
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Making Differential Privacy Practical via Modern Privacy Accountings and Data-adaptive 
Analysis

Permalink
https://escholarship.org/uc/item/3b474982

Author
Zhu, Yuqing

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3b474982
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Making Differential Privacy Practical via Modern

Privacy Accountings and Data-adaptive Analysis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yuqing Zhu

Committee in charge:

Professor Yu-Xiang Wang, Chair
Professor William Wang
Professor Lei Li
Dr. Peter Kairouz

December 2023



The Dissertation of Yuqing Zhu is approved.

Professor William Wang

Professor Lei Li

Dr. Peter Kairouz

Professor Yu-Xiang Wang, Committee Chair

October 2023



Making Differential Privacy Practical via Modern Privacy Accountings and

Data-adaptive Analysis

Copyright © 2023

by

Yuqing Zhu

iii



To my family and friends.

iv



Acknowledgements

I would first express my sincere gratitude to my advisor, Professor Yu-Xiang Wang.

I am very fortunate to be one of your first students. Your are the best PhD advisor I

could have hoped for. Your enthusiasm for finding real, meaningful problems in machine

learning has changed the way I see research. You are always there for me, explaining

complex ideas, always encouraging me to share my own thoughts on our projects, working

alongside us late into the night before conference deadlines, and opening my eyes to the

amazing world of privacy in machine learning. These past five years have been filled with

learning, growing, and moments that I will always cherish.

I would also like to thank my committee member, Dr. Peter Kairouz, for your tremen-

dous support and mentorship throught our collaboration, my internship and my PhD

journey. My gratitude also extends to my committee members, Professor William Wang

and Professor Lei Li, for their insightful suggestions regarding this thesis and my career

path.

Throughout the years, I have had the privilege of working with many brilliant re-

searchers. This thesis would not have been possible without the collaborative efforts of

my esteemed collaborators: Xuandong Zhao, Jinshuo Dong, Chong Liu, Rachel Redberg,

Jiachen T. Wang, Chendi Wang, Chuan Guo, Weijie Su, Xiang Yu, Manmohan Chan-

draker, Ruoxi Jia, Prateek Mittal, Yi-Hsuan Tsai, Francesco Pittaluga, Masoud Faraki

and Kamalika Chaudhuri.

My heartfelt thanks go to my mentors during my four internships: Xiang Yu, Shan-

shan Wu, Matthew Joseph, and Huanyu Zhang, for their insightful guidance and support.

I am also grateful for my graduate life in UCSB. My colleagues and friends in UCSB

have made this journey even more memorable. A special thanks to Jianyu Xu, Dan Qiao,

Xuandong Zhao, Chong Liu, Mengye Liu, Ming Yin, Dheeraj Baby, Rachel Redberg,

v



Kaiqi Zhang, Shiyang Li and Hong Wang and many others, for the wondeful times we

shared. I also extend my thanks to my roommates Aiwen Xu, Jinglei Yang and Ling Cai,

for the unforgettable moments we have spent together.

Lastly, I owe a debt of gratitude to my family. To my parents, for their unwavering
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Abstract

Making Differential Privacy Practical via Modern Privacy Accountings and

Data-adaptive Analysis

by

Yuqing Zhu

With increasing ethical and legal concerns on privacy in the era of big data, differen-

tial privacy (DP) has emerged as the de facto gold standard to disguise membership of

individuals with quantiiable privacy guarantee. In DP, the theoretical privacy guarantee

directly corresponds to the amount of noise and randomness that must be introduced

into a DP mechanism. Therefore, to employ DP algorithms in the real world, it is crucial

to develop a tight characterization of privacy analysis. This thesis aims to bridge the gap

between theory and DP deployment by refining the constants in privacy guarantees. In

the first part of the thesis, we focus on modern privacy accountings, which characterize

privacy degradation through fine-grained mechanism-specific analysis, driving much of

the recent success in DP deployments. We enhance these modern privacy accountings

by generalizing the PLD formalism to handle adaptive composition and amplification by

sampling, two foundamental components in the design of DP algorithms. Additionally,

we derive nearly optimal bounds for characterizing privacy amplification by sampling in

the Rényi DP framework, which directly translate into practical enhancements in private

deep learning. In the second part of the thesis, we address the mathematical slack in

privacy analysis by incorporating data-adaptive analysis, enabling less noise injection

when the input dataset is deemed “nice”.
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Chapter 1

Introduction and background

1.1 Introduction

Machine learning models memorize training data, and this poses privacy risks when

training data is sensitive. For example, recent research shows that given query access to

GPT-2 models, they are able to recover hundreds of training data points including email

address and phone number. As more and more sensitive data is being collected and used,

privacy is becoming an increasingly vexing for researchers and policymakers.

The potential privacy issues are not limited to the data release itself but also inferences

that can be made about individuals. To formalize privacy requirements, GDPR, the most

well-known EU privacy guidance, imposes several mandates for firms to retain personal

data. Specifically, GDPR requests “processing of personal data in such a manner that the

personal data can no longer be attributed to a specific data”, which is also known as data

anonymity. To preserve individual privacy, classic approaches involve anonymizing user

data by removing personal identifications from the dataset. However, this approach is

vulnerable under linkage attacks — where an adversary leverages additional public infor-

mation to re-identify an anonymized dataset. One example of data anonymization failing
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Introduction and background Chapter 1

is the Netflix competition. Netflix released a user dataset in 2009, where each user data

was fully anonymized. Unfortunately, researchers successfully re-identified the Netflix

dataset through a cross reference to a publicly available IMDb dataset, see [Narayanan

and Shmatikov, 2006].

These concerns force us to confront a fundamental question: How can we gain insights

from increasingly massive datasets while providing rigorous privacy guarantees to the

individuals whose data we are using?

Differential privacy (DP) [Dwork, 2006] is one of the most promising approaches aims

at answering this questions with many good properties; it is a quantifiable and com-

posable definition of privacy that provides provable guarantees against identifications of

individuals in a private dataset. Informally, a differentially private mechanism imposes

constraints on the extent to which a single data point can influence the output distri-

bution. This is accomplished by introducing randomness into the DP mechanisms (e.g.,

adding noise), which enables a certain plausible deniability for any individual data in the

dataset. The privacy guarantee is parametrized by a parameter ε, which measures the

maximum impact of one individual’s data on the output distribution. In other words, a

smaller ε leads to more similar output distributions (when any individual data point is

added / removed), resulting in a stronger privacy guarantee. The DP guarantee places an

information-theoretic limit on an adversary’s ability to infer whether a specific individual

is present in the dataset.

As of today, DP has become the de facto standard for defining privacy and we have

seen several real-world deployment of DP at Google[Erlingsson et al., 2014], Apple [Apple,

Differential Privacy Team, 2017] and U.S. Census Bureau [Rodriguez et al.]. DP is now

undergoing an exciting transition from theory to practice, and the goal of my research is

to make it more practical to the extent that it can truly solve real-life privacy problems.

In this thesis, we explore two directions to enhance DP mechanisms with better privacy

2



Introduction and background Chapter 1

and utility trade-offs: modern privacy accountings and data-adaptive analysis. Privacy

accountings aims at characterizing the privacy degration over compositions, which is a

fundamental topic in dfferential privacy. Classic privacy accountings does not tightly

handle composition or privacy amplification by sampling, as it relies solely on a single

pair (ε, δ)-DP to characterize each DP mechanism. The key idea behind recent modern

privacy accountings is the use of a function to precisely describe the privacy guarantee

of each DP mechanism, leading to substantially tighter bounds. In this thesis, we delve

into two modern privacy accountings: Rényi differential privacy and the PLD formalism.

We investigate their optimal bounds under composition / amplification by sampling.

Second, data-adaptive DP algorithms stand as another classic recipe to improve the

utility of DP mechanisms, allowing for less noise injection when the input dataset is nice.

In this thesis, we generalize two classic DP algorithms ‘propose-test-release” and the

“sparse-vector-technique” with data adaptive analysis, which significantly broaden their

applications in real-world DP scenarios.

1.1.1 Optimal bounds in modern privacy accountings

Privacy amplification by subsampling under modern privacy accountings framework

is the main workhorse behind recent success in differentially private deep learning. In

this part, we provide a nearly optimal amplificaiton by (Poisson) sampling bound under

the Rényi DP framework. We show that our results directly translate into practical

improvements in private deep learning. Secondly, we propose a unification of recent

advances in modern privacy accountings (Rényi DP, f-DP and the PLD formalism) via the

characteristic function. We show that our approach allows natural adaptive composition

as Rényi DP, provides exactly tight privacy accounting like PLD. This part is adapted

from the paper titled “Poisson Subsampled Rényi Differential Privacy” [Zhu and Wang,

3



Introduction and background Chapter 1

2019] and the paper titled “Optimal Accounting of Differential Privacy via Characteristic

Function” [Zhu et al., 2022].

1.1.2 Modern privacy accountings with private deep learning

In Part 2, we focus on the problem of improving private deep learning with better

algorithms. We propose Private k-Nearest Neighbor (Private-kNN), the first practical

differentially private deep learning solution for large-scale computer vision that achieves

theoretically meaningful DP guarantees (ε < 1). Our approach allows the use of privacy-

amplification by subsampling and iterative refinement of the kNN feature embedding.

Moreover, we revisit the problem of private predcition and propose a new algorithm

named Individual Kernelized Nearest Neighbor (Ind-KNN). Ind-KNN is easily updatable

over dataset changes and it allows precise control of the Renyi DP at an individual user

level — a user’s privacy loss is measured by the exact amount of her contribution to

predictions; and a user is removed if her prescribed privacy budget runs out. Our results

show that Ind-KNN consistently improves the accuracy over existing private prediction

methods for a wide range of ε on four vision and language task. This part is adapted from

the paper titled “Private-knn: Practical Differential Privacy for Computer Vision” [Zhu

et al., 2020] and the paper titled “Privacy Prediction Strikes Back!” Private Kernelized

Nearest Neighbors with Individual Rényi Filter” [Zhu et al., 2023].

1.1.3 Making classic DP mechanisms practical via data-adaptive

analysis

In Part 3, we focus on improving the classic DP algorithms with better utilities

via data-adaptive analysis. The “Propose-Test-Release” (PTR) is a powerful tool for

deisigning data-adaptive DP algorithms, but applies only to noise-adding mechanisms.

4



Introduction and background Chapter 1

We extend PTR to a more general setting by privately testing data-dependent privacy

losses rather than local sensitivity, hence making it applicable beyond the standard noise-

adding mechanisms. Our results also broaden the applicability of private hyperparameter

tuning in enabling joint selection of DP specific parameters (e.g., noise level) and native

parameters of the algorithm (e.g., regularization). The Sparse Vector Technique (SVT)

is a foundamental tool in differential privacy (DP) that allows the algorithm to screen

potentially an unbounded number of adaptively chosen queries while paying a cost of

privacy only for a small number of queries that passes a predefined threshold. We revisit

SVT from the lens of Rényi differential privacy, which results in new privacy bounds,

new theoretical insight and new variants of SVT algorithm with better utilies.

This part is adapted from the paper titled “Improving Sparse Vector Technique with

Rényi Differential Privacy” [Zhu and Wang, 2020] and the paper titled “Generalized PTR:

User-Friendly Receipes for Data-Adaptive Algorithms with Differential Privacy” [Red-

berg et al., 2023].

1.2 Background on Differential Privacy

This section imtroduces the definition of differential privacy (DP) and the relevant DP

mechanisms that will be used throught this thesis. We begin with the formal definition

of differential privacy, then describle a few important properties of DP. We then detail

selected DP mechanisms, which will bed served as building blocks in this thesis.

1.2.1 Defining Differential Privacy

Differential privacy (DP) is a quantifiable and composable definition of privacy that

provides provable guarantees against identifications of individuals in a data set. It im-

poses constraints on the extent to which a single data point can influence the resulting

5



Introduction and background Chapter 1

output. We define two dataset D and D′ are neighboring if they differ in at most one

entry.

Definition 1.2.1 (Differential privacy[Dwork et al., 2006]). A randomized algorithmM

is (ε, δ)-differentially private (DP) if for any pair of neighboring dataset D and D′, and

any O ⊂ Range(M),

Pr[M(D) ∈ O] ≤ eε · Pr[M(D′) ∈ O] + δ.

. The definition places an information-theoretic limit on an adversary’s ability to

infer whether the input dataset is D or D′, and as a result, guarantees a degree of

plausible deniability to any individual in the population. ε, δ are privacy loss parameters

that quantify the strength of privacy protection. In practice, we consider the privacy

guarantee marginally meaningful if ε ≈ 1 and δ = o(1/n)1, where n denotes the size of

data set and o(·) is the standard little-o notation. When δ = 0, we say that M obeys

ε-(pure) DP.

One important property of DP relevant to this thesis is that it composes gracefully

over multiple access. Roughly speaking, if we run k sequentially chosen (ε, δ)-DP algo-

rithm on a dataset, the overall composed privacy loss is (Õ(
√
kε), kδ + δ′)-DP where the

Õ notation hides logarithmic terms in k, 1/δ and 1/δ′.

1It is traditionally required that δ to be cryptographically small, e.g., o(poly(1/n)), but in practice,
with a big data set, δ = 1/n2 is typically considered acceptable.

6
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1.3 An exmple of modern privacy accounting: Rényi

Differential Privacy

Renyi Differential Privacy and Moments Accountant. Renyi differential privacy

(RDP) is a refinement of DP that uses Renyi-divergence as a distance metric in the place

of the sup-divergence.

Definition 1.3.1 (Rényi Differential Privacy [Mironov, 2017]). We say that a mechanism

M is (α, ε)-RDP with order α ∈ (1,∞) if for all neighboring datasets X,X ′

Dα(M(D)‖M(D′))

:=
1

α− 1
logEθ∼M(D′)

[(
pM(D)(θ)

pM(D′)(θ)

)α]
≤ ε.

Through this thesis, we do not treat each α in isolation but instead take a func-

tional view of RDP where we use εM(α) to denote that randomized algorithm M obeys

(α, εM(α))-RDP. The function εM(·) can be viewed as a more elaborate description of

the privacy loss incurred by running M. It subsumes pure-DP as an RDP algorithm is

ε(+∞)-DP.

The moments accountant technique [Abadi et al., 2016] can be thought of as a data

structure that keeps track of the RDP (function) for the sequence of data accesses.

Composition is trivial in RDP as

εM1×M2(·) = [εM1 + εM2 ](·).

At any given time, let the composition of all algorithms beingM, the moments accoun-

7



Introduction and background Chapter 1

tant can be used to produce an (ε, δ)-DP certificate using

δ ⇒ ε : ε(δ) = min
α>1

log(1/δ)

α− 1
+ εM(α− 1), (1.1)

ε⇒ δ : δ(ε) = min
α>1

e(α−1)(εM(α−1)−ε). (1.2)

This approach is simpler and often produces more favorable composed privacy parame-

ters than the advanced composition approach for (ε, δ)-DP. As the moments accountant

gain popularity, many classes of randomized algorithms with exact analytical RDP are

becoming available, e.g., the exponential family mechanisms [Geumlek et al., 2017].

(ε, α)-RDP implies (ε(α) + log(1/δ)
α−1

, δ)-DP, thus by viewing RDP as a function εM(·),

we can find the best ε parameter by optimizing over α. Tighter conversion formula had

been proposed recently [Balle et al., 2020, Asoodeh et al., 2021].

8
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Chapter 2

Privacy-amplification by (Poisson)

subsampling with Rényi DP

2.1 Introduction

“Privacy-amplification by Subsampling” and the Renyi Differential Privacy are the

two fundamental techniques that have been driving many exciting recent advances in

differentially private learning [Abadi et al., 2016, Park et al., 2016, Papernot et al., 2018,

McMahan et al., 2018].

One prominent use case of both techniques is the NoisySGD algorithm [Song et al.,

2013, Bassily et al., 2014, Wang et al., 2015, Foulds et al., 2016, Abadi et al., 2016] for

differentially private deep learning. NoisySGD iteratively updates the model parameters

as follows:

θt+1 ← θt − ηt

(∑
i∈I

∇fi(θt) + Zt

)
(2.1)

where θt is the model parameter at tth step, ηt is the learning rate, fi is the loss function

10
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of data point i, ∇ is the standard gradient operator, I ⊂ [n] is a randomly subsampled

index set and Zt ∼ N (0, σ2I). When ∇fi(θt) is bounded (or clipped) in `2-norm, the

Gaussian noise-adding procedure is known to ensure (ε, δ)-DP for this iteration. ε, δ are

nonnegative numbers that quantifies the privacy loss incurred from running the algorithm

(the smaller the better). But this is clearly not good enough as it takes many iterations

to learn the model, and the privacy guarantee deteriorates as the algorithm continues.

This is where the “privacy-amplification” and RDP become useful.

The principle of “privacy-amplification by subsampling” works seamlessly with NoisySGD

as it allows us to exploit the randomness in choosing the minibatch I for the interest of a

stronger privacy guarantee. Roughly speaking, if the minibatch I is obtained by selecting

each data point with probability γ, then we can “amplify” the privacy guarantee to a

stronger (O(γε), γδ)-DP.

The RDP framework provides a complementary set of benefits that reduce the overall

privacy loss over the multiple iterations we run NoisySGD. Notice that the vanilla “strong-

composition” is stated for any (ε, δ)-DP algorithm. By using the moments accountant

techniques [Abadi et al., 2016] that keep track of the RDP of a specific algorithm —

subsampled-Gaussian mechanism, one can hope to more efficiently use the privacy budget

than what an optimal algorithm would be able to using only (ε, δ)-DP [Kairouz et al.,

2015].

In general, however, calculating the RDP for the procedure that first subsamples the

data set then apply a randomized mechanismM is highly non-trivial. An exact analytical

formula is not known even for the widely-used subsampled-Gaussian mechanism. Existing

asymptotic bounds are typically off by a constant, and only apply to a restricted subset

of the parameter regimes. To get the most mileage out of the moments accountant,

practitioners often resort to numerical integration which calculates and keep track of a

fixed list of RDP values [Abadi et al., 2016, Park et al., 2016].

11
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Wang et al. [2019b] took a first stab at this problem and provided a general “RDP-

amplification” bound that applies to any M. Their result, however, is still a constant

factor away from being optimal. A more subtle difference is that Wang et al. [2019b]

considered “Subsampling without Replacements” — finding a random subset of size m

at random — rather than the “Poisson subsampling” that was used by Abadi et al.

[2016], which includes each data points independently at random with probability γ.

The difference is substantial enough that it introduces several new technical hurdles.

In this work, we provide the first general result of “privacy-amplification” of RDP via

Poisson subsampling. Our main contributions are the following.

1. First, we prove a nearly optimal upper bound on the RDP of M◦ PoissonSample

as a function of the sampling probability γ, RDP order α, and the RDP of M up

to α. The bound matches a lower bound up to an additive factor of log(3)/(α− 1),

where α is the order of RDP. When α is small relative to 1/γ with γ being the

sampling probability, our upper bound is optimal up to a multiplicative factor of

1+O(γαeε(α)). The result tightens and generalizes Lemma 3 of [Abadi et al., 2016],

which addresses only the case whenM is Gaussian mechanism and applies only to

the cases when γ is very small.

2. Second, we identify a novel condition on the odd order Pearson-Vajda χα-Divergences

under which we can exactly attain the lower bound. We show that Gaussian mech-

anism and Laplace mechanism fall under this category, but there exists M that

samples from an exponential family distribution where the condition is false and

the lower bound is not attainable. Practically, our analytical characterization sim-

plifies the moments accountant approach for differentially private deep learning by

avoiding numerical integration and pre-specifying a list of moments. On the the-

ory front, our result corroborates the observation of Wang et al. [2019b] that the

12
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Pearson-Vajda Divergences are natural quantities for understanding the subsam-

pling in differential privacy.

3. Lastly, knowing that exactly evaluating the analytical subsampled RDP bound of

αth order takes α calls of the RDP subroutine εM(·), we propose an efficiently τ -

term approximation scheme that uses only τ call of εM(·). We conduct numerical

experiments to compare our general bounds, tight bound, and τ -term approxima-

tions for a variety of problem setup and showcasing the use of these bounds in

moments accountant-based strong composition.

Figure 2.1: Illustration of the subsampled-mechanism and the key underlying idea
that enables “privacy-amplification”. The diagram on the left illustrate the two parts
of randomization. Part (1): PoissonSample: Each person toss a random coin to select
whether they are included in the data set; Part (2): The subsampled data set is
analyzed by a randomized algorithm M. The figure on the right illustrates the fact
that the distribution of output is a mixture distribution indexed by the different
potential subset selected by the subsampling, and that when we change the original
data set by adding or removing one person, only a small fraction of the mixture
components that happen to be affected by that change will be different, hus opening
up the possibility of “privacy amplifying”.

2.2 Background and Problem Setup

In this section, we provide some background on differential privacy, privacy-amplification

by subsampling, RDP and the moments accountant technique so as to formally set up

13
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the problem. We will also introduce symbols and notations as we proceed.

One important property of DP relevant to this paper is that it composes gracefully

over multiple access. Roughly speaking, if we run k sequentially chosen (ε, δ)-DP al-

gorithm on a dataset, the overall composed privacy loss is (Õ(
√
kε), kδ + δ′)-DP where

the Õ notation hides logarithmic terms in k, 1/δ and 1/δ′. Part of the reason for writ-

ing this paper is to enable sharper algorithm-dependent composition for a popular class

of algorithms that subsamples the data first. Before we get there, let us describe the

RDP framework and the moments accountant that the make these algorithm-dependent

composition possible.

Moments Accountant.

As a side note, the initial moments accountant [Abadi et al., 2016] keeps track of

a vector of log-moment (equivalent to RDP up to a rescaling) associated with a pre-

defined list of order αs. Wang et al. [2019b] observes that these optimization problems

are unimodal and proposes an analytical moments accountant that solves (1.1) and (1.2)

using bisections can be solved using bisection with a doubling trick. This avoids the

need to pre-define the list of moments to track. Wang et al. [2019b] also observes that

(α− 1)ε(α) is a convex function in α and any such discretization scheme (e.g., all integer

α) can be extended into a continuous function in α by simply doing linear interpolation.

Privacy amplification by subsampling. As we discussed in the introduction, “pri-

vacy amplification by subsampling” is the other workhorse (besides RDP / moments

accountant) that drove much of the recent advances in differentially private deep learn-

ing. We would like to add that, it was also used as a key technical hammer for analyzing

DP algorithms for empirical risk minimization [Bassily et al., 2014] and Bayesian learning

[Wang et al., 2015], as well as for studying learning-theoretic questions with differential

privacy constraints [Kasiviswanathan et al., 2011, Beimel et al., 2013, Bun et al., 2015,

Wang et al., 2016].

14
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We now furnish a bit more details on this central property and highlight some sub-

tleties in the types. The privacy amplification lemma was derived in [Kasiviswanathan

et al., 2011, Beimel et al., 2013, Li et al., 2012], where all three authors adopted what

Balle et al. [2018] calls Poisson subsampling:

Definition 2.2.1 (PoissonSample). Given a dataset X, the procedure PoissonSample

outputs a subset of the data {xi|σi = 1, i ∈ [n]} by sampling σi ∼ Ber(γ) independently

for i = 1, ..., n.

The procedure is equivalent to the “sampling without replacement” scheme with

m ∼ Binomial(γ, n). At the limit of n → ∞, γ → 0 while γn → λ, the Binomial

distribution converges to a Poisson distribution with parameter λ. This is probably the

reason why it is called Poisson sampling to begin with1.

Here we cite the tight privacy amplification bound for PoissonSample as it first ap-

pears.

Lemma 2.2.2 ([Li et al., 2012, Theorem 1] ). If M is (ε, δ)-DP, then M′ that applies

M◦ PoissonSample obeys (ε′, δ′)-DP with ε′ = log
(
1 + γ(eε − 1)

)
and δ′ = γδ.

The lemma implies that if the base privacy loss ε ≤ 1, then the amplified privacy loss

obeys that ε′ ≤ 2γε.

Poisson subsampling is different from the “sampling without replacement” scheme

that outputs a subset with size γn uniformly at random. Interestingly, it was shown that

the latter also enjoys the same bound with respect to the “replace-one” version of the

DP definition. In general, we find that the “add/remove” version of the DP definition

works more naturally with Poisson sampling, while the “replace-one” version works well

1We noticed that the original definition of Poisson sampling in the survey sampling theory is slightly
more general. It allows a different probability of sampling each person [Särndal et al., 2003]. Our results
apply trivially to that setting as well with a personalized RDP bound for individual i that depends on
γi.
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with “sampling without replacement”. We defer a more comprehensive account of the

subsampling lemma for (ε, δ)-DP to [Balle and Wang, 2018] and the references therein.

Subsampled RDP and friends. A small body of recent work focuses on deriving

algorithm-specific subsampling Lemma so that this classical wisdom can be combined

with more modern techniques such as RDP and Concentrated DIfferential privacy (CDP)

[Bun and Steinke, 2016] (also [Dwork and Rothblum, 2016]). Abadi et al. [2016] obtains

the first such results for subsampled-Gaussian mechanism under Poisson subsampling.

Wang et al. [2019b] provides a general subsampled RDP bound that supports any M

but under the “sampling without replacement” scheme. The objective of this paper is

to come up with results of a similar flavor for the Poisson sampling scheme. The main

differences in our setting include:

(a) Poisson sampling goes naturally with add/remove version of the DP definition,

which is independent to the size of the data.

(b) The size of the random subset m itself is a Binomial random variable.

(c) It is asymmetric, the Renyi divergence of P against Q is different from the Renyi

divergence of Q against P .

As we will see in the our results, the third difference brings about some major technical

challenges.

Finally, Bun et al. [2018] studies subsampling in CDP with a conclusion that subsam-

pling does not amplify the CDP parameters in general. A truncated version of CDP was

then proposed, called tCDP, which does get amplified up to a threshold. CDP and tCDP

are closely related to RDP in that they are linear upper bounds of ε(α) on (1,∞] and on

(1, τ ] for some threshold τ respectively. RDP captures finer information about the un-

derlying mechanism. The experimental results in [Wang et al., 2019b] suggest that unlike

the case for the Gaussian mechanism (in which case CDP is tight), there isn’t a good
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linear approximation of ε(α) for the subsampled-Gaussian mechanism due to the phase

transition. Our results on the Poisson-sampling model echoes the same phenomenon.

More symbols and notations. We end the section with a quick summary of the no-

tations that we introduced. X,X ′ denotes two neighboring datasets. M is a randomized

algorithm and εM(·) is the RDP function ofM (the subscript may be dropped when it’s

clear from the context). n,m are reserved for the size of the original and subsampled

data. We note that neither is public and m is random. Greek letters α, γ, ε, δ are reserved

for the order of RDP, the sampling probability as well as the two privacy loss parameters.

M◦PoissonSample(X) is used to mean the composition functionM(PoissonSample(X)).

Let us also define a few shorthands. We will denote p to be the density function of

M◦ PoissonSample(X), and q to be the density from data set M◦ PoissonSample(X ′).

Similarly, we will define µ0 and µ1 as two generic density functions ofM(X) andM(X ′).

2.3 Main results

Before we present our main result, we would like to warn the readers that the presented

bounds might not be as interpretable. We argue that this is a feature rather than an

artifact of our proof because we need the messiness to state the bound exactly. These

bounds are meant to be implemented to achieve the tightest possible privacy composition

numerically in the Moments Accountant, rather than being made easily interpretable.

After all, “constant matters in differential privacy!” For the interest of interpretability, we

provide figures that demonstrate the behaviors of the bound for prototypical mechanisms

in practice.

Theorem 2.3.1 (General upper bound). LetM be any randomized algorithm that obeys
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(α, ε(α))-RDP. Let γ be the subsampling probability and then we have for integer α ≥ 2,

εM◦PoissonSample(α) ≤ 1

α− 1
log

{
(1− γ)α−1(αγ − γ + 1)

+

(
α

2

)
γ2(1− γ)α−2eε(2) + 3

α∑
`=3

(
α

`

)
(1− γ)α−`γ`e(`−1)ε(`)

}
.

The proof is revealing but technically involved. One main difference from Wang

et al. [2019b] is that in Poisson sampling we need to bound both Dα(p‖q) and Dα(q‖p).

Existing arguments via the quasi-convexity of Renyi divergence allows us to easily bound

Dα(p‖q) tightly using RDP for the case when p has one more data points than q, but

Dα(q‖p) turns out to be very tricky. A big part of our novelty in the proof is about

analyzing Dα(q‖p). We defer more details of the proof to d 2.5.1.

Theorem 2.3.2 (Lower bound). M and pairs of adjacent data sets such that

εM◦PoissonSample(α) ≥ 1

α− 1
log

{
(1− γ)α−1(αγ − γ + 1)

+
α∑
`=2

(
α

`

)
(1− γ)α−`γ`e(`−1)ε(`)

}
.

Proof: The construction effectively follows Proposition 11 of [Wang et al., 2019b],

while adjusting for the details. Let M be Laplace noise adding of a counting query

f(X ′) =
∑

x∈X′ 1[x > 0]. Let everyone in the data set X ′ obeys that x < 0. In the

adjacent dataset X ′ = X ∪ {xn+1} with xn+1 > 0. Let µ0 be the Laplace distribution

centered at 0, µ1 be the one that is centered at 1. Then we know that M(X ′) ∼ µ0 = q

and M(X) (1− γ)µ0 + γµ1 = p. It follows that

Eq[(p/q)α] = Eµ0 [((1− γ) + γµ1/µ0)α]

=
α∑
`=0

(
α

`

)
(1− γ)α−`γ`Eµ0 [(µ1/µ0)`].

18



Privacy-amplification by (Poisson) subsampling with Rényi DP Chapter 2

By definition Eµ0 [(µ1/µ0)`] = e(`−1)D`(µ0‖µ1). which the RDP bonud ε(`) is attained by

µ0, µ1, then we have constructed one pair of p, q, which implies a lower bound for RDP

of M◦ PoissonSample.

Note that the only difference between the upper and lower bounds are a factor of 3

on the third summand in side the logarithm. In the regime when γαeε(α) � 1 (in which

case the third summand is much smaller than the second), the upper and lower bound

match up to a multiplicative factor of 1 + O(γαeε(α)). In all other regimes, the upper

and lower bounds match up to an additive factor of log(3)
α−1

. The results suggest that we

can construct a nearly optimal moment accountant.

Remark 2.3.3 (Nearly optimal Moment Accountant). This implies that if any algorithm

with the help of an oracle that calculates the exact RDP for M is able to prove an

(ε, δ)-DP for the Poisson subsampled RDP mechanism, then the RDP upper bound we

construct using Theorem 2.3.1 will lead to an (ε, 3δ)-DP bound for the same mechanism.

Moreover, we show that for many randomized algorithms (including the popular Gaus-

sian mechanism and Laplace mechanism) that satisfy an additional assumption, we can

strengthen the upper bound further and exactly match the lower bound for all α.

Theorem 2.3.4 (Tight upper bound). Let M be a randomized algorithm with up to αth

order RDP ε(α) <∞. If for all adjacent data sets X ∼ X ′, and all odd 3 ≤ ` ≤ α,

Dχ`(M(X)‖M(X ′)) := EM(X′)

(
M(X)

M(X ′)
− 1

)`
≥ 0, (2.2)

then the lower bound in Theorem 2.3.2 is also an upper bound.

The proof of this theorem is presented in Appendix 2.5.1

In the theorem, M(X)
M(X′)

− 1 is a linearized version of the privacy random variable

log M(X)
M(X′)

and Dχ`(M(X)‖M(X ′)) is the Pearson-Vajda χ` pseudo-divergence [Vajda,
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1973], which has more recently been used to approximate any f -divergence in [Nielsen

and Nock, 2014]. The related |χ`| version of this divergence is identified as the key

quantity natural for studying subsampling without replacement [Wang et al., 2019a].

The non-negativity condition requires, roughly speaking, the distribution of the lin-

earized privacy loss random variable M(X)
M(X′)

− 1 to be skewed to the right.

The following Lemma provides one way to think about it.

Lemma 2.3.5. Let π, µ be two measures that are absolute continuous w.r.t. each other

and let α ≥ 1.

Eµ[(π/µ− 1)α] = Eπ[(π/µ− 1)α−1]− Eµ[(π/µ− 1)α−1].

Proof: Eµ[(π/µ− 1)α] = Eµ[(π/µ− 1)(π/µ− 1)α−1] = Eπ[(π/µ− 1)α−1]−Eµ[(π/µ−

1)α−1]

The lemma implies that (2.2) holds if an only if for all even 2 ≤ ` ≤ α

EM(X)

(
M(X)

M(X ′)
− 1

)`
≥ EM(X′)

(
M(X)

M(X ′)
− 1

)`

for all pairs of X,X ′.

This should intuitively be true for most mechanisms because we know from nonneg-

ativity that M(X)
M(X′)

− 1 ≥ −1, which poses a hard limit to which you can be skewed to

the left. Indeed, we can show that the condition is true for the two most widely used DP

procedure.

Proposition 2.3.6. Condition (2.2) is true when M is the Gaussian mechanism and

Laplace mechanism.

The proof, given in Appendix 2.5.2, is interesting and can be used as recipes to qualify

other mechanisms for the tight bound. The main difficulty of checking this condition is
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Figure 2.2: Negative χα divergence in Poisson distribution.

in searching all pairs of neighboring data sets and identify one pair that minimizes the

odd order moment. The convenient property of noise-adding procedure is that typically

the search reduces to a univariate optimization problem of the sensitivity parameter.

One may ask, whether the condition is true in general for any randomized algorithm

M? The answer is unfortunately no. For example, Nielsen and Nock [2014] constructed

an example of two Poisson distributions with negative χ3-divergence (see Figure 2.2 for

an illustration.) This also implies that for some M, we can derive a lower bound that

is greater than that in Theorem 2.3.2 by simply toggling the order of X and X ′. As a

result, if one needs to work out the tight bound, the condition needs to be checked for

each M separately.

Finally, we address the computational issue of implementing our bounds in moments

accountant. Naive implementation of Theorem 2.3.1 will easily suffer from overflow or

underflow and it takes α calls to the RDP oracle εM(·) before we can evaluate one RDP

of the subsampled mechanism at α. This is highly undesirable. The following theorem
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provides a fast approximation bound that can be evaluated with just 2τ calls to the RDP

oracle of M. The idea is that since either it is the first few terms that dominates the

sum or the last few terms that dominates the sum, we can just compute them exactly

and calculate the remainder terms with a more easily computable upper bound.

Theorem 2.3.7 (τ -term approximation). The expression in Theorem 2.3.2 (therefore

Theorem 2.3.4) can be bounded by

εM◦PoissonSample(α) ≤ 1

α− 1
log
{

(1− γ)α(1− e−ε(α−τ))

+ e−ε(α−τ)(1− γ + γeε(α−τ))α

−
τ∑
`=2

(
α

`

)
(1− γ)α−`γ`(e(`−1)ε(α−τ) − e(`−1)ε(`))

+
α∑

`=α−τ+1

(
α

`

)
(1− γ)α−`γ`(e(`−1)ε(`) − e(`−1)ε(α−τ))

}
.

A similar bound can be stated for the general upper bound in Theorem 2.3.1, which

we defer to Appendix 2.5.3.

Remark 2.3.8 (Numerical stability). The bounds in Theorem 2.3.1 and 2.3.4 can be writ-

ten as the log − sum− exp form, i.e., softmax. The numerically stable way of evaluating

log − sum− exp is well-known. The bound in Theorem 2.3.7, though, have both posi-

tive terms and negative terms. We choose to represent the summands in the log term

by a sign, and the logarithm of its magnitude. This makes it possible for us to use

log − diff − exp and compute the bound in a numerically stable way.

2.4 Experiments and Discussion

In this section, we conduct various numerical experiments to illustrate the behaviors

of the RDP for subsampled mechanisms and showcasing its usage in moments accountant
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Figure 2.3: The RDP parameter (ε(α)) of three subsampled mechanisms as a function
of order α. The subsampling rate γ = 0.001 in all the experiments. The upper six
figures demonstrate the comparison of general upper bound with other methods under
high and low privcy regime. Note that moment σ = 5, b = 2, p = 0.6. For Approximate
RDP upper bound obtained through Theorem 2.3.7, and the corresponding tight upper
bound in possion subsample case is represented as the black curve.

for composition. We will have three set of experiments. (1) We will just plot our RDP

bounds (Theorem 2.3.1, Theorem 2.3.2) as a function of α. (2) We will compare how

close the τ -term approximations approximate the actual bound. (3) We will build our

moments accountant and illustrate the stronger composition that we get out of our tight

bound.

Specifically, for each of the experiments above, we replicate the experimental setup

of which takes the base mechanism M to be Gaussian mechanism, Laplace mechanism

and Randomized Response mechanism. Their RDP formula are worked out analytically
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[Mironov, 2017] below:

εGaussian(α) =
α

2σ2
,

εLaplace(α) =
1

α− 1
log((

α

2α− 1
)e
α−1
b + (

α− 1

2α− 1
)e

−α
b for α > 1,

εRandResp(α) =
1

α− 1
log(pα(1− p)1−α + (1− p)αp1−α) for α > 1,

where parameter σ, b, p are the standard parameters for Gaussian, Laplace and Bernoulli

distributions.

Following Wang et al. [2019a], we will have two sets of experiments with “high noise,

high privacy” setting σ = 5, b = 2, and p = 0.6 and “low noise, low privacy” setting using

σ = 1, b = 0.5, p = 0.9. These parameters are chosen such that the ε-DP or (ε, δ)-DP of

the base mechanisms are roughly ε ≈ 0.5 in the high privacy setting or ε ≈ 2 in the low

privacy setting.

We will include benchmarks when appropriate. For example, we will compare to

Lemma 3 of Abadi et al. [2016] whenever we work with Gaussian mechanisms. Also,

we will compare to the upper bound of Wang et al. [2019a] for subsample without re-

placements. Finally, we will include the more traditional approaches of tracking and

composing privacy losses using simply (ε, δ)-DP. We will see that while the moments

accountant approach does not dominate the traditional approach, it does substantially

reduces the aggregate privacy loss for almost all experiments when we compose over a

large number of rounds.

Comparing RDP bounds. The results on the RDP bounds are shown in the first two

rows of Figure 2.3. First of all, the RDP of subsampled Gaussian mechanism behaves very

differently from that of the Laplace mechanism, There is a phase transition about the

subsampled-Gaussian mechanism that happens around αγeε(α) ≈ γ−1. Before the phase

transition the RDP is roughly O(γ2α2(eε(2) − 1)), the RDP quickly converges to ε(α),

which implies that subsampling has no effects. This kind of behaviors cannot be captured
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(a) Gaussian mechanism (σ = 5) (b) Laplace mechanism (b = 2) (c) Randomized response (p =
0.6)

(d) Gaussian mechanism (σ = 1) (e) Laplace mechanism (b = 0.5) (f) Randomized response (p =
0.9)

Figure 2.4: Illustration of the use of our bounds in moments accountant. We plot
the the privacy loss ε for δ = 1e − 8 (using (1.1)) after k rounds of composition.
The x-axis is the number of composition k,and the y-axis is the privacy loss after k’s
composition. The green curve is based on general upper bound for all parametrized
random mechanism obtained through Theorem 2.3.1. Short hand MA refer to “mo-
ment accountant”. The upper three figures are in high privacy regime with pa-
rameter σ = 5, b = 2, p = 0.6, the lower three are in low privacy regime with
σ = 1, b = 0.5, p = 0.9.

through CDP. On the other hand, for ε-DP mechanisms, the RDP increases linearly with

α before being capped what the standard privacy amplification by Lemma 2.2.2. Relative

to existing bounds, our tight bound closes the constant gap, while our general bound is

also nearly optimal as we predict. It is worth noting that the bound in Abadi et al. [2016]

only applies to up to a threshold of α.

τ-term approximation. The third and fourth row illustrates the quality of approx-

imation as we increase τ . With τ = 50, the results nearly matches the RDP bound

everywhere, except that in the Gaussian case, the phase-transition happened a little bit

earlier.
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Usage in moments accountant. The experiments on moments accountant are shown

in Figure 2.4. Our result are compared to the optimal strong composition [Kairouz

et al., 2015] with parameters optimally tuned according to Wang et al. [2019a]. As we

can see, all bounds based on the moments accountants eventually scales proportional to
√
k. Moments accountant techniques with the tight bound end up winning by a constant

factor. It is worth noting that in the Gaussian case, moments accountant only starts

to perform better than traditional approaches after composing for 1000 times. Also, the

version of moments accountant using the theoretical bounds from Abadi et al. [2016] gave

substantially worse results2. Finally the general RDP bound perform as well as the tight

bound when k is large (thanks to the tightness for small α).

2.5 Conclusion

In this work, we study the problem of privacy-amplification by poisson subsampling,

which involves “add/remove” scheme instead of replacement strategy. Specifically, we

derive a tight upper bound for M ◦ PoissonSample for any mechanism satisfying that

their odd order Pearson-Vajda χα-Divergences are nonnegative. We showed that Gaus-

sian mechanism and Laplace mechanism have this property, as a result, finding the exact

analytical expression for the Poisson subsampled Gaussian mechanism that has seen sig-

nificant application in differentially private deep learning. Our results imply that we can

completely avoid numerical integration in moments accounts and track the entire range

of α without paying unbounded memory. In addition, we propose an efficiently τ -term

approximation scheme which only calculates the first and last τ terms in the Binomial

expansion when evaluating the RDP of subsampled mechanisms. This greatly simplifies

2We implemented the bound from the proof of Abadi et al. [2016]’s Lemma 3 for fair comparison. Ac-
cording to Section 3.2 of Abadi et al. [2016], their experiments use numerical integration to approximate
the moments. See more discussion on this in Appendix 2.5.4.
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the computation for computing ε given δ as is used in the moments accountant. The

experiment result of τ -term approximate part reveals that approximate bound matches

up the lower bound quickly even for a relative small τ .

Future work includes making use of the exact subsampled RDP bounds to tighten the

existing results that made use of subsampled-mechanisms, coming up with more general

recipe to automatically check the nonnegativity condition on the odd-order Pearson-

Vajda χα-Divergences and design differentially private learning algorithms with more

complex and hetereogenous building blocks.

2.5.1 Proof of Theorem 2.3.1 and Theorem 2.3.4

Recall that we will denote the density of M ◦ PoissonSample(X ′) by q and that of

M◦ PoissonSample(X) by p. Let’s first make a few observations.

1. There is a natural change of measure that we can do:

Eqeα log(p/q) = Eq[(p/q)α] = Ep[(p/q)α−1] = Ep[e(α−1) log(p/q)].

This relates RDP to the moment generating function of the log-odds ratio random

variable, or the privacy random variable log(p/q).

2. With our loss of generality, we can assume X ′ = X ∪ {x}. In order to bound RDP

with order α, it suffices to bound the moments Ep[(q/p)α] and Eq[(p/q)α] then take

the bigger of the two bounds.

3. Both p and q are mixture distributions. Let |X| = n − 1 and |X ′| = n. p has

2n−1 mixture components and q has 2n mixture components. Each component

corresponds to a particular subset of the data set.
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4. If we condition on condition on J = (σ1, ..., σn−1) ∈ {0, 1}n−1, we get

Ep[(q/p)α] =

∫ (∑
J P(J)

[
(1− γ)µ0(J) + γµ1(J)

])α
(
∑

J P(J)µ0(J))α−1

By Lemma 23 of [Wang et al., 2019b], f(x, y) = xα/yα−1 is jointly convex on R2
+

for all α ∈ (1,+∞), which allows us to apply Jensen’s inequality to get

Ep[(q/p)α] ≤
∑
J

P(J)Eµ0(J)

(
(1− γ)µ0(J) + γµ1(J)

µ0(J)

)α

and similarly

Eq[(p/q)α] ≤
∑
J

P(J)E(1−γ)µ0(J)+γµ1(J)

(
µ0(J)

(1− γ)µ0(J) + γµ1(J)

)α
.

where µ0 is the distribution of M(XJ) and µ1 is the distribution of M(Xj ∪ {x}).
3

Denote µ0 := µ0(J) and µ1 := µ1(J) as short hands. What matters is that µ0 and µ1

are distributions induced by the application of our base mechanism M to two adjacent

data sets.

The fourth observation reduces the problem to bounding A1 := Eµ0
[(

(1−γ)µ0+γµ1
µ0

)α]
and A2 := E(1−γ)µ0+γµ1

[(
µ0

(1−γ)µ0+γµ1

)α]
using RDP of M.

Let’s start with A1 and consider only the case when α ≥ 1 is an integer. Also, without

loss of generality, we assume γ < 1. Let α ≥ 1 be an integer, and assume γ < 1. By the

3Note that the arguments used by Abadi et al. [2016] based on the quasi-convexity of Renyi-divergence
will give a slightly weaker result but with the expectation over J replaced with the maximum over J ,
which will be sufficient for our purpose too in this paper.
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Binomial theorem:

A1 =Eµ0
[(

(1− γ) + γ
µ1

µ0

)α]
=

α∑
`=0

(
α

`

)
(1− γ)α−`γ`Eµ0

(
µ1

µ0

)`
=(1− γ)α−1(αγ − γ + 1) +

α∑
`=2

(
α

`

)
(1− γ)α−`γ`Eµ0

(
µ1

µ0

)`
≤(1− γ)α−1(αγ − γ + 1) +

α∑
`=2

(
α

`

)
(1− γ)α−`γ`e(`−1)ε(`).

A2 is tricky as we cannot always calculate it explicitly or approximate efficiently with

Renyi-divergence. By a change of measure, we can write A2 as moments of a negative

order.

A2 = Eµ0

[(
1− γ + γ

µ1

µ0

)−(α−1)
]
.

Trivially, we have two somewhat trivial upper bounds

A2 ≤ (1− γ)−(α−1). (2.3)

When M is ε-DP,

A2 ≤ (1− γ(1− e−ε))−(α−1).

Other than these two, the expression does not seem to give us a more meaningful bound.

It might be tempted to use Binomial series expansion (now an infinite series). However,

it is not guaranteed to converge for some µ0, µ1. Even in cases when it converges, we

will have positive and negative terms that we could not construct a tight expression with

RDP.
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A novel alternative decomposition.

Let us try to bound Eq[(p/q)α] through an alternative means. We will redefine the

index set J = (σ1, ..., σn) ⊂ {0, 1}n.

Define q′ =
∑

J P(J)q′(J) such that q′(J) = q((σ1, ..., σn−1, 1)). Define p′ =
∑

J P(J)p′(J)

such that p′(J) = q((σ1, ..., σn−1, 0)). Note that p = p′, q = (1− γ)p + γq′ and therefore

p = q + γp′ − γq′.

It follows from Jensen’s inequality and the joint convexity that

Eq[(p/q)α] =Eq
[(

q + γp′ − γq′

q

)α]
≤ EJEq

[(
q + γp′ − γq′

q

)α]
≤Eσ1,...,σn−1EσnEq(J)

[(
q(J) + γp′(J)− γq′(J)

q(J)

)α]
=Eσ1,...,σn−1

{
γEq′(J)

[(
q′(J) + γp′(J)− γq′(J)

q′(J)

)α∣∣∣∣σn = 1

]
+ (1− γ)Ep′(J)

[(
p′(J) + γp′(J)− γq′(J)

p′(J)

)α∣∣∣∣σn = 0

]}
=γEµ1

[(
(1− γ)µ1 + γµ0

µ1

)α]
+ (1− γ)Eµ0

[(
(1 + γ)µ0 − γµ1

µ0

)α]
(2.4)

=γEµ1
[(

(1− γ) + γ
µ0

µ1

)α]
+ (1− γ)Eµ0

[(
1− γ + γ(2− µ1

µ0

)

)α]
=

α∑
`=0

(
α

`

)
(1− γ)α−`γ`

{
γEµ1

(
µ0

µ1

)`
+ (1− γ)Eµ0

(
2− µ1

µ0

)`}
(2.5)

There are two interesting things about the above chain of derivation. (2.4) really

allows us to evaluate the quantity for any pair of µ0 and µ1. However, we cannot really

easily upper bound it for all µ1, µ2 easily since some of the terms are negative.

Meanwhile, (2.5) is a slightly prettier form. If we can show that Eµ0
(

2− µ1
µ0

)`
≤

Eµ0
(
µ1
µ0

)`
, then we are done. In fact, for ` = 0, 1, 2, it is straightforward to show that

Eµ0
(

2− µ1
µ0

)`
= Eµ0

(
µ1
µ0

)`
. For ` ≥ 3, it becomes quite a deep question whether it is

true that Eµ0
(

2− µ1
µ0

)`
≤ Eµ0

(
µ1
µ0

)`
.
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Our first attempt establishes that this is related to the sign of Pearson-Vajda pseudo-

divergences of odd orders.

Lemma 2.5.1. For any pairs of distribution µ0, µ1 such that the Renyi-divergence Dα(µ1, µ0)

exists up to order `.

Eµ0
(

2− µ1

µ0

)`
= Eµ0

(
µ1

µ0

)`
− 2

∑
j is odd,j≤`

(
`

j

)
Eµ0

(
µ1

µ0

− 1

)j
,

where Eµ0
(
µ1
µ0
− 1
)j

is the Pearson-Vajda χj-pseudo-divergence of µ1 and µ2.

Proof: Observe that 2− µ1/µ0 = 1− (µ1/µ0 − 1) and that µ1/µ0 = 1 + (µ1/µ0 − 1).

It follows that

Eµ0
(

2− µ1

µ0

)`
− Eµ0

(
µ1

µ0

)`
=
∑̀
j=0

(
`

j

){(
(−1)j − 1

)
Eµ0

(
µ1

µ0

− 1

)j}

= −2
∑

j is odd,j≤`

(
`

j

)
Eµ0

(
µ1

µ0

− 1

)j

Proof: [Proof of Theorem 2.3.4] Note that Condition (2.2) implies

∑
j is odd,j≤`

(
`

j

)
Eµ0

(
µ1

µ0

− 1

)j
≥ 0 (2.6)

as a result, Lemma 2.5.1 implies that

Eµ0
(

2− µ1

µ0

)`
≤ Eµ0

(
µ1

µ0

)`
≤ e(`−1)εM(`).

Substitute the above into (2.5), then we can obtain a bound identical to the lower bound
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in the Theorem 2.3.2.

A bigger question is that what if the condition above is not true? Can we obtain a

general-purpose bound that applies to all M without needing to worry about whether

Condition (2.2) is true.

One idea is to directly evaluate
∑

j is odd,j≤`
(
`
j

)
Eµ0

(
µ1
µ0
− 1
)j

and replace all Renyi-

divergences of µ1, µ0 with the corresponding RDP bound. This is not really a valid

argument. We cannot directly evaluate irwith RDP because it is not straightforward

how we can take supremum over µ1, µ0 (two neighboring data sets). Substituting the

RDP into it is not really correct, because there might be some pair of µ1, µ0 that do not

match the RDP bound.

Can we still obtain a bound that is quantitatively the same as Theorem 2.3.4?

In the following we write two lemmas that allow us to prove such a general purpose

bound (Theorem 2.3.1).

Approximation upper bound for ` ≥ 3.

Lemma 2.5.2 (Relax order of RDP).

Eµ0

[(
2− µ1

µ0

)`]
≤


e`ε(`+1) if ` is odd

e(`−1)ε(`) + e`ε(`+1) if ` is even.

Proof: We consider decomposing the expression to several pieces.

Eµ0

[(
2− µ1

µ0

)`]
= Eµ0

[(
2− µ1

µ0

)`
1(
µ1

µ0

≤ 2)

]
(2.7)

+ Eµ0

[(
2− µ1

µ0

)`
1(
µ1

µ0

> 2)

]
(2.8)
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In the first term, we use the basic inequality that µ1
µ0

+ µ0
µ1
≥ 2, which implies that

0 ≤ Eµ0

[(
2− µ1

µ0

)`
1(
µ1

µ0

≤ 2)

]
≤ Eµ0

[(
µ0

µ1

)`
1(
µ1

µ0

≤ 2)

]

≤ Eµ0

[(
µ0

µ1

)`]
≤ e`εM(`+1).

The second term is negative if ` is an odd number. Moreover, we can bound its absolute

value:

∣∣∣∣∣Eµ0
[(

2− µ1

µ0

)`
1(
µ1

µ0

> 2)

]∣∣∣∣∣ = Eµ0

[(
µ1

µ0

− 2

)`
1(
µ1

µ0

> 2)

]

≤ Eµ0

[(
µ1

µ0

)`]
≤ e(`−1)εM(`).

In addition, in the case of pure DP with ε ≤ log(2), we have that µ1 ≤ eεµ0 ≤ 2µ0,

which implies that the second term is 0.

Lemma 2.5.3 (Relax multiplicative constant).

Eµ0

[(
2− µ1

µ0

)`]
≤


2e(`−1)ε(`) if ` is odd

3e(`−1)ε(`) if ` is even.
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Proof: We start with the case when ` is even.

Eµ0

[(
2− µ1

µ0

)`]

= Eµ0

[
(2− µ1

µ0

)

(
2− µ1

µ0

)`−1
]

= 2Eµ0

[(
2− µ1

µ0

)`−1
]
− Eµ1

[(
2− µ1

µ0

)`−1
]

(2.9)

= 2Eµ0

[(
2− µ1

µ0

)`−1
]

+ Eµ1

[(
µ1

µ0

− 2

)`−1
]

Note that we used the fact that ` − 1 is odd in the last line. By Lemma 2.5.2 we can

bound the first term by e(`−1)ε(`). Now by the fact that x`−1 is a monotonically increasing

function, we can bound the second term by Eµ1
[(

µ1
µ0

)`−1
]
, which also is smaller than

e(`−1)ε(`). That gives us the constant multiplicative factor of 3.

Now consider the case when ` is odd. Decompose the expression by (2.8) and drop

the second term since it is negative, we can write

Eµ0

[(
2− µ1

µ0

)`]
≤ Eµ0

[(
2− µ1

µ0

)`
1(
µ1

µ0

≤ 2)

]
.

Now apply the same trick as we did to get (2.9), we can rewrite the above as

2Eµ0

[(
2− µ1

µ0

)`−1

1(
µ1

µ0

≤ 2)

]
− Eµ1

[(
2− µ1

µ0

)`−1

1(
µ1

µ0

≤ 2)

]
.

Again note that the second term is negative, and by µ1
µ0

+ µ0
µ1
≥ 2, we can bound the first

34



Privacy-amplification by (Poisson) subsampling with Rényi DP Chapter 2

term by

2Eµ0

[(
µ0

µ1

)`−1

1(
µ1

µ0

≤ 2)

]
≤ 2Eµ0

[(
µ0

µ1

)`−1
]

= 2Eµ1

[(
µ0

µ1

)`]

≤ 2e(`−1)ε(`).

Now we are ready to present the main theorem.

Proof: [Proof of Theorem 2.3.1] Substituting the results in Lemma 2.5.3 to (2.5),

relax the constant to 3 and then apply the RDP upper bound of the Renyi-divergence.

2.5.2 Tight bounds for Gaussian and Laplace mechanism

In this section, we prove Proposition 2.3.6 and also that our tight bound Theorem 2.3.4

applies to the Gaussian mechanism and Laplace mechanism. In particular, we will show

that the condition (2.2) in Theorem 2.3.4 that requires the Pearson-Vajda χα divergences

to be nonnegative for the π, µ that come running either the Gaussian mechanism or the

Laplace mechanism on any two adjacent data sets.

The proof for the Gaussian mechanism uses a novel inductive argument, while the

proof for the Laplace mechanism directly proves that moving f(X ′) away from f(X)

strictly increases the odd-order Pearson-Vajda χα divergence using tools from convex

optimization.

These calculations are possible because the discrepancy of two data sets can be fully

described by a single parameter. The general recipe used in this section can also be

applied to other cases where only a small number of parameters can be used to avoid the
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intractable search over any pair of data sets to find the worst pair.

Qualifying Gaussian Mechanism

Lemma 2.5.4. For any π, µ that are absolutely continuous, and an odd α ≥ 3,

Eµ(
π

µ
)2(
π

µ
− 1)α−2 ≥ Eµ[(

π

µ
− 1)α−2]

Proof:

Eµ(
π

µ
)2(
π

µ
− 1)α−2 = Eπ(

π

µ
)(
π

µ
− 1)α−2

= Eπ(
π

µ
− 1)α−1 + Eπ(

π

µ
− 1)α−2

≥ Eπ(
π

µ
− 1)α−2

Since α−1 is even, Eµ(π
µ
−1)α−1 ≥ 0. Eπ(π

µ
−1)α−2 could be rewritten as Eµ(π

µ
)(π
µ
−1)α−2

Eµ(
π

µ
)(
π

µ
− 1)α−2 = Eµ(

π

µ
− 1)α−1 + Eµ(

π

µ
− 1)α−2

≥ Eµ[(
π

µ
− 1)α−2]

Theorem 2.5.5. Let π, µ be two gaussian distriutions, π ∼ N (
√
t, 1) and µ ∼ N (0, 1),

for ∀t ≥ 0,∀odd α ≥ 1, we have Eµ(π
µ
− 1)α ≥ 0 .

Proof: Base case: The statement holds when α = 1

∀t, Eµ(
π

µ
− 1) = 0
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Inductive step: Show that if α = α̃, we have Eµ(π
µ
−1)α̃ ≥ 0 for all t, then the statement

holds for α = α̃ + 2. This can be done as follows:

We first write an expansion of Eµ(π
µ
− 1)α as :

Eµ(
π

µ
− 1)α =

α∑
`=0

(
α

`

)
(−1)α−`Eµ(

π

µ
)`

= α− 1 +
α∑
`=2

(
α

`

)
(−1)α−`e

`(`−1)t
2

When t = 0, Eµ(π
µ
− 1)α = 0 holds for all α. We then take the derivative of t on the

above expansion.

∂Eµ(π
µ
− 1)α

∂t
=

α∑
`=2

(
α

`

)
(−1)α−`e

`(`−1)t
2

`(`− 1)

2

Define ˜̀= `− 2 and rewrite the above equation as

α(α− 1)

2

α−2∑
˜̀=0

(
α− 2

˜̀

)
(−1)α−2−˜̀

Eµ(
π

µ
)

˜̀+2

=
α(α− 1)

2
Eµ[(

π

µ
)2

α−2∑
˜`=0

(
α− 2

˜̀

)
(−1)α−2−˜̀

(
π

µ
)`]

=
α(α− 1)

2
Eµ[(

π

µ
)2(
π

µ
− 1)α−2]

By applying lemma 2.5.4, we have Eµ[(π
µ
)2(π

µ
−1)α−2] ≥ Eµ[(π

µ
−1)α−2], where α−2 = α̃

and Eµ[(π
µ
− 1)α̃] ≥ 0 from assumption. So the derivative is greater than 0 for all non-

negative t. Combined with Eµ(π
µ
− 1)α = 0 when t = 0, we have Eµ(π

µ
− 1)α ≥ 0 hold for

all t.

Since both the base case and the inductive step have been performed, by mathematical
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induction the statement holds for all odd α ≥ 1.

Qualifying Laplace mechanism

Theorem 2.5.6. Let π, µ Laplace density functions obeying µ(x) = 1
λ
e
|x|
λ , and π(x) =

1
λ
e
|x+t|
λ . For all λ > 0, all natural number α, function f(t) := Eµ

[(
π
µ
− 1
)α]

obeys that

1. f(t) ≥ 0 for any t ∈ R.

2. f(t) monotonically increases for t > 0.

3. f(t) monotonically decreases for t < 0.

Proof: When t = 0, π/µ = 1 and trivially Eµ[(π/µ − 1)α] = 0 for any α. We will

show that this is actually the minimizer for all t ∈ R by proving that the subdifferential

∂tf(t) ≥ 0 for t > 0 and ∂tf(t) ≤ 0 for t < 0. Note that

∂u|u| =


[−1, 1] if u = 0;

{sign(u)} otherwise,

which implies that we can write

∂tf(t) =

∫ +∞

0

− α

2λ2
e−
|u|
λ

(
e
−|u|+|u−t|

λ − 1
)α−1

du

+

∫ 0

−∞
− α

2λ2
e−
|u|
λ

(
e
−|u|+|u−t|

λ − 1
)α−1

du

=

∫ +∞

0

α

2λ2
e−
|u|
λ

[
−
(
e
−|u|+|u−t|

λ − 1
)α−1

+
(
e
−|u|+|u+t|

λ − 1
)α−1

]
du
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For positive t, we can decompose the integral into

∫ +∞

t

α

2λ2
e−
|u|
λ

[
−
(
e
−t
λ − 1

)α−1

+
(
e
t
λ − 1

)α−1
]
du

+

∫ t

0

α

2λ2
e−
|u|
λ

[
−
(
e
t−2u
λ − 1

)α−1

+
(
e
t
λ − 1

)α−1
]
du.

For even α ≥ 2, α− 1 is an even number and above expression is trivially nonnegative.

For odd α ≥ 3, that α− 1 is even. By the inequality that et − 1 ≥ 1− e−t for any t,

therefore the first term is nonnegative.

Now we address the second term. For u ∈ [0, t/2], 0 ≤ t−2u ≤ t and the nonnegativity

follows directly from the monotonicity of (e· − 1) on [0,+∞). For u ∈ (t/2, t], −t ≤

t− 2u ≤ 0, and the nonnegativity follows from the fact that

et − 1 ≥ 1− e−t ≥ 1− e−v

for all 0 ≤ v ≤ t. This concludes the proof for the positive t.

The results that the subgradient is positive for negative t follows naturally by sym-

metry.

Remark 2.5.7 (Handling Laplace Mechanism in higher dimension). The generalization

to higher dimension is trivial. The perturbation t is now a vector, but since the noise

is added independently for each coordinate, we can work out the monotonicity for each

coordinate separately.
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2.5.3 Proofs related to efficient approximation

Proof: [Proof of Theorem 2.3.7] Apply ε(`) ≤ ε(α) for all ` = τ + 1, ..., α, we have:

εM◦PoissonSample(α) ≤ 1

α− 1
log
{

(1− γ)α−1(αγ − γ + 1) +
τ∑
`=2

(
α

`

)
(1− γ)α−`γ`e(`−1)ε(`)

+
α∑

`=τ+1

(
α

`

)
(1− γ)α−`γ`e(`−1)ε(α)

}
=

1

α− 1
log
{

(1− γ)α−1(αγ − γ + 1) +
τ∑
`=2

(
α

`

)
(1− γ)α−`γ`e(`−1)ε(`)

−
τ∑
`=0

(
α

`

)
(1− γ)α−`γ`e(`−1)ε(α) + e−ε(α)(1− γ + γeε(α))α

}
=

1

α− 1
log
{

(1− γ)α−1(αγ − γ + 1) +
τ∑
`=2

(
α

`

)
(1− γ)α−`γ`(e(`−1)ε(`) − e(`−1)ε(α))

− (1− γ)αe−ε(α) − α(1− γ)α−1γ + e−ε(α)(1− γ + γeε(α))α
}

=
1

α− 1
log
{

(1− γ)α(1− e−ε(α)) + e−ε(α)(1− γ + γeε(α))α

−
τ∑
`=2

(
α

`

)
(1− γ)α−`γ`(e(`−1)ε(α) − e(`−1)ε(`))

}

Theorem 2.5.8 (Fast approximation for general upper bound).

εM◦PoissonSample(α) ≤ 1

α− 1
log
{

(1− γ)α(1− 3e−ε(α)) + 3e−ε(α)(1− γ + γeε(α))α

− 3
τ∑
`=3

(
α

`

)
(1− γ)α−`γ`(e(`−1)ε(α) − e(`−1)ε(`))

− 2γα(1− γ)α−1 +

(
α

2

)
γ2(1− γ)α−2(eε(2) − 3eε(α))

}
.

Proof is similar to that of Theorem 2.3.7 thus omitted.
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2.5.4 Comparison to the implementation of Abadi et al. [2016]

According to Section 3.2 of Abadi et al. [2016], in the implementation of the moments

accountant they used numerical integration to compute

E1 = Ez∼µ0 [(µ0(z)/µ(z))α−1] = Ez∼µ[(µ0(z)/µ(z))α]

E2 = Ez∼µ[(µ(z)/µ0(z))α−1] = Ez∼µ0 [(µ(z)/µ0(z))α]

where µ0 = N (0, σ2) and µ = γN (1, σ2) + (1− µ)N (0, σ2) then output

ε(α) ≤ 1

α− 1
log(max{E1, E2}).

This approach is correct but costly, because a different numerical integration is needed

for each α. Our result implies that E2 > E1 and one never need to numerically simulate

E1.

The most recent update to the moments accountant implementation of the Tensor-

flow Privacy package is slightly different from the version described in Section 3.2 of

Abadi et al. [2016]. The new version of their code https://github.com/tensorflow/

privacy/blob/master/privacy/analysis/rdp_accountant.py implements an analyt-

ical version of E2 via the Binomial expansion — essentially our tight bound Theorem 2.3.2

for Poisson-Sampled Gaussian mechanism verbatim with a prescribed list of αs. The cur-

rent paper complements this implementation with a proof that E2 > E1, which justifies

that doing this is correct. To the best of our knowledge, the current paper is the first

that rigorously establishes E2 ≥ E1 which establishes that this new implementation is

correct for Poisson subsampling.

Our implementation of moments accountant in AutoDP ( https://github.com/

yuxiangw/autodp ) is a more flexible framework that allows us to exactly or almost
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exactly track the RDP of any subsampled differentially private mechanisms provided

that the based mechanism’s RDP is known.
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Chapter 3

Generalize the PLD formalism with

adaptive composition and

amplification by sampling

3.1 Introduction

Much of the progress in the recent theory and practice of DP has been driven by Renyi

Differential Privacy (RDP) [Mironov, 2017], e.g., it is the major technical component

behind the first practical method for deep learning with differential privacy [Abadi et al.,

2016]. More broadly, RDP is among several recent work in differential privacy that

conducts fine-grained mechanism specific analysis [Bun and Steinke, 2016, Abadi et al.,

2016, Mironov, 2017, Balle and Wang, 2018, Wang et al., 2019b, Dong et al., 2021,

Sommer et al., 2019, Koskela et al., 2020a]. At the heart of these breakthroughs is the

idea of using a function to describe the privacy guarantee of a randomized procedure,

thus produces significantly more favorable privacy-utility tradeoff and tighter bounds

under composition. (See Table 3.1 for a summary their pros and cons).
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Functional view Pros Cons
Renyi DP [Mironov, 2017] Dα(P‖Q) ≤ ε(α),∀α ≥ 1 Natural composition lossy conversion to (ε, δ)-

DP.
Privacy profile [Balle and Wang, 2018] Eq[(pq − e

ε)+] ≤ δ(eε),∀ε ≥ 0 Interpretable. messy composition.

f -DP[Dong et al., 2021] Trade-off function f Interpretable, CLT messy composition.
PLD [Sommer et al., 2019, Koskela et al., 2020a] Probability density of log(p/q) Natural composition via FFT Limited applicability.

Table 3.1: Modern functional views of DP guarantees and their pros and cons.

Note that no single approach dominates others in all dimensions. Renyi DP could

be undefined for certain privacy loss distributions, and cannot be used to provide the

optimal (ε, δ)-DP computation in general (discussed in Section 3.2). Privacy profiles

and f -DP are unwieldy under composition; and the method of [Koskela et al., 2020a] is

limited to mechanisms with univariate output where log(p/q) admits a density; or those

with discrete outputs. Usually, for a new mechanism, we would be lucky to have any

one of these functional descriptions. The need to derive these manually for each new

mechanism is clearly limiting the creativity of researchers and practitioners in DP.

In addition, there are some unresolved foundational issues related to the PLD formal-

ism. As is repeatedly articulated by the authors, the PLD formalism is defined for each

pair of neighboring datasets separately, thus, strictly speaking, does not imply DP unless

we can certify that the pair of neighboring datasets is the worst-case. This is challenging

because such a pair of datasets might not exist and it is unclear how we can define a

partial ordering of two privacy loss distributions.

In this work, we provide a unified treatment to these functional representations and

resolve the aforementioned subtle issues related to the PLD formalism. Our contributions

are summarized below.

1. We formalize and generalize the notion of “worst-case” pair distributions discussed

in [Sommer et al., 2019] to a “dominating pair” and prove several basic properties of

the dominating pairs including finding such pairs from any privacy-profiles, adaptive

composition and amplification by sampling. These results substantially broaden the
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applicability of PLD formalism [Sommer et al., 2019] in deriving worst-case DP

guarantees.

2. We propose a lossless representation of the privacy loss RV by its characteristic

function (φ-function) and derive optimal conversion formula to (and from) privacy-

profile, tradeoff-function (f -DP) and the distribution function of the privacy loss

RV. Many of these conversion rules correspond naturally to the classical Fourier /

Laplace transforms (and their inverses) from the signal processing literature.

3. We design an Analytical Fourier Accountant (AFA, extending the Fourier accoun-

tant of [Koskela et al., 2020a,b]) which represents the complex logarithm of the

φ function symbolically. AFA can be viewed as an extension of the (analytical)

moments-accountant [Abadi et al., 2016, Wang et al., 2019b] to complex α, thus

allowing straightforward composition. Computing δ as a function of ε for (ε, δ)-

DP boils down to a numerical integral which we use a Gaussian quadrature-based

method to solve efficiently and accurately.

4. Experimentally, we demonstrate that our approach provides substantially tighter

privacy guarantees over compositions than RDP on both basic mechanisms and

their subsampled counterparts. Our results essentially match the results from [Dong

et al., 2021] and [Koskela et al., 2020b] but neither rely on central-limit-theorem

type asymptotic approximation nor require choosing appropriate discretization a

priori as in the FFT-based Fourier Accountant.

Related work: The paper builds upon the existing work on RDP-based privacy

accounting [Abadi et al., 2016, Mironov, 2017, Wang et al., 2019b] as well as f -DP [Dong

et al., 2021]. Our main theoretical contribution is to substantially broaden the applica-

bility of the PLD formalism [Sommer et al., 2019] by proposing the notion of dominating
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pairs and providing general recipes for constructing these dominating pairs. The closest

to algorithmic contribution is the work of Koskela et al. [2020a,b], who propose Fourier

accountant and an FFT-based approximation scheme, the characteristic function view

can be seen as an analytical version of their Fourier accountant (hence the name AFA).

AFA is more generally applicable, and allows more flexible use of existing methods for

numerical integral. The recent work of Gopi et al. [2021] improves the FFT accountant

substantially. It is complementary to us in that it does not address the foundational is-

sues of the PLD formalism, nor do they propose an analytical representation that allows

a more modular design of the privacy accountant. Notably, we can use any blackbox

numerical integration tool, e.g., Gaussian quadrature, and set the desired error bound

on-the-fly, while an FFT-accountant requires setting the parameters at initialization. Fi-

nally, Canonne et al. [2020] considered φ function and its numerical / computational

properties but the discussion is restricted to the discrete Gaussian mechanism.

Privacy accounting is closely related to the classical advanced composition of (ε, δ)-

DP [Dwork et al., 2010]; Kairouz et al. [2015] provides the optimal k-fold composition

of an (ε, δ)-DP mechanism and Murtagh and Vadhan [2016] shows that computing the

tightest possible bound for the composition of k heterogeneous mechanisms is #P -hard.

The recent line of work (that we are building upon) challenges the basic primitive of

composing (εi, δi)-DP by composing certain functional descriptions of the mechanisms

themselves, which sometimes avoids the computational hardness (but not always) and

results in even stronger composition than the best (ε, δ)-DP type composition would

allow [Bun and Steinke, 2016].
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3.1.1 Equivalent definition of DP

We can alternatively interpret DP from the views of a divergence metric of two prob-

ability distributions, a hypothesis testing view of a binary-classifier, as well as the distri-

bution of the log-odds ratio. Let us first define these quantities formally.

Definition 3.1.1 (Hockey-stick divergence). For α > 0, the Hockey-stick divergence is

defined as Hα(P‖Q) := Eo∼Q[( dP
dQ

(o) − α)+], where (x)+ := x1(x ≥ 0) and dP
dQ

is the

Radon-Nikodym-derivative (or simply the density ratio when density exists for P and

Q).

Definition 3.1.2 (Trade-off function). Let φ be a classifier to distinguish two distribu-

tions P and Q using a sample. αφ be its Type I error (false positive rate) and βφ be

its Type II error (false negative rate). The tradeoff function TP,Q(α) : [0, 1] → [0, 1] is

defined to be TP,Q(α) := infφ{βφ | αφ ≤ α}.

Definition 3.1.3 (Privacy loss R.V.). The privacy loss random variable of for a pair of

neighboring datasetD,D′ under mechanismM is defined as LP,Q := log M(D)(o)
M(D′)(o)

where o ∼

M(D); similarly, we have LQ,P := log M(D′)(o)
M(D)(o)

where o ∼M(D′).

These quantities can be used to equivalently define differential privacy [Wasserman

and Zhou, 2010, Barthe and Olmedo, 2013, Kairouz et al., 2015, Balle and Wang, 2018,

Balle et al., 2018, Dong et al., 2021].

Lemma 3.1.4. The following statements about a randomized algorithmM are equivalent

to Definition Definition 1.2.1

1. supD'D′ Heε(M(D)‖M(D′)) ≤ δ.

2. supD'D′ TM(D),M(D′)(α) ≥ max{0, 1− δ − eεα, e−ε(1− δ − α).

3. Pro∼M(D)[LP,Q > ε]− eε Pro∼M(D′)[LQ,P < −ε] ≤ δ for all neighboring D,D′.
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We highlight that in all these definitions, it is required for the bound to cover all pairs

of neighboring datasets D,D′.

Mechanism-specific analysis / Functional representation of DP guarantee.

Each of these equivalent interpretations could be used to provide more-fine-grained de-

scription of a differential privacy mechanism M. For instance, the privacy profile δM(ε)

upper bounds the HS-divergence for all ε and the f -DP lowerbounds the tradeoff func-

tion for all Type I error α (see Table 3.1). In addition, Sommer et al. [2019] proposes

the PLD formalism, which represents the privacy loss RV by its density function. The

PLD formalism can be viewed as another functional representation, but it is qualitatively

different from privacy profile and f -DP. We will expand further on PLD in Section 3.2.

Definition 3.1.5 (Privacy profile [Balle et al., 2018] and f -DP [Dong et al., 2021]). The

privacy profile of a mechanism M is a function δM : R>0 → [0, 1]defined as

δM(α) := sup
D'D′

Hα(M(D)‖M(D′)).

M satisfies f -DP for a tradeoff function f : [0, 1]→ [0, 1] if

f(α) ≤ fM(α) =: inf
D'D′

TM(D),M(D′)(α). (3.1)

Note that the definition of privacy-profile and the original one in Balle and Wang

[2018] differ only in a change of variable α = eε. In addition, considering all α > 0

amounts to also consider negative ε. Although only α > 1 (or ε > 0) is involved in the

following Lemma 3.1.4 that relates hockey-stick divergence and privacy profile to DP,

taking α ∈ (0, 1) (or ε < 0) into consideration in the above definition is convenient as

will be clear in Lemma 3.3.3.
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(a) RDP of RR and GM (b) f -DP of RR and GM (c) (ε, δ)-DP of RR and GM

Figure 3.1: The figure illustrates the RDP and f -DP of a Gaussian mechanism with
(normalized) σ = 1, and a randomized response mechanism with p = e

1+e . Pane (a)
shows the RDP function of RR and GM, clearly, RR also satisfies the same RDP of
the Gaussian mechanism for all α. Pane (b) in the middle compares the f -DP of the
two mechanisms, as well as the f -DP implied by the optimal conversion from RDP.
Pane (c) shows the privacy profile of the two mechanisms, together with Pane (a), it
demonstrates that the optimal f -DP and (ε, δ)-DP of GM cannot be achieved by a
conversion from RDP.

3.2 Motivation: limits of RDP and the PLD formal-

ism

In this section, we discuss a number of limitations of Renyi DP and PLD formalism

that, in part, motivated our research.

The limits of RDP. Let us first ask “is the RDP function a lossless description?” In

particular, does it capture all information in the privacy-profile? Because if it is the case,

then we could use RDP for composition, and then find the exact optimal (ε, δ)-DP by

converting from RDP.

The answer is unfortunately “no”. The reasons are twofolds. First, there are mecha-

nisms with non-trivial (ε, δ)-DP where RDP parameters partially or entirely do not exist.

We give two concrete examples below.

Example 3.2.1 (Distance-to-Instability). The stability-based argument of query release
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first add noise to a special integer-valued function distq(D) which measures the number of

data points to add / remove before the local sensitivity of query q(D) becomes non-zero.

No matter that q is, distq always has a global sensitivity of at most 1. The stability-based

query release outputs ⊥ (nothing) if distq(D) + Lap(1/ε) ≤ log(1/δ)/ε otherwise outputs

the answer q(D) without adding noise. This algorithm is satisfies (ε, δ)-DP [Thakurta

and Smith, 2013], but since there is a probability mass at the +∞ for the case when

q(D) 6= q(D′), RDP is +∞ for all α.

Example 3.2.2 (Gaussian-noise adding with data-dependent variance). In smooth sensitivity-

based query release [Nissim et al., 2007], one perturbs the output with a noise with a

data-dependent variance. Consider, for example, P = N (0, σ2
1), Q = N (0, σ2

2), then

the Renyi-divergence Dα(P‖Q) is undefined for all α such that ασ2
2 + (1 − α)σ2

1 < 0.

Specifically, if σ2
1 = 2, σ2

2 = 1, then Dα(P‖Q) = +∞ for all α ≥ 2.

These examples demonstrate the deficiency of RDP in analyzing flexible algorithm

design tools such as the proposed-test-release [Dwork and Lei, 2009]), which typically

introduces a heavier-tailed privacy-loss distributions for which the moment generating

function is not defined.

On the contrary, the privacy-profile is well-defined in both examples and imply non-

trivial (ε, δ)-DP. The characteristic function exists no matter how heavy-tailed the distri-

bution of the privacy loss random variable is so it naturally handles the second example.

The second, and a more troubling issue is that even in the cases when RDP parame-

ters exist everywhere and hence appears to be characterizing, it does not lead to a tight

conversion to (ε, δ)-DP. Gaussian mechanism is such a candidate where its PLD is com-

pletely captured by its Renyi divergences. However, in Figure Figure 3.1 we demonstrate

that we cannot, in general, convert the RDP of Gaussian mechanism into an (ε, δ)-DP

that matches the optimal accounting one can achieve through either the privacy profile
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or f -DP directly. Specifically, by an example due to [Dong et al., 2021, Proposition B.7],

we know that a randomized response mechanism (RR) satisfies 1-zCDP, thus the same

RDP as that of a Gaussian mechanism (GM) with σ = 1. If the RDP conversion is

tight, then it will have to apply to RR too, but that will lead to a contradiction with

the tradeoff function of RR. More explicitly, when we further convert the f -DP in Fig-

ure Figure 3.1 to (ε, δ)-DP, this example shows that while both RR and GM satisfy an

RDP with ε(α) = α
2
, GM obeys (0.277, 0.3)-DP but RR does not satisfy (ε, 0.3)-DP with

ε < 0.471.

This example certifies that the conversion rule we used (based on an extension of

[Balle et al., 2020]) cannot be improved and that RDP is a lossy representation even for

the Gaussian mechanism.

Trouble with Worst-Cases in the PLD formalism.

Recent developments in the PLD formalism show great promises in computing tight

(ε, δ)-DP with stable numerical algorithms and provable error bounds [Koskela et al.,

2020a,b]. However, as we discussed earlier, PLD is specified for each pair of input

datasets separately. To use PLD, the original authors (quoting verbatim) “require the

privacy analyst interested in applying our results (PLD formalism) to provide worst-case

distributions.” [Sommer et al., 2019, Section 2]. In a subsequent work [Meiser and Mo-

hammadi, 2018], a subset of the authors further derive the worst-case pair of distributions

for basic mechanisms such as Gaussian mechanism and Laplace mechanism [Meiser and

Mohammadi, 2018].

While these are valid arguments, the line of work on PLD formalism does not formally

define the worst-case pair of distributions, nor do they provide general recipes for “privacy

analysts” to determine which pair of inputs is the worst-case. The issue is more prominent

when we consider mechanism-specific analysis, because the pairs of datasets that attain

the argmax might be different in different regions of the privacy profile.
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Example 3.2.3 (Distance to Instability). Distance to instability distq(D) is a special func-

tion that measures the number of data points to add / remove before the local sensitivity

of query q(D) becomes non-zero. The stability-based query release outputs ⊥ (nothing) if

distq(D) + Lap(1/ε) ≤ log(1/δ)/ε otherwise outputs the answer q(D) without adding noise.

In this algorithm, the privacy loss distribution has exactly two modes.

Mode 1 When distq(D) > 0, then for all D′ neighboring to D, q(D) = q(D′), which

implies that the PLD is from the post-processing of a Laplace mechanism (for

releasing the perturbed distq(D)), i.e., (ε, 0)-DP.

Mode 2 When distq(D) = 0, then for those neighboring D′ such that q(D) 6= q(D′), it

must hold that distq(D
′) = 0, thus the privacy loss distribution is a point mass of

1− δ at 0 (for outputting ⊥) and a point mass of δ at +∞, i.e., (0, δ)-DP.

Clearly, there is no single pair of datasets that attains the privacy-profile of this mech-

anism for all input parameter ε̃. When ε̃ > ε, δM(ε̃) = δ and is attained by the sec-

ond mode. On the other hand, if we choose ε̃ such that δLap. Mech.(1/ε)(ε̃) > δ, then

δM(ε̃) = δLap. Mech.(1/ε)(ε̃) and the equal sign is attained by a pair of distributions in the

first mode.

Moreover, in most typical use cases of the privacy accounting tools, the mechanism

under consideration is constructed through the composition of a sequence of simpler

mechanisms. Even if for each mechanism, we know the worst-case pair distributions,

the composition of the individual PLDs may not correspond to the worst-case PLD of

the composed mechanism 1. For this reason, it is unclear how to use PLD for deriving

worst-case DP bound under composition except in highly specialized cases (e.g., Gaussian

mechanisms and their compositions).

1This is an issue we will address later, which shows that it is OK even if it does not.
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Summary. To reiterate, RDP is lossy when converting to (ε, δ)-DP and the PLD for-

malism cannot be used to handle the composition generically due to issues regarding

worst-case distributions. The remainder of the paper will be dedicated to addressing this

dilemma.

3.3 Main results

In this section, we develop a comprehensive solution towards tighter and more flexible

mechanism-specific privacy accounting for (ε, δ)-DP with a data-structure that allows

natural composition.

3.3.1 Dominating pair of distributions, composition and sub-

sampling

We first patch the PLD formalism by generalizing the idea of worst-case pair (which

may not exist) to a dominating pair of distributions and prove a number of useful prop-

erties.

Definition 3.3.1 (Dominating pair of distributions). We say that (P,Q) is a dominating

pair of distributions for M (under neighboring relation ') if for all α ≥ 02

sup
D'D′

Hα(M(D)‖M(D′)) ≤ Hα(P‖Q). (3.2)

When P,Q is chosen such that (3.2) takes “=” for all α, we say that (P,Q) is a tight

dominating pair of distributions or simply, tightly dominating. If in addition, there exists

a neighboring (D̃, D̃′) such that (M(D̃),M(D̃′)) is tightly dominating, and then we say

2Note that α ≥ 1 corresponds to the typical range of (ε, δ)-DP, but the region for α < 1 is important
for composition and lossless conversions to other representations.
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(D̃, D̃′) is the worst-case pair of datasets for mechanism M.

Unless otherwise specified, all subsequent results we present hold for any definitions

of neighbors (including asymmetric ones such as add-only and remove-only, which will

be useful later).

A dominating pair of distributions always exists: one can trivially take P and Q that

have disjoint supports. What is somewhat surprising is the following

Proposition 3.3.2. Any mechanism has a tightly dominating pair of distributions.

For example, the domintating pair for discrete Gaussian mechanism (DGM) [Canonne

et al., 2020] will be two discrete Gaussian, e.g., P = NZ(0, σ2), Q = NZ(∆, σ2),∆ ∈ Z+

is the sensitivity of the integer-valued query. This follows because the probability mass

of the discrete Gaussian is a log-concave sequence. The proof would look very similar to

Proposition A.3 of Dong et al. [2021]. On the other hand, worst-case pair of datasets do

not always exist, as is shown by Example 3.2.3.

Proposition 3.3.2 is the direct consequence of the following result which fully charac-

terizes what hockey-stick divergences and privacy profiles look like.

Lemma 3.3.3. For a given H : R>0 → R, there exists P,Q such that H(α) = Hα(P‖Q)

if and only if H ∈ H where

H :=

H : R>0 → R

∣∣∣∣∣∣∣
H is convex, decreasing,

H(0) = 1 and H(x) > (1− x)+

 .

Moreover, one can explicitly construct such P and Q: P has CDF 1+H∗(x−1) in [0, 1)

and Q = Uniform([0, 1]).

The proof, presented in Sec 3.5.1, makes use of the Fenchel duality of the privacy

profile with respect to a tradeoff function and a characterization of the tradeoff function

due to Dong et al. [2021, Proposition 2.2].
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What makes the specific construction in Lemma 3.3.3 (hence Proposition 3.3.2) ap-

pealing is that even if the output space is complex, the resulting dominating pair of

distributions are of univariate random variables defined on [0, 1]. This resolves a limita-

tion of Koskela et al. [2020a] that requires the mechanism to have either univariate or

discrete outputs.

So far, we have shown the existence of a tightly dominating pairs for all mechanisms

(Proposition 3.3.2), and provided a recipe for constructing such a dominating pair for any

valid upper bounds of the privacy profile (Lemma 3.3.3 and Corollary 3.5.1 in Sec 3.5.1).

Next we will provide two general primitives on how to construct dominating pairs for

more complex mechanisms created by composition and privacy amplification by sampling.

Theorem 3.3.4 (Adaptive composition of dominating pairs). If (P,Q) dominates M

and (P ′, Q′) dominates M′3, then (P × P ′, Q×Q′) dominates the composed mechanism

(M,M′).

By induction, this theorem implies that if we construct the PLD using a dominating

pair of distributions for each individual mechanism, then the composed PLD can be used

to obtain a valid worst-case DP of the composed mechanism.

Next we present how we can construct a dominating pair of distributions (and datasets)

for mechanisms under “privacy-amplification by sampling”. This is a powerful primitive

that is used widely in differentially private ERM [Bassily et al., 2014], Bayesian learning

[Wang et al., 2015] and deep learning [Abadi et al., 2016]. We consider the following two

schemes.

Poisson Sampling Denoted by SγPoisson. SγPoisson takes a dataset of arbitrary size and

3M′ can be adaptively chosen in that it could depend on the output of M, which requires
supo∈Range(M)Hα(M′(D, o)‖M′(D′, o)) ≤ Hα(P ′‖Q′) for any value of o.
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return a dataset by including each data point with probability 0 ≤ γ ≤ 1 i.i.d. at

random.

Subset Sampling Denoted by SγSubset. SγSubset takes a dataset with size n or n − 1

and return a subset of size m < n uniformly at random. We define γ := m/n as a

short-hand. 4

Somewhat unconventionally, the following theorem not only considers add/remove neigh-

boring relation but also treat them separately, which turns out to be crucial in retaining

a tight dominating pair with a closed-form expression. Our choice of choosing α ≥ 0 in

Definition 3.3.1 ensures that for any mechanism (P,Q) dominates for add neighbors iff

(Q,P ) dominates for removal neighbors.

Theorem 3.3.5. Let M be a randomized algorithm.

(1) If (P,Q) dominates M for add neighbors then (P, (1− γ)P + γQ) dominates M◦

SPoisson for add neighbors and ((1−γ)Q+γP,Q) dominatesM◦SPoisson for removal

neighbors.

(2) If (P,Q) dominates M for replacing neighbors, then (P, (1− γ)P + γQ) dominates

M◦ SSubset for add neighbors and ((1− γ)P + γQ, P ) dominates M◦ SSubset for

removal neighbors.

We can obtain the results for the standard ”add/remove” for a k-fold composition of

subsampled mechanism by a pointwise maximum of the two:

max{Heε(P
k
1 ||Qk

1), Heε(P
k
2 ||Qk

2))}

where (P1, Q1) is the “remove only” version of dominating pair and (P2, Q2) is the “add

only” version of dominating pair.

4Note that here n,m are public and γ := m/n even if (n− 1) is the sample size.
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Existing literature that uses PLD for Poisson-sampled mechanisms while taking (γP+

(1−γ)Q,Q) as an input are essentially providing privacy guarantees only for the “remove

only” neighboring relationship. To the best of our knowledge, this is the first time

a dominating pair of distributions under privacy-amplification by sampling is proven

generically with an arbitrary base-mechanism M under the privacy-profile. The result,

together with Theorem 3.3.4, allows PLD formalism to be applied to a broader family of

mechanisms as well as their subsampled versions under adaptive composition.

Remark 3.3.6 (Comparing to subsampling results in RDP). Mironov et al. [2019] showed

that ((1− γ)Q+ γP,Q) is also a dominating pair under the Renyi DP forM◦SγPoisson if

M is Gaussian mechanism. Zhu and Wang [2019] showed that there exitsM under which

Dα((1−γ)Q+γP‖Q) < Dα(Q‖(1−γ)Q+γP ), which suggests ((1−γ)Q+γP,Q) is not

always a dominating pair under RDP. Moreover, RDP of M◦ SγSubset are substantially

trickier and it remains an open problem whether ((1−γ)Q+γP,Q) is a dominating pair

under RDP [Wang et al., 2019b].

3.3.2 Characteristic function representation

Having strengthened the foundation of the PLD formalism with “dominating distri-

bution pairs” and two of its basic primitives, we can now put away RDP and its lossy

(ε, δ)-DP conversion, then conduct mechanism-specific accounting under (ε, δ)-DP di-

rectly. Existing computational tools however, either require asymptotic approximation

[Dong et al., 2021, Sommer et al., 2019], repeated convolution [Dong et al., 2021] or an a

priori discretization of the output space [Koskela et al., 2020b]. This prompts us to ask:

“Can we compose mechanisms (with known dominating pairs) naturally just like in RDP? ”

To achieve this goal, we propose using the characteristic function of the privacy loss RV.
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Definition 3.3.7 (characteristic function of the privacy loss RV). Let (P,Q) be a dom-

inating pair of M, and p, q be the probability density (or mass) function of P,Q. The

two characteristic functions that describes the PLD are

φM(α) : = EP [eiα log(p/q)], φ′M(α) := EQ[eiα log(q/p)],

where i denotes the imaginary unit satisfying i2 = −1 and α ∈ R.

PLDs are probability measures on the real line, and these φ-functions are Fourier

transforms of these measures. We provide φ-functions for basic mechanisms (see Ta-

ble 3.2) and the discrete mechanisms with closed-form expression.

Advantages over MGF Comparing to the moment generating function used by the

RDP, the characteristic function differs only in that we are taking the expectation of the

complex exponential. At the price of bringing in complex arithmetics, it is now a complex-

valued function supported on α ∈ R rather than the real-valued Renyi Divergence with

order α > 1 as was defined in RDP. Unlike MGF, the characteristic function always

exists and it characterizes the distribution of the privacy loss R.V., therefore it is always

a lossless representation. MGF is also characteristic when it exists, but the conversion

of MGF to the distribution function is numerically problematic [Epstein and Schotland,

2008].

Moreover, the adaptive composition over multiple heterogeneous mechanisms remains

as straightforward as that of the RDP.

Proposition 3.3.8. Let M1 and M2 be two randomized algorithms. We have the φ-

function of the composition (M1,M2) with order α ∈ R satisfies: φ(M1,M2)(α) = φM1(α)·

φM2(α)

Lossless conversion rules. The φ-function can be losslessly converted back and
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Mechanism Dominating Pair φ function

Randomized Response P : PrP [0] = p;Q : PrQ[1] = p φM(α) = φ′M(α) = peαi log( p
1−p ) + (1− p)eαi log( 1−p

p
)

Laplace Mechanism P : p(x) = 1
2λ
e−|x|/λ;Q : q(x) = 1

2λ
e−|x−1|/λ φM(α) = φ′M(α) = 1

2

(
e
αi
λ + e

−αi−1
λ + 1

2αi+1
(e

αi
λ − e−αi−1

λ )

)
Gaussian Mechanism P : N (1, σ2);Q : N (0, σ2) φM(α) = φ′M(α) = e

−1

2σ2
(α2−iα)

Table 3.2: φ functions and dominating pairs for basic mechanisms.
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generating function
(Renyi Divergence)
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loss RV (PLD)
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 function”𝝓(𝒕)
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When a dominating pair (P, Q) is available.
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formula
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inverse
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Legend

Representation 
ft. RDP-like 

“Natural Composition”

Figure 3.2: Summary of the various functional descriptions and their conversion rules.

forth with other representation such as the privacy-profile, tradeoff function, moment-

generating function as well as the distribution function of the privacy loss RV. The

conversion rule with prominent interest is the conversion to (ε, δ)-DP. Specifically, for

finding δ as a function of ε (i.e., privacy profile), we invoke the fourth equivalent defini-

tion of (ε, δ)-DP in Lemma 3.1.4, which depends on the cumulative distribution function

(CDF) of the privacy loss random variables LP,Q and LQ,P . We can evaluate these CDFs

through an integration of φ-functions via Levy’s formula below.

Theorem 3.3.9 (Evaluate CDFs of privacy loss random variables). Let φ(α) be char-

acteristic function of privacy loss random variable LP,Q. The CDF of LP,Q at point b

satisfies

FLP,Q(b) =
1

2
+ lim

T→∞

1

2π

∫ T

−T

ie−iαb

α
φM(α)dα

The lossless conversions to other quantities are summarized in Figure 3.2. Moreover,

most of the conversion formula correspond to well-known transforms such as the Fourier

transform, Laplace transform and its double-sided variant. Except for those involve RDP
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and hence Laplace transform, numerical algorithms for implementing these transforms

are often available.

3.4 Analytical Fourier Accountant and numerical al-

gorithms

We now propose our analytical Fourier Accoutant (AFA) in Algorithm 1, which is a

combination of the lossless conversion rules and the analytical composition rule (Proposi-

tion 3.3.8). Given a sequence of mechanisms (can be varied) applied to the same dataset,

the data structure tracks the log characteristic function of each mechanism in a symbolic

form. When there is a δ(ε) query, the accountant first constructs two analytical CDFs

(with respect to the privacy loss RV LP,Q and LQ,P ) using Theorem 3.3.9. Then the

conversion to (ε, δ)-DP is obtained using Lemma 3.1.4. For computing ε given δ, we use

bisection to solve δM(ε) = δ.

Algorithm 1 Analytical Fourier Accountant
1: Input Mechanisms M1, ...,MK and δ .
2: for i = 1, ...,K do
3: Maintain the symbolic accountant
4: log φ(M)(α)← log φ(M)(α) + log φ(Mi)(α)
5: log φ′(M)(α)← log φ′(M)(α) + log φ′(Mi)

(α)

6: if query (ε, δ)-DP then
7: Compute the CDF FLP,Q(·) and FLQ,P (·) by integrating log φ(M)(α) and log φ′(M)(α)

using Theorem 3.3.9.
8: Return δ by Lemma 3.1.4.
9: end if

10: end for

AFA vs FFT. Comparing to the FFT-accountant approach [Koskela et al., 2020a,b,

Koskela and Honkela, 2021], our approach decouples representation and numerical com-

putation. We do not make any approximation when tracking the mechanisms, and use
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numerical computation only when converting to (ε, δ)-DP. This avoids the need for set-

ting appropriate discretization parameters of FFT ahead of time before knowing which

sequence M1, ...,MK we will receive.

Gaussian quadrature For fast and numerically stable evaluation of the CDF, we pro-

pose to use Gaussian quadrature which adaptively selects the intervals between interpo-

lation points, rather than the FFT approach which requires equally spaced discretization.

When we apply this approach to efficiently evaluate integral in computing CDFs, where

the numerical error is often negligible, i.e., O(10−13) for CDFs in our experiments, even

if we only sample a few hundreds points.

3.4.1 Experiments

In this section, we conduct numerical experiments to illustrate the behaviors of our

analytical Fourier Accountant. We will have three sets of experiments.

Exp. 1 (Gaussian mechanism) We compare the privacy cost over compositions between

RDP accountant and AFA accountant on Gaussian mechanism.

Exp. 2 (Compositions of discrete and continuous mechanisms) We evaluate the Fourier

accountant variants and RDP accountant on heterogeneous mechanisms.

Exp. 3 (Compositions over Poisson Subsample mechanisms) Comparison of our AFA with

discretization-based φ-function to the Fourier accountant (FA) and the RDP ac-

countant.

In Exp1, we compare our AFA method to the RDP-based accoutant[Mironov, 2017]

and the exact accountant from the analytical Gaussian mechanism [Balle and Wang,

2018]. In Figure 3.3(a), we evaluate ε with a fixed δ = 10−4 and use σ ∈ {50, 100}.
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100 200 300 400 500
Number of Compositions k
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ε

RDP σ= 50
Exact Accountant σ= 50
Our AFA σ= 50
RDP  σ= 100
Exact Accountant with σ= 100
Our AFA with σ= 100

(a) Exp1 Gaussian mechanism (b) Exp2 heterogeneous mecha-
nisms

(c) Exp3 Poisson Subsample

Figure 3.3: Pane 3.3(a) compares privacy cost over compositions in Exp 1.
Pane 3.3(b) is for the heterogeneous composition in Exp 2. Pane 3.3(c) is for Poisson
subsampled Gaussian mechanism in Exp 3.

Observation: In Figure 3.3(a), our φ function-based AFA exactly matches the result

from the analytical Gaussian mechanism and strictly outperforms the RDP accountant

in different privacy regimes.

In Exp2, motivated by [Koskela and Honkela, 2021], we consider an adaptive compo-

sition of the form M(X) =

(
M1(X),M̃2(X), ...,Mk−1(X),M̃k(X)

)
, where each Mi

is a Gaussian mechanism with sensitivity 1, and each M̃i is a randomized mechanism

with probability p. We consider σ = 5.0, p = 0.52, ε = 2.0 and compare δ(ε) between the

RDP accountant, Fourier Accountant [Koskela and Honkela, 2021] and our AFA.

Unlike the FA, our AFA allows an analytical composition over discrete and continuous

mechanisms without sampling discretisation points over the privacy loss distribution,

therefore achieves an exact privacy accountant. In Figure 3.3(b), we plot the δ(ε) over

k compositions given by FA and the moments accountant with RDP. We use n = 105
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discretisations points and L = 10 for FA. Our numerical result matches FA as n = 105 is

already a very accurate estimation as stated in [Koskela and Honkela, 2021].

There are cases when the closed-form φ-functions do not exist. In Exp 3, we con-

sider this problem by analyzing the Poisson Subsample Gaussian mechanism using our

discretization-based approach and “Double quadrature”.

Figure 3.3(c) shows a comparsion of our AFA to the Fourier accountant method [Koskela

et al., 2020b] and the moments accountant method [Zhu and Wang, 2019]. The sampling

probability is γ = 0.01, the noise scale is σ = 2.0 and we evaluate ε with δ = 10−5.

We use the tighter conversion rule from Balle et al. [2020] to convert the RDP back to

(ε, δ)-DP. The numerical issues induced by Gaussian quadrature are at most O(10−14).

Our lower and upper bounds of δ(ε) shown in Figure 3.3(c) already incorporate the error

induced by discretization and ignoring the tail integral. We emphasize that the lower and

upper bounds can match the bounds from FA by increasing sample points n. Moreover,

“Double quadrature” is our proposed efficient approximation method. We only unevenly

sample 700 points for each φ-function and the result of the “Double quadrature” lines

between our lower and upper bounds and matches the result from FA. Lastly, all Fourier

accountant-based approaches improve over the RDP-based accountant.

Runtime and space analysis of AFA We first compare the time complexity and

memory when we have analytical expressions of φ-functions. In Exp 2, each mechanism

admits an analytical φ-function and can be represented in O(1) memory and evaluated

in O(1) time. Therefore, the memory cost is O(# unique mechanisms). We analyze the

runtime by decomposing it into the “composition” and “conversion to δ(ε)” separately.

Let k denote the number of compositions. Regarding the runtime in the conversion to

δ(ε) query, we apply Gaussian quadrature to compute the CDF, which requires O( 1

δ
1/α
err

)

runtime complexity for the αth order differentiable functions. The following composition

runtime for Koskela and Honkela [2021] and Gopi et al. [2021] denote the runtime for
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discretization and convolution via FFT for a homogeneous composition of a mechanism

for k rounds. We use n to denote the size of grid discretization in the FFT approximation.

Privacy accountant Composition runtime δ(ε) conversion runtime Memory Choice of n
Our AFA O(1) O( 1

δ
1/α
err

) O(1) Not applicable

Koskela and Honkela [2021] O(n log n) O(n log n) O(n) n = O(k/δerr)
Gopi et al. [2021] O(n log n) O(n log n) O(n) n =

O(
√
k log(1/δerr)/εerr)

Table 3.3: The runtime/space complexity comparisons of different algoirthms

Of course, this is by no means a fair discussion because the FFT approach computes

the entire (discretized) PLD of the composed mechanisms together while AFA computes

just one point. In terms of the approximation error, our method is the only approach

that adapts to the structures of the φ functions being integrated and achieves a faster

convergence rate.

For the cases when the analytical expressions of φ-functions do not exist (see EXP3),

we need to approximate the φ function too. Thus one single evaluation calls require O(n),

and our method is slower than Koskela and Honkela [2021], Gopi et al. [2021], because we

do not use FFT. The space and time complexity of the adaptive discretization approach

via double quadrature is unclear, though very fast in practice.

3.5 Conclusion

We studied the problem of privacy accounting with mechanism-specific analysis. We

introduced the notion of dominating pair distributions, showed that each mechanism’s

privacy profile is characterized by a tight dominating pair, and derived a number of

useful algebra of dominating pairs including adaptive composition and amplification by

sampling. These results strengthen the foundation of the PLD formalism and make
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it more widely applicable. Algorithmically, we proposed an analytical Fourier accoun-

tant that represents the characteristic functions of a dominating pair symbolically, which

features RDP-like natural composition and allows us to leverage off-the-shelf numerical

tools. Our experiments demonstrate the merits of AFA and suggest that it can flexibly

and efficiently fit into every DP application.

This work also leaves several open questions. Among those

• As Lemma 3.3.3 demonstrates, the construction of the domaining pair is severely

constrained when trade-off functions are not clear. For example, characterizing

high-dimension discrete Gaussian mechanism remains a tricky open problem.

• Moreover, there are cases where our approach requires much more quadrature

points: We apply Gaussian quadrature to compute the CDF of the privacy loss

RV through integration over φ-functions. If the composed φ functions have large

values at the tail of integral (e.g., near ∞), we need to sample more quadrature

points. We hope to solve this issue using numerical tools in the next step.

3.5.1 Omitted proofs in the main body

Characterization of privacy profiles

Proof: [Proof of Proposition 3.3.3] Let

H := {h : R>0 → R>0 | ∃P,Q s.t. h(α) = Hα(P‖Q)},

F := {f : [0, 1]→ [0, 1] | ∃P,Q s.t. f = T [P,Q]}.

By ??, Hα(P‖Q) can be related to f = T [Q,P ] as follows:

Heε(P‖Q) = 1 + f ∗(−eε)
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where ε ranges over the whole real line. By a simple change of variable, we see that

h ∈ H iff there exists f ∈ F such that h(α) = 1 + f ∗(−α), or equivalently,

H = {h : R>0 → R>0 | ∃f ∈ F , h(α) = 1 + f ∗(−α)}.

By Proposition 2.2 of Dong et al. [2021], we know

F = {f : [0, 1]→ [0, 1] | f is convex, decreasing, continuous and f(x) 6 1− x}.

Let G := {g : (−∞, 0] → R | g(0) = 0, g is convex, increasing, continuous and g(x) >

max{x,−1}}.

Claim: Convex conjugacy is a bijection between F and G. Proof: [Proof of the

claim] Since both F and G consist of convex functions, double convex conjugacy brings

back the function, it suffices to show that f ∈ F =⇒ f ∗ ∈ G and g ∈ G =⇒ g∗ ∈ F .

Now suppose f ∈ F . f is extended to be +∞ in (−∞, 0) and 0 in (1,+∞). Thus f is a

convex function on R. By definition f ∗ is convex, and we can calculate

f ∗(y) = sup
x∈R

yx− f(x) = sup
x>0

yx− f(x) =


+∞, if y > 0

0, if y = 0

With y1 < y2, we have y1x− f(x) 6 y2x− f(x). Taking supremum over x > 0, we have

f ∗(y1) 6 f ∗(y2). This shows f ∗ is monotone and finite on (−∞, 0]. Let

I(x) =


+∞, if x < 0

max{1− x, 0}, if x > 0
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It is straightforward to compute that

I∗(y) =


max{y,−1}, if y 6 0

+∞, if y > 0

Since f 6 I, we conclude that f ∗(x) > I∗(x) = max{x,−1}.

Now suppose g ∈ G. Similarly, g is extended to be +∞ in (0,+∞). g∗(y) =

supx60 yx − g(x) and g∗(y) = +∞ if y < 0. By a similar argument, g∗ is increasing.

Since g > I∗, we have g∗ 6 I∗∗ = I. That is, g∗(x) 6 1 − x. Let J be zero on (−∞, 0]

and infinity otherwise. We have J∗ is zero on [0,+∞) and infinity otherwise. We know

that g(0) = 0 and g is increasing so g 6 J . Hence g∗ > J∗, i.e. g∗(y) > 0 if y > 0. This

justifies that g∗(y) ∈ [0, 1] if y ∈ [0, 1] and g∗(y) = 0 if y > 1.

Now with the help of this claim, H and G are simply related: h ∈ H iff α 7→ h(−α)−1

is in G. Therefore we can get the description of H. The proof of the first statement is

complete.

Explicit construction. Next we derive the specific choice of P,Q as stated works using

the result from Dong et al. [2021].

Continuing with the notations in the proof above, when H satisfies the conditions, i.e.

H ∈ H, we know there is a f ∈ F such that H(α) = 1 + f ∗(−α). Let g(α) = H(−α)− 1

and we will have g = f ∗ and hence f = g∗ as f is convex. Therefore,

f(x) = g∗(x) = sup
y
yx−H(−y) + 1 = sup

z
−zx−H(z) + 1 = 1 +H∗(−x).

From Dong et al. [2021, Proposition 2.2], we know that f = T [Q,P ] where Q = U [0, 1]
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is the uniform distribution over [0, 1] and P has CDF

FP (x) =


0, if x < 0,

f(1− x), if x ∈ [0, 1),

1, if x > 1.

Plugging in f(x) = 1 +H∗(−x), we have the CDF of P being

FP (x) =


0, if x < 0,

1 +H∗(1− x), if x ∈ [0, 1),

1, if x > 1.

Note that when the infimum of H is positive, H∗(1 − x) < 0 and P has an atom at 1.

This completes the proof.

Another interesting consequence of Lemma 3.3.3 is one can often get a stronger bound

on the hockey-stick divergence or privacy profile for free. Recall that for a function g, its

convex hull conv(g) (a.k.a., the lower convex envelope) is defined as the greatest convex

lower bound of g and satisfies conv(g) = g∗∗ where the double star means taking Fenchel

conjugate twice.

For a function h : R+ → R, let g(x) = infy∈[0,x] h(y) and HS(h) = (min{1, g})∗∗. It

turns out that HS(h) is the greatest lower bound of h that lies in H, and we have

Corollary 3.5.1 (Dominating pairs from any privacy profile upper bounds). If the pri-

vacy profile of a mechanism M is bounded by h : R+ → R, i.e. δM(α) 6 h(α),∀α > 0,

then δM is also bounded by HS(h).

Note that HS(h) can be significantly smaller than the original bound h, and it admits

a dominating pair by Proposition 3.3.3, even if h does not.
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Proof: We know that δM ∈ H. It suffices to show that

f ∈ H, f 6 h =⇒ f 6 HS(h).

Recall that we let g(x) = infy∈[0,x] h(y) and HS(h) = (min{1, g})∗∗. Since f ∈ H is

decreasing, f(x) = infy∈[0,x] f(y) 6 infy∈[0,x] h(y) = g(x). Furthermore, f(x) 6 f(0) = 1,

so f 6 min{1, g}. Since f is convex, it also holds that f 6 min{1, g}∗∗ = HS(h).

Composition theorem of dominating pairs

Theorem 3.5.2 (Restatement of Theorem 3.3.4 Adaptive composition of dominating

pairs). Let P,Q be a dominating pair distributions for M and P ′, Q′ be a dominating

pair distributions for M′5, then (P × P ′, Q × Q′) is a dominating pair distributions for

the composed mechanism (M,M′).

Proof:

Hα(P‖P ′) =

∫
Ω

[p(ω)− αp′(ω)]+ dω.

Integration with respect to a dominating measure of both P and Q and p, q are the

densities (Radon-Nikodym derivatives) for the probability measures P,Q respectively.

Our goal is to show Hα

(
M(D),M(D′)

)
6 Hα

(
P × R,Q × S

)
. We break it into the

following two parts.

Hα

(
M(D),M(D′)

)
6 Hα

(
M1(D)×R,M1(D′)× S

)
6 Hα

(
P ×R,Q× S

)
.

5M′ can be adaptively chosen in that it could depend on the output of M, which requires
supo∈Range(M)Heε(M′(D, o)‖M′(D′, o)) ≤ Heε(P

′‖Q′) for any value of o.
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Starting from the first part, we have

Hα

(
M(D),M(D′)

)
=

∫∫
X×Y

[p1(x)p2(x, y)− αp′1(x)p′2(x, y)]+ dx dy

=

∫
X

p1(x) ·
(∫

Y

[
p2(x, y)− α · p

′
1(x)

p1(x)
· p′2(x, y)

]
+

dy

)
dx

=

∫
X

p1(x) ·
(
H
α·
p′1(x)
p1(x)

(
M2(D, x)‖M2(D′, x)

))
dx

6
∫
X

p1(x) ·
(
H
α·
p′1(x)
p1(x)

(
R‖S

))
dx

=

∫
X

p1(x) ·
(∫

Ω2

[
r(ω2)− α · p

′
1(x)

p1(x)
· s(ω2)

]
+

dω2

)
dx

=

∫∫
X×Ω2

[p1(x)r(ω2)− αp′1(x)s(ω2)]+ dx dω2

= Hα

(
M1(D)×R,M1(D′)× S

)
.

Continuing this argument, we have

Hα

(
M1(D)×R,M1(D′)× S

)
=

∫∫
X×Ω2

[p1(x)r(ω2)− αp′1(x)s(ω2)]+ dx dω2

=

∫
Ω2

r(ω2) ·
(∫

X

[
p1(x)− α · s(ω2)

r(ω2)
· p′1(x)

]
+

dx

)
dω2

=

∫
Ω2

r(ω2) ·
(
H
α· s(ω2)
r(ω2)

(
M1(D)‖M1(D′)

))
dω2

6
∫

Ω2

r(ω2) ·
(
H
α· s(ω2)
r(ω2)

(
P‖Q

))
dω2

=

∫
Ω2

r(ω2) ·
(∫

X

[
p(ω1)− α · s(ω2)

r(ω2)
· q(ω1)

]
+

dω1

)
dω2

=

∫∫
Ω1×Ω2

[p(ω1)r(ω2)− αq(ω1)s(ω2)]+ dω1 dω2

= Hα

(
P ×R,Q× S

)
.

The proof is complete.
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Privacy-amplification for dominating pairs

Recall we stated the following theorem in the main body:

Remark 3.5.3 (Exact optimality of the bounds). If (P,Q) is a tightly dominating pair for

M, for both “Removal”-neighboring relation or “Add”-neighboring relation, then under

some mild regularity conditions onM and the space of the input datasets, Theorem 3.3.5

can be strengthened to show that that ((1 − γ)Q + γP,Q) and (P, (1 − γ)P + γQ) are

tight dominating pairs for the “Removal”-neighboring relation and “Add”-neighboring

relation respectively — i.e., the dominating pair is realized by some concrete datasets. For

example, considerM to be Gaussian mechanism or Laplace mechanism that releases the

total number of 1s in a dataset. Then two neighboring datasets D = [0, ..., 0, 0, 1] ∈ Rn+1,

D′ = [0, 0, ..., 0] ∈ Rn for “removal” and D = [0, ..., 0] ∈ Rn, D′ = [0, 0, ..., 0, 1] ∈ Rn+1

for “addition” attains the upper bound for all α > 0 in each category.

Remark 3.5.4 (Renyi DP and Optimal Moments Accountant for subsampled mecha-

nisms). Renyi-DP and moments accountant are closely related concepts that are often

considered identical. However, our results suggest that there is a distinction. The above

pair of P,Q we constructed are not necessarily attaining the Renyi-DP bounds (see a

concrete example from Zhu and Wang [2019], but as moments accountant focuses only

on computing (ε, δ)-DP, it suffices use the Renyi-divergence functions Rα(P‖Q). Specif-

ically, this closes the constant gap between the moments accountant for subsampled

mechanisms and Poisson sampled mechanisms.
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Modern privacy accountings with

new private deep learning methods
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Chapter 4

Private-kNN: practical differential

privacy for computer vision

4.1 Introduction

The key idea of differentially private machine learning is to appropriately randomize

the training process (e.g. adding noise), so the fitted model parameters can be thought of

as a sanitized “release” with individual information removed. Most existing approaches

do not apply for deep learning [Chaudhuri et al., 2011, Dimitrakakis et al., 2014, Wang

et al., 2015, Park et al., 2016]. A notable exception — NoisySGD [Song et al., 2013,

Bassily et al., 2014, Abadi et al., 2016] — requires privately releasing the gradients for

many iterations by adding noise proportional to
√
d to every coordinate of the gradient

in a model with d-parameters, hence does not scale to the large models with millions of

parameters that are commonly used in computer vision.

A recent model agnostic approach, termed “Private Aggregation of Teacher Ensem-

bles” (PATE), introduces a model aggregation strategy and gains privacy by injecting

randomness into the aggregation. It assumes a teacher-student knowledge transfer frame-
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Figure 4.1: A comparison of PATE’s framework and ours.

work by leveraging an isolated private data and unrestricted public unlabeled data. The

most critical parameter to choose in PATE is the number of teachers k. It largely deter-

mines the margin between top vote and the second top vote, i.e., k is often as large as

250 for a meaningful privacy guarantee while ensuring the pseudo labels are sufficiently

accurate. As known, each teacher deep learning model requires sufficient amount of data

to generalize well due to the neural network’s data-starving property. While in practice,

it is common that data, especially private data is very limited, which cannot support par-

titioning into many disjoint piles. In CIFAR-10, if set k = 250, each teacher is assigned

with only 200 images and can achieve accuracy below 50%.

To address the problem, we propose a more data-efficient differential private algorithm

based on releasing the pseudo-labels using the majority voting of the k-nearest neighbors

(kNN). This approach avoids data-splitting because adding or removing an individual to

the data can change at most one of anybody’s k-nearest neighbor. This enables us to

choose larger k without worrying about not having enough data to train teachers — kNN

involves no training at all. Moreover, this allows is to leverage the recent advances in

“privacy amplification by sampling” to label orders-of-magnitude more public data with
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only a fraction of the cost in privacy loss than PATE.

Careful readers may legitmately ask: how does this allow us to take advantage of the

modern deep learning? Despite the strong guarantee of kNN that says it asymptotically

achieves the Bayes rate [Cover and Hart, 1967], it is not known as a state-of-the-art

classifier in finite-sample computer vision problems. Our novel solution to this problem

to make learning interactive. Specifically, we outsource the representation-learning task

to the public domain where the student, trained with your favorite deep learning model,

will share the learned feature map with the teacher, so the quality of kNN’s pseudo-

labels will improve, which in turn, helps the student to learn a better representation as

we iterate. It is worth noting that the use of “privacy amplification by sampling” is

central in our design, as it buys us the necessary adaptivity through allowing the ability

to release many pseudo-labels.

Our main contributions are summarized below:

1. We propose Private k-Nearest Neighbor (kNN) for differentially private (DP) deep

learning under the “knowledge transfer” framework. It represents the first prac-

tical solution that addresses this important problem scales to large models while

preserving theoretically meaningful DP guarantee (ε < 1).

2. We present a new Renyi-differential privacy analysis to a “noisy screening” mecha-

nism proposed in [Papernot et al., 2018]. This allows us to use it with the moments

accountant for a tighter privacy accounting. Collectively, “subsampling” and “noisy

screening” allows us to answer 10 times more queries with even less privacy bud-

get compared to state-of-the-art PATE models. The data-dependent version of

this “Noisy screening” mechanism can be thought of as a post-hoc Gaussian-noise

version of the celebrated Sparse Vector Technique in differential privacy, and is of

independent interest.
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3. We examine our approach with extensive vision tasks such as MNIST, SVHN,

CIFAR-10 and also evaluate on two realistic identity relevant tasks, namely, face

attribute classification on Celeb-A and human body attribute classification on Mar-

ket1501. Private-kNN achieves consistently better performance across privacy cost

and accuracy in all the benchmarks when compared to the state-of-the-art differ-

ential privacy learning methods.

4.2 Preliminary

Privacy Amplification by Subsampling. Subsampling is a widely used algorith-

mic tool in privacy, which deals with a composite mechanism that first randomly samples

the data, and then applies a DP mechanism on the randomly selected subset. Intuitively,

since the one person that differs between X and X ′ is often not selected in the subset,

the overall privacy guarantee should be stronger. Loosely speaking, when we apply an

(ε, δ)-DP mechanism to a random γ-proportion of the data, the whole procedure satisfies

(O(γε), γδ)-DP. The result of this style is also known as “subsampling lemma” or “se-

crecy of the samples” in the literature Balle et al. [2018]. This is practically relevant as it

is the reason why we can afford to run Noisy-SGD Song et al. [2013] for many iterations

without blowing up the privacy cost. Recently, such as “subsampling lemma” was proven

for the RDP. The benefits of the subsampling can be combined with the tight advanced

composition of RDP [Wang et al., 2019b, Zhu and Wang, 2019], which roughly says that

under some restrictions on α:

εM◦Sampleγ (α) ≤ O(γ2εM(α)).
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In this work, we apply a Poisson subsampled “RDP-amplification ” bound from Zhu and

Wang [2019]. A more precise statement of this result is attached in the appendix. We

emphasize that this is the main technical contribution leveraged in this work that simply

cannot be done under the PATE approach.

Data-Dependent RDP and PATE The privacy analysis in PATE is straight-forward.

It involves injecting Laplace noise [Papernot et al., 2017] or Gaussian noise [Papernot

et al., 2018] to the teacher votes. For noise with standard deviation O(k), a budget of ε, δ,

roughly speaking, allows PATE to release O( ε2k2

log(1/δ)
) pseudo-labels, which is insufficient

for many cases.

A notion of data-dependent RDP is introduced to further take into account of the

high margin that occurs when the teachers largely agree with each other, in which case

the privacy cost is intuitively smaller.

Definition 4.2.1 (Data-dependent RDP [Papernot et al., 2017]). A mechanism M is

(α, ε)-data-dependent RDP with order α ∈ (1,∞) if for all X ′ that is a adjacent to X

max{Dα(M(X)‖M(X ′)), Dα(M(X ′)‖M(X))} ≤ ε.

In other words, the data-dependent RDP function ε is a joint function of X and α.

There are a few other tricks proposed in [Papernot et al., 2018] to reduce the total privacy

loss. Notably, they designed a “ noisy screen” step that first adds a larger Gaussian noise

to max{votes}, and then release a more confident version of votes only for those questions

that passes the screening. This allows PATE to save privacy loss via data-dependent RDP

in the second step with smaller noise. In this paper, we use the same “noisy screening”

but provide a tighter analysis of this procedure that saves a constant fraction of the

privacy budget.

Finally, we note that the use of data-dependent RDP can be seen as controversial,
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Figure 4.2: The overview of the proposed framework. Given the unlabeled public data
Xpublic, we query through privacy wall for pseudo labels, where the private data and
the queried public data are sent through feature extractor Φ and “Private-kNN” to
assign pseudo labels. Combining the public data and the pseudo labels, the feature
extractor Φ is further updated. This procedure can be iterated for rounds to achieve
satisfied privacy-accuracy trade-off.

as the resulting privacy loss ε is now a sensitive quantity that depends on the data.

[Papernot et al., 2018] provided a smooth-sensitivity based method [Nissim et al., 2007]

to privately release εM,X(α) for a sequence of α, but that incurs additional privacy losses

that are not reported in their main result. One major contribution of the current paper is

to demonstrate that practical differential privacy can be achieved when training a deep

networks under the “knowledge transfer” setting even without using data-dependent

RDP.

4.3 Our Approach

We are now ready to describe our method: Private-kNN.

Notations and symbols. In this section and thereafter, we stick to the following

notations. x ∈ Rd denotes the feature of both private and public data. Let Dprivate be

the private dataset of size n: (x1, y1), (x2, y2), ..., (xn, yn) and yi ∈ [1, c] is the label, where

c is the number of classes in Dprivate. Let m be the size of the unlabeled public data.

γ is the sampling ratio used to sample a random subset Dγ from Dprivate. We define φ

be the feature extractor for private kNN. fj(x) is the prediction of jth neighbor on the

public feature x and the total number of neighbors is k. In the noisy screening, we use

78



Private-kNN: practical differential privacy for computer vision Chapter 4

σ1 to denote the Gaussian noise scale, and T is the threshold for a screening check. σ2

is the Gaussian noise scale for the noisy aggregation procedure. ε and δ are reserved for

denoting privacy cost.

Setup. As defined in PATE, we have access to a private dataset and an unlabeled public

dataset, and we seek to design an (ε, δ)-DP algorithm that outputs pseudo-labels for

as much public data as possible. Then a student model is trained via semi-supervised

learning using both pseudo labeled and unlabeled public data. Again, by the property

of “closedness to postprocessing”, the student model itself satisfies DP assumption.

Private-kNN. Our algorithm involves four simple steps.

1. Pick k-Nearest Neighbors with Poisson Sampling For each query x from the

public domain, we use Poisson sampling1 to get a random subset from the entire private

dataset. Then we pick the k nearest neighbors from Dγ by measuring their Euclidean

distance in feature space Rdφ , where φ is a non-private feature extractor. The choice of

Euclidean distance is general, whereas other distance metrics can also be applied. Our

algorithm is designed into rounds of iterations. In the first iteration, φ is initialized with

a Histogram of Oriented Gradient (HOG)Dalal and Triggs [2005] feature extractor, which

is a popular descriptor used in the computer vision tasks. In the next iteration, we apply

a deep neural network for the public student model (except for the last softmax layer) to

update the feature extractor φ. In the experiment section, we show how this interactive

scheme iteratively refines the feature embedding used by Private-kNN.

2. Noisy Screening. let fj(x) be the prediction of jth neighbor on x, where j ∈ [1, k].

The label count of class i ∈ [1, c] is

ni(x) = |{j : fj(x) = i}|
1Possion sampling includes each data point independently with probability γ. It can be efficiently

implemented by first sample the size of the subset from a Binomial distribution then find a random
subset.
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Answering all queries from public without selection leads to running out privacy budget

instantly. To be more selective, we only answer those queries which have an overwhelming

consensus in voting, and this screening process is implemented privately with Gaussian

noise parameter σ1, for the query not passing the noisy screening check, we return ⊥,

and ignore this data in re-training a student model.

If max
i
{ni(x)}+N (0, σ2

1) ≤ T then return ⊥

T here is the threshold parameter for screening, we set T ≈ 0.6× k in the hope of there

is consensus among neighbors upon this query. Since we pay for private screening for

every query, a larger σ1 would be helpful for privacy concerns. As we mentioned before,

the same screening procedure is used in PATEPapernot et al. [2018] and despite a larger

noise, this is still the most costly part of PATE. PATE treated this screening procedure as

a simple post-processing of the Gaussian mechanism. We note that the output is actually

drawn from a discrete distribution of either

⊥

(Pass) or ⊥ (Fail). In the next section we

derive the RDP for this procedure, which allows to benefit from moments accountant.

3. Noisy Aggregation For those query x which pass the check, we release its label

f(x) = arg max
j
{nj +N (0, σ2

2)}

with a fresh random subsample of the data. The noisy screening process filters out about

50% query, which enables the noisy aggregation process to have a smaller σ2 for better-

aggregated accuracy.

4.Training Student Model Our model only answers a selected number of queries

from the public. Otherwise the final privacy cost becomes meaningless. Taking the

answered queries as pseudo labeled data, together with the unlabeled data, a student
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Figure 4.3: Illustration on the noisy screening and noisy aggregation procedure.

model is trained in the self-supervised manner. We consider two popular self-supervised

methods: virtual adversarial training(VAT)Miyato et al. [2018] and unsupervised Data

Augmentation(UDA)Xie et al. [2019]. VAT uses the virtual adversarial perturbation

in the noisy process and UDA exploits advanced data augmentation instead of random

augmentation. In our experiments, we find that UDA outperforms VAT in both SVHN

and CIFAR-10 tasks. As shown in Figure 4.2, the student model is trained with the above

mentioned self-supervised method. On the other hand, the student model is utilized

to extract the updated feature in the private domain for private-kNN. This iterative

feature distilling allows private-kNN to have similar capacity as ConvNet (replace the last

softmax layer in ConvNet with kNN), and to further improve the accuracy of answering

public queries. Besides, iterative training allows to exploit the benefits from unlabeled

public data, which does not violate the DP assumption or incur any privacy cost, but is

shown to enhance the utility of student model under the self-supervised training.

Privacy analysis. We prove the DP guarantee in the following. Let M denote the
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mechanism of Private-kNN. Our method can be viewed as a composition of (Ms) ◦

Sampleγ and (Mσ2) ◦ Sampleγ. Based on composition theorem, the privacy cost can be

traced by individually calculating the RDP of the two mechanisms and then add them

up. For the latter, we can readily apply the tight bound of the sub-sampled Gaussian

mechanism from [Zhu and Wang, 2019]. Our main theoretical result is the following

characterization of the noisy screening procedure via a tight RDP analysis.

Theorem 4.3.1 (RDP of “Noisy Screening”). Let Ms be a randomized algorithm for

noisy screening procedure with a predefined Gaussian noise scale σ1 and the threshold T .

Then Ms obeys RDP with

εMs(α) = max
(p,q)∈S

1

α− 1
log (pαq1−α + (1− p)α(1− q)1−α).

where S contains the following “pairs”:

(
P[N (t, σ2

1) ≥ T ],P[N (t+ 1, σ2
1)] ≥ T ]

)
,(

P[N (t, σ2
1) ≥ T ],P[N (t− 1, σ2

1)] ≥ T ]
)

for all integer dk/ce ≤ t ≤ k.

We remark that the above bound can be calculated efficiently for any pairs of k, T in

O(k) time and can be evaluated by calculating the Gaussian cumulative density function

using the efficient implementation of the error function erfc. A more detailed proof is

provided in the appendix. Moreover, it is more numerically stable to directly represent

the log of p and q above. By the information-processing inequality of Rényi-divergence,

this bound is strictly better than that from the Gaussian mechanism for every α.

Finally, we estimate the overall privacy bound for the end-to-end method.

Theorem 4.3.2 (Asymptotic scaling). The total privacy bound of Private-kNN to label
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all m public data points with noise σ1, σ2 is (ε, δ)-DP, with any δ, and

ε = O(γ
√

log(1/δ)(

√
m

σ1

+

√
mselected

σ2

)).

The proof is in the appendix. Notice that this is only used for illustrating the ampli-

fication effect γ that is not present in PATE. The actually numerical calculation of ε is

tighter using analytical moments accountant [Wang et al., 2019b].

4.4 Experiments

In this section, we demonstrate our Private-kNN for its data efficiency with character

recognition tasks such as MNIST LeCun et al. [1998] and SVHN Netzer et al. [2011].

We show that our model achieves the same accuracy with only 10% of the privacy cost

used in state-of-the-art (SOTA) methods such as PATE Papernot et al. [2017]. We also

leverage the general vision tasks where data splitting for PATE is the bottleneck. CIFAR-

10 Krizhevsky [2009] as a general object recognition task is investigated across the DP

methods. More specifically, we focus on two realistic setting vision problems, namely face

attribute classification on CelebA Liu et al. [2015] and body attribute classification on

Market1501 Zheng et al. [2015], which is the first to show that our method can facilitate

to realistic multi-label classification tasks.

MNIST and SVHN Evaluation

MNIST and SVHN are two common datasets to measure the utility and privacy

performance of differential private models Papernot et al. [2017, 2018]. We evaluate

Private-kNN using the same setup of private dataset and the model architecture as in

PATE Papernot et al. [2017, 2018]. On MNIST, the training set is reserved as the
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Table 4.1: Utility and privacy of semi-supervised student model

Dataset Methods #Queries ε Acc. NP Acc.

MNIST
LNMAX 1000 8.03 98.1%

99.2%GNMAX 286 1.97 98.5%
Ours 735 0.47 98.8%

SVHN
LNMAX 1000 8.19 90.1%

92.8%GNMAX 3098 4.96 91.6%
Ours 2939 0.49 91.6%

CIFAR-10
GNMAX ≤ 50%

80.5%Noisy SGD 4 70%
Ours 3877 2.92 70.8%

Table 4.2: Ablative results of iterative training on SVHN dataset.

Iteration kNN Acc. retrain CNN #Queries ε
1 82.5% 86.6% 1022/3000

0.49
2 94.41% 91.6% 1917/3000

private dataset, half of the testing set acts as unlabeled student training data, and the

remaining part is for real testing. For SVHN, the extended data, together with training

data, are regarded as private data. Among the 26k testing set, 25k acts as publicly

unlabeled student data for query and self-supervised training, where the remaining 1k

is for testing. We defer the detailed information of model architectures in appendix and

report their non-private baselines in Table 4.1.

As illustrated in the method, we conduct initial round kNN classification using a hand-

crafted feature — histogram of oriented gradients(HOG). Then we apply self-supervised

training (e.g.Miyato et al. [2018], Xie et al. [2019]) with the pseudo-labeled data from

kNN for better feature representation learning.

MNIST: In our method, the privacy cost is accumulated over 1000 queries of 2 iterations.

We set the number of neighbors k = 300, σ1 = 75 for screening, threshold T = 180 and

σ2 = 25 for aggregation, and fix the sub-sampling ratio γ = 0.15. In the initial iteration,

the accuracy of the privately aggregated kNN model based on HOG feature is 92.1%.
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Figure 4.4: Tradeoff between utility and privacy for Private-kNN on SVHN. In this
figure, different curve are generated with different sampling ratio γ. In each curve, we
set different query number for student, and compute the total privacy and accuracy
at test set. σ1 = 240, T = 480, σ2 = 60, k = 800. We also plot the results reported in
PATE. It shows that the privacy cost of our model could achieve nearly two order of
magnitude smaller privacy with better accuracy.

Then a student model is trained on the 735 answered queries with pseudo labels and

VAT regularization, which achieves accuracy 98.8%. In Table 4.1, comparing to PATE

of Laplace mechanism “LNMAX” and Gaussian mechanism “GNMAX”, our method

achieves significantly better accuracy-privacy trade-off. For instance, when we control

the same number of queries between “GNMAX” and ours, Private-kNN achieves similar

accuracy as 98.8% over 98.5%, but much better privacy cost as ε = 0.47 compared to

ε = 1.97 of “GNMAX”. More surprisingly, with a strict privacy cost of ε = 0.47, our

method shows only 0.4% deficit to the non-private model performance 99.2%.
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SVHN: As shown in Table 4.2, we run our model for two iterations with hyper-parameters

k = 800, T = 480, σ1 = 200, σ2 = 60 and γ = 0.03. In the first iteration, kNN with HoG

feature provides 82.5% accuracy on 1022 answered queries. By retraining a CNN with

the queried labels, it improves to 86.6%. In the second iteration, another 3000 queries

are conducted via kNN, and 1917 queries are returned. KNN accuracy is evaluated on

the selected queries, which passed the noisy screening check, whereas the retrain CNN

is evaluated on the public testing set after self-supervised training and achieves 91.6%

accuracy. These procedures can be iterated many times, where we empirically observe

that two rounds can bring the converged performance. In total, we spend the privacy

cost on 6000 samples for noisy screening and noisy aggregation with 2919(1022 + 1917)

samples.

Table 4.1 shows the comparison to “GNMAX” and “LNMAX”. Both “GNMAX” and

ours achieve better privacy accuracy trade-off than “LNMAX”. Though the number of

queries in “LNMAX” is only 100, the privacy cost is as high as 8.19. This is mainly from

the inefficiency of the Laplace mechanism compared to Gaussian mechanism, as Gaussian

mechanism shows 30 times more queries with half of the privacy cost (4.96 over 8.19).

Further comparing our method with “GNMAX”, with the similar number of queries and

exactly the same accuracy, we achieved 0.49 privacy cost, which is significantly smaller

than 4.96 from “GNMAX”. Notice that privacy cost below 1 indicates an excellent system

which is ready for practical applications.

Figure 4.4 shows by varying sampling ratio γ, the privacy cost ε changes with respect

to the number of queries. “GNMAX” and “LNMAX” are also compared. In the figure,

all of our methods are advantageous, i.e. consistently lower privacy cost than those two

spots of “GNMAX” and “LNMAX”. Further exploring different levels of γ, we observe

that all the curves are mostly flat, which indicates that when pushing accuracy high, the

increase of privacy cost is marginal. Moreover, it shows that with different sampling ratio,
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Table 4.3: Real sensitive dataset evaluation on CelebA Liu et al. [2015] and Mar-
ket1501 Zheng et al. [2015], we set τ = 10 for both GNMAX and ours. T is the
number of teachers in teacher ensemble model. We compare different methods under
high privacy and low privacy regime. δ = 10−6 for CelebA and δ = 10−5 for Market.

Dataset
Methods Parameter #Queries ε Acc. NP Acc.

T k σ γ

CelebA

GNMAX 300 - 150 - 600 7.72 85.0%

89.5%
GNMAX 800 - 300 - 500 3.31 84.4%

Ours - 800 50 0.05 800 1.24 85.2%
Ours - 800 100 0.10 800 1.20 84.9%

Market1501

GNMAX 300 - 100 - 800 13.41 86.8%

92.1%
GNMAX 300 - 250 - 80 1.41 85.6%

Ours - 300 100 0.05 1200 0.67 88.8%
Ours - 300 100 0.10 1200 1.38 89.2%

our method can achieve different level of privacy cost. Across the large range of sampling

ratio (0.02 to 0.1), we can push all the performance between 91% to 92%, which is at

the same level of “GNMAX” and “LNMAX”, while with an order of magnitude lower

privacy cost.

4.4.1 CIFAR-10 Evaluation

CIFAR-10 is a general objection classification task, where the PATE model is hard

to apply as the data partitioning results in limited training data for each teacher model.

For instance, each teacher model is assigned only 200 data if we partition the training

set into 250 teachers, which is far from sufficient to train a deep neural network. For our

experimental setting, we split total 60k data into three parts: 30k is treated as private

data, 29k is for unlabeled public data, and 1k for testing.

Regarding this dataset, a competitive method, termed Noisy-SGD Abadi et al. [2016],

achieved accuracy 70% and ε = 4 when δ = 10−5 as shown in Table 4.1 CIFAR-10. In the

Noisy-SGD setting, CIFAR-100 is leveraged to pre-train a model. For fair comparison,
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we also use the CIFAR-100 model as a pre-trained model for each teacher in PATE

Papernot et al. [2018] and extract the initial feature with it for the Private-kNN. The

latter iterative updating of the student model remains the same. For PATE performance,

we notice that after model aggregation, it is below 50% even after we set ε� 10.

In our implementation, with the initial CIFAR-100 extracted feature, the Private-

kNN aggregator answers 3877 over total 18000 queries from the public domain. We

set neighbor K = 300, T = 210, σ1 = 85, σ2 = 20, sampling ratio p = 0.2 and adopt

the same model architecture as Abadi et al. [2016]. The model architecture contains

three convolutional layers with 32, 64, 128 filters in each convolution layer. The non-

private baseline of this model reaches 80.5% accuracy when trained with 30k private data,

whereas SOTA models present over 10% higher accuracy. The reason of not leveraging

the SOTA models in this experiment is because, for fair comparison to Noisy-SGD, we

aim to emphasize the privacy-utility trade-off, but not the best utility. Our method

achieves an accuracy of 70.8% with privacy cost ε = 2.92, which thoroughly outperforms

Noisy-SGD.

Notice that the privacy cost in Noisy-SGD is spent on every parameter of the network;

Thus, their retraining only involves the fully connected layers. Another difference is, we

assume there exists unlabeled auxiliary data in public domain while Noisy-SGD Abadi

et al. [2016] directly train a private model with 50k private data. Comparing to Noisy-

SGD, our Private-kNN is indeed model agnostic, no restriction on network structure or

optimization methods for retraining a student model, whereas clipping gradient in Noisy

SGD may result in unstable optimization.
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Figure 4.5: The privacy cost of answering 8192 queries with five randomized algorithms
in the noisy screening process. The green line is the strong composition of Gaussian
Mechanism used in PATE, the black dash line shows the privacy cost of Poisson sub-
sampled Gaussian Mechanism after 8192 rounds’ composition. The blue line is the
ε of strong composition of data-independent screening and the blue-dash line is the
strong composition of data-dependent screening. The red line is the Poisson subsam-
pled data-independent screening Ms. The sampling ratio γ = 0.25, σ1 = 85, k = 300.

4.4.2 Noisy Screening for Less Privacy Cost

Screening and private voting are the core components of privacy guarantee. The

purpose of screening is to filter out queries where there is no consensus among the votes.

The privacy cost on screening is the major expense as reported in PATE Papernot et al.

[2017] since we need to pay privacy cost for each query.

We investigate different private screening methods by exploring their privacy cost

with respect to a different number of queries. In Figure 4.5, each screening algorithm is

required to answer 8192 queries on the CIFAR-10 dataset, and the cumulative privacy

cost is plotted along the y-axis. We use the HoG feature in the initial iteration for our
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Private-kNN and set the sampling ratio of γ = 0.25. The noisy scale σ1 = 85, threshold

T = 210 and k = 300 is used for all screening methods.

The green line describes the privacy cost of Gaussian mechanism applied by PATEPapernot

et al. [2018], serving as our baseline. It achieves ε = 5.67 after privately screening 8192

queries. The black dash line demonstrates the privacy amplification by Poisson sam-

pling Zhu and Wang [2019] with the same Gaussian mechanism. The privacy cost im-

proves to 1.313. Even though, the original data-splitting setting in PATE prevents it to

benefit from sub-sampling. The red line shows our data-independent screening method

composed of Poisson sampling achieves ε = 1.04. The blue line and the blue dash line

show the result of incorporating our data-independent and data-dependent analysis of

screening into PATE. It improves ε from 5.67 to 4.43 with the data-independent screening

and 3.83 with the data-dependent screening.

When compared to the black-dash line (sub-sampled Gaussian), our method saves

26% privacy budget with the same screening results. Our method allows to answer

more queries from the public domain, which is of essential importance, especially when

the training task itself is tough. For example, employing self-supervised training with

CIFAR-10 requires at least 4000 ground-truth labeled data Xie et al. [2019]. Then, the

minimum number of queries demands at least 10000, since empirically, more than 50%

data fails to pass the screening check. Our advantageous privacy cost 1.04 makes it a

practical solution for private training with more difficult machine learning tasks.

4.4.3 Real Private Datasets Evaluation

We show that our Private-kNN is a practical framework that indeed can apply to

real private datasets, i.e., face attribute classification from CelebA Liu et al. [2015] and

body attribute classification from Market1501 Zheng et al. [2015]. We aim to develop

90



Private-kNN: practical differential privacy for computer vision Chapter 4

an attribute classification model, where the adversary is hard to detect whether one

particular image has been used in training set with high probability. Both of the datasets

target the human or face related tasks, where identity is crucial privacy to be preserved.

Notice that they are multi-label classification tasks other than binary classification, which

are more challenging. To reduce the privacy budget of multi-label tasks, we apply a τ

approximation method where the basic idea is that, each neighbor could at most vote

for τ attributes, or their total votes will be clipped to τ . The detailed definition and

privacy guarantee can be found in Appendix. In our setting, we do not conduct noisy

screening for multi-label classification because it is hard to guarantee all the labels within

one query pass the screen.

CelebA is a large-scale face attribute dataset with more than 220k celebrity images, each

with 40 attribute annotations. According to data splitting, we take the 160k training

data as private data. From the 60k testing data, depending on the volume to be queried,

i.e. 600 queries, the rest 59400 images are automatically regarded as testing. The non-

private baseline is 89.5% trained via a Resnet50m structure. We apply PATE as another

baseline. Since each image have 40 attributes, the global sensitivity grows as large as the

dimension of attributes. We apply τ -approximation method to limit the range of global

sensitivity and also consider the trade-off induced by the different τ . In Table 4.3, by

choosing the parameters, when the privacy cost is smaller than “GNMAX”, we achieve

clear better accuracy of 85.18% compared to 84.4%. When the accuracy is at the same

level around 85%, our method achieves significantly lower privacy cost 1.20 compared to

7.72 of “GNMAX”.

Market1501 contains 1501 identities and 32668 images, where each image has 30 at-

tributes. We split original training set for private data and validation set as unlabeled

public data, performance is evaluated on original testing set. In this task, data-splitting

is stressful. The total private data contains only 750 identities. For PATE, to guarantee
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the teacher models’ independence, we need to partition the private data with respect to

the identities. A meaningful privacy cost requires sufficient many teacher models, i.e.,

K = 300. With such many partitions of the private data, each teacher is trained with

around 40 images from 2 identities, and the non-private accuracy of each teacher is only

71%.

Shown in Table 4.3, our method is able to answer 1200 queries compared to 80

in “GNMAX” where two methods achieve similar privacy cost 1.414 and 1.377. The

significantly more queries lead to performance boost as 89.18% compared to GNMAX

85.61%. To push up the performance for “GNMAX”(i.e., from 85.6% to 86.8%), we

tune the privacy-utility trade-off and the privacy cost goes high up to 13.41, which

prevents the trade-off from improving performance further. We provide a relative close

trade-off, accuracy 88.8%, and privacy ε = 0.67, both of which are far better than the

“GNMAX”. The detailed utility and privacy trade-off can be found in the appendix,

which demonstrates the consistent advantages of our method in real private tasks.

4.5 Conclusion

In this work, we propose a data-efficient privately releasing of k nearest neighbor

framework, termed Private kNN, to overcome the limited private data issue in vision

applications. A new Renyi-dfferential privacy analysis for noisy screening procedure is

proposed, which allows our model to answer 10 times more queries compared to other

private knowledge transfer models such as PATE. Extensive experiments are conducted

across five vision benchmarks, showing that our method achieves comparable or better

accuracy than PATE while saving more than 90% privacy cost. Specifically, the two

realistic identity related classification tasks demonstrate that our private kNN achieves

high utility with practical DP guarantees.
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Chapter 5

Ind-KNN: Private kernelized nearest

neighbors with Individual Rényi

filter

5.1 Introduction

Differential privacy (DP; Dwork et al. [2006, 2014b]) is a promising approach for

mitigating privacy risks in machine learning (ML). The predominant setting for private

ML is to produce the model learned from sensitive data using DP primitives, a.k.a.

private training [Chaudhuri et al., 2011, Kasiviswanathan et al., 2011, Abadi et al.,

2016]. The resulting trained model can then be safely deployed with peace of mind,

because DP ensures that no individual training sample can be identified from the model

itself or its downstream predictions.

Unfortunately, private training comes with several irky properties that hamper its

real-life deployment. To begin, private training comes at a significant computation cost

that can be restrictive in many applications. The NoisySGD algorithm [Abadi et al.,
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2016] requires per-sample gradient computation, which is much more computation- and

memory-intensive than standard training.

Secondly, private training outputs a static model that cannot easily adapt to a chang-

ing dataset. For instance, additional data can arrive in a streaming fashion continuously.

Also, training data could be mislabeled or corrupted [Chen et al., 2017, Jagielski et al.,

2018] and the model needs to be patched accordingly. In addition, if the model is trained

on user data, privacy regulations such as GDPR entitle the user to request the removal

of their data from the model [Ginart et al., 2019, Guo et al., 2020, Bourtoule et al., 2021]

with the so-called right to be forgotten [Mantelero, 2013]. These requirements can be

satisfied by periodically re-training the model, but such an approach is not applicable

to private training due to its high computation cost as well as privacy degradation after

repeated training runs.

Thirdly, privacy training operates under a very strong threat model in which all

downstream users can collude with each other in a coordinated attack on any individual

training sample. Sometimes it makes sense to make realistic assumptions that limit the

adversaries’ information or resources. For example, Harvard’s Privacy Tools project (now

OpenDP) adopts a weaker threat model where each downstream user keeps the results to

themselves [Gaboardi et al., 2016]. In this way, they each get to spend the privacy budget

independently of everyone else and enjoy higher utility. Private training unfortunately

does not have a means to benefit from having weaker adversaries.

To address these issues of private training, we revisit a viable but less-known al-

ternative setting in differentially private machine learning known as privacy-preserving

prediction (or simply private prediction) [Dwork and Feldman, 2018]. Instead of pri-

vately training the models and then using the model for predictions, private prediction

aims at generating a sequence of predictions using the data directly. Notable methods

include those that perturb the predictions of non-private models [Dwork and Feldman,
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Table 5.1: The amortized computational and privacy cost of answering T = 2000
queries on CIFAR-10. The median accuracy of all approaches across five independent
runs is aligned to 96.0%. We estimate the amortized computational cost by calculating
the averaged time spent (in seconds) to answer a single query, which is the total time
of training divided by T in Linear NoisySGD [Feldman and Zrnic, 2021] and the total
time of predictions divided by T in Private kNN [Zhu et al., 2020] and Ind-KNN. We
use δ = 10−5. In the retraining scenarios, we assume that a retraining request is made
every answering 100 queries, resulting in a total of 20 retraining requests among T
queries.

NoisySGD NoisySGD (with retrain) Private kNN Ind-KNN (ours) Ind-KNN+hashing (ours)
Computational cost (s) 0.008 0.16 0.12 0.25 0.04

Privacy loss (ε) 1.5 6.2 4.1 2.0 3.2

2018, Papernot et al., 2018, Bassily et al., 2018, Dagan and Feldman, 2020], or those

that perturb the voting scores of the nearest neighbors [Zhu et al., 2020]. These methods

require no changes to the (non-private) data workflow, and thus could more easily adapt

to changing data.

From the privacy-utility trade-off point of view, the private prediction setting may

appear to be counter-intuitive, because, for every prediction that it generates, a unit

of privacy budget is spent. It is unreasonable to expect private prediction methods to

outperform private training methods such as NoisySGD when we need to make many

predictions. This was well-documented in the work of van der Maaten and Hannun

[2020]. However, in the aforementioned situations when either frequent data updates are

needed or a weaker adversary is assumed1, private prediction methods can significantly

outperform NoisySGD (See Table 5.1 and Figure 5.3 for an illustration). In fact, we will

demonstrate that when combined with modern DP accounting techniques, data-adaptive

DP algorithm design, and some clever reuse of previous predictions, a small privacy

budget can answer thousands of queries without significantly increasing the privacy loss.

In this work, we propose Individual Kernelized Nearest Neighbors (Ind-KNN) — a

new private prediction mechanism that significantly increases the number of queries one

1Consider the example of a recommendation system, each user makes a much smaller number of
predictions than all users collectively.
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can answer with an individualized Rényi Differential Privacy accountant and other tech-

niques. Intuitively, in KNN prediction, training samples that do not belong to the query’s

neighbor set do not contribute to the prediction, and hence their privacy cost should be

negligible. We show that by slightly modifying KNN and leveraging Rényi filter [Feld-

man and Zrnic, 2021] to account for the privacy cost of each sample individually, we

can realize this intuition in the privacy accounting and allow each training sample to

participate in the query response until its own privacy budget is exhausted. In effect,

common queries can be answered with relatively low privacy costs due to a large number

of similar samples present in the training set.

Experimental results. We summarize our experimental results as follows:

1. We show that Ind-KNN consistently outperforms the private prediction benchmark,

Private-kNN [Zhu et al., 2020], across four vision and language tasks for a range of

epsilon between [0.5, 2.0].

2. We demonstrate that Ind-KNN is a viable alternative to private training methods

even in a static data setting. Our results indicate that Ind-KNN achieves higher

accuracy than NoisySGD when answering less than 2000 queries on CIFAR-10

under (1.0, 10−5)-DP.

3. For frequent data updates, Ind-KNN significantly outperforms the private training

benchmark Linear NoisySGD [Feldman and Zrnic, 2021]. As shown in Table 5.1,

Linear NoisySGD requires a DP budget of ε = 6.2 to achieve an accuracy of 96.0%

on 2000 queries of CIFAR-10, while Ind-KNN only requires ε = 2.0.

4. We describe two simple techniques that significantly enhance the computational

efficiency and utility of Ind-KNN. First, we show that incorporating hashing tricks

into Ind-KNN can provide a 6× speedup in making predictions, with only a neg-
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ligible drop in accuracy. Additionally, we propose to reuse the results of previous

queries via post-processing, which allows Ind-KNN to answer an additional 1000

queries on CIFAR-10 without compromising in privacy or utility.

Related work and novelty. The problem of private prediction was pioneered by

Dwork and Feldman [2018] as a weakened goal for private machine learning. Model-

based approaches for private predictions either require analyzing the stability of model

training [Dwork and Feldman, 2018, Dagan and Feldman, 2020] or to enforce stability of

prediction via subsample-and-aggregate [Papernot et al., 2018, Bassily et al., 2018]. Our

method is closest to Private kNN [Zhu et al., 2020] but uses kernel-weighted neighbors

with a variable K instead of a fixed K. This change is critical for adapting the individual

Rényi DP accountant (and filter) for our purpose. Other components such as adaptive

noise-level, prediction reuse, and the fast hashing trick are new to this paper. Technically,

we apply the same individual Rényi filter [Feldman and Zrnic, 2021] that retires data

samples when their privacy budget runs out. The difference is that we applied it to

KNN rather than noisy gradient descent. KNN naturally has bounded support thus it is

efficient to maintain the individual RDP accountants.

5.2 Preliminaries

We start with the definition of privacy-preserving prediciton.

Privacy-preserving prediction. We now formally state the setting of privacy-preserving

prediction. Consider a prediction task over a domain X and label space Y . The pre-

diction interface A has access to a private dataset S = (xi, yi)
n
i=1 ∈ (X × Y)n, which

outputs a value a ∈ Y if given a query q ∈ X . We denote by Q a query generating algo-

rithm that can adaptively generate a query given the previous released outputs. Namely,

we denote by A(S) 
T Q = (qt, at)
T
t=1 the sequence of query-response pairs generated

97



Ind-KNN: Private kernelized nearest neighbors with Individual Rényi filter Chapter 5

by the prediction interface A over a sequence of length T queries on dataset S, where

at = At(a1, ..., at−1, S, qt).

The privacy guarantee of private prediction is applied for a sequence of predictions

generated by the interface A.

Definition 5.2.1 (Privacy-preserving prediction interface). [Dwork and Feldman, 2018]

A prediction interface A is (ε, δ)-differentially private, if for every interactive query gen-

erating algorithm Q, the output A(S) 
T Q = (qt, at)
T
t=1 is (ε, δ)-DP with respect to

dataset S.

Privacy-preserving prediction algorithms can be useful in a variety of situations where

releasing a DP model is restricted or not practical. For example, companies that train a

privacy-preserving model and only require making a limited number of predictions can

rely on a prediction interface instead of releasing the entire model. In addition, in health

or financial data scenarios, private prediction algorithms allow for a cloud-based interface

to be exposed, which can also help to ensure compliance with regulatory requirements.

Individual RDP. Our privacy analysis relies on individual privacy loss, which accounts

for the maximum possible impact of an individual data point on a dataset. The following

definition states the individual privacy loss in terms of Rényi divergence.

Definition 5.2.2 (Individual RDP [Feldman and Zrnic, 2021]). Fix n ∈ N and a private

data point z = (x, y) ∈ X × Y . We say that a randomized algorithm A satisfies (α, ρ)-

individual Rényi differential privacy for z if for all datasets S = (z1, ..., zm) such that

m ≤ n and zi = z for some i, it holds that

D↔α
(
A(S)||A(S−i)

)
≤ ρ,

where D↔α denotes the max of Dα

(
A(S)‖A(S−i)

)
and Dα

(
A(S−i)‖A(S)

)
.
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Note that the individual RDP parameter ρ is a function of a data point z, and thus

does not imply the standard RDP guarantee in Definition 1.3.1. However, we can obtain

the standard RDP guarantee by requiring that all data points z satisfy individual RDP

with the same ρ.

Now, we present an example of individual RDP computation on Gaussian mechanism.

Lemma 5.2.3 (Linear queries with Gaussian mechanism [Feldman and Zrnic, 2021]).

Let S = (z1, ..., zn) ∈ (X × Y)n. Suppose that A is a d-dimensional linear query with

Gaussian noise addition, A(S) =
∑

j∈[n] q(zj) + N (0, σ21d) for some q : X × Y → Rd.

Then A satisfies

D↔α
(
A(S)||A(S−i)

)
≤ α||q(zi)||22

2σ2

individual RDP for zi. Note that by replacing||q(zi)||2 with the `2 global sensitivity of

q(·), the expression above recovers the standard RDP of Gaussian mechanism.

The following theorem states the composition property of individual privacy. For a

sequence of algorithms, as long as the composition of individual RDP parameters does not

exceed a pre-specified budget for all data points, the output of the adaptive composition

preserves the standard RDP guarantee.

Theorem 5.2.4 (Corollary 3.3 [Feldman and Zrnic, 2021]). Fix any G ≥ 0 and any α ≥

1. For any input dataset S = (z1, ..., zn) and for any sequence of algorithms A1, ...,AT ,

let ρ
(i)
t denote the individual RDP parameter of the t-th adaptively composed algorithm

At with respect to zi. if
∑T

t=1 ρ
(i)
t ≤ G holds almost surely for all i ∈ [n] then the adaptive

composition A(T ) satisfies (α,G)-RDP.

The composition rule described above is known as fully adaptive composition [Rogers

et al., 2016], which takes adaptively-chosen privacy parameters instead of pre-specified
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ones in the classical adaptive composition. This type of composition is necessary for

individual privacy since the individual RDP parameters themselves are random variables

that depend on the outputs released by previous composed mechanisms.

To implement the composition above, we need a tool called Rényi filter, which is

designed to ensure that the composed individual privacy parameters is maintained within

a given budget G for all individuals. In practice, we can implement Rényi filter by

providing each data point with an individual accountant that estimates its composed

individual RDP
∑T

t=1 ρ
(i)
t and dropping the data point once it exceeds the budget, as

shown in Algorithm 2.

However, despite its tighter privacy analysis, this technique has been criticized for its

computational cost of tracking individual privacy costs for all data samples. In this work,

we demonstrate that KNN works seamlessly with the individual RDP accountant. Only

selected neighbors are required to update their individual privacy accountants, which

significantly reduces the computational cost.

Algorithm 2 Adaptive composition A(T ) with Rényi filter

1: Input: Dataset S ∈ (X × Y)n, sequence of algorithms A1:T and privacy budget G.
2: for t = 1, ..., T do
3: For all zi ∈ S, compute

ρ
(i)
t = supS′∈S D

↔
α

(
A(a1:t−1, S

′)||A(a1:t−1, S
′−i)
)

4: Update the active set S = {zi|
∑t

j=1 ρ
(i)
j ≤ G}

5: Compute at = At(a1:t−1, S)
6: end for
7: Return (a1, ..., aT )

5.3 Private Prediction with Ind-KNN

To overcome the limitations of private training, we propose Individual Kernelized

Nearest Neighbor (Ind-KNN)—a k-nearest neighbor-based private prediction algorithm
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that achieves a comparable DP guarantee and test accuracy to that of private training.

Notations and setup. We focus on the task of multi-class classification. Given a private

dataset S = (xi, yi)
n
i=1 ∈ (X ×Y), we assume yi is an one-hot vector over c class, i.e., yi ∈

{0, 1}c. Let φ(·) denote a public feature extractor that maps the input x ∈ X to a fixed-

length feature representation φ(x) ∈ Rd. This could be image features extracted from

the penultimate layer of a ResNet50 pre-trained model or language features extracted

from the final layer of a transformer model. The feature extractor is used to encode both

the private dataset and public queries.

Algorithm 3 Privacy-preserving prediction with naive kNN

1: Input: Dataset S ∈ (X × Y)n, sequence of queries q1, ..., qT , number of neighbor k
and the noisy scale σ.

2: for t = 1 to T do
3: Nk := top k nearest neighbors of the query qt
4: at = arg maxj∈[c]

(∑
i∈Nk yi +N (0, σ21c)

)
j

5: end for
6: Return (a1, ..., aT )

Previously, k-Nearest Neighbor (kNN) has been used for privacy-preserving prediction

by Zhu et al. [2020] (Algorithm 3). In this method, when a query qt arrives, the top k

nearest neighbors are selected from the private dataset based on the distance in the

feature space, and their labels are utilized for prediction through a Gaussian mechanism.

However, the privacy loss of Algorithm 3 accumulates rapidly as the number of queries

increases, owing to its conservative privacy analysis that bounds the worst-case individual

privacy loss over all individuals. In contrast, the Ind-KNN approach emphasizes indi-

vidual privacy accounting, providing precise control over privacy loss at an individual

data level. This allows each data point’s privacy to be charged by the exact amount of

its contribution to the query response, and private data is removed once its own privacy

budget has been exhausted.

We propose a novel solution Individualized Kernelized Nearest Neighbor (Ind-KNN)
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Algorithm 4 Kernelized-nearest-neighbor with individual privacy accounting (Ind-
KNN)

1: Input: Dataset S ∈ (X × Y)n, the kernel function κ(·, ·), the threshold τ , sequence
of queries q1:T , the noisy scale σ1, σ2 and the individual budget B.

2: Initialize individual budget zi = B, ∀i ∈ [n].
3: for t = 1 to T do
4: Update the active set S = {(xi, yi)|zi ≥ 1

2σ2
1
}.

5: Release the number of selected neighbors: Kt :=
∑

(xi,yi)∈S I[κ(xi, qt) ≥ τ ] +

N (0, σ2
1).

6: for (xi, yi) ∈ S do
7: Update the remaining budget zi after releasing Kt: zi = zi− 1

2σ2
1
· I[κ(xi, qt) ≥ τ ].

8: Evaluate individual contribution ft : X ×Y → Rc as ft(xi, yi) := min
(
κ(xi, qt) ·

yi · I[κ(xi, qt) ≥ τ ], σ2

√
2Kt · zi · 1c

)
9: Update the remaining budget zi after releasing label: zi = zi − ||ft(xi,yi)||

2
2

2σ2
2 ·Kt

.

10: end for
11: at = arg maxj∈[c]

(∑
(xi,yi)∈S ft(xi, yi) +N (0, σ2

2 ·Kt · 1c)
)
j
.

12: end for
13: Return (a1, ..., aT )

in Algorithm 4. Intuitively, nearest neighbor-based prediction leak little to no private

information when the query point is near a dense region of the training data. This is

because the result of the query is determined by a large number of training samples

and hence is insensitive to individual training points. We make several modifications to

Private kNN to realize this intuition.

First, we introduce individual privacy accounting by assigning each private data point

(xi, yi) with a pre-determined privacy budget B, represented by the variable zi := B. For

each query, the algorithm updates the private dataset S to only include data points where

zi >
1

2σ2
1
. This ensures that the privacy budget for each individual is not exceeded.

Second, Ind-KNN improves upon Algorithm 3 by utilizing a pre-specified threshold τ

and a kernel-based similarity function κ(·, ·) to select only neighbors with similarity above

τ . This approach allows only the selected neighbors to be accountable for their privacy

loss, preserving the privacy budget of un-selected private individuals for future queries.
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It is worth noting that simply selecting the exact top k neighbors, as in Algorithm 3,

is not consistent with individual privacy loss. This is because the decision of selection

is dependent on the dataset: a k + 1th nearest neighbor in one dataset may be the top

nearest neighbor in another dataset. Hence, all private data points must account for

their individual privacy loss, even if only a subset of them contribute to the prediction,

according to the definition of individual RDP (Definition 5.2.2).

Moreover, Ind-KNN employs kernel weights for prediction aggregation instead of equal

weight for all nearest neighbors. In our experiments, we consider two types of kernel

functions, RBF and cosine, to measure the similarity. For example, the RBF kernel is

defined as κ(x, qt) := e
−||φ(x)−φ(qt)||

2
2

ν2 , where φ(x) and φ(qt) are the encoded feature and ν

is a scalar parameter. This adaptation, made possible by individual privacy accounting,

results in a more accurate characterization of each individual’s contribution to the query.

However, changing from equal weight to kernel weight in Algorithm 3 would not alter

its privacy analysis (as the worst-case kernel weight is bound by 1), but would instead

decrease the signal-to-noise ratio (each neighbor’s contribution would be less than 1).

Finally, Ind-KNN dynamically adjusts the magnitude of noise added to the noisy

prediction by publishing the number of neighbors at each query. We find that adding

noise with variance proportional to Kt is crucial for good performance. This allows us

to adjust the margin of the voting space — the difference between the largest and the

second largest coordinate of
∑

(xi,yi)∈S f(xi, yi) adapted to the noise scale. Specifically,

when the margin is significant, adding larger noise will not change the output label, but

it reduces each individual’s individual privacy loss proportional to the reciprocal of Kt,

enabling them to participate in more queries in the future.

Algorithm. The modifications made in Ind-KNN are summarized in Algorithm 4.

Specifically, since the number of selected neighbors is considered private information, each

selected neighbor accounts for its individual privacy loss due to releasing I[κ(xi, qt) ≥ τ ]
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by subtracting zi with 1
2σ2

1
at line 7 of Algorithm 4. Meanwhile, ft(xi, yi) at line 8 accounts

for the individual contribution of releasing its label associated with kernel weight. The

first term represents the “weighted” one-hot label for selected neighbors and all-zero

vectors for unselected private data. The second term σ2

√
2Ktzi ensures that the incurred

individual privacy loss of releasing label will not go beyond the remaining budget zi.

Lemma 5.3.1 (Individual RDP of releasing at). Given a query qt, for each (xi, yi),

define the function ft : X × Y → Rc as line 8 in Algorithm 4. Then the release of at =

arg maxj∈[c]

(∑
(xi,yi)∈S ft(xi, yi) +N (0, σ2

2 ·Kt · Ic)
)
j

satisfies (α,
α·||ft(xi,yi)||22

2σ2
2 ·Kt

) individual

RDP for each (xi, yi).

The proof directly follows from Lemma 5.2.3 and the post-processing property of

individual privacy. Note that for unselected private data, their individual privacy loss is

always zero since their individual contribution f(·) is zero.

Theorem 5.3.2. Algorithm 4 satisfies (α,Bα)-RDP for all α ≥ 1.

Proof: The proof makes use of the facts that: (1) the decision rule for “being se-

lected” is not influenced by any other private data points, thus, “unselected” neighbors

does not incur any individual privacy loss. (2) adding/removing one selected neighbor

would only change
∑

(xi,yi)∈S I[κ(xi, qt) ≥ τ ] by one, thus the release of Kt satisfies (α, α
2σ2

1
)

individual RDP for selected neighbors. (3) the release of label associated with the kernel

weight satisfies (α,
α||ft(xi,yi)||22

2σ2
2Kt

) individual RDP.

The privacy analysis relies on individual RDP (Definition 2.4), which quantifies the

maximum impact of adding or deleting a specific individual from any potential dataset

to the prediction outcome, measured in terms of Rényi divergence.

We first demonstrate that only the selected neighbors have to account for their in-

dividual privacy loss. The decision rule for “being selected” is based on a comparison
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between the kernel weight and a data-independent threshold τ , which is not influenced

by any other private data points. Therefore, “unselected” neighbors do not incur any

individual privacy loss.

For each selected neighbor (xi, yi) at time t, its individual privacy analysis is broken

down into two parts: the first part is the release of the number of neighbors |Nt|, and

the second part is the release of its label associated with the kernel weight.

Note that adding or removing one selected neighbor would only change |Nt| by 1,

thus the individual RDP of releasing |Nt| at order α satisfies α
2σ2

1
-RDP for all selected

data. We next analyze the individual RDP of releasing the label. Fix a selected neighbor

z = (xi, yi), for all possible set of selected neighbors Nt = (z1, ..., zm) that include z, it

holds that

D↔α

((∑
j∈Nt

κ(xj, qt) · yj
)

+N (0, σ2
2KtIc)||

( ∑
j∈Nt\z

κ(xj, qt) · yj
)

+N (0, σ2
2KtIc)

)
≤ κ(xi, qt)

2α

2σ2
2Kt

by the definition of individual RDP.

Finally, The “delete” step in the algorithm ensures that the privacy loss for each pri-

vate data point (xi, yi) is bounded by a fixed valueB, i.e.,
∑t

j=1

(
(gi + 1

2σ2
1 ·Kj

) · I[(xi, yi) ∈ Nj]
)
≤

B. According to the fully adaptive composition theorem of individual RDP (Theorem

2.5), by ensuring the sum is less than or equal to B for all time steps t and for all data

point (xi, yi), the algorithm is shown to be (α, α ·B)-RDP.

Remark 5.3.3. We remark that the privacy guarantee of Ind-KNN is determined by the

given individual budget, and remains the same regardless of the number of predictions

made. However, as the number of predictions increase, the exclusion of private data may

result in a degradation of the algorithm’s utility.
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Efficient Ind-KNN

In this section, we present two novel techniques that aim to improve the efficiency of

Ind-KNN in terms of both utility and computational cost.

Ind-KNN with prediction reuse. The first technique improves the utility of Ind-

KNN by exploiting the previously released predictions. We acknowledge that the query-

response pairs that have been disclosed can be considered public information. Therefore,

we incorporate those predictions into the active set S without any limitation on their pri-

vacy budgets. The results of our experiments demonstrate that this extension effectively

mitigates the utility loss caused by the exclusion of private data points and improves the

test accuracy when handling a large number of queries.

Ind-KNN with hashing. Algorithm 4 requires searching through all private data to

answer each query, which can be computationally expensive if the private dataset is

large. To address this issue, we present a variant of Ind-KNN that incorporates locality-

sensitive hashing (LSH) [Gionis et al., 1999] for efficient nearest neighbor search. The

full algorithm of Ind-KNN-Hash is in Algorithm Algorithm 5 LSH is a well-established

technique to speed up the approximate nearest neighbor search. The principle behind

the algorithm is to apply LSH to group private data points into “buckets” based on their

hash values. When a query is made, the algorithm only needs to search the bucket that

the query falls into, rather than searching through the entire dataset.

Concretely, Ind-KNN-Hash creates L hash tables F = (f1, ..., fL) with each of them

maps a feature µ ∈ Rd to a b-dimension bucket. For each table f , the algorithm generates

b independent random Gaussian vectors from N (0,1d), denoted by rj for 1 ≤ j ≤ b.

Then we encode µ with f(µ) = (h1(µ), ..., hb(µ)), where hj(µ) = 0 if r>j µ < 0, otherwise

hj(µ) = 1. The algorithm then indexes all private data points into the hash tables using

their encoded features. When a query qt is received, the algorithm uses LSH to retrieve
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Algorithm 5 Ind-KNN-Hash

1: Input: Dataset S ∈ (X × Y)n, number of hash tables L and the width parameter
b, the kernel function κ(·, ·), the minimum kernel weight threshold τ , sequence of
queries q1, ..., qT , the noisy scale σ1 and σ2 and the individual budget B.

2: Initialize individual budget zi = B, ∀i ∈ [n].
3: Construct a LSH family: F = (f1, ..., fL), where f` : Rd → {0, 1}b.
4: for t = 1 to T do
5: Retrieve the hash set: F(qt).
6: Update the active set S = {(xi, yi)|zi > 0, (xi, yi) ∈ F(qt)}.
7: The selected neighbors: Nt := {(xi, yi)|κ(xi, qt) ≥ τ for all i ∈ S}.
8: Drop (xi, yi) from Nt if zi ≤ 1

2σ2
1
.

9: Release |Nt|: Kt := |Nt|+N (0, σ2
1).

10: for (xi, yi) ∈ Nt do
11: Update zi after releasing Kt: zi = zi − 1

2σ2
1
.

12: Evaluate individual “contribution”: gi = min
(
κ(xi,qt)

2

2σ2
2 ·Kt

, σ2

√
2Ktzi

)
.

13: Update zi after releasing label: zi = zi − gi.
14: end for
15: Compute at = arg maxj∈[c]

(∑
i∈Nt κ(xi, qt) · yi +N (0, σ2

2 ·Kt1c)
)
j
.

16: end for
17: Return (a1, ..., aT )

a set of private data points that are hashed into the same bucket in at least one table,

which is denoted by F(qt). Finally, Algorithm 4 is called to label each query with a slight

modification on the active set, which is now restricted to the retrieved data points with

non-negative individual budgets. Typically, increasing the number of hash tables L and

reducing the bucket size b results in more accurate neighbors but higher computational

costs.

Incorporating LSH into Ind-KNN does not impose any additional privacy cost. This

is because the encoding of each private data point is based on random Gaussian vectors

and is executed independently of any other private data points.
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5.4 Experiments

We consider the following standard image classification and language classification

datasets. For each dataset, we take the training set as the private domain and the

testing set as the public domain.

Image classification. We evaluate our method on two widely used image classification

benchmarks, CIFAR-10 [Krizhevsky et al., 2009] and Fashion MNIST [Xiao et al., 2017].

For CIFAR-10, we employed the recent Vision Transformer (ViT) model [Dosovitskiy

et al., 2020], which is pre-trained on the ImageNet-21k consisting of 14 million images and

21843 classes). The extracted from the ViT model are represented as 768-dimensional

vectors. For Fashion MNIST, we consider the publicly available ImageNet-pretrained

ResNet50 He et al. [2016] from Pytorch as the feature extractor. The model returns a

1000-dim vector for each input image.

Text classification. We utilize AG News [Zhang et al., 2015] and DBPedia [Lehmann

et al., 2015] datasets to evaluate the performance of Ind-KNN on text classification

tasks. We employ sentence embedding models [Zhao et al., 2022, Reimers and Gurevych,

2019] to extract features. Specifically, we utilize the all-roberta-large-v1 sentence-

transformer, which has been fine-tuned on a 1B sentence pairs dataset using a self-

supervised contrastive learning objective. The extracted features are 1024-dimensional

vectors for each text instance.

We consider the following two algorithms for comparisons:

Linear+NoisySGD [Tramèr and Boneh, 2021] is a private training benchmark that

has been shown outperforming end-to-end privacy-preserving deep learning methods (in-

cluding those pre-trained on public data, see De et al. [2022]) for a wide range of ε.

We consider this algorithm as a reference point for private training to investigate how

well Ind-KNN performs compared to private training while we gain those computational
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savings. We implement the algorithm by training a linear model with features extracted

from the same extractor as Ind-KNN. We use the default batch size 256 and clip the

gradient norm to 0.1. The model is trained for 10 epochs with a grid search over the

learning rate and the noise level is determined by the target privacy budget.

Private-kNN [Zhu et al., 2020] is a private prediction baseline that we consider.

For each query, the algorithm first samples a random subset from the private dataset,

retrieves the k-nearest neighbors from the subset (based on the extracted features), and

then releases the noisy label of kNN prediction using Report-Noisy-Max. We tune the

sampling ratio and the number of neighbors on the validation set. The noise scale is

calibrated based on the target privacy budget.

Hyper-parameters of Ind-KNN. We set the individual RDP budget B such that

using RDP to DP conversion on (α,Bα)-RDP satisfies the predefined privacy budget

(ε, δ). Then, we set the noise scale σ1 to be
√

T
6B

to use roughly half of the individual

RDP budget B for each data point being selected at every query and tune the noise scale

σ2 on the validation set. We consider two kernel methods, the RBF kernel κ(x, q) =

e
−||φ(x)−φ(q)||22

ν2 and the cosine similarity κ(x, q) = cos(φ(x), φ(q)). A linear scaling search

is run on the minimum kernel weight threshold τ for each kernel method.

Experiment setting. For all experiments, we use a random seed to generate a validation

set of size T . For example, we randomly sample 1000 examples from the CIFAR-10

testing dataset and tune the best hyper-parameters of all approaches on the validation

set. We then report the median accuracy across 5 independent sampled query sets. All

experiments are conducted on a server with an Intel i7-5930K CPU @ 3.50GHz and

Nvidia TITAN Xp GPU.
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Figure 5.1: Privacy-utility trade-offs on CIFAR-10. We plot the median accuracy
across 5 independent runs.

5.4.1 Main Results

Privacy-accuracy trade-off on CIFAR-10. In the top figure of Figure 5.1, we plot

the median accuracy evaluated on 1000 randomly chosen queries from the CIFAR-10

test set over a range of privacy budget ε. The hyper-parameters were fine-tuned for each

algorithm at each value of ε. For Ind-kNN, we found that the best hyper-parameter τ (the

minimum threshold) increases as the privacy budget grows. We note this because, with

smaller value of ε, the added noise requires a larger margin among the selected neighbors’

votes to determine the correct output. This larger margin, in turn, corresponds to a
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Figure 5.2: Privacy-accuracy trade-offs on FMNIST, AG News and DBPedia. We
consider δ = 10−5 for FMNIST and AG News and δ = 10−6 for DBPedia.

smaller threshold and more selected neighbors. For Ind-KNN with RBF kernel, we set

the kernel bandwidth to ν = e1.5 and search for the optimal minimum threshold τ on

the validation set. We find that different choices of kernel bandwidth in the RBF kernel

produce similar accuracy results. As shown in Figure 5.1, Ind-kNN with RBF kernel

performs slightly better than its cosine kernel and both kernel methods are comparable

to Linear NoisySGD across various value of ε.

Accuracy vs number of queries on CIFAR-10. Given a fixed privacy budget, the

accuracy of all private prediction methods typically degrades as the number of predictions

increases, while the accuracy of private training methods remains unaffected. In the

bottom figure of Figure 5.1, we study how quickly the accuracy of Ind-KNN drops as

the number of queries increases. We present the median accuracy of answering T queries

over five independent rounds. The accuracy of Private kNN drops rapidly with the

increasing number of queries. This decline is expected, as Private kNN applies the

standard Rényi composition theorem to analyze privacy loss, requiring the noise level to

increase proportionally to the square root of T . In contrast, Ind-KNN uses individual

privacy accountants, which only require selected neighbors to account for privacy loss,

resulting in no significant accuracy drop as more queries are answered. Furthermore,

exploiting released predictions allows Ind-KNN to answer an additional 1000 queries
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(from T = 2000 to T = 3000) without an accuracy drop. The figure also shows that if the

number of queries is less than 2000, Ind-KNN can in fact outperform Linear NoisySGD,

making it a practical alternative to private training methods when only a small number

of predictions is needed.

Privacy-accuracy trade-off on Fashion MNIST, AG News and DBPedia. Next,

we examine the privacy-accuracy trade-off on Fashion MNIST, AG News and DBPedia

datasets. We use Ind-KNN with cosine kernel for all datasets. Figure 5.2(a) shows

that Ind-KNN outperforms Private-kNN for all values of the privacy parameter ε on

Fashion MNIST. On AG News, we compare the performance of Ind-KNN to that of

Linear NoisySGD, and the results are presented in Figure 5.2(b). We evaluate T = 800

queries on AG News and find that the accuracy of Ind-KNN either surpasses or matches

that of Linear NoisySGD for ε ≥ 0.5. We also observe similar improvements over Private-

kNN on DBPedia.

Overall, Ind-KNN demonstrates its versatility by delivering competitive accuracy

results on all three datasets, making it a promising solution for balancing differential

privacy and accuracy.

5.4.2 Ablation Studies

We first perform an ablation study in Figure 5.3 to better understand how the pe-

riodical retraining affects the performance of private training method and our Ind-KNN

in terms of computational and privacy cost on CIFAR-10.

Periodical retraining. In Figure ??, we provide empirical measurements of the amor-

tized computational cost associated with periodical retraining on CIFAR-10 of answering

a stream of total T = 105 queries. We assume a retraining request is triggered every time

the model has answered Q queries. To simplify the analysis, we assume each retraining is
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performed on the same dataset. For Linear NoisySGD, we retrain the model for 10 epochs

and we calculate the per-query computational cost by dividing the total time spent on

retraining and answering T queries by T . This provides an estimate of the average time

required to answer a single query. For Ind-KNN with the cosine kernel, the average time

of making predictions with is reported. Ind-KNN-Hash uses 30 hash tables with the

width parameter b = 8. Our results demonstrate that the computational cost per query

remains constant for Ind-KNN and Ind-KNN-Hash, as they do not require retraining the

model, and the time required to add or delete individual data points is negligible. In

contrast, for Linear NoisySGD, every retraining request incurs a substantial computa-

tional cost and the privacy loss grows ∝ 1√
Q

(proportional to the square root of total

epochs). These findings highlight the advantage of Ind-KNN and Ind-KNN-Hash over

Linear NoisySGD in terms of efficiency and resource utilization for machine unlearning

and other scenarios with periodic retraining requests.

Figure 5.3(b) evaluates the accumulated privacy loss of answering a stream of T =

2000 queries on CIFAR-10. We tune hyper-parameters for both approaches such that

the averaged accuracy of answering T queries is aligned to 96.0%. We consider two

types of retraining scenarios: Q = 100 and Q = 200. Periodic retraining has a negligible

privacy impact on Ind-KNN. Therefore, we only use one red curve to indicate the privacy

loss of Ind-KNN under two scenarios. The individual privacy budget of Ind-KNN is pre-

determined, thus the standard privacy guarantee remained unchanged when making more

predictions. The yellow curve plots the median of individual privacy loss over all private

data points and reflects how much individual privacy loss deteriorates as the number

of answered queries increases. We note the median individual privacy loss is ε = 1.2

after answering 2000 queries, which suggests that only half of the privacy budget has

been spent at an individual level. The privacy loss curve of Ind-KNN and two Linear

NoisySGDs are met when there received six retraining requests. This suggests that if
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there are more than six retraining requests among the 2000 queries, the privacy loss of

Ind-KNN would be better than that of Linear NoisySGD.

Table 5.2: Test Accuracy of T = 1000 queries on CIFAR-10 under different
pre-trained models: vision transformer (ViT) [Dosovitskiy et al., 2020], SimCLRv2
model [Chen et al., 2020] and ResNet50 [He et al., 2016].

ε(δ = 10−5) Method ResNet50 SimCLRv2 ViT

ε = 0.5
Linear

NoisySGD
86.2% 89.7% 95.0%

Private kNN 73.1% 76.0% 94.4%
Ind-kNN 79.4% 82.4% 95.2%

ε = 2.0
Linear

NoisySGD
88.4% 90.2% 96.7%

Private kNN 81.6% 84.7% 96.3%
Ind-kNN 82.8% 86.3% 96.4%

ε = inf
Linear

NoisySGD
90.0% 90.7% 97.0%

Private kNN 82.9% 85.1% 96.6%
Ind-kNN 84.7% 89.2% 96.9%

Table 5.3: The Averaged time (in second) to answer each query on CIFAR-10 and
AG News using Ind-KNN and its hashing variants.

Dataset Table=10 Table=20 Table=30 Ind-KNN
CIFAR-10 0.02 0.03 0.04 0.25
AG News 0.01 0.02 0.03 0.29

Ablation study on hashing. In Sec 5.3, we introduce hashing to improve the compu-

tational efficiency of Ind-KNN. We now investigate the trade-off between computational

cost and utility of Ind-KNN-Hash on CIFAR-10 and AG News. We set the width pa-

rameter b = 8 for CIFAR-10 and b = 9 for AG News, and evaluate the performance

of Ind-KNN-Hash with varying number of hash tables. As shown in Figure 5.4 and

Table 5.3, the accuracy of hashing variants increases with more hash tables and more

computational cost. We note that the computational cost roughly grows linearly with

the number of the hash table. In particular, Ind-KNN with 30 hash tables matches the
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accuracy of the original Ind-KNN for a wide range of epsilon on CIFAR-10 but reduces

the running time per query from 0.25 second to 0.03 second. Figure 5.2(b) shows similar

observations for AG News.

Ablation study on the feature extractor. The quality of the feature extractor plays

an crucial role in all three pre-trained feature-based methods. Remarkably, With the

ViT feature extractor, even the Private kNN achieves an impressive accuracy of 96.3%

at ε = 2.0 on CIFAR-10, surpassing the previously reported best result of 95.4% [De

et al., 2022] achieved using Wide-ResNets. Next, we present an ablation study focusing

on three feature extractors and investigate the efficiency of each method on the CIFAR-

10 task. Specifically, we consider three widely used vision models: vision transformer

(ViT) [Dosovitskiy et al., 2020], the SimCLRv2 model [Chen et al., 2020] and ResNet

50 [He et al., 2016]. The SimCLRv2-based feature extractor has been considered by

prior work Linear NoisySGD (Tramèr and Boneh [2021]), which trains a ResNet model

on unlabeled ImageNet using SimCLRv2 model and provides a 4096-dim feature for

each input image. For Resnet50, we consider the publicly-available ImageNet-pretrained

Reset50 from Pytorch, which achieves a non-private accuracy at 90.0% for LinearSGD.

As shown in Table 5.2, we find that Linear NoisySGD outperforms Private kNN and

our Ind-kNN across ResNet50 and SimCLRv2. However, the performance gap decreases

when applying a better feature extractor. This can be explained by the fact of their

non-private performance. We also note that Private kNN is more fragile when ε is small,

which could be due to its “loose” privacy analysis. Meanwhile, Ind-kNN handle the

setting of small ε nicely, and can sometimes outperform Linear NoisySGD with a good

feature extractor.
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5.5 Conclusion

We propose a new algorithm, Individual Kernelized Nearest Neighbor (Ind-KNN), for

private prediction in machine learning that is more flexible and updatable over dataset

changes than private training. By modifying the KNN prediction and leveraging in-

dividualized privacy accountants, Ind-KNN allows a precise control of privacy at an

individual level. Through extensive experimentation on four datasets, we demonstrate

that Ind-KNN outperforms prior work Private kNN in terms of privacy and utility trade-

offs. Furthermore, Ind-KNN exhibits superior computational efficiency and utility when

dealing with frequent data updates, surpassing the private training method.

116



Ind-KNN: Private kernelized nearest neighbors with Individual Rényi filter Chapter 5
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Figure 5.3: (a): We estimate the amortized computational cost by averaging the time
(in seconds) spent to answer each query under different retrain settings on CIFAR-10.
The x-axis denotes the retraining frequency, i.e., retraining a model every receiving Q
queries. (b): The accumulated privacy cost of answering a stream of T = 2000 queries
when the final accuracy (over 2000 queries) is aligned to 96.0% on CIFAR-10. The
red curve fixed the individual privacy budget at the beginning, resulting in a constant
privacy loss. The yellow curve reports the median of individual privacy loss across all
private data.
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118



Part III

Making classic DP mechanisms

practical via data-adaptive analysis
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Chapter 6

Generalized Propose-Test-Release

(PTR)

6.1 Introduction

The guarantees of differential privacy (DP) [Dwork et al., 2006] are based on worst-

case outcomes across all possible datasets. A common paradigm is therefore to add noise

scaled by the global sensitivity of a query f , which measures the maximum change in f

between any pair of neighboring datasets.

A given dataset X might have a local sensitivity ∆LS(X) that is much smaller than the

global sensitivity ∆GS, in which case we can hope to add a smaller amount of noise (cali-

brated to the local rather than global sensitivity) while achieving the same privacy guar-

antee. This must not be undertaken näıvely; the local sensitivity is a dataset-dependent

function and so calibrating noise to the local sensitivity could leak information about the

dataset [Nissim et al., 2007].

The “Propose-Test-Release” (PTR) framework [Dwork and Lei, 2009] resolves this

issue by introducing a test to privately check whether a proposed bound on the local
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sensitivity is valid. Only if the test “passes” is the output released with noise calibrated

to the proposed bound on the local sensitivity.

PTR is a powerful tool for designing data-adaptive DP algorithms, but it has sev-

eral limitations. First, it applies only to noise-adding mechanisms which calibrate noise

according to the sensitivity of a query. Second, the test in “Propose-Test-Release” is

computationally expensive for all but a few simple queries such as privately releasing

the median or mode. Third, while some existing works [Decarolis et al., 2020, Ka-

siviswanathan et al., 2013, Liu et al., 2021] follow the adaptive approach of privately

testing properties of an input dataset for “niceness”1, there has not been a systematic

recipe for discovering which properties should be tested.

In this paper, we propose a generalization of PTR which addresses these limitations.

The centerpiece of our framework is a differentially private test on the data-dependent

privacy loss. This test does not directly consider the local sensitivity of a query and is

therefore not limited to additive noise mechanisms. Moreover, in many cases the test can

be efficiently implemented by privately releasing a high-probability upper bound, thus

avoiding the need to search an exponentially large space of datasets. Furthermore, the

derivation of the test itself often spells out exactly what properties of the input dataset

need to be checked, which streamlines the design of data-adaptive DP algorithms.

Our contributions are summarized as follows:

1. We propose a generalization of PTR which can handle algorithms beyond noise-

adding mechanisms. Generalized PTR allows us to plug in any data-dependent DP

analysis to construct a high-probability DP test that adapts to favorable properties

of the input dataset, without painstakingly designing each test from scratch.

2. We show that many existing examples of PTR and PTR-like methods can be unified

1We refer to these as PTR-like algorithms.
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under the generalized PTR framework, sometimes resulting in a tighter analysis (see

an example of report-noisy-max in Section 6.5).

3. We demonstrate that one can publish a DP model through privately upper-bounding

a one-dimensional statistic — no matter how complex the output space of the mech-

anism is. We apply this result to solve an open problem from PATE [Papernot et al.,

2017, 2018].

4. Our results broaden the applicability of private hyperparameter tuning [Liu and

Talwar, 2019, Papernot and Steinke, 2021] in enabling joint selection of DP-specific

parameters (e.g., noise level) and native parameters of the algorithm (e.g., regular-

ization).

6.2 Preliminaries

Datasets X,X ′ ∈ X are neighbors if they differ by no more than one datapoint; we

say X ' X ′ if d(X,X ′) ≤ 1.

We measure the distance d(·) between same-sized datasets X = {xi}ni=1 and X̃ =

{x̃i}ni=1 as the number of coordinates that differ between them:

d(X, X̃) = #{i ∈ [n] : xi 6= x̃i}.

We use || · || to denote the radius of the smallest Euclidean ball that contains the input

set, e.g. ||X || = supx∈X ||x||.

For mechanisms with continuous output space, the probability density ofM(X) at y

is denoted Pr[M(X) = y].

2This is probably folklore. We could not find the particular approach with AboveThreshold presented
in the literature — the original PTR work by Dwork and Lei [2009] uses composition, thus depends on
poly(M), while using AboveThreshold (or our approach with general DP selection) incurs only log(M).
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PTR Generalized PTR

Private Test Test ∆LS ≤ β for a proposed bound
β, then add noise ∝ β if the test
passes [Vadhan, 2017, Sec 3.2].

Test εφ ≤ ε for a proposed parame-
ter φ, then runMφ if the test passes
(Alg 7)

Private point-
wise bounds no analogous algorithm

Release ε̄ s.t. εφ ≤ ε̄ for a fixed φ
w.h.p. for general randomized mech-
anism Mφ, then run Mφ if ε̄ ≤ ε
(Alg 7).

Private uni-
form bounds

Release ∆̄ s.t. ∆LS ≤ ∆̄ w.h.p
for a noise-adding mechanism with
noise ∝ ∆̄ [Vadhan, 2017, Sec 3.4].
(Choose appropriate noise level σ, no
⊥.)

Release ε̄φ s.t. εφ ≤ ε̄φ for all φ
w.h.p. for general randomized mech-
anismMφ (Choose appropriate φ, no
⊥, as in Alg ??)

Stability-
based

Test ∆LS = 0 before releasing sta-
ble numerical value deterministically
[Vadhan, 2017, Sec 3.3].

Test εφ = 0 before releasing sta-
ble general output deterministically
(special case of Alg 7).

What to pro-
pose?

Select β ∈ {β1, ..., βM} s.t.
∆LS ≤ β passes the test (using
e.g. AboveThreshold)2

Select φ ∈ {φ1, ..., φM}, s.t. εφ passes
the test (using private selection as in
Alg 8).

Table 6.1: A summary of our generalization to the standard variants of PTR. The
vanilla PTR, often implemented using a distance test was proposed originally in Dwork
and Lei [2009]. The stability-based argument was originally proposed by Thakurta
and Smith [2013]. We are citing the book of Vadhan [2017] for a clean treatment
to these PTR-like mechanisms. The corresponding generalized version are from this
paper.

Definition 6.2.1 (Sensitivity). The global `∗-sensitivity of a function f is defined as

∆GS = max
X,X′:X'X′

||f(X)− f(X ′)||∗

and its local sensitivity at dataset X is

∆LS(X) = max
X'X′

||f(X)− f(X ′)||∗.
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6.2.1 Propose-Test-Release

Calibrating the noise level to the local sensitivity ∆LS(X) of a function would allow

us to add less noise and therefore achieve higher utility for releasing private queries.

However, the local sensitivity is a data-dependent function and näıvely calibrating the

noise level to ∆LS(X) will not satisfy DP.

PTR resolves this issue in a three-step procedure: propose a bound on the local sen-

sitivity, privately test that the bound is valid (with high probability), and if so calibrate

noise according to the bound and release the output.

PTR privately computes the distance Dβ(X) between the input dataset X and the

nearest dataset X ′′ whose local sensitivity exceeds the proposed bound β:

Dβ(X) = min
X′′
{d(X,X ′′) : ∆LS(X ′′) > β}.

Algorithm 6 Propose-Test-Release [Dwork and Lei, 2009]

1: Input: Dataset X; privacy parameters ε, δ; proposed bound β; query function f :
X → R.

2: if Dβ(X) + Lap
(

1
ε

)
≤ log(1/δ)

ε
then output ⊥,

3: else release f(X) + Lap
(
β
ε

)
.

Theorem 6.2.2 (PTR [Dwork and Lei, 2009]). Algorithm 6 satisfies (2ε, δ)-DP.

Rather than proposing an arbitrary bound β on ∆LS(X), one can also privately release

an upper bound of the local sensitivity and calibrate noise according to this upper bound.

This was used for node DP in graph statistics [Kasiviswanathan et al., 2013], and for

fitting topic models using spectral methods [Decarolis et al., 2020].
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6.3 Related Work

Data-dependent DP algorithms. Privately calibrating noise to the local sensi-

tivity is a well-studied problem. One approach is to add noise calibrated to the smooth

sensitivity [Nissim et al., 2007], an upper bound on the local sensitivity which changes

slowly between neighboring datasets. An alternative to this — and the focus of our work

— is Propose-Test-Release (PTR) [Dwork and Lei, 2009], which works by calculating the

distance Dβ(X) to the nearest dataset to X whose local sensitivity violates a proposed

bound β. The PTR algorithm then adds noise to Dβ(X) before testing whether this

privately computed distance is large enough to permit releasing the output with noise

calibrated to β.

PTR spin-offs abound. Notable examples include stability-based methods [Thakurta

and Smith, 2013] (stable local sensitivity of 0 near the input data) and privately releasing

upper bounds of local sensitivity [Kasiviswanathan et al., 2013, Liu et al., 2021, Decarolis

et al., 2020]. We refer readers to Chapter 3 of Vadhan [2017] for a concise summary of

these classic results. More recently, Wang et al. [2022] have provided Rényi DP bounds

[Mironov, 2017] for PTR and demonstrated its applications to robust DP-SGD. Our work

(Section 6.4.6) also considers applications of PTR in data-adaptive private deep learning:

Instead of testing the local sensitivity of each gradient step as in Wang et al. [2022], our

PTR-based PATE algorithm tests the data-dependent privacy loss as a whole.

Liu et al. [2021] proposed the High-dimensional Propose-Test-Release (HPTR) frame-

work. HPTR provides a systematic way of solving DP statistical estimation problems by

using the exponential mechanism (EM) with carefully constructed scores based on cer-

tain one-dimensional robust statistics, which have stable local sensitivity bounds. HPTR

focuses on designing data-adaptive DP mechanisms from scratch; our method, in con-

trast, converts existing randomized algorithms (including EM and even some that do not
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satisfy DP) into those with formal DP guarantees. Interestingly, our proposed method

also depends on a one-dimensional statistic of direct interest: the data-dependent privacy

loss.

Data-dependent DP losses. The flip side of data-dependent DP algorithms is

the study of data-dependent DP losses [Papernot et al., 2018, Soria-Comas et al., 2017,

Wang, 2018a], which fix the randomized algorithm but parameterize the resulting privacy

loss by the specific input dataset. For example: In the simple mechanism that adds

Laplace noise with parameter b, data-dependent DP losses are ε(X) = ∆LS(X)/b. The

data-dependent DP losses ε(X) are often much smaller than the DP loss ε, but they

themselves depend on the data and thus may reveal sensitive information; algorithms

satisfying a data-dependent privacy guarantee are not formally DP with guarantees any

smaller than that of the worst-case. Existing work has considered privately publishing

these data-dependent privacy losses [Papernot et al., 2018, ?, Redberg and Wang, 2021],

but notice that privately publishing these losses does not improve the DP parameter of

the given algorithm. Part of our contribution is to resolve this conundrum by showing

that a simple post-processing step of the privately released upper bound of ε(X) gives a

formal DP algorithm.

Private hyperparameter tuning. Our work has a nice connection with private

hyperparameter tuning. Prior work [Liu and Talwar, 2019, Papernot and Steinke, 2021]

requires each candidate configuration to be released with the same DP (or Rényi DP)

parameter set. Another hidden assumption is that the parameters must not be privacy-

correlated (i.e., parameter choice will not change the privacy guarantee). Otherwise we

need to use the largest DP bound across all candidates. For example, Liu and Talwar

[2019] show that if each mechanism (instantiated with one group of hyperparameters) is

(ε, 0)-DP, then running a random number of mechanisms and reporting the best option

satisfies (3ε, 0)-DP. Our work directly generalizes the above results by (1) considering a
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wide range of hyperparameters, either privacy-correlated or not; and (2) requiring only

that individual candidates have a testable data-dependent DP.

6.4 Main results: Generalized PTR

This section introduces the generalized PTR framework. We first formalize the notion

of data-dependent differential privacy that conditions on an input dataset X.

Definition 6.4.1 (Data-dependent privacy). Suppose we have δ > 0 and a function

ε : X → R+. We say that mechanism M satisfies (ε(X), δ) data-dependent DP3 for

dataset X if for all possible output sets S and neighboring datasets X ′,

Pr
[
M(X) ∈ S

]
≤ eε(X)Pr

[
M(X ′) ∈ S

]
+ δ,

Pr
[
M(X ′) ∈ S

]
≤ eε(X)Pr

[
M(X) ∈ S

]
+ δ.

In generalized PTR, we propose a value (or set of values) φ with which to parameterize

mechanism Mφ. For instance, in Example 6.4.4 we might propose φ = (γ, λ) as a

parameter set that includes the noise scale and regularization strength. For a given δ,

we then say that mechanism Mφ satisfies εφ(X) data-dependent DP for dataset X.

The following example illustrates how to derive the data-dependent DP for a familiar

friend – the Laplace mechanism.

Example 6.4.2. (Data-dependent DP of Laplace Mechanism.) Given a function f : X →

R, we will define

Mφ(X) = f(X) + Lap (φ) .

3We will sometimes write that M(X) satisfies ε(X) data-dependent DP w.r.t. δ.
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We then have

log
Pr[Mφ(X) = y]

Pr[Mφ(X ′) = y]
≤ |f(X)− f(X ′)|

φ
.

Maximizing over all possible outputs y yields an equality between the two expressions

above. Using Definition 6.4.1,

εφ(X) = max
X′:X'X′

|f(X)− f(X ′)|
φ

=
∆LS(X)

φ
.

Maximizing εφ(X) over X recovers the standard DP guarantee of running M with

parameter φ.

Algorithm 7 distills the generalized PTR framework into a simple procedure: we run

mechanism M with proposed parameter φ only if the test T “passes”.

Let’s suppose that our privacy budget for mechanism Mφ is (ε, δ); that our test

T satisfies (ε̂, δ̂)-DP; and that T has a “false positive” rate δ′, meaning T passes an

insufficient proposal φ (whereMφ exceeds its privacy budget) with probability at most δ′.

Theorem 6.4.3 states the privacy guarantee of generalized PTR under these assumptions.

Algorithm 7 Generalized Propose-Test-Release

1: Input: Dataset X; mechanism Mφ : X → R and its privacy budget ε, δ; (ε̂, δ̂)-DP
test T ; false positive rate ≤ δ′; data-dependent DP function εφ(·) w.r.t. δ.

2: if not T (X) then output ⊥,
3: else release θ =Mφ(X).

Theorem 6.4.3 (Privacy guarantee of generalized PTR). Consider a proposal φ and

a data-dependent DP function εφ(X) w.r.t. δ. Suppose that we have an (ε̂, δ̂)-DP test
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T : X → {0, 1} such that when εφ(X) > ε,

T (X) =


0 with probability 1− δ′,

1 with probability δ′.

Then Algorithm 7 satisfies (ε+ ε̂, δ + δ̂ + δ′)-DP.

Proof: [Proof sketch] We can split the possible input datasets X into two main cases

based on the data-dependent DP for a given δ: εφ(X) > ε and εφ(X) ≤ ε. At a high

level, we can analyze both cases using the composition property of DP (that ε’s and δ’s

“add up”) and then combine them by taking an upper bound of the maximum value of

the ε’s and δ’s between the two cases.

By the “false positive” assumption on the test T , the first case can be viewed as a

composition of an (ε̂, δ̂)-DP mechanism and a (0, δ′)-DP mechanism. The second case,

when the data-dependent DP is at most ε, is a composition of an (ε̂, δ̂)-DP mechanism

and an (ε, δ)-DP mechanism.

Generalized PTR is a strict generalization of Propose-Test-Release. For some function

f , define Mφ and T as follows:

Mφ(X) = f(X) + Lap(φ);

T (X) =


0 if Dβ(X) + Lap

(
1
ε

)
> log(1/δ)

ε
,

1 otherwise.

Notice that our choice of parameterization is now φ = β
ε
, where φ is the scale of the

Laplace noise. In other words, we know from Example 6.4.2 that εφ(X) > ε exactly when

∆LS(X) > β.
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For noise-adding mechanisms such as the Laplace mechanism, the sensitivity is pro-

portional to the privacy loss in both the global and local sense: ∆GS ∝ ε and ∆LS(X) ∝

ε(X). Therefore for these mechanisms the only difference between privately testing

the local sensitivity (Algorithm 6) and privately testing the data-dependent DP (Theo-

rem 6.4.3) is a change of parameterization.

6.4.1 Limitations of local sensitivity

Why do we want to generalize PTR beyond noise-adding mechanisms? Compared

to classic PTR, the generalized PTR framework allows us to be more flexible in both

the type of test conducted and also the type of mechanism whose output we wish to

release. For many mechanisms, the local sensitivity either does not exist or is only

defined for specific data-dependent quantities (e.g., the sensitivity of the score function

in the exponential mechanism) rather than the mechanism’s output.

The following example illustrates this issue.

Example 6.4.4 (Private posterior sampling). Let M : X × Y → Θ be a private posterior

sampling mechanism [Minami et al., 2016, Wang et al., 2015, Gopi et al., 2022] for

approximately minimizing FX(θ).

M samples θ ∼ P (θ) ∝ e−γ(FX(θ)+λ/2||θ||22) with parameters γ, λ. Note that γ, λ

cannot be appropriately chosen for this mechanism to satisfy DP without calculating the

sensitivity of arg minFX(θ), which in many cases (e.g., logistic regression) lacks a closed-

form solution. In fact, the global and local sensitivity of the minimizer is unbounded

even in linear regression problems, i.e when FX(θ) = 1
2
||y −Xθ||22.

Output perturbation algorithms do work for the above problem when we regularize,

but they are known to be suboptimal in theory and in practice [Chaudhuri et al., 2011].

In Section 6.4.5 we demonstrate how to apply generalized PTR to achieve a data-adaptive
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posterior sampling mechanism.

Even in the cases of noise-adding mechanisms where PTR seems to be applicable,

it does not lead to a tight privacy guarantee. Specifically, by an example of privacy

amplification by post-processing (Example 6.5.1 in the appendix), we demonstrate that

the local sensitivity does not capture all sufficient statistics for data-dependent privacy

analysis and thus is loose.

6.4.2 Which φ to propose

A limitation of generalized PTR (inherited from its predecessor) is that one needs to

“propose” a good guess of parameter φ. Take the example of φ being the noise level in a

noise-adding mechanism. Choosing too small a φ will result in a useless output ⊥, while

choosing too large a φ will add more noise than necessary. Finding this ‘Goldilocks’ φ

might require trying out many different possibilities – each of which will consume privacy

budget. This section introduces a method to jointly tune privacy parameters (e.g., noise

scale) along with parameters related only to the utility of an algorithm (e.g., learning

rate or batch size in stochastic gradient descent) — while avoiding the ⊥ output.

Algorithm 8 takes a list of parameters as input, runs generalized PTR with each of

the parameters, and returns the output with the best utility. We show that the privacy

guarantee with respect to ε is independent of the number of φ that we try.

Formally, let φ1, ..., φk be a set of hyperparameters and θ̃i ∈ {⊥,Range(M)} the

output of running generalized PTR with φi on dataset X. Let Xval be a public validation

set and q(θ̃i) be the score of evaluating θ̃i with Xval (e.g., validation accuracy). The goal

is to select a pair (θ̃i, φi) such that DP model θ̃i maximizes the validation score.

The generalized PTR framework with privacy calibration is described in Algorithm 8;

its privacy guarantee is an application of Liu and Talwar [2019].
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Algorithm 8 PTR with hyperparameter selection

1: Input: Privacy budget per PTR algorithm (ε∗, δ∗), cut-off T , parameters φ1:k, flip-
ping probability τ and validation score function q(·).

2: Initialize the set S = ∅.
3: Draw G from a geometric distribution Dτ and let T̂ = min(T,G).
4: for i = 1 ,..., T̂ do
5: pick a random φi from φ1:k.
6: evaluate φi: (θ̃i, q(θ̃i))← Algorithm 7(φi, (ε

∗, δ∗)).
7: S ← S ∪ {θ̃i, q(θ̃i)}.
8: end for
9: Output the highest scored candidate from S.

Theorem 6.4.5 ( Theorem 3.4 [Liu and Talwar, 2019] ). Fix any τ ∈ [0, 1], δ2 > 0 and

let T = 1
τ

log 1
δ2

. If each oracle access to Algorithm 7 is (ε∗, δ∗)-DP, then Algorithm 8 is

(3ε∗ + 3
√

2δ∗,
√

2δ∗T + δ2)-DP.

The theorem implies that one can try a random number of φ while paying a constant

ε. In practice, we can roughly set τ = 1
10k

so that the algorithm is likely to test all k

parameters. We emphasize that the privacy and the utility guarantee is not our contri-

bution. But the idea of applying generalized PTR to enforce a uniform DP guarantee

over all choices of parameters with a data-dependent analysis is new.

6.4.3 Construction of the DP test

Classic PTR uses the Laplace mechanism to construct a differentially private upper

bound of Dβ(X), the distance from input dataset X to the closest dataset whose local

sensitivity exceeds the proposed bound β. The tail bound of the Laplace distribution

then ensures that if Dβ(X) = 0 (that is, if ∆LS(X) > β), then the output will be released

with only a small probability δ.

The following theorem shows that we could instead use a differentially private upper

bound of the data-dependent DP εφ(X) in order to test whether to run the mechanism
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Mφ.

Theorem 6.4.6 (Generalized PTR with private upper bound). Suppose we have a dif-

ferentially private upper bound of εφ(X) w.r.t. δ such that with probability at least 1− δ′,

εPφ (X) > εφ(X). Further suppose we have an (ε̂, δ̂)-DP test T such that

T (X) =


1 if εPφ (X) < ε,

0 otherwise.

Then Algorithm 7 is (ε+ ε̂, δ + δ̂ + δ′)-DP.

In Section 6.4.6, we demonstrate how to upper-bound the data-dependent DP through

a modification of the smooth sensitivity framework applied on εφ(X). In Section 6.4.5 we

provide a direct application of Theorem 6.4.6 with private linear regression by making

use of the per-instance DP technique [Wang, 2018a].

The applications in Section 6.4.4 are illustrative of two distinct approaches to con-

structing the DP test for generalized PTR:

1. Private sufficient statistics release (used in the private linear regression example

of Section 6.4.5) specifies the data-dependent DP as a function of the dataset and

privately releases each data-dependent component.

2. The second approach (used in the PATE example of Section 6.4.6) uses the smooth

sensitivity framework to privately release the data-dependent DP as a whole, and

then construct a high-confidence test using the Gaussian mechanism.

These two flavors cover most of the scenarios arising in data-adaptive analysis. For

example, in the appendix we demonstrate the merits of generalized PTR in handling

data-adaptive private generalized linear models (GLMs) using private sufficient statistics
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Figure 6.1: Differentially private linear regression algorithms on UCI datasets. y-axis
reports the MSE error with confidence intervals. ε is evaluated with δ = 1e−6.

release. Moreover, sufficient statistics release together with our private hyperparameter

tuning (Algorithm 8) can be used to construct data-adaptive extensions of DP-PCA and

Sparse-DP-ERM (see details in the future work section).

6.4.4 Applications

In this section, we put into action our approaches to construct the DP test and provide

applications in private linear regression and PATE.

6.4.5 Private Linear Regression

Theorem 6.4.7 ([Wang, 2018a]). For input data X ∈ X and Y ∈ Y, define the following:

• λmin(X) denotes the smallest eigenvalue of XTX;

• ||θ∗λ|| is the magnitude of the solution θ∗λ = (XTX + λI)−1XTY ;

• and L(X, Y ) := ||X ||
(
||X || ||θ∗λ|| + ||Y||

)
is the local Lipschitz constant, denoted L

in brief.

134



Generalized Propose-Test-Release (PTR) Chapter 6

For brevity, denote λ∗ = λ+λmin(X). The algorithm used in Example 6.4.4 with proposal

φ = (λ, γ) obeys (εφ(Z), δ) data-dependent DP for each dataset Z = (X, Y ) with εφ(Z)

equal to √
γL2 log(2/δ)

λ∗
+

γL2

2(λ∗ + ||X ||2)
+

1 + log(2/δ)||X ||2

2λ∗
.

Notice that εφ(Z) is a function of the data-dependent quantities λmin(X) and L (which

is itself a function of ||θ∗λ||). Could we privately release εφ(Z) and tune the privacy

parameters φ = (λ, γ) based on the sanitized data-dependent DP? Unfortunately in this

case, ||θ∗λ|| is a complicated function of λ and it is not clear how to choose an optimal λ.

The calibration of γ, however, is fairly straightforward from the expression for εφ(Z)

given in Theorem 6.4.7. We can apply the generalized PTR framework to the private

posterior sampling problem described in Example 6.4.4 by proposing φ = λ as the regular-

ization parameter; releasing a high-probability upper bound εPλ (Z) of the data-dependent

DP, as a function of γ; and tuning the noise scale γ to achieve the desired utility under

the constraint εPλ (Z) ≤ ε.

Example 6.4.8 (OPS for linear regression with PTR). Consider the posterior sampling

mechanism described in Example 6.4.4 and the expression εφ(Z) given in Theorem 6.4.7.

Suppose we have a quality score q(·) that measures the utility of the input parameter,

e.g. q(γ) = γ for the inverse noise scale. We can apply generalized PTR as follows.

• Given a proposed value φ = λ, privately release λmin(X) and L with combined

privacy budget (ε̂, δ̂) in order to obtain εPλ (Z) such that with probability 1 − δ′,

εPλ (Z) ≤ ελ(Z).

• Calibrate γ∗ = supq(γ){γ | εPλ (Z) ≤ ε}.

• Output θ ∼ e−
γ∗

2 (||Y−Xθ||22+λ||θ||22) if γ∗ exists; else output ⊥.
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In the full paper, we provide full details of the above algorithm and show that it

satisfies (ε+ ε̂, δ + δ̂ + δ′)-DP.

[Dwork et al., 2014c] provides a PTR style privacy-preserving principle component

analysis (PCA). The key observation of [Dwork et al., 2014c] is that the local sensitivity

is quite “small” if there is a large eigengap between the k-th and the k+1-th eigenvalues.

Therefore, their approach (Algorithm 2) chooses to privately release a lower bound of the

k-th eigengap (k is fixed as an input) and use that to construct a high-confidence upper

bound of the local sensitivity.

For noise-adding mechanisms, the local sensitivity is proportional to the data-dependent

loss and generalized PTR is applicable. We can formulate the data-dependent DP of DP-

PCA as follows:

Theorem 6.4.9. For a given matrix A ∈ Rm×n, assume each row of A has a bounded

`2 norm being 1. Let Vk denotes the top k eigenvectors of ATA and dk denotes the gap

between the k-th and the k+ 1-th eigenvalue. Then releasing VkV
T
k +E, where E ∈ Rn×n

is a symmetric matrix with the upper triangle is i.i.d samples from N (0, σ2) satisfies

(ε(A), δ) data-dependent DP and ε(A) =
2
√

log(1.25/δ)

σ(dk−2)
.

The proof is based on the local sensitivity result from [Dwork et al., 2014c] and the

noise calibration of Gaussian mechanism.

We can combine Theorem 6.5.3 with our Algorithm 8 to instantiate the generalized

PTR framework. The improvement over Dwork et al. [2014c] will be to allow joint tuning

of the parameter k and the noise variance (added to the spectral gap dk).

The main idea of the above algorithm boils down to privately releasing all data-

dependent quantities in data-dependent DP, constructing high-probability confidence in-

tervals of these quantities, and then deciding whether to run the mechanism M with

the proposed parameters. In Example 6.4.4, we need only propose λ as we can tune γ
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directly based on εPλ (Z).

Remark 6.4.10. Tuning λ is even more troublesome for generalized linear models (GLMs)

beyond linear regression. The data-dependent DP there involves a local strong-convexity

parameter that is a complex function of the regularizer λ and for which we only have

zeroth-order access. In the full paper, we demonstrate how to apply generalized PTR to

provide a generic solution to a family of private GLMs where the link function satisfies

a self-concordance assumption.

We next apply Algorithm 8 for Example 6.4.8 with UCI regression datasets. Standard

z-scoring is applied and each data point is normalized with a Euclidean norm of 1. We

consider (60%, 10%, 30%) splits for the train, validation and test sets.

Baselines

• Output Perturbation (Outpert) [Chaudhuri et al., 2011]: θ = (XTX + λI)−1XTy.

Release θ̂ = θ + b with an appropriate λ, where b is a Gaussian random vector.

• Posterior sampling (OPS). Sample θ̂ ∼ P (θ) ∝ e−γ(F (θ)+0.5λ||θ||2) with parameters

γ, λ.

• Adaptive posterior sampling (AdaOPS) [Wang, 2018b]. Run OPS with (λ, γ) cho-

sen adaptively according to the dataset.

Outpert and OPS serve as two non-adaptive baselines. In particular, we consider OPS-

Balanced [Wang, 2018b], which chooses λ to minimize a data-independent upper bound

of empirical risk and dominates other OPS variants. AdaOPS is one state-of-the-art

algorithm for adaptive private regression, which automatically chooses λ by minimizing

an upper bound of the data-dependent empirical risk.

We implement OPS-PTR as follows: propose a list of λ through grid search (we choose

k = 30 and λ ranges from [2.5, 2.510] on a logarithmic scale); instantiate Algorithm 8 with
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τ = 0.05/k, T = 1
τ

log(1/δ2) and δ2 = 1/2δ; calibrate the per-PTR privacy budget (ε∗, δ∗)

according to Theorem 6.4.5; set ε = ε̂ = 0.5ε∗ and δ = 1/6δ∗, δ′ = 1/2δ∗, δ̂ = 1/3δ∗;

calibrate γ to meet the privacy requirement for each λ; sample θ̂ using (λ, γ) and return

the one with the best validation accuracy.

Figure 6.1 demonstrates how the MSE error of the linear regression algorithms varies

with the privacy budget ε. OutPert suffers from the large global sensitivity of output θ.

OPS performs well but does not benefit from the data-dependent quantities. AdaOPS

is able to adaptively choose (λ, γ) based on the dataset, but suffers from the estimation

error of the data-dependent empirical risk. On the other hand, OPS-PTR selects a (λ, γ)

pair that minimizes the empirical error on the validation set directly, and the privacy

parameter γ adapts to the dataset thus achieving the best result.

6.4.6 PATE

In this section, we apply generalized PTR to solve an open problem from Private

Aggregation of Teacher Ensembles (PATE) [Papernot et al., 2017, 2018] — privately

publishing the entire model through sanitizing the data-dependent DP losses. Our al-

gorithm uses of smooth sensitivity [Nissim et al., 2007] and the Gaussian mechanism

to construct a high-probability test of the data-dependent DP. Data-dependent DP is

one-dimensional, enabling efficient computation under the smooth sensitivity framework.

This approach is thus generally applicable for private data-adaptive analyses beyond

PATE.

PATE is a knowledge transfer framework for model-agnostic private learning. In this

framework, an ensemble of teacher models is trained on the disjoint private data and

uses the teachers’ aggregated consensus answers to supervise the training of a “student”

model agnostic to the underlying machine-learning algorithms. By publishing only the
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aggregated answers and by the careful analysis of the “consensus”, PATE has become a

practical technique in recent private model training.

The tight privacy guarantee of PATE heavily relies on a delicate data-dependent

DP analysis, for which the authors of PATE use the smooth sensitivity framework to

privately publish the data-dependent privacy cost. However, it remains an open problem

to show that the released model is DP under data-dependent analysis. Our generalized

PTR resolves this gap by carefully testing a private upper bound of the data-dependent

privacy cost. Our algorithm is fully described in Algorithm 9, where the modification

over the original PATE framework is highlighted in blue.

Algorithm 9 takes the input of privacy budget (ε′, ε̂, δ), unlabeled public data x1:T

and K teachers’ predictions on these data. The parameter ε denotes the privacy cost of

publishing the data-dependent DP and ε′ is the predefined privacy budget for testing.

nj(xi) denotes the the number of teachers that agree on label j for xi and C denotes

the number of classes. The goal is to privately release a list of plurality outcomes —

argmaxj∈[C]nj(xi) for i ∈ [T ] — and use these outcomes to supervise the training of a

“student” model in the public domain. The parameter σ1 denotes the noise scale for the

vote count.

In their privacy analysis, Papernot et al. [2018] compute the data-dependent RDPσ1(α,X)

of labeling the entire group of student queries. RDPσ1(α,X) can be orders of magnitude

smaller than its data-independent version if there is a strong agreement among teachers.

Note that RDPσ1(α,X) is a function of the RDP order α and the dataset X, analogous

to our Definition 6.4.1 but subject to RDP [Mironov, 2017].

Theorem 6.4.11 ([Papernot et al., 2018]). If the top three vote counts of xi are n1 >

n2 > n3 and n1−n2, n2−n3 � σ1, then the data-dependent RDP of releasing argmaxj{nj+

N (0, σ2
1)} satisfies (α, exp{−2α/σ2

1}/α)-RDP and the data-independent RDP (using the
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Algorithm 9 PATE with generalized PTR

1: Input: Unlabeled public data x1:T , aggregated teachers prediction n(·), privacy pa-
rameter ε̂, ε′, δ, noisy parameter σ1.

2: Set α = 2 log(2/δ)
ε̂

+ 1, σs = σ2 =
√

3α+2
ε̂
, δ2 = δ/2, smoothness parameter β = 0.2

α
.

3: Compute noisy labels: yi
p ← argmaxj∈[C]{nj(xi) +N (0, σ2

1)} for all i ∈ [1 : T ].
4: RDPσ1(α,X)← data-dependent RDP at the α-th order.
5: SSβ(X)← the smooth sensitivity of RDPupper

σ1
(α,X).

6: Privately release µ := log(SSβ(X)) + β · N (0, σ2
2) +

√
2 log(2/δ2) · σ2 · β

7: RDPupper
σ1

(α)← an upper bound of data-dependent RDP through Lemma 6.4.12.
8: εσ1 ← DP guarantee converted from RDPupper

σ1
(α).

9: If ε′ ≥ εσ1 return a student model trained using (x1:T ; yp1:T ).
10: Else return ⊥.

Gaussian mechanism) satisfies (α, α
σ2
1
)-RDP.

However, RDPσ1(α,X) is data-dependent and thus cannot be revealed. The authors

therefore privately publish the data-dependent RDP using the smooth sensitivity frame-

work [Nissim et al., 2007]. The smooth sensitivity calculates a smooth upper bound on

the local sensitivity of RDPσ1(α,X), denoted as SSβ(X), such that SSβ(X) ≤ eβSSβ(X ′)

for any neighboring dataset X and X ′. By adding Gaussian noise scaled by the smooth

sensitivity (i.e., releasing εσ1(α,X) + SSβ(X) · N (0, σ2
s)), the privacy cost can be safely

published.

Unlike most noise-adding mechanisms, the standard deviation σs cannot be published

since SSβ(X) is a data-dependent quantity. Moreover, this approach fails to provide a

valid privacy guarantee of the noisy labels obtained through the PATE algorithm, as

the published privacy cost could be smaller than the real privacy cost. Our solution in

Algorithm 9 looks like the following:

• Privately release an upper bound of the smooth sensitivity SSβ(X) with eµ.

• Conditioned on a high-probability event of eµ, publish the data-dependent RDP

with RDPupper
σ1

(α).
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Figure 6.2: Privacy and utility tradeoffs with PATE. When σ1 is aligned, three al-
gorithms provide the same utility. y-axis plots the privacy cost of labeling T = 200
public data with δ = 10−5. The left figure considers the high-consensus case, where
the data-adaptive analysis is preferred.

• Convert RDPupper
σ1

(α) back to the standard DP guarantee using RDP to DP con-

version at δ/2.

• Test if the converted DP is above the predefined budget ε′.

The following lemma states that RDPupper
σ1

(α) is a valid upper bound of the data-dependent

RDP.

Lemma 6.4.12 (Private upper bound of data-dependent RDP). We are given a RDP

function RDP(α,X) and a β-smooth sensitivity bound SS(·) of RDP(α,X). Let µ (de-

fined in Algorithm 9) denote the private release of log(SSβ(X)). Let the (β, σs, σ2)-GNSS

mechanism be

RDPupper(α):=RDP(α,X)+SSβ(X)·N (0,σ2
s)+σs

√
2 log( 2

δ2
)eµ

Then, the release of RDPupper(X) satisfies (α, 3α+2
2σ2
s

)-RDP for all 1 < α < 1
2β

; w.p. at

least 1− δ2, RDPupper(α) is an upper bound of RDP(α,X).

The proof (deferred to the appendix) makes use of the facts that: (1) the log of
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SSβ(X) has a bounded global sensitivity β through the definition of smooth sensitiv-

ity; (2) releasing RDPσ1(α,X) + SSβ(X) · N (0, σ2
s) is (α, α+1

σ2
s

)-RDP (Theorem 23 from

Papernot et al. [2018]).

Now we can state the privacy guarantee of Algorithm 9.

Theorem 6.4.13. Algorithm 9 satisfies (ε′ + ε̂, δ)-DP.

In the proof, the choice of α ensures that the cost of the δ/2 contribution (used

in the RDP-to-DP conversion) is roughly ε̂/2. Then the release of RDPupper
σ1

(α) with

σs =
√

2+3α
ε̂

accounts for another cost of (ε/2, δ/2)-DP.

Empirical results. We next empirically evaluate Algorithm 9 (PATE-PTR) on

the MNIST dataset. Following the experimental setup from Papernot et al. [2018], we

consider the training set to be the private domain, and the testing set is used as the

public domain. We first partition the training set into 400 disjoint sets and 400 teacher

models, each trained individually. Then we select T = 200 unlabeled data from the

public domain, with the goal of privately labeling them. To illustrate the behaviors of

algorithms under various data distributions, we consider two settings of unlabeled data,

high-consensus and low-consensus. In the low-consensus setting, we choose T unlabeled

data such that there is no high agreement among teachers, so the advantage of data-

adaptive analysis is diminished. We provide further details on the distribution of these

two settings in the appendix.

Baselines. We consider the Gaussian mechanism as a data-independent baseline,

where the privacy guarantee is valid but does not take advantage of the properties of

the dataset. The data-dependent DP ( Papernot et al. [2018]) serves as a non-private

baseline, which requires further sanitation. Note that these two baselines provide different

privacy analyses of the same algorithm (see Theorem 6.4.11).

Figure 6.2 plots privacy-utility tradeoffs between the three approaches by varying the
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noise scale σ1. The purple region denotes a set of privacy budget choices (ε̂ + ε′ used in

Algorithm 9) such that the utility of the three algorithms is aligned under the same σ1.

In more detail, the purple region is lower-bounded by ε̂ + εσ1 . We first fix σs = σ2 = 15

such that ε̂ is fixed. Then we empirically calculate the average of εσ1 (the private upper

bound of the data-dependent DP) over 10 trials. Running Algorithm 9 with any choice of

ε̂+ ε′ chosen from the purple region implies ε′ > εσ1 . Therefore, PATE-PTR will output

the same noisy labels (with high probability) as the two baselines.

Observation As σ1 increases, the privacy loss of the Gaussian mechanism decreases,

while the data-dependent DP curve does not change much. This is because the data-

dependent DP of each query is a complex function of both the noise scale and the data and

does not monotonically decrease when σ1 increases. However, the data-dependent DP

still dominates the Gaussian mechanism for a wide range of σ1. Moreover, PATE-PTR

nicely interpolates between the data-independent DP guarantee and the non-private data-

adaptive DP guarantee. In the low-consensus case, the gap between the data-dependent

DP and the DP guarantee of the Gaussian mechanism unsurprisingly decreases. Mean-

while, PATE-PTR (the purple region) performs well when the noise scale is small but

deteriorates when the data-independent approach proves more advantageous. This exam-

ple demonstrates that using PTR as a post-processing step to convert the data-dependent

DP to standard DP is effective when the data-adaptive approach dominates others.

6.5 Omitted examples and proofs

In this section, we provide more examples to demonstrate the merits of generalized

PTR. We focus on a simple example of post-processed Laplace mechanism in Section 6.5

and then an example on differentially private learning of generalized linear models in

Section 6.4. In both cases, we observe that generalized PTR provides data-adaptive
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algorithms with formal DP guarantees that are simple, effective and not previously pro-

posed in the literature (to the best of our knowledge).

Limits of the classic PTR in private binary voting

The following example demonstrates that classic PTR does not capture sufficient

data-dependent quantities even when the local sensitivity exists and can be efficiently

tested.

Example 6.5.1. Consider a binary class voting problem: n users vote for a binary class

{0, 1} and the goal is to output the class that is supported by the majority. Let ni

denote the number of people who vote for the class i. We consider the report-noisy-max

mechanism:

M(X) : argmaxi∈[0,1]ni(X) + Lap(b),

where b = 1/ε denotes the scale of Laplace noise.

In the example, we will (1) demonstrate the merit of data-dependent DP; and (2)

empirically compare classic PTR with generalized PTR.

We first explicitly state the data-dependent DP.

Theorem 6.5.2. The data-dependent DP of the above example is

ε(X) := max
X′
{| log

p

p′
|, | log

1− p
1− p′

|},

where p := Pr[n0(X) +Lap(1/ε) > n1(X) +Lap(1/ε)] and p′ := Pr[n0(X ′) +Lap(1/ε) >

n1(X ′)+Lap(1/ε)]. There are four possible neighboring datasets X ′ : n0(X ′) = max(n0(X)±

1, 0), n1(X ′) = n1(X) or n0(X ′) = n0(X), n1(X ′) = max(n1(X)± 1, 0).
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In Figure 6.3(a), we empirically compare the above data-dependent DP with the

Laplace mechanism by varying the gap between the two vote counts |n0(X) − n1(X)|.

The noise scale is fixed to ε = 10. The data-dependent DP substantially improves over

the standard DP if the gap is large. However, the data-dependent DP is a function of

the dataset. We next demonstrate how to apply generalized PTR to exploit the data-

dependent DP.

Notice that the probability n0(X) + Lap(1/ε) > n1(X) + Lap(1/ε) is equal to the

probability that a random variable Z := X − Y exceeds ε(n1(X)− n0(X)), where X, Y

are two independent Lap(1) distributions. We can compute the pdf of Z through the

convolution of two Laplace distributions, which implies fX−Y (z) =
1 + |z|
4e|z|

. Let t denote

the difference between n1(X) and n0(X), i.e., t = n1(X)− n0(X). Then we have

p = Pr[Z > ε · t] =
2 + ε · t

4 exp(ε · t)

Similarly, p′ =
2 + ε · (t+ `)

4 exp(ε · (t+ `))
, where ` ∈ [−1, 1] denotes adding or removing one data

point to construct the neighboring dataset X ′. Therefore, we can upper bound log(p/p′)

by

log
p

p′
=

2 + ε · t
4 exp(ε · t)

· 4 exp(ε(t+ `))

2 + ε · (t+ `)

≤ ε · log

(
2 + εt

2 + ε(t+ 1)

)
= ε log

(
1− ε

2 + ε(t+ 1)

)

Then we can apply generalized PTR by privately lower-bounding t.

On the other hand, the local sensitivity ∆LS(X) of this noise-adding mechanism is 0

if t > 1. Specifically, if the gap is larger than one, adding or removing one user will not
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change the result. To apply classic PTR, we let γ(X) denote the distance to the nearest

dataset X
′′

such that ∆LS > 0 and test if γ(X) + Lap(1/ε) > log(1/δ)
ε

. Notice in this

example that γ(X) = max(t− 1, 0) can be computed efficiently. We provide the detailed

implementation of these approaches.

1. Gen PTR: lower bound t with tp = t − log(1/δ)
ε̃

+ Lap(1/ε̃). Calculate an upper

bound of data-dependent DP εp using Theorem 6.5.2 with tp. The algorithm then

tests if εp is within an predefined privacy budget ε′. If the test passes, the algorithm

returns argmaxi∈[0,1]ni(X) + Lap(1/ε) satisfies (ε̃+ ε′, δ)-DP.

2. classic PTR: lower bound t with tp = t − log(1/δ)
ε̃

+ Lap(1/ε̃). If tp > 1, classic

PTR outputs the ground-truth result else returns a random class. This algorithm

satisfies (ε̃, δ)-DP.

3. Laplace mechanism. M(X) : argmaxi∈[0,1]ni(X) + Lap(1/ε). M is (ε, δ)-DP.

We argue that though the Gen-PTR and the classic PTR are similar in privately

lower-bounding the data-dependent quantity t, the latter does not capture sufficient

information for data-adaptive analysis. That is to say, only testing the local sensitivity

restricts us from learning helpful information to amplify the privacy guarantee if the

test fails. In contrast, our generalized PTR, where privacy parameters and the local

sensitivity parameterize the data-dependent DP, can handle those failure cases nicely.

To confirm this conjecture, Figure 6.3(b) plots a privacy-utility trade-off curve be-

tween these three approaches. We consider a voting example with n0(X) = n1(X) + 100

and t = 100, chosen such that the data-adaptive analysis is favorable.

In Figure 6.3(b), we vary the noise scale b = 1/ε between [0, 0.5]. For each choice of

b, we plot the privacy guarantee of three algorithms when the error rate is aligned. For

Gen-PTR, we set ε̃ = 1
2b

and empirically calculate εp over 100000 trials.
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Figure 6.3: In Figure 6.3(a), we compare the privacy guarantee by varying the gap.
In Figure 6.3(b) We fix t = n0(X)−n1(X) = 100 and compare privacy cost when the
accuracy is aligned. Gen-PTR with any choice of privacy budget (ε̃+ ε′) chosen from
the purple region would achieve the same utility as Laplace mechanism but with a
smaller privacy cost. The curve of Gen-PTR is always below than that of the classic
PTR, which implies that Gen-PTR can result a tighter privacy analysis when the
utility is aligned.

In the plot, when ε� log(1/δ)
t

, the classic PTR is even worse than the Laplace mecha-

nism. This is because the classic PTR is likely to return ⊥ while the Laplace mechanism

returns argmaxi∈[0,1]ni(X) + Lap(1/ε), which contains more useful information. Com-

pared to the Laplace mechanism, Gen-PTR requires an extra privacy allocation ε̃ to

release the gap t. However, it still achieves an overall smaller privacy cost when the error

rate ≤ 10−5 (the purple region). Meanwhile, Gen-PTR dominates the classic PTR (i.e.,

the dashed black curve is always below the blue curve). Note that the classic PTR and

the Gen-PTR utilize the gap information differently: the classic PTR outputs ⊥ if the

gap is not sufficiently large, while the Gen-PTR encodes the gap into the data-dependent

DP function and tests the data-dependent DP in the end. This empirical result suggests

that testing the local sensitivity can be loosely compared to testing the data-dependent

DP. Thus, Gen-PTR could provide a better privacy-utility trade-off.
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6.5.1 Other applications of generalized PTR

Besides one-posterior sampling for GLMs, there are plenty of examples that our

generalized-PTR could be applied, e.g., DP-PCA [Dwork et al., 2014c] and Sparse-DP-

ERM [Kifer et al., 2012] (when the designed matrix is well-behaved).

[Dwork et al., 2014c] provides a PTR style privacy-preserving principle component

analysis (PCA). The key observation of [Dwork et al., 2014c] is that the local sensitivity

is quite “small” if there is a large eigengap between the k-th and the k+1-th eigenvalues.

Therefore, their approach (Algorithm 2) chooses to privately release a lower bound of the

k-th eigengap (k is fixed as an input) and use that to construct a high-confidence upper

bound of the local sensitivity.

For noise-adding mechanisms, the local sensitivity is proportional to the data-dependent

loss and generalized PTR is applicable. We can formulate the data-dependent DP of DP-

PCA as follows:

Theorem 6.5.3. For a given matrix A ∈ Rm×n, assume each row of A has a bounded

`2 norm being 1. Let Vk denotes the top k eigenvectors of ATA and dk denotes the gap

between the k-th and the k+ 1-th eigenvalue. Then releasing VkV
T
k +E, where E ∈ Rn×n

is a symmetric matrix with the upper triangle is i.i.d samples from N (0, σ2) satisfies

(ε(A), δ) data-dependent DP and ε(A) =
2
√

log(1.25/δ)

σ(dk−2)
.

The proof is based on the local sensitivity result from [Dwork et al., 2014c] and the

noise calibration of Gaussian mechanism.

We can combine Theorem 6.5.3 with our Algorithm 8 to instantiate the generalized

PTR framework. The improvement over Dwork et al. [2014c] will be to allow joint tuning

of the parameter k and the noise variance (added to the spectral gap dk).
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Sparse vector technique (SVT)

7.1 Introduction

The Sparse Vector Technique (SVT) [Dwork et al., 2009] is a fundamental tool in

differential privacy (DP) that allows the algorithm to screen potentially an unbounded

number of adaptively chosen queries while paying a cost of privacy only for a small

number of queries that passes a predefined threshold.

SVT is the workhorse behind the private multiplicative weights mechanism [Hardt and

Rothblum, 2010] and median oracle mechanism [Roth and Roughgarden, 2010], which fa-

mously shows that one can answer exponentially more linear queries differential privately

for low-dimensional problems. It is also the key technique underlying the (conjectured

optimal) improvements to the ReusableHoldout algorithms for preserving statistical va-

lidity in adaptive data analysis [Dwork et al., 2014a] and the Ladder algorithm for reliable

machine learning leaderboards [Blum and Hardt, 2015]. We refer readers to the excellent

course [Smith and Roth, 2017, Lecture 12] and the references therein.

More recently, SVT is combined with the Distance to Stability argument to build

a machinery for model agnostic private learning in the knowledge transfer framework
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[Bassily et al., 2018]. The proposed algorithm releases many private labels from an

ensemble of “teacher” classifiers trained on the private dataset [Bassily et al., 2018] while

essentially only paying a privacy cost for those that are unstable. This in principle would

allow the use any deep neural networks as a blackbox while leveraging the high-margin

of the learned representation.

Despite the substantial benefit of SVT in theory, it is not known as a practical method.

For example, in the case of model-agnostic private learning, SVT is often outperformed by

simple Gaussian Mechanism [Papernot et al., 2018] that release all labels, since the latter

uses a more concentrated noise (Gaussian over Laplace) and also has a tighter composition

via Concentrated / Renyi differential privacy (CDP/RDP) [Dwork and Rothblum, 2016,

Bun and Steinke, 2016, Mironov, 2017].

In this paper, we revisit SVT and address the following questions:

1. Is it essential to add Laplace noise? Does Gaussian noise work too? How about

other noises e.g., [Geng and Viswanath, 2014]?

2. Is there a tighter RDP bound for SVT? Can we parameterize the RDP of SVT

by the RDP function of the randomized mechanisms that are used to perturb the

threshold and the answer to each query?

3. So far, the advanced composition of SVT is only available for the case when we

compose c SVTs with cut-off = 1, which requires refreshing the threshold noise

each time. Could there be an
√
c composition-theorem for the more general version

when c > 1?

4. Finally, can we achieve better utility of SVT in practice? How small does c needs

to be relative to the total number of queries k before SVT can outperform naive

Gaussian mechanism?
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5. Are there more practical alternatives to SVT that operates in those regimes where

SVT fails.

We answer affirmatively to the first three questions (with some caveats and restrictions)

by studying a generalized family of SVT (see Algorithm 11). Then we conduct numerical

experiments to illustrate the pros and cons of various algorithms while highlighting the

challenges in the last two questions. Moreover, we applied our results to the problem

of adaptive data analysis and provided a “high probability” bound on the maximum

accuracy of a sequence of k adaptively chosen queries based on a Gaussian-mechanism

variant of SVT, which matches (but unfortunately not improving) the strongest bound

known to date on this problem.

A remark on our novelty. We believe our technical analysis that derives the RDP

bound is new and elegant. Also our empirical evaluation is by far the more extensive for

SVT-like algorithms. That said, we do borrow ideas from various prior work including

[Lyu et al., 2017, Smith and Roth, 2017, Hardt and Rothblum, 2010] for the analysis in-

cluding a cute trick from [Bun and Steinke, 2016], as well as getting practical insight and

inspiration from [Papernot et al., 2018]’s data-dependent analysis of noisy-screening. A

recent work [Liu and Talwar, 2019] generalized SVT to beyond low-sensitivity queries but

still uses Laplace noise. We are different in that we develop SVT with other noise-adding

mechanisms. Our technique should be directly applicable to the BetweenThreshold vari-

ant as in [Bun et al., 2017] an also release the “gap” as in [Ding et al., 2019]. The

overarching goal of the paper is to make progress in bringing an amazing theoretical

tool to practice. The improvements might be a constant factor in certain regimes but as

differential privacy transitions into a practical technology, “constant matters!”

Symbols and notations. Throughout the paper, we will use standard notations for

probability unless otherwise stated, e.g., Pr[·] for probability, p[·] for density, E[·] for
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expectation. Conditional probabilities, density and expectations are denoted with the

standard | in the middle, e.g., E[·|·], except for the cases when we state upfront that they

abbreviated for lighter notations in that section. We do not distinguish fixed parameters

and random variables as they are clear from context. The randomness are entirely the

randomness induced by the randomized algorithm, except in the last section when we

talk about adaptive data analysis. ε, δ are reserved for privacy budget/loss parameters,

and α the order of RDP. Other notations will be defined on the fly as they first appear.

The most common mechanisms for differential privacy are those that add noise to

queries answers.

Definition 7.1.1 (Noise-adding mechanisms). We say that M : Data × Q → PR is a

noise-adding mechanism if it answers a query q by outputting o ∼M(D, q) = q(D) + Z

where Z is a random variable.

Typical examples of these noise-adding mechanisms for differential privacy includes

Laplace-mechanism, Gaussian mechanism in which Z is drawn from a Laplace distri-

bution and a Gaussian distribution respectively. Notably, the “optimal” geometric

mechanism falls under this category which adds a “stair-case”-shape noise [Geng and

Viswanath, 2014].

Definition 7.1.2 (Low-sensitivity queries). We define Q(4) to be the set of all queries

q : Data→ R such that |q(D)− q(D′)| ≤ 4 for any pair of neighboring datasets D,D′.

4 is called global sensitivity and is used to calibrate the noise according to a given

privacy budget.

7.1.1 Sparse vector techniques

In SVT, the input is a stream of possibly infinitely long, adaptively chosen queries

q1, q2, ..., qi, ... ∈ Q(4). The queries are provided with a sequence of thresholds T1, T2, ..., Tk, ....
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Algorithm 10 Standard SVT

Input: Data D, an adaptive sequence
of queries q1, q2, ... ∈ Q with sensitivity
4, privacy parameter ε1, ε2, thresh-
old T , cut-off c, option RESAMPLE.

1: Sample ρ ∼ Lap(4/ε1), count = 0
2: for i = 1, 2, 3, ...
3: Sample νi ∼ Lap(24/ε2)
4: if qi(D) + νi ≥ Ti + ρ then
5: Output ai = >, count = count+1

6: if RESAMPLE, ρ ∼ Lap(4/ε1).
7: if count ≥ c, abort.
8: else
9: Output: ai =⊥

10: end if

Algorithm 11 Generalized SVT

Input: Data D, an adaptive se-
quence of queries q1, q2, ... ∈ Q with
sensitivity 4, noise-adding mecha-
nisms Mρ,Mν , threshold T , cut-off
c, max-length kmax, option RESAMPLE.

1: Sample T̂ ∼Mρ(D,T ), count = 0
2: for i = 1, 2, 3, ..., kmax

3: Sample q̂i ∼Mν(D, qi)
4: if q̂i ≥ T̂ then
5: Output ai = >, count = count + 1
6: if RESAMPLE, T̂ ∼Mρ(D,T )
7: if count ≥ c, abort.
8: else
9: Output: ai =⊥

10: end if

The goal of SVT is to release a binary vector {⊥,>}k at every time k, > indicates that the

corresponding query answer qi(D) is above the threshold Ti and ⊥ indicates below. To

release this vector differential privately, we first perturb the threshold T with a Laplace

noise ρ. Then each individual query qi(D) is perturbed by another Laplace noise νi before

comparing against the perturbed threshold T + ρ to determine the binary decion, until

the stopping condition — the c-th > arrives. Algorithm 10 summarizes pseudo-code from

[Hardt and Rothblum, 2010] and [Lyu et al., 2017].

A remarkable property of SVT is that it allows the release of a vector that is expo-

nentially long while incurring only a privacy loss proportional to c (or its square root)

— the maximum number of answers that are allowed to be >. This is formalized in the

following lemma.

Lemma 7.1.3 (Privacy calibration in Standard SVT). Algorithm 10 satisfies (ε1 + cε2)-

DP when RESAMPLE option is set to false. When RESAMPLE = True, then Algorithm 10

with 4
ε1

= 4
ε2

=

√
32c log(1/δ)

ε
, then Algorithm 10 satisfies (ε, δ)-DP and (cε1 + cε2)-DP.

The version of the pure-DP calibration without resampling comes from [Lyu et al.,
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2017, Algorithm 1]. The (ε, δ)-DP calibration is extracted from [Dwork and Roth, 2013,

Theorem 3.25], which is essentially applying strong composition to to c instances of SVT,

each obeying (ε1 + ε2)-DP.

Despite the asymptotic savings from
√
k to

√
c, SVT is still not known as a practical

mechanism. The reasons, in our opinion, are twofolds.

The Laplace distribution used in the SVT is a heavy-tailed (sub-exponential) distri-

bution, which requires the threshold to be set to O(log(1/β)) so as to control the false

positive rate at β. This could be much larger than the O(
√

log(1/β)) of sub-gaussian

tailed distributions, hence make SVT less favorable for utility-privacy trade-off in prac-

tice. Moreover, many practical differential private algorithms benefit from tighter privacy

accounting, e.g., composition using Renyi DP with numerical computation. It will be

ideal if we can come up with a version of the SVT that adds more concentrated noise as

well as a general Renyi DP analysis of that algorithm. This motivated us to consider the

family of Generalized SVT mechanism in Algorithm 11.

7.2 Main results: RDP bounds for SVT variants

In this section, we derive RDP bounds for SVT variants with different distributions

of noisy parameters (νi, ρ). The goal is to find those distributions that not only have

thin tail bounds but preserve the essential property of the standard SVT — they can

answer exponentially many ⊥ queries while paying a privacy loss only proportional to c

or
√
c when the algorithm halts. The family of mechanisms we consider is summarized

in Algorithm 11. The differences from Algorithm 10 are highlighted in blue.
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7.2.1 RDP analysis with c = 1

We first consider generalized SVT with c = 1, since the case of c > 1 is often treated

as composition of multiple SVT with c = 1.

Theorem 7.2.1. Let K be a random variable indicating the stopping time — number

of ⊥s plus 1. Let Mρ, Mν be noise-adding mechanisms (Definition 7.1.1). Assume

Mρ satisfies ερ(α)-RDP for queries with sensitivity 4 and Mν satisfies εν(α)-RDP for

queries with sensitivity 24. Then Algorithm 11 with c = 1 (denoted by M) obeys

Dα(M(D)‖M(D′)) ≤ ερ(α) + εν(α) +
log supz E[K|ρ = z]

α− 1
, (7.1)

Dα(M(D)‖M(D′)) ≤ α− (γ − 1)/γ

α− 1
ερ
( γ

γ − 1
α
)

+ εν(α) +
log
(
Ez∼pρ [E[K|ρ = z]γ]

)
γ(α− 1)

,

(7.2)

for all γ > 1 and 1 < α <∞. Moreover, when ερ(∞) ≤ ∞, we get

Dα(M(D)‖M(D′)) ≤ ερ(α) + εν(∞). (7.3)

The theorem can be thought of as a general transfer theorem that allows us to bound

the RDP of the generalized SVT with the RDP of its subroutines Mρ and Mν . Before

proving the theorem in Section 7.6.1, let us parse the result in a number of special cases.

Remark 7.2.2 (Pure-DP). RDP (7.3) recovers the pure-DP bound of the standard SVT

when α → ∞. It also allows other noise-adding procedure that satisfies pure-DP to be

applied. We could also consider the hybrid-noise SVT where ρ is a Gaussian noise, but

ν are Laplace-noises.

Remark 7.2.3 (Bounded-length SVT). When we set kmax < +∞, the (7.1) implies an

RDP bound of the form ερ(α) + εν(α) + log(1 + kmax)/(α− 1), which further implies an
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(ε, δ)-DP bound by Lemma ??. In particular, if δ ≤ 1/(1 + kmax), then we get (ε, δ)-DP

with

ε = min
α>1

ερ(α) + εν(α) + 2 log(1/δ)/(α− 1).

In the case of Gaussian mechanism, this loses at most a factor of
√

2 comparing to the

case when log(1 + kmax)/(α− 1) is not there all together.

When kmax is chosen to be +∞: (7.1) and (7.2) do not imply RDP in this case,

because there are cases where SVT can potentially have unbounded length (in fact,

even the expected length can be unbounded. ). It is well-expected that if we use

Gaussian-mechanism as a subroutine for SVT, the dependence of the sequence length

is unavoidable. Similar observations have been made about a Gaussian-noise version of

the ReportNoisyMax mechanism [see, e.g., Dwork and Roth, 2013, Section 3.5.3]. That

said, the form of the bound (7.2), which depends only on the moments of the conditional

expectation seems to suggest that we can potentially obtain meaningful RDP bounds for

generalized SVT even if kmax = +∞ in some cases.

Let us consider a mild restriction to the family of queries that can be chosen, which

allows us to keep the sequence length unbounded even when the noise-adding subroutines

do not satisfy pure-DP.

Definition 7.2.4 (Nonnegative, Low-sensitivity Queries Model). The adversary can

adaptively choose q1, q2, ... ∈ Q+(4) where

Q+(4) = {q : Data→ R | q(D) ≥ 0∀D, |q(D)−q(D′)| ≤ 4∀ neighboring datasets D,D′}.

The class covers both use cases of SVT that we described earlier. When we apply

SVT to “Guess-and-Check”1, qi(D) = ‖fi(D)− gi‖ is nonnegative. Similarly, in the case

1A subroutine of “private multiplicative weights” and “reusable holdout”.
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of “Model-agnostic private learning” qi(D) = distMajorityVotefi
(D), which measures the

number of data points that need to be added or removed to make the argmax of the

voting score unstable.

Proposition 7.2.5 (Gaussian SVT with non-negative queries). Let Algorithm 11 be

instantiated with Q+(4), Mρ and Mν be Gaussian mechanism with parameter σ1 and

σ2. Then for all T < +∞ and γ > 1 such that σ2 >
√
γ + 1σ1, Algorithm 11 with c = 1

halts with K rounds satisfying

E[E[K|ρ = z]γ] ≤ 1 + (cγ
√

2πmax{T (1 + γ)

σ1

, 1})γ(1 + γ)1/2e
γT2

2σ21 .

For Gaussian SVT satisfying σ2 ≥
√

3σ1, it obeys an RDP of α42

σ2
1

+2α42

σ2
2

+
log(1+2

√
3π(1+ 9T2

σ21
)e

T2

σ21 )

2(α−1)
.

The proof of Proposition 7.2.5, provided in the full paper, hinges upon the key ob-

servation that K follows a Negative Binomial distribution when conditioning on the

threshold, and some technical calculations involving Mill’s ratio and moments of Gaus-

sian distribution.

Remark 7.2.6 (Controlling Type I error). One can for example choose T =
√

2(σ2
1 + σ2

2) log 1/% =√
8σ2

1 log(1/%) such that the Type I error (false positive rate) is bounded by %. This is

often the case when using sparse vector technique for statistical applications. Then we

can simplify the above bound by using log(1 + x) ≤ x, and an assumption that ρ is

sufficiently small, to obtain an RDP bound of

5α42

3σ2
1

+
8 log(1/ρ) + log(4

√
3π(1 + 72 log(1/ρ)))

2(α− 1)
≤ 5α42

3σ2
1

+
5 log(1/ρ)

(α− 1)
.

The above results allow us to obtain nearly the same (ε, δ)-DP bound for Gaussian-

SVT as if we are working with the RDP bound of a Gaussian mechanism, provided that
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the δ chosen such that log(1/δ) is larger than either log kmax in the length-bounded case

or O(log(1/ρ)) in the nonnegative query setting.

To ease our subsequent presentation, from here onwards we will use kγ to denote a

data-independent upper bound of (E[K|ρ]γ])1/γ. Conveniently, k∞ = kmax and k1, which

unifies (7.1) and (7.2). Moreover, we will use γ∗ such that 1/γ∗ + 1/γ = 1.

7.2.2 Generalized SVT with c > 1

We now address the case when c > 1. A natural, and general way to deal with SVT

for c > 1 is to simply apply composition theorems of differential privacy to c instances

of SVT with cut-off parameter c set to 1. We could also directly analyze the variant of

SVT with c > 1, where the threshold noise is not refreshed. Pros and cons of these two

approaches are described in Appendix ??.

Theorem 7.2.7 (RDP for length-capped SVT with c > 1). The generalized SVT with

cut-off parameter c > 1 and a maximum length is kmax obeys that

Dα(M(D)‖M(D′)) ≤ ερ(α) + cεν(α) +
1 + log

∑c
k=0

(
kmax

k

)
α− 1

.

The proof, presented in the Appendix, uses the same techniques as in the proof of

Theorem 7.2.1, but we no longer get an interpretable bounds that rely on moments of

E[K|ρ]. The term in the logarithmic factor, resembles kmax in the sense that it counts

the cardinality of the output space — binary vectors of length kmax with at most c ⊥s.

Remark 7.2.8. When both noise are Gaussian, the theorem and Lemma ?? implies an

(ε, δ)-DP with

ε(δ) ≤ ∆2

2σ2
1

+
2c∆2

σ2
2

+

√
2

(
∆2

2σ2
1

+
2c∆2

σ2
2

)(
log(δ−1) + log c

(
kmax

c

))
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which recovers the O(
√
c) scaling when δ ≤ c−1

(
kmax

c

)−1
and saves a factor of c in σ1.

While the restriction on δ being smaller than k−cmax is quite limiting, we are not aware

of an analysis that achieves the strong composition-like scaling in c for the version of the

SVT that does not refresh the noise under any parameter configurations.

Back to (ε, δ)-composition. Interestingly, if we use of the strong composition for

(ε, δ)-DP directly, we can obtain a bound with
√
c scaling for a much broader set of

parameters. Let us consider the following stage-wise algorithm for Generalized SVT,

which resamples the threshold noise ρ after every c′ rounds with a pre-specified bound

k′max chosen in each round. This algorithm can be viewed as a meta-algorithm that calls

Algorithm 11 as a subroutine (see Algorithm 12). The idea is that we can choose c′ and

k′max carefully according to c and δ such that for each call of SVT, the region of interests

falls under the region where log(c′
(
k′max
c′

)
) is comparable to log(1/δ).

Theorem 7.2.9 ( Stage-wise Length-Capped Gaussian SVT for Q(4)). Let 0 < δ′ <

1 be a parameter. Let M be the instance of the Algorithm 12 invoked with cut-off

c′, max-length k′, option RESAMPLE = False, Mρ,Mν chosen as Gaussian mecha-

nisms with noise parameter σ1, σ2 satisfying σ2 = 2σ1 and σ1 ≥ 84
√
c log(1/δ′). If

we choose c′ ≤ c such that c′
(
k′max
c′

)
≤ (δ′)−1, then M satisfies (ε, δ̃ + c

c′
δ′)-DP with

ε = O
(√

c42

σ2
1

log(1/δ′) log(1/δ̃)
)
.

Theorem 7.2.10 (Adaptive Stage-wise Gaussian SVT forQ+(4)). LetM be an instance

of Algorithm 12 invoked with the same parameters as in Theorem 7.2.9, except that

RESAMPLE = True and kmax = +∞. Then for all c′, γ such that kc
′
γ ≤ (δ′)−1, thenM is

(ε, δ̃+ c
c′
δ′)-DP with ε = O

(√
c42

σ2
1

log(1/δ′) log(1/δ̃)
)

for all adaptively chosen sequences

of queries in Q+.

Remark 7.2.11 (Adaptive to c′ and numerical computation). Observe that choosing

RESAMPLE = True makes Algorithm 12 identical to Algorithm 11 for all choices of
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Algorithm 12 Stage-wise generalized SVT

Input: Data D, an adaptive sequence of queries q1, q2, ... ∈ Q with sensitivity 4, noise-
adding mechanisms Mρ,Mν , threshold T , total cut-off c, per-stage cut-off c′, per-stage
max-length k′max, option RESAMPLE.

1: Initialize output vector to be an empty list.
2: for for ` = 1, 2, 3, ..., dc/c′e do
3: Set c̃ = c− c′(dc/c′e − 1) if ` = dc/c′e, and c̃ = c′ otherwise.
4: Invoke Algorithm 11 with D,T,Mρ,Mν , c̃, k

′
max,RESAMPLE and current front of

the adaptive stream of queries.
5: Append the new output vector from Algorithm 11 to the output.
6: end for

c′ ≥ 1. We can thus minimize the bound numerically over the parameters c′, δ′ to mini-

mize the final bound, to simulate the conceptual process of which part of the composition

is RDP-based and which part (ε, δ)-DP based. The best choice would be to make c′ as

large as possible so as to get the partial benefit of the savings from RDP composition

over the c′ steps within each stage, while not ruining the O(
√
c) strong composition when

c is large.

Remark 7.2.12. Comparing to the likely-unachievable conjecture where the generalized

SVT has an RDP of ερ(α) + cεν(α), which would give an ε = O(
√

c42

σ2
1

log(1/δ), this

bound is worse only by a factor of
√

log(1/δ), and has some mild restrictions on δ. We

remark that in Theorem 7.2.9 and 7.2.10 we focused on the asymptotic scaling, while in

practice, we can use the optimal advanced composition due to [Kairouz et al., 2015] and

search for the best parameters to give the tightest bounds.

7.3 Applications

7.3.1 Adaptive data analysis

The stage-wise length-bounded Gaussian SVT’s (ε, δ)-DP guarantee allows us to di-

rectly apply it to the problem of adaptive data analysis that aims at preventing data

160



Sparse vector technique (SVT) Chapter 7

dredging while still allowing an analyst to get accurate answers about a sequence of k

adaptively chosen statistical queries through an interactive protocol [Dwork et al., 2014a,

Smith, 2017].

Theorem 7.3.1. With probability ≥ 1− δ over the random coins of the i.i.d. data, our

algorithm and other randomness coming from the interaction protocols against an ar-

bitrary adaptive adversary, the Gaussian-SVT-based Private-Guess-and-Check answers

k queries including at most c inaccurately guesses with generalization error at most

O( c
1/4 log(k/δ)3/4

n1/2 ).

The proof combines either Theorem 7.2.9 or 7.2.10 with the high probability gener-

alization bound of (ε, δ)-DP algorithms [Jung et al., 2020] as well as the Gaussian tail

bound.

In comparison, the simple Gaussian mechanism guarantees an accuracy ofO(k
1
4 log k

δ

1
2n−

1
2 )

and the original ReusableHoldout gives O(c1/2
√

log(k/δ)n−1/2). We show that Gaussian

SVT improves over these and matches the best known rate for the problem achieved

by Laplace-mechanism-base SVT — an O(log(k/δ)1/4) away from the lower bound. In-

terestingly the reason of the suboptimality is different. Laplace SVT is off due to the

subexponential tail bound of Laplace R.V., while Gaussian SVT is off due to the addi-

tional O(log(k/δ)1/2) factor from the strong composition. It remains an open problem

how to close this gap.

7.3.2 Model-agnostic private learning

Model-agnostic private learning is another application of the sparse-vector technique.

In this problem, the learner has access to a private labeled dataset and a public unlabeled

dataset. The algorithm leverages a blackbox learner, e.g., a deep learning algorithm, by

training one classifier on each randomly split of the private dataset. Then it privately
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labels the public dataset by privately releasing the majority-votes of these classifiers’

predictions.

This scheme has been shown to be practical [Papernot et al., 2017, 2018] by com-

bining simple Gaussian mechanism for differential privacy with semi-supervised learning

approaches. Bassily et al. [2018] substantially improves the algorithm by showing that,

under a PAC-learning framework, that one can privately release the labels for all public

data points, while spending the privacy budget only for those data points where the

voters are labeling incorrectly (or labeling inconsistently, to be more general).

SVT is applied to test whether each query has received an overwhelming majority from

the voters by testing if distance-to-stability is sufficiently large. If so, the exact answer

f(D) is released with ⊥ and if not, only > is released. Interestingly, this approach has

a privacy loss that depends only on the number of >s and it can be thought of as a

composition of the SVT with the (0, δ)-DP part of the event from the “Stability”-based

argument.

While this approach provides a substantial benefit in theory, it has been observed in

practice that it is often outperformed by simple Gaussian mechanism in practice, since

the latter uses a more-concentrated noise and also a much tighter composition.

In the experiment section, we demonstrate that the story is now different when Gaus-

sian SVT is used as a drop-in replacement.

7.4 Experiment and discussion

In this section, we conduct extensive numerical experiments to illustrate the behaviors

of SVT variants. We will have three sets of experiments.

Exp. 1 (Calibrating noise to privacy) Given a predetermined privacy budget (ε, δ) and

the cut-off c, we compare the length each SVT-like algorithm can screen before
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Figure 7.1: Number of queries each algorithm can process with a fixed privacy budget (ε, δ),

fixed cut-off (# of false positives) c and fixed threshold T .
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(a) Exp 2: Synthetic null sequence
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(b) Exp 3: CIFAR10

Figure 7.2: Total composed privacy loss as the algorithm progresses for δ = 10−6. The

margin T = 1000 and σ1 = 210. The standard deviation of Gaussian and Laplace are aligned

to be comparable.
stopping.

Exp. 2 (Privacy loss computation) We evaluate SVT variants with the same variance of

noise by comparing the composed privacy loss for finishing a fixed length sequence

of queries.

Exp. 3 (Real life data) We investigate various private screening methods with a realistic

sequence of queries from running a kNN-based private-query release on the CIFAR-

10 dataset.

In Exp 1 and Exp 2, the sequences of queries are qt(D) = 0 for all t so all discoveries

that end up being detected as > are false positives. Thus the length of the sequence is a
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measure of utility in Exp 1. Exp 2 and Exp 3 compares the expected privacy loss ε at a

fixed δ as it composes. For all experiments, we denote (σ1, σ2) or (λ1, λ2) as the noise to

perturb threshold and query in Gaussian and Laplace, respectively. The ratio between

the query noise and the threshold noise is fixed — σ2
σ1

= λ2
λ1

= 2. When applicable, we

include simple Gaussian mechanism as a baseline. Moreover, we added noisy-screening,

which basically output ⊥ if qt(D) +N (0, σ2) ≥ T and > otherwise. The data-dependent

RDP-bound for noisy-screening [Papernot et al., 2018, Theorem 6] behaves like SVT as it

pays exponentially smaller privacy loss when the query qt(D) gets far from the threshold

T . We emphasize the privacy loss is sensitive information, thus not directly comparable

to other DP methods. Finally for Gaussian-SVT, kmax needs to be chosen carefully.

Observations on the experiments. In Experiment 1, when the tail of the noise plays

a significant role, e.g. the threshold T is large (Figure 7.1(b)), Gaussian-SVT is more

advantageous due to a more concentrated noise. To further improve Gaussian-SVT,

the stage-wise Gaussian-SVT that uses hybrid composition (Theorem 7.2.9) outperforms

Laplace-SVT significantly. On a side note, the sinh -style RDP bound for Laplace-SVT

(c = 1) from Lemma ?? turns out to be quite a bit better than the CDP-version and

the standard calibration ( Lemma 7.1.3). In Experiment 2, we see that as the privacy

loss composes Laplace-SVT and Gaussian-SVT with the same noise variance behave

qualitatively similar. Gaussian-SVT is better by a constant factor with larger number of

iterations. Meanwhile, naive Gaussian mechanism and noisy-screening is often the better

choice when the number of iterations is small. In Experiment 3, we see that the expected

privacy losses of Gaussian SVT outperforms that of the noisy-screening despite that the

latter is data-dependent. The error bars are computed based on 10 independent run and

has a correct 95% coverage. We excluded Laplace-SVT in Exp 3 due to the lack of a way

for fair comparison.
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7.5 Conclusion

To conclude, we developed a generalization of sparse vector technique for DP that

allows us to use any noise-adding mechanisms. We derived the Renyi-DP bounds of these

generalized-SVT and showed that we can get
√
c-composition in all practical regimes of

interests. We use theory and experiments to demonstrate the merits of Gaussian-SVT. In

downstream tasks, we have shown that Gaussian-SVT matches the best existing bound

for adaptive data analysis and demonstrated in experiments that it could improve the

privacy accounting in model-agnostic private learning. We hope the work will spark new

ideas and practical applications involving SVT.

7.6 Omitted proofs

7.6.1 Proof of Theorem 7.2.1 — RDP of the Generalized SVT

for c = 1

For unbounded sequences, the output space of the algorithm is {⊥k >|k = 0, 1, ...,∞}.

In the case when kmax < +∞, the output space is {⊥k >|k = 0, 1, ..., kmax−1}∪{⊥kmax}.

For notation convenience, we replace ⊥kmax with ⊥kmax >, which can be thought of fixing

a dummy query at time kmax + 1 which always outputs +∞ regardless of inputs. In

both cases, we can completely describe the output distribution the SVT with a positive

random integer K. As a result, we will write K ∼M(D) and K ∼M(D′) without loss

of generality.

Also w.l.o.g., we assume thresholds Ti are all zero. There are two types of random

variables in the algorithm: the threshold noise ρ and the query noise νi to each of the i

queries, {νi}k+1
i=1 . We will use pρ(z) to denote the probability density of ρ, evaluated at

z, and we will use p(νi) as the pdf of νi.
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The probability of outputting o (or K = k + 1), can be written explicitly as follows:

Pr[M(D′) = o] =

∫ +∞

−∞
pρ(z)

(∏
i≤k

∫ z−qi(D′)

−∞
p(νi)dνi

)
·
∫ ∞
z+qk+1(D′)

p(νk+1)dνk+1dz.

Our goal of is to bound Eo∼M(D′)

[(
Pr[M(D)=o]
Pr[M(D′)=o]

)α]
using the RDP functions of Mρ and

Mν .

The key of the analysis relies on a sequence of fictitious queries q̃1, q̃2, ... which mirrors

the actual sequence of queries q1, q2, ... that are adaptively selected. These fictitious

queries satisfy for all i = 1, 2, 3, ...

q̃i(x) =

 qi(D) +4, when x = D

qi(D
′) otherwise

(7.4)

The following lemma establishes that we can decompose the problem into one that in-

volves the Renyi-divergence between a distribution induced by these fictitious queries

and another distribution induced of the actual queries.

Lemma 7.6.1. Consider Algorithm 11 with c = 1, i.e., the output sequence o ∈ {⊥k

>|k = 0, 1, ...,∞}, then we have

Eo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
≤ Ez∼pρ


(
pρ(z −4)

pρ(z)

)α
EK∼M(D′)


(

Pr[M(D) = K|z, Q̃]
)α

(Pr[M(D′) = K|z])α

∣∣∣∣∣∣z


︸ ︷︷ ︸
denoted by (∗)


(7.5)

where K is a random variable, denotes the number of ⊥ plus 1 when the algorithm

stops, and the explicit conditioning on Q̃ indicates that the probability is evaluated by

hypothetically running the algorithm on the fictitious queries q̃1, q̃2, ... ∈ Q̃.
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Proof: [Proof of Lemma 7.6.1] From the definition of Renyi DP, we have

Eo∼D′
[

Pr[M(D) = o]α

Pr[M(D′) = o]α

]
=
∞∑
k=0

Pr[M(D) =⊥k >]α

Pr[M(D′) =⊥k >]α−1
(7.6)

Without loss of generality, we will replace o with k which measures the number of ⊥s in

o. By law of total expectation, we can condition on ρ = z

Pr[M(D) = k] = Ez∼pρ [Pr[M(D) = k|z]]

=Ez∼pρ [
∏
i≤k

Pr[qi(D) + νi < z|z]Pr[qk+1(D) + νi ≥ z|z]]

=

∫ +∞

−∞
pρ(z)

(∏
i≤k

∫ z−qi(D)

−∞
p(νi)dνi

)
·
∫ ∞
z−qk+1(D)

p(νk+1)dνk+1dz

u:=z+4
↓
=

∫ +∞

−∞
pρ(u−4)

(∏
i≤k

∫ u−4−qi(D)

−∞
p(νi)dνi

)
·
∫ ∞
u−4−qk+1(D)

p(νk+1)dνk+1du

=

∫ +∞

−∞
pρ(u)

(
pρ(u−4)

pρ(u)

)(∏
i≤k

∫ u−4−qi(D)

−∞
p(νi)dνi

)
·
∫ ∞
u−4−qk+1(D)

p(νk+1)dνk+1du

=Ez∼pρ

[(
pρ(z −4)

pρ(z)

)(∏
i≤k

∫ z−4−qi(D)

−∞
p(νi)dνi

)
·
∫ ∞
z−4−qk+1(D)

p(νk+1)dνk+1

]

where in the last line, we rename the variable u back to z.

Substituting the above expression to the definition of RDP and apply Jensen’s in-
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equality

(7.6) =
∞∑
k=0

Ez∼pρ
[(

pρ(z−4)

pρ(z)

)(∏
i≤k
∫ z−4−qi(D)

−∞ p(νi)dνi

)
·
∫∞
z−4−qk+1(D)

p(νk+1)dνk+1

]α
Ez∼pρ

[(∏
i≤k
∫ z−qi(D′)
−∞ p(νi)dνi

)
·
∫∞
z−−qk+1(D′)

p(νk+1)dνk+1

]α−1

≤
∞∑
k=0

Ez∼pρ

(
pρ(z−4)

pρ(z)
(
∏

i≤k
∫ z−4−qi(D)

−∞ p(νi)dνi)
∫∞
z−4−qk+1(D)

p(νk+1)dνk+1

)α
(

(
∏

i≤k
∫ z−qi(D′)
−∞ p(νi)dνi)

∫∞
z−qk+1(D′)

p(νk+1)dνk+1

)α−1

(7.7)

The inequality applies Jensen’s inequality to bivariate function f(x, y) = xαy1−α, which

is jointly convex on R2
+ for α ∈ (1,+∞).

Exchange the order of integral variable z and k in (7.7), we get (7.7) =

Ez∼pρ


(
pρ(z −4)

pρ(z)

)α ∞∑
k=0

(
(
∏

i≤k
∫ z−4−qi(D)

−∞ p(νi)dνi)
∫∞
z−4−qk+1(D)

p(νk+1)dνk+1

)α
(

(
∏

i≤k
∫ z−qi(D′)
−∞ p(νi)dνi)

∫∞
z−qk+1(D′)

p(νk+1)dνk+1

)α−1


=Ez∼pρ

(pρ(z −4)

pρ(z)

)α ∞∑
k=0

(∏k
i=1 Pr[qi(D) +4+ νi < z|z]Pr[qk+1(D) +4+ νk+1 ≥ z|z]

)α
(
PrM(D′)[K = k + 1|z]

)α−1


(7.8)

=Ez∼pρ

(pρ(z −4)

pρ(z)

)α
EK∼M(D′)


(∏K−1

i=1 Pr[q̃i(D) + νi < z|z]Pr[q̃K(D) + νK ≥ z|z]
)α

(Pr[M(D′) = K|z])α

∣∣∣∣∣∣z


=Ez∼pρ

(pρ(z −4)

pρ(z)

)α
EK∼M(D′)


(

Pr[M(D) = K|z, Q̃]
)α

(Pr[M(D′) = K|z])α

∣∣∣∣∣∣z
 (7.9)

which completes the proof.

To understand the last step: recall our definition of fictitious query q̃i, which obeys

q̃i(D) = qi(D) +4 and q̃i(D̃) = qi(D̃) for all other dataset D̃ 6= D. Observe that the
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expression in the numerator of (7.8) actually describes a valid probability distribution of

K, which says the probability of M(D) stopping at time K = k + 1 when the sequence

of input is q̃1, ..., q̃k + 1, ..., i.e.,

k∏
i=1

Pr[qi(D) + ∆ + νi < z|z]Pr[qk+1(D) + ∆ + νi ≥ z|z] = Pr
M(D)

[K = k + 1|z, q̃1, q̃2, ...].

The conditioning on the sequence of queries might appear to be new, but recall that all

our probabilities are conditioned on a sequence of queries that are chosen from Q(4)

or Q+(4) to begin with. They are just not written out explicitly. This is an instance,

where we actually need to condition on a different set of queries to formally write down

this valid probability distribution above.

Remark 7.6.2. The lemma de-convolves the moment of interests into the mixture of

conditional moments of another two distributions that can be written down explicitly.

The proof is delicate but informative, as it explicitly leveraging the fact that Mν is

a noise-adding mechanism, so as to argue the implication of the randomization for a

different query q̃i than the one that it seems to be intending for according to the algorithm

qi. There are several other novel components. We encourage readers to check it out in

details.

A remarkable consequence of this lemma is that we can essentially cancel all factors

concerning ⊥s.

(∗) =EK∼M(D′)


(∏K−1

i=1 Pr[qi(D) +4+ νi < z|z]Pr[qK(D) +4+ νi ≥ z|z]
)α

(∏K−1
i=1 Pr[qi(D′) + νi < z|z]Pr[qK(D′) + νi ≥ z|z]

)α
∣∣∣∣∣∣z


≤EK∼M(D′)

[
(Pr[qK(D) +4+ νi ≥ z|z])α

(Pr[qK(D′) + νi ≥ z|z])α

∣∣∣∣z] (7.10)

The inequality in the last line uses the fact that qi has a global sensitivity of 4, which

169



Sparse vector technique (SVT) Chapter 7

implies that Pr[qi(D) +4+ νi < z|z] ≤ Pr[qi(D
′) + νi < z|z. for all i.

Further observe that q̃K has a sensitivity of 24 since qK has sensitivity 4. By the

property of the noise-adding mechanism Mν , it obeys εν(α)-RDP for all queries having

having sensitivity 24. Therefore, if εν(∞) < +∞, then we can bound (7.10) with eαεν(∞).

In fact, this bound can be improved slightly if we directly work with (7.5), which we state

as a lemma.

Lemma 7.6.3. If εν(∞) < +∞, then the expression (∗) in (7.5) obeys (∗) ≤ e(α−1)εν(∞).

Proof: We use a trick due to [Bun and Steinke, 2016] with some modifications.

First, check that by our trivial bounds

0 ≤ Pr[M(D) = K|z, Q̃]

Pr[M(D′) = K|z]
≤ eε

Define random functionA(K) supported on {0, eε} such that E[A(K)|K] = Pr[M(D)=K|z,Q̃]
Pr[M(D′)=K|z] .

Note that when α = 1

Pr[A(K) = eε] · eε = EK [E[A(K)|K]] = EK∼M(D′)

[
Pr[M(D) = K|z, Q̃]

Pr[M(D′) = K|z]

]
= 1.

The first moment is equal to 1 critically relies on our construction where the numerator

in the expectation of (∗) is the αth power of a valid probability distributions.

This implies that Pr[A(K) = eε] = e−ε, therefore

(∗) = EK [E[A(K)|K]α]

Jensen
↓

≤ E[E[A(K)α|K]] = E[A(K)α] = Pr[A(K) = eε] · eαε = e(α−1)ε,

170



Sparse vector technique (SVT) Chapter 7

which completes the proof.

Now we are ready to prove the three claims of Theorem 7.2.1.

The claim (7.3): Substitute the the above bound into Lemma 7.6.1, we get:

Eo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
Lemma 7.6.1 and 7.6.3

↓

≤Ez∼pρ
[(

pρ(z −4)

pρ(z)

)α]
e(α−1)εν(∞) ≤ e(α−1)ερ(α)e(α−1)εν(∞).

where the second inequality in the last line uses the definition of RDP ofMρ, for a trivial

query q(D) = −∆, q(D′) = 0. (7.3) follows by simply taking log(·)/(α−1) on both sides.

The claim (7.1) and (7.2): To get the other two bounds, we need an alternative

analysis of (∗∗). To avoid crowded notations, we drop the conditioning on z from Pr[·|ρ =

z]. By the definition of expectation,

(∗) ≤ (7.10) =
∞∑
k=0

k∏
i=0

Pr[qi(D
′) + νi < z]Pr[qk+1(D′) + νk+1 ≥ z]

Pr[q̃k+1(D) + νk+1 ≥ z]α

Pr[q̃k+1(D′) + νk+1 ≥ z]α

q̃=q on D′
↓
=

∞∑
k=0

k∏
i=0

Pr[qi(D
′) + νi < z]

Pr[q̃k+1(D) + νk+1 ≥ z]α

Pr[q̃k+1(D′) + νk+1 ≥ z]α−1

Lemma ??
↓

≤

(
∞∑
k=0

k∏
i=0

Pr[q̃i(D
′) + νi < z]

)
· eε(α)(α−1). (7.11)

In the last line, we applied the “indistinguishability” property of an RDP mechanism in

Lemma ?? for the particular event S = x ∈ R|x ≥ z, for the random-variableM(D, q̃k+1)

and M(D′, q̃k+1) in the numerator and denominator respectively.

The issue is how to proceed.
∑∞

k=0

∏k
i=0 Pr[q̃i(D

′)+νi < z] does not sum to 1 because∏k
i=0 Pr[q̃i(D

′) + νi < z] is not a probability distribution of k. The saving grace is the
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following alternative definition of expectation.

Lemma 7.6.4. For a non-negative random variable X, E[X] =
∫∞

0
Pr[X > x]dx.

Recall that K is the first index of >, we can rewrite
∏k

i=0 Pr[q̃i(D
′) + νi < z] as

PrD′ [K > k|z]. Thus

∞∑
k=0

k∏
i=0

Pr[q̃i(D
′) + νi < z] =

∞∑
k=0

PrD′ [K > k|z] = E[K|z] (7.12)

It follows that

Eo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
≤ Ez∼pρ

[(
pρ(z −4)

pρ(z)

)α
E[K|z]

]
eεν(α)(α−1)

Claim (7.1) uses E[K|z] ≤ kmax + 1. By using a different Holder’s inequality with conju-

gate pair γ and γ∗ := γ/(γ − 1), we obtain

Eo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
≤ Ez∼pρ

[(
pρ(z −4)

pρ(z)

)γ∗α]1/γ∗

·
(
Ez∼pρ

[
E[K|z]γ

])1/γ

·eεν(α)(α−1)

(7.2) follows by taking log(·)/(α− 1) on both sides and applying the definition of RDP.

This completes the proof of Theorem 7.2.1.

Proposition 7.6.5 (Restatement of Proposition 7.2.5 with mroe details). Let Algo-

rithm 11 be instantiated with Q+(4), Mρ and Mν be Gaussian mechanism with param-

eter σ1 and σ2. Then for all T < +∞ and γ > 1 such that σ2 >
√
γσ1, Algorithm 11

with c = 1 halts with K rounds satisfying

Eρ[E[K|ρ = z]γ] ≤
∫ ∞
−∞

1

σ1

φ(z/σ1)

(
Φ((T + z)/σ2)

1− Φ((T + z)/σ2)

)γ
dz < +∞, (7.13)

where φ(x) = e−x
2

√
2π

and Φ(x) =
∫ x
−∞ φ(x)dx are the pdf and CDF of the standard normal
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distribution. If σ2 ≥
√
γ + 1σ1, then a more interpretable bound of the above is

E[E[K|ρ = z]γ] ≤ 1 + (cγ
√

2πmax{T (1 + γ)

σ1

, 1})γ(1 + γ)1/2e
γT2

2σ21

where cγ is a universal constant that comes from the moments bounds and depends only

on γ. For the special case when γ = 2, and σ2 =
√

3σ1, we get E[E[K|ρ = z]2] ≤

1 + 2
√

3π(1 + 9T 2

σ2
1

)e
T2

σ21 .

Proof: [Proof of Proposition 7.6.5] Consider the case when all queries are non-

negative, and the threshold T is given, then the datasets that maximizes all moments of

K|ρ = z for all z are given by fi(D) = 0 for all i. Notice that K|ρ = z follows a Negative

Binomial Distribution, thus

E[K|z] =
Fv[T + z]

1− Fv[T + z]
,

where Fv is the cumulative density function (CDF) of the noise v. The moments of

E[K|z], when exists, can be computed by numerical integration. When z ∼ N (0, σ2
1) and

v ∼ N (0, σ2
2) for σ2 > σ1

√
γ, we can work out bounds of the γth moments of E[K|z].

Let φ be the standard normal density function and Φ be the CDF. There is a lower

bound of the Gaussian tail for all x > 0

1− Φ(x) ≥ x

x2 + 1
φ(x)
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Thus for y ≥ −T + σ2, we have

E [E[K|z]γ] =

∫ ∞
−∞

1

σ1

φ(z/σ1)

(
Φ((T + z)/σ2)

1− Φ((T + z)/σ2)

)γ
dz

=

∫ y

−∞

1

σ1

φ(z/σ1)

(
Φ((T + z)/σ2)

1− Φ((T + z)/σ2)

)γ
dz +

∫ ∞
y

1

σ1

φ(z/σ1)

(
Φ((T + z)/σ2)

1− Φ((T + z)/σ2)

)γ
dz

≤
∫ y

−∞

1

σ1

φ(z/σ1)dz +

∫ ∞
y

1

σ1

φ(z/σ1)

 (T+z)2

σ2
2

+ 1

(T+z)
σ2

φ((T + z)/σ2)

γ

dz

T+y≥σ2
↓

≤Φ(y/σ1) +

∫ ∞
y

1√
2πσ1

e
− z2

2σ21 (2π)γ/2e
γ(T+z)2

2σ22 2γ
(T + z)γ

σγ2
dz

u:=z+T, σ̃:=( 1

σ21
− γ

σ22
)−1/2

↓
=Φ(y/σ1) + (2π)

γ
2
σ̃

σ1

∫ ∞
T+y

uγ

σγ2

1√
2πσ̃

e
− u2

2σ̃2
+ 2uT

2σ21
− T2

2σ21 du

=Φ(y/σ1) + (2π)
γ
2
σ̃

σ1

e
− T2

2σ21
+T2σ̃2

2σ41

∫ ∞
T+y

uγ

σγ2

1√
2πσ̃

e−
(u−T σ̃

2

σ21

)2

2σ̃2 du

take |·| and relax integral
↓

≤Φ(y/σ1) + (2π)
γ
2
σ̃

σ1

e
γT2

2(σ22−γσ
2
1)EX∼N (Tσ̃

σ21
,1)[|X|γ]

where EX∼N (Tσ̃
σ21
,1)[|X|γ] is themth non-central moments which is on the order of max{T σ̃

σ2
1
, 1}γ

— and can be evaluated in a closed-form. Finally, we can simply take y −T + σ2.

Now, suppose we take σ2 =
√

1 + γσ1, then we get σ̃ = σ2. The above bound

simplifies to:

E[E[K|z]γ] ≤ 1 + (cγ
√

2πmax{T (1 + γ)

σ1

, 1})γ(1 + γ)1/2e
γT2

2σ21

where cγ is a universal constant that comes from the moments bounds and depends only

on γ. If γ = 2 and σ2 =
√

3σ1, then σ̃ = σ2, and

E[E[K|z]2] ≤ 1 + 2
√

3π(1 +
9T 2

σ2
1

)e
T2

σ21 .
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7.6.2 RDP analysis with c ≥ 1, proof of Theorem 7.2.7

Theorem 7.6.6 (Restatement of Theorem 7.2.7, RDP for length-capped SVT with

c > 1). The generalized SVT with cut-off parameter c > 1 and a maximum length is

kmax obeys that

Dα(M(D)‖M(D′)) ≤ ερ(α) + cεν(α) +
log
∑c

k=0

(
kmax

k

)
α− 1

.

*After a careful revision, we found there is a minor typo in the statement of Theo-

rem 7.2.7 (the 1/(α− 1) term shouldn’t be there) we provide the correct version above.

The proof follows a similar sequence of arguments to that we presented for c = 1.

When c > 1, the output space of the algorithm is S = {>,⊥}`, ` = 0, 1, ..., kmaxwith

the additional restriction that the number of >s are smaller than c. Denote I⊥ := {i :

oi =⊥} and I> := {j : oj = >}. Then we can write the probability of outputting o as

following:

Pr[M(D) = o] =

∫ +∞

−∞
pρ(z)

(∏
i∈I⊥

∫ z−qi(D)

−∞
p(νi)dνi

)( ∏
j∈I>

∫ ∞
z+qj(D)

p(νj)dνj

)
dz

Similarly, we have

Eo
[(

Pr[M(D) = o]

Pr[M(D′) = o]

)α]
=
∑
o∈S

Pr[M(D′) = o]

(
Pr[M(D) = o]

Pr[M(D′) = o]

)α
(∗)

Apply the same logic from the proof for c = 1, we can upper bound Pr[M(D) = o] in
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the following

Pr[M(D) = o] ≤ Ez∼pρ
(
pρ(z −4)

pρ(z)

∏
i∈I⊥

∫ z−qi(D′)

−∞
p(νi)dνi

)( ∏
j∈I>

∫ ∞
z+4+qj(D)

p(νj)dνj

)
(7.14)

Then apply Jensen’ inequality to Pr[M(D)=o]α

Pr[M(D′)=o]α−1 , we have

(7.14) ≤
∑
o∈S

Ez∼pρ

(
pρ(z−4)

pρ(z)

∏
i∈I⊥

∫ z−qi(D′)
−∞ p(νi)dνi

)α(∏
j∈I>

∫∞
z+4+qj(D)

p(νj)dνj

)α
(∏

i∈I⊥

∫ z−qi(D′)
−∞ p(νi)dνi

)α−1(∏
j∈I>

∫∞
z+qj(D′)

p(νj)dνj

)α−1

(7.15)

Exchange the order of integral in z and o, we get

(7.15) = Ez∼pρ
(
pρ(z −4)

pρ(z)

)α∑
o∈S

Pr[
∏
i∈I⊥

qi(D
′) + νi < z]︸ ︷︷ ︸

denote by(∗∗)

·

(∏
j∈I> Pr[qj(D) + νj +4 ≥ z]

)α
(∏

j∈I> Pr[qj(D′) + νj ≥ z]

)α−1

In the case of length-capped SVT, the algorithm stops whenever |o| ≥ kmax or |I>| ≥ c.

By the fact that probabilities ≤ 1, we use the following crude bound

∑
o∈S

Pr[
∏
i∈I⊥

qi(D
′) + νi < z] ≤

∑
o∈S

1 = |S|,

i.e., the cardinality of the output space, which is bounded from above by
∑c

k=0

(
kmax

k

)
.

Moreover, we can bound the Ez∼pρ
(
pρ(z−4)

pρ(z)

)α
term with e(α−1)ερ(α) using the defini-

tion of RDP (with a trivial query that outputs 0 and 4 for D and D′ as we constructed

before). Therefore, (∗∗) is bounded by e(α−1)ερ(α) ·
∑c

k=0

(
kmax

k

)
.

For the second part
(
∏
j∈I>

Pr[qj(D)+νj+4≥z])α

(
∏
j∈I>

Pr[qj(D′)+νj≥z])α−1 , we apply the same trick of defining a
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sequence of fictitious queries q̃1, ..., q̃kmax as in 7.4. For each j ∈ I>,
Pr[q̃j(D)+νj+4≥z]

Pr[q̃j(D′)+νj≥z])α−1 ≤

eεν(α)(α−1) using the “indistinguishability” property of an RDP mechanism. Since |I>| ≤ c,

the second part is bounded by ecεν(α)(α−1).

177



Bibliography

Mart́ın Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal

Talwar, and Li Zhang. Deep learning with differential privacy. In ACM SIGSAC Con-

ference on Computer and Communications Security (CCS-16), pages 308–318. ACM,

2016.

Apple, Differential Privacy Team. Learning with privacy at scale. Apple Machine Learn-

ing Journal, 2017.

Shahab Asoodeh, Jiachun Liao, Flavio P Calmon, Oliver Kosut, and Lalitha Sankar.

Three variants of differential privacy: Lossless conversion and applications. IEEE

Journal on Selected Areas in Information Theory, 2(1):208–222, 2021.

Borja Balle and Yu-Xiang Wang. Improving gaussian mechanism for differential privacy:

Analytical calibration and optimal denoising. International Conference in Machine

Learning (ICML), 2018.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling:

Tight analyses via couplings and divergences. In Preprint, 2018.

Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hypothesis

testing interpretations and renyi differential privacy. In International Conference on

Artificial Intelligence and Statistics, pages 2496–2506. PMLR, 2020.

178



Gilles Barthe and Federico Olmedo. Beyond differential privacy: Composition theorems

and relational logic for f-divergences between probabilistic programs. In International

Colloquium on Automata, Languages, and Programming, pages 49–60. Springer, 2013.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimiza-

tion: Efficient algorithms and tight error bounds. In Foundations of Computer Science

(FOCS-14), pages 464–473. IEEE, 2014.

Raef Bassily, Om Thakkar, and Abhradeep Guha Thakurta. Model-agnostic private

learning. Advances in Neural Information Processing Systems, 31, 2018.

Amos Beimel, Kobbi Nissim, and Uri Stemmer. Characterizing the sample complexity

of private learners. In Conference on Innovations in Theoretical Computer Science

(ITCS-13), pages 97–110. ACM, 2013.

Avrim Blum and Moritz Hardt. The ladder: A reliable leaderboard for machine learning

competitions. In International Conference on Machine Learning, pages 1006–1014,

2015.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia,

Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning.

In 2021 IEEE Symposium on Security and Privacy (SP), pages 141–159. IEEE, 2021.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, ex-

tensions, and lower bounds. In Theory of Cryptography Conference, pages 635–658.

Springer, 2016.

Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private release

and learning of threshold functions. In Foundations of Computer Science (FOCS),

2015 IEEE 56th Annual Symposium on, pages 634–649. IEEE, 2015.

179



Mark Bun, Thomas Steinke, and Jonathan Ullman. Make up your mind: The price

of online queries in differential privacy. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 1306–1325. SIAM, 2017.

Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas Steinke. Composable and

versatile privacy via truncated cdp. In STOC-18, 2018.

Clément L Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for

differential privacy. arXiv preprint arXiv:2004.00010, 2020.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private

empirical risk minimization. The Journal of Machine Learning Research, 12:1069–1109,

2011.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-

work for contrastive learning of visual representations. In International conference on

machine learning, pages 1597–1607. PMLR, 2020.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor at-

tacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526,

2017.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions

on information theory, 13(1):21–27, 1967.

Yuval Dagan and Vitaly Feldman. Pac learning with stable and private predictions. In

Conference on Learning Theory, pages 1389–1410. PMLR, 2020.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.

In 2005 IEEE computer society conference on computer vision and pattern recognition

(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

180



Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlocking

high-accuracy differentially private image classification through scale. arXiv preprint

arXiv:2204.13650, 2022.

Chris Decarolis, Mukul Ram, Seyed Esmaeili, Yu-Xiang Wang, and Furong Huang. An

end-to-end differentially private latent dirichlet allocation using a spectral algorithm.

In International Conference on Machine Learning, pages 2421–2431. PMLR, 2020.

Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Benjamin IP Rubin-

stein. Robust and private bayesian inference. In Algorithmic Learning Theory, pages

291–305. Springer, 2014.

Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Daniel Kifer. Free gap information from

the differentially private sparse vector and noisy max mechanisms. arXiv preprint

arXiv:1904.12773, 2019.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of

the Royal Statistical Society, Series B, 2021. to appear.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recogni-

tion at scale. arXiv preprint arXiv:2010.11929, 2020.

Cynthia Dwork. Differential privacy. In International conference on Automata, Languages

and Programming, pages 1–12. Springer-Verlag, 2006.

Cynthia Dwork and Vitaly Feldman. Privacy-preserving prediction. In Conference On

Learning Theory, pages 1693–1702. PMLR, 2018.

181



Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of

the forty-first annual ACM symposium on Theory of computing, pages 371–380. ACM,

2009.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.

Theoretical Computer Science, 9(3-4):211–407, 2013.

Cynthia Dwork and Guy N Rothblum. Concentrated differential privacy. arXiv preprint

arXiv:1603.01887, 2016.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to

sensitivity in private data analysis. In Theory of cryptography, pages 265–284. Springer,

2006.

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and Salil Vadhan. On

of differentially private data release: efficient algorithms and hardness results. In

Proceedings of the forty-first annual ACM symposium on Theory of computing, pages

381–390. ACM, 2009.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy.

In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on,

pages 51–60. IEEE, 2010.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and

Aaron Roth. Preserving statistical validity in adaptive data analysis. arXiv preprint

arXiv:1411.2664, 2014a.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.

Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014b.

182



Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: op-

timal bounds for privacy-preserving principal component analysis. In ACM symposium

on Theory of computing (STOC-14), pages 11–20. ACM, 2014c.

Charles L Epstein and John Schotland. The bad truth about laplace’s transform. SIAM

review, 50(3):504–520, 2008.
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