addition J(x) = Ja(x) + Jd(x) and therefore the log-prior distribution
is an addition

ln π(x) = ln
√

π2
a(x) + π2

d(x) (B.30)

which is subsequently added to the dark state operator such that the Jeffery’s
prior applied once per independent measurement.

By adding prior we reduce bias in our maximum likelihood procedure[86]
because the inference step is now combines the Bayesian prior. The effective
result is sharpening of the precision and suppression of oscillations in the wings
of the domain.
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Figure B.3: Jefferys Prior for the acceptor and donor exponential process and
the combined prior used for initializing π(x).

B.8 Proof of the time integration perturbation
theory

The proof of the time integration perturbation theory given by Wilcox [81] for
scalar derivatives by realizing the equivalence of the expression e−∆t(H+εH′) =(

e−
∆t
n (H+εH′)

)n
∀n. To isolate the functional dependence of the perturbation
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H′, the derivative with respect to ε is applied. Applying the product rule to
the derivative of the product results in the sum of many products where the
perturbation operator H′ is sandwiched. Because the operators generally do
not commute, [H, H′] 6= 0, the ordering of terms from the product rule must be
explicitly preserved.

d
dε

e−∆t(H+εH′) =

n

∑
m=1

{(
1− ∆t

n
(H + εH′)

)m−1 (
−∆t

n
H′
)(

1− ∆t
n
(H + εH′)

)n−m
}

(B.31)

The derivative is then evaluated at ε = 0,and the exponent for each product
sandwiching H′ is multiplied by n

n .

d
dε

e−∆t(H+εH′)
∣∣∣∣
ε=0

= − lim
n→∞

n

∑
m=1

∆t
n(

e−
∆t
n H
)n m−1

n H′
(

e−
∆t
n H
)n−m

+O((∆t/n)4) (B.32)

where the error is given by the Trotter splitting formula[126]. Taking the limn→∞
given an effective Riemann integral in the form of a line integral from 0 to ∆t.

d
dε

e−∆t(H+εH′)
∣∣∣∣
ε=0

= −
∫ ∆t

0
dte−tHH′e−(∆t−t)H (B.33)

allowing for the calculation of the functional derivatives from this perturbation
theory of the exponential of operators.
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A P P E N D I X C
Fisher Information Metric for the

Langevin Equation and Least
Informative Models of Continuous

Stochastic Dynamics

C.1 Potential of Mean Force of the Reference
Model

The potential of mean force V(x)/kBT is constructed using the piecewise cubic
Hermite interpolation polynomial pchip() in M AT L A B with the following
points

Table C.1: Interpolation points for V(x)

Position 0.5 0.8 0.9 1 1.1 1.2 1.5
V(x) 60 0 4 ln(4) 5 ln(2) 60
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C.2 Derivation of Eq. (4.18) of FIT for symmetric
ρ(xt, x0)

The starting point is Eq. (4.12) and is restated here:

I∆t(x, y) =
∫

dxtdx0
δ ln p(xt|x0)

δρeq(x)
δ ln p(xt|x0)

δρeq(y)
p(xt, x0). (C.1)

Inputing p(xt|x0) = ρeq(xt)ρ(xt, x0)/ρeq(x0) and ln p(xt|x0) = ln ρeq(xt) +
ln ρ(xt, x0)− ln ρeq(x0) leads to 9 terms:

I∆t(x, y) =
∫

dxtdx0
δ ln ρ(xt, x0)

δρeq(x)
δ ln ρ(xt, x0)

δρeq(y)
p(xt, x0) (C.2)

+
∫

dxtdx0
δ ln ρeq(xt)

δρeq(x)
δ ln ρeq(xt)

δρeq(y)
p(xt, x0) (C.3)

+
∫

dxtdx0
δ ln ρeq(x0)

δρeq(x)
δ ln ρeq(x0)

δρeq(y)
p(xt, x0) (C.4)

−
∫

dxtdx0
δ ln ρeq(x0)

δρeq(x)
δ ln ρeq(xt)

δρeq(y)
p(xt, x0) (C.5)

−
∫

dxtdx0
δ ln ρeq(xt)

δρeq(x)
δ ln ρeq(x0)

δρeq(y)
p(xt, x0) (C.6)

+
∫

dxtdx0
δ ln ρeq(xt)

δρeq(x)
δ ln ρ(xt, x0)

δρeq(y)
p(xt, x0) (C.7)

−
∫

dxtdx0
δ ln ρeq(x0)

δρeq(x)
δ ln ρ(xt, x0)

δρeq(y)
p(xt, x0) (C.8)

+
∫

dxtdx0
δ ln ρ(xt, x0)

δρeq(x)
δ ln ρeq(xt)

δρeq(y)
p(xt, x0) (C.9)

−
∫

dxtdx0
δ ln ρ(xt, x0)

δρeq(x)
δ ln ρeq(x0)

δρeq(y)
p(xt, x0) (C.10)

The collection of integrals of that make up I∆t(x, y) can be paired down
because the density field is symmetric to exchange of xt ↔ x0, ρ(xt, x0) =
ρ(x0, xt). Performing this exchange on Eq. (C.10) gives and exact copy and
cancels with Eq. (C.9). Likewise Eq. (C.8) cancels with Eq. (C.7). The remaining
4 integrals containing the ρeq term require the functional derivative:

δ ln ρeq(xt)

δρeq(x)
=

δ(xt − x)
ρeq(x)

. (C.11)
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Therefore, Eqs. (C.6) and (C.5) become the integral of two delta functions:∫
dxtdx0

δ(xt − x)
ρeq(x)

δ(x0 − y)
ρeq(y)

p(xt, x0) = ρ(x, y), (C.12)

for which the property of ρ(x, y) = p(x, y)/ρeq(x)ρeq(y) is utilized as well.
Applying the same functional derivative to Eqs. (C.4) and (C.3) gives the alter-
native result:∫

dx0
δ(x0 − x)

ρeq(x)
δ(x0 − y)

ρeq(y)

∫
dxt p(xt, x0) = δ(x− y). (C.13)

Here, the integration over xt can be done from the onset due to the lack of its
dependence in the delta functions and noting that p(x0)/ρeq(x0)ρeq(x0) = 1.
Combining these results gives Eq. (4.18):

I∆t(x, y) =
∫

dxtdx0
δ ln ρ(xt, x0)

δρeq(x)
δ ln ρ(xt, x0)

δρeq(y)
p(xt, x0)

+ 2δ(x− y)− 2ρ(xt, x0). (C.14)

C.3 Proof of the Hermitian Property of the
Symetrized Fokker-Planck Equation

The Hermitian property is established by showing that 〈ψi|H |ψj〉 = 〈ψi|H |ψj〉.
For the targeted operator defined in Eq. (4.21), the left-hand side is:∫

dx
ψi(x)
ρeq(x)

∇ · (D(x)ρ2
eq(x)∇

ψj(x)
ρeq(x)

). (C.15)

This equation can be transformed by an integration by parts to:

−
∫

dx(D(x)ρ2
eq(x)∇

ψj(x)
ρeq(x)

) · ∇ ψi(x)
ρeq(x)

. (C.16)

The zero boundary terms in the space of square integrable functions ψ ⊂ L2

were applied. Another integration by parts on the ∇(ψj(x)/ρeq(x)) term gives∫
dx

ψj(x)
ρeq(x)

∇ · (D(x)ρ2
eq(x)∇ ψi(x)

ρeq(x)
), (C.17)

which is recognized as 〈ψi|H |ψj〉. The Hermitian property of the operator
defined in Eq. (4.21) is thus verified.
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C.4 FIT for the Gaussian Process of Constant Force
The time propagator for this process is:

p(x∆t|x0) =
1√

4πD∆t
exp

(
− (x∆t − x0 − FD∆t)2

4D∆t

)
. (C.18)

The calculation of FIT via Eq. 4.12 starts by taking derivatives of p(x∆t|x0)
with respect to the x-independent force F and diffusion coefficient D.

∂ ln p(x∆t|x0)

∂F
=

(∆x− FD∆t)
2

(C.19)

∂ ln p(x∆t|x0)

∂D
=

F(∆x− FD∆t)
2D

+
(∆x− FD∆t)2

4D2∆t
− 1

2D
. (C.20)

Here, ∆x = x∆t− x0. Each element of the Fisher information matrix can then be
found by multiplying these derivatives by one anther and taking the expectation
over the joint probability

∫
dx∆tdx0 p(x∆t, x0) which by rotating the domain,

can easily be done as a integration over ∆x and ∆x′ = x∆t + x0.

IF,F = E

[
(∆x− FD∆t)2

4

]
=

D∆t
2

(C.21)

IF,D = ID,F =
F∆t

2
(C.22)

ID,D =
1

2D2 +
F2∆t
2D

(C.23)

The following properties for the moments of the Gaussian distribution have
also been used to calculate the matrix elements.

E
[
(X− µ)N

]
=


0 N = 1

σ2 N = 2
0 N = 3

3σ3 N = 4

(C.24)

The mean µ is FD∆t and the variance σ2 is 2D∆t.
Taking the continuous limit for the Fisher information of trajectories, I =

lim∆t→0+ tobs I∆t/∆t, the terms with ∆t cancels the first factor terms for ID,D. To
evaluate the information change between parameter sets J1→2, we integrate
according to Eq. 4.46 for the path:

F(ξ) = F1 + (F2 − F1)ξ (C.25)
D(ξ) = D1 + (D2 − D1)ξ, (C.26)
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where ξ ∈ [0, 1]. After apply the sum over the two parameters and the Fisher

information ∑i,j
∂θi
∂ξ Ii,j(~θ)

∂θj
∂ξ the following integral remains

J1→2 =
tobs

2

∫ 1

0
dξ (∆F)2 D(ξ)

2
(C.27)

+(∆F∆D)F(ξ) + (∆D)2
(

F2(ξ)

2D(ξ)
+

∆t−1

2D2(ξ)

)
. (C.28)

Here, ∆F = F2 − F1 and ∆D = D2 − D1. After performing the integration and
collecting terms, the information change is:

J1→2 = tobs
(F2D2 − F1D1)

2

2D2
+ lim

∆t→0+

tobs

∆t

[
2− D2

D1
− D1

D2

]
. (C.29)

This information change is 0 for the case when D1 = D2 and F1 = F2. How-
ever, the two groupings have different scaling behaviors as ∆t→ 0. The second
grouping which solely depends upon the ratio of diffusion constants gives a
rate of divergence at ∝ 1/∆t. This asymptotic behavior for Gaussian processes
has also been worked out via the Kolmogorov-Siani entropy measure.[48] How-
ever, the term with the difference in the square force remains constant through
different values of time resolution and grows linearly with the length of the
trajectory tobs.

C.5 FIT for the Ornstein-Uhlenbeck Process
The Ornstein-Uhlenbeck (OU) process is a system governed by a simple har-
monic potential V(x) = −1/2kx2 with the spring constant k reflecting the
width of the harmonic PMF. The equilibrium probability density of the OU
process is Gaussian:

peq(x) =

√
k

2π
e−kx2/2. (C.30)

The time propagation probability density for the OU process is:

p(x∆t|x0) =
√

k√
2π(1− e−2Dk∆t)

exp

(
−k
(
x∆t − x0e−kD∆t)2

2− 2e−2Dk∆t

)
. (C.31)
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In the continuum limit, we take the Taylor expansion of the exponential up
to linear order in time exp(−2Dk∆t) ' 1− 2Dk∆t to give the approximate
propagator:

p(x∆t|x0) =
1√

4πD∆t
exp

(
− (x∆t − x0 + x0kD∆t)2

4D∆t

)
. (C.32)

Taking the derivative of the log propagator with respect to k results in:

∂ ln p(x∆t|x0)

∂k
=
−x0 (x∆t − x0 + x0kD∆t)

2
. (C.33)

Then, the Fisher information is the expectation of this derivative squared:

Ik =
tobs

∆t
Ex∆t,x0

[
x2

0 (x∆t − x0 + x0kD∆t)2

4

]
. (C.34)

First, taking the expectation over x∆t puts 2D∆t in place of what is essentially a
term of E[(X− µ)2]. Next, the remaining expectation over x2

0 gives the variance
of the equilibrium distribution which is 1/k for a final answer:

Ik =
tobsD

2k
. (C.35)

To relate this result to the overall change in information from an initial state of
k1 = 0 to a final state of k2 = k, we perform the line integral:

J =
−1
2

∫ 1

0
dξ∆k

tobsD
2k(ξ)

∆k = − tobsD
4

∆k ln
k2

k1
. (C.36)

Here, ∆k = k2 − k1 = k. Comparing to the result via the general functional
of Eq. (4.51), J = −D

∫
dx (∇ρeq(x))2 = −(Dk2/4)

∫
dx x2peq(x) = −Dk/4,

the result is different although the scaling is similar. It is because the Fisher
information is not constant with the parameter k. Naturally, systems with a
larger spring constants are more restrictive and also moves faster, i.e., the
dynamics is more deterministic. Therefore, there is more information for
dynamics models with a larger spring constant.
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C.6 Functional derivative of mean first passage
times

The functional derivatives for the mean first passage time give by:

τxA→xB = k−1
A→B =

1
D

∫ xB

xA

dx ρ−2(x)
∫ x

xL

dx′ ρ2(x′)

τxB→xA = k−1
B→A =

1
D

∫ xA

xB

dx ρ−2(x)
∫ x

xR

dx′ ρ2(x′) (C.37)

is derived from finding the first order perturbation from an arbitrary function
f (x) ∫

dx
δτxA→xB

δρ(x)
f (x) =

d
dε

τxA→xB [ρ(x) + f (x)]
∣∣∣∣
ε=0

. (C.38)

Performing the derivation of the above equation with respect to ε gives:

∫
dx

δτxA→xB

δρ(x)
f (x) =

Parts︷ ︸︸ ︷
2
D

∫ xB

xA

dx ρ−2(x)
∫ x

xL

dx′ f (x′)ρ(x′) (C.39)

− 2
D

∫ xB

xA

dx f (x)ρ−3(x)
∫ x

xL

dx′ ρ2(x′). (C.40)

The perturbation f (x) is isolated from the nested integral in Eq. (C.39) by
performing an integration by parts with u =

∫ x
xL

dx′ f (x′)ρ(x′) and dv = ρ−2(x)
to give

Parts =
2
D

(∫ x

xL

f (x)ρ(x)
)(∫ x

xA

dx′ρ−2(x′)
)∣∣∣∣xB

xA

− 2
D

∫ xB

xA

dx f (x)ρ(x)
∫ x

xA

dx′ρ−2(x′). (C.41)
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A P P E N D I X D
Convolution of system and
measurement timescales in

statistical estimation

For the smFRET experiment, the probability of observing Na acceptor photons
and Nd donor photons in a time window ∆t is given by the independent Poisson
probabilities parameterized by intensities Ia and Id

p(Na, Nd; Ia, Id, ∆t) =
(−Ia∆t)Na e−Ia∆t

Na!
(−Id∆t)Nd e−Id∆t

Nd!
(D.1)

These intensities are functions of the normalized distance between the phloro-
phores x according to the equation

Ia(x) =
I0
a

1 + x6 ; Id(x) =
x6 I0

d
1 + x6 (D.2)

By counting the number of photons for a time from the smFRET experiment,
one can calculate a maximum likelihood estimate of the distance of the two
dyes and normal error estimate[60] seen in Section B.4. The difficulty arrises
in that the distance x(t) is also a function of time according to the Langevin
equation dxt = DF(xt) +

√
2DdWt. Therefore the system is moving during the

time at which one would like to make an estimate of its position. The Poisson
probabilities for a system with time varying intensities is just given by those
time average quantities p(Na, Nd, 〈I〉a, Īd, , ∆t) where

〈I〉a(∆t) =
I0
a

∆t

∫ ∆t

0
dt

1
1 + x6(t)

(D.3)



APPENDIX D. CONVOLUTION OF SYSTEM AND MEASUREMENT
TIMESCALES IN STATISTICAL ESTIMATION 124

However, now the statistical estimator is finding the time smeared position of
the system rather than the actual location. Performing a histogram reconstruc-
tion of these estimates to get an approximate equilibrium distribution of states
can therefore be problematic.[63]

Figure D.1: The histogram of estimated states from the time windowed estimate
at various precision levels δ = 0.1, 0.05, 0.025 for a 3-well hypothetical model.

Finding the probability for the time averaged intensity, depends on the
governing dynamics of the system, namely the force profile and diffusion
constant. Gopich and Szabo have derived these distributions using a numerical
inversion of the Fourier and Laplace transformed time propagator[34], we
present an alternative approach using a 2-D Fokker planck equation and a finite
element partial derivative solver. We can actually write the time evolution of
this averaged intensity by taking the derivative with respect to ∆t to give

d〈I〉a(t)
dt

=
1
t

(
I0
a

1 + x6(t)
− 〈I〉a(t)

)
(D.4)

which is purely deterministic dynamics with an effective information force

FI(x, 〈I〉) =
(

I0
a

1+x6(t) − 〈I〉a(t)
)

and time dependent diffusion DI(t) = 1
t that
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tends towards compiling the instantaneous values of intensity. Combining the
stochastic differential equation for xt with this ODE can give the time evolution
of the joint probability

∂p(x, 〈I〉a, t)
∂t

= D
∂2p(x, 〈I〉a, t)

∂x2 − ∂DF(x)p(x, 〈I〉a, t)
∂x

− ∂DI(t)FI(x)p(x, 〈I〉a, t)
∂x

(D.5)

This equation is integrated starting from the initial condition that p(x, 〈I〉a, t =
0) = peq(x)δ(x− Ia(x)), using the finite element solver C O M S O L (Shown in
Figure D.2).

Figure D.2: Contours of the FEM Integration of p(x, 〈I〉, t) from C O M S O L
with the marginalized probabilities plotted on the borders of the contour. From
left to right ∆t = 0, 2, 5.

The desired probabilities of the time averaged intensity can then be found
though marginalizing the joint probability p(〈I〉a) =

∫
dxp(x, 〈I〉a; t = ∆t)

at the desired time window length. The complementary procedure is also
followed for p(〈I〉d). In Figure D.3 the Poisson distributions from D.1 are
plotted for a 3-well system both with dynamics turned off D = 0 and dynamics
that decays on the timescale of the emission rates of photons. Only in the
static system, can a clear separation between the two major states emission
probabilities be found.

Finally, these intensity distributions are used to produce estimates of the
results of applying the Maximum Information Method (MIM) point estimate
and histogram analysis from [63]. In Figure D.1, the parameter δ adjusts the
standard error of the point estimate from a particular time bin. As this error is
reduced, one must wait and watch for photons longer and therefore the system
is allowed to relax further and blur the expected state distribution. At short
times, there is not enough experimental accuracy in the estimate to separate
out states on the domain.
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Figure D.3: Contours of the distributions of photon counts p(Na, Nd; ∆t) at
various time resolutions Tavg = 1, 3, 5 for a 3-well hypothetical model. (top)
Dynamic system which relaxes on the timescale of τ = 1 and thus blurs the
system distribution into one likely intensity. Spread of contour is then due to
Poisson statistics. (bottom) Static system which preserves 2 clustered contour
peaks (3rd equilibrium states is too rare and is lost).
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