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ABSTRACT OF THE DISSERTATION 

 

Epithelial wound response: How do cells know where  

they are and what to do after a wound? 

 

 

by 

 

Linda Naomi Handly 

Doctor of Philosophy in Chemistry 

University of California, San Diego, 2017 

Professor Roy Wollman, Chair 

 

Wound healing begins as soon as the wound occurs and can continue for days, weeks, 

or even months. Although decades of research have established the multiple-steps required to 

heal a wound, little is known about the cellular response immediately following the wound. 

Furthermore, because the location of the wound is relevant to the healing process, healthy 

cells responding to a wound require positional information, or knowing where they are in 

relation to the wound. Thus, there are two important questions not fully understood in wound 

healing: 1. How do cells know where they are? and 2. How do the initial signaling 



xv 

 

mechanisms influence downstream genetic expression and overall healing? Here, using recent 

technological advancements in single-cell fluorescent microscopy and fluorescent biomarkers, 

we determine that ATP, an initial signaling molecule released from wounded cells, creates 

spatial patterns immediately following an epithelial wound using a simple Release and 

Diffusion mechanism. Then we determine that epithelial cells use paracrine signaling to 

spatially average the initial wound response signals over a specific distance to maximize the 

signal-to-noise ratio. Finally, we establish a method titled SpaSeq (Spatial Sequencing) that 

utilizes FACS and RNA-Seq in addition to fluorescent proteins to measure the spatio-temporal 

gene expression patterns following a wound.  

 

 



 
 

1 

 

INTRODUCTION                                                                             

Signal transduction at the single-cell level: Approaches to study the 

dynamic nature of signaling networks  

Abstract 

Signal transduction, or how cells interpret and react to external events, is a 

fundamental aspect of cellular function. Traditional study of signal transduction pathways 

involves mapping cellular signaling pathways at the population level. However, population 

averaged readouts do not adequately illuminate the complex dynamics and heterogeneous 

responses found at the single-cell level. Recent technological advances to observe cellular 

response, computationally model signaling pathways, and experimentally manipulate cells 

now enables studying signal transduction at the single-cell level. These studies will enable 

deeper insights into the dynamic nature of signaling networks.  

Introduction 

Defining cellular signaling pathways is important to understand many biological 

processes including tissue development, immune response, cancer development, cellular 

growth and migration, and more. Traditional biological approaches to study cellular signal 

transduction include bulk assays to measure cellular response at the population level. 

Although these studies have been useful in mapping signaling pathways and making 

qualitative predictions, population averaging can often mask the spatial and temporal 

dynamics important in physiological processes. Furthermore, population averaging results in 

information loss regarding biological variability that often has important physiological 

implications. 
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Over the last few years, technological advancements in measuring, manipulating, and 

modeling signaling activities at single-cell resolution has enabled researchers to go beyond the 

limitations of population-averaged bulk assays. These new studies often reveal that previous 

knowledge about signaling dynamics at the population level may not be the complete picture. 

For example, earlier studies of the p53 signaling pathway provided support for damped 

oscillations to stimulus [1]. However, single-cell studies revealed that there are no damped 

oscillations in the individual cell. Instead, differences in pulse cycle between cells created a 

population average behavior showing damped oscillations [2]. More recent work on this 

pathway elucidates the complex dynamic patterns of p53 activities that cells use to encode and 

transmit information [3]. Analysis based solely on population level readouts completely 

masked these insights. Similarly, single-cell studies of the NF-κB pathway show complex 

digital activation patterns in individual cells that are hidden by population level studies [4,5]. 

Single-cell studies have uncovered the importance of temporal dynamics in information 

transmission through cellular signaling networks [6]. Furthermore, single-cell information 

exposes the complexity of cellular response distribution. The implications of cellular 

heterogeneity is a key area of research important to understanding fundamental issues such as 

variability of drug response at the cellular and organism level [7].  
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The ability to fully comprehend signal transduction at the single-cell level requires 

advancements in how we observe cells, model cellular behavior, and manipulate biological 

systems. However, single-cell studies continue to utilize the same overarching approach as  

traditional population level studies (Figure 1). Observing cells at the single-cell level is now 

possible using better fluorescent biosensors and single-cell analysis techniques. Additionally, 

the development of complex computational algorithms can dissect the dynamics and 

distribution of single-cell behavior found in the complicated and rich datasets produced by 

single-cell measurements. Computational models confirm intricacies in cellular network 

behavior that are difficult to elucidate through observation alone. Additionally, predictions 

made using computational models facilitate directed experiments. Although the specific 

Figure 0.1 Studying Signal Transduction at the Single-Cell Level. 
Advancements in observing single-cells, computational modeling, and 

techniques to manipulate cells in a spatio-temporal manner enable 

insights into signal transduction at the single-cell level.  

 

 

Figure 0.2. Bulk Assays vs Single-Cell Assays to Study Response 

DynamicsFigure 0.1 Studying Signal Transduction at the Single-

Cell Level. Advancements in observing single-cells, computational 

modeling, and techniques to manipulate cells in a spatio-temporal 

manner enable insights into signal transduction at the single-cell level.  
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techniques to manipulate biological systems is different, the overarching theme of changing 

the internal and external environment of cells remains the same between single-cell and bulk-

level assays. In the following review we will discuss the specific methods and developments 

used to observe, model, and manipulate biological systems to study dynamic signal 

transduction at the single-cell level.  

 

Observe: Dynamical measurements of signaling activities at single-cell resolution 

Fluorescent biosensors and computational image analysis have enabled evaluating the 

distribution of the cellular response across a population in real-time. Traditional biological 

techniques such as western blots only provide a population average level readout (Figure 2). 

As a result, this type of analysis lacks both temporal and spatial resolution. In contrast, 

fluorescent biosensors can capture dynamic cellular events in living cells at subcellular 

resolution. Increased cellular, spatial, and temporal resolution has contributed to rich datasets 

that require image analysis algorithms to fully capture the complexity of the data. 

Furthermore, meaningful interpretations of single-cell datasets require advanced statistical 

methods such as dimensionality reduction and information theory to quantify and properly 

interpret the distribution of cellular behavior.   
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Sampling Cellular Signaling Networks-Expanding the Palette of Fluorescent Biosensors 

 Reliable dynamic biosensors are crucial for live single-cell analysis of signal 

transduction. Fluorescent biosensors function by coupling one or more fluorescent proteins to 

an activity sensing domain. Biosensors have been developed for a number of different 

signaling molecules by designing the sensing domain for a specific signaling molecule [8]. 

The intricate process of designing sensing domains compatible with fluorescent proteins to 

properly report signaling molecule activity has been reviewed elsewhere and will not be 

addressed here [8–11]. Rather, here we will discuss advancements in biosensor development 

that have led to an enriched variety of fluorescent proteins with optimized molecular 

properties and improved modular design of fluorescent reporters. 

Figure 0.2. Bulk Assays vs Single-Cell Assays to Study Response Dynamics. Bulk-level assays, 

such as Western blots, provide population level response with limited temporal resolution (T1-T4, 

left). Fluorescent microscopy using biosensors shows the distribution of the population response at 

the single-cell level (right).   

 

 

Figure 0.3. Cellular Segmentation AnalysisFigure 0.2. Bulk Assays vs Single-Cell Assays to 

Study Response Dynamics. Bulk-level assays, such as Western blots, provide population level 

response with limited temporal resolution (T1-T4, left). Fluorescent microscopy using biosensors 

shows the distribution of the population response at the single-cell level (right).   
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Increasing the variety of optimized fluorescent proteins enables multiplex imaging to 

expand the number of potential biological readouts. Significant efforts have been made to 

optimize fluorescent proteins to enhance brightness and contrast, increase photostability, and 

expand the range of available colors, where color is defined as the unique excitation and 

emission spectra of a protein. For example, cyan, green, and red fluorescent proteins have 

improved in all three areas with the development of mTurquoise2, mClover3, and mRuby3, 

respectively [12,13]. Improving fluorescent proteins also enables expanding the range of 

available colors for a specific molecule. Increasing the variety of colors for a specific 

molecule allows researchers to select a fluorescent protein color that does not interfere with 

the spectra of other fluorescent proteins in a given experiment. Researchers now have a much 

wider range of fluorescent proteins and can choose them based on the needs of the experiment 

rather than resorting to what is available [10,14].  

 The development of fluorescent biosensors to report dynamic cellular activity has 

evolved rapidly over the past 15 years. Kinase activity is of particular interest due to the large 

number of biological processes regulated by protein phosphorylation such as cell growth, cell 

cycle, and immune response [15]. The ability to monitor kinase activity using genetically 

encoded FRET biosensors presented a modular design adaptable to different proteins with 

increased dynamic range [16]. Zhang et al. first developed a genetically encoded protein 

kinase A (PKA) activity reporter (AKAR) in 2001 using a generalizable FRET backbone [17]. 

The development of AKAR2 enabled measurement of reversible PKA activity by increasing 

cellular phosphatase sensitivity [18]. By taking advantage of better fluorescent proteins, such 

as those discussed above, further improvements were made in AKAR dynamic range with 

AKAR3 and AKAR4, with each iteration brighter than the last [19,20]. AKAR also expanded 

beyond the commonly used CFP/YFP FRET pair with GFP/RFP AKAR2 and CFP/RFP 
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AKAR3 variants [21,22]. Using improved fluorescent proteins not only increased the dynamic 

range of the sensors, but also enabled co-imaging with other FRET pairs to increase the 

number of biological readouts per experiment [22]. In addition to improvements in design and 

color range, AKARs were also modified to localize to different areas of the cell to measure 

PKA dynamics in specific locations such as the plasma membrane (AKAR4-Kras) and 

sarcoplasmic reticulum (SR-AKAR3) [23,24].   

The advent and improvements made to AKARs also triggered the development of a 

multitude of FRET kinase reporters. Perhaps the most intuitive adaptation was to other protein 

kinases with activity reporters for protein kinase B, protein kinase C, and protein kinase D 

[25–27]. Other kinase reporters also followed the AKAR design such as the c-Jun N-terminal 

kinase (JNK) activity reporter JNKAR1 and the extracellular signal-regulated kinase (ERK) 

activity reporter EKAR [28,29]. To make the AKAR design more generalizable and improve 

the dynamic range, Komatsu et al developed an intramolecular FRET biosensor with an 

optimized backbone using a longer linker to make the fluorescent protein pair completely 

“distance-dependent” as opposed to “orientation-dependent” [30]. The increased length of the 

backbone, termed the Eevee (EV) backbone, makes the FRET backbone adaptable to kinases 

and GTPases. Removing the need to optimize each sensor per biological readout makes 

biosensor development simpler and faster. This backbone was adapted to make FRET 

biosensors for PKA (AKAREV), ERK (EKAREV), JNK (JNKEV), among many others [30].  

FRET kinase biosensors continue to be used to measure single-cell dynamics to solve complex 

problems while still improving in design. For example, the EKAREV sensor was used to 

quantitatively measure ERK dynamics during proliferation and was again improved in design 

to increase the signal-to-noise ratio [31,32].      
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A deeper understanding of signaling networks requires measuring multiple dynamic 

biological outputs simultaneously. Although FRET biosensors present advantages over single-

protein reporters such as an increased dynamic range, the use of two fluorescent proteins 

makes measuring multiple biological outputs during a single assay challenging. Regot et al 

developed a kinase activity reporter that measures the phosphorylation of kinases using 

reporter translocation rather than fluorescent strength as an activation indicator [33]. Here, 

rather than comparing the ratio between two fluorescent proteins, the fluorescent ratio between 

the nucleus and cytoplasm measures the level of kinase activation in a cell. Additionally, using 

a few simple design principles, KTRs can be adapted for a variety of kinases.   

Live single-cell fluorescent imaging provides quantifiable dynamic spatio-temporal 

data not available with population level analysis techniques (Figure 2). The use of fluorescent 

biosensors now enables better subcellular resolution in addition to spatial and temporal 

dynamics of a specific protein, gene, or second messenger of interest. Despite extensive 

advancements made in fluorescent proteins and biosensors, experiments remain limited in the 

number of biological readouts during a single experiment in comparison to assays such as 

western blots that have a plentiful selection of detection antibodies (Figure 2). This is in part 

due to limitations set by the number of fluorescent proteins able to be used in a single read-

out. Although each fluorescent protein color has a unique excitation and emission spectra, 

overlap between spectra makes using multiple proteins in a single experiment challenging. 

Practically, experiments remain limited to a maximum of 3-4 fluorescent proteins depending 

on the specific microscope configuration. Furthermore, biosensor development requires 

specific expertise in protein kinetics and structure, constraining the variety of available sensors 

for specific biological readouts. Continuing developments to improve fluorescent protein 
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properties as well as improved modular designs will open new avenues for improved live-cell 

multiplex imaging. 

Sampling the Cellular Signaling State:  Acquiring Cellular Signaling State Distributions  

 Measuring the signaling state, or the level of activation of a specific molecule in a 

signal transduction pathway, at the single-cell level based on fluorescent biosensors as 

described above requires quantifying the fluorescent levels at single-cell resolution. Typically, 

flow cytometry or fluorescence microscopy approaches are utilized to measure cellular 

signaling states. Although fluorescent microscopy approaches enable live-cell imaging to fully 

capture signaling state dynamics, measuring multiple readouts simultaneously remains 

limited, as discussed above. On the other hand, flow cytometry methods are only able to 

measure cellular signaling states at a single time point, but are capable of measuring multiple 

readouts simultaneously. Specifically, maturation of fluorescent flow cytometry methodology 

has made previously highly challenging and demanding experiments, such as the simultaneous 

measurement of >10 color channels, more commonplace. In addition, developments in readout 

technology substantially increases the multiplexing capacity. For example, mass cytometry 

combines time-of-flight mass spectroscopy with the readout of a flow cytometer. Specifically, 

single-cells are captured and the concentration of isotopically pure rare metals conjugated to 

antibodies [34] and nucleic acid probes [35] are measured. Mass cytometry pushes the 

boundaries of multiplex measurements and can now concurrently measure >40 channels in a 

single-cell. The wealth of information produced by mass cytometry methods has already made 

important contributions to understanding the distribution of single-cell responses [36–38].  
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Unlike cytometry, advances in fluorescent microscopy are not focused towards  

measuring throughput or increasing multiplexing capacity. Rather, recent developments focus 

on increasing resolution by utilizing super-resolution approaches. Therefore, hardware used 

Figure 0.3. Cellular Segmentation Analysis. Cellular segmentation separates cells from 

each other and the background of the image. A raw image of the cells (here an image of 

nuclei stained with Hoeschst is shown) undergoes a sequential process to eventually create 

a label for each cell. A series of images showing the response can be mapped to this cell 

label to create a cell response time series.  

 

 

Figure 0.4. Population vs Single-Cell Computational Model ParameterizationFigure 

0.3. Cellular Segmentation Analysis. Cellular segmentation separates cells from each 

other and the background of the image. A raw image of the cells (here an image of nuclei 

stained with Hoeschst is shown) undergoes a sequential process to eventually create a label 

for each cell. A series of images showing the response can be mapped to this cell label to 

create a cell response time series.  
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for high-content imaging systems has not significantly changed in recent years. Instead, 

improvements in software allow better measurements. Developing better analysis software is 

important since interpreting and quantifying microscopy images is a non-trivial process. 

Existing microscopes effectively allow image acquisition at rates of a few images per second. 

Therefore, a standard multi-well overnight acquisition can generate >100,000 images. Manual 

analysis of these large datasets is practically impossible. Moving from manual to automated 

image analysis to properly and efficiently identify cells, track cells, and measure changes in 

biosensor state over time requires computer vision and sophisticated algorithms (Figure 3). 

The majority of computational image analysis approaches for high-content screening (HCS) 

follow a similar workflow [39]. In the first step, called segmentation, cells are identified in the 

image and distinguished from each other and from regions without cells (Figure 3). 

Subcellular structures and organelles can also be segmented and associated with their parent 

cell. In live-cell time-lapse microscopy, tracking cells over the entire sequence of acquisitions 

is a critical step to obtain a cellular response time-series at single-cell resolution. Additionally, 

quantifying the phenotypic states of cells, i.e. cellular shape, size, microenvironment, etc, is 

necessary to better understand heterogeneity between single-cells [40–45].  A large number of 

cellular segmentation and tracking algorithms have been developed and are available in 

commercial and open source software packages [46–49]. 

Sampling Cellular State Space: Challenges in Quantifying the Distribution of Cellular 

Behavior 

While catchy, the phrase “single-cell analysis” is misleading to a degree. Single-cell 

analysis does not aim to understand the behavior of a particular individual cell. Rather, single-

cell analysis aims to understand population behavior by analyzing single-cell distributions. 



12 

 

 
 

New statistical tools enable the analysis of complex cellular state distributions which enable 

deeper insights into underlying biology.   

Single-cell statistical analysis methods are needed to interpret increasingly complex 

biological data. Many single-cell datasets not only characterize biological responses at a 

single-cell resolution, each cellular response is measured at a multivariate level resulting in 

highly complex datasets. Increasing data complexity makes gaining even an initial intuition of 

raw data prior to analysis difficult. For example, a typical mass cytometry dataset generates a 

data matrix of ten thousand rows and thirty-eight columns. Understanding and properly 

interpreting such a large dataset is non-trivial. To address this complexity a large array of 

statistical analysis methods have been developed to simplify complex data in a manner that 

attempts to capture the relationships between cells. This technique, often called dimensionality 

reduction, is used in the initial stages of data analysis to identify natural groupings between 

data types(e.g. types of genes). Groupings with similar relationships provide a simplified 

representation of complex high-dimensional data. A challenge with dimensionality reduction 

is that the interpretation of the simplified representation is often not obvious. Proper 

interpretation of the simplified data requires understanding what assumptions were made to 

simplify the dataset. Techniques like principal component analysis identify a less complex and 

lower dimensional representation of the data that preserves most of the variance. On the other 

hand, techniques like isomap, t-SNE and its variants such as viSNE preserve local 

relationships between neighboring cells [50–52]. In the case of the mass cytometry dataset 

mentioned above, t-SNE transforms the data matrix from ten thousand by thirty-eight into a 

simplified matrix of ten thousand by two. This simplification maintains single-cell information 

while combining information from several distinct readouts (e.g. columns) into two quantities 

that can be plotted against each other in a standard scatter plot.   
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The suitability of dimensionality reduction methods continues to expand as single-cell 

datasets become richer and more complex. However, it is important to note that such methods 

are a visual aid to initially interpret intricate data and does not provide quantitative 

information. Quantitative analysis of single-cell data that does not depend on an initial 

simplified interpretation requires computational tools that provide meaningful statistics 

summarizing single-cell response distributions. Fortunately, a large array of existing data 

analysis methods combined with freshly developed quantification methods is able to 

accomplish these tasks. One example of the adoption of such methods is the growing usage of 

information theory in the analysis of variability in signal transduction. Information theory has 

powerful techniques to measure relationships between random variables [53]. New 

developments and tools in information theory enable better insights into complex and highly 

variable cellular responses [6,37,54].  

 

Computational Modeling: Confirm & Predict 

The American psychologist Kurt Lewin famously said “There is nothing as practical 

as a good theory.” [55]. Traditionally, biological sciences have not been as receptive to 

mathematical modeling as other disciplines such as engineering, physics, and chemistry. A 

major contributing factor is the difficulty of integrating biological data with mathematical 

models. Even with a physiologically sound mathematical model, it is difficult to measure or 

estimate kinetic parameters that produce useful predictions. Despite these challenges, there 

have been significant advancements in modeling several major signal transduction pathways.  

Pioneering works in several important canonical signaling pathways such as calcium, 

NF-kB and MAPK utilized mathematical modeling to gain biological insights not available 
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using experiments alone. Calcium signaling pathways regulate a multitude of biological 

process such as transcription, cell motility, and muscle contraction through diverse cellular 

response patterns [56]. Various mathematical models have been proposed to explain the 

oscillatory behavior of cellular calcium response. For example, models proposed by De Young 

& Keizer and Dupont & Erneux rely on the biochemical properties of IP3 channels to explain 

calcium induced calcium release [57,58]. Other models consider ryanodine receptor and 

voltage-gated channels to explain this phenomenon [59,60]. In addition to models describing 

cellular calcium oscillations, there are numerous models describing calcium spikes in non-

excitable cells by incorporating surface receptor signaling and receptor desensitization 

parameters [61,62].  The NF-κB pathway provides an additional important example of the 

utility of mathematical modeling. Initial work by Hoffmann et al. provided a comprehensive 

mathematical model of the IκB-NF-κB signaling module [63]. Hoffmann et al successfully 

accounted for the population level temporal behavior of NF-κB in the EMSA data using their 

model. A classic study by Huang & Ferrell on the MAPK pathway predicted that the MAPK 

signaling cascade would produce a steep dose response curve, allowing cells to switch from 

one state to another [64]. This prediction was subsequently supported by experiments.  

Cellular heterogeneity measurements, as indicated by single-cell datasets, motivate the 

use of mathematical models to uncover the underlying causes of cellular heterogeneity based 

on the mechanistic details of the signaling pathway. Albeck et al. and Spencer et al. utilized 

computational modeling to explain the heterogeneous apoptosis behavior in the TRAIL 

pathway [65–67]. By changing the rate parameters downstream of the TRAIL receptor or the 

protein concentration levels in the mathematical model, heterogeneity in timing delays to 

apoptosis can be accounted for in the simulated data. In another study concerning the TRAIL 

pathway, Eissing et al. used a properly reduced model to perform a bistability analysis to 
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deduce the diverging behaviors in the TRAIL pathway [68]. Nelson et al. used computational 

modeling in conjunction with single-cell NF-κB measurements to demonstrate how varying 

transcriptional activity of IκBα can alter the NF-κB oscillation frequency [69]. Lee et al. 

parameterized a dynamic model of NF-κB  induced transcription using a combination of 

single-cell nuclear NF-κB measurements and transcript numbers in the same single-cells [70]. 

From their model they were able to determine how cells can detect a fold-change in NF-κB 

levels as opposed to absolute concentrations to induce transcription. Nonlinear systems 

analysis techniques, such as bifurcation analysis, were employed by Koenigsberger et al. to 

model calcium oscillations to study the mechanisms for smooth muscle cells to synchronize 

their oscillations [71].  

Mathematical modeling is a useful tool to gain useful biological insights at the single-

cell level. Feedback properties of signaling pathways can also be exploited to study the 

underlying causes of cell-to-cell variability. Birtwistle et al. observed bimodal behavior in the 

MAPK/ERK cascade which produces two populations of ppERK output in response to EGF 

stimulation [72]. By inspecting the negative feedback loop structure in the mathematical 

model of the pathway and performing computational simulations, they deduced that the 

heterogeneity in RasGTP levels coupled with varying ERK activation threshold levels 

eventually produced bimodal behavior in the cell population. Ferrell et al. studied the 

progesterone stimulation of the MAPK pathway leading to oocyte maturation [73]. While the 

population average data conveyed a graded response, single-cell data revealed an all-or-none 

response. Analysis of the mathematical model of the pathway showed that bistability and 

positive feedback within the pathway provided the switch for cell fate decision making in the 

cell. Using single-cell microfluidic perturbations in combination with data-driven clustering of 

dynamic ERK profiles, Ryu et al were able to construct an updated MAPK model to determine 
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differences in cellular fate decision making [74].  Ultimately they were able to use their 

mathematical model to determine how cellular fate decisions can be rewired with different 

growth factors. Feinerman et al. studied T-cell receptor signaling using both single-cell data 

and mathematical modeling [75]. They investigated how variation in signaling proteins 

changes cellular responsiveness. Interestingly, the co-receptor and negative feedback loop of 

SHP-1 together regulate the activation threshold and the switch behavior of the cell’s 

responsiveness to regulate the diversity of cellular phenotypes. A number of other models 

based on single-cell datasets have been developed for a variety of signaling systems [76,77].  

            In addition to moving from population level to single-cell level analysis, there has also 

been an increasing focus on adapting modeling approaches to account for biological noise and 

model parameter uncertainty. Elowitz et al. succinctly described intrinsic biological noise, the 

stochastic thermal fluctuation internal to the system, and extrinsic biological noise, the 

fluctuation external to the system of interest and is deterministic within the same cell but 

different among cells [78]. Others in the biological modeling community such as Janes & 

Lauffenburger and Gutenkunst et al. have indicated that the structure of a model is more 

important than the individual kinetic parameters when making predictions because multiple 

sets of kinetic parameters can fit a model equally well [79,80]. This implies that assigning 

distributions of parameter values to the model will increase single-cell model predictability 

(Figure 4). Tay et al. described the level of NF-κB and TNFR-1 using lognormal parameter 

distributions in order to account for extrinsic noise between cells [4]. Cheng et al. applied 

probabilistic based mathematical modeling to the TRIF pathway [81]. They modeled four key 

parameters in the areas of TLR4 synthesis, MyD88 activation, TRIF activation, and endosome 
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maturation as probability distributions rather than as fixed values. The simulated signaling 

pathways generated similar heterogeneous behaviors as found in the experimental data. 

Eydgahi et al. used Bayesian and Monte Carlo methods and calibrated a mathematical model 

of apoptosis single-cell data to obtain probability distributions for all kinetic parameters in the 

model [82]. This approach allowed for discrimination between competing mathematical 

models of apoptosis.  

Overall, the methods discussed above made specific assumptions regarding the shapes 

of the distributions of certain kinetic parameters. A possible alternative approach is to fit the 

individual cell trajectories to the mathematical model using Bayesian sampling methods such 

that each cellular trajectory will have a set of parameter distributions. A potential advantage of 

using direct Bayesian sampling is that it assumes little concerning the form of parametric 

distributions that could potentially have complex structure not initially assumed by 

researchers.  

Figure 0.4. Population vs Single-Cell Computational Model Parameterization. Although a 

network model between population and single-cell level models remains the same, differences in 

parameter selection and distribution elicit different response outputs. Population level parameters 

have a single value per parameter whereas single-cell level parameters consist of a range of values. 

Population level parameters provide a single response output that represents that entire population 

of cells whereas single-cell level parameters show the distribution of responses within the 

population.  

 

 

Figure 0.5. Complexity of Microfluidic Chip Design Depends on Desired Experimental 

Output.Figure 0.4. Population vs Single-Cell Computational Model Parameterization. 
Although a network model between population and single-cell level models remains the same, 

differences in parameter selection and distribution elicit different response outputs. Population level 

parameters have a single value per parameter whereas single-cell level parameters consist of a range 
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Manipulate: Biological Insights through Internal and External Manipulation 

Experimentally investigating a cellular signaling system involves either changing the 

outside or the inside of a cell. The outside is perturbed by changing the cellular environment 

by either adding or removing a specific factor. Similarly, the inside of a cell can be changed 

by over expressing or removing specific genes of interest. Although the concept behind 

experimental manipulation does not change with single-cell techniques, the specific 

techniques used to manipulate cells has evolved.  

Microfluidics: Environmental Changes at a Micro Scale 

The application of microfluidics to biological research has powerful implications for 

single-cell signal transduction measurements. Microfluidics enables the researcher to 

manipulate fluids with a high level of control at the submilliliter scale. This high level of 

control permits spatial and temporal manipulation of the cellular environment. The ability to 

customize a microfluidic chip to the specific needs of an experiment removes previous 

limitations set by currently available tissue culture technology. The complexity of a 

microfluidic chip depends on the specific biological question. Complexity ranges from very 

simple to extremely complicated depending on the biological phenomena in question (Figure 

5). The increased usage of microfluidic devices in biological research over the past two 

decades has been extensively reviewed elsewhere [83–86]. Here we discuss the spatial and 

temporal benefits of microfluidics devices that range from very simple to highly complex.  
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Temporal modulation allows researchers to control the duration and frequency of 

changes to the cellular environment. Environmental changes include modifications to growth 

media conditions or stimulating cells via a perturbation of interest. No longer are researchers 

limited to population level bolus additions of stimulus at a single time point. In the Suel lab, 

media conditions are manipulated to determine the specific growth mechanisms of biofilms 

[87,88]. Here, Prindle et al. use an unconventionally large microfluidic design to observe the 

growth of a biofilm [87]. Although there are only two ports allowing media to flow in and out 

of the cell chamber, they were still able to add and remove specific components of the media 

to determine factors necessary to biofilm growth. Another simple design by Herson et al 

measures the signaling pathway response over varying input frequencies [89]. In order to 

ensure rapid media changes with distinct period times, Herson et al employ a “Y” design 

where each arm of the Y is connected to a different media solution. The simplicity of these 

designs enables easier manufacture and implementation of the design. However, they are 

limited in throughput and can only change between two different inputs. On the other end of 

the spectrum, the Tay lab uses a complex microfluidic design that is able to precisely vary the 

Figure 0.5. Complexity of Microfluidic Chip Design Depends on Desired Experimental 

Output. Simple microfluidic designs (left) do not equate to less information in comparison to 

complicated designs (right). Rather, the complication level of each design depends on the required 

information from the experiment whether it be spatio-temporal dynamics of wound response (left) 

or cellular response to dynamic, temporal inputs (right, image courtesy of Savas Tay at the Institute 

for Molecular Engineering at the University of Chicago).   

 

 

Figure 0.6. Optogenetics enables controlled spatial and temporal inputs.Figure 0.5. 

Complexity of Microfluidic Chip Design Depends on Desired Experimental Output. Simple 

microfluidic designs (left) do not equate to less information in comparison to complicated designs 

(right). Rather, the complication level of each design depends on the required information from the 

experiment whether it be spatio-temporal dynamics of wound response (left) or cellular response to 

dynamic, temporal inputs (right, image courtesy of Savas Tay at the Institute for Molecular 

Engineering at the University of Chicago).   
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duration and dose of the stimulus at a high throughput level to determine how cellular outputs 

are influenced by dynamic inputs [90–92]. However, the complicated design requires higher 

technical expertise.  

In addition to temporal stimulation, microfluidic device designs also allow for spatial 

modulation. Spatial modulation is important in cases where gradient information is important 

such as in wound healing or chemotaxis. Spatial perturbations are possible using microfluidic 

devices due to the low Reynold’s number characteristic of microfluidics devices. This 

property ensures that any gradient formation and mixing is due to diffusion rather than 

convection within the device. Handly et al. take advantage of this property to study paracrine 

communication of the initial wound response using a simple two-layer microfluidic design 

[93]. On the bottom is a cell chamber and the top an air layer. The ceiling of the cell chamber 

contains a pillar such that when air pressure is increased in the air layer the pillar lowers down 

onto the cells to mechanically wound the cells. The lack of convection within the device 

ensures that any molecules released into the extracellular environment move between cells 

according to diffusive principles rather than flow through the device. Chen et al. employ a 

more complicated design to study the migration of heterogeneous tumor cells at the single-cell 

level [94]. Their device design involves capturing single cells in narrow capillaries and 

applying a gradient across the capillary to mimic concentration gradients of chemokines that 

induce tumor cell migration. The formation of this gradient directly takes advantage of even-

mixing facilitated by diffusion in microfluidic devices. The geometry of these capillaries also 

imitates the shape of blood and lymphatic capillaries to provide a more physiologically 

relevant study of tumor cell migration. Again, although each device design probes a spatially 

relevant biological question, the degree of device complexity is determined by the specific 

needs of the experiment.  
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Optogenetics- Intracellular Manipulation through Extracellular Stimulus 

Advancements in optogenetics have opened up the possibility to expand spatio-

temporal stimuli to intracellular signaling states. Traditional cellular manipulation involves 

perturbing the entire population of cells through genetic or pharmacological manipulations. 

However, these types of irreversible population level changes do not allow for selective spatial 

activation and dynamic temporal inputs which are important in testing hypotheses related to 

cellular communication. Optogenetic approaches use light to perturb genetically manipulated 

Figure 0.6. Optogenetics enables controlled spatial and temporal inputs. A. Genetically 

manipulated cells are perturbed by light to elicit a response. B. Cells can be manipulated with 

light both temporally and spatially using optogenetics. Dynamic light inputs can generate 

varying cellular response outputs (temporal). Optogenetic control of specific signaling 

molecules, such as the GTPase Rac, enables precise spatial control over which area of the cell is 

activated (spatial). 

 

 

Figure 1.1. Local averaging using paracrine signaling reduces response variability in a 

communication distance dependent mannerFigure 0.6. Optogenetics enables controlled 

spatial and temporal inputs. A. Genetically manipulated cells are perturbed by light to elicit a 

response. B. Cells can be manipulated with light both temporally and spatially using 

optogenetics. Dynamic light inputs can generate varying cellular response outputs (temporal). 

Optogenetic control of specific signaling molecules, such as the GTPase Rac, enables precise 

spatial control over which area of the cell is activated (spatial). 
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cells and can do so in a spatial and temporal manner to investigate cellular signal transduction 

(Figure 6). 

Although initial applications of optogenetics focused on neurobiology, the ability to 

regulate intracellular signaling pathways in a spatio-temporal manner using photoactivatable 

proteins has made optogenetics a functional tool to study signal transduction. The application 

of light-activated proteins varies from conformational changes to uncaging. However, the 

basic ability to perturb an intracellular signaling pathway with high spatio-temporal resolution 

remains the same. Toettcher et al. developed optogenetic tools able to activate isolated 

signaling nodes within the cell to determine how different temporal inputs regulate 

downstream responses [95]. Using a photoactivatable Ras protein, they measure how the dose 

and frequency of Ras activation determines downstream ERK response. The kinetics of the 

Raf/MEK/ERK pathway were also investigated using optogenetics by Zhang et al [96]. Using 

temporal activation patterns they were able to induce PC12 cell differentiation similarly to 

NGF stimulation.  

Optogenetics also enables precise spatial manipulation of cells, either at the 

subcellular or multicellular level. This type of stimulation is important when examining 

specific proteins required for cellular behavior or determining how gradient formation 

determines cellular response. Wu et al. utilize a photoactivatable Rac to produce cell 

protrusions and ruffling at specific subcellular locations to control the direction of cellular 

motility [97]. The Gautam group developed an optogenetic method to spatially manipulate 

GPCRs at a subcellular level to create gradients of GPCR activation within the cell [98,99]. 

By forming gradients of GPCR activation within cells they were able to control the movement 

of the immune cell. At the multicellular level, optogenetics enables experiments where only a 

specific portion of cells are stimulated to determine how the surrounding cells respond to the 
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stimulated cells. Wang et al. demonstrate this principle by activating Rac using light in a 

single cell within a cluster of border cells in Drosophila [100]. Although only a single cell was 

activated, communication between cells caused the other cells within the cluster to move 

according to the activation level of the initial cell. The ability to precisely localize activation 

in a group of cells has exciting potential in the realm of cellular signaling. These types of 

experiments are useful when considering gradient formation across a tissue during embryonic 

development, wound healing, in addition to cellular migration.   

 Combining the spatiotemporal control of optogenetics with the genome editing 

abilities of CRISPR-Cas-9 has exciting potential in the study of signal transduction at the 

single-cell level. At the fundamental level, genome editing using CRISPR-Cas9 is effective in 

population level studies. However, advancements in light-inducible CRISPR-Cas9 systems 

[101–103] enables researchers to make specific edits to the genome with high spatiotemporal 

control. Combining optogenetics with CRISPR-Cas9 enables temporal activation of specific 

genes to study biological outputs as well as activation of specific genes in localized regions. 

The development of more optogenetic systems that utilize CRISPR-Cas9 will provide an 

exciting set of tools in the study of single-cell signal transduction.  

Combining Single-Cell Manipulation Methods for Effective Study of Signal Transduction 

Using microfluidics, optogenetics, and CRISPR-Cas9 allows for controlled 

manipulation of both the intra- and extracellular environment. Although advances are being 

made to combine these technologies, such as with the photo-inducible CRISPR-Cas9 systems 

mentioned above [101–103], studies that fully integrate all three technologies is difficult. A 

combination of these three approaches has powerful abilities in controlling the spatial and 

temporal manipulation of cellular environment and function. As these technologies mature and 

become commercially available it will increase the adaptation of systems biology approaches 
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to study signal transduction. For example, user friendly microfluidic designs or commercially 

available microfluidic-like devices expand single-cell study beyond traditional cell culture 

tools. Additionally, increasing usage of CRISPR-Cas9 and optogenetic technologies will 

expand the available selection of target genes and signaling systems.     

Outlooks 

Approaches to study signal transduction networks at the single-cell level are in a 

renaissance period. The ability to observe, manipulate, and model biological systems using 

constantly advancing single-cell techniques drives new discoveries and enables deeper 

insights into the inner working of cells. As cellular dynamics and heterogeneity are key 

aspects to understanding signaling pathways, the adoption of single-cell approaches is critical 

for future progress. One of the key challenges that limits the adoption of these approaches is 

technical. Single-cell studies require tools from engineering, biology, and computer science. 

Unfortunately, these three disciplines are not well integrated in traditional curriculum. 

However, this is changing with increasing numbers of undergraduate and graduate programs 

emphasizing the importance of quantitative training.  

Here we outlined recent advances pivotal towards progress in understanding the 

dynamic nature of signaling networks at a single-cell resolution. In parallel, other single-cell 

technologies that can probe the internal state of the cells have made tremendous progress. 

Omics technologies, including both “molecular profiling” and “molecular perturbations” [104] 

provide rich datasets useful with many benefits over currently available microscopy methods. 

Omics technologies have the ability to examine thousands of genes, proteins, and post-

translational modifications at one time whereas microscope technologies are limited in the 

number of nodes within a network they are able to monitor concurrently. We anticipate that 

integrating single-cell approaches within signal transduction, such as measuring dynamic 
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single-cell signaling responses, with OMICs single-cell approaches, such as RNAseq, will 

play a major role in future work concerning signaling networks.  

Signal transduction studies at the single-cell level provide information about the 

dynamic nature of biological signaling networks. Although these approaches follow the same 

scientific methodology of hypothesis, experiment, analysis, and conclusion, the specific 

approaches to decipher the intricacies of single-cell variability differ. Advancements in these 

technologies have come a long way to make answers to biological questions at the single-cell 

level possible. Future advancements of single-cell approaches and integration with other 

technologies shows promise for exciting developments in understanding biological network 

dynamics.    

Acknowledgments 

The work was supported by NIH grants GM111404 and EY024960. 

The introduction, in full, is a reprint of the material as it appears in Handly, L.N.; Yao, 

J.; Wollman, R. Signal Transduction at the Single-Cell Level: Approaches to Study the 

Dynamic Nature of Signaling Networks. J. Mol. Biol. 2016, 428, 3669-3682. The dissertation 

author is the first author on this paper. 

   

 

 

  



 
 

26 

 

CHAPTER 1                                                                                

Paracrine communication maximizes cellular response fidelity in 

wound signaling 

Abstract 

Population averaging due to paracrine communication can arbitrarily reduce cellular 

response variability. Yet, variability is ubiquitously observed, suggesting limits to paracrine 

averaging. It remains unclear whether and how biological systems may be affected by such 

limits of paracrine signaling. To address this question, we quantify the signal and noise of 

Ca2+ and ERK spatial gradients in response to an in vitro wound within a novel microfluidics-

based device. We find that while paracrine communication reduces gradient noise, it also 

reduces the gradient magnitude. Accordingly we predict the existence of a maximum gradient 

signal to noise ratio. Direct in vitro measurement of paracrine communication verifies these 

predictions and reveals that cells utilize optimal levels of paracrine signaling to maximize the 

accuracy of gradient-based positional information. Our results demonstrate the limits of 

population averaging and show the inherent tradeoff in utilizing paracrine communication to 

regulate cellular response fidelity.   

Introduction  

Cellular variability is likely a biological trait with significant phenotypic 

consequences. Technological advances in single-cell measurement methodologies reveal 

substantial cellular variability. For instance, single-cell quantification of protein concentration 

variability between cells shows that the concentration of many signaling molecules can vary 

by ~25% (coefficient of variation) [67,105,106]. Furthermore, a large and rapidly growing 

body of single-cell 
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transcriptomics experiments further demonstrates that cells homogeneous in “type” have 

substantially heterogeneous gene expression patterns [107].The origin of this cellular 

variability has been traced to fundamental properties of gene expression. Notably, single-

molecule kinetics regulates gene expression and, as a result, is an inherently stochastic process 

[108].  

While the costs and benefits of cellular variability are likely dependent on the specific 

physiological context, the functional significance of cellular variability suggests that cellular 

variability magnitude is regulated. Functional analysis of cellular response variability 

demonstrates that the observed cellular variability affects the core function of signaling 

networks. Despite a homogenous environment, cells respond in a heterogeneous manner due 

to biological variability. Response variability potentially degrades transmitted information and 

decreases downstream effector ability to reliably respond to environmental changes [5,109–

111]. The abundance of cellular variability throughout biological processes and the potential 

consequences of information degradation suggest that biological systems have developed 

mechanisms to regulate cellular variability.  However, cellular variability is not necessarily 

detrimental to cellular function. In fact, cellular heterogeneity often plays a critical role in 

ensuring proper cellular response by mechanistically increasing the cellular response range to 

a constantly changing environment [112]. For example, single-cell noise in NFκB dynamics 

creates robust population level responses to a wider range of inputs [113,114].  

Cells share information with each other via paracrine signaling, which effectively 

averages variable cellular responses and therefore reduces cellular variability. Overall 

population-level averaging decreases variability by following the statistical laws of the central 

limit theorem and the law of large numbers [115]. Paracrine signaling averaging can decrease 

variability in a similar manner, but functions on a local population level. Specifically, 
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paracrine signaling averaging functions such that the local concentration of the paracrine 

ligand, or the concentration of ligand a cell is exposed to, is the average ligand concentration 

secreted by local cells (Figure 1A). Indeed, the benefits from paracrine communication were 

previously demonstrated to increase post-paracrine cellular response fidelity [116,117]. The 

process of local population “information averaging” by each cell enables increased accuracy 

of inherently single cell decisions such as proliferation and differentiation.  

Despite promises of noise mitigation from paracrine averaging, parameters set by 

biological systems can limit these potential benefits. For example, population averaging due to 

paracrine communication may cause loss of information in a similar manner to the information 

loss of single-cell dynamics due to “population average” bulk measurements [78,106,118]. 

The potential information loss due to “over-averaging” of variable single-cell responses 

demonstrates a limitation to paracrine communication. Limitations to paracrine 

communication are also observed in post-paracrine single-cell responses that remain highly 

variable despite paracrine averaging. These limitations suggest an overall functional constraint 

to the potential benefits of paracrine communication. However, the identity and source of 

these limitations on paracrine communication benefits are unknown.  

 The initial paracrine signaling pathways that are activated in response to Damage 

Associated Molecular Patterns (DAMPs) are a good model system for investigating the 

influence and limits of paracrine communication on cellular response fidelity. Paracrine 

communication is pervasive during initial wound response. Wound healing begins as soon as 

the wound occurs and the initial cellular wound response provides the foundation for proper 

downstream healing. The initial cellular wound response relies on external environmental cues 

as well as programs inherent to the cell, including DAMPs as primary danger signals [119]. 

DAMPs are released from necrotic cells and bind to extracellular receptors on surrounding 
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cells. This binding initiates a signal in the surrounding cells to secrete a secondary set of 

cytokines and growth factors required to coordinate the wound healing process. Many DAMP 

signals, such as extracellular ATP, are transient and released in limited quantities. As a result, 

the initial wound response to such DAMPs shows high cellular variability and low fidelity. 

Despite the limited fidelity of the initial wound response, the wounded epithelium is able to 

establish a robust healing response. The complicated and multi-step wound healing process 

utilizes several paracrine communication mechanisms to share cellular information and 

coordinate the overall healing program.  

Here we use the paracrine release of epidermal growth factor (EGF) ligands initiated 

by ATP binding to P2Y receptors as a model to investigate the limits of cellular information 

sharing through paracrine communication to mitigate biochemical noise (Figure 1A). We 

show that paracrine communication increases extracellular signal-regulated kinase (ERK) 

response fidelity using live single-cell quantitative fluorescent imaging of primary Ca2+ and 

secondary ERK responses downstream of P2YR and EGFR, respectively. Statistical analysis 

of the primary response signal-to-noise ratio (SNR) demonstrates that the increase in response 

fidelity is limited by paracrine communication distance (PCD). To analyze this pathway in the 

physiological context of wound response we developed a new microfluidics device to monitor 

the spatial propagation of initial wound response signaling. Our results demonstrate that the 

interplay between the wound induced spatial signaling gradient and the cellular noise pattern 

produces an optimal PCD. The optimal PCD balances the benefits of decreased noise from 

local averaging with the cost of reduced signal of the spatial signaling gradient due to over-

averaging. Empirical measurements of the PCD reveal that cellular communication occurs at a 

distance to maximize cellular response fidelity. 
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Results 

Paracrine signaling reduces response variability   

Here we establish that the paracrine activation of ERK by ATP provides a suitable 

system to investigate signaling response fidelity changes due to paracrine communication. 

Extracellular ATP binding to P2YR results in EGF family ligand release to bind EGFR and 

activate ERK response as monitored by ERK activity following ATP addition. In the 

mammary epithelial cell line MCF-10A, addition of extracellular ATP increases ERK kinase 

activity in an EGFR dependent manner (Figure 1B) similar to results reported in other in vitro 

epithelial models [120]. ERK, as measured by the genetically encoded FRET sensor EKAREV 

[30,31], increases when stimulated with ATP. Inhibiting EGFR with tryphostin AG1478  
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prevents ERK activation upon ATP addition showing that ERK activation depends on secreted 

EGF binding to EGFR. [121].  

Figure 1.1. Local averaging using paracrine signaling reduces response variability in a 

communication distance dependent manner. A. A hypothesis for local averaging based reduction 

of response variability using paracrine signaling for ERK activation by P2Y receptors. ATP binds 

to P2Y receptors to increase cytosolic Ca2+ levels with high variability between cells despite 

equivalent ATP dosage per cell (pink shading). EGF release from each cell is proportional to the 

primary response to ATP (green arrows). Due to diffusion of EGF, the local concentration will be 

the average of EGF released from nearby cells and subject cells in a local neighborhood to the same 

level of EGF (blue arrows) to result in similar ERK activation. B. ATP activates ERK in a paracrine 

fashion in MCF-10A cells. ERK response to 10μM ATP addition with (green dashed) and without 

(green solid) 1μM of EGFR inhibitor tryphosphitin AG1478. 0μM ATP addition with (blue dashed) 

and without (blue solid) 1μM AG1478 shown as controls. C. MCF-10A cells were clustered based 

on their spatial proximity so that cells within a cluster were within a specific maximal 

communication distance (MCD) and cells in other clusters were farther than the MCD. Cluster 

denisty was calcuated by dividing the number of cells per cluster by the circular area inhabitated by 

each cluster. D. Standard deviation of ERK response per cluster to 10μM ATP.  Standard deviation 

decreases with increasing cluster density (p-value<0.05, Pearson correlation). E. Average maximum 

Ca2+ response with increasing ATP dosage. The standard deviation, i.e. noise, of the Ca2+ response 

to each ATP dosage is large when compared to the increase in average response with increasing 

ATP dose, i.e. signal (SNR=0.9, gray error bars (standard deviation)). Noise decreases when Ca2+ 

response is locally averaged with a PCD of 100μm (SNR=20.2, black error bars (standard 

deviation)). x-axis shown in log-scale. F. Single-cell maximum Ca2+ response is locally averaged 

across an area specified by the PCD to produce a predicted single-cell ERK response. Variability 

between cells in the predicted ERK response decreases with increasing PCD. Response magnitude 

of Ca2+ and ERK response indicated by pink to yellow and blue to yellow colorbars, respectively. 

G. The SNR of the predicted ERK response from locally averaged Ca2+ data continually increases 

with increasing PCD shown for a model with rapid diffusion (green) or limited by the diffusion 

rates and integration time of paracrine signals (blue, Material and Methods). SNR calculated in 

same manner as panel E with increasing PCD. Shaded area is SEM (N=5). 

 

Figure 1.2. Paracrine communication reduces response variability during wounding.Figure 

1.1. Local averaging using paracrine signaling reduces response variability in a 

communication distance dependent manner. A. A hypothesis for local averaging based reduction 

of response variability using paracrine signaling for ERK activation by P2Y receptors. ATP binds 

to P2Y receptors to increase cytosolic Ca2+ levels with high variability between cells despite 

equivalent ATP dosage per cell (pink shading). EGF release from each cell is proportional to the 

primary response to ATP (green arrows). Due to diffusion of EGF, the local concentration will be 

the average of EGF released from nearby cells and subject cells in a local neighborhood to the same 

level of EGF (blue arrows) to result in similar ERK activation. B. ATP activates ERK in a paracrine 

fashion in MCF-10A cells. ERK response to 10μM ATP addition with (green dashed) and without 

(green solid) 1μM of EGFR inhibitor tryphosphitin AG1478. 0μM ATP addition with (blue dashed) 

and without (blue solid) 1μM AG1478 shown as controls. C. MCF-10A cells were clustered based 

on their spatial proximity so that cells within a cluster were within a specific maximal 
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With our paracrine communication system established, we next confirmed the 

influence of paracrine communication on cellular response variability. Under conditions of 

low cell density we used a spatial clustering analysis to group cells such that the distance 

between groups effectively constrained communication to cells within groups (Figure 1C, D, 

Supplemental Figure S1-S2). In the case that cellular coordination is beneficial, we anticipated 

that the ERK response within groups of higher cellular density, i.e. cells have increased 

communication ability, would have reduced response variability than cell clusters with 

decreased communication ability. ERK response variability within clusters decreases with 

increasing cluster density indicating increased intercellular communication ability. Increased 

intercellular communication ability is not observed in the absence of paracrine communication 

such as with the primary Ca2+ response to ATP (Figure 1D, Supplemental Figure S2). 

Furthermore, disrupting paracrine communication by partially inhibiting Src results in the loss 

of the observed benefit of paracrine communication in higher density clusters (Figure 1D, 

Supplemental Figure S3-S4). Together these observations support the hypothesis that 

paracrine communication decreases cellular variability by increasing cellular coordination.  

Computational analysis of variability reduction resulting from paracrine information sharing   

Next we developed a computational model that mimics the coordination-effects of 

paracrine communication (see methods for details). This computational model quantifies the 

overall observed benefit of paracrine coordination and predicts the potential reduction in 

variability. Experimental single-cell dose response data of primary Ca2+ (prior to paracrine 

communication) response to ATP is used as an input to predict the secondary ERK response. 

We quantify cellular response fidelity by using a simple signal-to-noise analysis (SNR). In this 

analysis the cellular response magnitude of the input ligand (signal) is divided by the cellular 

response variability (noise). The signal is estimated by calculating the spread between the 
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average cellular Ca2+ responses from multiple ATP concentrations using multi-well dose 

response data. Noise is calculated from the average variability between cellular responses to a 

single input ligand concentration. SNR is simply the ratio of these two estimates (Figure 1E).  

To mimic the benefit of paracrine communication our computational model performs a local, 

spatially weighted average (convolution) of the primary Ca2+ response to predict the 

variability of response post paracrine communication (ERK) (Figure 1F). In short, the 

convolution averages the signal for every cell with its associated surrounding cells by 

weighting the surrounding cells based on a Gaussian function parameterized with varying 

PCDs. The PCD represents how far the paracrine molecule travels from a single-cell to 

activate its associated surrounding cells. Local spatial averaging provides an upper bound of 

the possible benefit resulting from cellular communication in conditions where no additional 

noise exists in the paracrine pathway. This analysis indicates that paracrine averaging using a 

PCD of 100μm increases response SNR from 0.9 to 20.2 by decreasing noise, or response 

variability, of the predicted ERK response (Figure 1E, gray/black). To investigate the limits of 

paracrine averaging, we repeated this analysis for multiple PCDs. Interestingly, our analysis 

estimates that the overall response SNR can increase up to 80-fold at PCDs of 500μm when 

paracrine diffusion is not limiting, and up to 25-fold when diffusion of the paracrine ligand is 

limiting (Figure 1G). More sophisticated statistical measures, such as mutual information, 

produce similar results (Figure 1G, Supplemental Figure S5). The large maximal SNR benefit 

suggests a potentially noise-free ERK response. However, experimental measurements of 

ERK response fidelity shows substantial ERK variability indicating potential factors that limit 

the benefit gained from paracrine communication (data not shown).   
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Cellular response fidelity depends on the extent of paracrine signaling during wound response  

Extracellular ATP released from necrotic cells act as DAMPs to activate healthy cells 

proximal to the wound [122]. Given this role, the spatial component produced by the ATP 

concentration gradient and the resulting cellular positional information relative to the wound 

may be important in the analysis of paracrine communication that occurs over hundreds of 

microns from the wound. Our previous SNR analysis demonstrating an increasing SNR with 

increasing communication distance was done based on multi-well experiment data. However, 

the bolus addition of ATP creates a spatially uniform ligand concentration in the well and does 

not represent a physiologically relevant spatial component.  To examine whether ATP spatial 

patterns influence the paracrine communication benefit we repeated the SNR analysis using 

single-cell wound response data.  

In order to measure the spatial wound response for epithelial cells, we first developed 

a convection-free, small-volume wounding device. Scratch-assays, where a monolayer of cells 

is mechanically wounded using a pipet tip, are traditionally used for epithelial cell wounding 

[123]. Although the scratch-assay is useful for studying cell-migration following wounding, 

scratch-assays lack the ability to study paracrine signaling. The large volume above the cells 

and convection caused by the scratch present challenges to examine paracrine signaling due to 

the dilution and inadvertent mixing of any paracrine molecules released from a cell into the 

surrounding media. To circumvent these technical issues we developed a microfluidics based 

wounding device (Figure 2A, B). Our device has two components: an air channel (black) and a 

cell chamber with a ~ 2.5μL volume (orange). The ceiling of the cell chamber has a PDMS 

pillar that, when air pressure is increased in the upper air channel, lowers down on to the cells, 

thereby wounding the cells in the cell chamber in a highly controlled and reproducible manner 

(Figure 2B, C, Supplemental Figure S10, Movie 1).  
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We used our wounding device to monitor Ca2+ and ERK response to a 300μm 

diameter wound using a stable, dual reporter MCF-10A cell line expressing the genetically 

encoded Ca2+ indicator RGECO [124,125] and the EKAREV FRET reporter for ERK [30,31] 

(Figure 2D, E—Video 2). We verified the key role of ATP in initial wound response by 

wounding in the presence of apyrase, an enzyme that rapidly hydrolyzes ATP. Wounding in 

the presence of apyrase inhibits both Ca2+ and ERK response (Figure 2D, E, insets). From each 

wound we quantified single-cell time traces for over 3000 cells. Notably, the maximum 

activity per cell shows a larger response in cells closer to the wound compared to cells farther 

away from the wound for both Ca2+ and ERK. These response gradients demonstrate the 

importance of the cellular position to determine the cellular response, or positional 

information (Figure 2D, E). We used coefficient of variation (CV) to measure the variability 

of the post-paracrine ERK response and the pre-paracrine Ca2+ response in the wound (Figure 

2F). Indeed, the CV for Ca2+ wound response shows statistically higher variability than ERK 

wound response indicating that paracrine communication reduces response variability during 

initial wound response.  
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Figure 1.2. Paracrine communication reduces response variability during wounding. A. Dual 

layer microfluidic-based wounding device with a top air channel (black) and bottom cell chamber 

(orange). B. Schematic of wounding in the device. Cells are first loaded into the cell chamber (top). 

Increasing the air pressure in the air channel lowers a pillar in the ceiling of the cell chamber until 

cells below the pillar are mechanically crushed (middle). The pillar returns to the original height 

when air pressure is released (bottom). C. Ca2+ response visualized by the Fluo-4 Ca2+ indicator dye 

over a period of 5 minutes following a 300μm diameter wound (black circle). D. Top: Maximum 

single-cell (dots) Ca2+  response to a 300μm wound. Inset shows maximum Ca2+ response to 300μm 

wound in the presence of the ATP scavenger apyrase. Bottom: Maximum single-cell (dots) of Ca2+ 

response to wound according to distance from the wound. E. Same as D but for maximum ERK 

response. F. Top: Cells are binned according to distance from the wound (Figure 3A) and the 

average and standard deviation (error bars) are found for each bin. Middle: Coefficient of variation 

(CV) calcuated by dividing the standard deviation of each bin by the mean of that bin. Bottom: Ca2+ 

has higher variability than ERK response for the wound according to the CV of every bin for all 

wounds (Black bar=average CV,  p-value by t-test).  

 

 

Figure 1.3. Signal to Noise analysis of initial wound response shows limits to paracrine 

communication.Figure 1.2. Paracrine communication reduces response variability during 

wounding. A. Dual layer microfluidic-based wounding device with a top air channel (black) and 

bottom cell chamber (orange). B. Schematic of wounding in the device. Cells are first loaded into 

the cell chamber (top). Increasing the air pressure in the air channel lowers a pillar in the ceiling of 

the cell chamber until cells below the pillar are mechanically crushed (middle). The pillar returns to 

the original height when air pressure is released (bottom). C. Ca2+ response visualized by the Fluo-4 

Ca2+ indicator dye over a period of 5 minutes following a 300μm diameter wound (black circle). D. 
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We adapted the computational SNR analysis to wound response data to determine the 

influence of spatial patterns on response fidelity. As opposed to the dose-response data, the 

wound response data uses the distance of each cell from the wound as the input rather than the 

concentration of activating ligand (Figure 3A). Similar to the dose-response data, noise is 

estimated by averaging the cellular response variability over all distances. The variability 

between the average response magnitude of each distance constituted the signal (Figure 3B). 

Other statistical measures of response fidelity such as mutual information were also adapted 

for the wound context (Figure 3, Supplemental Figure S11).  

 

 

Figure 1.3. Signal to Noise analysis of initial wound response shows limits to paracrine 

communication. A. Representative single-cell time traces of Ca2+ response to wounding, grouped 

according to distance from the wound (concentric circle colors). B. SNR calculation method for 

Ca2+ response adpated to the wound. Horizontal bars represent bin average and error bars represent 

bin variance. C. Maximum single-cell (dots) Ca2+ response to wound with respect to distance away 

from the wound (pink). Predicted ERK cellular response after paracrine communication as 

determined by local averaging (gray). Local averaging done in same manner as Figure 1F. D. 

Predicted ERK response according to distance from the wound using PCDs of 0 to 600μm 

(colorbar). Predicted ERK response determined through local averaging using increasing PCDs 

results in decreased response magnitude over space. E. Signal (blue), Noise (green) and SNR 

(orange) as function of PCD of locally averaged Ca2+ response trends in panel D. F. SNR analysis of 

locally averaged Ca2+ response to a wound with increasing PCD shows a maximum SNR at PCD of 

91.0μm+/-6.3μm indicated by the asterick (blue, SEM indicated by shaded region, N=5). The 

maximum SNR for conditions controlled for biologically relevant integration times show the same 

maximum SNR (green, Material and Methods).  

 

 

Figure 1.4. Empirical PCD measurement using DREADD synthetic GPCR show that cells use 

optimal level of paracrine communication levels that maximizes cellular response 

fidelity.Figure 1.3. Signal to Noise analysis of initial wound response shows limits to paracrine 

communication. A. Representative single-cell time traces of Ca2+ response to wounding, grouped 

according to distance from the wound (concentric circle colors). B. SNR calculation method for 

Ca2+ response adpated to the wound. Horizontal bars represent bin average and error bars represent 

bin variance. C. Maximum single-cell (dots) Ca2+ response to wound with respect to distance away 
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The maximum primary Ca2+ response shows highly variable cellular response when 

plotted according to distance (Figure 3C, pink). This variability complicates the ability for a 

cell to distinguish its respective position to the wound based on its response We again 

mimicked paracrine communication to predict the post-paracrine ERK response by locally 

averaging the single-cell Ca2+ wound response using a Gaussian kernel (Figure 1F). Locally 

averaging the cellular Ca2+ response creates a smoother predicted ERK response pattern versus 

distance from the wound (Figure 3C, gray). However, the reduction in variability also 

decreases the overall response pattern trend. Locally averaging the Ca2+ signal using 

increasing PCDs decreases the magnitude of change of the average predicted ERK response 

between cells closest to the wound and farthest from the wound (Figure 3D). In other words, 

the response gradient becomes less obvious when cells are averaged over larger distances. 

Therefore, although the increase in PCD decreases response noise, the corresponding decrease 

in signal demonstrates the limit of PCD on the SNR benefit (Figure 3E).  The difference in 

rates at which the signal and noise decrease results in a maximum SNR at a PCD of 91.0 +/- 

6.3μm (SEM, N=5) (Figure 3F). This peak corresponds to a PCD where the amount of noise is 

decreased to the lowest amount possible without reducing the response gradient due to “over-

averaging”. The predicted PCD with maximal benefit did not change when we expand the 

model to consider limits dues to diffusions (Figure 3F green curve, Material and Methods). 

Similar analysis using mutual information statistics shows a similar PCD with the maximal 

mutual information at the distance that showed maximal SNR (Figure 3E, F, Supplemental 

Figure S11B). This analysis shows that the benefits from paracrine communication depend on 

how far a paracrine molecule travels which, in this specific case, has a maximal benefit at 

~100 μm, or approximately three cell diameters.   
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Direct measurement of Paracrine Communication Distance  

We next empirically measured the PCD in our experimental system to compare to the 

PCD predicted to maximize the SNR in the wound context. To measure the PCD of ERK 

activation we first established a co-culture system that allows us to separate the effects of 

autocrine and paracrine signaling. Our assay utilizes a synthetic GPCR: Designer Receptors 

Exclusively Activated by Designer Drugs (DREADD). The Gq human muscarinic derived 

GPCR DREADD is activated by a synthetic small molecule, clozapine-N-oxide (CNO), that 

has no known endogenous receptors [126]. In addition, DREADD activates the Gq pathway 

similar to purinergic ATP receptors [127]. Using a co-culture of DREADD expressing 

(activated by CNO) and non-expressing cells (not activated by CNO), we can determine which 

cells release EGF (DREADD expressing-red) and which cells accept EGF (non-expressing-

gray) (Figure 4A). Using a synthetic system allows us to directly measure the average 

communication distance of EGF. CNO addition selectively activates Ca2+ response in 

DREADD expressing cells while the surrounding non-expressing cells show no response 

indicating a lack of paracrine activation of Ca2+ response in cells (Figure 4A). Although some 

systems show that Ca2+ response can propagate from cell-to-cell through gap junctions [128], 

this does not appear to be the case in MCF-10A cells as non-expressing cells showed no 

cytosolic Ca2+ increase upon activation of DREADD cells. Alternatively, ERK response was 

found in both DREADD expressing and the surrounding non-expressing cells upon CNO 

addition but was inhibited in both cell types in the presence of the EGFR inhibitor 

tryphosphitin AG1478, confirming paracrine activation of ERK in the DREADD system 

(Figure 4B). The Ca2+ and ERK responses in the DREADD system suggest that local 

averaging takes place only at the EGF level between Ca2+ and ERK response. Additionally, 

increasing the ratio of DREADD cells to non-expressing cells shows an increasing ERK 
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response magnitude in non-expressing cells, further supporting that paracrine communication 

locally activates ERK (Figure 4C).  

 

 

We measured the PCD by monitoring local paracrine ERK activation with our 

DREADD co-culture assay. We co-cultured DREADD cells at a low concentration compared 

to non-expressing cells to ensure that neighboring non-expressing cells were activated only by 

a single DREADD cell. We then analyzed the ERK response of ~1500 non-expressing cells 

Figure 1.4. Empirical PCD measurement using DREADD synthetic GPCR show that cells use 

optimal level of paracrine communication levels that maximizes cellular response fidelity. A. 

The addition of 5μM CNO to a co-culture of DREADD expressing (red) and non-expressing (gray) 

MCF-10A cells shows increased fold Ca2+ response in DREADD expressing cells but not non-

expressing cells. (SEM indicated by error bars, N=3; * p-value<0.005, t-test) B. Fold ERK increase 

in DREADD co-culture assay. Both DREADD and non-expressing cells show significant ERK 

increase when both DREADD cells and 5μM CNO are present. ERK activation inhibited by 1μM 

AG1478. (SEM indicated by error bars, N=3; * p-value < 0.005, t-test) C. The average maximum 

ERK response of non-expressing cells in a given well increases linearly with an increasing 

percentage of DREADD cells per well. D. Representative images from a timelapse experiment 

showing ERK activation (cyan) in non-expressing cells surrounding a single activated DREADD 

cell (yellow) over a 40 minute time period. ERK activation level indicated by black to cyan colorbar 

E. Average maximum ERK activation in non-expressing cells surrounding single DREADD cell 

according to distance from the DREADD cell. PCD was calcuated as the spread, or sigma, of the 

fitted Gaussian curve (dashed line) and measured to be 99.5μm +/-19.6μm (blue *) (SEM indicated 

by error bars, N=12 DREADD cells). Scale bar represents average length of a single-cell. F. 

Comparison between calculated optimal PCD per wound (pink, Figure 3F) and experimentally 

measured PCD found using the DREADD co-culture assay per DREADD cell (blue, figure 4E) (p-

value>0.5, t-test). Horizontal bars represent average.  

 

 

Supplemental Figure S1.1. MCF-10A cells can be separated and analyzed in cell clusters when 

plated at low densitiesFigure 1.4. Empirical PCD measurement using DREADD synthetic 

GPCR show that cells use optimal level of paracrine communication levels that maximizes 

cellular response fidelity. A. The addition of 5μM CNO to a co-culture of DREADD expressing 

(red) and non-expressing (gray) MCF-10A cells shows increased fold Ca2+ response in DREADD 

expressing cells but not non-expressing cells. (SEM indicated by error bars, N=3; * p-value<0.005, 

t-test) B. Fold ERK increase in DREADD co-culture assay. Both DREADD and non-expressing 

cells show significant ERK increase when both DREADD cells and 5μM CNO are present. ERK 

activation inhibited by 1μM AG1478. (SEM indicated by error bars, N=3; * p-value < 0.005, t-test) 

C. The average maximum ERK response of non-expressing cells in a given well increases linearly 

with an increasing percentage of DREADD cells per well. D. Representative images from a 

timelapse experiment showing ERK activation (cyan) in non-expressing cells surrounding a single 

activated DREADD cell (yellow) over a 40 minute time period. ERK activation level indicated by 

black to cyan colorbar E. Average maximum ERK activation in non-expressing cells surrounding 

single DREADD cell according to distance from the DREADD cell. PCD was calcuated as the 

spread, or sigma, of the fitted Gaussian curve (dashed line) and measured to be 99.5μm +/-19.6μm 

(blue *) (SEM indicated by error bars, N=12 DREADD cells). Scale bar represents average length 
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neighboring a  DREADD cell. (Figures 4D, E).  Local ERK activation of non-expressing cells 

surrounding a DREADD cell show decreasing response with increasing distance from the 

DREADD cell. ERK response as a function of distance follows a Gaussian fit, consistent with 

how the concentration of diffusing molecules, like in paracrine signaling, changes over 

distance (Figure 4E) [129]. The PCD was determined by calculating the spread, or sigma, of 

this Gaussian curve. According to our fit, the paracrine activation of ERK has a 

communication distance of 99.5 +/- 19.6μm (SEM, N=12 DREADD cells). This empirically 

measured value is statistically similar to the predicted communication distance value that 

maximizes the SNR of wound response (Figure 4F).  In other words, the cellular 

communication distance is tuned to maximize the overall response fidelity during wound 

response signaling.     

Discussion 

Multicellular organisms utilize cellular diversity for specialization and division of 

labor. However, the variability between cells can be detrimental due to the potential loss of 

response fidelity [5,109–111,130]. Paracrine communication can serve to share information 

between cells to regulate cellular variability. In this study we analyzed the benefits and 

limitations of paracrine communication based information sharing between cells as a 

mechanism to control cellular response variability.  

We analyzed the limits of paracrine communication on cellular response fidelity in 

two cases. First we analyzed the response to a spatially uniform ligand. Our analysis reveals 

that, under these conditions, the magnitude of single-cell response fidelity increases as a 

function of the PCD with no upper bound. In order for cells to facilitate larger PCDs, cells 

would need to synthesize larger amounts of paracrine signaling molecules or utilize fast 

diffusing paracrine ligands like H2O2 [119]. The increased energy required to synthesize the 
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additional molecules is likely to be minor in comparison to the overall energetic demand of a 

cell. Therefore cells could potentially take advantage of large PCDs to substantially mitigate 

biochemical noise. However, a spatially uniform input, while common in cell culture 

experiments, is likely an inadequate representation of physiological conditions. In the second 

case we analyzed the response of cells to spatially defined inputs in the form of a mechanical 

epithelial wound. We analyzed the cellular response to extracellular ATP gradients, a damage 

associated molecule, following a controlled wounding of an epithelial monolayer in vitro. 

Similar to developmental systems, an extracellular input ligand conveys positional 

information in wound response [131,132]. Analysis of the paracrine communication benefit in 

our novel quantitative wound response assay with defined spatial perturbations demonstrates 

that paracrine communication increased cellular response fidelity, but with limitations. Unlike 

the spatially uniform ligand in the first case, the magnitude of the response fidelity benefit 

varies with increasing PCD. The maximal increase of cellular response fidelity occurrs at a 

PCD of ~100μm, or approximately 3 cell diameters. In vivo work measuring ERK propagation 

using the same EKAREV FRET sensor also showed propagation extending ~100μm [133]. 

Our results demonstrate that the paracrine information sharing benefit depends on the input 

ligand spatial scale, or PCD.  Furthermore, empirical measurements of paracrine 

communication match the physiologically relevant spatial wound response maximum 

communication distance.   

The process of wound healing is a complex multi-stage program that coordinates the 

action of multiple cell types over multiple timescales, from minutes to weeks, to address an 

acute need. The initial steps of wound healing programs propagate information concerning the 

wound in a manner that is appropriate to the magnitude of damage. Both inflammatory and 

fibrotic processes, critical steps in wound response signaling, are damaging when they go 
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awry. Therefore, the initial cellular responses and the establishment of signaling gradients are 

key steps in wound healing. The mechanistic details underlying how tissues robustly match 

the wound response magnitude to the extent of wound-induced damage remain unknown. Our 

results demonstrate that intercellular communication during the initial wound response is 

optimized to increase overall response fidelity and provides the initial evidence that matching 

the wound response to wound damage is a critical aspect to wound healing programs. Future 

work is needed to further investigate tissue level response fidelity during wound healing 

programs.     

Paracrine communication increases the fidelity of response at the single-cell level by 

mitigating biological noise at the single-cell level. Each cell integrates information from its 

local neighborhood to increase its individual response fidelity.  Local averaging at the cellular 

level is a distinct mechanism compared to the benefit of global averaging at the population 

level. Without any paracrine communication, the reliability of the average of a cell population 

response can only increase with the size of the population. This is a consequence of the central 

limit theorem where the uncertainty of a sample average decreases with sample size. However, 

this increase in reliability is only true for the population average and not for individual cells in 

the population. Therefore, in cases where the biologically significant output is the collective 

action of the population, e.g. the secretion of a cytokine, intercellular information sharing is 

not required. However, when biologically significant output requires single-cell action, local 

information sharing via paracrine communication increases cellular response fidelity. 

Therefore, whether paracrine communication is required remains context dependent. It is 

possible that paracrine information sharing is more prevalent in signaling networks that 

support individual cellular decisions and less prevalent in cases where biologically meaningful 

outcomes result from population averages. 
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In cases where paracrine information sharing is used as a method to mitigate 

biological noise, the breakdown of this system could be detrimental. In vivo studies of ERK 

response in mammary tumor cells using the same EKAREV FRET sensor utilized here show 

highly variable ERK response that may lead to the survival and propagation of cancer cells 

[134]. Although the cause for this heterogeneity is unknown, one possible mechanism may be 

the breakdown of paracrine communication between cells similar to how our partial inhibition 

of paracrine communication showed no decrease in ERK variability (Figure 1, Supplemental 

Figure S4). 

The abundance of paracrine communication in mammals, i.e. the activation of a 

receptor by a ligand synthesized by another cell, demonstrates the heavy utilization of 

intercellular communication [135,136]. Paracrine averaging demonstrates how intercellular 

communication enables cellular collective decision making where the “wisdom of the crowd” 

is greater than the individual cell. Theoretical and empirical work in humans and animal 

collectives has shown that the benefit of collective decision making depends on the size of the 

group; big crowds are not always better than small crowds [137–140]. Therefore, it is likely 

that the extent of secretion of each paracrine ligand  is adjust the level of cellular information 

sharing to ensure an effective collective decision.   

The optimal PCD we identified is not universal. Rather, the optimal distance depends 

on the specific shape of the spatial pattern of the initial activating ligand and the noise pattern 

of the primary response. Additionally, propagation patterns of the same activating ligand can 

depend on the physiological signaling context as demonstrated by differences found during in 

vivo ERK propagations under wound and normal conditions [133]. The effective PCD can be 

regulated at the cellular level by several possible factors to optimize the benefit of paracrine 

communication to the specific noise and spatial patterns characteristic to each signaling 
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system [141–143]. PCD also depends on the effective diffusion coefficient of the secreted 

molecule, transmitted signal strength (e.g. number of secreted molecules), and receiver cell 

sensitivity (e.g. receptor Kd). The diffusion coefficients of paracrine signaling molecules can 

vary by two orders of magnitude, let alone differences in signal strength and receptor 

sensitivity in individual paracrine signaling pathways [144,145]. Fine-tuning each of these 

factors provides a possible mechanism for cells to regulate the PCD and thereby the extent a 

cell locally communicates. The ability to specifically tune PCD raises the possibility that 

evolutionary pressures can tune paracrine communication to provide the optimal benefit in 

many other paracrine communication systems.  

Material and Methods 

Ca2+ and ERK Measurements in MCF-10A Cells 

MCF-10A cells were cultured following established protocols [146]. Before plating 

cells, each surface was first treated with a collagen (Life Technologies), BSA (New England 

Biolabs), fibronectin (Sigma-Aldrich) solution in order for cells to completely adhere, 

according to established methods. In order to maintain a viable environment, cells were 

imaged at 32°C and 5% CO2. All EGF (PeproTech) titrations and DREADD experiments were 

conducted in 96-well plates using extracellular hepes buffer (ECB) to reduce background 

fluorescence (5 mM KCl, 125 mM NaCl, 20 mM Hepes, 1.5 mM MgCl2, and 1.5 mM CaCl2, 

pH 7.4). All imaging for wounding was done in MCF-10A assay media [146].  

ERK and Ca2+ activation by DREADD 

Cells were plated at a density of 2,000,000 cells/100mm plate and allowed to adhere 

overnight. Cells were transfected with the Gq-coupled DREADD HA-tagged hM3D with an 

mCherry tag using a 3:1 ratio of FuGene HD (Promega) to DNA and allowed to incubate 

overnight [127]. In order to measure the paracrine signal from a single-cell, non-transfected 
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cells were mixed with DREADD-transfected cells at ratios of 1:0, 1:1, 1:2, 1:5, 1:7, and 0:1 

(non-transfected:DREADD) and plated in 96-well plates at a density of 30,000 cells/well. The 

following day, cells were loaded with 1μM Hoechst dye for nuclear imaging for 30 minutes 

for cell segmentation purposes. 5μM clozapine-N-oxide (CNO) (Enzo Life Sciences) was 

added to each well to specifically activate DREADD cells. ERK activation was monitored 

using the EKAREV FRET reporter [30,31] and Ca2+ activation was monitored using the Ca2+ 

indicator dye Fluo-4 using the published protocol (Invitrogen).  

Cell clustering assay and analysis 

In order to measure the standard deviation of Ca2+ and ERK activity within a small 

group of cells, MCF-10A cells were plated at densities of 1000, 2000, and 3000 cells per well 

in a 96-well plate, taking advantage of the natural tendency for MCF-10A cells to cluster 

together. Cells were stimulated with 10μM or 100μM ATP and imaged for 5 minutes every 3 

seconds (Ca2+) or 30 minutes every minute (ERK).  

Standard deviation and average expression of Ca2+ and ERK were analyzed by 

grouping cells in to clusters based on the distances between cells and clusters (Figure 1, 

Supplemental Figure S1). Following the cluster analysis, the average and standard deviation of 

Ca2+ and ERK activation were calculated for each cluster. ERK activation was measured using 

the ERK FRET reporter (Albeck et al. 2013; Komatsu et al. 2011) and Ca2+ activation was 

monitored using the genetically encoded sensor R-GECO [125].  

Wounding Device Design, Fabrication, and Wounding Assay 

Master molds for the microfluidics based wounding device were created using silicon 

wafers and layer-by-layer photolithography using established methods [147]. A separate mold 

for both the air layer and cell layer were made using negative photoresists and masks. Chips 

were made by pouring uncured polydimethylsiloxane (PDMS) onto each mold, allowing the 
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PDMS to harden, and bonding the layers together and subsequently to a glass slide. Cells were 

loaded into the devices through the inlet port using a 20G needle. During wounding the outlet 

port was plugged using tape and the inlet port held a reservoir of media to prevent evaporation 

in the chamber. Wounding was accomplished by increasing the air pressure in the top layer of 

the device until the pillar made contact with the bottom of the device after which the air 

pressure was released to raise the pillar back up. Cells were loaded in to the wounding device 

at a density of 15,000,000 cells/mL using a 20G needle. Following trypsinization and 

resuspension, cells were put on ice to prevent aggregation. Two o-rings were attached to the 

device surrounding both the inlet and outlet ports for media reservoirs. Each o-ring was 

attached using a thin film of vacuum grease. Wounding devices were kept in an empty pipet 

box filled with water to prevent media evaporation. Cells were allowed to adhere for 18-24 

hours before wounding.   

Imaging and Image Analysis 

Imaging was accomplished using a Nikon Plan Apo λ 10X/0.45 objective with a 0.7x 

demagnifier and Nikon Eclipse Ti microscope with a sCMOS Zyla camera. All imaging was 

accomplished using custom automated software written using MATLAB and Micro-Manager 

[148]. Image analysis was accomplished using a custom MATLAB code published previously 

[109] and is available through GitHub repository 

https://github.com/rwollman/CellSegmentation.git. 

Model for paracrine communication based on local isotropic diffusion  

The paracrine ligand concentration (P) for a cell at position (x, y) observed by (P(x,y)) 

is the local average of the concentration of ligand released by cells in the local neighborhood 

(Figure 1A). We modeled this paracrine ligand local average using a convolution of two 

functions: S(x,y) that represents the amount of ligand secreted by each cell and D(x,y) that 
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represents the expected diffusion of the paracrine ligand during the timescale of paracrine 

signal integration:  

(1)                                          , , ( , )P x y dudvS x y D x u y v    

The function S(x,y) was estimated using experimental cellular Ca2+ response data 

according to:  

(2)                                    
  2max ,

,
0 ,

iCa t x y cell i
S x y

x y background

 
 



  

The function D(x,y) was approximated to follow Gaussian weights with a length-scale 

we named the Paracrine Communication Distance (PCD): 

(3)                                                
 2 2

2
1

,
2

x y

PCDD x y
PCD

e


 

   

Detailed analysis of how PCD depends on diffusion, number of secreted paracrine 

molecules, sensitivity of detection, physiological levels of fluid flow [149], and cellular 

decoding of time varying paracrine signal are presented in Material and Methods. In cases 

where biologically relevant integrations times may influence the predicted paracrine 

communication response, the PCD did not exceed the approximate distance EGF could travel 

before the first ERK response (Figure 1G, Figure 3F, Material and Methods). Based on single-

cell ERK data to ATP stimulation, this time was found to be ~5 minutes which resulted in a 

maximum PCD of ~300μm (data not shown) based on EGF diffusion coefficient of 

50μm2/sec.      

Signal to Noise Analysis 

Signal to Noise ratio analysis on Ca2+ response to ATP titration data was estimated as 

was done previously (Selimkhanov 2014). Briefely,  the signal S was calculated using:  
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 (4)                                              2var avg max
bins tcells

S Ca t 
  

 
  

The noise N was calculated by:  

(5)                                                 2avg var max
cells tbins

N Ca t  

Where Ca2+(t) is the temporal time series of Ca2+ response measured experimetnally. 

Cells are separated into bins according to either different dosages of ATP added to multiple 

wells (Figure 1) or different distances from the wound source (Figure 3). SNR was then 

simply: SNR=S/N. 

 

Analysis of the effects of diffusion, secretion and integration time on paracrine 

communication 

In this section we analyze how the Paracrine Communication Distance (PCD), the 

characteristic length-scale of paracrine communication, depends on factors related to the 

paracrine signal. Specifically we look into how the PCD depends on the diffusion coefficient 

D, the number of molecules released from a cell rN , the number of molecules needed for 

detection dN , and the total integration time T.  

To understand how PCD depends on the factors mentioned above, we considered the 

diffusion of a paracrine ligand from a single cell to its surrounding neighbors. We considered 

a 2D-like geometry where cylindrical cells, each of height ch   and radius  , grow in a 

chamber of total fh  height. We simplify the below analysis by approximating the cell 

monolayer geometry to a series of “cell cylinders”. The key results of the scaling of PCD and 
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required integration time are similar for other comparable geometries (data not shown). Under 

these conditions one could write the analytical solution of the diffusion equations: 

(6)  

2

4rN
, e

4

r

Dt

f

C r t
h D t






  

Where  ,C r t  is the concentration of paracrine ligand for distance r and time t. For a 

neighboring cell to respond to this paracrine signal, a critical number of molecules dN  need to 

reach the volume surrounding the cell. We assume that a cell “senses” a volume comparable to 

the volume of a cell itself. For a cylindrical cell of area 
2  and height ch the critical 

concentration required for cellular response will be:  

(7) 
2

d
detect

c

N
C

h 
   

This is simply the required number of molecules divided by the cell volume. 

Combining equations 6 and 7 we can solve for the distance and time of where the critical 

concentration will be reached. Solving for distance we get that 

(8) 

2

2 ln
4

c r
detect

d f

h N
r Dt

DtN h

 
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 

  

The concentration of the paracrine ligand is diluted as it diffuses from the source. 

Therefore, there is a point in space which is the maximal distance from the source that the 

critical detection concentration detectC  will be reached at some point in time. Distances that are 

greater than the critical distance will only experience concentrations lower than the critical 

detection concentration detectC . The existence of such maximum can also be seen by the non-
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monotonous dependency of rdetect on t in equation 8. To find the maximal distance we can 

simply find the maximum of 1.3 in respect to t. Doing so we get that:   

(9) 
1
2 c r

f d

PCD
h N

N
e

h



   

We can simplify the analysis by the introduction of two dimensionless variables: 1) 

r

d

N
S

N
  represents the strength of the signal and is defined as the ratio of released molecules

rN  and the number of molecules needed to detect the signal dN  . 2) c

f

h

h
   represents the 

fraction of the height of the flow chamber that cells occupy. When we substitute the new 

variables into Eq 1.4 we get that:  

(10) 
1
21

2
ePCD S


   

Interestingly this shows that the value of PCD does not depend on the diffusion 

coefficient. Rather, PCD scale as a function of the square root of the strength of the signal S 

with a multiplicative constant that depends on the specific cell geometry. PCD also depends 

on cell geometry with the cell radius   and the relative height of a cell in the effective 

environment . Supplemental Figure S6 shows equation 10 graphically.  

While the analysis above shows that the diffusion coefficient has no influence on the 

overall PCD, the time required to reach this maximal distance has important biological 

implications. “Paracrine averaging” requires cells to integrate the signal. However, the time 

required for signal integration must be biologically feasible given the cellular response time 

and diffusion coefficient. 
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From equation 8 we can identify the time by which the PCD is maximal to be:  

(11) 

2

4
intT

S

eD

 
   

The integration time grows linearly with signal strength S. This is because the PCD 

itself scales as a square root of S and the diffusion time grows with the square of the distance. 

The integration time decreases with increasing diffusion coefficient as expected. Supplemental 

Figure S7 shows the scaling of the integration time with the diffusion coefficient for a few 

PCD values.   

For diffusion coefficient values of ~10-100 

2m

s


 and a PCD of 100 m (similar to 

the distance measured in Figure 3) integration times ranged between 0.5 to 5 minutes. Given 

that ERK activation is observed only after 5 minutes post-activation, the required integration 

time does not pose an issue. However, larger PCDs will require higher diffusion coefficients 

to allow proper integration of the paracrine signal. Interestingly, H2O2, another key paracrine 

signaling molecule critical to initial wound response signaling, has a diffusion coefficient of 

~2000  

2m

s


. A larger diffusion coefficient could allow for a much longer PCD with 

reasonable biological integration times.  

Analysis of the effect of fluid flow on paracrine communication 

All the analysis above assumed static conditions, i.e. no fluid mixing or advection of 

any kind. In this section we analyze the degree to which the principles of paracrine 

communication are applicable in non-static conditions.  
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Non-static fluid conditions potentially have two effects on mass transport. 1) Non-

static fluid conditions can create mixing due to turbulence and 2) Laminar advection can 

transport secreted molecules away from the secretion source. Since the extracellular 

environment is characterized by a low Reynold’s number there is effectively no turbulent 

mixing in biologically relevant parameters.  

To analyze the relative contribution of advection and diffusive transport we utilize a 

dimensionless number, the Péclet number (P), that represents the ratio between the 

contribution of advection and diffusion:  

(12) 
vL

P
D

   

Where v is the interstitial flow rate, D is the diffusion coefficient and L is the 

characteristic length scale. In our case, the characteristic length scale is the PCD, which 

depends on the signal strength as described above (equation 10  & Supplemental Figure S6). 

Therefore, the P number can be expressed as a function of the signal strength S and diffusion 

coefficient:  

(13) 
S

P
e

v

D

 
   

Graphical representation of this expression is shown in Supplemental Figure S8 where 

the map of D and S is color coded by the Péclet number with three highlighted regions: A red 

region where flow will dominate, a cyan region where diffusion will dominate, and the region 

in between where both advection and diffusion contribute to paracrine communication.  

   To gain further insight into the relative contribution of advection and diffusion we 

looked at the distance molecules will travel via advection for a specific signal strength 
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(S=1000). As can be seen in Supplemental Figure 8B, for diffusion coefficients of small 

protein ligands advection will contribute minimally.  

When considering positional accuracy of cellular response, an important consideration 

is that advection can potentially “shift” the effects of paracrine signaling downstream of the 

flow. Even if the shift is characterized by low Péclet number, advection can interfere with 

positional information accuracy (as analyzed in Figure 3). To estimate the potentially 

degrading effects of flow we calculate the expected level of positional accuracy error induced 

by flow. We estimate that the wound induced signaling gradient (Figure 3C) to be > 500 μm. 

Therefore the effect on positional accuracy will be minimal (<10%) at advection distances up 

to 50 μm, or for a PCD of 100 μm, a Péclet number up to 0.5. The isocline of a Péclet number 

of 0.5 is shown in Supplemental Figure 8A as a dotted black line. This shows that for 

paracrine ligands with a diffusion coefficient >40 μm2/sec, advection will have little effect on 

positional accuracy of initial wound response signaling.    

Analysis of the effect of cellular decoding schemes on paracrine communication  

The analysis in the previous two sections assumes that the concentration of the 

paracrine ligand decreases over increasing distance from the source of secretion according to a 

Gaussian fit where the diffusion length-scale represents the PCD. The cellular response to a 

paracrine ligand depends on cellular decoding of the temporal paracrine concentration profile 

a cell observes. As both the temporal profile of the secreted paracrine molecule and the 

temporal cellular decoding are unknown, we consider the simple assumption of a Gaussian 

profile reasonable. To quantitatively test this assumption we compared the Gaussian profile to 

an alternative model that could be addressed analytically. In the alternative model, we assume 

that all paracrine molecules are released at T=0 and that cellular decoding of the paracrine 
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signal is simple temporal averaging. Under these assumptions one can write an expression of 

the temporal average of the paracrine concentration at a distance r from the source as:  

(14)    

2
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4r r
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Where all symbols follow equation 6 and ei represent the exponential integral: 

 ei

x te
x dt

t


    

Comparison of the two models can be seen in Supplemental Figure S9. Overall, the 

two models generate very similar Paracrine Averaging Weights (the effect of cellular 

decoding of paracrine signal). There is a small discrepancy between the two models at very 

low distances (<50 μm). However, this discrepancy is most likely a result of the assumption in 

the alternative model that all the paracrine molecules are released at once. Under the more 

realistic assumption where paracrine molecule release duration is not much smaller than the 

time to diffuse 50 μm (12.5 seconds at D=50 μm2/sec) we anticipate that the similarity 

between these two profiles will further increase.  
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Supplemental Figures    

 

 

  

Supplemental Figure S1.1. MCF-10A cells can be separated and analyzed in cell clusters when 

plated at low densities. Cells were grouped into clusters based on distance between cells. First, the 

distance between all cells was calculated based on the distance from the center of the cell. A 

hierarchical clustering based on the shortest distance linkage between cell groups was used to group 

cells. Cells linked within 200μm (maximum PCD, or MCD) of each other were assigned as a cell 

cluster. To calculate the local cell density (ρ) within the cluster, the longest cell-to-cell distance 

within the cluster was measured (d). Clusters with a d greater than 150μm were removed since the 

PCD was calculated to be 99.5μm. Effective area (EA) of the cluster was calculated by finding the 

area of the circle encompassing the cluster using d as the diameter of the circle. ρ was estimated by 

dividing the number of cells within the cluster by the EA. This process was repeated for all clusters. 

 

Supplemental Figure S1.2. Cluster standard deviation and cluster average as a function of 

cluster density show significant trends for ERK activation but not Ca2+ 

activationSupplemental Figure S1.1. MCF-10A cells can be separated and analyzed in cell 

clusters when plated at low densities. Cells were grouped into clusters based on distance between 

cells. First, the distance between all cells was calculated based on the distance from the center of 

the cell. A hierarchical clustering based on the shortest distance linkage between cell groups was 

used to group cells. Cells linked within 200μm (maximum PCD, or MCD) of each other were 

assigned as a cell cluster. To calculate the local cell density (ρ) within the cluster, the longest cell-

to-cell distance within the cluster was measured (d). Clusters with a d greater than 150μm were 

removed since the PCD was calculated to be 99.5μm. Effective area (EA) of the cluster was 

calculated by finding the area of the circle encompassing the cluster using d as the diameter of the 

circle. ρ was estimated by dividing the number of cells within the cluster by the EA. This process 

was repeated for all clusters. 



57 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplemental Figure S1.2. Cluster standard deviation and cluster average as a function of 

cluster density show significant trends for ERK activation but not Ca2+ activation. Cells were 

plated at low density to form groups of cells and clustered according to figure 1—figure supplement 

1. ERK and Ca2+ activation were monitored following the addition of 10μm ATP. All p-values 

obtained through Pearson correlation. A. Standard deviation of ERK expression for each cluster 

significantly decreases with increasing cluster density (p-value<0.05) indicating that ERK 

expression becomes more reliable as cells coordinate with more cells. The average ERK expression 

per cluster, however, does not significantly decrease (p-value>0.05) verifying that the decrease in 

standard deviation of ERK expression is not related to changes in the average ERK expression. B. 

The standard deviation of Ca2+ activation does not significantly decrease with increasing cluster 

density (p-value>0.05) assuring that decreases in ERK cluster standard deviation represent 

communication via paracrine signaling and not due to similarities in cellular expression between 

sister cells in a cluster. Similarly to A., the average Ca2+ response for each cluster does not 

significantly decrease with increasing cluster density (p-value>0.05). 

 

 

Supplemental Figure S1.4. Inhibiting paracrine communication does not allow decreased 

cellular response variabilitySupplemental Figure S1.2. Cluster standard deviation and cluster 

average as a function of cluster density show significant trends for ERK activation but not 

Ca2+ activation. Cells were plated at low density to form groups of cells and clustered according 

to figure 1—figure supplement 1. ERK and Ca2+ activation were monitored following the addition 

of 10μm ATP. All p-values obtained through Pearson correlation. A. Standard deviation of ERK 

expression for each cluster significantly decreases with increasing cluster density (p-value<0.05) 

indicating that ERK expression becomes more reliable as cells coordinate with more cells. The 

average ERK expression per cluster, however, does not significantly decrease (p-value>0.05) 

verifying that the decrease in standard deviation of ERK expression is not related to changes in the 

average ERK expression. B. The standard deviation of Ca2+ activation does not significantly 

decrease with increasing cluster density (p-value>0.05) assuring that decreases in ERK cluster 

standard deviation represent communication via paracrine signaling and not due to similarities in 

cellular expression between sister cells in a cluster. Similarly to A., the average Ca2+ response for 

each cluster does not significantly decrease with increasing cluster density (p-value>0.05). 
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Supplemental Figure S1.3. Paracrine ERK activation depends on Src prior to MMP 

activation. MCF-10A cells expressing EKAREV FRET ERK reporter were incubated with 10µM 

of the selective Src kinase inhibitor PP2 (Tocris) for 30 minutes at normal cell culture conditions 

before addition of 10µM ATP or 5ng/mL EGF. (A=AP, E=EGF, P=PP2). Shaded region indicates 

SEM (N=5).  

 

 

Supplemental Figure S1,5. Mutual information and SNR both continue to increase with 

increasing PCD.Supplemental Figure S1.3. Paracrine ERK activation depends on Src prior to 

MMP activation. MCF-10A cells expressing EKAREV FRET ERK reporter were incubated with 

10µM of the selective Src kinase inhibitor PP2 (Tocris) for 30 minutes at normal cell culture 

conditions before addition of 10µM ATP or 5ng/mL EGF. (A=AP, E=EGF, P=PP2). Shaded region 

indicates SEM (N=5).  

 Supplemental Figure S1.4. Inhibiting paracrine communication does not allow decreased 

cellular response variability. Cells were plated in a 96 well plate at low density to form groups 

and clustered according to figure 1—figure supplement 1. All p-values obtained through Pearson 

correlation. A. Cells were incubated with varying concentration of PP2 (0—10μM, red dashed X) 

for 30 minutes in normal cell culture conditions to inhibit Src to varying degrees and therefore limit 

the concentration of secreted EGF (black broken lines). Additional EGF (0—1 ng/mL) was added 

to compensate for the lack of secreted EGF to ensure that the average ERK response of the well 

remained similar to controls. Cells were then perturbed with 10μM ATP to activate ERK response 

in a paracrine fashion. PP2, EGF, and ATP were added such that cells were perturbed with every 

combination of PP2, EGF, and ATP. B. Wells that showed statistically similar average ERK 

activation (cyan) to the control well (blue, 10μM ATP) were selected for analysis (blue *, p-

value>0.05, t-test). Complete inhibition by PP2 shown as negative control (yellow). The cells 

within wells labeled with blue * were clustered in the same manner as figure 1—figure supplement 

1. C. The standard deviation of ERK response per cluster is not significantly correlated with cluster 

density (p-value>0.05, Pearson correlation) indicating that ERK variability does not decrease when 

paracrine communication is inhibited.   

 

Supplemental Figure S1.3. Paracrine ERK activation depends on Src prior to MMP 

activation.Supplemental Figure S1.4. Inhibiting paracrine communication does not allow 

decreased cellular response variability. Cells were plated in a 96 well plate at low density to form 

groups and clustered according to figure 1—figure supplement 1. All p-values obtained through 

Pearson correlation. A. Cells were incubated with varying concentration of PP2 (0—10μM, red 

dashed X) for 30 minutes in normal cell culture conditions to inhibit Src to varying degrees and 

therefore limit the concentration of secreted EGF (black broken lines). Additional EGF (0—1 
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Supplemental Figure S1.5. Mutual information and SNR both continue to increase with 

increasing PCD.  A mutual information analysis using established methods on a Ca2+ dose 

response to ATP as a secondary and more sophisticated approach to our SNR analysis [109]. As 

expected, the mutual information exhibits a similar increase with increasing PCD with no upper 

bound, similar to the SNR analysis. Shaded area represents SEM (N=5).  

 

 

Supplemental Figure S1.6. Scaling of Paracrine Communication Distance.Supplemental 

Figure S1,5. Mutual information and SNR both continue to increase with increasing PCD.  
A mutual information analysis using established methods on a Ca2+ dose response to ATP as a 

secondary and more sophisticated approach to our SNR analysis [109]. As expected, the mutual 

information exhibits a similar increase with increasing PCD with no upper bound, similar to the 

SNR analysis. Shaded area represents SEM (N=5).  

 

Supplemental Figure S1.6. Scaling of Paracrine Communication Distance. The scaling of 

Paracrine Communication Distance with the strength of the paracrine signal expressed as the 

ratio of released molecules to the number of molecules needed for signal detection. Cell radius is 

10 m, height 15 μm and chamber height is 60 μm. These values were chosen to approximate 

the analysis in Figure 2.   

 

 

Supplemental Figure S1.8. The effect of fluid flow on paracrine 

communicationSupplemental Figure S1.6. Scaling of Paracrine Communication Distance. 

The scaling of Paracrine Communication Distance with the strength of the paracrine signal 

expressed as the ratio of released molecules to the number of molecules needed for signal 

detection. Cell radius is 10 m, height 15 μm and chamber height is 60 μm. These values were 

chosen to approximate the analysis in Figure 2.   
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Supplemental Figure S1.7. Required Integration time. The required integration time for 

selected Paracrine Communication Distance values shown in linear (left) and log (right) scales. 

Geometry is the same as in Figure 1 supplement 6: Cell radius is 10 μm, height 15 μm and 

chamber height is 60 μm. 

 

 

Supplemental Figure S1.9. The effect of cellular decoding schemes on paracrine 

communicationSupplemental Figure S1.7. Required Integration time. The required 

integration time for selected Paracrine Communication Distance values shown in linear (left) and 

log (right) scales. Geometry is the same as in Figure 1 supplement 6: Cell radius is 10 μm, height 

15 μm and chamber height is 60 μm. 

 

Supplemental Figure S1.8. The effect of fluid flow on paracrine communication. a Color 

map of  Péclet number (shown in Log10 scale). The red (cyan) region show combination of 

signal strength (S) and Diffusion coefficient (D) where advection (diffusion) is dominating over 

diffusion (advection).  The dotted dark line show the regime above which advection will have 

little effect on positional accuracy. b The expected distance of advection based spread as a 

function of D for a signal strength of 1000. The geometry and parameters here are the same as in 

Figures M1 & M2. Interstitial flow rate used was 0.3 μm/sec based on [149]. 

 

 

Supplemental Figure S1.7. Required Integration timeSupplemental Figure S1.8. The effect 

of fluid flow on paracrine communication. a Color map of  Péclet number (shown in Log10 

scale). The red (cyan) region show combination of signal strength (S) and Diffusion coefficient 

(D) where advection (diffusion) is dominating over diffusion (advection).  The dotted dark line 

show the regime above which advection will have little effect on positional accuracy. b The 

expected distance of advection based spread as a function of D for a signal strength of 1000. The 

geometry and parameters here are the same as in Figures M1 & M2. Interstitial flow rate used 

was 0.3 μm/sec based on [149]. 
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Supplemental Figure S1.9. The effect of cellular decoding schemes on paracrine 

communication. Comparison of Paracrine averaging weights between the Gaussian model used 

in this work to represent paracrine communication and an alternative model that is based on an 

assumption of instant release temporal averaging of paracrine signal.  

 

 

Supplemental Figure S1.10. Microfluidic wounding device characterization demonstrates 

cell viability, isotropic wounding, wounding control, and reproducibility.Supplemental 

Figure S1.9. The effect of cellular decoding schemes on paracrine communication. 

Comparison of Paracrine averaging weights between the Gaussian model used in this work to 

represent paracrine communication and an alternative model that is based on an assumption of 

instant release temporal averaging of paracrine signal.  
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Supplemental Figure S1.10. Microfluidic wounding device characterization demonstrates cell 

viability, isotropic wounding, wounding control, and reproducibility. A. Top (top panel) and 

side (bottom panel) view of the microfluidic wounding device. The wounding device is constructed 

of 2 layers, a top air layer (black) and bottom cell chamber (orange). The air layer has an air hole at 

one end where air pressure is increased by flowing air through a small tube connected to the hole. 

The ceiling of the cell chamber has a PDMS pillar that is lowered down on to the cells in the cell 

chamber when air pressure is increased in the air layer. B. Cell chamber heights were measured by 

loading fluorescent beads into the device and allowing them to settle on the surfaces within the 

device (bottom, pillar, ceiling). Height was measured by scanning the cell chamber through the Z-

axis and seeing where the beads had settled based on where they were in focus (bead sharpness). 

Cell chamber height within the device as measured by bead sharpness revealed a chamber of 

approximately 60μm in height and a distance of approximately 15μm between the bottom of the 

pillar and the bottom of the cell chamber. These distances provide ample room for cell growth while 

still limiting the z-space in which extracellular signals can diffuse. C. The change in height of the 

ceiling of the cell chamber (orange) and the pillar (black) with increasing air pressure as measured 

by bead sharpness shows controlled movement of the pillar with increasing air pressure. Although 

the ceiling of the cell chamber also moves with the pillar, this does not interfere with cellular 

wounding. D. MCF-10A cells were loaded in to the wounding device cell chamber and allowed to 

adhere in the presence of propidium iodide (PI) to measure cell viability within the device over time 

in static media conditions. Cells were able to adhere within 5 hours after which the media began to 

dry up and cells began to die indicating that cellular response following wounding can be measured 

for up to 5 hours in a static setting before cell death. E. Wounding in non-static (with flow) and 

static (no flow) media conditions. Static media conditions were accomplished by placing a piece of 

tape over one of the ports of the wounding device during imaging. When flow was present, the 

signal went in the direction of the flow. However, when flow was not present, the signal propagated 

isotropically from the wound indicating that the response was a measurement of signal transfer and 

not simply due to the flow in the environment. F. Ca2+ response according to distance away from the 

center of a 300μm diameter wound shows reproducible wounding between 3 experiments as 

represented by 3 different colors. Cellular response is measured as the percentage of responding 

cells according to distance away from the wound. G. Due to the layer-by-layer photolithography 

manufacture of the molds used to make the wounding device, the size of the wound can be 

controlled and reproducible. We were able to measure the single-cell spatiotemporal Ca2+ response 

in cells wounded by a 450μm, 300μm, and 150μm wound. The single-cell responses for 4 different 

cells at varying distances from the wound are highlighted for the 450μm wound with colorbar 

indicating fold maximum increase. 

 

 

Supplemental Figure S1.11. Mutual information analysis of locally averaged Ca2+ response to 

wounding shows similar peak to SNR analysis.Supplemental Figure S1.10. Microfluidic 

wounding device characterization demonstrates cell viability, isotropic wounding, wounding 

control, and reproducibility. A. Top (top panel) and side (bottom panel) view of the microfluidic 
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Supplemental Figure S1.11. Mutual information analysis of locally averaged Ca2+ response 

to wounding shows similar peak to SNR analysis. A. Mutual information was calucated by 

binning the cells according to their distance away from the wound. The maximum response per 

cell (gray circles) is divided into bins such that there are the same number of cells in each bin 

(blue plots). The conditional response (H(R|S)) is calculated for each bin using the probability 

density (PD) of each cell. The PD of each cell is calculated by finding the 10th nearest neighbor 

for each cell, counting the number of cells within that space, and then dividing by the distance 

covering that space. The non-conditional response (H(R)) is calcuated by measuring the PD of all 

of the cells. The cells are divided into multiple sets of bins and the mutual information (I) is 

calculated for each set of bins. Each I is then plotted according to the number of bins after which 

the final MI is found by extrapolating back to zero to ensure no dependence on bin number. B. 

Mutual information was used as a measurement tool to further confirm the SNR analysis of 

locally averaged Ca2+ response. Indeed, the mutual information analysis found an optimal 

coordination length-scale of 114.33μm +/-6.7μm (SEM, N=5), matching the optimal 

coordintation length-scale found in the SNR analysis (shaded region indicates SEM, N=5).   

 

 

Figure 2.1. Ca2+ wave propagation following wounding.Supplemental Figure S1.11. Mutual 

information analysis of locally averaged Ca2+ response to wounding shows similar peak to 

SNR analysis. A. Mutual information was calucated by binning the cells according to their 

distance away from the wound. The maximum response per cell (gray circles) is divided into 

bins such that there are the same number of cells in each bin (blue plots). The conditional 

response (H(R|S)) is calculated for each bin using the probability density (PD) of each cell. The 

PD of each cell is calculated by finding the 10th nearest neighbor for each cell, counting the 

number of cells within that space, and then dividing by the distance covering that space. The 

non-conditional response (H(R)) is calcuated by measuring the PD of all of the cells. The cells 

are divided into multiple sets of bins and the mutual information (I) is calculated for each set of 

bins. Each I is then plotted according to the number of bins after which the final MI is found by 

extrapolating back to zero to ensure no dependence on bin number. B. Mutual information was 

used as a measurement tool to further confirm the SNR analysis of locally averaged Ca2+ 

response. Indeed, the mutual information analysis found an optimal coordination length-scale of 

114.33μm +/-6.7μm (SEM, N=5), matching the optimal coordintation length-scale found in the 

SNR analysis (shaded region indicates SEM, N=5).   
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CHAPTER 2                                                                                     

Wound induced Ca2+ wave propagates through a simple Release and 

Diffusion mechanism 

Abstract 

Damage associated molecular patterns (DAMPs) are critical mediators of information 

concerning tissue damage from damaged cells to neighboring healthy cells. Adenosine 

triphosphate (ATP) acts as an effective DAMP when released into extracellular space from 

damaged cells.  Extracellular ATP receptors monitor tissue damage and activate a Ca2+ wave 

in the surrounding healthy cells. How the Ca2+ wave propagates through cells following a 

wound is unclear. Ca2+ wave activation can occur extracellularly via external receptors or 

intracellularly through GAP junctions. Three potential mechanisms to propagate the Ca2+ 

wave are: Source and Sink, Amplifying Wave, and Release and Diffusion. Both Source and 

Sink and Amplifying Wave regulate ATP levels using hydrolysis or secretion, respectively, 

while Release and Diffusion relies on dilution. Here we systematically test these hypotheses 

using a microfluidics assay to mechanically wound an epithelial monolayer in combination 

with direct manipulation of ATP hydrolysis and release. We show that a Release and 

Diffusion model sufficiently explains Ca2+ wave propagation following an epithelial wound. A 

Release and Diffusion model combines the benefits of fast activation at short length-scales 

with a self-limiting response to prevent unnecessary inflammatory responses harmful to the 

organism. 
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Introduction 

The epithelium provides a key protective layer that isolates the internal environment 

of an organism from outside pathogens. A temporary loss of the epithelial barrier caused by 

wounds places an organism in a precarious and vulnerable situation [119]. A timely defense 

and healing program is vital for organism survival. Wound healing response requires the 

coordinated action of multiple cell types [132]. Neutrophil cells infiltrate the wounded area to 

proactively defend against infection. Phagocytosis of pathogens and necrotic cells requires 

macrophage recruitment. Fibroblasts increase extracellular matrix secretion and provide 

contractile forces. Finally, epithelial cells proliferate and migrate to close the wound. A 

plethora of cytokine mediators secreted by the different cell types participating in the wound 

response regulate the complex wound healing program. However, cytokine secretion, which 

often requires de novo expression, occurs on an hour timescale [132,150]. The sensitive state 

of the wounded epithelium requires that wound healing begin as soon as the wound occurs. 

Therefore, cytokine secretion is too slow to act as the initial signal that activates wound 

healing programs. A timely wound healing response necessitates a transcriptionally 

independent program to propagate information regarding the wound to neighboring healthy 

cells.  

Damage Associated Molecular Patterns (DAMPs) are a set of chemical ligands that 

are released from cells upon physical damage [150]. DAMPs provide the first indication of 

damage and are used to activate transcriptionally independent programs. DAMPs quickly 

propagate information regarding the wound to notify healthy cells surrounding the wound that 

cellular damage has occurred.  Potentially, the gradients formed by DAMPs provide 

neighboring cells with positional information concerning how far they are from the wound 
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[132]. These damage signals include Ca2+ waves, reactive oxygen species, and purinergic 

molecules such as ATP [150].   

Although most known for its key role in cellular metabolism, there has been a 

growing appreciation for an additional role of ATP as a paracrine signaling molecule [151]. 

Under normal physiological conditions, extracellular ATP levels are typically ~1nM; six 

orders of magnitude less than cytoplasmic ATP levels of ~1mM [152]. This large gradient, 

actively maintained by cells, makes ATP a powerful damage indicator as any loss of 

membrane integrity causes an immediate increase in extracellular ATP. Furthermore, previous 

work has demonstrated ATP as a key initial signaling molecule required for epithelial wound 

response activation [153–155].  

ATP released from cells following a mechanical wound initiates a Ca2+ wave that 

propagates from the wound in an isotropic pattern. Initially, ATP released from wounded cells 

binds to P2Y receptors on surrounding healthy cells to increase cytoplasmic Ca2+ levels 

(Figure 1). More precisely, phosphorylation of P2Y by ATP activates PLC to catalyze the 

degradation of PIP2 to IP3 and DAG [56,156]. IP3 then binds to IP3R on the ER to release 

Ca2+ stores into the cytoplasm. IP3 can pass between cells through connexin channels resulting 

in intracellular Ca2+ activation [157–160]. While the intracellular pathways that connect 

extracellular ATP to activate Ca2+ signaling have been carefully elucidated [161], the tissue-

level pathways responsible for forming the Ca2+ wave remain unclear.  

Like other DAMPs, ATP may provide positional information for healthy cells 

surrounding a wound. Handly et al. found that ATP-activated ERK transactivation maximizes 

positional information by locally averaging the EGF signal using paracrine communication 

[93]. However, the spatio-temporal propagation of ATP following a wound to provide 

positional information is not fully understood.  Several models have been proposed to explain 
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how neighboring cells are notified of damage following the passive release of ATP from 

damaged cells (Figure 1). In the first model, Source and Sink, ectonucleotidases such as 

NTPDase2 quickly hydrolyze ATP [162,163]. In the second model, Amplifying Wave, active 

propagation mechanisms increase the concentration of extracellular ATP. Specifically, it has 

been proposed that cells exposed to extracellular ATP respond by actively secreting ATP 

through Pannexin-1 channels [162,164–166]. In the third model, Release and Diffusion, 

simple diffusion and dilution of the initial ATP signal controls the Ca2+ wave propagation. 

While molecular studies show support for each model, uncertainty remains concerning which 

model is primarily responsible to propagate the ATP induced Ca2+ wave. Here we use a novel 

wounding device to mechanically wound an epithelial monolayer [93]. Using single-cell 

wound data combined with genetic and pharmaceutical manipulations, we identify the 

underlying mechanism responsible for the spread of extracellular ATP in a mechanically 

wounded epithelial monolayer. 
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Figure 2.1. Ca2+ wave propagation following wounding. Following wounding, cytosolic Ca2+ 

levels increase in the surrounding healthy cells in a wave-like manner. Ca2+ can be activated in 

cells either extracellularly (ATP binding to extracellular receptors) or intracellularly (IP3 

travelling between cells). However, the Ca2+ wave can propagate using different mechanisms. 1) 

Source and Sink (top). After the initial release of ATP from wounded cells (Source) that 

activates the cells immediately surrounding the wound, the remaining activating molecules 

(either ATP or IP3) are hydrolyzed (Sink) as they move away from the wounded area and 

activate neighboring cells. 2) Amplifying Wave (middle). In this active mechanism, ATP-

induced ATP release continues to propagate ATP and IP3 molecules to activate neighboring cells 

at faraway distances. 3) Release and Diffusion (bottom). The release of ATP from wounded cells 

diffuses away from the wound source to activate neighboring cells with little to no regulation.   

 

 

Figure 2.2. Measuring the Ca2+ wave using a microfluidic wounding device.Figure 2.1. Ca2+ 

wave propagation following wounding. Following wounding, cytosolic Ca2+ levels increase in 

the surrounding healthy cells in a wave-like manner. Ca2+ can be activated in cells either 

extracellularly (ATP binding to extracellular receptors) or intracellularly (IP3 travelling between 

cells). However, the Ca2+ wave can propagate using different mechanisms. 1) Source and Sink 
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Results  

Mechanical wounds initiate a Ca2+ wave that scales with wound size 

Measuring the spatial cellular wound response requires the ability to wound an 

epithelial monolayer in a convection free environment. We developed a novel microfluidics 

wounding device to mechanically wound an epithelial monolayer (Figure 2A) [93]. Our 

wounding device has 2 layers: a bottom cell layer and a top air layer. Cells in the cell chamber 

are mechanically wounded by a pillar in the ceiling of the cell layer when air pressure is 

increased in the air layer (Figure 2B). Flow is blocked during wounding to prevent any 

convection within the device to create an isotropic Ca2+ wound response (Figure 2C). One 

advantage of our wounding device over conventional wounding methods such as scratch 

assays, is the ability to create reproducible wounds (Figure 2D). Reproducible wounding is 

imperative to measure the spatial response to ensure that each wound elicits a similar response 

from the surrounding healthy cells.   

The isotropic cellular Ca2+ response to wounding contains a spatial response that 

scales with wound size. When measuring the Ca2+ response to mechanical wounds, we saw 

that the fraction of responding cells decreased with increasing distance from the wound 

(Figure 2D). Additionally, this response scales with wound size (Figure 2E, Supplemental 

Figure S1). Spatial information, or knowing where you are in relation to the wound, is 

imperative during wound healing to ensure that each cell responds appropriately. For Ca2+ 

response we see that cells that are further away from the wound have a smaller and slower 

response compared to cells that are closer to the wound. Although there are biological 

processes in place, such as paracrine averaging, to ensure that each cell generates the 

appropriate response based on its position [93], we wondered how the initial Ca2+ gradient 

forms in an epithelial monolayer following a wound. 
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Figure 2.2. Measuring the Ca2+ wave using a microfluidic wounding device. A. Image of 

dual-layer microfluidics device with the cell chamber (orange) and the air channel (black). B. 

Cells (purple) cultured in the cell chamber (orange) are mechanically wounded when a PDMS 

pillar in the ceiling of the cell chamber is lowered down when air pressure is increased in the air 

layer (black). C. Ca2+ activation in MCF-10A cells following a 300µm diameter wound. Black 

circle represents wounded area. Images are over a period of 5 minutes. Cytosolic Ca2+ level 

indicated by Fluo4-AM. D. The fraction of responding cells across the healthy surrounding cells 

decreases with increasing distance from the wound. Dashed lines represent best fit for three 

different 300μm wounds. E. The Ca2+ wave scales with increasing wound size. Large black circle 

represents wounded area according to the title of the wound (150μm, 300μm, and 450μm 

diameter wounds). Colored circles represent fold maximum Ca2+ increase for a single cell as 

indicated by the colorbar. Ca2+ increase indicated by Fluo4-AM dye 

 

Figure 2.2. Measuring the Ca2+ wave using a microfluidic wounding device. A. Image of 

dual-layer microfluidics device with the cell chamber (orange) and the air channel (black). B. 

Cells (purple) cultured in the cell chamber (orange) are mechanically wounded when a PDMS 

pillar in the ceiling of the cell chamber is lowered down when air pressure is increased in the air 

layer (black). C. Ca2+ activation in MCF-10A cells following a 300µm diameter wound. Black 

circle represents wounded area. Images are over a period of 5 minutes. Cytosolic Ca2+ level 

indicated by Fluo4-AM. D. The fraction of responding cells across the healthy surrounding cells 

decreases with increasing distance from the wound. Dashed lines represent best fit for three 

different 300μm wounds. E. The Ca2+ wave scales with increasing wound size. Large black circle 

represents wounded area according to the title of the wound (150μm, 300μm, and 450μm 

diameter wounds). Colored circles represent fold maximum Ca2+ increase for a single cell as 

indicated by the colorbar. Ca2+ increase indicated by Fluo4-AM dye 



71 

 

 
 

 

Figure 2.3. Cell migration following a wound requires ATP. A. Maximum Ca2+ projection 

indicated by Fluo-4 AM following a 300µm in diameter wound in the absence (left) and presence 

(right) of the ATP scavenger apyrase (5U per wounding device). Each circle represents the fold 

maximum Ca2+ increase of a single cell as indicated by the colorbar. Large black circle represents 

wounded area. Mechanical wounding generates a Ca2+ response gradient surrounding the wound. 

However, apyrase inhibits this response. B. Nuclei with Hoechst staining following a 150µm in 

diameter wound in the absence (top) and presence (bottom) of the ATP scavenger apyrase (5U per 

wounding device). Yellow circle represents wounded area and T indicates time following wound. 

Surrounding healthy cells migrate into the wounded area in the absence of apyrase in 12 hours. No 

migration is seen following wounding in the presence of apyrase. 3C. Quantification of Figure 3B. 

The number of living cells in the wounded area is significantly higher (**p<0.05, t-test, n=3 

wounds) in the absence of apyrase 12 hours following a wound compared to a wound in the 

presence of apyrase. 
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ATP is released in response to mechanical wounding and is required for wound closure  

ATP released from wounded epithelial cells is a key damage indicator in the initial 

wound response [153–155]. We verified whether a monolayer of MCF-10A cells, a breast 

mammary epithelial line, requires ATP release to heal mechanical wounds made by our 

wounding device. We first established whether initial ATP release is required for a Ca2+ 

response. Indeed, the addition of the ATP scavenger apyrase prevented a gradient of Ca2+ 

activation in cells surrounding the wound (Figure 3A, Supplemental Figure S1). Next we 

determined whether the initial ATP released from wounded cells is necessary to the overall 

wound healing response. Epithelial cells migrate and proliferate in order to close the wound. 

Other work has shown that epithelial cells simply sense empty space in order to proliferate and 

migrate into the wounded area [167,168]. However, unlike a scratch assay, wounded cells tend 

to remain in the wounded area using our wounding device. We see that wounding MCF-10A 

cells in the presence of apyrase prevents cells from migrating into the wounded area (Figure 

3B, C). This lack of migration in the presence of apyrase agrees with previous wound studies 

[169–172]. Overall we see that the initial release of ATP is required for Ca2+ activation as well 

as epithelial wound closure.   

The Ca2+ wave propagates by extracellular activation  

The wave of Ca2+ activation following wounding can spread using extracellular or 

intracellular stimulus. Previous data indicates that the Ca2+ response following wounding 

depends on the DAMP ATP [120,150,173–175] (Figure 3). ATP initially released from 

damaged cells binds to extracellular receptors on neighboring cells causing a cytosolic Ca2+ 

increase within that cell. From here, the propagation of Ca2+ activation in neighboring cells 

can occur via extracellular or intracellular mechanisms. Extracellular stimulation results from 

ATP propagation that can be augmented by either active release of ATP from cells or 
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degradation by nucleotidases [162,163]. Intracellular stimulation takes place when IP3 travels 

between cells via GAP junctions to bind to IP3R to release internal Ca2+ stores cells in 

neighboring cells [157–160]. In intracellular stimulation, ATP released from wounded cells 

activates the initial Ca2+ response in healthy cells immediately surrounding a wound. GAP 

junctions then propagate the spread of Ca2+ activation to cells farther away from the wound. 

We first determined whether the Ca2+ wave propagates internally or externally.  

In order to determine whether the spread of the Ca2+ wave is activated through 

intracellular or extracellular mechanisms, we used our novel wounding device to wound cells 

in the presence and absence of flow. Based on our previous data (Figure 2) we saw that the 

Ca2+ wave travels isotropically from the wound in the absence of flow. We wondered whether 

the response would maintain an isotropic pattern if cells are wounded in the presence of flow. 

If flow has no influence on the shape of the response, then the Ca2+ wave most likely 

propagates internally where it is not influenced by extracellular flow. When wounding in the 

presence of flow, however, we saw that the response propagates in the direction of the flow 

(Figure 4A, Supplemental Figure S1). This indicates that Ca2+ wave propagation is not 

independent of the extracellular environment.  
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We used a synthetic GPCR DREADD (Designer Receptors Exclusively Activated by 

Designer Drugs) that is activated by the small molecule clozapine-N-oxide (CNO) to further 

investigate whether Ca2+ response propagates intra or extra-cellularly by activating a Ca2+ 

response without ATP in a single cell and watching the surrounding cells in a non-wound 

Figure 2.4.  Ca2+ wave spread requires extracellular activation. All Ca2+ indicated by Fluo4-

AM dye. A. When flow is present during the wound, the Ca2+ wave goes in the direction of the 

flow (left). When flow is blocked, the Ca2+ wave propagates in an isotropic manner (right). Large 

black circle represents wounded area and colored circles represent fold maximum Ca2+ increase for 

a single-cell as indicated by colorbar. Arrow indicates direction of flow. B. DREADD expressing 

(red) and non-expressing (gray) MCF-10A cells are co-cultured such that each DREADD 

expressing cell ss surrounded by non-expressing cells (left cartoon). Upon the addition of 5μM 

CNO, the DREADD cell shows Ca2+ activation but the surrounding non-expressing cells do not 

(right images). Images on right show the DREADD cell marked in red and the surrounding non-

expressing cells in cyan. Top image shows expression of mCherry in DREADD cells and bottom 

image shows maximum Ca2+ projection following addition of 5μM CNO as indicated by Fluo-4, 

AM. C. Quantification of Figure 4B. DREADD expressing cells marked in red and non-expressing 

cells marked in gray. Only DREADD expressing cells have Ca2+ increase following the addition of 

5μM CNO.  (Error bars indicate SEM, n=3; *p-value<0.005, t-test).  

 

 

Figure 2.5. Extracellular ATP degradation does not influence Ca2+ activationFigure 2.4.  Ca2+ 

wave spread requires extracellular activation. All Ca2+ indicated by Fluo4-AM dye. A. When 

flow is present during the wound, the Ca2+ wave goes in the direction of the flow (left). When flow 

is blocked, the Ca2+ wave propagates in an isotropic manner (right). Large black circle represents 

wounded area and colored circles represent fold maximum Ca2+ increase for a single-cell as 
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setting [126,127]. By activating a Ca2+ response without a wound, we ensured that there are no 

artifacts created by flow during Ca2+ wave propagation. We used a DREADD that uses Gq 

mediated signaling to ensure that Ca2+ is activated in cells using the same signaling 

mechanism as ATP activated Ca2+ response. In order to determine whether the Ca2+ wave 

travels internally, we co-cultured DREADD expressing and non-expressing cells such that 

DREADD expressing cells are surrounded by non-expressing cells (Figure 4B). The addition 

of CNO activates a Ca2+ response in DREADD expressing cells. Whether the Ca2+ wave 

travels internally or externally is indicated by whether the surrounding non-expressing cells 

also show an increase in Ca2+. A Ca2+ response in the surrounding non-expressing cells would 

indicate an internal propagation mechanism of the Ca2+ wave. However, if the wave depends 

on extracellular stimulus, then only the DREADD expressing cells will respond. We found 

that upon the addition of CNO, only DREADD expressing cells respond (Figure 4C, 

Supplemental Figure S2). Taken together, these pieces of evidence indicate that the Ca2+ wave 

travels extracellularly.  

Source and Sink: Extracellular ATP degradation does not impact Ca2+ activation 

In the Source and Sink model, ATP hydrolysis dominates ATP propagation. Here the 

lifetime of an ATP molecule determines how long and far it will diffuse from the wound 

source. Ectonucleotidases present on the plasma membrane metabolize ATP to ADP, AMP, or 

Adenosine [176]. The degradation of ATP released from wounded cells can lead to the 

formation of the Ca2+ wave gradient. In this case, each subsequent cell receives a lower dose 

of ATP resulting in a lower magnitude of Ca2+ activation in a cell. We used pharmaceutical 

manipulation to determine the role of ATP degradation in creating the Ca2+ wave gradient.  

We determined whether ectonucleotidases play a role in Ca2+ activation by ATP after 

confirming the presence of ectonucleotidases on MCF-10A cells from previous research 
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[177,178]. Because activation depends on ATP and not necessarily from a wound, we 

performed these assays in a non-wound setting. We used the ectonucleotidase inhibitor 

ARL67156 at 200µM, according to literature values, and added a low dose of ATP (0.5 µM) 

[179]. Low concentrations of ATP were used to ensure that cells were not saturated with ATP, 

making nucleotidase inhibition negligible to the overall response. We found that inhibiting 

ectonucleotidases did not impac the average Ca2+ response (Figure 5A). Because we did not 

observe a change in Ca2+ activation, we further confirmed whether ectonucleotidases influence 

ATP activation of Ca2+ by measuring extracellular phosphate following ATP addition to cells 

(Figure 5B). Indeed, there is no significant difference in extracellular phosphate concentration 

in cells perturbed with ATP and without. Additionally, at high levels of ATP (5 µM) we saw 

no difference between ATP and the nonhydrolyzable analog ATPγS, further supporting that 

ATP hydrolysis does not play a role in shaping Ca2+ activation (Figure 5C). 

 

Figure 2.5. Extracellular ATP degradation does not influence Ca2+ activation. Ca2+ activation 

measured by genetically encoded biosensor RGECO. A. Addition of 200µM of the ectonucleotidase 

inhibitor ARL67156 does not increase Ca2+ activation by ATP in MCF-10A cells. (Error bars 

indicate SEM, n=3). B. Extracellular phosphate measurements after addition of 10µM ATP shows 

no difference when compared to 0µM. Inset shows phosphate standard curve. (Error bars indicate 

standard deviation, n=3, p-value determined by t-test). C. Ca2+ activation by ATP decreases in the 

presence of the ATP scavenger apyrase (5U). However, Ca2+ activation by the nonhydrolyzable 

ATP variant ATPγS does not decrease in the presence of apyrase (Error bars indicate SEM, n=3).  

 

 

Figure 2.6. The Ca2+ wave propagates by ATP diffusion.Figure 2.5. Extracellular ATP 

degradation does not influence Ca2+ activation. Ca2+ activation measured by genetically encoded 

biosensor RGECO. A. Addition of 200µM of the ectonucleotidase inhibitor ARL67156 does not 

increase Ca2+ activation by ATP in MCF-10A cells. (Error bars indicate SEM, n=3). B. 

Extracellular phosphate measurements after addition of 10µM ATP shows no difference when 

compared to 0µM. Inset shows phosphate standard curve. (Error bars indicate standard deviation, 

n=3, p-value determined by t-test). C. Ca2+ activation by ATP decreases in the presence of the ATP 

scavenger apyrase (5U). However, Ca2+ activation by the nonhydrolyzable ATP variant ATPγS 

does not decrease in the presence of apyrase (Error bars indicate SEM, n=3).  
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Amplifying Wave: ATP-induced ATP release does not propagate the Ca2+ wave 

After determining that the Ca2+ wave forms using extracellular stimulus independent 

of ATP degradation, we determined whether an Amplifying Wave mechanism plays a role in 

forming the Ca2+ wave. That is, does ATP activation initiate the release of ATP to bind 

extracellular receptors on neighboring cells to propagate the Ca2+ response? Prior work has 

suggested that ATP induces the release of additional ATP from cells (ATP-induced ATP 

release) [162,164–166]. We first determined whether ATP-induced ATP release is required for 

ATP mediated Ca2+ activation. We perturbed cells with the nonhydrolyzable ATP variant 

ATPγS in the presence and absence of the ATP scavenger apyrase (Figure 5C). ATPγS 

activates a Ca2+ response in cells similarly to ATP. In the presence of apyrase, any additional 

release of ATP is hydrolyzed without affecting ATPγS. Although Ca2+ activation by ATPγS in 

the presence of apyrase shows a statistically significant but small magnitude increase 

compared to stimulation by ATPγS alone, apyrase does not deplete Ca2+ activation in cells 

when perturbed with ATPγS as it does with ATP. If ATP did induce ATP release, apyrase 

should deplete Ca2+ activation by ATPγS, not increase it, therefore, if an active propagation 

mechanism exists, cells do not release ATP to activate neighboring cells. The small increase in 

Ca2+ response to ATPγS in the presence of apyrase may be due to other mechanisms not 

studied here. 

While we saw no evidence for ATP-induced ATP release, it is possible that ATP 

induces the release of another molecule that propagates the Ca2+ wave. We verified the 

presence of an active release mechanism by measuring the spatial Ca2+ activation patterns. 

Since Ca2+ response to wounding is ATP-dependent (Figure 3), we simulated wounding using 

a photoactivated ATP to ensure we were only measuring Ca2+ response according to ATP 

release and to simplify the measurement (NPE-caged ATP) (Figure 6). In this assay, UV light 
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illumination releases ATP at the site of illumination. We used NPE-caged ATP in combination 

with a photoactivated fluorescein, CMNB-caged carboxyfluorescein (caged FITC), such that 

the free ATP and free FITC were released in the same area at the same time. We then 

compared the spatial activation of Ca2+ in the surrounding cells with the diffusion pattern of 

FITC in a flow-free environment (Figure 6A, B). Cells were plated in long Ibidi channels of 

400µm height to capture the full length of response and that released ATP stayed close to the 

cells. NPE-caged ATP and caged FITC have similar molecular weights (700.3 g/mol and 

826.8 g/mol, respectively). Therefore, the respective molecules will have similar diffusion 

rates. We reasoned that if an active propagation mechanism exists, the spatial distance of Ca2+ 

activation will extend beyond the diffusion pattern of caged FITC. One port of the channel 

was sealed prior to uncaging to create a convection-free environment that ensured any 

response was not due to flow.  However, we saw that the Ca2+ activation pattern and the caged 

FITC diffusion pattern are the same in an epithelial monolayer (Figure 6A, B). This indicates 

that an active propagation mechanism is not responsible for the Ca2+ wave but instead points 

to a Release and Diffusion mechanism.  

Release and Diffusion: ATP passively creates a Ca2+ gradient following wounding 

The similar patterns created by FITC diffusion and the Ca2+ wave indicate that a 

Release and Diffusion mechanism may be responsible for Ca2+ wave activation. That is, the 

initial release of ATP from wounded cells diffuses out from the wound to activate neighboring 

cells. However, other mechanisms may account for these matching patterns. One potential 

explanation may be that ATP interacts with cells (by binding/releasing to/from extracellular 

receptors) to form an activation pattern similar to diffusion. In order to determine the presence 

of an ATP/cellular interaction mechanism, we again used NPE-caged ATP to release ATP 

from a point source and measured the Ca2+ activation patterns over time and space (Figure 
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6C). In order to maintain a convection-free environment, the NPE-caged ATP solution was 

made in a 1% agarose solution that solidified on top of cells prior to uncaging. This way, any 

Ca2+ response from ATP would not be due to flow in the well. Measurements were performed 

in wells t easily add the agarose solution on top of the cells.  

We first determined whether Ca2+ activation rates changed in the presence (no scratch) 

or absence (scratch) of cells (Figure 6D). If ATP/cellular interaction takes place, then the first 

response time of cells after the scratch will differ from the response time of cells at the same 

distance from the site of uncaging without the scratch. Because scratch wounds also elicit a  
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Figure 2.6. The Ca2+ wave propagates by ATP diffusion. A. Photoactivated ATP (NPE-caged 

ATP) and FITC (CMNB-caged carboxyfluorescein) are uncaged using UV light in the area labeled 

“uncaging region”.  The Ca2+ wave, as measured by the genetically encoded biosensor RGECO 

(top), travels the same distance as uncaged FITC (bottom) in the absence of any flow at 16 minutes 

after uncaging. Each side of the channel was taped and allowed to set for 30 minutes to create a 

flow-free environment. B. Kymograph of region indicated in Figure 6A showing Ca2+ activation 

and uncaged FITC according to time and distance from uncaging. Red line indicates average time 

of first response per binned distance from the uncaging site. Error bars indicate standard deviation 

of average fluorescence. C. Spatially activating cells with ATP in a flow-free environment. An 

NPE-caged ATP solution is made in 1% agarose and added to cells prior to uncaging. After the 

agarose has solidified (~10 minutes), a UV light shines on a specific area of the well to release the 

caged ATP. This spatial increase of ATP concentration mimics ATP released from a wound source. 

D. The time required for the Ca2+ wave to cross empty space (scratched) is measured following 

photoactivated ATP release (black circle). Left: Raw maximum projection of Ca2+ response 

(measured by RGECO) in MCF-10A cells. Right: Maximum Ca2+ projection where each circle 

represents a cell and the color indicates fold Ca2+ increase (colorbar). E. The time required for the 

Ca2+ wave to cross a specific distance (dX) in the presence (no scratch, red) or absence (scratch, 

blue) of cells is measured by the difference between the time a cell first responds to ATP at the 

distance farther away from the uncaging site and the distance closer to the uncaging site (dT). F. 

The Ca2+ wave takes the same amount of time to traverse a specific distance in the presence (no 

scratch) or absence (scratch) of cells (p>0.5, t-test, n=7). G. The distance of each cell according to 

the time each cell first shows Ca2+ activation above a threshold following ATP uncaging (no 

scratch). H. Propagation of the Ca2+ wave according to the first response following ATP uncaging 

follows a pattern best fit by diffusion. The cellular Ca2+ response following ATP uncaging from 

several wells, like the well shown in Figure 6G, are averaged for binned distances following ATP 

release. Data are fit according to ATP Diffusion Fitting under Materials and Methods to find the 

diffusion coefficient. The diffusion coefficient that best describes the fitted data is 238.3 +/- 60.1 

µm2/sec (SEM, n=3). 

 

 

Supplemental Figure S2.1. Maximum projection of single-cell response interpretationFigure 

2.6. The Ca2+ wave propagates by ATP diffusion. A. Photoactivated ATP (NPE-caged ATP) and 

FITC (CMNB-caged carboxyfluorescein) are uncaged using UV light in the area labeled “uncaging 

region”.  The Ca2+ wave, as measured by the genetically encoded biosensor RGECO (top), travels 

the same distance as uncaged FITC (bottom) in the absence of any flow at 16 minutes after 
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Ca2+ response in the neighboring healthy cells, we made the scratch more than 2 hours before 

the experiment to allow Ca2+ levels to reset to normal levels. In addition, we saw no difference 

in Ca2+ response between scratched and non-scratched wells after uncaging NPE-caged ATP 

(data not shown). We then measured the time of first Ca2+ response for each cell following 

uncaging. We quantified the difference in first response times for cells before the scratch 

(closer to the site of uncaging) and after the scratch (farther from the site of uncaging) to find 

the difference in Ca2+ response times (dT).  

We used this same method for cells at similar distances from the uncaging site but 

without a scratch as an internal control and compared the dTs of Ca2+ response time for cells 

with and without a scratch. We found no difference in the dT of Ca2+ response time for cells at 

the same distances from the site of ATP uncaging despite the presence or absence of a scratch 

(Figure 6E, F, Supplemental Figure S3). This indicates that ATP does not interact with cells 

during the spread of the Ca2+ wave. Taken together, the evidence above indicates that there is 

no active mechanism required to form the Ca2+ wave gradient following wounding in an 

epithelial monolayer of cells. However, we see that the wave forms using extracellular 

stimulation. Without an activation mechanism, we next tested whether a simple Release and 

Diffusion model  explains the propagation of the Ca2+ wave. Using our NPE-caged ATP 

method (Figure 6C), we found the time that each cell first responds to ATP according to its 

distance from the source (Figure 6G). We then sorted the time for first Ca2+ response into bins 

according to distance from the uncaging site and found that the pattern resembles a square 

root, similar to the pattern of molecules diffusing from a point source (Figure 6H). 

Considering the diffusion of ATP from a single point, we fit our Ca2+ response data and 

calculated a diffusion coefficient of 238.3 (+/-60.1) µm2/sec. This value close resembles 

literature reported ATP diffusion coefficient values of ~300 µm2/sec [159].  
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Overall, we conclude that a simple ATP Release and Diffusion model is responsible 

for forming the Ca2+ wave. In a Release and Diffusion model, ATP released from wounded 

cells quickly diffuses from the site of wounding to activate Ca2+ response in the surrounding 

healthy cells in an epithelial monolayer.  

Discussion   

Here we investigate the underlying mechanism responsible for propagation of Ca2+ 

activation from a wound. Multiple mechanisms have been proposed for wound-induced Ca2+ 

waves [120,157,173–175]. These different mechanisms can be classified under three 

architypes: Source and Sink, Amplifying Wave, and Release and Diffusion (Figure 1). 

Evidence from a combination of pharmacological perturbations and quantitative 

measurements of Ca2+ wave propagation contradict key predictions of the Amplifying Wave 

and Source and Sink models. These contradictions suggest that the Ca2+ wave propagates via a 

simple Release and Diffusion process. Specifically, ATP molecules released from wounded 

cells diffuse to activate Ca2+ in the surrounding healthy cells. The natural dilution of ATP 

molecules resulting from diffusion forms the Ca2+ gradient across space.   

Each of the proposed models has features necessary for effective wound response but 

also come with key limitations. In order to initiate a proper wound response, cells need to 

know 1. The location of the wound and 2. The magnitude of the wound. Neutrophils, 

macrophages, and epithelial cells use signals indicating the location of the wound to find the 

wound to fight invading pathogens and close the wound. However, this response needs to 

scale with the magnitude of the wound. A response that is too small results in ineffective 

healing. A response that is too large can result in excess scarring and even cancer [180–183]. 

Additionally, this information must be propagated quickly to begin the wound healing process. 

By definition the Source and Sink model is self-limiting and ensures that the Ca2+ response 
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remains close to the wound. In this model, the response gradient forms when a large amount 

of initial signal is released (Source) and then hydrolyzed spatially (Sink). This model tightly 

regulates the ATP propagation distance. Although this tight regulation is necessary to control 

the spatial response, it can potentially limit how well the Ca2+ response gradient scales with 

wound size. Contrary to the Source and Sink model, the Amplifying Wave model allows Ca2+ 

activation to spread far from the wound source on a realistic timescale. However, signal 

amplification may result in information loss concerning the magnitude of the wound. 

Furthermore, although spreading the signals to far distances may be valuable to recruit 

immune cells, without self-limiting the wave, the spread of information to distances far from 

wound can initiate an undesired inflammatory response. The Release and Diffusion model 

contains features desired for a proper wound response mechanism. A Release and Diffusion 

model utilizes ATP molecules released from wounded cells as DAMPs to spread to the 

surrounding healthy cells. It spreads information on a short timescale, scales with wound size, 

and is self-limiting to prevent undesired activation of faraway cells. Furthermore, an ATP 

Release and Diffusion model is a simple and straightforward mechanism that requires little 

additional regulation.  

Although the three models we investigated here were chosen as representative 

mechanistic archetypes, it is possible that the overall Ca2+ propagation mechanism uses a 

combination of models. For example, the Amplifying Wave and Source and Sink models 

could be combined to a fourth mechanism that balances the contributions of ATP secretion 

and hydrolysis. However, our data does not support such a model. Our experiments utilizing a 

cell gap or “scratch” to measure the rate of Ca2+ response spread are independent of the 

molecular pathway underlying an active propagating wave. Additionally, although our results 

point to a Release and Diffusion model as the core propagation mechanism, it is possible that 
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Amplifying Wave or Source and Sink components act in parallel. Our experimental analysis 

of Ca2+ response propagation did not find any evidence for such parallel mechanisms. If this is 

the case, any additional components to the core Release and Diffusion model marginally 

contribute to Ca2+ wave propagation.  

One key limitation to our result is that our experiments were conducted in an in vitro 

setting. It is possible that more complex mechanisms occur in vivo. However, the lack of 

complexity in our model is informative and can direct future research in an in vivo context. It 

is possible that a 3-dimensional in vivo model, as opposed to the 2-dimensional monolayer in 

our system, will result in a different response mechanism. Yet, epithelial layers in many 

organs such as the cornea are very thin and extend to only three cell layers. Therefore, our 

results provide a good approximation of in vivo geometry. Another important consideration is 

that the multiple cell types required for wound healing will change the Ca2+ wave dynamics 

and, therefore, the underlying propagation mechanism. Future work quantifying the spatio-

temporal dynamics of Ca2+ waves in vivo is required to understand how other cell types are 

involved. It is clear that our model does not capture the full complexity of wound healing in 

vivo. Yet, the simplicity of a Release and Diffusion model may be beneficial to ensure 

surrounding cells are alerted quickly. Future work will determine the extent to which a 

Release and Diffusion model plays a role in the complexity of in vivo wound healing.   

Materials and Methods  

Ca2+ Measurements in MCF-10A Cells 

MCF-10A cells were cultured following established protocols [146]. Before plating 

cells, each surface was first treated with a collagen (Life Technologies), BSA (New England 

Biolabs), and fibronectin (Sigma-Aldrich) solution in order for cells to completely adhere, 

according to established methods. In order to maintain a viable environment, cells were 
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imaged at 32°C and 5% CO2. All DREADD experiments were conducted in 96-well plates 

using extracellular hepes buffer (ECB) to reduce background fluorescence (5 mM KCl, 125 

mM NaCl, 20 mM Hepes, 1.5 mM MgCl2, and 1.5 mM CaCl2, pH 7.4). All wound imaging 

was done in MCF-10A assay media [146].  

Single-cell Ca2+ levels during wounding and DREADD experiments were measured 

using Fluo-4, AM (ThermoFisher F14201) to prevent overlap of fluorescent wavelengths of 

DREADD (mCherry, 587/610 nm), Fluo4-AM (494/506 nm), and R-GECO (mApple, 568/592 

nm). Cells were loaded with 8µM Fluo-4, AM, 1X PowerLoad (ThermoFisher P10020), 

2.5mM probenecid (P36400), and 20µM Hoechst for 30 minutes at room temperature in ECB. 

Cells were washed with ECB to remove any remaining extracellular dye. All other Ca2+ 

measurements were conducted using the genetically encoded fluorescent biosensor R-GECO 

[124,125].   

Wounding Device Design, Fabrication, and Wounding Assay 

Master molds for the microfluidics based wounding device were created using silicon 

wafers and layer-by-layer photolithography using established methods [147]. A separate mold 

for both the air layer and cell layer were made using negative photoresists and masks. Chips 

were made by pouring uncured polydimethylsiloxane (PDMS) onto each mold, allowing the 

PDMS to harden, and bonding the layers together and subsequently to a glass slide. Cells were 

loaded into the device through the inlet port using a 20G needle. During wounding the outlet 

port was plugged using tape and the inlet port held a reservoir of media to prevent evaporation 

in the chamber. Wounding was accomplished by increasing the air pressure in the top layer of 

the device until the pillar made contact with the bottom of the device after which the air 

pressure was released to raise the pillar back up. Cells were loaded in to the wounding device 

at a density of 15,000,000 cells/mL using a 20G needle. Following trypsinization and 
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resuspension, cells were put on ice to prevent aggregation. Two o-rings were attached to the 

device surrounding both the inlet and outlet ports for media reservoirs using a thin film of 

vacuum grease. Wounding devices were kept in an empty pipet box filled with water to 

prevent media evaporation. Cells were allowed to adhere for 18-24 hours before wounding.   

Ca2+ activation by DREADD 

Cells were plated at a density of 2,000,000 cells/100mm plate and allowed to adhere 

overnight. Cells were transfected with the Gq-coupled DREADD HA-tagged hM3D with an 

mCherry tag using a 3:1 ratio of FuGene HD (Promega) to DNA and allowed to incubate 

overnight [127]. In order to measure the impact of activating a single-cell, non-transfected 

cells were mixed with DREADD-transfected cells at ratios of 1:0, 1:1, 1:2, 1:5, 1:7, and 0:1 

(non-transfected:DREADD) and plated in 96-well plates at a density of 30,000 cells/well. The 

following day, cells were loaded with 1μM Hoechst dye for nuclear imaging for 30 minutes 

for cell segmentation purposes and Fluo-4, AM to measure Ca2+ response. 5μM clozapine-N-

oxide (CNO) (Enzo Life Sciences) was added to each well to specifically activate DREADD 

cells.  

Manipulating extracellular ATP levels 

Two methods were used to manipulate extracellular ATP: 1. Inhibition of 

ectonucleotideases with ARL67156 and 2. ATP hydrolysis with apyrase. Cells were plated in 

96-well plates at a density of 30,000 cells/well and allowed to adhere overnight. Cells were 

incubated with 200µM ARL67156 for 1 hour after which 0.5µM of ATP was added to the 

well. Extracellular ATP was hydrolyzed by adding 5U of apyrase (Sigma A7646) to the well 

prior to the addition of 5µM ATP or ATPγS (Tocris 4080). In the wounding device, 5U of 

apyrase was added to the inlet port just before sealing off the second port to ensure that the 
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apyrase stayed in the cell chamber. Cells were imaged in FluoBrite DMEM media 

(ThermoFisher A1896701) with the components necessary for MCF-10A assay media added.  

Extracellular phosphate measurement 

Extracellular phosphate was measured using the PiPer Phosphate Assay Kit (P22061, 

Thermo Fisher) using the provided protocol. Cells were perturbed with either 0µM or 10µM 

ATP and allowed to sit for 5 minutes to capture full Ca2+ activation. A portion of the media 

was taken from the wells and used for the PiPer phosphate assay. Absorbance was measured 

on a plate reader at 565nm.  

Spatial measurements of the Ca2+ wave 

MCF-10A cells were plated in coated Ibidi µ-Slide VI0.1 chips by adding 20µL of a 

cellular solution with a density of 1x106 cells/mL to each channel of the µ-Slide. Cells were 

allowed to settle for 1 hour after which each well was filled with MCF-10A assay media 

[146]. Cells were allowed to adhere overnight. In order to measure the distance of Ca2+ wave 

response, we used 1mM NPE-caged ATP (ThermoFisher A1048) and 10mM CMNB-caged 

fluorescein (ThermoFisher F7103). NPE-caged ATP and CMNB-caged fluorescein were 

uncaged in specific regions by shining UV light on the region for 20 seconds. Enough NPE-

caged ATP solution was added to the channel to partially fill each well. Each well was taped 

and allowed to sit for >30 minutes to stop flow through the channel.  

All other NPE-caged ATP experiments were done in a 96-well plate in an agarose 

solution to prevent any convection during uncaging and imaging. NPE-caged ATP solutions 

were made in a 1% agarose solution and allowed to solidify for 10 minutes at room 

temperature prior to uncaging. Each well was exposed with UV light for 10 seconds to uncage 

NPE-caged ATP. To determine whether the Ca2+ wave could cross empty space, cells were 

seeded in a 96-well plate at a density of 30,000 cells/well and allowed to adhere overnight. 
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Cell monolayers were scratched using a 2µL pipet tip to create empty space. Scratches were 

done >4 hours prior to imaging to give Ca2+ levels adequate time to return to basal levels. A 

1% agarose solution containing 10µM NPE-caged ATP was added to each well and allowed to 

solidify for 10 minutes at room temperature. Each well was exposed with UV light for 10 

seconds to uncage NPE-caged ATP.  

ATP Diffusion Fitting 

We considered the diffusion of ATP from a single point to its surrounding neighbors 

to find the diffusion coefficient D of the molecule responsible for Ca2+ wave propagation 

following ATP release. We considered a 2D-like geometry where cylindrical cells, each of 

height ch   and radius  , grow in a chamber of total fh  height. We simplify the below 

analysis by approximating the cell monolayer geometry to a series of “cell cylinders”. We also 

consider the number of molecules released from a cell rN , the number of molecules needed 

for detection dN , and the total integration time T. The key results of the required integration 

time are similar for other comparable geometries (data not shown). Under these conditions one 

could write the analytical solution of the diffusion equations: 

(1)  

2

4rN
, e

4

r

Dt

f

C r t
h D t






  

Where  ,C r t  is the concentration of ATP for distance r and time t. For a 

neighboring cell to respond to this paracrine signal, a critical number of molecules dN  need to 

reach the volume surrounding the cell. We assume that a cell “senses” a volume comparable to 

the volume of a cell itself. For a cylindrical cell of area 
2  and height ch the critical 

concentration required for cellular response will be:  
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This is simply the required number of molecules divided by the cell volume. 

Combining equations 1 and 2 we can solve for the distance and time of where the critical 

concentration will be reached. Solving for distance we get that 
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Using the time of first response for each cell with is corresponding distance from the 

ATP source, we used equation (3) to fit the experimental data to get the ATP diffusion 

coefficient.  

Imaging and Image Analysis 

Imaging was accomplished using a Nikon Plan Apo λ 10X/0.45 objective with a 0.7x 

demagnifier and Nikon Eclipse Ti microscope with a sCMOS Zyla camera. All imaging was 

accomplished using custom automated software written using MATLAB and Micro-Manager 

[148]. Image analysis was accomplished using a custom MATLAB code published previously 

[109] (Supplemental Figure S4). 
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Supplemental Figure S2.1. Maximum projection of single-cell response interpretation. 

Throughout the manuscript, the maximum projection of cellular responses are depicted where each 

circle represents a single-cell. Each single-cell circle corresponds to a time-series and the color 

indicates the maximum value in that time-series (right) as set by a colorbar. The black circle 

represents the point of ATP release, either by wounding or uncaging.  

 

 

Supplemental Figure S2.2. Ca2+ response to CNO in DREADD and non-DREADD expressing 

cellsSupplemental Figure S2.1. Maximum projection of single-cell response interpretation. 

Throughout the manuscript, the maximum projection of cellular responses are depicted where each 

circle represents a single-cell. Each single-cell circle corresponds to a time-series and the color 

indicates the maximum value in that time-series (right) as set by a colorbar. The black circle 

represents the point of ATP release, either by wounding or uncaging.  
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Supplemental Figure S2.2. Ca2+ response to CNO in DREADD and non-DREADD expressing 

cells. Data from Figure 4B, C are categorized according to distance from the DREADD cell. The 

spread of maximum Ca2+ response for DREADD (red) and non-DREADD (gray) expressing cells 

is shown according to distance from the DREADD cell indicating that only DREADD cells have a 

Ca2+ response with the addition of CNO.  

 

 

Supplemental Figure S2.3. ATP does not bind to cells to produce the Ca2+ 

gradient.Supplemental Figure S2.2. Ca2+ response to CNO in DREADD and non-DREADD 

expressing cells. Data from Figure 4B, C are categorized according to distance from the DREADD 

cell. The spread of maximum Ca2+ response for DREADD (red) and non-DREADD (gray) 

expressing cells is shown according to distance from the DREADD cell indicating that only 

DREADD cells have a Ca2+ response with the addition of CNO.  
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Supplemental Figure S2.3. ATP does not bind to cells to produce the Ca2+ gradient. Assays to 

measure whether ATP binds to cells to produce the Ca2+ gradient measures the time of Ca2+ 

response following ATP uncaging in the presence (no scratch) and absence (scratch) of cells. A. 

From left to right, the point of uncaging is marked with a black circle. Then the cells surrounding 

the scratch are labeled (red). Next, cells at similar distances from the uncaging point before and 

after the scratch are marked (dark blue and light blue). A region without a scratch is marked 

(yellow) as an internal control to compare the time of first response in the presence of cells. Cells at 

the same distances as the cells surrounding the scratch are marked in the non-scratch region (dark 

blue and light blue). B & C. The same assay as Figure 6E & F for uncaged FITC. As expected, 

uncaged FITC, which does not bind to cells, takes the same amount of time to traverse a region 

with (no scratch) and without (scratch) cells.  

 

 

Supplemental Figure S2.4. Image Analysis Method.Supplemental Figure S2.3. ATP does not 

bind to cells to produce the Ca2+ gradient. Assays to measure whether ATP binds to cells to 

produce the Ca2+ gradient measures the time of Ca2+ response following ATP uncaging in the 

presence (no scratch) and absence (scratch) of cells. A. From left to right, the point of uncaging is 

marked with a black circle. Then the cells surrounding the scratch are labeled (red). Next, cells at 

similar distances from the uncaging point before and after the scratch are marked (dark blue and 

light blue). A region without a scratch is marked (yellow) as an internal control to compare the 

time of first response in the presence of cells. Cells at the same distances as the cells surrounding 

the scratch are marked in the non-scratch region (dark blue and light blue). B & C. The same assay 

as Figure 6E & F for uncaged FITC. As expected, uncaged FITC, which does not bind to cells, 

takes the same amount of time to traverse a region with (no scratch) and without (scratch) cells.  

 

Supplemental Figure S2.4. Image Analysis Method. From left to right. Cells are stained with the 

nuclear dye Hoechst. Nuclei are eroded to find the points of maximum fluorescence in each cell. 

Next the image is blurred to reduce noise and leave only a single peak per nuclei. Using the blurred 

image, the maximum peak for each nuclei is identified which is then labeled as the nucleus of the 

cell.  

 

 

Figure 3.1. Method to measure spatio-temporal gene expression following a 

woundSupplemental Figure S2.4. Image Analysis Method. From left to right. Cells are stained 

with the nuclear dye Hoechst. Nuclei are eroded to find the points of maximum fluorescence in 

each cell. Next the image is blurred to reduce noise and leave only a single peak per nuclei. Using 

the blurred image, the maximum peak for each nuclei is identified which is then labeled as the 

nucleus of the cell.  
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CHAPTER 3                                                                                   

SpaSeq: A method to measure the spatio-temporal differential gene 

expression following a wound 

 

Introduction 

Patterns formed by wound response signals that tell neighboring healthy cells how to 

respond to a wound is reminiscent of a developmental program which determines the fate of 

every cell within an organism. Drosophila embryogenesis, a classic developmental biology 

model, first showed patterns of gene expression which determine the fate of each cell 

[184,185]. Similarly, cells surrounding a wound depend on positional information to 

determine how to respond based on the size of the wound [132].  

Just as in development, wound healing relies on multiple steps. As was shown in the 

first two chapters, transcription-independent paracrine molecules diffuse to activate signaling 

mechanisms in cells [93,150]. These transcription-independent factors eventually translate into 

gene expression responsible for the remaining steps of wound healing including recruiting 

immune cells to fight potential infection, closing the wound through migration and 

proliferation, and finally the formation of scar tissue [186]. Each of these steps requires 

turning genetic programs on and off for successful wound closure. For example, cell migration 

and proliferation must end by the time scar formation begins to prevent keloids or other 

tumor-like scars. 
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Previous work has demonstrated differential gene expression following a wound. 

Pearson et al. showed differences in gene expression at different distances from the wound in 

Drosophila [187]. Additionally, wounded rat cornea epithelial cells and vocal-chords showed 

gene expression changing over time [188,189]. However, a comprehensive analysis of the 

genes expressed in both space and time following an epithelial wound has not been done.  

Here we present a method we name SpaSeq (Spatial Sequencing) to measure the 

spatio-temporal genetic wound response in epithelial cells using a combination of photo-

convertible proteins, FACS cells sorting, and RNA-Seq.  

Results 

Creating cellular patterns using photoconvertible proteins 

In order to measure the differential gene expression across space and time in response 

to a wound, we first developed a method to track cells according to their distance from the 

wound. Here we create cellular patterns using the photoconvertible protein tdEos which 

transitions from green to red following UV light illumination (Figure 1) [190–192]. By 

shining light in a ring pattern at different distances from the center of the wound, we create 

rings with radii of 100μm, 250μm, 450μm, and 650μm. Second, we create a “cell sandwich” 

by placing a glass slide with cells loaded with pyropheophorbine a methyl ester (PPME) on 

top of the patterned cells to wound the cells. PPME induces cell death by producing reactive 

oxygen species (ROS) when cells loaded with PPME are exposed to 660nm light. We shine 

light only on the center of the monolayer to selectively wound the cells in the middle. 

Following wounding, we allow the cells to sit for 1, 4, 8, 12, or 24 hours after which the 

converted red cells are separated from the green cells using FACS. The sorted cells are then 

sequenced to measuring gene expression at all points in time and space.  
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Creating patterns and wounding cells requires a three-day process 

The 4-step experimental design outlined in figure 1 requires a three-day process 

(Figure 2A). On day one, limbal stem cells (LSC) are plated on glass slides with 30 “wells”, 

each 2mm in diameter, made with the hydrophobic material PTFE (Figure 2B). The small 

growth area ensures easy separation of the converted cells from non-converted cells during the 

Figure 3.1. Method to measure spatio-temporal gene expression following a wound. Step 

1. 405nm light converts tdEos from green to red to create distinct spatial patterns at specified 

radii of 100μm, 250μm, 450μm, and 650μm away from the center of the well. Step 2. Cells 

loaded with PPME (purple) are placed on top of the spatially patterned cells (green/red). 

660nm light shines on the center of the well to specifically kill the cells in the center of the 

well. Black circles represent dead cells. Step 3. Cells are allowed to incubate for 1, 4, 8, 12, or 

24 hours before removing the glass slide and sorting the cells. Step 4. Sorted cells are 

sequenced using RNA-Seq to measure the differential gene expression patterns across space 

and time. 

 

 

Figure 3.2. SpaSeq workflowFigure 3.1. Method to measure spatio-temporal gene 

expression following a wound. Step 1. 405nm light converts tdEos from green to red to create 

distinct spatial patterns at specified radii of 100μm, 250μm, 450μm, and 650μm away from the 

center of the well. Step 2. Cells loaded with PPME (purple) are placed on top of the spatially 

patterned cells (green/red). 660nm light shines on the center of the well to specifically kill the 

cells in the center of the well. Black circles represent dead cells. Step 3. Cells are allowed to 

incubate for 1, 4, 8, 12, or 24 hours before removing the glass slide and sorting the cells. Step 

4. Sorted cells are sequenced using RNA-Seq to measure the differential gene expression 

patterns across space and time. 
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later FACS step. Cells are plated at a density of 50,000 cells/mL in 20μL per well and allowed 

to adhere overnight. Cells are kept in an empty pipet tip box filled with water to prevent media 

evaporation.   

 

 

On day two, the cells plated on day 1 are loaded with 20μM PPME by carefully 

removing approximately 90% of the media “bubble” so as not to shear the cells (Figure 2B) 

and adding 20μL of PPME. Cells are allowed to incubate with PPME for a minimum of 12 

hours while covered with foil and kept in the dark. LSC cells expressing the photoconvertible 

protein tdEos for the spatial rings are also plated on day two (Figure 2A) at a density of 

200.000 cells/mL in 20μL per well and allowed to adhere overnight.  

On day three, we shine a 405nm laser in a specific ring pattern on each of the wells to 

create the spatial rings on the spatial slide (Figure 2A, Figure 3A). Every well on one slide has 

Figure 3.2. SpaSeq workflow. A. The entire SpaSeq process takes three days to plate the cells, 

load PPME, make the spatial rings, and kill the cells. B. Image of the PTFE coated glass slide. 

Each well is 2mm in diameter and has a total volume of 20μL.  

 

 

Figure 3.3. SpaSeq spatially separates cells following a woundFigure 3.2. SpaSeq 

workflow. A. The entire SpaSeq process takes three days to plate the cells, load PPME, make 

the spatial rings, and kill the cells. B. Image of the PTFE coated glass slide. Each well is 2mm 

in diameter and has a total volume of 20μL.  
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the same ring size since these cells will be trypsinzed and sorted together. The radii of each 

ring are chosen to cover the well area but ensure adequate separation between the rings 

(Figure 3A). After the rings are made, the slide with cells loaded with PPME is placed on top 

of the converted cells to create a cell sandwich. The small volume in each well prevents 

dilution of any paracrine molecules released during wounding important for signaling [93]. 

Additionally, the PTFE between each well prevents movement of paracrine molecules 

between wounds. We use a 660nm light to wound cells in the center of the well (Figure 3B). 

The sandwich is allowed to incubate for 30 minutes to allow all diffusible molecules to initiate 

signaling molecules [193]. The sandwich is placed in a media bath to separate the slides 

without shearing the cells and then the spatial slide is allowed to incubate for 1, 4, 8, 12, or 24 

hours. 

Following incubation, cells on the spatial slide are removed using 0.05% trypsin and 

incubated for 15 minutes. Trypsinization is terminated using LSC media and the cells are 

centrifuged and resuspended in a FACS buffer to remove the trypsin. Cells are stained with 

DAPI as a dead cell stain, passed through a 35μm cell strainer, and placed on ice. Converted 

cells (569/581nm Ex/Em) are separated from unconverted cells (506/516nm Ex/Em) with 

FACS and sorted in 3X TRIzol LS to lyse the cell (Figure 3C) [190]. At this point, RNA can 

be extracted from cells and stored for future RNA-Seq analysis. The SpaSeq process is 

repeated for all space and time points to create a comprehensive spatio-temporal profile of 

gene expression following a wound. 
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Figure 3.3. SpaSeq spatially separates cells following a wound. A.LSC cells expressing 

tdEos are specifically converted from green to red to create spatial patterns. Images on left are 

the ratio of Red to Green image. Image on right shows images from left placed on top of each 

other. Each ring is distinct from the other. B. Cells loaded with 20μM of PPME are selectively 

killed with a 660nm laser. Dead cells are marked with Sytox Blue. Left shows dead cells before 

660nm light and right shows dead cells after 660nm light. C. Left: FACS sorting of non-

converted cells. Right: FACS sorting of cells after conversion. Gated cells in red are converted 

cells that will be used for sequencing. 

 

Figure 3.3. SpaSeq spatially separates cells following a wound. A.LSC cells expressing 

tdEos are specifically converted from green to red to create spatial patterns. Images on left are 

the ratio of Red to Green image. Image on right shows images from left placed on top of each 

other. Each ring is distinct from the other. B. Cells loaded with 20μM of PPME are selectively 

killed with a 660nm laser. Dead cells are marked with Sytox Blue. Left shows dead cells before 

660nm light and right shows dead cells after 660nm light. C. Left: FACS sorting of non-

converted cells. Right: FACS sorting of cells after conversion. Gated cells in red are converted 

cells that will be used for sequencing. 



99 

 

 
 

Table 3.1. LSC cell media formula. 

 

Table 3.1. LSC cell media formula. 

Methods 

LSC cell culture and manipulation 

LSC cells are cultured in media according to the below recipe: 

Reagent Stock Conc. Add Volume Final Conc. 

DMEM 1X 215 mL  

DMEM/F12 1X 215 mL  

FBS 1X 60 ml  

Penicillin Streptomycin 1X 5 ml  

Adenine   5 ml  

EGF 100 ug/ml  50 ul 10 ng/ml 

Insulin 4 mg/ml  625 ul 5 ug/ml 

Cholera Toxin 1 mg/ml= 0.05 

M 

 

 

10-10 M 

Hydrocortisone 1 mg/ml  200 uL 0.4 ug/ml 

3,3’,5-Triiodo-L-

Thyronine  

 1 ml 2 x 10-9 M= 

2nM 
 

Media is sterilized through a 0.22μm filter and stored at 4˚C for up to 2 weeks.  

All culture dishes, plates, and PTFE glass slides (EMS 63434-02) are coated with 2% 

Matrigel (Corning 356231) in DMEM for 30 minutes at room temperature. An aliquot of 

Matrigel is thawed on ice at 4˚C for 2 hours before use. 

PPME (Sigma P3787) is dissolved at a concentration of 1mM in ethanol and stored at 

-20˚C and diluted in LSC media when incubated with cells. To ensure that cells are being 

killed in the correct area, dead cells are marked with 1μM Sytox Blue (Thermo Fisher 

S34857). 

FACS preparation and separation 

Cells are passed through a 35μm mesh filter (Corning 352235) and placed on ice prior 

to FACS separation. Cells are resuspended in a FACS buffer consisting of 96% PBS, 2% fetal 

bovine serum, 1% 100X Pen/Strep, and 1% 0.5M EDTA (pH 7.4). Cells are sorted into 3X 
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TRIzol LS Reagent (ThermoFisher 10296010) which is diluted in water such that the final cell 

volume occupies less than a third of the total final volume to ensure all cells are immediately 

lysed upon contact. 

Discussion 

Here we present a method to measure the spatio-temporal gene response of epithelial 

cells following a wound. We take advantage of several techniques including photoconvertible 

proteins, fluorescent microscopy, FACS, and RNA-Seq. Although we present an accessible 

method to measure the spatio-temporal differential gene expression in wounds, there are 

technical challenges. For example, cells in the cell sandwich have limited viability due to the 

small volume of media available. Although previous work shows that wound signals diffuse 

for 30 minutes, removing the wounded cells from the healthy cells may disturb the wound 

healing process since wounded cells are not removed from healthy cells this quickly in vivo 

[193]. Similarly, placing the spatially patterned cells into a media bath following the initial 30-

minute incubation may cause artifacts due to diffusion of paracrine molecules. However, these 

potential artifacts will equally influence all cells in the wound and therefore will not exhibit 

differential expression.  

With additional development, this method has potential to measure the spatio-

temporal gene patterns in three-dimensional tissue following a wound. Cells in a three-

dimensional tissue, such as a cornea, expressing tdEos can be patterned similarly using high-

intensity lasers, dissociated, separated, and sequenced. Furthermore, this method can be 

adapted to other spatially relevant biological events such as development, immune cell 

recruitment in cancer, morphogenesis, among other. Overall, this approach provides a novel 

but simple method to measure the differential gene expression in wounds and other spatially 

relevant biological contexts. 
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CONCLUSION 

The best part about studying wound healing is that it is easy to explain to any scientist 

or non-scientist the importance of wound healing. Everyone gets cuts and no one likes them. 

Even more, wound healing is a regeneration mechanism happening right before our eyes. The 

importance of understanding wound healing extends beyond healing healthy wounds in 

healthy individuals, of course. The ability to heal wounds more efficiently has applications for 

those with autoimmune disorders who are unable to heal quickly or to soldiers in combat who 

need quick solutions for serious injuries. For these reasons, and more, extensive research has 

been and continues to be conducted to understand the complex, multi-step process of wound 

healing.  

Although a lot is known about wound healing, less is known about the initial wound 

response signals. Wounds can take days, weeks, and sometimes even months to heal. 

However, wound healing begins as soon as the wound occurs. Furthermore, most wounding 

studies have been conducted at the population level, as noted in the introduction, which cannot 

account for differences in cellular response of cells at different distances from the wound. 

Improvements in live-cell imaging, fluorescent biomarkers, and computational modeling have 

made exploring the initial wound response immediately surrounding the wound in a spatially 

relevant manner possible.  

Using these technologies, I have shown that the initial wound response signal ATP 

travels using a simple release and diffusion mechanism. Any noise due to the use of a simple 

mechanism is later filtered out using paracrine communication to maximize the signal to noise 

ratio. Finally, I have presented a method to determine the differential spatio-temporal gene 
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expression of epithelial wounds. The combination of these studies provides insight into the 

wound healing process from the beginning to the end.  

It will be interesting to see how the initial wound response signals specifically map to 

downstream gene responses. Although chapter 3 presents a method to map the genes 

expressed following wounding, this does not show how the initial molecules such as ATP, 

Ca2+, and ERK influence the overall gene expression patterns. It will be interesting to see how 

inhibiting any of these signaling mechanisms impacts the gene expression patterns over time.  

One limitation of this work is that all the experiments were conducted using two-

dimensional monolayers of cells. Wounding occurs in three-dimensional tissue and uses many 

cell types in addition to epithelial cells such as neutrophils, macrophages, and fibroblasts to 

remove dead cells and pathogens. Two-dimensional monolayers, therefore, do not fully 

replicate the wounding environment. However, as with any model system, the initial advances 

must be done in simple models before moving to more advanced systems. Improvements in 

microscopy and biomarkers are allowing more advanced in vivo wound studies [133]. 

Additionally, advancement in single-cell RNA-Seq will enable understanding how signaling 

dynamics influence gene expression [194].  

Perhaps one of the most exciting things to see will be how these initial signaling 

mechanisms influence wound healing in vivo. If wound healing begins as soon as the wound 

occurs, then more efficient wound healing can be achieved with earlier intervention. However, 

understanding this process will require mapping the signaling dynamics of wound healing to 

the downstream gene expression for in vivo wounds.  
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Overall I use new technology to determine how cells talk to each other immediately 

following a wound in an epithelial monolayer of mammalian cells. I am excited to see if and 

how this work influences future wound healing discoveries.   
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