
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Parameter Inference for Stochastic Differential Equations

Permalink
https://escholarship.org/uc/item/3c31h0bw

Author
Rajapaksha Wasala Mudiyanselage, Anusha Madushani

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3c31h0bw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Parameter Inference for Stochastic Differential Equations

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Applied Mathematics

by

R. W. M. A. Madushani

Committee in charge:

Professor Harish S. Bhat, Chair
Professor Roummel F. Marcia
Professor Suzanne S. Sindi

2017

Copyright

R. W. M. A. Madushani, 2017

All rights reserved.

The dissertation of R. W. M. A. Madushani is ap-

proved, and it is acceptable in quality and form for

publication on microfilm and electronically:

(Professor Roummel F. Marcia)

(Professor Suzanne S. Sindi)

(Professor Harish S. Bhat, Chair)

University of California, Merced

2017

iii

DEDICATION

To my wonderful mother, Asoka Damayanthi, and my beloved husband

Lasith Adhikari.

iv

EPIGRAPH

In the middle of every difficulty

lies opportunity.

—Albert Einstein

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

Acknowledgements . viii

Vita and Publications . ix

Abstract . x

Chapter 1 Introduction . 1
1.1 Key Contributions of the Dissertation 2
1.2 Organization of the Dissertation 3

Chapter 2 Likelihood Computation with Density Tracking by Quadrature . . 5
2.1 Introduction . 5
2.2 Likelihood Computation for Scalar Stochastic Differential

Equations . 6
2.2.1 Likelihood for One Time Series 7
2.2.2 Likelihood for Many Time Series 7
2.2.3 Numerical Method: Density Tracking by Quadrature 8

2.3 Likelihood for Coupled Stochastic Differential Equations . . 11

Chapter 3 Convergence Analysis of Density Tracking by Quadrature 15
3.1 Introduction . 15

3.1.1 Alternative Approaches 17
3.1.2 Prior Work . 19
3.1.3 Summary of Results and Outline 20

3.2 Problem Setup . 21
3.3 Notation and Assumptions 22
3.4 Preliminary Theory . 24
3.5 Convergence Theorem . 31
3.6 Boundary Truncation . 35
3.7 Numerical Experiments . 41

3.7.1 Convergence . 42
3.7.2 Comparison with Fokker-Planck 45

3.8 Conclusion and Future Directions 49

vi

Chapter 4 Parameter Inference for Scalar SDE via Maximum Likelihood Ap-
proach . 54
4.1 Introduction . 54
4.2 The Maximum Likelihood Estimation 55

4.2.1 Gradient of the Likelihood via the Direct Method . . 56
4.2.2 An Adjoint-Based Gradient of the Likelihood 58

4.3 Parametric Inference with Maximum Likelihood
Approach . 62

4.4 Nonparametric Adjoint-Based Inference 69
4.5 Discussion and Conclusion 81

Chapter 5 Inference for Coupled SDE: Metropolis Algorithms via Density
Tracking by Quadrature . 83
5.1 Introduction . 83
5.2 Bayesian Inference . 84

5.2.1 Metropolis Algorithm 84
5.3 Numerical Tests . 85

5.3.1 Stochastic Van der Pol Oscillator 85
5.3.2 Stochastic Pursuit Models from Basketball Tracking

Data . 88
5.4 Discussion and Conclusion 93

Chapter 6 Conclusions and Future Work . 94
6.1 Summary . 94
6.2 Future Work . 95

Bibliography . 97

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor professor Harish Bhat, for

his continuous support for my research, for his encouragement, patience, and immense

knowledge. Without his help and guidance, this thesis would not have been possible.

I would also like to express my sincere gratitude to my thesis committee members:

professor Roummel Marcia and professor Suzanne Sindi for their insightful comments

and suggestions.

Also I would like to thank professor Arnold Kim for helping me to solve some

research questions providing great ideas and directing me in the correct path. I also

want to thank professor Francois Blanchette for being willing to discuss some of my

research questions when I was stuck and disappointed. At UC Merced, I learned a lot of

applied mathematics concepts and techniques which helped me to complete this thesis

successfully. For this, I am grateful to the professors who taught me here: Noemi Petra,

Boaz Ilan, Arnold Kim, Roummel Marcia and Francois Blanchette.

I also would like to thank Dr. Nitesh Kumar, Dr. Derya ahin Biryol, Dr. Jane Hyo Jin

Lee, and Dr. Garnet Vaz for helping me in the beginning of my graduate life giving me

bits of advice to succeed. Last but not least, I would like to thank my beloved husband

Dr. Lasith Adhikari who has always encouraged me and helped me to overcome the

difficulties throughout this experience, and I can not thank you enough for the things

you have done for me throughout my life ever since I met you.

viii

VITA

2010 B. Sc. (Special) in Mathematics, University of Sri Jayewar-
denepura, Sri Lanka

2012-2017 Graduate Teaching Assistant, University of California, Merced

2017 Ph. D. in Applied Mathematics, University of California,
Merced, USA

PUBLICATIONS

H. S. Bhat and R. W. M. A. Madushani, “Computing the density function for a nonlin-
ear stochastic delay system”, Proceedings of the 12th IFAC Workshop on Time Delay
Systems (TDS 2015), IFAC-PapersOnLine, 48 (12), pp. 316-321, 2015.

H. S. Bhat, and R. W. M. A. Madushani, “Nonparametric adjoint-based inference for
stochastic differential equations”, Proceedings of the 2016 IEEE International Confer-
ence on Data Science and Advanced Analytics (DSAA), pp. 798-807, 2016.

H. S. Bhat, R. W. M. A. Madushani, and S. Rawat, “Scalable SDE filtering and inference
with Apache Spark”, Journal of Machine Learning Research W&CP, 53, Proceedings
of the 5th International Workshop on Big Data, Streams and Heterogeneous Source
Mining: Algorithms, Systems, Programming Models and Applications (KDD BigMine
’16), pp. 18-34, 2016.

H. S. Bhat, R. W. M. A. Madushani, and S. Rawat, “Bayesian inference of stochastic
pursuit models from basketball tracking data”, Proceedings of the 3rd Bayesian Young
Statisticians Meeting (BAYSM 2016), Accepted 2016.

H. S. Bhat and R. W. M. A. Madushani, “Density Tracking for Stochastic Differential
Equations”, Statistics and Computing, Submitted 2016.

H. S. Bhat, R. W. M. A. Madushani, and S. Rawat, ‘Parameter inference for stochastic
differential equations with density tracking by quadrature”, 8th international workshop
on simulation (IWS), Submitted 2016.

ix

ABSTRACT OF THE DISSERTATION

Parameter Inference for Stochastic Differential Equations

by

R. W. M. A. Madushani

Doctor of Philosophy in Applied Mathematics

University of California Merced, 2017

Professor Harish S. Bhat, Chair

In this dissertation, we consider the problem of inferring unknown parameters of stochas-

tic differential equations (SDE) from time-series observations. In particular, we develop

and test numerical methods to perform frequentist and Bayesian inference for SDE. A

key challenge in developing practical inference algorithm is the computation of the like-

lihood. To compute the likelihood, we propose a novel, fast method that tracks the prob-

ability density of the SDE. Our method does not rely on sampling; instead, it evolves

the density in time using repeated quadrature on the Chapman-Kolmogorov equation

of the Markov chain that results from a time discretization of the SDE. We name our

method density tracking by quadrature (DTQ). Our method enables accurate, paralleliz-

able computation of the likelihood when the data is collected with large inter-observation

time or when the data consists of one or more time series. In this dissertation, we focus

on a particular case of the DTQ method that arises from applying the Euler-Maruyama

method in time and the trapezoidal quadrature rule in space. Under some regularity

condition for the drift and the diffusion terms of SDE, we theoretically prove that the

density computed by the DTQ method converges in L1 to the exact density with a first-

order convergence rate in temporal step size. Numerical tests show that the empirical

performance of the DTQ method complies with the theoretical convergence results.

To perform inference using maximum likelihood approach, we develop methods to

compute the gradient of the likelihood. We propose a direct method to compute the

gradient from the DTQ likelihood and use this direct method to perform parametric

x

inference of the SDE. We also propose a more efficient adjoint-based method to compute

the gradient information with a computational cost (in time) that does not scale with

the dimension of the unknown parameter vector. Therefore, we use this adjoint-based

method to perform nonparametric inference of SDE. Using the DTQ method to compute

the likelihood, we also develop a Markov Chain Monte Carlo (MCMC) algorithm using

a Metropolis scheme to perform Bayesian inference. We apply this Bayesian inference

method for coupled SDE. In this work, we derive a coupled, nonlinear SDE to model

the chasers pursuit of the runner in a basketball game. We perform Bayesian inference

using NBA tracking data to show the appropriateness of the model for basketball fast

break situations.

xi

Chapter 1

Introduction

Stochastic differential equations (SDE) are commonly used as a tool to model dy-

namical systems that are influenced by random noise. For example, in finance, many

different SDE have been developed to model financial quantities such as asset prices,

interest rates, and their derivatives. To name a few, the geometric Brownian motion is

used to models stock prices [47], and models of interest rates include Vasicek model

[63] and the Cox-Ingersoll-Ross model [21, 20]. In population biology, SDE are used

to model two interacting populations such as epidemics consisting of susceptible and

infected subpopulations [28] or predator-prey systems [2]. Physicists use SDE to model

the motion of particles subjected to thermal fluctuations [57]. Other applications areas

of SDE include genetics [33], Social sciences [19], geophysics [42], biology[6], and

geostatistics [22].

In this dissertation, we focus on the problem of estimating unknown parameters from

time-series observations of an SDE. Consider the following SDE of the form

dXt = f (Xt ;θ)dt +g(Xt ;θ)dWt (1.1)

where Xt is a scalar stochastic process, θ ∈ RN is a vector of unknown parameters, and

Wt is the standard Brownian motion also known as the Wiener process. Here f and g

are referred to, respectively, as the drift and diffusion functions. Our goal is to estimate

unknown parameter vector θ from time-series observations of Xt . When the functional

form of the f and g are known, the problem is called a parametric inference problem.

Otherwise, it is called a nonparametric inference problem. However, the parameter in-

1

2

ference of SDE models is a very challenging problem, due to the fact that the likelihood

function is generally unknown for the case where time-discrete observations are avail-

able [58, 31, 26]. The exact likelihood function for the SDE can only be computed in

special cases when we can solve analytically for the SDE’s transition density. Therefore,

prior work has focused on approximating the exact likelihood, either through analytical

methods, numerical methods, or a combination of the two. For a thorough review of

past work on this problem, we refer the reader to [18, 58, 31, 8, 26]. In our work, we

seek for efficient numerical methods applicable to a large class of SDE that do not rely

on sampling to solve the parameter inference problem.

1.1 Key Contributions of the Dissertation

The primary goal of this research work is to develop fast, scalable and deterministic

algorithms to perform efficient Bayesian or frequentist inference for SDE. Following we

list our main original contributions to the area of parameter inference of SDE.

1. We propose a novel fast numerical method to compute the likelihood function of

a scalar SDE. The proposed method tracks the probability density function of the

SDE and hence can be used to approximate transitional densities. By virtue of

how the method is derived, we refer to the method as density tracking by quadra-

ture (DTQ). The DTQ method stems from discretizing the SDE in time using the

explicit Euler-Maruyama scheme, resulting in a discrete-time Markov chain on

a continuous state space. By applying quadrature in the form of the trapezoidal

rule, the DTQ method solves the Chapman-Kolmogorov equation for this Markov

chain at each time step. When the data consists of one or more time series, the

DTQ method enables accurate, parallelizable computation of the likelihood.

2. We establish theoretical and empirical convergence results of the proposed DTQ

method. Our main result establishes that the density computed by the DTQ method

converges in L1 to both the exact density of the Markov chain (with exponential

convergence rate), and to the exact density of the SDE (with first-order conver-

gence rate). We also establish a Chernoff bound that implies convergence of a

3

domain-truncated version of the DTQ method. The convergence requires regular-

ity of both f and g, together with restrictions on the rates at which the temporal

and spatial grid spacing tends to zero. We carry out numerical tests to show that

the empirical performance of the DTQ method matches theoretical results, and

also to demonstrate that the DTQ method can compute densities several times

faster than a Fokker-Planck solver, for the same level of error.

3. We develop efficient algorithms to compute maximum likelihood estimates for

scalar SDE through numerical optimization of the negative log likelihood com-

puted from the DTQ method. More specifically, we develop numerical methods

to compute accurate approximations to the gradient of the negative log likelihood.

We first propose a direct method of gradient computation and use the method

to solve the parametric inference problem. Then we proposed a more efficient

adjoint-based method to compute the gradient which enables the inference to scale

well as the dimensionality of the unknown parameter vector grows. We apply the

adjoint-based inference method to perform nonparametric inference of the drift

and diffusion functions of an SDE.

4. We develop a Metropolis algorithm to perform Bayesian inference for models

given by coupled SDE. To compute the required likelihood in the Metropolis algo-

rithm, we generalize the DTQ method for coupled SDE. We test the effectiveness

of the method through simulation experiments of a stochastic van der Pol oscilla-

tor model. We also formulate a stochastic version of the classical pursuit model

which consists of a set of coupled, nonlinear SDE to model the chasers pursuit

of the runner in a basketball game. Then we perform Bayesian inference for this

stochastic pursuit model using basketball spatial tracking data.

1.2 Organization of the Dissertation

The structure of the dissertation is as follows. In Chapter 2, we introduce the new

DTQ method to compute the likelihood function. First, we consider the likelihood com-

putation of scalar SDE starting with formulating the likelihood for scenarios with a

4

single time-series data, and multiple time-series data separately. Then we detail the

derivation of the DTQ method for both the scenarios. Finally, we generalized the DTQ

method for coupled SDE.

In Chapter 3, we provide theoretical and empirical convergence results for the pro-

posed DTQ method. Under some regularity conditions, we show that the DTQ method

converges to the exact probability density function in L1 norm error with a linear rate

of convergent in temporal step size for a class of SDE. We also describe the results of

numerical tests that confirm the empirical performance of the DTQ method is parallel

to theoretical convergent results. In addition, we also discuss results from comparison

tests of the DTQ method against a Fokker-Planck numerical solver.

Chapter 4 consists of methods to infer parameters of scalar SDE using maximum

likelihood approach. In Chapter 4, we begin with introducing the optimization problem

that minimizes the negative log likelihood. We derive two methods to compute the

gradient of the negative log likelihood: the direct method and the adjoint method. We

detail the two methods for two scenarios: one time-series and the multiple time-series

data problems. Then we discuss results from the numerical tests carried out to test the

performance of the DTQ method together with a direct gradient computation to solve

the parametric inference problem. Lastly, we discuss an adjoint-based nonparametric

method to infer parameters of SDE from repeated time series and/or high-dimensional

longitudinal data.

In Chapter 5, we describe a Bayesian inference method for coupled SDE. We de-

tail the derivation of Markov Chain Monte Carlo (MCMC) algorithm developed using

a Metropolis scheme that uses the DTQ method compute the likelihood information.

We discuss the performance of the methods providing results from simulation tests on

a model of stochastic van der Pol oscillator. Then we detail the derivation of a cou-

pled SDE to model fast break situations involve one runner and one chaser in a basket-

ball game. We also provide results that validate the performance of the model through

Bayesian inference of the model parameters from NBA tracking data.

Finally, Chapter 6 concludes the dissertation with a summary of the current work

and possible directions for future research.

Chapter 2

Likelihood Computation with Density

Tracking by Quadrature

2.1 Introduction

A key challenge in developing practical algorithms to perform Bayesian or frequen-

tist inference of SDE is the computation of the likelihood. We address this problem

through the use of a fast, convergent method to track the transition densities of the SDE.

The inference method adapts well to scenarios in which the data consists of many sam-

ples at one point in time, or when the data consists of one or more time series. Consider

the computation of the transition density pXt j+1
(x j+1|Xt j = x j,θ). Here Xt stands for the

state of a process that evolves forward in time via an SDE with parameter vector θ . We

let x j and x j+1 denote the true states of the system at times t j and T = t j+1. Let p(x, t)

denote the density function of Xt . Then one approach to approximating the transition

density is to numerically solve the forward Kolmogorov (or Fokker-Planck) equation

with the initial condition p(x, t j) = δ (x− x j) up to time t j+1. Then p(x j+1,T) will be a

numerical approximation of the transition density. The Kolmogorov equation is a linear

partial differential equation (PDE) with spatially-dependent coefficients. Our approach

is similar in that we also numerically track the density p(x, t) without sampling. In-

stead of numerically solving a PDE, we track the density by applying quadrature to

the Chapman-Kolmogorov equation associated with a time-discretization of the SDE.

5

6

Hence we name our method as density tracking by quadrature (DTQ).

Other methods similar to ours are those of [49] and [55]. In these methods, one

also starts with the Chapman-Kolmogorov equation for the Euler-Maruyama scheme

applied to the SDE. However, instead of evaluating the resulting integrals by determin-

istic quadrature, Pedersen and Santa-Clara evaluate the integrals by Monte Carlo meth-

ods. These methods involve generating numerical sample paths of the SDE at times

in between the observation times. This approach is problematic unless one generates

sample paths conditional on both the initial condition Xt j = x j and the final condition

Xt j+1 = x j+1. The work of [1] shares our goal of computing an accurate approximation

of the exact transition density and resulting likelihood function. Instead of applying

quadrature, Aı̈t-Sahalia expands the transition density in a Gram-Charlier series and

then computes the expansion coefficients up to a certain order.

This chapter is structured as follows: under the Section 2.2 we first introduce the

likelihood function for scalar SDE when the data consists of one or more time series. In

Section 2.2.3, we detail the DTQ method by carrying out the derivations for the cases

where the data consists of either one or multiple sample paths. As we show, the DTQ

method enables one to break the computation of the likelihood into a sum of likelihoods

involving consecutive pairs of observations (t j,x j) and (t j+1,x j+1), and for each such

pair, the DTQ method computes the likelihood using iterated matrix multiplication. Fi-

nally, in Section 2.3, we generalized the DTQ method for coupled SDE.

2.2 Likelihood Computation for Scalar Stochastic Dif-

ferential Equations

In this section, we consider the likelihood computation of SDE (1.1). Let us sup-

pose that the functional forms of f , and g are known. In other words, we consider the

parametric inference problem. Suppose, we observe (1.1) at times t j = j∆t for some

fixed time-step ∆t > 0, for j = 0, . . . ,L. At each time t j, we collect ν samples of Xt j

and label these samples as x j ∈ Rν . We let x = x0,x1, . . . ,xL denote all of the collected

observations. Our goal is to use x to infer θ . Key component of the inference prob-

lem is the computation of likelihood function p(x|θ). Let us formulate the likelihood.

7

We first specify our notation. If A1, . . . ,AN is a collection of random variables, then

pA1,...,AN (z1, . . . ,zN) denotes the joint probability density function of A1, . . . ,AN . Condi-

tional densities will be denoted similarly. Also, note that we have assumed equispaced

temporal observations in this problem. However, we make this assumption purely for

notational simplicity; the method we describe can be easily adapted for nonequispaced

temporal observations.

2.2.1 Likelihood for One Time Series

Now suppose we have collected only one observation at each point in time t j, i.e.,

case where ν = 1. Then the likelihood we seek to compute can be more accurately

written as

p(x|θ) = pXtL ,...,Xt0
(xL, . . . ,x0|θ).

First let us use the fact that the SDE (1.1) is an Ito diffusion and therefore satisfies the

strong Markov property (see [12]). This enables us to write down our first expression

for the likelihood function:

L (θ) = pXtL ,...,Xt0
(xL, . . . ,x0|θ) = pXt0

(x0)
L−1

∏
j=0

pXt j+1
(x j+1|Xt j = x j,θ).

For notational simplicity only, here we assume pXt0
(x0) = 1, i.e., a deterministic initial

observation x0. Therefore, the negative log likelihood of the observed time series is

given by

− logL (θ) =−
L−1

∑
j=0

log pXt j+1
(x j+1|Xt j = x j;θ), (2.1)

where pXt j+1
(x j+1|Xt j = x j;θ) is the conditional density of Xt j+1 = x j+1 given Xt j = x j

(Also known as the transitional density).

2.2.2 Likelihood for Many Time Series

Here we consider the case where we have many observations at each point in time

(ν > 1). In other words, we reinterpret x = x0,x1, . . . ,xL as a sequence of vector-valued

observations. For each s = 1,2, . . . ,ν , the sequence xs
0,x

s
1, . . . ,x

s
L is a scalar time series.

8

With these changes, the log likelihood becomes

logL (θ) =
L−1

∑
j=0

ν

∑
r=1

log pX j+1(x
r
j+1|X j = {xs

j}ν
s=1;θ). (2.2)

2.2.3 Numerical Method: Density Tracking by Quadrature

In this section, we introduce a new numerical method to compute the likelihood.

Because this method computes an approximation to the conditional density via iterated

quadrature, we refer to the method as DTQ. In what follows, we first consider the com-

putation of the likelihood for the case where ν = 1, i.e., we have collected only one

observation at each point in time t j. Later, in a subsequent section, we discuss the gen-

eralization of the method for the case where we have many observations at each point in

time (ν > 1).

Density Tracking by Quadrature for One Time Series

Let us start with approximating transition densities in (2.1). Each term in the product

can be interpreted as follows: we start the SDE (1.1) with the initial condition Xt j = x j

and fixed parameter vector θ . We then solve for the probability density function of Xt j+1 ,

and evaluate that density function at x j+1. By following these steps, we have calculated

pXt j+1
(x j+1|Xt j = x j;θ).

We now outline the DTQ method to compute the aforementioned probability density

function. The first step of the DTQ method is to discretize (1.1) in time using the Euler-

Maruyama scheme. We select an internal time step h, a small fraction of ∆t, and set

hF = ∆t where F ∈ Z and F ≥ 2. Then the Euler-Maruyama discretization gives

X̃ j+n/F = X̃ j+(n−1)/F + f̂ (X̃ j+(n−1)/F ;θ)h + ĝ(X̃ j+(n−1)/F ;θ)h1/2Z j+n/F , (2.3)

for n = 1, . . . ,F . Here {Z j+n/F} is an i.i.d. family of Gaussian random variables with

mean 0 and variance 1. The random variable X̃ j is intended to approximate Xt j when

the index j is an integer. When the index j is not an integer, X̃ j represents a random

variable that interpolates in time between the random variables that have been sampled

to give us our data. The idea now is to approximate pXt j+1
(x j+1|Xt j = x j;θ) in (2.1) with

9

pX̃ j+1
(x j+1|X̃ j = x j;θ). The Chapman-Kolmogorov equation for the Markov chain (2.3)

is:

pX̃ j+n/F
(y|X̃ j = x j;θ) =

∫
z

pX̃ j+n/F
(y|X̃ j+(n−1)/F = z;θ)× pX̃ j+(n−1)/F

(z|X̃ j = x j;θ)dz.

(2.4)

Here y and z represent any value in the state spaces of the random variables X̃ j+n/F and

X̃ j+(n−1)/F , respectively. Now let Gh
θ
(y,z) denote the probability density function of a

Gaussian random variable with mean z+ f̂ (z;θ)h and variance ĝ(z;θ)2h, evaluated at y.

From (2.3) we observe that, for each n ∈ {1, . . . ,F},

pX̃ j+n/F
(y|X̃ j+(n−1)/F = z;θ) = Gh

θ (y,z), (2.5)

and (2.4) becomes

pX̃ j+n/F
(y|X̃ j = x j;θ) =

∫
z
Gh

θ (y,z)pX̃ j+(n−1)/F
(z|X̃ j = x j;θ)dz. (2.6)

When n= 1 on the right-hand side, we see that conditioning on X̃ j = x j forces pX̃ j
(z|X̃ j =

x j;θ) = δ (z− x j). This enables us to evaluate (2.6) at n = 1 to obtain

pX̃ j+1/F
(y|X̃ j = x j;θ) = Gh

θ (y,x j). (2.7)

Starting with (2.7), we can now compute (2.6) iteratively to obtain the transition density

pX̃ j+n/F
(y|X̃ j = x j;θ). We compute (2.6) using trapezoidal quadrature rule.

Let us first truncate the infinite domain of the integral to (−zM,zM), and introduce

the spatial grid spacing k > 0 such that k = (zM)/M. We use superscripts to denote

spatial grid locations, for example, za1 = a1k for all integers a1 ∈ {−M, . . . ,0, . . . ,M}.
By applying the trapezoidal rule to the right-hand side of (2.6), we get

pX̃ j+n/F
(y|X̃ j = x j;θ)≈ k

M

∑
a1=−M

Gh
θ (y,z

a1)pX̃ j+(n−1)/F
(za1|X̃ j = x j;θ). (2.8)

Let kGh
θ
(ya2,za1) be the (a2,a1) element of a matrix K(2M+1)×(2M+1). We also define

the a2-th element of the vector p̂ j+n/F by p̂a2
j+n/F = pX̃ j+n/F

(ya2|X̃ j = x j;θ). Now (2.8)

reduces to matrix-vector multiplication:

p̂ j+n/F = K p̂ j+(n−1)/F . (2.9)

10

Starting with the initial vector p̂ j+1/F , given by the right-hand side of (2.7) discretized

on the spatial grid, we apply (2.9) F −1 times to get p̂ j+1 = KF−1 p̂ j+1/F , where p̂ j+1

is the approximation of the transition density function pX̃ j+1
(y|X̃ j = x j;θ) on the spatial

grid. To find the value of the transition density at y = x j one could use interpolation on

p̂ j+1. Instead of using interpolation, in our method we first compute p̂ j+(F−1)/F using

(2.9), i.e.,

p̂ j+(F−1)/F = KF−2 p̂ j+1/F . (2.10)

Now define the vector ΓF−1 by Γ
aF−1
F−1 = kGh

θ0
(x j+1,yaF−1), where aF1 is any integer

between −M and M. Let T denote transpose. Putting everything together, we obtain,

respectively, the transition density and the negative log likelihood:

pX̃ j+1
(x j+1|X̃ j = x j,θ)≈ [ΓF−1]

T p̂ j+(F−1)/F , (2.11)

− logL (θ)≈−
L−1

∑
j=0

log
(
[ΓF−1]

T KF−2 p̂ j+1/F

)
. (2.12)

Density Tracking by Quadrature for Many Time Series

Recall that the negative log likelihood for the case ν > 1 is given by (2.2) in Section

2.2.2. Approximating each transitional density with Euler-Maruyama approximation we

get the following approximation for the log likelihood.

logL (θ)≈
L−1

∑
j=0

ν

∑
aF=1

log pX̃ j+1
(xaF

j+1|X̃ j = {xs
j}ν

s=1;θ). (2.13)

The derivation of the negative log likelihood (2.13) is identical to that given in previous

section for one time series. The only real change is that when ν > 1, we use the samples

{xs
j}ν

s=1 of the random variable X̃ j to estimate the density of X̃ j as follows:

pX̃ j
(z)≈ 1

ν

ν

∑
q=1

δ (z− xq
j). (2.14)

This approximation is a density estimate that corresponds to the spatial derivative of the

empirical cumulative distribution function of the samples. By logic analogous to (2.7),

11

we can then compute the initial density function pX̃ j+1
(y|X̃ j = {xs

j}ν
s=1;θ) by

pX̃ j+1/F
(y|X̃ j = x j,θ) =

∫
z
Gh

θ (y,z)pX̃ j
(z)dy

≈ 1
ν

ν

∑
q=1

Gh
θ (y,x

q
j). (2.15)

We calculate the negative log likelihood by repeatedly applying (2.4), starting with the

initial density given by (2.15) for n = 2. We make the approximation (2.14) so that we

can evolve the density along each sample path with the same initial condition. Other-

wise, we would have to repeat the calculation (2.12) ν times.

Now let us redefine p̂ j+1/F such that its a1-th element is (2.15) evaluated at the

spatial grid point ya1 . Then we can use (2.10) to compute p̂ j+(F−1)/F . We also redefine

ΓF−1 to be a matrix of dimension ν × (2M + 1) whose (aF ,aF−1) entry is Γ
aF ,aF−1
F−1 =

kGh
θ
(xaF

j+1,y
aF−1). Note that the superscript in xaF

j+1 is used to denote the aF -th sample

observation taken at time t j+1, whereas the superscript in yaF−1 denotes the spatial grid

location. With these changes, (2.12) becomes

− logL (θ)≈−
L−1

∑
j=0

ν

∑
aF=1

log
(
ΓF−1 p̂ j+(F−1)/F

)
aF
. (2.16)

Note that the drift f and g in the SDE (1.1) depends only on Xt and does not explicitly

depend on time t. Even though, we have discussed the likelihood computation for this

specific type of SDE under this Section 2.2, the DTQ method is easily generalizable for

SDE with time-dependent drift and diffusion. In Section 2.3 we extend the DTQ method

for coupled SDE with time-dependent drift and diffusion functions.

2.3 Likelihood for Coupled Stochastic Differential Equa-

tions

Let W1,t and W2,t denote two independent Wiener processes with W1,0 = W2,0 = 0

almost surely. In this section, we deal with coupled SDE of the form:

dX1,t = f1(t,Xt ,θ)d t +g1(t,Xt ,θ)dW1,t (2.17a)

dX2,t = f2(t,Xt ,θ)d t +g2(t,Xt ,θ)dW2,t . (2.17b)

12

Here Xt = (X1,t ,X2,t) is a two-dimensional stochastic process. For j = 1,2, we refer to f j

and g j as, respectively, drift and diffusion functions. Both drift and diffusion functions

may depend on a parameter vector θ ∈ RN .

Our goal is to infer θ from discrete-time observations of Xt . Suppose that at a se-

quence of times 0 = t0 < t1 < · · ·< tL = T , we have observations x := {(x1,m,x2,m)}L
m=0.

Here xm = (x1,m,x2,m) is a sample of Xtm . Again we assume equispaced temporal obser-

vations here, i.e., tm = m∆t for fixed step size ∆t > 0. We discretize the SDE (2.17) in

time using the Euler-Maruyama scheme:

Xn+1
1 = Xn

1 + f1(tn,Xn
1 ,X

n
2 ,θ)h+g1(tn,Xn

1 ,X
n
2 ,θ)
√

hZn+1
1 (2.18a)

Xn+1
2 = Xn

2 + f2(tn,Xn
1 ,X

n
2 ,θ)h+g2(tn,Xn

1 ,X
n
2 ,θ)
√

hZn+1
2 . (2.18b)

Here h > 0 is a fixed time step, the time step of our numerical method. We shall choose

h to be a fraction of ∆t, i.e., Fh = ∆t for integer F ≥ 2. The random variables Xn
i for

i = 1,2 are approximations of Xi,nh. The Zn
i are independent and identically distributed

random variables, normally distributed with mean 0 and variance 1, i.e., Zn
i ∼N (0,1).

Let p̃(x |θ) denote the likelihood under the discrete-time model (2.18), an approxi-

mation to the true likelihood p(x |θ). Note that (2.18) describes a discrete-time Markov

chain. By the Markov property, the likelihood p̃(x |θ) factors and we can write:

p(x |θ)≈ p̃(x |θ) =
L−1

∏
m=0

p̃(xm+1 |xm,θ). (2.19)

The term p̃(xm+1 |xm,θ) is the transition density for (2.18), from state xm at time tm to

state xm+1 at time tm+1. In the next subsection, we discuss how to compute this density

using the DTQ method.

Density Tracking by Quadrature (DTQ)

Equation (2.18) describes a Markov chain over a continuous state space. If we let

p̃n(x1,x2 |θ) denote the joint probability density function of Xn
1 and Xn

2 given θ , then

the Chapman-Kolmogorov equation associated with (2.18) is

p̃n+1(x1,x2 |θ) =
∫

y1,y2∈R2
K(x1,x2,y1,y2, tn;θ)p̃n(y1,y2 |θ)dy, (2.20)

13

where

K(x1,x2,y1,y2, tn;θ) = p̃n+1|n(x1,x2|y1,y2,θ)

= (2πσ
2
1)
−1/2 exp

[
−(x1−µ1)

2/(2σ
2
1)
]
(2πσ

2
2)
−1/2 exp

[
−(x2−µ2)

2/(2σ
2
2)
]
.

Here µ1 = y1 + f1(tn,y1,y2;θ)h,µ2 = y2 + f2(tn,y1,y2;θ)h,σ2
1 = g2

1(tn,y1,y2;θ)h and

σ2
2 = g2

2(tn,y1,y2;θ)h. That is, K(x1,x2,y1,y2, tn;θ) is the conditional density of Xn+1
1

and Xn+1
2 given Xn

1 = y1, Xn
2 = y2 and a fixed θ , evaluated at the point (x1,x2). The

fact that the conditional density is a product of normal distributions with means µ1,µ2

and variances σ2
1 ,σ

2
2 can be shown using (2.18) together with the fact that Xn+1

1 and

Xn+1
2 are conditionally independent given Xn

1 and Xn
2 . This conditional independence is

a direct consequence of having two independent random variables Zn
1 and Zn

2 in (2.18).

Now let us apply quadrature to (2.20) to evolve an initial density forward in time.

Consider a (2M + 1)× (2M + 1) spatial grid with fixed spacing k > 0 and grid points

xi
1 = ik, x j

2 = jk, yi′
1 = i′k, and y j′

2 = j′k, where i, i′, j, j′ ∈ {−M,M}. Then we apply the

trapezoidal rule in both the y1 and y2 variables to obtain:

p̂n+1(xi
1,x

j
2;θ) = k2

∞

∑
i′=−∞

∞

∑
j′=−∞

K(xi
1,x

j
2,y

i′
1,y

j′
2 , tn;θ)p̂n(yi′

1,y
j′
2 ;θ) (2.21)

It is unnecessary to sum over all of Z2. We know that a two-dimensional Gaussian

decays to zero far from its mean. Since the mean (µ1,µ2) is approximately (y1,y2), we

sum only from y1 = x1−ζ k to y1 = x1 +ζ k and similarly for y2:

p̂n+1(xi
1,x

j
2;θ) = k2

i+ζ

∑
i′=i−ζ

j+ζ

∑
j′= j−ζ

K(xi
1,x

j
2,y

i′
1,y

j′
2 , tn;θ)p̂n(yi′

1,y
j′
2 ;θ) (2.22)

We choose ζ manually to ensure the accuracy of the computation. We now have our

method to evaluate p̃(xm+1 |xm,θ). Let us take n = 0 in (2.22) to correspond to the

time tm. We start with the deterministic initial condition X0 = xm, corresponding to the

density p̃0(x) = δ (x−xm). Inserting this point mass into (2.20), we obtain a Gaussian

density for p̃1(x). For each i, j ∈ {−M,M} on the spatial grid, we set p̂1(xi
1,x

j
2;θ) =

p̃1(xi
1,x

j
2;θ). Now that we have p̂1, we use (2.22) repeatedly to compute p̂2, p̂3, and so

on until we reach p̂F . The object p̂F is then a spatially discrete approximation of the

transition density from time tm to time tm +Fh = tm+1. For this last density, instead of

14

evaluating it on the spatial grid used by the trapezoidal rule, we evaluate the density at

the data xm+1 to avoid interpolation. In this way, we compute a numerical approximation

of p̃(xm+1 |xm,θ), as required for the likelihood function.

Chapter 3

Convergence Analysis of Density

Tracking by Quadrature

3.1 Introduction

In Chapter 2, we discussed the role of the DTQ method in computing the likeli-

hood via approximations of transition densities. As already mentioned in Section 2.2.3,

calculating the transition density pXt j+1
(x j+1|Xt j = x j;θ) for the SDE

dXt = f (Xt ;θ)dt +g(Xt ;θ)dWt (3.1)

can be seen as follows: fixing the parameter vector θ , we solve the SDE (3.1) for the

probability density function of Xt at time t = t j+1 starting with the initial condition

Xt j = x j. We then evaluate that density function at x j+1. Therefore, the DTQ method

is actually a numerical method to computing the probability density function of Xt for

a given SDE. Note that when computing the likelihood for a given parameter vector

θ , it is no longer required to consider the θ -dependence of the drift and the diffusion.

As discussed in Chapter 2, for the inference problem, we have constant deterministic

initial conditions when computing the transition densities. However, the DTQ method

can be used for SDE with random initial conditions as well. In this chapter, we establish

convergence properties for the DTQ method as a more general method of computing the

probability density function of a class of SDE at a given time t. Therefore, this chapter

is written independently from the parameter inference of SDE. More specifically, here

15

16

we consider parameter inference as an application of the DTQ method.

Consider the SDE for the scalar process Xt ,

dXt = f (Xt)dt +g(Xt)dWt , (3.2)

where Wt is the Wiener process. Xt is an Itô diffusion; neither the drift f nor the diffusion

g feature explicit time-dependence. Assuming regularity of f and g, the process Xt has

a probability density function p(x, t) [52]. In this chapter, we consider the DTQ method

as a numerical method to solve for p. Let us recall the three main steps in the derivation

of the DTQ method:

1. Discretize the SDE (3.2) in time using a convergent stochastic time-stepping

method.

2. Interpret the time-discretized equation as a discrete-time Markov chain on a con-

tinuous state space; let p̃ denote its probability density function. We can then

write down a Chapman-Kolmogorov equation that enables us to evolve p̃ forward

in time.

3. Discretize both the Chapman-Kolmogorov equation and p̃ in space, e.g., using a

spatial grid and numerical quadrature. Let p̂ denote the discrete-space approxi-

mation of p̃.

We emphasize that these steps form a framework that encompasses many possible al-

gorithms. In this work, we use the explicit Euler-Maruyama method in step 1 and the

trapezoidal rule in step 3; unless stated otherwise, this is the DTQ method analyzed

here. Had we made different choices in these steps, we would have obtained a different

method in the DTQ family.

In this chapter, we prove that p̂ converges to p as the discretization parameters tend

to zero. Because there are existing results on the convergence of p̃ to p, the main task of

this work is to show that p̂→ p̃. More specifically, the foundational work of Bally and

Talay [7] established conditions under which p̃ converges to p, in the case where the

Euler-Maruyama method is used to discretize the SDE (3.2) in time. Let ‖ f‖1 denote

the L1 norm of a function f . Suppose we seek the density of (3.2) at time T > 0. Let

17

h > 0 denote the temporal step size; as we take h→ 0, we assume T = Nh stays fixed.

Then the results of [7] imply that ‖p(·,T)− p̃(·,T)‖1 = O(h).

Our work builds on this result. The DTQ method analyzed here combines Euler-

Maruyama temporal discretization with the trapezoidal rule on an equispaced grid. This

results in a fast, simple method to compute an approximation p̂ such that ‖p̃(·,T)−
p̂(·,T)‖1 = O(h−1 exp(−rh−κ)) for positive constants r, κ . The user of the method can

control κ by adjusting the relationship between the spatial and temporal grid spacings.

As we have already seen in previous chapters, the primary application of this work

is in statistical inference for diffusion processes. In particular, we have already used the

DTQ method to devise both Bayesian and frequentist inference algorithms. The present

work lays a theoretical foundation for these statistical applications. Additionally, note

that when inference procedures for diffusions have been compared, a method that ap-

proximates the likelihood by numerically solving the Fokker-Planck (or Kolmogorov)

equation achieves superior accuracy at the cost of excessive computational time [30].

The results of the present work indicate that the DTQ method achieves the same ac-

curacy as a Fokker-Planck solver with less computational effort, further motivating the

potential use of the DTQ method in many inference applications.

We now review alternative approaches and prior work related to either the general

problem of computing the density of (3.2), or the particular case of the DTQ method.

3.1.1 Alternative Approaches

If the drift f and diffusion g are sufficiently smooth, then p satisfies the forward

Kolmogorov (or Fokker-Planck) equation [52]:

∂

∂ t
p(x, t) =− ∂

∂x
[f (x, t)p(x, t)]+

1
2

∂ 2

∂x2 [g
2(x, t)p(x, t)]. (3.3)

Prescribing an initial condition p(x,0), we may then solve (3.3) to obtain the density

p(x,T) at time T > 0. The solution of (3.3) must satisfy the normalization condition∫
∞

x=−∞
p(·, t)dx = 1, which implies boundary conditions of the form lim|x|→∞ p(x, t) = 0.

We view the DTQ method as an alternative to numerical methods for the solution of

(3.3). The primary purpose of the present work is to demonstrate intrinsic properties—

both theoretical and empirical—of the DTQ method. However, in the present work, we

18

also compare the performance of the DTQ method against an elementary finite differ-

ence method applied to (3.3). The finite difference method we consider is first-order in

time and second-order in space. For a particular test problem at the finest grid resolution

we consider, the DTQ method computes a solution with L1 error ≈ 3×10−3 more than

100 times faster than our Fokker-Planck method.

Besides the numerical solution of (3.3), another method one might use to estimate

the density of (3.2) involves sampling. Specifically, one can employ any convergent

numerical method to step (3.2) forward in time from t = 0 to t = T , thereby generating

one sample of XT . Repeating this procedure many times, one can obtain enough samples

of XT to compute a statistical estimate of the density at time T . For instance, one could

compute a histogram or a kernel density estimate. Several methods in the literature

can be viewed as special cases and extensions of this approach [29, 35, 43, 27]. In

such methods, the accuracy of the density will be controlled by two parameters: the

temporal step size and the number of sample paths. If there are NS samples, then a

typical stochastic time-stepping method will contribute an error of N−1/2
S and kernel

density estimation will contribute an error of, e.g., N−4/5
S . In comparison, the DTQ

method’s accuracy is also controlled by two parameters, the temporal step size and the

spatial grid size. However, the spatial discretization using the trapezoidal rule on the real

line will contribute an error that decays exponentially in the spatial grid size [62]. For

this reason, we believe the DTQ method will be a strong alternative to a sampling-based

method.

Returning to the forward Kolmogorov or Fokker-Planck equation (3.3), we see that

smoothness of f and g is required in order to have classical solutions. The implementa-

tion of the DTQ method itself does not utilize derivatives (whether exact or approximate)

of f and g. At the same time, the reader will note that our convergence theory assumes

analyticity of f and g on a strip in the complex plane that contains the real line. We give

two reasons for assuming analyticity. First, many models of scientific interest involve

functions f and g that do satisfy these hypotheses. Second, in order to apply exponen-

tial error estimates for the trapezoidal rule [62], it is essential that our integrand, which

depends on f and g, be analytic on a strip.

Ultimately, we do expect that the hypotheses in the present convergence proof can

19

be relaxed. Let p̊ be an approximate density that is computed in exactly the same way as

p̂ except for truncation of the infinite domain/series. Our empirical results clearly show

first-order convergence of p̊ to p, even when not all of the hypotheses of our theorem are

satisfied. Suppose that, inspired by these results, we discover how to prove convergence

of p̂ to p̃ assuming, for instance, that both f and g possess merely 4 bounded continuous

derivatives. This will not immediately improve our ability to conclude that p̂ converges

to p; the existing result on convergence of p̃ to p requires that both f and g are C∞ with

bounded derivatives of all orders [7]. To make true progress on the problem, we must

relax the conditions of convergence for both p̂→ p̃ and p̃→ p. This is outside the scope

of the present work.

3.1.2 Prior Work

When we derive the DTQ method, we make use of the fact that a time-discretization

of (3.2) can be viewed as a discrete-time Markov chain on a continuous state space.

Suppose we were to take a different point of view, that of trying to design a discrete-

time Markov chain on a discrete state space whose law or density approximates well that

of the original SDE. In this case, there are extensive results going back to the work of H.

J. Kushner [38]. Like a discrete-time, discrete-time Markov chain, the DTQ algorithm

can be written in the form p̂(tn+1) = Ap̂(tn), where A is a matrix (possibly with an

infinite number of rows and columns) and p̂(t j) represents the approximate density at

time t j. However, because of the quadrature-based derivation of the DTQ algorithm, the

matrix A is, in general, not a Markov transition matrix. We find it both mathematically

interesting and practically useful that, in spite of this, the DTQ method’s p̂ converges

exponentially to p̃.

The Chapman-Kolmogorov equation that is at the center of this chapter—see (3.7)—

has also appeared in other papers [49, 55]. In these works, the right-hand side of the

Chapman-Kolmogorov equation is interpreted as an expected value that can be com-

puted stochastically, i.e., using Monte Carlo methods. In our approach, we use deter-

ministic quadrature to evaluate the right-hand side of the Chapman-Kolmogorov equa-

tion. There is only one prior paper we found that features this approach, albeit in a

different context, that of a nonlinear autoregressive time series model [15]. The conver-

20

gence results in [15] are of a different nature than ours, because they involve taking the

continuum limit in space but not in time. In the present work, we are interested in the

error made by the DTQ method as both the temporal and spatial grid spacings vanish.

3.1.3 Summary of Results and Outline

The main result of this work is a provably convergent method for computing an

approximation p̂ of the density p for the SDE (3.2). Let h > 0 and k > 0 denote, respec-

tively, the temporal and spatial step sizes. Assume that k ∝ hρ for ρ > 1/2, and assume

that f and g are sufficiently regular (more precisely, admissible in the sense of Defini-

tion 2). Under these conditions, in Sections 3.4 and 3.5, we prove that p̂ converges to p̃

in L1, and that the error decays exponentially in h. Specifically, there exists a constant

r > 0 such that the leading order L1 error term is proportional to h−1 exp(−rh1/2−ρ)—

see Theorem 2. As a consequence of this result and the results of [7], we conclude that

p̂ converges to p in L1, and that the error decays linearly with h—see Corollary 1.

Up to and including Section 3.5, our results pertain to an idealized version of the

DTQ algorithm in which we track the density p̂ at an infinite number of discrete grid

points. In Section 3.6, we study the effect of boundary truncation. Our main tool in this

section is a Chernoff bound on the tail sum of p̂ that we establish through the moment

generating function. Let p̊ denote the approximation of p̂ obtained by summing over

precisely 2M+1 grid points from −yM =−Mk to yM = Mk. The quantity p̊ is what we

actually compute when we implement the DTQ method. In Lemma 9, we show that if

yM → ∞ at a logarithmic rate, i.e., yM ∝ logh−1, then the L1 error between p̊ and p̂ is

O(h). Combining this with our earlier results, this establishes L1 convergence of p̊ to

the true density p—see Corollary 2.

In Section 3.7, we study the performance of the DTQ method. For a suite of six test

problems for which we have access to the exact solution, our numerical tests confirm

O(h) convergence of p̊ to p. This remains true for drift f and diffusion functions g

that do not strictly satisfy the hypotheses of our convergence theory. We also present a

finite difference method for solving (3.3); we compare this method against three slightly

different implementations of the DTQ method. The comparison indicates that the DTQ

method—which we believe is being analyzed here for the first time—is competitive with

21

standard numerical methods for (3.3).

Before proceeding, we give a more detailed derivation of the DTQ method in Section

3.2 and then introduce necessary assumptions and notation in Section 3.3.

3.2 Problem Setup

We begin with a more detailed derivation of the DTQ method. First, we discretize

(3.2) in time using the explicit Euler-Maruyama method:

xn+1 = xn + f (xn)h+g(xn)
√

hZn+1, (3.4)

where h > 0 is a fixed time step and Zn+1 is a random variable with a standard (mean

zero, variance one) Gaussian distribution. We let p̃(x, tn) denote the probability density

function of xn. Note that this differs from p(x, tn).

From (3.4), we observe that the density of xn+1 given xn = y is Gaussian with mean

y+ f (y)h and variance hg2(y). Let us denote this conditional density by pn+1,n(x|y);
then

pn+1,n(x|y) = G(x,y) :=
1√

2πg2(y)h
exp
(
−(x− y− f (y)h)2

2g2(y)h

)
. (3.5)

Note that, for any y ∈ R, ∫
∞

x=−∞

G(x,y)dx = 1. (3.6)

Applying this to (3.4), we obtain the following evolution equation:

p̃(x, tn+1) =
∫

∞

−∞

pn+1,n(x|y)p̃(y, tn)dy. (3.7)

This is the Chapman-Kolmogorov equation for the discrete-time, continuous-space

Markov chain given by (3.4). Similar equations are often employed in the literature on

inference for diffusions—see [49], [55], [26, Chap 6.3.3], and [36].

Let us define an equispaced temporal grid by tn = nh with h = T/N. In principle, we

can now repeatedly apply (3.7) to determine p̃(x,T). This assumes we can perform the

integral over the real line. To compute (3.7) in practice, we use numerical quadrature.

Here we employ the trapezoidal rule, enabling us to make use of exponential error esti-

mates [62, 59, 40]. To begin with, we apply the trapezoidal rule on the real line. Later,

22

we explain how to incorporate the effects of a finite, truncated integration domain. As-

sume the domain R is discretized via an equispaced grid y j = jk where k > 0 is fixed.

Then our discrete-time, discrete-space evolution equation is

p̂(x, tn+1) = k
∞

∑
j=−∞

G(x,y j)p̂(y j, tn). (3.8)

Except for the fact that we have not yet truncated the infinite sum, this is the DTQ

method.

Thus far we have avoided the discussion of initial conditions for both p̃ and p̂. For

the purposes of exposition, we assume a constant initial condition X0 =C, which implies

p(x,0) = p̃(x,0) = δ (x−C). This choice is not essential to either the use or convergence

of the DTQ method. In fact, the choice of a point mass initial condition requires special

handling, because we cannot discretize p̃(x,0) directly. We insert n = 0 into (3.7), use

p̃(x,0) = δ (x−C), and obtain the non-singular initial condition

p̂(x, t1) = p̃(x, t1) = G(x,C). (3.9)

This enables us to initialize and iteratively use both (3.7) and (3.8) for n≥ 1.

Our main task in Sections 3.4 and 3.5 is to estimate ‖ p̂(·,T)− p̃(·,T)‖1. Before we

start the proof of Theorem 2, we introduce necessary notation and assumptions.

3.3 Notation and Assumptions

We will use the Roman i for the imaginary unit (i =
√
−1) and reserve the Italic i for

an index of summation. We denote the L1 norm of a function f : R→ R by

‖ f‖1 =
∫

∞

−∞

| f (x)|dx.

We denote the `1 norm of the sequence {z j}∞
j=−∞

by

‖z‖`1 =
∞

∑
j=−∞

|z j|.

For a function f : R→R, we understand ‖ f‖`1 to be the norm of the sequence obtained

by applying f on the spatial grid:

‖ f‖`1 =
∞

∑
j=−∞

| f (jk)|,

23

where again k > 0 denotes the grid spacing. We use dxe to denote the smallest integer

greater than or equal to x, and bxc to denote the largest integer less than or equal to x.

The following definition is from the literature [40].

Definition 1. For a > 0, let Sa denote the infinite strip of width 2a given by

Sa = {z ∈ C : |ℑ(z)|< a} .

Then B(Sa) is the set of functions such that ϕ ∈ B(Sa) iff ϕ is analytic in Sa,∫ a

−a
|ϕ(x+ iy)|dy = O(|x|α), x→±∞, 0≤ α < 1, (3.10)

and

N (ϕ,Sa)≡ lim
y→a−

{∫
∞

−∞

|ϕ(x+ iy)|dx+
∫

∞

−∞

|ϕ(x− iy)|dx
}
< ∞. (3.11)

The next definition encapsulates the constraints that the coefficient functions f and

g in the original SDE (3.2) must satisfy in order for us to show exponential convergence

of p̂ to p̃.

Definition 2. In this work, we say that f and g are admissible if they satisfy the following

properties. First, there exists d > 0 such that f and g are analytic on the strip Sd .

Additionally, there exist positive, finite, real constants M1, M2, M3, and M4 such that for

all z ∈ Sd ,

| f ′(z)| ≤M1 (3.12a)

M2 ≤ |g(z)| ≤M3 (3.12b)

ℜ(g(z)) 6= 0 (3.12c)

|g′(z)| ≤M4. (3.12d)

We now state a theorem that gives an exponential error estimate for the trapezoidal

rule [40], one that we shall use to bound the error made in one step of the DTQ method.

Other error estimates can be found in the literature [59, 62].

Theorem 1. Suppose ϕ ∈ B(Sd) and k > 0. Let

η =
∫

∞

−∞

ϕ(x)dx− k
∞

∑
j=−∞

ϕ(jk).

24

Then

|η | ≤ N (ϕ,Sd)

2sinh(πd/k)
exp(−πd/k).

Proof. See [40, Theorem 2.20].

3.4 Preliminary Theory

In this section, we prove several lemmas that are essential ingredients for the con-

vergence theorem in Section 3.5. The overall goal of these lemmas is to show that the

integrand

ϕ(x,y, tn) = G(x,y)p̂(y, tn), (3.13)

considered as a function of y for the purposes of quadrature, satisfies the hypotheses of

Theorem 1.

The first lemma enables us to pass from an estimate of the error made in one time

step to an estimate of the error made across a non-zero interval of time, even as the

number of time steps becomes infinite.

Lemma 1. Suppose that ξ (h)≥ 0 satisfies limh→0+ ξ (h) = 0. Suppose there exist γ > 1,

ε > 0 and h0 > 0 such that ξ (h) ≤ εhγ for all h < h0. Fix T > 0, N ∈ N+, and let

h = T/N. Then

lim
N→∞

[
h

N−1

∑
j=0

(1+ξ (h)) j

]
= T.

Proof. Take N sufficiently large so that h < 1 and h < h0. Then we calculate

N−1

∑
j=0

(1+ξ (h)) j = ξ (h)−1 [(1+ξ (h))N−1
]
=

N

∑
j=1

(
N
j

)
ξ (h) j−1

≤ T
h
+

N

∑
j=2

T jε j−1

j!
hγ(j−1)− j

Using h < 1, we have

h
N−1

∑
j=0

(1+ξ (h)) j ≤ T +
N

∑
j=2

T jε j−1

j!
h(γ−1)(j−1) ≤ T + ε

−1hγ−1 exp(T ε).

We have shown that the limit is T , and that the correction term to the limit is O(hγ−1).

25

Next, we estimate the `1 norm of the discrete Gaussian. This estimate is standard,

but we include it here for the sake of completeness.

Lemma 2. For all y ∈ R and all h,k > 0,

k‖G(·,y)‖`1 ≤ 1+4exp
(
−2π2g2(y)h

k2

)
. (3.14)

Proof. Let

φ(x) =
1√

2πσ2
exp
(
−(x−µ)2

2σ2

)
. (3.15)

Note that for any d > 0, on the strip Sd , φ satisfies the hypotheses of Theorem 1. In

particular, ∫
∞

−∞

∣∣∣∣ 1√
2πσ2

exp
(
−(x+ id−µ)2

2σ2

)∣∣∣∣ dx = exp
(

d2

2σ2

)
.

As the right-hand side does not change when we replace d by −d, we have N (φ ,Sd) =

2exp(d2/(2σ2)). Therefore, applying Theorem 1,∣∣∣∣∣
∫

∞

−∞

φ(x)dx− k
∞

∑
j=−∞

φ(jk)

∣∣∣∣∣≤ exp
(
d2/(2σ2)

)
sinh(πd/k)

exp
(
−πd

k

)
≤ 4exp

(
d2

2σ2 −
2πd

k

)
,

where we have used (sinh(πd/k))−1 ≤ 4exp(−πd/k). The right-hand side is mini-

mized at d = 2πσ2/k. Also,
∫

∞

−∞
φ(x)dx = 1. Hence

k
∞

∑
j=−∞

φ(jk)≤ 1+4exp
(
−2π2σ2

k2

)
. (3.16)

Note that φ(x) =G(x,y) with µ = y+ f (y)h and σ2 = g2(y)h. Then (3.16) is (3.14).

For each tn, we think of {p̂(x j, tn)}∞
j=−∞

as an infinite sequence. It is important to

estimate the `1 norm of this sequence.

Lemma 3. If g is admissible in the sense of Definition 2, then for all h,k > 0,

‖p̂(·, tn+1)‖`1 ≤ ‖ p̂(·, t1)‖`1(1+4exp(−2π
2M2

2h/k2))n. (3.17)

Proof. We begin by evaluating (3.8) at x = xi:

p̂(xi, tn+1) = k
∞

∑
j=−∞

G(xi,y j)p̂(y j, tn). (3.18)

26

Before proceeding, let us discuss the convergence of the infinite series on the right-

hand side for fixed h and k. Using (3.12b), we have for G the elementary bound 0 ≤
G(x,y) ≤ (2πM2

2h)−1/2. Note that (3.9) and (3.14) together give us an `1 bound on

{ p̂(jk, t1)}∞
j=−∞

. Combining these two bounds, it is clear that (3.18) converges for n= 1.

Now, as an induction hypothesis, assume that for a particular n≥ 1, we have p̂(y, tn)≥ 0

and that ‖p̂(·, tn)‖`1 < ∞. We will establish an `1 bound for p̂(·, tn+1).

By the induction hypothesis, we know that the infinite series on the right-hand side

of (3.18) converges. We see that all terms in the infinite series are nonnegative, so

p̂(y, tn+1) ≥ 0. Additionally, both sides of (3.18) do not change upon taking absolute

values. We sum over all i and interchange the order of summation—this is justified

because, again, all terms are nonnegative. We obtain

‖p̂(·, tn+1)‖`1 =
∞

∑
j=−∞

[
k

∞

∑
i=−∞

G(xi,y j)

]
p̂(y j, tn).

Applying (3.14) and (3.12b), we have

‖p̂(·, tn+1)‖`1 ≤ (1+4exp(−2π
2M2

2h/k2))‖p̂(·, tn)‖`1. (3.19)

This shows that ‖p̂(·, tn+1)‖`1 < ∞, finishing the induction step. Combining this with

the elementary bound on G, it is clear that the series on the right-hand side of (3.18)

converges for all n ≥ 1. This implies the convergence of (3.8), as an infinite series, for

all n≥ 1.

Iterating the inequality (3.19) n times, we derive (3.17).

The importance of Lemma 3 is that it enables us to give asymptotic conditions on h

and k such that p̂ is normalized correctly.

Lemma 4. Suppose that g is admissible in the sense of Definition 2, and that k = r1hρ

for constants r1 > 0 and ρ > 1/2. Assume that N = T/h for some fixed T > 0. Then for

1≤ n≤ N +1,

lim
h→0

k‖p̂(·, tn)‖`1 = 1. (3.20)

Proof. Applying the hypotheses to the exponential term in (3.17) with n = N = T/h, we

have

lim
h→0

(
1+4exp

(
−2π

2M2
2r−2

1 h−2ρ+1))T/h
= 1. (3.21)

27

For any n ∈ {0,1, . . . ,N}, we have

lim
h→0
‖p̂(·, tn+1)‖`1/‖p̂(·, t1)‖`1 = 1. (3.22)

Next, we combine the fact that p̂(·, t1) is Gaussian with (3.14) to conclude that

k‖p̂(·, t1)‖`1 → 1 as k→ 0. Then (3.20) follows immediately from (3.22).

Lemma 5. Suppose that f and g are admissible in the sense of Definition 2, and that

a < min{d,M2
2/(2M3M4)}. Then for any x,y ∈ R, there exists A2 > 0 such that

|G(x,y+ ia)|= 1√
2πh|g(y+ ia)|2

exp
(
−A2x2 +A1x+A0

4|g(y+ ia)|4h

)
, (3.23)

and there exists γ0 ∈ (0,2) such that

|G(x,y+ ia)| ≤ 1√
2πhM2

2

exp
(

a2(1+hM1)
2

hγ0M2
2

)
.

Proof. We obtain (3.23) by direct calculation of |G(x,y+ ia)|. The coefficients A2, A1,

and A0 are defined by

A2 = g2(y− ia)+ c.c. (3.24a)

A1 =−2g2(y− ia)(y+ ia+ f (y+ ia)h)+ c.c. (3.24b)

A0 = g2(y− ia)(y2−a2 + f 2(y+ ia)h2 +2yia+2(y+ ia) f (y+ ia)h)+ c.c. (3.24c)

By “c.c.” we mean the complex conjugate of the preceding term. We have used the

fact that because f and g are analytic on Sd , and because they are real-valued when

restricted to the real axis, both f and g commute with complex conjugation. That is,

f (y+ ia) = f (y− ia) and similarly for g and g2. The upshot is that A2, A1, and A0 are

all real.

Let us now prove that A2 > 0. Define the function

θ(y,ε) = g2(y− iε)+g2(y+ iε),

for ε ∈ [0,d). For each fixed y, by the mean-value theorem, there exists ξ such that

θ(y,ε)−θ(y,0) = ε
∂θ

∂ε
(y,ξ).

28

Note that ξ may depend on ε and y. Now we use (3.12) to compute

sup
y∈R,ε∈(−d,d)

∣∣∣∣∂θ

∂ε

∣∣∣∣= 4 sup
y∈R

ε∈(−d,d)

∣∣ℑ(g(y+ iε)g′(y+ iε))
∣∣≤ 4M3M4. (3.25)

Then using the previous two equations together with (3.12b), we have

θ(y,ε)≥ θ(y,0)−4εM3M4 ≥ 2M2
2 −4εM3M4. (3.26)

The right-hand side will be positive as long as ε < min{d,M2
2/(2M3M4)}. Given the

hypothesis on a in the statement of the lemma, θ(y,a) = A2 will be positive.

Because A2 > 0, we can maximize the right-hand side of (3.23) as a function of

x—the global maximum occurs at x =−A1/(2A2). Then we have

|G(x,y+ ia)| ≤ 1√
2πhM2

2

exp
(
(2a+ ih(f (y− ia)− f (y+ ia)))2

4h(g2(y+ ia)+g2(y− ia))

)

We suppose that a = bM2
2/(2M3M4) for some b ∈ (0,1) such that a < d. Then the lower

bound (3.26) implies θ(y,a)≥ 2M2
2(1−b). We define γ0 = 2(1−b) ∈ (0,2) and write

|G(x,y+ ia)| ≤ 1√
2πhM2

2

exp
(
(2a+ ih(f (y− ia)− f (y+ ia)))2

hγ0M2
2

)
(3.27)

Let Γ be the segment connecting y− ia to y+ ia. Note that a < d implies that Γ is

completely contained in the strip Sd where f is analytic. Using (3.12a), we have

|2a+ ih(f (y− ia)− f (y+ ia))| ≤ 2|a|+h| f (y+ ia)− f (y− ia)|

≤ 2|a|+h
∣∣∣∣∮

Γ

f ′(z)dz
∣∣∣∣

≤ 2|a|+h
∮

Γ

| f ′(z)| |dz|

≤ 2|a|(1+hM1)

Using this estimate in (3.27) finishes the proof.

Lemma 6. Suppose that f and g are admissible in the sense of Definition 2, and that

a < min{d,M2
2/(2M3M4)}. Then the integrand (3.13), considered as a function of y, is

a member of B(Sa), i.e., ϕ(x, ·, tn) ∈ B(Sa).

29

Proof. There are three conditions for membership in B(Sa), which we verify in turn.

First, it is simple to check that ϕ is analytic on Sa; this follows naturally from (3.12c)

and the lower bound in (3.12b).

At time step t1, we have p̂(y, t1) = G(y,C), which is analytic. The arguments made

earlier regarding the convergence of (3.18) hold equally well with xi replaced by any x.

This implies that for n≥ 1, p̂(y, tn+1) is analytic in y on Sd , so the integrand ϕ is analytic

on Sa ⊂ Sd .

Next, we consider

Φ(x,y, tn) =
∫ a

b=−a
|ϕ(x,y+ ib, tn)|db. (3.28)

Since

p̂(y+ ia, tn+1) = k
∞

∑
j=−∞

G(y+ ia,z j)p̂(z j, tn), (3.29)

we have

Φ(x,y, tn+1)≤ k
∞

∑
j=−∞

p̂(z j, tn)
∫ a

b=−a
|G(y+ ib,z j)||G(x,y+ ib)|db

= k
∞

∑
j=−∞

p̂(z j, tn)G(y,z j)
∫ a

b=−a
exp
(

b2

2g2(z j)h

)
|G(x,y+ ib)|db

≤ 1√
2πhM2

2

∫ a

b=−a
exp
(

b2

2M2
2h

)
exp
(

b2(1+hM1)
2

hγ0M2
2

)
db

× k
∞

∑
j=−∞

p̂(z j, tn)G(y,z j).

To arrive at the last line, we have applied Lemma 5 and (3.12b). There is only one

remaining term on the right-hand side that depends on y. As |y| → ∞, we have that

G(y,z j)→ 0. So, as |y| → ∞, we have that Φ(x,y, tn+1) = O(|y|α) for α = 0, satisfying

(3.10).

Next, we establish a bounded, real function Ln such that for each x ∈ R,

N :=
∫

∞

y=−∞

|G(x,y+ ia)p̂(y+ ia, tn)|dy

+
∫

∞

y=−∞

|G(x,y− ia)p̂(y− ia, tn)|dy≤ Ln(x)< ∞. (3.30)

30

We need this estimate in order to apply Theorem 1. For this purpose, we seek an upper

bound on N that does not depend essentially on the spatial discretization parameter k.

Starting again from (3.29), we have∫
∞

y=−∞

|G(x,y+ ia)p̂(y+ ia, tn+1)|dy

≤ k
∞

∑
j=−∞

p̂(z j, tn)
∫

∞

y=−∞

|G(y+ ia,z j)||G(x,y+ ia)|dy

= k
∞

∑
j=−∞

p̂(z j, tn)
∫

∞

y=−∞

exp
(

a2

2g2(z j)h

)
G(y,z j)|G(x,y+ ia)|dy

≤ exp
(

a2

2M2
2h

)[
k

∞

∑
j=−∞

p̂(z j, tn)
∫

∞

y=−∞

G(y,z j)|G(x,y+ ia)|dy

]
(3.31)

≤ k exp
(

a2

2M2
2h

)
‖p̂(·, tn)‖`1 sup

z

[∫
∞

y=−∞

G(y,z)|G(x,y+ ia)|dy
]

≤ k exp
(

a2

2M2
2h

)
‖p̂(·, tn)‖`1ψ(x,a), (3.32)

where

ψ(x,a) = sup
z∈R

[∫
∞

y=−∞

G(y,z)|G(x,y+ ia)|dy
]
. (3.33)

Examining (3.23), we see that the right-hand side of (3.32) is invariant under the reflec-

tion a 7→ (−a). We define the real-valued function

Ln+1(x) = 2k exp
(

a2

2M2
2h

)
‖p̂(·, tn)‖`1ψ(x,a),

and note that (3.32) implies N ≤ Ln(x), as required by (3.30). Our task now is to

demonstrate that Ln is finite. By Lemma 5 and (3.6), we have

ψ(x,a)≤ sup
z

 1√
2πhM2

2

exp
(

a2(1+hM1)
2

hγ0M2
2

)∫
∞

y=−∞

G(y,z)dy


≤ 1√

2πhM2
2

exp
(

a2(1+hM1)
2

hγ0M2
2

)
.

Using this estimate in (3.32), we obtain

Ln+1(x)≤ 2k exp
(

a2

2M2
2h

)
‖p̂(·, tn)‖`1

1√
2πhM2

2

exp
(

a2(1+hM1)
2

hγ0M2
2

)
.

31

Note that the bound on the right-hand side does not depend on x at all. The dependence

on k is confined to the terms k‖p̂(·, tn)‖. By Lemmas 2 and 3 together with (3.14),

k‖p̂(·, tn)‖ ≤
(
1+4exp(−2π

2g2(C)h/k2)
)(

1+4exp(−2π
2M2

2h/k2)
)n−1 ≤ 5n < ∞

for all k ≥ 0. In sum, we have shown that for fixed h > 0, fixed n ≥ 1, and a <

min{d,M2
2/(2M3M4)}, Ln(x) is bounded uniformly in x and k. We have demonstrated

that (3.30) holds. We conclude that ϕ(x, ·, tn) ∈ B(Sa).

3.5 Convergence Theorem

Let

E(y, tn) = p̃(y, tn)− p̂(y, tn). (3.34)

In this section, we establish conditions under which ‖E(·,T)‖1 goes to zero at an expo-

nential rate.

Theorem 2. Assume that f and g are admissible in the sense of Definition 2. Assume

that

k = r1hρ (3.35)

for constants r1 > 0 and ρ > 1/2. Choose a < min{d,M2
2/(2M3M4)} such that

a = r2h1/2 (3.36)

for some r2 > 0. For fixed T > 0, choose

h ∈
(
0,min{T,(M2

2/(4M3M4r2))
2}
)

(3.37)

such that N = T/h ∈ N+. To be clear, r1 and r2 are constants that do not depend on h.

Then

‖E(·,T)‖1 ≤ c?h−1 exp(−2πr2r−1
1 h1/2−ρ)(1+o(h)+o(k)) (3.38)

where o(h) and o(k) stand for terms that vanish as h→ 0 and k→ 0, and c? > 0 is a

constant that does not depend on h.

32

Proof. We begin with

p̃(x, tn+1) =
∫

∞

y=−∞

G(x,y)p̃(y, tn)dy

=
∫

∞

y=−∞

G(x,y)p̂(y, tn)dy+
∫

∞

y=−∞

G(x,y)E(y, tn)dy.

We now apply the trapezoidal rule to the first integral. For each x and tn, we let τ(x, tn)

denote the quadrature error incurred, i.e.,∫
∞

y=−∞

G(x,y)p̂(y, tn)dy = k
∞

∑
j=−∞

G(x,y j)p̂(y j, tn)+ τ(x, tn)

= p̂(x, tn+1)+ τ(x, tn). (3.39)

We use this in the previous equation to derive

E(x, tn+1) =
∫

∞

y=−∞

G(x,y)E(y, tn)dy+ τ(x, tn).

Taking absolute values, we apply the triangle inequality together with G≥ 0 to obtain

|E(x, tn+1)| ≤
∫

∞

y=−∞

G(x,y)|E(y, tn)|dy+ |τ(x, tn)|.

Integrating over x and using Fubini’s theorem and (3.6), we have

‖E(·, tn+1)‖1−‖E(·, tn)‖1 ≤ ‖τ(·, tn)‖1. (3.40)

Summing both sides from n = 1 to n = N−1 and using (3.9), we have

‖E(·,T)‖1 ≤
N−1

∑
n=1
‖τ(·, tn)‖1. (3.41)

We apply Lemma 6 and Theorem 1 to produce the estimate

|τ(x, tn)| ≤
N

2sinh(πa/k)
exp(−πa/k) (3.42)

where τ and N are defined by (3.39) and (3.30), respectively. Combining (3.31) with

(3.23), we have∫
∞

y=−∞

|G(x,y+ ia)p̂(y+ ia, tn+1)|dy≤ exp
(

a2

2M2
2h

)
× k

∞

∑
j=−∞

p̂(z j, tn)
∫

∞

y=−∞

G(y,z j)√
2πh|g(y+ ia)|2

exp
(
−A2x2 +A1x+A0

4|g(y+ ia)|4h

)
dy,

33

where again A2, A1, and A0 are defined by (3.24). We see that the right-hand side of this

inequality is invariant under a 7→ −a, and so we write

N ≤ 2exp
(

a2

2M2
2h

)
k

∞

∑
j=−∞

p̂(z j, tn)

×
∫

∞

y=−∞

G(y,z j)√
2πh|g(y+ ia)|2

exp
(
−A2x2 +A1x+A0

4|g(y+ ia)|4h

)
dy.

For a < min{d,M2
2/(2M3M4)}, we have shown that the coefficient A2 is positive on Sa.

This enables us to integrate both sides with respect to x:∫
∞

x=−∞

N dx≤ 2
√

2exp
(

a2

2M2
2h

)
k

∞

∑
j=−∞

p̂(z j, tn)

×
∫

∞

y=−∞

G(y,z j)|g(y+ ia)|√
g2(y+ ia)+g2(y− ia)

exp
(
(2a+ ih(f (y− ia)− f (y+ ia)))2

4h(g2(y+ ia)+g2(y− ia))

)
dy.

On the right-hand side, we have carried out the x integral first; the changing of the order

of summation and integration is justified by the nonnegativity of every term. Next, we

apply estimates established in the proof of Lemma 5. We obtain∫
∞

x=−∞

N dx≤ 2
√

2exp
(

a2

2M2
2h

)
M3

γ
1/2
0 M2

exp
(

a2(1+hM1)
2

hγ0M2
2

)
k

∞

∑
j=−∞

p̂(z j, tn)

Combining this with (3.42), we have∫
∞

x=−∞

|τ(x, tn)|dx≤

4
√

2exp
(

a2

2M2
2h

)
M3

γ
1/2
0 M2

exp
(

a2(1+hM1)
2

hγ0M2
2

)
exp(−2πa/k)k

∞

∑
j=−∞

p̂(z j, tn).

Using (3.17), we obtain

‖τ(·, tn)‖1 ≤ 4
√

2M3γ
−1/2
0 M−1

2 exp
(

a2

2M2
2h

)
exp
(

a2(1+hM1)
2

hγ0M2
2

)
exp(−2πa/k)

× k‖ p̂(·, t1)‖`1(1+4exp(−2π
2M2

2h/k2))n−1.

We sum both sides from n = 1 to n = N−1:

N−1

∑
n=1
‖τ(·, tn)‖1 ≤

√
2M3γ

−1/2
0 M−1

2 exp
(

a2

2M2
2h

)
exp
(

a2(1+hM1)
2

hγ0M2
2

)
×h−1 exp(−2πa/k)k‖p̂(·, t1)‖`1

[
h

N−1

∑
n=1

(1+4exp(−2π
2M2

2h/k2))n−1

]
. (3.43)

34

We now use (3.41) and hypotheses (3.35) and (3.36):

‖E(·,T)‖1 ≤
√

2M3γ
−1/2
0 M−1

2 exp
(

r2
2

2M2
2

)
exp
(

r2
2(1+hM1)

2

γ0M2
2

)
T h−1

× exp(−2πr2r−1
1 h1/2−ρ)k‖p̂(·, t1)‖`1

[
h
T

N−1

∑
n=1

(1+4exp(−2π
2M2

2r−2
1 h1−2ρ))n−1

]
.

(3.44)

By (3.37), we have h≤ T . By the definition of γ0 in Lemma 5, we have that γ0 = 2(1−b)

where b = 2M3M4a/M2
2 = 2M3M4r2h1/2/M2

2 . Assumption (3.37) now implies that b≤
1/2 and γ

−1
0 ≤ 1. We write

c? =
√

2M3M−1
2 exp

(
r2

2
2M2

2

)
exp
(

r2
2(1+T M1)

2

M2
2

)
T.

Let ξ (h) = 4exp(−c1h−c2), where c1 and c2 are positive constants with no dependence

on h. We check that ξ satisfies the hypotheses of Lemma 1; h−γξ (h) has a global

maximum at h∗ = (c1c2/γ)1/c2 , and so we have ξ (h) ≤ εhγ for ε = h−γ
∗ ξ (h∗), any

choice of γ > 1, and all h > 0. With c1 = 2π2γ2 and c2 = 2ρ−1, we apply Lemma 1 to

the term in square brackets on the right-hand side of (3.44). We conclude that

h
T

N−1

∑
n=1

(1+4exp(−2π
2M2

2r−2
1 h1−2ρ))n−1 = 1+o(h)

as h→ 0 with N = T/h. By Lemma 2, k‖p̂(·, t1)‖`1 = 1 + o(k) as k → 0. Putting

everything together, we are left with (3.38).

We are now in a position to combine our result with an earlier result from the litera-

ture [7] to establish the convergence of p̂ to p.

Corollary 1. In addition to all of the hypotheses of Theorem 2, suppose that there exist

constants Fk,Gk > 0 such that

sup
x∈R
| f (k)(x)| ≤Fk

sup
x∈R
|g(k)(x)| ≤ Gk

for all k≥ 0. Note that for k = 1, the first condition is redundant with (3.12a); for k = 0

and k = 1, the second condition is redundant with (3.12b) and (3.12d). Then we have

‖p(·,T)− p̂(·,T)‖1 = O(h)

35

Proof. We have

‖p(·,T)− p̂(·,T)‖1 ≤ ‖p(·,T)− p̃(·,T)‖1 +‖p̃(·,T)− p̂(·,T)‖1 (3.45)

To handle the first term, we appeal to Corollary 2.1 from [7]. Our lower bound on g in

(3.12b) corresponds to Bally and Talay’s uniform ellipticity hypothesis “H1”; we may

then apply Equations (27-28) from [7] to derive

|p(x,T)− p̃(x,T)| ≤ hK1 exp
(
−K2x2/T

)
for constants K1,K2 > 0 that do not depend on h. Therefore,

‖p(·,T)− p̃(·,T)‖1 ≤ hK1

(
πT
K2

)1/2

= O(h).

Returning to (3.45), by Theorem 2, the second term on the right-hand side goes to zero

much faster than h, finishing the proof.

3.6 Boundary Truncation

In practice, we do not evaluate (3.8) as it involves an infinite sum. In this section,

we analyze a truncated version of the algorithm:

p̊(x, tn+1) = k
M

∑
j=−M

G(x,y j)p̊(y j, tn) (3.46)

This is the actual DTQ method used in practice. As in (3.9), we take p̊(x, t1) = G(x,C)

and use (3.46) starting with n = 1. Let us denote the error due to truncation by

r(x, tn+1) = p̂(x, tn+1)− p̊(x, tn+1) (3.47)

By (3.9), we have r(x, t1)≡ 0. For n≥ 1, we have

r(x, tn+1) = k

(
∑
| j|>M

G(x,y j)p̂(y j, tn)+ ∑
| j|≤M

G(x,y j)r(y j, tn)

)
. (3.48)

Based on the right-hand side, we see that it will be important to estimate the tail sum

∑| j|>M p̂(x j, tn). We accomplish this using a Chernoff bound. To arrive at this bound,

36

we construct a sequence of random variables {Qn}n≥1. We first define a normalization

constant at time n:

Kn = ‖p̂(·, tn)‖`1 = ∑
i

p̂(xi, tn). (3.49)

By (3.17), we know that Kn < ∞ for k > 0 and h > 0. Let

q(xi, tn) =
p̂(xi, tn)

Kn
, (3.50)

so that ∑i q(xi, tn) = 1. For each n, we postulate a random variable Qn with state space

{kZ} and probability mass function q(·, tn). In order to apply a Chernoff bound to Qn,

we must estimate its moment generating function.

Lemma 7. Suppose f and g are admissible in the sense of Definition 2. Suppose k = hρ

for some ρ > 1/2. Then there exists h∗ such that for all h ∈ [0,h∗), all s ∈ R, and all n

satisfying 0≤ n≤ (N−1),

kE[esQn+1]<
3
2

exp
[

T
(

M2
3s2

2
+ f (0)s

)](
1
2
+ exp(CseM1T)

)
< ∞.

Proof. We begin with our estimate of the moment generating function of Qn+1. The

calculation proceeds in two phases. The first phase is exact; note that in what follows

we use the notation y j = jk, z j = y j + f (y j)h, and g2 = g2(y j):

E[esQn+1] =
∞

∑
i=−∞

esxiq(xi, tn+1)

=
k

Kn+1
∑

i
esxi ∑

j

1√
2πg2h

exp
(
−
(xi− z j)

2

2g2h

)
p̂(y j, tn)

=
k

Kn+1
∑

j
∑

i

1√
2πg2h

exp

(
−

x2
i −2xiz j + z2

j −2g2hsxi

2g2h

)
p̂(y j, tn)

=
1

Kn+1
∑

j
ζs(j)exp

(
−

z2
j − (z j +g2hs)2

2g2h

)
p̂(y j, tn), (3.51)

where

ζs(j) = k∑
i

1√
2πg2h

exp
(
−
(xi− (z j +g2hs))2

2g2h

)
.

It is at this point that we begin to estimate. Note that the summand is in fact a discrete

Gaussian φ(xi), as in (3.15), with µ = z j +g2(y j)hs and σ2 = g2(y j)h. Hence we may

37

apply the inequalities (3.16) and (3.12b) to write

ζs(j)≤ 1+4exp
(
−2π2g2(y j)h

k2

)
≤ 1+4exp

(
−2π2M2

2h
k2

)
. (3.52)

Next, we turn our attention to the remaining exponential in (3.51). We use (3.12b), the

mean value theorem, (3.12a), and the definition of z j to obtain:

exp

(
−

z2
j − (z j +g2hs)2

2g2h

)
= exp

(
z js+

1
2

g2(y j)hs2
)

≤ eM2
3 hs2/2 exp(y js+ f (y j)hs)

≤ eM2
3 hs2/2 exp(y js+ f (0)hs+M1y jhs)

≤ eM2
3 hs2/2+ f (0)hs exp(y js(1+M1h)) (3.53)

Now we combine (3.51), (3.52), and (3.53). The result is

E[esQn+1]≤ Kn

Kn+1

(
1+4exp(−2π

2M2
2h/k2)

)
eM2

3 hs2/2+ f (0)hs

× 1
Kn

∑
j

exp(y js(1+M1h))p̂(y j, tn) (3.54)

We recognize the expression on the second line as the moment generating function of

Qn evaluated at s′ = s(1+M1h). Therefore,

kE[esQn+1]≤ Kn

Kn+1

(
1+4exp(−2π

2M2
2h/k2)

)
eM2

3 hs2/2+ f (0)hskE[es(1+M1h)Qn]

≤ K1

Kn+1

(
1+4exp(−2π

2M2
2h/k2)

)n

︸ ︷︷ ︸
ζ1(h)

eT (M2
3 s2/2+ f (0)s) kE[es(1+M1h)nQ1]︸ ︷︷ ︸

ζ2(h)

.

The main question now is what happens as h→ 0 and N → ∞ such that hN = T . We

assume that 0 ≤ n ≤ (N − 1). Because k = r1hρ for ρ > 1/2, we know by Lemma

3 that ζ1(h)→ 1 as h→ 0. Hence there exists h1
∗ such that h ∈ [0,h1

∗) ensures that

38

|ζ1(h)−1|< 1/2, i.e., ζ1(h)< 3/2. Next, consider

ζ2(h) = kE[es(1+M1h)nQ1]

= k
∞

∑
i=−∞

es(1+M1h)nxi p̂(xi, t1)

= k
∞

∑
i=−∞

es(1+M1h)nxiG(xi,C)

= exp
(
(C+ f (C)h)s(1+M1h)n +

hg2(C)s2

2
(1+M1h)2n

)
k

∞

∑
i=−∞

φ(xi),

where φ(x) is the Gaussian density defined in (3.15) with

µ =C+ f (C)h+hg2(C)s(1+M1h)n

σ
2 = hg2(C)

Now we apply Lemma 2 and n≤ (N−1) to obtain

ζ2(h)≤ exp
(
(C+ f (C)h)s(1+M1h)N +

hg2(C)s2

2
(1+M1h)2N

)
× (1+4exp(−2π

2g2(C)h/k2)).

As before, hk−2 = r−2
1 h1−2ρ →+∞ as h→ 0, and the term on the second line goes to 1

as h→ 0. Since limh→0+(1+M1h)N = eM1T , we have

lim
h→0+

ζ2(h)≤ exp
(
CseM1T) .

Thus there exists h2
∗ such that h ∈ [0,h2

∗) implies∣∣ζ2(h)− exp
(
CseM1T)∣∣≤ 1

2
.

Taking h∗ = min{h1
∗,h

2
∗} finishes the proof.

We can now give conditions under which r, defined in (3.47), converges to zero.

Lemma 8. Suppose f and g are admissible in the sense of Definition 2. Suppose k = hρ

for ρ > 1/2. For ε ≥ 1, let

M = d(ε +ρ +1)(− logh)/ke. (3.55)

Let h∗ be defined as in Lemma 7. Then for h < h∗, we have k ∑
|i|≤M
|r(xi,T)|= O(h).

39

Proof. We start with

|r(xi, tn+1)| ≤ k ∑
| j|>M

G(xi,y j)p̂(y j, tn)+ k ∑
| j|≤M

G(xi,y j)|r(y j, tn)|.

Summing over i, we obtain

∑
|i|≤M
|r(xi, tn+1)| ≤ k ∑

| j|>M
∑
|i|≤M

G(xi,y j)p̂(y j, tn)+ k ∑
| j|≤M

∑
|i|≤M

G(xi,y j)|r(y j, tn)|.

Using (3.14) together with (3.12b), we have

∑
|i|≤M
|r(xi, tn+1)| ≤ (1+4exp(−2π

2M2
2h/k2)) ∑

| j|>M
p̂(y j, tn)

+(1+4exp(−2π
2M2

2h/k2)) ∑
| j|≤M

|r(y j, tn)|. (3.56)

This is of the form

rn+1 ≤ απn +αrn. (3.57)

We derive from this the sequence of inequalities αrn ≤ α2πn−1+α2rn−1, · · · , αn−1r2 ≤

αnπ1 +αnr1. Summing these together with (3.57), we derive rn+1 ≤
n

∑
i=1

α
i
πn−i+1 +

α
nr1. Applying this to (3.56) and using r(·, t1)≡ 0, we have

∑
|i|≤M
|r(xi, tn+1)| ≤

n

∑
i=1

(1+4exp(−2π
2M2

2h/k2))i
∑
| j|>M

p̂(y j, tn−i+1). (3.58)

Now we use (3.50) and the Chernoff bound to derive:

∑
| j|>M

p̂(y j, tn−i+1) = Kn−i+1 ∑
| j|>M

q(y j, tn−i+1)

≤ Kn−i+1 [P(Qn−i+1 ≥ yM)+P(Qn−i+1 ≤−yM)]

≤ Kn−i+1e−syM
(

E[esQn−i+1]+E[e−sQn−i+1]
)

We apply Lemma 7 to obtain

k ∑
| j|>M

p̂(y j, tn−i+1)≤
3
2

Kn−i+1e−syM exp
[

T
(

M2
3s2

2
+ f (0)s

)](
1+2cosh(CseM1T)

)
(3.59)

40

Applying this result to (3.58), we have

k ∑
|i|≤M
|r(xi, tn+1)| ≤

3
2

e−syM exp
[

T
(

M2
3s2

2
+ f (0)s

)](
1+2cosh(CseM1T)

)
×

n

∑
i=1

(1+4exp(−2π
2M2

2h/k2))iKn−i+1.

By (3.49) and (3.17), we have

Kn−i+1 ≤ ‖ p̂(·, t1)‖`1(1+4exp(−2π
2M2

2h/k2))n−i

Using this and n≤ N = T/h,

k ∑
|i|≤M
|r(xi, tn+1)| ≤

3
2

e−syM exp
[

T
(

M2
3s2

2
+ f (0)s

)](
1+2cosh(CseM1T)

)
×‖ p̂(·, t1)‖`1

T
h
(1+4exp(−2π

2M2
2h/k2))T/h. (3.60)

Let s= 1. Note that limh→0(1+4exp(−2π2M2
2h/k2))T/h = 1 and limk→0 k‖ p̂(·, t1)‖`1 =

1. Thanks to (3.55), we know that yM ≥ (ε +ρ + 1)(− logh). Putting things together,

the right-hand side of (3.60) behaves like hε+ρ+1k−1h−1 = hε = O(h) as desired.

So long as M remains a positive integer, we can add/subtract a constant from (3.55)

and still prove Lemma 8. What is important is how M scales as a function of h; the

logarithmic rate given in (3.55) is the rate at which we have to push M to +∞ so that

we obtain O(h) convergence. If we push M to +∞ at a faster rate, e.g., by replacing

(− logh) with h−1, then r will converge at a rate that is exponential in h.

Thus far we have considered convergence of r in a truncated and scaled version of

the `1 norm. Convergence in L1 is an easy consequence.

Lemma 9. Suppose f and g are admissible in the sense of Definition 2. Suppose k = hρ

for ρ > 1/2. For ε ≥ 1, let M be defined as in (3.55). Let h∗ be defined as in Lemma 7.

Then for h < h∗, we have ‖r(·,T)‖1 = O(h).

Proof. Note that

|r(x,T)| ≤ k ∑
| j|>M

G(x,y j)p̂(y j, tN−1)+ k ∑
| j|≤M

G(x,y j)|r(y j, tN−1)|.

41

This is similar to what we wrote above, except that the discrete variable xi has been

replaced by the continuous variable x. We now integrate both sides with respect to x to

obtain

‖r(·,T)‖1 ≤ k ∑
| j|>M

p̂(y j, tN−1)+ k ∑
| j|≤M

|r(y j, tN−1)|.

The second term is O(h) by Lemma 8. For the first term, we use (3.59) to write

k ∑
| j|>M

p̂(y j, tN−1)≤
3
2

KN−1e−yM exp
[

T
(

M2
3

2
+ f (0)

)](
1+2cosh(CeM1T)

)
. (3.61)

Since limk→0 kKN−1 = 1 and e−yM = O(hε+ρ+1), the right-hand side of (3.61) behaves

like hε+1 = O(h2).

It is now immediately clear that, under certain conditions, we have established O(h)

convergence of p̊ to the true density p in the L1 norm.

Corollary 2. Suppose that all of the hypotheses of Corollary 1 and Lemma 9 are satis-

fied. Then, combining these results, we have ‖p(·,T)− p̊(·,T)‖1 = O(h).

3.7 Numerical Experiments

In this section, we use R/C++ implementations of the DTQ method to study its

empirical convergence behavior, and also to compare against a numerical solver for

(3.3), the Fokker-Planck or Kolmogorov equation. All codes described in this section,

together with instructions on how to reproduce Figures 3.1 and 3.2, are available at the

following URL:

https://github.com/hbhat4000/sdeinference/tree/master/
DTQpaper

We caution the reader that, in the present work, we do not deal with all important imple-

mentation issues. Here we are primarily concerned with demonstrating properties of the

DTQ method. This can be done quite well even with the assumptions on the initial con-

dition and domain sizes given below. Relaxing these assumptions poses no conceptual

difficulties, but may require changes to technical details in the codes linked above.

https://github.com/hbhat4000/sdeinference/tree/master/DTQpaper
https://github.com/hbhat4000/sdeinference/tree/master/DTQpaper

42

3.7.1 Convergence

First, we compare empirical and theoretical convergence behavior. We verify that

under the conditions given by Theorem 2, we do observe convergence in practice. We

also show numerical evidence that such convergence takes place when one or more of

the hypotheses do not hold.

All of the SDE we consider are equations for a scalar unknown Xt . We describe here

the way in which we conduct numerical tests for each SDE. We begin with the initial

condition X0 = 0 and solve forward in time until T = 1. That is, we apply the DTQ

method to compute p̊(x,1). We use the following values of the temporal step h:

{0.5,0.2,0.1,0.05,0.02,0.01,0.005,0.002,0.001}. (3.62)

For h≥ 0.01, we find that an implementation of the DTQ method written completely in

R is able to run in a reasonable amount of time. For h = 0.005 and below, we use an

implementation where computationally intensive parts of the code are written in C++;

this code is glued to our R code using the Rcpp and RcppArmadillo packages [24, 23,

25, 54].

The remaining algorithm parameters are set in the following way:

k = h3/4 (3.63a)Examples 1,2,4,5,6 M = dπ/k2e

Example 3 M = dπ/(2k)−2e.
(3.63b)

x j = jk, for −M ≤ j ≤M. (3.63c)

For each value of h, we compare p̊(x,T) computed using the DTQ method against the

exact solution p(x,T). Let F(y,T) =
∫ x=y

x=−∞ p(x,T)dx denote the cumulative distribu-

tion function associated with the density p. Each comparison is carried out using the

following three norms:

‖p(·,T)− p̊(·,T)‖1 ≈ k
j=M

∑
j=−M

|p(jk,T)− p̊(jk,T)| (3.64a)

‖p(·,T)− p̊(·,T)‖∞ ≈ sup
| j|≤M

|p(jk,T)− p̊(jk,T)| (3.64b)

‖F(·,T)− F̊(·,T)‖∞ ≈ sup
| j|≤M

|F(jk,T)− F̊(jk,T)| (3.64c)

43

For our tests, we consider six SDE, all for a scalar unknown Xt :

Example 1:


dXt =−Xtdt +dWt

p(x, t) =
exp(−x2/(1− exp(−2t)))√

(π(1− exp(−2t)))

(3.65a)

Example 2:

dXt =−1
2 tanhXt sech2 Xtdt + sechXtdWt

p(x, t) = (2πt)−1/2(coshx)exp(−sinh2 x/(2t))
(3.65b)

Example 3:

dXt =−(sinXt cos3 Xt)dt +(cos2 Xt)dWt

p(x, t) = (2πt)−1/2(sec2 x)exp(− tan2 x/(2t))
(3.65c)

Example 4:

dXt =
(

1
2Xt +

√
1+X2

t

)
dt +

√
1+X2

t dWt

p(x, t) = (2π(1+ x2))−1/2 exp(−(sinh−1 x− t)2/2)
(3.65d)

Example 5:

dXt =
1
2Xtdt +

√
1+X2

t dWt

p(x, t) = (2πt(1+ x2))−1/2 exp(−(sinh−1 x)2/(2t))
(3.65e)

Example 6:


dXt =

(
−
√

1+X2
t sinh−1 Xt +

1
2Xt

)
dt +

√
1+X2

t dWt

p(x, t) =
exp(−(sinh−1 x)2/(1− exp(−2t)))√

(π(1− exp(−2t))(1+ x2))

(3.65f)

Note that for each example, we have supplied an exact solution in the form of a prob-

ability density function p(x, t). For each example, we compare the DTQ density with

p(x,T = 1).

Figure 3.1 shows the convergence results for all six examples. The overall impres-

sion we gain from the plots is that the practical L1 error between the DTQ and exact

density functions scales like h. As we now explain, this first-order convergence is dis-

played under a variety of conditions.

Example 1 features drift and diffusion coefficients that clearly satisfy the hypotheses

of our convergence theory. In this case, the computational results confirm the theory.

In Example 2, the drift and diffusion coefficients satisfy all but one of the hypotheses.

Specifically, because sechx→ 0 as |x| → ∞, the diffusion coefficient is not bounded

away from zero. However, as a matter of numerical practice, on any truncated domain

of the form (3.63), the diffusion coefficient never equals zero. We can say, then, that on

44

the computational domain, the diffusion coefficient does have a global lower bound that

is greater than zero. The computational results display first-order convergence.

Example 3 is similar to Example 2 in that all but one of the hypotheses are satisfied.

Again, it is the diffusion coefficient cos2 y that is not bounded away from zero. However,

either an analysis of the original SDE or inspection of the exact solution reveals that

the density will only be supported on the interval (−π/2,π/2). For this SDE, we set

M = dπ/(2k)− 2e as in (3.63b), retaining (3.63a) and (3.63c). This way, the spatial

grid covers the interior of (−π/2,π/2) and the diffusion coefficient never reaches zero.

Again, the computational results show that the L1 error scales like h.

Moving to Examples 4 and 5, we now have instances where the diffusion coefficient

is bounded from below by 1 but is unbounded above. All other hypotheses of our con-

vergence theory are satisfied. The empirical convergence rates for both examples match

what we expect from theory.

Reexamining the situation with slightly more depth, what we find from our proofs is

that (3.25) is the only place where the upper bound on the diffusion coefficient is used.

However, for the particular case of the diffusion coefficient g(x) = (1+ x2)1/2 used in

Examples 4 and 5, we have that∣∣ℑ(g(y+ iε)g′(y+ iε)
)∣∣= |ℑ(y+ iε)| ≤ d,

meaning that we can substitute d for M3M4 and the convergence proof follows. This is

an example of how, for specific SDE that do not satisfy the hypotheses of the general

theorem, we may yet be able to prove convergence of the DTQ method.

Finally, we come to Example 6. Now we have that derivative of the drift coefficient

is unbounded and that the diffusion coefficient is unbounded above. Still, the results

in the convergence plot agree with the overall first-order convergence rate implied by

theory.

For the SDE in Example 6, even if we are able to patch our proof to prove that p̂

converges to p̃, we can no longer apply the result of Bally and Talay [7] to guarantee

convergence of p̃ to p. Overall, we take the numerical results for Example 6 as evidence

that p̃ must converge to p under more general conditions than have been established in

the literature.

45

3.7.2 Comparison with Fokker-Planck

Now we turn to a comparison of the DTQ method with a classical approach, that of

numerically solving the Fokker-Planck or Kolmogorov PDE (3.3). In what follows, we

use subscripts to denote partial derivatives, so that (3.3) is written

pt +(f (x)p(x, t))x =
1
2
(
g2(x)p(x, t)

)
xx . (3.66)

To solve this equation, we employ a standard finite difference method. To resolve

the singular initial condition p(x,0) = δ (x), we use a standard subtraction idea: we set

p = u+ v, where u solves

ut =
1
2

κuxx (3.67a)

u(x,0) = δ (x), (3.67b)

while v solves

vt +(f (x)v(x, t))x =
1
2
(
g2(x)v(x, t)

)
xx +

1
2
[(

g2(x)−κ
)

u(x, t)
]

xx− [f (x)u(x, t)]x︸ ︷︷ ︸
F(x,t)

(3.68a)

v(x,0) = 0. (3.68b)

The point is that (3.67) can be solved analytically, i.e., for t > 0,

u(x, t) =
1√

2πκt
exp
(
− x2

2κt

)
. (3.69)

Here κ > 0 is a parameter that we are free to set. In our own tests, we use κ = 1.

Since (3.69) is known, we substitute it into the final two terms on the right-hand side

of (3.68a)—this yields a known forcing term F(x, t). We then employ the following

numerical scheme to solve (3.68) for v(x, t):

• We discretize v(x, t) on fixed spatial and temporal grids with respective spacings

k and h. Let V n
j denote our numerical approximation to v(jk,nh). Here 0≤ n≤ N

with Nh = T > 0, the final time. We also have that −M ≤ j ≤M. Implicitly, we

assume that v(x, t) = 0 for |x|> Mk.

46

• We use a first-order approximation to vt : vt(x, t)≈ (V n+1
j −V n

j)/h.

• We treat the drift term explicitly:

(f (x)v(x, t))x ≈
(

f ((j+1)k)V n
j+1− f ((j−1)k)V n

j−1
)
/(2k).

• We treat the diffusion term implicitly:

1
2
(
g2(x)v(x, t)

)
xx≈

1
2k2

(
g2((j−1)k)V n+1

j−1 −2g2(jk)V n+1
j +g2((j+1)k)V n+1

j+1

)
.

Let Vn be a vector of length 2M+1 whose j-th entry is V n
j . Then, combining approxi-

mations, we obtain the matrix-vector system

AVn+1 = BVn +Fn (3.70)

with tridiagonal matrices A and B given by

A =



1+ h
k2 g2
−M − h

2k2 g2
−M+1

− h
2k2 g2

−M 1+ h
k2 g2
−M+1 − h

2k2 g−M+2

− h
2k2 g2

−M+1 1+ h
k2 g2
−M+2 −

h
2k2 g2

−M+3
·························

·························
·························

− h
2k2 g2

M−2 1+ h
k2 g2

M−1 − h
2k2 g2

M

− h
2k2 g2

M−1 1+ h
k2 g2

M


(3.71)

and

B =



1 − h
2k f−M+1

h
2k f−M 1 − h

2k f−M+2
h
2k f−M+1 1 − h

2k f−M+3·························

································
··················

h
2k fM−2 1 − h

2k fM
h
2k fM−1 1


. (3.72)

We also define Fn in (3.70) by discretizing F(x, t) in (3.68a). Specifically, for −M ≤
j ≤M, we define the j-th component of Fn by

Fn
j =

h
2k2

[
g2((j−1)k)u((j−1)k,nh)−2g2(jk)u(jk,nh)+g2((j+1)k)u((j+1)k,nh)

]
− h

2k
[f ((j+1)k)u((j+1)k,nh)− f ((j−1)k)u((j−1)k,nh)] . (3.73)

47

To solve for Vn+1 given Vn, we rewrite (3.70) as

Vn+1 = A−1BVn +A−1Fn. (3.74)

Let UN denote the vector obtained by evaluating u(jk,T) for−M≤ j≤M. Let pFP(x,T)

denote the vector whose j-th component is pFP(x j,T), the approximation of p(x j,T) ob-

tained by solving the Fokker-Planck equation numerically. With these definitions, our

algorithm for computing pFP is easily stated: we start with V0 = 0, iterate (3.74) N times

to compute VN , and then compute

pFP(x,T) = UN +VN .

Note that in our implementation of the Fokker-Planck method, the matrices A and B

defined by (3.71) and (3.72) are implemented as sparse tridiagonal matrices. When we

use (3.74) to solve for Vn+1, we use sparse numerical linear algebra to compute both

A−1B and A−1Fn. In particular, A−1B is precomputed before we loop from n = 0 to

n = N−1.

We are now in a position to compare the DTQ and Fokker-Planck methods. For

this comparison, we exclusively use the drift and diffusion functions from Example 1 in

(3.65). As described above, among the examples in (3.65), Example 1 is the only one

that satisfies all of the hypotheses of our DTQ convergence theory.

As mentioned in Section 3.6, when we implement the DTQ method in practice, we

start with (3.46)—with x discretized on the same spatial grid as y, i.e.,

p̊(xi, tn+1) = k
M

∑
j=−M

G(xi,y j)p̊(y j, tn) (3.75)

For fixed n, as j varies from−M to M, the elements p̊(y j, tn) form a (2M+1)-dimensional

vector that we denote pn. With this notation, (3.75) can be written

pn+1 = A pn, (3.76)

where A is the (2M+1)× (2M+1) matrix whose (i, j)-th element is kG(xi,y j). In our

experience, the most computationally expensive part of the DTQ method is the assembly

of A . For the tests presented in this subsection, we have implemented three different

methods to compute A :

48

1. DTQ-Naı̈ve. Here we assemble A using dense matrix methods in R. The main

advantage of this approach is ease of implementation; the code to compute A is

only 4 lines long. Incidentally, the convergence tests in the first part of this section

use the DTQ-Naı̈ve method for h≥ 0.01.

2. DTQ-CPP. Implicitly, the DTQ-Naı̈ve method forces R to loop over the entries

of A serially. In the DTQ-CPP method, we use Rcpp together with OpenMP

directives to compute and fill in the entries of A in parallel. In practice, we run

this code on a machine with 12 cores, setting the number of OpenMP threads to

12.

3. DTQ-Sparse. Here we take advantage of the structure of A . Specifically, we

have

Ai j = kG(xi,y j) =
k√

2πg2(y j)h
exp
(
−
(xi− y j− f (y j)h)2

2g2(y j)h

)
.

Let us set i = j+ i′. Then we have

A j+i′, j =
k√

2πg2(y j)h
exp
(
−
(i′k− f (y j)h)2

2g2(y j)h

)
. (3.77)

We think of i′ as indexing the sub-/super-diagonals of A . For each fixed i′ =

0,1,2, . . . we evaluate (3.77) over all j to obtain the i′-th subdiagonal of A . For h

small, as i′ increases, we observe that the entire subdiagonal decays rapidly. In our

implementation, we compute subdiagonals until the 1-norm of the subdiagonal

drops below 2.2×10−16 (machine precision in R) multiplied by the 1-norm of the

main i′ = 0 diagonal of A . We then compute the same number of superdiagonals

as subdiagonals. The final A matrix is assembled as a sparse matrix using the

CRAN Matrix package [9].

Given the tridiagonal structure of both A and B in the Fokker-Planck method, we do not

believe any reasonable modern implementation would use dense matrices. Similarly,

while DTQ-Naı̈ve requires minimal programming effort, a reasonable implementation

would look much more like DTQ-CPP or DTQ-Sparse. None of the DTQ methods

require more programming effort to implement than the Fokker-Planck method.

49

Results for O(h3/4) Domain Scaling. For each h in (3.62) that satisfies h≥ 0.01, we

use all three DTQ methods and the Fokker-Planck method to generate numerical approx-

imations of the density function at the final time T = 1. For our first set of comparisons,

parameters such as k and M are set via (3.63). In particular, the computational domain is

[−yM,yM] where yM = Mk ∝ h−3/4. We compute the L1 errors between each numerical

solution and the exact solution p(x,T). We also record the wall clock time (in seconds)

required to compute the solution using each method. Each measurement is repeated 100

times; we report average results.

In the left panel of Figure 3.2, we have plotted (on log-scaled axes) wall clock time

as a function of L1 error for each of the four methods. We see that if one can tolerate

a relatively large L1 error, then the fastest method is the DTQ-Naı̈ve method (green);

for L1 errors less than 0.03, the fastest method is the DTQ-Sparse method (purple). The

Fokker-Planck method is often the slowest of the four methods. For an error of 0.003, the

DTQ-Sparse method is approximately 100 times faster than the Fokker-Planck method.

Results for O(logh−1) Domain Scaling. For our second set of comparisons, we have

changed the way that yM (effectively, the size of the computational domain) scales with

h. We retain k = h3/4 but now set yM = (2+ 3/4)(− logh) ∝ (− logh) in accordance

with (3.55). The spatial grid, for all four methods, is now given by x j =−yM +(j+M)k

for−M ≤ j≤M with M = byM/kc. In all other respects, we make no changes and rerun

the test described above for all four methods.

In the right panel of Figure 3.2, we have plotted (on log-scaled axes) wall clock time

as a function of L1 error for each of the four methods. Once again, we find that the DTQ-

Naı̈ve and DTQ-Sparse methods are the fastest for, respectively, large and small error

values. For an error of 0.003, the DTQ-Sparse method is approximately 103/4 ≈ 5.62

times faster than the Fokker-Planck method.

3.8 Conclusion and Future Directions

In this chapter, we have established fundamental properties of the DTQ method, in-

cluding theoretical and empirical convergence results. Let us make three concluding

50

remarks regarding our results. First, until now we have not mentioned that the DTQ

method features two properties that are not always easy to establish for numerical meth-

ods for the Fokker-Planck equation (3.3): (i) the DTQ method automatically preserves

the nonnegativity of the computed density p̂, and (ii) the DTQ density p̂ has a normal-

ization constant that can be estimated for finite h,k > 0. In practice, we find that p̊ is

very close to being correctly normalized.

Second, p(x,T) and p̃(x, tN) correspond to, respectively, the random variables XT

and xN . Convergence in L1 of p̃ to p is equivalent to convergence in total variation of xN

to XT . Note that ∫
∞

x=−∞

p̂(x, tn+1)dx = k
∞

∑
j=−∞

p̂(y j, tn) = kKn, (3.78)

implying that q̂(x, tn+1) = p̂(x, tn+1)/(kKn) is the density function of a continuous ran-

dom variable yn. An easy consequence of our results is that q̂ converges to p̃ in L1,

implying convergence of yN to xN in total variation.

Third, if we trace back the crux of our convergence proof, a key step is estimating

the L1 error of τ starting from the trapezoidal rule error estimate (3.42). To do this,

it was essential that we have an estimate of N that is an L1 function of x. It was to

obtain such an estimate that we put our efforts into Lemma 5. We have tried to replicate

this analysis using more conventional error estimates for the trapezoidal rule—estimates

that require less regularity of the integrand than we have assumed. Thus far, these other

attempts have failed because they do not yield an upper bound on τ that is itself an L1

function of x. The approach in the present work is the only one that we have gotten to

work.

Given the current framework of the DTQ method, the present work motivates fol-

lowing two questions.

1. When we derived the DTQ method, we used three approximations: (i) an Euler-

Maruyama approximation of the original SDE, (ii) a trapezoidal quadrature rule,

and (iii) a finite-dimensionalization of p̃ that consists of sampling the function on

a truncated grid. The first question to ask is: what happens to the DTQ method if

we improve upon these initial approximations?

51

Regarding (ii), we can say that we have written a test code in which we use Gauss-

Hermite quadrature instead of the trapezoidal rule. This does not yield better

convergence. Given the exponential convergence of p̂ to p̃ established here, this

should not be a surprise.

Regarding (iii), rather than sampling the function p̃(x, tn) on a discrete grid, we

could have instead chosen to represent p̃(x, tn) as a linear combination of functions—

for instance, a linear combination of Gaussian densities, where each density is

centered at a grid point x j. In a collocation scheme, we would then insert these

approximations of p̃ into (3.7) and enforce equality at a finite number of points.

We have tried this as well in a test code. While such a scheme does not yield

better numerical behavior, it may be easier to analyze.

Approximation (i) is the one that would most easily yield major improvements.

In the DTQ derivation, we can easily replace the Euler-Maruyama method with a

higher-order method. The only change is to then replace the Gaussian kernel G

with a different conditional density function. With this new G, the evolution equa-

tion (3.46) for p̊ remains the same. Preliminary results with the weak trapezoidal

method [3] indicate that, in this way, we can obtain a version of the DTQ method

that features O(h2) convergence of p̊ to p.

2. Can we patch the DTQ method to handle diffusion functions g that equal zero at,

say, a finite number of discrete points in the computational domain? We believe

there should be some way of doing this by subtracting out singularities of G inside

the Chapman-Kolmogorov equation (3.8).

In addition, here we have compared DTQ method against only the finite difference nu-

merical solver for (3.3), the Fokker-Planck equation. For an extensive comparison of

the DTQ method against numerical methods for the solution of (3.3), we have to con-

sider methods such as finite difference, finite element, meshless, and Hermite spectral

methods [48, 51, 16, 41]. In the following chapters, we show how the DTQ method can

be used to efficiently solve the parameter inference problem.

52

Example 1 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

slope=1.007

10−4

10−3

10−2

10−1

0.
50

0

0.
20

0

0.
10

0

0.
05

0

0.
02

0

0.
01

0

0.
00

5

0.
00

2

0.
00

1

h (temporal step size)

er
ro

r

norm
●

●

●

L1

Linf

K−S

Example 2 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

slope=0.98

10−4

10−3

10−2

10−1

0.
50

0

0.
20

0

0.
10

0

0.
05

0

0.
02

0

0.
01

0

0.
00

5

0.
00

2

0.
00

1

h (temporal step size)

er
ro

r

norm
●

●

●

L1

Linf

K−S

Example 3
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

slope=1.004

10−3

10−2

10−1

0.
50

0

0.
20

0

0.
10

0

0.
05

0

0.
02

0

0.
01

0

0.
00

5

0.
00

2

0.
00

1

h (temporal step size)

er
ro

r

norm
●

●

●

L1

Linf

K−S

Example 4 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

slope=1.007

10−4

10−3

10−2

10−1

0.
50

0

0.
20

0

0.
10

0

0.
05

0

0.
02

0

0.
00

5

0.
00

2

0.
00

1

h (temporal step size)

er
ro

r

norm
●

●

●

L1

Linf

K−S

Example 5 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

slope=1.051

10−4

10−3

10−2

10−1

0.
50

0

0.
20

0

0.
10

0

0.
05

0

0.
02

0

0.
01

0

0.
00

5

0.
00

2

0.
00

1

h (temporal step size)

er
ro

r

norm
●

●

●

L1

Linf

K−S

Example 6 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

slope=1.051

10−4

10−3

10−2

10−1

0.
50

0

0.
20

0

0.
10

0

0.
05

0

0.
02

0

0.
01

0

0.
00

5

0.
00

2

0.
00

1

h (temporal step size)

er
ro

r

norm
●

●

●

L1

Linf

K−S

Figure 3.1: For each of the six examples in (3.65), we test the DTQ method’s conver-
gence. For each example, we plot errors between DTQ and exact solutions on log-scaled
axes as a function of h, the temporal step size; all other parameters are given by (3.63).
We compute errors in each of the three norms given by (3.64). The horizontal axes (la-
bels and tick mark locations) are the same for all plots and correspond to the h values
in (3.62). Least-squares fits to the L1 error data are indicated by black lines and corre-
sponding slope values. For all examples, we observe first-order convergence, consistent
with our O(h) theoretical result.

53

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

0.003 0.010 0.030 0.100
error

tim
e

yM ∝ h−3 4

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

0.001

0.003

0.010

0.030

0.100

0.300

0.003 0.010 0.030 0.100
error

tim
e

yM ∝ − log(h)

method
●

●

●

●

FP

DTQ−Naive

DTQ−CPP

DTQ−Sparse

Figure 3.2: For a particular SDE, Example 1 from (3.65), suppose we are interested in
computing the density p(x,T) at time T = 1. When we compute this density, we will in-
cur some error, measured here in the L1 norm. The plotted results show that for a fixed
value of this error, the DTQ methods require less computational time (measured
in wall clock seconds) than a method for numerically solving the Fokker-Planck
PDE. In all simulations, we use a domain [−yM,yM]. For the simulations in the left (re-
spectively, right) plot, we have scaled the domain according to yM ∝ h−3/4 (respectively,
yM ∝ logh−1), where h > 0 is the time step. In both plots, we see that for smaller values
of the error, the fastest method is DTQ-Sparse; for larger values of the error, the fastest
method is DTQ-Naı̈ve. In particular, for the smallest error of 0.003, the DTQ-Sparse
method is over 102 (respectively, 103/4) times faster than the Fokker-Planck method in
the left (respectively, right) plot. Despite the fact that our Fokker-Planck solver uses the
same sparse numerical linear algebra as DTQ-Sparse, it is often the slowest of the four
methods. For details regarding the three implementations of the DTQ method (DTQ-
Naı̈ve, DTQ-CPP, and DTQ-Sparse) as well as the implementation of our Fokker-Planck
solver, please see Section 3.7.2.

Chapter 4

Parameter Inference for Scalar SDE

via Maximum Likelihood Approach

4.1 Introduction

In this chapter, we discuss how to infer the unknown parameter vector θ in (1.1) by

maximizing the likelihood function. This maximum likelihood estimate (MLE) for θ

can be computed by minimizing the negative log likelihood functions given in (2.1) or

(2.13) for the cases of single or multiple time-series observations respectively. When

computing MLE, the gradient of the likelihood function is an important ingredient for

numerical optimization procedures. The gradient ∇θ p(x|θ) can be computed in two

different ways: using the direct computation of the gradient or using an adjoint-based

method. The direct method involves computing the derivatives of the likelihood with re-

spect to each element of the parameter vector θ . On the other hand, the adjoint method

enables us to compute this gradient with a computational cost (in time) that does not

scale with the dimension of θ . This is important for nonparametric estimation (when

the functional form of the drift f , and the diffusion g are unknown) of SDE because we

do not know the dimension of θ a priori—indeed, it may be quite large. Of course, we

can apply both direct and the adjoint method to parametric inference problems where the

functional forms of f and g are known. Such problems are much more commonly stud-

ied in the literature—see [58, 31, 26]. Equipped with efficient algorithms to compute

54

55

the likelihood and its gradient, we can then use quasi-Newton optimization methods to

compute θ from data.

The structure of this chapter is as follows. In Section 4.2, we start with introduc-

ing the optimization problem to compute MLE. Then, in Section 4.2.1 we detail the

direct method to compute the gradient of the likelihood for the cases of one time-series

observations and many time-series observations. Subsequently, we discuss the adjoint-

based gradient computation in Section 4.2.2. In Section 4.3, we discuss how to perform

parametric inference using the direct gradient computation to compute the MLE. We

demonstrate the effectiveness of the method through simulation tests of different SDE.

Finally, in Section 4.4, we discuss how to perform nonparametric inference using the

adjoint method developed in Section 4.2.2. Through simulated data tests, we show that

when the number of sample paths is large, the method does an excellent job of inferring

drift functions close to the ground truth. We also show that even when the method does

not infer the drift function correctly, it still yields models with good predictive power.

Finally, we apply the method to real data on hourly measurements of ground level ozone,

showing that it is capable of reasonable results.

4.2 The Maximum Likelihood Estimation

Let us define the maximum likelihood estimate of θ by θ̂ , and can be computed

using

θ̂ = argmin
θ

(− logL (θ)) . (4.1)

In Section 2.2, we discussed how to compute the likelihood L (θ) for scalar SDE using

DTQ method. Now we are in a position of computing θ̂ by solving the optimization

problem (4.1). To compute the maximum likelihood estimator of θ using a numerical

optimization technique, we need to compute the gradient of − logL (θ) with respect to

θ . We start by explaining the direct method of computing the gradient in Section 4.2.1.

Subsequently, we discuss the gradient computation via adjoint method in Section 4.2.2.

56

4.2.1 Gradient of the Likelihood via the Direct Method

Direct Gradient Computation for One Time Series

Let us start with computing each element of the gradient ∇θ logL (θ) by taking the

derivative of logL (θ) with respect to each element θ` in the parameter vector θ . This

gives us

∂

∂θ`
logL (θ)≈

L−1

∑
j=0

1

pX̃ j+1
(x j+1|X̃ j = x j,θ)

∂

∂θ`
pX̃ j+1

(x j+1|X̃ j = x j,θ). (4.2)

Now we compute ∂

∂θ`
pX̃ j+1

(x j+1|X̃ j = x j,θ) from (2.6). Taking the derivative of (2.6)

with respect to θ` gives

∂

∂θ`
pX̃ j+n/F

(y|X̃ j = x j;θ) =
∫

z

∂

∂θ`
Gh

θ (y,z)pX̃ j+(n−1)/F
(z|X̃ j = x j;θ)dz

+
∫

z
Gh

θ (y,z)
∂

∂θ`
pX̃ j+(n−1)/F

(z|X̃ j = x j;θ)dz. (4.3)

Now following the same procedure explained in the Section 2.2.3, we truncate the do-

main of the integral and apply the trapezoidal rule on an equispaced grid for z and get

∂

∂θ`
pX̃ j+n/F

(y|X̃ j = x j;θ)≈ k
M

∑
a1=−M

∂

∂θ`
Gh

θ (y,z
a1)pX̃ j+(n−1)/F

(za1|X̃ j = x j;θ)

+ k
M

∑
a1=−M

Gh
θ (y,z

a1)
∂

∂θ`
pX̃ j+(n−1)/F

(za1|X̃ j = x j;θ). (4.4)

We can write (4.4) as

q̂ j+n/F,` = K` p̂ j+(n−1)/F +Kq̂ j+(n−1)/F,`, (4.5)

where k ∂

∂θ`
Gh

θ
(ya2,za1) is the (a2,a1) element of a matrix K`(2M+1)×(2M+1), and the a1-

th element of the vector q̂ j+n/F,` is given by q̂a1
j+n/F,` =

∂

∂θ`
pX̃ j+n/F

(ya1|X̃ j = x j;θ). Note

that the initial vector q̂ j+1/F,` is given by taking the derivative of the right-hand side of

(2.7) with respect to θ`, i.e.,

∂

∂θ`
pX̃ j+1/F

(y|X̃ j = x j;θ) =
∂

∂θ`
Gh

θ (y,x j), (4.6)

57

and discretized on the spatial grid. Again, as in Section 2.2.3, we apply (4.5) F−2 times

to get

q̂ j+(F−1)/F,` = KF−2
` p̂ j+1/F +KF−2q̂ j+1/F,`,

where q̂ j+(F−1)/F,` is the approximation of ∂

∂θ`
pX̃ j+(F−1)/F

(y|X̃ j = x j;θ) on the spatial

grid. We want an approximation to ∂

∂θ`
pX̃ j+1

(y|X̃ j = x j;θ) at y = x j. To find this ap-

proximation without doing any interpolation as in Section 2.2.3, let us define the aF−1-th

element of the vector ΓF−1,` by

Γ
aF−1
F−1,` = k

∂

∂θ`
Gh

θ (x j+1,x
aF−1
j+(F−1)/F).

Using this together with our old definition of ΓF−1, we have

∂

∂θ`
pX̃ j+1

(x j+1|X̃ j = x j,θ)≈
[
ΓF−1,`

]T p̂ j+(F−1)/F +[ΓF−1]
T q̂ j+(F−1)/F,`.

Following we summarize algorithm to compute the elements in the gradient using the

direct method.

1. We begin with

q̂a1
j+1/F,` =

∂

∂θ`
Gh

θ (x
a1
j+1/F ,x j).

2. We then iteratively define, for n = 1, . . . ,F−2,

q̂ j+(n+1)/F,` = K` p̂ j+n/F +Kq̂ j+n/F,`. (4.7)

3. We finish with:

∂

∂θ`
pX̃ j+1

(x j+1|X̃ j = x j,θ)≈
[
ΓF−1,`

]T p̂ j+(F−1)/F +[ΓF−1]
T q̂ j+(F−1)/F,`.

Combining this with (2.11) and (4.2), we obtain

∂

∂θ`
logL (θ)≈

L−1

∑
j=0

1

[ΓF−1]
T KF−2 p̂ j+1/F

[
ΓF−1,`

]T p̂ j+(F−1)/F

+[ΓF−1]
T q̂ j+(F−1)/F,`. (4.8)

58

Direct Gradient for Multiple Time Series

The derivation of the gradient of logL (θ) given for one time series now proceeds

just as before with Gh
θ
(x j+1/F ,x j) replaced by (2.15). The only changes required in the

algorithm are, first, to redefine

q̂a1
j+1/F,` =

1
ν

ν

∑
s=1

∂

∂θ`
Gh

θ (x
a1
j+1/F ,x

s
j)

and, second, to redefine ΓF−1,` as a matrix whose (aF ,aF−1) entry is

Γ
aF ,aF−1
F−1,` = k

∂

∂θ`
Gh

θ (x
aF
j+1,x

aF−1
j+(F−1)/F).

With these changes, the gradient becomes

∂

∂θ`
logL (θ)≈

L−1

∑
j=0

ν

∑
aF=1

([
ΓF−1,`

]T p̂ j+(F−1)/F +[ΓF−1]
T q̂ j+(F−1)/F,`

)
aF(

[ΓF−1]
T KF−2 p̂ j+1/F

)
aF

, (4.9)

where q̂ is computed using (4.7) just as before.

4.2.2 An Adjoint-Based Gradient of the Likelihood

In this section we discuss an adjoint-based approach to compute this gradient of the

negative log likelihood. Let us first discuss the case of one time-series observations.

Adjoint Method for One Time Series

Recall from the Chapter 2 that for one time-series

− logL (θ)≈−
L−1

∑
j=0

log
(
[ΓF−1]

T p̂ j+(F−1)/F

)
, (4.10)

where

p̂ j+(F−1)/F = KF−2 p̂ j+1/F . (4.11)

Let us first consider (4.11), which can be written as a system of block matrices to com-

pute p̄ j+1 = (p̂T
j+1/F , · · · , p̂T

j+(F−1)/F)
T as follows:

K̄ p̄ j+1 = v j+1, (4.12)

59

where v j+1 = (p̂T
j+1/F , · · · ,0)

T , and

K̄ =



I O O · · · O

−K I O · · · O

O −K I · · · O
...

...

O O · · · −K I


.

Here 0 denotes a zero row vector of the same length as p̂ j+1/F . Also, O denotes a

zero matrix and I denotes an identity matrix, both with the same dimension as that of

the matrix K. Therefore, the block matrix K̄ has dimension (2M + 1)(F − 1)× (2M +

1)(F−1). Now define w j+1 = (0,0, · · · ,0,ΓT
F−1)

T , a vector of the same length as p̄ j+1.

Then we can write the negative log likelihood in (4.10) as

−L (θ)≈−
L−1

∑
j=0

log
(
w j+1

T p̄ j+1
)
.

Let us define the Lagrangian as follows:

L(p̄ j+1,θ , ū j+1) =
L−1

∑
j=0

[
− log

(
w j+1

T p̄ j+1
)
+ ū j+1

T (K̄ p̄ j+1− v j+1
)]
. (4.13)

Here, p̄ j+1 is the state solution from (4.12) and ū j+1 is a vector of Lagrange multipliers.

Now, by taking the variations of the Lagrangian with respect to ū j+1 and p̄ j+1, we obtain

the state equation,

Lū j+1(p̄ j+1,θ , ū j+1) = K̄ p̄ j+1− v j+1 = 0, (4.14)

and the adjoint equation,

L p̄ j+1(p̄ j+1,θ , ū j+1) =−
w j+1

w j+1T p̄ j+1
+ K̄T ū j+1 = 0. (4.15)

In the above equations, we have used the subscript on L to denote the variables with

respect to which we have differentiated. Recall that θ is the vector of parameters in the

drift and the diffusion of (1.1). We compute the gradient of the log likelihood by taking

the derivative of the Lagrangian with respect to each θi:

Lθi(p̄ j+1,θ , ū j+1) =−
L−1

∑
j=0

p̄ j+1
T ∂w j+1

∂θi

w j+1T p̄ j+1
+

L−1

∑
j=0

QT ū j+1 =−
∂L (θ)

∂θi
, (4.16)

60

where

Q =
∂ K̄
∂θi

p̄ j+1−
∂

∂θi
v j+1. (4.17)

We rewrite (4.16) as

− ∂L (θ)

∂θi
=−

L−1

∑
j=0

p̂T
j+(F−1)/F

∂ΓF−1
∂θi

ΓT
F−1 p̂ j+(F−1)/F

−
L−1

∑
j=0

[
∂

∂θi
p̂ j+1/F

]T

u j+1/F

−
L−1

∑
j=0

F−2

∑
`=1

[
∂K
∂θi

p̂ j+`/F

]T

u j+(`+1)/F . (4.18)

Let ū j+1 = (uT
j+1/F ,u

T
j+2/F , · · · ,u

T
j+(F−1)/F)

T . Then, the adjoint equation (4.15) can be

written as the following temporally evolving system of equations, which can be solved

backward in time for n = 1, · · · ,F−2:

u j+(F−(n+1))/F −KT u j+(F−n)/F = 0, (4.19a)

u j+(F−1)/F =
1

ΓT
F−1 p̂ j+(F−1)/F

ΓF−1, (4.19b)

The adjoint method to compute the gradient can now be summarized. For each fixed j,

the procedure is as follows.

1 Given the unknown parameter vector θ , solve the state/forward problem equation

(2.9) to find p̄ j+1. This is the same as solving the time evolution system in (4.11).

2 Given θ and p̄ j+1, solve the adjoint equation (4.15) to find ū j+1. This is same as

solving the time evolution system in (4.19a-4.19b).

3 With p̄ j+1, ū j+1, use (4.18) to compute the gradient.

We follow this procedure for each Markovian piece of the likelihood p(x j+1|x j,θ). For

each piece, we need F steps in time to solve for the state p̄ and F steps in time to solve

for the adjoint ū. In total, across the entire time series, we need 2LF steps to compute the

log likelihood and its gradient. In particular, note that the number of steps in time does

not depend on the dimension of θ . This is in sharp contrast to a direct (i.e., non-adjoint)

method computation of the gradient, in which one would have to perform a forward

evolution in time (analogous to (4.11)) for each component of θ . Such a method would

require LF(1+ |θ |) steps to compute the log likelihood and its gradient, where |θ | is the

dimension of θ .

61

Adjoint Method for Multiple Time Series

To compute the gradient for the case of many time-series using the adjoint method,

we write the negative log likelihood in (2.16) as

−L (θ)≈−
L−1

∑
j=0

ν

∑
aF=1

log
(

eT
aF

Wj+1 p̄ j+1

)
, (4.20)

where p̄ j+1 comes from (4.12), and eaF is the aF -th canonical basis unit vector. Consider

a row vector γaF, the aF -th row of the matrix ΓF−1. Then, each aF-th row of the matrix

Wj+1 consists of the vector (0,0, · · · ,0,γaF), where 0 denotes a zero row vector of length

2M + 1. Note that Wj+1 is of dimension ν × (2M + 1)(F − 1). Now the Lagrangian is

given by

L(p̄ j+1,θ , ū j+1) =
L−1

∑
j=0

[
−

ν

∑
aF=1

log
(

eT
aF

Wj+1 p̄ j+1

)
+ ū j+1

T (K̄ p̄ j+1− v j+1
)]
. (4.21)

As a result, (4.14) remains the same. However, (4.15) becomes

L p̄ j+1(p̄ j+1,θ , ū j+1) =−
ν

∑
aF=1

W T
j+1eaF

eT
aF

Wj+1 p̄ j+1
+ K̄T ū j+1 = 0. (4.22)

Let us denote the quantity eT
aF

Wj+1 p̄ j+1 by a constant caF that depends on aF . Then,

∑
ν
aF=1

W T
j+1eaF

eT
aFW j+1 p̄ j+1

is a vector of length (2M+1)(F−1) given by (0,0, · · · ,yT)T , where

y = (∑ν
aF=1

γ1
aF

caF
, · · · ,∑ν

aF=1
γ
(2M+1)
aF
caF

)T . Here γ`aF
denotes the `-th element of the vector γaF .

Now we can write (4.22) as the system of equations

u j+(F−(n+1))/F −KT u j+(F−n)/F = 0, (4.23a)

u j+(F−1)/F = y, (4.23b)

which can be solved backward. Equation (4.16), required to compute the gradient, be-

comes

Lθi(p̄ j+1,θ , ū j+1) = −
L−1

∑
j=0

ν

∑
aF=1

eaF
T ∂W j+1

∂θi
p̄ j+1

eaF
TWj+1 p̄ j+1

+
L−1

∑
j=0

QT ū j+1 = −∂L (θ)

∂θi
, (4.24)

while (4.17), required to compute QT , remains the same. As a consequence of (4.24),

only the first term in the right hand-side of (4.18) changes while other two terms remain

62

the same. After all of these changes, the algorithm to compute the gradient of (4.20)

remains the same as explained under one time series. There are only two changes to

make: (1) in the second step, we compute the adjoint solution by solving the system in

(4.23a-4.23b) backwards; (2) we compute the gradient using (4.18) after replacing the

first term by −∑
ν
aF=1

∂γaF
∂θi

p̂ j+(F−1)/F

γaF p̂T
j+(F−1)/F

.

4.3 Parametric Inference with Maximum Likelihood

Approach

As we have already stated in Chapter 2, the parametric inference problem is the case

when we know the functional forms of the drift f and the diffusion g of (1.1). However,

f and g include some unknown constant parameters (given by the vector θ) that we want

to infer from time-series data. In this section, we explain how we perform the inference

and present numerical results for a number of different parametric SDE obtained using

the maximum likelihood approach.

Inference

Given our discussion in Chapter 2 and the Section 4.2, The procedure for carry-

ing out inference of the parametric problem is now straightforward. More specifically,

we use the algorithms derived in Section 2.2.3 and Section 4.2.1 (or Section 4.2.2) to

compute the objective function,

J(θ) =− logL (θ),

and its gradient respectively. We pass the objective function and its gradient to a numer-

ical optimization package, NLopt, developed by [32]. Starting from an initial condition,

NLopt finds a minimum of the objective function using one of many possible algorithms.

In our work, we primarily use the low-storage BFGS algorithm described in [45, 46].

We use θ̂ to denote the minimizer of J(θ)—this minimizer is our maximum likelihood

estimate of θ .

Even though, we can compute the gradient of the likelihood using any of the methods

discussed in Section 4.2.1 and 4.2.2, the results shown in this section are obtained only

63

using the direct method. All of the implementations used in this section are coded in

R; we call algorithms from NLopt using nloptr. For more details on this package,

consult [68]. Note that we are committed to making our algorithms available to the

community; all codes used to produce the results of this paper can be downloaded at

http://github.com/hbhat4000/sdeinference/.

Results

We now present numerical tests of our algorithm in three cases. For each case, we

generate multiple sample paths using a specified SDE with known parameters. We use

θ to denote the true parameter vector. Using the data thus generated, we then use our

method to produce θ̂ , our maximum likelihood estimate of the parameter vector. In the

first two scenarios, the SDE we use for generating data coincides with the SDE used for

inference. In the third scenario, we use a generic polynomial SDE for inference—this

SDE includes as a special case of the SDE used for generating data.

To test the performance of the algorithm, we generate the data using the Euler-

Maruyama approximation of the SDE. We step forward in time, starting from t0 to a

final time point T > 0. We use a step size of ξ , where ξ = 10−4 unless specified other-

wise. We retain the samples only at times t = m∆t from m = 0 to m = L, where L∆t = T .

For consistency during comparisons, we set t0 = 0, T = 25, and ∆t = 1.

Case 1: Linear SDE (Ornstein-Uhlenbeck process)

We consider the SDE for the Ornstein-Uhlenbeck process with linear drift and con-

stant diffusion terms.

dXt = θ1(θ2−Xt)dt +θ3dWt (4.25)

For the first set of experiments, the true parameter vector is θ = (0.5,0,1). We start

the optimizer with an initial condition θ0 = (1,2,0.5). We study how well we are able

to infer the parameters as a function of the DTQ method’s internal time step h and

the number of sample paths. For this set of experiments, the spatial grid spacing k is

set to k = h0.75. In Table 4.1, we summarize all of this information together with the

RMS (root-mean-square) error between the estimated and true parameter values. This

http://github.com/hbhat4000/sdeinference/

64

is equivalent to the 2-norm error, ‖θ − θ̂‖2. We also record the number of iterations

required for the optimizer to converge to the minimizer of the objective function, the

negative log likelihood.

Estimated θ̂ Iterations h Paths RMS Error
(1.020, 0, 1.404) 31 0.05 300 0.6597
(1.041, 0, 1.430) 30 0.02 300 0.6916
(1.048, 0, 1.438) 34 0.01 300 0.7028
(1.052, 0, 1.443) 34 0.005 300 0.7084
(1.054, 0, 1.445) 35 0.002 300 0.7119
(0.671, 0, 1.143) 31 0.01 100 0.2238
(0.673, 0, 1.146) 28 0.005 100 0.2264
(0.674, 0, 1.147) 26 0.002 100 0.2284

Table 4.1: Results for Case 1. Using either 300 or 100 sample paths produced by Euler-
Maruyama simulation with time step ξ = 10−4, we study the effect of reducing h, the
internal time step of the DTQ inference method.

The method is not as sensitive to h as one might expect. Instead, what we find is that

the error decreases when we decrease the number of sample paths. When we use only

100 sample paths, we obtain a qualitatively reasonable solution for all three components

of θ , with θ2 in particular identified up to machine precision.

To explore whether the above findings were peculiar to the way we generated the

data, we conducted another series of tests starting with a true parameter vector of θ =

(0.5,0.9,1). The results are displayed in Table 4.2. This time, when we use the Euler-

Maruyama method to generate data, we use an internal time step of ξ = 10−6, retaining

all other parameters described above. For the inference, we give the optimizer an initial

guess of θ0 = (1,0.5,0.5). We again set the spatial grid spacing to k = h0.75 and record

the RMS error.

The results from Table 4.2 show that if we increase the number of sample paths

from 50 to 300, the error decreases dramatically. This leads us to our view that, for the

present version of our DTQ inference algorithm, the quality of the data is important.

When we decrease the Euler-Maruyama time step from ξ = 10−4 to ξ = 10−6, we gain

roughly one extra decimal place of accuracy in the sample paths. This leads our DTQ

algorithm towards higher quality estimates of the parameters in the Ornstein-Uhlenbeck

model (4.25).

65

The performance of the DTQ method should increase as the number of sample paths

increases. In this regard, we believe the results from Table 4.1 are an artifact of how the

data was generated. We will see confirmation of this in the results below on a nonlinear

SDE model.

Additionally, we note that Table 4.2 confirms that the DTQ method’s results are

relatively insensitive to decreasing h, the internal time step of the DTQ method. Note

that the data set we use for the experiments is collected at intervals of ∆t = 1. We have

found, in practice, that the choice h=∆t/20 is sufficient for inference. This is consistent

with the results of [49], who chooses h≈ ∆t/25.

Estimated θ̂ Iterations h Paths RMS Error
(0.361, 0.968, 0.836) 39 0.050 50 0.2254
(0.362, 0.968, 0.839) 46 0.020 50 0.2226
(0.362, 0.968, 0.840) 42 0.010 50 0.2219
(0.362, 0.968, 0.841) 28 0.005 50 0.2212
(0.463, 0.885, 0.966) 45 0.050 300 0.05244
(0.466, 0.886, 0.973) 22 0.020 300 0.04561
(0.467, 0.886, 0.975) 22 0.010 300 0.04370
(0.468, 0.886, 0.976) 26 0.005 300 0.04237
(0.468, 0.886, 0.976) 20 0.002 300 0.04237

Table 4.2: Results for Case 1. Using either 300 or 100 sample paths produced by Euler-
Maruyama simulation with time step ξ = 10−6, we study the effect of reducing h, the
internal time step of the DTQ inference method.

Case 2: Nonlinear SDE (Double Well Potential)

As our second example, we consider the following SDE with a nonlinear drift and

constant diffusion term:

dXt = θ1Xt(θ2−X2
t)dt +θ3dWt (4.26)

In Table 4.3, we show the results of an initial set of tests. In these tests, we vary both the

true parameter vector θ and the initial guess θ0 that is given to the optimizer. For all of

these tests, the data consists of 100 sample paths and the DTQ grid spacing is given by

k = h0.75. Note that even when θ0 is far from θ , the estimated parameters θ̂ are close to

66

True θ Initial θ0 Estimated θ̂ Iterations h RMS Error
(0.2, 1, 0.5) (1, 1, 1) (0.162, 0.886, 0.488) 37 0.05 0.06901
(0.4, 1, 0.5) (1, 1, 1) (0.629, 1.023, 0.618) 24 0.05 0.14965
(1, 4, 0.5) (0.5, 0.5, 0.5) (0.928, 3.990, 0.467) 50 0.01 0.04568
(1, 4, 0.5) (2, 2, 1) (0.925, 3.990, 0.430) 48 0.01 0.05935
(1, 4, 0.5) (8, 8, 2) (0.928, 3.990, 0.467) 47 0.01 0.04571

Table 4.3: Results for Case 2. We study a collection of problems involving different true
θ values and different initial guesses θ0.

θ . This trend holds for different values of θ . In fact, the RMS error values produced by

our method are quite low for all of the tests involving the nonlinear model 4.26.

Next, in Table 4.4, we study the effect of decreasing the internal time step of the

DTQ method, h, when all other problem/algorithm parameters are kept fixed. For these

tests, we set θ = (1,4,0.5), θ0 = (2,2,1), and k = h0.75. The data consists of 100 sample

paths. The results show that it is possible to slightly reduce the RMS error by decreasing

h, the internal time step. Based on these results, we see that there is no disadvantage

incurred by using our method with h = 0.05; at this internal time step, the method runs

very quickly in R.

Estimated θ̂ Iterations h RMS Error
(0.925046, 3.990012, 0.430020) 37 0.05 0.05948
(0.925311, 3.990029, 0.430068) 48 0.01 0.05935
(0.926930, 3.990418, 0.471400) 48 0.005 0.04563
(0.925808, 3.990464, 0.473724) 41 0.002 0.04577
(0.925433, 3.990480, 0.474493) 31 0.001 0.04583

Table 4.4: Results for Case 2. We study the effect of decreasing h while keeping all
other parameters fixed.

In Table 4.5, we run a series of tests where each test is repeated twice, once with

the spatial grid spacing set to k = h0.75 and again with k = h. For all of these tests, we

generate data with θ = (1,4,0.5). If we examine the first two rows of Table 4.5, what

we see is that decreasing the spatial grid spacing has a significant, beneficial effect on

the RMS error. What has happened here is that we have given the optimizer an initial

guess where the third element of θ0 is 0.1, a relatively small value. If we go back to the

SDE (4.26), we see that this third element of θ0 corresponds to the diffusion coefficient.

When the diffusion coefficient is small, the Gaussian kernel Gh
θ

becomes very narrow.

67

This necessitates a finer spatial grid in order to resolve the kernel well enough to perform

accurate quadrature. For the final four rows of Table 4.5, the third element of θ0 is 1 and

we do not observe as significant a reduction in RMS error when we refine the spatial

grid.

Initial θ0 Estimated θ̂ Iterations k Paths RMS Error

(0.5, 0.5, 0.1) (0.100, 4.024, 0.100) 39 h0.75 100 0.5688
(0.5, 0.5, 0.1) (1.035, 3.993, 0.499) 43 h 100 0.0205

(2, 2, 1) (0.925, 3.990, 0.430) 48 h0.75 100 0.0593
(2, 2, 1) (0.955, 3.995, 0.481) 35 h 100 0.0283

(2, 2, 1) (1.035, 3.993, 0.499) 75 h0.75 300 0.0206
(2, 2, 1) (1.022, 4.008, 0.497) 32 h 300 0.0138

Table 4.5: Results for Case 2. We compare spatial grid laws k = h0.75 and k = h.

Finally, in Table 4.6, we study the effect of increasing the number of Euler-Maruyama

sample paths in the data set that we feed into the inference algorithm. We keep all other

algorithm and problem parameters fixed, with θ = (1,4,0.5), θ0 = (2,2,1), h = 0.01,

and k = h0.75. The results show a steady improvement in the estimated θ̂ as the num-

ber of sample paths increase. The last row of Table 4.6 contains our best result for this

inference problem with an RMS error less than 0.01.

Estimated θ̂ Iterations Paths RMS Error
(0.776, 4.060, 0.424) 100 2 0.1408
(0.899, 3.992, 0.510) 27 10 0.0583
(0.833, 4.018, 0.440) 35 50 0.1030
(0.925, 3.990, 0.430) 48 100 0.0593
(0.901, 4.007, 0.464) 33 200 0.0609
(1.035, 3.993, 0.499) 75 300 0.0206
(1.107, 3.994, 0.513) 43 400 0.0624
(0.988, 3.999, 0.489) 33 1000 0.0094

Table 4.6: Results for Case 2. We examine the effect of increasing the number of sample
paths in the data set, keeping all other parameters fixed.

68

Case 3: Generic Polynomial Drift and Diffusion Functions

For our third example, we consider the same nonlinear SDE (4.26) to generate the

observation data for the inference problem. Even though, this section is devoted for

parametric inference problems, we present our next set of results as a motivation ex-

ample of a simple case of nonparametric inference problem: a topic we will discuss in

Section 4.4 in detail. In other words, here we consider this case as an example of where

we do not know the exact form of the drift function. Therefore, we assume the drift

function has the form of a third degree polynomial in parameter θ . In other words, we

consider the SDE

dXt = (θ0 +θ1Xt +θ2X2
t +θ3X3

t)dt +θ4dWt , (4.27)

and we infer the parameters θ = (θ0,θ1,θ2,θ3,θ4) in the SDE (4.27) from the observa-

tions generated using the SDE (4.26) to see if we recover the correct form of the drift

function. Specifically, we should infer that the parameters θ0 and θ2 in (4.27) are zero.

In Table 4.7, we display our results for three values of h, the internal time step.

We generate our data by simulating 100 sample paths of (4.26) with θ1 = 0.2, θ2 =

4, and θ3 = 0.4. Note that in terms of the inference model 4.27, this corresponds to

θ = (0,0.8,0,−0.2,0.4). For the initial guess, we use θ0 = (0,0,0,0,0.5). In this

particular set of tests, instead of the using the BFGS algorithm described above, we

use the method-of-moving-asymptotes algorithm described by [61].

Overall, the results show that the inference algorithm correctly identifies the quali-

tative form of the model. That is, we find that the first and third components of θ̂ are

close to zero, and the remaining components of θ̂ are also close to their true values.

Estimated θ̂ Iterations h RMS Error
(0.014, 0.619, -0.003, -0.154, 0.357) 69 0.005 0.0859
(0.014, 0.867, -0.003, -0.217, 0.424) 57 0.002 0.0334
(0.012, 0.766, -0.003, -0.192, 0.408) 89 0.001 0.0168

Table 4.7: Results for Case 3. We perform inference using model (4.27), which has a
higher-dimensional parameter space than (4.26), the model used to generate the data.

69

4.4 Nonparametric Adjoint-Based Inference

Consider a noisy, time-dependent system with a scalar observable. We define a time

series to be a sequence of measurements, at regularly spaced times, of one sample path

(or one realization) of the system. Suppose we have access to many sample paths; we

observe all of the paths at regularly spaced times, thereby obtaining many time series.

Starting with this type of data, we consider two questions:

1. How can we use all of the time series data to infer a fundamental equation of

motion?

2. How well does such a model perform in predicting the future distribution of the

observable variable?

We frame this problem as a non-parametric inference problem for the drift and dif-

fusion functions of a general stochastic differential equation (SDE):

dXt = f (Xt)dt +g(Xt)dWt . (4.28)

In this SDE, the drift function f and the diffusion function g are considered to be un-

known. Here also we assume we observe (4.28) at times t j = j∆t for some fixed time-

step ∆t > 0, for j = 0, . . . ,L. At each time t j, we collect ν samples of Xt j and label these

samples as x j ∈ Rν . We let x = x0,x1, . . . ,xL denote all of the collected observations.

Now, our goal is to use x to infer f and g from (4.28). We can then use (4.28) to predict

the future distribution of Xt . The type of data we have described arises in a diverse set of

practical examples: time series measurements of large numbers of neurons [60], bid-ask

prices in online auctions [44], or the position of a moving robotic arm [67]. The data we

describe can also be viewed as a particular case of longitudinal high-dimensional data,

of importance in a variety of biomedical contexts [17, 37].

In our approach, we first expand both the drift and the diffusion using an appropriate

basis function expansion. As a result, the parameter vector θ in our statistical model is a

vector of basis expansion coefficients that give finite-dimensional representations of the

drift and diffusion functions that we seek to infer. We then compute maximum likelihood

estimates for θ using the DTQ method. While the DTQ method is by itself efficient,

what is most relevant for the current nonparametric estimation problem is our ability to

70

combine the DTQ method with the adjoint method to compute the gradient ∇θ p(x|θ).
As already mentioned earlier, the advantage of the adjoint method is, it enables the

inference to scale well with the dimension of θ . This is important for nonparametric

estimation, because the required dimension of θ in the basis expansion may be quite

large.

Prior Work

Our work is related to but distinct from prior work carried out in both the machine

learning and statistics communities. First, nonparametric inference of the drift func-

tion for the SDE model (4.28) has been approached using Gaussian process approxima-

tions [53, 4]; it is not immediately clear how well such an approach will carry over to

the setting where we have multiple sample paths, each observed on a relatively coarse

time scale. In [44], the authors seek to infer an empirical SDE from the type of data

just described. However, the class of SDE considered there is rather different than the

drift-diffusion SDE (4.28) considered here. The work of [39] also fits the context of

using data to infer general stochastic models; here the authors propose a model whose

stochastic structure is completely unspecified. In contrast, by constraining the model

to be (4.28), we form a connection to statistical physics, e.g., the Fokker-Planck and

Langevin equations. In this framework, our question is: given enough realizations of

a stochastic system, how well can we infer its potential function? Moving outside the

SDE framework, there are several approaches to use high-dimensional longitudinal data

to build predictive models: a tree-based method [56], methods from functional data

analysis [65], and time series methods [67], to name just a few.

Methodology

We assume that f and g are square-integrable, i.e., f ,g ∈ L2(R). The Hermite func-

tions {ψi(x)}∞
i=0 form an orthonormal basis of L2(R); additionally, we have that any

φ ∈ L2(R) can be represented as an expansion in Hermite functions,

φ(x) =
∞

∑
i=0

ciψi(x), (4.29)

71

where the coefficient c j can be computed via c j =
∫

φ(x)ψi(x)dx. The j-th Hermite

function is defined by

ψ j(x) = (−1) j(2 j j!
√

π)−1/2ex2/2 d j

dx j e−x2
. (4.30)

For further definitions and properties of the Hermite functions, we refer the reader to

[66].

To finite-dimensionalize the inference problem for (4.28), we expand the unknown

functions f and g in the Hermite basis and then truncate the expansions:

f (x)≈
N f

∑
i=0

θiψi(x) = f̂ (x;θ) (4.31a)

g(x)≈
Ng

∑
i=0

θN f+1+iψi(x) = ĝ(x;θ). (4.31b)

These approximations of f and g induce an approximation of the original SDE (4.28)

by the approximate SDE

dXt = f̂ (Xt ;θ)dt + ĝ(Xt ;θ)dWt . (4.32)

Properties of the Hermite functions guarantee that both f̂ and ĝ and their derivatives are

globally bounded. This is sufficient for the existence of a unique solution Xt of (4.32);

moreover, we are guaranteed that for t > 0, the random variable Xt has a density function

p(x, t).

Let θ = (θ0, . . . ,θN f ,θN f+1, . . . ,θN f+Ng+1). Then the inference problem consists of

using the data x to compute θ . Now, given that the SDE (4.32) is of the parametric

form of (1.1), we compute the likelihood function as explained in Section 2.2.2. Simi-

larly, we compute the gradient information required for the optimization following the

explanation in Section 4.2.2.

Dirichlet Penalty Term

Thus far, we have assumed that the dimensionality of θ , which by (4.31) is N f +

Ng +2, has been fixed ahead of time by the user. In any practical data science context,

the danger is that by choosing N f and Ng sufficiently large, one can infer functions f̂ (x)

and ĝ(x) that do not yield predictive models on test data, even though the models may

72

fit the training data arbitrarily well. In many data science settings, we use computational

methods such as cross-validation to choose optimal values of parameters such as N f

and Ng. Because our methodology already requires substantial computational effort,

we seek an alternative method to choose parameters so as to avoid overfitting. Beyond

computational considerations, we also seek a method that naturally constrains θ , guiding

the optimizer away from large magnitude coefficients without the use of, e.g., ad hoc box

constraints. We describe this method using f̂ , but all of our considerations apply to ĝ as

well.

We begin with the Dirichlet energy of f̂ :

E =
∫

∞

x=−∞

| f̂ ′(x)|2 dx. (4.33)

Minimizers of E consist of constant functions f̂ . For a constant γ ≥ 0, we propose to

add γE to the negative log likelihood. Minimizing the resulting penalized log likelihood

will yield estimates of f̂ that are less oscillatory than would obtained by minimizing

the negative log likelihood alone. This is analogous to the penalty term used in natural

smoothing splines; the only difference is that we penalize the L2 norm of f̂ ′ rather than

f̂ ′′. Due to properties of the Hermite basis, it is possible to substitute (4.31a) in (4.33)

and evaluate E in closed form. The main property that we employ is

ψ
′
j(x) =

√
j
2

ψ j−1(x)−
√

j+1
2

ψ j+1(x).

With this, we obtain

E(θ) =
1
2

θ
2
1 +

N f

2
θ

2
N f

+
N f−1

∑
j=1

(√
j+1

2
θ j+1−

√
j
2

θ j−1

)2

(4.34)

The overall penalized objective function is then

J(θ) =− logL (θ)+ γE(θ) (4.35)

with the negative log likelihood defined by (2.13) and constant γ ≥ 0.

Implementation

Using R, we have implemented the algorithms described under Methodology sec-

tion. Specifically, we have coded functions that take as input a trial value of θ and the

73

data matrix x, and that return as output the penalized objective function (4.35) and its

gradient with respect to θ . We pass these functions to a gradient-based optimizer. In

this work, we make use of two R packages for optimization:

1. nloptr [68]: this package is an R interface to NLopt, a general-purpose optimiza-

tion package [32]. From this package, we use the low-storage BFGS method la-

beled as “NLOPT LD LBFGS.” Internally, this method uses a line search method

to find an optimal step size once the step direction has been chosen.

2. trustOptim [14]: this package implements trust region methods for nonlinear

optimization. Essentially, the method finds an optimal step direction once a step

size (the trust region radius) has been computed. From this package, we use the

SR1 (Symmetric Rank 1) method.

Both of the optimization methods are quasi-Newton methods that seek to numerically

approximate the Hessian using previously computed gradients. Such methods are well-

suited for our problem: the adjoint method described in Section 4.2.2 enables us to com-

pute the gradient of the log likelihood with computational effort that does not depend on

the dimensionality of θ .

Note that though the methods described under the Methodology section are valid for

nonparametric inference of both f and g, for the present paper, we have implemented

the nonparametric inference only for the drift function f . In the present implementation,

we treat the diffusion function g as parametric; in the results that follow, we treat g as an

unknown constant. Preliminary tests indicate that though simultaneous nonparametric

inference of both f and g is possible, as one might expect, such inference requires

more sample paths than are required for nonparametric of f only. The present code is

written entirely in R; the adjoint-based computation of the gradient features a highly

intuitive but relatively slow “for” loop over each time series or sample path (from 1 to

ν). For future work, we propose a reimplementation of this code in either C++ or Scala

(in conjunction with Apache Spark), to eliminate the sample path bottleneck, and then

study simultaneous nonparametric inference of the drift and diffusion functions.

74

Results

Hermite Inference Test

In our first set of tests, we use artificial data generated with known drift and diffusion

functions f and g. In particular, for each i ∈ {0,1,2,3,4}, we consider (4.28) with

f (x) = ψi(x) (4.36)

and a fixed diffusion coefficient g = 1. For each resulting SDE, we generate ν sample

paths using the Euler-Maruyama scheme with initial condition X0 = 0. When we step

the solution forward in time, we use the fixed time step hEM = 10−4, i.e.,

X̃n+1 = X̃n + f (X̃n)hEM +g(X̃n)h
1/2
EMZn+1 (4.37)

where Zn+1 is an independent sample of a standard Gaussian (mean 0 and variance

1) random variable. Here X̃n is intended to approximate XnhEM . We step the solution

forward in time until T = 4, i.e., until n = T/hEM. However, we retain the solution

only at times t = 0,1,2,3,4, i.e., when n = t/hEM. In this way, each sample path we

generate consists of the solution of (4.28) sampled at five points in time, one of which

is the initial condition. For each choice of f given by (4.36), we generate artificial data

sets with ν = 100, 1000, and 10000 sample paths.

For this problem, the parameter vector θ consists of coefficients (θ0, . . . ,θN f) in

(4.31a) together with one coefficient θN f+1 that we use to parameterize the unknown

(yet constant) diffusion function g. In the following set of tests, we set N f = 4. We

give the optimizer an initial guess consisting of θ 0 = (1,1, . . . ,1); for each of three

values of the penalty parameter γ ∈ {0,50,500}, we run the optimizer to find an inferred

parameter vector θ̂ . When we run the optimizer, we must choose internal parameters

for the DTQ method. We choose an internal DTQ time step of h = 0.02, spatial grid

spacing k = h0.6, and grid truncation M = 2dπ/k1.5e. These parameters are chosen so

that the DTQ method preserves the total probability of the density function as it evolves.

Because we generated the artificial data ourselves, we know that the ground truth

parameter vector consists of θi = 1, θ5 = 1, and all other entries of θ equal zero. In

Figure 4.1, we plot the two-norm error between the inferred and ground truth parameter

vectors, i.e., ‖θ̂ −θ‖2, as a function of ν , the number of samples. Note that both axes

75

●

●

●

●

●

●

●

●

●

0.1

1.0

100 1000 10000
number of sample paths

L2
 e

rr
or

 b
et

w
ee

n
in

fe
rr

ed
 a

nd
 tr

ue
 th

et
a

gamma
0

50

500

Figure 4.1: We plot the two-norm error between the true and inferred parameter vectors
as a function of the number of sample paths ν . Note that both axes are log-scaled. For
each value of ν , there are 15 data points corresponding to 3 possible values of γ , the
penalty parameter, and 5 possible drift functions f (x). In particular, the asterisk, square,
triangle, diamond, and circles correspond to, respectively i = 0,1,2,3,4 in (4.36). Over-
all, we see that the error decreases as the number of sample paths increases; for the γ = 0
case, a least-squares line has slope −0.5285, consistent with an error rate of ν−1/2.

on this plot have been logarithmically scaled. The overall trend is clear: as we feed

our algorithm a larger number of sample paths, we obtain estimates that are closer to

the ground truth values. We also see that, for this simple test, the penalty term is not

necessary; the best performance is achieved by setting γ = 0. If we isolate the γ = 0

data points from the plot and fit a least-squares regression line to the log-transformed

data, the line has slope −0.5285, consistent with an error decay rate of ν−1/2. When

the number of sample paths is limited, i.e., ν = 100, it is possible to achieve better

performance by setting γ = 50. Even in this case, the improved inference is observed

for some, but not all, choices of ψi(x) in (4.36).

76

In Figure 4.2, we focus our attention on the results obtained when γ = 0 and ν =

10000, i.e., the best results from Figure 4.1. For each i = 0,1,2,3,4, we plot the true

drift function ψi(x) (in green) together with the inferred drift function f̂ (x) (in red).

Using the R function optimHess, we recover the numerical value of the Hessian matrix

at the optimal solution θ̂ . This numerical Hessian is the observed Fisher information

matrix I(θ). Let θ
SE denote the square root of the diagonal of I(θ)−1; this vector is an

estimate of the standard error of θ̂ . Using these standard errors, we compute all 25 = 32

possible curves f̂ (x) that result from taking θ
∗ = (θ0±θ SE

0 , . . . ,θ4±θ SE
4). We plot the

upper and lower envelopes of these curves as dotted lines in Figure 4.2. Overall, Figure

4.2 shows excellent agreement between the true and inferred drift functions. When there

is disagreement, the true drift function almost always lies between the dotted lines, i.e.,

between our upper/lower band estimates for f̂ .

For this same case (γ = 0 and ν = 10000), we also mention the inferred values

of the constant diffusion coefficient ĝ. Recall that the true value is g = 1. For each

i, the inferred values are 0.993,1.012,0.994,0.986, and 0.995. The standard errors for

these estimates—obtained in the same way as above—are 0.00762, 0.00636, 0.00873,

0.00936, and 0.00883.

Prediction Test

In the next test, we focus our attention on the predictive power of the inferred model.

For a particular data set x, we set a window size w ≥ 2. Let a∨ b denote the max-

imum of the two integers a and b. For each j ≥ 1, we then use the windowed data

{x(j−w+1)∨1, . . . ,x j} to train our model, i.e., to run our optimization method and infer a

parameter vector θ̂ . We then use this inferred parameter vector in (4.32). Using the true

data vector x j as a vector of initial conditions, we step (4.32) forward in time until we

reach the time corresponding to x j+1. Let us label the samples thus obtained as x̂ j+1; we

treat these samples as predictions. We then compute the Kolmogorov-Smirnov distance

E j = supz |Fx̂ j+1(z)−Fx j+1(z)|. Here Fy stands for the empirical cumulative distribution

function (CDF) of the sample vector y. To see what the test error is like when we know

the drift function perfectly, we also use f̂ (x) = sinx in (4.32) and compute the error just

as above for each j. In what follows, we refer to this as the “control” parameter. Note

77

0.0

0.2

0.4

0.6

0.8

−5.0 −2.5 0.0 2.5 5.0
x

tr
ue

 &
 in

fe
rr

ed
 d

rif
t f

un
ct

io
ns i=0

−0.4

0.0

0.4

−5.0 −2.5 0.0 2.5 5.0
x

i=1

−0.4

0.0

0.4

−5.0 −2.5 0.0 2.5 5.0
x

i=2

−0.4

0.0

0.4

−5.0 −2.5 0.0 2.5 5.0
x

tr
ue

 &
 in

fe
rr

ed
 d

rif
t f

un
ct

io
ns i=3

−0.3

0.0

0.3

0.6

−5.0 −2.5 0.0 2.5 5.0
x

i=4

label
true

inferred

Figure 4.2: For each value of i, we plot the true drift function ψi(x) (in green), the
inferred drift function f̂ (x) (in red), and upper/lower standard error bands about f̂ (x) (in
dotted lines). Overall, we find excellent agreement between the true and inferred drift
functions. These results correspond to the γ = 0, ν = 10000 results from Figure 4.1.
Further details are given in the main text.

that in this test, we do not use the penalty parameter, i.e., we set γ = 0.

As we go through the data set, incrementing j by 1 and computing the test set error

repeatedly, we try to avoid recomputing the parameter vector from scratch. Specifically,

the parameter vector θ̂ that is obtained using training data that includes x j is used as

an initial guess when we optimize with training data that includes x j+1. For this test,

we use the nloptr optimization package mentioned above. If the optimizer fails to

find a minimizer, we restart the optimizer with an initial guess perturbed by uniformly

distributed U(−0.1,0.1) noise and an initial diffusion coefficient of 0.7. For the very

first initial guess, we take θ = (0, . . . ,0,0.7). As in the first test, we set N f = 4.

For the internal DTQ parameters, we use the same parameters as in Hermite in-

ference test, except for the grid truncation level M. We compare two values for M:

M̃1 = dπ/k1.5e and M̃2 = 2M̃1. As for the artificial data generation, we again follow the

same procedure as in Hermite inference test. Compared to what we described above,

the only differences are that we now take T = 50 and ν = 100; despite the small Euler-

78

Maruyama time step hEM, we still save the solution only at integer times t. We perform

the above test for window sizes w = 2, w = 10, and w = 50. Because T = 50, w = 50

corresponds to using all available past data to train the model.

We plot the results in Figure 4.3. The plotted curves lead to four main conclusions.

First, there are several test set error curves that stay consistently below 0.15, indicating

good agreement between the predicted and true CDFs. This is true in spite of the fact

that the true drift function f (x) = sinx explicitly violates an assumption made in the

Methodology section ; in particular, f (x) is not square-integrable, i.e., f /∈ L2. Second,

in the DTQ method, we must pay attention to the size of the spatial domain. If we set

M = M̃1, it turns out that the spatial domain is too small to preserve the total area under

the density curve as it evolves forward in time. As we will see, this leads to unreasonably

large estimates of the coefficient vector θ . Once we set M = M̃2, the method performs

far better. Third, the window size has an insignificant effect on the test set error. The

three test set error curves corresponding to A = A2 are quite close to one another, even

when w is as small (w = 2) or as large (w = 50) as possible.

The fourth conclusion is perhaps the most interesting one: the seemingly ideal case

in which f̂ (x) = f (x) = sinx leads to rather poor test set error, as we can see from the

control curve. We hypothesize that because the number of sample paths is fairly small

(ν = 100), the artificial data we have generated may at times be more consistent with

a drift function other than f (x). In Figure 4.4, we have plotted five drift functions: the

true drift f (x) together with four inferred drifts corresponding to the j = 50 points in

Figure 4.3. The M = M̃1 case leads to unreasonably large coefficients, which we see

immediately in the plot. The M = M̃2 cases lead to perfectly reasonable drift functions,

only one of which bears much resemblance to f (x) = sinx. Overall, we are encouraged

by the fact that our method can pick out predictive models from the data even when the

inference is far from the ground truth.

Real Data Test

Our final test involves real data obtained from the California Air Resources Board

[13]. Specifically, we obtained data consisting of hourly measurements of ground level

ozone (in parts per million) conducted daily at numerous sites across California in the

79

0.05

0.10

0.15

0.20

0 10 20 30 40 50

time

K
−

S
 e

rr
o

r

parameters

control

M=M1,w=10

M=M2,w=10

M=M2,w=2

M=M2,w=50

~

~

~

~

Figure 4.3: Following the procedure in the prediction test, we evaluate the predictive
power of models inferred using our method. Specifically, for each point in time j, we
plot the Kolmogorov-Smirnov (K-S) error between the empirical distributions of x j+1
(real data) and x̂ j+1 (predictions). We form the predictions by inferring the drift and
diffusion functions, and then using them in a forward simulation of the SDE (4.32).
The parameters A and w are, respectively the spatial grid truncation in the DTQ method
and a window size, i.e., how many points along each sample path are actually used
to fit the model. The A = A2 results show that as long as the DTQ method’s spatial
grid truncation is chosen well, the inferred models yield good predictive results. These
results also show insensitivity to the window size w. The control curve corresponds to
predictions generated from f (x) = sinx, i.e., the drift function used to create the data
set.

years 2010-2011. We first narrowed our scope to 25 sites in the San Joaquin Valley. For

these sites, we treated each day as a separate time series with 24 points. When fewer

than 24 were available, we used linear interpolation to impute missing points; however,

this procedure was only applied if the time series had at least 16 points to begin with.

In this way, we formed a data set consisting of ν = 16675 sample paths, each with 24

points. To allow us to use a large spatial grid spacing in the DTQ method, we multiplied

each ozone level by a factor of 10. We then applied our inference method to this data

set. The specific DTQ parameters used are: h = 0.02, k = h, and M = d0.5/k1.5e. As

before, we take N f = 6.

As one might expect, with a real data set, the objective function required penalization

in order to yield reasonable results. We chose a penalty parameter of γ = 50 based on

several trials. We fit the model using the first 6 hours worth of data, i.e., a window

size of w = 6. The drift function together with upper/lower standard error bands is

displayed in Figure 4.5. For this test, the inferred diffusion coefficient is ĝ = 0.141.

80

−1.0

−0.5

0.0

0.5

1.0

−6 −3 0 3 6

x

tr
u

e
 a

n
d

 i
n

fe
rr

e
d

 d
ri

ft
 f
u

n
c
ti
o

n
s

parameters

control

M=M1,w=10

M=M2,w=10

M=M2,w=2

M=M2,w=50

~

~

~

~

Figure 4.4: We plot the true drift function f (x) = sinx (control) together with four
inferred drift functions f̂ (x). These drift functions correspond to the j = 50 runs from
Figure 4.3. Combining what we see here with Figure 4.3, we conclude that even though
the A = A2 drifts are not close to sinx, they still yield good test set results.

Note that when running using the nloptr optimization package for this test, we have

constrained the diffusion function via ĝ ≥
√

k. In the DTQ method, as the diffusion

function approaches zero at a particular point, it becomes impossible to resolve the

Gaussian kernel Gh
θ

on a spatial grid with fixed spacing k > 0. In the particular inference

problem we describe here, the optimizer does tend to send the diffusion constant to its

lower bound—we believe this indicates the need for a spatially-dependent (rather than

constant, as assumed here) diffusion function ĝ.

Following the same procedure outlined in Prediction test section, we generated pre-

dictions for the next 6 hours. The Kolmogorov-Smirnov errors between the true and

predicted CDFs are, respectively, 0.148, 0.161, 0.164, 0.179, 0.190, and 0.220. The

errors in the true and predicted means are, respectively, 0.0549, 0.0657, 0.0772, 0.0867,

81

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5 5.0
x

in
fe

rr
ed

 d
rif

t f
un

ct
io

ns

Figure 4.5: The inferred drift f̂ (x) for hourly ozone levels in the San Joaquin Valley,
together with upper/lower standard error bands.

0.1069, and 0.1333. As expected, the errors increase as we get further away from the

last data point used to build the model. Please note that to convert the errors in the

mean to parts per million, we must divide by 10; we believe the resulting errors indicate

reasonable agreement between predictions and reality.

4.5 Discussion and Conclusion

In this chapter we discussed how to use the DTQ method to compute the maxi-

mum likelihood estimates. We presented the derivations of the gradient computation

required to maximize the negative log likelihood using two different approaches: the

direct method and the adjoint method. We used the direct method to perform parametric

inference of SDE. We demonstrated the method’s performance through simulations tests

of three different cases of SDE. Specifically, we observed that with high quality data ob-

82

tained from Euler-Maruyama sampling, the method is capable of computing accurate

estimates of θ even with initial guesses that are far from the true parameters.

Next, in this chapter, we have developed a new adjoint-based nonparametric method

to infer the drift and diffusion functions for a stochastic differential equation. We have

demonstrated through three tests that the method has the capability to succeed. There

are three main future directions to improve the current framework. First, we have only

explored the Hermite function basis in this work and we believe other bases may yield

better results for particular data sets. Second, we have not yet tested the method on

inference problems where we seek a non-constant diffusion function g(x). Third, we

plan to seek out improved methods to find optimal values of the penalization parameter

γ . All of these tasks will be enabled by porting computationally intensive parts of our

algorithm to a compiled language.

Chapter 5

Inference for Coupled SDE: Metropolis

Algorithms via Density Tracking by

Quadrature

5.1 Introduction

In this chapter, we perform Bayesian inference for the coupled SDE with time-

dependent coefficients introduced in Section 2.3. In contrast to MLE approached dis-

cussed in Chapter 4, the goal of the Bayesian approach is to sample from the posterior

distribution which is proportional to the product of the likelihood and the prior distribu-

tion. In this work, we develop a MCMC algorithm to perform Bayesian inference for

coupled SDE. The MCMC algorithm is derived using a Metropolis scheme; our inno-

vation is to evaluate the log likelihood efficiently using the DTQ method. We reiterate

that inference of SDE models is a challenging problem, due to the fact that a closed-

form likelihood function is generally unavailable [58, 31, 26]. Most existing parametric

inference methods for discretely observed SDE require inter-observation times to be

small. As a way to facilitate approximation of the transition density for parametric in-

ference for large inter-observation times, Bayesian methods are used to simulate miss-

ing values of the observations to form a high-frequency data set. In situations where

the likelihood function is either analytically unavailable or computationally prohibitive

83

84

to evaluate, Bayesian inference of SDE makes use of likelihood-free methods such as

Approximate Bayesian Computation [50], variational methods [5, 64], and/or Gaussian

processes [4, 53].

5.2 Bayesian Inference

Recall the Inference problem of coupled SDE in Section 2.3. Our goal is to Infer

unknown parameters in vector θ from time-series observations x. The posterior density

of the parameter vector given the observations is p(θ |x) ∝ p(x |θ)p(θ), where p(x |θ)
is the likelihood and p(θ) is the prior. We approximate the likelihood p(x |θ) using the

DTQ method as discussed in the Section 2.3.

5.2.1 Metropolis Algorithm

Here we embed the DTQ method’s likelihood computation into a Metropolis algo-

rithm to sample from the posterior. In the Metropolis algorithm, we construct an aux-

iliary Markov chain {~̂θN}N≥0 which is designed to have an invariant distribution given

by the posterior p(θ |x). This Markov chain is constructed as ~̂θN+1 = ~̂θN +ZN+1, where

ZN+1 is a random vector with dimension equal to that of the parameter vector θ . In this

paper, we choose all components of ZN+1 to be independent normal random variables

with known means and variances. The Metropolis algorithm is as follows:

• Choose value q0 for ~̂θ0.

• Once the values q0, · · · ,qN of ~̂θ0, · · · ,~̂θN have been found:

– Generate a proposal from the auxiliary Markov chain: q∗N+1 = qN +ZN+1.

– Calculate the ratio ρ =
p(q∗N+1 |x)
p(qN |x) , where p(q∗N+1 |x)≈ p̃(x |q∗N+1)p(q∗N+1) =

p(q∗N+1)∏
L−1
m=0 p̃(xm+1 |xm,q∗N+1). Now each term p̃(xm+1 |xm,q∗N+1) can be

computed using the DTQ method discussed in Section 2.3.

– Sample uN ∼U (0,1). If ρ > uN set ~̂θN+1 = q∗N+1; in this case, the proposal

is accepted. Else set ~̂θN+1 = qN and the proposal is rejected.

85

Once we have obtained all the samples q0,q1, · · · ,qN from the Metropolis algorithm, we

discard a sufficient number of initial samples to ensure the Markov chain has converged

to its invariant distribution.

5.3 Numerical Tests

We implement the Metropolis algorithm in R. Inside the Metropolis algorithm, we

evaluate the likelihood function using the DTQ method, which is implemented in C++

as an R package.

5.3.1 Stochastic Van der Pol Oscillator

To test the method, we first consider the nonlinear SDE

dX1,t = θ1 X2,t d t +(0.1+θ
2
4 e−X2

1,t)dW1,t , (5.1a)

dX2,t = (−θ2 X1,t +θ3X2,t (1−X2
1,t))d t +(0.1+θ

2
5 e−X2

2,t)dW2,t . (5.1b)

This system describes a noisy van der Pol oscillator. The presence of X1,t and X2,t in

the diffusion function ensures that the transition density is not Gaussian. To generate

simulated data, we start with known values of the parameters: θ1 = 1,θ2 = 1,θ3 = 4

and the noise parameters θ4 = θ5 = 0.5. Using a fixed initial condition (X1,0,X2,0), we

then use the Euler-Maruyama method to step (5.1) forward in time until a final time

T > 0. When we carry out this time-stepping, we use a step size of 0.001 and simulate

up to T = 20. We then retain every 100-th element to yield a data set consisting of

201 observations of X1 and X2 with spacing ∆t = 0.1. In this way, we simulate large

inter-observation times for a process that in reality operates at a finer time scale.

Using the samples {xm}L
m=0 thus constructed, we run the Metropolis algorithm. We

infer only the parameters in the drift function, i.e., θ1,θ2 and θ3, keeping other param-

eters fixed at their known values. We initialize θ at (0.1,0.1,0.1), far from the true θ

values. We use a diffuse Gaussian prior with mean 0 and standard deviation 100. For

the proposal distribution ZN+1 in the auxiliary Markov chain, we choose i.i.d. Gaussians

with mean 0 and standard deviation 0.05.

86

Our goal here is to test the performance of the algorithm using simulated data and

compare it against Bayesian particle filtering/inference method implemented in the R

package “pomp” [34]. This method gives us an alternative, sampling-based approach to

approximate the likelihood function. Note that we also compare DTQ against a purely

Eulerian approximation of the transition density, i.e., a method where p̃(xm+1|xm,θ) is

approximated by a Gaussian probability density function; this is equivalent to the DTQ

method with zero internal quadrature steps, i.e., h = ∆t = 0.1.

When we run the Metropolis algorithm, we discard the first 1000 samples and retain

the next 20000 samples. We have settled on 20000 samples because, in this case, using

the first 10000 post-burn-in samples does not yield significantly different results than

what we obtained, i.e., we see no reason to continue sampling. We record the inferred

parameter values, acceptance rate of the method (AR), and mean absolute percentage

error (MAPE) for varying values of h for the 3 methods, Euler, DTQ and Pomp.

Parameters θ1 θ2 θ3 AR MAPE Method

∆t = 0.1;h = 0.1/1 0.747 0.906 3.070 0.296 0.193 Euler
∆t = 0.1;h = 0.1/2 0.866 1.300 4.260 0.285 0.168
∆t = 0.1;h = 0.1/4 0.892 1.160 4.430 0.254 0.124 DTQ
∆t = 0.1;h = 0.1/8 0.980 1.170 4.210 0.239 0.081
∆t = 0.1;h = 0.1/2 1.250 0.257 4.340 0.0003 0.361
∆t = 0.1;h = 0.1/4 1.110 0.647 4.060 0.001 0.158 Pomp
∆t = 0.1;h = 0.1/8 1.040 0.752 3.940 0.0004 0.102

Table 5.1: Simulation Test Results for Van der Pol Oscillator. We compare the perfor-
mance of the DTQ method against Pomp and the Eulerian methods.

The first four rows of the Table 5.1 show that using the DTQ method to compute

the likelihood yields more accurate posteriors than using a purely Gaussian likelihood

(Eulerian method). In comparison to Pomp, our method does slightly better in terms of

the means of the posteriors. If we look at the Metropolis samples generated by the two

methods, the DTQ method has radically higher acceptance rates than Pomp. The non-

adaptive version of the Metropolis sampling for Pomp does not explore the posterior

adequately, rejecting thousands of consecutive proposals. Results in Table 5.2 shows

that a carefully executed adaptive Metropolis algorithm for Pomp does generate better

87

results than the non-adaptive version.

Parameters θ1 θ2 θ3 AR MAPE Method

∆t = 0.1;h = 0.1/2 0.960 0.809 4.010 0.110 0.078
∆t = 0.1;h = 0.1/4 1.000 0.954 3.990 0.164 0.017 Pomp-adaptive
∆t = 0.1;h = 0.1/8 1.010 1.010 4.020 0.171 0.009

Table 5.2: Simulation Test Results for Van der Pol Oscillator from Pomp using an Adap-
tive Metropolis Algorithm. We study the performance with decreasing h.

One should take care to interpret the results in Table 5.2: we have invested a great

deal of time to tune parameters in the adaptive MCMC scheme for pomp with full knowl-

edge of the “true” parameter vector θ . Overall, what we have learned from this exercise

is that there are two main investments of effort that one can make. In the DTQ method,

we have invested effort into making the likelihood calculation more accurate, efficient

and stable to initial choice of parameters. This allows us to use the DTQ method with

a vanilla Metropolis algorithm and obtain reasonable results. One could instead have

chosen to improve the vanilla Metropolis algorithm in various ways: adaptive MCMC,

sequential MC, Hamiltonian MC, etc. This is the strategy pursued by Pomp. While

both strategies have their merits, it seems that the likelihood computed by Pomp is not

accurate enough to enable a vanilla Metropolis method to work well.

To understand this point in more detail, we have computed log likelihood surfaces in

(θ2,θ3) space using both the Pomp and DTQ methods. If we rescale the log likelihood

values from both methods so that they achieve a maximum of 0 and then exponentiate,

we find that the DTQ likelihood has more reasonable gradients than the Pomp likelihood,

which varies over 3 orders of magnitude. The accept/reject ratio depends on the actual

density, i.e., the exponential of the log likelihood plus the log prior. Therefore, the

sharp dropoff in the likelihood function at points very close to the maximum—seen in

Pomp—will cause thousands of consecutive rejected steps. The more gradual dropoff in

the DTQ likelihood function leads to a reasonable fraction of accepted steps in a vanilla

Metropolis algorithm.

88

5.3.2 Stochastic Pursuit Models from Basketball Tracking Data

In 2010, the National Basketball Association (NBA) began to install a camera system

to track the positions of the players and the ball as a function of time. For the ball and

for each of the 10 players on the court, the system records an (x,y) position 25 times per

second. Ultimately, this wealth of data should enable us to answer a number of questions

regarding basketball strategy that would have seemed intractable just a few years ago.

To bring this vision to reality, we must develop new algorithms that can efficiently use

the data for inference of appropriate models.

In this work, we focus on so-called “fast break” situations where an offensive player

races towards the basket in an attempt to score before the defensive team has time to

set up their defense. In many such situations, it is relatively easy to identify from the

data a runner and a chaser. This motivates the following question: using the NBA’s

spatial tracking data, how can we infer a stochastic model for the chaser’s pursuit of the

runner? To answer this question, we first formulate a stochastic version of the classical

pursuit model. Our model consists of a set of coupled, nonlinear stochastic differential

equations with time-dependent coefficients.

Derivation of the Model

Let the runner be the player (on offense) who has the ball and is running toward the

basket. Let the chaser be the player (on defense) who is trying to prevent the runner from

scoring. Let the current spatial coordinates of the runner and chaser be, respectively,

(xr(t),yr(t)) and (xc(t),yc(t)).

Since the chaser is moving towards the runner, the velocity vector of the chaser

points toward the runner’s current position. Let ~φ = (xr− xc,yr− yc). Then the unit

vector that points toward the runner from the chaser is φ/‖φ‖. The velocity of the

chaser, (ẋc, ẏc), can thus be given as

(ẋc, ẏc) = γ(t)φ/‖φ‖, (5.2)

where γ(t) = ‖(ẋc, ẏc)‖, the instantaneous speed of the chaser. Note that (5.2) is a cou-

pled system of nonlinear ordinary differential equations known as the pursuit model—

classically, one assumes that γ(t) and (xr(t),yr(t)) are given, in which case one typically

89

solves an initial-value problem for (xc(t),yc(t)). To generalize the classical model to

the real data context considered here, we multiply both sides of (5.2) by dt and then add

noise to each component:

d(xc,yc) = γ(t)
[
~φ/‖~φ‖

]
dt +(ν1 dW 1

t ,ν2 dW 2
t) (5.3)

Here W1,t and W2,t denote two independent Wiener processes with W1,0 = W2,0 = 0 al-

most surely. We refer to this model as the stochastic pursuit model. The question we

want to answer is, given time-discrete observations of (xc,yc) and (xr,yr), how do we

infer γ(t) together with ν1 and ν2? For this stochastic pursuit model (5.3), we take

Xt = (xc(t),yc(t)). We treat γ(t) as piecewise constant. Each constant value of γ(t) is

one component of the parameter vector θ ; the final two components of θ are ν1 and ν2.

If we treat (xr(t),yr(t)) as given, then we can identify the time-dependent drift functions

f1 and f2 as the two components of γ(t)φ/‖φ‖. Next, we do a simulation test for our

inference method using the pursuit SDE (5.3).

Simulation Test Results

We set the runner’s trajectory equal to a sinusoidal curve y = sin(πx) from x =−1 to

x = 1. We assume the runner covers this trajectory over the time period 0≤ t ≤ 8. The

chaser’s trajectory is simulated using the Euler-Maruyama method to step (5.3) forward

in time from a fixed initial condition X0 = (xc
0,y

c
0). During the generation of the data,

we use a step size of 10−4. By downsampling this single time series, we generate time

series with spacings ∆t = 0.4,0.2,0.1.

We set ν1 = 0.15, ν2 = 0.1, γ(t) = γ1 = 0.4 for 0 ≤ t < 4, and γ(t) = γ2 = 1.0 for

4 ≤ t ≤ 8. Because we want all speeds and diffusion constants to be positive, we take

γi = eθi and νi = eθi+2 for i = 1,2. The priors for θ1 and θ2 are normal with variance one

and mean equal to the log of the mean speed of the chaser computed over the chaser’s

entire trajectory. The priors for θ3 and θ4 are normal with mean log(0.4) and variance 1.

We use mean zero Gaussian proposals for all components of θ . We choose the variances

of these proposals so that the acceptance rate for all runs is near 30%.

Using the samples {xm}L
m=0 thus constructed, we run the Metropolis algorithm with

h = ∆t/i with i = 1,2,3,4. For each choice of parameters ∆t and h, we compute 10100

90

samples and discard the first 100. To compute the runner’s trajectory at intermediate

points, we use linear interpolation between times tm and tm+1. We tabulate the results in

Table 5.3; each value of γ1 represents the mean of eθ1 over all Metropolis samples of θ1.

Parameters γ1 γ2 ν1 ν2 RMSE
∆t = 0.1;h = 0.1/1 0.301 0.748 0.124 0.088 0.136
∆t = 0.1;h = 0.1/2 0.311 0.956 0.124 0.085 0.051
∆t = 0.1;h = 0.1/3 0.307 1.011 0.117 0.080 0.050
∆t = 0.1;h = 0.1/4 0.308 1.025 0.120 0.082 0.050
∆t = 0.2;h = 0.2/1 0.306 0.650 0.142 0.114 0.181
∆t = 0.2;h = 0.2/2 0.310 0.877 0.137 0.119 0.077
∆t = 0.2;h = 0.2/3 0.309 1.015 0.112 0.084 0.050
∆t = 0.2;h = 0.2/4 0.304 1.019 0.111 0.085 0.053
∆t = 0.4;h = 0.4/1 0.292 0.514 0.188 0.201 0.254
∆t = 0.4;h = 0.4/2 0.312 0.960 0.177 0.177 0.063
∆t = 0.4;h = 0.4/3 0.307 0.987 0.124 0.144 0.053
∆t = 0.4;h = 0.4/4 0.303 1.014 0.145 0.113 0.049

Table 5.3: Simulation Test Results for Stochastic Pursuit Model. We study the effect of
decreasing h for simulated data generated with different inter-observation times ∆t.

Overall, the results show that our algorithm produces mean posterior estimates that

are reasonably close to the ground truth values. When the spacing of the data ∆t is large,

we see dramatic improvement when we use the DTQ method and more internal time

steps. For instance, when ∆t = 0.4, the RMS error improves dramatically from 0.254 to

0.049 as we decrease h, i.e., as we take more internal DTQ steps. Similar trends can be

seen for the mean estimates of γ2, ν1 and ν2.

NBA Tracking Data

We now turn to real tracking data taken from the game played between the Golden

State Warriors and the Sacramento Kings on October 29, 2014. Reviewing this game,

we found a fast break where Stephen Curry (of the Warriors) was the runner and Ramon

Sessions (of the Kings) was the chaser. The entire fast break lasts 4.12 seconds. The

spatial tracking data is recorded at intervals of 0.04 seconds, for a total of 104 obser-

vations. The tracking data uses the position on a court of dimension 94×50. We have

rescaled the data to lie in a square with center (0,0) and side length equal to one.

91

●●●
●●●

●●●
●●

●●
●●●

●●●
●●●

●●●●
●●●●

●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●

−0.4 −0.2 0.0 0.2 0.4

−0
.4

−0
.2

0.0
0.2

0.4

x

y

●●
●●●●

●●●●
●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●

Figure 5.1: The agreement between the black curve (mean of simulated stochastic pur-
suit trajectories using MAP estimated parameters) and the red curve (chaser’s trajectory)
shows that the stochastic pursuit model is appropriate. The runner’s trajectory is given
in blue.

To parameterize the chaser’s speed γ(t), we have used a piecewise constant approxi-

mation with 8 equispaced pieces. Combined with the diffusion constants ν1 and ν2, this

yields a 10-dimensional parameter vector θ . As in the previous simulated data test, we

set the true parameters γi and νi to be the exponentials of the corresponding elements of

the θ vector.

For the Metropolis sampler, the priors and proposals are higher-dimensional versions

of those described in the simulated data test above. The main difference is that we now

generate only 1000 post-burnin samples.

Using the Metropolis samples, we compute a kernel density estimate of each pa-

rameter. We then treat the mode of each computed density as the MAP (maximum a

posteriori) estimate of the corresponding parameter. We then use the MAP estimates of

the parameters in the pursuit SDE (5.3). We generate 100 sample paths of this SDE us-

ing the Euler-Maruyama method with time step 10−4. As shown in Figure 5.1, the mean

of these sample paths (plotted in black) agrees very well with the chaser’s trajectory

(plotted in red). This gives evidence that our stochastic pursuit system is an appropriate

model for NBA fast breaks involving one runner and one chaser.

To visualize the insight provided by the model, we plot in Figure 5.2 the MAP es-

timated γ(t) function over the time period of the fast break, 0 ≤ t ≤ 4.12. The speed

92

●●

●●

●●●

●●

●●●

●●

●●●

●●

0 1 2 3 4

0.
10

0.
15

0.
20

t

M
A

P
 g

am
m

a(
t)

Figure 5.2: For the fast break tracking data described in the text, we plot the MAP
estimate of the chaser’s γ(t) in black. This gives an estimate of how well the chaser
is pursuing the runner at various points in time. The times at which γ dips below 0.1
correspond well to the times where Sessions was not able to keep up with Curry.

γ(t) is the piecewise constant function plotted in black, while the mean speed computed

directly from the data is given by a red horizontal line. The inferred speed shows that

the chaser slows down dramatically approximately 1.5 seconds into the fast break. If

one reviews the video footage of the play, this corresponds to the runner confusing the

chaser and evading him.

Given our stochastic pursuit model’s success in fitting the real data, in future work,

we seek to apply the same methodology to a much larger sample of fast breaks. In

this way, we can quantify a runner’s ability to evade a chaser and/or a chaser’s abil-

ity to stay near a runner who is actively trying to score. Note that all codes and data

used in this work are available online at: https://github.com/hbhat4000/

sdeinference.

https://github.com/hbhat4000/sdeinference
https://github.com/hbhat4000/sdeinference

93

5.4 Discussion and Conclusion

In this chapter, we developed an MCMC algorithm to perform Bayesian inference

for coupled SDE. The MCMC algorithm is derived using a Metropolis scheme that

uses likelihood information computed from the DTQ method. Using simulated tests

of a stochastic van der Pol oscillator, we showed that the method is capable of com-

puting accurate Bayesian estimates. We also compared the model performance against

Bayesian filtering/inference method implemented in the R package ”pomp”, and the

Eulerian method. Next, we derived a stochastic pursuit model for fast break situa-

tions involve one runner and one chaser in a basketball game. Then we demonstrated

the performance of our Bayesian inference method using simulated tests of the derived

stochastic model. More importantly, we demonstrated that the derived stochastic system

is appropriate to model fast breaks through the Bayesian inference from NBA tracking

data.

Chapter 6

Conclusions and Future Work

6.1 Summary

Given the widespread use of SDE to model dynamical systems in a diverse range

of fields, solving the parameter inference problem is of greater importance. Over the

course of this dissertation, we made a number of original contributions to the existing

literature on parameter inference of SDE. A key bottleneck in the inference problem for

SDE’s, identified by many authors, is the evaluation of the conditional density given the

parameters, i.e., the likelihood function for the SDE. We addressed this problem through

the use of a novel, fast method to track the probability density function of the SDE. The

method does not rely on sampling; instead, it uses repeated quadrature to track the time

evolution of the transition density, hence the name DTQ. We also established theoretical

convergence results for the DTQ method. In particular, for a class of SDE, we showed

that the DTQ method converges to the true probability density function in L1 norm error

with a linear rate of convergent in temporal step size. Through a number of numerical

tests, we confirmed that the empirical performance of the DTQ method complies with

the theoretical convergent result. We then used the DTQ method to compute MLE for

scalar SDE. We compute the MLE using derivative information computed using two

different methods: the direct method and adjoint method. The direct method was used

to solve the parametric inference problem of SDE. We used the adjoint method to solve

the nonparametric inference problem as it enables the inference to scale well as the di-

mensionality of the parameter vector grows. We also generalized the DTQ method for

94

95

coupled SDE with time-dependent coefficients. Together with the likelihood computa-

tion from the DTQ method, we developed a Metropolis algorithm to perform Bayesian

inference for models given by coupled SDE. Through a number of simulated tests and

real data tests, we showed that the proposed methods are capable of solving the param-

eter inference problem of SDE quite successfully.

6.2 Future Work

The results of this thesis lead to several interesting directions for future work:

• The performance of the DTQ method can be improved to achieve a higher or-

der of convergence. This can be accomplished by replacing the Euler-Maruyama

method with a higher-order method. The only change is to then replace the Gaus-

sian kernel G with a different conditional density function. Preliminary results

with the weak trapezoidal method [3] indicate that we can obtain an O(h2) con-

vergence with this new version of the DTQ method. In our work, we observed that

the performance of the DTQ method becomes more sensitive to the internal time

step h when solving the parameter inference problem of 2-D SDE. Therefore, it

is very important to have a version of the DTQ method with a higher-order con-

vergence rate to infer parameters of higher dimensional SDE. In addition, we also

propose to generalize the current DTQ framework for higher dimensional SDE

using sparse-grid quadrature.

• We can generalize the DTQ method for SDE driven by stochastic processes other

than the Wiener process. In preliminary work, we have studied how to derive such

methods to solve for the density in the case when we replace dWt by a process

whose increments follow a Lévy α-stable distribution. For such an SDE, cur-

rent methods for computing the density involve numerical solution of a fractional

Fokker-Planck equation. We expect DTQ-like methods to be highly competitive

for such problems. Increments of Lévy α-stable processes do not have a closed-

form density function. Therefore, we propose to generalize the DTQ method to

track the characteristic function of the SDE and then use the Fourier transform to

compute the density function.

96

• Current DTQ method can also be generalized to do inference on stochastic delay

differential equations. In one of our work, we have generalized the DTQ method

to compute the density of a specific nonlinear stochastic delay system [10]. This

system arises as a switch-type control model for human balance. In this work, we

capture the covariance of the solution at the present and delayed times through the

time-evolution of a Gaussian approximation of the joint density at the present and

delayed times. We propose to increase the accuracy of the method by replacing the

Gaussian approximation with a sum of two-dimensional Gaussians, each centered

at a different point.

• Throughout the thesis, we discussed doing inference for SDE from direct obser-

vations of the process Xt . In one of our work, we have considered the problem of

Bayesian filtering and inference for time series data modeled as noisy, discrete-

time observations of an SDE with undetermined parameters [11]. In this work,

we developed a Metropolis algorithm to sample from the high-dimensional joint

posterior density of all SDE parameters and state time series. In the Metropolis

algorithm, we use the DTQ method to compute the likelihood of the SDE, the part

of the posterior that requires the most computational effort to evaluate. We also

showed that the DTQ method lends itself to a natural implementation using Scala

and Apache Spark, an open source framework for scalable data mining. Then we

studied the performance and scalability of our algorithm on filtering and inference

problems for both regularly and irregularly spaced time series. We believe that we

can derive large gains in performance by adapting our current algorithm to work

in a streaming fashion. Specifically, instead of inferring the entire state series at

once, as we currently do, we can proceed one step a time through the temporal

sequence of observations.

Further improvements of and generalizations of the DTQ method described above

will yield improved algorithms to solve parameter inference problem for a large class

of SDE efficiently and effectively. In addition to the future work mentioned above, it

is also remaining to conduct an extensive comparison of the DTQ method against the

existing parameter inference methods in the literature.

Bibliography

[1] Yacine Aı̈t-Sahalia. Maximum likelihood estimation of discretely sampled dif-
fusions: A closed-form approximation approach. Econometrica, 70(1):223–262,
2002.

[2] Edward Allen. Modeling with Itô stochastic differential equations, volume 22.
Springer Science & Business Media, 2007.

[3] D. F. Anderson and J. C. Mattingly. A weak trapezoidal method for a class of
stochastic differential equations. arXiv preprint arXiv:0906.3475, 9(1):301–318,
2010.

[4] C. Archambeau, D. Cornford, M. Opper, and J. Shawe-Taylor. Gaussian process
approximations of stochastic differential equations. Journal of Machine Learning
Research: Workshop and Conference Proceedings, 1:1–16, 2007.

[5] C. Archambeau, M. Opper, Y. Shen, D. Cornford, and J. Shawe-Taylor. Variational
inference for diffusion processes. In Advances in Neural Information Processing
Systems 20, pages 17–24, 2007.

[6] Mostafa Bachar, Jerry J Batzel, and Susanne Ditlevsen. Stochastic biomathemati-
cal models: with applications to neuronal modeling, volume 2058. Springer, 2012.

[7] V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equa-
tions. II. Convergence rate of the density. Monte Carlo Methods and Applications,
2(2):93–128, 1996.

[8] D. Barber, A. T. Cemgil, and S. Chiappa. Bayesian Time Series Models. Cambridge
University Press, 2011.

[9] D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Meth-
ods, 2016. R package version 1.2-4.

[10] Harish S. Bhat and R. W. M. A. Madushani. Computing the density function for
a nonlinear stochastic delay system. IFAC-PapersOnLine, 48(12):316–321, 2015.
12th IFAC Workshop on Time Delay Systems (TDS 2015), Ann Arbor, Michigan,
USA, 28-30 June 2015.

97

98

[11] Harish S Bhat, RWMA Madushani, and Shagun Rawat. Scalable sde filtering and
inference with apache spark. Journal of Machine Learning Research W&CP, 2016.

[12] R. N. Bhattacharya and E. C. Waymire. Stochastic Processes with Applications,
volume 61 of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2009.

[13] California Air Resources Board. Database: California Air Quality Data.
http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm, 2016.

[14] M. Braun. trustoptim: Trust region optimization for nonlinear functions with
sparse hessians. http://cran.r-project.org/web/packages/trustOptim/, 2015.

[15] Y. Cai. Convergence theory of a numerical method for solving the Chapman-
Kolmogorov equation. SIAM Journal on Numerical Analysis, 40(6):2337–2351,
2003.

[16] T. Canor and V. Denoël. Transient Fokker-Planck-Kolmogorov equation solved
with smoothed particle hydrodynamics method. International Journal for Numer-
ical Methods in Engineering, 94:535–553, 2013.

[17] S. Chen, E. Grant, T. T. Wu, and F. D. Bowman. Statistical learning methods for
longitudinal high-dimensional data. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 6(1):10–18, 2014.

[18] Zhe Chen. Bayesian filtering: From Kalman filters to particle filters, and beyond.
Technical report, Adaptive Systems Lab, McMaster University, Hamilton, ON,
Canada, 2003.

[19] Loren Cobb. Stochastic differential equations for the social sciences. Mathematical
frontiers of the social and policy sciences, (54):37, 1981.

[20] John C Cox, Jonathan E Ingersoll Jr, and Stephen A Ross. An intertemporal gen-
eral equilibrium model of asset prices. Econometrica: Journal of the Econometric
Society, pages 363–384, 1985.

[21] John C Cox, Jonathan E Ingersoll Jr, and Stephen A Ross. A theory of the term
structure of interest rates. Econometrica: Journal of the Econometric Society,
pages 385–407, 1985.

[22] Jason A Duan, Alan E Gelfand, CF Sirmans, et al. Modeling space-time data using
stochastic differential equations. Bayesian Analysis, 4(4):733–758, 2009.

[23] D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, New York,
2013.

[24] D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal
of Statistical Software, 40(8):1–18, 2011.

99

[25] D. Eddelbuettel and C. Sanderson. RcppArmadillo: Accelerating R with high-
performance C++ linear algebra. Computational Statistics and Data Analysis,
71:1054–1063, March 2014.

[26] C. Fuchs. Inference for Diffusion Processes: With Applications in Life Sciences.
Springer, Berlin, 2013.

[27] M. B. Giles, T. Nagapetyan, and K. Ritter. Multilevel Monte Carlo approximation
of distribution functions and densities. SIAM/ASA J. Uncertainty Quantification,
3(1):267–295, 2015.

[28] Alison Gray, David Greenhalgh, L Hu, Xuerong Mao, and Jiafeng Pan. A stochas-
tic differential equation sis epidemic model. SIAM Journal on Applied Mathemat-
ics, 71(3):876–902, 2011.

[29] Y. Hu and S. Watanabe. Donsker delta functions and approximations of heat ker-
nels by the time discretization method. J. Math. Kyoto Univ., 36:494–518, 1996.

[30] A. S. Hurn, J. I. Jeisman, and K. A. Lindsay. Seeing the wood for the trees: A
critical evaluation of methods to estimate the parameters of stochastic differential
equations. Journal of Financial Econometrics, 5(3):390–455, 2007.

[31] S. M. Iacus. Simulation and Inference for Stochastic Differential Equations: With
R Examples. Springer Series in Statistics. Springer, New York, 2009.

[32] S. G. Johnson. The nlopt nonlinear-optimization package. http://ab-
initio.mit.edu/nlopt, 2016.

[33] Motoo Kimura. Diffusion models in population genetics. Journal of Applied Prob-
ability, 1(2):177–232, 1964.

[34] A. A. King, D. Nguyen, E. L. Ionides, et al. Statistical inference for partially ob-
served Markov processes via the R package pomp. Journal of Statistical Software,
69, 2016.

[35] A. Kohatsu-Higa. High order Ito-Taylor approximations to heat kernels. J. Math.
Kyoto Univ., 37:129–150, 1997.

[36] S. C. Kou, B. P. Olding, M. Lysy, and J. S. Liu. A multiresolution method for
parameter estimation of diffusion processes. Journal of the American Statistical
Association, 107(500):1558–1574, 2012.

[37] R. Küffner, N. Zach, R. Norel, J. Hawe, D. Schoenfeld, L. Wang, G. Li, L. Fang,
L. Mackey, O. Hardiman, M. Cudkowicz, A. Sherman, G. Ertaylan, M. Grosse-
Wentrup, T. Hothorn, J. van Ligtenberg, J. H. Macke, T. Meyer, B. Schoelkopf,
L. Tran, R. Vaughan, G. Stolovitzky, and M. L. Leitner. Crowdsourced analysis
of clinical trial data to predict amyotrophic lateral sclerosis progression. Nature
Biotechnology, 33(1):51–U292, 2015.

100

[38] H. J. Kushner. On the weak convergence of interpolated Markov chains to a diffu-
sion. Ann. Probability, 2:40–50, 1974.

[39] D. Y. Lin and Z. Ying. Semiparametric and nonparametric regression analysis of
longitudinal data. Journal of the American Statistical Association, 96(453):103–
13, 2001.

[40] J. Lund and K. L. Bowers. Sinc methods for quadrature and differential equations.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[41] X. Luo and S. S.-T. Yau. Hermite spectral method to 1D forward Kolmogorov
equation and its application to nonlinear filtering problems. IEEE Transactions on
Automatic Control, 58(10):2495–2507, 2013.

[42] Maria C Mariani and Osei K Tweneboah. Stochastic differential equations ap-
plied to the study of geophysical and financial time series. Physica A: Statistical
Mechanics and its Applications, 443:170–178, 2016.

[43] G. N. Milstein, J. G. M. Schoenmakers, and V. Spokoiny. Transition density es-
timation for stochastic differential equations via forward-reverse representations.
Bernoulli, 10(2):281–312, 2004.

[44] H. Müller and F. Yao. Empirical dynamics for longitudinal data. The Annals of
Statistics, 38(6):3458–3486, 2010.

[45] J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics
of Computation, 35:773–782, 1980.

[46] J. Nocedal and D. C. Liu. On the limited memory BFGS method for large scale
optimization. Mathematical programming, 45(1):503–528, 1989.

[47] M. F. M. Osborne. Brownian motion in the stock market. Operations Research,
7(2):145–173, 1959.

[48] M. Di Paola and A. Sofi. Approximate solution of the Fokker-Planck-Kolmogorov
equation. Probabilistic Engineering Mechanics, 17:369–384, 2002.

[49] A. R. Pedersen. A new approach to maximum likelihood estimation for stochastic
differential equations based on discrete observations. Scandinavian Journal of
Statistics, 22(1):55–71, 1995.

[50] U. Picchini. Inference for SDE models via approximate Bayesian computation.
Journal of Computational and Graphical Statistics, 23(4):1080–1100, 2014.

[51] L. Pichler, A. Masud, and L. A. Bergman. Numerical solution of the Fokker-Planck
equation by finite differences and finite element methods–a comparative study. In
Computational Methods in Stochastic Dynamics, volume 2, pages 69–85. Springer,
2013.

101

[52] L. C. G. Rogers. Smooth transition densities for one-dimensional diffusions. Bull.
London Math. Soc., 17(2):157–161, 1985.

[53] A. Ruttor, P. Batz, and M. Opper. Approximate Gaussian process inference for the
drift function in stochastic differential equations. In Advances in Neural Informa-
tion Processing Systems 26, pages 2040–2048, 2013.

[54] C. Sanderson and R. Curtin. Armadillo: a template-based C++ library for linear
algebra. Journal of Open Source Software, 1:26, 2016.

[55] P. Santa-Clara. Simulated likelihood estimation of diffusions with an application
to the short term interest rate. Technical Report 12-97, Anderson School of Man-
agement, UCLA, Los Angeles, California, 1997.

[56] R. J. Sela and J. S. Simonoff. RE-EM trees: a data mining approach for longitudi-
nal and clustered data. Machine Learning, 86:169–207, 2012.

[57] Kazimierz Sobczyk. Stochastic differential equations: with applications to physics
and engineering, volume 40. Springer Science & Business Media, 2013.

[58] H. Sørensen. Parametric inference for diffusion processes observed at discrete
points in time: a survey. International Statistical Review, 72(3):337–354, 2004.

[59] F. Stenger. Numerical Methods Based on Sinc and Analytic Functions. Springer
Series in Computational Mathematics. Springer,New York, 2012.

[60] I. H. Stevenson and K. P. Kording. How advances in neural recording affect data
analysis. Nature Neuroscience, 14(2):139–142, 201.

[61] K. Svanberg. A class of globally convergent optimization methods based on
conservative convex separable approximations. SIAM Journal on Optimization,
12(2):555–573, 2002.

[62] L. N. Trefethen and J. A. C. Weideman. The exponentially convergent trapezoidal
rule. SIAM Review, 56(3):385–458, 2014.

[63] Oldrich Vasicek. An equilibrium characterization of the term structure. Journal of
financial economics, 5(2):177–188, 1977.

[64] M. D. Vrettas, M. Opper, and D. Cornford. Variational mean-field algorithm for
efficient inference in large systems of stochastic differential equations. Physical
Review E, 91(012148), 2015.

[65] J.-L. Wang. Nonparametric regression analysis of longitudinal data. In Encyclo-
pedia of Biostatistics. Wiley, New York, NY, 2005.

[66] N. Wiener. The Fourier Integral and Certain of Its Applications. Cambridge Math-
ematical Library. Cambridge University Press, Cambridge, UK, 1988.

102

[67] W-K. Wong and R. B. Miller. Repeated time series analysis of ARIMA-noise
models. Journal of Business and Economic Statistics, 8(2):243–250, 1990.

[68] J. Ypma. nloptr: R interface to nlopt. http://cran.r-
project.org/web/packages/nloptr/, 2014.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	Acknowledgements
	Vita and Publications
	Abstract
	Introduction
	Key Contributions of the Dissertation
	Organization of the Dissertation

	Likelihood Computation with Density Tracking by Quadrature
	Introduction
	Likelihood Computation for Scalar Stochastic Differential Equations
	Likelihood for One Time Series
	Likelihood for Many Time Series
	Numerical Method: Density Tracking by Quadrature

	Likelihood for Coupled Stochastic Differential Equations

	Convergence Analysis of Density Tracking by Quadrature
	Introduction
	Alternative Approaches
	Prior Work
	Summary of Results and Outline

	Problem Setup
	Notation and Assumptions
	Preliminary Theory
	Convergence Theorem
	Boundary Truncation
	Numerical Experiments
	Convergence
	Comparison with Fokker-Planck

	Conclusion and Future Directions

	Parameter Inference for Scalar SDE via Maximum Likelihood Approach
	Introduction
	The Maximum Likelihood Estimation
	Gradient of the Likelihood via the Direct Method
	An Adjoint-Based Gradient of the Likelihood

	Parametric Inference with Maximum Likelihood Approach
	Nonparametric Adjoint-Based Inference
	Discussion and Conclusion

	Inference for Coupled SDE: Metropolis Algorithms via Density Tracking by Quadrature
	Introduction
	Bayesian Inference
	Metropolis Algorithm

	Numerical Tests
	Stochastic Van der Pol Oscillator
	Stochastic Pursuit Models from Basketball Tracking Data

	Discussion and Conclusion

	Conclusions and Future Work
	Summary
	Future Work

	Bibliography

