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Abstract of the Dissertation

Precision Motion Sensing and Control Through

Constrained Optimization

by

Yen-Chi Chang

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2014

Professor Tsu-Chin Tsao, Chair

The precision and productivity requirements for modern manufacturing process

drive precision systems to their physical limitations, such as the limitation of

sensor resolution, actuator saturation, and traversing speed. Incorporating these

restrictions, constrained optimization has been an active research area that can

explicitly handle the physical constraints. This dissertation covers three important

topics in productivity and precision improvements through constrained optimiza-

tion: sub-count sensor estimation, constraint violation avoidance, and cycle-time

minimization.

To solve sensor quantization and measurement synchronization problem, a

model-based encoder-triggered estimation method was developed addressing state

continuity. By enforcing smooth estimation in important physical states such as

position and velocity, this method avoids abrupt estimation change when encoder

trigger occurs. Furthermore, because continuous-time open-loop model is used to

predict inter-trigger behavior, the developed sub-count estimator can be applied to

asynchronous systems with untimely measurement updates. By applying this sub-

count estimation method, the precision system can improve tracking performance

when only quantized and untimely sensor measurement is available.
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When improving tracking performance, the precision system is often pushed to

its limitation. This often causes the precision system to violate system constraints

(such as control signal saturation and excessive acceleration), which results in un-

expected vibration and sacrifices the tracking performance. To avoid such kind of

constraint violation, the system model can be used to predict the dynamic behav-

ior of the plant given a known trajectory and plant model. A model predictive

control based optimal feed-forward tracking method is proposed to be integrable

with any feedback controller.

Besides tracking performance, cycle time is also an important index for modern

precision motion control. The shorter the cycle time is, the more productive the

machine can be. Therefore, to reduce cycle time for precision machines, a mini-

mal time contour tracking problem is formulated to explicitly constrained receding

horizon control where the trajectory (feed) profile is determined for the specified

contour under system dynamics, contour error, axial velocity, signal saturation,

and monotonic feed constraints. Because minimal-time operations typically drive

the system near its constraint boundary, it is vital to reject measurement noise and

compensate for modeling error in real-time. To accommodate the high sampling

rate controllers in precision systems, an efficient real-time quadratic programming

solver is proposed with robust warm start strategy in order to handle active con-

straints.
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CHAPTER 1

Introduction

1.1 Resolution and Sensor Timing

Because of the continuous drive for high precision manufacturing, precision motion

control for automation systems remains an important research area. However, the

performance of precision motion control is often limited by the sensor resolution

and allowable frequency of measurement update. To overcome these limitations,

sub-count estimation methods have been developed to provide better estimation

compared to the quantized sensor measurement, which can be generalized into

two major categories: curve-fitting and model-based correction methods.

Curve-fitting sub-count estimation methods, in general, use a finite amount of

past measurements to predict the upcoming position before new update arrives.

Because the curve-fitting methods avoid modeling error, they are suitable for

applications where an accurate model is unavailable. Linear extrapolation has

been widely used for its simplicity, and has been extended to high-dimensional

Spline fitting with longer past measurement horizon [1, 2]. However, to provide

adequately smooth estimation, this approach requires long measurement horizon.

Because the performance is sacrificed when there is abrupt change in the reference

command or system states, the curve-fitting approach is restricted to the case of

smooth trajectories.

To avoid the reliance on long horizon of past measurements and to achieve

faster response, model-based sub-count estimation methods use a plant model
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to predict the system dynamics. Discrete-time Kalman filtering is a typical ap-

proach for digitally controlled system with timely sensor update, and the sensor

quantization problem is addressed by Gaussian approximation[3, 4]. However,

this fixed sampling rate approach is not suitable for some commonly used sensors

such as optical encoders with high quantization level. Because this type of sen-

sors are updated by spatially distributed interrupts and remain constant between

triggers, the zero-order-hold effect strongly influences Kalman filter’s state estima-

tion performance. To solve this problem, event-triggered method was developed

by updating the state variables with equality constraint on position when encoder

updates because such measurement is only subject to sensor noise without quan-

tization effect at encoder triggers [5, 6, 7, 8]. The disadvantage to this method

is that the event-triggered correction introduces abrupt state changes that often

causes instability.

Because physical systems typically have smooth propagation in properties such

as position and velocity, the continuity in such properties are vital to performing

smooth and stable sub-count estimation especially with asynchronous measure-

ment updates. Therefore, a model-based sub-count estimation method has been

developed to include high-order continuity constraints on these properties. Be-

cause the values of these properties are not guaranteed available through position

measurement and numerical differentiation does not provide good estimate, esti-

mation methods have been developed for smooth estimation [9, 10]. To achieve

real-time implementation, this dissertation also developed a model-based spline

structure that allows efficient real-time implementation of the event-triggered sub-

count estimation.
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1.2 Constraint Violation Avoidance

Conventional circular machining is performed by cutting a spinning stock material

with constant feed. Among many examples, combustion engine cam shafts and

pistons are made by this non-circular machining process. The engine performance

in power output, fuel economy, and emission depends on how these non-circular

bearing surfaces conform to the design specifications. To machine non-circular

cross-sections or axis asymmetric surfaces, the feed of the machining tool tip needs

to be actuated corresponding to the spindle angle. This non-circular turning

process is enabled by fast acting actuators also known as fast tool servos and

precise control of the tool motion to track the desired trajectories. Therefore,

precise tracking control of the fast tool servos for non-circular machining is critical

to making modern advanced high performance engines.

In an engine piston turning operation, single-stage fast tool servo is driven by

systems such as electro-magnetic or electro-hydraulic actuators to machine oval-

like cross-sectional surfaces. As the piston profile becomes more complex and the

work piece rotational speed becomes higher for productivity improvements, the

cutting tool’s trajectories may go beyond the fast tool servo’s dynamic capability.

To solve this problem, dual-stage actuation cascades a short stroke high bandwidth

actuator such as a piezoelectric actuator to the existing longer stroke but lower

bandwidth single-axis fast tool servo [29]. In there, the controller is designed

through a sequence of two single-input-single-output (SISO) designs by exploiting

the triangular structure of the two by two actuator system dynamics. The tracking

error from the first stage actuator is used as reference for the second stage. In this

master-slave control arrangement, the overall sensitivity function is the product

of two sensitivity functions from each actuator’s servo loop. Thus, performance is

achieved by the sensitivity reduction of each loop.

The reference trajectories in non-circular machining have strong periodic com-

3



ponents coupled with the work piece rotation. Because a linear control could

demand beyond linear ranges or limitations such as actuator’s stroke, velocity,

acceleration and drive’s voltage and current saturation could be triggered and

cause the linear control performance to degrade or even become unstable. Model

predictive control (MPC) or similar optimal control approach, which explicitly

takes these constraints into account, is useful for addressing this issue because it

is not practical for real-time implementation at kHz sampling frequency region for

electromechanical systems as the computation power is insufficient to solve con-

strained optimization in real-time. However, since the plant dynamics are most

likely time invariant and quite accurate model can be derived by system identifi-

cation, it is plausible to apply the MPC approach to off-line calculate constrained

optimal feed-forward control actions and cascade it with the closed-loop controller

to achieve high tracking performance without violating the actuator constraints.

This is even more desirable for multi-axis systems like the dual-stage fast tool

servos, where the constrained optimization for feed-forward control can determine

how each actuator’s dynamics should be utilized without violating constraints.

Ideally, the optimization horizon should contain the entire trajectory. However,

this would be impractical and unnecessary since a receding horizon would suffice

to contain actuator’s dynamics. Thus receding horizon constrained optimization

that minimizes the tracking error is most plausible and it can be readily formu-

lated and solved as a model predictive control problem and applied as feed-forward

control action.

1.3 Time Optimal Control

Fast and accurate continuous trajectory generation is a fundamental function re-

quired for Computer Numerical Controlled(CNC) motion in modern fabrication

process such as metal cutting, additive manufacturing, and nano-lithographic
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manufacturing. Since mechanical motion’s contour error directly relates to the

part’s geometric tolerance, contour tracking control, among various motion con-

trol aspects, has received continual attention and remained an active research

area. Research topics have been focused on multi-axis cross coupling compensa-

tion, constraint violation, and feed-rate design. By incorporating these important

aspects into minimal time contour tracking, this dissertation has developed a ro-

bust and efficient model predictive control method for feed-rate optimization on

multi-input-multi-output systems (MIMO) with real-time modeling error compen-

sation.

When a multi-axis system tracks a defined tool path, contour error is intro-

duced as the radial position error with respect to the desired tool path contour.

To improve the manufacturing precision, contour error is desired to be minimized.

Because contour error is affected jointly by the system dynamics of each indi-

vidual axis, axial tracking control does not provide sufficient contour tracking

performance due to the coupling effect and the differences in system dynamics for

each axis. To improve precision, the coupling effect was addressed by the devel-

opment of cross-coupling control (CCC) [42]. By estimating contour error based

on axial tracking errors, CCC generates a cross-coupling feedback signal for each

individual axis to compensate for the coupling between axes.

To penalize the contour tracking error more explicitly, an optimal control

scheme was introduced formulating the cross-coupling controller as a linear quadratic

regulator (LQR) problem [43]. Because the LQR structure requires the weighting

matrix to be time invariant, this method is only optimal for straight line tool

paths. For more complex contours, the coordinate transform method was devel-

oped estimating the contour tracking error by projecting axial tracking error on

the tangent of trajectory [44]. To reduce overshoot at sharp corner, a preview of

contour error needs to be considered. In many applications where a preview of

future behavior is important, Model Predictive Control (MPC) has been proven
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a successful control method for explicit objective minimization and constraint

handling [45, 46, 47, 48].

Employing model-based prediction of contour error in a finite preview, contour

tracking was formulated as a MPC problem that penalizes a weighted sum of

contour error, axial errors, and control signals [49]. In order to prevent the system

from exceeding physical limitations, this method was improved by the constrained

MPC structure [50]. This approach generates the feed-rate profile that minimizes

contour error in a moving predictive horizon subject to physical constraints. While

these methods optimize the contour tracking performance for a given time-domain

trajectory profile, incorporating trajectory profile design for a given contour is

beneficial especially at large contour error regions. A two-layer structure was

proposed to adopt an additional layer of heuristic feed-rate index to the model

predictive control problem [51, 52]. This structure allows feed-rate to be adjusted

with respect to the predicted contour error.

In contour tracking development, explicit cycle time minimization is an impor-

tant topic because it directly affects the system’s productivity. The time consump-

tion per cycle is decided by the tool-path tracking feed-rate, which is primarily

determined by the machine’s capability and tolerance requirement. Since tool

paths are typically described by Spline functions due to differential continuity

and jerk limitation [53], a feed-rate optimization method was developed for Spline

contours under physical constraints for each axis [54]. This method uses geometric

curvature of the Spline contour and continuous time LTI model to estimate veloc-

ity, acceleration, and jerk within each spline segment. By minimizing the sum of

time consumption for each segment, it is able to generate off-line a minimal-time

feed for the whole contour. When it is too computationally intensive to include

the full trajectory in the optimization problem, this method proposed generating

the trajectory profile with respect to only the nearby Spline contour segments.

Because time optimal control tends to drive the system near its physical limi-
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tations, The performance of off-line methods is often sacrificed by modeling error

and measurement noise. Real-time constrained model predictive control was pro-

posed to handle such uncertainties: by updating the constrained optimization

results on-line, it can adjust the feed-rate according to the measurement. Because

the computational efficiency of real-time constrained optimization is often chal-

lenged by non-linear objective function and the use of continuous-time model, the

problem is often discretized especially for digitally controlled systems. Because

straightforward linearization of the time index contains the reciprocal of feed-rate,

it is challenged by numerical stability at low speed [55]. Therefore, it is important

to develop a numerically robust and efficient convex optimization structure in or-

der to adjust for modeling error and measurement noise for time-optimal contour

tracking.

Aiming at performing minimal time control for digitally controlled systems

with robust real-time active constraint handling, an efficient constrained model

predictive control algorithm is developed to minimize a time duration index sub-

ject to system dynamics, monotonic feed, contour error, signal saturation, and

axial velocity constraints.

1.4 Main Contributions of this Dissertation

To summarize the main contributions of this dissertation a list is given below:

• Experimental setup and integration of a nano-precision plasmonic imaging

lithography machine (PILM). A dual linear motor system controls the coarse

motion with optical encoder feedback, and piezo-actuated fine resolution

stage is controlled with interferometer feedback. Machine is able to perform

complete lithography scans with respect to the wafer spindle.

• Matlab simulation tools and Real-time optimization system integration for

7



nano-scale sub-count sensor estimation, constraint handling, and minimal-

time control. The developed LabVIEW Modules include complete graphical

user interface and communication protocol between the host computer and

the real-time target, and the optimization module compatible with any Lab-

VIEW real-time target machines.

• Robust and efficient Quadratic Programming solver that allows real-time

near-boundary estimation. Primal-dual quadratic programming solver has

been widely used for its fast convergence. To improve its computational

speed, an efficient matrix inversion method is developed to allow for high

sampling rate calculation. On the other hand, to apply warm-start method

when the system is operated near its constraint boundary, a robust warm-

start method has also been developed.
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CHAPTER 2

Sub-count Estimation with Continuity

Restoration Constraints

2.1 Measurement Quantization

Sensors play an important role in modern precision motion control, in which op-

tical encoders are widely used for fine position measurement due to the reliability

and repeatability. Encoder measurement is composed of a light source and photo

detector array that encode the optical pattern in channel A and B. The pattern

reflects the relative movement between the detector and scale. As shown in Fig-

ure 2.1, the high voltage level is recognized as ”true” and the low voltage level is

recognized as ”false”. The change from true to false and false to true indicates

the incremental movement of the system. Because the forward and backward

movement generates different binary patterns as shown in Table 2.1, the phase

difference between channel A and B can be used to indicate the direction of move-

ment.

9



Figure 2.1: Quadrature encoder patterns

Table 2.1: Encoder pattern

Forward Direction

Phase Channel A Channel B

1 0 0

2 0 1

3 1 1

4 1 0

Backward Direction

Phase Channel A Channel B

1 1 0

2 1 1

3 0 1

4 0 0
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Figure 2.2 shows that the measurement is updated when it detects a transition

in encoder pattern, which is typically called an encoder interrupt. Before a new

interrupt arrives, the digital controller uses the latest encoder output to generate

the feedback signal at fixed sampling rate.

Figure 2.2: Quadrature encoder triggers for the forward(F) and Backward(B)

movement

As shown in Figure 2.3, encoder interrupts have fixed spatial resolution and

are asynchronous with the controller sample time. At the controller sample time,

quantization and measurement noise jointly affect the error distribution. To im-

prove sensor performance, estimation models were proposed as the fixed sampling

rate and event-triggered methods. The fixed sampling rate method handles the

quantization effect by using Gaussian approximation at each sample time [3, 4].

However, the computation cost of this approach prevents this method from real-

time implementation. Furthermore, this approximation method is only restricted

to low quantization level cases [14] and can easily diverge on unstable plants.

11



Figure 2.3: Measurement Quantization

Event-triggered method is developed to handle the high quantization cases. At

each encoder interrupt, the encoder measurement is only subject to sensor noise

without any quantization effect at each encoder trigger. The position measure-

ment when encoder interrupt is triggered is shown in Equation 2.1. By enforcing

the system to satisfy the position constraint at each encoder trigger, the quanti-

zation problem in fixed sampling time can be avoided [6].

yti+∆ti =







y−ti+∆ti
, if y−ti+∆ti

≥ y+ti+∆ti

y+ti+∆ti
, otherwise

(2.1)

2.2 Event-triggered Correction

To implement the event-triggered correction with the plant model, system states

are corrected when an encoder trigger occurs. As shown in Figure 2.4, between

encoder updates the corrector is in the propagation mode that propagates from

the initial condition corresponding to the most recent measurement. When an

encoder interrupt occurs, the correcter is switched to the measurement update

mode to adjust the predicted state values with respect to the sensor update.

12



Open− loop System

Corrector

Controller P lant Sensor
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Meas.Update
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r+ ye u

ŷ

−

[y]

Figure 2.4: Block diagram of the contour tracking system

2.3 State Propagation and Observer Design

To allow for inter-sample prediction, continuous-time linear time-invariant model

is used as shown in Equation 2.2. Initialized from a given initial condition x̄ti , the

propagation of state variables can be predicted by the open-loop plant and input

u is updated at fixed sampling rate.

x̄ti+∆ti =eA∆ti x̄ti +

∫ ti+∆ti

ti

eAτBu(ti − τ)dτ (2.2)

For an open-loop unstable plant, the state propagation can diverge and there-

fore challenge the performance of the event-based state correction [6]. For fixed-

sampling rate systems, Kalman filtering is widely used to retain stable system

estimation with the advantage of error covariance minimization [17]:

x̂ti+1
=x̄ti+1

+K(yti+1
− Cx̄i+1) (2.3)

where
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ti+1 = ti +∆ti

K = MCT (CMCT +R)−1

M = E[(xti+∆ti − x̄ti+∆ti)(xti+∆ti − x̄ti+∆ti)
T ]

Because encoder measurement does not provide sensor update at every sam-

pling time, traditional Kalman filtering does not provide good results when quan-

tization effect is dominant. To improve the state estimation performance for open-

loop unstable plant with asynchronous update, a coarse observer was introduced

to maintain bounded state estimation [7, 8]:

t∗i =







ti +∆ti, if 0 ≤ ∆ti ≤ |ti+1 − ti|

ti, else

x̄ti+1
= eA(ti+1−t∗i )x̂t∗i

+

∫ ti+1

t∗i

eAτBu(ti − τ)dτ

x̂ti+1
=







x̄ti+1
, if [yti+1

] = [ŷti+1
]

x̄ti+1
+ L(yti+1

− ŷti+1
), else

This observer formulation is equivalent to free state propagation if the pre-

dicted state variables is bounded by the measurement resolution, and the ob-

server is active when the states exceed the measurement resolution. When the

encoder is triggered, the state variables x̂t∗i
are corrected and used as the new

initial condition.

2.4 Intermittent Measurement and Continuity constraint

The intermittent state variable correction must satisfy the equality constraint

shown in Equation 2.4.
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Cx̂ti+∆ti = yti+∆ti, if 0 ≤ ∆ti ≤ |ti+1 − ti| (2.4)

Because this abrupt intermittent prediction change sometimes cause estima-

tion to diverge, continuity constraint condition is implemented by the following

equality conditions:

Cx̂ti = ȳti

C ˙̂xti = v̄ti
...

C
dnx̂ti

dtn
=

dnȳti
dtn

When the corrected states satisfy these conditions, the correction maintains

smooth propagation of important physical properties such as position and velocity.

Because the encoder interrupt can occur anytime between sampling points, the

propagation of the continuous-time model needs to be performed in real-time

with respect to the encoder interrupt time stamp. Therefore, the computational

efficiency is important in order to avoid any delay. The Taylor series expansion

allows this algorithm to reduce the calculation of matrix exponential from O(n3)

to O(n2):

x̄ti+∆ti ≈
l∑

j=0

Aj x̂i
∆tji
j!

+
l∑

j=1

Aj−1B
∆tji
j!

ui (2.5)

2.5 Optimization Formulation

Because error covariance is used as the indicator of prediction accuracy for linear

estimators [17], it is applied as the objective function to formulate the optimiza-

tion problem for sub-count continuity constraint. When the encoder interrupt is
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triggered, the optimal state estimation is derived by minimizing the error covari-

ance while satisfying both position and continuity constraints:

minP = E[(xti+∆ti − x̂ti+∆ti)(xti+∆ti − x̂ti+∆ti)
T ]

s.t.Cx̂ti+∆ti = yti+∆ti

Cx̂ti = ȳti

C ˙̂xti = v̄ti
...

C
dnx̂ti

dtn
=

dnȳti
dtn

The proposed encoder-triggered estimation with continuity constraints can also

be expanded to multi-trigger correction as shown in Equation 2.6. The multi-

trigger correction can be seen as a model-based curve-fitting method up to r

triggers, allowing the continuity constraint to be more conservative. The multi-

trigger correction is beneficial when accurate model is unavailable or the system

is subject to external disturbance.

Cx̂ti+k+∆ti+k
= yti+k+∆ti+k

, for 0 ≤ k ≤ r (2.6)

The solution to the optimization problem is shown in Equation 2.7 when R = 0,

where K is the Kalman gain and M is the error covariance of propagated state

[11]:

x̂ti+∆ti =x̄ti+∆ti +K(be −Aex̄ti+∆ti) (2.7)

where
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K = MAT
e (AeMAT

e +R)−1

M = E[(xti+∆ti − x̄ti+∆ti)(xti+∆ti − x̄ti+∆ti)
T ]

Ae =













C
m∑

j=0

CAj (−∆ti)
j

j!

CA
m∑

j=0

CAj (−∆ti)j

j!

...













, be =











yti+∆ti

ȳti

v̄ti
...











For a fixed sampling time system without continuity constraint, Ae is the

measurement matrix C and ∆ti is |ti+1−ti|. In this case equation 2.7 represents the

standard discrete-time Kalman filter. The solution to this optimization problem

can be seen as an expansion from the standard Kalman filter to include higher

order states, such as velocity and acceleration:

Cx̂ti = ȳti = Cx̄i

C ˙̂xti = v̄ti = C ˙̄xi

...

C
dnx̂ti

dtn
=

dnȳti
dtn

= C
dnx̄i

dtn

When R is 0, the continuity constraints rely 100% on the propagated values.

However, because the propagated values do not always provide the best continuity

constraints due to modeling error and disturbances, non-zero error covariance R

is added to improve the estimation robustness. The following derivation shows

how non-zero R affects the continuity constraint. By using the matrix inversion

lemma, R can be factored out of the matrix inversion, and results in a correction

term for the estimated parameters:
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(AeMAT
e +R)−1 = (AeMAT

e )
−1 +Rs (2.8)

where

Rs = (AeMAT
e )

−1(−R−1 − (AeMAT
e )

−1)−1(AeMAT
e )

−1

= (AeMAT
e )

−1rs

By applying Equation 2.8 to Equation 2.7, the non-zero R is shown to play

the role of a correction term for both the measured and unmeasured equality

constraints in be. When the error covariance matrix M is increased, R is weighted

more when generating the offset rs:

x̂ti+∆ti =x̄t +MAT
e (AeMAT

e )
−1(b̂e −Aex̄t)

where

b̂e = be + rs

To summarize, the developed model-based sub-count estimation with continu-

ity constraint can be implemented by using the following steps:
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Model-based Sub-count Estimation with Continuity Constraint

Set initial values x̄t0

Set i=0

Repeat until t = tmax

Record the encoder trigger value yti+∆ti and time stamp ti +∆ti

if 0 ≤ ∆ti ≤ |ti+1 − ti|

Calculate Ae and be

x̂ti+∆ti = x̄ti+∆ti +K(be − Aex̄ti+∆ti)

x̂t∗i
= x̂ti+∆ti

else

x̂t∗i
= x̂ti

x̄ti+1
= eA(ti+1−t∗i )x̂t∗i

+
∫ ti+1

t∗i
eAτBu(ti − τ)dτ

x̂ti+1
=







x̄ti+1
, if [yti+1

] = [ŷti+1
]

x̄ti+1
+ L(yti+1

− ŷti+1
), else

i:i+1

2.6 System and Controls of the Plasmonic Imaging Lithog-

raphy Machine(PILM)

The developed sub-count continuity constraint algorithm was tested on a Plas-

monic Imaging Lithography Machine (PILM) [15] due to its requirement for nano-

scale precision. The system used for experiment is shown in Figure 2.5. PILM

controls the position of a LASER write head to fabricate lithographic patterns

on a spinning wafer. A schematic illustration of PILM is shown in Figure 2.6.

As shown in this figure, the LASER write head is controlled by the pre-focusing
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system that is installed on a moving stator. The coarse motion of the stator is

controlled by two three-phase linear motors with optical encoder feedback. The

encoder resolution is 5nm and the system is controlled at 1kHz. The fine motion

of the pre-focusing system is controlled by a multi-axis piezo-actuated system with

capacitive sensor feedback.

Figure 2.5: Plasmonic Imaging Lithography Machine

The coupling effect between the two linear motors is not negligible due to the

parallel arrangement. Because of the system asymmetry and actuator difference,

the system dynamics of the two linear motors are not identical. The difference

between the two linear motors introduces non-zero yaw rotation along with the

stator translational displacement. To perform lithographic patterning, the linear

motor system needs to meet the nano-scale tracking performance requirement with

regulated yaw motion. Because the stage is required to move at very low speed

with nano-scale precision, the quantization effect is critical.
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Figure 2.6: Schematic view of Plasmonic Imaging Lithography Machine

2.7 Experiments of sub-count Estimation on PILM

The proposed sub-count estimation algorithm is implemented by using the open-

loop plant model shown in Equation 2.9. The quantization effect is implemented

by quantizing the encoder output to have a resolution of 5 µm, which is used to

close the loop with a standard PID controller with gains shown in Table 2.2. The
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performance is compared to the original encoder measurement that has 5 nm of

resolution.

G =




G11 0

0 G22



 (2.9)

G11 =

(3.6z6 + 11z5 + 16z4

+15z3 + 8.9z2 + 4.1z − 2.8)10−6

z8 − 1.4z7 + 0.13z6 + 0.12z5 + 0.091z4

+0.045z3 − 0.0097z2 − 0.061z + 0.075

G22 =

(−4.2z6 − 7.3z5 + 0.91z4

+5.6z3 − 0.61z2 − 4.7z − 1.7)10−6

z8 − 2.4z7 + 1.6z6 + 0.45z5 − 0.59z4

−0.29z3 + 0.11z2 + 0.33z − 0.17

Table 2.2: PID Gains of PILM

Gains Translational Rotational

P 5 1

I 0.1 0.1

D 10 0.1

The order of the continuity constraint depends on the relative order of the

plant model. For a system with relative order of 2, continuity constraints should

be applied to the stage position and velocity because acceleration is not neces-

sarily continuous. This is verified by a simplified SISO simulation by using the

translational element of the MIMO plant. The RMS error of the corresponding
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order of continuity is shown in Table 2.3. By applying continuity constraint on

the acceleration state, the RMS error is dramatically increased.

Table 2.3: RMS Error for Different Order of Continuity.

Order RMS Error [count]

1 (pos) 0.1649

2 (+vel) 0.1277

3 (+acc) 3.122×10120
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(a) 3rd Order curve-fitting
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(b) Linear curve-fitting

Figure 2.7: Estimation results for non-model-based approaches
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(a) Discrete time Kalman Filtering on Quantized Measurement for encoder 1
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(b) Sub-count estimation with position continuity constraint for encoder 1
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(c) Sub-count estimation with position and velocity continuity constraints for

encoder 1
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(d) Quantized position measurement from encoder 2

Figure 2.8: Estimation results for model-based approaches
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Figure 2.7 presents the position estimation results for non-model-based ap-

proaches using 3 past triggers. Due to the lack of knowledge of system dynamics,

non-model-based approaches are unable to properly predict the inter-sample be-

havior. As a result, abrupt prediction changes occur as the encoder innovates

to the next quantization level. Figure 2.8 shows the position estimation results

for model-based approaches. Because the traditional discrete-time Kalman fil-

ter requires measurement update at every sampling time, the estimation results

are greatly influenced by the quantization effect and asynchronous measurement

update. The case of sub-count estimation with position continuity constraint is

equivalent to the event-based state correction method [6] augmented with the

coarse observer [7, 8].

It is shown that due to the lack of higher order continuity, it does not pro-

vide good velocity estimation especially when the system propagates without any

encoder update from 6.24msec to 6.27msec. On the other hand, the continu-

ity constraint on velocity is shown to generate smoother prediction, resulting in

improved inter-sample propagation prediction. Also, due to the encoder update

from the other encoder channel and the coupling effect, state correction can be

observed from 6.22msec to 6.24msec.

The transient response performance of sub-count estimation can be analyzed

by tracking triangular waves. The effect of horizon length for both model-based

and curve-fitting method is demonstrated by the time domain comparison in Fig-

ure 2.9. It is shown that when the proposed method outperforms the curve-fitting

method especially at the tips of the triangular wave with much less overshoot.
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Figure 2.9: Estimation results for triangular reference tracking

Because PILM typically scans at different speed with periodic stops, its impor-

tant to evaluate the estimation performance with triangular reference at different

speed. Therefore, the sub-count estimation method is tested with ramp speed

ranging from 0.5µm/msec to 64µm/msec as shown in Figure 2.10.
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Figure 2.10: Triangular reference signal

The overall estimation performance is analyzed by two indices: root-mean-

square (RMS) error value and estimation correlation as defined by Equation 2.10

and 2.11, respectively. RMS error indicates the over-all tracking performance,

and lower RMS error indicates better estimation performance. On the other

hand, estimation correlation shows the prediction performance of sub-count be-

havior. Higher correlation show better prediction on the dynamic response be-

tween encoder triggers. The RMS and correlation performance are compared

against the 5nm encoder measurement, discrete-time kalman filter, curve-fitting

and continuity-constrained methods with short (1 trigger) and long horizons (3

triggers).

yrms =

√

1

N
ΣN−1

i=0 (yti − ŷti)
2 (2.10)

ycor =
ΣN−1

i=0 (yti − ȳti)(ŷti −
¯̂yti)

√

ΣN−1
i=0 (yti − ȳti)

2ΣN−1
i=0 (ŷti −

¯̂yti)
2

(2.11)

27



0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Velocity [count/iteration]

R
M

S
 E

rr
or

 o
f e

st
im

at
ed

 p
os

iti
on

 [c
ou

nt
]

 

 0.5 1  2  4  8  16 32 64 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Velocity [um/ms]

R
M

S
 E

rr
or

 o
f e

st
im

at
ed

 p
os

iti
on

 [u
m

]

quantized measurement
discrete−observer
linear extrapolation
poly−fitting with multiple triggers
continuity−constrained with single trigger
continuity−constrained with multiple triggers

(a) RMS error of estimated position

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity [count/iteration]

C
or

re
la

tio
n 

of
 e

st
im

at
ed

 p
os

iti
on

 

 0.5 1  2  4  8  16 32 64 

Velocity [um/ms]

(b) Correlation of estimated position

Figure 2.11: Performance of position estimation
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Figure 2.11 shows the RMS error and measurement correlation for position

estimation, respectively. It is shown that the proposed approach and curve-fitting

methods can improve the performance both in RMS and correlation compared

to the discrete-time observer method. As seen in the time-domain comparison,

curve-fitting method’s performance is compromised by abrupt state changes. In

contrary, the proposed method outperforms the position estimation that of the

curve-fitting method at higher speeds. The effect of horizon length can also be

observed in these two plots. While long horizon provides more stable prediction

results, the performance is compromised when large state change occurs. For the

curve fitting method, the increase in horizon length can dramatically improve the

correlation and RMS error performance at lower speeds, however, causes perfor-

mance drop at high speeds due to the traversing. The advantage of the proposed

method is that the performance decrease is much less severe compared to the

curve-fitting method, and the RMS error is better at higher speed. This phe-

nomenon shows that when the system is nearly stationary, the more conservative

method is more advantageous. However, when there are abrupt state changes

such as the stop-and-go scanning motion, the proposed method shows substantial

benefits when predicting inter-sample propagation.
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Figure 2.12: Performance of velocity estimation
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To make further comparison on the continuity-constrained state, the velocity

RMS error and correlation are calculated by Equation 2.12 and 2.13, respectively.

The values for each ramp speed is shown in Figure 2.12. It is shown that both

curve-fitting and the proposed method outperform the discrete-time observer, es-

pecially with respect to the correlation performance. The continuity constraint is

shown to greatly improve the prediction performance compared to other methods,

resulting in smoother and more accurate estimation. The effect of horizon length

can also be observed on the velocity estimation performance: longer horizon im-

proves the velocity estimation for both the model-based and curve-fitting methods

in RMS error. It is worth noting that longer horizon sacrifices the correlation per-

formance in both cases. However, the model-based method is affected much less

compared to the curve-fitting method.

vrms =

√

1

N
ΣN−1

i=0 (vti − v̂ti)
2 (2.12)

vcor =
ΣN−1

i=0 (vti − v̄ti)(v̂ti −
¯̂vti)

√

ΣN−1
i=0 (vti − v̄ti)

2ΣN−1
i=0 (v̂ti −

¯̂vti)
2

(2.13)

The closed-loop performance is shown in Figure 2.13 and 2.14. When the

quantized encoder measurement is used, the quantized measurement forces the

stage to regulate against its current encoder reading until the measurement in-

crements. This phenomenon creates abrupt steps in position and results in large

tracking error. It is shown that by using the sensor feedback with sub-count esti-

mation, smoother transition is observed especially when long propagation between

encoder triggers occurs. The RMS error of the raw quantized encoder feedback

is 2.904µm, and it is improved to 1.484µm by the proposed sub-count estimation

feedback.
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Figure 2.13: Validated and estimated position with quantized feedback.
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Figure 2.14: Validated and estimated position with estimation feedback.

The performance of other sensor resolution is shown in Figure 2.15 and 2.16.
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It is shown that the proposed sub-count estimation method has the performance

similar to half of the original resolution.
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Figure 2.15: Effect of quantization level on tracking error.
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Figure 2.16: Effect of quantization level on velocity error.
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CHAPTER 3

Feedforward MPC with Realistic Constraints

3.1 Fast Tool Servo and Model Predictive Control

Model predictive control (MPC) techniques have gained much attention for its

ability to optimize the control signal with respect to a desired objective func-

tion, such as tracking error, motion smoothness, control signal magnitude, and

the predicted values of certain state variables. This concept has been applied to

contour tracking problem in its unconstrained form [20, 21]. Manipulator joint

trajectory design further brings non-linear modeling into receding control as Ge-

netic Algorithm [22, 23]. The disadvantage of pure MPC algorithm includes the

accurate modeling requirement and stability concerns [24, 25, 26, 27, 28], making

it vulnerable to modeling uncertainties and disturbances. Terminal constraints

are commonly applied to achieve stability [33, 27], and robustness is improved by

incorporating the modeling uncertainty in the objective function [24, 35]. Dual

feedback controller structure and disturbance identification were also developed

to keep the system in a robust control-invariant set [34, 26].

The demand for high precision non-circular manufacturing increases the need

for fast tool servo machining. MPC was introduced to fast tool servo machining

by cascading with an additional repetitive controller [30, 31, 32]. For challenging

reference tracking, such as race car piston machining, the machining tool is desired

to track a partially nearly-periodic and partially non-periodic signal. Addressing

the strong periodicity, a two parameter robust and repetitive control (TPRRC)
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method has been developed. Figure 3.1 shows TPRRC for dual-stage fast tool

servos [29]. It shows the feedback controllers C1 and C2 respectively for the dual-

stage actuators P1 and P2, where P1 is considered a long stroke low bandwidth

actuator like a linear motor and P2 is a short stroke high bandwidth actuator like

a piezoelectric actuator. The tool position z consists of the cascaded actuator

position y1 and y2. The tracking error of the slow (P1, C1) loop is the reference

input to the fast (P2, C2) loop. Each of the controllers C1 and C2 is a TPRRC,

which consists of two compensators, one for robust feedback (K12, K22) and the

other, with a positive feedback loop for repetitive control. The control problem is

formulated numerically by µ-synthesis.

C1

C2

K12

Q1 z−L1+N1

z−L1

K11

P1

K22

Q2 z−L2+N2

z−L2

K21

P2

r
+ + +

++

y1
+

−

+ + +

++

y2
+

−

z

Figure 3.1: Block diagram of Two Parameter Robust Repetitive Control

Though TPRRC is able to track a challenging piston profile with strong

periodic component, it is unable to handle constraint violation that frequently

happens when the mechanical system is quickly traversing. To introduce MPC

without computationally intensive real-time calculation, MPC can be applied as

feed-forward model predictive control(FF-MPC) to be augmented with a robust
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feedback controller. For a fast sampling application, computational intensity of-

ten restricts the on-line MPC from applying constraints. In addition, the length

of prediction horizon needs to be limited and the complexity of the optimization

problem must be carefully handled. By calculating the model predictive control

gain off-line, the actuator dynamics and physical limitations of the system can be

monitored without real-time computation. Analogous to the feedback form, the

FF-MPC adopts the moving horizon methodology to ease computation. The cal-

culated feedforward control signals are iteratively updated. In general, the MPC

achieves better performance with longer horizon length n. However, longer pre-

diction horizon means stronger reliance on high modeling accuracy. It is, in other

words, more vulnerable to modeling error and external disturbances. Also, longer

prediction horizon increases computation time, preventing the model predictive

control from on-line adaptation.

MPC

C1 P1

C2 P2

r

+ +

u3

e1 y3 + u1

y1
+

−

+

u4

+ e2 +y4 u2

y2
+

−

z

Figure 3.2: Block diagram of TPRRC with Feedforward model predictive control

Figure 3.2 shows the FF-MPC with the feedback control system. The MPC

feed-forward controller signals are fed to the actuator control signal directly to

preserve robustness and stability. The primal goal of the FF-MPC is to deter-

mine the feed-forward signal of the linear motor and piezo actuator, u3 and u4,

to optimize the tracking error while restricting parameters from exceeding the
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designated limitations. The model predictive control can be more aggressive in

its feed-forward form, while the feedback controller handles the robustness of the

system [36, 37, 38]. This hybrid control algorithm is able to preserve the benefits

of MPC without sacrificing robustness or stability.

A discrete linear time invariant system can be described by the following equa-

tion:

x(t +∆t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Within a designated horizon, the relationship between its input signal u and

output signal y can be described in the following matrix form:

y = Bu+Qx0 (3.1)

where

B =











D 0 . . . 0

CB D . . . 0
...

...
. . .

...

CAn−2B . . . CB D











Q =











C

CA
...

CAn−1











Because the actuators and controllers are modeled as discrete linear time in-

variant plants, this matrix form expression allows the whole system to be repre-

sented as a linear matrix equation:
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y1

y2

y3

y4











= B̄








u3

u4

r







+ Q̄x̄0 (3.2)

The input signal is consisted of the reference trajectory r, feed-forward signals

u3 and u4. The output signal is consisted of the position measurement of the

primary stage y1 and secondary stage y2. The vector form representation of these

variables within the moving horizon is defined below:

r ≡ r(t : ∆t : t+ (n− 1)∆t)

ui ≡ ui(t : ∆t : t+ (n− 1)∆t)

yi ≡ yi(t : ∆t : t+ (n− 1)∆t)

i = 1 : 4

Model predictive control iteratively solves a predefined optimization problem,

which is consisted of an objective function, equality and inequality constraints.

The objective function can be any convex function consisted of the interested

parameters. This dissertation represents the fast tool servo accuracy by a weighted

quadratic sum of the tool tip tracking error:

min











[

I I 0 0
]











y1

y2

y3

y4











− r











T

W TW











[

I I 0 0
]











y1

y2

y3

y4











− r











(3.3)

While the system dynamics can be expressed as the equality constraints of the

optimization problem, the hardware limitations of the system can be represented
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by the equality constraints on the position measurement output. For this dual-

stage fast tool servo application, the linear motor acceleration maximizes at 100

m/sec2, and the velocity constraint of the linear motor is set to be 0.25m/sec. The

travel range of the piezo actuator position is limited to within ± 10 um, and the

average location of the piezo actuator should remain close to zero due to linearity

concerns. The mean value is designed to be within ± 0.01 um range in this

dissertation because strictly restricting the average value to zero is impractical.

The input signal limitation can also be handled by linear inequality constraints.

According to the actuator specifications, control signal saturates at 10 V and 5

V for the linear motor and piezo actuator stage, respectively. Another important

constraint is the electrical current limitation to the piezo actuator stage. The

relationship between the drive current and the input voltage is shown in the

equation below. The capacitance Cp and maximum current i2 value for the piezo

actuator in this dissertation are 30 nF and 100mA, respectively. Since the current

constraint is placed on the input signal to the amplifier of the piezo actuator, the

amplifier gain Kp must be considered. In this application, the amplifier gain is

100.

Similar to the equality constraints, these inequality constraints can be aug-

mented into a matrix form as shown in the following equation. In equation 3.4,

Ha, Hv, and Hm represent the acceleration, velocity and mean value filter, respec-

tively. The limitations on acceleration, velocity, displacement, mean value, and

control signal are denoted as a, v, d, m, and s, respectively. R represents the

compensation vector of the
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︸ ︷︷ ︸
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a1l

v1l

d2l
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s1l

s2l
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(3.4)

where

v2 =
i2

KpCp
, Ū = H̄Q̄x̄0 +R

and

Dj =

















1
...

. . .

1 . . . 1

1 . . . 1 1
︸ ︷︷ ︸

j

















n×n

, l =











1

1
...

1











n×1

Hv =
1

∆t
(Dn − 2Dn−1 +Dn−2)

Ha =
1

∆t2
(Dn − 3Dn−1 + 3Dn−2 −Dn−3)

Hm =
1

m
(Dn −Dm−n)
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3.2 Convergence of the Feed-forward model predictive con-

trol

Signal convergence is an important issue for model predictive control. An ex-

plicit solution to the finite horizon optimization problem can be derived when

the inequality constraints are not violated. To solve this quadratic optimization

problem, the equality constraints can be incorporated in the objective function:

y1 + y2 − r =
[
[I I 0 0]B̄ − [0 0 I]

]

︸ ︷︷ ︸

Be








u1

u2

r








︸ ︷︷ ︸

ue

+ [I I 0 0]Q̄x̄0
︸ ︷︷ ︸

−xe

(3.5)

The objective function is thereby reformulated as an unconstrained quadratic

function with coordinate transformations. The constrained optimization prob-

lem can, therefore, be represented as an unconstrained quadratic optimization

problem:

(y1 + y2 − r)TW TW (y1 + y2 − r)

= (Beue − xe)
TW TW (Beue − xe)

The solution to the unconstrained optimization problem, ue, must be in the

range space shown below:

BT
e W

TWBeu
∗

e = BT
e Wxe (3.6)

When the weighting function W is purely an identity matrix with nd look-

ahead steps, the objective of this model predictive control is equivalent to opti-

mizing the absolute tracking performance after nd steps. The convergence analysis

is then dependent on the amount of look-ahead steps chosen.
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W = diag([ 0 0 ... 0
︸ ︷︷ ︸

nd

1 1 ... 1]) (3.7)

The convergence of the designed model predictive control can be evaluated

by observing the mapping from the input signal r to the output measurement y.

From linear system theory, the least square least norm solution must satisfy the

following condition.

BT
e WBe (BT

e WBe)
+BT

e WBe = BT
e WBe

col : W (Be(B
T
e WBe)

+BT
e W − I) ⊂ null(BT

e )
T

Because W is a pure delay matrix, the mapping from r to y∗ can be derived:

W (Be(B
T
e WBe)

+BT
e W − I) = φ

W y∗ = W (Beu
∗

e − xe + r) = W r

For the case when there’s no look-ahead steps, the model predictive control

performs equivalently to a pole-zero canceling controller. However, for a system

with non-minimum-phase zeros, this operation introduces unstable pole-zero can-

cellation. Therefore the delay steps must be chosen based on the unstable zeros

[40, 41].

For this dual-stage fast tool servo application, convergence is maintained when

the look-ahead steps are greater or equal to the number of unstable plant zeros.

On the other hand, unnecessarily long delay steps compromises the tracking per-

formance. Therefore, in this dissertation, the delay step is chosen to be two, which

correspond to the two unstable zeros from the piezo actuator plant.

The following figure shows the definition of horizon length. As previously

discussed, while there are n steps spanning from time t1 to t1 + (n − 1)∆t, only
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the measurements after nd steps are penalized. The overall prediction horizon n

not only must be greater than the look-ahead steps, it also needs to capture the

nominal dynamics of the system. In other words, its dimension must be greater or

equal to the order of the linear motor and piezo actuator plant. In this dissertation,

the prediction horizon n is 20. After the solution for the optimization is derived,

the first element of the optimization results are used to update the FF-MPC

output.

y(t)

t1
t1 + (nd − 1)∆t

t1 + (n− 1)∆t

Figure 3.3: Illustration of the horizon length

3.3 Simulation Results for a Challenging Piston Profile

A typical piston tooling profile example is shown in Figure 3.4. It is composed of

nearly periodic oscillations and a drastically changing profile, which well demon-

strates the benefit of the FF-MPC. The performance of the feed-forward model

predictive control is compared to the case without the feed-forward signal for a

piston machining application by tracking the piston profile illustrated in Figure

3.4 at 10 kHz of sampling rate.

43



2.12 2.18

0.04

0.18

time(sec)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

P
is
to
n
p
ro
fi
le

time(sec)

Figure 3.4: Piston profile in time domain

The bode plots for the linear motor and piezo actuator are shown in Figures

3.5 and 3.6, respectively. The linear motor has much lower resonant frequency

and smaller resonant peak compared to the piezo actuator stage. Therefore, the

piezo actuator is used as the secondary stage to compensate for transient error

response, while the linear motor is used as the primary stage tracking the nominal

trajectory defined by the piston profile. Figure 3.7 shows the feed-forward control

signals of the linear motor and pzt stage u3 and u4 from the FF-MPC method.
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Figure 3.5: Bode plot of the continuous time transfer function of the linear motor
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Figure 3.6: Bode plot of the continuous time transfer function of the piezo actuator
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Figure 3.7: Feedforward control signals for the primary(mm) and secondary

stage(µm)

The tracking error performance is compared to TPRRC in Figure 3.8. Com-

paring the single-stage and dual-stage performance, both TPRRC and FF-MPC

show that the dual-stage structure is able to suppress the transient tracking error

response when the reference signal changes drastically. The FF-MPC tracking per-

formance performs better than the TPRRC especially when the reference profile

leaves the nearly-periodic region. TPRRC drives the secondary stage by pas-

sively compensating for the error of the primary stage, resulting in 6.18 mm of

the 2-norm of the absolute error and much larger error transient responses. The

FF-MPC sends feed-forward control signals to drive the primary and secondary

stages with respect to their dynamic properties and limitations. As a result, the

FF-MPC improves the 2-norm of error signal to 2.19% of the TPRRC method.
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Figure 3.8: Tracking error(mm)

Figures 3.9 to 3.13 show the variations of the parameters restricted by the

inequality constraints. In these Figures, the saturation limits are indicated by

the red lines. Figure 3.9 shows the control signal variation of both stages in the

case without FF-MPC and with FF-MPC. The input signal saturation of the

piezo stage occurs when the reference trajectory enters and leaves the drastically

changing state. In contrast, the FF-MPC controller is able to constrain the signal

from reaching the saturation limit.
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Figure 3.9: Control signal constraints(V)

Figure 3.10 and 3.11 show that the TPRRCmethod fails to keep the piezo stage

displacement within the travel range limitations, which demonstrates a fundamen-

tal benefit of the FF-MPC. The FF-MPC is able to monitor physical limitations

other than signal saturation. For example, by keeping the average displacement

of the piezo actuator small, the secondary stage can be better kept in its linear

region. Figure 3.10 shows that the pure closed-loop method fails to keep the

piezo stage displacement within the travel range limitations, which demonstrates

a fundamental benefit of the FF-MPC. The FF-MPC is able to monitor physical

limitations other than signal saturation. For example, by keeping the average

displacement of the piezo actuator small, the secondary stage can be better kept

in its linear region.
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Figure 3.10: Pzt stage constraints-displacement(µm)
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Figure 3.11: Pzt stage constraints-current(A)

Figures 3.12 and 3.13 show the velocity and acceleration constraints on the

linear motor stage. The pure closed-loop method exceeds the acceleration limit

during the time when the reference signal changes drastically. The FF-MPC, on

the other hand, is able to remain both velocity and acceleration within its physical

limitations.
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Figure 3.12: Linear motor stage constraints-acceleration(m/sec2)
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Figure 3.13: linear motor stage constraints-velocity(m/sec)
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CHAPTER 4

Constrained Time-optimal Control

4.1 Spline Contour and Contour Error

Many precision motion control applications, such as CNC and lithography, use

Spline functions to parametrically describe the tool path for the benefit of inter-

sample behavior and data reduction [54]. To describe complex contours, the Spline

model can be divided into multiple segments. The pointsNk are the predetermined

segment boundaries that the contour must pass:

S(τ) = Sk(τk) = K0,k +K1,kτk + . . .+Km−1,kτ
m−1
k







τk = τ − k + 1

0 ≤ τk < 1

Sk(1) = Nk+1

dl

dτ l
Sk(1) =

dl

dτ l
Sk+1(0), 1 ≤ l ≤ q, q ∈ N

For contour tracking applications such as machining tool path design, cubic

spline was first applied with knot speed control based on the geometric curvature.

This was improved by the quintic Spline configuration and continuous time model

to provide velocity, acceleration, and jerk estimation [54]. Though this off-line

design method is convenient and flexible, the effect of modeling error, external

disturbance, and measurement noise are not accounted for and the true system

states may deviate from the estimated values when the system is driven near its

physical limitation. Therefore, it is necessary to compensate such uncertainties by
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real-time state estimation, rendering importance to on-line constrained feed-rate

optimization [64, 65].

To utilize minimal-time contour tracking in real time, a contour tracking feed-

rate optimization structure is proposed as shown by the block diagram in Figure

4.1. A multi-stage plant P is controlled by a controller C to track reference

signal r, where r is derived by a reference governor that considers the contour

profile S and system limitations h. For a known contour S, reference r can be

determined given system dynamics and specified constraints. When calculated off-

line, this method can avoid possible real-time implementation latency [66]. For

the situation when modeling error and measurement noise are not negligible, the

observer provides real-time state estimation to account for the difference between

the measurement and prediction.

Closed− loop System

Reference

governor

Observer

Controller P lant

ω
S

h

r + e u y

−

Figure 4.1: Block diagram of the contour tracking system

4.2 Using Constrained Model Predictive Control For Minimum-

time Contour Tracking

To maintain system constraints within their limitation, model predictive con-

trol(MPC) has been widely used for explicit constraint handling and system dy-

namics incorporation. Because robotics and automation systems are typically

controlled by a digital system at fixed sampling rate, the values of position mea-
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surement y, reference signal r, contour S, and constraints h are structured into

discrete finite vectors in the prediction horizon at each sampling time tj :

y =











y(tj)

y(tj +∆t)
...

y(tj + (n− 1)∆t)











r =











r(tj)

r(tj +∆t)
...

r(tj + (n− 1)∆t)











S =











S(τ(tj))

S(τ(tj +∆t))
...

S(τ(tj + (n− 1)∆t))











h =











h(tj)

h(tj +∆t)
...

h(tj + (n− 1)∆t)











MPC generates the system input that optimizes an objective function based on

the predicted system behavior and contour model within a finite moving horizon

[49]. For the minimal-time contour tracking application, a time consumption index

F is desired to be minimized, while function G models the system behavior that

is constrained by h:

min
r

F (r,S,y)

s.t. G(r,S,y) � h

The solution to the optimization problem is updated iteratively as the system

propagates. At each iteration, the system behavior is predicted up to n steps

ahead and the derived control signal is applied up to nc steps. The solution to

the constrained optimization problem updates the corresponding reference signal

r to the ns-dimensional multi-stage system iteratively within the control horizon:

53



r(tj : tj + (nc − 1)∆t)

= [r(1 : ns : nc) r(2 : ns : nc) . . . r(ns : ns : nc)]

4.3 Convex Objective Function

The contour tracking task is desired to solve a time-optimal problem by driving the

system at maximum allowable feed-rate. Automatic feed-rate generation is first

approached by the heuristic method shown in equation 4.1, where ǫpmax denotes

the maximum predicted contour error from previous iteration. µ and σ are the

adaptive feed-rate scheme parameters to tune [52].

f(ǫpmax) =







ǫpmax , ǫpmax ≥ µ

e−((ǫpmax−µ)2/2σ2)ǫpmax , ǫpmax < µ
(4.1)

This approach introduces non-linearity and one-step delay to the model pre-

dictive controller. Also, this type of feed-rate generation is excluded from the

optimization process. These restrictions result in conservative feed-rate design.

To achieve explicit feed-rate optimization, explicit cycle time minimization for

the whole trajectory was proposed [55] as shown in equation 4.2. Though this ob-

jective function explicitly minimizes time consumption, it needs to be discretized

by grid points and the reciprocal of feed-rate creates singularity at low speed.

T =

∫ T

0

1dt =

∫ s(T )

s(0)

1

ṡ
ds ≈ ΣK−1

k=0

2∆sk

|ṡk|+ |ṡk+1|
(4.2)

To allow real-time optimization to compensate for measurement noise, distur-

bances, and modeling error, the constrained minimization structure is desired to

use a computationally efficient structure. By formulating the time index into a

quadratic norm and system constraints into the linear inequality form, this dis-
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sertation realizes time-optimal control for high sampling rate systems.

Because aggressive feed-rate shortens the time consumption, the objective

function can be designed to maximize the feed ȳi within the prediction horizon.

However, maximizing the end feed directly results in a non-convex objective func-

tion and requires barrier method to implement [61]. For convexity and real-time

implementation, a convex objective function is proposed to achieve this goal by

minimizing the distance between the end feed ȳi and the maximum allowable feed

S(τmax) as shown in Equation 4.3:

min
r

||S(τmax)− y(tj + (n− 1)∆t)||22 (4.3)

The value of τmax determines the maximum propagation of the contour index

τ within the prediction horizon, which can be related to the maximum physical

feed-rate by the Spline function:

fmax = Ṡ(τmax) =
dS

dτ

dτ

dt

∣
∣
∣
∣
τ=τmax

≈
dS(τmax)

dτ

(τmax − τ(tj + (n− 2)))

∆t

4.4 System Dynamics

To estimate the system dynamics within the finite preview, the system plant is

modeled as a discrete linear-time invariant (LTI) model as shown in equation 4.4.

x(t +∆t) = Ax(t) +Br(t)

y(t) = Cx(t) +Dr(t)
(4.4)

Based on this LTI model, the relation between the input r and the output y
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within the finite interval for a given initial condition x0 can be mapped by matrix

H1. Similarly, the control signal u can be determined by a mapping matrix H2

with the initial condition c0.

y = H1r+ X1x0
︸ ︷︷ ︸

R3

u = C1(I −H1)
︸ ︷︷ ︸

H2

r+ X2c0 − C1X1x0
︸ ︷︷ ︸

−R2

where

H1 =











D 0 . . . 0

CB D . . . 0
...

...
. . .

...

CAn−2B . . . CB D











C1 =











Dc 0 . . . 0

CcBc Dc . . . 0
...

...
. . .

...

CcA
n−2
c Bc . . . CcBc Dc











X1 =











C

CA
...

CAn−1











, X2 =











Cc

CcAc

...

CcA
n−1
c











The prediction error can be estimated by the Luenberger observer, which pro-

vides the real-time estimation of the initial system states x0 based on sensor

measurements:

x̂+
0 = Ax̂0 +Br + L(y − Cx̂0) (4.5)
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4.5 System Dynamics and Constraints

For minimal-time contour tracking applications, restrictions are formulated into

inequality constraints within the finite preview horizon. The model predictive

controller generates trajectory profile subject to important physical limitation of

the system, including control signal saturation, velocity limitation, maximum con-

tour error, and monotonic feed. Signal saturation is important to consider due to

amplifier limitations, which can be monitored by voltage command u. Maximum

velocity is also important and is monitored by the numerical differentiation of

position measurement y. These constraints are formulated into inequality con-

straints:

− umax ≤ u ≤ umax (4.6)

− vmax ≤ Dpy ≤ vmax (4.7)

Geometric tolerance can be determined by the maximum contour error al-

lowed. Defined as the radial positioning error, contour error can be determined

by the distance between the current machine position y and the closed point on

the reference contour S as shown in equation 4.8. For computational efficiency,

the solution to this minimization problem is often approximated by the projection

method as shown in Figure 4.2 [44, 49]. By linearizing the Spline function with

respect to the nodal point τ̄ , the contour error in the neighborhood can be deter-

mined by projecting the absolute error onto the orthogonal line of the linearized

contour function.
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ǫ = min
τ

||S(τ)− y||

≈
q⊥
|q⊥|

· (S(τ)− y)
︸ ︷︷ ︸

e

= qτe

(4.8)

where

q⊥ ·
d

dτ
S(τ) = 0

S(τ) = Σm
j=0Kj,kτ

j

≈ Σm
j=0Kj,kτ̄

j + Σm
j=0Kj,kjτ̄

j−1δτ

Figure 4.2: Schematic diagram of the contour projection

The linearized Spline contour within the finite preview can then be expressed

by the vector form. The contour matrices Kτ and Kv are updated by the next

segment’s Spline parameters when the prediction horizon crosses segments. Based

on the contour trajectory and system dynamics, tracking error e and contour
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tracking error ǫ can be derived by the contour data S and position y within the

moving horizon:

ǫ = Qp(S− y)

= Qp(Kτ +Kvδτ −H1r− X1x0)

= Qp

[

Kv −H1

]




δτ

r



+QpKτ −QpX1x0
︸ ︷︷ ︸

R

≤ ǫmax

(4.9)

where

δτ =











τ(tj)− τ̄ (tj)

τ(tj +∆t)− τ̄ (tj +∆t)
...

τ(tj + (n− 1)∆t)− τ̄ (tj + (n− 1)∆t)











Because the stage is only desired to move in the progressive direction, mono-

tonic feed constraint is formulated to allow the τ index to only increase at each

iteration as shown in Equation 4.10.

τ(tj) ≥ τ̄ (tj)

τ(tj + i∆t) ≤ τ(tj + (i+ 1)∆t)

τ(tj + (n− 1)∆t) ≤ τmax

(4.10)

Due to the monotonic feed constraint and MPC structure, index τ increases

gradually when it propagates by the sampling time ∆t. Therefore, the nodal

points can be selected as previous iteration’s results with one step of lookahead

as shown in Figure 4.3.
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Figure 4.3: Nodal point propagation

4.6 Optimization Problem Formulation

By incorporating the LTI system dynamics and linearized Spline function, the

minimal-time objective function becomes an affine function of the reference r and

contour index δτ :

S(τmax)− y(tj + (n− 1)∆t)

= Qn(Kτ +Kvδτmax −H1r−X1x0)

=
[

0 −QnH1

]




δτ

r



+Qn

[

Kv Kτ −X1

]








δτmax

I

x0








︸ ︷︷ ︸

Ro

(4.11)

The constrained feed-rate optimization problem can be formulated by using the
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objective function as the norm of Equation 4.11 subject to the control signal sat-

uration, maximum velocity, contour error bound, and monotonic feed constraints

shown in equation 4.6, 4.7, 4.9, and 4.10, respectively:

min
r,δτ

||
[

0 −QnH1

]




δτ

r



+Ro||
2
2

subject to
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−QpKv
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︸ ︷︷ ︸

G








δτ

r








︸ ︷︷ ︸

xp

�







































τs,1 − τ0

τs,2 − τs,1
...

τs,n − τs,n−1

δτmax

ǫmax −R

ǫmax +R

vmax − R3

vmax +R3

umax +R2

umax − R2







































︸ ︷︷ ︸

h

The scale of this constrained optimization problem is decided by the horizon

size n. Ideally, the horizon length is desired to incorporate the whole trajectory.

However, long horizon length requires more computation and limits the feasible

sampling rate of the real-time implementation. Because n determines the length
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of system dynamics incorporated in the model predictive controller, it needs to

be long enough to capture the system dynamics in time domain. When long

horizon length is too computationally intensive to be implemented on-line but real-

time adjustment is desired, a down-sampling interpolation scheme is implemented,

where xp is interpolated by a coarser vector x̃p by a ratio of α:

xp(i) = x̃p(k) +
i− (k − 1)α + 1

α
(x̃p(k + 1)− x̃p(k))

k = floor((i− 1)/α+ 1

The down-sampling operator creates a mapping matrix Sd between the full-size

vector xp and the down-sampled vector x̃p, allowing the quadratic cone problem to

be solved with reduced amount of states. This structure allows the time-optimal

contour tracking to be solved as a quadratic cone programming problem [61]:

min
xp

(1/2)x̃T
p S

T
d QSdx̃p + qTSdx̃p

subject to

ST
d GSdx̃p + s̃ = ST

d h

s̃ � 0

For constraints related to LTI system dynamics, this down-sampling method

is equivalent to the sampling period adjustment in time domain. The constraint

values at the original sampling period ∆t can be estimated by the inter-sample

behavior at down-sampled period ∆T . Demonstrated by the continuous-time

dynamics (Ac, Bc, Cc, Dc) subject to constraint hs, this formulation applies to the

contour error, signal and velocity limitations. When the system strictly satisfy the

inequality constraint at sampling period ∆T , the following inequality conditions

must hold:
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Csxs ≤ hs

Cse
Ac∆Txs + Cs

∫ ∆T

0

eAcτdτBcr ≤ hs

Equation 4.12 describes systems where average velocity within ∆T is less than

in ∆t when given a step input. This condition is satisfied by many machines with

high inertia. If the system satisfies the property shown in Equation 4.12, Equation

4.13 holds when the system is sufficiently near a positive boundary hs. A special

case is when Cse
Actxs is convex, Ks is

1−∆t
∆T

.

1

∆T
Cs

∫ ∆T

0

eAcτBcdτ

︸ ︷︷ ︸

β∆T

≤
1

∆t
Cs

∫ ∆t

0

eAcτBcdτ

︸ ︷︷ ︸

β∆t

(4.12)

Cse
As∆txs ≤ KsCsxs +

∆t

∆T
Cse

Ac∆Txs

≤ KsCsxs +
β∆t

β∆T
Cse

Ac∆Txs

(4.13)

Given the properties above, the inter-sample behavior can be evaluated and

constraints can be monitored as shown in Equation 4.14. Ks reflects the transient

response the system propagates since the last sampling point, while β∆t/β∆T ap-

proaches 1 when the next sampling time occurs. This inter-sample behavior anal-

ysis can be applied to the system dynamics constraints, including contour error,

control signal, and velocity constraints, while monotonic feed constraint is always

satisfied due to linear interpolation.
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Cse
Ac∆txs + Cs

∫ ∆t

0

eAcτdτBcr

= Cse
As∆txs + β∆tr

≤ KsCsxs +
β∆t

β∆T

Cse
Ac∆Txs + β∆tr

= KsCsxs +
β∆t

β∆T

(
Cse

Ac∆Txs + β∆T r
)

≤

(

Ks +
β∆t

β∆T

)

hs

(4.14)

4.7 Real-time Robustness and Efficiency

For real-time optimal control, the efficiency of the constrained optimization solver

is important for sampling rate improvement. Primal-dual solver has been widely

used for the benefit of computation efficiency and convergence rate [61]. The

primal-dual solver iterates until the error residual converges to the defined toler-

ance or when the maximum iteration is reached:
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Primal-dual Interior Point Algorithm

Set initial x z s values

Set k=1

Repeat until |r| ≤ rmax or k ≥ kmax or sTz ≤ emax

1. Calculate the updating step







∆x

∆z

∆s







=








−Q −GT 0

G 0 I

0 λ0W λ0W−T








−1 






q +Qx−GTz

h− s−Gx

−λ0λ+ σµe








2. Update parameters

λ := W−Ts = Wz

µ = λTλ/θ = sT z/θ

W = diag
[√

s./z.
]

3. Update values

αp = min(1,−1/min(∆s/s))

αd = min(1,−1/min(∆z/z))

α = min(αp, αd)

σ = ((s+∆s)T (z+∆z)/sTz)3

(x, z, s) := (x, z, s) +min(1, 0.99α)(∆x,∆z,∆s)

4. Calculate residual r

r =




0

s



−




Q GT

−G 0








x

z



−




q

h





k:k+1
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The primal-dual solver efficiency is mainly determined by the hardware limita-

tions, matrix dimensions, solver efficiency, and initial condition. Given the same

hardware and problem formulation, the less iteration it requires, the faster the

maximum allowable sampling rate can be. Computation time can be shortened

by initializing the primal-dual solver at the estimated x, z, and s values. This

warm start technique has been used and studied to improve computational effi-

ciency of constrained optimization problems [62]. Because the prediction updates

iteratively, the change in boundary condition is gradual. Therefore, initiating

the algorithm from solution from last iteration can greatly shorten computation

time [63]. For the minimal-time task, the system inevitably operates near the

limitation boundaries especially at high curvature areas. When the warm start

initializes the primal-dual solver near constraint boundaries, directly applying so-

lutions from last iteration can possibly be initialized at infeasible points, resulting

in negative s and z.

To avoid such infeasible initial condition, a residual regulation method is de-

veloped by initiating the warm-start algorithm at the position of the same error

residual r with the updated parameters. Because the residual decreases as the

algorithm propagates on the central path as shown in Figure 4.4, the error resid-

ual can be regulated within the desired residual bound. Equation 4.15 shows the

derivation of error residual.




rz

rs



 =




0

s



−




Q GT

−G 0








x

z



−




q

h



 (4.15)

By applying warm-start x value from previous iteration, the corresponding

warm-start s and z can be derived. Using this residual regulation method, the

primal-dual solver is guaranteed to start from a feasible point:
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s = rs + h+Gx

z = z− − (GT )+(rz + q +Qx +GTz−)

Figure 4.4: Illustration of the warm start technique with residual regulation

Another important aspect of real-time constrained optimization is solver effi-

ciency. The more efficient the solver is, the higher the sampling rate can be. While

the most time consuming step is the matrix inversion in step 1, an algebraic matrix

inversion method is proposed as shown in Equation 4.16.








A11 A12 A13

A21 A22 A23

A31 A32 A33















−Q −GT 0

G 0 I

0 λ0W λ0W−T







=








I 0 0

0 I 0

0 0 I








(4.16)

where
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M = Q +GTW−1W−TG

A11 = −M−1

A21 = −W−1W−TGM−1

A31 = GM−1

A12 = −A11G
TW−1W−T

A22 = −A21G
TW−1W−T −W−1W−T

A32 = −A31G
TW−1W−T + I

A13 = A11G
TW−1λ−0

A23 = W−1λ−0 + A21G
TW−1λ−0

A33 = A31G
TW−1λ−0

The dimension of matrix inversion is reduced to the inversion of matrix M .

The advantage of the algebraic matrix inversion can be evaluated by the FLOP

counts comparison with the generic primal-dual solver algorithm: for a problem

with nc states and mc inequality constraints the generic matrix inversion requires

approximately (nc + 2mc)
3 of multiplication, while the proposed matrix inver-

sion requires only n3
c + 5mcn

2
c computation. This approach prevents the increase

in constraints to affect the size of matrix inversion, which can greatly improve

computational efficiency.

The improvements in solver efficiency and iteration reduction are demonstrated

on a dual-core 2.4 GHz real-time target running LabVIEW Real-time with 4G of

RAM as shown in Table 4.1. By incorporating analytical matrix inversion into

the down-sampled (5 points) constrained minimal-time contour tracking problem

with warm start, the real-time target is able to achieve 1 kHz of sampling rate
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for a two-dimensional contour. This improvement allows minimal-time contour

tracking control to be applied on systems controlled at high sampling rate, which

is common for robotic systems.

Table 4.1: Model predictive control solver efficiency

Solver Frequency[Hz]

Primal-dual(pd) 0.0088

pd with warm start(ws) 0.088

pd with ws and analytical inversion(ai) 1

pd with ws, ai, and down-sampling 1000

4.8 Experimental Results on a Nano-precision Multi-axis

Positioning Stage(MAPS)

The time-optimal contour tracking algorithm is verified on a Multi-Scale Align-

ment and Positioning System (MAPS) controlled at 1 kHz sampling rate. The

MAPS used in this dissertation was designed for nano-manufacturing such as

atomic force microscopy or imprint lithography [57, 58]. As shown in Figure

4.5, the wafer holder is levitated primarily by the air bearing system with pas-

sive in-plane damping. The in-plane motion allows MAPS to freely move in a

two-dimensional plane with rotational regulation. The system dynamics can be

evaluated by the impulse response shown in Figure 4.6. The coupling effect exist

between x and y due to the rotational degree of freedom.
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Figure 4.5: Multi-Scale Alignment and Positioning System
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Figure 4.6: Impulse response of MAPS
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In order to perform fast AFM and high throughput nano-lithography, MAPS is

desired to track a two-dimensional in-plane contour while regulating the rotational

angle. The faster the stage travels, the higher the throughput of the system is. The

in-plane motion is measured by the interferometer sensor as the distance between

the target mirrors on the wafer holder and the receivers. Because it is sensitive to

misalignment as the stage travels [59, 60], axial velocity measurement of the stage

is limited by the functional range of the interferometer. The maximum allowable

contour error, velocity, feed-rate, and command signal saturation are defined by

the values shown in table 4.2.

Table 4.2: Boundary parameters

Parameters ǫ vmax umax

Values 10nm 0.5 um/sec 0.2 V

Diamond-shape contour is chosen to demonstrate the most critical condition

for minimal-time contour tracking. At straight line regions the system needs to

propagate as fast as possible, which naturally drives the system near the velocity

boundary. At sharp corners the system needs to decelerate predictively to avoid

large contour error overshoot. The performance of the contour tracking feed-rate

optimization is demonstrated by tracking a 12-segment diamond-shape contour.

By using the defined constraints, 0.05 seconds of the prediction horizon, identified

plant model, and Spline contour, the constrained model predictive control prob-

lem can be solved and generates reference signal r iteratively at 1 kHz. Figure

4.7 shows the minimal-time contour tracking results from both simulation and ex-

periment. It is shown that though off-line calculation generates smooth feed-rate,

the experimental result demonstrates the effect of real-time correction when the

system is subject to modeling error and measurement noise.
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Figure 4.7: Trajectory Profile r for Diamond-shape Contour Tracking

Figure 4.8 shows the zoomed-in views for the straight-line and corner areas

of the diamond shape contour tracking experiment. It is shown that the stage

is able to track the diamond-shape contour both at the straight-line region and

high-curvature area with bounded contour error.
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Figure 4.8: Measured Position and Boundary

The contour error and axial velocity profile corresponding to the diamond-

shape contour tracking task are demonstrated in Figure 4.9. By comparing the

simulation and experimental results, it is shown that the real-time model predic-

tive controller is able to reject measurement noise and disturbance. The contour
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error is suppressed to be near the given limit at the presence of measurement

noise and disturbance. The feed-rate profile is shown able to slow down the stage

before it reaches the high curvature areas, and allows the system to approach the

maximum velocity boundary at straight line region to maximize the feed-rate.
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Figure 4.9: Simulated(black) and measured(red) contour error and axial velocity

when fmax = 0.85um/sec

The constraint violation results are shown in Figure 4.10. At straight line

regions simulation shows the system is driven near the velocity constraint. During

experiments, however, modeling error and measurement noise would cause the

system to oscillate near the constraint boundary and the system relies on the

real-time correction to compensate for the difference between the model-based

prediction and measurement.
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Figure 4.10: Active Constraints from simulation(black) and experiment(red)

Figure 4.11 shows the system response when the maximum feed-rate fmax is

feasible. It is shown that when the feed index τmax can be reached within the

finite preview, the velocity constraint would not be triggered. The trajectory

profiles of the two maximum feed-rates are shown in Figure 4.12. It is shown that

feed-rate slows down at sharp corners, and the total cycle time is increased by

constraining the maximum feed-rate. This offers an extra degree of freedom for

feed-rate design, which is useful for applications that are desired to have bounded

maximum feed-rate due to measurement noise or local feed-rate constraints.
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Figure 4.11: Simulated(black) and measured(red) contour error and axial velocity

when fmax = 0.425um/sec
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Figure 4.12: Trajectory profile for fmax = 0.85um/sec (red-dotted) and fmax =

0.425um/sec (blue)
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Figure 4.13: Horizon length effect on contour error and cycle time

Figure 4.13 shows the effect of horizon length on cycle time and contour error

measurement, while each condition is repeated 10 times to validate the repeatabil-

ity of the system. As shown in this figure, when the horizon length increases, the

cycle time is improved while the contour error remains bounded. Because of the

down-sampling effect, contour error exceeds the assigned boundary at 10 nm for

the horizon longer than 0.06.sec. However, this improvement saturates after the

horizon length exceeds 0.05sec. Because shorter cycle time means faster transvers-

ing, the corresponding modeling error drives the system near the neighborhood of

the assigned contour error constraint.
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CHAPTER 5

Conclusions

In this dissertation important topics in precision motion sensing and control have

been studied through constrained optimization, including sub-count sensing, con-

straint handling, and cycle time minimization. These algorithms were imple-

mented and verified on nano-precision positioning stages.

In chapter 2 the sub-count estimation beyond sensor resolution is studied to

improve precision motion tracking performance especially when synchronous mea-

surement update is unavailable. To improve robustness and achieve fast conver-

gence, a model-based estimation method with continuity restoration. By per-

forming continuity correction on important measured and unmeasured states at

each encoder trigger. This approach provides more accurate estimation beyond

sensor resolution without relying heavily on the past data measurements as the

non-model-based methods. The performance was verified on a multi-axis stage

used on Plasmonic Imaging Lithography Machine (PILM). The algorithm is able

to provide sub-count estimation with 25% − 50% of error RMS in position and

13%− 26% in velocity, and 1.1− 1.6 times of correlation in position and 0.8− 1.1

in velocity compared to the quantized measurement.

Constraint handling for challenging reference tracking is discussed in chapter

3. To prevent the system from exceeding their physical limitations, constrained

model predictive control was proposed. Due to the high computational require-

ment for constrained optimization with long horizon, a feedforward model pre-

dictive control method is formulated to be augmented with a robust feedback
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controller, which is demonstrated, by but not restricted to, a dual-stage fast tool

servo system. The FF-MPC algorithm can be applied to other multi-axis ap-

plications, such as positioning and contour tracking problems. By applying the

FF-MPC on a system with a robust feedback controller, modeling uncertainty can

be well handled.

To improve productivity for fabrication processes, a time-optimal convex model

predictive control method has been developed and is discussed in chapter 4. Cy-

cle time is minimized subject to contour error, velocity, control saturation, and

monotonic feed constraints. Because time-optimal control often drives the system

near its physical limitation, a robust and efficient quadratic programming solver

is developed for real-time adjustments. This proposed algorithm is verified on a

Multi-Scale Alignment and Positioning System tracking a diamond-shape quintic

Spline contour at 1 kHz. It is shown able to regulate the error residual when the

system is driven near its physical limitation with nano-scale contour precision.

As a summary, optimization and constraint handling becomes more and more

important for precision motion sensing and control. Because of the advancement

in computing systems, real-time optimization and constraint handling have been

made possible. This allows precision systems to compensate for un-modeled dy-

namics and reject external disturbances. This dissertation has demonstrated the

use of constrained optimization on improving tracking error and cycle time by

sub-count estimation, feedforward MPC, and minimal-time contour tracking.
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