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Abstract of the Dissertation

A coarse entropy-rigidity theorem and

discrete length-volume inequalities

by

Kyle Edward Kinneberg

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Mario Bonk, Chair

In [5], M. Bonk and B. Kleiner proved a rigidity theorem for expanding quasi-Möbius

group actions on Ahlfors n-regular metric spaces with topological dimension n. This led

naturally to a rigidity result for quasi-convex geometric actions on CAT(−1)-spaces that can

be seen as a metric analog to the “entropy-rigidity” theorems of U. Hamenstädt [31] and

M. Bourdon [10]. Building on the ideas developed in [5], we establish a rigidity theorem for

certain expanding quasi-Möbius group actions on spaces with different metric and topolog-

ical dimensions. This is motivated by a corresponding entropy-rigidity result in the coarse

geometric setting.

Our analysis of these “fractal” metric spaces depends heavily on a combinatorial inequal-

ity that relates volume to lengths of curves within the space. We extend such inequalities

to a broader metric setting and obtain discrete analogs of some results due to W. Derrick

[23, 24]. In the process, we shed light on a related question of Y. Burago and V. Zalgaller

about pseudometrics on the n-dimensional unit cube.
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CHAPTER 1

Introduction

In the past several decades, quasiconformal techniques have proven to be indispensable tools

in various areas of analysis and geometry. Originally studied in the Euclidean and Rie-

mannian settings, quasiconformal mappings played a prominent role, particularly, in the

development of hyperbolic geometry. Teichmüller theory for hyperbolic surfaces is saturated

with quasiconformal relationships (indeed, the Teichmüller metric is built explicitly using

quasiconformal homeomorphisms); many rigidity results for hyperbolic manifolds of dimen-

sion ≥ 3 (including G. Mostow’s classic theorem [47]) crucially use analytic properties of

quasiconformal mappings; and quasiconformal group actions are closely related to ergodic

properties of the geodesic flow on hyperbolic manifolds (as in the work of D. Sullivan [57]).

These connections between quasiconformal analysis and hyperbolic structures often have

roots in the following heuristic: hyperbolic geometry “at infinity” becomes conformal geom-

etry on a sphere of one dimension less; and perturbations of hyperbolic structures often lead

to quasiconformal relationships between the associated conformal structures.

More recently, the theory of quasiconformal mappings has been extended to general

metric spaces, motivated by the need for various types of “quasi-conformal” analysis on

spaces with no a priori smooth structure [41]. A primary example of this is the study of

large-scale geometry of hyperbolic groups and the metric properties of their boundaries at

infinity. In turn, such developments have led to interesting investigations into the intrinsic

geometry of metric spaces, especially those with fractal properties. Due to the lack of local

regularity, tools from discrete geometry have become essential to the metric analysis of these

types of spaces.
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Let us back up slightly, to a more classical observation of W. Thurston regarding the

relationship between circle packings in the plane and the Riemann mapping theorem. Let Ω

be a simply connected region in C, and approximate Ω by a hexagonal circle packing of mesh

size 1/n, where each circle lies within Ω. Let γn be a Jordan curve in Ω that surrounds this

packing and is tangent to the “boundary” circles. The Koebe-Andreev theorem then gives

a circle packing of the unit disk D, unique up to Möbius transformations, that is isomorphic

to the original hexagonal circle packing of Ω (and also preserves boundary tangencies with

respect to γn and ∂D). This isomorphism induces a map fn : D→ Ω, and Thurston conjec-

tured that these fn (properly normalized) converge uniformly on compact subsets of D to a

conformal map.

B. Rodin and D. Sullivan [51] confirmed Thurston’s conjecture, using a mix of combi-

natorial arguments, properties of quasiconformal mappings, and hyperbolic geometry. In

particular, they show that the maps fn are K-quasiconformal, for some uniform K, and

hence converge to a K-quasiconformal mapping, f . Moreover, the combinatorics ensures

that f sends small equilateral triangles to triangles that become more and more equilateral

as n→∞. Consequently, f must actually be 1-quasiconformal, hence conformal.

The work of Rodin and Sullivan initiated many investigations into more precise relation-

ships between circle packings, conformal geometry, and quasiconformal geometry. Notably,

it was proved by K. Stephenson [56] and by Z.-X. He and O. Schramm [34] that the con-

vergence of Thurston’s algorithm does not, in fact, require the circle packings of Ω to be

hexagonal. These topics also play a crucial role in the work of M. Bonk and B. Kleiner [4] on

quasisymmetric uniformization of 2-dimensional metric spheres (see Section 2.7 for further

discussion about this result). Here, there is no a priori conformal structure at all; essentially

one obtains it through the Koebe-Andreev theorem.

An important setting where similar difficulties arise is the asymptotic geometry of hy-

perbolic groups. A finitely generated group Γ is hyperbolic if there is a finite, symmetric

generating set for which the corresponding Cayley graph, endowed with the word metric,

has the following property: there is δ > 0 such that each side of every geodesic triangle is
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contained in the δ-neighborhood of the union of the other two sides. This is a “coarse” notion

of negative curvature that is well-suited to the study of large-scale geometric properties; in

particular, it cannot see anything at scale � δ. For example, free groups and fundamental

groups of closed negatively-curved manifolds are hyperbolic.

We defer to the next chapter further discussion about the the foundational theory for

hyperbolic groups and instead focus on one aspect of this rich subject. To every hyperbolic

group, there is a natural boundary at infinity, denoted ∂∞Γ, which is equipped with a family

of visual metrics that are closely related to the asymptotic geometry of Γ. Understanding the

relationships between topological or metric properties of ∂∞Γ and algebraic properties of Γ

has been a central goal in geometric group theory for decades. The following is a significant

open problem in the field.

Conjecture (J. Cannon [15]). A hyperbolic group Γ is a finite extension of a cocompact

lattice in Isom(H3) if and only if ∂∞Γ is homeomorphic to S2.

Using a classical theorem of D. Sullivan [57] and P. Tukia [59], Cannon’s conjecture is

equivalent to the following statement: if Γ is a hyperbolic group with ∂∞Γ homeomorphic

to S2, then ∂∞Γ is quasisymmetric to S2, when equipped with a visual metric. Thus, the

conjecture is reduced to a quasiconformal uniformization problem, where one must somehow

build the conformal structure of S2, starting with the metric space ∂∞Γ.

In general, ∂∞Γ will exhibit self-similar, fractal properties. On the one hand, it has

many symmetries, coming from a natural action by Γ itself that mimics the way Möbius

transformations act on S2. On the other hand, its metric dimension is usually strictly larger

than its topological dimension; for example, it may fail to contain any curves of finite length.

In such a setting, discrete methods are indispensable. Not surprisingly, Cannon’s original

approach to his conjecture was to construct a “combinatorial conformal structure” on ∂∞Γ

using finite subdivision rules (see, for example, [17–19]). In this context, he established a

combinatorial Riemann mapping theorem [14], which is similar in spirit to the work on circle

packings that we discussed above.
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More recently, M. Bourdon and B. Kleiner introduced the combinatorial Loewner property

(or CLP) as a tool to study self-similar metric spaces, with particular attention to the

boundaries of hyperbolic groups [11]. The CLP is a discrete version of the classical Loewner

property that has been fundamental to the development of analysis on metric measure spaces

[35, Chapters 8 and 9]. This latter property ensures that any two compact sets in the metric

space can be joined by a sufficiently rich family of (rectifiable) paths. Its combinatorial

version is similar but uses discrete chains of points in place of paths. Using the CLP,

Bourdon and Kleiner were able to verify Cannon’s conjecture for Coxeter groups.

We should also mention, in the context of Cannon’s work, that combinatorial methods,

especially those connected to finite subdivision rules, have been very fruitful in the study of

conformal dynamics [8, 16,29].

The topics we study in this thesis revolve around the theme of discrete analysis on metric

spaces that is motivated by coarse hyperbolic geometry, especially the metric geometry

of boundaries of hyperbolic groups. This connection will be made more clear and more

precise in Chapter 2, as will the connection between coarse hyperbolicity and the classical

notion of negative curvature in Riemannian manifolds. Our main result in that chapter is

Theorem 2.8—an entropy-rigidity theorem for hyperbolic groups that is analogous to a result

of U. Hamenstädt [31] for negatively-curved manifolds. Most of the work needed to establish

Theorem 2.8, however, will be a metric analysis of the canonical action of Γ on ∂∞Γ. In the

particular setting that is relevant for Theorem 2.8, the metric and topological dimensions of

∂∞Γ differ; moreover, ∂∞Γ contains no rectifiable curves. As a result, our analysis must be

discrete, and it relies heavily on a combinatorial inequality (found in Proposition 2.19) that

relates volumes to lengths in n-dimensional cubes.

The statement in Proposition 2.19 is a combinatorial analog of similar length-volume

inequalities established by W. Derrick [23, 24]. Viewed in this context, it cries out loudly

for generalization, and we pacify this cry in Chapter 3. There, we prove discrete length-

volume inequalities that parallel the results of Derrick and extend Proposition 2.19. In the

process, we shed some light on a related question of Y. Burago and V. Zalgaller concerning
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pseudometrics on the n-dimensional cube (see Corollary 3.14). These considerations then

compel us to explore lower volume bounds in more general metric settings.
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CHAPTER 2

Rigidity for quasi-Möbius actions on fractal metric

spaces

2.1 Introduction

Let (Mn, g) be a compact Riemannian manifold of dimension n. If we assume that M is

locally symmetric and negatively curved, then its universal cover is isometric to Hk
F—one of

the hyperbolic spaces defined over F = R,C, the quaternions, or the octonians (in the last

case, only for k = 2, which corresponds to real dimension n = 16). We can therefore identify

(Mn, g) with the quotient Hk
F/Γ, where Γ = π1(M) acts on Hk

F by deck transformations.

A natural question then arises: is this hyperbolic structure uniquely determined by the

topology of M?

G. Mostow’s classic rigidity theorem [47] gives an affirmative answer to this question

in dimensions n ≥ 3. More specifically, he proves that if two locally symmetric compact

manifolds, both with maximal sectional curvature −1, have isomorphic fundamental groups,

then they are isometric. The curvature assumption here is simply a scaling normalization.

In other words, the topology of a locally symmetric compact manifold determines its metric

structure, up to scaling.

It is important to note, of course, that there is no analogous theorem for surfaces. Indeed,

a compact surface of genus g ≥ 2 has a (6g − 6)-dimensional moduli space of hyperbolic

metrics (i.e., locally symmetric metrics of constant curvature −1). Such surfaces therefore

have many metric deformations which would be ruled out by a rigidity theorem.
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2.1.1 Extending Mostow rigidity

Let us now turn our attention to a different question: how can one determine when a

negatively curved manifold is locally symmetric? A significant amount of work in this di-

rection, much of it from the early and mid 1990s, sought to find a symmetric structure

in manifolds that were extremal for certain metric quantities—volume, curvature bounds,

geodesic lengths, entropy, etc. Most relevant for us here is the entropy-rigidity theorem of

U. Hamenstädt [31].

Before stating this result, we must first define entropy. Let (Mn, g) be a compact Rieman-

nian manifold and let (M̃, g̃) be its universal Riemannian cover with metric g̃. Let B(p,R)

denote the ball of radius R centered at p ∈ M̃ , and let Volg̃ B(p,R) be the volume of this

ball. We call

hvol(g) = lim
R→∞

log (Volg̃ B(p,R))

R

the volume entropy of g; this limit exists and is independent of the choice p ∈ M̃ . For

example, if (Mn, g) is hyperbolic, then (M̃, g̃) can be identified with real hyperbolic space

Hn of constant sectional curvature −1. Consequently,

Volg̃ B(p,R) = VolHn B(p,R) ≈ e(n−1)R,

so that h(g) = n− 1.

The following relationship indicates why this volume-growth quantity is considered to

be a type of entropy. Let htop(g) denote the topological entropy of the geodesic flow on the

unit tangent bundle of (Mn, g) (see [45, Section 3] for definitions). For general compact

manifolds, Manning [45] showed that

htop(g) ≥ hvol(g),

and if (Mn, g) has non-positive sectional curvature, then equality holds. As we will concern

ourselves only with compact manifolds of negative sectional curvature, we can set

h(g) = htop(g) = hvol(g)

from now on and refer to it simply as the entropy of g.
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Theorem 2.1 (Hamenstädt [31]). Let (Mn, g0) be a locally symmetric compact manifold

with maximal sectional curvature −1 and n ≥ 3. Let g be another Riemannian metric on

M , also with maximal sectional curvature −1. Then h(g) ≥ h(g0), and equality holds if and

only if g is locally symmetric. In particular, equality holds if and only if (Mn, g) is isometric

to (Mn, g0).

In other words, the locally symmetric structures on M are precisely the minima of the

entropy functional, at least among metrics suitably normalized by curvature. Note also that

the “in particular” statement in this theorem follows from Mostow rigidity.

From Hamenstädt’s theorem, there are various directions in which one may proceed (see,

for example, the survey [55] on rigidity theory). Remaining in the Riemannian setting, we can

ask if there are other pairs of normalizations and metric quantities for which rigidity theorems

can be obtained. For example, suppose that (M, g0) is a locally symmetric compact manifold

of dimension ≥ 3 with unit volume and let g be another metric on M with unit volume.

Then h(g) ≥ h(g0) and equality holds precisely when (M, g) and (M, g0) are isometric.

A more general version of this was established by G. Besson, G. Courtois, and S. Gallot

[1], along with several consequential rigidity statements, but the general theme is that the

locally symmetric metrics on manifolds related to (M, g0) can be identified by two quantities:

volume and entropy. Incidentally, the methods used in their paper give a constructive proof

of Mostow’s original result by exhibiting the desired isometry.

2.1.2 Toward a metric setting

A different direction one may take (and the direction we wish to push further in this thesis)

is to extend Hamenstädt’s theorem to metric geometry. To motivate the comparison between

the Riemannian and metric settings, let (Mn, g) be as in Theorem 2.1, and let Γ = π1(M) be

its fundamental group. Also, let (X, d) be its Riemannian universal cover with metric d. Of

course d is a Riemannian metric itself, but as we move away from the Riemannian setting,

we want to think of d simply as a distance function.
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The negative curvature in (Mn, g), which guarantees negative curvature in (X, d) as well,

allows one to define an ideal boundary: the collection of asymptotic classes of geodesic rays

emanating from a fixed base-point. Moreover, this boundary has a canonical metric structure

that is closely related to the asymptotic geometry of X. For example, if g is hyperbolic, then

its universal cover is, once again, the real hyperbolic space Hn, whose ideal boundary is the

Euclidean sphere Sn−1.

The isometric action of Γ on (X, d) passes naturally to an action on the ideal boundary.

Here the entropy of g plays an important role, as h(g) is the Hausdorff dimension of the

canonical metric on the boundary. Equality of h(g) and h(g0) therefore guarantees that the

boundary associated to g has metric properties similar to those of the boundary associated

to g0, which is much better understood.

Let us make the comparison between Riemannian and metric geometry more explicit.

The universal cover (X, d) has sectional curvature at most −1, so it satisfies the CAT(−1)

condition [58, Théorème 9]. Recall that a geodesic metric space is called CAT(−1) if its

geodesic triangles are thinner than their comparison triangles in the real hyperbolic plane.

Moreover, the action of the fundamental group Γ on X is isometric, properly discontinuous,

and cocompact. We will refer to such actions as geometric actions from now on. Actually,

to deal with more general situations, it will be convenient to weaken the cocompactness

property to quasi-convex cocompactness : there is a quasi-convex subset Y ⊂ X on which Γ

acts cocompactly. We call such actions quasi-convex geometric; see Section 2.6 for formal

definitions.

For a CAT(−1)-space X, one can define a boundary at infinity, which we denote by ∂∞X.

As with the ideal boundary, it will be a topological space with a canonical metric structure

(again, see Section 2.6 for details). Let Λ(Γ) be the limit set of Γ in ∂∞X. If the action

is cocompact then Λ(Γ) = ∂∞X, but in general the limit set can be much smaller than the

whole boundary. However, its Hausdorff dimension has a familiar form [9, Théorème 2.7.4]:

dimH Λ(Γ) = lim sup
R→∞

log(N(R))

R

9



where p ∈ X is any point and N(R) = #{Γp∩BX(p,R)} is the number of points in the orbit

Γp that lie at distance at most R from p. This Hausdorff dimension is therefore a metric

analog of the entropy we considered earlier.

In this context, M. Bourdon [10] proved the following generalization of Theorem 2.1.

Theorem 2.2 (Bourdon [10]). Let Γ = π1(Mn, g0) be the fundamental group of a locally

symmetric compact manifold of maximal sectional curvature −1 and dimension n ≥ 3. Sup-

pose that Γ acts quasi-convex geometrically on a CAT(−1)-space X. Let S be the universal

Riemannian cover of (Mn, g0). Then

dimH Λ(Γ) ≥ dimH ∂∞S,

and equality holds if and only if there is an isometric embedding F : S → X, equivariant with

respect to the natural action of Γ on S, whose extension to the boundary has F (∂∞S) = Λ(Γ).

Although this theorem certainly points in the direction of metric geometry, it does not

strictly fall in this category. Indeed, the restriction of Γ to fundamental groups of locally

symmetric spaces and the use of dimH ∂∞S in the rigidity inequality seem to place this result,

in some sense, between Riemannian geometry and metric geometry.

In [5], M. Bonk and B. Kleiner extended the real-hyperbolic version of Bourdon’s theorem

to the metric setting. By real-hyperbolic, we mean the case that (Mn, g0) has constant

sectional curvature −1, so that S = Hn. Recall that ∂∞Hn = Sn−1, which has Hausdorff

dimension n− 1.

Theorem 2.3 (Bonk–Kleiner [5,6]). Suppose that a group Γ acts quasi-convex geometrically

on a CAT(−1) metric space X. Let n ≥ 1 be the topological dimension of Λ(Γ). Then

dimH Λ(Γ) ≥ n,

and equality holds if and only if Γ acts geometrically on an isometric copy of Hn+1 in X.

The assertion dimH Λ(Γ) ≥ n here is nothing special, as the Hausdorff dimension of any

metric space is bounded from below by its topological dimension [38, Chapter 7]. Let us

focus on the case of equality, then, and briefly describe the method of proof.

10



As in the rigidity theorems discussed above, the argument relies on a quasiconformal

analysis of the limit set Λ(Γ). The isometric action of Γ on X naturally passes to an action

on Λ(Γ) by uniformly quasi-Möbius maps. As Γ acts cocompactly on a quasi-convex subset

of X, the induced action on Λ(Γ) will be cocompact on triples : any three distinct points in

the limit set can be uniformly separated by applying an element of the group. This property

should be viewed as a type of expanding dynamics on Λ(Γ). It also allows us to conclude

that Λ(Γ) is Ahlfors regular of dimension n: the n-dimensional Hausdorff measure of any

metric ball B(x, r) in the limit set is ≈ rn (for 0 ≤ r ≤ diam Λ(Γ)).

The following theorem is the main result in [5].

Theorem 2.4 (Bonk–Kleiner [5]). Let Z be a compact, Ahlfors n-regular metric space with

topological dimension n ≥ 1. Suppose that Γ y Z is a uniformly quasi-Möbius group action

that is cocompact on triples. Then Γ y Z is quasisymmetrically conjugate to an action of Γ

on Sn by Möbius transformations.

As Möbius transformations can be extended naturally to isometries of Hn+1, we obtain

a geometric action of Γ on Hn+1. If n ≥ 2, this puts us in the setting of Bourdon’s theorem,

which we apply to conclude that Γ acts cocompactly on an isometric copy of Hn+1 in X.

Actually, it turns out that appealing to Bourdon’s theorem is not necessary. An alterna-

tive argument is given in [6], and it works just as well in the case that n = 1.

2.1.3 Rigidity on fractal spaces

Following Bonk and Kleiner, this thesis is primarily concerned with rigidity of expanding

quasi-Möbius group actions. Indeed, results in this setting often lead to rigidity theorems

that are more geometric. Reconsidering, then, Theorem 2.4, it is natural to wonder what

one can say if the Hausdorff and topological dimensions differ.

A large collection of such examples are boundaries of Gromov hyperbolic groups equipped

with a visual metric. In many important cases, the boundary is topologically a sphere; and

always, it will be Ahlfors regular. Generally, though, the metric dimension is strictly larger

11



than its topological dimension. In the case where the boundary is homeomorphic to S2, it is

conjectured that there exists an Ahlfors regular metric of dimension 2, but this is a difficult

problem (see [2, Section 5] for this formulation of Cannon’s conjecture).

It is therefore of interest to obtain rigidity results for quasi-Möbius group actions on

fractal metric spaces—spaces in which the metric dimension differs from the topological

dimension. This is the general objective in the present thesis. In moving from such a broad

goal to concrete theorems, we have kept an eye on applications to coarse hyperbolic geometry,

which is a relevant setting for the study of Gromov hyperbolic groups. As a consequence, our

main theorem will lead, via the work in [5], to an entropy-rigidity result for geometric group

actions on Gromov hyperbolic metric spaces with an asymptotic upper curvature bound.

Naturally, this can be seen as a “coarse” analog of the CAT(−1) rigidity theorem in [5]

and therefore also as an analog of Hamenstädt’s theorem and of Bourdon’s theorem (in the

real-hyperbolic cases).

The precise statement of our main result is the following. We will discuss terminology

and notation in subsequent sections, but let us make one important remark now. Rather

than considering general quasi-Möbius group actions, we restrict our attention to those

that are strongly quasi-Möbius. In particular, each group element will act as a bi-Lipschitz

homeomorphism. See Definition 2.10 for a formal definition.

Theorem 2.5. Let n ∈ N, 0 < ε ≤ 1, and let Z = (Z, d) be a compact metric space,

homeomorphic to Sn, and Ahlfors regular of dimension n/ε. Suppose that Γ y Z is a

strongly quasi-Möbius action that is cocompact on triples. Assume, moreover, that Z satisfies

the following discrete length property:

each δ-path between two points x, y has length ≥ c
(
d(x,y)
δ

)1/ε

. (2.1)

Then there is a metric dnew on Z satisfying

C−1d(x, y)1/ε ≤ dnew(x, y) ≤ Cd(x, y)1/ε

for some C ≥ 1 and a bi-Lipschitz homeomorphism between (Z, dnew) and Sn. Moreover, if
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n ≥ 2, then this map can be taken to conjugate the action of Γ on Z to an action on Sn by

Möbius transformations.

Remark 2.6. The assumption that Z is homeomorphic to Sn can be replaced by the assump-

tion that Z is an n-dimensional manifold. Indeed, in this case, the expanding behavior of the

group action forces Z to be a topological n-sphere. See, for example, the proof of Theorem

4.4 in [40].

Remark 2.7. Recall that if ρ is a metric on Z, then ρε is also a metric whenever 0 < ε ≤ 1. The

metric spaces (Z, ρε) are typically called “snowflakes” of (Z, ρ), in reference to the standard

construction of the von Koch snowflake. In Theorem 2.5, we go in the opposite direction,

“de-snowflaking” the original metric d on Z to a metric dnew with better regularity.

When the metric dimension and the topological dimension of Z coincide (i.e., if ε =

1), the results in [5] give a bi-Lipschitz homeomorphism between Z and Sn. Once these

dimensions differ, relationships between the metric structures of Z and Sn are more delicate.

While Ahlfors regularity gives good control on volume, and the strongly quasi-Möbius action

provides robust self-similarity structure in Z, additional assumptions are needed to obtain

rigidity statements. We impose the condition (2.1) because, in the case where Z is the

boundary of a hyperbolic metric space X, it arises naturally from upper curvature bounds

on X.

In concise terms, the discrete length condition (2.1) is strong enough that it forces (Z, d)

to be a “snowflake” of Sn. Once we de-snowflake, we are able to pass almost directly through

the theorem of Bonk and Kleiner. It is natural to ask, then, if there are weaker conditions

one can place on Z that still guarantee it is, say, quasisymmetrically equivalent to Sn. This

would be of significant interest, in particular for n = 2.

As we suggested above, Theorem 2.5 leads to a rigidity theorem in a coarse geometric

setting. The objects considered here are (Gromov) hyperbolic metric spaces with an ap-

propriate asymptotic upper curvature bound. These curvature bounds, denoted by ACu(κ),

were introduced by M. Bonk and T. Foertsch [3] as a coarse analog to the CAT(κ) conditions.

13



We will discuss this further in Section 2.6, but for now we only mention that ACu(−1) is an

appropriate replacement for CAT(−1).

For hyperbolic metric spaces X, even with asymptotic upper curvature bounds, there

is no canonical Hausdorff dimension of the boundary, as there was for CAT(−1)-spaces.

Indeed, the visual metrics on ∂∞X form a Hölder class, and there is not a natural choice

of a bi-Lipschitz sub-class. Thus, to formulate an entropy-rigidity statement here, we must

look back inside X and use the coarse version of volume entropy—the same quantity that

bridged the results of Hamenstädt and Bourdon. Namely, if X is a hyperbolic metric space

and Γ acts on X, the exponential growth rate of the action is

e(Γ) = lim sup
R→∞

log(N(R))

R

where N(R) = #{Γp∩BX(p,R)} is the number of points in an orbit Γp of distance at most

R from p. Once again, the limit is independent of p ∈ X. We then have the corresponding

coarse rigidity theorem.

Theorem 2.8. Let X be a proper, geodesic, Gromov hyperbolic metric space, and let Γ y X

be a quasi-convex geometric group action. Suppose that Λ(Γ) is homeomorphic to Sn, with

n ≥ 2, and that there is an orbit Γp that is ACu(−1). Then e(Γ) ≥ n and equality holds if

and only if there is a rough isometry Φ: Hn+1 → Γp that is roughly equivariant with respect

to a geometric action of Γ on Hn+1.

Remark 2.9. Again, the assumption that Λ(Γ) is a topological sphere can be weakened; it

suffices to assume that Λ(Γ) contains an open subset homeomorphic to Rn. Indeed, this

will imply that Λ(Γ) is homeomorphic to Sn (cf. Theorem 4.4 in [40]). We leave as an open

question, though, whether it suffices to assume only that the topological dimension of Λ(Γ)

is n.

Moreover, one should ask about the case n = 1. We do not know if the conclusion in

Theorem 2.8 holds in this case as well. See, however, Remark 2.36 at the end of Section 2.6,

where we discuss what can be said in its place.
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This chapter is organized as follows. In Section 2.2, we will introduce the necessary

definitions, terminology, and background for the consideration and proof of Theorem 2.5.

Section 2.3 will be devoted to a slightly technical study of strongly quasi-Möbius group

actions that will reveal some properties relevant for a “de-snowflaking” result. In Section

2.4, we will state and prove this general de-snowflaking theorem, which forms the heart of the

proof of Theorem 2.5. In Section 2.5 we finish the proof of Theorem 2.5 by de-snowflaking

and applying quantitative versions of theorems from [5] and [59]. We will also, of course,

need to verify these quantitative versions. Lastly, in Section 2.6 we will prove Theorem 2.8

after discussing in more detail the terminology used in its statement.

2.2 Definitions and Notation

Let (Z, d) be a metric space. Occasionally, we will write dZ for the metric on Z when this

needs to be specified. If x ∈ Z and r > 0, then we use

B(x, r) = {y ∈ Z : d(x, y) < r} and B(x, r) = {y ∈ Z : d(x, y) ≤ r}

to denote, respectively, the open and closed metric balls of radius r about x.

If x1, x2, x3, x4 ∈ Z are distinct points, we define their (metric) cross-ratio as

[x1, x2, x3, x4] =
d(x1, x3)d(x2, x4)

d(x1, x4)d(x2, x3)
.

We are interested in maps between metric spaces that distort cross-ratios in a controlled

manner. To make this precise, let η : [0,∞) → [0,∞) be a homeomorphism. Then a home-

omorphism f : X → Y is called η-quasi-Möbius if

[f(x1), f(x2), f(x3), f(x4)] ≤ η([x1, x2, x3, x4])

for all distinct four-tuples x1, x2, x3, x4 ∈ X. Note that this definition makes sense for

injective f as well, but we will be concerned only with homeomorphisms in what follows.

A second class of maps that arise naturally in quasiconformal geometry are the quasisym-

metric maps, which distort relative distances by a controlled amount. A homeomorphism
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f : X → Y is η-quasisymmetric if

dY (f(x1), f(x2))

dY (f(x1), f(x3))
≤ η

(
dX(x1, x2)

dX(x1, x3)

)
for all triples x1, x2, x3 of distinct points in X.

The quasi-Möbius and quasisymmetric conditions are closely related, though there are

subtle differences. For example, every η-quasisymmetric map is η̃-quasi-Möbius, where η̃

depends only on η. Conversely, if X and Y are bounded, then each individual η-quasi-

Möbius map will be η̃-quasisymmetric for some η̃, but in general there is no quantitative

relationship between η and η̃.

In this chapter, we are mostly interested in studying metric spaces on which there is

a group action by maps belonging to a particular function class. In such a context, the

quasi-Möbius and quasisymmetry conditions are very different. As quasi-Möbius maps are

the weaker of these two types, it makes sense to focus on these actions. This choice is

further motivated by the following fact about hyperbolic groups (which occupy center stage

in studying the geometry of hyperbolic metric spaces). If G is a hyperbolic group and ∂∞G

is its boundary (i.e., the Gromov boundary of the Cayley graph of G with respect to a fixed

finite generating set) equipped with a visual metric, then the isometric action of G on its

Cayley graph by translations extends to an action on ∂∞G. Moreover, there is η for which

each g ∈ G acts as an η-quasi-Möbius map. Actually, something stronger is true: we can

take η to be linear (see Section 2.6 for more details).

Quasi-Möbius maps with a linear distortion function will play an important role in our

analysis. Thus, we give them a name.

Definition 2.10. A homeomorphism f : X → Y is called strongly quasi-Möbius if there is

C ≥ 1 for which

[f(x1), f(x2), f(x3), f(x4)] ≤ C[x1, x2, x3, x4]

whenever x1, x2, x3, x4 ∈ X are distinct.

Each strongly quasi-Möbius map between bounded metric spaces is actually bi-Lipschitz:
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there is a constant C ′ ≥ 1 for which

1

C ′
dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ C ′dX(x1, x2)

for all x1, x2 ∈ X (see Remark 2.14). But again, the relationship between C and C ′ is not

quantitative. We will study group actions by strongly quasi-Möbius maps in much greater

detail in subsequent sections.

Most of the group actions we encounter here will be of an expanding type, in the following

sense.

Definition 2.11. An action of a group Γ on a metric space (Z, d) is said to be cocompact

on triples if there is δ > 0 such that for every triple x1, x2, x3 ∈ Z of distinct points, there is

a map g ∈ Γ for which d(gxi, gxj) ≥ δ if i 6= j.

It should be no surprise that this assumption is again motivated by the geometry of

hyperbolic groups: the action of a hyperbolic group on its boundary (equipped with a visual

metric) is indeed cocompact on triples. More generally, the expanding behavior of a group

action, combined with an (assumed) regularity of maps in the group, often translates into

self-similarity properties of the metric space. See Lemma 2.13 for a particular manifestation

of this principle.

A final metric property that will commonly undergird our spaces is a standard type of

volume regularity.

Definition 2.12. A compact metric space (Z, d) is Ahlfors α-regular (or Ahlfors regular of

dimension α > 0) if there is a Borel measure µ on Z and a constant C ≥ 1 so that

1

C
rα ≤ µ(B(x, r)) ≤ Crα (2.2)

for all x ∈ Z and 0 < r ≤ diamZ.

Using standard covering arguments, it is not difficult to show that Z is Ahlfors α-regular

if and only if (2.2) holds with µ replaced by Hausdorff measure of dimension α.
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In subsequent sections, we will frequently encounter the n-dimensional sphere Sn. Unless

otherwise specified, we give it the chordal metric—the restriction of the Euclidean metric

when Sn is viewed as the unit sphere in Rn+1. However, every metric property of Sn that

we consider will be preserved under a bi-Lipschitz change of coordinates. Thus, any metric

that is bi-Lipschitz equivalent to the chordal metric would work just as well.

Lastly, it will be convenient for us to suppress non-essential multiplicative constants in

many inequalities. For quantities A and B that depend on some collection of input variables,

we write A . B to indicate that there is a constant C, independent of these variables, for

which A ≤ CB. When possible confusion could arise, we will indicate which data C may

depend on. For example, the bi-Lipschitz condition can be expressed simply as

dX(x1, x2) . dY (f(x1), f(x2)) . dX(x1, x2),

where the constants are uniform over all x1, x2 ∈ X.

2.3 Strongly Quasi-Möbius Group Actions

We now focus our attention on strongly quasi-Möbius maps—those with a linear distortion

function. Such maps tend to behave even more like traditional Möbius functions than general

quasi-Möbius maps do. For example, each strongly quasi-Möbius homeomorphism between

bounded metric spaces is bi-Lipschitz (cf. Remark 2.14).

Strongly quasi-Möbius maps are particularly important when they come in a group with

uniform distortion constant. We will say that a group action Γ y Z on a metric space Z is

strongly quasi-Möbius if there is a constant C ≥ 1 for which every g ∈ Γ is an η-quasi-Möbius

homeomorphism with η(t) = Ct.

The following lemma tells us that a strongly quasi-Möbius group action that is cocompact

on triples gives Z locally self-similar structure: each ball can be blown up to a uniform scale

by a homeomorphism that is essentially a scaling on that ball. See [13, Section 2.3] for a

general discussion of local self-similarity in metric spaces. See also Lemma 5.1 in [5] for a
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statement similar to ours, albeit in a slightly different context.

Lemma 2.13. Let (Z, d) be a compact, connected metric space with at least two points, and

let Γ y Z be a strongly quasi-Möbius group action that is cocompact on triples. For fixed

p ∈ Z, 0 < r ≤ diamZ, and L ≥ 2, let N = B(p, r) be a “near” set and F = Z\B(p, Lr) be

a “far” set with respect to p. Then there is a map g ∈ Γ satisfying the following:

(i) r · d(x, y) . d(gx, gy) . (1/r) · d(x, y) for all x, y ∈ Z,

(ii) (1/r) · d(x, y) . d(gx, gy) . (1/r) · d(x, y) for all x, y ∈ N ,

(iii) there exists c > 0 such that B(gx, c) ⊂ gN for each x ∈ B(p, r/2),

(iv) diam gF . 1/L.

Here, the implicit constants and c depend only on diamZ, the constant δ in Definition 2.11,

and C from the strongly quasi-Möbius condition. In particular, they do not depend on p, r,

or L.

Observe that property (ii) tells us that on N , the map g is basically a scaling by 1/r, in

that g blows up B(p, r) to a uniform scale. Property (iii) guarantees that gN will contain

large balls around images of points that are well-inside N ; or, to put it negatively, points

outside of N cannot get mapped nearby the images of points well within N . Property (iv)

shows that if we take L to be large, we can map the “far” set F to something negligible.

Proof. Given p, r, and L, we first choose three points that we wish to δ-separate. Let x1 = p,

and choose x2 to be a point for which d(x1, x2) = r/2. Then choose x3 so that d(x1, x3) = r/4.

Such points x2 and x3 exist by the assumption that Z is compact and connected. Take g ∈ Γ

so that gx1, gx2, gx3 have pairwise distances at least δ. Now that we have chosen g, we use

x′ to refer to the image of points x under g.

(i) Let x, y ∈ Z with x 6= y. Then there are i, j ∈ {1, 2, 3} for which d(x, xi) ≥ r/8 and

d(x, xj) ≥ r/8. Of these, either d(y, xi) ≥ r/8 or d(y, xj) ≥ r/8; without loss of generality,
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say d(y, xi) ≥ r/8. We then have

d(x′, y′)d(x′i, x
′
j)

d(x′, x′j)d(y′, x′i)
.
d(x, y)d(xi, xj)

d(x, xj)d(y, xi)
.
d(x, y) · r
r/8 · r/8

.
d(x, y)

r
,

and so

d(x′, y′) .
d(x′, x′j)d(y′, x′i)

d(x′i, x
′
j)

· d(x, y)

r
.

1

δ
· d(x, y)

r
.
d(x, y)

r

which is the second inequality in (i). Recall that the implicit constant is allowed to depend

on diamZ and on δ.

For the first inequality, take i, j ∈ {1, 2, 3} for which d(x′, x′i) ≥ δ/2 and d(x′, x′j) ≥ δ/2.

Then either d(y′, x′i) ≥ δ/2 or d(y′, x′j) ≥ δ/2; without loss of generality, say d(y′, x′i) ≥ δ/2.

Then
d(x′, x′j)d(y′, x′i)

d(x′, y′)d(x′i, x
′
j)

.
d(x, xj)d(y, xi)

d(x, y)d(xi, xj)
.

1

d(x, y) · r
,

and so

d(x, y) .
1

r
·
d(x′, y′)d(x′i, x

′
j)

d(x′, x′j)d(y′, x′i)
.
d(x′, y′)

r
,

as desired.

Remark 2.14. The same reasoning can be used to show that any strongly quasi-Möbius map

between bounded metric spaces is necessarily bi-Lipschitz. Indeed, notice that after choosing

g, the arguments in (i) use only four facts: pairwise distances between x1, x2, and x3 are

≥ r/4; pairwise distances between x′1, x′2, and x′3 are ≥ δ; the domain and image of g are

both bounded; and g is strongly quasi-Möbius. In general, then, if f is a strongly quasi-

Möbius homeomorphism between bounded metric spaces, choose distinct points x1, x2, and

x3 in the domain. These four facts will hold for some r, δ > 0, so we can conclude that f is

bi-Lipschitz.

(ii) Let x, y ∈ N . The second inequality here is directly from (i). For the first inequality,

take i, j for which d(x′, x′j), d(y′, x′i) ≥ δ/2 as we did above. Then

d(x′, x′j)d(y′, x′i)

d(x′, y′)d(x′i, x
′
j)

.
d(x, xj)d(y, xi)

d(x, y)d(xi, xj)
.

2r · 2r
d(x, y) · r/4

.
r

d(x, y)
,
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and so

d(x, y) . r ·
d(x′, y′)d(x′i, x

′
j)

d(x′, x′j)d(y′, x′i)
. r · d(x′, y′),

as claimed.

(iii) Fix x ∈ B(p, r/2) and note that if y ∈ Z\N , then d(x, y) ≥ r/2. Taking i ∈ {2, 3}

for which d(y′, x′i) ≥ δ/2, we have

d(x′, p′)d(y′, x′i)

d(x′, y′)d(p′, x′i)
.
d(x, p)d(y, xi)

d(x, y)d(p, xi)
.
d(x, p)

r
· d(y, xi)

d(x, y)
.

As d(x, y) ≥ r/2, we also have d(y, xi) ≤ d(x, y) + d(x, xi) ≤ d(x, y) + 2r ≤ 5d(x, y), and so

d(x′, p′)d(y′, x′i)

d(x′, y′)d(p′, x′i)
.
d(x, p)

r
.

Thus,

d(x′, y′) &
d(x′, p′)d(y′, x′i)

d(p′, x′i)
· r

d(x, p)
&
d(x′, p′)

d(x, p)
· r & 1

by the bounds we established in (ii). Let c be the implicit constant in this last inequality.

Then B(x′, c) ⊂ gN by the fact that g is surjective.

(iv) We may, of course, assume that B(p, Lr) is not all of Z. Then fix a point x ∈

B(p, 2Lr)\B(p, Lr). We claim that gF is contained in a small ball centered at x′. Indeed,

let y ∈ F , and observe that

d(x, y) ≤ d(x, x1) + d(y, x1) ≤ 2Lr + d(y, x1) ≤ 3d(y, x1),

d(x1, x2) = r/2,

d(x, x1) ≥ Lr,

d(y, x2) ≥ d(y, x1)− d(x1, x2) ≥ d(y, x1)− r.

Thus, we have

d(x′, y′)d(x′1, x
′
2)

d(x′, x′1)d(y′, x′2)
.
d(x, y)d(x1, x2)

d(x, x1)d(y, x2)
.

d(y, x1) · r
Lr · (d(y, x1)− r)

.

As d(y, x1) ≥ Lr and the function t 7→ t/(t− r) is decreasing for t > r, we obtain

d(y, x1) · r
Lr · (d(y, x1)− r)

≤ Lr

L(Lr − r)
.

1

L
,
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and so

d(x′, y′) .
1

L
· d(x′, x′1)d(y′, x′2)

d(x′1, x
′
2)

.
1

L
.

Consequently, gF is contained in a ball of radius . L−1 centered at x′, as needed.

The previous lemma gives us a good understanding of the type of expanding behavior

found in a strongly quasi-Möbius group action, when it acts cocompactly on triples. This use

of a group element to “blow up” a ball to a uniform scale is sometimes called a “conformal

elevator” (see, for example, [29]). One can therefore view Lemma 2.13 as a particular type

of conformal elevator that comes with a strongly quasi-Möbius group action. This elevator

will be essential in the proof of our de-snowflaking result, coming in the next section.

Actually, in the proof of that result, it is the conformal elevator itself (rather than the

strongly quasi-Möbius action generating it) that will be important. In order to work in

greater generality, we make the following definition.

Definition 2.15. A metric space (Z, d) admits a conformal elevator if there exists a constant

C ≥ 1 and a function ω : (0,∞)→ (0,∞) with ω(t)→ 0 as t→ 0 such that, for every choice

of p ∈ Z, 0 < r ≤ diamZ, and λ ≥ 2, there is a homeomorphism g : Z → Z with the

following properties:

(i) d(gx, gy) ≤ Cd(x, y)/r for all x, y ∈ B(p, λr),

(ii) C−1d(x, y)/r ≤ d(gx, gy) for all x, y ∈ B(p, r),

(iii) B(gx, 1/C) ⊂ g(B(p, r)) for all x ∈ B(p, r/C),

(iv) diam (Z\g(B(p, λr))) ≤ ω(1/λ).

The conclusions in Lemma 2.13 tell us that if Z admits a strongly quasi-Möbius group

action that is cocompact on triples, then it admits a conformal elevator. We now turn our

attention toward using the conformal elevator to de-snowflake a metric space.
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2.4 De-snowflaking

This section is devoted to establishing the following proposition, which provides quantitative

conditions under which a metric space can be de-snowflaked by a particular amount.

Proposition 2.16. Fix n ∈ N and 0 < ε < 1. Let (Z, d) be a metric space with the following

properties:

(i) Z is homeomorphic to Sn,

(ii) Z admits a conformal elevator, in the sense of Definition 2.15,

(iii) every δ-separated set in Z has size at most Cδ−n/ε,

(iv) every discrete δ-path from x to y in Z has length at least

(1/C) · (d(x, y)/δ)1/ε.

Then there is a metric dnew on Z satisfying

d(x, y)1/ε . dnew(x, y) . d(x, y)1/ε (2.3)

where the implicit constant depends only on the data from assumptions (i)–(iv).

A “δ-separated set” is simply a set of points for which pairwise distances are at least δ.

Also, by a “discrete δ-path from x to y” we mean a chain of points x = z0, z1, . . . , zl = y in

Z with d(zi, zi−1) ≤ δ. The length of such a chain is l; notice that this is one less than the

number of points in the chain.

Some remarks on the assumptions in Proposition 2.16 are in order. The first condition

gives Z non-trivial topological structure and guarantees that the metric structure of (Z, d)

on large scales is similar to that of the standard sphere. The conformal elevator, as we

have already said, gives us a way of moving from small scales to a uniformly large scale.

The third assumption should be thought of as a volume condition; for example, it is easily

implied by Ahlfors n/ε-regularity. In fact, our condition is similar to assuming that the
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Assouad dimension of (Z, d) is n/ε. See [13, Chapter 9] for a discussion on various notions

of metric dimension. Lastly, condition (iv) is exactly the discrete length assumption that

appears in Theorem 2.5. It basically functions as a 1-dimensional metric condition. Thus,

the essential ingredients to our de-snowflaking result are topological regularity, metric self-

similarity, upper bounds on volume, and lower bounds on 1-dimensional metric structure.

Regarding the conclusion of the proposition, the “data from assumptions (i)–(iv)” include

the following: the parameters ε and n; the diameter of Z; the constant C from conditions (ii),

(iii), and (iv); the function ω from the conformal elevator; and the modulus of continuity of a

fixed homeomorphism between Z and Sn. We will also refer to these as the “data associated

to Z.”

The proof of Proposition 2.16 will proceed as follows. We begin by fixing, for each length

scale e−εk, a cover of Z by metric balls. For x, y ∈ Z, the smallest number of these balls

needed to join x and y provides a “fuzzy” notion of distance at scale e−εk. After a proper

normalization of this fuzzy distance, we let k tend to infinity to obtain the metric dnew.

The lower bound in (2.3) will follow almost directly from the discrete length condition in

(iv). The upper bound is more complicated, but in it we will see a nice interplay between

the topological and metric structures of Z, which are linked together by the existence of the

conformal elevator.

2.4.1 The definition of dnew

Fix notation as in the statement of the proposition. In particular, we let C be a constant large

enough so that conditions (iii) and (iv) hold, as well as the conditions from the definition of

a conformal elevator. We also let ω be the function associated with the conformal elevator

on Z. This notation will remain fixed throughout the proof.

By scaling the metric d, we may assume for simplicity that diamZ = 1. Indeed, the

implicit constant in the desired conclusion is allowed to depend on the diameter, so we lose

no generality.
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For each k ∈ N, fix a maximal e−εk-separated set in Z and call it Pk. This also will

remain fixed throughout the proof. It is not difficult to see that if P is any e−εk-separated

set contained in a ball B(p, r), with 0 < r ≤ 1, then

#P . rn/ε · enk. (2.4)

Indeed, this follows from the volume bound in (iii) after applying the conformal elevator for

p, r, and λ = 2. In particular, if r = e−εm, then such a set has size . en(k−m).

By maximality of Pk, we mean with respect to set inclusion. This is, of course, equivalent

to

Z =
⋃
x∈Pk

B(x, e−εk)

for each k. It will be more convenient to work with balls of twice this radius, and so we refer

to

{B(x, 2e−εk) : x ∈ Pk}

as the set of k-balls. For notational simplicity, we may abbreviate B(x, 2e−εk) by Bk(x) when

x ∈ Pk. Often, the center-point x of Bk(x) is not important. As a result, we will usually

denote k-balls simply by B or Bi, e.g., when dealing with a chain of such balls. In these

cases, k will be understood from the context.

We first observe that for each k, the set of k-balls has controlled overlap, in that each

k-ball intersects at most a uniformly bounded number of k-balls. Indeed, if Bk(x) is a k-ball

and Bk(xi), 1 ≤ i ≤ m, are those that intersect Bk(x) non-trivially, then the collection

{x1, . . . , xm} is an e−εk-separated set in the ball B(x, 4e−εk). By (2.4) above, we get

m . (4e−εk)n/ε · enk . 1, (2.5)

where the implicit constant is allowed to depend on n and ε.

A sequence of k-balls B1, B2, . . . , Bl with Bi ∩ Bi+1 6= ∅ is called a k-ball chain. We say

that such a chain connects two points x and y if x ∈ B1 and y ∈ Bl. Observe that, as Bi

may not be a connected set itself, chains may not be connected topologically. This will pose

no problem for our later analysis, though.
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The length of a k-ball chain is simply the number of balls appearing in it, counted with

multiplicity. For each k, let

dk(x, y) = (length of shortest k-ball chain connecting x and y) · e−k.

The normalization by e−k is appropriate; indeed, each k-ball has diameter approximately

e−εk with respect to d, so its diameter with respect to the sought-after dnew should be

approximately e−k. Note that dk is not actually a metric; for each x we have dk(x, x) = e−k.

But dk is symmetric and the triangle inequality clearly holds.

We now set

dnew(x, y) = lim sup
k→∞

dk(x, y).

It is not immediate that this is a metric either. It is certainly symmetric, has dnew(x, x) = 0

for all x, and satisfies the triangle inequality. The inequalities 0 < dnew(x, y) <∞ for x 6= y

will, however, be a consequence of proving that dnew is bi-Lipschitz equivalent to d1/ε. Thus,

we wish to show that for each pair of distinct points x, y ∈ Z,

d(x, y)1/ε . dk(x, y) . d(x, y)1/ε

for k large enough, where the implicit constants depend only on the data associated to Z.

As we mentioned before, the lower bound will be an easy consequence of assumption

(iv) in the statement of the proposition—the lower bound on the length of discrete “paths”

between points. We quickly verify this.

Let x, y ∈ Z be distinct and let B1, . . . , Bl be a k-ball chain connecting x and y. Then

x ∈ B1 and y ∈ Bl. Choose xi ∈ Bi ∩ Bi+1 for each 1 ≤ i ≤ l − 1 and consider the discrete

path

x = x0, x1, . . . , xl−1, xl = y

from x to y. Observe that d(xi, xi+1) ≤ 4e−εk, as diamBi ≤ 4e−εk. Consequently,

l &

(
d(x, y)

4e−εk

)1/ε

,

26



so that l & d(x, y)1/ε · ek where the implicit constant depends only on C and ε. This gives

immediately that dk(x, y) & d(x, y)1/ε, as desired.

We now turn to the upper bound, which is much more subtle. To obtain it, we will use

the lower bound, along with a discrete length-volume inequality for cubes.

2.4.2 The upper bound

We begin by stating the crucial lemma, which will almost immediately give the upper bound

when applied iteratively. This method of proof was motivated by a similar argument in

[61], where the author also sought to establish upper bounds on “tile” chains connecting two

points.

Lemma 2.17. Let x, y ∈ Z and m ∈ N with d(x, y) ≤ e−ε(m−1). Then for each k ≥ m, there

is a k-ball chain connecting B(x, e−εm) and B(y, e−εm) of length at most C ′ek−m. Here, C ′

depends only on the data associated to Z.

As should be clear, we say that a k-ball chain B1, . . . , B` connects two sets A and B if

B1∩A and B`∩B are non-empty. We will first see how this lemma implies the desired upper

bound.

Proof of the Upper Bound. Suppose that Lemma 2.17 holds. Fix distinct points x and y in

Z, and choose h ∈ N so that e−εh < d(x, y) ≤ e−ε(h−1). Recall that we have normalized

diamZ = 1. Also fix k > h; it is helpful to think of k being very large relative to h. We will

temporarily use Bm
z to denote the ball B(z, e−εm) for z ∈ X and m ∈ N. This should not be

confused with the shorthand notation we used earlier for k-balls.

By the lemma, there is a k-ball chain connecting Bh
x and Bh

y of length at most C ′ek−h.

This gives us points x = x1,0, x1,1, x1,2, x1,3 = y where x1,0, x1,1 ∈ Bh
x and x1,2, x1,3 ∈ Bh

y ,

and x1,1 is connected to x1,2 by a k-ball chain of length at most C ′ek−h.

We now iterate this process. Observe that d(x1,0, x1,1) ≤ e−εh so that we can apply the

lemma again to obtain a k-ball chain of length at most C ′ek−(h+1) connecting Bh+1
x1,0

and
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Bh+1
x1,1

. This gives us points x = x2,0, x2,1, x2,2, x2,3 = x1,1 where x2,0, x2,1 ∈ Bh+1
x1,0

and

x2,2, x2,3 ∈ Bh+1
x1,1

, and x2,1 is connected to x2,2 by a k-ball chain of length at most C ′ek−(h+1).

Of course, we do a similar process to the pair of points x1,2 and x1,3.

The m-th step in this process (for 1 ≤ m ≤ k−h) proceeds as follows. From the (m−1)-th

step, we have 2m points

x = xm−1,0, xm−1,1, . . . , xm−1,2m−1 = y

satisfying d(xm−1,i, xm−1,i+1) ≤ e−ε(h+m−2) for each even integer i ∈ {0, . . . , 2m − 2}. More-

over, there is a previously-constructed k-ball chain connecting xm−1,i+1 to xm−1,i+2.

It will be convenient to rename these 2m points so that they appear in the m-th step. To

do this, we let

xm,j =


xm−1,j/2, if j ≡ 0 mod 4

xm−1,(j−1)/2, if j ≡ 3 mod 4

for 0 ≤ j ≤ 2m+1 − 1. We do not yet define the points corresponding to j ≡ 1, 2 mod 4

because we still have to find them.

To this end, observe that d(xm,j, xm,j+3) ≤ e−ε(h+m−2) for each j ≡ 0 mod 4. Thus,

applying Lemma 2.17 to these points, we find a k-ball chain of length at most C ′ek−(h+m−1)

connecting the balls Bh+m−1
xm,j

and Bh+m−1
xm,j+3

. We can therefore choose points xm,j+1 ∈ Bh+m−1
xm,j

and xm,j+2 ∈ Bh+m−1
xm,j+3

that are connected by this k-ball chain.

We have now obtained 2m+1 points

x = xm,0, xm,1, . . . , xm,2m+1−1 = y,

such that

d(xm,i, xm,i+1) ≤ e−ε(h+m−1)

for each even integer i ∈ {0, . . . , 2m+1 − 2}. Note that we have constructed 2m−1 different

k-ball chains at this step, each of length at most C ′ek−(h+m−1). Moreover, for each even

i ∈ {0, . . . , 2m+1 − 2}, there is a k-ball chain connecting xm,i+1 to xm,i+2, constructed either

at this m-th step or at a previous one.
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Consider what happens at the end of the (k − h+ 1)-th step. We obtain 2k−h+2 points

x = xk−h+1,0, xk−h+1,1, . . . , xk−h+1,2k−h+2−1 = y

satisfying d(xk−h+1,i, xk−h+1,i+1) ≤ e−εk for each even i. Consequently, there is a k-ball

containing both xk−h+1,i and xk−h+1,i+1. Indeed, if z ∈ Pk with d(z, xk−h+1,i) < e−εk, then

xk−h+1,i, xk−h+1,i+1 ∈ B(z, 2e−εk) = Bk(z).

Moreover, there is a k-ball chain connecting xk−h+1,i+1 to xk−h+1,i+2 that was constructed at

some step of the whole process.

Concatenating these k-ball chains, using the single k-balls containing both xk−h+1,i and

xk−h+1,i+1 to join them together, we end up with a k-ball chain from x = xk−h+1,0 to y =

xk−h+1,2k−h+2−1 of length at most

2k−h+1 +
k−h+1∑
m=1

2m−1 · C ′ek−(h+m−1) . ek−h.

By the way we chose h, we obtain

dk(x, y) . ek−h · e−k .
(
e−εh

)1/ε
. d(x, y)1/ε,

where the implicit constants depend only on C ′. Taking limits then gives the desired bound

dnew(x, y) . d(x, y)1/ε.

It therefore remains to prove Lemma 2.17. Broadly, our goal is to use the conformal

elevator on Z to blow up the balls B(x, e−εm) and B(y, e−εm) to a uniform scale, so that we

can essentially reduce to the case that m ≈ 1. Establishing the analogous bound on this

uniform scale will require some topological arguments, combined with the discrete volume

and length bounds on Z. We will first develop the topological tools necessary to carry this

out.

2.4.3 A discrete length-volume inequality

An important topic in metric geometry is the relationship between the volume of a space

and the lengths of curves that, in some way, generate it. See [28, Chapter 4] for a survey of
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methods and results in this spirit. Among these is the following theorem, originally proved

by W. Derrick [23]. We state it in the form cited in [28] in order to motivate more clearly

what will follow.

Theorem 2.18 (Derrick [23, Theorem 3.4]). Let g be a Riemannian metric on the cube

[0, 1]n, let Fk and Gk, 1 ≤ k ≤ n, denote the pairs of opposite codimension-1 faces of the

cube, and let dk be the distance between Fk and Gk with respect to the metric g. Then

Vol(g) ≥ d1d2 · · · dn, where Vol(g) denotes the volume of [0, 1]n with respect to g.

We will need a discrete/topological version of this theorem. Incidentally, the proof of the

discrete version mimics the proof of the Riemannian version.

To set this up, let U1, . . . , UN be an open cover of the cube [0, 1]n. Again let Fk and Gk

denote the pairs of opposite codimension-1 faces:

Fk = [0, 1]n ∩ π−1
k ({0}) and Gk = [0, 1]n ∩ π−1

k ({1}),

where πk : Rn → R is the projection onto the k-th coordinate axis. We say that Ui1 , . . . , Uil

is a chain if Uij ∩ Uij+1
6= ∅ for each j. Moreover, such a chain is said to connect two sets A

and B if Ui1 ∩ A 6= ∅ and Uil ∩B 6= ∅.

Proposition 2.19. Let U1, . . . , UN be as above, and let dk denote the smallest number of

sets Ui in a chain that connects Fk and Gk. Then N ≥ d1d2 · · · dn.

Proof. Without loss of generality, we may assume that no Ui is redundant, i.e., that for each

i, there is a point xi ∈ Ui that belongs to no other Uj. Otherwise, we could delete Ui from

the cover, thereby decreasing the total number of sets without reducing the numbers dk.

We first define a map f0 : {x1, . . . , xN} → Zn where the k-th component is

πk(f0(xi)) =
minimal number of sets Uj in a chain

that connects Fk and {xi}.

The existence of such a chain follows from the fact that there is a path in [0, 1]n from Fk to

xi and the collection {Uj}Nj=1 is an open cover of this path.
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Now we extend f0 to a map on [0, 1]n by using a partition of unity subordinate to

{Ui}Ni=1. More precisely, let {ϕi}Ni=1 be a partition of unity such that {x : ϕi(x) 6= 0} ⊂ Ui.

In particular, each ϕi is continuous and takes values in [0, 1]. Let

f(x) =
N∑
i=1

ϕi(x)f0(xi) =
N∑
i=1

ϕi(x)yi,

for x ∈ [0, 1]n, where we use yi to denote f0(xi). Observe that f does indeed extend f0

because ϕj(xi) = 0 for j 6= i and ϕi(xi) = 1. It is also, of course, continuous.

We claim that πk(f(Fk)) = {1} and πk(f(Gk)) ⊂ [dk,∞) for each k. For x ∈ Fk, let

Ui1 , . . . , Uim be the sets containing x so that

f(x) =
m∑
j=1

ϕij(x)yij .

As x ∈ Uij ∩ Fk, we see that the single set Uij connects Fk and {xij}. Thus, the k-th

coordinate of yij is 1. Consequently,

πk(f(x)) =
m∑
j=1

ϕij(x) = 1.

Similarly, if x ∈ Gk, again let Ui1 , . . . , Uim be the sets containing x. Then Uij ∩ Gk is non-

empty, so any chain connecting Fk to {xij} (which necessarily must end with the set Uij)

actually connects Fk and Gk. By the definition of dk, this chain has size at least dk. Thus,

the k-th coordinate of yij is at least dk. As a result,

πk(f(x)) =
m∑
j=1

ϕij(x)πk(yij) ≥ dk

m∑
j=1

ϕij(x) = dk.

We now claim that the image of f must contain the n-dimensional rectangle

S =
n∏
k=1

[1, dk].

If not, there exists a point y ∈ S\f([0, 1]n). As f is continuous, f([0, 1]n) is closed, so we

may assume that y is in the interior of S. Let g be a homeomorphism from [0, 1]n to S

31



that sends corresponding faces to corresponding faces (an affine map will do). Then by the

previous claim,

ft = (1− t)f |∂[0,1]n + tg|∂[0,1]n

gives a homotopy with values in Rn\ int(S). In particular, f |∂[0,1]n is homotopic to g|∂[0,1]n

in Rn\{y}.

Fix a simplicial decomposition of [0, 1]n; this gives a corresponding decomposition of

∂[0, 1]n. The latter decomposition allows us to express f |∂[0,1]n and g|∂[0,1]n as singular (n−1)-

chains with integer coefficients. Abusing notation we continue to denote the chains by f |∂[0,1]n

and g|∂[0,1]n . The homotopy given above implies that the corresponding classes [f |∂[0,1]n ] and

[g|∂[0,1]n ] are equal in the singular homology group Hn−1(Rn\{y}). Notice, though, that

f |∂[0,1]n extends to the map f : [0, 1]n → Rn\{y}, which we can view as a singular n-chain

via the decomposition of [0, 1]n. Thus, the chain f |∂[0,1]n is the image of the chain f under

the boundary map, so [f |∂[0,1]n ] is zero in Hn−1(Rn\{y}). In particular, [g|∂[0,1]n ] is also

zero. This, however, contradicts the fact that [g|∂[0,1]n ] generates Hn−1(Rn\{y}), which is

isomorphic to Z. Hence, it must be that S ⊂ f([0, 1]n).

Lastly, we claim that if f(x) ∈ Zn, then f(x) = yi for some i. Let Ui1 , . . . , Uim be the

sets for which ϕij(x) > 0, so that x ∈ Ui1 ∩ · · · ∩ Uim . Then

f(x) =
m∑
j=1

ϕij(x)yij ,

and for each j, l ∈ {1, . . . ,m},

||yij − yil ||∞ ≤ 1,

where ||y||∞ = max{|πk(y)| : 1 ≤ k ≤ n} is the `∞-norm. This inequality follows immediately

from the fact that Uij and Ui` have non-trivial intersection. Consequently, for each k, there

is an integer ak such that

πk(yij) ∈ {ak, ak + 1}

for all j; namely, ak = min{πk(yij) : 1 ≤ j ≤ m}. Now fix k and let

I = {j : πk(yij) = ak} and J = {j : πk(yij) = ak + 1}.
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By the definition of ak, we have I 6= ∅. Then

πk(f(x)) =
m∑
j=1

ϕij(x)πk(yij) =
∑
j∈I

ϕij(x)ak +
∑
j∈J

ϕij(x)(ak + 1)

= ak +
∑
j∈J

ϕij(x).

By assumption, πk(f(x)) is an integer, so
∑

j∈J ϕij(x) is also an integer, necessarily equal to

0 or 1. This can happen only if J = ∅ or J = {1, . . . ,m}, but the latter implies that I = ∅,

contrary to assumption. Thus, J = ∅, so each yij has k-th coordinate ak. In particular,

f(x) = (a1, . . . , an) as well, giving f(x) = yi1 .

From the previous claims we obtain the desired conclusion immediately. Each integer

lattice point in the cube S = [1, d1] × · · · × [1, dn] has some xi in its pre-image under f .

There are d1d2 · · · dn integer lattice points in S, so N ≥ d1d2 · · · dn.

It is easy to see that Proposition 2.19 still holds if all of the sets Ui are assumed to be

closed. Indeed, we can enlarge Ui by a small amount to obtain open sets U ′i without changing

the incidence structure. Then apply the proposition to these open sets.

More importantly for our later use, we point out that the proposition above remains

true if we replace [0, 1]n by a topological cube. Indeed, the assumptions and conclusions are

entirely topological.

Before moving on to the proof of Lemma 2.17, we must establish a basic fact about

finding topological cubes in the sphere Sn.

Lemma 2.20. Let B0 and B1 be metric balls of radius δ > 0 in Sn for which dist(B0, B1) ≥ δ.

Suppose that E ⊂ Sn has diamE < δ and dist(Bi, E) ≥ δ for i = 0, 1. Then there is a set

S ⊂ Sn with the following properties:

(i) S is homeomorphic to [0, 1]n;

(ii) the faces {0}× [0, 1]n−1 and {1}× [0, 1]n−1 correspond, under this homeomorphism, to

sets C0 ⊂ B0 and C1 ⊂ B1, respectively;
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(iii) if x and y in S correspond to points that lie in opposite codimension-1 faces of [0, 1]n,

then dSn(x, y) ≥ cδ3;

(iv) S is disjoint from E.

Here, c > 0 is an absolute constant.

We should remark that the bound in (iii) is certainly far from optimal. It is, however,

sufficient for our purposes and makes the following proof much simpler.

Proof. By rotation, we may assume that E contains the north pole N = (0, . . . , 0, 1). Let D

be the metric ball of radius δ centered at N so that E ⊂ D and Bi ∩D = ∅ for i = 0, 1.

Let p : Sn → Rn be the stereographic projection

(x1, . . . , xn+1) 7→
(

x1

1− xn+1

, . . . ,
xn

1− xn+1

)
.

Then p(∂D) is an (n− 1)-dimensional sphere of radius R ∈ [1/δ, 2/δ]. Moreover, we can say

that p|Sn\D is a bi-Lipschitz map onto the Euclidean ball BRn(0, R) with

dSn(x, y) . ||p(x)− p(y)|| . 1

δ2
dSn(x, y), (2.6)

where the implicit constants are absolute. This follows from the standard expression

dSn(x, y) =
2||p(x)− p(y)||√

1 + ||p(x)||2 ·
√

1 + ||p(y)||2

of the chordal metric on Sn in terms of the Euclidean norm || · || on Rn. As a result, p(B0)

and p(B1) are Euclidean balls in BRn(0, R) with

dist(p(B0), p(B1)) & δ and diam p(Bi) & δ

for i = 0, 1. It is then easy to find an n-dimensional topological cube Ŝ ⊂ BRn(0, R) with

a pair of opposite codimension-1 faces in p(B0) and p(B1), respectively, and for which any

two opposite faces are at distance & δ from each other.

Now let S = p−1(Ŝ). Properties (i), (ii), and (iv) immediately follow from our choice of

Ŝ, and property (iii) is a consequence of the bounds in (2.6).
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2.4.4 Proof of Lemma 2.17

We will prove a slight variant of the lemma, which easily implies the form stated above.

Namely, we show that if x and y are distinct with e−εm < d(x, y) ≤ e−ε(m−1) then for each

k ≥ m, there is a k-ball chain connecting the balls B(x, e−εm) and B(y, e−εm) of length at

most C ′ek−m.

It is straightforward to obtain Lemma 2.17 from this. Indeed, let x, y ∈ Z be distinct,

and let m ∈ N such that d(x, y) ≤ e−ε(m−1). Fix k ≥ m and let m′ ≥ m be the integer for

which e−εm
′
< d(x, y) ≤ e−ε(m

′−1). If k ≥ m′, then the desired conclusion in Lemma 2.17

follows immediately from the conclusion of the variant. If k < m′, then d(x, y) ≤ e−εk so

that x and y are contained in a common k-ball. Thus, it suffices to prove the variant.

To this end, let x, y ∈ Z with e−εm < d(x, y) ≤ e−ε(m−1), and fix k ≥ m. For ease of

notation, let

Bx = B(x, e−εm) and By = B(y, e−εm),

which again should not be confused with the earlier notation for k-balls. To find a short

k-ball chain connecting Bx and By, we will proceed in the following way. We first restrict

our attention to larger balls

B(p, r) ⊂ B(p, λr),

containing both Bx and By but still of radius roughly e−εm. By estimates we have discussed

earlier, such a ball intersects . en(k−m) k-balls. Applying the conformal elevator at this loca-

tion and scale enlarges Bx and By to a uniform size so that we can find a “wide” topological

cube inside the image of B(p, λr). This cube will have a pair of opposite codimension-1 faces

in the images of Bx and By, respectively, and each pair of opposite faces will be uniformly far

apart. Pulling this cube back down to scale ≈ e−εm, it will be covered by those k-balls that

intersect B(p, λr). This puts us in the setting of Proposition 2.19, where the lower discrete

length bound will imply that di & ek−m for each i. As the size of this cover is . en(k−m),

Proposition 2.19 guarantees that di . ek−m as well. In particular, there is a chain connecting

Bx and By of length roughly ek−m.
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We must, of course, make these arguments rigorous; to do so, it will be convenient to

set p = x and r = 2Ce−ε(m−1), where C is the large constant we chose at the beginning of

Section 2.4.1. Observe then that

Bx ∪By ⊂ B(p, r),

and moreover, that x, y ∈ B(p, r/C). Let us also choose λ (for later use in applying the

conformal elevator) in the following way. Fix a homeomorphism F : Z → Sn and let 0 < δ < 1

be small enough that

d(z, w) ≥ 1

2C2eε
implies dSn(F (z), F (w)) ≥ 3δ (2.7)

for z, w ∈ Z. Then take λ ≥ 2 large enough so that

d(z, w) < ω
(

1
λ

)
implies dSn(F (z), F (w)) < cδ3, (2.8)

where 0 < c < 1 is the constant from Lemma 2.20. Note that λ will depend on the modulus

of continuity of F and F−1.

The conformal elevator on Z gives a map g for this choice of p, r, and λ. If it happens

that r > 1 (i.e., if m is small), then we simply choose g to be the identity map. All of the

following estimates work equally well in this case.

Let x′ = g(x), y′ = g(y), and K = g(Z\B(p, λr)). Property (ii) of the conformal elevator

guarantees that

d(x′, y′) ≥ d(x, y)

Cr
≥ e−εm

2C2e−ε(m−1)
=

1

2C2eε
,

so x′ and y′ are far apart. Property (iii) tells us that

B(x′, 1/C) ∪B(y′, 1/C) ⊂ g(B(p, r)), (2.9)

and as g is a homeomorphism, this implies that

dist({x′, y′}, K) ≥ 1
C
.

Moreover, we claim that

B
(
x′, 1

2C2eε

)
⊂ g(Bx) and B

(
y′, 1

2C2eε

)
⊂ g(By). (2.10)

36



Indeed, if w ∈ B(x′, 1/(2C2eε)), then z = g−1(w) must be in B(p, r) by (2.9). Consequently,

property (ii) again gives

d(x, z) ≤ Cr · d(gx, gz) = Cr · d(x′, w) <
2C2e−ε(m−1)

2C2eε
= e−εm,

so that z ∈ Bx. Hence, w = g(z) is in g(Bx). The same reasoning works also for By. Lastly,

property (iv) of the conformal elevator guarantees that

diamK ≤ ω
(

1
λ

)
,

which we view as being very small.

Let us now use the homeomorphism F : Z → Sn to “regularize” this large-scale configu-

ration. By our choice of δ from (2.7), we have

dSn (F (x′), F (y′)) ≥ 3δ and dist ({F (x′), F (y′)}, F (K)) ≥ 3δ

so that B0 = BSn(F (x′), δ) and B1 = BSn(F (y′), δ) are metric balls in Sn with

dist(B0, B1) ≥ δ,

and of distance at least δ from F (K). Moreover, observe that

B0 ⊂ F
(
B(x′, 1/(2C2eε))

)
⊂ F (g(Bx)) (2.11)

and

B1 ⊂ F
(
B(y′, 1/(2C2eε))

)
⊂ F (g(By)) , (2.12)

both of which follow from (2.7) and (2.10). Also note that by our choice of λ,

diamF (K) ≤ cδ3 < δ.

The metric balls B0 and B1 and the set F (K) therefore satisfy the hypotheses in Lemma

2.20. Let Ŝ ⊂ Sn\F (K) be the n-dimensional topological cube given in the conclusion of

this lemma. Then Ŝ has a pair of opposite codimension-1 faces Ĉ0 and Ĉ1 in B0 and B1,

respectively; moreover, any two opposite faces have spherical distance ≥ cδ3 from each other.
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Now send this set Ŝ back to Z via the homeomorphism (F ◦ g)−1; that is, let

S = g−1 ◦ F−1(Ŝ)

so that S is a topological cube in the ball B(p, λr). Observe that it has a pair of opposite

codimension-1 faces

C0 = g−1 ◦ F−1(Ĉ0) and C1 = g−1 ◦ F−1(Ĉ1)

that lie within Bx and By, respectively. This follows from the inclusions in (2.11) and (2.12).

Consider the set of k-balls that meet B(p, λr). Intersect each k-ball with S, and call the

resulting collection U . The estimate in (2.4) implies that

#U . en(k−m).

Hence, U is an open cover of the topological cube S by . en(k−m) sets. In view of Proposition

2.19, we wish to show that each chain from U that joins opposite codimension-1 faces of S

must have & ek−m sets.

To this end, let U1, . . . , Ul be such a chain, so that Ui∩Ui+1 6= ∅ for each i, and there are

a ∈ U1 and b ∈ Ul in opposite faces of S. As F ◦ g(a) and F ◦ g(b) lie in opposite faces of Ŝ,

we know that

dSn(F ◦ g(a), F ◦ g(b)) ≥ cδ3.

By our choice of λ in (2.8), this implies that

d(ga, gb) ≥ ω
(

1
λ

)
.

Property (i) of the conformal elevator then guarantees that

d(a, b) ≥ r · d(ga, gb)

C
= 2e−ε(m−1)d(ga, gb) & e−εm,

because ω(1/λ) is a uniform constant. The points

a = x0, x1, . . . , xl−1, xl = b
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where xi ∈ Ui ∩ Ui+1 for each 1 ≤ i ≤ l − 1, form a discrete 4e−εk-path from a to b.

Consequently,

l &

(
d(a, b)

4e−εk

)1/ε

& ek−m,

as desired.

Using the notation from Proposition 2.19, let d1 denote the smallest number of sets in

U that form a chain connecting C0 to C1. Similarly, for 2 ≤ i ≤ n, let di be the smallest

number of sets in a chain connecting the other (n− 1) pairs of opposite faces in S. We have

shown that di & ek−m for each i, so Proposition 2.19 gives

en(k−m) & #U & d1 · e(n−1)(k−m).

Thus, there is a k-ball chain of length . ek−m joining C0 and C1; in particular, such a chain

joins Bx and By. This completes the proof of Lemma 2.17.

2.5 Proof of Theorem 2.5

Let (Z, d) be a compact metric space satisfying the assumptions in Theorem 2.5. The

strongly quasi-Möbius action Γ y Z equips Z with a conformal elevator by Lemma 2.13

(see the remarks following the definition of a conformal elevator). The Ahlfors n/ε-regularity

of Z immediately implies that every δ-separated set in Z has size at most Cδ−n/ε for some

uniform constant C. Lastly, the discrete length property we impose on Z is precisely the

lower bound on discrete paths between points which appears in condition (iv) of Proposition

2.16. Thus, Z satisfies all four de-snowflaking conditions, so there is a metric dnew on Z for

which

d(x, y)1/ε . dnew(x, y) . d(x, y)1/ε.

It is an easy exercise to see that the Ahlfors n/ε-regularity of (Z, d) translates into

Ahlfors n-regularity of (Z, dnew). Of course, (Z, dnew) remains homeomorphic to Sn. More

importantly, the action Γ y Z remains strongly quasi-Möbius and cocompact on triples
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with respect to dnew. The following theorem, which we discussed in Section 2.1, is therefore

relevant.

Theorem 2.21 ([5], Theorem 1.1). Let n ∈ N, and let Z be a compact, Ahlfors n-regular

metric space of topological dimension n. Suppose that Γ y Z is a uniformly η-quasi-Möbius

action on Z that is cocompact on triples. Then Z is η̃-quasi-Möbius equivalent to the sphere

Sn, where η̃(t) = Cη(Ct) for some constant C.

Proof. The conclusion we state in this theorem is slightly different from that stated in [5].

The authors conclude that the action Γ y Z is quasisymmetrically conjugate to a Möbius

action on Sn, but the above statement is implicit on the way to this conclusion.

We must point out, though, that the authors do not explicitly state the quantitative

relationship between η̃ and η. However, the control on η̃ that we give here comes from their

proof: first establish, as they do, that Z and Sn have bi-Lipschitz equivalent weak-tangents;

a quantitative version of [5, Lemma 2.1] gives a quantitative version of [5, Lemma 5.3], which

guarantees that the compactification of a weak tangent of Z is η1-quasi-Möbius equivalent

to Z, where η1(t) = C1η(C1t); the compactification of a weak tangent of Sn is again Sn; and

the bi-Lipschitz equivalence between weak tangents translates into a strongly quasi-Möbius

equivalence between the compactifications of weak tangents. Putting these facts together

gives the desired function η̃.

In our situation, Γ acts on (Z, dnew) by strongly quasi-Möbius maps, so the distortion

function η̃ that we obtain from Theorem 2.21 is also linear. Hence, (Z, dnew) is strongly

quasi-Möbius equivalent to Sn. As any strongly quasi-Möbius homeomorphism between

compact sets is necessarily bi-Lipschitz (cf. Remark 2.14), we find that (Z, dnew) and Sn are

bi-Lipschitz equivalent. Let f̃ : Z → Sn be a map giving this equivalence, so that

dnew(x, y) . dSn(f̃(x), f̃(y)) . dnew(x, y)

for all x, y ∈ Z. This completes the proof in the case that n = 1.
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Suppose now that n ≥ 2. Of course, the map f̃ that we have chosen need not conjugate

the action Γ y Z to a Möbius action on Sn. To correct this, we use a classical theorem of

Tukia.

Theorem 2.22 (Tukia [59, Theorem G]). Let Γ be a group that acts on Sn, n ≥ 2, by η-

quasi-Möbius homeomorphisms and is cocompact on triples. Then there is an η̃-quasi-Möbius

map ψ : Sn → Sn for which ψΓψ−1 is a Möbius action; here, η̃(t) = Cη(t) for some constant

C.

Proof. Again, Tukia’s stated result does not include the quantitative relationship between η̃

and η that we give here. His proof, however, constructs ψ as a limit of maps whose cross-ratio

distortion we can keep track of. More specifically, he finds a sequence gi ∈ Γ, corresponding

scaling factors λi > 0, and a linear map α ∈ GLn(R) for which

fi(x) = α̂(λi · gi(x))

converges to the desired map, ψ. Here, α̂ is the bi-Lipschitz homeomorphism of Sn obtained

from α by conjugation by stereographic projection. Consequently,

[fi(x1), fi(x2), fi(x3), fi(x4)]

≤ ‖α̂‖4[λigi(x1), λigi(x2), λigi(x3), λigi(x4)] ≤ ‖α̂‖4η([x1, x2, x3, x4]),

as scaling by λi does not change the cross-ratio. We use ‖α̂‖ to denote the bi-Lipschitz

constant of α̂.

Thus, each fi is η̃-quasi-Möbius with η̃(t) = ‖α̂‖4η(t), and so the limit function ψ is also

η̃-quasi-Möbius.

Applying this theorem to the strongly quasi-Möbius action f̃Γf̃−1 on Sn, we obtain a

strongly quasi-Möbius map ψ, which is therefore also bi-Lipschitz, such that

(ψ ◦ f̃)Γ(f̃−1 ◦ ψ−1)

is a group of Möbius transformations on Sn. Setting f = ψ ◦ f̃ yields the desired f .
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Remark 2.23. It is not clear whether the stronger conclusion (bi-Lipschitz conjugacy to a

Möbius group) should hold in the case n = 1. Tukia’s theorem has analogs in this setting;

see, for example [37] and [46], which give us quasisymmetric conjugacy to a Möbius group.

The problem is in choosing the “correct” conjugacy. Note that there are pairs of cocompact

Möbius groups acting on S1 that are quasisymmetrically conjugate but whose conjugating

homeomorphism has non-zero derivative nowhere. See [39] for more information about the

delicacy of such questions.

2.6 Entropy Rigidity in Coarse Geometry

We now turn our attention to Theorem 2.8, which is a rigidity result in the setting of Gromov

hyperbolic geometry. We refer primarily to [13] and [25] for background on hyperbolic metric

spaces.

Let (X, d) be a metric space. We say that X is proper if all closed balls B(x, r) are

compact and that X is geodesic if any two points can be connected by an isometric image

of an interval in R.

Given two metric spaces (X, dX) and (Y, dY ), a map f : X → Y is called a quasi-isometric

embedding if there are constants λ ≥ 1 and k ≥ 0 such that

1

λ
dX(x, x′)− k ≤ dY (f(x), f(x′)) ≤ λdX(x, x′) + k

for all x, x′ ∈ X. If, in addition, each point y ∈ Y lies in the k-neighborhood of the image

f(X), then we say that f is a quasi-isometry. A rough isometric embedding or a rough

isometry is defined in the same way by requiring that λ = 1. For the most part, we will be

concerned with rough isometries. When it is necessary to specify the additive constant k,

we will use the term k-rough isometry.

For any three points x, y, p ∈ X, let

(x, y)p = 1
2

(dX(x, p) + dX(y, p)− dX(x, y)) .

This is the Gromov product of x and y based at p.
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Definition 2.24. A metric space X is δ-hyperbolic if there is a base-point p ∈ X so that

(x, y)p ≥ min{(x, z)p, (y, z)p} − δ (2.13)

for every x, y, z ∈ X. We say thatX is a (Gromov) hyperbolic metric space if it is δ-hyperbolic

for some δ ≥ 0.

We will refer to the inequality in (2.13) as the δ-inequality. Although this definition

may seem slightly esoteric, it has a concrete geometric meaning as a “thinness” condition

on triangles. More precisely, if X is a δ-hyperbolic geodesic metric space, then for every

geodesic triangle in X, each side is contained in the δ′-neighborhood of the union of the

other two sides, where δ′ is a constant multiple of δ (cf. [13, Proposition 2.1.3]).

Iterating the δ-inequality, one can obtain a corresponding condition on finite chains of

points in X. Namely, if x0, x1, . . . , xn ∈ X, then

(x0, xn)p ≥ min
1≤i≤n

(xi, xi−1)p −
δ

log 2
log n− c

where c is a uniform constant depending only on δ [25, Chapter 2, Lemma 14(i)]. Notice

that the smaller we can take δ, the more negatively-curved X is. This leads to the following

definition, given by M. Bonk and T. Foertsch in [3].

Definition 2.25. For κ ∈ [−∞, 0), we say that X has an asymptotic upper curvature bound

κ if there is p ∈ X and a constant c ≥ 0 so that

(x0, xn)p ≥ min
1≤i≤n

(xi, xi−1)p −
1√
−κ

log n− c

for all chains x0, . . . , xn in X.

Here, we use the convention that 1/
√
∞ = 0. If X has an asymptotic upper curvature

bound κ < 0, then we say that X is an ACu(κ)-space. By our discussion in the previous

paragraph, every hyperbolic metric space is an ACu(κ)-space for some κ < 0. And conversely,

the definitions immediately imply that every ACu(κ)-space is Gromov hyperbolic.
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Allowing the additive constant c in the definition of asymptotic upper curvature is what

makes this notion asymptotic. A collection of uniformly bounded configurations in X will

not affect the asymptotic curvature bounds, as one could simply make c larger. It makes

sense, then, that the best way to study these curvature bounds is to pass to the boundary

at infinity, which we now recall.

2.6.1 The hyperbolic boundary

To begin, we say that a sequence {xn} in X converges at infinity if

(xn, xm)p →∞ as n,m→∞.

It is immediate to see that this property is independent of p. We consider two such sequences

{xn} and {yn} to be equivalent if

lim
n→∞

(xn, yn)p =∞,

and in this case, we write {xn} ∼ {yn}. This is an equivalence relation on the set of sequences

converging at infinity, and we let ∂∞X denote the set of equivalence classes. Observe that if a

sequence converges at infinity, then any subsequence also converges at infinity and, moreover,

is equivalent to the original sequence.

The Gromov product on X extends to ∂∞X by

(ξ, η)p = inf lim inf
n→∞

(xn, yn)p

where the infimum is taken over all {xn} and {yn} in the equivalence classes ξ and η,

respectively. Although taking this infimum is necessary in general, the following lemma

shows that it is not too restrictive.

Lemma 2.26 ([13], Lemma 2.2.2). Let X be δ-hyperbolic with base-point p and let ξ, η, ζ ∈

∂∞X.

(i) If {xn} represents ξ and {yn} represents η, then

(ξ, η)p ≤ lim inf
n→∞

(xn, yn)p ≤ lim sup
n→∞

(xn, yn)p ≤ (ξ, η)p + 2δ.
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(ii) The δ-inequality (ξ, η)p ≥ min{(ξ, ζ)p, (η, ζ)p} − δ is satisfied.

When X is a CAT(−1)-space, Bourdon [9] showed that

ρ(ξ, η) = e−(ξ,η)p

is a metric on ∂∞X and thus gives the boundary a canonical metric. In the more general

Gromov hyperbolic setting, however, this function may fail the triangle inequality. In its

place, we have

ρ(ξ, η) ≤ K max{ρ(ξ, ζ), ρ(ζ, η)} (2.14)

for any ξ, η, ζ ∈ ∂∞X, which follows immediately from part (ii) in the preceding lemma.

Note that K = eδ if X is δ-hyperbolic. A general procedure then produces, for ε small

enough (depending only on δ), a metric dε on ∂∞X satisfying

1
4
e−ε(ξ,η)p ≤ dε(ξ, η) ≤ e−ε(ξ,η)p .

See [13, Section 2.2], especially Lemma 2.2.5, for details. This motivates the following

definition.

Definition 2.27. A metric d on ∂∞X is called a visual metric of parameter ε if there is a

base-point p ∈ X so that

e−ε(ξ,η)p . d(ξ, η) . e−ε(ξ,η)p

for all ξ, η ∈ ∂∞X. We say that d is visual if it is visual with respect to some ε > 0.

The dependence on p is not important here; if d is visual with respect to p, then it will

be visual with respect to any other base-point, with the same parameter ε. Observe that if

∂∞X admits a visual metric of parameter ε, then it admits metrics of all parameters smaller

than ε. Thus, if we set

ε0 = ε0(X) = sup{ε : there is a visual metric on ∂∞X of parameter ε},

then each ε ∈ (0, ε0) has an associated visual metric. We call this interval the visual interval.

One should keep in mind the heuristic that the more negatively-curved X is, the larger ε0

will be.
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The relationship between curvature in X and the length of this visual interval is more

explicit in terms of asymptotic upper curvature bounds. Actually, we first need an additional

assumption on X to guarantee that its boundary accurately reflects its geometry at large

scales.

Definition 2.28. We say that X is visual if there is a constant k and a base-point p ∈ X

such that for every x ∈ X, there is a k-rough isometric embedding γ : [0,∞) → X with

γ(0) = p and x in the image of γ.

We will refer to the image of such γ as a k-rough geodesic ray, starting at p. For visual

metric spaces, the ACu(κ) condition can be transferred to the boundary.

Proposition 2.29 ([3], Lemma 4.1). Let X be a visual, hyperbolic metric space and assume

that there are constants a and c with

(ξ0, ξn)p ≥ min
1≤i≤n

(ξi, ξi−1)p − a log n− c

for all chains ξ0, . . . , ξn in ∂∞X. Then there is a constant c′ for which

(x0, xn)p ≥ min
1≤i≤n

(xi, xi−1)p − a log n− c′

for all chains x0, . . . , xn in X. Conversely, if the inequality with chains in X holds for some

c′, then there is a constant c for which the inequality with boundary chains holds.

This condition on boundary chains gives more precise control on the type of inequality

for ρ in (2.14). Indeed, we now have

ρ(ξ0, ξn) ≤ Cna max
1≤i≤n

ρ(ξi, ξi−1)

for any chain ξ0, . . . , ξn. Arguments similar to those in [13, Lemma 2.2.5] allow one to build

visual metrics on ∂∞X, but this time with more control on the optimal value of ε0. In the

end, the authors obtain the following.

Proposition 2.30 ([3], Theorem 1.5). Let X be a visual, hyperbolic metric space. If X

is ACu(κ), then for each 0 < ε <
√
−κ, there is a visual metric on ∂∞X with parameter
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ε. Conversely, if there is a visual metric on ∂∞X with parameter ε > 0, then X is an

ACu(−ε2)-space.

Together with other results in [3], this fact suggests that the correct analog of CAT(−1)

in the coarse setting is ACu(−1). In the case where X is CAT(−1), the canonical metric

on ∂∞X is associated to the parameter ε0 = 1; in particular, there are visual metrics of

parameter 1. Unfortunately, this may not happen for more general ACu(−1)-spaces, even

though we know that visual metrics exist for all parameters 0 < ε < 1.

2.6.2 Geometric actions on hyperbolic metric spaces

Let X be a proper, geodesic, hyperbolic metric space. These basic assumptions guarantee

two important “accessibility” properties for points in ∂∞X. First, for any base-point p ∈ X

and each z ∈ ∂∞X, there is an isometric embedding γ : [0,∞)→ X for which

γ(0) = p and {γ(tn)} represents z

whenever tn →∞. We refer to images of such embeddings as geodesic rays and denote them

by [p, z).

Similarly, for any two distinct points z, z′ ∈ ∂∞X there is an isometry γ : R → X for

which

{γ(−tn)} represents z and {γ(tn)} represents z′

whenever tn →∞. Naturally, we will denote such geodesic lines by (z, z′). The hyperbolicity

of X then guarantees that there is a uniform constant C for which

|(z, z′)p − dist(p, (z, z′))| ≤ C (2.15)

whenever z, z′ ∈ X ∪ ∂∞X are distinct and p ∈ X.

A subset Y ⊂ X is called quasi-convex if there is a constant C for which every geodesic

segment in X with endpoints in Y lies in the C-neighborhood of Y . We then say that an

action Γ y X is quasi-convex geometric if the action is
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(i) isometric: each g ∈ Γ acts as an isometry;

(ii) properly discontinuous: the set {g ∈ Γ : g(K) ∩K 6= ∅} is finite for every compact set

K ⊂ X;

(iii) quasi-convex cocompact: there is a non-empty, Γ-invariant, quasi-convex set Y ⊂ X

and a compact set K ⊂ Y for which Y =
⋃
g∈Γ g(K).

Let us fix such a group action Γ y X and a corresponding quasi-convex set Y . As Y is

Γ-invariant, the action Γ y Y is isometric, properly discontinuous, and cocompact. Recall

that such actions are said to be geometric.

For p ∈ X fixed, the limit set Λ(Γ) is the collection of points z ∈ ∂∞X that can be

represented by a sequence {xn} ⊂ Γp. Of course, this is independent of our choice of p. It is

not difficult to see that the orbit Γp and the set Y are within finite Hausdorff distance from

each other, so Λ(Γ) coincides with ∂∞Y , viewed as a subset of ∂∞X. In particular, Λ(Γ) is

compact.

In fact, it will be convenient simply to replace Y with Γp. We lose no generality in doing

this, as quasi-convexity of Y implies quasi-convexity of Γp. Thus, we take Y = Γp from now

on.

Recall from earlier that the entropy of this action Γ y X is

e(Γ) = lim sup
R→∞

log(N(R))

R
(2.16)

where N(R) = #{Γp ∩ BX(p,R)}. Under our assumptions, e(Γ) < ∞ and we can replace

the “lim sup” with “lim”; in fact,

exp(e(Γ)R) . N(R) . exp(e(Γ)R)

(see [20, Théorème 7.2]). This quantity e(Γ) is the coarse analog of volume entropy for

Riemannian manifolds, and it is closely related to the metric regularity on Λ(Γ).

Theorem 2.31 (Coornaert [20, Section 7]). When equipped with a visual metric of parameter

ε > 0, the limit set Λ(Γ) is Ahlfors regular of dimension e(Γ)/ε.
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We now wish to transfer the action Γ y X to a quasi-Möbius action on Λ(Γ). Until

we mention otherwise, we equip Λ(Γ) with a visual metric d of parameter ε. The following

lemma indicates that the induced action on Λ(Γ) is strongly quasi-Möbius.

Lemma 2.32. Let g ∈ Γ. Then g extends naturally to an η-quasi-Möbius homeomorphism

of (Λ(Γ), d), where η(t) = Ct, and C depends only on the hyperbolicity constant of X and

the constants in the visual metric d.

Proof. Let z ∈ Λ(Γ) and let {xn} ⊂ Y = Γp be a sequence representing the boundary point z.

Then {gxn} ⊂ Y also converges at infinity; indeed (xn, xm)p = (gxn, gxm)gp and convergence

to infinity does not depend on base-points. Let z′ be the point in Λ(Γ) represented by {gxn}

and define g(z) = z′. Note that this does not depend on the choice of {xn}, as g is an

isometry. Moreover, this extension is a bijection; its inverse is simply the extension of the

isometry g−1 ∈ Γ.

It now suffices to prove that this extension is quasi-Möbius with a linear distortion

function η (continuity follows easily from the quasi-Möbius condition). To this end, let

z1, z2, z3, z4 ∈ Z be distinct and let {an}, {bn}, {cn}, {dn} be sequences in Y representing

these points. For simplicity, let x′ = gx denote the image of a point x ∈ Y or x ∈ Λ(Γ)

under the map g. Then {a′n}, {b′n}, {c′n}, {d′n} represent z′1, z
′
2, z
′
3, z
′
4, respectively, and so by

Lemma 2.26(i), we can estimate

d(z′1, z
′
3)d(z′2, z

′
4)

d(z′1, z
′
4)d(z′2, z

′
3)

. lim sup
n→∞

exp (−ε ((a′n, c
′
n)p + (b′n, d

′
n)p − (a′n, d

′
n)p − (b′n, c

′
n)p))

= lim sup
n→∞

exp (−ε ((an, cn)g−1p + (bn, dn)g−1p − (an, dn)g−1p − (bn, cn)g−1p))

= lim sup
n→∞

exp (−ε ((an, cn)p + (bn, dn)p − (an, dn)p − (bn, cn)p))

.
d(z1, z3)d(z2, z4)

d(z1, z4)d(z2, z3)
,

where the implicit constants depend only on the hyperbolicity of X and on the multiplicative

constant in the visual metric. Here, we have used the observation that for x1, x2, x3, x4 ∈ X,
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the cross-difference

(x1, x3)p + (x2, x4)p − (x1, x4)p − (x2, x3)p

= 1
2

(dX(x1, x4) + dX(x2, x3)− dX(x1, x3)− dX(x2, x4)) ,

is independent of the chosen base-point p ∈ X.

We should remark that this lemma and its proof are well-known, though most references

deal with the more general case when g is assumed to be only a quasi-isometry (see, for

example, [13, Chapter 5]). In that setting, g still extends to a quasi-Möbius homeomorphism

of the boundary, but the distortion function η might not be linear. One does, however,

recover a linear distortion function when g is a rough isometry; the proof is the same as the

one above.

Abusing terminology, we will continue to let g denote the extension of g ∈ Γ to Λ(Γ).

It is clear that composition is preserved in the extension, so we indeed obtain a strongly

quasi-Möbius group action Γ y Λ(Γ). The next lemma, well-known in this subject, shows

that the cocompactness and proper discontinuity of Γ y Y extends to cocompactness and

proper discontinuity on triples for Γ y Λ(Γ). For completeness, we include a proof, but see,

for example, [27, Sections 8.2.K–8.2.Q] for further discussion.

Lemma 2.33. If Λ(Γ) has at least three points, then the induced action Γ y Λ(Γ) is

(i) cocompact on triples,

(ii) properly discontinuous on triples: for each triple z1, z2, z3 ∈ Λ(Γ) of distinct points, for

every τ > 0 there are only finitely many g ∈ Γ for which gz1, gz2, gz3 are τ -separated.

Proof. Let us first establish an important fact: if z, z′ ∈ Λ(Γ) are distinct and (z, z′) is

a geodesic line between them, then (z, z′) lies in the C1-neighborhood of Y , where C1 is

a uniform constant. Essentially this follows from the quasi-convexity of Y . Indeed, there

are sequences {xn} and {x′n} in Y that represent z and z′, respectively. Quasi-convexity

then implies that the geodesic segments [xn, x
′
n] lie in the C1-neighborhood of Y . However,
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the parameterized geodesic line (z, z′) is the limit of the segments [xn, x
′
n], parameterized

appropriately, in the topology of uniform convergence on compact sets. Thus, it must also

lie in the C1-neighborhood of Y .

Now, fix three distinct points z1, z2, z3 in Λ(Γ), and let (z1, z2), (z2, z3), and (z1, z3) be

geodesic lines in X. Each (zi, zj) is then in the C1-neighborhood of Y . Taken together, the

three lines form a geodesic triangle ∆ with endpoints at infinity. The hyperbolicity of X

guarantees that

{x ∈ X : dist(x, (zi, zj)) ≤ C2 for each i 6= j} 6= ∅

for a large enough uniform constant C2 (this is an easy consequence of the thinness condition

for geodesic triangles). We will refer to this set as the C2-rough center of ∆. By taking

C2 slightly larger, we can find a point x ∈ Y that lies in this rough center. Then, as

Y = Γp is an orbit of the action, there is an isometry g ∈ Γ with gx = p. Consequently,

dist(p, (gzi, gzj)) ≤ C2 for each i 6= j.

Recall also that the Gromov product of two points based at p roughly measures the

distance between p and a geodesic line joining those points, in the sense of (2.15). Thus, we

obtain

(gzi, gzj)p ≤ dist(p, (gzi, gzj)) + C3 ≤ C4,

where C4 depends only on uniform quantities associated to the action Γ y X. By the

definition of a visual metric on Λ(Γ), this implies that

d(gzi, gzj) ≥ τ0

for i 6= j, where τ0 > 0 is a uniform constant. This establishes cocompactness on triples.

Let us now prove the statement in part (ii). Again let z1, z2, z3 ∈ Λ(Γ) be distinct, and

let (z1, z2), (z2, z3), and (z1, z3) be geodesic lines in X. Fix τ > 0 and suppose, for g ∈ Γ,

that the points gz1, gz2, gz3 are τ -separated. This implies that

(gzi, gzj)p ≤ C1(τ)
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for i 6= j, where C1(τ) depends only on τ and on uniform constants. In particular, as g(zi, zj)

is a geodesic line between gzi and gzj, there is C2(τ) such that

dist(g−1p, (zi, zj)) = dist(p, g(zi, zj)) ≤ C2(τ).

Thus, g−1p is in the C2(τ)-rough center of the geodesic triangle with sides (z1, z2), (z2, z3),

and (z1, z3).

As rough centers of geodesic triangles are necessarily bounded, the set

{g−1p : gz1, gz2, gz3 are τ -separated}

has finite diameter. Let K ⊂ X be the closure of

{g−1p : gz1, gz2, gz3 are τ -separated} ∪ {p}

in X, so K is compact and g(K) ∩K 6= ∅ whenever gz1, gz2, and gz3 are τ -separated. By

proper discontinuity of the action Γ y X, there can be only finitely many such g ∈ Γ. This

establishes proper discontinuity on triples.

Before setting out to prove Theorem 2.8, it is necessary to explain what it means for a

rough isometry Φ: S → Y to be “roughly equivariant” with respect to a geometric action of

Γ on S. Of course, we will be interested in the case when S = Hn+1.

Definition 2.34. A map Φ: S → Y is roughly equivariant with respect to the actions Γ y S

and Γ y Y if there is a constant C for which

dX (Φ(gx), gΦ(x)) ≤ C

for each x ∈ S and g ∈ Γ.

We will shortly need the fact that ∂∞Hn+1 can be identified with Sn. Under this identi-

fication, the chordal metric on Sn is a visual metric of parameter 1, cf. [13, Section 2.4.3].
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2.6.3 Proof of Theorem 2.8

Let us return now to the set-up in Theorem 2.8. Fix Γ y X as in the statement of the

theorem, and recall that Λ(Γ) is assumed to be a topological sphere. Let Y = Γp, so that Y

is quasi-convex and is an ACu(−1)-space. Using the geometric action Γ y Y , we can verify

the following lemma.

Lemma 2.35. There is a uniform constant C such that each y ∈ Y lies in a C-rough geodesic

ray in Y , starting at p. In other words, Y is visual, in the sense of Definition 2.28.

Proof. Fix x ∈ Y . We first want to find a geodesic line (z, z′), with z, z′ ∈ Λ(Γ), that passes

close to x. To do this, choose two distinct points w,w′ ∈ Λ(Γ). The quasi-convexity of

Y ensures that the geodesic line (w,w′) in X lies in the C1-neighborhood of Y , for some

uniform constant C1. In particular, there is a point x′ ∈ Y for which dist(x′, (w,w′)) ≤ C1,

and there is g ∈ Γ with gx′ = x. Thus, dist(x, (gw, gw′)) ≤ C1. Let z = gw and z′ = gw′ so

that dist(x, (z, z′)) ≤ C1.

Consider now the geodesic triangle with sides [p, z), [p, z′), and (z, z′). The δ-inequality

in Lemma 2.26(ii) is valid for points in X∪∂∞X, and this translates into a thinness condition

for geodesic triangles, even those with some vertices in ∂∞X. Consequently,

dist(x, [p, z) ∪ [p, z′)) ≤ dist(x, (z, z′)) + C2 ≤ C1 + C2,

where C2 is uniform. Thus, we may assume that dist(x, [p, z)) ≤ C3 for a uniform constant

C3.

It now suffices to show that [p, z) is in the C4-neighborhood of Y , where again C4 is

a uniform constant. Indeed, this easily implies that we can find a C-rough geodesic ray

in Y , starting at p, and passing through x. As z ∈ Λ(Γ), there is a sequence {xn} ⊂ Y

that represents z, and by quasi-convexity of Y , the geodesic segments [p, xn] lie in the

C4-neighborhood of Y . The parameterized geodesic ray [p, z) is simply the limit of the

parameterized segments [p, xn] (in the topology of uniform convergence on compact sets), so

we immediately see that [p, z) is also in the C4-neighborhood of Y .
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As Y is visual and ACu(−1), we can apply Proposition 2.30 to obtain, for each 0 < ε < 1,

a visual metric on ∂∞Y of parameter ε. Recall, though, that ∂∞Y coincides with Λ(Γ). Thus,

there are visual metrics on Λ(Γ) for all parameters 0 < ε < 1. By Theorem 2.31, these metrics

are Ahlfors regular of dimension e(Γ)/ε. In particular, the Hausdorff dimension of Λ(Γ) with

this metric is e(Γ)/ε.

On the other hand, all visual metrics induce the same topology on Λ(Γ); in our case,

this is the topology of the standard n-dimensional sphere. Recalling that the topological

dimension of a compact metric space always bounds the Hausdorff dimension from below

(cf. [38, Theorem 7.2]), we obtain

e(Γ)

ε
= dimH(Λ(Γ), dε) ≥ dimtop(Λ(Γ), dε) = n

for all 0 < ε < 1. This gives e(Γ) ≥ n, which is the first part of the theorem.

It remains to prove the rigidity statement in Theorem 2.8, and this task will occupy us

for the remainder of the section. The “if” part of the statement follows easily from standard

facts about hyperbolic metric spaces. Namely, if Φ: Hn+1 → Y is a rough isometry, then

the fact that ∂∞Hn+1 = Sn admits a visual metric of parameter 1 implies that ∂∞Y = Λ(Γ)

does as well. Equipped with these metrics, we can extend Φ to a bi-Lipschitz map of the

boundaries:

Φ: Sn → Λ(Γ).

In particular,

e(Γ) = dimH Λ(Γ) = n.

Let us now address the converse statement. Thus, we assume that e(Γ) = n and wish to

construct the desired action Γ y Hn+1 and map Φ: Hn+1 → Y .

Fix a visual parameter 0 < ε < 1 for Z = Λ(Γ), which we also view as ∂∞Y , and

let d denote a corresponding visual metric. Then (Z, d) is Ahlfors n/ε-regular and Lemma

2.32 implies that there is a strongly quasi-Möbius action Γ y Z. Moreover, Lemma 2.33(i)

guarantees that this action is cocompact on triples. We claim that the discrete length

54



condition appearing in Theorem 2.5 follows from the ACu(−1) assumption on Y . Indeed, if

u = z0, z1, . . . , zl = v

is a discrete δ0-path between u and v in Z, then Proposition 2.29 gives

(u, v)p ≥ min
1≤i≤l

(zi, zi−1)p − log l − c

for some uniform constant c. Translating this to the metric, we obtain

d(u, v) . lε · max
1≤i≤l

d(zi, zi−1) . δ0l
ε,

and rearranging gives l & (d(u, v)/δ0)1/ε. The conditions in Theorem 2.5 are therefore

satisfied, and so we obtain a metric dnew for which d and dεnew are bi-Lipschitz equivalent.

In particular, dnew is a visual metric on Z of parameter 1. We also obtain a bi-Lipschitz

map f : Sn → (Z, dnew) for which f−1Γf is a Möbius action on the sphere. Observe that this

action is cocompact on triples.

Furthermore, as Γ y X is properly discontinuous, the induced boundary action Γ y Z

will be properly discontinuous on triples by Lemma 2.33(ii). This property is preserved

under conjugation by homeomorphisms, so the Möbius action f−1Γf will also be properly

discontinuous on triples.

By the correspondence between Möbius transformations on Sn and isometries of Hn+1,

for each g ∈ Γ, there is a unique isometry of Hn+1 that induces f−1gf on the boundary. This

gives us a geometric action Γ y Hn+1. Indeed, the cocompactness and proper discontinuity

on triples for f−1Γf translate into cocompactness and proper discontinuity for Γ y Hn+1.

This fact can be proved using arguments very similar to those in the proof of Lemma 2.33,

so we do not repeat them. The main ingredients, though, are the following properties: every

x ∈ Hn+1 lies in the C-rough center of a geodesic triangle with vertices at infinity, where C

is a uniform constant; and the three vertices of any such triangle are τ -separated if and only

if its rough center is at distance ≤ C(τ) from the fixed base-point. Here, we are strongly

using the fact that the chordal metric on Sn = ∂∞Hn+1 is a visual metric.
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It remains to construct Φ. For this, we use standard arguments about extending bi-

Lipschitz maps between boundaries of hyperbolic metric spaces to rough isometries of the

hyperbolic spaces themselves. Actually, our argument will mimic the proof of Theorem

7.1.2 in [13]. Important to this construction is again the fact that the chordal metric on

Sn is a visual metric of parameter 1 under the identification of Sn with ∂∞Hn+1. Thus,

f : Sn → (Z, dnew) is a bi-Lipschitz homeomorphism between two spaces whose metrics are

of the form e−(u,v), up to multiplicative constants.

Fix x ∈ Hn+1; for concreteness we will use the unit ball model of Hn+1. Then there is a

geodesic ray [0, z) in Hn+1, ending at some z ∈ Sn, with x ∈ [0, z). Let γ : [0,∞)→ Hn+1 be

the unit speed parameterization of this ray, and let t = dHn+1(0, x) so that γ(t) = x. Now,

as f(z) is in Λ(Γ), we also know that there is a geodesic ray [p, f(z)) in X that lies in the

C1-neighborhood of Y (cf. the proof of Lemma 2.35). Let γ̃ : [0,∞) → X be the geodesic

parameterization of this ray. We then define Φ(x) to be a point in Y that is of distance at

most C1 from γ̃(t). Of course, this definition depends on the choice of a ray [p, f(z)) and on

the choice of a point in Y . Making different choices, however, yields points that are within

distance C2 of each other, where C2 is uniform.

The map Φ: Hn+1 → Y thus defined induces, almost by definition, the homeomorphism

f between Sn and Z. Moreover, we claim that Φ is a rough isometry. To prove the desired

bounds on dX(Φ(x),Φ(y)), it suffices to show that

|(x, y)0 − (Φ(x),Φ(y))p| ≤ C3 (2.17)

for a constant C3 independent of x, y ∈ Hn+1. Indeed, the definition of Φ guarantees that

|dHn+1(0, x)− dX(p,Φ(x))| , |dHn+1(0, y)− dX(p,Φ(y))| ≤ C4 (2.18)

for a uniform constant C4.

Fix x, y ∈ Hn+1 and let u, v ∈ Sn be boundary points for which x ∈ [0, u) and y ∈ [0, v).

The metric hyperbolicity of Hn+1 implies that

|(x, y)0 −min{dHn+1(0, x), dHn+1(0, y), (u, v)0}|
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is uniformly bounded (cf. [13, Lemma 7.1.3]). Similarly, the hyperbolicity of X ensures that

|(Φ(x),Φ(y))p −min{dX(p,Φ(x)), dX(p,Φ(y)), (f(u), f(v))p}|

is uniformly bounded. Using (2.18) again, it is clear that (2.17) would follow from the

uniform boundedness of

|(u, v)0 − (f(u), f(v))p| .

This, however, is an immediate consequence of the fact that f is bi-Lipschitz with respect

to visual metrics of parameter 1; observe that the bound will depend on the bi-Lipschitz

constant of f . Thus, (2.17) holds, and so

dHn+1(x, y)− C5 ≤ dX(Φ(x),Φ(y)) ≤ dHn+1(x, y) + C5,

where C5 is uniform. Note also that the definition of Φ, along with the facts that f is

surjective and Y is visual, imply that each point in Y is of distance at most C6 from Φ(Hn+1).

Thus, Φ is a rough isometry.

Finally, we must show that Φ is roughly equivariant. To this end, let g ∈ Γ and consider

the rough isometry g−1Φg : Hn+1 → Y . Observe that it extends to the map

g−1fg : Sn → Λ(Γ).

As f is equivariant with respect to the boundary actions, we know that g−1fg = f . Thus,

g−1Φg and Φ are rough isometries whose boundary extensions coincide. This implies that

there is a uniform constant C for which

dX(g−1Φ(gx),Φ(x)) ≤ C

whenever x ∈ Hn+1 (cf. [7, Proposition 9.1]). Hence

dX(Φ(gx), gΦ(x)) ≤ C

for each x ∈ Hn+1 and g ∈ Γ. This completes the proof of Theorem 2.8.
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Remark 2.36. Many of the arguments we have used are valid in the case n = 1 as well.

In particular, we can conclude that e(Γ) ≥ 1 and that if Γp is roughly isometric to H2,

then e(Γ) = 1. The notable exception is the argument that allows us to conjugate the action

Γ y Λ(Γ) to a Möbius action on S1 by a bi-Lipschitz map. We discussed this issue in Remark

2.23, where we also indicated that the conjugation is possible with a quasisymmetric map.

By standard extension arguments similar to those we used above to construct Φ, one can

extend the quasisymmetric conjugation map to a quasi-isometry between H2 and Γp. This

quasi-isometry will still be roughly equivariant with respect to the actions of Γ on H2 and

on Γp by the same arguments we used above.

Thus, when n = 1, we can say only that Φ will be a quasi-isometry, rather than a rough

isometry. We leave as an open question whether the stronger conclusion holds.

2.7 A closer look at the case n = 2

Our work in the previous sections broadly falls into the category of quasiconformal uni-

formization: given a metric space with certain properties, one attempts to find global pa-

rameterizations with some “analytic” structure. The theory that has developed around such

problems is quite deep and is especially rich for two-dimensional spaces. The following theo-

rem is characteristic of the subject. It gives conditions under which a topological sphere must

actually be a quasi-sphere, i.e., must be a quasisymmetric image of the Euclidean sphere.

Theorem 2.37 (Bonk–Kleiner [4]). Suppose that Z is homeomorphic to S2, is Ahlfors 2-

regular, and is linearly locally contractible. Then Z is quasisymmetrically equivalent to S2.

Here, linear local contractibility is a connectivity property that arises naturally in the

study of hyperbolic groups. Namely, for λ ≥ 1, we say that Z is λ-linearly locally contractible

if for each x ∈ Z and 0 < r ≤ diamZ/λ, the metric ball B(x, r) can be contracted within

B(x, λr) to a point. We say that Z is linearly locally contractible if it is λ-linearly locally

contractible for some λ. As quasisymmetric maps distort relative distances by a controlled

amount, they preserve linear local contractibility. Of course, the Euclidean sphere S2 is
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linearly locally contractible, so every quasi-sphere is as well. Thus, the more restrictive

assumption in Theorem 2.37 is that of Ahlfors 2-regularity.

There are other, related, connectivity conditions that also appear in the hyperbolic group

setting. Let us list them and then discuss how they relate to each other. For λ ≥ 1, we say

that

(i) Z is λ-LLC1 if, for each p ∈ Z and 0 < r ≤ diamZ, any two points x, y ∈ B(p, r) can

be joined by a continuum in B(p, λr);

(ii) Z is λ-LLC2 if, for each p ∈ Z and 0 < r ≤ diamZ, any two points x, y ∈ Z\B(p, r)

can be joined by a continuum in Z\B(p, r/λ);

(iii) Z is λ-annularly linearly connected if it is connected, and for each p ∈ Z and 0 < r ≤

diamZ, any two points x, y ∈ A(p, r, 2r) can be joined by a continuum inA(p, r/λ, 2λr).

Here, we use A(p, r, R) = B(z, R)\B(z, r) to denote the (closed) metric annulus centered

at p with inner radius r > 0 and outer radius R > r. Recall that a continuum is simply a

compact connected set. The “LLC” acronym in LLC1 and LLC2 stands for “linearly locally

connected” and should not be confused with linear local contractibility. For convenience,

we will also use the acronym “ALC” in place of “annularly locally connected.” This third

condition is the strongest of the three; it was introduced by J. Mackay in [42].

Lemma 2.38. If (Z, d) is λ-ALC, then it is λ′-LLC1 and λ′-LLC2 for some λ′, depending

only on λ.

Proof. We first verify the LLC2 property. Let p ∈ Z, let 0 < r ≤ diamZ, and fix x, y ∈

Z\B(p, r). Without loss of generality, suppose that R = d(p, x) ≤ d(p, y), and let n be the

largest integer for which 2nR < d(p, y). Let x0 = x, and for each k ≤ n, choose xk ∈ Z with

d(p, xk) = 2kR. This is possible because Z is connected. Finally, let xn+1 = y. The ALC

condition guarantees that for each 0 ≤ k ≤ n, there is a continuum

Ek ⊂ A
(
p, 2kR

λ′
, 2k+1Rλ′

)
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connecting xk and xk+1, as long as λ′ > λ. In particular, the continuum E = E0 ∪ · · · ∪ En

connects x and y and is contained in Z\B(p, r/λ′). Thus, Z is λ′-LLC2 for every λ′ > λ.

To verify the LLC1 condition, fix x, y ∈ B(p, r). By the connectivity of Z, we may choose

q ∈ Z for which d(x, q) = d(x, y)/2. Then

x, y ∈ A
(
q, d(x,y)

4
, 3d(x,y)

2

)
,

and using the same technique as in the previous paragraph, it is not difficult to show that x

and y can be connected by a continuum

E ⊂ A
(
q, d(x,y)

4λ′
, 3λ′d(x,y)

2

)
,

where λ′ depends only on λ. In particular, E ⊂ B(p, 5λ′r). Thus, Z is 5λ′-LLC1.

When Z has some topological regularity, there are close relationships between the LLC1

and LLC2 conditions and the contractibility condition. For surfaces, there is also a corre-

spondence between linear local contractibility and the ALC condition.

Lemma 2.39. If the metric space (Z, d) is a closed, connected manifold of dimension n ≥ 2,

then the following are true.

(i) If Z is λ-linearly locally contractible, then it is λ′-LLC1 and λ′-LLC2 for all λ′ > λ.

(ii) If n = 2 and (Z, d) is both LLC1 and LLC2, then it is linearly locally contractible.

(iii) If n = 2 and (Z, d) is λ-linearly locally contractible, then it is λ′-ALC for some λ′,

depending only on λ.

Proof. Parts (i) and (ii) are directly from [4, Lemma 2.5]. Part (iii) is effectively a conse-

quence of the following non-trivial fact about linearly locally contractible surfaces [60, Propo-

sition 4.28]: if (Z, d) is a topological surface that is λ-linearly locally contractible, then there

is λ′ ≥ 1, depending only on λ, such that, for each p ∈ Z and 0 < r ≤ diamZ, there is a

neighborhood U of p, homeomorphic to a disk, with

B
(
p, r

λ′

)
⊂ U ⊂ B(p, r).
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Of course, we might as well take λ′ > λ. We will use this fact to verify the ALC condition.

Fix x, y ∈ A(p, r, 2r), where 0 < r ≤ diamZ. As a first case, suppose that 2λ′r >

diamZ. By (i), we know that Z is λ′-LLC2, so as x, y ∈ Z\B(p, r), there is a continuum

E ⊂ Z\B(p, r/λ′) that connects x and y. The fact that 2λ′r > diamZ implies that E ⊂

A(p, r/λ′, 2λ′r), as needed. Thus, we may assume that 2λ′r ≤ diamZ. Consequently, there

is a neighborhood U of p, homeomorphic to a disk, with

B(p, 2r) ⊂ U ⊂ B(p, 2λ′r);

in particular, x, y ∈ U . Applying this fact again, we can find a neighborhood V of p, also

homeomorphic to a disk, with

B
(
p, r

λ′

)
⊂ V ⊂ B(p, r)

Notice that V ⊂ B(p, r) ⊂ U . Moreover, as Z is a manifold, U is disjoint from ∂U . This

implies that V ∩ ∂U = ∅, so in particular, ∂V is a continuum contained in U . Note that the

connectivity of ∂V follows from the following fact: if φ : D → Ω is a conformal map with

Ω ⊂ C bounded, then the Jordan curves φ(∂B(0, r)) converge, in the Hausdorff sense, to ∂V

as r ↗ 1.

By construction, we have x, y ∈ U\V . Let γ be an arc in U from x to y. If γ ⊂ U\V ,

then it is a continuum that joins x and y in A(p, r/λ′, 2λ′r). Otherwise, there are sub-arcs

γ1, γ2 ⊂ γ joining x to ∂V and joining y to ∂V , respectively, both of which lie in U\V .

Consequently, E = γ1 ∪ ∂V ∪ γ2 is a continuum in U\V ⊂ A(p, r/λ′, 2λ′r) that joins x and

y. Therefore, (Z, d) is λ′-ALC.

A major motivation for introducing these types of connectivity conditions is that they

appear in the analysis of hyperbolic groups. Namely, if G is a hyperbolic group and ∂∞G

denotes its boundary at infinity equipped with a visual metric, then under suitable topolog-

ical hypotheses, ∂∞G will satisfy all of these conditions. For example, if ∂∞G is non-empty,

connected, and has no local cut points (equivalently, G does not split over a finite group or

over a virtually cyclic group), then it is ALC [44, Proof of Corollary 1.2]. Similarly, if ∂∞G
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is a connected manifold, then it is linearly locally contractible ([40, Theorem 4.4], along with

[41, Theorem 3.3]).

Returning to Theorem 2.37, let us compare it to the n = 2 case of Theorem 2.3, which

played such a central role in the previous sections. In both results, it is assumed that the

metric space (Z, d) is Ahlfors 2-regular and has topological dimension 2. Theorem 2.37,

then, essentially allows one to drop the additional hypothesis of self-similarity, replacing it

by the much weaker linear local contractibility condition, and still obtain the same conclusion

regarding quasisymmetric uniformization.

One might be tempted to ask whether this phenomenon occurs in all dimensions. Namely,

if (Z, d) is homeomorphic to Sn, is linearly locally contractible, and is Ahlfors n-regular,

is it necessarily quasisymmetric to the Euclidean sphere? The answer is no for n ≥ 3,

by counterexamples due to S. Semmes [54], even though such spaces have good analytic

properties [53]. See the Introduction of [4] for further discussion.

These considerations motivate us to reconsider our work from Section 2.4, at least in the

case n = 2. The main result we needed to prove Theorems 2.5 and 2.8 was precisely the

“de-snowflaking” statement that appeared in Proposition 2.16. There, it was required that

(Z, d) admit a conformal elevator—quite a strong hypothesis for general metric spaces. Our

goal here is to show that when n = 2, this assumption is not necessary, if one replaces it by

connectivity conditions.

Proposition 2.40. Let 0 < ε < 1, and let (Z, d) be a complete metric space such that

(i) Z is λ-ALC and λ-linearly locally contractible,

(ii) every ball of radius 0 < R ≤ diamZ can be covered by at most C(R/r)2/ε balls of radius

0 < r < R,

(iii) every discrete δ-path from x to y in Z has length at least C−1(d(x, y)/δ)1/ε.

Then there is a metric ρ on Z satisfying ρ ≈ d1/ε, where the implicit constant depends only

on ε, λ, and C.
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The condition in (ii) implies that (Z, d) has Assouad dimension at most 2/ε. It is not

difficult to show that if (Z, d) is compact and is Ahlfors 2/ε-regular, it automatically sat-

isfies this hypothesis. Thus, using Lemma 2.39 and Theorem 2.37, we obtain the following

corollary.

Corollary 2.41. Let (Z, d) be a metric space, homeomorphic to S2, that is linearly locally

contractible. Suppose that Z is Ahlfors 2/ε-regular and satisfies the discrete length condition

in (iii) above. Then there is a metric ρ on Z for which ρ ≈ d1/ε. In particular, (Z, ρ) is

Ahlfors 2-regular and is quasisymmetrically equivalent to S2.

The proof of Proposition 2.40 follows the proof of Proposition 2.16 very closely, but with

the following input, used in place of the conformal elevator.

Theorem 2.42 (Mackay [43, Theorem 1.4]). Suppose that (Z, d) is an N-doubling, λ-ALC,

complete metric space. For any n ∈ N, there is α = α(N, λ, n) ≥ 1 such that any two distinct

x, y ∈ Z can be joined by n different α-quasiarcs, such that the concatenation of any two of

them is an α-quasicircle.

Recall that Z is said to be N -doubling if every ball of radius r can be covered by at most

N balls of radius r/2. An arc γ in Z is called an α-quasiarc if for each pair x, y ∈ γ, the

sub-arc between them has diameter at most αd(x, y). Similarly, a topological circle in Z is

called an α-quasicircle if for each pair of points x, y on it, there is a sub-arc between them

with diameter at most αd(x, y).

2.7.1 Proof of Proposition 2.40

Fix 0 < ε < 1 and (Z, d) as in the statement of the proposition. For each k ∈ N, let Pk

be a maximal e−εk-separated set in Z, and call {B(x, 2e−εk) : x ∈ Pk} the collection of

k-balls, just as we did in the proof of Proposition 2.16. The one difference here is that we do

not assume that Z is compact, so in particular, we have not normalized the metric to have

diamZ = 1. However, assumption (ii) guarantees that Z is doubling, so Pk is countable for
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each k. Just as in the proof of Proposition 2.16, we let

dk(x, y) = (length of shortest k-ball chain connecting x and y) · e−k,

and then define

ρ(x, y) = lim sup
k→∞

dk(x, y).

We must show that dk(x, y) ≈ d(x, y)1/ε for k large enough, with implicit constants depending

only on ε, λ, and C.

As before, the lower bound follows immediately from the discrete length assumption

(iii). In nearly the same way as for Proposition 2.16, the upper bound can be reduced to the

following lemma, which is a variant of the statement in Lemma 2.17. To state this, we first

must observe that assumption (ii) implies that Z is N -doubling, with N depending only on ε

and C. Let α = α(N, λ, 2) ≥ 1 be the “quasiarc” constant from Theorem 2.42. Once again,

this depends only on ε, λ, and C. From now on, we refer to constants depending only on

these three parameters as uniform constants.

Lemma 2.43. Let x, y ∈ Z and m ∈ Z with d(x, y) ≤ e−ε(m−1) ≤ diamZ/(αλ). Then for

each k ≥ m, there is a k-ball chain connecting B(x, e−εm) and B(y, e−εm) of length at most

C ′ek−m, were C ′ is uniform.

Proof. We may assume that B(x, e−εm) and B(y, e−εm) are disjoint; otherwise, we connect

them by a single k-ball. By Theorem 2.42, we can find two α-quasiarcs in Z connecting x

and y such that the concatenation of the two is an α-quasicircle, C. Notice that C lies in the

ball B(x, αd(x, y)).

Let γ1 be a subarc of C with γ1 ⊂ B(x, e−εm/4) and diam γ1 ≥ e−εm/8. Similarly, let γ′1

be a subarc of C with γ′1 ⊂ B(y, e−εm/4) and diam γ′1 ≥ e−εm/8. Then, let γ2 and γ′2 be the

sub-arcs of C that connect γ1 to γ′1. Observe that by construction, dist(γ1, γ
′
1) ≥ e−εm/2,

and by the quasicircle condition,

dist(γ2, γ
′
2) ≥ 1

α
min{diam γ1, diam γ′1} ≥

e−εm

8α
.
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In particular, every k-ball chain connecting γi to γ′i has length at least cek−m, where c is a

uniform constant.

As (Z, d) is λ-linearly locally contractible and αd(x, y) ≤ diamZ/λ, we know that the

ball B(x, αd(x, y)) is contractible inside B(x, αλd(x, y)). Thus, there is a continuous map

H : [0, 1]×B(x, αd(x, y))→ B(x, αλd(x, y))

for which H0 = id and H1 ≡ const; here, we use the standard notation Ht(z) = H(t, z) for

0 ≤ t ≤ 1 and z ∈ B(x, αd(x, y)). We may restrict this homotopy to the quasicircle, and

pre-composing with a parameterization of C, we obtain

H̃ : [0, 1]× S1 → B(x, αλd(x, y)),

where H̃0(S1) = C and H̃1 ≡ const. This defines a continuous map g̃ : D→ B(x, αλd(x, y)),

where D denotes the unit disk in R2, and g̃|S1 = H̃0|S1 gives a parameterization of C. More

precisely,

g̃(reiθ) = H̃(1− r, eiθ)

for each 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Notice that γ1, γ′1, γ2, and γ′2 correspond to sub-arcs

of S1 under this parameterization. It is straightforward to see that we may pre-compose g̃

with an appropriate homeomorphism from [0, 1]2 to D to obtain a continuous map

g : [0, 1]2 → B(x, αλd(x, y)),

where g(F1) = γ1, g(G1) = γ′1, g(F2) = γ1, and g(G2) = γ′2. Recall that F1, G1, F2, G2 denote

the sides of [0, 1]2.

Let V denote the collection of k-balls that intersect B(x, αλd(x, y)) non-trivially. The

assumption (ii) easily implies that the number of such balls is at most

C

(
αλd(x, y)

e−εk/2

)2/ε

. e2(k−m).

Now, let U denote the open cover of [0, 1]2 formed by pre-images of k-balls under the con-

tinuous map g. Using notation from earlier, for i = 1, 2, let di denote the minimal number
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of sets in U that form a chain connecting Fi to Gi. As every k-ball chain connecting γi to γ′i

has length at least cek−m, we have di ≥ cek−m. Applying Proposition 2.19 gives

cek−md1 ≤ d1d2 ≤ #U = #V . e2(k−m),

so that d1 . ek−m. In particular, there is a k-ball chain connecting γ1 ⊂ B(x, e−εm) to

γ′1 ⊂ B(x, e−εm) of length . ek−m. This proves the lemma.

To obtain the bound dk(x, y) . d(x, y)1/ε, we apply the same iteration argument as we

did in Section 2.4. The only subtlety here is that the bound we have from Lemma 2.43 works

only on length scales e−ε(m−1) ≤ diamZ/(αλ). Of course, if diamZ = ∞, there is no need

to make any change.

Otherwise, let m0 be the largest integer for which αλe−ε(m0−1) > diamZ. Fix x, y ∈ Z,

and let m be the integer for which

e−ε(m+1) < d(x, y) ≤ e−εm.

If m ≥ m0, then Lemma 2.43 can be applied at all relevant length scales, and it follows from

the iteration argument that

dk(x, y) . e−m . d(x, y)1/ε.

If, instead, m < m0, then we construct a chain in the following way. Notice that e−εm0 is

roughly equal to diamZ, so we may cover Z by a uniform number of balls of radius at most

e−εm0/2. There is a chain of such balls, necessarily of uniformly bounded length, connecting

x and y. Observe that if B1, B2, B3 are consecutive balls in this chain, we can find points

x1 ∈ B1 ∩B2 and x2 ∈ B2 ∩B3 with

d(x1, x2) ≤ 2 diamB2 ≤ e−εm0 .

Consequently, we can connect x1 and x2 by a k-ball chain of length . ek−m0 . ek−m.

Concatenating a uniformly bounded number of such k-ball chains together, we obtain a

chain from x to y with length . ek−m. This gives dk(x, y) . e−m . d(x, y)1/ε, which finishes

the proof of Proposition 2.40.
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2.7.2 Further remarks

Notice that the essential ingredient in the proof of Proposition 2.40 was the construction of

a continuous map g : [0, 1]2 → B(x, αλd(x, y)) for which the images of opposite sides of the

unit square are at distance & d(x, y) from each other. In this light, we make the following

definition.

Definition 2.44. A metric space (Z, d) is said to admit fat connecting n-cubes if there

is λ ≥ 1 such that for any two distinct points x, y ∈ Z, one can find a continuous map

g : [0, 1]n → B(x, λd(x, y)) with g(F1) ⊂ B(x, d(x, y)/4) and g(G1) ⊂ B(y, d(x, y)/4), and

which has dist(g(Fk), g(Gk)) ≥ d(x, y)/λ for each 1 ≤ k ≤ n.

We have shown in this section that if (Z, d) is complete, ALC, and linearly locally con-

tractible, then it admits fat connecting squares. Moreover, the arguments we made in Section

2.4 show that if (Z, d) is a topological n-sphere and admits a conformal elevator, then it ad-

mits fat connecting n-cubes. This definition may seem a bit contrived, but we will see a

similar condition arise in the next chapter. For now, we only mention that our arguments

in the proof of Proposition 2.40 can be easily adapted to give the following generalization.

Proposition 2.45. Let 0 < ε < 1, and let (Z, d) be a metric space with the following

properties:

(i) Z admits fat connecting n-cubes,

(ii) every ball of radius 0 < R ≤ diamZ can be covered by at most C(R/r)n/ε balls of

radius 0 < r < R,

(iii) every discrete δ-path from x to y in Z has length at least C−1(d(x, y)/δ)1/ε.

Then there is a metric ρ on Z satisfying ρ ≈ d1/ε, where the implicit constant depends only

on ε, λ, and C.
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CHAPTER 3

Length-volume inequalities revisited

3.1 Introduction

There is a deep and well-studied relationship in metric geometry between the volume of a

space and the lengths of curves that, in some way, generate it. An early example of such a

relationship is due to K. Loewner (unpublished, but see [50] for a discussion) and deals with

conformal structures on the torus T2.

Theorem 3.1. Let (T2, g) be the 2-dimensional torus, equipped with a Riemannian metric

g, let `(g) denote the infimal length of a closed curve on T2 that is not homotopically trivial,

and let Vol(g) denote the volume of T2 with respect to the metric g. Then Vol(g) ≥
√

3
2
`(g)2,

and equality holds if and only if (T2, g) is isometric to the flat torus R2/Λ, where Λ is the

lattice generated by (1, 0) and (1/2,
√

3/2).

Loewner’s inequality is only the beginning of a very rich body of work that has sought

to understand similar phenomena for more general spaces and in dimensions greater than

two. We refer to [28, Chapter 4] for a broad survey of methods and results in this area.

Of particular interest to us is the following theorem, originally proved by W. Derrick [23,

Theorem 3.4]. Here we state it in the form cited in [28].

Theorem 3.2. Let ([0, 1]n, g) be the n-dimensional unit cube, equipped with a Riemannian

metric g. Let Fk and F ′k denote the pairs of opposite codimension-1 faces of [0, 1]n, for

1 ≤ k ≤ n, and let dk be the distance between Fk and F ′k with respect to the metric g. Then

Vol(g) ≥ d1 · · · dn.
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Inequalities such as those in Theorems 3.1 and 3.2 are interesting in themselves, and in

this chapter we will be concerned primarily with inequalities of a similar flavor. We should

mention, though, that understanding the case of equality is also very desirable. This theme

appears strongly, for example, in the study of the marked length spectra of negatively-

curved manifolds. Namely, if (Mn, g) is compact and negatively-curved, then each free

homotopy class contains a unique geodesic of minimal length. The map associating this

length to each class is called the marked length spectrum of g. It is conjectured that this

spectrum determines the metric g, up to isometry. C. Croke [21] and J.-P. Otal [48] showed,

independently, that this is true for surfaces. In higher dimensions, much less is known,

though there are some positive results. For example, if M admits a locally symmetric metric

g0, then any metric whose marked length spectrum coincides with that of g0 is necessarily

isometric to g0. This follows from two theorems of U. Hamenstädt [30, 32], along with the

work of G. Besson, G. Courtois, and S. Gallot on “entropy vs. volume” rigidity [1]. See [55]

for more discussion on these topics.

In the previous chapter, we proved a combinatorial version of Theorem 3.2 for open

covers of the unit cube [0, 1]n. Incidentally, the purpose of the inequality was, ultimately,

to prove a coarse geometric analog of U. Hamenstädt’s “entropy vs. curvature” rigidity

theorem [31]. More specifically, it was used in the construction of a metric with certain

regularity properties on the boundary of a Gromov hyperbolic metric space. The set-up was

as follows. Let U = {Ui}i∈I be an open cover of [0, 1]n, and again let Fk, F
′
k denote the pairs

of opposite codimension-1 faces. We say that Ui1 , . . . , Uim is a chain if Uij ∩ Uij+1
6= ∅ for

each j. Moreover, such a chain is said to connect two sets A and B if Ui1 ∩ A 6= ∅ and

Uim ∩B 6= ∅.

Theorem 3.3 (Chapter 2, Proposition 2.19). Let dk denote the smallest number of sets Ui

in a chain that connects Fk and F ′k. Then #U ≥ d1 · · · dn.

Note that although this result is analogous to Derrick’s theorem, it does not parallel

the Riemannian inequality. Indeed, the sets Ui in U are essentially treated as if they all
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had diameter 1. The primary purpose of this chapter is to extend the preceding result to a

weighted version, which is closer to Theorem 3.2 and also generalizes Theorem 3.3.

To this end, let U = {Ui}i∈I be an open cover of [0, 1]n as before, and let w : I → [0,∞)

be a corresponding weight function. One should think of w(i) as the weight associated to

the set Ui. Together, U and w give us a discrete notion of distance on [0, 1]n. Namely, we

define

distw(A,B) = inf


m∑
j=1

w(ij) :
Ui1 , . . . , Uim is a chain

that connects A and B

 .

The sum w(i1) + . . . + w(im) is said to be the length of the corresponding chain. By path

connectedness of [0, 1]n and compactness of paths, it is easy to see that any two points in the

cube can be connected by a chain. In particular, distw(A,B) is finite for A,B ⊂ [0, 1]n. We

should note that a chain might be disconnected topologically, as we have made no assumption

on the connectedness of the sets in U . Our main theorem will be the following.

Theorem 3.4. Let U be an open cover of [0, 1]n, let w be a corresponding weight function,

and let dk = distw(Fk, F
′
k) for each 1 ≤ k ≤ n. Then

∑
i∈I

w(i)n ≥ d1 · · · dn.

In fact, we will prove a more general version of this inequality that has more in common

with the results of Derrick in [22] and [24]: we allow the discrete distance between Fk and

F ′k to be taken with respect to (possibly) different weight functions for different values of k.

Theorem 3.5. Let U be an open cover of [0, 1]n, and let wk be associated weight functions

for 1 ≤ k ≤ n. If dk = distwk(Fk, F
′
k) for each k, then

∑
i∈I

(
n∏
k=1

wk(i)

)
≥ d1 · · · dn.

It is clear that Theorem 3.4 follows immediately from Theorem 3.5 by setting wk = w

for each k.
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As a corollary to Theorem 3.4, we will easily obtain lower Hausdorff content bounds for

continuous images of [0, 1]n in arbitrary metric spaces. Recall that if (X, d) is a metric space,

the Q-dimensional Hausdorff content of a compact subset E ⊂ X is defined to be

H∞Q (E) = inf

{∑
i∈I

(diamUi)
Q : {Ui}i∈I is an open cover of E

}
.

We will show the following bound.

Corollary 3.6. Let g : [0, 1]n → X be continuous. Then

H∞n (g([0, 1]n)) ≥
n∏
k=1

dist(g(Fk), g(F ′k)),

where dist denotes the metric distance between sets in X.

For example, if ([0, 1]n, d) is the unit cube equipped with an arbitrary metric whose

topology coincides with the Euclidean topology, then one can apply this inequality to the

identity function. We remark here, though, that our definition of Hausdorff content does not

include the normalizing multiplicative factor Vol(Bn)2−n, where Bn is the unit ball in Rn

and Vol(·) is n-dimensional Lebesgue measure, as is standard in geometric measure theory.

In particular, Corollary 3.6 does not immediately recover Derrick’s estimates.

As will become clear, the methods we use in this chapter are well-suited to study rela-

tionships between lengths and volumes for other polyhedral objects. In fact, we will prove

versions of Theorems 3.3 and 3.4 for simplices, and so also obtain an analog of Corollary

3.6. There are, in addition, interesting extremal questions related to the inequalities stated

above. We have not sufficiently explored this topic, so we leave it as an open direction.

The outline of the chapter is as follows. In Section 3.2, we will introduce some techniques

that appear frequently: partitions of unity, the nerve of open covers, and a topological non-

degeneracy lemma that will play a central role in our proofs of the length-volume inequalities.

Section 3.3 will be devoted entirely to the proof of Theorem 3.5. In Section 3.4, we take

up the topic of lower Hausdorff content bounds in metric spaces, and the final section deals

with the extension of our methods to diameter-volume inequalities for simplices.
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3.2 Notation and preliminaries

Let (X, d) be a metric space. As is standard, we will use B(x, r) to denote the open ball

centered at x ∈ X and of radius r > 0. For subsets A,B ⊂ X, we let

dist(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}

be the distance between A and B. In the case that A = {x} is a singleton, we will allow a

slight abuse of notation and simply write dist(x,B). We also let

diamA = sup{d(x, y) : x, y ∈ A}

denote the diameter of the subset A. Following common notation, we use int(A) and A to

denote, respectively, the interior and closure of A (the ambient space for the closure operation

will be understood from context). Also, we let ∂A = A\ int(A) denote the boundary of A.

Lastly, for ε > 0, let

Nε(A) = {x ∈ X : dist(x,A) < ε}

be the open ε-neighborhood of A.

Suppose that (X, d) is compact, and let U = {Ui}i∈I be a finite open cover. By the

Lebesgue lemma, there is a positive constant δ > 0 such that each ball B(x, 2δ) lies entirely

in some set Ui. Let

fi(x) = min
{

1, 1
δ

dist(x,Nδ(X\Ui)
}
,

which is a 1/δ-Lipschitz function with values in [0, 1] and whose support is contained in Ui.

Moreover, for each x ∈ X, we have

f(x) :=
∑
i∈I

fi(x) ≥ 1,

as B(x, 2δ) ⊂ Ui for some i. If N = max{
∑

i χUi(x) : x ∈ X}, then also f(x) ≤ N for all x.

Define φi(x) = fi(x)/f(x) so that the following properties hold:

(i) φi is (2N + 1)/δ-Lipschitz with support contained in Ui;
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(ii) 0 ≤ φi(x) ≤ 1 for all x ∈ X;

(iii)
∑

i φi(x) = 1 for all x ∈ X.

The family {φi} is therefore a 2N/δ-Lipschitz partition of unity subordinate to U [36, Chap-

ter 2]. Partitions of unity are useful in general metric settings to produce a type of proxy

for linear structure.

There is a canonical way to associate a simplicial complex to the cover U whose com-

binatorics mimics the combinatorics of U . Often, this simplicial complex is defined as an

abstract complex that encodes the intersections among the sets in U . We prefer to work

with a geometric realization of this complex in Euclidean space. For ease, then, let us index

the collection {Ui} by the integers 1, . . . ,M , and let ei be the i-th standard basis vector in

RM .

Definition 3.7. The nerve of U , denoted by Ner(U), is

Ner(U) =
⋃
{conv(ei0 , . . . , eim) : Ui0 ∩ · · · ∩ Uim 6= ∅},

where the union runs over collections of sets in U that have non-empty intersection.

Here, and in general, we use conv(A) to denote the convex hull of a set A ⊂ RM . When

A = {a0, . . . , am} is a finite set, we can express

conv(A) =

{
m∑
i=0

λiai : λi ≥ 0 and λ0 + . . .+ λm = 1

}
, (3.1)

and if m ≤M , then this is a (possibly degenerate) m-dimensional simplex in RM . Thus, the

simplex spanned by ei0 , . . . , eim in RM is in the nerve of U if, and only if, the corresponding

sets Ui0 , . . . , Uim have a common intersection.

The partition of unity {φi}i∈I allows us to map X naturally to Ner(U). Namely, define

φ : X → Ner(U) by

φ(x) =
∑
i∈I

φi(x) · ei, x ∈ X, (3.2)
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and note that φ is continuous. In fact, as each φi is Lipschitz, the map φ will be Lipschitz

as well. The fact that φ(x) ∈ Ner(U) follows immediately from the definition of the nerve,

the characterization in (3.1), and the properties (ii) and (iii) above.

It will be useful for us later to subdivide the simplices in the nerve without changing

Ner(U) as a set in RM . The barycentric subdivision allows us to do this in a canonical way.

Once again, we work with a geometric realization of the relevant complexes.

Let S ⊂ RM be a simplicial complex whose simplices are convex hulls of the standard

basis vectors ei. For each collection {ei0 , . . . , eim} of vertices which generate a simplex in S,

we define its barycenter to be the point

bc(ei0 , . . . , eim) = 1
m+1

(ei0 + . . .+ eim) .

The subdivision proceeds inductively, by dimension, on the simplices in S. Intuitively, we

may think about it in the following way. First, subdivide each edge by adding a vertex at

bc(ei, ej) whenever conv(ei, ej) is in S. Second, subdivide each 2-dimensional simplex by

adding a vertex at bc(ei, ej, ek) whenever conv(ei, ej, ek) is in S, and then add edges from

bc(ei, ej, ek) to each vertex on the boundary of conv(ei, ej, ek) (these vertices may come from

S itself or from the first step in the subdivision). Continue in the same way, until each

simplex in S has been subdivided. For further reference, see [33, p. 119-20].

The resulting simplicial complex is called the first barycentric subdivision of S. Ob-

serve that the geometric realizations of the complexes we obtain throughout this process,

including in the final step, coincide as sets in RM with S. We will, however, use Sb to

denote the geometric realization of this new complex to emphasize the fact that we have

a refined simplicial structure. The following fact will be important in later arguments. If

conv(ei0 , . . . , eim) is an m-dimensional simplex in S, then after the barycentric subdivision,

it is a union of m-dimensional simplices in Sb with geometric form

conv(p0, . . . , pm), (3.3)

where pj = bc(eσ(i0), . . . , eσ(ij)) for each 0 ≤ j ≤ m, and each σ is a permutation of the

indices i0, . . . , im. In particular, p0 = eσ(i0).
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Before concluding this section, let us record a topological lemma that will be useful more

than once in subsequent sections. Let P be a compact, convex set in Rn. We say that a

closed half-space H of Rn supports the set P if P ∩H is non-empty and is contained in ∂H.

Lemma 3.8. Let P ⊂ Rn be compact and convex, with non-empty interior. Suppose that

f : P → Rn is continuous, and for each x ∈ ∂P there is a closed half-space H which supports

P , with x, f(x) ∈ H. Then P ⊂ f(P ).

Proof. As f(P ) is compact and P is the closure of int(P ), it suffices to show that int(P ) ⊂

f(P ). Aiming for a contradiction, let us suppose that there is y ∈ int(P )\f(P ). By transla-

tion, we may assume, without loss of generality, that y = 0.

The compactness and convexity of P imply that for each x ∈ Rn\{0}, the ray from 0

through x intersects ∂P in exactly one point, which we denote by p(x). We claim that

the map p : Rn\{0} → ∂P is continuous. To verify this, fix ε > 0 small enough that

B(0, ε) ⊂ int(P ), and let π : Rn\{0} → ∂B(0, ε) be the canonical projection onto the sphere

of radius ε. It is clear that π is continuous. Observe also that p(x) = p(π(x)) for all

x ∈ Rn\{0}, so it suffices to show that p, restricted to ∂B(0, ε), is continuous. For this, we

note that p|∂B(0,ε) is the inverse map of π|∂P , the latter of which is a continuous bijection

from the compact set ∂P to ∂B(0, ε). Consequently, it is a homeomorphism, so its inverse

p|∂B(0,ε) is also continuous.

Consider the map g : P → ∂P defined by g(x) = p(−f(x)). This is continuous by the

assumption that 0 /∈ f(P ). We claim that g has no fixed point. Indeed, if g(x) = x, then

necessarily x ∈ ∂P . By hypothesis, there is a half-space H of Rn which supports P and has

x, f(x) ∈ H. As 0 lies in the complement of H, we know that −f(x) is in the complement

of H as well. The point p(−f(x)) lies on the segment joining 0 and −f(x), and so it also

fails to lie in H. This, however, contradicts the fact that g(x) = x ∈ H, so g can have no

fixed points. The existence of such a map g contradicts the Brouwer fixed point theorem:

any continuous map from a compact, convex set in Rn to itself has a fixed point. Thus, we

obtain int(P ) ⊂ f(P ), as desired.
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3.3 A topological length-volume inequality for cubes

Let [0, 1]n be the standard Euclidean unit cube of dimension n ≥ 1. We will use Fk and F ′k,

for 1 ≤ k ≤ n, to denote the pairs of opposite codimension-1 faces of [0, 1]n:

Fk = [0, 1]n ∩ π−1
k ({0}) and F ′k = [0, 1]n ∩ π−1

k ({1}),

where πk : Rn → R is the projection to the k-th coordinate axis.

Let U = {Ui}i∈I be an open cover of [0, 1]n, and let wk : I → [0,∞) be corresponding

weight functions for 1 ≤ k ≤ n. Here, and in what follows, an open cover of [0, 1]n will always

mean that the sets are open in the relative topology on [0, 1]n, unless otherwise explicitly

stated. Using the notation from Section 2.1, we let dk = distwk(Fk, F
′
k). To prove Theorem

3.5, we must show that ∑
i∈I

(
n∏
k=1

wk(i)

)
≥ d1 · · · dn. (3.4)

To obtain this inequality, we first work under an additional technical assumption on the

open cover U . Namely, if there exists i ∈ I for which Ui∩Fk 6= ∅ and Ui∩F ′k 6= ∅ for some k,

then we say that U is spanning. We will verify the desired inequality first in the case that U is

non-spanning. After doing this, we will treat the general case by modifying slightly the open

cover under consideration. Let us state the intermediate result as a separate proposition.

Proposition 3.9. The inequality in (3.4) holds under the hypothesis that the cover U is

non-spanning.

Proof. We may, of course, assume that dk > 0 for each k; otherwise, the desired inequality

is trivial. We may also assume that the cover U is finite. Indeed, compactness guarantees

that any cover U of the cube contains a finite sub-cover. Removing the “redundant” sets

from this collection does not increase the left-hand side of the desired inequality and also

does not decrease the distances dk. Our proof will now proceed in several steps, which we

explicitly indicate.
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Step 1: Associate a rectangle to each Ui. For i ∈ I, define

dk(i) =


0 if Ui ∩ Fk 6= ∅,

distwk(Fk, Ui) otherwise

for 1 ≤ k ≤ n. Of course, we have dk(i) ≥ 0 for each i and k. The more important property

is the following: if Ui ∩ F ′k 6= ∅, then dk ≤ dk(i) + wk(i). This follows immediately from the

relevant definitions.

Now let

Ri =
n∏
k=1

[dk(i), dk(i) + wk(i)],

which is an n-dimensional rectangle with side lengths wk(i). To simplify notation, we let

Ik(i) = πk(Ri) = [dk(i), dk(i) + wk(i)],

so that Ri =
∏

k Ik(i).

We will use Ri as a sort of proxy for the set Ui. It will therefore be important that

the combinatorics of the rectangles {Ri}i∈I mimic those of the sets {Ui}i∈I , in the following

sense.

Lemma 3.10. If Ui ∩ Uj 6= ∅, then Ri ∩Rj 6= ∅.

Proof. We simply need to show that Ik(i) ∩ Ik(j) 6= ∅ for each k. To this end, fix k and

without loss of generality, assume that dk(i) ≤ dk(j). We claim that dk(j) ≤ dk(i) + wk(i).

Indeed, there is a chain Ui1 , . . . , Uil that connects Fk and Ui of length dk(i) = distwk(Fk, Ui);

in case Ui ∩ Fk 6= ∅, this is simply the empty chain. As Ui ∩ Uj 6= ∅, the augmented chain

Ui1 , . . . , Uil , Ui connects Fk and Uj. Thus, dk(j) ≤ dk(i) + wk(i), which, along with the

assumption that dk(i) ≤ dk(j), immediately gives Ik(i) ∩ Ik(j) 6= ∅.

We should remark here that the converse need not hold; there are many configurations, in

fact, for which two rectangles intersect even though the corresponding open sets are disjoint.

Corollary 3.11. If Ui0 ∩ · · · ∩ Uim 6= ∅, then Ri0 ∩ · · · ∩Rim 6= ∅.
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Proof. As before, it suffices to show that Ik(i0)∩· · ·∩Ik(im) 6= ∅ for each k. From the previous

lemma, we know that Rij ∩Rij′
6= ∅ for any pair j, j′; in particular, Ik(ij)∩Ik(ij′) 6= ∅. Thus,

them+1 intervals Ik(i0), . . . , Ik(im) have pairwise non-empty intersections. This immediately

implies that Ik(i0), . . . , Ik(im) have a point of common intersection: indeed, the maximum

among their left endpoints is at most the minimum among their right endpoints.

Now that we have established the correspondence between the combinatorics of {Ui}i∈I

and {Ri}i∈I , we wish to map the unit cube [0, 1]n continuously into
⋃
iRi. To ensure that

the image is within the union of the Ri’s, it is technically convenient to pass through the

nerve of the cover U . Recall from Section 3.2 that by enumerating U = {U1, . . . , UM}, we

can express

Ner(U) =
⋃
{conv(ei0 , . . . , eim) : Ui0 ∩ · · · ∩ Uim 6= ∅}.

The associated partition of unity {φi} subordinate to U , which we constructed in the previous

section, gives the continuous map

φ : [0, 1]n → Ner(U)

that was introduced in (3.2).

Step 2: Map Ner(U) into
⋃
iRi. In order to map Ner(U) into the union of the

rectangles Ri, we will pass to the first barycentric subdivision of the nerve and then define

our map simplicially. For ease, we use S to denote the complex Ner(U) and, consistent with

earlier notation, the complex obtained after the subdivision will be denoted by Sb. As sets

in RM , the complexes S and Sb coincide; moreover, each vertex in Sb arises as the barycenter

of a simplex in S.

To define ψ : Sb →
⋃
iRi, let us first determine where it sends the vertices. Fix such

a vertex p, so that p = bc(ei0 , . . . , eim) for some simplex, conv(ei0 , . . . , eim), in the nerve

S. Note that the choice of ei0 , . . . , eim is uniquely determined by p, up to order. Then, as

Ui0 ∩ · · · ∩ Uim 6= ∅, Corollary 3.11 guarantees that

Ri0 ∩ · · · ∩Rim 6= ∅.
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We want to send p to a point zp in this intersection, but we must be careful how to choose

it. Recall that

Ri0 ∩ · · · ∩Rim =

(
n∏
k=1

Ik(i0)

)
∩ · · · ∩

(
n∏
k=1

Ik(im)

)

=
n∏
k=1

Ik(i0) ∩ · · · ∩ Ik(im),

(3.5)

so choosing zp in Ri0 ∩ · · · ∩Rim amounts to choosing each coordinate πk(zp) in the interval

[ak, bk] := Ik(i0) ∩ · · · ∩ Ik(im).

We do this according to the following rule. If Uij ∩ Fk 6= ∅ for each j, then we choose

πk(zp) = ak; observe that in this case, ak = 0. Otherwise, we choose πk(zp) = bk.

Let ψ(p) = zp be as above for the vertices p of Sb. Extend ψ to be affine on each simplex

in Sb so that ψ : Sb → Rn is continuous. We claim that the image is contained in
⋃
iRi. To

see this, first observe that we may express Sb as a union of simplices ∆ that are obtained

by subdividing a simplex in S of the same dimension. By (3.3) in the previous section, such

simplices have geometric form

∆ = conv(p0, . . . , pm),

where pj = bc(ei0 , . . . , eij) and conv(ei0 , . . . , eim) is a simplex in S. Consequently,

ψ(∆) = conv(ψ(p0), . . . , ψ(pm)) = conv(zp0 , . . . , zpm).

The choice of zpj guarantees that

zpj ∈ Ri0 ∩ · · · ∩Rij ⊂ Ri0

for each j = 0, . . . ,m. As Ri0 is convex, we find ψ(∆) ⊂ Ri0 .

Step 3: Map [0, 1]n into
⋃
iRi. We now, of course, want to compose φ : [0, 1]n → S

and ψ : Sb →
⋃
iRi to obtain a map from the unit cube into the collection of rectangles.

Recall that the complexes S and Sb coincide as sets in RM , so we can define

f = ψ ◦ φ : [0, 1]n →
⋃
i∈I

Ri,

79



which is continuous. Our goal now is to show that the image of f contains the n-dimensional

rectangle R =
∏

k[0, dk].

The main claim that we must establish toward this end is that

f(Fk) ⊂ π−1
k ({0}) and f(F ′k) ⊂ π−1

k ([dk,∞)).

From here, Lemma 3.8 almost immediately implies that R ⊂ f([0, 1]n). To begin, let x ∈

Fk ∪ F ′k, and let Ui0 , . . . , Uim be the sets in U that contain x. Then

φ(x) =
m∑
j=0

φij(x)eij ,

and x ∈
⋂
j Uij implies that conv(ei0 , . . . , eim) is a simplex in Ner(U). Also observe that if

x ∈ Fk, then Uij ∩ Fk 6= ∅ for each j; similarly, if x ∈ F ′k, then Uij ∩ F ′k 6= ∅ for each j.

As φ(x) ∈ conv(ei0 , . . . , eim), after the barycentric subdivision, we know that

φ(x) ∈ ∆ = conv(p0, . . . , pm),

where pj = bc(ei0 , . . . , eij) for each j (without loss of generality, we may re-order the indices

so that σ is the identity permutation). Consequently, f(x) = ψ(φ(x)) is a convex combination

of the points ψ(pj) = zpj . It therefore suffices to show that πk(zpj) = 0 for each j if x ∈ Fk,

and that πk(zpj) ≥ dk for each j if x ∈ F ′k.

In the former case, we have Uij ∩Fk 6= ∅, so that dk(ij) = 0 for each j. Consequently, we

know that Ik(ij) = [0, wk(ij)], so

Ik(i0) ∩ · · · ∩ Ik(ij) = [0, bk(j)]

for some bk(j) ≥ 0. The choice of zpj then guarantees that πk(zpj) = 0 for each j.

In the latter case, we have Uij ∩ F ′k 6= ∅, so that

dk ≤ dk(ij) + wk(ij)

for each j. In particular,

Ik(i0) ∩ · · · ∩ Ik(ij) = [ak(j), bk(j)]
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for some ak(j) ≥ 0 and bk(j) ≥ dk. As U is non-spanning, we know that Uij ∩ Fk = ∅ for

each j. By the choice of zpj , we therefore have

πk(zpj) = bk(j) ≥ dk

for each j, as desired.

It is now straightforward to conclude the proof using Lemma 3.8. Namely, let Hk be the

half-space π−1
k ([0,∞)), and let H ′k be the half-space π−1

k ((−∞, dk]), so that

R =

(
n⋂
k=1

Hk

)
∩

(
n⋂
k=1

H ′k

)
.

Let Gk = R ∩ ∂Hk and G′k = R ∩ ∂H ′k be the faces of R corresponding to Fk and F ′k,

respectively, and let g : R→ [0, 1]n be the linear map with g(Gk) = Fk and g(G′k) = F ′k. We

showed above that f(Fk) ⊂ Hc
k and f(F ′k) ⊂ H ′ck , so the composition f ◦ g : R → Rn has

f ◦ g(Gk) ⊂ Hc
k and f ◦ g(G′k) ⊂ H ′ck . Lemma 3.8 then guarantees that

R ⊂ f ◦ g(R) = f([0, 1]n).

As f([0, 1]n) ⊂
⋃
iRi, volume considerations immediately give

d1 · · · dn = Vol(R) ≤
∑
i∈I

Vol(Ri) =
∑
i∈I

(
n∏
k=1

wk(i)

)
,

as desired.

It is not difficult now to prove Theorem 3.5; we only need to argue that the non-spanning

assumption in Proposition 3.9 is not necessary.

Proof of Theorem 3.5. Let U be an open cover of [0, 1]n, let wk be associated weight func-

tions, and let dk = distwk(Fk, F
′
k) be the corresponding distances, as in the statement of

the theorem. Just as in the beginning of the proof of Proposition 3.9, it suffices to assume

that U is finite. Our goal is to modify the cover and the weights slightly in order to obtain

a new cover to which we can apply Proposition 3.9. We will do this in such a way that
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the “volume” and the “lengths” associated to the new cover are very close to the original

quantities. We will perform this modification in multiple steps.

First, we wish to modify U to obtain an open cover of the cube so that any two sets

either intersect or have strictly positive distance from each other. To this end, let δ1 > 0

be small enough that for each x ∈ [0, 1]n, the ball B(x, δ1) is entirely contained in some Ui.

Also, let δ2 > 0 be small enough so that whenever Ui ∩ Uj 6= ∅, there is some point z with

B(z, δ2) ⊂ Ui∩Uj. Similarly, let δ3 > 0 be small enough so that whenever Ui∩Fk 6= ∅, there

is z ∈ Fk with B(z, δ3) ⊂ Ui, and whenever Ui ∩ F ′k 6= ∅, there is z ∈ F ′k with B(z, δ3) ⊂ Ui.

Now define δ = min{δ1, δ2, δ3}.

For each i, let Ai = {j : Ui∩Uj = ∅}, Bi = {k : Ui∩Fk = ∅}, and B′i = {k : Ui∩F ′k = ∅}.

We then form the sets

Ũi = Ui\

⋃
j∈Ai

N δ/2(Uj) ∪
⋃
k∈Bi

N δ/2(Fk) ∪
⋃
k∈B′i

N δ/2(F ′k)

 ,

where N ε(V ) denotes the closed ε-neighborhood of V . Each Ũi is open, and as δ ≤ δ1, it is

clear that
⋃
i Ũi contains [0, 1]n.

We claim that for each i and j, either Ũi ∩ Ũj 6= ∅ or dist(Ũi, Ũj) ≥ δ/2. Indeed, if

dist(Ũi, Ũj) < δ/2, then there are x ∈ Ũi and y ∈ Ũj with |x − y| < δ/2. This implies that

Ui ∩ Uj 6= ∅, for if not, then j ∈ Ai so that x could not be in Ũi. Choose z ∈ Ui ∩ Uj with

B(z, δ) ⊂ Ui∩Uj, which is possible because δ ≤ δ2. Then it must be that z ∈ Ũi∩Ũj. Indeed,

suppose that z /∈ Ũi. Then either there is l ∈ Ai with z ∈ N δ/2(Ul) or there is k ∈ Bi ∪ B′i
with z ∈ N δ/2(Fk) ∪ N δ/2(F ′k). However, as B(z, δ) ⊂ Ui, the distance from z to any of

these Ul, Fk, or F ′k is strictly larger than δ/2. This immediately rules out z ∈ N δ/2(Ul) or

z ∈ N δ/2(Fk) ∪N δ/2(F ′k). The argument for z ∈ Ũj is the same.

Similarly, we can also show that for each i and k, either Ũi∩Fk 6= ∅ or dist(Ũi, Fk) ≥ δ/2.

Indeed, if dist(Ũi, Fk) < δ/2, then Ui ∩ Fk 6= ∅. This implies that there is z ∈ Fk for

which B(z, δ) ⊂ Ui. As z /∈ N δ/2(Uj) for each j ∈ Ai, we necessarily have z ∈ Ũi. Hence,

Ũi ∩ Fk 6= ∅. The same arguments also show that for each i and k, either Ũi ∩ F ′k 6= ∅ or

dist(Ũi, F
′
k) ≥ δ/2. Thus, the collection {Ũi}i∈I has the convenient property that for every
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incidence relevant to the calculation of a combinatorial distance, the associated sets either

intersect or are of distance ≥ δ/2 from each other.

Let us again modify the collection {Ũi}i∈I slightly, in a way dependent on a parameter

ε > 0 that we will eventually send to 0. Namely, let 0 < ε < δ/(8
√
n) be very small. For

each i, let Vi = Nε/2(Ũi), where the neighborhood is now taken in Rn. Thus, each Vi is

open in Rn, and the union
⋃
i Vi contains [0, 1]n but does not intersect any of the half-spaces

π−1
k ([1 + ε/2,∞)).

To the collection {Vi}i∈I we add small Euclidean balls to produce a cover of the cube

[0, 1 + ε]n. Namely, we can find a collection of points {xj}j∈J with the following properties:

#J ≤ Cn(1/ε)n−1, where Cn is a dimensional constant; each point xj lies in one of the

codimension-1 spaces {x ∈ Rn : πk(x) = 1 + ε}; and the balls Bj = B(xj,
√
nε) have

(1, 1 + ε]n ⊂
⋃
j∈J

Bj.

Let V denote the collection of open sets {Vi}i∈I ∪ {Bj}j∈J so that V is an open cover of the

cube [0, 1 + ε]n. Let

Gk = π−1
k (1 + ε) ∩ [0, 1 + ε]n

be the codimension-1 face of [0, 1+ε]n opposite to Fk, and observe that no set in V intersects

both Fk and Gk. In other words, V is non-spanning (the fact that we are covering a slightly

larger cube is not a problem; indeed, Proposition 3.9 applies equally well to topological

cubes).

To obtain weight functions for V , we of course want to use the original weights wk

associated to the cover U . Namely, let vk be weight functions for V defined by

vk(Vi) = wk(Ui) and vk(Bj) = ε,

and let d̃k = distvk(Fk, Gk) be the associated distance between opposite faces of the cube.

We claim that dk ≤ d̃k for each k. To see this, let us first establish that any chain in V of

minimal vk-length that connects Fk to Gk has the form

Vi1 , . . . , Vim , Bj
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for some collection i1, . . . , im and some j. It is clear that the chain must end with some Bj,

as none of the Vi intersect Gk. Also, each ball Bj intersects Gk, so the penultimate set in

the chain cannot be some other ball Bl. Lastly, note that if Vi, Bj, Vi′ appears in the chain,

then dist(Vi, Vi′) ≤ diamBj ≤ 2
√
nε, so that

dist(Ũi, Ũi′) ≤ 4
√
nε < δ/2.

Consequently, Ũi ∩ Ũi′ 6= ∅, which also means that Vi ∩ Vi′ 6= ∅. Thus, in a minimal chain, a

ball Bj never appears between two of the Vi’s.

Let Vi1 , . . . , Vim , Bj be a chain of minimal vk-length from Fk to Gk. As Vil ∩ Vil+1
6= ∅ for

each l, we know that dist(Ũil , Ũil+1
) ≤ ε < δ/2. Thus, Ũil ∩ Ũil+1

6= ∅, so also Uil ∩ Uil+1
6= ∅.

Hence, Ui1 , . . . , Uim is a chain in the collection U . Moreover, dist(Ũi1 , Fk) ≤ ε/2 < δ/2, so

Ũi1 ∩ Fk 6= ∅, and also Ui1 ∩ Fk 6= ∅. Similarly,

dist(Ũim , F
′
k) ≤ ε/2 + diamBj ≤ ε/2 + 2

√
nε < δ/2,

so that Ũim ∩ F ′k 6= ∅, and also Uim ∩ F ′k 6= ∅. Therefore, the chain Ui1 , . . . , Uim connects Fk

and F ′k, which implies that

dk ≤
m∑
l=1

wk(Uil) =
m∑
l=1

vk(Vil) = d̃k − ε ≤ d̃k.

Applying Proposition 3.9 to the collection V with weight functions vk gives

n∏
k=1

dk ≤
n∏
k=1

d̃k ≤
∑
i∈I

(
n∏
k=1

vk(Vi)

)
+
∑
j∈J

εn ≤
∑
i∈I

(
n∏
k=1

wk(Ui)

)
+ Cnε,

where the last inequality follows from the bound #J ≤ Cn(1/ε)n−1. As this holds for any

0 < ε < δ/(8
√
n), we send ε to zero to obtain

n∏
k=1

dk ≤
∑
i∈I

(
n∏
k=1

wk(i)

)
.
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3.4 Lower volume bounds in metric spaces

Using Theorem 3.5, we can prove a similar length-volume inequality for images of the

Euclidean cube in a metric space. To set this up, let (X, d) be a metric space and let

g : [0, 1]n → X be a continuous map. Let U = {Ui}i∈I be an open cover of g([0, 1]n) with

corresponding non-negative weight functions wk for 1 ≤ k ≤ n. If A,B ⊂ g([0, 1]n) are

subsets, then we define

distwk(A,B) = inf


m∑
j=1

wk(ij) :
Ui1 , . . . , Uim is a chain

that connects A and B


as before, where chains are finite sequences of the {Ui}i∈I whose consecutive sets have non-

empty intersection. Let

dk(g) = distwk(g(Fk), g(F ′k))

be the discrete distance between the images of opposite faces. Of course, this distance

depends strongly on U and wk as well.

Proposition 3.12. For such g : [0, 1]n → X, we have

∑
i∈I

(
n∏
k=1

wk(i)

)
≥

n∏
k=1

dk(g).

Proof. For each i ∈ I, let Vi = g−1(Ui), so that the collection V = {Vi}i∈I forms an open

cover of [0, 1]n. Let dk = distwk(Fk, F
′
k) be the discrete distance associated to the cover V .

Observe that if Vi1 , . . . , Vim is a chain in V that connects Fk and F ′k, then Ui1 , . . . , Uim is a

chain in U that connects g(Fk) and g(F ′k). Consequently, we have dk(g) ≤ dk for each k.

Applying Theorem 3.5 to the cover V with weights wk gives

n∏
k=1

dk(g) ≤
n∏
k=1

dk ≤
∑
i∈I

(
n∏
k=1

wk(i)

)
,

as desired.

Using this proposition, we can establish a similar inequality relating more standard metric

quantities such as Hausdorff measure and metric distance between sets. Recall from Section
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3.1 that if (X, d) is a metric space and E ⊂ X is compact, the Q-dimensional Hausdorff

content of E is

H∞Q (E) = inf

{∑
i∈I

(diamUi)
Q : {Ui}i∈I is an open cover of E

}
.

The associated Hausdorff Q-dimensional measure is defined to be

HQ(E) = lim
ε↘0

inf

{∑
i∈I

(diamUi)
Q : {Ui}i∈I covers E and diamUi < ε

}
,

and it is clear that HQ(E) ≥ H∞Q (E). Thus, lower bounds on Hausdorff content are also

lower bounds on Hausdorff measure.

Corollary 3.13. If g : [0, 1]n → X is continuous, then

H∞n (g([0, 1]n)) ≥
n∏
k=1

dist(g(Fk), g(F ′k)).

Proof. Fix an open cover {Ui}i∈I of g([0, 1]n), and let wk(i) = diamUi for each i and each

1 ≤ k ≤ n. Observe that if Ui1 , . . . , Uim is a chain connecting g(Fk) and g(F ′k), then

dist(g(Fk), g(F ′k)) ≤
m∑
j=1

diamUij =
m∑
j=1

wk(ij).

Thus, dist(g(Fk), g(F ′k)) ≤ distwk(g(Fk), g(F ′k)) for each k. By Proposition 3.12, we have∑
i∈I

(diamUi)
n ≥

n∏
k=1

distwk(g(Fk), g(F ′k)) ≥
n∏
k=1

dist(g(Fk), g(F ′k)).

As this holds for any open cover {Ui}i∈I of g([0, 1]n), we obtain the desired inequality.

Observe that in both Proposition 3.12 and Corollary 3.13, it is not necessary that X be a

metric space. The same arguments hold if X is a pseudometric space: the distance between

distinct points is allowed to be zero. We illustrate this with the following result, which is

closely related to a question of Y. Burago and V. Zalgaller [12, p. 296].

Corollary 3.14. Let ρ be a pseudometric on [0, 1]n, and assume that every open set in the

topology determined by ρ is also open in the Euclidean topology. Then

H∞n,ρ([0, 1]n) ≥
n∏
k=1

distρ(Fk, F
′
k).
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Here,H∞n,ρ([0, 1]n) and distρ(Fk, F
′
k) are defined in the same manner as the usual Hausdorff

content and distance, but using the pseudometric ρ instead of an actual metric. Once again,

the definition of Hausdorff content and measure that we use differs from that in [12] by a

multiplicative constant. As a result, Corollary 3.14 does not resolve their question.

Proof. The pseudometric ρ on X = [0, 1]n canonically induces a metric ρ̃ on the quotient

space X̃ = X/ ∼, where ∼ is the equivalence relation x ∼ x′ if ρ(x, x′) = 0. Let π : X → X̃

be the associated projection. It is straightforward to see that

distρ(Fk, F
′
k) = distρ̃(π(Fk), π(F ′k)) and H∞n,ρ(X) = H∞n,ρ̃(X̃). (3.6)

Moreover, U ⊂ X̃ is open in the metric topology if and only if π−1(U) is open in the topology

on [0, 1]n determined by ρ. The hypothesis of topological compatibility then ensures that π,

when viewed as a map from the Euclidean cube [0, 1]n to the metric space X̃, is continuous.

Corollary 3.13, along with (3.6), gives the desired conclusion.

Corollary 3.13 points us in the following direction: in what generality can one obtain

Euclidean-type lower volume bounds in metric spaces? More precisely, for which metric

spaces (X, d), does one have

H∞n (B(x, r)) & rn (3.7)

for all metric balls B(x, r), with 0 < r ≤ diamX? An immediate consequence of Corollary

3.13 is that (3.7) holds whenever X satisfies the following property.

Definition 3.15. A metric space (X, d) is said to admit fat n-cubes if there is λ ≥ 1 such

that, for each x ∈ X and 0 < r ≤ diamZ, there is a continuous map g : [0, 1]n → B(x, r)

with dist(g(Fk), g(F ′k)) ≥ r/λ for each k.

Notice that this is a weaker variant of admitting fat connecting n-cubes, which was intro-

duced in the previous chapter. In particular, if X admits fat connecting n-cubes, then (3.7)

holds, with constants depending only on the fat connecting n-cube condition. Recall that,

for n = 2, this condition is satisfied when (X, d) is complete, annularly linearly connected,

and linearly locally contractible.
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Euclidean-type lower volume bounds cannot, of course, hold in complete generality: the

existence of “thin necks” or “thin fingers” in X would hinder large volume in certain regions.

Thus, it makes sense to impose connectivity conditions such as annular linear connectivity

or linear local contractibility when addressing such questions. In this context, it turns out

that there is a fairly general result on lower volume bounds, which relies on the following

deep fact proved by S. Semmes.

Theorem 3.16 (Semmes [53, Theorem 1.29(a)]). Let (X, d) be a closed manifold of dimen-

sion n ≥ 2 that is N-doubling and λ-linearly locally contractible. Then for each x ∈ X and

each 0 < r ≤ diamX, there is a surjective map f : X → Sn that is C/r-Lipschitz and is

constant outside of B(x, r/2). Here, C depends only on n, N , and λ.

From this theorem, we immediately obtain a bound of the form in (3.7). Indeed, as f

has non-zero degree, f(B(x, r)) = Sn, so the Lipschitz bounds imply that

H∞n (B(x, r)) ≥
(
r
C

)nH∞n (Sn) & rn,

where the implicit constant depends only on n, N , and λ.

This “Semmes approach” to lower volume bounds is, in a sense, dual to our original

approach, which sought to map a nice space into X, rather than map X into some other

controlled space. The relative ease of building such maps from a general metric space into

Euclidean spaces (for example, as we did in Section 3.2) makes the Semmes method viable.

Still, it would be desirable to make our dual argument work. To this end, let us observe that

it is generally easier to construct controlled maps from simplices into metric spaces than it

is to construct such maps on cubes. In the final section, we therefore take up the topic of

diameter-volume bounds on simplices, and we use these to verify lower volume bounds for

linearly locally contractible metric spaces, in the case that n = 2.
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3.5 Some analogous considerations for simplices

Not surprisingly, the methods we used to prove Theorem 3.5 can be adapted to prove similar

inequalities on other convex polyhedra. In the Riemannian setting, Derrick’s methods were

extended to a much more general framework by M. Gromov, and this includes a diameter-

volume inequality for simplices [26, Section 7]. We will not attempt to build an analogous

framework here, but motivated by the discussion in the previous section, let us touch upon

this problem for simplices.

Let ∆n denote the standard n-dimensional simplex, which we generally view in the form

∆n = conv(e1, . . . , en+1) ⊂ Rn+1.

We will denote the coordinate faces by Tk; these are simply the intersections of ∆n with the

codimension-1 planes where the k-th coordinate is zero. Let U = {Ui}i∈I be an open cover

of ∆n, and let w : I → [0,∞) be a corresponding weight function. We define the diameter

of U , with respect to w, to be

dw(U) = inf


m∑
j=1

w(ij) :
the collection Ui1 , . . . , Uim contains a chain

that connects Tk and Tl for each pair k, l

 .

In this section, we will prove the following theorem.

Theorem 3.17. For an open cover U = {Ui}i∈I of ∆n and an associated weight function w,

we have ∑
i∈I

w(i)n ≥ dw(U)n

n!
.

Moreover if w ≡ 1 is constant, then we have the improved estimate

#U ≥
(
n+ dw(U)− 1

n

)
.

The proof of the “weighted” statement will mimic the proof of Theorem 3.5 very closely;

in fact, we will only indicate what changes must be made for the simplex. The proof of the

“unweighted” statement, however, will more closely mimic the proof of Theorem 3.3. Let us

treat this case first.
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Proof of the unweighted statement. Without loss of generality, we may assume that for each

i ∈ I, there is a point xi ∈ Ui that lies in no other Uj. Indeed, deleting redundant sets in the

cover decreases the left-hand side of the desired inequality without reducing the right hand

side. In particular, we may assume that #U is finite.

Let us define a map f0 : {xi : i ∈ I} → Zn+1, where the k-th component is

πk(f0(xi)) =


distw(Tk, Ui) if Ui ∩ Tk = ∅,

0 if Ui ∩ Tk 6= ∅.

Note that, as w ≡ 1, the combinatorial distance distw(Tk, Ui) is simply the smallest number

of sets Uj in a chain that connects Tk and Ui. For notational ease, let yi = f0(xi). Observe

that the definition of d = dw(U) implies that

π1(yi) + . . .+ πn+1(yi) ≥ d− 1.

Indeed, choosing minimal-length chains from Ui to Tk for each k, and adding in the set Ui,

gives a collection of at most π1(yi) + . . . + πn+1(yi) + 1 sets in U which, for each k and l,

contains a chain that connects Tk and Tl. Let

C = {z ∈ Rn+1 : πk(z) ≥ 0 for all k, and π1(z) + . . .+ πn+1(z) ≥ d− 1}.

Note that C is convex and that yi ∈ C for each i ∈ I.

Now extend f0 to a continuous map on ∆n via a partition of unity {φi}i∈I subordinate

to U = {Ui}i∈I :

f(x) =
∑
i∈I

φi(x)f0(xi) =
∑
i∈I

φi(x)yi, x ∈ ∆n.

Observe that f indeed extends f0 because φj(xi) = 0 for j 6= i. Moreover, f(x) is a convex

combination of the points yi, so that f(x) ∈ C. Also, if x ∈ Tk, then πk(f(x)) = 0. Indeed,

if Ui1 , . . . , Uim are the sets in U that contain x, then f(x) =
∑m

j=1 φij(x)yij . In particular,

πk(f(x)) =
m∑
j=1

φij(x)πk(yij).

The fact that x ∈ Uij ∩ Tk implies that πk(yij) = 0 for each j, so we obtain πk(f(x)) = 0.
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Let p : Rn+1 → Rn be defined by

p(z1, . . . , zn, zn+1) = (z1, . . . , zn),

and consider the composition p ◦ f . We claim that (p ◦ f)(∆n) contains the n-dimensional

simplex

P = {(z1, . . . , zn) ∈ Rn : all zk ≥ 0 and z1 + . . .+ zn ≤ d− 1}.

To see this, let Pk be the face of P with k-th coordinate equal to 0, for 1 ≤ k ≤ n, and let

Pn+1 be the other face, which is defined by

Pn+1 = {(z1, . . . , zn) ∈ Rn : all zk ≥ 0 and z1 + . . .+ zn = d− 1}.

Observe that there is an affine map g : P → ∆n which sends the faces Pk of P to the faces

Tk of ∆n. Also, let Hk denote the closed half-space of Rn determined by Pk that does not

contain P , namely Hk = {(z1, . . . , zn) ∈ Rn : zk ≤ 0} for 1 ≤ k ≤ n and

Hn+1 = {(z1, . . . , zn) ∈ Rn : z1 + . . .+ zn ≥ d− 1}.

As πk(f(x)) = 0 for x ∈ Tk, we immediately have (p ◦ f)(Tk) ⊂ Hk for 1 ≤ k ≤ n. If

x ∈ Tn+1, then πn+1(f(x)) = 0, and as f(x) ∈ C, this guarantees that

π1(f(x)) + . . .+ πn(f(x)) ≥ d− 1.

Consequently, p ◦ f(x) ∈ Hn+1. We can therefore apply Lemma 3.8 to the map p ◦ f ◦ g, and

this gives P ⊂ (p ◦ f)(∆n).

We now claim that if z ∈ P ∩ Zn, then there is i ∈ I for which p ◦ f(xi) = z. By the

previous paragraph, we know that there is x ∈ ∆n with p ◦ f(x) = z. Let Ui1 , . . . , Uim ∈ U

be those sets which contain x, so that

f(x) =
m∑
j=1

φ(x)yij .

The fact that Uij ∩ Uil 6= ∅ implies immediately that

||yij − yil ||∞ ≤ 1
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for each 1 ≤ j, l ≤ m, where ||y||∞ = max{|πk(y)| : 1 ≤ k ≤ n + 1} is the `∞-norm. Thus,

for each k, there is an integer ak such that

πk(yij) ∈ {ak, ak + 1}

for all 1 ≤ j ≤ m, namely, ak = min{πk(yij) : 1 ≤ j ≤ m}. Let

Ik = {j : πk(yij) = ak}

so that Ik 6= ∅ for each k.

As p◦f(x) ∈ Zn, we know that the first n coordinates of f(x) are integers. For 1 ≤ k ≤ n,

we can write

πk(f(x)) =
m∑
j=1

φij(x)πk(yij) =
∑
j∈Ik

φij(x)ak +
∑
j /∈Ik

φij(x)(ak + 1)

= ak +
∑
j /∈Ik

φij(x).

As πk(f(x)) is an integer, we know that ∑
j /∈Ik

φij(x)

is also an integer, necessarily equal to 0 or 1. This can happen only if Ik = ∅ or Ik =

{1, . . . ,m}, but the former is ruled out by the definition of ak. Thus, Ik = {1, . . . ,m} for

each 1 ≤ k ≤ n, which implies that each yij has k-th coordinate ak. In particular,

z = p ◦ f(x) = (a1, . . . , an) = yi1 = p ◦ f(xi1),

as desired.

From the previous claim, we can conclude that #U ≥ #(P ∩Zn). It is now essentially a

combinatorial exercise to show that

#(P ∩ Zn) =

(
n+ d− 1

n

)
.

Indeed, if pr denotes the number of integer lattice points z = (z1, . . . , zn) with

zk ≥ 0 for all k and z1 + . . .+ zn = r,
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then #(P ∩Zn) = p0 + . . .+ pd−1. As pr is the number of ways of placing r indistinguishable

objects into n distinct bins, we have pr =
(
n+r−1
n−1

)
. Thus,

#(P ∩ Zn) =
d−1∑
r=0

(
n+ r − 1

n− 1

)
,

and an easy induction on d shows that this sum is
(
n+d−1
n

)
.

Before moving on to the proof of the weighted statement, let us make a few remarks

about sharpness for the unweighted inequality. Fix an integer m ≥ 1, and let

P = {(x, y) ∈ R2 : x, y ≥ 0 and x+ y ≤ m},

which is affinely equivalent to ∆2. From the preceding proof, we have

#(P ∩ Z2) =

(
2 +m

2

)
=: N.

Let z1, . . . , zN be the points in this lattice. It is easy to construct a corresponding open cover

U = {U1, . . . , UN} of P such that Ui ∩ Z2 = {zi} for each i, the set Ui intersects ∂P if and

only if zi ∈ ∂P , and

Ui ∩ Uj 6= ∅ if and only if zi − zj ∈ {±(1, 0),±(0, 1),±(1,−1)}.

More colloquially, the configuration of these open sets resembles the configuration of bowling

pins. Let d denote the diameter of U , with respect to the constant weight function w ≡ 1.

We claim that d = m+ 1.

To see this, let P1, P2, and P3 denote the edges of P on the x-axis, the y-axis, and the

diagonal, respectively. The inequality d ≤ m + 1 is immediate, as the collection of sets in

U corresponding to the m + 1 lattice points on P1 contains chains connecting each pair of

edges. For the opposite inequality, let C ⊂ U be a collection that contains chains connecting

each pair of edges. If C contains any of the three open sets corresponding to the vertices

of P , then it is clear that #C ≥ m + 1. Indeed, each vertex has combinatorial distance

m + 1 to the opposite edge. Assume, then, that C contains none of these three sets. This
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implies that there is Ui0 ∈ C, along with three chains V k
1 , . . . , V

k
lk
∈ C, for k = 1, 2, 3, that

connect Ui0 to Pk, such that any two of these chains have no sets in common. Here, we allow

V k
1 , . . . , V

k
lk

to be an empty chain, in which case lk = 0; this happens only if zi0 lies on Pk.

If zi0 = (x0, y0), then distw(Ui0 , P1) = y0 and distw(Ui0 , P2) = x0, so l1 ≥ y0 and l2 ≥ x0.

Moreover, distw(Ui0 , P3) = m− x0 − y0, so that l3 ≥ m− x0 − y0. As the three chains have

no sets in common, #C ≥ 1 + l1 + l2 + l3 ≥ m+ 1. This gives d ≥ m+ 1, as claimed.

Hence, for the open cover U of P , we obtain #U =
(

2+m
2

)
=
(

2+d−1
2

)
, so the unweighted

inequality is sharp in dimension 2. In higher dimensions, one can form analogous open covers

of ∆n, but computing the combinatorial diameter is more subtle. Let us instead turn to the

weighted inequality in Theorem 3.17.

Proof of the weighted statement. Fix a cover U = {Ui}i∈I of the simplex ∆n, and let w(i) ≥ 0

be corresponding weights. Again we let d = dw(U) denote the diameter. Observe that if

there is Ui ∈ U that intersects each face Tk of ∆n, then the singleton Ui is a chain that

connects Tk and Tl for each pair k, l. In particular, d ≤ w(i), so that the desired inequality

trivially holds.

We may, therefore, assume that no Ui intersects all of the faces Tk. Moreover, it suffices

to assume that #U is finite, as deleting redundant sets from the cover can only decrease

the left-hand side and increase the right-hand side of the desired inequality. We now run an

argument very similar to the proof of Proposition 3.9. Namely, for each 1 ≤ k ≤ n + 1, we

define

dk(i) =


distw(Tk, Ui) if Ui ∩ Tk = ∅,

0 if Ui ∩ Tk 6= ∅,

and then let

Ri =
n∏
k=1

[dk(i), dk(i) + w(i)]

be an n-dimensional cube with side length w(i). Notice that we do not include the interval

[dn+1(i), dn+1(i) + w(i)], but we will see that the quantity dn+1(i) is still important in our

analysis. By the same reasoning as in Lemmas 3.10 and 3.11, we have that Ri0∩· · ·∩Rim 6= ∅
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whenever Ui0 ∩ · · · ∩ Uim 6= ∅.

Let φ : ∆n → Ner(U) be the map that we introduced in (3.2), built from a partition of

unity subordinate to the cover U . As in the proof of Proposition 3.9, we wish to define a

map from Ner(U) to
⋃
iRi. Using the same notation as before, let S = Ner(U) and let Sb

denote the first barycentric subdivision of S. Each vertex p ∈ Sb can be expressed uniquely

as p = bc(ei0 , . . . , eim) for some simplex conv(ei1 , . . . , eim) in the nerve S. We want this map

to send p to a point zp in the intersection

Ri0 ∩ · · · ∩Rim =

(
n∏
k=1

[dk(i0), dk(i0) + w(i0)]

)
∩ · · · ∩

(
n∏
k=1

[dk(im), dk(im) + w(im)]

)

=
n∏
k=1

[dk(i0), dk(i0) + w(i0)] ∩ · · · ∩ [dk(im), dk(im) + w(im)]

=:
n∏
k=1

[ak, bk].

Let us choose the k-th coordinate of zp in the following way. If Uij ∩ Tk 6= ∅ for each

1 ≤ j ≤ m, then we choose πk(zp) = ak; note that in this case, ak = 0. Otherwise, we choose

πk(zp) = bk. These choices define zp, and we let ψ(p) = zp for vertices p ∈ Sb. Extend ψ to

be affine on each simplex in Sb, so that ψ : Sb → Rn is continuous. By the same reasoning

as in the proof of Proposition 3.9, the image ψ(Sb) is contained in the union
⋃
iRi.

As before, let us view ψ simply as a map on S, and define

f = ψ ◦ φ : ∆n →
⋃
i∈I

Ri,

which is continuous. The same reasoning we used earlier will easily show that if x ∈ Tk then

πk(f(x)) = 0, for each 1 ≤ k ≤ n. Slightly more involved is the following claim.

Lemma 3.18. If x ∈ Tn+1, then π1(f(x)) + . . .+ πn(f(x)) ≥ d.

Proof of the lemma. Let Ui1 , . . . , Uim be the sets in U that contain x ∈ Tn+1, so that

φ(x) =
m∑
j=1

φij(x)eij ,
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and conv(ei1 , . . . , eim) is a simplex in Ner(U). In particular, Uij ∩ Tn+1 6= ∅ for each j, and

this implies that

w(ij) +
n∑
k=1

dk(ij) ≥ d. (3.8)

Indeed, choosing minimal-length chains from Uij to Tk for each 1 ≤ k ≤ n, and adding in

the set Uij , gives a collection of sets for which the sum of corresponding weights is at most

d1(ij) + . . .+ dn(ij) +w(ij), but also which, for each k and l, contains a chain that connects

Tk and Tl.

As φ(x) ∈ conv(ei1 , . . . , eim), we can write (after possibly re-ordering the indices)

φ(x) ∈ conv(p1, . . . , pm),

where pj = bc(ei1 , . . . , eij). As ψ is affine on the simplex conv(p1, . . . , pm), it suffices to show

that

π1(ψ(pj)) + . . .+ πn(ψ(pj)) ≥ d

for each 1 ≤ j ≤ m. To this end, fix 1 ≤ j ≤ m, and for notational ease let p = pj. The way

we chose zp ensures that

πk(ψ(p)) = πk(zp) ∈ [dk(i1), dk(i1) + w(i1)] ∩ · · · ∩ [dk(ij), dk(ij) + w(ij)],

so certainly πk(zp) ≥ max{dk(il) : 1 ≤ l ≤ j}. Moreover, as Ui1 intersects Tn+1 non-trivially,

there must be k0 ∈ {1, . . . , n} for which Ui1 ∩ Tk0 = ∅. For this value of k0, our choice of zp

guarantees that πk0(zp) is the right endpoint of the interval

[dk0(i1), dk0(i1) + w(i1)] ∩ · · · ∩ [dk0(ij), dk0(ij) + w(ij)],

so that πk0(zp) = dk0(il) + w(il) for some 1 ≤ l ≤ j. Thus, we have

n∑
k=1

πk(zp) ≥ (dk0(il) + w(il)) +
∑
k 6=k0

max{dk(it) : 1 ≤ t ≤ j}

≥ w(il) +
n∑
k=1

dk(il) ≥ d,

where the final inequality comes from (3.8).
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As in the proof of the unweighted statement, let

P = {(z1, . . . , zn) ∈ Rn : all zk ≥ 0 and z1 + . . .+ zn ≤ d}.

For 1 ≤ k ≤ n, let Pk denote the codimension-1 face on which the k-th coordinate is 0, and

let

Pn+1 = {(z1, . . . , zn) ∈ Rn : all zk ≥ 0 and z1 + . . .+ zn = d}

be the other codimension-1 face. Let g : P → ∆n be the affine map which sends Pk to Tk for

each 1 ≤ k ≤ n+ 1. Lastly, let Hk = {(z1, . . . , zn) ∈ Rn : zk ≤ 0} for 1 ≤ k ≤ n and

Hn+1 = {(z1, . . . , zn) ∈ Rn : z1 + . . .+ zn ≥ d},

so that H1, . . . , Hn+1 are the closed half-spaces determined by P1, . . . , Pn+1 that do not

contain P .

We know that if x ∈ Tk, with 1 ≤ k ≤ n, then πk(f(x)) = 0, and so f(x) ∈ Hk. Lemma

3.18 implies that if x ∈ Tn+1, then f(x) ∈ Hn+1. Consequently, we can apply Lemma 3.8 to

the map f ◦ g to conclude that

P ⊂ f(∆n) ⊂
⋃
i∈I

Ri.

In this way, we see that

dn

n!
= Vol(P ) ≤

∑
i∈I

Vol(Ri) =
∑
i∈I

w(i)n,

as desired.

As was the case for covers of cubes, discrete length-volume inequalities for covers of

∆n easily translate into similar inequalities for continuous images of ∆n in metric spaces.

Namely, let (X, d) be a metric space and g : ∆n → X be a continuous map. Fix an open cover

U = {Ui}i∈I of g(∆n) and a corresponding weight function w : I → [0,∞). The diameter of

g, with respect to U and w, is

dw(g) = inf


m∑
j=1

w(ij) :
the collection Ui1 , . . . , Uim contains a chain that

connects g(Tk) and g(Tl) for each pair k, l

 .
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The following corollary can be deduced from Theorem 3.17 using the same arguments that

appeared in the proof of Proposition 3.12.

Corollary 3.19. For such g, U , and w, we have∑
i∈I

w(i)n ≥ dw(g)n

n!
.

With this result, we can bound the Hausdorff content of g(∆n), just as we did in Corollary

3.13. More precisely, let

d(g) = inf{diamK : K ⊂ g(∆n) intersects g(Tk) for all 1 ≤ k ≤ n+ 1},

where diamK is the metric diameter of K. Note that this gives some notion of “thickness”

for the map g. The following inequality can be proved using the same arguments found in

the proof of Corollary 3.13; once again, we omit them.

Corollary 3.20. If g : ∆n → X is continuous, then H∞n (g(∆n)) ≥ d(g)n

n!
.

Let us briefly revisit the discussion from the end of the previous section regarding lower

volume bounds in metric spaces. We remarked there that it is often easier to build non-

degenerate maps g : ∆n → X than to build non-degenerate maps g : [0, 1]n → X. Motivated

by Corollary 3.20, we make the following definition, similar to Definition 3.15 from earlier.

Definition 3.21. A metric space (X, d) is said to admit fat n-simplices if there is λ ≥ 1 such

that, for each x ∈ X and each 0 < r ≤ diamX, there is a continuous map g : ∆n → B(x, r)

with d(g) ≥ r/λ.

Corollary 3.20 immediately implies that if (X, d) admits fat n-simplices, then each metric

ball B(x, r), with 0 < r ≤ diamX, has

H∞n (B(x, r)) & rn,

where the implicit constant depends only on n and λ. Using the same techniques that were

used to show that annularly linearly connected and linearly locally contractible metric spaces

admit fat connecting squares, one can verify the following.
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Lemma 3.22. Let (X, d) be a complete metric space that is N-doubling, λ-ALC, and λ-

linearly locally contractible. Then (X, d) admits fat triangles, with constant depending only

on N and λ.

In higher dimensions, the properties of admitting fat cubes or fat simplices is subtle,

and we know very little in this regard. A reasonable place to begin is with Semmes spaces:

closed n-manifolds with a metric that is linearly locally contractible and Ahlfors n-regular.

While these spaces might lack global quasisymmetric parameterizations, they still have strong

analytic properties, including Poincaré inequalities. It would be interesting to know whether

they admit fat n-simplices, and if so, whether the hypothesis of Ahlfors regularity can be

dropped. If the answer to both questions is “yes,” our inequalities in this section would

recover the lower volume bounds we deduced from Semmes’s result, Theorem 3.16.

We finish this section by noting that the linear local contractibility condition guarantees

bounds of this form for closed surfaces. Indeed, a λ-linearly locally contractible closed surface

is λ′-ALC, by Lemma 2.39(iii) from the previous chapter, where λ′ depends only on λ. Thus,

Lemma 3.22 and its preceding discussion gives the following fact.

Proposition 3.23. Let (X, d) be a closed surface that is N-doubling and λ-linearly locally

contractible. Then

H∞2 (B(x, r)) ≥ cr2

for each x ∈ X and each 0 < r ≤ diamZ, where c depends only on N and λ.
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Eur. Math. Soc., Zürich, 2006, pp. 1349–1373.

[3] M. Bonk and T. Foertsch, Asymptotic upper curvature bounds in coarse geometry, Math. Z. 253 (2006),

no. 4, 753–785.

[4] M. Bonk and B. Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent.

Math. 150 (2002), no. 1, 127–183.
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