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Abstract of the Dissertation

A Multi-Accelerator Architecture for Photon

Mapping

by

Seung hyun Pan

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Miloš D. Ercegovac, Chair

Real-time rendering of photorealistic images has always been an important goal in

Computer Graphics. The most computationally expensive part of this process is

obtaining the effects of global illumination. Photon mapping is a well-known tech-

nique for calculation of realistic global illumination, and also shows characteristics

which we believe make it favorable for dedicated hardware acceleration.

Online arithmetic is a digit-serial form of arithmetic, where input vectors are

processed from the most significant digit down to the least, and the result is also

produced one digit at each step. Pipelined online arithmetic circuits are extremely

regular while only requiring simple calculations between registers, which allows

for high clock speeds and low power dissipation with a huge potential for parallel

execution.

Combining these two concepts, we design and evaluate MAPM (Multi-Acceler-

ator for Photon Mapping), a multi-accelerator architecture that employs pipelined

online arithmetic to accelerate the two most time consuming operations in photon

mapping: the tree search and shader operation. On a VHDL implementation,

we perform behavioral verification using ModelSim, examine hardware cost with

Synopsys tools and evaluate throughput gain and scalability of the architecture
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using a custom built cycle-accurate simulator based on the Intel Pin tool.

By employing two MAPMs set to a configuration of 16 Tree Search Modules,

16 Shader Operation Modules and 2 Shader Operation Accelerators per Shader

Operation Module, we observed a throughput increase of 1384× over an optimized

software setup, and an increase of 4.78× over a recent MPSoC implementation.

This is achieved using an acceptable hardware cost of 28.8% of the bandwidth,

22.2% of the area, and 5.6% of the power consumption of the low-end Intel Celeron

G1820T.

The MAPM also shows a significant reduction in power dissipation. Compared

to a conventional parallel circuit with equivalent functionality, the MAPM showed

a synthesizable clock speed at about 3.5×, dynamic power consumption of 0.104×,

and area cost of 1.799×.
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CHAPTER 1

Introduction

Rendering photorealistic high-quality images in real-time has long been an impor-

tant and classic goal in Computer Graphics. Due to a rising demand on applica-

tions such as interactive entertainment, virtual reality, and 3D displays, the need

for fast high-quality image rendering is rapidly on the rise.

In general, the mechanism of how light travels through the physical environ-

ment and reaches the optic nerves in the retina of human eyes is well known. To

achieve photorealistic rendering, it is necessary to calculate the effects of light

transmission to emulate the physics of light, by a precise yet feasible method.

The main obstacle is the massive amount of calculation that is required in order

to obtain high-quality rendering. The main bulk of the calculation load is the

process required for obtaining the effects of global illumination. To calculate this,

one needs to consider light reflections from all parts of the scene that end up at

points visible in the final image.

Current solutions usually fall in one of the two groups; one, they offer high-

quality imagery but is too slow for real-time, or two, their throughput is good

enough for real-time but the light emulation is approximated and thus produce

images that are not photorealistic. The two most common rendering algorithm

classes are rasterization-based approaches and ray tracing-based approaches [59].

The rasterization-based approach is a very fast but physically approximated meth-

od, where it goes through each polygon in the scene one by one to determine the

color of each pixel in the final image. By making use of the inherent parallelism
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in this operation, rasterization has seen a lot of success by running on graphics

processing units (GPUs) for massively parallel execution. On the other hand,

ray tracing-based methods emulate physical light rays more accurately, and can

produce extremely realistic light effects. This makes ray tracing a better candidate

for the goal of high-quality global illumination. The main drawback of ray tracing

algorithms is that it is comparatively slower than rasterization methods, where

even with all the algorithmic advances and improved hardware support, current

performance of ray tracing is still a few magnitudes away from our ultimate goal

of real-time photorealistic rendering.

Photon mapping [28] is a ray tracing-based approach which we believe to be

an efficient method for global illumination calculation, and also shows promise of

showing real time performance [52]. The focus of this dissertation will be on the

design and verification of an application-specific accelerator for obtaining mas-

sively parallel execution of the photon mapping rendering algorithm. By using

digit-serial online arithmetic, we can process a large amount of pipelined con-

current operations, in addition to parallel execution using multiple instances of

execution modules. Additionally, the simple and structurally regular circuits of

online arithmetic allows for a fast clock speed and low power consumption.

1.1 Main research problem

Regarding our final goal, let us examine some numbers regarding actual perfor-

mance for current systems. Full HD, which is also referred to as the 1080p, is

a widely used mode for screen resolutions. This uses a widescreen aspect ratio

of 16:9, with a resolution of 1,920 pixels wide by 1,080 high, which is 2,073,600

pixels total. Full HD is a commonly used standard for various multimedia appli-

cations, including digital films, HDTV, and the most recent generation of video

game consoles.
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For photon mapping in general, the number of final gather rays (FGRs) that

need to be calculated for each pixel is around 600 to 4,255 as noted in [24]. From

these numbers, we can calculate the maximum number of total rays for Full HD to

be 2, 073, 600× 4, 255 = 8, 823, 168, 000, which is almost 9 billion rays. If we can

get a throughput capable of calculating around 10 billion rays per frame at around

20-30 frames per second, this would be enough performance to achieve real-time

rendering for this resolution. We can consider this as the minimum performance

required for real-time photorealistic image rendering in Full HD.

As a side note, future applications will need to consider 2160p (4K UHD) and

4320p (8K UHD). 2160p has a resolution of 3,840 pixels wide by 2,160 high, which

is 8,294,400 pixels total, which is 4 times the count of 1080p. And 4320p has a

resolution of 7,680 pixels wide by 4,320 high, which is 33,177,600 pixels total,

which is 16 times the count of 1080p. These will obviously have a higher ray

process requirement compared to those of the 1080p.

Regarding the goal of 10 billion rays per frame, let us consider the following

points:

• As can be seen in the International Technology Roadmap for Semiconduc-

tors annual report [27], speedup obtained from the advancement of CMOS

technology is subtly but surely slowing down. This trend is evident as a lot

of recent processors do not obtain speedup from increased clock time but

through an increased number of cores or processing units, and increasing the

amount of parallel work that the processor can efficiently handle at the same

time. Simply waiting for the hardware to improve to the necessary perfor-

mance point is not a viable solution, even before we consider the amount of

time it will take to get there.

• Looking at [59], we can see that a wide range of algorithmic improvements

have been thoroughly explored for ray tracing. However, the amount of re-

3



quired processing is still too much to overcome by purely algorithmic meth-

ods. As mentioned in [63], performances of up to several hundred million

rays per second is expected to be reachable in a few years, but this still falls

a few magnitudes short of the performance goal for real-time photorealistic

rendering in Full HD.

• There have been attempts to implement photorealistic photon mapping in

real time as we shall examine in more detail in 2.2, but the current methods

still come short of our performance goal.

• While parallelism will definitely be one of the techniques that we will need

to utilize, the work necessary for the handling of each individual thread is

far too complex and slow that this performance goal cannot be achieved by

simply employing a large number of duplicate execution modules that are

avaliable.

Considering these points, to move closer to realizing the goal of real-time

photorealistic image rendering, one of the the main issues that we need to tackle

is improving the efficiency of resource usage overall, including power, area, and

memory bandwidth.

In order to achieve this goal, we propose an accelerator architecture with

application-specific modules which can speed up each individual thread, and can

be run in parallel to get high throughput. The main goal of this dissertation is to

design and evaluate an application specific Multi-Accelerator for Photon Mapping

(MAPM) architecture.

1.2 Contributions of this dissertation

In this dissertation, we develop and analyze a hardware design for accelerating

the 3D rendering algorithm of photon mapping.
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For the realization of this end target, we worked on the following tasks.

1. Novel architecture and design The MAPM focuses on the back-end

part of the photon mapping process, where all data structures are complete

and processing them is all that remains. The MAPM is a co-processor like

structure; it shares data paths to the main memory with the CPU, receives

new instructions from the CPU, and outputs the results to the frame buffer

or the main memory. For the detailed design, we need to consider where the

actual calculation is processed, which data is utilized at that point, and all

required data paths needed to supply this information.

The Tree Search logic module design is adapted from [47], and online mul-

tiplier and divider designs are adapted from [16].

2. HDL implementation After the details of the design are finalized, it is

vital to make sure the design functions as intended. To do this, the MAPM

design is implemented using VHDL. Key components have gone through rig-

orous behavioral verification with ModelSim using test benches with Python

generated inputs.

After making sure that the functionality of the design is valid, we obtained

ASIC hardware cost numbers by synthesizing the VHDL designs using Syn-

opsys Design Compiler.

3. Cycle-accurate simulation To examine how well the MAPM scales, and

to obtain more detailed performance numbers from cycle count, we built a

cycle-accurate simulator. The simulator was created using Intel Pin libraries

[44], an instrumentation tool that allows insertion of arbitrary C++ code

in an executable. The Pin tool inserts calls to the simulator into a software

photon mapping executable code created in [49], and the simulator returns

exact cycle count and cache simulation results.

5



4. Putting it all together With all the information from the tasks listed

above, we have enough information to evaluate the MAPM by making de-

tailed comparisons with other recent systems and photon mapping imple-

mentations. We compared hardware cost to recent CPUs to verify whether

the MAPM’s hardware cost is affordable. Also, we evaluated the perfor-

mance of the MAPM by looking at throughput numbers and comparing it

to other recent photon mapping implementations.

5. The results In brief, using two MAPMs with a configuration having 16

Tree Search Modules, 16 Shader Operation Modules and 2 Shader Opera-

tion Accelerators per Shader Operation Module demonstrated a throughput

increase of 1384× over the optimized software implementation of [48], and

a throughput increase of 4.78× compared to the MPSoC setup in [17]. This

is achieved while only using 28.8% of the bandwidth, 22.2% of the area, and

5.6% of the power consumption of the low-end Intel Celeron G1820T. These

results represent the fastest throughput of all photon mapping architectures

known to us.

The MAPM also shows a significant reduction in power dissipation. Com-

pared to a conventional parallel circuit with equivalent functionality, the

MAPM showed a synthesizable clock speed at about 3.5×, dynamic power

consumption of 0.104×, and area cost of 1.799×.

1.2.1 Collaborator contribution

This work is based on research in photon mapping architectures investigated

jointly with Shawn Singh in [49]. Ideas and results from his doctoral disserta-

tion [47] have been used in the design of the MAPM. In particular, we used his

photon mapping C++ code for the software executable used in the cycle accurate

simulation, and his Pin code written for [49] served as a great learning example
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for writing the cycle-accurate simulator.

1.3 Organization of dissertation

The organization of the dissertation is as follows. Chapter 2 examines some back-

ground and related work. Chapter 3 briefly introduces the photon mapping al-

gorithm and presents the details of the MAPM architecture. Chapter 4 looks at

evaluation methods and results, and Chapter 5 provides a summary and future

work.
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CHAPTER 2

Background and related work

The problem of rendering a 3D scene can be described as follows. Given a descrip-

tion of a scene, where we are given the objects in the scene, light sources, and a

camera, we wish to output an image. This image is an array of color information

which reflects what the scene will look like as viewed from the camera location.

For this rendering problem, there are two standards we need to consider, which

are the quality of the final image, and the time required to produce the image. In

general, higher photorealism would require more complex calculations which leads

to more time required for processing. Leaving out part of the required processing,

or approximating it to reduce time would lead to a drop in the quality of the final

image. There already exist algorithms which are oriented to enhancing one of the

criteria, but at the cost of a high quality drop in the other criterion.

With this in mind, we examine some of the algorithmic approaches to rendering

and offer some justification on our selection of photon mapping.

2.1 Rendering algorithms

There are various classes of algorithms which try to solve this rendering problem.

Each has its own strengths and weaknesses, and here we shall examine the positive

and negative aspects of photon mapping and why we think photon mapping is a

great candidate for real-time photorealistic rendering.
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2.1.1 Rasterization

Rasterization is a widely used method of rendering due to its high speed. Most

of the GPU architectures on the market are based on this.

For each pixel, the rasterization pipeline [18, 39] goes through each polygon

in turn and determines whether the polygon intersects a straight line from the

camera, and if it does, which one is the closest to the camera point. Once this

is determined, the color of the closest point is calculated using shader functions,

and the result becomes the pixel color for the final image. A large part of this can

be performed independently of each other. For example, comparing the distance

to each polygon with the smallest value found so far does not require data from

other polygons.

The GPU architecture takes advantage of this instruction independence by

having a huge number of simple cores where each instruction is passed through in

parallel. Each instruction is assigned to a core on the GPU, leading to massively

parallel execution. This leads to a very high throughput performance, to the point

where it is possible to get real-time frame rates.

However, rasterization is not a good solution for photorealistic rendering due

to a few drawbacks:

1. When using only rasterization, it is difficult to account for secondary rays

and physically correct global illumination. The main reason is that raster-

ization is optimized to calculate visibility of the entire scene from a single

camera point, and to obtain illumination from secondary rays, a large num-

ber of multiple passes through the pipeline is necessary. This would weaken

the timing performance of rasterization, and still likely not yield physically

accurate global illumination.

Another way to obtain global illumination using rasterization would be to

have some approximation at the shader phase, but again, this would result
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in a physically inaccurate rendering and would yield lower quality images.

2. The workload does not scale well due to the fact that rasterization needs

to go through all polygons to determine visibility from each pixel, therefore

having a linear dependency on the number of polygons in the scene. There

has been some previous work that tries to deal with this issue such as the

irregular z-buffer [29], but a lot of the calculation still ends up not being

used in the final image. This affects the scalability of rasterization in terms

of the the number of polygons in the scene.

In short, rasterization offers many speed benefits, but for the goal of rendering

physically correct photorealistic images, is not a well-suited class of algorithm.

2.1.2 Ray tracing

This brings us to ray tracing, which is a method much more appropriate for

physically based rendering than rasterization.

Ray tracing is a rendering method where the actual light paths are traced

through the scene using a general ray path calculation. Compared to other ren-

dering methods, ray tracing has the benefit of being able to account for all possible

light paths, and this is done with a generalized and unified algorithm, i. e. tracing

rays. Ray tracing closely emulates how light physically operates in the real world,

which makes it easy to account for various illumination effects such as reflection,

refraction, scattering and dispersion. This allows ray tracing to achieve levels

of realism not possible in rasterization, making it the most suitable method for

photorealistic rendering.

Ray tracing can also reduce the amount of wasted calculation, due to being

able to pinpoint parts of the scenery that is directly visible from the camera. From

this, ray tracing can eliminate unnecessary processing for areas not used in the

final image. This is a weak point for rasterization, where it is difficult to identify
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which calculations will be used for the final image, and the workload increases

linearly with the number of polygons in the scene.

However, the higher quality of rendering comes at the cost of a much larger

computation load compared to rasterization. Looking at some recent work, RPU

(Ray Processing Unit) by Woop et al. [64] shows a hardware design for an ar-

chitecture with programmable shaders. On a 66 MHz FPGA, the RPU shows

a performance of up to 20 FPS (frames per second) for an image resolution of

512 × 384 pixels using primary rays only. This is around 100 million rays/s for

simple scenes with no lighting and shading, and 15 million rays/s for moderately

complex scenes with simple lighting. OptiX, a general purpose ray tracing engine

by Parker et al. [40] that utilizes GPUs for ray tracing, shows performance of 1.5

FPS on the GTX480 for path tracing, and 4.5 FPS for the less-accurate Whitted-

style tracing. While this is quite an advancement, for the goal of photorealistic

real-time rendering for Full HD, the state of the art still comes a bit short.

2.1.3 Photon mapping

Photon mapping is a ray tracing based method that is effective for calculating

global illumination. It was originally proposed by Jensen [28] as an algorithm

for offline rendering. Since then, various research has been carried out, including

exploration of algorithmic improvements such as reverse photon mapping [24] and

SIMD (Single Instruction, Multiple Data) packets with data reordering [48], and

analysis on required cache bandwidth as in [51]. Recently, Singh has shown in his

dissertation [47] that compared to other ray tracing methods, photon mapping

can produce better quality images from a much smaller number of rays, and it has

great potential for a speedup similar to rasterization, as the main workload can

be divided up into fine-grain operations. This speedup was explored in the collab-

orative work [49] where the simulation of an online hardware accelerator shows a

potential speedup of 100× throughput compared to the software performance.
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Instead of treating particles as virtual light sources, photon mapping uses den-

sity estimation [46] to compute contribution to a camera point more effectively.

By actually creating and bouncing photons around the scene to emulate light

transport, photon mapping is also capable of producing a wide range of complex

illumination effects. Some examples of light effects that can be captured efficiently

using photon mapping are caustics (concentrated patches of light of nearby sur-

faces), diffuse interreflection (light reflection from diffuse surfaces, example: color

bleeding), and subsurface scattering (light enters material and is scattered before

being absorbed or reflected).

Photon mapping has the following strong points:

1. Compared to other ray tracing algorithms, photon mapping requires a smaller

number of rays. As explored in detail in [47], photon mapping can produce

a similar or better quality image from processing an order of magnitude

smaller number of rays. By using an efficient search data structure such

as KD-trees (k-Dimensional trees) [9] to sort through the photons, photon

mapping can calculate global illumination by processing a fewer number of

rays compared to that of a ray traced image of similar quality.

2. The main bulk of photon mapping can be divided into fine-grain operations.

The biggest reason for the fast processing speed of rasterization is that each

polygon and shader process can be divided up into small independent sec-

tions that can be run in a massively parallel manner. Photon mapping is

similar in that each search into the data structure and each shader operation

can be processed independent of each other. By utilizing this parallelism,

photon mapping can be efficiently mapped to separate many-core accelera-

tors to achieve high throughput.

3. The number of photons is unlikely to be intractable. Each photon carries

information that is highly likely to be used in the final image, and due to
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density estimation, processing photons is much more efficient than process-

ing light rays of the same effect [47], allowing us to render higher quality

images from a smaller number of samples.

These characteristics all combine to allow a smaller workload, and can be

mostly achieved without having to sacrifice the quality of the final image. There-

fore, we assert that development of an accelerator to take full advantage of the

fine-grain characteristic of photon mapping would be an important step towards

real-time photorealistic rendering.

However, there are still a number of obstacles that prevent us from having

real-time Full HD photon mapping. For one, processing each ray in photon map-

ping is more complex compared to other ray tracing methods. Each separate

shader operation needs to process a handful of floating-point multiplications and

divisions, and simply using conventional floating-point units will not be enough

to yield the massive throughput necessary for real-time rendering. Also, photon

mapping relies on the KD-tree data structure to accelerate the photon search pro-

cess and reduce the time spent in searching for shader operations. Unfortunately,

building the tree is relatively slow and updates are costly, compared to other

data structures used in rendering such as grid accelerators or bounding volume

hierarchies [59]. In general, with more time spent in building the data structure,

a better search performance can be obtained. The tree build is not a focus of

this dissertation, however a lot of research is being done to speed up the KD-tree

build, such as speeding up the surface area heuristic used in the tree build [26,42],

utilizing multi-threading and multi-core parallelism [45], adaptive fast rebuilding

from the scene graph [11], or motion decomposition [21].
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2.2 Hardware acceleration for photon mapping

Here we examine some previous work on using hardware to accelerate photon

mapping.

In [43] by Purcell et al., photon mapping was implemented on the GPU archi-

tecture. Unfortunately, as it was difficult to fit the main search data structure on

the old, less programmable GPU architecture, a different search method had to

be used, and this affected the overall quality of the image.

Work by Larsen and Christensen in [32] implements photon mapping on a

combination of a CPU and GPU. This work uses textures to store global illumi-

nation information, and they reduce the number of necessary samples by tracking

coherence for frame to frame photon tracing. This works in 35+ FPS for the

images in the paper at 512 × 512, but the need to have multiple passes for each

global illumination texture may limit the scalability to larger resolution images.

McGuire and Luebke has an interesting paper in [36], where an algorithm

named Image Space Photon Mapping was implemented on an 8-core CPU and

a GPU. Rasterization methods are used to produce photons and query points

very quickly. The rendering rate is very impressive at up to 26 FPS for Full HD

images. However, this is only an estimation of physically based rendering, and

no secondary rays are traced, resulting in a low quality image and limiting the

method’s scalability to photorealism.

T-ReX by Kim et al. [30] also uses a heterogeneous setup of a CPU and a GPU

to implement photon mapping. Using decoupled data for each, and progressive

photon mapping methods [22], they were able to reduce required data transfer

between the CPU and GPU and obtain performance numbers of 3-20 million

rays/s with response time at 15-67 ms.

Work by Fallahpour et al. [17] presents a homogeneous MPSoC implementation

for photon mapping, which includes the full process including all data structure
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builds. The maximum performance obtained here is about 639 million cycles to

render a 320× 240 resolution image using an 8x8 ARMv4 core network.

As far as we know, there has not been another approach for accelerating photon

mapping using application-specific hardware that utilizes fine-grain parallelism,

without heavy approximations which affect the quality of the rendering. In this

work, the MAPM approaches this problem using online arithmetic.

2.3 Previous work on photon mapping using online arith-

metic

Here we look at previous work on accelerating photon mapping using online

application-specific hardware.

In the collaborative work [49], we built on the main idea of focusing on the

fine-granularity of photon mapping using online arithmetic. We drew the large

picture of the co-processor accelerator architecture and implemented the Tree

Search Accelerator (TSA) and Shader Operation Accelerator (SOA) modules in

detail using VHDL. Using Synopsys tools, hardware cost comparison was done

with conventional circuits generated using FloPoCo [10]. Software simulation was

done using Pin [5] to obtain instruction count.

The hardware cost comparison at 200 MHz showed a power cost of about 20%

and area cost of about 130% compared to conventional circuits. Also, the online

implementation synthesis could be synthesized up to 1.5 GHz, while the parallel

conventional implementation showed a much slower clock speed. Perfomance-

wise, simulation results showed a 100× factor throughput improvement over a

pure software implementation in [48] while needing an estimated power cost of

less than 200 mW, and area cost of around 1% of 150 mm2.

In Singh’s dissertation [47], in addition to the above collaborative work, he
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evaluates how photon mapping compares to other ray tracing algorithms in terms

of rays traced and output quality, and also shows mathematical proof of the

fine-granularity of photon mapping. Also covered in this work is his methods of

optimizing the photon mapping algorithm using SIMD data packets with data

reordering to enhance cache behavior.

This dissertation expands and elaborates on these previous works by:

1. Detailed architecture design In previous work, no details of the archi-

tecture surrounding the TSA and SOA were implemented; power and area

cost did not take these circuits into account. In this work, all data paths to

memory and between modules, and the instruction flow of input parameters

through the accelerators are figured out in detail. The arithmetic inside the

SOA is implemented in detail, including calculation trees and all bit shifts

needed to match the input data range of online operators. All necessary

modules are shown with working details so that the TSA and SOA modules

created in [49] are supplied with the necessary information and can process

the tree search and shader operations.

2. HDL implementation With the detailed design for the MAPM figured

out, we can now better evaluate the hardware cost. All key modules with

any updated design details are implemented in VHDL and their functionality

is verified using ModelSim. The SOA especially needs meticulous evaluation,

using a large amount of test benches generated with the help of Python [6].

Again, we enlist the help of FloPoCo to implement a conventional parallel

circuit with the same functionality, and Synopsys tools to obtain hardware

cost numbers.

3. Cycle-accurate simulation Cycle-accurate simulation is necessary to eval-

uate scalability of the MAPM, along with obtaining cycle count and cache

bandwidth. The simulator was created in C++ using Intel Pin libraries [44],
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carefully taking into account how the internal data would flow through each

module in the detailed design.

4. Evaluation With the information we obtain from HDL implementation

and cycle-accurate simulation, we have enough information to evaluate the

scalability of the MAPM architecture, and compare the performance and

hardware cost of the MAPM with other recent solutions.

2.4 Online arithmetic

Online arithmetic [16] is a digit-serial form of arithmetic, where input vectors are

processed digit by digit from the most significant digit down to the least, with

the results also being produced one digit at a time. Due to the the digit-serial

characteristic of online arithmetic, by using a pipelined form, it is possible to

issue one application specific operation every clock cycle. This gives us a large

concurrency potential at the operator level even before we consider parallelism by

using duplicate accelerators.

2.4.1 Timing of online arithmetic circuits

There are two components to the delay of a single online arithmetic operation [16].

1. Initial delay: The initial delay δ is also called the online delay. This is

the number of additional digits required to determine the value of the first

result digit. The first output digit is delivered after δ + 1 cycles.

2. Time to deliver n output digits: After the initial delay, one output digit

is delivered every cycle. For the circuit to output n output digits, n cycles

is required.
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Therefore the cycle delay of a single online operand is Tn = δ + 1 + n. These

numbers may seem to suggest that the timing characteristics of online arithmetic

is worse than traditional arithmetic circuits. However, the main benefit of online

arithmetic is that we can easily pipeline the architecture in a digit-serial manner.

Combined with the fact that pipelined online arithmetic consists of a very regular

structure, with simpler circuits between registers allowing a faster clock speed

compared to traditional circuits, this allows for a very high throughput overall.

Also, at first glance, online arithmetic may seem to be adding cycle latency

for a single operation. However, the faster clock speed that is possible with online

arithemetic more than makes up for the added cycles, and as a result it is possible

to actually reduce the latency of a single operation in terms of time, depending

on the synthesized clock speed.

Another way that throughput of online circuits can be enhanced is by repli-

cation of online modules for calculations with no operation-level feedback loops.

For iterations such as y(i) = f(y(i − 1)), it is possible to push the throughput

rate up to

1

cycle time

at the cost of more replicated online modules. This is highly useful as the designer

can choose any point between the two extremes for a tradeoff between throughput

and hardware cost.

For a compound network of operators, more cycles can be saved for a single

operation by starting the next operation before the previous one is finished. Online

arithmetic works in a digit-serial method where the inputs are fed into the circuit

one digit at a time, and the outputs are also produced digit by digit.

Given the following compound network,
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Operation B Operation COperation A
Input X

Result
Input Y

Input Z Input W

Figure 2.1: An example compound operation

with a conventional parallel arithmetic architecture, we need to wait until the

result of Operation A is available. Only then can we start the next operation,

which is Operation B. Therefore, the timing diagram for a parallel circuit would

look like something shown in figure 2.2. Here, tPA is the time it takes for Operation

A to finish in the parallel operator.

Operation A

Operation B

Operation C

0 tPA tPA+tPB tPA+tPB+tPC

Figure 2.2: Timing diagram of conventional parallel arithmetic

On the other hand, if we use online arithmetic, the second Operation B will

be able to start as soon as the most significant result digit is obtained from the

previous operation. The delay for this is the preprocessing delay δ. So the timing

diagram will look similar to this.

Operation C

0

δA+1

δA+δB+tOC+2

δB+1

Operation B

Operation A

Figure 2.3: Timing diagram of online arithmetic
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It is easy to see that with online arithmetic, the more operators we have in

the compound operator, the more cycles we can save from this digit-serial form

of execution.

2.4.2 Online arithmetic applications

Online arithmetic has been implemented for a large number of applications.

Online algorithms for fixed-point division and multiplication were initially

proposed in [55], with proof of correctness and expansion to a radix-4 scheme

in [56]. The square root operation was implemented in [38]. Floating-point al-

gorithms for addition, subtraction and multiplication, along with the notion of

quasi-normalization is presented in works such as [60–62]. Multiplicative nor-

malization of fractions for evaluation of elementary functions was implemented in

online form in [20]. An algorithm and VLSI implementation of a radix-2 evaluation

of the function Y = AX+B can be found in [58]. Computation of rotation factors

for matrix transformations in online form is shown in [14]. Online arithmetic was

used in implementing a general hardware oriented algorithm that can be used for

a wide application domain, including evaluation of polynomials, certain rational

functions and arithmetic expressions, solving linear equation systems, and basic

arithmetic operations [13].

Details on established online arithmetic algorithms for basic fundamental op-

erations including addition, multiplication, division and square root can be found

in [16]. More complex operations such as the sum of three squares used for vec-

tor normalization [25] or primitives used in Fast Fourier Transform and Discrete

Cosine Transform operations [33] are also implemented in online arithmetic. The

advantages of online arithmetic for high throughput operations has been explored

in gene sequence profiling [37], and motion estimation for video encoding stan-

dards such as H.26x and MPEG-1, -2 or -4 [53].
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CHAPTER 3

The Multi-Accelerator architecture

3.1 Photon mapping algorithm overview

Before examining the details of the MAPM architecture, we first need a brief un-

derstanding of how the photon mapping algorithm works. The discussion in this

section is based on implementation details from [41] and the actual implementa-

tion code from [49]. The following explains the details of the photon mapping

algorithm that is the basis of the MAPM architecture implementation, with some

examples where applicable. Note that the algorithm here is for calculating indi-

rect illumination only. Direct illumination is usually calculated separately from

indirect illumination and are added together for the final image. As direct il-

lumination does not account for secondary rays, the workload is smaller than

indirect illumination by many orders of magnitude, and it will not be considered

for acceleration here.

3.1.1 Goal of the algorithm

The end goal of the PM (Photon Mapping) algorithm is to produce a 2D image of

the given scene. The image has a preset aspect ratio and resolution, given as the

number of pixels on the x and y axis. Each pixel is a square block that displays a

single unified color, specified by three floating-point values. Each of these stands

for the color intensity of red, green and blue light components, and combined

together, determines the single color of each pixel that make up the image. In
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short, the process of rendering a 3D image using PM is determining the color of

each pixel of the image, so that it faithfully represents what the given scene would

look like. The color components are calculated in floating-point values, and are

converted into the data format that fits the display’s color palette data format

(usually integers) if necessary.

3.1.2 Input data

For the image, we are given information on the 3D scene, along with light sources

and camera information.

1. 3D scene Information of the 3D scene is given as a set of triangles, along

with color and texture information of its surface. For flat surfaces with

straight edges, it is trivial to divide it up into triangular parts, and curved

surfaces or edges are divided up into a sufficiently large number of small

triangles, so that they look curved from a distance.

2. Light sources Light sources are the origin points of illumination in the

scene. Light travels in straight lines from the sources and bounce from the

surfaces to project direct and indirect illumination into the scene. Without

any illumination, nothing would be visible.

Information on the light sources include the (x, y, z) coordinates of the loca-

tion, and the intensity of the light’s RGB (Red, Green, Blue) components.

3. Camera The camera is the viewpoint into the scene. Basically, objects in

front of it will be visible in the image, and objects not in the direction that

the camera is facing or obscured by another object will not be shown in the

final image. The location of the camera is given in (x, y, z) coordinates, and

a direction vector indicates where the camera is pointing.
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For the example, the scene used is a variation of the Cornell box, a well known

3D test model that is widely used for various image rendering techniques and first

introduced in [19].

Figure 3.1: Cornell box (adapted from [19])

Our example model consists of two cuboid blocks placed inside five outer walls

(left, right, ceiling, floor and rear wall). The left wall is colored red, the right wall

is colored green, and all other walls of the room and the two blocks are white. The

colored walls will create a similarly colored hue on the white walls with proper

global illumination.

The scene file cornell-box.obj holds information on the x, y, z coordinates of

all vertices in the scene, and each triangle is defined by its material and the three

indices of the vertices that make up the triangle. This information is parsed and

built into a polygon map, which is the KD-tree where all triangle information is

stored in order to speed up the ray intersection process.

The camera of our example is located at (278.0, 273.0, -530). This is parallel to

the center of the overall bounds on the xy plane, with a negative z coordinate to

distance the camera from the objects in the scene. The camera’s direction vector
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is pointing straight in the direction of the scene, parallel to the z axis.

For the sake of our example, a single light source is placed at (1.0, 25.0, 1.0).

Seen from the camera point, this is at the corner closer to the camera of the two

lower-left ones of the scene. Looking at the image, we can see a circle of intense

light on the floor due to it being very close to the light. The light itself is not

visible as this image is indirect illumination only.

3.1.3 The KD-tree

A KD-tree is a binary space partitioning tree that subdivides a k-dimensional

space into irregularly sized regions [9]. In computer graphics, it is used to store

and efficiently search for objects inside the 3D space, and is generally considered

to be the best data structure for accelerating the tracing of rays [23] (from this

point on, we shall assume that all KD-trees are set to a 3D space unless stated

otherwise). This is an essential part of the PM algorithm, since the process

requires a large number of searches to find query point and photon pairs.

Every node in the KD-tree represents a cuboid region inside the 3D space.

Each non-leaf node divides the current cell in two with a splitting hyperplane

that is perpendicular to the coordinate axes. The splitting hyperplane can be

plotted using one of the following equations: x = a, y = b, or z = c.

Figure 3.2 shows a simplified example of a KD-tree in 2D space.
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Figure 3.2: KD-tree example on a 2-dimensional space

From the 2D example, if we are looking for points that have an x coordinate

larger than x1, we can easily determine that it will not exist under node B, since

all points under B have x < x1. As each node has at most 2 children, the average

search time is O(log n), with n being the number of total search points in the

scene.

3.1.4 Building the photon KD-tree

1. Parsing the scene file The .obj file holding the polygon information is

parsed, and all triangle information is loaded into memory. All triangles are

sorted and built into the polygon map, which is the KD-tree where all tri-

angle information is stored in order to speed up the ray intersection process.

To build the polygon map, a well known heuristic called the surface area

heuristic (SAH) [35] is used. At each division of the triangles into children

nodes, the SAH selects the division that minimizes the total surface area for

the two children. This is based on the idea that the relative probability of
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a ray passing through a subspace is linear to its surface area.

Since this is not a part of the PM process that is accelerated in the MAPM,

we shall not delve into the details any further here.

2. Photon tracing With the polygon tree finished, rays are recursively traced

from the light source into the scene to create photons. In essence, the

photons represent a sampling of light at various locations in the scene.

The initial ray starts from the light source into a random direction. If an

intersection is found, a photon is created at the intersection point. Related

information is stored in an array, which includes the x, y, z coordinates,

incoming direction of the light, and RGB intensity values. Once this is

done, a reflected bounce ray is created with RGB intensity values adjusted

in accordance to the surface material, and the ray intersection process is

repeated using the new bounce ray.

This process ends if it reaches a preset hard depth limit. Also, it is beneficial

to make use of the Monte Carlo method [12] Russian Roulette, by randomly

selecting photons to terminate early after a smaller depth limit. This is

due to the photon mapping process inherently being a random sampling

problem.

The photon tracing is repeated by creating a new sample ray from the light

source, until the number of total photons created reaches a preset number

count.

3. Photon KD-tree build Once all photons are found, the photons are sorted

by location to form the photon map, which is a KD-tree that holds all the

photon information. At each tree node, all contained photons are sorted

along the longest axis and divided into two children at the median, with

the one photon at the median being saved to the current node. This goes

on until a node has only one photon, whereas that node now is a leaf node
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without any further children. We can see that a photon map containing n

photons will result in a balanced and dense binary tree, with n total nodes

and dlog(n)e levels.

Below we see a small example of a 7 photon tree build process. The initial

bounding box is the bounding box for the whole scene, and it starts at

x(0, 555.036), y(0, 548.8), z(0.769442, 559.2).

(a) Node 0 (root node)

Initial photons are:

slot x y z

0 312.808 548.8 8.8027

1 264.63 428.347 559.2

2 0 44.8259 495.07

3 28.2439 0 7.08738

4 72.7003 548.8 191.099

5 0 509.39 171.588

6 114.27 84.3132 117.435

Length of bounding box axes are x(555.036− 0 = 555.036), y(548.8−

0 = 548.8), z(559.2 − 0.769442 = 558.431), and longest is z. Sorting

through z gives us:

slot x y z

0 28.2439 0 7.08738

1 312.808 548.8 8.8027

2 114.27 84.3132 117.435

3 0 509.39 171.588

4 72.7003 548.8 191.099

5 0 44.8259 495.07

6 264.63 428.347 559.2
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Median is 171.588 at slot 3 with split axis z, photon at slot 3 is placed

at current node 0, left child contains photons at slots 0-2 and right

child contains photons at slots 4-6.

(b) Node 1 (left child of node 0)

Initial photons are:

slot x y z

0 28.2439 0 7.08738

1 312.808 548.8 8.8027

2 114.27 84.3132 117.435

Length of bounding box axes are x(555.036− 0 = 555.036), y(548.8−

0 = 548.8), z(171.588− 0.769442 = 170.819), and longest is x. Sorting

through x gives us:

slot x y z

0 28.2439 0 7.08738

1 114.27 84.3132 117.435

2 312.808 548.8 8.8027

Median is 114.27 at slot 1 with split axis x, photon at slot 1 is placed

at current node 1, left child contains photon at slot 0 and right child

contains photon at slot 2.

(c) Node 2 (left child of node 1)

As there is only 1 photon given, node 2 becomes a leaf node that

contains the photon at (28.2439, 0, 7.08738).

(d) Node 3 (right child of node 1)

As there is only 1 photon given, node 3 becomes a leaf node that

contains the photon at (312.808, 548.8, 8.8027).

(e) Node 4 (right child of node 0)

Initial photons are:
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slot x y z

0 72.7003 548.8 191.099

1 0 44.8259 495.07

2 264.63 428.347 559.2

Length of bounding box axes are x(555.036− 0 = 555.036), y(548.8−

0 = 548.8), z(559.2 − 171.588 = 387.612), and longest is x. Sorting

through x gives us:

slot x y z

0 0 44.8259 495.07

1 72.7003 548.8 191.099

2 264.63 428.347 559.2

Median is 72.7003 at slot 1 with split axis x, photon at slot 1 is placed

at current node 4, left child contains photon at slot 0 and right child

contains photon at slot 2.

(f) Node 5 (left child of node 4)

As there is only 1 photon given, node 5 becomes a leaf node that

contains the photon at (0, 44.8259, 495.07).

(g) Node 6 (right child of node 4)

As there is only 1 photon given, node 6 becomes a leaf node that

contains the photon at (264.63, 428.347, 559.2).

Now all photons are accounted for, and the final tree looks like Table 3.1.
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Index LC RC Photon coordinates

0 1 4 0, 509.39, 171.588

1 2 3 114.27, 84.3132, 117.435

2 – – 28.2439, 0, 7.08738

3 – – 312.808, 548.8, 8.8027

4 5 6 72.7003, 548.8, 191.099

5 – – 0, 44.8259, 495.07

6 – – 264.63, 428.347, 559.2

Table 3.1: Tree contents for the example photon tree

3.1.5 Final gathering and query points

1. Tracing primary rays As mentioned in the previous section, we are given

the location of the camera and the direction it is pointing at. From this

information, we create a plane in front of the camera that is perpendicular

to the camera direction vector. A rectangle with the same aspect ratio of

the final image is drawn on this plane, which is then divided up into the

same number of pixels as the image. This rectangle acts as a virtual frame

of the final image, and by calculating the color of each pixel on the image

plane, we can determine the color of the pixel on the final image.

To do this, rays that originate from the camera are created. Each ray is

directed to pass a single pixel on the rectangular frame. These rays are

called primary rays.

Each primary ray is traced into the scene to find an intersection point with

the 3D scene. Again, the polygon map is utilized for faster search through

the scene. The color of this intersection point then becomes the final color

of the image pixel that corresponds to this primary ray. The process of
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determining this value is final gathering.

2. Final gathering and query points Final gathering starts from the in-

tersection points of primary rays. From each intersection point, a number

of sampling rays are shot into the scene in random directions. Intersections

with these rays become query points, where we need to find nearby photons

in order to calculate the indirect lighting that is sent towards the intersection

point of the primary ray, and provides global illumination. In preparation

of this search and shade process, the query points are stored in an array.

3.1.6 Tree Search and Shader Operation

With the above processes finished and the photon KD-tree and query point array

complete, we are now ready to run tree search and find shader operations. This is

the main part of the PM algorithm that is accelerated by the MAPM architecture.

1. Tree search For each query point in the array, we would like to find all

photons that are close enough to affect the illumination at the query point.

We determine this by checking the distance from the query point to the

photon. In relation to the location of the query point, we wish to find all

photons that have a distance equal to or smaller than a fixed distance h,

which is the radius of the kernel. This is done in an efficient method by

starting from the root node of the photon KD-tree and moving down the

tree node by node, excluding any branches that contain spaces that are

further than h from the query point. Any photons that are found during

and at the end the search are paired up with the query point to form shader

operations.

Each step through the KD-tree processes a single node. Every node rep-

resents a subset of the 3D space containing photons. As we examined in

Section 3.1.3, each node divides the space in two via its splitting plane, and
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all photons inside the 3D space fall into one of 3 distinct sets, the left child,

right child, or on the splitting plane.

At each node, we wish to determine which of the 3 sets hold the photons that

we seek for this given query point. With this information, we can determine

whether or not we need to search further into the children, or if we need to

assign any shader operations from this node. In order to determine this in

an efficient manner, we calculate the distance between the query point and

the split position of each cell along a single axis, and derive a pair of simple

comparisons.

For each query point and photon KD-tree node pair, we work with the

following floating-point values:

p : query point position

h : radius of the kernel

s : split position of the KD-tree node

The query point position p is the x, y or z coordinate of the query point.

This is selected depending on the orientation of the splitting plane of the

current tree node, for instance, if the splitting plane is x = a, p is equal to

the x coordinate of the query point.

The radius of the kernel h is a pre-computed value which affects the overall

image quality. Discussion on calculation of this value can be found in [47].

In terms of the tree search operation, h is the maximum distance between

a photon and a query point for the photon to affect the color at the query

point. Any photon that lies outside this distance can be ignored, without

any effect on the final image.

And lastly, the split position s is the coordinate of the splitting plane that

divides the space of the current node between the two children. For example,

if the splitting plane crosses the x axis, its plot equation would be x = s.
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Put simply, we wish to exclude all photons that lie outside the area marked

by the dark rectangle in Figure 3.3. The distance to any photon that lies

outside this range will be greater than h and do not need to be considered

for a shader operation.

p p+hp-h

hh

x,y or 

z axis

Figure 3.3: Photon search range

With this in mind, there are only 3 possible cases regarding the the split

position s of the KD-tree node:

p+hp-h x,y or 

z axis

p+hp-h x,y or 

z axis

p+hp-h x,y or 

z axis

s
Case 1:

Case 2:

Case 3:

left 

child

right 

child

s

left 

child

right 

child

s

left 

child

right 

child

Figure 3.4: Scenarios for the split position location

(a) Case 1 The rectangle lies completely to the right of the split position.

We can safely exclude any photons that are in the left child, meaning

that we continue searching the right child.

(b) Case 2 The rectangle lies on both sides of the split position. No

photons can be safely excluded, meaning that we continue searching

both the left and right child.
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(c) Case 3 The rectangle lies completely to the left of the split position.

We can safely exclude any photons that are in the right child, meaning

that we continue searching the left child.

To determine which one of these cases we have, we evaluate two inequalities,

p−h < s and p+h > s. From Figure 3.3, p−h is the left end of the rectangle,

and p + h is the right end of the rectangle. From the two values, we can

determine which case this search belongs to:

(a) p − h < s is true and p + h > s is false. Which means that the left

end of the rectangle is on the left side of s, and the right end of the

rectangle is NOT on the right side of s. This indicates that the whole

rectangle is on the left side of s, which would be Case 3 of Figure 3.4.

We would need to traverse the left child for this case.

(b) p − h < s is false and p + h > s is true. Which means that the left

end of the rectangle is NOT on the left side of s, and the right end of

the rectangle is on the right side of s. This indicates that the whole

rectangle is on the right side of s, which would be Case 1 of Figure 3.4.

We would need to traverse the right child for this case.

(c) p−h < s is true and p+h > s is true. Which means that the left end of

the rectangle is on the left side of s, and the right end of the rectangle

is on the right side of s. This indicates that the whole rectangle is on

both sides of s, which would be Case 2 of Figure 3.4. We would need

to traverse both the left and right child for this case.

(d) p−h < s is false and p+h > s is false. Which means that the left end

of the rectangle is NOT on the left side of s, and the right end of the

rectangle is NOT on the right side of s. This cannot possibly be true

unless h is a negative number, but since h > 0, we will never have this

condition.
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For reasons that are obvious, we shall call the inequality p− h < s as TCL

(Traverse Child Left) and the inequality p + h > s as TCR (Traverse Child

Right).

Some example tree search queries into our minimal photon KD-tree at Table

3.1 is shown below.

(a) Tree Search with query point at (0, 358.739, 280.736)

• Examining node 0: not a leaf, calculate TCL and TCR using split

axis z.

We have p = 280.736, h = 100, s = 171.588, p − h = 180.736,

p+ h = 380.736.

TCL =false and TCR =true, traverse right child (4) only.

• Examining node 4: not a leaf, calculate TCL and TCR using split

axis x.

We have p = 0, h = 100, s = 72.7003, p− h = −100, p+ h = 100.

TCL =true and TCR =true, traverse both children (5,6).

Also, create Shader Operation for photon in node 4.

• Examining node 5: leaf, create Shader Operation for photon in

node 5.

• Examining node 6: leaf, create Shader Operation for photon in

node 6.

• End of query

(b) Tree Search with query point at (0, 473.547, 255.165)

• Examining node 0: not a leaf, calculate TCL and TCR using split

axis z.

We have p = 255.165, h = 100, s = 171.588, p − h = 155.165,

p+ h = 355.165.

TCL =true and TCR =true, traverse both children (1,4).

35



Also, create Shader Operation for photon in node 0.

• Examining node 1: not a leaf, calculate TCL and TCR using split

axis x.

We have p = 0, h = 100, s = 114.27, p− h = −100, p+ h = 100.

TCL =true and TCR =false, traverse left child (2) only.

• Examining node 4: not a leaf, calculate TCL and TCR using split

axis x.

We have p = 0, h = 100, s = 72.7003, p− h = −100, p+ h = 100.

TCL =true and TCR =true, traverse both children (5,6).

Also, create Shader Operation for photon in node 4.

• Examining node 2: leaf, create Shader Operation for photon in

node 2.

• Examining node 5: leaf, create Shader Operation for photon in

node 5.

• Examining node 6: leaf, create Shader Operation for photon in

node 6.

• End of query

(c) Tree Search with query point at (213.296, 0, 26.6906)

• Examining node 0: not a leaf, calculate TCL and TCR using split

axis z.

We have p = 26.6906, h = 100, s = 171.588, p − h = −73.3094,

p+ h = 126.691.

TCL =true and TCR =false, traverse left child (1) only.

• Examining node 1: not a leaf, calculate TCL and TCR using split

axis x.

We have p = 213.296, h = 100, s = 114.27, p − h = 113.296,

p+ h = 313.296.

TCL =true and TCR =true, traverse both children (2,3).
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• Examining node 2: leaf, create Shader Operation for photon in

node 2.

• Examining node 3: leaf, create Shader Operation for photon in

node 3.

• End of query

The pseudo code for Tree Search can be written as shown:

obtain p from query point, s from current node

calculate TC_L = (p-h)<s, TC_R = (p+h)>s

if( TC_L is true ) then:

if( left child is not leaf ) then:

issue TS with query point and left child

else:

issue SO for query point and left child photon

end if

if( TC_R is true ) then:

if( right child is not leaf ) then:

issue TS with query point and right child

else:

issue SO for query point and right child photon

end if

if( TC_L is true and TC_R is true ) then:

issue SO for query point and current child photon

end if

2. Shader operation

Once we have found a photon that is close enough to affect the light at the

query point, we need to calculate the color values that the photon adds to
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the query point. The equations below show how this is calculated for each

of the three colors, red, green and blue:

color.red =
kernel× BRDF

h
× power.red× contribution.red

color.green =
kernel× BRDF

h
× power.green× contribution.green

color.blue =
kernel× BRDF

h
× power.blue× contribution.blue

The theory behind the calculations is essentially a density estimation, and

the kernel value is from a kernel function such as a Gaussian distribution.

The BRDF is a function that calculates how much of the light that entered

a certain point in the scene is reflected out towards a given direction. h

is the value of the kernel radius, the power.(color) values are each color’s

power components of the photons, and the contribution.(color) values

are the scaling factors. The BRDF and contribution.(color) values are in

the range [0,1]. The power.(color), the kernel and kernel radius h are

non-zero positive values. These values are calculated and directly added to

the corresponding pixel of the query point in the frame buffer.

For more detailed discussion regarding these values, refer to [47].

3.2 Architecture overview

Figure 3.5 shows an overhead schematic of the MAPM. The MAPM is a co-

processor like structure; it shares data paths to the main memory with the CPU,

along with instruction issues from the CPU and outputs the results directly to the

frame buffer or the main memory. The MAPM receives tree search instuctions

from the CPU in terms of query points, and returns the calculated color value of

each query point.
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Figure 3.5: MAPM architecture overview

The high level specification of the MAPM is shown below.

inputs:

px = (px31, px30, · · · , px1, px0), pxi ∈ {0, 1}

px31 is the sign bit px.s,

px30 to px23 is the 8-bit biased exponent px.e,

and px22 to px0 is the 23-bit mantissa part px.m

pxval = (−1)px.s2px.e−B(1.px.m), where B = 27 − 1

py = (py31, py30, · · · , py1, py0), pyi ∈ {0, 1}

format is the same as px

pz = (pz31, pz30, · · · , pz1, pz0), pzi ∈ {0, 1}

format is the same as px

qIn = (qIn31, qIn30, · · · , qIn1, qIn0), qIni ∈ {0, 1}
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outputs:

colorR = (colorR31, colorR30, · · · , colorR1, colorR0), colorRi ∈ {0, 1}

colorR31 is the sign bit colorR.s,

colorR30 to colorR23 is the 8-bit biased exponent colorR.e,

and colorR22 to colorR0 is the 23-bit mantissa part colorR.m

colorRval = (−1)colorR.s2colorR.e−B(1.colorR.m),

where B = 27 − 1

colorG = (colorG31, colorG30, · · · , colorG1, colorG0), colorGi ∈ {0, 1}

format is the same as colorR

colorB = (colorB31, colorB30, · · · , colorB1, colorB0), colorBi ∈ {0, 1}

format is the same as colorR

function:

colorR = red color component of query point at index qIn

(with tMAPM−delay cycle delay)

colorG = green color component of query point at index qIn

(with tMAPM−delay cycle delay)

colorB = blue color component of query point at index qIn

(with tMAPM−delay cycle delay)

We assume that all basic synchronization signals such as clock and reset signals are

there for all modules from here on, and will not explain them explicitly, as their

operations are quite straightforward. The exact value of tMAPM−delay depends

on various factors, including requests to memory and any stall cycles that may

happen. However, the value is exactly the same for all three color(R/G/B) values,

so the three colors are calculated and given as output at the exact same clock cycle.

The CPU issues the tree search instructions by handing over information on

each query point. The variables that are given here are px, py and pz, which are

the x, y, z coordinates of the query point, and the query index qIn, which is the

index into the array in the main memory where related information is saved. One
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such value is the contribution values, that are used in the shader operation and

are fetched to the SOQ cache. The position coordinates are given to the Launcher

module in the TS (Tree Search) block, and the query index is given to the SOQ

cache in the SO (Shader Operation) block.

As we can see in the diagram, the MAPM can be divided into two blocks, where

each handles a different phase of the search and shade part of the PM algorithm

(Section 3.1.6). The first is the TS block, where query point and photon pairs

are acquired, and these are handed over to the SO block, where the actual color

values are calculated.

The data bus is the bridge between the two blocks, where it receives the

outputs of the TS modules and relays them to SO modules with available space.

By shifting the starting index every cycle, the data bus tries to spread out the

workload between different SOMs (Shader Operation Modules).

One more thing to note is that the three caches of the MAPM, which are the

TS cache, SOP (Shader Operation – Photon) cache and SOQ (Shader Operation –

Query point) cache, are read-only and never write anything back to main memory.

This allows for a simpler and faster cache design compared to conventional read-

and-write cache blocks. This slack can be utilized for higher bandwidth designs,

such as multi-port non-blocking caches [50].

More details about each block are explained in the following sections.
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3.3 The Tree Search block

3.3.1 Overview
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TSA

TS L1

Nextnode
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Figure 3.6: The TS block

The first part of the MAPM architecture is the Tree Search block, shown in Figure

3.6. This block processes the Tree Search phase of photon mapping. Once the

KD-tree structures are finalized as explained in the algorithm overview (Section

3.1), the photon KD-tree is searched with each query point to find photons that

are in close proximity. These photons are paired with the query point to form

shader operations which are then handed over to the Shader Operation block.

Tree search instructions are issued from the CPU. For each query point, all

related information is saved in an array in the main memory, and the CPU hands

over information from the array.

The high level specification of the TS block is shown below.
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inputs:

px = (px31, px30, · · · , px1, px0), pxi ∈ {0, 1}

px31 is the sign bit px.s,

px30 to px23 is the 8-bit biased exponent px.e,

and px22 to px0 is the 23-bit mantissa part px.m

pxval = (−1)px.s2px.e−B(1.px.m), where B = 27 − 1

py = (py31, py30, · · · , py1, py0), pyi ∈ {0, 1}

format is the same as px

pz = (pz31, pz30, · · · , pz1, pz0), pzi ∈ {0, 1}

format is the same as px

qIn = (qIn31, qIn30, · · · , qIn1, qIn0), qIni ∈ {0, 1}

outputs:

px = (px31, px30, · · · , px1, px0), pxi ∈ {0, 1}

px31 is the sign bit px.s,

px30 to px23 is the 8-bit biased exponent px.e,

and px22 to px0 is the 23-bit mantissa part px.m

pxval = (−1)px.s2px.e−B(1.px.m), where B = 27 − 1

py = (py31, py30, · · · , py1, py0), pyi ∈ {0, 1}

format is the same as px

pz = (pz31, pz30, · · · , pz1, pz0), pzi ∈ {0, 1}

format is the same as px

qIn = (qIn31, qIn30, · · · , qIn1, qIn0), qIni ∈ {0, 1}

pIn = (pIn31, pIn30, · · · , pIn1, pIn0), pIni ∈ {0, 1}

function:

pIn = the node index of the photon paired with the query point

each pair is delivered as soon as it is found

each delay tTSB−delay is variable

qIn is the integer index of the query point, and pIn is the integer index of the
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photon paired with the query point.

The exact value of tTSB−delay depends on various factors, including requests to

memory, the location of the query point, and any stall cycles that may happen.

Also, each query point may have multiple photons that it can be paired with,

hence creating multiple outputs for one input. Therefore each output also contains

information on the input query point.

Below, we look at the internal modules inside the TS block.

1. Launcher module

Launcher

from CPU

from Reg queue0

…...

to TSMn-1

to TSM0

to TSM1

from Reg queue1

…...

from Reg queuen-1

Figure 3.7: Overview of Launcher

The Launcher module is a wholly combinational data redirector that feeds

the inputs of the TSMs (Tree Search modules) with the appropriate values

taken from the CPU input and register queue. Each signal bundle in Figure

3.7 is a group of signals as detailed below.
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inputs:

(CPU) px = (px31, px30, · · · , px1, px0), pxi ∈ {0, 1}

px31 is the sign bit px.s,

px30 to px23 is the 8-bit biased exponent px.e,

and px22 to px0 is the 23-bit mantissa part px.m

pxval = (−1)px.s2px.e−B(1.px.m), where B = 27 − 1

(CPU) py = (py31, py30, · · · , py1, py0), pyi ∈ {0, 1}

format is the same as px

(CPU) pz = (pz31, pz30, · · · , pz1, pz0), pzi ∈ {0, 1}

format is the same as px

(CPU) qIn = (qIn31, qIn30, · · · , qIn1, qIn0), qIni ∈ {0, 1}

(R Q) px0 = (px031, px030, · · · , px01, px00), px0i ∈ {0, 1}

format is the same as px

(R Q) py0 = (py031, py030, · · · , py01, py00), py0i ∈ {0, 1}

format is the same as px

(R Q) pz0 = (pz031, pz030, · · · , pz01, pz00), pz0i ∈ {0, 1}

format is the same as px

(R Q) qIn0 = (qIn031, qIn030, · · · , qIn01, qIn00), qIn0i ∈ {0, 1}

(R Q) nIn0 = (nIn031, nIn030, · · · , nIn01, nIn00), nIn0i ∈ {0, 1}

· · ·

(R Q) pxk = (pxk31, pxk30, · · · , pxk1, pxk0), pxki ∈ {0, 1}

format is the same as px

(R Q) pyk = (pyk31, pyk30, · · · , pyk1, pyk0), pyki ∈ {0, 1}

format is the same as px

(R Q) pzk = (pzk31, pzk30, · · · , pzk1, pzk0), pzki ∈ {0, 1}

format is the same as px

(R Q) qInk = (qInk31, qInk30, · · · , qInk1, qInk0), qInki ∈ {0, 1}

(R Q) nInk = (nInk31, nInk30, · · · , nInk1, nInk0), nInki ∈ {0, 1}
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outputs:

(TSM) px0 = (px031, px030, · · · , px01, px00), px0i ∈ {0, 1}

format is the same as px

(TSM) py0 = (py031, py030, · · · , py01, py00), py0i ∈ {0, 1}

format is the same as px

(TSM) pz0 = (pz031, pz030, · · · , pz01, pz00), pz0i ∈ {0, 1}

format is the same as px

(TSM) qIn0 = (qIn031, qIn030, · · · , qIn01, qIn00), qIn0i ∈ {0, 1}

(TSM) nIn0 = (nIn031, nIn030, · · · , nIn01, nIn00),

nIn0i ∈ {0, 1}

· · ·

(TSM) pxk = (pxk31, pxk30, · · · , pxk1, pxk0), pxki ∈ {0, 1}

format is the same as px

(TSM) pyk = (pyk31, pyk30, · · · , pyk1, pyk0), pyki ∈ {0, 1}

format is the same as px

(TSM) pzk = (pzk31, pzk30, · · · , pzk1, pzk0), pzki ∈ {0, 1}

format is the same as px

(TSM) qInk = (qInk31, qInk30, · · · , qInk1, qInk0), qInki ∈ {0, 1}

(TSM) nInk = (nInk31, nInk30, · · · , nInk1, nInk0),

nInki ∈ {0, 1}

function:

assign searches to TSMs

where k = ntsm− 1. px, py, pz are the query point’s coordinates, qIn is the

index of the query point, and nIn is the tree node index.

Figure 3.8 shows the details of the Launcher.

46



TSM0

Data 

Selection 

Logic0

TSM1

Data 

Selection 

Logic1

TSMn-1

Data 

Selection 

Logicn-1

…...

CPU

n inputs from 

Register queue

…...

…...

…...

Figure 3.8: Details of Launcher

Each Data Selection Logic block is essentially a multiplexer. The Launcher

receives the first ntsm entries of the Register queue and feeds the TSMs

with appropriate tree search information, which include the position x, y, z

coordinates of the query point, the query point index value, and the tree

node index value. If there were less than ntsm entries in the Register queue,

at least one TSM will be empty, and the Launcher checks for a tree search

instruction from the CPU and assigns it to a free TSM with tree node index

0 (root node). There are no separate flags for marking the validity of the

data. Since all index values are positive, by setting the sign bit to 0 or 1 we

can include the valid flag inside the data.
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The Launcher operation pseudo code is shown here:

check first n_tsm entries in register queue

assign all valid searches to TSMs

if not exists (free TSM) end

else if exists (input from CPU) then

assign new search to TSM

2. Nextnode module

Nextnode

TCL

TSR

SOL

SOR

ChildInfoR

SOC

TSL
ChildInfoL

TCR

isLL

isLR

Figure 3.9: Overview of Nextnode

The Nextnode module examines the TCL and TCR values calculated in the

TSAs and directs the data to its appropriate next stage, which is either the

Register queue, or the Shader Operation block. It is similar to the Launcher

in that it is a fully combinational block that directs data to the appropriate

modules. ChildInfo is a bundle of signals which is explained in detail in the

high-level specification below:
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inputs:

(TSA) TCL TCL ∈ {0, 1}

(TSA) TCR TCR ∈ {0, 1}

(TSA) isLL isLL ∈ {0, 1}

(TSA) isLR isLR ∈ {0, 1}

(TSA) pxL = (pxL31, pxL30, · · · , pxL1, pxL0), pxL ∈ {0, 1}

pxL31 is the sign bit pxL.s,

pxL30 to pxL23 is the 8-bit biased exponent pxL.e,

and pxL22 to pxL0 is the 23-bit mantissa pxL.m

pxLval = (−1)pxL.s2pxL.e−B(1.pxL.m),

where B = 27 − 1

(TSA) pyL = (pyL31, pyL30, · · · , pyL1, pyL0), pyL ∈ {0, 1}

format is the same as pxL

(TSA) pzL = (pzL31, pzL30, · · · , pzL1, pzL0), pzL ∈ {0, 1}

format is the same as pxL

(TSA) qInL = (qInL31, qInL30, · · · , qInL1, qInL0), qInL ∈ {0, 1}

(TSA) nInL = (nInL31, nInL30, · · · , nInL1, nInL0), nInL ∈ {0, 1}

(TSA) pxR = (pxR31, pxR30, · · · , pxR1, pxR0), pxR ∈ {0, 1}

format is the same as pxL

(TSA) pyR = (pyR31, pyR30, · · · , pyR1, pyR0), pyR ∈ {0, 1}

format is the same as pxL

(TSA) pzR = (pzR31, pzR30, · · · , pzR1, pzR0), pzR ∈ {0, 1}

format is the same as pxL

(TSA) qInR = (qInR31, qInR30, · · · , qInR1, qInR0), qInR ∈ {0, 1}

(TSA) nInR = (nInR31, nInR30, · · · , nInR1, nInR0), nInR ∈ {0, 1}
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outputs:

(DB) pxL = (pxL31, pxL30, · · · , pxL1, pxL0), pxLi ∈ {0, 1}

pxL31 is the sign bit pxL.s,

pxL30 to pxL23 is the 8-bit biased exponent pxL.e,

and pxL22 to pxL0 is the 23-bit mantissa pxL.m

pxLval = (−1)pxL.s2pxL.e−B(1.pxL.m),

where B = 27 − 1

(DB) pyL = (pyL31, pyL30, · · · , pyL1, pyL0), pyL ∈ {0, 1}

format is the same as pxL

(DB) pzL = (pzL31, pzL30, · · · , pzL1, pzL0), pzL ∈ {0, 1}

format is the same as pxL

(DB) qInL = (qInL31, qInL30, · · · , qInL0), qInL ∈ {0, 1}

(DB) nInL = (nInL31, nInL30, · · · , nInL0), nInL ∈ {0, 1}

(DB) pxR = (pxR31, pxR30, · · · , pxR1, pxR0), pxRi ∈ {0, 1}

format is the same as pxL

(DB) pyR = (pyR31, pyR30, · · · , pyR1, pyR0), pyR ∈ {0, 1}

format is the same as pxL

(DB) pzR = (pzR31, pzR30, · · · , pzR1, pzR0), pzR ∈ {0, 1}

format is the same as pxL

(DB) qInR = (qInR31, qInR30, · · · , qInR0), qInR ∈ {0, 1}

(DB) nInR = (nInR31, nInR30, · · · , nInR0), nInR ∈ {0, 1}

(DB) pxC = (pxC31, pxC30, · · · , pxC1, pxC0), pxCi ∈ {0, 1}

format is the same as pxL

(DB) pyC = (pyC31, pyC30, · · · , pyC1, pyC0), pyC ∈ {0, 1}

format is the same as pxL

(DB) pzC = (pzC31, pzC30, · · · , pzC1, pzC0), pzC ∈ {0, 1}

format is the same as pxL

(DB) qInC = (qInC31, qInC30, · · · , qInC0), qInC ∈ {0, 1}

(DB) nInC = (nInC31, nInC30, · · · , nInC0), nInC ∈ {0, 1}
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(R Q) pxL = (pxL31, pxL30, · · · , pxL1, pxL0), pxLi ∈ {0, 1}

pxL31 is the sign bit pxL.s,

pxL30 to pxL23 is the 8-bit biased exponent pxL.e,

and pxL22 to pxL0 is the 23-bit mantissa pxL.m

pxLval = (−1)pxL.s2pxL.e−B(1.pxL.m),

where B = 27 − 1

(R Q) pyL = (pyL31, pyL30, · · · , pyL1, pyL0), pyL ∈ {0, 1}

format is the same as pxL

(R Q) pzL = (pzL31, pzL30, · · · , pzL1, pzL0), pzL ∈ {0, 1}

format is the same as pxL

(R Q) qInL = (qInL31, qInL30, · · · , qInL0), qInL ∈ {0, 1}

(R Q) nInL = (nInL31, nInL30, · · · , nInL0), nInL ∈ {0, 1}

(R Q) pxR = (pxR31, pxR30, · · · , pxR1, pxR0), pxRi ∈ {0, 1}

format is the same as pxL

(R Q) pyR = (pyR31, pyR30, · · · , pyR1, pyR0), pyR ∈ {0, 1}

format is the same as pxL

(R Q) pzR = (pzR31, pzR30, · · · , pzR1, pzR0), pzR ∈ {0, 1}

format is the same as pxL

(R Q) qInR = (qInR31, qInR30, · · · , qInR0), qInR ∈ {0, 1}

(R Q) nInR = (nInR31, nInR30, · · · , nInR0), nInR ∈ {0, 1}

function:

assign Tree Searches to Register queue,

Shader Operations to Data bus

px, py, pz are the query point’s coordinates, qIn is the index of the query

point, and nIn is the tree node index. The subscripts L, R, and C stand for

left child, right child and current node, respectively.

Figure 3.10 shows the details of the Nextnode module.
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Figure 3.10: Details of Nextnode

Each Data Selection Logic is essentially a multiplexer, with select signals

being TCL/R and isLL/R values. From these Nextnode can determine where

the information from the left and right children need to move to next. For

the outputs, the valid flag is encoded into the data itself by setting the sign

bit to 0 or 1, utilizing the fact that the index values will never be a negative

value.

The Nextnode operation pseudo code is shown here:

if (TCL is true) then

if (isLL is true) then

assign new SO for left child to Data bus

else

assign TS into left child to Register queue

if (TCR is true) then

if (isLR is true) then

assign new SO for right child to Data bus
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else

assign TS into right child to Register queue

if (TCL and TCR is true) then

assign new SO for current node to Data bus

3. Register queue

In order to search for photons that are close inside the photon KD-tree, we

need to do searches leading into each node’s children. These searches are

placed on the Register queue and assigned to free TSMs by the Launcher

module. Function-wise, there is not much that goes on here; any new chil-

dren searches are written to the queue, and any old searches that get assigned

to TSMs are removed from the queue. The Register queue basically acts as

a First-In First-Out queue for Tree Search instructions.

Each register entry contains the following information:

px = (px31, px30, · · · , px1, px0), pxi ∈ {0, 1}

px31 is the sign bit px.s,

px30 to px23 is the 8-bit biased exponent px.e,

and px22 to px0 is the 23-bit mantissa part px.m

pxval = (−1)px.s2px.e−B(1.px.m), where B = 27 − 1

py = (py31, py30, · · · , py1, py0), py ∈ {0, 1}

format is the same as px

pz = (pz31, pz30, · · · , pz1, pz0), pz ∈ {0, 1}

format is the same as px

qIn = (qIn31, qIn30, · · · , qIn1, qIn0), qIn ∈ {0, 1}

nIn = (nIn31, nIn30, · · · , nIn1, nIn0), nIn ∈ {0, 1}

px, py, pz are the query point’s coordinates, qIn is the index of the query

point, and nIn is the tree node index.
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3.4 The Tree Search Accelerator (TSA)

3.4.1 Problem outline

Tree search instructions are issued from the CPU. For each query point, all related

information is saved in an array in the main memory, and the CPU hands over

information from the array.

For each query point and photon KD-tree node, the following values are ob-

tained:

p : query point position

h : radius of the kernel

s : split position of the KD-tree node

We assume that all three are 32-bit positive floating-point values in IEEE-754

standard form [8], so each variable comprises a sign bit, an 8-bit exponent, and

a 23-bit mantissa with 1 hidden bit. In addition to this, we will assume there

are no special case inputs such as denormalized numbers, infinity or NaNs (Not a

Number).

The pseudo code for the Tree Search block, and where each operation is han-

dled, is shown here:

receive p, h (query point) and s (node) [Launcher]

calculate TC_L = (p-h)<s, TC_R = (p+h)>s [TSM]

if( TC_L is true ) then: [Nextnode]

if( left child is not leaf ) then:

issue TS with query point and left child

else:

issue SO for query point and left child photon

end if

if( TC_R is true ) then: [Nextnode]
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if( right child is not leaf ) then:

issue TS with query point and right child

else:

issue SO for query point and right child photon

end if

if( both TC_L and TC_R is true ) then: [Nextnode]

issue SO for query point and current node photon

Using online arithmetic for the comparison has several advantages, and high

throughput is the main point. Throughput is an important performance criterion

for computer graphics in general, as the calculation requirement is usually very

high and delay of a single operation is not critical. It becomes even more impor-

tant considering the need to obtain massive fine-grain parallelism as discussed in

Section 2.1.3.

By using online arithmetic, we can assign one comparison per module at every

clock cycle. There is also the additional benefit of the clock cycle being very short

as each stage of online arithmetic is much simpler in comparison to conventional

parallel arithmetic circuits. Due to the shader operations being independent of

each other, a high throughput performance of locating query point/photon pairs

will lead to high throughput launching of shader operation instructions in the SO

block.

3.4.2 Overall structure

Figure 3.11 is an overview of the TSA. The TSA takes the values p, h and s, and

returns boolean values on whether we need to traverse any of the children nodes,

namely TCL and TCR.
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Figure 3.11: Overview of TSA

The high level specification of the TSA is shown below.

inputs:

p = (p31, p30, · · · , p1, p0), pi ∈ {0, 1}

p31 is the sign bit p.s,

p30 to p23 is the 8-bit biased exponent p.e,

and p22 to p0 is the 23-bit mantissa part p.m

pval = (−1)p.s2p.e−B(1.p.m), where B = 27 − 1

h = (h31, h30, · · · , h1, h0), hi ∈ {0, 1}

format is the same as p

s = (s31, s30, · · · , s1, s0), si ∈ {0, 1}

format is the same as p

outputs:

TCL TCL ∈ {0, 1}

TCR TCR ∈ {0, 1}

function:

TCL =

 1 if pval − hval < sval

0 otherwise

 with tTSA−delay cycle delay

TCR =

 1 if pval + hval > sval

0 otherwise

 with tTSA−delay cycle delay

tTSA−delay is the number of cycles required until the output is given. It is equal

to

tTSA−delay = [bit width of p.m] + 1 (hidden bit) + 1
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The TSA is comprised of the following submodules as shown in this diagram.

MSB stands for most significant bit.
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Figure 3.12: Components of TSA

The Shift Amount Logic and Shift Right Logic combine to align the mantissa

sections of p, h and s and hand them over to the Parallel-to-Serial (P2S) module.

Here, the mantissa values move through a series of registers and are changed from

parallel form to bit-serial form. The two pipelined comparators are given these

values and determines the TCL and TCR values, which are the final outputs of the

TSA module. More details of each module are shown in the following sections.

3.4.3 Submodule : Shift Amount Logic

In order to align the mantissa values, we need to calculate the exponent differ-

ences and shift the values accordingly. The Shift Amount Logic module takes the
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exponent values of p, h and s as inputs, and calculates the number of bits that

each mantissa needs to be shifted.

To this goal, the module does two things. First, it determines the largest

value of the three exponents. Next, it calculates the shift amount for each variable,

which is equal to the input exponent subtracted from the largest value found in the

previous step. As all exponents are biased by the same amount (B = 27 − 1), we

do not have to take the bias B into account, only the difference values are relevant.

The variable with the largest exponent is not shifted at all, and any variable with

an exponent that is smaller than the largest exponent has its mantissa shifted by

the difference of the two exponents.

Shift Amount Logic
p.e
h.e
s.e

8

sap

sas

9

sah

Figure 3.13: Overview of Shift Amount Logic

The high level specification is shown below.

inputs:

p.e = (p.e7, p.e6, · · · , p.e1, p.e0), p.ei ∈ {0, 1}

h.e = (h.e7, h.e6, · · · , h.e1, h.e0), h.ei ∈ {0, 1}

s.e = (s.e7, s.e6, · · · , s.e1, s.e0), s.ei ∈ {0, 1}

the biased exponent parts of p, h and s

outputs:

sap = (sap8, sap7, · · · , sap1, sap0), sapi ∈ {0, 1}

sah = (sah8, sah7, · · · , sah1, sah0), sahi ∈ {0, 1}

sas = (sas8, sas7, · · · , sas1, sas0), sasi ∈ {0, 1}

shift amount for p, h and s
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function:

sap =


0 if p.e = max.e

s.e− p.e if s.e = max.e

p.e− h.e otherwise

sah =


0 if h.e = max.e

p.e− h.e if p.e = max.e

h.e− s.e otherwise

sas =


0 if s.e = max.e

h.e− s.e if h.e = max.e

s.e− p.e otherwise

where max.e = MAX(p.e, h.e, s.e)

The output values are a form of encoded information on how many bits each

mantissa needs to be shifted in order to align the three for comparison. Details

on how this is used is discussed in the next section.

To do this in a efficient manner, the Shift Amount Logic module calculates

three values as shown in Figure 3.14. The 8-bit exponent values p.e, h.e and s.e

are added a 0 at the most significant bit and sign extended into p.x, h.x and s.x

in order to incorporate for negative result values. Since all exponent values are

positive due to the bias, p.x = p.e. Therefore, in the discussion below we shall

use p.e to represent both terms.

The sgni bit is the most significant bit of each adder output. From this we

can infer the results shown in Table 3.2, and in turn, find which of the three input

exponents is no smaller than the other two exponents.
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Figure 3.14: Components of Shift Amount Logic

Sign bit Value Meaning

sgn0 0 p.e ≥ h.e

1 h.e > p.e

sgn1 0 h.e ≥ s.e

1 s.e > h.e

sgn2 0 s.e ≥ p.e

1 p.e > s.e

Table 3.2: Inequality for each sign bit

Given this information, we can now identify one of the largest exponent vari-

ables. Once this is identified, the mantissa shift amount of each variable can be

obtained by subtracting the exponent value from the largest exponent. The shift

amount values will all be a non-negative integer, with at least one (which belongs

to the variable with the largest exponent) being 0.

Here, we examine each case one by one:

1. sgn0 = 0, sgn1 = 0, sgn2 = 0: From the values we have p.e ≥ h.e, h.e ≥ s.e
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and s.e ≥ p.e. From the first two, we get p.e ≥ h.e ≥ s.e, and the only way

this and s.e ≥ p.e is true is if all three are the same value, so p.e = h.e = s.e.

2. sgn0 = 0, sgn1 = 0, sgn2 = 1: From the values we have p.e ≥ h.e, h.e ≥ s.e

and p.e > s.e. From the first two, we get p.e ≥ h.e ≥ s.e, and since p.e > s.e,

either p.e > h.e or h.e > s.e, or both are true. In any case, we can be sure

that p.e is not smaller than any other exponent.

3. sgn0 = 0, sgn1 = 1, sgn2 = 0: From the values we have p.e ≥ h.e, s.e > h.e

and s.e ≥ p.e. From the first and third inequality, we get s.e ≥ p.e ≥ h.e,

and since s.e > h.e, either s.e > p.e or p.e > h.e, or both are true. In any

case, we can be sure that s.e is not smaller than any other exponent.

4. sgn0 = 0, sgn1 = 1, sgn2 = 1: From the values we have p.e ≥ h.e, s.e > h.e

and p.e > s.e. From the second and third inequality, we get p.e > s.e > h.e,

and this holds true with the first p.e ≥ h.e. So we can be sure that p.e is

the largest exponent.

5. sgn0 = 1, sgn1 = 0, sgn2 = 0: From the values we have h.e > p.e, h.e ≥ s.e

and s.e ≥ p.e. From the second and third inequality, we get h.e ≥ s.e ≥ p.e,

and since h.e > p.e, either h.e > s.e or s.e > p.e, or both are true. In any

case, we can be sure that h.e is not smaller than any other exponent.

6. sgn0 = 1, sgn1 = 0, sgn2 = 1: From the values we have h.e > p.e, h.e ≥ s.e

and p.e > s.e. From the first and third inequality, we get h.e > p.e > s.e,

and this holds true with the second h.e ≥ s.e. So we can be sure that h.e is

the largest exponent.

7. sgn0 = 1, sgn1 = 1, sgn2 = 0: From the values we have h.e > p.e, s.e > h.e

and s.e ≥ p.e. From the first and second inequality, we get s.e > h.e > p.e

and this holds true with the third s.e ≥ p.e. So we can be sure that s.e is

the largest exponent.
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8. sgn0 = 1, sgn1 = 1, sgn2 = 1: From the values we have h.e > p.e, s.e > h.e

and p.e > s.e. From the first two, we get s.e > h.e > p.e, from which we

can derive that s.e > p.e. However, this cannot be true at the same time

with the third p.e > s.e. So this is not possible and a don’t-care case.

At this point, the three subtraction results that we have on hand are p.e−h.e,

h.e − s.e and s.e − p.e. In order to obtain the value of h.e − p.e, s.e − h.e

or p.e − s.e, we need to perform a change-of-sign operation. This is calculated

in two’s-complement arithmetic by inverting all bits and adding 1 to the least

significant bit. For example, to get h.e − p.e, we invert all bits to get h.e− p.e,

and add 1 to it. Doing this will require vector multiplexers and one additional

stage of a 9-bit carry propagate adder. Instead of placing adders here, the shift

information is simply relayed to the Shift Right module in its negative form, and

the appropriate number conversion is done previous to the shift right operation.

This is a better solution in terms of worst case delay, since instead of a potential

9-bit propagation delay, we have a single 2-bit vector multiplexer.

This information is summed up in Tables 3.3 and 3.4.

sgn0/1/2 Inequality Largest

0 0 0 p.e ≥ h.e ≥ s.e ≥ p.e all are equal

0 0 1 p.e ≥ h.e ≥ s.e and p.e > s.e p.e

0 1 0 s.e ≥ p.e ≥ h.e and s.e > h.e s.e

0 1 1 p.e > s.e > h.e and p.e ≥ h.e p.e

1 0 0 h.e ≥ s.e ≥ p.e and h.e > p.e h.e

1 0 1 h.e > p.e > s.e and h.e ≥ s.e h.e

1 1 0 s.e > h.e > p.e and s.e ≥ p.e s.e

1 1 1 s.e > h.e > p.e and p.e > s.e ×

Table 3.3: Determining largest exponent
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sgn0/1/2 Largest shift bits p shift bits h shift bits s

0 0 0 all 0 0 0

0 0 1 p.e 0 p.e− h.e s.e− p.e+ 1

0 1 0 s.e s.e− p.e h.e− s.e+ 1 0

0 1 1 p.e 0 p.e− h.e s.e− p.e+ 1

1 0 0 h.e p.e− h.e+ 1 0 h.e− s.e

1 0 1 h.e p.e− h.e+ 1 0 h.e− s.e

1 1 0 s.e s.e− p.e h.e− s.e+ 1 0

1 1 1 × × × ×

Table 3.4: Output logic according to largest exponent

3.4.4 Submodule : Shift Right

Once the shift amounts are determined from the previous module, using this

information, the Shift Right module aligns the mantissa bits accordingly.

Shift Rightdin
24

dout
24

si
9

Figure 3.15: Overview of Shift Right

The high level specification for the Shift Right module is shown below.
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inputs: si = (si8, si7, · · · , si1, si0), sii ∈ {0, 1}

din = (din23, din22, · · · , din1, din0), dini ∈ {0, 1}

outputs: dout = (dout23, dout22, · · · , dout1, dout0), douti ∈ {0, 1}

function: douti =

 dini+s if i+ s ≥ 23

0 otherwise

where s =

∣∣∣∣ 7∑
i=0

2isii

∣∣∣∣
The main part of the module is a barrel shifter, which shifts the input mantissa

din to the right, according to the value of sd (shift distance) and additional shift.

Each 2i-bit right shifter stage is a 2-input vector multiplexer, which selects whether

the output is unchanged from the input or shifted 2i-bits to the right. All bits

that are shifted in are always 0.

The value of sd is derived from the input si. In order to avoid having an extra

adder stage in the previous module, the shift amount is handed over as a negative

number in some cases. In this case, we need to convert sd back into a positive

value by inverting all bits and adding 1 to the least significant digit position. Since

this would require an 8-bit carry propagate adder to fully calculate, we instead

have an additional level at the end of the barrel shifter, which is controlled by the

signal named additional shift.

The sign of the input can be easily determined by looking at the most signifi-

cant bit si8. From this, we can determine the sd bits as follows:

1. if si8 = 0, sdi = sii for i = 0 to 7, additional shift = 0

2. if si8 = 1, sdi = sii for i = 0 to 7, additional shift = 1

Note that the additional shift bit is always the same as si8.

Once the shift distance sd is determined, the actual shifting can begin. Since

the mantissa is 24-bits wide, if any bit in the range sd7−5 is 1, the input mantissa
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is completely shifted out and everything will be 0. If this is not the case, the 5

least significant bits of sd are given as control signals to the barrel shifter. There

is a separate shifter stage for each of the 5 bits and the final additional shift bit.

Each shifter stage in the barrel shifter is a 2-input vector multiplexer. For details

on the barrel shifter implementation, one can refer to standard text such as [15].

The module design details can be seen in Figure 3.16.

0 or 16 shift rightsd4

all zeros

din

16 24

0 or 8 shift rightsd3

8 24

0 or 4 shift rightsd2

4 24

0 or 2 shift rightsd1

2 24

0 or 1 shift rightsd0

1 24

0 or 1 shift right
additional 

shift

1 24

24

dout

2-input vector mux

all zeros

2-input 

vector mux

sd7-0

si7-0

sd7

sd5

sd6

si8

si8

si7-0

8

8

8

24 24

Figure 3.16: Components of Shift Right

Note that the input din is the mantissa bits for p, h and s with the hidden bit

included. In other words, the shift input din is equal to p.mwh, h.mwh or s.mwh.

The output signals are the aligned mantissa including hidden bit for p, h or s.

65



3.4.5 Submodule : P2S (Parallel to Serial)

The Parallel to Serial module converts parallel inputs into digit-serial form using

a series of shift registers.

Parallel to Serialin
24

…...

out23

out0

out1

Figure 3.17: Overview of Parallel to Serial

The high level specification for the Parallel to Serial Converter module is shown

below.

inputs: in = (in23, in22, · · · , in1, in0), ini ∈ {0, 1}

outputs: out = (out23, out22, · · · , out1, out0), outi ∈ {0, 1}

function: outi(t) = ini(t− (23− i))

The P2S module is a triangular array of registers delaying each separate bit

of the input by the number of clock cycles that corresponds to the distance from

the most significant bit, allowing each bit to reach the pipelined module at the

correct cycle. For an n-bit input vector in, with the most significant bit at index

n − 1 and the least significant bit at index 0, the bit ini is delayed by n − 1 − i

cycles.
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For example, if the current input is in(123), the output bits at t = 123 will be:

out23(123) = in23(123)

out22(123) = in22(122)

out21(123) = in21(121)

· · ·

out1(123) = in1(101)

out0(123) = in0(100)

Details of the register connections is shown in Figure 3.18. LSB stands for

least significant bit.

n-2 0

nn-bit serial 

operand 

in(t)

MSB LSB

…...n-3 n-4 12

inn-2(t-1)
0…...n-3 n-4 12

0…...n-4 12

01

0

…...

inn-3(t-2)

inn-4(t-3)

…...

…...

…...

in1(t-(n-2))

in0(t-(n-1))

012

in2(t-(n-3))

…...

inn-1(t)

n-bit 

parallel

operand 

out(t)

n
…...

MSB LSB

Figure 3.18: Components of Parallel to Serial

The data bits that are being transformed from parallel to serial in the P2S

module are the aligned mantissa of either p, h or s, including the hidden bit. We
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shall refer to this as p.am, h.am and s.am for aligned mantissa. Note that this

includes the hidden bit.

3.4.6 Submodule : Pipelined Comparator

The goal of this module is to compare the aligned mantissa with hidden bit values

of p−h and s one bit per each clock cycle, and determine which is the larger value.

This is handled in a pipelined online manner, where each slice receives information

about the previous stages and processes one additional digit per clock cycle, and

the results are handed over to the next slice. The main idea for the design of this

module is adapted from [47].

Pipelined

Comparator

p.am
h.am
s.am

24

done

result

Figure 3.19: Overview of Pipelined Comparator

The high level specification for the Pipelined Comparator is shown below.

inputs: p.am = (p.am23, p.am22, · · · , p.am1, p.am0), p.ami ∈ {0, 1}

at time t, p.ami(t) = p.ami(t− (23− i))

h.am = (h.am23, h.am22, · · · , h.am1, h.am0), h.ami ∈ {0, 1}

at time t, h.ami(t) = h.ami(t− (23− i))

s.am = (s.am23, s.am22, · · · , s.am1, s.am0), s.ami ∈ {0, 1}

at time t, s.ami(t) = s.ami(t− (23− i))

outputs: done = done ∈ {0, 1}

result = result ∈ {0, 1}
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function: done =



1 if p.am(t− 24)− h.am(t− 24) < s.am(t− 24)

or if p.am(t− 24)− h.am(t− 24) > s.am(t− 24)

and this is determined before the last slice

0 otherwise

result =

 1 if p.am(t− 24)− h.am(t− 24) > s.am(t− 24)

0 otherwise

The comparator compares the values of p.am−h.am and s.am, and determines

whether p.am−h.am > s.am, p.am−h.am = s.am or p.am−h.am < s.am. This

can be determined by looking at the two output bits, result and done, as shown

in Table 3.5.

result done meaning

0 0 p.am− h.am = s.am

0 1 p.am− h.am < s.am

1 0 p.am− h.am > s.am

1 1 p.am− h.am > s.am

Table 3.5: Possible output combinations of the comparator

comparator

slice (j)

done

result

comparator

slice (j+1)

s.amj

h.amj

p.amj

done

result

s.amj+1

h.amj+1

p.amj+1

done

result

…...

…...

…...

…...

Figure 3.20: Partial view of pipelined slices

Figure 3.20 shows part of the pipelined comparator stages at index j, where

there is one bit from the aligned mantissas with hidden bit of p, h and s given
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to each slice, along with the d (done) and r (result) bits from the previous stage.

Each slice processes this information to produce d and r bits and relay them to

the next slice through the pipeline registers.

We shall use p.am[j] to refer to the partial numerical value of p.am, represented

by the first j bits. The value of p.am[j] =
j−1∑
i=0

2j−1−ip.ami At each index j, the

pipeline slice determines the inequality of p.am[j]−h.am[j] and s.am[j] from the

information given, and hands over the necessary information to the next slice.

One advantage of examining from the most significant bits is that once we are

sure of the result at index j, the same result is true for any index larger than j

as the following bits have a smaller weight. Although, we need to consider the

fact that the values range at each bit position is {0, 1} for s.am[j], but {−1, 0, 1}

for p.am[j]− h.am[j]. Therefore, we cannot assume the inequality finalized when

p.am[j] − h.am[j] is larger than s.am[j] by 1, since the value of p.am[j + 1] −

h.am[j + 1] can be -1 and affect the value at slice j. The comparison is complete

at slice j only when s.am[j] is larger than p.am[j] − h.am[j] by 1 or more, or if

p.am[j]−h.am[j] is larger than s.am[j] by 2 or more. Therefore at least two stages

need to be examined before we can obtain the end result. Also, some information

from the immediate previous stage needs to be relayed between the slices. This

information is transferred through the carryj bit. The value of carryj = (p.am[j−

1]− h.am[j − 1])− s.am[j − 1].

As a result, the logic at each slice compares the inequality of p.am[j]−h.am[j]+

2carryj and s.am[j]. Let us define p.am[j]−h.am[j]+2carryj as the value lval[j].

This will be the value that s.am[j] is compared to at each slice.

Below, we shall examine the combinations of different inputs and what values

need to be produced for each case.

1. carryj = 0, p.am[j] = 0, h.am[j] = 0, s.am[j] = 0: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 0 − 0 + 2 · 0 = 0. As this is equal to s.am[j] = 0, the
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values are the same so far and we cannot determine the inequality yet.

carryj+1 = (p.am[j]−h.am[j] + 2carryj)− s.am[j] = (0− 0 + 2 · 0)− 0 = 0.

2. carryj = 0, p.am[j] = 0, h.am[j] = 0, s.am[j] = 1: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 0 − 0 + 2 · 0 = 0. This is smaller than s.am[j] = 1 by

1, therefore we can be sure that p.am[k] − h.am[k] is smaller than s.am[k]

for any k ≥ j. No need to calculate the carryj+1 bit since we are done.

3. carryj = 0, p.am[j] = 0, h.am[j] = 1, s.am[j] = 0: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 0− 1 + 2 · 0 = −1. This is smaller than s.am[j] = 0 by

1, therefore we can be sure that p.am[k] − h.am[k] is smaller than s.am[k]

for any k ≥ j. No need to calculate the carryj+1 bit since we are done.

4. carryj = 0, p.am[j] = 0, h.am[j] = 1, s.am[j] = 1: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 0− 1 + 2 · 0 = −1. This is smaller than s.am[j] = 1 by

2, therefore we can be sure that p.am[k] − h.am[k] is smaller than s.am[k]

for any k ≥ j. No need to calculate the carryj+1 bit since we are done.

5. carryj = 0, p.am[j] = 1, h.am[j] = 0, s.am[j] = 0: First, lval[j] = p.am[j]−

h.am[j]+2carryj = 1−0+2·0 = 1. This is larger than s.am[j] = 0 by 1, but

the difference is small enough that if p.am[j+1]−h.am[j+1] = −1 this may

need to be changed to 0. Therefore we cannot determine the inequality yet.

carryj+1 = (p.am[j]−h.am[j] + 2carryj)− s.am[j] = (1− 0 + 2 · 0)− 0 = 1.

6. carryj = 0, p.am[j] = 1, h.am[j] = 0, s.am[j] = 1: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 1 − 0 + 2 · 0 = 1. As this is equal to s.am[j] = 1, the

values are the same so far and we cannot determine the inequality yet.

carryj+1 = (p.am[j]−h.am[j] + 2carryj)− s.am[j] = (1− 0 + 2 · 0)− 1 = 0.

7. carryj = 0, p.am[j] = 1, h.am[j] = 1, s.am[j] = 0: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 1 − 1 + 2 · 0 = 0. As this is equal to s.am[j] = 0, the
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values are the same so far and we cannot determine the inequality yet.

carryj+1 = (p.am[j]−h.am[j] + 2carryj)− s.am[j] = (1− 1 + 2 · 0)− 0 = 0.

8. carryj = 0, p.am[j] = 1, h.am[j] = 1, s.am[j] = 1: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 1 − 1 + 2 · 0 = 0. This is smaller than s.am[j] = 1 by

1, therefore we can be sure that p.am[k] − h.am[k] is smaller than s.am[k]

for any k ≥ j. No need to calculate the carryj+1 bit since we are done.

9. carryj = 1, p.am[j] = 0, h.am[j] = 0, s.am[j] = 0: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 0− 0 + 2 · 1 = 2. This is larger than s.am[j] = 0 by 2,

therefore we can be sure that p.am[k] − h.am[k] is larger than s.am[k] for

any k ≥ j. No need to calculate the carryj+1 bit since we are done.

10. carryj = 1, p.am[j] = 0, h.am[j] = 0, s.am[j] = 1: First, lval[j] = p.am[j]−

h.am[j]+2carryj = 0−0+2·1 = 2. This is larger than s.am[j] = 1 by 1, but

the difference is small enough that if p.am[j+1]−h.am[j+1] = −1 this may

need to be changed to 0. Therefore we cannot determine the inequality yet.

carryj+1 = (p.am[j]−h.am[j] + 2carryj)− s.am[j] = (0− 0 + 2 · 1)− 1 = 1.

11. carryj = 1, p.am[j] = 0, h.am[j] = 1, s.am[j] = 0: First, lval[j] = p.am[j]−

h.am[j]+2carryj = 0−1+2·1 = 1. This is larger than s.am[j] = 0 by 1, but

the difference is small enough that if p.am[j+1]−h.am[j+1] = −1 this may

need to be changed to 0. Therefore we cannot determine the inequality yet.

carryj+1 = (p.am[j]−h.am[j] + 2carryj)− s.am[j] = (0− 1 + 2 · 1)− 0 = 1.

12. carryj = 1, p.am[j] = 0, h.am[j] = 1, s.am[j] = 1: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 0 − 1 + 2 · 1 = 1. As this is equal to s.am[j] = 1, the

values are the same so far and we cannot determine the inequality yet.

carryj+1 = (p.am[j]−h.am[j] + 2carryj)− s.am[j] = (0− 1 + 2 · 1)− 1 = 0.

13. carryj = 1, p.am[j] = 1, h.am[j] = 0, s.am[j] = 0: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 1− 0 + 2 · 1 = 3. This is larger than s.am[j] = 0 by 3,
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therefore we can be sure that p.am[k] − h.am[k] is larger than s.am[k] for

any k ≥ j. No need to calculate the carryj+1 bit since we are done.

14. carryj = 1, p.am[j] = 1, h.am[j] = 0, s.am[j] = 1: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 1− 0 + 2 · 1 = 3. This is larger than s.am[j] = 1 by 2,

therefore we can be sure that p.am[k] − h.am[k] is larger than s.am[k] for

any k ≥ j. No need to calculate the carryj+1 bit since we are done.

15. carryj = 1, p.am[j] = 1, h.am[j] = 1, s.am[j] = 0: First, lval[j] = p.am[j]−

h.am[j] + 2carryj = 1− 1 + 2 · 1 = 2. This is larger than s.am[j] = 0 by 2,

therefore we can be sure that p.am[k] − h.am[k] is larger than s.am[k] for

any k ≥ j. No need to calculate the carryj+1 bit since we are done.

16. carryj = 1, p.am[j] = 1, h.am[j] = 1, s.am[j] = 1: First, lval[j] = p.am[j]−

h.am[j]+2carryj = 1−1+2·1 = 2. This is larger than s.am[j] = 1 by 1, but

the difference is small enough that if p.am[j+1]−h.am[j+1] = −1 this may

need to be changed to 0. Therefore we cannot determine the inequality yet.

carryj+1 = (p.am[j]−h.am[j] + 2carryj)− s.am[j] = (1− 1 + 2 · 1)− 1 = 1.

The different combinations of carryj, p.am[j], h.am[j] and s.am[j], along with

the possible outcomes, are shown in Table 3.6. Part of the table is adapted

from [47]. Here, the value eval = lval[j] ? s.am[j].
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carryj p.am[j] h.am[j] lval[j] s.am[j] eval carryj+1 done?

0 0 0 0 0 × 0 n

0 0 0 0 1 < × y

0 0 1 -1 0 < × y

0 0 1 -1 1 < × y

0 1 0 1 0 × 1 n

0 1 0 1 1 × 0 n

0 1 1 0 0 × 0 n

0 1 1 0 1 < × y

1 0 0 2 0 > × y

1 0 0 2 1 × 1 n

1 0 1 1 0 × 1 n

1 0 1 1 1 × 0 n

1 1 0 3 0 > × y

1 1 0 3 1 > × y

1 1 1 2 0 > × y

1 1 1 2 1 × 1 n

Table 3.6: Logic table for comparator slice (adapted from [47])

In the table, we see that the value eval = lval[j] ? s.am[j] is meaningful only

when the done bit is ‘y’, and the carryi+1 bit is meaningful only when the done

bit is ‘n’. Therefore, if we combine the lval[j] ? s.am[j] and carryi+1 bits into a

single result bit, all the information can be expressed using two single-bit outputs.

The truth table for this is shown in Table 3.7. For the done flag, 0 is ‘n’

(inequality is not determined yet) and 1 is ‘y’ (inequality is determined). The

meaning of the result flag changes according to the done flag, if done is 0, result

is the carryj bit, and if done is 1, 0 stands for p−h < s and 1 stands for p−h > s.
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carryj p.am[j] h.am[j] s.am[j] result done

0 0 0 0 0 0

0 0 0 1 0 1

0 0 1 0 0 1

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 1 0 0 0

0 1 1 1 0 1

1 0 0 0 1 1

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 0 0

1 1 0 0 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 0

Table 3.7: Truth table of comparator slice circuit (adapted from [47])

The implementation diagram is shown in 3.21. The truth table logic is imple-

mented in the module CompLogic. Some additional multiplexers are needed to

carry the previous result bit to the next, if the comparison is finished at a previous

stage.
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Figure 3.21: Components for Comparator slice (adapted from [47])

In order to do the second comparison between s and p + h, we can use the

same pipelined comparator, only with the inputs p and s swapped. Now this will

calculate whether s−h < p is true, which is equal to s < p+h, and this is exactly

the inequality we need.
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3.5 The Shader Operation block

3.5.1 Overview

CPU

……
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SO (Shader Operation) block
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……

SO module

SO module

SO module

Main memory

SOP L1

Reservation

station

SOA

SOA

……

SO module components

Figure 3.22: The SO block

The second part of the MAPM architecture is the Shader Operation block, shown

in Figure 3.22. Once the TS block finds appropriate query point and photon pairs,

they are handed over to the SO block via the Data bus. All necessary variables for

each SO instruction is fetched, and once they arrive, the color values are calculated

using digit-serial online arithmetic.

Below, we can see the high level specifications of the SO block.
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inputs:

px = (px31, px30, · · · , px1, px0), pxi ∈ {0, 1}

px31 is the sign bit px.s,

px30 to px23 is the 8-bit biased exponent px.e,

and px22 to px0 is the 23-bit mantissa part px.m

pxval = (−1)px.s2px.e−B(1.px.m), where B = 27 − 1

py = (py31, py30, · · · , py1, py0), pyi ∈ {0, 1}

format is the same as px

pz = (pz31, pz30, · · · , pz1, pz0), pzi ∈ {0, 1}

format is the same as px

qIn = (qIn31, qIn30, · · · , qIn1, qIn0), qIni ∈ {0, 1}

pIn = (pIn31, pIn30, · · · , pIn1, pIn0), pIni ∈ {0, 1}

outputs:

colorR = (colorR31, colorR30, · · · , colorR1, colorR0),

colorRi ∈ {0, 1}

format is the same as px

colorG = (colorG31, colorG30, · · · , colorG1, colorG0),

colorGi ∈ {0, 1}

format is the same as px

colorB = (colorB31, colorB30, · · · , colorB1, colorB0),

colorBi ∈ {0, 1}

format is the same as px

function:

colorR = red color component of query point at index qIn

(with tSOB−delay cycle delay)

colorG = green color component of query point at index qIn

(with tSOB−delay cycle delay)

colorB = blue color component of query point at index qIn

(with tSOB−delay cycle delay)
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qIn is the integer index of the query point, and pIn is the integer index of the

photon paired with the query point.

The exact value of tSOB−delay depends on various factors, including requests to

memory and any stall cycles that may happen. However, the value is exactly the

same for all three colorX values, so the three colors are calculated and given as

output at the exact same clock cycle.

In the following sections, we look at the internal modules inside the SO block

in more detail.

1. Reservation station

In order to calculate the color values for each query point, we need to read

a number of variables that is necessary for the calculation. Each SO in-

struction sits in the Reservation station until these values are fetched from

memory. Their function is similar to the reservation stations utilized in

Tomasulo’s dynamic scheduling algorithm in hardware [54].

The variables that are read here, as well as discussion on the data path it

takes, can be seen in Section 3.5.2.

3.5.2 The two caches of the SO block

Table 3.8 shows all the variables that are required for a SO.
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Name Data type Defined by

kernel 32-bit floating point photon and query point

BRDF 32-bit floating point photon and query point

h 32-bit floating point none

power.color 3×32-bit floating point photon

contribution.color 3×32-bit floating point query point

Table 3.8: Required parameters for a single SO

Here, we can see that the variables can be divided into three distinct groups.

The first is contribution.color, which is strictly tied to the query point.

The second is power.color, which is the power value of the photon and its value

is defined by the photon. The final group is kernel and BRDF, which change

according to both the photon and the query point. For each group, the data access

pattern is different, and it is beneficial to divide the cache structure accordingly.

The access pattern for queries is sequential and predictable, since the CPU

issues new tree searches by accessing the array of query points from the beginning

to the end, one by one. This is illustrated in Figure 3.23. Once a tree search

instruction enters the TS block, any further searches into its children has a higher

priority than a whole new TS instruction, so if there are some children searches

inside the Register queue, they are scheduled before a new TS instruction is read

from the CPU.

Once a query point passes through the whole tree and ends its search at leaf

nodes, that point is done and is never revisited. By having a dedicated cache that

is direct-mapped, and an extremely sequential access pattern, the cache operates

similar to a First-In First-Out queue. When overwrites happen, the oldest block

is the first one to be evicted.
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new block 

overwrites 

oldest block 

one by one

Figure 3.23: Cache operation for the SOQ cache

The array of query points is a large data structure, with up to a few hundred

to thousand points per pixel. Each query point data structure is 32 bytes, so even

with a hundred points per pixel with a small image at 320×320, this array is over

300 MB in size, and will only grow larger with a higher workload. With the SOQ

cache dedicated only to this data array, we can make sure we only read this once

into the cache, reducing the required overall memory bandwidth.

Photons are repeatedly accessed in a rather random order. It is difficult to

predict which photon will be required at which point in the algorithm. And

because every tree search with a new query point starts at the root node, we

cannot declare any photon data to be truly ‘done’; it is entirely possible that the

next query point may need access to it.

Therefore it would be beneficial to have variables that are affected by the

photon to have a different data path from the query point variable. The two

separate data paths are represented by the SOP L1/L2 caches and SOQ cache.
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3.6 The Shader Operation Accelerator (SOA)

3.6.1 Problem definition

Once we have found a photon that is close enough to affect the light at the query

point from the Tree Search Accelerator, it is necessary to calculate the actual color

value that the photon adds to the query point. This is the shader operation, and

it is processed in the Shader Operation accelerator.

For every query point and photon pair that has been found, we need to check

that the actual distance is indeed closer than the kernel radius h. This is done by

calculating the following and observing the sign bit of the result:

cond = (distance(queryPoint.location, photon.location))2 − h2

If the distance condition is met, then the photon affects the color of the query

point, and we can calculate the effect of the photon on the query point using the

following equations.

color.red =
kernel× BRDF

h
× power.red× contribution.red

color.green =
kernel× BRDF

h
× power.green× contribution.green

color.blue =
kernel× BRDF

h
× power.blue× contribution.blue

The process used here is a density estimation where the kernel value is calcu-

lated from a kernel function (e.g. a Gaussian distribution). The BRDF is a function

that calculates how much of the light that entered a certain point in the scenery

is reflected out towards a given direction. h is the value of the kernel radius,

the power.(color) values are the separate color components for photons, and the

contribution.(color) values are the scaling factors. Again, for more detailed

discussion regarding these values, refer to [47].

• The BRDF and contribution.(r/g/b) values are in the range [0,1].

82



• The power.(r/g/b), the kernel and kernel radius h are non-zero positive

values.

In addition to this, we will assume there are no special case inputs such as denor-

malized numbers, infinity or NaNs (Not a Number).

Once each color value is calculated, the main processor can directly add the

three values to the corresponding query point in the frame buffer.

3.6.2 Calculation trees

Excluding the condition calculation, which is handled separately, the shader op-

eration is basically a series of floating-point multiplications and one division as

shown in the diagrams below. This is done by handling the mantissa and exponent

bits separately, and combining them at the end to obtain the full result.

The multiplication and division calculation tree for the mantissa part is shown

in Figure 3.24. The range of each variable is also displayed.
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×
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x

d
shift left 

0~1 bits
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Figure 3.24: Calculation tree for mantissa

Each mantissa input is a 24-bit wide value, and this is handled in a digit-

serial online fashion using the radix-2 online multiplier and divider design adapted
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from [16] and adjusted to incorporate for the specific inputs we have for this

calculation. Since the IEEE standard has a hidden leading 1, all mantissa bits

are pushed one location to the right and a 1 is shifted in. Each exponent value is

increased by 1 to accomodate for this.

1.x0x1x2 . . .× 2exp = 0.1x0x1x2 . . .× 2exp+1

In order to keep the output of the divider under 1, the x input to the divider is

shifted one bit to the right in advance.

Each online multiplication operand needs to be quasi-normalized, as discussed

in [61] and [60]. By the definitions in [60], if we have a non-zero redundant floating-

point number x = xfr
xe , with k digits of mantissa using a maximally redundant

digit set, this number is said to be

1) normalized if r−1 ≥ |xf | < 1

2) quasi-normalized if r−2 ≥ |xf | < 1

3) pseudo-normalized if r−k ≥ |xf | < 1

As it is possible for the output of the divider to be smaller than 2−2 and thus

not be quasi-normalized, an extra step is required here to adjust the output if

necessary. The process of quasi-normalization can be handled as discussed in the

appendix of [57]. The values of the first two quotient digits of the result (q0
′, q1

′)

are examined, and if they are (1, 0), (1, 1), (−1, 0) or (−1,−1), the quotient is

already quasi-normalized. If the most significant digits of the quotient are not one

of the given combinations, the digits are combined as nq0
′ = 2q0

′ + q1
′, and all

remaining quotient bits are shifted so that nq1
′ ← qnext. This new pair of values

(nq0
′, nq1

′) is now the values of the first two quotient digits, and the process is

repeated as necessary.

For our calculations, since no negative values are possible, and the possible

quotient value range is larger than 2−3, we need at most 1 quasi-normalization

step at this point. Processing quasi-normalization increases the online delay of
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each single shader operation by one cycle for each digit shift, but overall it has

almost no effect on the net throughput of the SOA. This is because any additional

cycles on a single instruction can be hidden behind all other overlapping parallel

instructions, and they have no effect at all on the architecture’s ability to issue

new shader operations into the SOA.

At the end of the calculation, to pack the result back into the IEEE standard

format, the output mantissa needs to be in the range of [1, 2). The output stage

examines the calculated mantissa and shifts the output to the left. All shift left

bits are kept track of and sent to the exponent calculation so that the exponent

value can be adjusted as required.

+

kernel.e

BRDF.e

h.e

+

+

cin = 0

cin = 1

cin = 0

cin = 0

+
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+
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+photon.(r/g/b).e-2B+4

Figure 3.25: Calculation tree for exponent

The addition calculation tree for the exponent part is shown in Figure 3.25.

Each exponent input is an 8-bit wide value, and this is handled in a parallel

adder and delayed until the mantissa calculations are complete. Due to the IEEE

floating-point standard having a biased exponent, we need to take the bias B into

account when doing addition and subtraction of exponents. The exponent value
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B is:

B = 2n−1 − 1

where n is the number of bits for the exponent. For the current setup, we have

n = 8.

The actual exponent value exp(var) can be calculated using:

exp(var) = (var).e−B

(var).e = exp(var) +B

The result of the adder tree in Figure 3.25 is equal to the exponent value

color.(r/g/b).e. Some carry-in values are set to 1 in order to accomodate for

the push-to-the-rights done in the mantissa calculation. Also, an additional 1 is

added to accomodate for the shift right in the mantissa calculation right before

the division.

Taking into account that all mantissa inputs to the multiplier and divider have

been shifted one bit to the right, the unbiased exponent value for color.(r/g/b).e

(excluding the final shift adjustment) is equal to:

color.(r/g/b).e

= ((expkernel + 1) + (expBRDF + 1) + 1)− (exph + 1) + (exppower.(r/g/b) + 1)

+(expcont.(r/g/b) + 1) +B

= expkernel + expBRDF − exph + exppower.(r/g/b) + expcont.(r/g/b) +B + 4

= (expkernel +B) + (expBRDF +B)− (exph +B) + (exppower.(r/g/b) +B)

+(expcont.(r/g/b) +B)− 2B + 4

= kernel.e+ BRDF.e− h.e+ power.(r/g/b).e+ cont.(r/g/b).e− (2B − 4)

Since the value of B is determined beforehand, 2B − 4 is a constant and does

not need a separate adder to calculate.
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The shift left bits at the end of the divider and last multiplier in the mantissa

tree are collected and subtracted from the exponent at the end. The shift amount

will be between 1 and 5.

3.6.3 Overall structure

3.6.4 Submodule : P2S (Parallel to Serial)

The P2S module here is the same as the P2S module in the Tree Search accelerator

in Section 3.4.5.

n-2 0

nn-bit serial 

operand 

in(t)

MSB LSB

…...n-3 n-4 12

inn-2(t-1)
0…...n-3 n-4 12

0…...n-4 12

01

0

…...

inn-3(t-2)

inn-4(t-3)

…...

…...

…...

in1(t-(n-2))

in0(t-(n-1))

012

in2(t-(n-3))

…...

inn-1(t)

n-bit 

parallel

operand 

out(t)

n
…...

MSB LSB

Figure 3.26: Components of Parallel to Serial

3.6.5 Submodule : ADD8 (Parallel Adder)

The exponent is only 8-bits wide and is calculated using a series of parallel adders

as seen in the adder tree in Figure 3.25.
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3.6.6 Submodule : MUL24 (Pipelined Online Multiplier)

The following outlines the online multiplication algorithm. It is based on the

online multiplication in [16], with some changes to fit the characteristics of the

application.

1. [Initialize]

x[−3] = y[−3] = w[−3] = q[0] = 0

for j = −3,−2,−1

x[j + 1]← CA(x[j], xj+4); y[j + 1]← CA(y[j], yj+4)

v[j] = 2w[j] + (x[j]yj+4 + y[j + 1]xj+4)2
−3

w[j + 1]← v[j]

end for

2. [Recurrence]

for j = 0, . . . , n− 1

x[j + 1]← CA(x[j], xj+4); y[j + 1]← CA(y[j], yj+4)

v[j] = 2w[j] + (x[j]yj+4 + y[j + 1]xj+4)2
−3

pj+1 = SELM( v̂ [j])

w[j + 1]← v[j]− pj+1

Pout ← pj+1

end for

A few notes on the algorithm:

• The residual w is kept in redundant form, where WS is the pseudosum and

WC is the stored carry. It is simply shown as w[j] in the above description.

• n is the bit width.
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• The online delay δ = 3 for this setup; the estimate v̂ [j] is 2 bits wide.

• CA is either the concatenation of bits (as for direct inputs both x and y

will not be in redundant form for our calculation) or on-the-fly conversion,

as explained in [16].

The diagrams in Figure 3.27 show overviews of the pipeline logic and register

construct of the online multiplier. Each logic stage is entirely combinational,

with any required registers all placed between the stages. At each clock, each

stage takes inputs from the previous registers and digits from the parallel-to-

serial registers, and calculates the register values for the next stage. Each stage is

given the x and y digits required at each stage, which enters the Shader Operation

module in parallel form and passes through the parallel-to-serial converter shown

in Figure 3.26.
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(b) Recurrence stages

Figure 3.27: Online multiplier pipeline stages overview

The following two figures show the combinational logic of the stages in more

detail. Figure 3.28 is the circuit for the initialize stages and 3.29 is the circuit for

the recurrence stages.
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Figure 3.28: Initialize stage details of a pipelined online multiplier (adapted from

[16])
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Figure 3.29: Recurrence stage details of a pipelined online multiplier (adapted

from [16])

The [4:2] adder computes v[j], the next pj+1 is chosen from the top bits of

v[j], and the next residual value w[j+ 1] is updated by concatenating the top bits

from the output of the M module. The bit alignments of the adder can be seen

in Figure 3.30.
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Figure 3.30: [4:2] adder setup for a 24-bit online multiplier (adapted from [16])
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Table 3.9 shows the multiplier digit selection table.

v̂ [j] v−1v0.v1 pj+1

3
2

01.1 1

1 01.0 1

1
2

00.1 1

0 00.0 0

-1
2

11.1 0

-1 11.0 -1

-3
2

10.1 -1

-2 10.0 -1

Table 3.9: Digit selection table for online multiplier (adapted from [16])

3.6.7 Submodule : DIV24 (Pipelined Online Divider)

The division operation is shown here.

x = q · d+ rem

where

|rem| < |d| · ulp, sign(rem) = sign(x)

In the above expression, the dividend x and the divisor d are the operands.

The quotient q is the results of the operation. rem needs to be smaller than the

divisor times ulp (unit in the last position).

The specification of the pipelined online divider with bit width n is as follows:
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inputs: dividend x = (xn−1, xn−2, · · · , x1, x0), xi ∈ {0, 1}

divisor d = (dn−1, dn−2, · · · , d1, d0), di ∈ {0, 1}

a7 downto a0 are the original input,

a14 downto a8 are bits that get shifted in

s = (s2, s1, s0), si ∈ {0, 1}

outputs: quotient q = (q7, q6, · · · , q1, q0), qi ∈ {0, 1}

function: yi =

 ai+s if E = 1

0 otherwise

where s =
2∑

j=0

sj2
j and i = 0, 1, · · · , 7

The following outlines the online division algorithm. It is based on the online

division in [16], with some changes to fit the characteristics of the application.

1. [Initialize]

x[−4] = d[−4] = w[−4] = q[0] = 0

for j = −4, . . . ,−1

d[j + 1]← concat(d[j], dj+5)

v[j] = 2w[j] + xj+52
−4

w[j + 1]← v[j]

end for
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2. [Recurrence]

for j = 0, . . . , n− 1

d[j + 1]← concat(d[j], dj+5)

v[j] = 2w[j] + xj+52
−4 − q[j]dj+52

−4

qj+1 = SELD( v̂ [j])

w[j + 1]← v[j]− qj+1d[j + 1]

q[j + 1]← CA(q[j], qj+1)

Qout ← qj+1

end for

A few notes on the algorithm:

• The residual w is kept in redundant form, where WS is the pseudosum and

WC is the stored carry. It is simply shown as w[j] in the above description.

• n is the bit width.

• The online delay δ = 4 for this setup; the estimate v̂ [j] is 3 bits wide.

• CA is on-the-fly conversion, as explained in [16].

• concat is simply the concatenation of bits, as the divisor d will not be in

redundant form for our calculation.

The diagrams in Figure 3.31 show overviews of the pipeline logic and register

construct of the online divider. Each logic stage is entirely combinational, with any

required registers all placed between the stages. At each clock, each stage takes

inputs from the previous registers and digits from the parallel-to-serial registers,

and calculates the register values for the next stage. Each stage is given the x

and d digits required at each stage, which enters the Shader Operation module in
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parallel form and passes through the parallel-to-serial converter shown in Figure

3.18.
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Figure 3.31: Online divider pipeline stages overview

The following two figures show the combinational logic of the stages in more

detail. Figure 3.32 is the circuit for the initialize stages and 3.33 is the circuit for

the recurrence stages.
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Figure 3.32: Initialize stage details of a pipelined online divider (adapted from [16])
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Figure 3.33: Recurrence stage details of a pipelined online divider (adapted from

[16])

The top [3:2] adder computes v[j], the next qj+1 is chosen from the top bits

of v[j], and the next residual value w[j + 1] is updated at the bottom [3:2] adder.
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The bit alignments of the two adders can be seen in Figures 3.34a and 3.34b.
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Figure 3.34: [3:2] adder setup for a 24-bit online divider (adapted from [16])

The block U combines the dividend digit xj+52
−4 and the sign extension bits

of q[j]dj+52
−4 in advance, so that the calculation of v[j] can be achieved using a

3 to 2 adder. The full table for an online divider with both x and d in redundant

form can be found in [16].

For our implementation, d is in non-redundant form and will never have a

value of -1. The simplified implementation table is shown in Table 3.10.
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xj+5 xpxn dj+5 qs -2 -1 0 1 2 3

1 0 0 0 0 0 0 0

1 10 1 1 0 0 0 0 0 1

0 – 0 0 0 0 0 1

1 0 1 1 1 1 1 1

0 00 1 1 0 0 0 0 0 0

0 – 0 0 0 0 0 0

1 0 1 1 1 1 1 0

-1 01 1 1 1 1 1 1 1 1

0 – 1 1 1 1 1 1

Table 3.10: U module output for redundant x and non-redundant d (adapted

from [16])

3.6.8 Critial path delay

As with any sequential system, all data paths starting from a register output and

ending at a register input needs to be complete before the next clock edge. The

clock period needs to be longer than the delay of the critical case path.
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Figure 3.35: Critical path for the online multiplier

Figure 3.35 shows the critical case path for the pipelined online multiplier.

The elements on the path in order are: y/ym logic, y selection logic, 4 to 2 adder,

digit selection, and M.
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Figure 3.36: Critical path for the online divider

Figure 3.36 shows the critical case path for the pipelined online divider. The

elements on the path in order are: U logic, 3 to 2 adder, digit selection, d selection

logic, and 3 to 2 adder.

3.7 Cycle stalls

There are two parts in the MAPM that may cause stalls.

1. The first is at Nextnode, which is inside the TS block. Before assigning

the results of the TSA to the Register queue (for tree search operations) or

the Data bus (for shader operations), it needs to have all necessary node

information from the memory. Since the data resides inside the TSA for

the number of cycles equal to the pipeline depth of the TSM dTSM , there is

some cycle slack for information to arrive, especially if it is already inside
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the TS L2 cache. However, on the chance that the information is not here

yet, Nextnode will cause a stall for the TS block until the information is

fetched.

2. The second is at the Reservation stations, which is inside the SO block. To

launch shader operations into the TSAs, we require a number of variables to

be ready, as we examined previously in Table 3.8. This causes entries in the

Reservation station to be occupied with shader operations that are waiting

for required values to arrive from the memory. As the number of slots are

limited in the Reservation stations and shader operations tend to happen

in bursts, it is possible that new shader operations do not have an empty

slot available. When this happens, the Reservation station will cause a stall

for the TS block until a shader operation is launched and an empty slot is

created.

One thing to note is that any stalls only stop the operation of the TS and not

the SO block. Once an instruction is ready in the SO block, nothing else is needed

for the calculation to finish, and thus no stalls are necessary.

102



CHAPTER 4

Evaluation

The evaluation of the architecture is divided into two parts.

First part is the ASIC synthesis and hardware cost. Here, we perform ASIC

synthesis on VHDL implementations of the MAPM and conventional parallel cir-

cuits. This gives us hardware cost values, including clock speed, area cost, and

power dissipation. Using these, we can compare hardware cost of the online imple-

mentation used in MAPM to conventional parallel implementations and evaluate

the efficiency of online circuits.

The second part is performance evaluation and scalability. By running cycle-

accurate simulation of the MAPM for different configurations, we can evaluate the

scalability of the architecture and observe perfomance gain in terms of the number

of replicated modules. In addition to this, combining the clock speed results with

the number of cycles gives us realistic throughput numbers which we can use to

compare with other recent photon mapping implementations. Also, the hardware

cost numbers will allow us to evaluate the implementation costs of the MAPM,

and compare to other chips in the market today.

4.1 Tools used in the evaluation and design

4.1.1 Software environment

In this section, we examine the setup of the evaluation code that was used.
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The PM code is adapted from work by collaborator Shawn Singh [47], with

minor changes made by the author. The main PM algorithm is coded in C++,

using Microsoft Visual Studio 2008 as the main IDE.

All hardware design files are coded in VHDL. Functional verification was done

by creating test bench files with the help of Python [6], and running them through

ModelSim Altera starter edition. All hardware costs and timing numbers are

extracted using Synopsys Design Compiler and the Synopsys 90nm Generic Li-

brary [7].

4.1.2 Cycle accurate simulation

The Intel Pin [5, 34, 44] is a binary instrumentation tool that allows the user to

insert various useful C or C++ code into arbitrary places in an executable. The

insertion and execution of code is processed dynamically while the target program

is running. Pin also allows injected code to access context information such as

register values and function parameters, while restoring any changes to the original

executable’s memory space to prevent unintentional errors.

The cycle-accurate simulator is built using the Pin tool libraries and runs on

top of the software PM code written by Singh [47]. At the beginning of the exe-

cution, the simulator initializes all variable arrays and structs in the simulator.

These represent registers and memory inside the MAPM, and is used to track the

flow of information during execution.

While the PM code is running, the simulator attaches a call inside the Tree

Search function, and every time it is executed in the PM code, the simulator

calls the function AdvanceOneClock() This simulates a Tree Search instruction

issue in the MAPM architecture. Once all Tree Searches are issued, the sim-

ulator calls the function AdvanceToEndOfOperation(). This repeatedly calls

AdvanceOneClock() without launching a new Tree Search instruction, until all
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registers are clear and all calculations are finished. By doing this, the simula-

tor can calculate the exact number of clock cycles that is required for the given

workload in the PM code.

The cycle-accurate simulator also takes cache misses into account by utilizing

Pin’s native cache simulation classes. Any accesses to main memory from the

MAPM goes through Pin’s cache simulation interface, and is checked for a hit or

miss. Data fetched from the memory will wait a predetermined number of cycles

before entering the simulator and progressing through the registers of the MAPM,

thus imitating the cache delay required for the data to arrive.

4.1.3 Cache sizes

Each render process deals with a single frame, which has a fixed camera and lights,

and objects do not move around inside the 3D scene. Therefore, the polygon map

(which is derived from the object locations) and the photon map (which is derived

from the polygon map and light sources) are also fixed during rendering of a single

frame. It follows that once these completed data structures are loaded into the

relevant caches, no further accesses to the main memory are necessary, provided

that the cache size is large enough to hold the entire structure. This is important

for reducing bandwidth requirements and is an important part to consider for the

architecture design.

There are two phases to the photon mapping process, the TS phase and the

SO phase, where the block dedicated to each has internal caches that store data

structures required for each phase.

1. The Tree Search block The data structure required in this block is the

photon KD-tree, and it is stored in the TS L1/L2 caches. The struct KDNode,

which holds data of one node in the photon KD-tree, stores two 4 byte unions

where data is encoded into different bits, for a total of 8 bytes. The node
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count of the tree is equal to the total photon count. Therefore the required

space for the TS L2 cache sizeTS is:

sizeTS = size(KDNode)× nphotons

= 8 · nphotons (bytes)

Having around 20,000 photons will require a little less than 160 KBs of TS

L2 cache.

2. The Shader Operation block The cache setup of the Shader Operation

block is a bit more complex to figure out, as there is a much larger number

of parameters to consider, compared to the Tree Search block.

Recall the table of values that need to be fetched for a Shader Operation in

Table 4.1.

Name Data type Defined by

kernel 32-bit floating point photon and query point

BRDF 32-bit floating point photon and query point

h 32-bit floating point none

power.color 3×32-bit floating point photon

contribution.color 3×32-bit floating point query point

Table 4.1: Required inputs for a single SO

As was explained in Section 3.5.2, the parameters can be divided by whether

the data changes in relation to the photon or to the query point. Each group

has a different access pattern, leading to having two separate caches with

its own method of fetching and preparing data.

(a) Query point parameters The parameter that is wholly determined

by the query point is the contribution.color values. This informa-

tion is created and saved in an array of struct CameraPoint.
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As there is one for each query point, and query points are in the hun-

dreds of thousands to a few millions, this whole data structure goes up

to the MB range and is a rather large data structure to store wholly

inside a fast cache. However, after all related shader operations for a

query point leave the reservation stations, there is no further need to

keep the entry and we can safely overwrite earlier entries.

array of 

query points

SOQ cacheprocessing

done

to be done

new block 

overwrites 

oldest block 

one by one

Figure 4.1: Operation of the SOQ cache

The required space for the query point parameter cache sizeqp is:

sizeqp = size(entry)× dTSM × ntsm

where dTSM is the pipeline depth of the TS module and ntsm is the

number of TS modules. We have dTSM = 1(Nextnode) + 25(TSA) so

the equation becomes:

sizeqp = size(entry)× dTSM × ntsm

= 32 · 26 · ntsm

= 832 · ntsm (bytes)

The required size will be linear to how many TS modules are present,
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but as each module will require less than 1 KB each, this will be a

manageable size.

(b) Photon parameters The parameter that is wholly determined by the

photon is the photon’s power value. The data structure that holds the

power value power.color, is stored in an array of struct PointSample.

Each PointSample is 16 bytes, and one exists for each photon. The

required space for these two parameters sizepp is:

sizepp = size(PointSample)× nphotons

= 16 · nphotons (bytes)

This would be roughly twice the size requirement of the TS cache.

(c) Remaining parameters The kernel and BRDF values can be affected

by both the query point and photon, depending on which calculation

method is chosen for each variable. And because the values depend on

both variables, the maximum total count of these parameters become

large very quickly, making it infeasible to have the whole data struc-

ture stored in the cache at once. Thus, for these variables, we assume

they are read through the photon parameter cache, and allocate some

additional space to sizepp in order to accomodate for the transition of

these parameters.

With the above derivations in mind, for our simulation runs, we use cache sizes

as shown in Table 4.2.
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Size (bytes)

Name Total Line Associativity

TS L1 16 K 32 2-way associative

TS L2 256 K 64 4096 (fully associative)

SOQ 16 K 32 1 (direct mapped)

SOP L1 64 K 32 2-way associative

SOP L2 512 K 64 8192 (fully associative)

Table 4.2: Cache setup for simulations

This setup will be able to fully cover up to 256 × 1024 ÷ 8 = 32,768 photons

in the TS L2 cache, and up to 16× 1024÷ 32 = 32 query points for 16 TSMs.

Due to the Pin simulation code slowing down the actual runtime of the PM

code, we had to downsize the simulation input size in order to be able to finish

in a reasonable amount of time. The above setup is large enough to cover the

simulation sizes that we wish to use.

4.1.4 Benchmark images

These are some benchmark images that are used for the simulations.

The workload that each benchmark represents can be adjusted with different

numbers for screen resolution, FGRs per pixel, and total number of photons.

Basically, lower number for each variable will result in a smaller workload for the

simulation. Lower screen resolution and FGRs will result in a smaller number of

query points created, and a lower photon count will result in a smaller photon

KD-tree and less search operations overall. And naturally, the quality of the final

image will be affected by these numbers too. For instance, a low screen resolution

will make the image look blocky, and a low number of FGRs and photons may
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result in artifacts or dark patches that should not be there. The exact number

required for each variable is not set in stone and may vary according to the scene.

The benchmark in Figure 4.2, as we briefly examined in Section 3.1.2, is the

Cornell box, a well known 3D test model that is widely used for testing out various

image rendering techniques. The version used here consists of two cuboid blocks

placed inside five outer walls as can be seen in the image, and consists of 30

triangles total. This image has been rendered at a screen resolution of 450× 450,

with 100 FGRs created per primary ray, and 2 million photons scattered in the

scene, which is enough to give the image a smooth look without any unintentional

dark patches overall.

Figure 4.2: Benchmark 1 - Cornell box (adapted from [19])

The benchmark in Figure 4.3 is a view of the corridor inside the Sponza Atrium

scene (model by Marko Dabrovic). The scene image is much more complex than

the Cornell box benchmark, with the total triangle count being 66,454. This

image shown here holds a screen resolution of 320× 320, with 100 FGRs created

per primary ray, and 2 million photons scattered in the scene.
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Figure 4.3: Benchmark 2 - Sponza corridor (model by Marko Davrovic)

The last benchmark image shown in Figure 4.4 is a view from a different

location inside the Sponza Atrium scene. It has been rendered with a screen

resolution of 320 × 320, with 100 FGRs created per primary ray, and 2 million

photons scattered in the scene. Even though the scenery file is the same as

the Sponza corridor benchmark, the different camera location and light source

placement creates a whole different set of FGRs and photons.
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Figure 4.4: Benchmark 3 - Sponza atrium (model by Marko Davrovic)

Note that the workload for simulation runs has to be adjusted because the

simulation code significantly slows down the rendering. Therefore, the images

produced will not be at the quality of the images shown here.

4.2 ASIC synthesis and hardware cost

In this section, we examine the hardware cost of the MAPM.

The VHDL design implementation was compiled and analyzed using the Syn-

opsys Design Compiler tool and the Synopsys 90nm Generic component library.

Each compile iteration is given a target clock speed, and the tool tries to synthe-

size a layout that satisfies the timing constraint. This eventually comes to a wall

where it is not possible to satisfy the timing constraints for certain high target

speeds. Once the timing is achieved, the tool then tries to optimize for better

area and power, with an option to emphasize minimizing one over the other. For

our designs, more emphasis was given to minimize power, but without completely

ignoring area cost.
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The synthesis results for a single SOA and TSA block are shown here in Tables

4.3 and 4.4.

Power (mW)

Clock speed (GHz) Slack met? Total dynamic Cell leakage Area (µm2)

1.00 Yes 21.99 3.26 633,999.06

1.25 Yes 24.14 3.06 599,024.34

1.50 Yes 28.23 3.02 592,129.85

1.75 Yes 34.32 3.05 594,491.91

2.00 No – – –

Table 4.3: Synthesis results for a single SOA

Power (W)

Clock speed (GHz) Slack met? Total dynamic Cell leakage Area (µm2)

1.00 Yes 2.69m 217.08µ 41,648.95

1.25 Yes 3.37m 222.23µ 41,955.84

1.50 Yes 4.58m 230.93µ 43,007.39

1.75 Yes 6.50m 257.15µ 45,244.11

2.00 No – – –

Table 4.4: Synthesis results for a single TSA

We can see that both modules are synthesizable up to 1.75 GHz, with a general

increase in dynamic power for faster circuits. This trend is more visible in the

smaller TSA. Also, in the TSA higher clock speed induces a larger area, whereas

for the SOA, the clock speed does not have much effect on the overall area of the

module. Synthesizing for a clock speed of 2.0 GHz is not possible with the current

90 nm component library.
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It is rather difficult to obtain detailed cost values of current CPU architectures,

and even if we had the numbers on hand, it would not be a fair comparison as the

component libraries are completely different. Therefore, for comparison purposes,

we use FloPoCo [2, 10] to generate a circuit which has the same functionality as

the MAPM architecture. FloPoCo is an HDL generator specifically designed to

create floating-point arithmetic circuits, with optimized data paths and pipelining

to reduce worst case paths. In general, FloPoCo circuits achieve performance

which is close to that of vendor-supplied operators [10].

The Figures 4.5 and 4.6 show the diagrams of the functionally equivalent

circuits implemented with FloPoCo.
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Figure 4.5: FloPoCo implementation of the TSA
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Figure 4.6: FloPoCo implementation of the SOA

From the diagrams, we obtain the following requirements for the FloPoCo

setup:
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Phase Operand Bit width Count

Tree Search Floating-point adder 32 4

Shader Operation Floating-point multiplier 32 7

Shader Operation Floating-point divider 32 1

Table 4.5: FloPoCo components for Tree Search and Shader Operation

The comparison numbers for our design and FloPoCo are shown in Table 4.6

for the largest module, which is the SOA. Note that the starting clock speed is

much lower than the previous tables, as the FloPoCo implementation can only

be synthesized at slower clock speeds. In the table, Pwr stands for power, Dyn

stands for dynamic, and Lkg stands for leakage.

MAPM FloPoCo

Clock Pwr (mW) Area Pwr (mW) Area

(GHz) Slack? Dyn Lkg (µm2) Slack? Dyn Lkg (µm2)

0.50 Yes 11.12 3.27 636,650.50 Yes 106.47 2.32 353,883.34

0.75 Yes 14.67 3.05 598,584.73 No – – –

1.00 Yes 21.99 3.26 633,999.06 No – – –

Table 4.6: Comparison of synthesis results

The first thing that comes to our attention here would be the vastly different

clock speed that each implementation can be synthesized for. While the MAPM

can be synthesized up to 1.75 GHz, the FloPoCo version is already unsynthesizable

at 750 MHz, even though FloPoCo implementations deploy pipeline registers in

critical paths to reduce the longest path delay. Area-wise, FloPoCo is a better

solution. A lot of the area in the MAPM SOA is due to a large number of
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registers required for the serial-to-parallel data conversion and pipelining, which

is not required in parallel implementations. The power consumption also shows

about a magnitude of difference. As we examined in sections 3.6.6 and 3.6.7,

each stage of the online arithmetic architecture is very regular and structured,

leading to circuits that can be synthesized to be less power hungry, albeit with

some increase in area.

A comparison table with numbers normalized to FloPoCo is shown in Table

4.7.

MAPM FloPoCo

Synthesizable clock speed 3.5 1

Dynamic power consumption 0.104 1

Area cost 1.799 1

Table 4.7: Comparison with normalized numbers

Note that even though the two implementations may be functionally equiva-

lent, the MAPM implementation is superior to the FloPoCo version in terms of

parallel execution due to its digit-serial nature. This is even before considering

the maximum possible clock speed and lower power consumption, an important

point when placing multiple instances for increased parallelism. For the FloPoCo

version to have similar parallelism to the MAPM, we would need multiple copies

of the same implementation, which would likely be too power hungry to be a

feasible solution.

4.3 Performance evaluation and scalability

With the insight that the analysis has given us so far, we now look at some simu-

lation performance numbers at various points in the design space, which will also
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allow us to examine the scalability of the design. The cycle-accurate simulation,

combined with the hardware cost information from the previous section, also gives

us concrete numbers on runtime and this in turn allows us to calculate throughput

numbers that we can use for comparison with other work.

4.3.1 Target performance numbers

Before looking at the results, let us try to establish some target numbers. We shall

be using shader operations per second for measuring the throughput performance.

We take a look back at the numbers we brought up in Section 1.1. We estab-

lished that for real-time rendering in Full HD, we would need to calculate around

10 billion rays per frame, at around 30 frames per second. This would be equal to

300 billion rays per second. For each ray, depending on the image, an average at

least 100 shader operations are required, bringing the total to 30 trillion shader

operations per second.

In a recent work on MPSoC implementation of photon mapping [17], a shader

operation count is not available, therefore we shall assume the 30 trillion shader

operations for Full HD real time rendering holds true here as well and extrapolate

numbers to obtain a rough estimate. The best performance from this work is from

the combination of the G-KD method along with the PM-DS method with 8× 8

mesh size. The total cycles to render a 320×240 frame is 639,238,838, and as this

is on a system at 200 MHz, this would equal 639, 238, 838 ÷ (200 × 106) = 3.196

seconds. Assuming we can keep up the same rate, rendering a Full HD frame would

require (1, 920×1, 080)÷(320×240) = 27 times many pixels, so 3.196×27 = 86.292

seconds per frame. For 30 frames, this setup requires 86.292 × 30 = 2588.76

seconds. This is the time required to process the same amount of work as Full

HD real time, which is equivalent to 30 trillion shader operations. Therefore,

by dividing 30 trillion with the time it took, we can get 30 × 1012 ÷ 2588.76 =
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11.588× 109, or 11.588 billion shader operations per second.

One thing we do need to consider for the MPSoC platform is that it also

processes the tree build and photon scattering, as well as the tree search and

shader operation sections that the MAPM is dedicated to accelerating. However,

as the tree search and shader operation is the main bulk of the photon mapping

process, having the platform be fully dedicated to the latter sections will definitely

enhance the numbers, but not by a huge factor.

Another number that we can obtain performance numbers from is a software

only work by our collaborator Shawn Singh [48]. Using a purely software approach

and various optimizations including SIMD methods and data reordering, a perfor-

mance number of 10 million shader operations per core per second was obtained.

As we cannot replicate the same experiments, we compare the relative CPU per-

formance numbers and try to scale this number up for more recent CPUs. The

CPU used in [48] is the Intel Xeon X5355. Using the numbers from [1], we can

obtain performance numbers from the PassMark benchmark software [4] between

the Intel Xeon X5355 and some current generation CPUs. The numbers can be

seen in Figure 4.7.
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Figure 4.7: CPU performance benchmark number comparison

We shall use numbers from the Intel Core i7-4770K, which is one of the top

high-end performance CPUs currently available. The benchmark score is a rough

indication of how much work each CPU can process in the same amount of time.

By comparing 3,299 from the Intel Xeon X5355 and 13,239 from the Intel

i7-4930K, we will assume that the Intel i7-4930K will be able to process about

13, 239÷ 3, 299 = 4.013 times as many shader operations as the Intel Xeon X5355

(although this may be a generous assumption considering the floating-point heavy

workload of photon mapping). Using this, we shall assume the current software

performance value to be around 40 million shader operations per second.

4.3.2 Design space exploration

In this section, we shall examine and compare throughput for various points in the

design space. The goal of this part is to obtain a good balance point for multiple

modules inside the MAPM, and also to examine how well the architecture scales
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with the increase of modules. We run simulations on various benchmarks using

different module configurations for the TSM/SOM/SOAs shown in Figure 4.8.
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Figure 4.8: Replicable modules in the MAPM

Also, we can plug in the hardware cost values obtained from Synopsys tools

to these simulation numbers to evaluate performance per hardware cost. We shall

use the setup for 1.5 GHz, which seems to be a good balance between adequate

performance and pushing to the hard limit (which is somewhere between 1.75 GHz

and 2.0 GHz) of the library. With 1.5 GHz, each clock cycle is 1/1.5G = 0.667 ns.

Since the TSAs and SOAs will be the dominant parts of the TSM and SOM in

terms of area and power, we will use multiples of the area and power of the TSA

and SOA to come up with an estimate of the TSM and SOM.

We shall consider the number of shader operations per unit cost as the measur-

ing stick for performance. By obtaining shader operations per cycle, and dividing
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by the clock period 0.667 (ns), we can calculate the throughput value at billion

shader operations per cycle.

Table 4.8 shows a simulation of the Cornell box, at 75× 60 resolution, 36 rays

per pixel and 2,000 photons. This comes down to 85,105 queries, 109,881,410 tree

search operations, and 8,260,297 shader operations.

The first column shows the number of total TSMs, number of total SOMs, and

SOAs per SOM.

The chart below shows the relative throughput for each setup, bundled into

different setup ratios and TSM count.

Figure 4.9: Throughput for Cornell box, 2k photons (BSO/sec)

Looking at the raw numbers and the chart, it seems that the performance

scales well with the increase of the number of TSMs, which is the main block that

produces the shader operations. Each group of bars has twice the number of TSMs

as the previous group, and every group shows higher throughput compared to the

previous one. The increase in throughput is not quite 2× however, indicating

some loss of performance gain at each increase of TSMs.

Inside each group, the bars have a different ratio of SOMs per TSM, and either

2 or 3 SOAs per SOM. They can be classified as one of the following: x/0.5x/2,

x/0.5x/2, x/x/2, x/x/3, x/1.5x/2 or x/1.5x/3, where x is the number of TSMs.
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TSMs/SOMs/SOAs Total cycles BSO/sec

1/1/2 7,116,879 1.741

1/1/3 6,733,815 1.840

2/1/2 4,959,391 2.498

2/1/3 3,986,511 3.108

2/2/2 3,546,205 3.494

2/2/3 3,394,998 3.650

2/3/2 3,394,975 3.650

2/3/3 3,394,972 3.650

4/2/2 2,440,261 5.078

4/2/3 1,945,136 6.370

4/4/2 1,760,068 7.040

4/4/3 1,721,170 7.199

4/6/2 1,721,159 7.199

4/6/3 1,721,154 7.199

8/4/2 1,217,064 10.181

8/4/3 968,693 12.791

8/8/2 897,360 13.808

8/8/3 887,783 13.957

8/12/2 887,776 13.957

8/12/3 887,775 13.957

16/8/2 624,084 19.854

16/8/3 503,494 24.609

16/16/2 476,341 26.012

16/16/3 473,444 26.171

Table 4.8: Total cycles and throughput for different TSM/SOM/SOA configura-

tions
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Looking inside each group and comparing between different ratio configura-

tions, we can see 0.5x SOM setups show much lower performance compared to x

and 1.5x SOM setups. For 0.5x SOM setups, increasing the SOAs per SOM is

beneficial, especially for x = 16.

Between x SOMs and 1.5x SOMs there is almost no improvement in perfor-

mance, and it seems that there is hardly any gain by using a larger number of

SOMs than TSMs. This is much more evident from the following data, where we

also plug in area and power costs (Table 4.9). The unit for throughput per area is

million SO/sec/mm2, and the unit for throughput per power is billion SO/sec/W.

Figure 4.10: Throughput/area for Cornell box, 2k photons (MSO/sec/mm2)

Figure 4.11: Throughput/power for Cornell box, 2k photons (BSO/sec/W)
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TSMs/SOMs billion Area Throughput Power Throughput

/SOAs SO/sec (mm2) per Area (mW) per Power

1/1/2 1.741 1.226 1,419.811 61.04 28.522

1/1/3 1.840 1.818 1,011.927 89.27 20.612

2/1/2 2.498 1.268 1,970.065 65.62 38.073

2/1/3 3.108 1.860 1,670.747 93.85 33.118

2/2/2 3.494 2.452 1,424.709 122.08 28.621

2/2/3 3.650 3.636 1,003.555 178.54 20.441

2/3/2 3.650 3.636 1,003,561 178.54 20.442

2/3/3 3.650 5.413 674.227 263.23 13.865

4/2/2 5.078 2.536 2,001.901 131.24 38.689

4/2/3 6.370 3.721 1,712.079 187.70 33.937

4/4/2 7.040 4.905 1,435.260 244.16 28.833

4/4/3 7.199 7.273 989.753 357.08 20.160

4/6/2 7.199 7.273 989.759 357.08 20.160

4/6/3 7.199 10.826 664.956 526.46 13.674

8/4/2 10.181 5.073 2,006.945 262.48 38.786

8/4/3 12.791 7.441 1,718.927 375.40 34.073

8/8/2 13.808 9.809 1,407.549 488.32 28.276

8/8/3 13.957 14.547 959.431 714.16 19.543

8/12/2 13.957 14.547 959.439 714.16 19.543

8/12/3 13.957 21.652 644.584 1052.92 13.255

16/8/2 19.854 10.145 1,956.933 524.96 37.820

16/8/3 24.609 14.882 1,653.558 750.80 32.777

16/16/2 26.012 19.619 1,325.813 976.64 26.634

16/16/3 26.171 29.093 899.543 1428.32 18.323

Table 4.9: Performance per hardware cost
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With the charts grouped by the ratio of TSM/SOM/SOAs, we can easily see

that in terms of throughput per area and throughput per power, the x/1.5x/2

and x/1.5x/3 configurations are easily outclassed by other TSM/SOM setups.

This clearly implies that adding more SOMs past the number of TSMs results

in inefficient hardware. The best setup in terms of area and power efficiency is

clearly the x/x/2 setup, followed by the x/x/3 setup.

One more thing to note here is how having only a single TSM is heavily

inefficient. Both 1/1/2 and 1/1/3 setups are less area and power efficient by

about 20-25%, compared to other setups in the same x/x/2 or x/x/3 configuration.

Combining the fact that this setup showed very low raw throughput numbers as

well, we can consider this to be the most inefficient setup, and that in order for

the MAPM to show its strength, parallel execution is an essential factor.

To make sure these observations are not an outlier and holds true for other

benchmarks, we run simulations on other workloads. The following show three

more simulations on different benchmark scenes, at 75×60 resolution, 36 rays per

pixel and 8,000 photons. The instruction count for each benchmark is shown in

Table 4.10.

Name Queries TS ops Shader ops

Cornell box 85,211 31,973,698 26,478,415

Sponza corridor 151,998 38,941,668 29,953,648

Sponza atrium 196,771 30,548,991 22,046,274

Table 4.10: Operation count for different benchmark scenes

Cycle count and SO/sec is shown in Table 4.11. TP stands for throughput.

The unit for throughput is billion SO/sec.
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Cornell box Sponza corridor Sponza atrium

Setup Cycles TP Cycles TP Cycles TP

1/1/2 20,474,828 1.940 25,331,428 1.774 20,320,174 1.627

1/1/3 18,754,570 1.118 23,933,965 1.877 19,478,273 1.698

2/1/2 14,851,484 2.674 17,754,645 2.531 13,731,282 2.408

2/1/3 11,736,254 3.384 14,309,707 3.140 11,225,938 2.946

2/2/2 10,140,375 3.917 12,543,764 3.582 10,065,904 3.285

2/2/3 9,405,470 4.223 12,018,084 3.739 9,792,134 3.377

4/2/2 7,326,185 5.421 8,698,580 5.165 6,713,990 4.925

4/2/3 5,709,090 6.957 6,903,696 6.508 5,448,106 6.070

4/4/2 4,990,699 7.958 6,176,441 7.274 5,014,895 6.594

4/4/3 4,726,300 8.404 6,050,972 7.425 4,952,102 6.678

8/4/2 3,630,749 10.939 4,270,920 10.520 3,317,907 9.967

8/4/3 2,787,675 14.248 3,334,195 13.476 2,693,440 12.278

8/8/2 2,476,073 16.041 3,098,929 14.499 2,552,818 12.954

8/8/3 2,390,627 16.614 3,069,949 14.636 2,538,057 13.029

16/8/2 1,819,489 21.829 2,147,718 20.920 1,682,495 19.655

16/8/3 1,387,157 28.632 1,676,474 26.801 1,384,517 23.885

16/16/2 1,247,988 31.825 1,595,481 28.161 1,338,924 24.698

16/16/3 1,225,668 32.405 1,589,083 28.274 1,335,619 24.760

Table 4.11: Total cycles and throughput for different benchmark scenes

Below, we can see bar charts of each benchmark.
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Figure 4.12: Throughput for Cornell box, 8k photons (BSO/sec)

Figure 4.13: Throughput for Sponza corridor, 8k photons (BSO/sec)

Figure 4.14: Throughput for Sponza atrium, 8k photons (BSO/sec)
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Again, we can see that the throughput generally scales up well with the number

of TSMs, and x/0.5x setups are less efficient than x/x setups.

We can also see from the numbers between Sponza corridor and Sponza atrium,

that with the same number of photons and the same scene file, the location of the

camera and light source make a difference in the number of query points. This in

turn affects the throughput of the data and overall, performance numbers from

Sponza corridor are better than numbers from Sponza atrium.

Area and power efficiency charts are shown below.

Figure 4.15: Throughput/area for Cornell box, 8k photons (MSO/sec/mm2)

Figure 4.16: Throughput/power for Cornell box, 8k photons (BSO/sec/W)
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Figure 4.17: Throughput/area for Sponza corridor, 8k photons (MSO/sec/mm2)

Figure 4.18: Throughput/power for Sponza corridor, 8k photons (BSO/sec/W)

Figure 4.19: Throughput/area for Sponza atrium, 8k photons (MSO/sec/mm2)
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Figure 4.20: Throughput/power for Sponza atrium, 8k photons (BSO/sec/W)

Area and power efficiency graphs also show a similar trend, where the best

setup in terms of hardware cost efficiency is the x/x/2 setup, followed by the

x/x/3 setup. And again, having just one TSM is clearly inefficient, as it shows

vastly lower numbers in the chart.

4.3.3 Throughput evaluation

The previous section showed us some concrete numbers on what the MAPM is

capable of in terms of throughput performance. In this section, we examine the

limiting factors to the theoretical throughput we can get, and try to see how much

performance we can get before hitting these limits.

Using the derivations from Section 4.3.1, we shall use 40 million SO/s to be

the maximum throughput for an optimized software implementation on a top-tier

performance CPU, and 11.588 billion SO/s as the performance of the MPSoC

implementation.

Regarding hardware costs, we shall look at values from Intel’s Haswell chipset

CPU specifications. Haswell is the latest chipset from Intel currently in the mar-

ket, succeeding the Sandy Bridge and Ivy Bridge chipsets. The Haswell desktop

CPUs use the 22 nm process, with 1.4 billion transistors and a 177 mm2 die size.

130



The Core i7 5930K high-end processor, which is expected to be released later in

the year, requests a massive 140 W TDP (Thermal Design Power), whereas less

power intensive but still top performing designs like the Core i7 4770K (June

2013) runs at 84 W, and the low end Celeron G1820T (December 2013) has a

TDP of 35 W. The numbers in Table 4.12 is a list of a few comparison points for

evaluating the throughput limits of the MAPM. All information in the table has

been obtained from [3].

Model TDP (W) Memory bandwidth (GB/s)

Core i7 5930K 140 (not available yet)

Core i7 4770K 84 25.6

Core i5 4670T 45 25.6

Pentium G3430 53 25.6

Celeron G1820T 35 21.3

Table 4.12: Specifications of select Intel Haswell CPUs

The main comparison point for hardware cost will be the Intel Celeron, which

is the low-end processor which sacrifices some performance for a less power-hungry

CPU with higher mobility and longer battery life.

Overall, the simulation data shows that a 16/16/2 setup has performance

numbers that are close to the highest, which come from 16/16/3 setups, but in

terms of hardware cost, is much more efficient than 16/16/3. Therefore, we shall

consider the 16/16/2 setup to be our standard setup and use it for comparison

purposes. We shall assume the hardware setup to be at the clock speed of 1.5

GHz, with 16 TSMs, 16 SOMs, and 2 SOAs per SOM.

We examine how each resource limits the theoretical throughput we can get,

one by one.
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1. Memory bandwidth

To be able to sustain the high throughput, the bandwidth between the

MAPM and the main memory needs to be able to sustain the data trans-

fer that is necessary to read parameters from the memory. To examine the

memory requirements, we look at cache simulation results from four bench-

marks from the previous section: Cornell box with 2k photons, Cornell box

with 8k photons, Sponza corridor with 8k photons, and Sponza atrium with

8k photons.

The cache setup for the simulation is unchanged from Table 4.2 in Section

4.1.3. We count all cache misses and multiply them by the block size to

obtain the total memory fetched. Dividing by the total time will give us the

bandwidth numbers.

Cycles Total memory (B) Bandwidth (GB/s)

Cornell box, 2k 476,341 1,534,784 4.501

Cornell box, 8k 1,247,988 2,055,264 2.301

Sponza corridor, 8k 1,595,481 3,123,904 2.735

Sponza atrium, 8k 1,338,924 3,840,352 4.001

Total 4,658,734 10,554,304 3.165

Table 4.13: Cache simulation results for bandwidth evaluation

This shows us that in order to sustain throughput of 27.674 billion SO/s,

the required memory bandwidth is 3.065 GB/s. This is a much lower value

than the memory bandwidth of recent Intel CPUs, which is around 20-25

GB/s. Comparing it to the limit of 21.3 GB/s for the Intel Celeron G1820T,

this is about 14.4% of the limit.

2. Area limit
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For the 16/16/2 MAPM setup at 1.5 GHz, the area cost estimate is 19.619

mm2. This is about 11.1% of the 177 mm2 die size of the Intel Celeron

G1820T.

3. Power limit

The 16/16/2 MAPM setup has a power requirement of 976.64 Mw. This

is around 2.8% of the Intel Celeron G1820T’s average power dissipation

requirement of 35 W.

In conclusion, memory bandwidth, chip area, and power consumption will

each be a factor on limiting the throughput, but our simulation numbers show

that even with conservative assumptions, the MAPM is capable of easily achieving

27.674 billion SO/s. If we decide to have two 16/16/2 MAPM accelerator units,

it would have a potential possible throughput of 55.348 billion SO/s, at 28.8%

of the bandwidth, 22.2% of the area, and 5.6% of the power consumption of the

low-performance low-power consuming Intel Celeron G1820T.

55.348 billion SO/s would be an improvement of a factor of 1384× over the

software implementation. Compared to the MPSoC implementation, we still have

a 4.78× throughput improvement. This is even more impressive when we con-

sider the hardware cost for the MPSoC version, which uses 64 ARMv4 cores. The

ARM810 CPU, which uses a single ARMv4 core, has an area of 53.5 mm2 [31],

which is already larger than the size of two 16/16/2 MAPM implementation of

39.24 mm2. In terms of throughput per area, the MAPM shows a huge improve-

ment over the MPSoC setup.

However, considering the grand goal of real-time rendering in Full HD, the

MAPM still comes short of 30 trillion SO/s. Using a somewhat high (for a co-

processor) hardware cost limit of the Intel Core i7 4770 at 25.6 GB/s, 177 mm2 die

size, and 84 W TDP, a 16/16/2 MAPM setup would require 12.0% of the memory

bandwidth, 11.1% of the area, and 1.2% of the power cost. With 8 duplicate units,
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we can obtain a throughput of 221.392 billion SO/s, which is about 0.74% of the

processing power necessary for real-time Full HD rendering. With 135 units, we

would be able to obtain 30 trillion SO/s, at a cost of 413.775 GB/s, 2648.565

mm2, and 131.85 W, implying that we still need a couple orders of magnitude of

improvement in order to make this feasible.

134



CHAPTER 5

Summary and future work

5.1 Summary

In this dissertation, we present detailed designs of MAPM, a multi-accelerator

architecture for enhancing the throughput of the 3D rendering algorithm, photon

mapping. MAPM uses online arithmetic, which allows for extremely parallel pro-

cessing, high clock speed and low power cost. Implementation of the design in

VHDL, and behavioral verification of the design using test benches on ModelSim

allowed us to make sure the design is working as intended.

For hardware cost evaluation, we created a conventional parallel circuit with

equivalent functionality using the FloPoCo arithmetic circuit generator, and com-

pared it with the cost of the MAPM modules. In order to obtain hardware cost,

we used Synopsys Design Compiler with a 90 nm component library. With the

same options, MAPM showed a synthesizable clock speed at about 3.5×, dynamic

power consumption of 0.104×, and area cost of 1.799× compared to FloPoCo.

The cycle-accurate simulation code was written in C++, using the Intel Pin

tool library to interact with the original PM code. The data flow through the

MAPM architecture is simulated cycle by cycle, taking into account any stalls

created by the memory. By running simulations on various different configura-

tions of the MAPM with various benchmark files, and combining the data with

the hardware costs from Synopsys tools, we decided that a 16/16/2 setup of

TSMs/SOMs/SOAs at 1.5 GHz shows both good performance and efficiency in
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terms of area and power costs.

Using all the information obtained from the evaluations and simulations, we

compare the cost and performance of the 16/16/2 MAPM setup with recent hard-

ware and other work. Using two 16/16/2 MAPM configurations, we would require

28.8% of the bandwidth, 22.2% of the area, and 5.6% of the power consumption

of the low-end Intel Celeron G1820T, which is an acceptable cost for a potential

throughput of 55.348 billion SO/s. This throughput is an improvement of a factor

of 1384× over the optimized software implementation of [48], and an improve-

ment of 4.78× compared to the MPSoC setup in [17]. This is an improvement

even before we consider the area cost, which is significantly higher for the MPSoC.

From these performance results, along with other evaluation and simulation

results, we conclude that the MAPM shows significant throughput improvement

while allowing for high clock speed and low power cost circuits. However, for the

ultimate goal of real-time photon mapping on Full HD, we still need improvements

of a couple orders of magnitude.

5.2 Future work

These are some considerations for futher work on the MAPM and accelerating

photon mapping.

The current hardware cost numbers for the MAPM is definitely an improve-

ment over conventional parallel architecture, but it still needs improvement before

the ultimate goal of Full HD rendering in real-time can be achieved. One place

we can start is by exploring the benefits of more compact hardware. As explored

in [25] and [16], for pipelined online arithmetic, a truncation error has limited

propagation which can be determined from each circuit. Using this, it is pos-

sible to have a truncated circuit with the same precision with the original full

circuit, which will likely give us a more compact circuit with even lower power
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consumption.

Another point we can consider is reduced precision. The eyesight is one of

the human senses which is quite tolerant to errors, and in previous work [49]

we have compared the hardware cost with reduced precision bits. Evaluating the

throughput gain and hardware cost reduction we can get with a reduced precision,

along with any drop in final image quality would be something that may yield

interesting results.

An area we can still improve a lot on is memory bandwidth, which is one of

the more limiting cost factors of the MAPM. As mentioned in [49], by carefully

encoding the data to work on a bulk of data at once, and reordering instructions

to benefit from this scheme, photon or query point data can be compressed to

2:1 or up to 3:1 compression ratio. Reduced precision, mentioned above, will also

reduce the amount of data transfer. The real gain may come from rearrangement

of shader operations, where improvement of data locality will have a huge gain in

terms of bandwidth. Previous work [51] has already shown that reordering can

reduce the bandwidth requirement of photon mapping by an order of magnitude.
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CHAPTER 6

List of abbreviations and commonly used terms

6.1 Abbreviations

The following is a list of all abbreviations used in this dissertation, in alphabetical

order.

FGR Final Gather Ray

FPS Frames per second

KD-tree K-Dimensional tree

PM Photon Mapping

MAPM Multi-Accelerator for Photon Mapping

RGB Red, Green, Blue

SIMD Single Instruction, Multiple Data

SO Shader Operation

SOA Shader Operation Accelerator

SOM Shader Operation Module

SOP cache Shader Operation – Photon cache

SOQ cache Shader Operation – Query point cache

TDP Thermal Design Power

TP Throughput

TS Tree Search

TSA Tree Search Accelerator

TSM Tree Search Module
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6.2 Mathematical expressions

The following is a list of all mathematical expressions used in this dissertation.

These are related to the IEEE-754 standard floating-point format.

for the IEEE-754 standard floating-point expression f :

f.s the sign bit. 0 if f ≥ 0, 1 if f < 0

f.e the exponent bits

Bf the bias of the exponent.

Bf = 2n−1 − 1 where n is the bit width of f.e

expf the actual exponent value. expf = f.e−Bf

f.m the mantissa bits

f.mwh the mantissa bits with the hidden bit 1 appended

before the most significant bit

fval value of f = (−1)f.s2expf (f.mwh)

f.am aligned mantissa with hidden bit,

used in the Pipelined Comparator in the SOA
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