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Abstract

Three Applications of Gaussian Process Modeling in Evaluation of Longevity

Risk Management

by

James Kenneth Risk

Longevity risk, the risk associated with people living too long, is an emerging

issue in financial markets. Two major factors related to this are with regards to

mortality modeling and pricing of life insurance instruments. We propose use of

Gaussian process regression, a technique recently populuarized in machine learn-

ing, to aid in both of these problems. In particular, we present three works using

Gaussian processes in longevity risk applications. The first is related to pricing,

where Gaussian processes can serve as a surrogate for conditional expectation

needed for Monte Carlo simulations. Second, we investigate value-at-risk calcula-

tions in a related framework, introducing a sequential algorithm allowing Gaussian

processes to search for the quantile. Lastly, we use Gaussian processes as a spatial

model to model mortality rates and improvement.
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Preface
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Chapter 1

Introduction

The past few decades have seen the average life expectancy of the human pop-

ulation increasing more quickly than anticipated. Consequently, longevity risk,

the risk associated with people living longer than expected, is becoming a rising

issue. Financial markets have been impacted significantly, for example, pension

issuers who neglected this increase are now paying more than initially planned

for. There are a number of aspects to the longevity risk problem. First, there

is a need for good mortality models that can provide faithful fits and forecasts,

allowing us to measure and understand potential risks arising in the future and

accurately plan for life expectancy increases. Second, products should be devel-

oped that somehow mitigate this risk, either through the payoff structure itself or

by some sort of longevity swap. Third, risk managers must be able to accurately

price these products and also analyze quantities such as value-at-risk for solvency

requirements. Combining this task with complicated mortality models provides

for a difficult problem.

The first major breakthrough in mortality modeling comes from Lee and Carter

(1992), who proposes a stochastic model for mortality. As a stochastic process

1



Introduction Chapter 1

depending on many factors, stochastic mortality models allow to pinpoint how

sources of risk evolve in both age and time, as well as regards to other factors.

In addition, the stochastic framework allows for generation of a range of future

longevity forecasts, so that analysis (including pricing of mortality related in-

struments) can be done through Monte Carlo simulation. Since the initial work,

there has been a particular interest in building new stochastic models of mortality

and expanding specifically on the work of Lee and Carter (1992). Research has

shown that the initial model from Lee and Carter (1992) is far from exhaustive in

capturing different populations mortality dynamics, since mortality rates differ ac-

cording many factors beyond age and calendar year, such as income, country, and

gender. The need to produce faithful fits and forecasts has yielded a construction

of increasingly complex mortality models for the mortality process µ(t, x), either

as extensions of the work in Lee and Carter (1992) or from new paradigms. The

latest generation of models feature multi-dimensional, nonlinear stochastic state

processes driving µ(·, x), see e.g. Cairns et al. (2009a); Li et al. (2009); Lin et al.

(2013); Barrieu et al. (2012); Fushimi and Kogure (2014). While these models

are effective at calibration and emitting reliable forecasts, they lack tractability in

terms of closed-form formulas. This causes even the most basic pricing problem

to be intractible, requiring numerical approximations or simulations to generate

a price.

In regards to new products, one approach to mitigate risk is through the payoff

structure. For example, types of variable annuities pay the buyer the maximum

between a fixed rate and the growth rate on a mutual fund until time of death.

Compared basic deferred annuities with a strict fixed rate, this approach allows

2
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the seller to give a lower fixed rate due to the potential upside of mutual fund

growth, see Lin and Tan (2003); Qian et al. (2010) for details. If the mutual

fund does poorly, then the seller can simply give a low rate to the annuitant, and

if it does well, then the seller obtains a high rate of return on the mutual fund

investment. In either case, the risk associated with the annuitant living longer

than expected is mitigated compared to a simple fixed rate. Still, this approach

only provides partial minimization in loss due to potential longevity, since the

insurer is still making payments. Alternatively, one would like a type of mortality

swap that eliminates the risk more effectively or even altogether. In some cases,

there have been transactions of complete mortality swaps customized specifically

to a certain plan, see Kessler et al. (2015) for details. However, finding a buyer

and further agreeing on a price is a more difficult matter, since mortality is far

from liquid. Alternatives in the form of securities linked to an index of mortality

do exist (see www.LLMA.org). These give obvious rise to basis risk, since there

is no reason a general mortality index should reflect that of the customers of an

arbitrary insurance company. Assessment of this basis risk is difficult, along with

determining the risk appetites of the seller, see Cairns and El Boukfaoui (2017) for

a discussion. Regardless, some residual risk may be acceptable if the price is rea-

sonable. However, a further difficulty stems from trying to customize a swap to a

specific company, due to widely varying ages, genders, economic class, etc.. In any

case, there is an obvious need for accurate pricing and assessment of all of these

products, though their complicated nature typically require numerical approxi-

mations and/or expensive simulation to price even under simple non-stochastic

mortality models.

3



Introduction Chapter 1

Clearly, the pricing of mortality-linked contracts is becoming increasingly com-

plex, especially when working under a stochastic mortality framework. Effectively,

one is required to feed multi-dimensional stochastic inputs through a “black box”

that eventually yields an approximate net present value of the claim. Many emerg-

ing problems require use of nested simulations which can easily take days to com-

plete. For example, to compute a one year value-at-risk through Monte Carlo, one

needs to generate scenarios (e.g. mortality and market factors) one year into the

future, and then for each scenario, compute the price given the scenario, which

requires further simulation. Finally, one takes a quantile of the aggregate prices

from each initial scenario. To combat this inevitability, practitioners generally

rely on crude numerical approximations and/or inefficient simulation techniques,

greatly reducing accuracy and introducing large bias potential.

This dissertation has three main advances in the problem of longevity risk

analysis. The first two focus on the nested simulation problem, where we in-

troduce the concept of statistical emulation to attack it. The idea of emulation

is to replace the computationally expensive process of running expensive com-

puter code f(z) (for example, Monte Carlo simulations) for each scenario z with a

cheap-to-evaluate surrogate model that statistically predicts f(z) for any z ∈ Rd

based on results from a training dataset. At the heart of emulation is statistical

learning. Namely, the above predictions are based on first obtaining pathwise

estimates yn, n = 1, . . . , N of f(zn), for a set of training locations, called a design

D .
=
(
(z1, y1), . . . , (zN , yN)

)
. Next, one regresses {yn} against {zn} to “learn” the

estimated response surface f̂(·). The regression aspect allows to borrow informa-

tion across different scenarios starting at various sites. This reduces computational

4
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budget compared to the nested simulation step of independently making further

trajectories from each scenario by using the surrogate f̂ to efficiently predict the

value f(z). The conceptual need for emulation is two-fold. First, the emulator is

used for interpolation, i.e. using existing design to make predictions at new sites z.

Second, the emulator smoothes any observation error, for example the byproduct

of Monte Carlo simulation.

Emulation now involves the (i) experimental design step of proposing a design

D that forms the training dataset, and (ii) a learning procedure that uses the

queried results (zn, yn)Nn=1, with the yn being realizations of f(zn), to construct

a fitted response surface f̂(·). We specifically focus on Gaussian processes (GP)

as emulators. As a modeling tool, GPs enjoy several advantages over other meth-

ods. The GP framework is Bayesian, offering closed form formulas for mean and

standard deviation, as well as easy to simulate sample paths for pricing and other

risk analysis. Additionally, it easily handles missing data, as the posterior mean

and covariances can be evaluated anywhere. Similarly, with a reasonably chosen

(or fitted) mean function, the GP provides informative extrapolation results, ac-

counting for uncertainty as it predicts away from fitted data. We also mention

that GPs have easy updating equations when new data is added to the model.

Chapter 4 compares various emulators for pricing. Emulators are useful here

since pricing with Monte Carlo is often done using tower property, either because

the modeler is given a preset collection of future scenarios to price over, or because

there is some change in the model when the deferral period for an annuity ends,

such as mortality refitting. In this case the design D should be somehow accurate

globally, for all potential scenarios to be averaged over. The main conclusion is

5
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that Gaussian processes are most practical in a basic longevity risk pricing setup.

Specifically, they offer a natural framework for handling Monte Carlo noise, as

well as providing a complete posterior distribution useful for risk analysis.

In Chapter 5, we use GPs as emulators for computing capital requirements,

including value-at-risk (VaR) and tail value-at-risk (TVaR). We consider the typi-

cal setup in insurance solvency capital requirement calculations, which is that the

modeler is given a fixed set of future scenarios, and then is required to compute a

quantile (or tail average) of the net present value conditioned over each scenario.

The quantile problem boils down to finding the level of a contour set. This intro-

duces a new dimension of complexity, where one is interested in a specific scenario

(or region of scenarios in the case of TVaR) instead of a desire to be accurate

globally. In particular, the focus of this paper is on how to construct the design

D. The general contour problem already has some work done using Gaussian

processes (Picheny et al. (2010)), but in different contexts and under different as-

sumptions. For example, our evaluator (conditional expectation) is noisy, whereas

it is not in the current literature. Further, current work assumes a known contour

level and seeks the contour set itself, whereas we are interested specifically in the

value of the unknown level. Thus, our contribution is coming up with methods

that can attack the problem of finding an unknown level in the noisy context. In

particular, we introduce sequential design algorithms that search for the tail, with

nature similar to a numerical minimization or maximization problem.

The final contribution is an application of Gaussian processes to mortality

modeling, discussed in Chapter 6. As mentioned, the need for accurate mod-

els is increasing. Recently, focus has been on stochastic mortality models that

6
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are powerful, but have strong parametric assumptions along with no closed form

of distribution. Consequently, they require simulations to project future scenar-

ios. We apply the GP framework as a spatial model directly on mortality data,

with the inputs being age and calendar year. In addition to being nonparam-

teric, Gaussian processes yield a particular benefit over other models in analyzing

mortality improvement, since linear combinations (e.g. finite differences) and even

their derivatives (under mild assumptions) remain Gaussian processes, with closed

form for their mean and covariance functions.

We provide a brief introduction to Gaussian processes as a Bayesian model in

Chapter 2, as this is the basis of the work in all of the papers. This includes the

general problem framework, as well as an example illustrating the posterior prop-

erties of GPs as a modeling tool in addition to showcasing statistical emulation.

Chapter 3 provides an outline of the three works and their abstracts, along with

comments on future work.

7



Chapter 2

Introduction to Gaussian
processes

As a modeling technique, the objective with Gaussian processes is to establish its

Bayesian properties when observing a collection of inputs and outputs called an

design D =
(
(z1, y1), . . . , (zN , yN)

)
. We first introduce GPs as they are typically

defined in a probability theory class.

Remark. Use of Gaussian processes as a modeling technique is also equivalently

called kriging, originating from its initial use in geostatistics (Krige, 1951), where

z represents a geographical location and y is a response, e.g temperature. This

term is used mostly in place of GP in Chapter 4.

2.1 Gaussian Process Preliminaries

Let I be an arbitrary topological index set, and f an unknown function to be

learned. We begin by placing a prior on f as a Gaussian process by specifying

a mean and covariance structure, and use D to learn it to obtain a posterior

Gaussian process f̂ .

8



Introduction to Gaussian processes Chapter 2

Definition 1. A Gaussian process is a collection of random variables (f(zi))i∈I ,

any finite number of which have a joint Gaussian distribution.

The following framework holds for general separable metric spaces (I, d). The

typical case is where I = R+ representing time, or I = Rd for modeling appli-

cations, and in either case we the usual Euclidean metric. We define the mean

function µ(zi) and covariance function C(zi, zj) of f as

µ(zi) = E[f(zi)] (2.1)

C(zi, zj) = E[(f(zi)− µ(zi))(f(zj)− µ(zj)], i, j ∈ I.

Generally, one first specifies a mean and covariance function and is then in-

terested in the resulting Gaussian process. The existence and uniqueness of such

a process is given by the Kolmogorov extension theorem, see Proposition 1.3.7

in Revuz and Yor (2013). In fact, it is enough to specify any symmetric semi-

definite positive function (instead of covariance), as this proposition ensures it is

the covariance function of a unique Gaussian process. After specifying the mean

and covariance, one obtains a GP with multivariate normal finite-dimensional dis-

tributions, i.e. for any finite set z1, . . . , zN , f
.
= (f(z1), . . . , f(zN)) ∈ RN has a

multivariate normal distribution with mean µ
.
= (µ(z1), . . . , µ(zN)) and covari-

ance C
.
= [C(zm, zn)]1≤m,n≤N , written f ∼ MVN(m,C). The next objective

is to construct a conditional GP given a design set D = ((z1, y1), . . . , (zN , yN)).

We assume a general setting where the outputs y1, . . . , yN have additional noise,

i.e. they are realizations of

9
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Y (z) = f(z) + ε(z), (2.2)

where we identify f(·) as the true response surface, and ε(·) is the sampling noise.

We make the assumption that ε(·) is independent and identically distributed across

the domain, and that ε(z) ∼ N(0, τ 2(z)), where τ 2(z) is the sampling variance that

depends on the location z; this normality assumption along with independence

implies that Y is a Gaussian process.

To determine the posterior distribution, first review the conditional multivari-

ate normal distribution. Let X ∼MVN(µ,Σ), and split it into two parts:

X =

X1

X2

 , µ =

µ1

µ2

 , Σ =

Σ11 Σ12

Σ21 Σ22

 , (2.3)

then the conditional distribution of X2 given X1 is also multivariate normal, with

X2|X1 ∼MVN(µ2 + Σ21Σ
−1
11 (X1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12). (2.4)

Now look at f and y = (y1, . . . , yN) from Equation (2.2). Note that the

equation implies y|f ∼ MVN(f ,∆), where ∆ is the diagonal matrix for ε(·)

with entries τ 2(z1), . . . , τ 2(zN). It also implies that

f
y

 ∼MVN


µ
µ

 ,
C C

C C + ∆


 . (2.5)

10
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Hence, the posterior distribution of f given the design D (equivalent to con-

ditioning on y since the zn are assumed to be known) is obtained by Equation

(2.4):

f |D ∼MVN(µ+ C(C + ∆)−1(y − µ),C(C + ∆−1)C). (2.6)

The next objective is to obtain the predictive distribution. If the test set is

z′ = (z′1, . . . , z′M), and f ′ = (f(z′1), . . . , f(z′M)), then

f ′
y

 ∼MVN


µ′
µ

 ,
Cz′z′ Cz′z

Czz′ C + ∆


 , (2.7)

where Cz′z′ is the covariance matrix of f ′ over z′, Czz′ is an N ×M matrix with

(i, j)-entry C(zi, z′j) and Cz′z = CT
zz′ . Then the conditioning Equation (2.4)

implies the posterior predictive distribution

f ′|D ∼MVN(µ′ +Cz′z(C + ∆)−1(y − µ′),Cz′z′ −Cz′z(C + ∆)−1Czz′ (2.8)

Thus, we have a closed form for the predictive distribution at any set of inputs

z′. Note that the Kolmogorov extension theorem implies existence of a unique

Gaussian process governed by these means and covariances; we define it as f̂(·) ≡

f̂(·|D). Often used in the sequel is the case where the input is univariate, in which

case we write 
m(z)

.
= µ(z) + c(z)T (C + ∆)−1(y − µ);

s2(z, z′)
.
= C(z, z′)− c(z)T (C + ∆)−1c(z′),

(2.9)

11
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These predictive equations are crucial in GP modeling, and they appear in later

chapters in Equations (4.23), (5.13) and (6.6), with respective modifications for

their specific framework.

2.1.1 Covariance kernels

The covariance function C(·, ·) is a crucial part of a GP model. In practice,

one usually considers spatially stationary or isotropic kernels,

C(zi, zj) ≡ c(zi − zj) = σ2

d∏
n=1

g((zi − zj)n; θn), θn > 0 (2.10)

reducing to the one-dimensional base kernel g, where (zi − zj)n = dn(zi, zj) =

dn(0, zi − zj) is the nth coordinate distance, in this case translation invariant.

The two most common choices for GP modeling are the Matern-ν kernel and

Gaussian kernel

gm-ν(h; θ) =
21−ν

Γ(ν)

(√
2ν
h

θ

)ν
Kν

(√
2ν
h

θ

)
(2.11)

ggau(h; θ) = exp

(
− h2

2θ2

)
, h ≥ 0 (2.12)

where Γ is the gamma function, Kν is the modified Bessel function of the second

kind, and ν is a non-negative parameter. Typically, one chooses ν = 5/2, in which

case

gm-5/2(h; θ) =

(
1 +

√
5h

θ
+

5h2

3θ2

)
exp

(
−
√

5h

θ

)
. (2.13)

The choice of covariance function determines many properties of the resulting

GP, including smoothness of their sample paths. For example, GPs with Matern-
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ν covariance kernels are kth order differentiable (in mean-square) if and only

if ν > k. GPs with Gaussian covariance kernels as in Equation (2.12) possess

derivatives of all orders, and are thus very smooth (Rasmussen and Williams

(2006)).

The hyper-parameters θj are called characteristic length-scales and can be

informally viewed as roughly the distance you move in the input space before the

response function can change significantly (Rasmussen and Williams, 2006, Ch

2). Constructing a GP requires picking a kernel family and the hyper-parameters

σj, θj.

Section 2.5 showcases an example comparing the Matern 5/2 kernel with the

Gaussian kernel. In general, the posterior equations do not change much for well

behaved data, as long as the covariance kernels produce GPs with reasonably

similar properties, such as smoothness of sample paths.

2.1.2 Mean Function

The case where a prior mean function µ is prespecified is also called simple

kriging. One can also specify a parametric trend function of the form µ(z) =

β0 +
∑p

j=1 βjhj(z) where βj are constants to be estimated, and hj(·) are given

basis functions, see Section 2.3.1 for details. This framework is called universal

kriging, with the case µ(z) = β0 called ordinary kriging. To analyze the impact

of the mean function on the posterior distribution, look at Equation (2.9). As z

deviates in space from the design, the covariances decrease, so that each entry of

c(z)→ 0, resulting in the second term of m(z) approaching zero. In other words,

the GP reverts to its prior mean as it leaves the design space. On the other hand,
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for large covariances, the second term dominates, so that the nearby trend terms

end up canceling with µ(z). Thus, for prediction, the trend function has little

impact in sample and is mostly important for extrapolation.

Although for prediction the mean function is mostly desired for extrapolation,

a reasonably accurate mean function is wanted for hyperparameter fitting, since

the θ parameters influence spatial dependence, something that detrending would

affect.

2.2 Representer Theorem

One can obtain the posterior mean in Equation (2.9) by means of the repre-

senter theorem (Kimeldorf and Wahba (1971)) in the general theory of function

regularization with reproducing kernel Hilbert spaces (RKHS). First, begin with a

RKHS H of real functions g defined by the kernel C, i.e. for every z, C(z, z′) ∈ H

and 〈g(·), C(·, z)〉H = g(z). The Moore-Aronszajn theorem ensures the RKHS is

uniquely defined by C. Here, C can be any positive definite kernel, but for our

purposes it is the covariance function of a GP. The representer theorem states

that for the regularizing functional

J [g] =
λ

2
‖g‖2

H +Q(y,g), (2.14)

the minimizer g ∈ H has form g(z) =
∑N

n=1 α
nC(z, zn). Here, y = (y1, . . . , yN),

g = (g(z1), . . . , g(zn)), and λ is a scaling parameter trading off the two terms. The

first term ‖g‖2
H is called the regularizer and represents smoothness assumptions

on g, and Q(y,g) is a data-fit term assessing the prediction quality g(zn) for the
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observed yn. For the specific form

Q(y,g) =
1

2τ 2

N∑
n=1

(yn − g(zn))2

of the negative log-likelihood of a Gaussian distribution with constant variance

τ 2, we show that the minimizer of Equation (2.14) is the posterior mean of

a Gaussian process with covariance kernel C. This follows by setting g(z) =∑N
n=1 α

nC(z, zn) (the solution by the representer theorem) and using the RKHS

property 〈C(·, zm), C(·, zn)〉H = C(zm, zn). Then plugging into Equation (2.14)

shows

J [α] =
1

2
αTCα+

1

2τ 2
|y−Cα|2

=
1

2
αT (C +

1

τ 2
C2)α− 1

τ 2
yTCα+

1

2τ 2
yTy.

By differentiating to minimize J , the resulting minimizer for α is α = (C +

τ 2I)−1y, so that g(z) = c(z)T (C + τ 2I)−1y, the same as the posterior mean in

Equation (2.9) with constant noise variance τ 2.

While this does not yield the full Gaussian likelihood, it does make a con-

nection with other modeling techniques that lie in the RKHS framework, splines

being one example, which are used as a comparitive emulator in Chapter 4.

2.3 Hyperparameter Estimation

The hyperparameter family depends on the mean and covariance functions,

as well as the noise variances τ 2(z1), . . . τ 2(zN). For the remainder of the paper,
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we consider the stationary kernels in Equation (2.10), so that the hyperparame-

ters include σ2 and θ1, . . . , θd. If it is reasonable to believe the noise variance is

homoscedastic, then one can define the new hyperparameter τ 2 ≡ τ 2(zn), reduc-

ing to a single noise variance. In this case, τ 2 is called the nugget effect. Two

common estimation methods of the hyperparameters are maximum likelihood, us-

ing the likelihood function based on the posterior distributions described through

Equation (2.9), and penalized MLE. Either case leads to a nonlinear optimization

problem to fit θj and process variance σ2. We utilize the R packages DiceKriging

Roustant et al. (2012a) and hetGP Binois et al. (2016) that allow fitting of kriging

models for several kernel families by Maximum Likelihood.

When τ 2(z) is heteroskedastic, the estimation problem becomes more difficult.

Typically, the surface τ 2(z) is estimated by some other means while the remain-

ing hyperparameters are fitted via MLE. Binois et al. (2016) discusses a way of

simultaneously modeling the surface τ 2(z) along with the GP. This is related to

stochastic kriging, discussed in Section 2.4. An alternative way is to utilize prior

knowledge, for example use of the binomial distribution as noise in the mortality

application is discussed near the end of Section 6.3.2.

2.3.1 Mean Function Estimation

One can specify a parametric trend function of the form µ(z) = β0+
∑p

j=1 βjhj(z)

where βj are constants to be estimated, and hj(·) are given basis functions. In

this case, the coefficient vector β = (β1, . . . , βp)
T is estimated simultaneously with

the Gaussian process component f̂(·). Basis function choice is determined either

through prior knowledge about f , or through data visualization.
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Define h(z)
.
= (h1(z), . . . , hp(z)) and H

.
=
(
h(z1), . . . ,h(zN)

)
, then poste-

rior mean and variance at location z with estimated trend function included are

Roustant et al. (2012a)


mh(z) = h(z)T β̂ + c(z)TC−1(y −Hβ̂);

s2
h(z) = s2(z) +

(
h(z)T − c(z)TC−1H

)T (
HTC−1H

)−1 (
h(z)T − c(z)TC−1H

)
,

(2.15)

where the best linear estimator of the trend coefficients β is given by the usual

linear regression formula β̂
.
=
(
HTC−1H

)−1
HTC−1y.

The combination of trend and GPs offers an attractive framework for fitting

a response surface. The trend component allows to incorporate domain knowl-

edge about the response, while the GP component offers a flexible nonparametric

correction.

Remark. The case where a prior µ is specified is called simple kriging ; when it is

estimated by means of this section it is named universal kriging, with the subcase

µ(z) = β0 called ordinary kriging.

2.3.2 Bayesian GP and MCMC

One can also consider a fully Bayesian GP model, where the mean and/or

covariance parameters have a prior distribution, see Williams and Rasmussen

(2006). Bayesian GP implies that there is additional, intrinsic uncertainty about

C which is propagated through to the predictive distributions f̂ . Starting from

the hyper-prior p(Θ), the posterior distribution of the hyperparameters is obtained
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via p(Θ|D) ∝ p(Θ)p(y|z,Θ). This hierarchical posterior distribution is typically

not a GP itself. Practically this means that one draws realizations Θm, m =

1, 2, . . . from the posterior hyperparameters and then applies (2.9) to each draw

to compute m(z|Θm), C(z, z′|Θm).

In general, sampling from p(Θ|D) requires approximate techniques such as

Markov Chain Monte Carlo. The output of MCMC is a sequence Θ1,Θ2, . . . ,ΘM

of Θ values which can be used as an empirical approximation for the marginal

distribution of Θ, namely p(Θ|y, z). From this sequence, it possible to calculate

means and modes of the model parameters or use the Θ sequence directly to

conduct posterior predictive inference. A hybrid approach first specifies hyperpa-

rameter priors but then simply uses the MAP estimates of Θ for prediction (thus

bypassing the computationally intensive MCMC steps). This idea is motivated by

the observation that under a vague prior p(Θ) ∝ 1, the posterior of Θ is propor-

tional to the likelihood, so that the MAP estimator Θ̂ which optimizes p(Θ|y, z)

becomes identical to the MLE maximizer above.

We note that standard MCMC techniques are not well suited for GP as the

components of Θ tend to be highly correlated resulting in slow convergence of the

MCMC chains. One solution is to use Hamiltonian Monte Carlo (HMC) (Brooks

et al., 2011) which is better equipped for managing correlated parameters.

It is also possible to attach a prior to the mean function and/or covariance

structure itself. This has recently been done in functional data analysis: Yang

et al. (2017) and Yang et al. (2016) apply an Inverse-Wishart Process (IWP) to the

covariance function, and a separate GP to the mean function (sharing the same

IWP covariance prior). The IWP has marginal Inverse-Wishart distributions, a
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distribution family over matrices. Fitting is done using an MCMC algorithm; see

Yang et al. (2016) for details. The flexibility of this approach has the tradeoff

of being relatively expensive compared to non-Bayesian techniques. Yang et al.

(2017) proposes a numerical speed-up for when the number of grid points N is

large.

2.4 Emulation and Stochastic Kriging

Recall that the goal in emulation is to learn an unknown function f by eval-

uating it at various points and using these observations to predict nearby. GPs

work well in this framework since they are driven by spatial correlation as seen

in the posterior Equations (2.9). Often in emulation, the observations are noisy

(τ 2 > 0), for example in Monte Carlo simulations. In this case, one usually repeats

observations, i.e. Equation (2.2) is replicated rn for the same location zn to obtain

yn,1, . . . , yn,r
n
. Here, the output for the design at location zn is ȳn =

∑rn

i=1 y
n,i

with (Monte Carlo) observation noise τ 2(zn)/rn. Under this framework, use of the

GP posterior equations (2.9) is called stochastic kriging (Ankenman et al. (2010)).

Note that in the typical case of τ 2(z) being unknown and heteroscedastic, one can

now estimate it by a sample variance estimator

τ̂ 2(zn) =
1

rn − 1

rn∑
i=1

(yn,i − ȳn)2. (2.16)

When using τ̂ 2(zn) in replace of τ 2(zn), the resulting posterior mean in Equation

(2.9) is still unbiased, as long as rn > 1, as shown in Ankenman et al. (2010) (they

recommend rn ≥ 10). Still, this has the disadvantage of τ 2(z) being unable to be
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estimated at locations where Equation (2.2) has not been ran and for low values

of rn. In the same paper, Ankenman et al. (2010) propose a separately fitted GP

for the surface τ 2 trained on the pairs (zn, τ̂ 2(zn))Nn=1 to predict and smooth a

surface for τ 2(z).

Binois et al. (2016) provides an improvement over this technique, provid-

ing an estimated noise surface based simply on the total collection of outputs

((yn,i)r
n

i=1)Nn=1 together with their inputs (zn)Nn=1. In addition to providing noise

predictions at unknown locations, this also has the advantage of not requiring

rn > 1, since it directly links together the collection of outputs rather than mod-

eling simply from sample variance point estimates. GP modeling with this is

available in the R package hetGP Binois et al. (2016).

2.5 Emulation Example with GPs

Suppose that we have an unknown function f(x) = sin(x), x ∈ [0, 6]. Given

a fixed grid Z = (0.2, 0.4, . . . , 5.6, 5.8), suppose we can obtain realizations of the

noisy process Y (z) in Equation (2.2), where ε(z) ∼ N(0, z/10), so that τ 2(z) =

z/10. Note that the scenario set size is |Z| = 29. Let us try to answer a few

questions:

1. What does f look like?

2. What is f(2π) (out of the design space)? How certain is the answer?

3. Where does f attain its minimum out of all points on the grid?

20



Introduction to Gaussian processes Chapter 2

We answer these questions by simulating Y (z) and fitting a GP f̂ to the

design D = ((z1, y1), . . . , (zN , yN)). For simplicity, we assume τ 2(z) is known,

and that we simulate by taking r = 1 realization of Y (z) for each z ∈ Z with

fitted mean function µ(z) = β0. We use both the Matern 5/2 and Gaussian

kernels for comparison. To determine what the true f(·) looks like, the GP offers

two approaches: (i) the posterior mean m(z) of f̂(z) from Equation (2.9) is also

the posterior mode, so it provides the most likely function of what f(·) should

look like, or (ii) one can simulate the GP to obtain sample realizations of f̂(z).

Similarly, we can estimate f(2π) by m(2π), the posterior mean of f̂(2π) and obtain

a confidence interval using the posterior standard deviation s(2π) from Equation

(2.9). This all is illustrated in Figure 2.1. The confidence bands can be obtained

through the typical formula for a normal random variable, m(z)± 1.96s(z). The

resulting Matern GP has hyperparameter estimates of β̂0 = −0.0245, θ̂ = 1.6770

and σ̂2 = 0.5451, and the Gaussian kernel GP has β̂0 = −0.0326, θ̂ = 1.4841 and

σ̂2 = 0.5656. In general, Gaussian kernel lengthscales are less than that of Matern

ones because of how the kernel is parameterized.

First, note that the kernel has very little impact on the posterior mean and

standard deviation; we see the Matern kernel has slightly wider confidence bands

on the left side, but otherwise the posterior distribution is nearly identical between

the two. We do, however, observe the Gaussian realizations are smoother than

the Matern ones, as mentioned in Section 2.1.1. To answer the questions, we

see that despite heavy influence from the noise, the posterior mean reasonably

matches f(z) = sin(z) in shape, and that the confidence bands contain the true

function almost completely. Also note that the widening confidence bands reflect
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Figure 2.1: Plots of the realizations y from Y (z), z ∈ Z and posterior mean
and standard deviation functions of the resulting GP f̂ , as well as simulated
realizations of f̂ . Compared are the Matern 5/2 and Gaussian covariance ker-
nels.

the increasing value of τ 2(z). We obtain for the Matern kernel m(2π) = −0.4528

and s(2π) = 0.4965 (for the Gaussian kernel, m(2π) = −0.458 and s(2π) =

0.4812). The high posterior standard deviation is due to τ 2(z) being relatively

large at the right end of the grid. The figure shows the mean function declining

at the right edge, this is due to the intercept only mean function µ(z) = β0. As

GPs revert to their mean function asymptotically, they are not useful for deep

extrapolation. Regardless, the uncertainty is reflected in the large value of s(2π),

so that the true value is contained within one standard deviation of the posterior

mean.

To answer the third question, the minimum of m(z), z ∈ Z (i.e. over the grid)

is attained at z = 5, while the true minimum of sin(z), z ∈ Z is at z = 4.6. To

better motivate the design aspect of emulation (and Chapter 5), let us investigate

a way to more accurately determine the minimum. Given a remaining budget of

Ntot = 1000 replications, what is the optimal way to allocate them among z ∈ Z

to best find the minimum? Here, a naive uniform spreading among all z ∈ Z is ill
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advised, since f̂(z) already has an idea of where the minimum lies, combined with

uncertainty estimates. This problem is analyzed in Liu and Staum (2010) and

Picheny et al. (2010); these approaches along with other sophisticated methods

are discussed in Chapter 5. To provide a quick intuitive approach, consider the

simple design algorithm consisting of K = 250 rounds that, at each step, allocates

r = 1 replication to the z ∈ Z yielding the smallest four values of m(z). The

idea behind this scheme is to reduce uncertainty by adding replications only at

the important area, but to also search beyond what the current guess for the

minimum is, in case it is incorrect. The spatial nature of the GP ensures that

no information from the simulations are wasted. Denote k as the current round

of the procedure, and attach subscripts mk(z) and sk(z) for the GP mean and

standard deviation for round k, with the convention that k = 0 means after the

initialization done above. Figure 2.2 shows the analogue of Figure 2.1 for the

Matern kernel when k = 25 and k = 250. Note that Figure 2.1 compares this

with k = 0.

The obvious change is tightening of the confidence bands around the minimum

region. There is obvious convergence occuring, withm0(4.6) = −0.9258,m25(4.6) =

−0.9675,m250(4.6) = −0.9734, and s0(4.6) = 0.2183, s25(4.6) = 0.07772, s250(4.6) =

0.02799. Surprisingly, after k = 25 rounds, the GP correctly identified the mini-

mum as z = 4.6, but at k = 250 the value m25(4.8) = −0.9895 is smaller. Still,

the GP will asymptotically correct itself as Ntot →∞.

Despite performing well, this algorithm was designed simply from intuition and

has many flaws. For example, it will fail if it gets stuck on a local minimum for a

non-monotonic function. Additionally, there is no reason 4 is the correct number
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Figure 2.2: Plots of the posterior mean and standard deviation functions of
the resulting GP f̂ (with Matern 5/2 covariance kernel), as well as simulated
realizations of f̂ , after k = 25 and k = 250 rounds of the sequential method
attaching four replications to the locations with lowest posterior mean. The
result for k = 0 is in Figure 2.1.

to choose; a more optimal value could be calculated based on some criteria such as

MSE reducing. Specifically, a criteria that weights uncertainty as well as closeness

to a minimum is attractive; this could even eliminate the issue of getting stuck at

local minima.

To connect this example to the remainder of the paper, Chapter 5 focuses

specifically on this problem for the case where |Z| = 104 (here it was |Z| = 29) and

z ∈ Rd, d > 1; specifically, we analyze two case studies where d = 2 and d = 6. In

that chapter, the quantity of interest is the α−quantile and α−tail average rather

than minimum. It discusses more deeply the algortihms involved, for example,

Section 5.4.1 introduces an algorithm that sequentially chooses points to reduce a

weighted mean squared error criterion. This example can also be related to how

pricing is handled in Chapter 4: suppose a claim has payoff f(U) = sin(U) where

U ∼uniform(0, 6), but that f is computationally expensive to evaluate. Pricing

through Monte Carlo averages f(U) over simulated realizations of U . Through
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the emulation framework, the resulting GP f̂ can be used in place of f , lessening

the computaitonal burden. For example, for a fixed time budget, one can produce

many more realizations of U than under the original setup where it is evaluated

under the expensive f , reducing Monte Carlo variance.
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Outline

We now present the three papers. The first is Statistical Emulators for Pricing and

Hedging Longevity Risk Products, given in Chapter 4, joint work with Mike Lud-

kovski, published in IME in May 2016 (Risk and Ludkovski (2016)). We propose

the use of statistical emulators for the purpose of analyzing mortality-linked con-

tracts in stochastic mortality models. Such models typically require (nested) eval-

uation of expected values of nonlinear functionals of multi-dimensional stochastic

processes. Except in the simplest cases, no closed-form expressions are available,

necessitating numerical approximation. To complement various analytic approxi-

mations, we advocate the use of modern statistical tools from machine learning to

generate a flexible, non-parametric surrogate for the true mappings. This method

allows performance guarantees regarding approximation accuracy and removes the

need for nested simulation. We illustrate our approach with case studies involv-

ing (i) a Lee-Carter model with mortality shocks; (ii) index-based static hedging

with longevity basis risk; (iii) a Cairns-Blake-Dowd stochastic survival probability

model; (iv) variable annuities under stochastic interest rate and mortality.

The second is Sequential Design Algorithms for Estimating Value-At-Risk for
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Longevity Risk, given in Chapter 5, which is joint work with Mike Ludkovski soon

to be submitted for publication. Motivated by VaR calculations for longevity

risk, the work is similar to Risk and Ludkovski (2016) with the focus being on

the design itself. In particular, the problem of efficient level set estimation in

noisy computer experiments is largely unexplored. This problem arises often in

the case of nested Monte Carlo simulation, an important example being capital

requirement calculations for banking and insurance. Practitioners are forced to

rely on crude numerical approximations and/or inefficient simulation techniques,

greatly reducing accuracy and introducing large bias potential. The goal of this

paper is to analyze methods that efficiently estimate the level of a level set to

arbitrary degrees of accuracy. Using Gaussian Process (GP) regression, the end

result offers rich uncertainty quantification. In particular, we improve upon several

existing level set estimation techniques in the literature that suffer in various

regimes of the noisy case. We also extend these methods to the case of analyzing

the tail average of a contour. Our improvements are compared in two case studies

along with existing techniques and other benchmarks in two case studies. The

first is a two-dimensional example involving call options, and the second a six-

dimensional example of longevity risk for a life annuity under stochastic interest

rate and mortality.

Lastly, we present Gaussian Process Models for Mortality Rates and Improve-

ment Factors, given in Chapter 6, which is joint work with Mike Ludkovski and

Howard Zail, and was submitted to ASTIN Bulletin in April 2017. We develop

a Gaussian process framework for modeling mortality rates and mortality im-

provement factors. GP regression is a nonparametric, data-driven approach for
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determining the spatial dependence in mortality rates and jointly smoothing raw

rates across dimensions, such as calendar year and age. The GP model quanti-

fies uncertainty associated with smoothed historical experience and generates full

stochastic trajectories for out-of-sample forecasts. Our framework is well suited

for updating projections when newly available data arrives, and for dealing with

“edge” issues where credibility is lower. We present a detailed analysis of Gaus-

sian process model performance for US mortality experience based on the CDC

datasets. We investigate the interaction between mean and residual modeling,

Bayesian and non-Bayesian GP methodologies, accuracy of in-sample and out-

of-sample forecasting, and stability of model parameters. We also document the

general decline, along with strong age-dependency, in mortality improvement fac-

tors over the past few years, contrasting our findings with the Society of Actuaries

(“SOA”) MP-2014 and -2015 models that do not fully reflect these recent trends.

3.1 Notation

A best attempt was made to unify the notation in the three papers. Due to the

different nature of the articles, there are some cases where this was not possible.

For the most part, the notation is intuitive and self-explanatory. Regardless, we

mention here a few particular differences:

1. Chapter 4 uses Ntr as the total simulation budget, with Ntr,1 being the

design size and Ntr,2 being the (fixed) simulation budget per scenario in the

design. Chapter 5 uses Ntot as the total simulation budget, with N being

the design size and rn being the number of replications for each scenario
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zn ∈ Z.

2. Chapter 4 uses a superscript for indexing, e.g. z(n) instead of zn which the

other two chapters use. Chapter 5 uses the parentheses notation to indicate

order statistics.

3. Chapter 5 uses r for replications, and β for interest rate; Chapter 4 uses r

as interest rate, and along with Chapter 6 it uses β as parameters in mean

functions.

4. Chapter 4 uses parentheses to denote stochastic process indexing, e.g. Z(t)

versus Zt; the others use the subscript.

5. Chapter 6 uses µ as the mortality rate; the others use it as the mean function.

6. Chapter 6 presents the material in a slightly different setting, often vector-

izing things through boldface.

7. Chapter 6 uses x as the input, the other chapters use z.

8. Chapter 6 uses i, j as indexing for summations and sequences, the other

chapters use m,n.

3.2 Outlook

Moving forward, there are many directions for future research:

• Level estimation in a noisy setting is still greatly untouched, as our work is

the first major paper analyzing it. Accurate noise estimation is crucial in
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this setting, as it is the key driver in predictive uncertainty. A clear path

moving forward is to find new acquisition functions based on noise surface

modeling in the new work Binois et al. (2016).

• GP applications have a natural fit in numerical problems involving back-

ward stochastic differential equations (BSDEs). This can be related to op-

timal stopping (Gramacy and Ludkovski (2015)) (using relation between

optimal stopping and reflected BSDEs) or to general numerical problems.

For general numerical problems, the most referenced paper is given by Go-

bet et al. (2005), “A regression-based Monte Carlo method to solve back-

ward stochastic differential equations.” Both terms “regression-based” and

“Monte Carlo” invite GPs to make an entrance.

• The mortality paper has several potential extensions. For example, we can

build on our current work by considering multiple populations, borrowing

information from other countries and genders to unify age and period ef-

fects, simultaneously modeling static effects from the individual countries.

In addition, a common case in industry arises in Cairns et al. (2011b) who

use a Bayesian model to model two populations where one is a subpopula-

tion (e.g. general public versus insured individuals). A separate direction to

analyze mortality by cause, e.g. cancer versus heart disease versus acciden-

tal death. Here, there is an obvious relation of these factors with time, and

breaking mortality by cause will not only produce more detailed analysis,

but also provide insight into issues in the original model’s assumptions.

• Mortality improvement is of crucial importance in longevity risk and is
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defined as the change in mortality in time. In the current paper, the

GP derivative is only briefly mentioned, and it has several elegant quali-

ties. The second derivative for example is related to mortality acceleration,

i.e. how quickly improvement factors change. This is extremely important

in longevity risk analysis, it and was barely touched upon in the paper. A

related idea is to add the constraint of monotonicity to the model, a quality

that should hold in age. Since the GP and its derivative are jointly Gaussian,

this is easily handled by conditioning on the age derivative to be positive.
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Chapter 4

Statistical Emulators for Pricing
and Hedging Longevity Risk
Products

4.1 Introduction

Longevity risk has emerged as a key research topic in the past two decades.

Since the seminal work of Lee and Carter (1992) there has been a particular in-

terest in building stochastic models of mortality. Stochastic mortality allows for

generation of a range of future longevity forecasts, and permits the modeler to

pinpoint sources of randomness, so as to better quantify respective risk. Longevity

modeling calls for a marriage between the statistical problem of calibration, i.e. fit-

ting to past mortality data, and the financial problem of pricing and hedging future

longevity risk. At its core, the latter problem reduces to computing expected val-

ues of certain functionals of the underlying stochastic processes. For example, the

survival probability for t years for an individual currently aged x can be expressed
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as a functional

P (t, x) = E
[
exp

(
−
∫ t

0

µ(s, x+ s) ds

)]
, (4.1)

where µ(s, x + s) is the force of mortality at date s for an individual aged x + s.

In the stochastic mortality paradigm µ(s, x+s) is random for s > 0, and so one is

necessarily confronted with the need to evaluate the corresponding expectations

on the right-hand-side of (4.1).

The past decade has witnessed a strong trend towards complexity in both com-

ponents of (4.1). On the one hand, driven by the desire to provide faithful fits

(and forecasts) to existing mortality data, increasingly complex mortality models

for µ(t, x) have been proposed. The latest generation of models feature multi-

dimensional, nonlinear stochastic state processes driving µ(·, x), see e.g. Cairns

et al. (2009a); Li et al. (2009); Lin et al. (2013); Barrieu et al. (2012); Fushimi

and Kogure (2014). These models are effective at calibration and emitting in-

formative forecasts, but lack tractability in terms of closed-form formulas. On

the other hand, sophisticated insurance products, such as variable annuities or

longevity swap derivatives make valuation and hedging highly nontrivial, and

typically call for numerical approaches, as closed-form formulas are not available,

see e.g. Bacinello et al. (2011); Qian et al. (2010). Taken together, pricing of

mortality-linked contracts becomes a complex system, feeding multi-dimensional

stochastic inputs through a “black box” that eventually outputs net present value

of the claim.

These developments have created a tension between the complexity of mor-
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tality models that do not admit explicit computations and the need to price,

hedge and risk manage complicated contracts based on such models. Due to

this challenge, there remains a gap between the academic mortality modeling

and the implemented models by the longevity risk practitioners. Because the

aforementioned valuation black box is analytically intractable, there is a grow-

ing reliance on Monte Carlo simulation tools, which in turn is accompanied by

exploding computational needs. For example, many emerging problems require

nested simulations which can easily take days to complete. Similarly, many port-

folios contain millions of heterogeneous products (see, e.g. Gan and Lin (2015))

that must be accurately priced and managed. In this article we propose to ap-

ply modern statistical methods to address this issue. Our approach is to bridge

between the mortality modeling and the desired pricing/hedging needs through

an intermediate statistical emulator. The emulator provides a computationally

efficient, high-fidelity surrogate to the actual mortality model. Moreover, the em-

ulator converts a calibrated opaque mortality model into a user-friendly valuation

“app”. The resulting toolbox allows a plug-and-play strategy, so that the end

user who is in charge of pricing/risk-management can straightforwardly swap one

mortality model for another, or one set of mortality parameters for an alternative.

This modular approach allows a flexible solution to robustify the model-based

longevity risk by facilitating comparisons of different longevity dynamics and dif-

ferent assumptions.

Use of emulators is a natural solution to handle complex underlying stochastic

simulators and has become commonplace in the simulation and machine learning

communities Santner et al. (2003); Kleijnen (2007). Below we propose to apply
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such statistical learning within the novel context of insurance applications. In

contrast to traditional (generalized) linear models, emulation calls for fully non-

parametric models, which are less familiar to actuaries. To fix ideas, in this article

we pursue the problem of pricing/hedging vanilla life annuities, a foundational task

in life insurance and pension plan management. Except in the simplest settings,

there are no explicit formulas for annuity values and consequently approximation

techniques are already commonplace. Looking more broadly, our method would

also be pertinent for computing risk measures, such as Expected Shortfall for

longevity products, and in other actuarial contexts, see Section 4.8.

The paper is organized as follows: In Section 4.2 we introduce the emula-

tion problem and review the mathematical framework of stochastic mortality.

Section 4.3 discusses the construction of emulators, including spline and kriging

surrogates, as well as generation of training designs and simulation budgeting.

The second half of the paper then presents four extended case studies on several

stochastic mortality models that have been put forth in the literature. In Section

4.4 we examine a Lee-Carter model with mortality shocks that was proposed by

Chen and Cox Chen and Cox (2009); Section 4.5 studies approximation of hedge

portfolio values in a two-population model based on the recent work by Cairns et

al Cairns et al. (2014). Section 4.6 considers valuation of deferred annuities under

a Cairns-Blake-Dowd (CBD) Cairns et al. (2006) mortality framework. Lastly, in

Section 4.7 we consider variable annuities and their future distributions for risk

measure analysis, using stochastic interest rate and the Lee-Carter framework.
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4.2 Emulation Objective

We consider a stochastic system with Markov state process Z = (Z(t)).

Throughout the paper we will identify Z with the underlying stochastic mor-

tality factors. In Section 4.2.2 we review some of the existing such models and

explicit the respective structure of Z. Typically, Z is a multivariate stochastic

process based on either a stochastic differential equation or time-series ARIMA

frameworks. For example, Z may be of diffusion-type or an auto-regressive pro-

cess.

In the inference step, the dynamics of Z are calibrated to past mortality data

that reflect as closely as possible the population of interest. In the ensuing valua-

tion step, the modeler seeks to evaluate certain quantities related to a functional

F (T, Z(·)) looking into the future. Here F maps the stochastic factors to the

present value of a life insurance product at a future date T , or alternatively the

actuarially fair value of a deferred contract, common in longevity risk, that starts

at T . Our notation furthermore indicates that F potentially depends on the whole

path {Z(t), t ≥ T}, such as

F (T, Z(·)) = exp
(
−
∞∑
t=T

h(Z(t))
)
, (4.2)

for some h(z). Given F , a common aim is to compute its expected value based on

the initial data at t = 0,

E [F (T, Z(·)) | Z(0)] . (4.3)
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Another key problem is to evaluate the quantile q(α;F (T, Z(·))), eg. the Value-at-

Risk at level α of F . Other quantities of interest in actuarial applications include

the Expected Shortfall of F , E[F (T, Z(·)) | F (T, Z(·)) ≤ q(α;F (T, Z(·))), Z(0)]

and the correlation between two functionals, Corr(F1(T, Z(·)), F2(T, Z(·))|Z(0)).

Our initial focus is on (4.3) which is a fundamental quantity in pricing/hedging

problems. When T > 0, the evaluation of (4.3) can be broken into two steps,

namely first we evaluate

f(z)
.
= E[F (T, Z(·))|Z(T ) = z], (4.4)

and then use the Markov property of Z to carry out an outer average,

E[F (T, Z(·))|Z(0)] =

∫
Rd
f(z)pT (z|Z(0))dz,

where pT (z′|z) = P(Z(T ) = z′|Z(0) = z) is the transition density of Z over [0, T ].

In addition to computing expected values from point of view of t = 0, computation

of f(z) is also necessary for analyzing the distribution of future loss in terms of

underlying risk factors, e.g. for risk measurement purposes.

Crucially, because the form of F (T, Z(·)) is nontrivial, we shall assume that

f(z) is not available explicitly, and there is no simple way to describe its functional

form. However, since f(z) is a conditional expectation, it can be sampled using a

simulator, i.e. the modeler has access to an engine that can generate independent,

identically distributed samples F (T, Z(n)(·)), n = 1, . . . , given Z(0). However this

simulator is assumed to be expensive, implying that computational efficiency is

desired in using it.
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Given an initial state Z(0), a naive Monte Carlo approach to evaluate (4.3) is

based on nested simulation. First, the outer integral over pT (z|Z(0)) is replaced

by an empirical average of (4.4) across m = 1, . . . , Nout draws z(m) ∼ Z(T )|Z(0),

E[F (T, Z(·))|Z(0)] ' 1

Nout

Nout∑
m=1

f(z(m)). (4.5)

Second, for each z(m) the corresponding inner expected value f(z(m)) is further

approximated via

f(z(m)) ' 1

Nin

Nin∑
n=1

F (T, z(m),n(·)), m = 1, . . . , Nout, (4.6)

where z(m),n(t), t ≥ T are Nin independent trajectories of Z with a fixed starting

point z(m),n(T ) = z(m). This nested approach offers an unbiased but expensive

estimate. Indeed, the total simulation budget is O(Nout · Nin) (where the usual

big-Oh notation h(x) = O(x) means that h(·) is asymptotically linear in x as

x→∞) which can be computationally intensive – for example a budget of 1,000

at each sub-step requires 106 total simulations. As stochastic mortality models

become more complex, models with d = 3, 4, 5+ factors are frequently proposed,

and efficiency issues become central to the ability of evaluating (4.3) tractably.

For this reason, it is desirable to construct more frugal schemes for approxi-

mating (4.3). The main idea is to replace the inner step of repeatedly evaluating

f(z) (possibly for some very similar values of z) with a simpler alternative. One

strategy is to construct deterministic approximations to (4.4) by replacing the

random variable Z(s)|Z(T ), s > T with a fixed constant, e.g. its mean, which can

then be plugged into F to estimate the latter’s expected value. This effectively
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removes the stochastic aspect and allows to obtain explicit approximations to f(·).

(The simplest approximation is to simply freeze Z(s) = Z(T ) ∀s > T .) In some

cases one can also generate upper and/or lower bounds on f(z) which is helpful for

risk management. However, in general the quality of an analytic formula is hard

to judge, and moreover, analytic, off-line derivations are needed to obtain a good

approximation. As an alternative, we therefore advocate the statistical method of

utilizing a surrogate model for f(·). This approach can be generically used in any

Markovian setting, requires no analytic derivations, and makes minimal a priori

assumptions about the structure of f(·).

An emulation framework generates a fitted f̂(·) by solving regression equations

over a training dataset {z(n), F (T, z(n)(·))}Ntrn=1 of size Ntr. Emulation reduces

approximating f(·) to the twin statistical problems of (i) experimental design

(generating the training dataset) and (ii) regression (specifying the optimization

problem that the approximation f̂ solves). Details of these steps are presented in

Section 4.3 below.

Because we are fitting a full response model, rather than a pointwise estimate,

the emulator budget Ntr � Nin will be an order of magnitude bigger than in (4.6).

It will also require regression overhead. However, once f̂ is fitted, prediction of

f̂(z) for a particular value z takes O(1) effort, so that we can use (4.5) to estimate

the original problem in (4.3) at a cost linear in Nout. To sum up, the total budget

of the emulator is just O(Ntr +Nout), much smaller than O(Nout×Nin) of nested

Monte Carlo. These savings become even more significant as the dimension of

state Z grows. Indeed, with multi-dimensional models, both Nout and Nin need to

be larger to better cover the respective integrals over Rd, and hence the efficiency of
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nested simulations will deteriorate quickly. Intuitively, the latter computational

budget is at least quadratic in d. In contrast, the intuitive complexity of an

emulator is linear in d.

4.2.1 Valuation of Life Annuities

In longevity modeling, Z represents the stochastic factors driving the cen-

tral force of mortality m(t, x). Formally, Z = (Z(t)) = (Z1(t), . . . , Zd(t)) is a

d−dimensional (F(t)) measurable Markov process on a complete filtered prob-

ability space (Ω,F ,P, (F(t))). The filtration (F(t))∞t=0 is the information up to

time t of the evolution of the mortality processes.

A typical state-of-the-art model decomposes m(t, x) into a longevity trend,

an Age effect, and a Cohort effect (known collectively as APC models). Each of

the above may be modeled in turn by one or more stochastic factors. The most

common models are the Lee-Carter Lee and Carter (1992) and CBD Cairns et al.

(2006) models and their generalizations. Generally their individual components

follow an ARIMA model; details can be found in the survey Cairns et al. (2009a).

To deal with cashflows at different dates, we assume the existence of a risk-free

asset and denote by B(T, T + s) the price of an s-bond at date T with maturity

at T + s. For the rest of the article we will assume constant force of interest r,

leading to B(T, T+s) = e−rs. As we show in Section 4.7, one can straightforwardly

handle stochastic interest rates as part of Z(·); see also Jalen and Mamon (2009)

for a discussion of correlation structure between mortality and interest rates and

Fushimi and Kogure (2014) for an example that applies Bayesian methods to

longevity derivative pricing under a Cox-Ingersoll-Ross (CIR) interest rate model.
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Consider an individual aged x at time 0 whose remaining lifetime random

variable is denoted as τx. The state process Z captures m(t, x+ t), the mortality

rate process for τx at time t, when the individual would have aged to x + t. For

small dt, the instantaneous probability of death is approximately m(t, x+ t)dt, so

that the random survival function of τx is

S(t, x)
.
= exp

(
−
∫ t

0

m(s, x+ s)

)
. (4.7)

More generally for u ≤ t < T , the probability of an individual aged x to survive

between dates t and T , given the information at time u is given by

P(τx > T | τx > t,Fu) = E
[
S(T, x)

S(t, x)

∣∣∣∣Fu] (4.8)

= E
[

exp

(
−
∫ T

t

m(s, x+ s)

)∣∣∣∣Z(u)

]
.
= P (Z(u); t, T, x),

where the last equality follows from the Markov property. The deterministic

analogue of P (Z(0); t, T, x) in actuarial literature is T−tpx+t.

As a canonical actuarial contract, we henceforth focus on deferred life annu-

ities. These contracts are fundamental to valuation of defined benefit pension

plans, which normally begin paying annuitants at retirement age (typically age

65) and continue until their death, possibly with survivor benefits. (For valua-

tion purposes the payment is assumed to end at some pre-specified upper age x̄,

e.g. 100 or 110). A major problem of interest is valuing such life annuities for

current plan participants who are still working, i.e. under age 65. Because this

requires making longevity projections many decades into the future, longevity risk
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becomes a crucial part of risk management. The net present value of a life annuity

at date T is

a(Z(T ), T, x)
.
=
∞∑
s=1

B(T, T + s)P(τx > T + s | FT )

=
x̄−x−T∑
s=1

e−rsP (Z(T );T, T + s, x), (4.9)

where we emphasize that the random mortality shocks come from Z. Finally, the

net present value at t = 0 is NPV
.
= E[e−rT · a(Z(T ), T, x)], which can be seen as

an instance of (4.3) that includes discounting and integrating over the density of

Z(T ). Except for the simplest models, the survival probability P (z; ·) is not ana-

lytically known and hence neither is (4.9) or the NPV. Without a representation

for z 7→ a(z, T, x) one is then forced to resort to approximations for all the basic

tasks of pricing, hedging, asset liability management, or solvency capital com-

putation. The discussed nested simulation takes the form of first approximating

a(z(1), T, x) for some representative scenarios (z(1), . . . , z(n)), and then further ma-

nipulating the resulting “empirical” distribution of (a(z(1), T, x), . . . , a(z(n), T, x)).

Emulation provides a principled statistical framework for optimizing, assessing

and improving such two-level simulations.

Remark. As mentioned, estimation of a(·, T, x) is usually a building block embed-

ded in a larger setting which requires repeated evaluation of the former quantity.

For instance, Bauer et al. (2012b) addresses nested Monte Carlo simulations in

calculating the present value of life-annuity-like instruments in the calculation of

solvency capital requirements.
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Variable Annuities

Another broad class of insurance products where emulation is pertinent are

variable and equity-indexed annuities (EIA’s). EIA contracts include payments

that are tied to a risky asset (such as a stock index), and in addition frequently

feature deferred annuities, payment guarantees, withdrawal options and death

benefits. Such riders make the cashflows of EIA’s path-dependent. As a result,

valuation of EIA’s is well-suited for emulation because the distribution of cashflows

is generally accessible only via Monte Carlo simulation. See Bauer et al. (2008)

and Bacinello et al. (2011) for details and numeric methods for pricing of various

EIA’s.

For some EIA’s our methods described above are directly transferrable. For

instance, one commonly offered product is the Guaranteed Annuity Option (GAO),

which has payoff

C(T ) = max (gV (T )a(Z(T ), T, x), V (T )) = V (T ) + gV (T ) (a(Z(T ), T, x)− 1/g)+

(4.10)

where T is the expiration date, x is policyholder age at inception, g is a guaranteed

annuity rate, and 1/g is the strike of the Call option on the deferred annuity value.

The goal of GAO is to protect the buyer from a rise in annuitization costs at T ,

due to either low interest rates or dramatically improved longevity. For further

details on GAOs, see Ballotta and Haberman (2006) who provide details and

numeric results using Monte Carlo. In practice V (·) is a function of a risky asset,

such as V (T ) = maxt≤T S(t), for a mutual fund S(·). Equation (4.10) illustrates

that the GAO NPV E[e−rTC(T )|F(0)] can be estimated through nested Monte
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Carlo, where the inner simulations determine a(Z(T ), T, x). Consequently, our

method can efficiently estimate C(T ) by providing an emulator for a(Z(T ), T, x).

We revisit more complex EIA’s in Section 4.7.

4.2.2 Stochastic Mortality

We concentrate on discrete-time mortality models which are easier to cal-

ibrate to the discrete mortality data, typically aggregated into annual inter-

vals. The common assumption is that the central force of mortality remains

constant through a given calendar year, so that for all 0 ≤ s, u ≤ 1, we have

m(t+ s, x+ u) = m(t, x). Therefore

P (Z(u); t, T, x) = E

[
exp

(
−

T∑
s=t+1

m(s, x+ s)

)∣∣∣∣∣Z(u)

]
, u ≤ t < T. (4.11)

Thus, P (Z(T );T, T+s, x+T ) becomes a functional of the trajectory of Z between

T and T + s.

Three major approaches to stochastic mortality have been put forward in the

literature. The first approach, pioneered by Lee and Carter (1992), directly treats

m(t, x) as a product of individual stochastic processes, e.g. ARIMA time-series.

This setup allows incorporating demographic insights, as well as disentangling age,

period and cohort effects in future forecasts. To wit, the popular age-period-cohort

(APC) mortality models assume that (see 4.9 for more details)

logm(t, x) = β(1)
x +

1

na
κ(2)(t) +

1

na
γ(3)(t− x), (4.12)
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where κ(2) and γ(3) are stochastic processes and na is the number of ages that x

can take in fitting. In this case, the state process Z(t) depends on current and

potentially past values of κ(2) and γ(3). Attempts to understand the statistical

validity of such models have been done by, for example, Lee and Miller (2001),

Brouhns et al. (2002a), Booth et al. (2002), Czado et al. (2005a), Delwarde et al.

(2007), and Li et al. (2009). Extensions of the Lee Carter model have appeared

in Renshaw and Haberman (2006), Hyndman and Ullah (2007a), Plat (2009),

Debonneuil (2010), and Cairns et al. (2011b).

None of these models admit closed form expressions for survival probabilities

P (z; ·). Consequently, several authors have proposed approximation methods.

Coughlan et al. (2011) used a bootstrapping approach, while Cairns et al. (2014)

derived an analytic approximation, commenting that industry practice is to utilize

deterministic projections. Monte Carlo simulation has been applied in Bauer et al.

(2012b) among others.

The second approach, due to Cairns et al. (2006) (CBD), generates a stochastic

model for the survival probability (4.11), allowing for straightforward pricing of

longevity-linked products; however, it is more difficult to calibrate and to obtain

reasonable forecasts for future mortality experience in a population as a whole.

The third approach works with forward mortality rates Bauer et al. (2012a), bor-

rowing ideas from fixed income markets. Forward models give a holistic view of

how the mortality curves can evolve over time, and presents a dynamically consis-

tent structure for mortality forecasting. Once again however, such models do not

provide closed-form expressions for (4.11) and hence require further manipulation

for pricing purposes.
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4.2.3 Bias/Variance Trade-Off

With a view towards approximating (4.9), it is imperative to first quantify the

resulting quality of an approximation. The standard statistical approach is to use

the framework of mean squared error. Fix z and let a(z) ≡ a(z, T, x) be the true

value of a life annuity conditional on state Z(T ) = z. If a(z) is being estimated

by â(z), then

IMSE(â)
.
= E

[
(â− a)2

]
, Bias(â) = E [â− a] , (4.13)

where the averaging is over the sampling distribution (i.e. different realizations of

data used in constructing it) of â(z).

Starting with (4.13) leads to the fundamental bias/variance trade-off. At one

end of the spectrum, a Monte Carlo estimate as in (4.6) has zero bias but carries a

high variance. At the opposite end, an analytic approximation has zero variance,

but will have a non-zero bias that cannot be alleviated (whereas the Monte Carlo

IMSE will go to zero as the size of the dataset grows Ntr → ∞) even asymptot-

ically. Because low variance is often preferred practically, analytic methods have

remained popular. Cairns et al. (2014) echoes that it is usual practice in industry

to use a deterministic projection of mortality rates rather than use a simulation

approach. The basic idea for the deterministic approximations is that if m̂(t, x)
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is an unbiased estimate for m(t, x), then

P (Z(u); t, T, x) = E

[
exp

(
−

T∑
s=t+1

m(s, x+ s)

)∣∣∣∣∣Z(u)

]

≈ exp

(
−

T∑
s=t+1

E [m(s, x+ s) | Z(u)]

)

= exp

(
−

T∑
s=t+1

m̂(s, x+ s;Z(u))

)
. (4.14)

Using the estimate for P (Z(u); ·) in (4.14) one can then approximate a(Z(T ), T, x)

term-wise. Jensen’s inequality implies that exp
(
−
∑T

s=t+1 m̂(s, x+ s)
)
> P (Z(u); t, T, x).

Consequently, any such approximation is guaranteed to be biased high for the sur-

vival probabilities (and subsequently the annuity values).

Analytic approximations can be very powerful and of course very fast but they

carry two major disadvantages. One is the need to derive a suitable estimator

m̂. This may be possible in a simple model (e.g. low-dimensional Z with linear

dynamics, like in the original Lee-Carter model), but otherwise may require a lot

of off-line labor, leading to unnecessary focus on simplifications at the expense of

calibration and risk management consistency. Second, the degree of accuracy of

the approximation is unknown. Indeed, there is generally not much that is avail-

able about empirical accuracy of the right-hand-side in (4.14) for a given model,

leaving the user in the dark about how much error is being made. This issue is

very dangerous, since potentially major mis-valuations may creep up unbeknownst

to the risk manager.

To remedy the above shortcomings, while still maintaining significant vari-

ance reduction compared to plain MC, we advocate the use of statistical emula-
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tors. Emulation is a data-driven approximation technique that originated in the

machine learning and simulation literatures. Emulators allow posterior quantifi-

cation of accuracy (via standard error or Bayesian posterior variance), and their

implementation does not require any simplifications of the mortality model. An

additional advantage is that one can directly approximate z 7→ a(z, T, x) with-

out having to do intermediate approximations of the survival probabilities (which

inevitably lead to further error compounding). As we demonstrate in the case

studies, statistical models for a(z) can indeed efficiently address the bias/variance

trade-off, by maintaining negligible bias and small variance, leading to improved

IMSE metrics.

4.3 Statistical Emulation

The idea of emulation is to replace the computationally expensive process of

running a Monte Carlo sub-routine to evaluate f(z) for each new site z with a

cheap-to-evaluate surrogate model that statistically predicts f(z) for any z ∈ Rd

based on results from a training dataset. At the heart of emulation is statistical

learning. Namely, the above predictions are based on first obtaining pathwise es-

timates y(n) = F (T, z(n)), n = 1, . . . , Ntr for a set of training locations, called a de-

sign D .
= (z(1), . . . , z(Ntr)). Next, one regresses {y(n)} against {z(n)} to “learn” the

response surface f̂(·). The regression aspect allows to borrow information across

different scenarios starting at various sites. This reduces computational budget

compared to the nested simulation step of independently making Ntr pointwise

estimates f(z(n)) by running Ntr,2 scenarios from each site z(n). The conceptual
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need for regression is two-fold. First, the emulator is used for interpolation, i.e. us-

ing existing design to make predictions at new sites z. In contrast, plain Monte

Carlo only predicts at z(n)’s. Second, like in the classical approach, the emulator

smoothes the Monte Carlo noise from sampling trajectories of {Z(s), s > T}.

Formally, the statistical problem of emulation deals with a sampler (or oracle)

Y (z) = f(z) + ε(z), (4.15)

where we identify f(z) ≡ a(z, T, x) with the unknown response surface and ε is

the sampling noise, assumed to be independent and identically distributed across

different calls to the oracle. We make the assumption ε(z) ∼ N(0, τ 2(z)), where

τ 2(z) is the sampling variance that depends on the location z. Emulation now

involves the (i) experimental design step of proposing a design D that forms

the training dataset, and (ii) a learning procedure that uses the queried results

(z(n), y(n))Ntrn=1, with the y(n) being realizations of (4.15) given z(n), to construct a

fitted response surface f̂(·). The fitting is done by specifying the approximation

function class f̂ ∈ H, and a loss function L(f̂ , f) which is to be minimized. The

loss function measures the relative accuracy of f̂ vis-a-vis the ground truth; in

this paper we focus on the mean-squared approximation error

L(f̂ , f)
.
=

∫
Rd
|f̂(z)− f(z)|2dz. (4.16)

Because the true f is unknown, the definition of L(f̂ , f) cannot be operational-

ized and instead a proxy based on the uncertainty (such as Bayesian posterior

uncertainty or standard error) surrounding f̂ is applied. Also, since the structure
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of f is unknown, it is desirable that the approximation class H is dense, i.e. has

a sufficiently rich architecture to approximate any f to an arbitrary degree of

accuracy. To this end, we concentrate on kernel regression methods, namely lin-

ear smoothers. In the next subsections we introduce two such regression families,

smoothing splines and kriging (Gaussian process) models.

Remark. In this paper we focus on the original task of producing an accurate

approximation to f everywhere. In some contexts, accuracy is judged not globally,

but locally, so that a differentiated accuracy measure is used. For example, in VaR

applications, the model for f must be accurate in the left-tail, but can be rather

rough in the right-tail. In this case, (4.16) can be replaced by a weighted loss

metric, see e.g. Liu and Staum (2010).

4.3.1 Emulators based on Spline Models

We generate emulators f̂(·) using a regularized regression criterion. To wit,

given a smoothing parameter λ ≥ 0 we look for the minimizer f̂ ∈ H of the

following penalized residual sum of squares problem

RSS(f, λ) =
Ntr∑
n=1

{y(n) − f(z(n))}2 + λJ(f), (4.17)

where J(f) is a penalty or regularization function. We concentrate on the case

where the approximation class has a reproducing kernel Hilbert space (RKHS)

structure which also generates J(f). Namely, there exists an underlying positive

definite kernel C(z, z′) such that HC = span(C(·, z) : z ∈ Rd) is the Hilbert space

generated by C and J(f) = ‖f‖2
HC . The representer theorem implies that the

50



Statistical Emulators for Pricing and Hedging Longevity Risk Products Chapter 4

minimizer of (4.17) has an expansion in terms of the eigen-functions

f̂(z) =
Ntr∑
j=1

αjC(z, z(j)), (4.18)

relating the prediction at z to the kernel function sampled at the design sites z(j)’s.

Our first family are smoothing (or thin-plate) splines that take

J(f) =

∫
Rd

[
d∑

i,j=1

∂

∂zi

∂

∂zj
f(z)

]
dz, (4.19)

and H as the set of all twice continuously-differentiable functions. It is known

(Hastie et al., 2009, Chapter 5) that in this case the underlying kernel is given by

C(z, z′) = ‖z − z′‖2 log ‖z − z′‖, where ‖ · ‖ denotes the Euclidean norm in Rd.

The resulting optimization of (4.17) along with (4.19) gives a smooth response

surface which is called a thin-plate spline (TPS), and has the explicit form

f(z) = β0 + βT~z +
Ntr∑
j=1

αj‖z − z(j)‖2 log ‖z − z(j)‖, (4.20)

with β = (β1, . . . , βd)
T .

In 1-d, the penalized optimization reduces to

inf
f∈C2

Ntr∑
i=1

{y(n) − f(z(n))}2 + λ

∫
R
{f ′′(u)}2du. (4.21)

The summation in (4.21) is a measure of closeness of data, while the integral

penalizes the fluctuations of f . Note that λ =∞ reduces to the traditional least

squares linear fit f̂(z) = β0 + β1z since it introduces the constraint f ′′(z) = 0.
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The resulting solution is an expansion in terms of natural cubic splines, i.e. the

minimizer f̂ of (4.21) is a piecewise cubic polynomial that has continuous first

and second derivatives at the design sites z(n), and is linear outside of the design

region.

Several methods are available to choose the smoothing parameter λ, including

cross-validation or MLE (Hastie et al., 2009, Chapter 5). A common parametriza-

tion is through the effective degrees of freedom statistic dfλ. We use the R package

“fields” Nychka et al. (2015) to fit multi-dimensional thin plate splines, and the

base smooth.spline function for the one-dimensional case.

4.3.2 Kriging Surrogates

A kriging surrogate assumes that f in (4.15) has the form

f(z) = µ(z) +X(z), (4.22)

where µ : Rd → R is a trend function, and X is a mean-zero square-integrable

process. Specifically, X is assumed to be a realization of a Gaussian process with

covariance kernel C. The role of C is identical to the regularized regression above,

i.e. C generates the approximating class HC that X is assumed to belong to.

However, kriging also brings a Bayesian perspective, treating X as a random

function to be learned, and estimation as computing the posterior distribution

of X given the collected data y
.
= (y(1), . . . , y(Ntr)). The RKHS framework im-

plies that the posterior mean (more precisely its maximum a posteriori estimate)

of X(z) coincides with the regularized regression prediction from the previous
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section. In the Bayesian framework, C is interpreted as the covariance kernel,

C(z, z′) = Cov(f(z), f(z′)) as f(·) ranges over HC . Assuming that the noise ε(z)

is also Gaussian implies that X(z)|y ∼ N(m(z), s2(z)) has a Gaussian posterior,

which reduces to computing the kriging mean m(z) and kriging variance s2(z).

In turn, the kriging variance s2(z) offers a principled empirical estimate of

model accuracy, quantifying the approximation quality. In particular, one can use

s2(z) as the proxy for the MSE of f̂ at z. Integrating s2(z(n)) over the design

locations then yields an assessment regarding the error of (4.3).

Simple Kriging

Simple kriging (SK) assumes that the trend µ(z) is known. By considering

the process f(z) − µ(z), we may assume without loss of generality that f(z) is

centered at zero and µ ≡ 0. The resulting posterior mean and variance are then

Roustant et al. (2012a)


mSK(z)

.
= c(z)TC−1y;

s2
SK(z)

.
= C(z, z)− c(z)TC−1c(z),

(4.23)

where c(z) =
(
C(z, z(n))

)
1≤n≤Ntr

and

C
.
=
[
C(z(i), z(j))

]
1≤i,j≤Ntr

+ ∆, (4.24)

with ∆ the diagonal matrix with entries τ 2(z(1)), . . . , τ 2(z(Ntr)).
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Universal Kriging

Universal kriging (UK) generalizes (4.22) to the case of a parametric trend

function of the form µ(z) = β0 +
∑p

j=1 βjhj(z) where βj are constants to be esti-

mated, and hj(·) are given basis functions. The coefficient vector β = (β1, . . . , βp)
T

is estimated simultaneously with the Gaussian process component X(z). A com-

mon choice is first-order UK that uses hj(z) = zj for j = 1, . . . , d. Another com-

mon choice is zero-order UK, also known as Ordinary Kriging (OK) that takes

µ(z) = β0 a constant to be estimated.

If we let h(z)
.
= (h1(z), . . . , hp(z)) and H

.
=
(
h(z(1)), . . . ,h(z(N))

)
, then the

universal kriging mean and variance at location z are Roustant et al. (2012a)

mUK(z) = h(z)T β̂ + c(z)TC−1(y −Hβ̂); (4.25)

s2
UK(z) = s2

SK(z) +
(
h(z)T − c(z)TC−1H

)T (
HTC−1H

)−1 (
h(z)T − c(z)TC−1H

)
,

where the best linear estimator of the trend coefficients β is given by the usual

linear regression formula β̂
.
=
(
HTC−1H

)−1
HTC−1y.

The combination of trend and Gaussian process (GP) model offers an attrac-

tive framework for fitting a response surface. The trend component allows to

incorporate domain knowledge about the response, while the GP component of-

fers a flexible nonparametric correction. One strategy is to specify a known trend

(coming from some analytic approximation) and fit a GP to the residuals, yielding

a Simple Kriging setup. Another strategy is to take a low-dimensional parametric

approximation, such as a linear function of Z-components, and again fit a GP to

the residuals, leading to a Universal Kriging setup.
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Covariance kernels and parameter estimation

The covariance function C(·, ·) is a crucial part of a Kriging model. In practice,

one usually considers spatially stationary or isotropic kernels,

C(z, z′) ≡ c(z − z′) = σ2

d∏
j=1

g((z − z′)j; θj),

reducing to the one-dimensional base kernel g. Below we use the power exponential

kernels g(h; θ) = exp
(
−
(
|h|
θ

)p)
. The hyper-parameters θj are called characteris-

tic length-scales and can be informally viewed as roughly the distance you move in

the input space before the response function can change significantly (Rasmussen

and Williams, 2006, Ch 2). The user-specified power p ∈ [1, 2] is usually taken to

be either p = 1 (the exponential kernel) or p = 2 (the Gaussian kernel). Fitting

a kriging model requires picking a kernel family and the hyper-parameters σj, θj.

Two common estimation methods are maximum likelihood, using the likelihood

function based on the distributions described above, and penalized MLE. Either

case leads to a nonlinear optimization problem to fit θj and process variance σ2.

One can also consider Bayesian Kriging, where trend and/or covariance parame-

ters have a prior distribution, see Helbert et al. (2009). We utilize the R package

“DiceKriging” Roustant et al. (2012a) that allows fitting of SK and UK models

with five options for a covariance kernel family, and several options on how the

hyper-parameters are to be estimated.
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Batching

To construct an accurate emulator for f(·) it is important to have a good

estimate of the sampling noise τ 2(z). Typically this information is not available

to the modeler a priori. One of the advantages of plain nested Monte Carlo is that

generating Nin scenarios from a fixed z(n) gives natural empirical estimates both

for f(z(n)) and τ 2(z(n)). To mimic this feature, we therefore consider batched or

replicated designs D. To wit, given a total budget of Ntr = Ntr,1 · Ntr,2 training

samples, we allocate them into Ntr,1 distinct design sites z(1), . . . , z(Ntr,1), and then

generate Ntr,2 trajectories from each z(n). Next, the above batches are aggregated

into

y(n) .=
1

Ntr,2

Ntr,2∑
j=1

F (T, z(n),j(·)); (4.26)

τ̂ 2(z(n))
.
=

1

Ntr,2 − 1

Ntr,2∑
j=1

{
y(n) − F (T, z(n),j(·))

}2
, (4.27)

and the resulting dataset {z(n), y(n), τ̂ 2(z(n))}, n = 1, . . . , Ntr,1 is used to fit a

kriging model for f̂ , with τ̂ 2(z(n))/Ntr,2 proxying the simulation variance at z(n).

The efficient allocation between Ntr,1 and Ntr,2 was analyzed in Broadie et al.

(2011) for a related risk management problem and it was shown that the optimal

choices satisfy

Ntr,1 ∝ N
2/3
tr , Ntr,2 ∝ N

1/3
tr . (4.28)

This is also the allocation we pursue in this paper, so that there are relatively

many more design sites than replications in each batch.
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4.3.3 Least Squares Monte Carlo

Another example of an emulator is the so-called Least Squares Monte Carlo

(LSMC) approach introduced to the actuarial context in Bacinello et al. (2010,

2011). LSMC is similar to the kriging and spline emulation, except now the

surrogate is based on a linear model given through a prespecified set of basis

functions h = (h1, . . . , hp). Thus, the predicted Y (z) is

ŷ(z)
.
= β̂h(z), (4.29)

where β = (β1, . . . , βp) are the regression coefficients obtained through ordinary

least squares regression of the sampled {y(n)} against the design {z(n)}:

β̂
.
= arg min

β∈Rp

Ntr,1∑
j=1

(
y(j) − βh(z(j))

)2
. (4.30)

See Bacinello et al. (2010) for further details and literature on this topic with

applications to pricing life insurance products with a surrender option, and Bauer

et al. (2012b) for an application to Solvency II. In Section 4.5 we apply this

technique as an additional comparison to kriging and spline emulation.

A major challenge with LSMC is that the modeler must a priori specify the

number of basis functions p and their functional form. This is difficult to do

in multi-dimensional settings. In particular, using too few basis functions risks

introducing significant bias in ŷLSMC , while too many basis functions will lead

to over-fitting. Statistically, the quality of the LSMC estimator depends on the

distance between the true response map Y and the manifold span(h1(z), . . . , hp(z))
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generated by the basis functions. A simple strategy is to use polynomials up a

given degree d̄, e.g a quadratic model with h = (z1, z
2
1 , z2, z

2
2 , z1z2, . . .) which is

the approach we pursue in Section 4.5.

4.3.4 Experimental Design

Several approaches are possible for constructing the training design D. First,

one may generate an empirical design by independently sampling z(n) ∼ Z(T )|Z(0).

This allows to emulate the conditional density pT (z|Z(0)) which is advantageous

for computing an expectation like in (4.3). Second, one may generate a random

D using some other proposal density z(n) ∼ Q. For example, a uniform proposal

density (i.e. z(n) i.i.d. uniform in some domain D ⊆ Rd) yields a basic space filling

experimental design of arbitrary size. A more structured (but still random) de-

sign can be obtained via Latin Hypercube Sampling (LHS) techniques Wyss and

Jorgensen (1998). Roughly speaking, LHS builds a regular d-dimensional lattice

and then attempts to equidistribute Ntr,1 sites among the resulting hypercubes.

Within each selected hypercube the design site is placed uniformly.

Third, one can use a deterministic design, such as a latticed grid, or a quasi-

Monte Carlo (QMC) sequence. Deterministic designs ensure a space-filling prop-

erty and easy reproducibility. For example, the Sobol sequence Sobol (1998) redis-

tributes a uniform binary grid to produce a grid that is maximally equidistributed.

Compared to LHS, use of QMC is faster (as it can be directly hard-coded) and can

be manually tweaked as needed. Both methods reduce Monte Carlo variance of f̂

relative to empirical D. Lastly we mention that the typical domain of Z(T ) is in

principle unbounded, e.g. Rd
+. This is not an issue for empirical design construc-
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tion; for LHS and QMC methods, one must restrict to an appropriate bounding

domain D ∈ Rd before generating D.

Remark. Depending on the context, the design D might need to be spatially

non-uniform. For example, if using a deterministic design for computing (4.3),

it may be preferable to capture the correlation structure among the components

of Z(T ), or to up-weigh the regions most likely for Z(T ). If one is estimating a

quantile or tail expectation, D should preferentially cover the extreme values of the

distribution of Z(T ); in that situation, an empirical design would be inappropriate.

See for instance Liu and Staum (2010) who investigated evaluation of expected

shortfall of stock portfolios using two-stage experimental design. To wit, starting

with an initial space-filling design Liu and Staum (2010) first augmented with

more tail scenarios and then further allocated inner simulation budget based on

a combination of surrogate variance and tail weight.

Generating Longevity Scenarios

Construction of an emulator entails the basic building block of generating a

longevity scenario {Z(t), t = 0, . . .}. In the simplest setting, this just requires

to generate and manipulate a sequence of i.i.d Uniform draws that describe the

random increments (of the components) of Z. However, typically the stochastic

model used also includes parameters that must be estimated or calibrated. This

aspect becomes nontrivial when future longevity projections are made, whereby

model re-fitting may be carried out. Re-fitting introduces path-dependency, mak-

ing parameters dynamic quantities that might need to be included in Z. For

example, Cairns et al. (2014) advocate the PPC (partial parameter certain) sce-
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nario generation that breaks the overall simulation into two pieces of [0, T ] and

[T,∞). With PPC, one initially calibrates the model at t = 0 using past mortality

data and then simulates up to time T . The simulated scenario is then appended

to the historical data, so that the simulation becomes the new “history” from

time 0 to time T. The model parameters are then re-fitted at T and the resulting,

modified longevity dynamics of Z are used to simulate beyond T . The idea of

PPC is to capture some memory of mortality evolution, in essence removing some

of the presumed Markovian structure. Under PPC the refitted parameters are

blended into Z(T ) since they affect the resulting F (T, Z(·)).

Conversely, in the interest of dimension reduction, one could drop some com-

ponents of the full state space when constructing the emulator. To do so, one may

analyze what dynamic variables materially impact annuity values, for example via

some simple regression models to test for statistical significance.

4.3.5 Fitting and Evaluation of Emulators

To fit an emulator for a given simulation budget Ntr, we first decompose

Ntr = Ntr,1×Ntr,2 and then construct an experimental design D of size Ntr,1 using

one of the methods in Section 4.3.4. Each site in D then spawns Ntr,2 trajectories

that are batched together as in (4.26).

Fitting is done in R using the mentioned publicly available packages. For

kriging we use the default setting of the km function in the DiceKriging package.

Given â(z, T, x) we evaluate its performance across a test set

Dtest = (z(1), . . . , z(Nout))
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of Nout locations. Note that Dtest is distinct from the training set D. In line

with (4.3) we use an empirical testing set Dtest: z(n) ∼ Z(T )|Z(0). Since the

true values a(z, T, x) are not available, we benchmark against an (expensive) gold

standard estimate âMC(z, T, x) that is described below. In particular, we record

the integrated MSE and Bias statistics from (4.13), namely

ÎMSE (â) =
1

Nout

Nout∑
n=1

(
â(z(n), T, x)− âMC(z(n), T, x)

)2
; (4.31)

B̂ias (â) =
1

Nout

Nout∑
n=1

[
â(z(n), T, x)− âMC(z(n), T, x)

]
. (4.32)

For benchmarking, we use a high-fidelity nested Monte Carlo approach (4.5)-

(4.6). While expensive, it is a simple, asymptotically consistent, unbiased esti-

mator. Specifically, for valuing annuities, âMC(z(n), T, x) is obtained by averaging

Nin = 105 scenarios of {Z(s), s > T} at each z(n) ∈ Dtest. Unless indicated oth-

erwise, we use Nout = 1000, so that the overall budget of âMC is O(Nin × Nout).

We then compare against emulators that use Ntr ∈ [100, 8000], which yields an

efficiency gain on the order of 10-50 times speed-up. We also compare against

deterministic estimators that require no training at all (but do need an analytic

derivation), and take just O(Nout) budget to make predictions for the outer Nout

simulations to evaluate (4.31).

61



Statistical Emulators for Pricing and Hedging Longevity Risk Products Chapter 4

4.4 Case Study: Predicting Annuity Values un-

der a Lee-Carter with Shocks Framework

Our first case study features a relatively simple one-dimensional state Z that

allows to visualize the emulator structure and its experimental design. As we

shall see, for such more straightforward settings, most approximation methods

work well, so our emphasis is on further explaining the kriging emulators rather

than maximizing performance.

Chen and Cox (2009) introduced a mortality model based on the traditional

Lee Carter set-up:

logm(t, x) = β(1)(x) + β(2)(x)κ(2)(t). (4.33)

This is the same as the APC model (M2) in 4.9 without the cohort term. In

the Chen-Cox model, β(1)(x) and β(2)(x) are deterministic vectors capturing age

effects, and κ(2)(t) is a stochastic process capturing the period effect with dynamics

κ(2)(t+ 1) = κ(2)(t) + µ(1) + ξ(1)(t+ 1) + [ξ(2)(t+ 1)− ξ(2)(t)], (4.34)

where ξ(1)(t) ∼ N(0, σ(1)) and ξ(2)(t) has an independent zero-modified normal

distribution with P(ξ(2)(t) = 0) = 1−p, and Gaussian parameters (µ(2), σ(2)). The

motivation for (4.34) is to incorporate idiosyncratic mortality shocks represented

by ξ(2), that occur with probability p any given year and have a random magnitude

with distribution N(µ(2), σ(2),2). Such shocks, representing natural or geopolitical

catastrophes, are temporary and last just a single period, hence subtraction of the
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last term −ξ(2)(t) in (4.34). Due to this term, it would appear that the model has a

two-dimensional state space {κ(2)(t), ξ(2)(t)}. However, we note that it is sufficient

to generate scenarios starting with κ(2)(T ) and assuming ξ(2)(T ) = 0 (no shock in

year T ). Then after estimating f(κ) = E[F (T, κ(2)(·))|κ(2)(T ) = κ, ξ(2)(T ) = 0],

one easily obtains in case of year-T shocks E[F (T, κ(2)(·)|κ(2)(T ) = κ, ξ(2)(T ) =

ξ] = f(κ− ξ), reducing to the prediction of “unshocked” values.

The presence of idiosyncratic shocks in m(t, x) renders the corresponding sur-

vival probability analytically intractable. However, the linear dynamics of κ(2) in

(4.34) allows to obtain the following deterministic estimator for future mortality

rates.

Lemma 1. Let Z(s) = {κ(2)(s), ξ(2)(s)}. Under the Chen-Cox model, the follow-

ing holds:

E[κ(2)(t) | Z(s)] = κ(2)(s)+(t−s)µ(1)+µ(2)p−ξ(2)(s), 0 ≤ s ≤ t <∞. (4.35)

The proof can be found in 4.10. Substituting (4.35) into (4.33) yields the

following estimator for E[m(T + s, x) | κ(2)(T ), ξ(2)(T )] :

m̂(T + s, x)
.
= exp

(
β(1)(x) + β(2)(x)

(
κ(2)(T ) + sµ(1) + µ(2)p− ξ(2)(T )

))
. (4.36)

4.4.1 Results

We follow Chen and Cox (2009) in using US mortality data obtained from the

National Center for Health Statistics (NCHS)1. This dataset contains yearly age

1Source: http://www.cdc.gov/nchs/nvss/mortality_tables.htm
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specific death rates for overall US population over 1900–2003. Fitting yields the

random-walk parameters µ(1) = −0.2173, σ(1) = 0.3733 in (4.34), as well as the

estimated probability of shock as p = 0.0436, with jump distribution (µ(2), σ(2)) =

(0.8393, 1.4316). As expected, µ(2) � 0 is large and positive, so shocks correspond

to large temporary increases in mortality. The goal is to analyze and compare the

ability of kriging models and analytic estimates to predict T = 10-year deferred

annuity values for unisex x = 65 year olds. Payments are cut-off at age x̄ = 94.

We use a discount rate of r = 4%.

Ntr = 125 Ntr = 512 Ntr = 1000

Type Bias
√

IMSE Bias
√

IMSE Bias
√

IMSE
Analytic 1.668e-03 2.148e-03 1.668e-03 2.148e-03 1.668e-03 2.148e-03

OK 5.145e-03 5.923e-03 1.582e-04 1.975e-03 -1.999e-04 1.634e-03
UK 5.832e-03 6.059e-03 4.816e-04 1.045e-03 -1.243e-05 7.428e-04

Table 4.1: Comparing estimators for life annuity value under the Chen-Cox
model for different size of experimental design. The design D is constructed

with Ntr = N
2/3
tr,1 ·N

1/3
tr,2 . The reported values are evaluated from a Monte Carlo

benchmark, using (4.31) and (4.32). Analytic estimate is based on (4.36);
universal kriging model uses first-order linear basis functions.

We fit emulators with budgets Ntr ∈ {125, 512, 1000}. The respective training

designs D are deterministic and uniformly spaced across an appropriately chosen

interval D = [κ, κ̄]; a fixed design minimizes sampling variation in fitting f̂(·).

Because Z ≡ κ(2) is just one-dimensional, a relatively small training budget is

used. For the emulators, we fit both an ordinary kriging (OK) model with constant

trend µ(κ) = β0, and first-order linear universal kriging (UK) model with µ(κ) =

β0 + β1κ. For evaluation, we fix a testing set containing Nout = 50 values of

Z(T ), benchmarked with a nested Monte Carlo approach with Nin = 105 inner
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simulations. Due to the very small MSE’s involved, a very high-fidelity benchmark

was needed (in order to isolate the MSE of the emulator from the MSE of the

benchmark), leading to a very largeNin. To be computationally feasible, we picked

a small testing set. To make sure that Dtest accurately represented the distribution

of κ(T ) its points were picked as the empirical 1%, 3%, . . . , 99% percentiles of a

large sample of κ(T ). The mortality shocks associated with these percentiles were

used in the comparison process.

Table 4.1 and Figure 4.1 summarize the results. We observe that there is

quite a wide spread in potential future annuity prices, with differences of more

than 10% (or $1 in annuity NPV) depending on realized Z(T ). This confirms the

significant level of longevity risk. As shown in the Figure 4.1, there is a nearly

linear relationship for z 7→ a(z, T, x), which is perhaps surprising given the above

range of forecasts. This strong linear trend in the response partly explains the

advantage of the UK model over OK. The Figure also reflects the effect of training

set size and distribution: the Ntr = 512 model performs significantly better than

its Ntr = 125 counterpart. We see that all methods perform well, with IMSE’s on

the order of 10−3. The Monte Carlo benchmark was

âMC =
1

Nout

Nout∑
n=1

âMC(z(n), T, x) = $11.91338,

so that the relative bias was around 0.001%, and percentage root-IMSE around

0.01%. Even though the computed biases are rather small, we remark that since

pension portfolios have very large face values, the corresponding approximation

errors could be financially meaningful. For example, for a modest pension fund
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Figure 4.1: Annuity emulators in the Chen-Cox model. Left: three esti-
mators (MC, UK w/Ntr = 125 and Analytic) of annuity value a(κ(2)(T ))
vs. κ(2)(T ). The training design (indicated by the vertical dashed lines) is
D = {κ(2)(T ) ∈ (−17.5,−10)} with Ntr,1 = 25, Ntr,2 = 5. Right: relative an-
nuity values vis-a-vis the Monte Carlo benchmark âMC = 11.91 obtained with
Nin = 105.
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with an obligation of $100mm, a bias of 10−3 implies inaccuracy of $100k.

The right panel of Figure 4.1 provides a zoomed-in visualization of the estima-

tors’ bias relative to âMC . As expected, the analytic estimator based on Lemma

1 overestimates the true annuity value for all κ(2)(T ). For Ntr = 125, the kriging

emulator clearly has a larger MSE, and in this case it also typically overestimates

a(κ(2)(T )). For Ntr = 512 we observe the statistical learning taking place, as the

kriging model now has an excellent fit in the middle of the figure and essentially

zero bias averaging over potential values of κ(2)(T ). The effect of larger training

budget is confirmed in Table 4.1, with IMSE’s all decreasing towards zero as Ntr

increases.

The above analysis demonstrates that in some settings, the shape z 7→ a(z, T, x)

is sufficiently simple that little modeling is required, and analytic estimators per-

form well (as do statistical emulators). However, we stress that there is no easy

way to tell a priori that the analytic estimator would be adequate, and in any

case a sufficiently large training set size will guarantee a better predictive power

for the kriging models.

The one dimensional case also provides a visual representation of the effect of

grid design, illustrated in Figure 4.2. The figure showcases two features of emu-

lators: (i) dependence between local accuracy as measured by s2(z) and grid size

Ntr; and (ii) dependence between s2(z) and grid shape. First, larger training sets

improve accuracy (with a general relationship of O(N
−1/2
tr ) like in plain Monte

Carlo). This can be seen in Figure 4.2 where kriging standard deviation s(z) is

consistently lower for N
(B)
tr = 1000 compared to N

(A)
tr = 125. One implication

is that as Ntr → ∞, we would have s2(z) → 0, i.e. f(·) would be learned with
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Figure 4.2: Effect of training design D on the emulator accuracy in the Chen–
Cox model. We show kriging standard deviation s(z) for the universal kriging
model with three different designs: D(A) (small uniform), D(B) (large uni-
form) and D(C) (large empirical). The deterministic designs D(A),D(B) con-

tain uniformly spaced values of κ(2)(T ) ∈ (−17.5, 10), of size N
(A)
tr = 125 and

N
(B)
tr = 1000 respectively. D(C) is an empirical design of size N

(C)
tr = 1000

generated using the density of κ(2)(T )|κ(2)(0).

complete precision, a property known as global consistency of the emulator. Sec-

ond, s2(z) is affected by the shape of D in the sense that higher local density of

training points lowers the local posterior variance. This is intuitive if viewing f̂

as an interpolator or kernel regressor – the denser the training set around z, the

better we are able to infer f(z). Consequently, the empirical grid D(C) that is

concentrated around the mode of Z(T ), offers better accuracy in that neighbor-

hood (around κ(2)(T ) ' −14 in Figure 4.2) compared to the uniform D(B), but

lower accuracy towards the edges, where D(C) becomes sparser. For all designs,

posterior uncertainly deteriorates markedly as we migrate outside of the training
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set (e.g. κ(2)(T ) > −11 in the Figure).

The s(z) values shown in Figure 4.2 also provide an approximation of emulator

IMSE. For example, averaging the kriging standard deviation s(z) over the testing

set using the UK model with Ntr = 1000 yields sAve =
√

1
Nout

∑
n s

2(z(n)) = 7.159·

10−3, while in Table 4.1 the corresponding reported IMSE was ÎMSE = 7.428 ·

10−4. Reasons for the mismatch include the residual MSE in the Monte Carlo

estimate âMC and model mis-specification of the UK model, which would bias

the self-assessed accuracy. Moreover, the strong correlation between â(z) across

different testing locations z(n) implies that ÎMSE has a large standard error.

Nevertheless, sAve is a highly useful metric that allows to quantify the relative

accuracy of different emulators in the absence of any gold-standard benchmarks.

4.5 Case Study: Hedging an Index-Based Fund

in a Two-Population Model

Our second case-study addresses a multi-dimensional setup with four factors.

In dimension 4, visualization of the map z 7→ a(z, T, x) is limited so one must rely

on statistical metrics to generate and assess the quality of the emulators.

There has been a lot of recent discussion regarding index-based longevity funds.

Information on the death rates of the general public is widely available, and a mar-

ket fund that uses the respective death rats as its price index offers a standardized

way to measure population longevity. In particular, it allows for securitization of

longevity swaps that can be used by pension funds to hedge their longevity risk

exposure. If the pension fund could buy as many units of the swap as it has to
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pay out to its annuitants, it would result in a situation where the amount paid is

nearly equal to the amount received from the swap. The quality of such as hedge

is driven by the basis risk between the indexed population and the annuitant pool,

that is typically a subset of the index. Consequently, it is necessary to create a

model to capture the link between the index and the insured sub-population.

Remark. From a different angle, some longevity products explicitly integrate mor-

tality experience in several regions, for example across different countries (UK,

Germany, Netherlands) or across different constituencies (England vis-a-vis Great

Britain). Lin et al. (2013) state that most mortality data reported by official

agencies calculate a weighted average mortality index of different underlying pop-

ulations. They also investigate the modeling aspect of such multi-population

indices.

To fix ideas, we call the index population Pool 1, and the annuitants Pool

2. Consider now an individual from Pool 2 who will be aged x at date T when

she begins to receive her life annuity. The corresponding time-T liability to the

pension fund is denoted a2(Z(T ), T, x). If the pension fund enters into a swap

based on the index, she might purchase π index-fund annuities for age x, with net

present value of πa1(Z(T ), T, x), at T . For now we ignore what would be a fixed

premium. The overall hedge portfolio is then ∆(Z(T ), T, x)
.
= πa1(Z(T ), T, x) −

a2(Z(T ), T, x). Several risk measures can be used to determine hedge effectiveness.

Some examples include variance, or tail risk measures such as value-at-risk (VaR)

or expected shortfall (TVaR). Recent work in this direction includes Coughlan

et al. (2011) who used a bootstrapping and extrapolation method to analyze

hedge effectiveness, and Cairns et al. (2014) whose setup we follow below.
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Unsurprisingly, the correlation structure for mortality across populations is

complex. One notable recent contribution is by Cairns et al. (2011b, 2014) who

considered a hedging problem between an index pool k = 1 and insured sub-

pool k = 2. Specifically, the two populations are the England & Wales (E&W)

general population, which represents the index mortality rate (Pool 1), and the

Continuous Mortality Investigation (CMI) population, which are mortality rates

gathered from United Kingdom insured populations, serving the role of those

receiving pension payments (Pool 2). To model the dependence between the two

pools, Cairns et al. (2011b) proposed a co-integrated two-population Bayesian

model based on the Lee-Carter framework. To wit, the mortality rates mk(t, x)

behave similar to (4.12),

logmk(t, x) = β
(1)
k (x) + n−1

a κ
(2)
k (t) +

1

na
γ

(3)
k (t− x), k = 1, 2, (4.37)

where the subscripts refer to the population index and the superscripts encode

the order of the stochastic factors in the manner of Cairns et al. (2011b). The

stochastic dynamics of the period effect κ
(2)
1 are given by

κ
(2)
1 (t) = κ

(2)
1 (t− 1) + µ1 + σ1ε1(t), ε1(t)

i.i.d∼ N(0, 1). (4.38)

In turn, the mortality of the larger population influences the period effect of

the smaller (insured) population, with dynamics for κ
(2)
2 co-integrated with κ

(2)
1 .
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Namely, their difference S(t)
.
= κ

(2)
1 (t)− κ(2)

2 (t) forms an AR(1) process

S(t) = µ2 + φ(S(t− 1)− µ2) + σ2ε2(t− 1) + cε1(t− 1), ε2(t)
iid∼ N(0, 1),

(4.39)

with ε1(·) independent of ε2(·), and covariance parameter c = σ1 − ρσ2, where

ρ = Corr(κ
(2)
1 (t), κ

(2)
2 (t)). In both models cohort effects γ

(3)
k are independent

AR(2) processes. Since (4.39) models the difference κ
(2)
1 (t) − κ

(2)
2 (t), the mean

reversion rate φ reflects the rapidity of S(t) returning to its base level µ2, which

is assumed to be the stationary mortality spread between the two populations.

4.5.1 Analytic Approximations

Cairns et al. (2014) used the fact that E[κ
(2)
1 (T + t) | κ(2)

1 (T )] = κ
(2)
1 (T ) + µ1t

to introduce the median-mortality approximation

m̂A1
1 (T + t, x+ t) = exp

(
β

(1)
1 (x+ t) +

1

na
(κ

(2)
1 (T ) + µ1t) +

1

na
γ

(3)
1 (T − x)

)
.

(4.40)

Since S(t) is mean reverting, Cairns et al. (2014) also suggested to approximate

the CMI population mortality via

m̂A1
2 (T + t, x+ t) = exp

(
β

(1)
2 (x+ t) +

1

na
(κ

(2)
2 (T ) + µ1t) +

1

na
γ

(3)
2 (T − x)

)
,

(4.41)

i.e. the same drift as the general population but different initial value.

We introduce a different, more accurate approximation based on the following

lemma.
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Lemma 2. We have

E
[
κ

(2)
2 (T + t)|Z(t)

]
= κ

(2)
1 (T ) + µ1t− µ2(1− φt)− φt(κ(2)

1 (T )− κ(2)
2 (T )).

(4.42)

The proof can be found in 4.10. Denote E[κ
(2)
2 (T + t)|Z(t)]

.
= ξ(t, T ). Lemma

2 suggests an alternative analytic estimator for m2(T + s, x) as

m̂A2
2 (T + s, x+ s)

.
= exp

(
β

(1)
2 (x+ s) +

1

na
ξ(t, T ) +

1

na
γ2(T − x)

)
. (4.43)

Denote a1(Z(T )) and a2(Z(T )) as the net present value at T (conditional on

Z(T )) of a life annuity for the E&W and CMI populations respectively as defined

in (4.9). In what follows, Analytic 1 will refer to use of (4.40) and (4.41) in

estimating survival probabilities (4.11) for each population (and hence a1 and a2),

while Analytic 2 refers to the use of (4.40) and (4.43). Notation for deferred

annuity values under the two analytic approaches will be âA1
k (z) and âA2

k (z), k =

1, 2.

4.5.2 Model Fitting

The parameters β
(1)
1 (x), β

(1)
2 (x), and past trajectories κ

(2)
k (t), γ

(3)
k (t − x), for

k = 1, 2 were estimated from the male E&W and CMI populations respectively,

and the time and age ranging from calendar years 1961 to 2005 (with 2005 treated

as t = 0), and x from 50 to 89. The processes (κ
(2)
1 (t)) and (S(t)) were fit as

random walk with drift and AR(1) respectively, introducing additional parameter

estimates for µ1, σ1, µ2, φ, σ2 and c. We find µ1 = −0.5504, µ2 = 0.6105, σ1 =
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1.278, σ2 = 0.568, φ = 0.9407, c = 0.262, so that the CMI population tends to

have higher mortality µ2 > 0, with a co-integration of about φ = 94%.

Using the PPC approach of Cairns et al. (2014), we treat the age-effect pa-

rameters as fixed, and refit the ARIMA models at T for each simulation. That

is, the β
(1)
k ’s are fixed throughout for k = 1, 2 and each of µ1, σ2, µ2, φ, σ2, and c

are re-estimated. In principle, this makes the re-estimated parameters part of the

state Z(T ). A few preliminary runs indicate that the variance parameters σ1, σ2

and c have little significant effect on annuity values, while µ1, µ2 and φ do. Since

µ1 is in one-to-one correspondence with κ
(2)
1 (T ), our time T state process is finally

characterized as

Z(T ) = {κ(2)
1 (T ), κ

(2)
2 (T ), µ2, φ}.

Heuristically, this is a reasonable choice: each element of Z(T ) has a direct effect

on the time T mortality rates or their trends, while the variance terms simply add

variability.

Several stochastic mortality models have R code available2 for model fitting.

We use the LifeMetrics code to fit the two-population model parameters, yielding

the inferred past trajectories for the age, period, and cohort effects. In a separate

step, the estimated period and cohort effects are modeled as individual ARIMA

models.

For the remainder of this section we assume the starting age of the annuitant

is x = 65 with a fixed interest rate of r = 0.04 and a T = 10 year deferral

period. Generally the hedge ratio π is chosen endogenously, for example through

2LifeMetrics Open Source R code for Stochastic Mortality modeling; see http://www.macs.

hw.ac.uk/~andrewc/lifemetrics/ for details
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minimizing variance. In this paper we assume the neutral value of π = 1 in order to

not favor one estimation type over another. Hence the value of the hedge portfolio

is simply ∆(Z(T )) = a1(Z(T )) − a2(Z(T )). Under this setup, the Monte Carlo

benchmark yielded an average value of E[∆(Z(T ))] = 0.1995 with a standard

deviation of 0.1067. This suggests that a one-to-one purchase of index annuity is

not the optimal hedge ratio under this population model.

As discussed in Section 4.3.4, determining the training set design depends

on the problem at hand. In our particular example with a 4-dim. Z, we aim

to give an accurate result of the expectation of the hedge portfolio ∆(T ), so

we use an empirical design, as suggested in Section 4.3.4. This also holds the

advantage of capturing the correlation between κ(1) and κ(2) which is important

in this co-integrated model. To compare the effect of budget size, we choose

two different budgets, Ntr = 1000 and Ntr = 8000. Following the framework in

Section 4.3.4, Ntr is allocated into Ntr,1 = N
2/3
tr , Ntr,2 = N

1/3
tr , so that we have

Ntr,1 = 100 (resp. Ntr,1 = 400) training points with Monte Carlo simulations

containing Ntr,2 = 10 (resp. Ntr,2 = 20) batched simulations for each design point.

Different surrogate models are chosen than in Section 4.4; this time around a

multi-dimensional state process suggests the use of a spline (namely TPS) model

from Section 4.3.1. We forego the OK model, but maintain use of the 1st-order

linear UK model, and also implement a simple kriging (SK) model with trend

µ(z) = âA2
1 (z) − âA2

2 (z). This combines advantages from both the analytic and

UK approach, giving us an already accurate estimate for the trend, while non-

parametrically modeling the residuals. For these reasons, a SK emulator should

outperform both the analytic estimators and the UK model. We utilize another
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advantage of the surrogate models and fit them directly to the hedge portfolio

values ∆(Z(T )) rather than individually modeling annuity values ak(Z(T )) and

then taking difference of two approximations. Additionally, we implement the

Least Square Monte Carlo method using a linear combination of all polynomials

of degree 2 or less in z as another comparison tool. Since the dimension of Z(T )

is d = 4, this leads to p = d2 = 16 basis functions which is reasonable given the

relatively small values of Ntr.

4.5.3 Results

Ntr = 1000 Ntr = 8000

Type Bias
√

IMSE Bias
√

IMSE
Analytic A1 from (4.41) -2.101e-02 3.460e-02 -2.101e-02 3.460e-02
Analytic A2 from (4.43) 3.629e-03 3.733e-03 3.629e-03 3.733e-03

Thin Plate Spline -1.050e-03 1.437e-02 4.431e-04 3.294e-03
Universal Kriging -1.156e-03 1.872e-02 2.556e-03 1.454e-02

Simple Kriging 2.148e-03 2.308e-03 9.229e-04 1.469e-03
Least Squares MC -1.050e-03 1.437e-02 5.324e-04 3.295e-03

Table 4.2: Performance of analytic estimates and surrogate models for hedge
portfolio values in the two-population model case study. Numbers reported are
based on Nout = 1000 simulations of Z(T ) with a Monte Carlo benchmark. Ntr

is allocated into Ntr,1 = N
2/3
tr training points and Ntr,2 = N

1/3
tr Monte Carlo

batches per training point. Simple kriging model uses A2 estimator as trend.
For comparison purposes, the average value of the hedge portfolio was 0.1995.

We choose Nout = 1000 simulations of Z(T ) and predict hedge portfolio values

∆(Z(T )) with the surrogate models, as well as via the deterministic estimates.

Table 4.2 shows the results. As expected, the Analytic A2 estimator outperforms

Analytic A1 since it is catered directly to the two-population model. Relative

to A1, our improved estimator cuts bias by nearly 80%. As for the surrogates,
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when Ntr = 1000, each of the TPS and UK models only slightly underperform

the analytic estimate A2, while the SK model does significantly better. For Ntr =

8000, both TPS and SK are better than A2. The LSMC and TPS values are equal

for Ntr = 1000 and very close for Ntr = 8000. This is unsurprising given Equation

(4.17), which shows that the spline behaves similarly to least squares. In our case,

both the LSMC and TPS methods used second order polynomial basis functions,

and the sparse grid for Ntr = 1000 resulted in a large enough smoothing parameter

λ to be insignificant relative to the estimate up to four decimals.

Figure 4.3: Boxplots of hedge portfolio value bias for Ntr = 8000 for analytic
A2 and simple kriging approaches. To construct the boxplot, we computed for
each of 1000 simulated values of Z(T ), the difference between the respective
estimate and the Monte Carlo benchmark.

Figure 4.3 summarizes the empirical distribution of the bias of the A2 and

SK estimators given simulations of Z(T ). We can see that both approaches have

similar variability, while SK has a much lower bias. The UK and TPS estimators

have similar distributions with slightly larger bias than SK.

There are a few comments to be made in regards to these results. First of

all, there is no way to tell a priori that a deterministic estimate will perform

well. For example each surrogate model completely outclasses A1, while TPS and
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UK perform only marginally better than A2. Possibly, even better (or worse)

analytic estimators can be derived. Additionally, the deterministic estimators are

for annuity values themselves and not for the portfolio difference ∆(T ). A lower

bias for a ∆(T ) could simply be a consequence of the bias of each annuity ak(Z(T ))

being canceled during subtraction. We also mention that in terms of percentage

errors these biases are significant, being on the order of 1% of the benchmarked

âMC = 0.1995.

4.6 Case Study: Predicting Annuity Values un-

der the CBD Framework

4.6.1 Model Fitting

Our third case study utilizes another popular class of mortality models, the

CBD Cairns et al. (2006) models which directly work with the survival probabil-

ities. To wit, we model the 1-period survival probability

P (Z(T );T, 1, x) =
1

1 + exp (κ(1)(T ) + (x− xAve)κ(2)(T ))
, (4.44)

where xAve = n−1
a

∑
i xi, and κ(1), κ(2) follow ARIMA models, which according to

Cairns et al. (2011a) provide a good fit for period effects. Multi-period survival

probabilities are obtained as products of (4.44).

We fit (4.44) to the CMI population, considering a full range ofARIMA(p, d, q)

models with p, q = 0, 1, 2, 3, 4 and d = 0, 1, 2, using auto.arima in R from the pack-

age “forecast” Hyndman (2015). The optimal configuration for this population is
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for κ(1) to follow ARIMA(0, 1, 3) with drift and κ(2) to follow ARIMA(1, 1, 2):

κ(1)(t) = κ(1)(t− 1) + µ+ ε(1)(t) +
3∑
q=1

θ(q,1)ε(1)(t− q), (4.45)

κ(2)(t) = (1 + φ)κ(2)(t− 1)− φκ(2)(t− 2) + ε(2)(t) +
2∑
q=1

θ(q,2)ε(2)(t− q). (4.46)

The estimated ARIMA parameters are µ = −0.0195, φ = 0.9206, θ(1,1) =

−0.5516, θ(2,1) = 0.1736, θ(3,1) = 0.5169, θ(1,2) = −1.4664, θ(2,2) = 0.6167. The

θ(·,k), k = 1, 2 describe how past errors echo into future values of κ(k). For exam-

ple, the large negative value of θ(1,2) means that the noise generated in κ(2)(s)

will be amplified, made negative, and added to the future κ(2)(s + 1). The above

equations imply that the mortality state has three components,

Z(T ) = {κ(1)(T ), κ(2)(T ), κ(2)(T − 1)}.

As in the previous case studies, we develop a deterministic estimate for survival

probabilities. Denote by ξ(k)(t, s)
.
= E[κ(k)(t) | Z(s)] for k = 1, 2. The expressions

for ξ(k) are as follows.

Lemma 3. The following hold for t > s

ξ(1)(t, s) = κ(1)(s) + µ(t− s); (4.47)

ξ(2)(t, s) = φt+1−s
(
κ(2)(s)− κ(2)(s− 1)

φ− 1

)
+

(
φκ(2)(s− 1)− κ(2)(s)

φ− 1

)
. (4.48)

The proof can be found in 4.10.3. Based on Lemma 3, and substituting ex-

pected values of κ(k)(s) into (4.44) we obtain a deterministic estimate of the u-year
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survival probability as the product

P̂ det(Z(s), t, u, x) =
u−1∏
j=0

1

1 + exp (ξ(1)(t+ j, s) + (x+ j − xAve)ξ(2)(t+ j, s))
.

Through equation (4.9), this yields the estimate for the T−year deferred annuity

given Z(T ) :

âdet(Z(T ), T, x) =
x̄−x∑
s=1

e−rsP̂ (Z(T ), T, s, x), (4.49)

where the cutoff age is x̄ = 89.

We proceed to value life annuities in the above model. In contrast to the first

two case studies, we extend the deferral period to twenty years. An additional ten

years of evolution imbues significant uncertainty into the mortality state Z(T ).

We use an empirical training design D for this case study for two reasons; one

being that the correlation structure among the components of Z(T ) is problematic

with any rectangular grid. From (4.46), we see that κ(2)(20) and κ(2)(19) should be

strongly correlated, while both κ(2)(19) and κ(2)(20) are independent of κ(1)(20).

Secondly, the long deferral period causes significant variation in the distribution

of Z(20), and with expectation in mind, we desire the empirical grid’s ability

to accurately capture the density of Z(T ). The algorithms discussed in Sections

4.3.4 and 4.3.5 are used to generate the design and fit the surrogate models. As in

Section 4.4, we choose an ordinary kriging and 1st-order linear universal kriging

models, and also fit a thin plate spline model as used in Section 4.5.
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4.6.2 Results

Ntr = 1000 Ntr = 8000

Type Bias
√

IMSE Bias
√

IMSE
Analytic from (4.49) -4.560e-01 5.257e-01 -4.560e-01 5.257e-01

Thin Plate Spline -2.358e-02 6.719e-02 4.195e-03 5.436e-02
Ordinary Kriging 3.669e-03 9.785e-02 9.734e-03 7.743e-02
Universal Kriging -1.785e-03 5.844e-02 5.635e-03 4.355e-02

Table 4.3: Performance of analytic estimates and surrogate models for 20-year
deferred annuity values under the CBD framework. Numbers reported are

based on Nout = 1000 draws of Z(20). Ntr is allocated into Ntr,1 = N
2/3
tr

training points and Ntr,2 = N
1/3
tr Monte Carlo batches per training point.

Analytic estimate refers to âdet in (4.49). Universal kriging model uses linear
basis functions.

In contrast to the results in Sections 4.4.1 and 4.5.3, Table 4.3 shows that

the analytic estimator (4.49) crumbles under this volatile model and long deferral

period. On the other hand, both kriging models produce reasonable results even

with Ntr = 1000. We can also observe a diminished effect of increasing the training

set size, due to the increased model variance.

These results reflect the comments made in the previous sections: the analytic

estimate is a parametric guess as to what may provide an accurate result, and that

guess is not always correct. Our analytic choice in this case study was derived

along identical lines as to the analytic estimates in the other case studies, yet

performs substantially worse. In comparison, the statistical learning frameworks

provide a reliable estimator even in a volatile model with a three-dimensional state

process and long deferral period.
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4.7 Case Study: Valuation of Equity-Indexed

Annuities

Our last case study moves beyond fixed annuities to a more complex variable

annuity. We consider a product with equity-linked payments in terms of returns

on an index (S(t)), as well as stochastic interest rates (r(t)).

To highlight the flexibility of the emulation framework, we discuss modeling

one-year forward values for an annual reset EIA. In such a contract (see Lin and

Tan (2003); Qian et al. (2010) for an overview), the buyer is guaranteed a minimum

rate of return g. In addition, she is entitled to higher payments if the annual return

R(t) = S(t)/S(t− 1)− 1 of the index S exceeds g; this upside has a participation

rate α < 1. Following Lin and Tan (2003), we assume the annuitant is aged x and

holds the EIA until expiration time T, interpreted as time of retirement, whence

the fund is converted into a traditional fixed annuity. If death happens before

T, then the current fund value is paid at the end of year of death. Let r(t) be

instantaneous interest rate at time t, and τ(x) be the remaining lifetime of the

individual. Conditioning on τ > t and the information F(t) available by time

t, and assuming that accrued payments by t are normalized to be 1, the present

value of this EIA at t is

f(Z(t))
.
=

T−1∑
j=t

E

[
e−

∫ j+1
t r(u)du

j+1∏
i=t

max
(
eαR(i), eg

)
1{j<τ(x)≤j+1}

∣∣∣∣∣F(t)

]

+ E

[
e−

∫ T
t r(u)du

T∏
i=t

max
(
eαR(i), eg

)
1{τ(x)>T}

∣∣∣∣∣F(t)

]
, (4.50)

82



Statistical Emulators for Pricing and Hedging Longevity Risk Products Chapter 4

Denote by C(t, s) the expected payoff at period s discounted to t ≤ s:

C(t, s)
.
= E

[
e−

∫ s
t r(u)du

s∏
i=t

max
(
eαR(i), eg

) ∣∣∣F(t)

]
, (4.51)

Assuming independence of mortality dynamics from the financial quantities, we

can re-write (4.50) as

f(Z(t)) =
T−1∑
j=t

C(t, j + 1) [P (Z(t); t, j, x)− P (Z(t); t, j + 1, x)] + C(t, T )P (Z(t); t, T, x),

(4.52)

where P (Z(t); t, j, x)− P (Z(t); t, j + 1, x) is the expected probability of death in

year j given the initial mortality state Z(t). Determining the map Z(t) 7→ f(Z(t))

is important for risk measure analysis, such as under Solvency II which requires

knowledge of the liabilities distribution at a future point in time.

To precise the modeling of (Z(t)) we blend the setups of Qian et al. (2010)

and Cairns et al. (2011a). All financial assets are specified under the risk-neutral

measure Q with spot interest rates following the Cox-Ingersoll-Ross model

dr(t) = γ (β − r(t)) dt+ σr
√
r(t)dWr(t), (4.53)

and the risk index S following Geometric Brownian motion:

d logS(t) =

(
r(t)− 1

2
σ2
S

)
dt+ σSdWS(t), (4.54)

where Wr and WS are independent standard Brownian motions. Note that this
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implies that the Q-distribution of the returns R(t) = S(t)/S(t − 1) − 1 depends

on the interest rates {r(s) : t− 1 < s < t}. It also shows that in fact S(t) is not

part of Z(t), since the distribution of R(t) is independent of the index level, only

its increments.

For the mortality model, we choose the Lee-Carter model with cohort effect

as in (4.37) and (4.38), fitted to E&W general population data as described in

Section 4.5. The end result is a two-dim. state process Z(t) = {r(t), κ(t)}. Since

the dynamics of κ(·) are independent from those of r(·), one could in principle

build separate emulators for each, which could allow to re-use emulation for other

EIA’s (or other interest-rate-sensitive products).

4.7.1 Results

For the remainder of this section we analyze f(Z(1)), the net present value

of the EIA one year into the future. We let x = 55 and the expiration time be

T = 10. Our guaranteed rate is g = 0.03, the CIR model (4.53) has parameters

r(0) = 0.04, γ = 0.6, β = 0.04, σr = 0.03, from Qian et al. (2010), and the

mutual fund has volatility σS = 0.2. Following Lin and Tan (2003), we set the

participation index α to solve f(Z(0)) = 1, resulting in α = 0.8211.

We proceed to fit kriging and LSMC emulators, using an empirical training

design D. We employ linear basis functions for LSMC and a first-order linear trend

model for Universal Kriging. The algorithms discussed in Sections 4.3.4 and 4.3.5

are used to generate the design and fit the surrogate models. Because (r(t)) and

(R(t)) are specified through a continuous-time model, we employ a standard Euler

method with time-step ∆t = 0.01 to simulate interest rates and stock returns on
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[t, T ]. This procedure makes simulation much more expensive (about two orders

of magnitude slower than previous examples) and hints at speed advantages of

emulation over plain nested Monte Carlo. The emulation budget is Ntr = 10, 000

split into Ntr,1 = 100 outer design points and Ntr,2 = 100 for the batch size. The

Monte Carlo benchmark is generated based on a grid of Nout = 25 values of r(1),

with Nin = 104 and final result smoothed by a spline.

Figure 4.4: Marginal dependence plot of f(Z(1)) versus r(1), where f(Z(1)) is
defined in (4.52) and is estimated through a smoothed Monte Carlo bench-
mark with Nout = 25, Nin = 10, 000. The two emulator models used
Ntr,1 = Ntr,2 = 100. The 2-dim. experimental design D for the emulators was
empirical.

While emulators were fit for the full 2-dim. map Z(1) 7→ f(Z(1)), Figure 4.4

shows the partial dependence of the EIA value on r(1) (experiments show that

f(Z(t)) is much more sensitive to interest rates than to the mortality factor κ(1)).

For the plot we fixed κ(1) = −13.76 which is the estimated mean of κ(1). We
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observe a decreasing relationship between r(1) and f(Z(1)) similar to a traditional

annuity. The emulators capture this link, but the LSMC version has trouble at the

edges of the distribution; here the mismatched slope for the linear basis functions

causes issues at the edges. We remark that a quadratic fit results in the same

issue. To give a numeric indication of the model differences, the root mean squared

difference between the model prediction and Monte Carlo benchmark over the 25

test points was 1.649e-03 for the kriging model and 2.023e-03 for LSMC, which is

roughly 20% better.

To reiterate the efficiency gains of the emulators, the nested Monte Carlo

benchmark (which was only modeling the 1-dim. map r 7→ f(r,−13.76)) took

several hours to run on our laptop with total simulation budget of N = 2.5 · 105;

the kriging emulator with Ntr = 104 took a few minutes and the LSMC emulator

with same budget was even faster, since it had smaller regression overhead.

4.8 Conclusion

The four case studies above showcase the flexibility and performance of the sur-

rogate models across a range of various longevity risk dynamics and applications.

Compared to the consistent accuracy of the statistical emulators, the quality of

the deterministic projections was widely varying. Because an analytic derivation

is required to produce a deterministic estimator, there are several plausible esti-

mators available. In Section 4.5 we derived two different estimators, both of which

were viable, but one underperformed. Similarly, in Section 4.6 the derived deter-

ministic projection was also inaccurate. Overall, these examples show that our
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models can outperform deterministic projections and provide minimally-biased es-

timates. Moreover, despite the fact that sometimes analytic approximation were

just as good, we hope that our experiments serve as a cautionary tale on using

approximations without quantifying their accuracy.

Our examples show that statistical emulators offer a principled approach to

Monte Carlo approximation of annuity present values. By endogenously gener-

ating proxies for approximation accuracy, emulators nicely complement analytic

formulas. Moreover, through their flexibility, emulators can work even in com-

plicated settings where analytic derivations are hard to come by. On the latter

aspect, we emphasize the advantages of working with a non-parametric frame-

work such as stochastic kriging compared to parametric least-squares approaches

where the modeler must explicitly specify the structure (i.e. basis functions and

their number) of the emulator. We also point out the ability of kriging models to

incorporate analytic approximations as trend functions which allows to combine

the best of both worlds, see e.g. the excellent performance of the SK model in

Section 4.5.

Throughout the paper we have hinted at possibilities for further work. Straight-

forward extensions include using other mortality models, or emulating other insur-

ance products. For example, Bacinello et al. (2011) provides an in-depth analysis

of many types of variable annuities using Least Squares Monte Carlo. Both krig-

ing and spline models could be used in place of the least squares framework to

provide an additional viewpoint to the problem. A useful example to analyze

is when surrenders and withdrawals are available. One can also build more dy-

namic surrogates that treat initial age x (fixed in our case studies as x = 65)
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or deferral period T as part of the state Z, providing a joint prediction for

(Z(0), T, x) 7→ E[a(Z(T ), T, x)]. Similarly, one could consider more parameter

uncertainty which would lead to including additional components in the state Z.

The emulators we obtained offer a high-performance tool for annuity risk man-

agement. Indeed, they are based on advanced, previously vetted stochastic mortal-

ity models and calibrated to real, reliable, large-scale mortality datasets. Hence,

the fitted estimates for annuity values are in essence a best-available forecast

that combines state-of-the-art longevity modeling, data calibration and statistical

model. As such, (after incorporating age and interest rate as model parameters)

they would be of independent interest to actuaries working in longevity space

and seeking easy-to-use tools for forecasting net present values of life annuities.

The emulator offers a plug-and-play functionality, converting inputted parame-

ters (such as age x, deferral period T and discount rate r) into the annuity value

(note that the initial state Z(0) is read off from the calibration procedure). One

can imagine building a library of such emulators for different mortality-contingent

products available in the marketplace.

Looking more broadly, the emulation approach we propose is very general and

can be applied in a variety of actuarial contexts. In particular, in future work

we plan to extend it to the microscopic agent-based models of mortality Barrieu

et al. (2012) which offer a canonical “complex system” representation of popu-

lation longevity. We believe that emulators could significantly simplify predic-

tions in these types of models by providing a tractable, statistical representation

of demographic interactions within a stochastic dynamic population framework.

Another class of insurance applications requires functional-regression tools where
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emulators can again be very effective Gan and Lin (2015). A different extension

is emulation of risk measures related to F (T, Z(·)), such as VaR or TVaR, which

require targeted surrogates that focus on a specific region of the input space. A

starting point is to combine concept of importance sampling to generate a tar-

geted design D that e.g. preferentially concentrates on the left tail of F . Figure

4.4 shows that the nonparametric regression underlying emulation is well-suited

to perform tail analysis for any stochastic factor, such as interest rate, that drives

risk in insurance products.

Acknowledgments

We thank the Associate Editor and the Anonymous referees for many helpful

comments that improved the paper. We also acknowledge the feedback from the

participants at the 2015 Actuarial Research Conference and the 2015 Longevity

11 where earlier versions of the article were presented. The research of the first

author is partly funded by the SOA Hickman Scholarship.

89



Statistical Emulators for Pricing and Hedging Longevity Risk Products Chapter 4

4.9 Appendix: Lee Carter & CBD Stochastic

Mortality Models

In this section we give a brief summary of existing stochastic mortality mod-

els. We use the notation of Cairns et al. (2011a) who provided a comprehensive

comparison of several mortality models using CMI data.

The APC Lee-Carter model (introduced by Renshaw and Haberman (2006))

models the log mortality rate as

logm(t, x) = β(1)(x) + β(2)(x)κ(2)(t) + β(3)(x)γ(3)(t− x). (M2)

One can interpret β(1)(x), κ(2)(t) and γ(3) as the age, period and cohort effects,

respectively. The original model proposed by Lee and Carter (1992) is a spe-

cial case where γ(3) = 0. The age effects β(k)(x), k = 1, 2, 3 are estimated (non-

parameterically) from historical data, while the period and cohort effects are taken

as stochastic processes. In the original proposal in Lee and Carter (1992), the pe-

riod effect κ(2) is assumed to follow a random walk (i.e. unit root AR(1) in discrete

time),

κ(2)(t) = κ(2)(t− 1) + µ(2) + σ(2)ε(2),

where µ(2) is the drift, σ(2) is the volatility, and ε(2) ∼ N(0, 1) i.i.d. is the noise

term. Alternatively, Cairns et al. (2011a) mention that ARIMA models may

provide a better fit, in particular fitting an ARIMA(1, 1, 0) process for κ(2) based

on 2007 CMI dataset.

For the cohort effect, Renshaw and Haberman (2006) suggested using ARIMA
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models for γ(3)(t− x); Cairns et al. (2011a) recommend the use of either

ARIMA(0, 2, 1) or ARIMA(1, 1, 0). Renshaw and Haberman (2006) and Cairns

et al. (2011a) both assume γ(3) is independent of κ(2).

This model has identifiability issues, and one set of constraints could be

∑
t

κ(2)(t) = 0,
∑
x

β(2)(x) = 0,
∑
x,t

γ(3)(t− x) = 0, and
∑
x

β(3)(x) = 1.

From a different perspective, Cairns, Blake, and Dowd (2006) (CBD) proposed

a model for q(t, x) = 1 − P (Z(0); t, 1, x), the probability of death in year t for

someone aged x. Namely, they use

logit q(t, x) = β(1)(x)κ(1)(t) + β(2)(x)κ(2)(t), (M5)

where logit(y) = log
(

y
1−y

)
.

If we let na be the number of ages available in the data set for fitting, and

take xAve = n−1
a

∑
i xi, the commonly used parameterization for the CBD model

(M5) is

β(1)(x) = 1, and β(2)(x) = x− xAve. (4.55)

Under these assumptions there are no identifiability issues.
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4.10 Appendix: Proofs of Analytic Estimates

4.10.1 Proof of Lemma 1.

Since the noise terms ξ(k)(u) are independent of κ(2)(s) for u 6= s, taking

conditional expectation with respect to Z(s) = {κ(2)(s), ξ(2)(s)}, and writing in

terms of the increments κ(2)(u)− κ(2)(u− 1) yields

E
[
κ(2)(t)− κ(2)(s) | Z(s)

]
=

t∑
u=s+1

E
[
κ(2)(u)− κ(2)(u− 1) | Z(s)

]
=

t∑
u=s+1

E
[
ξ(1)(u) + ξ(2)(u)− ξ(2)(u− 1) | Z(s)

]
.

(4.56)

By the independence assumption we have for u 6= s+ 1

E
[
ξ(1)(u) | Z(s)

]
= µ(1) (4.57)

E
[
ξ(2)(u)− ξ(2)(u− 1) | Z(s)

]
= µ(2)p− µ(2)p = 0. (4.58)

For u = s+ 1,

E
[
ξ(2)(s+ 1)− ξ(2)(s) | Z(s)

]
= µ(2)p− ξ(2)(s). (4.59)

Combining (4.56)-(4.59), we obtain

E
[
κ(2)(t) | Z(s)

]
= κ(2)(s) + (t− s)µ(1) + µ(2)p− ξ(2)(s). (4.60)
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4.10.2 Proof of Lemma 2.

Since κ1 has trend µ1, E[κ1(t) − κ1(t − 1)] = µ1, and using conditional inde-

pendence, we obtain,

E [κ1(T + t) | Z(T )] = κ1(T ) + µ1t. (4.61)

For the co-integration term S(t), the expected values satisfy

E[S(T + t) | Z(T )] = µ2 + φ (E[S(T + t− 1) | S(T )]− µ2) . (4.62)

The above gives a recursive equation for t 7→ E[S(T + t) | Z(T )], with initial

condition E[S(T + 0) | Z(T )] = S(T ), which can be solved to yield

E[S(T + t) | Z(T )] = µ2(1− φt) + φtS(T ). (4.63)

Finally, using κ2(t) = κ1(t)− S(t), and combining (4.61) with (4.63) leads to

E[κ2(T + t) | Z(T )] = κ1(T ) + µ1t−
(
µ2(1− φt) + φt [κ1(T )− κ2(T )]

)
.

as desired.
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4.10.3 Proof of Lemma 3

For ξ(1)(t, s), κ(1) is no different than a random walk with drift, so we have

E[κ(1)(t) | κ(1)(s)] = κ(1)(s) + µ(t− s), s ≤ t.

Next, we take expectation on both sides of (4.46) to obtain the recursive relation

E[κ(2)(t) | Z(s)] = (1 + φ)E[κ(2)(t− 1) | Z(s)]− φE[κ(2)(t− 2) | Z(s)] (4.64)

where Z(s) = {κ(1)(s), κ(2)(s), κ(2)(s− 1)}. Equation (4.64) is a recursive relation

in t with general solution

E[κ(2)(t) | Z(s)] = c1φ
t + c2, (4.65)

where the constants c1 and c2 are to be determined. Plugging-in the initial con-

ditions

c1φ
s + c2 = E[κ(2)(s) | Z(s)] = κ(2)(s), and (4.66)

c1φ
s+1 + c2 = E[κ(2)(s+ 1) | Z(s)] = (1 + φ)E[κ(2)(s)− φκ(2)(s− 1) | Z(s)]

= (1 + φ)κ(2)(s)− φκ(2)(s− 1). (4.67)

and solving for c1, c2 we obtain

c1 = φ1−sκ
(2)(s)− κ(2)(s− 1)

φ− 1
, c2 =

φκ(2)(s− 1)− κ(2)(s)

φ− 1
. (4.68)
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Finally, combining (4.68) with (4.65), we arrive at (4.48).
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Chapter 5

Sequential Design Algorithms for
Estimating Value-At-Risk for
Longevity Risk

5.1 Introduction

The latest insurance and financial regulators mandate estimation of quantile-

based portfolio risk measures. The Solvency II Christiansen and Niemeyer (2014)

framework calls for computing the 99.5%-level value-at-risk for a 1-year horizon,

while the Basel 3 regulations in banking Committee et al. (2013), requires to

report the α−level tail value-at-risk (TVaRα)). These quantities are typically cal-

culated by first generating a representative set Z of future loss scenarios and then

evaluating the empirical quantile based on Z. However, due to the underlying

cashflow and valuation complexity, directly evaluating future portfolio loss is usu-

ally not feasible and instead approximate losses are computed. This is frequently

done by a Monte Carlo evaluation of the corresponding conditional expectation,

leading to nested simulation problem.
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In the plain nested Monte Carlo method, for each outer scenario one simply

computes future portfolio losses using a fixed number of inner scenarios, averages

the losses, and takes the quantile or tail average of these results. This often

becomes computationally infeasible, so that practitioners sometimes rely on crude

approximations that avoid/minimize inner simulations but introduce errors due to

misspecification Gordy and Juneja (2010). Furthermore, these errors are difficult

to quantify and in fact such empirical VaRα estimate are necessarily biased.

In practice, the scenarios Z are realizations or samples based on some under-

lying stochastic factors or risk drivers (Zt). Thus, we can identify each z ∈ Z as

the value of ZT = z, and the portfolio loss can be abstractly viewed as evaluating

the expected cashflow Y (which depends on the future path (Zt)t≥T ) given the

initial condition ZT = z.

f(z) ≡ E [Y ((Zt)t≥T ) |ZT = z] . (5.1)

Note that we assume that Z is Markovian which is essentially always the case in

the practical context; if necessary Z is augmented to make it Markov. We assume

that f(z) is not available in closed form, so it must be approximated via inner

step of the nested procedure. Our goal are efficient and generic ways of estimating

VaRα and TVaRα when the risk drivers follow a simulatable Markov process.

The key idea is to improve the inner step of the nested procedure by adaptively

allocating simulation budget to scenarios with large losses. Indeed with α =

99.5%, roughly 99% of the outer scenarios are irrelevant from the point of view

of VaR or TVaR computation. To maximize the adaptive procedure, we employ
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statistical emulation which treats f as an unknown function and seeks to produce

a function estimate f̂ . The underlying idea is that nearby inputs should produce

similar outputs, so from a Bayesian perspective, we can make inference on f(z)

for any z simply based on what was already simulated at its neighbors. The

typical modeling method used in emulation is Gaussian process (GP) regression,

or kriging Rasmussen and Williams (2006) (also known as stochastic kriging when

there is intrinsic uncertainty inherited from stochastic simulation). With this, the

posterior output f̂ is multivariate Gaussian, with its distribution based on the

yi and si at nearby scenarios. Hence any statistical quantities (e.g. quantiles,

posterior variance) are easily computable.

Remark (Emulation versus Regression). Emulation is quite similar to regression.

Two conceptual differences is that (i) with regression the dataset (zi, yi) is given

a priori to the modeler, and the goal is find the relationship between y’s and

z′s. With emulation, the modeler is in charge of the simulations which are used

to learn the input-output pairing as quickly as possible. Furthermore, (ii) with

regression one can often “see” the shape of f and the noise, and so a parametric

approach is a sensible to refine this “shape”; with emulation the data come in

on-the-fly and hence usually sequential/non-parametric paradigms are preferred

which can automatically infer the latent relationship.

In the setting of approximating a black-box function like in Equation (5.1),

emulation has already proven its efficiency in various settings, see e.g. Santner

et al. (2013), Fang et al. (2005), Rasmussen and Williams (2006), Forrester et al.

(2008), Gramacy and Lee (2008), Marrel et al. (2008). More specifically, stochastic

kriging has been used numerously in financial settings. Closely related to this
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paper is Risk and Ludkovski (2016) that studied approximate pricing of longevity-

linked contracts, requiring an average of Equation (5.1) over the whole distribution

ZT . However, when the quantity of interest is based on tail risk, the problem is

inherently different, since the fitted f̂ only needs to be accurate in the tail of

f(ZT ).

Despite an expansive literature on related topics, we have found no direct

applications to the problem of VaRα (or any exact quantile) estimation in the

Monte Carlo setting (5.1). There is, however, a vast collection of supplementary

ideas using emulation. We briefly list some fundamental results here, with detailed

discussion later:

• Oakley (2004) was the seminal work on emulation and kriging for quantile

estimation of expensive computer code output (non-stochastic). Used is

a three-stage procedure aiming to minimize the posterior variance of the

quantile estimator, unraveling into a difficult numerical problem requiring

many approximations.

• Liu and Staum (2010) used stochastic kriging in estimating tail value-at-

risk (TVaRα) (which is simply a tail average) of a financial portfolio. They

also use a three-stage procedure that minimizes the posterior variance of the

TVaRα estimator (requiring numerical approximations).

• Picheny et al. (2010) sought to understand the set {z : f(z) ∈ (L−ε, L+ε)}

where f is the unknown function and L is a known level. The similarity here

is that we are interested in the case where L is VaRα, so that we will gain

inference about the z producing values of f(z) in the neighborhood of L,
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and can consequently pursue attention in this region. Unfortunately, L is

not known in our example, and furthermore their method considers the case

where f(z) is non-noisy.

The last method is closely related to similar works of estimating an excursion

set {z : f(z) ≥ L} (Chevalier et al. (2014a)) and estimating probability of failure

(Bect et al. (2012)), i.e. P({z : f(z) ≥ L}). Each incorporates a stepwise un-

certainty reduction (SUR) procedure that sequentially pick a scenario z at which

to evaluate f(z), where z is chosen based on a specified expected improvement

criterion.

All three methods use an initial step of using a fraction of the budget to learn

about f(z) on the whole domain, which yields an initial search region for the re-

mainder of the procedure. The methods differ in allocating the remaining budget:

Oakley (2004) performs one additional step that chooses design points for f to be

evaluated at, based on what the initial stage inferred about the quantile region of

f . Liu and Staum (2010) is similar in having two additional steps, where first a

larger fraction of the budget is allocated uniformly to scenarios in the estimated

tail, and finally the remaining budget is dispersed (non-uniformly) among the tail

scenarios according to minimize the posterior variance of the TVaRα estimator.

As mentioned, Picheny et al. (2010) finishes by sequentially evaluating f at points

chosen according to an expected improvement criterion.

In the VaR context, several aspects of the setting make the emulation problem

statistically challenging. First, as mentioned the number of outer scenarios is quite

large, rendering existing ranking-and-selection strategies from the OR literature

computationally heavy. We note that the typical simulation budget is Ntot ∼ Z,
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i.e. naively with a brute-force uniform approach one can only sample each scenario

a handful of times, which will lead to disastrous estimates. This implies that prac-

tical allocation schemes must be quite aggressive and the asymptotic guarantees

available in the above literature are not applicable. Second, the outer scenarios

are usually treated by practitioners as a fixed object. In other words, the scenario

space is taken to be discrete – one cannot add (or subtract) further scenarios

(which is the strategy in Broadie et al. (2011)). Neither can one employ con-

tinuous search methods that are popular in the simulation optimization domain.

Third, the nature of the underlying cashflows makes the simulation noise ε highly

non-Gaussian. It is typically skewed (because many cashflows have embedded op-

tionality and hence the corresponding distribution has a point mass at zero) and

with low signal-to-noise ratio. The latter implies that cross-scenario information

borrowing is crucial to maximize accuracy. Fourth, the portfolio losses are highly

inhomogenous, i.e. ε is heteroskedastic. This requires an advanced emulator to

overcome this challenge. Fifth, the statistical objective function which defines the

emulator goodness-of-fit is highly non-standard. On the one hand, it is implicit

because the goal is to find the critical threshold z̃ such that z̃ = f(z)(αN) On the

other hand, there are no simple estimators for the empirical quantile, so uncer-

tainty quantification for the z̃ is also nontrivial. These two points are crucial. The

standard ranking-and-selection procedure is asymptotically equivalent to doing a

hypothesis test for f(z) > L for a given threshold L and for each scenario z. The-

oretically this allows to decouple the estimation problems, but such schemes are

obviously impractical if L is itself unknown. Consequently, an emulator-based,

sequential procedure is instead needed.
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In this article we propose a universal strategy that overcomes all of the above

challenges. Our framework has 3 key pieces. First, we connect to the burgeon-

ing DACE literature on level-set estimation, tailoring the recent successes of the

Stepwise Uncertainty Reduction (SUR) techniques to the VaR/TVaR problem. As

such, we see this work as a first step towards closer marriage of machine learning

and simulation-based risk measurement. Second, as already mentioned we work

with a GP emulator which offers a rich uncertainty quantification properties, in

particular many analytic formulas for active learning criteria that are used for

guiding the simulation allocation. Third, we take advantage of the discrete sce-

nario set which intrinsically calls for a replicated design. In turn, replication yields

(i) improved noise properties that minimize non-Gaussianity; (ii) ability to simul-

taneously learn the mean response f(·) and the conditional simulation variance

s(·) to handle heteroskedasticity; (iii) reduced model overhead through possibility

of batching; (iv) convenient GP implementation. The symbiotic relationship of

replication and kriging was already observed in Ankenman et al. (2010); we fur-

ther modify standard GPs by employing the hetGP library that was recently built

to offer a tailored emulator that gracefully handles (i)-(iv).

Rather than proposing a single specialized algorithm, we present a general

framework which contains several modules. By adjusting these “moving parts”,

the algorithm can (a) evaluate different risk-measures (we illustrate with both

VaR and TVaR); (b) can use different emulator codes; (c) can change different

ways of running the sequential budget allocation: initialization phase; number

of sequential budget; termination criterion; batch-size and so on; (d) can rely

on different VaR estimators. To illustrate above choices we present an extended
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numerical illustration that compare the impact of different modules. In two case

studies, we compare it with benchmarks such as the algorithm in Liu and Staum

(2010). In sum, we will show that the emulation approach provides accurate

estimates even with a small simulation budget, and that the methods used have

a relatively low overhead numerical cost (fitting, prediction, etc.).

Returning to the applied context, our main message is that significant effi-

ciency can be squeezed from the proposed statistical tools, and so nested simu-

lation for risk measurement is a truly feasible paradigm. In turn, the statistical

learning perspective implies a natural preference for sequential algorithms that re-

peatedly go through the feedback loop of: simulate – estimate – assess – simulate.

Compared to classical one-stage/two-stage designs, the fully sequential strategies

offer several attractive features. First, they internalize the uncertainty quantifi-

cation that is offered by the emulator and therefore should (eventually) lead to

more automated implementation. Second, they can be run in an online fashion

– simulation run on a server or in the cloud with interim results always available

for download and inspection while the algorithm proceeds to refine its accuracy.

Thus, the user no longer has to specify a priori the simulation budget, but instead

can interact with the code on-the-fly. Third, sequential methods can be seen as

a starting point for more general re-use of simulations, for example for periodic

recomputation of the whole problem as business time progresses (usually VaR

calculations are done on a daily-weekly-monthly cycles).

The paper is organized as follows: in Section 5.2 we discuss the emulation

objective and explain further the idea of portfolio loss and tail risk, along with

VaRα estimation. Section 5.3 formally introduces the GP model and its mathe-
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matical details. Next, Section 5.4 summarizes the mathematical ideas in Liu and

Staum (2010) and Picheny et al. (2010), along with how they are implemented and

adapted to our problem. Section 5.5 provides the full implementation. Finally,

we apply the algorithm to two case studies where VaRα and TV aRα calcula-

tions are of interest. Section 5.6 involves a two-factor model, where we compare

methods for fixed simulation budgets, as well as a sequential stopping criteria.

Section 5.7 investigates performance in higher dimensions where the state process

is six-dimensional and the simulator is much more expensive.

5.2 Objective

Given a probability space (Ω,F ,P), we consider a stochastic system with

Markov state process Z = (Zt). Typically, Z is a multivariate stochastic process

based on either a stochastic differential equation or time-series ARIMA frame-

work. Based on the realizations of Z, the modeler needs to assess the available

capital −f(ZT ) at an intermediate horizon T . Noting that f(ZT ) is the loss at

time T , the capital requirement based on VaRα and TVaRα are respectively the

value sufficient to cover time T liabilities with probability α, i.e.

VaRα(−f(ZT )) = inf{x : P(x+ f(ZT ) ≥ 0) ≥ α}, (5.2)

and the α−tail average,

TVaRα(−f(ZT )) = E [−f(ZT )| − f(ZT ) ≤ VaRα(f(ZT ))] . (5.3)
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The portfolio value f(ZT ) is computed as the conditional expected value of

discounted cash flows given ZT , the information at time T . For concreteness, con-

sider cashflows Yt(z·) which could depend on the whole path z0:t of the stochastic

factor up to date t. To compute their net present value, we discount at a constant

risk-free rate β

Y (z) =
∞∑
t=T

e−β(t−T )Y i
t (zn· ). (5.4)

Since Z is Markov, we can write

f(z)
.
= E [Y (ZT )|ZT = z] . (5.5)

Aside from situations where the form of cashflows are trivial, we shall assume that

f(z) is not available explicitly, and there is no simple way to describe its functional

form. However, since f(z) is a conditional expectation, it can be sampled using a

simulator, i.e. the modeler has access to an engine that can generate independent,

identically distributed trajectories (Y n
t (z))∞t=T+1, n = 1, 2, . . . , given ZT = z.

However this simulator is assumed to be expensive, implying that computational

efficiency is desired in using it.

The naive Monte Carlo approach is based on nested simulation. First, we start

with N trajectories of (Zt)0≤t≤T , yielding z := {zn, n = 1, . . . , N}. Next, for each

n, f(zn) is approximated by an inner empirical average

f(zn) ' ȳn
.
=

1

rn

rn∑
i=1

yn,i, n = 1, . . . , N, (5.6)

where yn,i is the present value of loss from (5.4) based on i = 1, . . . , rn independent
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trajectories Y i
· (z

n,i
· ). Finally, Equations (5.2) and (5.3) are estimated by a quantile

estimator and tail average estimator respectively (e.g. the empirical αNth order

statistic of the realizations (ȳn)Nn=1 and average of the αNth lowest ordered values;

more sophisticated estimators are discussed in Section 5.2.1).

Remark. Typically the outer scenarios are provided by an Economic Scenario

Generator that calibrates the dynamics of (Zt) to the historical data, i.e. it is

under the physical measure P. The inner simulations are based on a mark-to-

market law, i.e. it is under the risk-neutral measure Q. Therefore, the evolution

of (Zt) is different on [0, T ] and on [T,∞). This makes no difference for our

subsequent discussion which takes the set (zn) as given. Hence, the inner workings

of the ESG/outer simulator are never considered.

Specifically for this nested approach, Gordy and Juneja (2010) provide results

about asymptotic bias and variance, along with consequent optimal budgeting

strategies, i.e. how to choose N and rn = r̄, n = 1, . . . , N for a fixed budget

Ntot
.
=
∑N

n=1 r
n. Practically this approach is unreasonable expensive: with a

uniform inner allocation the total simulation budget is O(N · r̄) – for example,

a budget of r̄ = 103 inner and N = 103 outer simulations requires 106 total

simulations.

For this reason, it is desirable to construct more frugal schemes for approxi-

mating (5.2). The main idea is to replace the inner step of repeatedly evaluating

f(z) by a surrogate model f̂ for f . This framework generates a fitted f̂ by solving

regression equations over a training dataset. Emulation reduces approximating f

to the twin statistical problems of (i) experimental design (generating the training

dataset) and (ii) regression (specifying the optimization problem that the approx-
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imation f̂ solves). The problem of statistical design is of particular importance

to quantile estimation; the surrogate f̂ should be accurate in “extreme” regions,

so a procedure that identifies these scenarios and allocates budget accordingly is

necessary. Details of these steps are presented in Sections 5.4 and 5.5 below. The

model used for f is discussed in Section 5.3.

5.2.1 Tail Risk Estimation

Tail risk is the risk associated with extreme financial scenarios. In practice,

corporations are regulated to hold sufficient capital in case of these events. In

almost all cases, the capital requirement is calculated as a risk measure of future

loss, see Dhaene et al. (2006) for a review. The exact risk measure depends on

the industry and specific regulatory frameworks, but typically is based on VaRα

or TVaRα.

The primary focus of this paper is to investigate estimation of VaRα and

TVaRα, though our framework can straightforwardly handle generic risk measures

of Z defined through weights: given a collection of losses (fn) with fn = f(zn)

define

R
.
=

N∑
n=1

wnfn, (5.7)

where
∑N

n=1 w
n = 1. For example, fixing α, the level of risk (and assuming αN is

an integer), let f (αN) be the αNth order statistic of f 1:N . Then VaRα and TVaRα
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respectively have weights

wn,V aR = 1{n:fn=f (αN)} (5.8)

wn,TV aR =
1

αN
1{n:fn≤f (αN)}. (5.9)

The empirical plug-in analogue of applying Equation (5.7) to the Monte Carlo

estimates in Equation (5.6), i.e. using f̂(αN) produces a biased estimate, as dis-

cussed in Kim and Hardy (2007). The authors also discuss the difficulty that one

cannot quantify which direction the bias lies without knowing some details about

f and the distribution of ZT . Kim and Hardy (2007) and Gordy and Juneja (2010)

discuss ways of reducing bias, through bootstrap and jackknife, respectively.

Borrowing results from the general theory of order statistics, one can construct

several modified versions of VaRα estimators that stem from weighted averages

of nearby order statistics. Called L−estimators Sheather and Marron (1990),

they offer robustness compared to a single sample order statistic. Effectively such

estimators modify the weights wn defining (5.7) to account for the uncertainty

in f̂(zn). A well known construction is by Harrell and Davis (1982), where the

weights for a VaRα estimator are chosen as (note the link to the beta distribution)

w(n) =

∫ n/N

n−1/N

Γ(N + 1)

Γ((N + 1)αN)Γ((N + 1)(1− αN))
t(N+1)αN−1(1−t)(N+1)(1−αN)−1dt,

(5.10)

where the index (n) is based on the order of the ȳn, n = 1, . . . , N . Sheather and

Marron (1990) provides details on the properties of the weights in Equation (5.10)
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as well as a discussion on other L−estimators. Sfakianakis and Verginis (2008)

provide more sophisticated L−estimators, as well as performance comparison with

the Harrell-Davis estimators and the exact empirical estimator in (5.8). The

general conclusion is that no one estimator performs best – they are all situational,

with properties depending on the problem at hand.

In Section 5.3.5, we further discuss these risk measures in the case where the

losses Y 1, . . . , Y N are multivariate normal, which is the setup of Section 5.3.

5.3 Stochastic Kriging

The idea of emulation is to “learn” the response surface z 7→ f̂(z) by a regres-

sion step that borrows information across different scenarios starting at various

sites zn. This reduces computational budget compared to the nested simulation

step of independently making N pointwise estimates f(zn) by running rn real-

izations from each site zn. The result is a fitted surrogate f̂ that smoothes the

Monte Carlo noise from nearby scenarios. Moreover, the surrogate allows to fore-

cast f̂(z) at scenarios where no inner simulations were used at all, thereby offering

screening of scenarios that are far from the tail risk.

Formally, the statistical problem of emulation deals with a sampler (or oracle)

Y (z) = f(z) + ε(z), (5.11)

where we identify f(z) with the unknown response surface and ε is the sampling

noise, assumed to be independent and identically distributed across different calls

to the oracle. We make the assumption ε(z) ∼ N(0, τ 2(z)), where τ 2(z) is the
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sampling variance that depends on the scenario z. Emulation now involves the (i)

experimental design step of proposing a design D that forms the training dataset,

and (ii) a learning procedure that uses the queried results Dk = (zn,ynk )Nn=1, with

ynk = {yn,1k , . . . , y
n,rnk
k } being a collection of rnk realizations of (5.11) given zn, to

construct a fitted response surface f̂ . Here, we consider the case where f̂ is fitted

sequentially based on a multi-step procedure, and subscript k denotes the step

counter.

A kriging surrogate assumes that f in (5.11) has the form

f(z) = µ(z) +X(z), (5.12)

where µ : Rd → R is a trend function, and X is a mean-zero square-integrable

Gaussian process with covariance kernel C. The role of C is to generate the RKHS

HC which is the functional space that X is assumed to belong to.

Since the noise ε(z) is also Gaussian implies that X(z)|D ∼ N(m(z), s2(z))

has a Gaussian posterior, which reduces to computing the kriging mean m(z)

and kriging variance s2(z). In turn, the kriging variance s2(z) offers a principled

empirical estimate of model accuracy, quantifying the approximation quality. In

particular, one can use s2(z) as the proxy for the MSE of f̂ at z.

5.3.1 Predictive Distribution

By considering the process f(z) − µ(z), we may assume without loss of gen-

erality that f is statistically centered at zero. Denoting the sample average at

each scenario zn by ynk
.
= 1

rnk

∑rnk
i=1 y

n,i
k as in Equation (5.6) and the overall collec-
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tion as yk = {y1
k, . . . , y

N
k }, the resulting posterior mean and variance of f̂k(z) are

Roustant et al. (2012a)


mk(z)

.
= c(z)T (C + ∆k)

−1yk;

s2
k(z)

.
= C(z, z)− c(z)T (C + ∆k)

−1c(z),

(5.13)

where c(z) = (C(z, zn))1≤n≤N , C
.
= [C(zi, zj)]1≤i,j≤N , and ∆k is the diagonal

matrix with entries τ 2(z1)/r1
k, . . . , τ

2(zN)/rNk . Note that the conditional variances

τ 2(·) are typically unknown, so to obtain s2
k(z) it must be replaced with a further

approximation τ̂ 2(·) as discussed in Section 5.3.3.

5.3.2 Covariance kernels and hyperparameter estimation

The covariance function C(·, ·) is a crucial part of a Kriging model. In practice,

one usually considers spatially stationary or isotropic kernels,

C(z, z′) ≡ c(z − z′) = σ2

d∏
j=1

g((z − z′)j; θj),

reducing to the one-dimensional base kernel g. Below we use the Matern 5/2

kernel,

g(h; θ) =

(
1 +

√
5h

θ
+

5h2

3θ2

)
exp

(
−
√

5h

θ

)
. (5.14)

The hyper-parameters θj are called characteristic length-scales and can be infor-

mally viewed as roughly the distance you move in the input space before the

response function can change significantly (Rasmussen and Williams, 2006, Ch

2). Constructing a GP emulator requires picking a kernel family and the hyper-
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parameters σj, θj. We utilize the R packages DiceKriging Roustant et al. (2012a)

and hetGP Binois et al. (2016) that allow fitting of kriging models for several

kernel families by Maximum Likelihood.

5.3.3 Intrinsic Variance

The simulation variance τ 2(z) is a crucial piece of the emulation but is again

unknown. A basic estimate can be obtained as the empirical standard deviation

across the rnk inner simulations:

τ̂ 2
k (zn) =

1

rnk − 1

rnk∑
i=1

(yn,ik − ȳ
n
k )2, (5.15)

so that our proxy for the intrinsic variance of f̂k(z
n) is τ̂ 2

k (zn)/rnk . Depending

on the circumstances, this sample variance estimator is unreliable, in particular,

when rnk is small. Since the noise τ 2(z) should be similar at nearby scenarios,

a hierarchical approach can be used where τ 2(z) itself is modeled by a kriging

surrogate. Brief details are given in Section 3.1 of the seminal work of Ankenman

et al. (2010) on stochastic kriging. More recently, Binois et al. (2016) looks at

this problem in detail and provides efficient numerical formulas to an otherwise

expensive addition to the stochastic kriging framework.

5.3.4 Updating Equations

In the setting where τ̂ 2(·) itself is not modeled, it is numerically more efficient

to keep track of ȳn and τ̂ 2(zn) instead of all replications yn at zn. Let r′nk be

the number of replications to be added to scenario zn. Then, for the sites with
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r′nk > 0, let ȳ′nk and τ̂ ′2k (zn) be the sample mean and standard deviation of the

new replications. Then one can update with the following equations (Chan et al.

(1982))

ȳnk+1 =
rnk ȳ

n
k + r′nk ȳ

′n
k

rnk + r′nk
(5.16)

τ̂ 2
k+1(zn) =

1

(rnk + r′nk − 1)

(
(rnk − 1)τ̂ 2(znk ) + (r′nk − 1)τ̂ ′2k (zn) +

r′nk r
n
k

rnk + r′nk
(ȳnk − ȳ′nk )

2

)
.

(5.17)

Equation (5.17) also showcases how each individual piece contributes to the noise

variance. In this case, one must also keep track of rnk .

The Gaussian process itself also has updating equations for the new posterior

mean and variance when a new observation is added to the design, see Kamiński

(2015) for details.

5.3.5 Tail Risk Estimation in the Gaussian Process Case

Returning to the risk measure as defined in (5.7), where wn = c1{zn∈R} its

posterior is

E[R|Dk] =
∑
n

E[cf(zn)1zn∈R|Dk] (5.18)

which requires integrating against the joint distribution of f̂ 1:N . While the latter

is multivariate Gaussian, there are no closed formulas for the probability that one

coordinate of a MVN distribution is a particular order statistic. Nevertheless,

the conditional expectation can be numerically approximated by making draws
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from the above posterior MVN of f̂ 1:N , evaluating the resulting quantile/tail and

averaging. A slightly cheaper procedure is to treat the two terms in (5.18) as

independent:

E[R|Dk] '
∑
n

E[cf(zn)|Dk] · E[1zn∈R|Dk]

= cmk(z
n) · P(zn ∈ R|Dk)

.
= cωnkmk(z

n), (5.19)

where the weights ωnk = P(zn ∈ R|Dk) resemble the Harrell-Davis construction.

As the emulator learns f , we expect that ωnk → wn converge to the true weights.

Figure 5.1 in Section 5.6 provides a visual comparison of ωnk , w̃
n
k and Wk(z

n), a

weight defined in Section 5.4.1. In general, it shows that the Harrell-Davis weights

provide a shape much similar to the true ωnk .

To reduce numerical costs, we use a hybrid method substituting the Harrell-

Davis weights in Equation (5.10) for ωnk = w̃nk which are in turn based on the

order statistics of the posterior means mk(z
n). The figure shows that these are

in fact quite close and offers a more robust quantile estimator, henceforth labeled

R̂HD
k . For further self-assessment we also compute the estimator variance:

s2
k(R)

.
= var(R|Dk)

.
= wk

[
C− c(z)T (C + ∆k)

−1c(z)
]
wT
k , (5.20)

where wk = (w1
k, . . . , w

N
k ). Note that the inside term in Equation (5.20) is the

posterior covariance matrix of f̂k(z), taking advantage of the covariance structure

of the GP for additional smoothing. For estimating TVaRα, the empirical weights

defined through Equation (5.9) are used. Theoretically, we could utilize weights

that trail off near m
(αN)
k to create a structure similar to Harrell-Davis, however,
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the empirical TVaRα estimator defined in Equation (5.9) is already robust in that

misspecification of a few boundary scenarios is minor compared to incorrectly

choosing the single index for VaRα.

Finally below we also discuss the quantile scenario, i.e. the z ∈ Z correspond-

ing to αN order statistic. We denote by z̃ and ẑk the true αN tail scenario (based

on f 1:N) and estimated αN tail scenario based on mk(z
1:N) respectively.

5.4 Sequential Design for Tail Approximation

Let Ntot be the total budget which is split into K sequential rounds k =

1, . . . , K. We work with a fixed set of outer scenarios Z .
= (z1, . . . , zN). An

outline of the general procedure proposed to estimate R̂K (as in Equation (5.19))

is given as follows:

1. Initialize f̂1 by simulating some simulations for a subset of pilot scenarios.

2. Sequentially over k = 1, 2, . . . until the Ntot budget is depleted, predict f̂k

on Z to determine which scenarios might be close to z̃. Allocate more inner

simulations to these scenarios, i.e. increase the corresponding rn’s. This

will be achieved via an acquisition function that takes into account the

“closeness” of zn to z̃ and the uncertainty sk(z
n). Potentially a new outer

scenario (that previously had rnk = 0) might be searched. Then update to

produce f̂k+1 based on the new data.

3. The final estimate is obtained from Equation (5.19), with uncertainty ex-

pressed via (5.20).
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Making the above mathematically precise boils down to two key objectives:

1. discover the region of Z where z̃ lies (or the tail in case of TVaRα), and 2. re-

duce s2
k(·) in this region. These two objectives match the exploration-exploitation

tradeoff: allocating too many replications to solve (1) produces a surrogate that

lacks precision even though it recognizes the location of z̃, while focusing only

on (2) without sufficient searching may focus on the wrong region. To guide

this trade-off during sequential allocation, the acquisition function is based on

an uncertainty measure. The strategy is then to (myopically) carry out stepwise

uncertainty reduction (SUR) by determining what new simulations would most

reduce expected uncertainty for the next round. See Bect et al. (2012); Chen et al.

(2012); Chevalier et al. (2014a); Liu and Staum (2010); Oakley (2004); Picheny

et al. (2010).

Some strategies discussed below require evaluating a quantity dependent on

the posterior covariance matrix in Equation (5.13) repeatedly for various z ∈ Z

to see which provides the best improvement; in this case, repeating the matrix

inversion at each step is expensive computationally, but the updating Equations

in Section 5.3.4 provide efficient calculations.

For computational efficiency, rather than adding a single inner simulation, we

work with batches of size ∆r. For example, ∆r = 0.01Ntot yields a procedure

with K = 100 rounds. One approach is to sequentially pick z ∈ Z and allocate all

∆r new replications to that scenario. Although the updating equations are nu-

merically efficient, the majority of the methods below introduce a non-negligible

computational expense, so that calculating the optimal selection for each replica-

tion is unfeasible.
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5.4.1 Stepwise Uncertainty Reduction for Risk Measures

Define

Vk(z
m|zn)

.
= C(zm, zm)− c(zm)T (C + ∆)−1c(zm)

∣∣
∆=diag

(
τ̂2
k

(z1)

r1
k

,...,
τ̂2
k

(zn)

rn
k

+∆rk
,...,

τ̂2
k

(zN )

rN
k

)
(5.21)

which approximates the kriging variance at zm under the assumption that ∆rk

replications were added to zn (keeping all other GP pieces frozen from the k-th

round).

Our goal is to learn R in (5.7). A key challenge is that R is defined via the set

R which in turn depends on all of f(z1:N). In existing literature, a more common

criterion is related to a fixed threshold L with ΓL
.
= {z : f(z) ≥ L}, and the search

done over a continuous domain with deterministic simulations. Depending on the

perspective, one may estimate (i) the contour ∂ΓL = {z : f(z) = L} Bect et al.

(2012); (ii) the excursion volume P(ΓL) Chevalier et al. (2014a); (iii) the level or

excursion set ΓL Picheny et al. (2010). A comprehensive implementation of all

above objectives can be found in Chevalier et al. (2014b). More recently, Labopin-

Richard and Picheny (2016) produced a work where the interest is on finding the

level itself in a non-noisy setting. They use two criteria, the main one being a

slight modification based on the criteria developed in Bect et al. (2012). The other

is not applicable here since it depends specifically on being in a non-noisy setting.

For the VaR objective, R is essentially a contour; for TVaR it is essentially

the level set. As we show below, the acquisition functions corresponding to (i)-

(ii) yield similar performance. Chevalier et al. (2014b) states that because of the

difficulties to compute the criteria for (iii), it offers roughly the same performance
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as for (ii). Due to its expense, we do not implement it in this paper. We focus on

the contour problem since it is most related to ours and also allows for uncertainty

in the level L; the level set and volume uncertainties and criteria are provided in

5.9.

Remark. The above papers are interested in the case where Z is continuous, so

the designs augment with new additional sites zk+1 in Z. In our case Z is finite,

so we add replications to existing z ∈ Z. Consequently, integrals are replaced by

sums over Z.

Our main criterion is based on the targeted mean square error at a scenario z:

tmsek(z) : = s2
k(z)

1√
2π(s2

k(z) + ε2)
exp

−1

2

(
mk(z)− L√
s2
k(z) + ε2

)2
 (5.22)

= s2
k(z)Wk(z;L).

The parameter ε controls how localized is the criterion around the level L. Note

that ε = 0 is very local. The numerical examples of Picheny et al. (2010) choose ε

to be five percent of the output range, however, they consider the case τ 2 ≡ 0. In

our case, it is desirable to have ε decrease as k increases, since knowledge about

the level and its surrounding region improves. We propose to take ε = sk(R)

which captures the uncertainty about the quantile. This is large when k is small

(uncertain in earlier stages), and decreases rapidly as k increases (gaining certainty

about L).

Observe that Wk(z;L) = φ(mk(z)−L, s2
k(z)+ε2) is based on the Gaussian pdf

φ, and is largest for scenarios where portfolio value is close to L and scenarios that
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have higher posterior variance. The goal is now to reduce the kriging variance,

but do it for scenarios close to L. This strategy was originally introduced in

Picheny et al. (2010) for estimating the contour set ΓL. Specifically, the acquisition

function to be minimized is Hk+1 where

Htimse
k+1 : =

1

N

N∑
n=1

tmse(zn) =
1

N

N∑
n=1

s2
k+1(zn)Wk+1(zn;R), (5.23)

i.e. the average tmse(z) over all z ∈ Z. Practically, we rely on the approximate

predictive variance in (5.21), the current timse weight Wk(z
n) and the plug-in

VaR estimator R̂k to minimize

timsek(z)
.
=

1

N

N∑
n=1

Vk(z
n; z)Wk(z

n; R̂k). (5.24)

For TVaR all scenarios in the tail zn ∈ Γ need to be considered so we modify

the criterion in Equation (5.24) to instead use weights

tmseTVaR
k (z) : = s2

k(z)
1√

2π(s2
k(z) + ε2)

(
1− Φ

(
mk(z)− L√
s2
k(z) + ε2

))
(5.25)

' Vk(z
n; z)WTVaR

k (z; R̂k),

where Φ(·) denotes the standard normal cdf. Here, the weight function increases

as z becomes deeper in the tail (i.e. mk(z) − L is more negative), while still

compensating for uncertainty.

We remark that the criteria used for estimating the level set ΓL
.
= {z : f(z) ≥

L} is inappropriate here, since interest is only in whether f(z) lies on one side or

the other of L. In other words, it neglects scenarios satisfying f(z)� L because
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they are so far beyond the level, even if they have reasonably high variance.

Consequently, a TVaR estimator, which desires accuracy at all scenarios in the

level set, would suffer.

5.4.2 Dynamic Allocation Designs

Batching allows the possibility of adding inner simulations in parallel for sev-

eral different scenarios. To do this, let ∆rk be the budget for step k in the

sequential procedure, and choose {r′nk }Nn=1 that maximize an improvement crite-

rion that depends on all {r′nk }Nn=1 subject to the constraints
∑N

n=1 r
′n
k = ∆rk,

and r′nk ≥ 0 for all n = 1, . . . , N. We define the improvement criteria as mini-

mization of the posterior estimator variance s2(Rk+1) in Equation (5.20). Note

that ∆k+1 = Tk+1IrTk+1, where Tk+1 =
(
τ̂ 2
k+1(z1), . . . , τ̂ 2

k+1(zN)
)
, I is the N × N

identity matrix, and rk+1 =
(

1
r1
k+r′1k

, . . . , 1
rNk +r′Nk

)
, so the arguments to minimize

appear only in rk. This is a difficult optimization problem due to the matrix

inversion and N being large; however, following Liu and Staum (2010) we provide

an approximation that yields a closed form solution, see 5.10 for details. This ap-

proximation becomes more accurate as each rnk , n = 1, . . . , N increases, meaning

it improves as the sequential procedure progresses.

By Lemma 5 in 5.10, the optimization reduces to minimizing

wT
k+1(C + Tk+1I(rk)

T )−1Tk+1rk+1(C + Tk+1I(rk)
T )−1wk+1 (5.26)

with respect to r′1k , . . . , r
′N
k , given constraints

∑N
n=1 r

′n
k = ∆rk and r′nk ≥ 0 for

n = 1, . . . , N.Note that the r′nk appear only in the middlemost term rk. The
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solution to this minimization problem is provided as Algorithm 3 in 5.10.

5.5 Algorithm

At each step, the procedures mentioned in Section 5.4 specify the number of

replications (r′nk )Nn=1 to add to each scenario. This choice actually summarizes the

procedure completely, since we take the set of scenarios considered in step k as

{zn : r′nk > 0}; note that for the single point procedures there is only a single zn

such that r′nk > 0. At each step, the next set of values are

rnk+1 ← rnk + ∆rnk , (5.27)

ynk+1 = ynk ∪ {y
n,rnk+1

k+1 , . . . , y
n,rnk+1

k+1 }. (5.28)

Then f̂k+1 is fit using the values

ȳnk+1 =
1

rnk+1

rnk+1∑
i=1

yn,ik+1, (5.29)

τ̂ 2(znk+1) =
1

rnk+1 − 1

rnk+1∑
i=1

(yn,ik+1 − ȳ
n
k+1)2. (5.30)

in Equations (5.13). Algorithm 1 illustrates the resulting loop of adding more

inner simulations, updating the fit f̂k and then the acquisition function Hk.

Thus, the general procedure is to repeatedly apply Algorithm 1, first for an

initialization stage, and then using sequentially one of the methods described in

Section 5.4, until the budget is depleted.
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Algorithm 1: Algorithm to update Dk
input : Ntot, f̂k, Dk, {r′nk }Nn=1

output: Ntot, f̂k+1, Dk+1

1 for n ∈ {n : r′nk > 0} do
2 for i = 1 to r′nk+1 do
3 Generate (Ci

t(z
n))∞t=T ;

4 Compute yn,ik via Equation (5.4);

5 end
6 Update ynk+1 and rnk+1 via Equations (5.28) and (5.27);
7 Ntot ← Ntot −∆rnk ;

8 end
9 Dk+1 ← (zn,ynk+1)Nn=1;

10 Update and return f̂k+1;

5.5.1 Initialization of f̂

Initially, we have rn0 = 0 for all n, i.e. no data to inform us where the tail region

may lie. To initialize Algorithm 1, the typical solution is to use a small number

of pilot scenarios that are representative of the entire domain Z, determined by

some space-filling algorithm (e.g. Latin Hypercube sampling or LHS). Chauvigny

et al. (2011) provides a more ambitious method using statistical depth functions

to identify pilot scenarios based on the geometry of Z.

We found good performance from a simple space-filling approach. A small

challenge is that LHS or even uniform sampling is not directly applicable with a

discrete scenario place. Instead we develop a minimax-style procedure based on

Euclidean distance described in Algorithm 2, where N1 is the number of stage 1

scenarios, so that ∆r1/N1 is the number of replications to add to each stage 1
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scenario. We also let z = (z1, . . . , zN), and standardize it to obtain

zstd = Σ−1/2
z (z− µz), (5.31)

where Σz and µz are the sample covariance matrix and sample mean of z. This

allows d(·, ·), Euclidean distance between two points in Rn, to make sense. Here,

d0 is a distance threshold that newly added points must fulfill from all other points

included in the design. If d0 is too small, then the algorithm may not search far

enough, and it if it is too large, then the algorithm may not converge.

Algorithm 2: Determining stage 1 design using space-filling

input : z, ∆r1, N1, Ntot, d0

output: Ntot, D1, f̂1

1 Uniformly randomize the order of z;
2 Compute zstd;
3 I ← {1};
4 j ← 2;
5 while |I| < N1 do
6 if

∏
i∈I 1{d(zjstd,z

i
std)≥d0} = 1 then

7 I ← I ∪ {j};
8 end
9 j ← j + 1;

10 end
11 Call Algorithm 1 with D = (zn, {})Nn=1, r′n ≡ ∆r1/N1, n ∈ I, r′n ≡ 0, n /∈ I;

12 Receive Ntot,D1, f̂1

5.5.2 Implementation Details

The classical method for inferring the hyperparameters θ, σ2 is by optimizing

the marginal likelihood, either through MLE or penalized MLE, using the likeli-
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hood function based on the distributions described in Section 5.3.1. Either case

leads to a nonlinear optimization problem to fit θj and process variance σ2. One

can also consider Bayesian Kriging, where trend and/or covariance parameters

have a prior distribution, see Helbert et al. (2009). We utilize the both the R

package “DiceKriging” Roustant et al. (2012a) as well as “hetGP” Binois et al.

(2016). In a sequential setting, the hyperparameters are ideally refitted at each

step, using new estimates if they yield a better likelihood function value, however

this is computationally impractical since evaluation of the log-likelihood requires

O(|Dk|3), where |Dk| is the size of the design set Dk used to fit the GP at step

k. Alternatives to this are to refit the hyperparameters at certain points in the

experiment, e.g. after 10%, 20%, . . . , 90% of the budget has been depleted. An

alternative is to use a nonlinear schedule, such as after 2%, 4%, 8%, . . . of the bud-

get has been depleted. This has the advantage of refitting more more frequently

earlier when there is less certainty in the hyperparameter estimates.

Practitioners typically use the Matern 5/2 kernel in Equation (5.14) or the

Gaussian kernel,

g(h, θ) = exp

(
−h2

2θ2

)
. (5.32)

These kernels affect properties such as smoothness of sample paths, so this could

be one criteria for choosing a kernel if there is prior knowledge about the true

function f . For example, the Gaussian kernel is infinitely differentiable (in mean-

square), while the Matern−ν kernel is differentiable at order k if and only if

ν > k (so our choice is 5/2 times differentiable). In most cases, the choice of

covariance kernel has only a minor impact on the resulting model, mostly due

to the fact that the hyperparameter estimates will scale accordingly to whatever
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spatial dependence and fluctuations the data represents.

One can choose a mean function through prior knowledge about f , or through

data visualization. A parametric mean function can also be specified via basis

functions with hyperparameters to be fitted, so that µ(z) = β0 +
∑p

j=1 βjhj(z). In

this case, β = (β1, . . . , βp)
T is estimated simultaneously with the other hyperpa-

rameters. In general, spatial closeness tends to dominate the posterior mean, so

that the mean function has little impact in prediction aside from extrapolation.

Still, a reasonably accurate mean function is desired for accurate hyperparame-

ter fitting, since the θ parameters influence spatial dependence, something that

detrending would affect.

One efficiency trick is to reduce Z to a candidate set Zcand when evaluating

the acquisition function. Note that computing the latter requires computing the

predictive mean/covariance of the GP f̂k which requires O(N2
fit|Zcand|) work. One

way to perform this screening is to compute weights, for example in Equation

(5.22) (or (5.25) for TVaR) and only consider those that produce weights beyond

a specified threshold, say 10−10. This number can be modified depending on

desired efficiency; however, we find numerically that 10−10 works well and reduces

the candidate set by more than a factor of 10. Note that since the weights for

VaR are not defined as probabilities, they should first be normalized and then

compared to the threshold.

5.5.3 Comparison with other Approaches

To benchmark the proposed algorithms based on the SUR criteria defined

in Section 5.4, we compare to several alternatives. We primarily focus on other
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regression-based approaches and concentrate on quantifying the role of (i) adaptive

budget allocation; (ii) sequential approaches as compared to simpler 1-, 2- or 3-

stage methods. As an upper bound on performance, for VaRα we include the

Monte Carlo estimator under perfect information, i.e. perfect foresight regarding

z̃, which therefore allocates the entire budget to a single scenario yielding Rbest
.
=

1
Ntot

∑
n y

n.

1. U1-GP: A 1-stage Uniform sampler. This method allocates Ntot/|Z| to each

z ∈ Z, fits a kriging model f̂1 to the resulting design and returns m
(αN)
1 .

Comparing to this approach quantifies the gain of multi-stage procedures.

2. U2-GP: A 2-stage approach. The first stage is done as in Section 5.5.1.

The pilot simulations are then used to screen scenarios for the main Stage-2

which allocates the entire remaining budget uniformly among the top 2αN

points. Thus, rn2 = N ′1{m1(zn)>m
(2αN)
1 }. This is the simplest version of an

adaptive allocation.

3. A3-GP: The adaptive 3-stage algorithm of Liu and Staum (2010). The

first stage uses space-filling pilot scenarios like in U2-GP; the second stage

uniformly allocates inner simulations among a candidate set. The third

stage then solves the global allocation problem defined in Appendix 5.10 to

minimize variance of R3. This method was designed for TVaRα, but is easily

adapted to VaRα.

4. SR-GP: A sequential, rank-based algorithm. The allocation of new sce-

narios is based on the posterior means mk. Specifically, for given ranks

L ≤ αN ≤ U , the algorithm allocates uniformly to all scenarios with
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{zn ∈ Z : mk(z
n) ∈ [m

(L)
k ,m

(U)
k ]}. Different values of L,U represent the

particular version of SR-GP. For instance, taking L = U = αN gives a very

aggressive scheme for estimating VaR: it greedily adds all ∆rk scenarios to

the empirical quantile, i.e. scenario ẑk. (Note that U2-GP can be seen as a

version of SR-GP with K = 2 rounds and L = 1, U = 2αN)

5. True-SA: a perfect information estimator which knows the tail/quantile sce-

narios and sequentially works to minimize MSE of R̂. For the VaR this cor-

responds to minimizing the posterior variance at z̃ which is trivially achieved

by allocating the entire budget Ntot to the true quantile scenario. This is

treated as the best possible algorithm which only has the averaging error

due to the stochastic noise in Y (z). For TVaR, the best allocation is roughly

to spend equal budget on each tail scenario, modulo the spatial structure of

Z (which makes estimating spatially-outlying scenarios harder).

A summary of these benchmarks, as well as the procedures discussed previ-

ously in the section are given in Table 5.1, with the appropriate parameters and

explanations in Table 5.2.

The jn method in 5.9 was not included since the numerical overhead for its

improvement criteria was too high; initial experiments showed it took longer than

the next most expensive method by a factor of 8.5. Furthermore, Chevalier et al.

(2014b) states that because of the difficulties to compute the jn criteria, it offers

roughly the same performance as the sur criterion.

We also consider two non GP methods, one being the same as U1-GP but using

the sample means ȳn in place of a GP fit with prediction, this is called U1-SA.

The second is a well known sequential algorithm in risk management, introduced
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Name Description
ST-GP timse reducing (Equation (5.24))
SE-GP sur reducing (5.9)
SV-GP variance reducing (Section 5.4.2)
U1-GP Naive Monte Carlo

SR-GP-1 Allocates only to ẑk each time
U2-GP Two-stage

SR-GP-2 Conservative sequential benchmark
A3-GP Liu and Staum (2010)

True-GP Monte Carlo under perfect information

Table 5.1: Summarizing the GP algorithms used as described in Section 5.5.3.
Each sequential approach uses the same initialization procedure described in
Algorithm 2 with 0.01N stage 1 scenarios. The budgeting parameters for the
sequential methods are chosen to yield 100 total stages after the first stage
(resulting in K = 101).

Name Parameters
ST-GP t εk = s(Rk)
U1-GP Uses kriging for final prediction

SR-GP-1 L=U=50 (VaR), L=1,U=50 (TVaR)
U2-GP Uniform allocation among top 100 ordered m1(zn)

SR-GP-2 L=26, U=75 (L=1, U=100) ordered mk(z
n) for VaR (TVaR)

A3-GP 70% of budget for stage 3; n0 = 100

Table 5.2: Parameters and explanations (when applicable) for the algorithms
in Table 5.1).

in Broadie et al. (2011). With our notation, the algorithm simply assigns r′nk = 1

to n = argminn r
n
k |ȳnk − L|/τ(zn) for round k, and r′nk = 0 otherwise. Here L is

the level; they assume it is known, so we use the Harrell-Davis estimator in its

place. They give suggestion to using a weighted estimate for τ(zn) based on the

aggregate variances gathered, but we use the sample variance in Equation (5.15)

since our case studies imply a heteroskedastic variance surface. This algorithm is

referred to as BR-SA. Comparison of GP methods to these are discussed in 5.6.1
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5.6 Case Study: Black Scholes Option Portfolio

We begin the case studies with a two–dimensional example where f(z) can

be computed exactly, yielding a true comparative benchmark. We consider a

portfolio whose value is driven by two risky assets that have Geometric Brownian

motion dynamics:

dS1
t = βS1

t dt+ σ1dW
(1)
t ,

dS2
t = βS2

t dt+ σ2dW
(2)
t .

Above the W i are correlated Brownian motions under the risk neutral measure

with d〈W (1),W (2)〉t = ρdt. Other model parameters are summarized in Table 5.3.

The portfolio consist of Call options: long 100 K1 = 85−strike Calls on S1 and

short 50 K2 = 85−strike Calls on S2. We work with a risk horizon T = 1 year,

and VaRα and TVaRα risk measures with α = 0.005. By risk-neutral pricing, the

value of the portfolio at T is

Π(z)
.
= EQ

[
e−β(T1−T ) 100

(
S1
T1
− 40

)
+
− e−β(T2−T )50

(
S2
T2
− 85

)
+

∣∣∣ (S1
T , S

2
T ) = z

]
,

(5.33)

where z ≡ (z1, z2) ∈ R2
+ =: Z. Π(z) can be evaluated exactly using the Black

Scholes formula; for our purposes Monte Carlo estimates can be obtained by

simulating the log-normal values of S1
2 , S

2
3 conditional on (S1

1 , S
2
1) = (z1, z2).
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Asset Position Initial Price Si0 Strike Ki Maturity T i Volatility σi

S1 100 50 40 2 25%
S2 -50 80 85 3 35%

Correlation ρ = 0.3 Int. Rate β = 0.04

Table 5.3: Parameters of the 2-D Case Study for a Black-Scholes portfolio on
stocks S1 and S2.

5.6.1 Method & Results

Letting f(z) = Π(z) we run all the methods listed in Table 5.1. The global

parameters are N = 10000, Ntot = 104, so that αN = 50. For Z we generate

a fixed sample from the bivariate log-normal distribution of (S1
1 , S

2
1) under Q

which is then re-used across all the methods. Note that the above implies that

the dynamics of the factors on [0, T ] and [T, Ti] are the same, i.e. the physical

and risk-neutral measures coincide. This is solely for a simpler presentation of the

case-study; in our experience the role of Z is secondary to the other considerations.

The Black-Scholes setup yields a closed-form solution for Equation (5.33), so

we have a direct formula for the true quantile z̃ and corresponding RVaR
BS

.
= f (50)

and RTVaR
BS

.
= 1

50

∑50
n=1 f

(n), as the exact 0.005 percentile of loss and 50 point

tail average given Z. Thus the bias and squared error over a single run can be

computed exactly:

bias(Rk) = m(Rk)−RBS, (5.34)

SE(Rk) = (m(Rk)−RBS)2 . (5.35)

To stabilize results and reduce computation time, we assume the GP hyperpa-

rameters are known throughout all experiments. In practice, one does not know
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these values ahead of time and they need to be re-estimated at each step, see the

comments in Section 5.5.2. To determine the fixed hyperparameters, we perform

100 macro simulations for Ntot = 105 and take the median over the MLE esti-

mates; the fitted values are θS1 = 16.08261, θS2 = 51.51801, σ2 = 309432.3. To

further stabilize the GP prediction, we fix its trend function to be the intrinsic

value of the portfolio, that is,

µ(z1, z2) = 100e−0.04(z1 − 50)+ − 50e−2·0.04(z2 − 85)+ (5.36)

in Equation (5.12).

After the first stage, we narrow the candidate set to

{zm ∈ Z : W1(zm)/(
N∑
n=1

W1(zn)) > 10−10}

and

{zn ∈ Z : WTVaR
1 (zn) > 10−10}

for TVaR. As an illustration, one run of this reduction yielded the candidate set to

be narrowed from 10000 scenarios to 528 (657 for TVaR), resulting in a reduction

of a factor of ≈ 20. Note that this is only after the first stage – further narrowing

can be done in later stages if desired.

A visualization of the various weights discussed are given in Figure 5.1. Both

panels illustrate convergence of the true probabilities wnk = P(zn ∈ R|Dk) as k

increases from 10 to 100. Additionally, we see the shapes of φnk and Φn
k , the nor-

malized versions of Wk(z
n; R̂k) = φ(mk(z)− R̂k, s

2
k(z) + ε2), and W TV aR

k (z; R̂k) =
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Φ(mk(z) − R̂k, s
2
k(z) + ε2) respectively, become more well defined as k increases.

Various spikes occur when k = 10, representing locations that have not been

searched. The Harrell-Davis weights closely match the true GP probabilities,

much moreso than φnk and Φn
k . Note that the Harrell-Davis weights do not change

over time; they are fixed with respect to k.

Figure 5.1: Comparing various weights defined after stages k = 10 and k = 100
for the ST-GP method. Weights wnk = P(zn ∈ R|Dk) the true GP proba-
bility of z ∈ R (approximated via 105 simulations), and φnk and Φn

k are the

is the normalized versions of Wk(z
n; R̂k) = φ(mk(z) − R̂k, s

2
k(z) + ε2), and

W TV aR
k (z; R̂k) = Φ(mk(z) − R̂k, s2

k(z) + ε2) respectively. Also plotted are the
weights used for the risk measure, which are Harrell-Davis for VaR and 1

50 for
TVaR.

Comparing Algorithms

To compare the algorithms, we compute the Bias and Variance of the respec-

tive R estimators. To do so, we perform 100 macro-replications m = 1, . . . , 100

with fixed outer scenario set Z for both VaR0.005 and TVaR0.005, yielding esti-

mates R1, . . . , R100. We then set bias
.
= mean((R1:100

K ) − RBS, s
.
= sd(R1:100)

and RMSE
.
= mean((R1:100

K − RBS)2) = bias
2

+ s2. This yields a true sampling
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distribution of the estimators from various algorithms, controlling for the intrinsic

variability of inner simulations.

Figures 5.2 and 5.3 show boxplots of the resulting distributions for m(RVaR
K )

and s(RVaR
K ) (m(RTVaR

K ) and s(RTVaR
K ) for TVaR) , where the horizontal line is the

true risk measure R·BS (RTVaR
BS for TVaR) obtained from the analytic Black-Scholes

computation. Table 5.4 reports average bias, estimator standard deviation, aver-

age squared error, and time taken over each run.

VaR0.005

bias(RVaR
K ) s(RVaR

K ) RMSE Time (s)
ST-GP 11.85 59.64 52.04 67.8764
SE-GP 32.66 64.48 74.3 70.2592
SV-GP 36.91 50.75 64.38 86.9793
U1-GP -1124.09 193.35 1183.93 61.95
SR-GP-1 77.59 68.97 110.39 51.8262
U2-GP 181.6 78.7 200.29 7.508
SR-GP-2 68.02 52.5 87.31 62.183
A3-GP 91.05 62.1 112.17 9.1508
True-SA 0.7 46.39 43.51 5.13

TVaR0.005

bias(RTVaR
K ) s(RTVaR

K ) RMSE Time (s)
ST-GP 51.9 60.43 76.82 93.9
SV-GP 80.46 57.98 98.25 84.4178
U1-GP -652.29 260.87 775.08 63.695
U2-GP 208.26 99.78 237.09 7.1759
SR-GP-2 104.48 70.2 127.7 41.2674∗

A3-GP 113.12 66.09 128.34 8.498

Table 5.4: For the option portfolio case study, average values over 100 macro
replications of bias, standard deviation, and squared error of Rk for each ap-
proach, as well as average time taken to complete the procedure (in seconds).
Rows are missing for TVaR0.005 when a method is not applicible. Description of
methods are provided in Table 5.1. *A3-GP TVaRα only uses 50 rounds com-
pared to all other sequential methods which use 100 due to requiring rnk > 1
for calculating τ̂2

k (zn) in Equation (5.15).
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Figure 5.2: Boxplots of final R̂VaR
K estimates and corresponding uncertainty

s(R̂VaR
K ) over 100 macro replications for each approach.

The uniform design (U1-GP) results are not included in the boxplots since its

values are far beyond the boundaries for other methods. As mentioned, SE-GP,

SR-GP-1 and True-SA are not included in TVaR0.005 since they cannot be easily

modified to the general tail instead of the exact level.

Under this budget of Ntot = 104, the tables illustrate complete failure of the

traditional nested Monte Carlo method (U1-GP), reporting an average bias of

−1124.09 (−1070.78 for TVaR), even with the kriging model for assistance. On the

other hand, U2-GP, which is a simple two-stage adaptation of MC with reduction

to a candidate set after a cheap initial search, provides a remarkable improvement,

producing an average bias of 181.6 and RMSE of 200.29 (208.26 and 40.933 for
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Figure 5.3: Boxplots of final R̂TVaR
K estimates and corresponding uncertainty

s(R̂TVaR
K ) over 100 macro replications for each approach.

TVaR), a rough 500% improvement over all comparisons. The relatively poor

performance of SR-GP-1 to other sequential methods (average bias 77.59 for VaR)

indicates need for searching beyond the current guess for ẑ. Looking at both the

tables and figures, the conservative sequential benchmark SR-GP-2 outperforms

all non-sequential methods, suggesting that some sort of sequential algorithm is

necessary in this type of problem.

Comparing the SUR methods, we see that explicitly defined uncertainty cri-

teria gives a large improvement over other methods. Focusing on the VaR0.005

results, SE-GP and SV-GP have approximately a 2.5x bias reduction over the

next best benchmark (ignoring True-SA), and ST-GP has a 6x bias reduction. In
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general, ST-GP is less effective than SE-GP, due to the fact that SE-GP does not

account for uncertainty in the level for its improvement criteria. We also notice

that SV-GP has the lowest average value for s(R̂K); this is due to the fact that

its improvement criteria is defined explicitly to reduce estimator variance. Look-

ing at the best possible benchmark True-SA, which allocates all replications to

the correct scenario, the methods provide reasonable standard deviation values,

with ST-GP, SE-GP and SV-GP having values of 59.64, 64.48, 50.75 and True-SA

having 46.39. Thus even under a relatively small budget of Ntot = 104, the SUR

algorithms achieve variances nearly equal to the best possible budget allocation

method.

Lastly, we provide figures illustrating evolution of the estimated risk measure

m(Rk) for the sequential algorithms as budget is spent. This is one of the major

advantages of a sequential procedure which allows “online” use of the algorithm.

Thus the user can monitorm(Rk) for example to judge the convergence, adaptively

stop the simulations, or report interim estimates.

Figures 5.4 and 5.5 are fan plots showing quantiles over macro replications of

m(Rk) as a function of k. First, the kink at k = 10 for A3-GP is due to fitting only

considering scenarios with rnk ≥ 10 for more stable values of τ̂ 2
k (zn); this threshold

is met for a large quantity of points when k = 10. The fan plots illustrate many

major features of each sequential method. First, we see that SV-GP, which is

defined to decrease estimator variance, has the least varying estimates in general.

Sacrificed is its ability to reduce bias, where ST-GP and SE-GP achieve a lower

bias more quickly. We see that SR-GP-1 takes much longer to converge to a

bias of 0, since this method greatly weighs against searching in unexplored areas.
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Figure 5.4: For the option portfolio case study, fan plots dscribing evolution of
m(RVaR

k ) in Equation (5.19) as budget is spent. Shown are various quantiles
of m(RVaR

k ) over the 100 macro repliactions, for each k.

Throughout all of the plots, we do see convergence to a bias of 0, as well as

the uncertainty decreasing over time. This is an indication that the sequential

methods are consistent as k increases.
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Figure 5.5: For the option portfolio case study, fan plots describing evolution of
m(RTVaR

k ) in Equation (5.19) as budget is spent. Shown are various quantiles
of m(RTVaR

k ) over the 100 macro repliactions, for each k.

Gains from Spatial Modeling

We next consider the improvement for learning the risk measure thanks to the

spatial borrowing of information across scenarios, ignoring sequential budgeting.

We illustrate the performance of the Monte Carlo estimates for various budgets

in Table 5.5. U1-GP fits a GP to the lowest 2500 sorted Monte Carlo averages

over D1. The difference in time for U1-SA and U1-GP is roughly 58 seconds –

the overhead time required to fit the 2500 scenarios and predict on D. Above,

we find that a small value of Ntot = 104 still quickly indicates convergence of

the procedures. Note that this budget implies, for the pure Monte Carlo case,
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an absurd budget of rn = 1 for each n = 1, . . . , N , not even allowing a variance

estimate. Comparing to Table 5.4, we see that it requires an unreasonable budget

to match the performance of any sequential estimator.

U1-SA

Ntot bias(Rk) τ̂1(ẑ1) RMSE Time (s)
1 · 104 -6830.31 NA 6844.57 3.604818
2 · 104 -3768.51 1256.7 3783.02 6.956035
5 · 104 -1679.35 659.39 1689.82 17.62843
1 · 105 -942.88 419.91 953.17 35.34391
2 · 105 -498.04 281.63 506.19 69.70281
5 · 105 -250.8 168.81 262.5 169.3209
1 · 106 -155.85 116.48 170.33 338.213

U1-GP

Ntot bias(Rk) s1(R1) RMSE Time (s)
1 · 104 -1063.99 205.72 1098.84 61.567
2 · 104 555.64 107.05 667.75 65.2391
5 · 104 1029.24 118.2 1048.33 75.8528
1 · 105 685.94 101.75 697.61 93.6108
2 · 105 346.39 84.38 359.11 127.6194
5 · 105 131.15 62.11 147.36 227.2054
1 · 106 62.85 47.7 74.46 396.2424

BR-SA

Ntot bias(Rk) s1(R1) RMSE Time (s)
5 · 104 -125.27 214.12 166.92 112.4932
1 · 105 -70.09 217.67 88.79 145.221

Table 5.5: For the option portfolio case study, average values over 100 macro
replications of bias, posterior standard deviation, and RMSE of the final VaR
estimator for Monte Carlo simulations, as well as average time taken to com-
plete the procedure (in seconds). Ntot = 10000 is the actual case study budget.
U1-SA is estimation through pure Monte Carlo sample averages, and U1-GP
uses a GP fitted to the resulting Monte Carlo data, and BR-SA is the adaptive
algorithm in Broadie et al. (2011).

On the contrary, BR-SA does much better than these methods, though still

requiring a larger budget to produce desirable results. Here, Ntot = 104 and
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Ntot = 2 · 104 are the same as U1-SA, since the algorithm always initially assigns

rn = 1 to each zn, and also it requires an estimate of τ 2(zn), requiring rn ≥ 2 at

each location. For any larger budget, the actual sequential algorithm kicks in.

5.6.2 Comparison of SUR Criteria

The three main methods used are ST-GP, SE-GP, and SV-GP. In general we

found above that the performances of ST-GP and SE-GP are nearly identical, with

SE-GP having slightly higher variance, likely due to it not taking into account

uncertainty of the level. SV-GP reported the lowest variance, unsurprisingly since

it is designed to minimize estimator variance, but it sacrifices bias in order to do

so.

We provide a more detailed analysis comparing these three, through the use

of three figures. These figures are done over one round and provide analysis on

replication amounts, as well as plots comparing posterior standard deviation and

mean, all versus true rank. In particular, the first comparison is through Figure

5.6, comparing the (log) replication amounts over a single run for both VaR and

TVaR.

First note that the lowest values on this plot are equal to log(10), not 0; these

points are ones that received only one pick from ST-GP and SE-GP, and those that

were in the initialization round for SV-GP. We see that the allocation strategies for

ST-GP and SE-GP are quite similar, reinforcing the conclusion that they behave

similarly in general. SV-GP behaves quite differently, attaching replications of

varying degree all throughout. This is due to how it handles batching: when

these criteria decide how to allocate, it weights importance on various points. ST-
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Figure 5.6: Comparing replication amounts versus true rank of f(z) after the
final stage for sequential methods. The y-axis is on the log scale.

GP and SE-GP attach ∆r = 100 to the point they deem most important, even

though many points could potentially have acquisition function values of similar

magnitude, only slightly less than the most important scenario. On the other

hand, SV-GP can distribute these values essentially according to importance, so

in a single round there are several scenarios receiving small values of r′nk , and

generally one or two receiving larger values. The TVaR plot tells a different

story. Here, ST-GP attaches interest to points deeper in the tail, so that it

needs to explore more areas rather than only around the local estimate for VaR.

Interestingly, ST-GP and SV-GP behave somewhat similarly in how they taper

off almost linearly from true rank 0 to 125 (roughly).

Next is Figure 5.7. This observes the final values at k = 100 for one run of the

experiment for mean, along with the observed ȳnK and credible intervals. Around

each ȳnK is a 95% confidence interval using the intrinsic noise estimate τ̂ 2
K(zn).

First analyzing SE-GP, we see much smaller error bars in the neighborhood of

rank 50, as this is where more allocations are given. Locations with large error

bars are likely spatially distant from the true VaR, where the algorithm discovered
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Figure 5.7: After K = 100, posterior mean m(z), along with 95% credible
intervals, the true output according to f(z), as well as the observed sample
averages ȳnK sorted according to the true rank of f(zn), n = 1, . . . , N , for one
run of the experiment. Shown for the first two plots are 95% confidence intervals
around ȳnK according to the intrinsic noise estimate τ̂2

K(zn). These are left off
to reduce clutter for SV-GP since too many scenarios are chosen.

it was not worth pursuing after a few replications were added. Next, we can see

how different the 95% credible intervals using sK(zn) are versus τ̂ 2
K(zn); only in

regions where many replications were added are where sK(zn) and τ̂ 2
K(zn) are

both small. Regardless this plot shows how sK(zn) smoothes out observation

error. We also see in all three plots that it does a poor job near the extreme left

tail and toward the right tail, especially with ST-GP and SV-GP, and that all

three approach the true f(z) as the true rank nears 50, illustrating its accuracy

due to more replications near rank 50 and less toward the tails. Additionally, the
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credible intervals are wider at these tails.

Comparing the plots, we observe that SE-GP and ST-GP again produce similar

results, with the differences possibly due to errors over one run of the experiment.

The smaller variances of SV-GP are apparent, yielding smaller credible intervals

nearly uniformly. In addition, we see the large number of points picked for this

method, with the observations ȳnK scattered all throughout. Contrasting, SE-GP

and ST-GP have much fewer values of ȳnK reported; this is because ȳnK has no

reported value if no replications are added to zn.

Figure 5.8: Posterior standard deviation sk(z) reported over multiple rounds
for one run, sorted according to the true rank of f(zn), n = 1, . . . , N .

Lastly, Figure 5.8 illustrates evolution of sk(z) for k = 1, 5, 20, 100. Left out

is ST-GP, which matches SE-GP nearly identically over each round. Both plots

show similar behaviors, with sk(z) decreasing uniformly in z as k increases. We

see that it decreases much more near true rank 50, and that it decreases very little

at both tails, a desirable feature to have in this type of algorithm.
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5.6.3 Comparing GP Methods

We compare choice of prior kernel (Matern 5/2 versus Gaussian) and noise

modeling technique. The package “DiceKriging” uses point estimates τ̂ 2(zn) to

estimate τ 2(zn), while “hetGP” uses a separate model for the noise surface τ 2(·).

The package also computes likelihood for the model where the noise surface is

homogeneous, i.e. τ 2(z) ≡ τ 2 in case this is found to be more optimal. As in the

previous sections, table 5.6 provides average bias, posterior standard deviation,

and RMSE over 100 macro replications, and Figure 5.9 illustrates evolution as

budget is spent through fan plots over 100 macro replications.

R package Kernel bias(R̂K) s(R̂K) RMSE Time (s)
DiceKriging Matern 5/2 -16.81 58.38 61.43 109.4093
hetGP Matern 5/2 -37.67 61.48 75.29 174.1756
hetGP Gaussian -15.45 68.77 66.68 172.9394

Table 5.6: Bias, uncertainty, and RMSE estimates over 100 macro replications
comparing R packages and covariance kernels for the ST-GP method. The main
difference is that “hetGP” fits a GP surface to estimate the noise process τ2(z),
while “DiceKriging” uses the point estimates τ̂2(zn) as in Equation (5.15).

The table indicates no real difference between the three methods. Introducing

noise modeling and still using Matern 5/2 introduces slight bias, though this could

simply be error over the replications. The figure shows more interesting results:

it appears that introducing a noise surface helps to eliminate positive bias after

the first few rounds, however, in correcting this, it introduces a more significant

negative bias that itself needs to be corrected. The variance over all methods are

relatively similar.
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Figure 5.9: Fan plots comparing R packages and covariance kernels for the
ST-GP method. The main difference is that “hetGP” fits a GP surface to
estimate the noise process τ2(z), while “DiceKriging” uses the point estimates
τ̂2(zn) in Equation (5.15).

5.7 Case Study: Life Annuities under Stochastic

Interest Rate and Mortality

In this case study we move to a more complex example with larger dimension.

The main goal is to see if the major results of Section 5.6 remain true in a larger

dimension setting. We consider a setup where an annuitant receives a contract

to begin payments in T years, whence the payments continue until death of the

individual. In practice some cutoff age xu is set for the final payment if the

individual lives that long. As before, regulations require analysis of quantiles
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of the one-year potential loss on this contract. Several factors affect the value

and length of such a contract, especially interest rate and mortality risk. We

emulate this by introducing two three factor models, one for interest rate and

one for mortality probability evolution. The result is a six-factor GP, and the

continuous time nature of the models along with longer maturity also yields a

more computationally expensive simulator, reducing the impact of overhead cost

in fitting, selection, and prediction.

To provide the mathematical details, let βt be instantaneous interest rate at

time t, and τ(x) be the remaining lifetime of the individual. Assume a Markov

state process (explicitly defined later) (Zt) for (Ft). We introduce the notations,

for u ≤ t < T

P(τx > T |τx > t,Fu)
.
= P (Z(u); t, T, x) (5.37)

q(Z(u); t, T, x)
.
= P (Z(u); t, T, x)− P (Z(u); t, T + 1, x) (5.38)

to be the probability that an individual aged x at time t survives to time T , given

the information at time u, and the probability that an individual aged x at time

t dies between years T and T + 1, given the information at time u, respectively.

If T is the date at which payments begin, then conditioning on τ > t and

the information F(t) available by time t, and assuming that accrued payments

by t are normalized to be 1, the present value of this annuity at time t, assuming
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t ≤ T , is

f(z) =
∞∑
j=T

E
[
e−

∫ j
t βudu1{τ(x+t)≥j}

∣∣∣Zt = z
]

=
∞∑
j=T

E
[
e−

∫ j
t βudu

∣∣∣Zt = z
]
P (Z(t); t, j, x+ t). (5.39)

To precise the modeling of (Zt) we blend the setups of Chen (1996) and Cairns

et al. (2011a). The interest rate dynamics for (βt) is defined through a three-

factor Cox-Ingersoll-Ross model with stochastic volatility ζt and stochastic mean-

reversion level αt

dβt = (β̄ − αt)dt+
√
βtζtdW

β
t , (5.40)

dαt = (ᾱ− αt)dt+
√
αtζtdW

α
t ,

dζt = (ζ̄ − ζt)dt+
√
ζtϕdW

ζ
t

(5.41)

where W β,Wα and W ζ are independent standard Brownian motions.

For details on mortality modeling, we defer the reader to Cairns et al. (2011a).

The R package StMoMo Villegas et al. (2015a) contains England & Wales (E&W)

mortality data as well as tools for fitting and simulating the models in Cairns

et al. (2011a). For easy accessibility, we use the E&W data and choose model

(M7) from Cairns et al. (2011a), defined as follows,

logit q(Zu; t, t+ 1, x) = κ1
t + κ2

t (x− x̄) + κ3
t

(
(x− x̄2 − σ̂2

x

)
+ γt−x, (5.42)
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where x̄ is the average age the model is fit to, and σ̂2
x is the mean value of (x− x̄)2

are interpreted as age effects, the processes κit ≡ κi(t, Zu) are the period effects

capturing mortality evolution over calendar year, and γt−x ≡ γ(t − x, Zu) is the

cohort effect. By simulating this process, we can back out the P (Z(t); t, j, x + t)

needed for Equation (5.39) via Equation (5.38).

This implies a Markov state process of Zt = (βt, αt, ζt, κ
1
t , κ

2
t , κ

3
t ). The one-year

future value of an annuity then is f(Z1) in Equation (5.39). As before, we simulate

Z1 via Algorithm 2 to determine a scenario set Z with N = 104, and investigate

VaR0.005 and TVaR0.005, the 0.005−quantile and tail average of {f(z) : z ∈ Z}.

The interest rate model is a continuous time model, and we perform a simple

forward Euler method with discretization ∆t = 0.1. Here, f(·) takes approxi-

mately 0.01115 seconds to evaluate, while it takes 0.000513 seconds to evaluate

for the first case study. In industry, the evaluator typically takes f(·) signifi-

cantly longer. This all implies that the numeric overhead of fitting and predicting

becomes negligible as the model becomes more realistic.

5.7.1 Results

For the remainder of this section we analyze f(Z1), the net present value of

the life annuity one year into the future. We let x = 55 and the expiration

time be T = 10. The interest rate parameters in Equation (5.40) are parameters

β̄ = 0.04, ᾱ = 0.04, ζ̄ = 0.02, φ = 0.05, with the mortality model fitted over the

age range x ∈ [55, 89] using the StMoMo package in R Villegas et al. (2015a).

The GP has hyperparameters θβ = 8.9668, θα = 13.0322, θζ = 12.5858, θκ1 =

13.7758, θκ2 = 13.0073, θκ3 = 15.1429, and σ2 = 2.127; these θ values are based
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on standardized inputs by subtracting mean and dividing by standard deviation,

marginally in each dimension.

Our aim is to repeat the analysis in Section 5.6 to see how the results extend

to a more realistic higher dimension example. Under the setup (5.39), there is no

closed form evaluation for f(z), so we obtain a benchmark through simulation –

this value is determined by performing ST-GP and SR-GP-2 in alternating rounds

with a budget of 2 ·107, a budget 2000x larger than that of a single macro replica-

tion in our experiment. The result is RVaR
B = −16.0529, RTVaR

B = −16.37795 with

estimator standard deviations of s(RVaR
B ) = 0.002017 and s(RTVaR

B ) = 0.001879.

We repeat the methods in Section 5.6, performing 100 macro replications with

fixed Z for both VaR0.005 and TVaR0.005. The box plots for bias and squared error

are reported in Figures 5.10 and 5.11, with fan plots in 5.12 and 5.13, and the

numeric values for average bias, estimator standard deviation, squared error, and

time taken are reported in Table 5.7.

Remarkably, the results mirror those of the first case study almost perfectly in

terms of relative order of sequential methods and benchmark performance, with

relative improvements for the SUR results in most cases. To provide details, ST-

GP retains the lowest bias, but here its bias is roughly 29x lower than that of

U2-GP, the simple two stage procedure, compared to 15x lower in the first case

study, and now its average time spent for one run is only 2.5x as long compared

to 9x in the first case study, echoing that the numeric overhead decreases as f(·)

becomes more expensive to evaluate. The relative performance of ST-GP versus

A3-GP, the three-stage benchmark based on variance minimization, is similar to

that of case study 1. We also find that A3-GP does better than in case study 1
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VaR0.005

bias(RVaR
K ) s(RVaR

K ) RMSE Time (s)
ST-GP 0.0227 0.0549 0.0689 287.9145
SE-GP 0.027 0.0542 0.0565 312.8884
SV-GP 0.0651 0.0419 0.0756 414.0081
U1-GP -2.701 0.5505 2.704 177.1371
SR-GP-1 0.0764 0.0455 0.093 188.3068
U2-GP 0.6612 0.2151 0.691 111.5368
SR-GP-2 0.0715 0.0416 0.0821 226.0427
A3-GP 0.1115 0.0449 0.1203 114.2593

TVaR0.005

bias(RTVaR
K ) s(RTVaR

K ) RMSE Time (s)
ST-GP 0.0036 0.0583 0.0658 330.1495
SV-GP 0.0628 0.0391 0.0731 403.8966
U1-GP -2.4446 0.3559 2.4509 176.6486
U2-GP 0.8335 0.2367 0.8663 112.3129
SR-GP-2 0.0803 0.0427 0.0894 178.2559∗

A3-GP 0.1098 0.046 0.1193 114.9563

Table 5.7: For the life annuity case study, average values over 100 macro repli-
cations of bias, standard deviation, and squared error of Rk for each approach,
as well as average time taken to complete the procedure (in seconds). Rows
are missing for TVaR0.005 when a method not being applicible. Description of
methods are provided in Table 5.1. *A3-GP TVaRα only uses 50 rounds com-
pared to all other sequential methods which use 100 due to requiring rnk > 1
for calculating τ̂2

k (zn) in Equation (5.15).

compared to the other benchmarks.

Comparing the SUR algorithms, the results are similar to the first case study,

though SE-GP does marginally better than ST-GP for VaR; this is argued by

it having the lowest MSE as well as looking at the box and fan plots, where in

general it is less varying with the same or better bias results. In general, the shape

of the fan plots are also similar to case study 1, with convergence rates looking

similar as well.

These results imply that sequential methods based on GP’s still perform well

150



Sequential Design Algorithms for Estimating Value-At-Risk for Longevity Risk Chapter 5

Figure 5.10: For the life annuity case study, boxplots of final m(RVaR
K ) estimates

and s(RVaR
K ) over 100 macro replications for each approach.

in a higher dimensional setting. In fact, they perform relatively better than in the

lower dimensional example.

5.8 Conclusion

We investigated performance of stepwise uncertainty reduction (SUR) algo-

rithms for level set and contour estimation for an unknown noisy function f . In

order to answer various questions about performance, they are compared against

various benchmarks through two case studies. One is a simplistic two-dimensional

example, and the second is more complex with six-dimensions. Though different
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Figure 5.11: For the life annuity case study, boxplots of final m(RTVaR
K ) esti-

mates and s(RTVaR
K ) over 100 macro replications for each approach.

in nature, both case studies yielded the same conclusions, nearly mirroring relative

performance across all methods. In general, we found that even crude multi-step

methods offer performance increases compared to methods involving only a few

stages. In addition, the SUR methods based on explicit criteria (e.g. variance

minimization of the estimator) performed much better than crude SUR bench-

marks. The downside is that the numerical overhead for fitting and predicting

increases with the number of stages; however, this overhead decreases from the

first to second case study where calls to f become more expensive, and in practical

cases, the calls to f take much longer than either case study in this paper, so that

the overhead becomes negligible.
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Figure 5.12: For the life annuity case study, a fan plot dscribing evolution of
m(RVaR

k ) in Equation (5.19) as budget is spent. Shown are various quantiles
of m(RVaR

k ) over the 100 macro repliactions, for each k.

The case studies analyzed VaR and TVaR, the quantile and tail average of

financial loss respectively. Typically, industry uses crude Monte Carlo to estimate

these values, which was by far the worst performing benchmark, even when a GP
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Figure 5.13: For the life annuity case study, a fan plot describing evolution of
m(RTVaR

k ) in Equation (5.19) as budget is spent. Shown are various quantiles
of m(RTVaR

k ) over the 100 macro repliactions, for each k.

helped interpolate the output along with optimal budgeting as suggested in Gordy

and Juneja (2010). Even a simple sequential approach that breaks budgeting into

two stages, where the second focuses on tail scenarios via the GP, offers a 5x bias

reduction (4x in the annuity case study). The best performing algorithm yielded

a 95x bias reduction (119x in the annuity case study).

This work is the first detailed analysis of level and contour estimation in the

case of a noisy function, so there are many extensions to be made. First, the

initial stage in each sequential algorithm was a fixed 10% of budget spent through

representative points of the domain determined via a space-filling algorithm. One
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can further analyze both the amount of budget spent in this step, along with the

number of representative points chosen. For example, 10% may be overkill in

some cases, but in others it might not provide enough insight, especially depend-

ing on the size of the domain and the number of representative points chosen.

It is possible that these values should depend somehow on the problem itself,

e.g. through estimator standard deviation. Additionally, the space-filling algo-

rithm can be improved. In fact, we only care one extreme region of the domain,

so an algorithm that focuses on filling extreme regions rather than the entire set

of scenarios is desirable. One way to achieve this is described in Chauvigny et al.

(2011), through use of statistical depth functions. The downside is that it requires

certain assumptions on the distribution of ZT and properties of f , though these

are satisfied in most realistic scenarios.

Another extension is to consider other improvement criteria and modifications

of the current SUR algorithms. For example, SV-GP minimizes the variance of the

estimator, and unsurprisingly it offered the lowest posterior estimator variance.

Its bias, however, was larger than the other SUR methods. Various criteria should

be investigated along with theoretical optimal solutions. Furthermore, a crucial

difference is that SV-GP allocates budget in a single stage to multiple points,

whereas the others add multiple calls to f for a single point. One improvement

is to modify the optimization for ST-GP and SE-GP to the case of a dynamic

budgeting like SV-GP.

In this paper we used the empirical noise variance estimates as in Equation

(5.15). This caused some difficulties in the first case study where the noise surface

is extremely heteroskedastic: the scenarios producing the lowest noise were actu-
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ally of unimportance, and in some runs the initialization stage resulted in a GP

that gave unnecessarily large weights to these areas, resulting in poor predictions.

A recent improvement to GPs in general is given in Binois et al. (2016), which

give fast updating formula for a separate noise surface. GP modeling including

this technique is included in an upcoming R package “hetGP”; the package has

already been used in a disease forecasting application Johnson et al. (2017).
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5.9 Appendix: Set Based Expected Improvement

Criteria

See Chevalier et al. (2014b) for a more extensive overview of these criteria.

We follow the nomenclature given in their paper. The goal is to understand one

of

• The level set Γ∗
.
= {z ∈ Z : f(z) ≥ L}, where L is a fixed threshold,

• The volume of excursion α∗
.
= P(Γ∗),

• The contour line C∗ .= {z ∈ Z : f(z) ∈ (L− ε, L+ ε)} for small ε,

by sequentially picking a point to reduce uncertainty. It is worth remarking that

each criteria should work well for all problems since they are so similar in nature.

5.9.1 Level Set

Denoted the sur criteria, we define

Hsur .=
1

N

N∑
n=1

pk(z
n) (1− pk(zn)) , (5.43)

where pk(z)
.
= P(f̂k(z) ≥ T |Dk) is the probability of f̂k(z) being in the level set.

Intuitively, the uncertainty is low when pn(z) is close to 0 or 1 over all Z, i.e. f̂k

has strong understanding of whether all points are in or not in Γ∗. The sampling

criteria then aims to choose the next scenario z that best reduces this uncertainty:

sur(z)
.
= E

[
1

N

N∑
n=1

pk+1(zn) (1− pk+1(zn))

∣∣∣∣∣ znewk+1 = z

]
, (5.44)
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where the conditioning means replications are added to scenario z in the next

step. Choosing the optimal scenario means evaluating Equation (5.44) at each

z ∈ Z and choosing the one that results in the lowest sur(z). In practice, the

search domain is reduced to a smaller subset of points after the first stage, since

then f̂ can safely exclude many points far away z̃.

5.9.2 Volume of Excursion

The jn criteria is optimal for estimating α∗
.
= P(Γ∗). Simply, we let Γk

.
= {z ∈

Z : f̂k(z) > T} and

γk
.
=

1

N

N∑
n=1

1{f̂k(zn)>T} (5.45)

is the volume of Γk. Then

Hjn .
= var(γk|Dk), (5.46)

and the associated sampling criterion is

jn(z)
.
= E[var(γk+1|Dk+1)|znew = z). (5.47)

5.10 Appendix: Variance Minimization Calcu-

lations

Lemma 4. Let C = [C(zn, zm)]1≤n,m≤N be the covariance matrix of z ∈ Z, Tk =(
τ̂ 2
k (z1), . . . , τ̂ 2

k (zN)
)
, I be the N ×N identity matrix, and noting that rnk = rnk−1 +

r′nk−1, rk =
(

1
r1
k−1+r′1k−1

, . . . , 1
rNk−1+r′Nk−1

)
, Then the following is an approximation that
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improves as each rnk−1 increases:

(C + TkIrTk )−1

≈(C + TkIrTk−1)−1 + (C + TkIrTk−1)−1(TkIrTk−1 − TkIrTk )(C + TkIrTk−1)−1.

(5.48)

Proof. Let B be the diagonal matrix with elements

√
τ̂ 2
k (zn)

(
1

rnk−1
− 1

rnk−1+r′nk−1

)
.

Then by adding and subtracting,

C + TkIrTk = C + TkIrTk−1 −BB, (5.49)

so that by the Woodbury matrix formula Golub and Van Loan (2012),

(C + TkIrTk )−1

= (C + TkIrTk−1 + B(−I)B)−1

= (C + TkIrTk−1)−1

− (C + TkIrTk−1)−1B
(
B(C + TkIrTk−1)−1B− I

)−1
B(C + TkIrTk−1)−1. (5.50)

When rnk is large, both rk−1 and B have relatively small entries, so that C +

TkIrTk−1 ≈ C and hence B(C + TkIrTk−1)−1B− I ≈ −I. Therefore,

(C+TkIrTk )−1 = (C+TkIrTk−1)−1 + (C+TkIrTk−1)−1BB(C+TkIrTk−1)−1. (5.51)

Plugging in BB = TkIrTk−1 − TkIrTk , finishes the proof.

Lemma 4 provides a solution to the matrix inversion problem in Equation
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(5.20).

Lemma 5. Subject to the constraints
∑N

n=1 r
′n
k−1 = ∆rk−1 and r′nk−1 ≥ 0 for n =

1, . . . , N , the minimization problem of

s2(Rk) = wk(C−C(C + TkIrTk )−1C)wT
k (5.52)

with respect to r′1k−1, . . . , r
′N
k−1 using the approximation in Lemma 4 reduces to min-

imizing

uTk TkIrTkuk (5.53)

under the same constraints, where uk = (C + TkIrTk−1)−1Cwk.

Proof. Using Lemma 4, Equation (5.52) becomes

wk(C−C(C + TkIrTk )−1C)wT
k

= −wT
k (C + TkIrTk−1)−1(TkIrTk−1 − TkIrTk )(C + TkIrTk−1)−1wk

= −wT
k (C + TkIrTk−1)−1TkIrTk−1(C + TkIrTk−1)−1wk

+ wT
k (C + TkIrTk−1)−1TkIrTk (C + TkIrTk−1)−1wk. (5.54)

The r′nk−1 only appear in rTk , so it is equivalent to minimize this equation with

respect to only the second term.

Finally, solving the reduced problem in Lemma 5 has a closed form solution.

The optimal solution can be determined using a pegging algorithm provided in

Bretthauer et al. (1999), and is given in Algorithm 3. Note that when τ 2(zn)
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is estimated, the argument r′nk−1 appears in τ̂ 2
k (zn). In general we should have

τ̂ 2
k−1(zn) ≈ τ̂ 2

k (zn), so we simply use τ̂ 2
k−1(zn) in the minimization instead. Addi-

tionally, the wnk are unknown, so we use wnk−1.

Algorithm 3: Algorithm to determine optimal solution to the variance min-
imization problem in Lemma 5.

input : Tk,uk, (r1
k−1, . . . , r

N
k−1)

output: (r′1k−1, . . . , r
′N
k−1)

1 Set dnk ← (unk+1)2τ̂ 2
k (zn), n = 1, . . . , N, L← ∅, I ← {1, . . . , N}, R←∑N

n=1 r
n
k , S ←

∑
n∈I

√
dkn, λ← (S/R)2.

2 Set r′nk−1 ← (dnk/λ)2

3 Set x← 0, L′ ← ∅
4 for n ∈ I do
5 if r′nk−1 < 0 then
6 x← x− r′nk−1, L′ ← L′ ∪ {n}
7 end

8 end
9 if L′ 6= ∅ then

10 I ← I\L′, L← L ∪ L′, S ← S −
∑

n∈L′
√
dkn, R←

R−
∑

n∈L′ r
n
k−1, λ← (S/R)2. Go to Step 2.

11 end
12 r′nk−1 ← 0 for all n ∈ L, r′nk−1 ← (dnk/λ)2 for all n ∈ I.
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Chapter 6

Gaussian Process Models for
Mortality Rates and
Improvement Factors

6.1 Abstract

We develop a Gaussian process (“GP”) framework for modeling mortality rates

and mortality improvement factors. GP regression is a nonparametric, data-driven

approach for determining the spatial dependence in mortality rates and jointly

smoothing raw rates across dimensions, such as calendar year and age. The GP

model quantifies uncertainty associated with smoothed historical experience and

generates full stochastic trajectories for out-of-sample forecasts. Our framework

is well suited for updating projections when newly available data arrives, and for

dealing with “edge” issues where credibility is lower. We present a detailed anal-

ysis of Gaussian process model performance for US mortality experience based on

the CDC datasets. We investigate the interaction between mean and residual mod-

eling, Bayesian and non-Bayesian GP methodologies, accuracy of in-sample and
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out-of-sample forecasting, and stability of model parameters. We also document

the general decline, along with strong age-dependency, in mortality improvement

factors over the past few years, contrasting our findings with the Society of Ac-

tuaries (“SOA”) MP-2014 and -2015 models that do not fully reflect these recent

trends.

6.2 Introduction

Publishing of pension mortality tables and mortality improvement factors for

use by actuarial professionals and researchers in longevity risk management is a

major endeavor of the actuarial professional organizations. In the US, the Society

of Actuaries (SOA) runs the Retirement Plans Executive Committee (RPEC);

its most recent publication is known as the RP-2014 mortality tables and the

MP-2015 improvement scales (SOA, 2014b,a). In the UK, annual tables are re-

leased in the form of the Continuous Mortality Investigation reports (Continuous

Mortality Investigation, 2015). Being official proposals of the actuarial Societies,

such tables enjoy wide use and are also heavily used in the valuation of pension

and post-retirement medical liabilities. For example, in the US the SOA tables

have been included by the Internal Revenue Service for the purposes of the Pen-

sion Protection Act of 2005, or by the Congressional Budget Office for long-term

forecasts.

The basic aim in constructing the tables is to convert the raw mortality data

into a graduated table of yearly mortality rates and improvement factors, broken

down by age and gender. Since the goal is to forecast future mortality from retro-
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spective experience, the process involves two fundamental steps: smoothing raw

data to remove random fluctuations resulting from finite data sizes; and extrap-

olating future rates. To maximize actuarial credibility of the tables, graduation

techniques are applied, in particular for estimating mortality improvement trends

based on past experience and then projecting those trends into future years. For

example, see the RPEC reports SOA (2014b,a) for the full description of con-

structing the US tables/scales, as well as more general SOA longevity studies in

Purushotham et al. (2011); Rosner et al. (2013).

In the present article, we propose a new methodology to graduate mortality

rates and generate mortality improvement scales within a single statistical model.

More precisely, we advocate the use of Gaussian process regression, a type of

Bayesian nonparametric statistical model. Our aim is to provide a data-driven

procedure that produces an alternative to existing methods while enjoying a num-

ber of important advantages:

• The GP framework is Bayesian, offering rich uncertainty quantification. The

model produces mortality curves smoothed over multiple dimensions, as

well as credible intervals which quantify the uncertainty of these curves.

This is generated for in-sample smoothing and out-of-sample forecasts. In

their basic form, the latter forecasts are Gaussian, allowing for a simple

interpretation of the uncertainty by the actuary. Moreover, the GP model

is able to generate stochastic trajectories of future mortality experience.

We demonstrate this projection over both age and calendar year, but the

GP model can be consistently applied over higher dimensional data as well.

From this, full predictive distributions for annuity values, life expectancies,
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and other life contingent cash-flows can be produced. Such analyses can

provide core components of stress testing and risk management of mortality

and longevity exposures.

• Using GPs leads to unified modeling of mortality rates and mortality im-

provement; one may analytically differentiate the mortality surface to obtain

mortality trends (and corresponding credible bands) over calendar years.

This structure offers a coherent approach to both tables, jointly quantifying

uncertainty in rates and improvement factors.

• Standard graduation techniques are sensitive to edge issues, i.e. the experi-

ence in the latest few years. For example, to achieve a better prediction, the

MP-2015 method extrapolates rates from 2010 onwards, effectively exclud-

ing the last 5 years of data (as of this writing, CDC data go up to 2014).

In contrast, our GP approach intrinsically handles the specific shape of the

data and is well suited to incorporating missing data. Therefore, dropping

the “edge years” is not necessary with GP, with its self-adjusting credible

bands.

• The GP approach provides natural “updating” of mortality tables in terms

of incorporating the latest mortality experience. The end users can easily

update the tables, no longer requiring reliance on official updates.

To recapitulate, the main contribution of this article is to propose the use

of Gaussian process regression for constructing mortality tables and improve-

ment factors. While being a relatively new “machine learning” paradigm, the

underlying statistical methodology and most crucially the software implementa-
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tion has matured significantly in the past decade. To wit, all of the case stud-

ies below have been implemented straightforwardly using publicly-available, free,

well-documented software, and required only basic programming skills. With a

much shorter learning curve and enhanced functionality, the GP approach is well-

positioned to be the 21st century framework for mortality data analysis.

From the empirical direction, our data-driven analysis sheds light on the lat-

est mortality experience, whereby mortality improvements appear to have signif-

icantly moderated from past trends. Specifically, after implementing the above

framework on the latest US mortality experience, we document that as of 2015,

mortality improvement factors are (statistically) zero, and possibly negative for

ages 55–70 since as early as 2012. These estimates diverge significantly from SOA

projections embedded in MP-2015 that continue to bake in past improvements.

Lower mortality improvement rates would have a material impact across the pen-

sion industry. This paper offers statistical support to the anecdotal demographic

evidence of declining US longevity and calls into question traditional backward-

looking methods for constructing mortality improvement factors.

6.2.1 Comparison to Other Approaches

Mortality experience is summarized by a mortality surface, indexed by Age

(rows i) and calendar Year (columns j). Typical data consists of two matrices

D and E (or L), listing the number of deaths D, exposed-to-risk E, or the mid-

year population L, respectively. In the first step, one postulates a relationship

between the individual elements of these matrices, Dij and Eij, in terms of the

latent (logarithmic) mortality state µij. In the second step, one estimates µij
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through a statistical fitting approach. We may identify two classes of estima-

tion: (i) data-driven models that infer µij by statistical smoothing techniques;

(ii) factor models that express µij in terms of several one-dimensional indices.

For example, in Age-Period-Cohort (“APC”) models those factors are additive

and correspond to Age, Year and Cohort effects; in Lee-Carter (Lee and Carter,

1992) models they correspond to Age, Year, and an Age-Year interaction term. A

common distinction is to assume a non-smooth evolution of the mortality surface

in time, coupled with a smooth Age effect. The latter Age-modulating terms are

then fitted non-parametrically by maximum likelihood, or given a fixed functional

form, such as linear or quadratic in Age (Cairns et al., 2006; Hunt and Blake,

2014). Imposing an underlying one-dimensional structure facilitates interpreta-

tion of the fitted output, but potentially leads to model risk. In contrast, the

data-driven methods, dating back to the classical graduation technique of Whit-

taker (1922), maintain an agnostic view of mortality experience, and solely focus

on removing random fluctuations in observed deaths. Modern frameworks typ-

ically work with various types of splines, extending the seminal work by Currie

et al. (2004) (see also a modern software implementation in Camarda (2012)).

Here, the main challenge is appropriate smoothing across both Age and Year

dimensions; some of the proposed solutions include constrained and weighted re-

gression splines (Hyndman and Ullah, 2007b), extensions to handle cohort effects

that generate “ridges” (Dokumentov and Hyndman, 2014), and a spatio-temporal

kriging approach (Debón et al., 2010). A mixed strategy of first smoothing the

data non-parametrically, and then inferring underlying factor structure was pro-

posed and investigated in Hyndman and Ullah (2007b). Finally, we also mention
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Bayesian approaches (Czado et al., 2005b; Girosi and King, 2008) that replace

MLE-based point estimates with a posterior distribution of the mortality rate.

To date, there is no consensus on which framework is the most appropriate. For

example, the influential study by Cairns et al. (2009b) considered eight different

mortality models. Another recent study by Currie (2016) looked at 32 models,

nesting the former eight.

A further reason for the large number of models is the use of different link

functions (log-Poisson, logit-Poisson, logit-Binomial, etc.), that connect the log-

arithmic mortality state to deaths and exposures. These modeling choices are

important since they affect the optimization procedure (usually some variant of

maximum likelihood) applied in calibrating each model. The Binomial model

is defined as Dij ∼ Bin(Eij, e
µij) (Hyndman and Ullah, 2007b); the Poisson

model Dij ∼ Poisson(Eije
µij) (Brouhns et al., 2002b); and the Gaussian model

Dij
Eij
∼ N (eµij , σ2Eij) (Girosi and King, 2008). A related issue is regularization of

the estimated factors that can be achieved via penalization, see Delwarde et al.

(2007); Currie (2013).

In terms of forecasting future mortality, a popular strategy is to differentiate

the treatment of the Age index, which is incorporated directly into the mortal-

ity state and smoothed appropriately, vis-a-vis the Year index, whose impact is

estimated statistically using time-series techniques. This is the basic idea of Lee-

Carter models, which construct a time-series process for the Year factor(s) to

extrapolate mortality trends and assess forecast uncertainty. More generally, this

can be viewed as a principal component approach, expressing the Age-effect as a

smooth mortality curve µt(xag), fitted via functional regression or singular value
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decomposition techniques, and then describing the evolution of this curve over

time (Renshaw and Haberman, 2003; Hyndman and Ullah, 2007b) as a multivari-

ate time-series. In contrast, in the pure smoothing methods, all covariates are

given equal footing, and forecasting is done by extrapolating the fitted surface to

new input locations.

Precise methods for constructing mortality tables are not without controversy,

especially when it comes to extreme age longevity or future forecasts. Ideally one

ought to just let the “data speak for itself”. However, this is in fact a very challeng-

ing issue, not least because the question of predictive forecasting must acknowledge

that any given fixed forecast is only a point estimate, and that there is always an

element of uncertainty around the prediction. A common paradigm is to specify a

stochastic model for mortality which directly prescribes future uncertainty. This

is especially relevant for risk management or pricing applications, where the actu-

ary wishes to incorporate (and hopefully manage) mortality risks. However, most

stochastic mortality frameworks are “reduced-form” in the sense of specifying a

low-dimensional stochastic system with just a few parameters/degrees-of-freedom.

For implementation, one “calibrates” the model to data by minimizing e.g. the

mean-squared error. In contrast, the RP-2014 mortality table is bottom-up, aim-

ing to directly specify the full mortality experience with minimal a priori spec-

ifications. Relative to these two basic strategies, the approach proposed in this

article views uncertainty in forecasts as intrinsic to the statistical model, so that

all credible bands are obtained simultaneously both in-sample and out-of-sample.
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6.2.2 Mortality Dataset

Our study is US-centric and originated from discussions of the SOA’s MP-2014

and successor tables. There has been some controversy that the scale excluded

more recent trends, specifically a slowing of mortality improvement that was not

fully reflected in the MP-2014 tables. Indeed, a year later, the SOA updated the

MP-2014 tables to the MP-2015 tables to include two additional years of mortality

experience, and the new tables did in fact reflect a material drop in mortality

improvement. In the interim, the CDC has also released new data showing a

continued decline in mortality improvement levels.

The mortality data we use comes from Centers for Disease Control (CDC).

The CDC data covers ages 0–84 and goes up to 2014 as of the time of writing.

For each cell of the table, the CDC data specifies the raw mortality rate for

the exposed population. The mid-year exposures Lij are based on inter-censal

estimates interpolated based on the 2000 and 2010 census counts. Thus, eµij

corresponds to central death rates. Table 6.1 provides a snapshot of the latest year

of CDC data (2014). The rapid decrease in sample size causes large variability

in reported mortality rates at extreme ages. For a visual representation, two

representative years of raw CDC data for Males aged 60–70 are plotted as the

solid lines in Figure 6.1. The figure shows the (super-) exponential increase in

mortality with respect to age, along with a clear need for data smoothing.

As our training dataset, we used the CDC database covering ages 50–84 in

years 1999–2014. (Another data source is provided by Social Security Adminis-

tration (SSA) and was utilized by RPEC.) Since our main aim is to obtain the

present mortality rates and to forecast short-term calendar trend through estimat-
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Inputs xn Log Mortality Rate yn Mortality Rate exp(yn)
Age (xnag) Year (xnyr) Male Female Male Female

50 2011 -4.931 -5.437 0.00722 0.00435
64 2011 -4.264 -4.707 0.01406 0.00901
74 2011 -3.435 -3.821 0.03222 0.02191
84 2011 -2.408 -2.714 0.08999 0.06625

Table 6.1: Excerpt of CDC mortality data to compare exposures and mortality
rates over Ages and gender for calendar year 2011. Mortality is the observed
proportion Dn/Ln of the deceased during the Year relative to the mid-year
population.

ing mortality improvement factors, we only consider older ages and recent years.

Our main philosophy is of mortality evolving as a non-stationary surface in Age

and Year, so that distant mortality experience is less influential for our analysis.

Thus, we purposely leave out (i) young ages which have further features, such as

infant/teen mortality, and (ii) most 20th century data. We refer to Li and O’Hare

(2015) for a discussion about “local” versus “global” approaches to mortality. To

understand the impact of excluding some data, we also considered several subsets

listed in Table 6.2.

In comparison to our dataset, the most recent MP-2015 scales incorporate

actual smoothed rates up to 2009 with projections thereafter. However, the CDC

already provides actual mortality experience up to 2014. The SOA at this stage

is still grappling with how to supplement its analyses with the additional 5 years

of mortality experience (SOA, 2015).
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Set Name Training Set Test Set
All Data 1999–2014, ages 50–84 N/A: In-Sample
Subset I 1999–2010, ages 50–84 2011–2014, ages 50–84
Subset II 1999–2010, ages 50–84 & 2011–2014, ages 71–84

2011–2014, ages 50–70
Subset III 1999–2010, ages 50–70 2011–2014, ages 71–84

Table 6.2: Data sets used in analysis. Mortality data is taken from CDC as
described in Section 6.2.2.

6.3 Gaussian Process Regression for Mortality

Tables

In this paper, we focus on analyzing mortality rates over a two-dimensional

input space, namely Age and Year. The mortality data is viewed as a table of N

“cells” (see rows of Table 6.1), represented by inputs xn and outputs or responses

yn, n = 1, . . . , N . In our case, xn is in fact a tuple and represents the pair (xnag, x
n
yr).

For example, xn = (78, 2016) is the input for “78-year old in 2016” cell. We use

the logarithmic central mortality rate for yn, namely yn = log(Dn/Ln) where Dn

and Ln represent the annual deaths and midyear count of lives, respectively, for

the n-th cell. The overall inputs x = x1:N and observations y = y1:N are denoted

by boldface and aggregated into the mortality dataset D = (x,y). Superscripts

identify individual inputs/outputs, subscripts distinguish coordinates, e.g. xnag.

Remark. This point of view treats calendar Year as simply another covariate and

is easily extendible to further input dimensions, such as Select Period, etc. Also

the format easily allows for missing cells, which, for example, is a common issue

for dealing with extreme ages (95+).
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6.3.1 Basics of Gaussian Processes

In traditional mortality regression, a parametric function, f , is postulated

which maps the inputs x to the noisy measurements of the log-mortality rate, y.

A cell is modeled as

yi = f(xi) + εi, (6.1)

where εi is the error term. With a GP, the function f is deemed to be latent

and is modeled as a random variable. Consequently, a GP is defined as a set

of random variables {f(x)|x ∈ Rd} where any finite subset has a multivariate

Gaussian distribution with mean m(·) and covariance C(·, ·). That is for any

n-tuple x = x1:n:

f(x1), . . . , f(xn) ∼ N (mean = m(x), covariance = C(x,x)) .

In shorthand, we write f(x) ∼ GP (m(x),C(x,x)). An important concept of a

GP is that each mortality rate is correlated with every other mortality rate: above,

C is a n× n matrix with entry C(xi, xj) representing the covariance between the

i-th and j-th cells.

Once we collect data D, the next step is to determine the posterior distribution

for f , namely p(f |D). That is, we want to know the distribution of mortality rates,

given the experience data. Using Bayes’ rule, we have

p(f |D) ∝ p(y|f,x)p(f) = {likelihood} · {prior}

where p(y|f,x) is the “likelihood” and p(f) the “prior”. To complete the definition
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of the GP, we therefore need to define the “prior”, p(f). This is equivalent to

setting the initial assumptions for mean function m and covariance function C.

The Prior Mean Function: the prior mean m(x) stands in for our belief

about mortality rate at input x in the absence of any historic data. We might,

for example, define m(·) as a Gompertz or Makeham curve in the age coordinate

xag. However, we will show that the choice of m(·) has little impact on the output

of the GP model for purposes of in-sample smoothing. Even if we set m(x) = 0

or m(x) = β0 for some constant β0 and for all x, the results will be largely

unaffected, since the posterior mean is largely dominated by the impact of the

data. However, for purposes of out-of-sample projections, we will conversely show

that a more realistic choice of m(·) is required for long term mortality projections.

The Covariance Function: A core concept of a GP is that for any cells i, j,

if xi and xj are deemed to be “close”, then we would expect the outputs, yi and

yj, to be “close” too. For example, the mortality rate for a 60 year old in 2016

(xi = (60, 2016)) will be closer to that of a 61 year old in 2017 (xj = (61, 2017)),

than that of a 20 year old in 1990 (xj = (20, 1990)). This idea is mathematically

encapsulated in C: the closer xi is to xj, the larger the covariance C(xi, xj). It

follows, that if xi and xj are very close, knowledge of yj will greatly affect our

expectations of yi. Conversely, if xi is far from xj, then yj will have little influence

on our expectations of yi.

The Posterior Function: To project mortality, we evaluate the GP function

on new Age and/or Year inputs x∗, i.e. evaluate f∗ = f(x∗)|D. We show in the

next subsection that when m is a constant and the likelihood function is Gaussian,

then the posterior distribution for f∗ can be determined analytically. In fact, this
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posterior itself is a new GP f∗(x∗)|D ∼ GP (m∗(x∗),C∗(x∗,x∗)) with an updated

mean and covariance functions, specified in (6.6). The posterior mean m∗(x∗) is

interpreted as the model prediction for inputs x∗, and the posterior covariance

C∗(x∗,x∗) gives a goodness-of-fit measure for this prediction.

The posterior function can be used for both projecting mortality, as well as

producing in-sample smoothed mortality curves. For the latter, all we need to

do is set x∗ = x, namely the training set inputs. In this case, the mean m∗(x)

of the posterior will produce a smooth set of mortality rates, and the posterior

variance C∗(x,x) quantifies the uncertainty around m∗(x). Alternatively, if x∗

represents inputs of future calendar years, then the posterior will produce an out-

of-sample projection of the mortality curves. By fitting a GP, and then analyzing

the posterior we are able to achieve the following:

• Estimate the historic smoothed mortality curves by calendar year (m∗(x)

above);

• Estimate a credible interval around such curves (use the posterior covariance

C∗(x,x));

• Project the curves forward (m∗(x∗) for future inputs x∗);

• Estimate the credible intervals for such projections (C∗(x∗,x∗));

• Generate stochastic future forecasts (sample from the random vector f∗(x∗)

as a future mortality scenario);

• Smooth curves over all dimensions, using automatically determined tuning

parameters.

Note that the above projections are about f∗. An actuary might also wish to
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project future mortality experience y∗. In the GP framework, the observations

are viewed as the latent f plus noise, so that the marginal credible intervals of y∗

are necessarily wider. When the noise ε has a Gaussian distribution, y∗ in fact

remains a GP with same mean as f∗, and a modified variance due to the variance

of ε. Practically, forecasting realized mortality (for example, in connection with

realized annuity payouts) requires also predicting future exposures E.

Remark. In a Lee-Carter framework one first postulates a parametric form for the

mortality experience, such as

µag,yr = αag + βagκyr + εag,yr (6.2)

where α is the Age shape, β is the age-specific pattern of mortality change and κ

is the Year trend. In the second step, after fitting α,β by maximum likelihood,

one then postulates a time-series model for the κ factor. Relative to a pure regres-

sion model such as ours, the Lee-Carter method treats Age and Year dimensions

completely differently; moreover the fit for the Age/Period factors is done glob-

ally (i.e. from the full dataset used), so that even spatially distant data directly

influences all predictions. Finally, Lee-Carter has no mechanisms for (i) smooth-

ing in-sample experience (beyond model calibration), and (ii) incorporating the

uncertainty of the Age/Period factors in out-of-sample forecasts; its forecasts are

stochastic only insofar as the time-trend is uncertain. Here we mention that there

have been numerous extensions of Lee-Carter, addressing both more complex al-

ternatives to (6.2), as well as other observation settings, such as Poisson-based

projections (Brouhns et al., 2002b; Czado et al., 2005b).
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6.3.2 Mathematical Details

GP regression takes a response surface approach, postulating an unknown,

nonparametric functional dependence between covariates (inputs) x and outputs

y,

y = f(x) + ε, (6.3)

where f is the response surface (or regression map) and ε is the mean-zero noise

term with observation variance σ2(x), independent across x’s. The meaning of

the noise term are the statistical fluctuations that lead to deviations between

observed raw mortality rates and the latent “true” rates that are being modeled.

The strength of these fluctuations σ(x) is interpreted as the credibility of the

corresponding mortality cell exposure. We remind the reader that throughout

the paper, yn represents log-mortality, and xn = (xnag, x
n
yr) is a two–dimensional

age–year pair. In Gaussian process regression, the map f is assumed to be a

realization of a Gaussian process with covariance kernel C that controls the spatial

smoothness of the response surface. The GP model starts with a prior on f ’s over

the function spaceM and then computes its posterior distribution conditional on

the data D. The function space specifying potential f ’s is a reproducing kernel

Hilbert space based on the kernel C. The GP assumption that f is generated by a

Gaussian process implies that the posterior distributions are also Gaussian. Hence

at any fixed input x, the marginal posterior is f∗(x) ∼ N (m∗(x), C∗(x, x)), where

m∗ is the predictive mean (also the posterior mode, hence maximum a posteriori

(MAP) estimator), and C∗(x, x) is the posterior uncertainty of m∗. C∗(x, x) offers

a principled empirical estimate of model accuracy, serving as a proxy for the
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mean-squared error of m∗ at x.

A GP modelGP (m(x),C(x,x)) is specified through its mean functionm(xi) =

E[f(xi)] and covariance C(xi, xj) = E[(f(xi)−m(xi)) (f(xj)−m(xj))]. Specifi-

cally, the prior of f(x) is p(f |x) = N (m,C), where m = (m(xi))1≤i≤N and

C = (C(xi, xj))i,j. In the standard case, it is further assumed that the noisy obser-

vations vector y has a Gaussian relationship to the latent f , i.e. εi ∼ N (0, σ2(xi)),

so that

p(y|f) = N (y|f ,Σ), (6.4)

where Σ = diag(σ(xi)2) is the N × N noise variance matrix. Certainly, as-

suming ε to be Gaussian with a prescribed variance is not realistic for mortal-

ity modeling, but as we show this has minimal statistical effect; we return to

this point later. Equation (6.4) implies that if f ∼ GP (m(x),C(x,x)) then

y ∼ GP (m(x),C(x,x) + Σ).

Thanks to the Gaussian assumption, determining the posterior distribution

p(f |y) reduces to computing the predictive mean m∗ and covariance C∗. Com-

bining the above likelihoods and denoting by Θ the hyper-parameters of the GP

model, the log-likelihood is

log p(y|x,Θ) = −1

2
yT (C + Σ)−1y − 1

2
log |C + Σ| − N

2
log(2π),

where yT denotes vector transpose.

The basic GP model treats the prior mean function m as given (i.e. known and

fixed). In Section 6.3.3 we discuss the more relevant case where we simultaneously
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infer a parametric prior mean m(x) and the kernel hyperparameters, which is

known as Universal Kriging. For now, by de-trending via f − m(x), we may

assume without loss of generality that f is centered at zero and m ≡ 0. The

resulting posterior distribution f∗(x∗) at a vector of inputs x∗ is multivariate

Gaussian (Roustant et al., 2012b) with mean/covariance:

f∗(x∗|x,y) ∼ GP
(
mean = C(x,x∗)

T (C + Σ)−1y, (6.5)

covariance = C(x∗,x∗)−C(x,x∗)
T (C + Σ)−1C(x∗,x)

)
, (6.6)

where CT is the transpose of C.

The effect of (6.6) is that if we have new inputs x∗, then draws from the poste-

rior distribution of f∗ at x∗ will be primarily influenced by historic data that have

inputs close to x∗. Marginally at a single cell x∗, and similar to kernel regression,

the predicted value m∗(x∗) is a linear combination of observed yi’s, capturing the

idea of the GP model nonparametrically smoothing the raw mortality data. The

covariance kernel C quantifies the relative contribution of different yi’s in terms

of the distance of their xi’s to x∗, see Section 6.3.3 below. The observation noise

matrix Σ represents the credibility of the corresponding observations y’s and is

used by the GP to automatically determine how much of interpolation versus

smoothing to carry out; in the limiting case σ = 0, the posterior mean exactly

interpolates the observation yi at xi: m∗(x
i) = yi.

In reality, the credibility of mortality experience is non-constant because of

the different number of exposed-to-risk in different age brackets. This suggests

that realistically σ(xi) is non-constant, which would in principle influence the con-
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tribution of respective cells to the GP predictions. The mortality table structure

can be used to estimate σ(xn): Ln · exp{yn} is expected to be binomially dis-

tributed with parameters pn
.
= Dn/En, and size En ' Ln +Dn/2. We then have

Var (exp {yn}) = pn(1−pn)/En, and large population Ln implies the delta-method

estimate

σ2(xn) = Var (yn) ' (1− pn)

pnEn
. (6.7)

It is well known (see e.g. Currie et al. (2004)) that mortality data exhibit over-

dispersion relative to (6.7), partly due to the fact that the computed pn is not

the true mortality rate. Consequently, some care must be taken with regards to

parameter uncertainty when using (6.7). In Currie et al. (2004) and within the

context of a Poisson GLM model, this was adjusted by fitting an age-dependent

overdispersion factor with a spline. However, unlike a GLM where a correct

representation of σ(xn) is crucial due to its interdependence with the link function,

its use in GP is only for noise smoothing, so only a reasonable estimate is required.

Specifically, in our main analysis we take σ2(xn) ≡ σ2 to be an unknown constant,

estimated as part of fitting the model. We return to this issue in Section 6.4.

6.3.3 Covariance Kernels and Parameter Estimation

Given the covariance kernel C, (6.6) fully specifies the posterior distribution

f∗(x∗)|D conditional on the dataset D. GP inference is thus reduced to simply

applying the above formulas, akin to the ordinary least-squares (OLS) equations

that specify the coefficients of a linear regression model. Of course in practice the

kernel C is not known and must be inferred itself. This corresponds to fitting the
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hyperparameters Θ.

Our examples use the separable, spatially-stationary kernel of the squared-

exponential family, which written out explicitly takes

C(xi, xj) = η2 exp

(
−

(xiag − xjag)2

2θ2
ag

−
(xiyr − xjyr)2

2θ2
yr

)
. (6.8)

In (6.8), covariance between yi and yj is determined by the distance between

inputs of the respective cells, measured through the (squared) difference in Ages

and Years between xi, xj, and modulated by the θ’s. This use of spatial dependence

can be straightforwardly extended to incorporate other dimensions, such as year-

of-birth cohorts to conduct an APC allocation, or to include duration, to create

a select and ultimate mortality table in the context of life insurance mortality

analysis.

The hyper-parameters θ` are called characteristic length-scales and their effect

on the model is quite subtle. Informally, larger θ’s result in smoother mortality

curves, i.e. correlation dissipates slower. Smaller lengthscales reduce smoothing

and lead to “rougher” curves. (The form of (6.8) implies that the mortality curves

are infinitely differentiable both in Age and Year dimensions.) Note that the two

lengthscale parameters θ` for Age and Year are different, so that the covariance

kernel is anisotropic. The lengthscales also determine the speed at which the latent

process reverts back to its prior outside the dataset. For example, considering the

Year coordinate and the question of projecting mortality rates into the future, the

GP prediction will automatically blend smoothed mortality rates derived from

the experience data and the specified Year trend. Indeed, m∗(x∗) is a weighted
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average of observed experience y, and m(x∗), with the weights determined by the

lengthscale parameters θyr and θag. We contrast this to APC-type models where

such blending is ad hoc based on user-defined parameters.

Two further GP parameters are the process variance η2 which controls the

natural amplitude of f and the observation noise σ2 in (6.1) which is viewed

as a constant to be estimated. Thus, the overall hyperparameter set is Θ
.
=

(θag, θyr, η
2, σ2).

The classical method for inferring Θ is obtained by optimizing the marginal

likelihood p(y|x,Θ) =
∫
p(y|f ,Θ)p(f |x,Θ)df which can be written out explic-

itly since all the integrands are Gaussian. This leads to a nonlinear optimization

problem of simultaneously fitting θ`’s and variance terms η2, σ2. Details on this

procedure can be found in Section 3.2 of Picheny and Ginsbourger (2013). Alter-

natively, it is possible to directly specify C, for example from expert knowledge

regarding the expected correlation in mortality rates. Given θ’s, the MLEs for

η and σ can be analytically inferred (Picheny and Ginsbourger, 2013). This ap-

proach increases interpretability of the final smoothing/prediction and makes the

GP model less of a black-box.

Fitting the Mean Function

A generalized version of (6.3) incorporates a parametric prior mean of the form

m(x) = β0 +
∑p

j=1 βjhj(x), where βj are constants to be estimated, and hj(·)

are given basis functions. The coefficient vector β = (β1, . . . , βp)
T is obtained

in parallel with computing m∗,Σ. Letting h(x)
.
= (h1(x), . . . , hp(x)) and H

.
=(

h(x1), . . . ,h(xN)
)
, the posterior mean and variance at cell x are (Roustant et al.,
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2012b)



β̂ =
(
HT (C + Σ)−1H

)−1
HT (C + Σ)−1y;

m∗(x∗) = h(x∗)β̂ + c(x∗)
T (C + Σ)−1(y −Hβ̂);

s2
∗(x∗) = C(x∗, x∗) +

(
h(x∗)

T − c(x∗)T (C + Σ)−1H
)T (

HT (C + Σ)−1H
)−1 ·

·
(
h(x∗)

T − c(x∗)T (C + Σ)−1H
)
,

(6.9)

where c(x∗) = (C(x∗, x
i))1≤i≤N . Note that (6.9) reduces to (6.6) when h ≡ 0. We

also see that the fitted coefficients β are in analogue to the classical least-squares

linear model. A non-constant mean function is important for imposing structural

constraints about the shape of the mortality curve, as well as the long-term im-

provement trends in mortality rates. Appropriate choices for parameterizing m are

needed to be able to give reasonable out-of-sample projections, which corresponds

to extrapolating in Age, or in calendar Year.

Use of a mean function for the GP via (6.9) combines the idea of parametrically

de-trending the raw data through a fitted Age shape, and then modeling the

residual fluctuations into a single step. We note that as m is assigned more and

more structure, the residuals necessarily decrease and becomes less correlated.

This calls to attention the typical over-fitting concern. Standard techniques, such

as cross-validation or information criteria could be applied as safeguards, but

their precise performance within the GP framework is not yet fully analyzed. We

therefore confine ourselves to a qualitative comparison regarding the impact of

the prior mean m(·) on the GP model output.
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Bayesian GP and MCMC

One can also consider a fully Bayesian GP model, where the mean and/or

covariance parameters have a prior distribution, see Williams and Rasmussen

(2006). Bayesian GP implies that there is additional, intrinsic uncertainty about

C which is propagated through to the predictive distributions f∗. Starting from

the hyper-prior p(Θ), the posterior distribution of the hyperparameters is obtained

via p(Θ|D) ∝ p(Θ)p(y|x,Θ). This hierarchical posterior distribution is typically

not a GP itself. Practically this means that one draws realizations Θm, m =

1, 2, . . . from the posterior hyperparameters and then applies (6.6) to each draw

to compute m∗(x∗|Θm), C∗(x∗,x∗)|Θm).

In general, sampling from p(Θ|D) requires approximate techniques such as

Markov Chain Monte Carlo. The output of MCMC is a sequence Θ1,Θ2, . . . ,ΘM

of Θ values which can be used as an empirical approximation for the marginal

distribution of Θ, namely p(Θ|y,x). From this sequence, it possible to calculate

means and modes of the model parameters or use the Θ sequence directly to

conduct posterior predictive inference. A hybrid approach first specifies hyperpa-

rameter priors but then simply uses the MAP estimates of Θ for prediction (thus

bypassing the computationally intensive MCMC steps). This idea is motivated by

the observation that under a vague prior p(Θ) ∝ 1, the posterior of Θ is propor-

tional to the likelihood, so that the MAP estimator Θ̂ which optimizes p(Θ|y,x)

becomes identical to the MLE maximizer above.

We note that standard MCMC techniques are not well suited for GP as the

components of Θ tend to be highly correlated resulting in slow convergence of the

MCMC chains. One solution is to use Hamiltonian Monte Carlo (HMC) (Brooks
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et al., 2011) which is better equipped for managing correlated parameters.

Setting Priors for the Bayesian Model

To improve the efficiency of the MCMC routines, we first standardize the input

covariates, for example xiag,std
.
= (xiag −mean(xag))/sd(xag). We then set priors

relative to this standardized data model. Note that for comparative purposes

with non-Bayesian models, the resulting posteriors of β and Θ then need to be

transformed back to the original scale.

Priors are taken to be weakly informative, accounting for the specifics of each

hyperparameter. For the lengthscale, θ` should be below the scale of the input x`,

otherwise the resultant model will be essentially linear in the `th input dimension

(Carpenter et al., 2016). Thus a prior that curtails values much beyond the data

scale is appropriate. After standardization, we found that log θ` ∼ N (0, 1) is

reasonable. The η parameter plays a role similar to that of the prior variance

for linear model weights in a standard linear regression, and we found log η2 ∼

N (0, 1) prior to be reasonable for the linear and quadratic-mean models. The

prior for σ should reflect the noise in the data. For the CDC data, we set the

prior σ2 ∼ N+(0, 0.2), restricted to be positive. When including trend, priors for

the β parameters are also required. These are set similarly to standard regression

coefficients. In our analysis, we tested both Cauchy priors of Cauchy(0, 5) or

Gaussian priors of N (0, 5) and found both to be reasonable. For the intercept

coefficient we chose β0 ∼ N (−4, 5) to reflect log-mortality, whereby exp(y) '

2% = exp(−3.9).

Remark. The Bayesian hierarchical approach for determining the parameters of
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the covariance matrix is also coined “automatic relevance determination”. The

Bayesian model will automatically select the values of θ` and η without the need

for using cross-validation or other approaches to set the parameter levels. Smaller

values of θ amplify the effect of the difference calculation in the covariance ma-

trix, hence determining the relevance of an input dimension. Thus the Bayesian

approach automatically sets the level of covariance among the y-values.

6.3.4 Software

There are several software suites that implement Gaussian process modeling

and can be used for our application. The software is complementary in terms of

its capabilities and approaches, in particular for inferring the covariance kernel C

and for handling extensions of GPs discussed in Section 6.5 below.

To implement Bayesian GP models, we built models in Stan (Carpenter et al.,

2016). Stan is a probabilistic programming language and is a descendant of other

Bayesian programming languages such as BUGS and JAGS. In its default setting,

Stan’s engine utilizes Markov chain Monte Carlo techniques, and in particular

a version of Hamiltonian Monte Carlo (HMC) (Brooks et al., 2011). Stan also

allows the option of working with the MAP estimate Θ̂ or the incorporation of

non-conjugate priors, and implementation of idiosyncratic features within a model.

Stan automatically infers the GP hyperparameters, specifically the lengthscales

θ’s, that determine the smoothness of the mortality curves. This allows for a more

data-driven approach compared to traditional graduation that a priori imposes the

degree of smoothing to apply to raw data.

Within the R environment, we utilized the package “DiceKriging” (Roustant
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et al., 2012b). DiceKriging can fit both standard and parametric trend (6.9) mod-

els, and implements five different kernel families (Gaussian, exponential, Matérn).

Moreover, DiceKriging can handle non-constant observation noise and has mul-

tiple options regarding the underlying nonlinear optimization setup. It estimates

hyper-parameters through maximum likelihood (but does not do MCMC).

6.4 Results

We implemented a GP model for CDC mortality rates using a squared-exponential

(6.8) covariance structure. To analyze and compare the different choices available

within the GP framework we have experimented with:

1. Other covariance kernel families, in particular Matern-5/2;

2. MLE and Bayesian approaches to inference of hyperparameters Θ;

3. A variety of mean function specifications;

4. Choice of inhomogeneous noise variance σ(x).

For easier reading, the Figures and Tables below show the results for the Males;

most of the conclusions are identical for both genders; where appropriate we make

further remarks. Figures and Tables for female data can be found in Appendix

6.7.

We tested both the DiceKriging and Stan models as described in Section

6.3.4. Table 6.3 reports the MLE and MAP hyperparameter estimates for the

intercept-only models fitted with All data (Males aged 50–84, years 1999–2014,

see Table 6.2). All of the MLEs are quite close to the MAP estimates and both
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fall in the 80% credible intervals for the MCMC runs. Closer analysis of the Stan

output revealed that the hyper-parameter posteriors are reasonably uncorrelated,

justifying the use of the MAP estimates and corresponding marginal credible

intervals.

Comparing both methods showed the resulting posterior distributions for the

GP to be near identical, with the posterior means m∗ on average within 0.3% (rel-

ative error) of each other, and the credible bands within 1.2% of each other. This

indicates stability of the GP estimates given slightly different hyper-parameters.

Consequently, the rest of the analysis in this paper is done using the simpler

DiceKriging model which is quicker to fit and produces a convenient Gaussian

posterior for the log-mortality (the fully-Bayesian model built in Stan can be

viewed as a mixture-of-Gaussians). Similarly, there was no major difference in

prediction and smoothing when picking different covariance kernels. In general,

picking a kernel is like picking a basis family for linear regression; basic caveats ap-

ply, but it is mostly a secondary effect. Below we focus on the squared-exponential

kernel. One benefit of this choice is that the resulting scenarios f∗ are guaranteed

to be infinitely differentiable, which enables analytic treatment of instantaneous

mortality improvement ∂yrf∗, see Section 6.4.4.

For the observation noise, estimating a constant noise variance led to MLE of

σ̂2 = 2.808 ·10−4. We observe that both the Gaussian assumption and the i.i.d as-

sumptions on the resulting residuals are statistically plausible (cf. Figure 6.14 in

Section 6.8.1.) As a further check, we tried to work with a non-constant σ2(x)

by plugging-in the delta method estimate in (6.7). However, this led to credible
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DiceKriging Stan
MLE MAP MCMC Mean MCMC 80% Posterior CI

θag 15.8384 14.9320 10.3580 (4.8976, 16.3939)
θyr 15.5308 14.4895 24.6674 (12.8976, 38.2304)
η2 1.8468 1.2372 1.8862 (0.7618, 3.5324)
σ2 2.808e-04 2.752e-04 2.745e-04 (2.5031e-04, 2.988e-04)
β0 -3.8710 -3.8277 -3.7966 (-4.5986, -3.0185)

Table 6.3: Hyperparameter estimates based on maximum likelihood
(DiceKriging) and maximum a posteriori probability (Stan), along with
MCMC summary statistics. The GP is fitted to all data and uses squared–
exponential covariance kernel (6.8) with prior mean m(x) = β0. Stan hy-
per-priors (on standardized data) were log θag, log θyr, log η2 ∼ N (0, 1) i.i.d.,
σ2 ∼ N+(0, 0.2), β0 ∼ N (−4, 5).

bands that are too narrow in terms of coverage ratios due to the aforementioned

over-dispersion effect. Manual calibration found that σ̌2(x) = 4 · (1− px)/(pxEx),

i.e. an overdispersion factor of 2, works fine. The resulting estimated σ̌2 values

ranged over [1.066 · 10−4, 1.304 · 10−3] with a mean of 4.36 · 10−4. This is close to

the constant-σ2 MLE estimate and the respective projections were very close, con-

firming that with a GP model the whole question of capturing observation errors

is a “higher order” concern. For ease of interpretation, we thus used a constant

σ2, estimated via MLE, for the remainder of the analysis.

6.4.1 Retrospective Analysis

We begin with a retrospective look at smoothed mortality experience over the

recent past. Traditionally, this is done using actuarial graduation techniques; for

the GP framework smoothing is simply the in-sample prediction m∗(x). Specifi-

cally, we fit a model using all the data, and investigate the mortality during the

last 5 years of the period. Figure 6.1 shows the estimated mortality rates as a

189



Gaussian Process Models for Mortality Rates and Improvement Factors Chapter 6

function of age, specifically Males aged 60–70. The left panel compares the raw

and GP-smoothed rates for 2010 and 2014, while the right panel shows the overall

yearly trend for years 2010–2014. As a complement to above, Figure 6.2 provides a

preliminary analysis of mortality improvement by plotting mortality rates against

time. We show the observed and smoothed mortality rates against calendar years

1999–2014 for Males and Females aged 60, 70, and 84, along with the forecasted

rates up to 2016. From the figure, we clearly observe the decrease of mortality at

older ages which is, however, slowing down in the last few years.

Figure 6.1: Mortality rates for Males aged 60–70 during the years 2010–2014.
Raw (solid) vs. smoothed (dashed) mortality curves. Models are fit to
1999–2014 CDC data for Ages 50–84 (All data). Mean function m(x) is in-
tercept-only, m(x) = β0.

A key output of official tables are the mortality improvement scales, such as

the MP-2015 rates MIMP
back(xag, yr), where we distinguish the common indexing by

Age, keeping Year fixed. These are intuitively the smoothed version of the raw

annual percentage mortality improvement which is empirically observed via

MIobsback (xag; yr)
.
= 1− exp (µ(xag, yr))

exp (µ(xag, yr − 1))
(6.10)
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Figure 6.2: Mortality rates for Males (top) and Females (bottom) aged 60,
70 and 84 over time. The plots show raw mortality rates (solid black) for
years 1999–2014, as well as predicted mean of the smoothed mortality surface
(solid red) and its 95% credible band, for 1999–2016. Models are fit to the
1999–2014 CDC data for Ages 50–84 (All data). Mean function is intercep-
t-only, m(x) = β0.

with µ(xag, yr) the raw log-mortality rate for (xag, yr). In analogue to above, we

can obtain the predicted mean improvement by replacing µ’s by the GP model
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posteriors f∗’s and integrating over their posterior distributions:

mGP
back (xag, yr)

.
= E

[
MIGPback (xag, yr)

] .
= E

[
1− exp (f∗(xag, yr))

exp (f∗(xag, yr − 1))

]
. (6.11)

Figure 6.3 shows these different improvement scales for ages 50–85 and two sample

years, 2000 and 2014; the MP-2015 curves are from the published SOA reports

(SOA, 2015). We observe that the raw mortality improvements are extremely

noisy, which is not surprising since they are based on the relative difference of

two very similar raw mortality rates. Figure 6.3 also indicates that the MP-

2015 estimates are significantly higher than either the actual experience (which

has moderated a lot in the past decade) or our fit mGP
back, with differences of as

much as 2% p/a in improvement factors. Figure 6.4 emphasizes that there is a

downward trend in mortality improvement, and moreover non-uniform behavior

across ages. This throws into question the MP-2015 concept of a sustained, age-

uniform projected long-term mortality improvement trend.

6.4.2 Mean Function Modeling

We tested three models for the prior mean function: an intercept-only model

m(xn) = β0, a linear model, m(xn) = β0 + βag1 x
n
ag + βyr1 x

n
yr, and a quadratic age

model, m(xn) = β0 + βag1 x
n
ag + βyr1 x

n
yr + βag2 (xnag)

2. Thus, the linear model has the

log mortality increasing linearly in age and decreasing linearly in calendar year.

The quadratic model then adds a convexity component to the age axis.

The coefficients of these functions were estimated concurrently with fitting the

GP models using (6.9). A summary of the models and the coefficient estimates
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Figure 6.3: Mortality improvement factors for Males using All Data. Solid
lines indicate the empirical mortality experience MIobsback(·; yr) for years
yr ∈ {2000, 2014}, the dotted and dashed lines are mGP

back(·; yr) from (6.10),
and the MP-2015 improvement scale MIMP

back(·; yr), respectively.

Figure 6.4: Comparison of smoothed yearly mortality improvement factors
mGP
back(xag; yr) from (6.10) for Males using All data and yr = 2000, . . . , 2014.

The curves for 2000 and 2014 are the same as in Figure 6.3.

is shown in Table 6.4. One finding is that the fitted year-trend coefficient β
(yr)
1

is consistently estimated by both the linear and quadratic model and indicates a

linear improvement in log mortality rates of about 1.4% per calendar year in both

of these models regardless of assumptions on age shapes. Since this model is fitted
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to ages 50–70, these results are consistent with the long-term trend of improving

mortality. As expected, the table also indicates a strong Age effect; we note that

the fitted coefficient β
(ag)
2 = 1.459 ·10−4 for the quadratic age component confirms

a significant convexity of log-mortality in Age.

Mean Function Parameter MLE’s
β0 βag1 βag2 βyr1

Intercept -4.526 - - -
Linear 18.737 0.081 - -1.397e-02
Quadratic 19.641 0.064 1.459e-04 -1.417e-02

GP Hyperparameter MLE’s
η2 σ2 θag θyr

Intercept 6.213e-01 3.428e-04 8.384 12.746
Linear 8.521e-04 1.761e-04 3.610 3.543
Quadratic 1.403e-03 2.998e-04 3.629 3.475

Table 6.4: Fitted mean function and covariance parameters using Subset
III (ages 50–70 and years 1999–2009) for Males. The mean functions are
m(xn) = β0 for Intercept, m(xn) = β0 + βag1 xnag + βyr1 xnyr for Linear, and
m(xn) = β0 + βag1 xnag + βyr1 xnyr + βag2 (xnag)

2 for Quadratic.

Intuitively, the mean function provides a fundamental explanation of mor-

tality rates by age and year, while the covariance structure captures deviations

from this postulated relationship based on nearby observed experience (with the

influence depending on the lengthscale). Consequently, the choice of the mean

function affects the covariance structure; a stronger trend/shape lowers the spa-

tial dependence of the residuals. We observe this effect in Table 6.4, where the

intercept-only model has length-scales of θag ≈ 8.5, θyr ≈ 12.5, while for the linear

and quadratic models the range of the length-scales is much smaller θ` ≈ 3.5.

Another effect of the mean function is on the hyperparameter η which can be

viewed as the variance of the model residuals. If the mean function fits well then
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we expect smaller η. In turn, smaller η translates into tighter credible intervals

around in-sample smoothing and out-of-sample forecasts. Table 6.4 shows that

the values for η and σ are similar across linear and quadratic models while the

intercept-only model has uniformly larger values across parameters.

Figure 6.5 illustrates these three models fit to Subset III which emulates deep

out-of-sample extrapolation. As discussed, out-of-sample forecasting by the GP

model can be viewed as blending the data-driven prediction with the estimated

trend encapsulated by m. Specifically, as xn∗,ag moves beyond the age range of

{50, 51, . . . , 70} in Subset III we have m∗(x∗)→ m(x∗). In the case of an intercept-

only model, this implies that m∗(x∗) → β0, i.e. the projected mortality is inde-

pendent of either Age or Year. In Figure 6.5 the asymptotic projected rate was

exp(β̂0) = 1.214%. A similar issue pertains to the linear-mean model whose long-

range forecasts imply exponential Age dependence which is not appropriate for

ages above 80. This discrepancy is successfully resolved by the quadratic m(x∗)

model. The lengthscales θ control this transition; roughly speaking extrapolating

more than θ distance away reduces to m∗(x∗) ' m(x∗). This can also be seen in

Figure 6.5: since the training data includes up to 2010, information is borrowed

much more from past data in the case of 2011, as opposed to 2014. As a result, for

the intercept-only model with θyr = 11.461, the forecast is acceptable in 2011 (as

it is driven by trained data up to 2010), but deteriorates dramatically for 2014.

This effect is also present but less apparent in the trend models due to smaller

values of θyr, so that the forecasts of the latter models rely more heavily on their

mean functions to explain mortality through age and year.

Another way for model comparison is to look at the widths of the respective
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Figure 6.5: Comparison of mean function choices in extrapolating mortality
rates at old ages. Models are fit to years 1999–2010 and ages 50–70 (Subset III)
for Males, with estimates made for Age 50–85 in 2011 and 2014. The vertical
line indicates the boundary of the training dataset in xag. The mean functions
are given in Table 6.4.

credible intervals. For example, for year 2010 age 84, the observed mortality

rate was 8.999% and the intercept, linear and quadratic models generated 95%

credible intervals of (0.783%, 10.254%),(7.100%, 8.562%) and (6.379%, 11.188%)

respectively. Certainly the first interval is too wide (partly due to the large η and

θ’s of the intercept-only model), while the second interval is too narrow and does

not even contain the raw data point (the linear model apparently underestimates

η). On the other hand, for age 71 in year 2014, the raw rate was 2.489% and the

respective 95% credible intervals were (2.258%, 2.927%), (2.378%, 2.703%) and

(2.346%, 2.798%). While all models now contain the observed rate, the linear

model again has the tightest credible interval, which might indicate poor goodness-

of-fit.

Returning to in-sample smoothing and looking again at Figure 6.5, we ob-

serve that all three models generate very similar forecasts for ages 55–70 This

confirms that in-sample m∗ is data-driven and the choice of m(·) is secondary. To

summarize, the most important criterion in including a mean function is whether
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the goal is to predict out-of-sample and if so, how far out-of-sample. In general,

mean modeling is crucial, but the precise choice of the mean function is not as

clear. In Section 6.5.1 we discuss one further method for mean-modeling based

on Age-grouping.

6.4.3 Predictive Accuracy

Figure 6.5 can also be viewed as a first glimpse into the predictive accuracy

of a GP mortality model. Recall that in the Figure we fit to mortality data

from 1999-2010 and then forecast 1 year out (2011) and 4 years out (2014). The

Figure then compares these projections to the observed mortality experience in

2011 and 2014. As discussed, these projections are highly sensitive to the choice

of m(x), especially in terms of the Age-structure because the models are only

given experience up to Age 70 and hence have zero information about high-age

mortality.

To provide a more “fair” comparison, Table 6.5 shows projections for other

input datasets. Overall, we observe excellent predictive power for making projec-

tions 4-years out (fit using Subset I, forecast for 2014), confirming the competitive

performance of the GP fitted models.

Beyond the predictive mean m∗(x∗), we also report the corresponding posterior

marginal variance s2
∗(x∗)

.
= C∗(x∗, x∗) which is a proxy for the confidence the

model assigns to its own prediction. This provides a valuable insight: for example

if fitted to ages 50–70 (Subset III) and projecting for age 80 in year 2014: x̃
.
=

(xag, xyr) = (80, 2014), the intercept-only model reports minimal predictive power

which is reflected in the very large s
(III)
∗ (x̃) = 0.4565, in light of which the poor
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prediction m
(III)
∗ (x̃) = −3.7177 is simply a “shot in the dark”. Indeed, the model

predicts mortality rate of 2.43% which is nowhere the realized 5.78%, but is still

within its 95% credible interval of (0.98%, 6.03%). Including more ages (Subset

I) gives a more reasonable and much more confident forecast of mi
∗(x̃) = −2.8416

and si∗(x̃) = 0.0463, and including more years (which makes x̃ to be right at

the edge of observed data) raises credibility even further, m
(All)
∗ (x̃) = −2.8579

and s
(All)
∗ (x̃) = 0.0170. Table 6.5 also quantifies the gains from using a more

sophisticated m – the quadratic trend allows to shrink si∗(x̃) from 0.0463 to 0.0333,

and brings the prediction mi
∗(x̃) closer to the eventually realized experience.

Intercept-only m(x) = β0

Fit to Subset III Fit to Subset I Fit to All Data Observed

xag m
(III)
∗ (s

(III)
∗ ) mi

∗ (si∗) m
(All)
∗ (s

(All)
∗ ) µ

70 -3.7520 (0.0580) -3.7380 (0.0427) -3.7702 (0.0169) -3.7630
80 -3.7177 (0.4565) -2.8416 (0.0463) -2.8579 (0.0170) -2.8531

Quadratic m(x) = β0 + βag1 xag + βyr1 xyr + βag2 x
2
ag

Fit to Subset III Fit to Subset I Fit to All Data Observed

xag m
(III)
∗ (s

(III)
∗ ) mi

∗ (si∗) m
(All)
∗ (s

(All)
∗ ) µ

70 -3.7507 (0.0419) -3.7711 (0.0332) -3.7671 (0.0163) -3.7630
80 -2.8774 (0.1046) -2.8546 (0.0333) -2.8553 (0.0164) -2.8531

Table 6.5: GP model predictions for 2014 and Age 70/80 when fitted to various
data subsets, cf. Table 6.2, indicated by superscripts. We report the predictive
mean m∗(x) and the predictive standard deviation s2

∗(x∗) = C∗(x∗, x∗).

For another angle on forecasting with GP models, Figure 6.6 shows that

the intercept-only model still performs well when predicting only slightly out-

of-sample. In this Figure, we fitted mortality curves using the “notched” Subset

II: years 1999–2010 and ages 50–84, plus 2011–2014 with ages 50–70, and then

predicted out-of-sample for mortality rates for 2011–2014 and ages 71–85. This

differs from the previous setup where the model had no prior information on
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ages 71–84. We observed that in this setup the uncertainty from the intercept-

only model is only slightly worse (wider interval) relative to the quadratic trend

model, confirming the reasonableness of using the simpler m(x) = β0.

Figure 6.6 also plots the marginal credible bands for f∗(x∗) and intervals for

future observations y∗. As expected, the prediction uncertainty increases for the

oldest ages and for later calendar years (compare credible intervals in Figure 6.6

for 2014 vis-a-vis 2011). Also note that the intervals for y∗ are always a fixed

distance away from the pointwise bands of f∗ regardless of Age/Year due to the

assumed constant noise variance σ2; this is much more noticeable when in-sample,

where posterior variance C∗(x∗,x∗) is negligible relative to σ2.

Figure 6.6: Mortality rate prediction for years 2011 and 2014 and ages
71–84. Model is fit with Subset II data with intercept-only mean functions
and squared-exponential kernel. “Simulated paths of f” refers to simulated
trajectories of the latent f∗. Credible bands are for the mortality surface f∗;
vertical intervals are for predicted observable mortality experience y∗.

As discussed, the GP model automatically generates credible intervals around

any prediction, giving a principled approach for assessing uncertainty in forecasts.

Moreover, since GP considers the full covariance structure of mortality curves,

one can analytically evaluate the joint predictive uncertainty of any number of

mortality rates. This is illustrated in Figure 6.6, where we generate a set of
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trajectories (i.e. sample from the Gaussian multivariate predictive distribution)

of log-mortality rates f∗(x∗) for all ages x∗ for a selected calendar year, namely

2014. Alternatively we could sample possible evolutions of mortality rates for

a selected age, and a desired projection interval. Sampling such trajectories is

crucial for quantifying aggregate mortality risk in a portfolio (say in a pension

plan or life insurance context). Note that in contrast to factor models like Lee-

Carter that force the mortality curve µ(·, yr) to be confined to a low-dimensional

space (e.g. one degree of freedom in classical Lee-Carter), within a GP framework,

the shape of f∗(·, yr) remains non-parametric and infinite-dimensional.

For a further comparison, Figure 6.15 in Appendix B compares the predictions

from a GP model against those of an age-period-cohort (APC) model (6.19). We

observe that relative to the GP model, the APC model generates both volatile

in-sample projections (as it is not designed with smoothing in mind), and er-

ratic short-term projections due to the underlying time series fitted to the κ·

and γ· factors. Recall that the APC framework tries to average out trends via

a parametric model which makes the projections dependent even on distant his-

torical experience, while the GP effectively uses the history to learn the spatial

dependence structure and then makes data-driven projections based on recent ex-

perience. We note that both models perform poorly in long-range forecasting; this

is to be expected with the GP model whose lengthscale θyr constrains reasonable

extrapolation to 2-4 years out.
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6.4.4 Forecasting Mortality Improvement

To focus more precisely on mortality improvement, we proceed to analyze

changes in µ(xag, ·) over time. Section 6.4.1 discussed already backward-looking

annual (YoY) improvements MIobsback and MIGPback as defined in Equation 6.10. For

a more prospective analysis, one could consider a centered difference

1−
(

exp (f∗(xag, yr + h))

exp (f∗(xag, yr − h))

)1/2h

≈ −f∗(xag, yr + h)− f∗(xag, yr − h)

2h
, (6.12)

which is possible to compute for any h since the GP model for f∗ yields an an

entire mortality surface spanning over all (xag, xyr) ∈ R+ × R+. Note that since

f∗ is a Gaussian process, the right hand side of (6.12) remains Gaussian. We may

also take the limit h→ 0 which gives the instantaneous rate of change of mortality

in terms of calendar time. As an analogue to (6.12), we term the negative of the

above differential as the instantaneous mortality improvement process

MIGPdiff (xag;xyr)
.
= − ∂f∗

∂xyr
(xag, yr). (6.13)

A remarkable property of the Gaussian process is that MIGPdiff is once again

a GP with explicitly computable mean and covariance functions (Williams and

Rasmussen, 2006).

Proposition 1. For the Gaussian Process f∗ with a twice differentiable covariance

kernel C, the limiting random variables

∂f∗
∂xyr

(xag, yr)
.
= lim

h→0

f∗(xag, yr + h)− f∗(xag, yr)
h

(6.14)
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exist in mean square and form a Gaussian process ∂f∗
∂xyr
∼ GP (mdiff , sdiff ). Given

the training set D = (x,y), the posterior distribution of ∂f∗
∂xyr

(x∗) has mean and

variance

mdiff (x∗) = E
[
∂f∗
∂xyr

(x∗)

∣∣∣∣x,y] =
∂C

∂x′yr
(x, x∗)(C + Σ)−1y, (6.15)

s2
diff (x∗) =

∂2C

∂xyr∂x′yr
(x∗, x∗)−

∂C

∂x′yr
(x, x∗)(C + Σ)−1 ∂C

∂xyr
(x∗,x), (6.16)

where ∂C
∂x′yr

(x, x∗) =
[
∂C
∂x′yr

(x1, x∗), . . . ,
∂C
∂x′yr

(xN , x∗)
]

and each component is com-

puted as the partial derivative of C (x, x′) .

See Theorem 2.2.2 in Adler (2010) for more details. By analogy, Proposition 1

can also be extended to consider the differential of mortality to age or other covari-

ates. Note that the squared exponential kernel in (6.8) is infinitely differentiable

with derivatives

∂C

∂x′yr
(x, x′) = −C(x, x′)

η2

θ2
yr

(xyr − x′yr), (6.17)

∂2C

∂xyr∂x′yr
(x, x′) = C(x, x′)

η2

θ2
yr

(
1− 1

θ2
yr

(xyr − x′yr)2

)
. (6.18)

Observe that the mean mdiff (x∗) mortality improvement is equal to the deriva-

tive of the predicted mortality surface, ∂
∂xyr

m(x∗), a desirable self-consistency

property. However, Proposition 1 goes much further, providing also analytic cred-

ible bands around mdiff (x∗) and even the full predictive distribution of the mortal-

ity improvement process. Compare these features to a non-Bayesian smoothing

model, such as P-splines, that only models m(x∗) and therefore beyond direct

differentiation provides no uncertainty quantification for ∂f∗
∂xyr

.
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Figure 6.7: Estimated male mortality improvement using the differential GP
model (instantaneous improvement) and the YoY improvement from the orig-
inal GP model. We show the means and 80% credible bands for MIGPdiff and

MIGPback for males aged 50–84 and years 2000 & 2014. Models used are fit to All
Data with m(x) = β0.

To sum up the previous discussion, the GP framework yields a probabilistic

estimate of the instantaneous mortality improvement which is analytically consis-

tent with the projected mortality rates. Figure 6.7 shows mortality improvement

estimates mGP
back, m

GP
diff and MP-2015 improvement factors for ages 50–85 in years

2000 and 2014. The 80% credible bands of MIGPback and MIGPdiff are also shown.

The bands for MIGPdiff were produced from (6.16), while for MIGPback they were

generated from empirical sampling from (6.11). While we observe similar overall

structure (in terms of similar predicted values and similar predicted uncertainty),

we also note that there are some differences which indicate the changing rate

of mortality improvement. Thus, in 2000, mortality improvement was acceler-

ating, leading to MIGPdiff (·; 2000) > MIGPback(·; 2000). In contrast, the fact that

MIGPdiff (·; 2014) < MIGPback(·; 2014) suggests that mortality improvement continues

to decelerate as of 2014, so that the gap with the level improvement scale embed-

ded in MP-2015 is likely to grow. In our analysis, we find that this deceleration
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started around 2010, so that in the past 5-6 years mortality evolution over time

has been convex, generating a growing wedge against the MP-2014/15 forecasts.

Remark. In our analysis we concentrate on modeling the log mortality surface,

obtaining the mortality improvement factors as a by-product. An alternative is to

first directly calculate observed mortality improvement MIback and then model it

with a GP. This would effectively replace the βyr1 component of the mean function

with a richer structure. This procedure is similar to that of Mitchell et al. (2013)

where mortality improvement itself is modeled in a Lee-Carter framework.

6.5 Extensions of GP Models

6.5.1 Inhomogeneous GP Models

Basic GP assumes a stationary covariance structure which may not be ap-

propriate. If the spatial dependence in mortality experience is state-dependent,

i.e. C(xi, xj) depends on xi, xj (and not just |xi−xj|), this would introduce model

misspecification and lead to poor model performance (i.e. too much or too little

smoothing).

To test for inhomogeneous correlation, we consider a GP model segmented

by age. This means that we introduce a piecewise setup, fitting three different

GP models depending on xag. The age grouping was done manually according to

(younger) xag ∈ {50, . . . , 69}, (older) xag ∈ {70, . . . , 84}, as well as the full model

xag ∈ {50, . . . , 84}, and an extended model considering all ages xag ∈ {1, . . . , 84}.

Table 6.6 presents the fitted trend and hyper-parameters for each group using a

model fitted to all years 1999–2014 and quadratic mean function.
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Ages Fit β0 βag1 βag2 βyr1

Extended [1, 84] -23.533 -0.005 8.402e-04 7.797e-03
Younger [50, 69] 10.521 0.084 -3.336e-05 -9.908e-03
Older [70, 84] 26.806 -0.016 7.113e-04 -1.635e-02
All [50, 84] 19.336 0.041 3.324e-04 -1.367e-02

Ages Fit η2 σ2 θag θyr
Extended [1, 84] 1.904e-01 1.184e-03 3.966 12.795
Younger [50, 69] 2.633e-03 2.964e-04 4.501 4.196
Older [70, 84] 1.489e-03 1.517e-04 14.709 6.661
All [50, 84] 1.760e-03 2.336e-04 4.543 3.825

Table 6.6: GP models fitted by age groups. All models are fitted to years
1999–2014 and using a squared-exponential kernel with a quadratic mean func-
tion m(xn) = β0 +βag1 xnag +βyr1 xnyr +βag2 (xnag)

2. The reported hyper-parameter
values are maximum likelihood estimates from DiceKriging.

Table 6.6 shows that the Extended age group trend/shape parameter estimates

differ from the remaining groups, likely due to the fact that infant and adolescent

mortality produce a non-quadratic mortality shape in age. Furthermore, the re-

spective positive coefficient of the Extended βyr1 parameter contradicts the idea of

mortality improvement and possibly indicates poor goodness-of-fit.

Segmenting the older ages does generate some reasonable differences in fitted

models: log-mortality is linear in the younger group, so that the βag2 coefficient

is negligible; it is larger in the older age group due to the rapid increase of mor-

tality in age; combining the two as was done originally yields an average of the

two estimates. The estimates of β1
yr also support the claim of Older mortality

improving faster than Younger mortality: log-mortality decreases annually at 1%

for for the Younger group and at 1.6% for the Older group. The θyr values are all

similar across groups, except for the Extended group which needs to compensate

for its poor trend fit. The Younger and Extended fits share similar θag values. We
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attribute the larger θag for Older ages to fitting issues due to a complicated age

dependence and only 15 ages worth of data (it could also suggest that mortality

rates of older ages are more correlated). A similar effect happens for female data

where θFemag = 44.118 for Older ages, see Table 6.7 in Section 6.7.

In sum, a “global” model which includes all ages is inappropriate due to the

much younger ages having vastly different mean and covariance structures. An

improved fit is potentially possible through segmenting the Ages into subgroups,

but we encounter issues due to the datasets becoming too small, hurting credibility.

Recall that the precise age groups were picked manually and a more detailed

“change-point” analysis may be warranted to determine the best segmentation

of data, and whether the lower cutoff at age 50 is appropriate. We remark that

there exist hierarchical GP models (Gramacy and Taddy, 2012) that attempt to

automatically carry out such data splitting.

6.5.2 Modeling Cause of Death Scales

The raw CDC data are classified by cause of death and hence it is in fact

possible to build a comprehensive mortality improvement model that is broken

down beyond the basic Male/Female distinction. Understanding the different

trends in cause-of-death can be important as there has been uneven progress (and

in some situations reversal) of longevity improvements by cause. For example,

the large improvement in mortality from coronary artery disease has not been

matched by improvements in mortality from cancer. Different causes of death

affect different ages, creating multiple “cross-currents” that drive mortality, a fact

which is important for long-term projections.
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Thus, mortality improvement models can benefit from analyzing by-cause

data. Building such models would need to balance the risk of over-specification

with the benefit of incorporating additional data. Key issues and concepts in

building a by-cause model are:

• The mean function, m, would need to be fit to each cause.

• The covariance function controlling spatial correlation would also likely differ

by cause.

• This paper focuses on modeling the log mortality rate. A by-cause model

would benefit instead from modeling the force of mortality from each cause,

as the total force of mortality is simply a sum of the underlying by-causes

forces of mortality. However this additive structure does not match the log

transformation applied in this paper.

• Bayesian models with informative priors for mean function and other coef-

ficients would provide a degree of protection against overfitting the models.

• A hierarchical model which builds in a relationship between the by-cause

trend coefficients could be tested.

Such analysis is left for further research.

6.5.3 Model Updating

The GP model is convenient for analysis when new data becomes available.

This is in contrast to methods, such as splines, which require a full model refit.

With GPs, once the correlation structure is fit (and assuming it did not change),

the Gaussian posterior f∗ allows for an updated m∗ and C∗, see Ludkovski (2015,
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Section 5.1) for details. These formulas showcase the explicit impact of additional

data, both for smoothing past experience, or projecting forward in time.

To illustrate the effect of a new year of data, we compute the predicted mean

m∗ and standard deviation C∗ for age 65 and years 1999, 2013 and 2016, first

based on data for all ages and calendar years 1999–2013, and then updated with

year-2014 data. The results are listed in Table 6.5.3.

Before Updating (1999–2013) After Updating (1999–2014)
xyr E[f(65, xyr)|x,y] s∗(65, xyr) E[f(65, xyr)|x̃, ỹ] s̃∗(65, xyr)
1999 -3.8845 0.0174 -3.8849 0.0173
2013 -4.1497 0.0174 -4.1502 0.0170
2016 -4.1197 0.0266 -4.1248 0.0208

Table 6.7: GP model updating: x,y refers to observed mortality for ages 50–84,
years 1999–2013; x̃, ỹ is the same data augmented with year-2014 experience.
The mean function is intercept-only, m(x) = β0; s∗ is posterior standard devi-
ation.

The additional year of credibility decreases posterior standard deviations s∗.

Unsurprisingly, the impact on 1999-prediction is negligible since it is so far in the

past. The standard deviation for 2013 has a slight decrease after updating, while

2016 has a much larger reduction: the original model was initially predicting 3

years out-of-sample, while the updated one does for just 2 years out-of-sample.

Similarly, the in-sample means change only slightly, while the out-of-sample 2016

has a larger adjustment. The overall decrease in updated posterior means is

consistent with the fact that the observed log-mortality for age 65 in 2014 was

−4.1543, lower than the predicted −4.1443 using the 1999–2013 model.
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6.5.4 Other Extensions

A standard assumption is that mortality curves are increasing in Age, i.e. xag 7→

f(xag, ·) is monotone. The basic GP framework does not impose any monotonic-

ity restriction. Such structural constraints on f can help in improving mortality

projection in terms of m∗ (especially for long-range forecasts), as well as reduce

predictive uncertainty measured by s2
∗. At the same time, constraints are at odds

with the underlying Gaussian random field statistical paradigm, introducing addi-

tional complexity in fitting and making inference from the constrained posterior.

One promising recent solution was proposed in Riihimäki and Vehtari (2010)

who suggested incorporating monotonicity by adding virtual observation points

x̃i, m̃i for the derivative of f(xi). Because the derivative f ′ also forms a GP, one

can explicitly write down the joint covariance structure of (f ,f ′) (for example

the posterior mean of f ′ is the derivative of m∗). Monotonicity is then implied by

requiring the derivative to be positive at the given x̃i’s. As the size of the latter

collection increases, the resulting estimate is more and more likely to be increasing

everywhere in the domain. This strategy circumvents the direct monotonicity re-

striction while maintaining computational tractability through linear constraints.

Riihimäki and Vehtari (2010) give a recipe for adaptively placing such virtual

derivative points by iteratively adding new x̃i’s where the current m∗ violates

monotonicity. Further constraints, such as expert opinions about mortality at

extreme ages (100+) could be beneficially added.

An additional extension involves use of multiple data sets; there are many

instances where mortality data from one source might be more up-to-date than

from other sources, for example CDC data provides at least 3 more years of
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information than SSA data. The use of co-kriging models or the use of CDC data

as an input to a GP used to model SSA data is another avenue of possible future

research. Such co-kriging models might also be helpful when using population

improvement data to supplement a GP analysis of a specific insurance company’s

or pension fund’s mortality experience.

6.6 Conclusion

We have proposed and investigated the use of Gaussian Process models for

smoothing and forecasting mortality surfaces. Our approach takes a unified view

of the mortality experience as a statistical response surface that is noisily re-

flected in realized mortality experience. A statistical procedure is then used to

calibrate the spatial dependence among the latent log-mortality rates. The GP

model provides a consistent, non-parametric framework for uncertainty quantifi-

cation in both the mortality surface itself, as well as mortality improvement, which

corresponds to relationship between f and xyr. This quantification can be done in-

sample, by retrospectively smoothing raw mortality counts, or out-of-sample, by

building mean forecasts, uncertainty bands, and full scenarios for future mortal-

ity/mortality improvement evolution. In contrast, traditional actuarial techniques

for graduating data (e.g. the Whittaker-Henderson model used by RPEC) focus

on smoothing noisy data but fail to provide measures of uncertainty about the fit.

We have focused on population data and smoothing over age and year. The

model can be easily extended to additional dimensions, such as duration and net

worth in the context of life insurance, or year-of-birth cohort for pension mortality
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analysis. Adding covariates to the definition of the covariance kernel C(x, x′) is

straightforward, with the main challenge lying in interpreting the resulting GP

parameters which would reflect a modified concept of spatial distance.

Perhaps the most useful application of our model is for analyzing the latest

mortality data, i.e. at the “edge” of the mortality surface. Here we find and

document the statistical evidence that US mortality improvements have materially

moderated across a large swath of ages. In particular, for Ages 55–70, US mortality

has been effectively flat, or possibly even increasing in the 2010’s. This points to

a large divergence from the MP-2015 improvement scales that continue to assume

significant mortality gains for all ages and would seem to be overstated at least

in the near-term. Moreover, by explicitly computing the differential mortality

improvement MIGPdiff , our model gives the most current, instantaneous forecast on

mortality improvement, in contrast to the traditional year-over-year estimates.

On a related note, our analysis quantifies the apparent correlation in observed

mortality experience across Age and calendar Year. Thus, the obtained estimates

of length-scales θyr, imply that studies with very long historical analysis (e.g. going

back to 1950 or even 1900) may not add much value to our understanding of

current or future projected trends in mortality improvement. Similarly, long-

term projections of future mortality improvement (e.g. MP-2015 which is used for

projecting mortality often 40 to 60 years into the future) contain a higher degree of

uncertainty than is typically recognized in actuarial analyses. Indeed, our results

suggest that projections more than a decade into the future are entirely based on

the assumed prior calendar trend and hence have almost no credibility based on

observed experience.
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Our results show that even a “vanilla” implementation of a GP model al-

ready produces useful statistical description of the mortality experiences that is

competitive with existing methods in terms of its probabilistic richness and accu-

racy. We therefore see an enormous potential for further works in this direction,

in particular to resolve some further methodological challenges. Mean function

modeling which is typically not an important component of GP models in other

contexts, is critical for actuaries when projecting out-of-sample. Also, constrained

GP models that structurally enforce the age-shape of mortality could be promis-

ing in creating better future forecasts. Yet another challenge is better blending

of the data-influenced prediction and the prior mean for extrapolation which can

be achieved with other Gaussian field specifications or other techniques (Salemi

et al., 2013; Lee and Owen, 2015). A different challenge consists in creating mean-

ingful backtesting analyses which would test not just predictive accuracy of m∗,

but also the quality of the generated credibility intervals (both for mortality rates

and mortality improvements), and the assumption of Age- and Year-stationary

covariance structure. On that point, it would be worthwhile to investigate data

from other countries to infer commonalities in mortality correlations.

6.7 Appendix: Tables and Figures for Female

Data

In this section we list the female counterpart of the tables and figures above

associated to male data. In general, female mortality is lower, but the Age-shapes

are mostly the same. For smoothing, Figures 6.1 and 6.8 are nearly identical in
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shape. The curve in Figure 6.9 for 2014 is slightly different in shape compared to

the male Figure 6.3 around ages 50–65 due to the observed mortality improvement

declining in this range. Comparing annual mortality improvement in Figures 6.4

and 6.10, the female data shows slightly lower improvement overall.

Comparing Tables 6.8 with 6.4 and Figures 6.11 with 6.5, we see that the

trend model comparison results are near identical; the only noticeable differences

are that the quadratic model is a much better fit on the test set for females, and

that the θ values for the intercept-only model are larger.

The intercept-only parameters for both trend function and GP for females in

Table 6.7 are nearly identical to those for males in Table 6.6 as well as the GP

parameters for the quadratic model. The quadratic trend function parameters are

much different for males and females. In particular, the intercept terms are all

much different in magnitude, and some of the higher order terms differ in sign.

This is likely an indication that the trend curves differs in shape between genders

in their respective age groups, which is unsurprising since the age group endpoints

were chosen to match the male dataset.

Figure 6.2 already showed both male and female mortality improvement over

time for ages 60, 70 and 84, which explains the shape differences in Figures 6.13

and 6.7. As with the male data, we still observe MIGPdiff > MIGPback in 2000 and

the reverse in 2014 which was explained due to mortality acceleration in Section

6.4.4.
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Figure 6.8: Mortality rates for Females aged 60–70 during years 2010–2014.
Raw vs. estimated smoothed mortality curves. Models are fit to All Female
data.

Figure 6.9: Mortality improvement factors for Females using All data. Solid
red lines indicate the empirical mortality experience; dotted blue lines are the
smoothed estimates using a GP, dashed green lines are the published MP-2015
improvement factors.
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Figure 6.10: Comparison of yearly mortality improvement factors for Females
using All data. The curve for 2014 is the same as in Figure 6.9.

Mean Function Parameter MLE’s
β0 βag1 βag2 βyr1

Intercept -5.101 - - -
Linear 4.484 0.083 - -7.167e-03
Quadratic 11.207 0.054 2.712e-04 -1.014e-02

GP Hyperparameter MLE’s
η2 σ2 θag θyr

Intercept 4.444e-01 2.968e-04 7.363 10.882
Linear 2.802e-03 3.682e-04 4.432 4.505
Quadratic 2.053e-03 2.911e-04 4.464 4.384

Table 6.8: Mean functions and fitted covariance parameters using Set I
Female Data (ages 50–70 and years 1999–2010). The mean functions are
m(x) = β0 for Intercept, m(x) = β0 + βag1 xag + βyr1 xyr for Linear, and
m(x) = β0 + βag1 xag + βyr1 xyr + βag2 x2

ag for Quadratic.

6.8 Appendix: Supplementary Plots

6.8.1 GP Model Residuals

Figure 6.14 provides a Q-Q plot of the GP model (fitted to the full dataset)

residuals. For contrast, the Lee-Carter model as in (6.2) is included. Under the

latter framework, modelers typically assume a non-Gaussian noise structure. The
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Figure 6.11: Comparison of mean function choices in extrapolating mortality
rates at old ages for Females. Models are fit to years 1999–2010 and ages 50–70
(Subset III), with estimates made for Age 50–85 in 2011 and 2014. The vertical
line indicates the boundary of the training dataset in xag. The mean functions
are given in Table 6.8.

Figure 6.12: Mortality rate prediction for years 2011 and 2014 and ages 71–84.
Model is fit on Subset II Female data with intercept-only mean function and
squared-exponential kernel.

figure suggests that the GP residuals are reasonably Gaussian, with mildly heavy

tails. It also agrees with the lack of normality of a Lee-Carter fit, where the plot

indicates both skew and heavier tails. We remark that the GP framework can

be extended to cover other observation models, such as binomial which could be

closer in line with (6.7). However this comes with significant computational costs,

as well as reducing interpretability, which we deem to not be worth a minimal

improvement in assumptions realism.
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Ages Fit β0 βag1 βag2 βyr1

Extended [1, 84] -25.224 -0.008 8.721e-04 8.678e-03
Younger [50, 69] 1.128 0.080 3.912e-05 -5.471e-03
Older [70, 84] 17.272 -0.038 9.071e-04 -1.151e-02
All [50, 84] 7.473 0.035 4.186e-04 -7.980e-03

Ages Fit η2 σ2 θag θyr
Extended [1, 84] 2.170e-01 1.187e-03 4.095 13.040
Younger [50, 69] 4.311e-03 2.907e-04 5.695 5.487
Older [70, 84] 2.543e-03 1.334e-04 44.118 6.856
All [50, 84] 2.814e-03 2.236e-04 5.574 5.249

Table 6.9: GP models fitted by age groups with Female data. All models used
squared-exponential kernel and years 1999–2014.

Figure 6.13: Estimated Female mortality improvement using the differential
GP model (instantaneous improvement) and the YoY improvement from the
original GP model. We show the means and 80% uncertainty bands for MIGPdiff
and MIGPback for Females aged 50–84 and years 2000 & 2014. Models used are
fit to All Data .

Comparison of GP and APC forecasts

To provide a brief comparison of the popular stochastic mortality models, we

fit a cohort extension of the Lee-Carter model in (6.2), introduced by Renshaw
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Figure 6.14: Left: Q-Q Plots for residuals of a fitted GP model with mean
function m(x) = β0. We use Male All Data to test the normality assumption
of ε in (6.3). We observe that the GP residuals are reasonably Gaussian with
mildly heavy tails. Right: heatmap of ε(x) as a function of the two-dimensional
input x = (xag, xyr). We observe no apparent correlation in the fitted residuals.

and Haberman (2006), which is as follows:

µij = αi +
1

na
κj +

1

na
γj−i + εij, (6.19)

where γj−i is the cohort effect and na is the number of years in the data set. Using

the StMoMo software suite (Villegas et al., 2015b) on our data yielded a random

walk with drift for κj and ARIMA(0,1,2) model for γj−i. Cairns et al. (2011a)

showed that this model performed well in US male data analysis. The results are

shown in Figure 6.15 where we predict for two representative ages and for years

1999–2020 (i.e. both in-sample and up to 5 years into the future).
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Figure 6.15: Observed and predicted mortality rates. GP model uses quadratic
mean function m(x) = β0 + βag1 xag + βyr1 xyr + βag2 x2

ag, and the APC model is
as in Equation (6.19).
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