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ABSTRACT OF THE THESIS 

 

Elucidating the mechanism by which aneuploidy interferes with immune 

response during tumor progression 

by 

Su Xian 

Master of Science in Bioengineering 

 

University of California, San Diego, 2018 

 

Professor Hannah Carter, Chair 

Professor Yingxiao Wang, Co-Chair 

 

 Cancer cells frequently carry chromosomal abnormalities, called aneuploidy. 

Aneuploidy has been reported to have association with impaired immune response in 

tumors. Various studies focus on investigating aneuploidy in cancer to gain insights into 

potential therapeutics for cancer. Endoplasmic reticulum (ER) stress, which is as 

prevalent as aneuploidy in tumor cells, has also been suggested to have potential 

impact on immune surveillance during tumor progression. We have experimentally 

validated that drug induced aneuploidy in vitro leads to an increase of ER stress in cells, 

which will then initiate the unfolded protein response (UPR). In this thesis we provide a 

new perspective, investigating ER stress as the potential mechanism by which 

aneuploidy helps tumor cells escape from immune response during progression. We 
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confirmed the activation signal from 3 branches of UPR and among which, PERK 

remained universally unperturbed across 31 cancer types. The activity of PERK 

downstream transcription factor, EIF2Α and DDIT3, were highly correlated with 

aneuploidy level, suggesting cross talk between the PERK branch pathway and 

aneuploidy state. Partial correlation testing and linear models were applied to confirm 

the immune-suppressive function of EIF2α and DDIT3. These results support that the 

PERK pathway could potentially be a new therapeutic target in cancer treatment. 
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Chapter 1 Introduction 

1.1 Aneuploidy 

 Aneuploidy, a term that used to describe chromosome abnormality, depicts a 

phenomenon where the cell does not maintain the correct number of chromosomes 

compared with healthy cells [1]. For example, a normal human cell should have 46 

chromosomes, while on average colorectal cancer cells are reported to have 59 

chromosomes [2]. 

 

Figure 1. Example of aneuploidy. A healthy human cell karyotype with 46 chromosome 
numbers (left). In comparison, a colorectal cancer cell karyotype with 59 chromosomes 
(right), illustrating a frequent characteristic of cancer cells, namely aneuploidy. 

 

The presence of aneuploidy could be caused during cell divisions due to the 

inappropriate separation of chromosomes resulting in unbalanced chromosome 

numbers in daughter cells [1]. Both loss and gain of chromosome copy numbers are 

considered aneuploidy. Interestingly, aneuploidy is fairly prevalent among various 

cancers. Previous studies also showed that aneuploidy plays role in tumorigenesis [3]. 

Davoli et al found that aneuploidy could impair immune responses in tumor cells to 
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promote their survive. According to Davoli et al, high levels of aneuploidy are correlated 

with poor immune responses. However, the mechanism by which aneuploidy could 

interact with immune reactions has not been revealed. 

 During cancer cell progression, the presentation of aneuploidy is also 

accompanied by cellular stress, including proteotoxic stress, oxidative stress, etc. [4]. 

Proteotoxic stress will produce a large amount of protein that is miss-folded due to the 

increase of folding demand that overwhelms the endoplasmic reticulum (ER) loading 

capacity. In this case ER stress is initiated. 

Zanetti et al describe evidence that in a scenario of aneuploidy induced 

endoplasmic reticulum overload, ER stress can result in the generation of a cell-

nonautonomous factor that acts to suppress anti-tumor immunity [5]. The ER represents 

an early step in the process by which cells export functional proteins to sustain cellular 

homeostasis. Once the balance of protein production and modification has been broken, 

cells will suffer various functional abnormalities including immune deficiency due to a 

lack of production of major histocompatibility complex class I (MHCI) molecules in T 

cells [6]. Under ER stress, the cells themselves are trying to return to homeostasis, thus 

a rescue pathway called the unfolded protein response (UPR) is activated to restore the 

proper function of the ER [7]. 

The UPR has three downstream branch pathways. Usually, in the presence of 

unfolded protein or miss-folded protein, the ER will activate the UPR to produce more 

chaperones to assist protein-folding, and simultaneously supress transcription levels to 

reduce the ER load [7]. The Immunoglobulin Heavy Chain-Binding Protein (Bip), is a 

key regulator of the UPR. During normal conditions, the UPR is inactivate and Bip binds 
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with 3 sensor proteins called IRE1α, ATF6 and PERK. However, due to the higher 

binding affinity between Bip and unfolded or miss-folded proteins, in the presence of 

unfolded and miss-folded proteins, Bip will bind with unfolded or miss-folded proteins to 

assist the folding. When Bip leaves the 3 sensors, IRE1α, PERK and ATF6 will then 

induce the downstream pathway to start the “rescue” of ER function [7]. 

IRE1α auto-phosphorylates itself, oligomerizes and activates its 

endoribonuclease function. This will generate a splice isoform of X-box binding protein-1 

(XBP1s), which acts as a transcriptional regulator to produce various ER chaperones 

that promote proper ER protein folding activity [7]. 

PERK homodimerization and autophosphorylation activates its cytoplasmic 

kinase domain which can phosphorylate eukaryotic initiation factor 2α (EIF2α). EIF2α 

acts as a regulator that reduces global mRNA translation. This helps to attenuate the 

amount of protein entering the ER to further resolve the stress [7]. 

ATF6 translocate to the Golgi apparatus and is cleaved by Golgi enzyme site 1 

proteases (S1P and S2P), which converts it into its functional form. It then travels to the 

nucleus and induces genes that can increase the capacity of the ER to help alleviate ER 

stress [7]. 

Zanetti et al. found that when co-cultured with high ER stress cancer cells, 

dendritic cells present in an inactivated state that cannot generate a robust immune 

response [5]. Thus, ER stress could potentially play roles in tumor growth and impaired 

immune responses. In several previous studies and reviews, induction of the UPR was 

also associated with a reduction in major histocompatibility complex I (MHCI) 

production, and a significantly increased pro-inflammatory response [5]. Thus both 



 

4 
 

aneuploidy and ER stress are show evidence of a correlation with impaired immune 

response. This lead us hypothesize that genomic instability and ER stress interact with 

each other to help cancer cells evade immune surveillance. 

1.2 The Bridge Between Aneuploidy And Immune 

Response 

 As previously mentioned, an impaired immune phenotype was witnessed in high 

aneuploidy tumors in a previous study [3]. While it is not clear how aneuploidy, the 

change in copy number of chromosomes, causes an escape from immune response in 

cancer cells. Here we posed this question from a new perspective, via the careful study 

of ER stress. Aneuploidy is evidenced to have association with various cell stresses 

including proteotoxic stress which would cause an overload of the ER lumen and induce 

the ER stress [5]. ER stress will activate a rescue response called the UPR, which is 

been reported to have association with impaired immune response [5]. For example, the 

artificially induced accumulation of proteins in B cells resulted in a UPR and 

upregulation of MHC class II levels. However, the cells displayed fewer high-affinity 

peptide/MHC class II complexes [8]. Moreover, in mouse thymoma, palmitate or glucose 

deprivation induced ER stress was found to down-regulate MHC class I antigen 

presentation [6].  

 In this scenario, we posit that, ER stress induced UPR could be the bridge that 

connects the impaired immune response with aneuploidy, motivating investigation of 

different aspects of ER stress to identify mechanisms by which aneuploidy interferes 

with immune response.  
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Figure 2. The main hypothesis. Aneuploidy, through its interaction with ER stress and 
the UPR pathway, disturbs the aniti-tumor immune response which results in tumor 
progression. 
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Chapter 2 Methods 

2.1 Quantifying Aneuploidy 

 In the quantification of aneuploidy, we downloaded the processed Affymetrix 

SNP6 data from The Cancer Genome Atlas (TCGA). Each processed Affymetrix SNP6 

data would have a normal sample and tumor sample from the same patient. The 

processed data provides information of copy numbers quantity for every small fractions 

of chromosome, which is called segmentations. In the processing methods, the normal 

sample was used as a reference, and the relative amplitude of segmentation fold 

change is calculated between tumor and normal samples to represent the copy number 

change level. The rest of the analysis was based on the relative fold change between 

tumor and normal samples in order to quantify aneuploidy. 

In this study, we defined the somatic copy number alteration (SCNA) scores for 

each patient. These scores cover three types of copy number aberration: focal level, 

arm level and chromosome level events. We applied a signal cutoff of 0.1 fold change in 

both directions (meaning gain or loss) according to Beroukhim et al. [8].  

For each chromosome, the focal level describes copy number changes that 

affect a very small fraction of a chromosome (less than an arm level, either 

chromosome p arm or chromosome q arm, are quantified as focal level SCNA), which is 

also considered as the result of many selection events during evolution of the cancer 

genome [9]. Thus, a segment in the processed Affymetrix SNP6 data that spans a 

length less than either the chromosome p arm or q arm satisfying the 0.1 signal cutoff 

would be quantified as a focal SCNA event. For instance, a small fraction of 
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chromosome 1q amplified with a fold change of 0.3 would be quantified as 1 focal level 

gain. 

Arm level SCNAs are copy number changes that span an entire chromosomal 

arm (either chromosome q arm or p arm). Thus, in the processed Affymetrix data, all the 

segmentations within a chromosome p arm or q arm that sharing the same direction of 

fold change that satisfying the threshold would be quantified as an Arm SCNA event. 

For example, all segments within chromosome 1q shows a fold change less than -0.1 

would be quantified as 1 arm level loss. 

Whole chromosome deletion or duplication is counted as a chromosome level 

SCNA which means for all segments within this chromosome, they all satisfy the 

threshold in the same direction. 

In total, the collected Affymetrix SNP6 array data from TCGA have 8268 samples 

including 31 cancer types. After quantifying the 3 types of SCNA events for each 

patient, we summed up the number of events that observed (including both gain and 

loss) within each type of SCNA as the corresponding SCNA score. For example, for 

each patient 𝑗 with 𝑖 numbers of observation of events happening in focal, arm and 

chromosome SCNA, the focal SCNA, arm SCNA and chromosome SCNA are 

calculated using the formula: 

 

𝑓𝑜𝑐𝑎𝑙 𝑆𝐶𝑁𝐴𝑗 = ∑ ∣ 𝑓𝑜𝑐𝑎𝑙 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟𝑖 ∣

𝑖

 

 

𝐴𝑟𝑚 𝑆𝐶𝑁𝐴𝑗 = ∑ ∣ 𝐴𝑟𝑚 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟𝑖 ∣

𝑖
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𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑆𝐶𝑁𝐴𝑗 = ∑ ∣ 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑐𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟𝑖 ∣

𝑖

    

 

Figure 3. Example of quantification of SCNAs. In this figure, each green and black 
section corresponds to a different chromosome. Chromosomes are sorted from 1 to 22 
from left two right, which consecutive chromosomes alternating in color. The y-axis 
represents the log2 fold change of SNP marker copy number. The red line shows the 
mean value of copy number for each chromosome arm or segment. Blue arrows 
indicate focal SCNAs; green arrows indicate arm level SCNAs; red arrow indicates a 
chromosome level SCNA. For the amplification and deletion threshold, we set a 
threshold of 0.1 fold change in either direction (0.1 or -0.1). 

 

 Then for the subsequent study, we generated a single score by adding up z-

scored focal, arm and chromosome level SCNA counts for every sample according to 

the following formula: 



 

9 
 

𝐴𝑖 = 𝑧𝑠𝑐𝑜𝑟𝑒(𝑓𝑜𝑐𝑎𝑙𝑖) + 𝑧𝑠𝑐𝑜𝑟𝑒(𝑎𝑟𝑚𝑖) + 𝑧𝑠𝑐𝑜𝑟𝑒(𝑐ℎ𝑟𝑖), 

where the 𝑧𝑠𝑐𝑜𝑟𝑒 is calculated by: 

𝑧𝑠𝑐𝑜𝑟𝑒(𝑥) =
(𝑥 − 𝑥𝑚𝑒𝑎𝑛)

𝑠𝑡𝑑(𝑥)
 

 

The 𝑠𝑡𝑑(𝑥) is the standard deviation of x in the distribution. In this way 𝐴𝑖 generally 

represents the total aneuploidy level resulting from 3 features (focal, arm and 

chromosome). This formula is applied the same from Davoli et al [3]. 

 Apart from the 𝐴𝑖 score, we also generated a total SCNA score for every 

individual sample by the formula: 

 

𝑆𝐶𝑁𝐴𝑖 = 𝑠𝑐𝑎𝑙𝑒𝑑(𝑓𝑜𝑐𝑎𝑙𝑖) + 𝑠𝑐𝑎𝑙𝑒𝑑(𝑎𝑟𝑚𝑖) + 𝑠𝑐𝑎𝑙𝑒𝑑(𝑐ℎ𝑟𝑖). 

 

The 𝑠𝑐𝑎𝑙𝑒𝑑 is calculated by 

𝑠𝑐𝑎𝑙𝑒𝑑(𝑥) = 10 ∙
(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 

 

Under this formula, 3 features are scaled in the same range and sum up to be the 

SCNA score. The SCNA score is more useful when applying correlation study or 

regression models because it does not have a positive negative cancelling out problems 

like the 𝐴𝑖 score we calculated above.  
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2.2  Gene Expression Data and statistical test 

 In order to test the ER stress gene expression, we collected the RNA-seq from 

TCGA and reprocessed it. The gene expression data was reprocessed by Brian Tsui in 

Carter lab, who applied a tool called sailfish, generated an expression matrix containing 

10989 samples, 27105 genes, in total 32 cancer types. Genes that playing important 

roles in the ER stress response according to previous study are selected out, including 

ERN1, ATF6, EIF2ΑK3, EIF2α, ATF4, XBP1, HSPA5, HSP90B1, MAP3K5, MAPK8, 

TRAF2, DDIT3,  DNAJB9, CYCS, MFN2, PPP1R15A. Gene expression data was 

quantified in Transcripts Per Million (TPM). Log 2 value was taken to reshape gene 

expression to normal distribution for the subsequent statistic test. Samples with 

mutations in selected genes are been removed to ensure the gene network integrity. 

For every samples in tumor types, only primary tumor site are taken into analysis. 

Normal samples in each corresponding cancer types were used in statistical analysis in 

comparison with tumor samples. After filtering samples mentioned above, the total size 

of analysis were then conducted based on 8473 tumor samples and 712 normal 

samples.  

 In order to test if ER stress is presenting among tumor, we applied statistic t-test 

to the expression level differences of selected ER stress genes between our tumor 

samples and matched normal samples. The p value is adjusted using benjamini-

hochberg methods.  

2.3 Gene Set Enrichment Analysis (GSEA) 

 After collecting of Expression data and confirming the up-regulation of HPSA5 

among several cancer types, we applied a tool called Gene Set Enrichment Analysis 
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(GSEA) which take the expression data to measure the activation of specific pathways 

[11]. 

GSEA first will rank all the genes in the expression data by their correlation with 

the selected phenotype to obtain a ranked gene list. Then the set of genes that belong 

to the user defined pathways, or pathways defined by public bioinformatics database 

were selected out in the ranked gene list. Finally, the enrichment score is calculated by 

walking through the ranked gene list. While walking through the list, when a gene that 

belongs to the pathway of interest was encountered, the enrichment score (ES) will 

goes up, or shift away from zero (according to the gene correlation with phenotype, the 

ES can also goes down). While the gene encountered does not belong to the pathway 

of interest, the score will then goes down, or shift closer to zero. After getting this score, 

the following statistic test value was obtained by permuting the gene label within the 

ranked gene list, according to the null hypothesis that those genes are randomly 

distributed in the list rather than congregation according to the correlation with 

phenotype [11].  
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Figure 4. Subramanian et al. the GSEA method overview. (A). The heat map of the 
ranked gene list according to their correlation of phenotype. (B). In the left is the position 
of each gene in gene set S in the ranked gene list. In the right the walk through the 
ranked gene list and the red line is the representation of the enrichment score (ES) 

 

2.4 Spearman Correlation 

 The spearman correlation between calculated SCNA score and the selected ER 

stress genes were calculated to test if there exists a nice correlation between SCNA 

and ER stress pathways. Since the SCNA score and the gene expression are not 

supposed to be within the same numerical scale, a spearman correlation was chosen 

instead of pearson correlation to obtain a better statistical confidence. The spearman 

correlation was calculated by the following formula: 

𝑠𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑥 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑖

√∑ (𝑥𝑖 − 𝑥)2(𝑦𝑖 − 𝑦)2
𝑖
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2.5 Wilcoxon Rank-sum test 

 The Wilcoxon rank-sum test is applied to test the downstream pathway target of 

UPR branches. The downstream of UPR branch genes are collected from REACTOME 

pathway library. Within each tumor types, samples are split into high aneuploidy group 

and low aneuploidy group. Wilcoxon rank-sum test is applied to test the downstream 

genes of UPR activation status when comparing their expressions between high 

aneuploidy group and low aneuploidy group. Since the sample size are limited and not 

following a suitable hypothesis of t test, the Wilcoxon rank-sum test is applied using the 

following formula: 

 The Wilcoxon rank-sum test ranks the all the samples from two groups together, 

with a null hypothesis that the rank should be randomly distributed rather than biased if 

they are coming from the same distribution. Then the rank of test group (in this case is 

high aneuploidy group) was summed together, as the Wilcoxon rank-sum test score. 

This score would falling into a specific distribution which fit into a table with 

corresponding p values. From that we could find the p value to validate whether the two 

groups are coming from the same distribution.  

2.6 Network analysis 

After the correlation analysis, we made a step further, taking a more systematic 

view of the ER stress structure, studied the network ER stress under the impact of 

aneuploidy. In this study, we selected genes in 3 branches of UPR pathway from the 

REACTOME pathway library, split each cancer types into high and low aneuploidy 

group based on the previous threshold we discussed ( low aneuploidy group which have 

a SCNA score < 30% of the sample, and high aneuploidy group that have a SCNA 
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score > 70% of the sample). Then for those selected genes, we conducted a differential 

co-expression analysis [12].  

First, the same method was applied in calculating the spearman correlation, but 

this time within gene pairs. The spearman correlation between gene pairs 𝑥𝑖 and 𝑦𝑗 are 

calculated and stored in a matrix with row number 𝑖 and column number 𝑗: 

 

𝐶𝑖𝑗 =
∑𝑖(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)(𝑦𝑗 − 𝑦𝑚𝑒𝑎𝑛)

√∑𝑖(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)2∑𝑖(𝑦𝑗 − 𝑦𝑚𝑒𝑎𝑛)2
 

 

Then we use the stored correlation matrix, to calculate the matrix of adjacency 

difference by the formula: 

 

𝑑𝑖𝑗 = (√
1

2
× |𝑠𝑖𝑔𝑛(𝐶ℎ𝑖𝑔ℎ

𝑖𝑗) × (𝐶ℎ𝑖𝑔ℎ
𝑖𝑗

)2 − 𝑠𝑖𝑔𝑛(𝐶𝑙𝑜𝑤
𝑖𝑗) × (𝐶𝑙𝑜𝑤

𝑖𝑗
)2|)

β

 

 

By applying this formula, differences in co-expression pattern between high / low 

aneuploidy group are been calculated. The higher value of 𝑑𝑖𝑗 represents a bigger 

differences of co-expression of gene pairs between high and low aneuploidy groups. 

Since the value of 𝑑𝑖𝑗 is between 0 and 1, the bigger beta means a smaller 𝑑𝑖𝑗 value for 

small changes in co-expression pattern. Thus, the beta in the formula can be any 

positive integer that serves as a parameter of soft threshold. After we get the matrix of 

adjacency difference 𝑑𝑖𝑗, a topological overlap matrix 𝑇𝑖𝑗 for each gene is calculated by 

the formula: 
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𝑇𝑖𝑗 = 1 −
∑𝑘(𝑑𝑖𝑘𝑑𝑘𝑗) + 𝑑𝑖𝑗

√𝑚𝑖𝑛(∑𝑘𝑑𝑖𝑘, ∑𝑘𝑑𝑗𝑘) + 1 − 𝑑𝑖𝑗

 

 

This matrix 𝑇  represents the co-expression change of 𝑔𝑒𝑛𝑒𝑖 and 𝑔𝑒𝑛𝑒𝑗 in 

between the two selected phenotype, high aneuploidy group and low aneuploidy. For 

example, a small value of 𝑇𝑖𝑗 means a big change between 𝑔𝑒𝑛𝑒𝑖 and 𝑔𝑒𝑛𝑒𝑗 between 

two phenotype. One benefit of using the topological overlap matrix is that, it can directly 

identify genes that share the same neighbors by apply a linkage cluster method on the 

𝑇𝑖𝑗 matrix. 

 After quantifying the matrix of adjacency differences for each cancer types, we 

did permutation test to assess the statistical significance of our results. The permutation 

test is done by generating a 1000 permuted index to randomly select samples, 

assuming they are from the same group that shares no differences in co-expression 

pattern. Then we calculate the pairwise module to module co-expression analysis like 

we did to the high and low aneuploidy groups to see whether the value we get from our 

previous analysis is significant enough for the following distribution of our permutation 

test (ie, p value). The importance of statistical significance test is that in the matrix of 

adjacency, we have a user-defined parameter beta, which is a soft threshold for the 

differential co-expression analysis that could impact the value of co-expression change. 

Therefore we should carefully examine the outcome of the test since we induced a beta 

that is user-defined threshold. 
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2.7 Immune Phenotype, Linear Model and Partial 

Correlation 

The immune phenotype was analyzed according to Rooney et al. [13]. In this 

paper, the cytolytic activity score is defined to represent the magnitude of immune 

response within a cell. Since infiltrated immune cells could possibility in a suppressed 

states which remains in active, cytolytic activity is a better representation of immune 

response in tumors than directly quantifying the infiltration fractions of immune cells. In 

this thesis we also choose GZMA and PRF1 as two genes that could represent the 

immune activity within tumor cells. These two genes are selected out because they 

showed the highest correlation in cytolytic analysis (nearly 0.9) and also a fold change 

higher than 10 times when comparing NK cells / cytotoxic T cells with non-

hematopoietic tissue.  
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Figure 5. Rooney et al 2015. The selection of GZMA and PRF1 as marker of cytolytic 
activity. X axis is the spearman correlation between genes with cytolytic activity. Y axis 
is the expression fold change in comparison between NK cells / Cytotoxic T cells and 
non-hematopoietic tissues. GZMA and PRF1 are been chosen because they have the 
highest correlation with cytolytic activities in tumors and a fold change over 10.  
  

In general, for every different cancer types the expression of GZMA and PRF1 

are been re-scaled within 0 to 10, and then sum up to generate cytolytic activity (CYT) 

score. Thus, for every 𝑖 sample, the CYT score is calculated by the following formula: 

 

𝐶𝑌𝑇𝑖 = 10
(𝐺𝑀𝑍𝐴𝑖 − 𝐺𝑀𝑍𝐴𝑚𝑖𝑛)

(𝐺𝑀𝑍𝐴𝑚𝑎𝑥 − 𝐺𝑀𝑍𝐴𝑚𝑖𝑛)
+ 10

(𝑃𝑅𝐹1𝑖 − 𝑃𝑅𝐹1𝑚𝑖𝑛)

(𝑃𝑅𝐹1𝑚𝑎𝑥 − 𝑃𝑅𝐹1𝑚𝑖𝑛)
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Then the linear regression model was applied to test the relationship between the 

calculated CYT score and ER stress gene. The linear model formula: 

 

𝐶𝑌𝑇 =  𝛽0+ 𝛽𝑖 ∙ 𝑡𝑢𝑚𝑜𝑟 𝑡𝑦𝑝𝑒𝑖 +  ∑ 𝛽𝑗 ∙ 𝐺𝑒𝑛𝑒 𝑗         , 𝐺𝑒𝑛𝑒 𝑖 ∈ 𝐸𝑅 𝑠𝑡𝑟𝑒𝑠𝑠 𝑔𝑒𝑛𝑒

𝑗

 

 

 Thus, the CYT score was regressed by the sum of an intercept 𝛽0 , the  𝛽𝑖 ∙

𝑡𝑢𝑚𝑜𝑟 𝑡𝑦𝑝𝑒𝑖, and the sum of corresponding ER stress gene multiplied by their 

coefficient, ∑ 𝛽𝑗 ∙ 𝐺𝑒𝑛𝑒 𝑗𝑗 . Using this formula, applying the least square penalty method, 

the  𝛽𝑖 could represents the CYT score difference between each disease, and the 𝛽𝑗 

could represents the contribution of each ER stress gene to the SCNA score. We are 

more interested in the 𝛽𝑗 coefficient since we are trying to evaluate the contributions of 

ER stress in disturbing the immune response. The including of tumor type as a 

regression factor could diminish the unexplained variance in this model, thus, more 

confidence on the results of each gene’s contribution.    

 The partial correlation test was applied to test the correlation between SCNA and 

CYT while setting the ER stress genes expression level in control. With the application 

of partial correlation, we could understand how much SCNA and ER stress gene 

independently contribute to the CYT scores while there exists interactions between 

them. When setting C as the control variable, the calculation of partial correlation 

between A and B is calculated by: 

 

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑟𝐴𝐵 −  𝑟𝐴𝐶 ∙  𝑟𝐵𝐶

√(1 − 𝑟𝐴𝐶
2 )(1 − 𝑟𝐵𝐶

2 )
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Chapter 3 Results 

3.1 Aneuploidy, unique signature of cancer, the 

progression marker, and the key player in impaired 

immune response 

 After quantifying aneuploidy, we found that for individual cancer types there 

exists big differences in different kinds of SCNA level. For instances, kidney 

chromophobe (KICH), which have the highest ranked arm level SCNA, holding an 

median value over 31, meaning most of their samples have 31 chromosome arms 

maintaining an abnormal copy number, have a median value for focal events close to 

zero. Also within the arm SCNA, thyroid carcinoma and thymoma only have a median 

value close to 0. By witnessing such a big differences among each cancer types, we 

treat every cancer types differently in subsequent study in order to avoid a tissue effect 

differences in SCNA which could cause potential bias in the analysis. 
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Figure 6. Summary plots showing focal, arm and chromosome level SCNA across 
different cancer types. The y-axis are cancer types that ranked by their median values. 
The x axis is the number event that been observed. (A). The focal event ranked by 
median value from low to high. (B). The Arm level aneuploidy event. (C). The 
chromosome level aneuploidy event. 

 

 In the progression study, we included 5999 samples that with known stage status 

and tested if aneuploidy could be a progression markers in cancer. We confirm that 

aneuploidy increases with stages during cancer progression in pan-cancer analysis 

(Figure 7A). Knowing that aneuploidy level varies across tumor types, we applied the 

linear regression mode setting the 𝑆𝐶𝑁𝐴 value as independent variable, and the 

variable stages and disease as dependent variable to see if we could still observe the 

stage progression phenomenon while control the tumor types as covariate. In the linear 

model, most of the disease are showing a p value close to zero, which supported our 
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previous finding that the 𝑆𝐶𝑁A values are different among each cancer types. From 

stage II to stage IV while setting stage I as control, we show an increasing coefficient 

and with significant p value (p close to 0) (Figure 7B), meaning by controlling the tumor 

type differences, the 𝑆𝐶𝑁A value showed a developing trend across stages within each 

tumor types. 

 

Figure 7. The aneuploidy as a progression marker in pan-cancer study. (A). The x axis 
are from stage I to stage IV categories. The y axis are the𝐴 values we calculated (the 𝐴𝑖 
value was calculated according to method 2.1 mentioned above). The color from dark to 
light represents focal aneuploidy level, arm aneuploidy level, chromosome aneuploidy 
level and the 𝐴𝑖 value. (B). The summary table for the linear regression model for 
aneuploidy. Coefficient, standard error, t statistical value, p value and confidence 
interval are included in each columns. The corresponding rows are the variables tested 
in the linear model, see method 2.1. 

 

After quantifying focal, arm and chromosome level SCNA for individual patients, 

we generated the arm level SCNA signature for each cancer types by clustering the arm 
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level SCNA within cancer types. Our studies is highly similar to Taylor et al who applied 

a mixture gaussian model to generate the signature for different cancer types [10]. The 

signal of chromosome 3q copy number gain in lung squamous cell carcinoma (LUSC) is 

strong in both analysis. 
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Figure 8. Arm level signatures. From top to bottom, the total signature across All 31 
cancer types (A); the arm level signature for GBM (B) and for LUSC (C). The x axis 
represents the index of chromosome from 1p to Xq. The y axis in (A) represents each 
corresponding cancer types. The y axis in (B) and (C) are the patient id. (A). Total arm 
SCNA signature of 31 cancer types. Each cell represents the copy number change 
averaged across patient within this cancer type. (B). The arm level signature for 
glioblastoma (GBM). A strong signal of chromosome arm copy number gain in 7p,7q  
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and decrease in 10p 10q are observed in this disease. (C). Strong signal of copy 
number gain in 3q can be witnessed in lung squamous cell carcinoma (LUSC), those 
signals might suggest a selection mechanisms in tumor progression. 

 

Then we did a gene set enrichment analysis (GSEA) for every cancer types we 

have using the expression data. We set our control to be the low aneuploidy group 

(SCNA < 30% of the sample ), and the comparison group to be the high aneuploidy 

group (SCNA > 70% of the sample ). In this analysis, among 31 cancer types, 17 of 

them are witnessed a significant gene expression decline within antigen presenting 

pathway in high aneuploidy groups, when compared with low aneuploidy groups, which 

suggest that higher aneuploidy are affecting the ability of tumor cells to present antigen 

appropriately. Meanwhile, we also tested several related immune pathways. NK cell 

cytotoxicity pathway, T cell receptor pathway and B cell receptor pathway are all 

downregulated in the high aneuploidy group for most of the tumor types. This analysis is 

quite similar to Davoli et al who also noticed a negative correlation between SCNA and 

immune response [3]. 

 

Figure 9. The summary heat map of GSEA results. Each columns stands for a specific 
cancer type. Each row represents the activation signals of specific pathways. The blue 
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cells are pathways that significantly downregulated in high SCNA group in comparison 
with low SCNA group. White cells are insignificant results. 

3.2 The activation of ER stress and the its network 

structure  

  

In order to test whether the ER stress is present in tumor samples, we need to 

test the expression of ER stress marker genes and compare it to the normal sample 

level. Since the upregulation of HSPA5 is agreed to be both the sign of ER stress and 

the activation of UPR, we applied t test to evaluate the expression differences of HSPA5 

between tumor and its matched normal samples.  

In the t statistic test, HSPA5 is significantly upregulated among 12 tumor types 

and downregulated in 3 tumor types (THCA, KIRP, KICH). While there are 7 

insignificant studies, this could be caused by the limited sample size of corresponding 

normal tissue. For example, we only have 2 normal samples for SARC and 3 normal 

samples for PCPG  which could drastically decrease the statistic powers in this 

analysis. In this study, the significant upregulation of HSPA5 across various tumor types 

is undoubtedly a proof of the presence of ER stress and its activation of rescue pathway 

UPR. 
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Figure 10. Boxplot of HSPA5 gene expression in 22 tumor types. The value in y axis is 
the log2 level of HSPA5 expression. X axis correspond to each tumor name. The box in 
blue is the tumor samples and box in orange are corresponding normal tissues within 
the same tumor type. Black asterisk suggests a significant increase in HSPA5 gene 
expression within this tumor samples when compared with its matched normal samples. 
Red asterisk suggests a significant decrease in HSPA5. 

 

As the presence of ER stress is witnessed, the activation of UPR is witnessed, 

we continued our analysis testing if the activation of UPR genes are correlated with 

aneuploidy. Spearman correlation between the selected ER stress genes and the total 

SCNA scores are calculated within individual cancer types. The heat map suggests that 

a strong correlation in EIF2α and DDIT3, and some mild correlation with ATF6 between 

SCNA scores are been found in most cancer types. Both DDIT3 and EIF2α are genes 

within the PERK downstream pathway. Signals from ERN1 pathway is nearly lost, which 

might suggest a lacks of activation in ERN1 pathway. It is interesting that aneuploidy 

favors PERK more than two others in UPR. 



 

27 
 

 

Figure 11. Heat map of the spearman correlation between SCNA and selected ER 
stress genes within each cancer types. Red cells suggesting the gene (in row) within the 
corresponding tissue type (in column) is significant up regulated in high aneuploidy 
group while blue cells suggest a significant decrease. White cells are non-significant 
study. 

 

 

 In Figure 11 we witnessed a signal lost from ERN1 branch of UPR which is 

interesting. As ERN1 pathway activation needs post-translational modification, it is also 

necessary to test the expression level of its downstream target genes. We then 

collected gene set in the downstream pathway of ERN1 branches from REACTOME 

and applied Wilcoxon rank-sum test to test the expression differences of those 

downstream genes between the high aneuploidy group and low aneuploidy groups for 

each tumor types. In Figure 12, the heat map showed that across half of the cancer 
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types we saw a large amount of genes are significantly increased in expression level, 

which is an approval of ERN1 pathway activation. 

 

Figure 12. Heat map of Wilcoxon rank-sum test of the expression differences of ERN1 
downstream targets genes between high SCNA and low SCNA groups for each tumor 
types. Red cells suggesting the gene (in row) within the corresponding tissue type (in 
column) is significant up regulated in high aneuploidy group while blue cells suggest a 
significant decrease. White cells are non-significant study. 

 After the expression analysis, we also applied the network study to test if there 

exists different UPR pathway structures between the high aneuploidy group and the low 

aneuploidy group within each tissue types. We selected genes in 3 branches of UPR 

pathway from the REACTOME pathway library, split samples into high and low 

aneuploidy group based on the previous threshold we discussed ( low aneuploidy group 

which have a SCNA score < 30% of the sample , and high aneuploidy group that have a 
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SCNA score > 70% of the sample) within individual cancer types. Then for those 

selected genes, we conducted a differential co-expression analysis. The network study 

showed a great gene network co expression loss in higher aneuploidy groups across a 

lot of cancer types, especially in ERN1 and ATF6 pathways. 

 

Figure 13. High aneuploidy correlated with perturbed network structure in ERN1 and 
ATF6 pathways. (A). The co-expression pattern heat map of genes with significant co-
expression pattern changes. Upper triangle is the high SCNA group co-expression 
which is more whiter than the Low SCNA group in the bottom triangle. (B). Network plot 
of genes in ERN1 pathways in sarcoma (SARC). The top part is the high aneuploidy 
group that genes are less connected. The bottom part is the low aneuploidy group. (C). 
Pan-cancer average percentage of genes with modified co-expression patterns in UPR 
pathways.  

 

 

 

3.3 The bridge between aneuploidy and impaired 

immune response 

 

In section 2.6 we discussed the method applied to measure the immune 

response which gave us every individual sample a CYT score. Linear model was then 
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applied, in order to test the contribution of different ER stress genes to the impaired 

immune response. 

 

Table 1.  Coefficient for UPR genes in the applied linear model. 

Gene Coefficient Standard 

Error 

T test 

statistics 

P value CI 

(0.025 

CI 

(0.975 

ERN1 -0.0168 0.049 -0.346 0.730 -0.112 0.079 

ATF4 -0.0466 0.053 -0.887 0.375 -0.150 0.056 

ATF6 -0.2268 0.062 -3.635 0.000 -0.349 -0.104 

EIF2ΑK3 -0.2469 0.052 -4.726 0.000 -0.349 -0.144 

XBP1 0.0830 0.030 2.735 0.006 0.024 0.142 

EIF2α -0.4921 0.050 -9.916 0.000 -0.589 -0.395 

DDIT3 -0.2342 0.033 -7.042 0.000 -0.299 -0.169 

HSPA5 0.1552 0.060 2.588 0.010 0.038 0.273 

DNAJB9 0.5039 0.046 10.957 0.000 0.414 0.594 

PPP1R15A 0.0931 0.031 3.018 0.003 0.033 0.154 

HSP90B1 0.1968 0.058 3.379 0.001 0.083 0.311 

TRAF2 0.7486 0.047 15.994 0.000 0.657 0.840 

MAP3K5 0.3822 0.035 10.895 0.000 0.313 0.451 

MFN2 -0.1824 0.050 -3.614 0.000 -0.281 -0.083 

CYCS -0.1245 0.041 -3.036 0.002 -0.205 -0.044 

CALR -0.0415 0.056 -0.739 0.460 -0.151 0.069 
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Since we are not sure if the CYT also varies for different tumor types, within the 

linear model tumor types are also been set as covariate. Several disease in this model 

showed a significant differences in CYT level, except LGG (p value = 0.747) and PCPG 

(p value = 0.851), suggesting CYT score do show differences among every tumor type. 

With the tumor type as covariate in this model, we still found that almost all the ER 

stress genes are showing significant p values in the linear model, except ERN1, ATF4 

and CALR. In this study, PERK, EIF2α, ATF6 and DDIT3 showing a strong negative 

coefficient which suggest a strong negative correlation with the immune response.  

After found EIF2ΑK3, ATF6, DDIT3 and EIF2α we performed a spearman 

correlation study to examine the relationships among aneuploidy, selected genes and 

cytolytic activity. In the spearman correlation study (Figure 14), SCNA scores are 

negatively correlated with CYTs in 29 tumor types, which also supports our previous 

findings that high aneuploidy are correlated with decreased antigen presenting 

pathways (Figure 9). Then, 20 cancer types showed a negative correlation between 

DDIT3 and CTY, and 27 cancer types showed a negative correlation between EIF2α. 

While EIF2ΑK3 and ATF6 are showing more noisy results, tend to be more positively 

correlated with CYT scores in several tumor types. 

We also noticed that when there exists 2 or more variables interacts together to 

affect the third or another dependent variable, partial correlation should be applied to 

test how much of the contribution is been made by each independent variables. The 

partial correlation can be used to calculate the correlation between X and Y when giving 

a controlling variable Z. Since DDIT3 and EIF2α are correlated with SCNA (Figure 11), 

and showing a stronge negative correlation with CTY, we set the gene expression as 
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control variable separately (DDIT3, EIF2α) to test the partial correlation between SCNA 

and aneuploidy.  

 

Figure 14. Spearman correlation analysis between SCNA, selected genes and CYT 
score. SCNA showed negative correlation in 29 cancer types with CYT score. EIF2α 
showing 27 and DDIT 20.  

 

Figure 15 shows the partial correlation between SCNA and CYT when setting 

EIF2α or DDIT3 as control variable. DDIT3 and EIF2α are both used as control variable 

to test the partial correlation between SCNA and CYT since they both show high 

correlations with SCNA and CYT. In this analysis we notice that for some tumor types 

like PAAD, CHOL, TGCT, THYM and LGG the partial correlation is very different from 

spearman correlation. This result suggests an interaction between SCNA and EIF2Α or 
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DDIT3 in affecting CYT score. In THYM and LGG we saw the spearman correlation 

between SCNA and CYT are positive. While the partial correlation between SCNA and 

CYT when setting EIF2α and DDIT3 as control shows a negative value, suggesting that 

SCNA are more negatively correlated with CYT when the interactions with EIF2α and 

DDIT3 are excluded. Interestingly, for PAAD the spearman correlation is the strongest 

one across 31 cancer types. While we set EIF2α or DDIT3 as control the partial 

correlation are close to zero, which suggest EIF2α and DDIT3 are stronger factors than 

SCNA that contribute to the negative correlation between SCNA and CYT. Thus, for 

different cancer types the interactions between SCNA and ER stress various. Some 

tumor types are like THYM and LGG that SCNA contributes more to the negative 

correlation between CYT. Others are like PAAD, which EIF2α and DDIT3 contributes 

more to the negative correlation between CYT.   
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Figure 15. Partial correlation plot. The top label in x axis represents the related pathway 
that set as control variable in partial correlation study. Y axis represents each tumor 
type. The left one is the same spearman correlation between SCNA and CYT as in 
Figure 14.  
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Chapter 4 Discussion 

4.1 Aneuploidy, the puzzle and the future 

 In the previous chapter (chapter 2.1) we defined our methods for quantifying 

aneuploidy. The term aneuploidy has been in use for decades. However, the 

computational study and quantification of aneuploidy from data generated by modern 

sequencing technologies is still an area of active development. In the context of cancer, 

the term aneuploidy is frequently used in a broader sense and can include two major 

phenomena: focal copy number alterations and chromosome arm alterations. These 

different types of alteration likely result from different mechanisms and contribute to 

cancer progression in different ways [3]. In our case, we divided aneuploidy into three 

categories, including focal level SCNA, chromosome arm level SCNA and chromosome 

SCNA (which is similar to chromosome arm level SCNA), taking both gain and loss of 

copy number into account, as was described in the study by Davoli et al..  The main 

difference is that Davoli et al. applied a tool called ABSOLUTE to quantify sample purity 

and adjusted the copy number change threshold according to sample purity. However, 

we and others have encountered difficulties replicating published results from previous 

studies with the ABSOLUTE package. Therefore instead of calculating purity with 

ABSOLUTE, we applied a threshold as previously described by Beroukhim et al to call 

copy number alteration events [8]. 

 Despite the differences in the method of quantifying aneuploidy level, we also 

found evidence that aneuploidy was inversely correlated with measures of effective 

immunity. These results are similar to those reported by Davoli et al, and confirm the 

immune-suppression phenotype of highly aneuploidy tumors. According to Davoli et al, 
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9 out of 12 cancer types had a significant decrease in the CD8 T cells [3]. Our analysis 

also revealed reduced levels of CD 8 T-cells in tumors with higher levels of aneuploidy. 

This suggests that differences in calling SCNA events are not large enough to confound 

the underlying biological relationships.  

 Interestingly, in a recent publication in 2018, Taylor et al applied a gaussian 

mixture model to quantify chromosome arm level SCNAs based on their definition of 

aneuploidy. But instead of defining a threshold like us or Davoli et al, Taylor et al. used 

the total ploidy level calculated from ABSOLUTE as a reference value of total tumor 

genome ploidy to quantify arm level SCNA. Once again, despite different methods for 

quantifying chromosome arm SCNA level, we reached a highly similar ranking of the 

chromosome arm SCNA levels in the 31 cancer types used in this analysis (Table 2). 

Moreover, their arm level signature study is pretty similar to ours, with both studies 

identifying the 3q and 3p signature in LUSC [10].  

                            

Table 2. Summary table of the comparison of total arm level SCNA ranking between 
Taylor et al. and our study. In this table most of the ranking are fairly close, suggesting 
that the two different methods both captured the feature of aneuploidy. Red and marked 
with * are tumor types that have a larger difference in ranking. 

Tumor type Ranking in Taylor et al. Ranking in our study 

TGCT 1 6 

ACC 2 2 

UCS 3 4 

LUSC 4 9 

LUAD* 5 18 

KICH 6 1 

ESCA 7 11 
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Table 3. Summary table of the comparison of total arm level SCNA ranking between 

Taylor et al. continued. 

READ 8 8 

OV 9 3 

BLCA 10 12 

SKCM 11 na 

BRCA 12 13 

COAD 13 10 

HNSC 14 17 

STAD 15 21 

SARC 16 5 

LIHC 17 14 

CHOL* 18 7 

CESC 19 15 

PAAD* 20 28 

KIRP 21 19 

GBM 22 16 

MESO 23 20 

KIRC 24 25 

DLBC 25 26 

UCEC 26 22 

PCPG 27 24 

UVM 28 23 

LGG 29 27 

THYM 30 31 

PRAD 31 29 

LAML 32 na 

THCA 33 30 
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 Thus, there exist various methods to quantify aneuploidy level that return similar 

results when applied to TCGA. The limitation in developing a perfect model is mainly 

caused by the need to define a reasonable threshold for calling a copy number change 

in this dataset with no ground truth to validate against. However, given the relative 

agreement between methods, we believe our estimates of aneuploidy level are 

sufficiently reliable for the analyses we performed. 

4.2 Aneuploidy and the immune response 

In order to assess the relationship between aneuploidy and immunity, we first 

applied GSEA analysis to test the differences in immune responses between low and 

high aneuploidy tumors for each cancer type. We focused only on pathways associated 

with immunity, reducing the total burden of multiple testing correction. We found that 17 

out of 31 cancer types had a significant decrease in expression of genes participating in 

the antigen-presenting pathway, which is in accordance with previous studies [3].  

Next we identified other measures of immune activity that could be derived from 

RNA sequencing data. The first measure, the CYT score, is estimates cytolytic activity 

from the expression of two genes, PRF1 and GZMA [13]. In this analysis, 29 out of 31 

cancer types showed a negative correlation between the SCNA score and CYT score, 

indicating less CD8 T-cell driven cytotoxicity in the presence of higher levels of 

aneuploidy, and supporting that aneuploidy is decreases immune response.  We also 

measured immune cell infiltration based on expression levels of immune cell type-

specific cell surface markers, and observed that multiple immune cell populations were 

present at reduced levels in high aneuploidy tumors in multiple tumor types. Thus our 



 

39 
 

analyses were in general agreement, supporting reduced antigen presentation, reduced 

levels of immune cells and reduced cytotoxicity in the presence of aneuploidy. 

4.2 The bridge between aneuploidy and immune 

response: the hidden network of ER stress  

 In the search for mechanisms by which aneuploidy could lead to a decrease in 

immune response, we focused on genes that were implicated in previous work as 

playing important roles in the ER stress response. We found that HSPA5 is up-

regulated in tumor samples relative to corresponding tissue-matched control samples, a 

sign of UPR activation. We also observed that the expression of several ER stress 

pathway genes, EIF2ΑK3, EIF2α, ATF6 and DDIT3, was strongly correlated with SCNA 

scores across various cancer types. However, counter to our expectation, we did not 

observe a correlation between expression of ERN1 pathway genes and SCNA levels. 

Because the ERN1 pathway is activated by post-translational modifiers, we speculated 

that the expression of genes regulated downstream of the ERN1 pathway might provide 

a better indication of ERN1 pathway activation status. We found such a gene set in the 

REACTOME library (R-HSA-381038) called XBP1s activated chaperone genes [14]. 

Analysis of downstream target gene expression revealed a significant increase, 

suggesting that this pathway is also activated in at least half of the tumor types. Thus, 

RNA-seq analysis of ER stress genes themselves is not sufficient to determine ERN1 

pathway activity, since the mechanism of activation is through the phosphorylation of 

ERN1 and the alternative splicing of XBP1 to XBP1s, rather than up-regulation. In this 

way, we confirmed that all 3 branches of the ER stress response are activated and 

correlate with the SCNA scores in tumors. 
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 Apart from expression and pathway analysis, we also did a co-expression 

analysis to evaluate the direct effects of aneuploidy on the ER stress pathway. 

Biological systems require balanced stoichiometries to effectively transmit information. 

Thus genes within the same pathway should be co-expressed when the pathway is 

active. Aneuploidy can cause imbalances in stoichiometry by altering the copy numbers 

of genes encoding protein components of the pathways. We thus compared co-

expression patterns among ER stress genes among high aneuploidy tumors versus low 

aneuploidy tumors for each tumor type. This analysis revealed a large reduction in the 

amount of gene co-expression in high aneuploidy tumors relative to low aneuploidy 

tumors. Interestingly, when the three ER stress branches were considered separately, 

we observed substantially more co-expression preserved in the PERK pathway as 

compared with the ERN1 and ATF6 pathways in various cancer types. This raises the 

question of whether preserving signal transduction through the PERK arm of ER stress 

confers an advantage to tumors.  The phosphorylation of EIF2α within the PERK 

pathway is believed to play a pivotal role in solid tumor growth, invasion and 

angiogenesis. There is also evidence that EIF2α phosphorylation is a master regulator 

of cell adaptation to ER stress conditions [15]. In contrast, DDIT3 - also within PERK 

pathway - was suggested to initiate apoptosis under pro-longed ER stress state, and 

can regulate other cellular functions that are not relevant to apoptosis [16]. In our study 

the up-regulation of DDIT3 did not correlate with an apoptotic signal. These results 

suggest that PERK may play an important role in tumor survival and progression, and 

as such this pathway may merit investigation as a target for anti-cancer therapies. 
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After establishing the link between aneuploidy and ER stress responses, we next 

evaluated the relationship between ER stress and measures of immune response. 

Since cytolytic activity is likely a more representative measure of anti-tumor immune 

activity than immune infiltration alone, we used the CYT score as the metric of immune 

response. We applied linear models to study the relationship and interactions among 

ER stress genes and the CYT score. The expression of several ER stress genes was 

negatively correlated with CYT, with the strongest correlations being observed for 

DDIT3 and EIF2α. This suggested that the PERK pathway may be the predominant 

pathway that contributes to an impaired immune response downstream of ER stress 

induced by aneuploidy.  

4.3 Bringing it all together 

 

This project began with the hypothesis that ER stress is an intermediary between 

aneuploidy and impaired immune responses based on findings by Zanetti et al that 

supported a link between ER stress signaling and immune suppressive effects. We 

confirmed that the SCNA scores were negatively correlated with CYT scores in most of 

the cancer types and positively correlated with ER stress activities. DDIT3, EIF2ΑK3, 

ATF6 and EIF2α were highly correlated with SCNA scores across 22 cancer types.  We 

also observed that several ER stress genes were inversely correlated with cytotoxic 

activity, with DDIT3 and EIF2α showing the strongest effects. This led us to focus on the 

PERK brank of ER stress as the likely intermediary between aneuploidy and immune 

response.  
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DDIT3 and EIF2α are both regulatory transcription factors [15, 16]. The increase 

of DDIT3, witnessed in numerous cancer types, is a sign of long term unrelieved ER 

stress suggesting a chronic stress state of cells. In addition, the phosphorylation of 

EIF2α is shown to be necessary for the growth of solid tumors [7]. We observed 

increasing aneuploidy with tumor stage, and a positive association between DDIT3, 

EIF2α and SCNA scores. Together these observations suggest that increasing levels of 

aneuploidy lead progressively to chronic stress during tumor progression which is 

reflected by PERK activity.  

In order to evaluate the possibility that DDIT3 and EIF2α levels mediate reduced 

immunity in the presence of aneuploidy, we performed a partial correlation test. The 

observed reduction in correlation between SCNA and CYT score when conditioning on 

expression of DDIT3 and EIF2α supports the possibility that the PERK branch of the ER 

stress pathway provides a mechanism by aneuploidy can result in the suppression of 

anti-tumor immunity. This result sets the stage for follow on experimental validation 

studies. 

 Interestingly, by measure of gene co-expression the PERK pathway was the 

most intact compared with disturbed ERN1 and ATF6 pathways in high aneuploidy 

tumors. Since PERK is universally activated in various cancer types, it is important to 

understand how cancer cells take advantage of this pathway to promote growth and 

escape immune response. Although the ERN1 and ATF6 pathways were frequently 

perturbed in high aneuploidy tumors, we still noticed that these pathways showed signs 

of increased activity and correlation with aneuploidy in tumors. Therefore, more careful 
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analysis of these branches of ER stress will be necessary to rule out their relevance to 

immune response.  

 There are some limitations of this work that must be taken into consideration.  

For statistical power, we grouped samples according to tumor type, however this 

ignores that there are distinct subtypes that could have different characteristics at the 

level of aneuploidy, ER stress or immune response. Within this analysis, signal loss in 

the correlation studies suggests, a step by step subtype analysis within tumor type may 

be necessary to cleanly dissect the relationship between ER stress and aneuploidy. 

Thus, this study provides a preliminary concept in bulk tumor that provides a strong 

basis for more careful follow on studies to determine the precise mechanisms by which 

ER stress mediates aneuploidy-driven immune suppression. 
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Chapter 5. Conclusion 
In this thesis, firstly, we show that tumor aneuploidy is correlated with stage 

which suggest that aneuploidy could serve as a marker of tumor progression in many 

tumor types. Then ER stress was found to be correlated with aneuploidy. The 3 

branches of ER stress were all activated in tumors and showed correlation with 

aneuploidy, in which DDIT3 and EIF2α in the most preserved PERK pathway interact 

with aneuploidy to affect the immune responses across several cancer types. This 

validates our model, supporting that ER stress plays role in connecting aneuploidy with 

impaired immune response. However, while confirming the bridge between aneuploidy 

and immune response, we should still be open to other possible mechanisms by which 

aneuploidy leads to decreased immune activity during tumor progression. Because 

biological systems are a combination of numerable complex regulatory networks, there 

could also exists several hidden structures under this bridge, or co-existing parallel 

connections in the midst of aneuploidy and immune response, and ER stress is only 

one of them. 

Briefly, in this thesis we discussed the ER stress as a possible mechanisms that 

could connect aneuploidy to impaired immune response. Strong evidence suggesting 

that within the PERK pathway, DDIT3 and EIF2α are up regulated and interact with 

aneuploidy in tumor cells. Those two genes interact with aneuploidy and with each 

other, showing a significant negative correlation across various tumor types. 

Interestingly, apart from the PERK pathway, the structure of other two pathways, ERN1 

and ATF6, are both modified by aneuploidy. A large amount of gene-gene co-

expression pattern loss in high aneuploidy group in these pathways was evident in 
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numerous tumor types.  We speculate that such an analysis could be applied more 

broadly to reveal other pathways and parts of pathways that are preserved despite the 

increasing genomic chaos that results from progressive aneuploidy.  

Though identified up-regulation of DDIT3 and EIF2α across various tumor types 

and their interactions with aneuploidy as affecting the immune response, we did not fully 

unravel the mechanisms by which DDIT3 and EIF2α modify the immune response of 

cancer cells during tumorigenesis. As DDIT3 and EIF2α are both transcriptional 

regulators, future studies could focus on the role of their downstream targets in tumor 

growth. The network interaction loss of the ERN1 and ATF6 pathways may also merit 

careful exploration since the up-regulation of these two pathways are also observed, 

and the network loss of particular interactions within those pathways might also provide 

selective advantages in tumor progression.  
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