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BioSig: An Imaging Bioinformatics System for
Phenotypic Analysis

B. Parvin, Q. Yang, G. Fontenay, and M.H. Barcellos-Hoff
Lawrence Berkeley National Laboratory

Abstract—Organisms express their genomes in a cell-specific
manner, resulting in a variety of cellular phenotypes or phe-
nomes. Mapping cell phenomes under a variety of experimental
conditions is necessary in order to understand the responses
of organisms to stimuli. Representing such data requires an
integrated view of experimental and informatic protocols. The
proposed system, named BioSig, provides the foundation for
cataloging cellular responses as a function of specific condition-
ing, treatment, staining, etc. for either fixed tissue or living cell
studies. A data model has been developed to capture experimental
variables and map them to image collections and their computed
representation. This representation is hierarchical and spans
across sample tissues, cells, and organelles, which are imaged
with light microscopy. At each layer, content is represented with
an attributed graph, which contains information about cellular
morphology, protein localization, and cellular organization in
tissue or cell culture. The web-based multilayer informatics
architecture uses the data model to provide guided workflow
access for content exploration.

Index Terms—Imaging bioinfomatics, cell segmentation, phe-
notypic analysis

I. I NTRODUCTION

The challenge of the post-genomic era is functional ge-
nomics, i.e., understanding how the genome is expressed to
produce myriad cell phenotypes. To use genomic information
to understand the biology of complex organisms, one must
understand the dynamics of phenotype generation and mainte-
nance. A phenotype is the result of selective expression of the
genome. It is an expression of the history of the cell and its
response to the extracellular environment. In order to define
cell “phenomes,” one would track the kinetics and quantities
of multiple constituent proteins, their cellular context and
morphological features in large populations. Such studies
should also include responses to stimuli so that functional
models can be generated and tested. This paper focuses on
an imaging bioinformatic system that targets mapping cell
phenomics [1], [2].

Signaling between cells and their extracellular microen-
vironment has a profound impact on cell phenotype [3].
These interactions are the fundamental prerequisites for con-
trol of cell cycle, DNA replication, transcription, metabolism,
and signal transduction. The ultimate decision of a cell to
proliferate, differentiate or die is the response to integrated
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signals from the extracellular matrix, cell membrane, growth
factors and hormones. Our current aim is to understand how
ionizing radiation alters tissue homeostasis. This is achieved
by studying the effect of low-dose radiation on the cellular
microenvironment, inter-cell communication, and the underly-
ing mechanisms. In turn, this information can then be used to
more accurately predict more complex multicellular biological
responses following exposure to different types of inhibitors.

Several thousand antibodies and reagents exist for differen-
tiating a cell’s specific protein components. Some antibodies
can additionally discriminate between functional variants of
a protein caused by modifications such as phosphorylation
status, protein conformation and complex formation. Of the
intracellular proteins, a large number are involved in signaling
pathways. These pathways are currently not well understood,
due to the complexity of the potential events, the potential for
multiple modifications affecting protein function, and lack of
information regarding where and when a protein is actively
participating in signaling. Inherent biological variability and
genomic instability are additional factors that support the
requirement for large population analysis. The BioSig infor-
matics approach to microscopy and quantitative image analysis
has been used to build a more detailed picture of the signaling
that occurs between cells, as a result of an exogenous stimulus
such as radiation, or as a consequence of endogenous programs
leading to biological functions. For example, recent studies
have shown that certain intracellular signaling pathways are
linked via the cell adhesion system [4]. Cell adhesion is how
a cell attaches itself via integral membrane receptors to the
extracellular matrix. Experimentally manipulating extracellular
matrix receptors affects cell shape, alters the response of
cells to new stimuli, and modifies multicellular organization
as a function of time [5], [6]. Detailed analysis of these
multidimensional responses (e.g., time and space) can be
achieved using digital microscopy but is hampered by labor
intensive methods, a lack of quantitative tools, and the inability
to index and access information through a Web interface.

A significant aspect of a phenotypic study is that changes
in shape, response, and organization are heterogeneous and
cell-specific in tissue. Given the need for a large sample
size (number of images) and complex hierarchical represen-
tation, it is necessary to maintain a detailed data model for
managing data and information. The data model can then
be used as a guided workflow for user-based annotation
and browsing the database. It can also be used to construct
a visual interface for querying multiple targets along with
positional references and morphological features. The end
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results can then be visualized in terms of plots and collage of
images with sensitivity measures. Our research has three novel
components: (1) development of a novel set of algorithms
for capturing cellular morphology, protein expression, and
cellular organization in tissue; (2) development of a data model
that couples immunohistochemistry with images, instrument
configuration, and multi-layered quantitative representation,
and (3) development of a distributed imaging bioinformatics
system that couples the data model with a Web-based visual
interface.

The organization of this paper is as follows. Section 2
provides a brief overview of the system architecture and
database interaction. Section 3 outlines various components
of the informatic system. Section 4 provides the details of the
image analysis algorithms. Section 5 outlines the details of
specific phenotypic studies. Section 6 concludes the paper.

II. A RCHITECTURE

The system architecture is shown in Figure 1. BioSig
contains a flat file mechanism for storing raw image data;
however, compressed forms of these images, along with their
computed and user defined annotations, are preserved in the
database. The system consists of a secure Web server that
constructs a view into the database through an object model
layer and an object oriented (OO) database for storage and
retrieval. BioSig uses a browser to access the Web server
and the database. The database supports some computational
functionalities on feature-based representation of raw images;
however, all image analysis operations are performed by the
computation service.

BioSig currently supports five classes of operations in order
to construct the object hierarchies and provide access to the
database. These include creation and validation of content,
transformation, communication, security, and storage. These
operational classes, with the partial exceptions of security
and storage, are implemented through a component-based
architecture in which processing and communication tasks
are generally divided into the smallest partitions of server
resources, called servlets. Servlets can coexist on a single
computing platform or on disparate ones. The servlet platforms
maintain computing resources such that they allow scaling
for an increased load in communication from distant Web
browsers and other interoperable networked applications. The
servlets are intentionally small to allow for extensibility. Sev-
eral servlets allow for creation of database hierarchies through
the Web. These servlets leverage modern markup techniques
and provide validation against the schema that constrains both
the structure of the data hierarchy and the individual content
of each element.

III. I NFORMATICS

To understand the practical requirements of the informatic
system, consider the following. A typicalin vivo study in-
cludes a number of genetically similar mice at different stages
of their development: virgin, pregnant, lactate, and involution.
In each category, mice are partitioned for treatment types
(e.g., implant, radiation) that they will receive. Within each

treatment population, mice are sacrificed at 1 hour, 4 hours,
and 8 hours post treatment time. Tissues are then collected and
sectioned, and coverslips are prepared for antibody treatment
and subsequent imaging. The same experiment is then repeated
for genetically altered mice for comparative analysis. It is
clear that even such a simple study can generate a large
number of images and annotation data to address cause and
effect in the context of biological heterogeneity. A data model
has been developed to capture and link laboratory notebook
information, experimental variables, images, and computed
annotations corresponding to the cellular organization and
distribution.

Phenotyping has many degrees of freedom that should relate
a particular quantitative result with (1) where a sample was
obtained, (2) how it was conditioned, (3) how it was treated,
etc. The informatic framework maintains these relations so that
different experimental results can be compared for validation,
exploratory analysis, and hypothesis testing. These relations
encode a mapping between quantitative results to images and
experimental annotations. The informatic system consists of
three components. These include (1) data model, (2) presen-
tation manager, and (3) query manager. These subsystems are
decoupled for ease of development, testing, and maintenance.
The purpose of the data model is to provide (1) an underlying
structure for capturing complex data types and their relation-
ships, and (2) a guided workflow for entering experimental
variables in order to homogenize experimental protocols, e.g.,
concentration, incubation time, temperature and the sequence
of a specific experiment. Implementation of the data model
is object oriented and provides bidirectional tracking and an-
notation and measured feature data. The presentation manager
utilizes the data model to construct a flexible graphical view of
the database. Furthermore, it provides the display functionality
for a particular query in terms of graphs or images. The query
manager maps high-level user queries to the Java objects with
the intent of simplifying and hiding detailed manipulation of
the database from the end users. Each of these components is
discussed in further detail.

The server-side components enable interactive views into
the database content through a modular architecture. Each
view of the database can be defined by a user and his role to
meet requirements for customization. These views are visually
expressed as a directed graph and its layout is enhanced
through GraphViz, which is an open source ATT software
project.

A. Data model

The data model, shown in Figure 2, is object-oriented and
provides navigational links from the laboratory notebook, ex-
perimental variables, images, and detailed quantitative results.
In the actual implementation, each link may have a cardinality
of more than one, and provides bidirectional tracking of infor-
mation from any end point. The significance of this data model
is that it supports both fixed tissue and living cell studies. The
model has been developed through examination of steps in
immunohistochemistry and sample preparation. Experiments
on fixed tissue often involve several animals going through
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Fig. 1. Distributed imaging bioinformatics architecture for phenotypic studies is layered, uses a graphic interface, and provides an object model for improved
scalability.

specific treatments, radiation, implants, or a pharmaceutical at
a specific dosage and time. Tissue sections are then prepared
from an organ at a specific thickness, then stained with primary
and secondary antibodies labeled with a fluorochrome such
as immunofluorescence, a common tool for studying protein
localization. The model is represented with XML, and tools
have been developed to convert the XML representation into
Java code that is required by the object oriented database. In
addition to the static definition ofeach object, a property object
(name-value pair) is added for extensibility. An interface has
been developed to add these new properties, specify their value
types, and choose to add them to instances on a predicate basis
or apply them globally. These value types include scalar data
or links to instances or collections of existing and future data
objects at specific layers of the hierarchy.

The model couples experimental variables (user’s annota-
tion) to feature-based representation of images, which is essen-
tially an attributed graph. The nodes in this graph correspond
to cells, and the edges correspond to the relationships between
the cells. We refer to this as tissue representation which has a
structure and distribution. This representation is repeated for
each cell and each organelle for drilling up and down the data
space.

B. Presentation manager

The presentation manager supports two functions: (1)
guided exploration of the database and (2) visualization of a
particular query operation. These functionalities are enhanced
through the Web and scalable vector graphics (SVG), which
is a W3C standard for describing two-dimensional graphics.
SVG is an extensible XML-based format for interactive pre-
sentation that incorporates images, text, shapes, and video
and allows for their precise layout and animation through
declarative methods. SVG greatly facilitates rich presentation
of data-driven graphics, and its rendering is accomplished
through viewers that work as Web browser plugins or as
standalone applications.

The schema, shown in Figure 2a, is represented in XSD
(XML schema), and the presentation manager constructs a

view into the database using this representation and the corre-
sponding style sheets (XSL) for browsing and updating. XML
generation is perfomed through small, efficient servlets that
target relevant content in the database. The stylesheet is com-
piled into bytecode in order to avoid the overhead of request-
time parsing.GraphViz can also export its output in SVG,
which can subsequently be customized through stylesheet
transformations. The presentation manager can display the
result of a query function in either graphics or a collage of
images. The graphics include dose-response plots and scatter
diagrams of computed features as a function of independent
variables. Examples of the presentation manager are shown in
Figures 3 and 4.

C. Query manager

The query manager provides a set of predefined operators
and dynamically generated templates to assist in information
visualization and hypotheses testing. These operators help to
draw contrast between computed features and their corre-
sponding annotation data, and estimate statistical measures
such as analysis of variance for sensitivity analysis. The
templates correspond to attributes of a set of classes in the
data model. Once these fields are selected, constraints can
be specified, and the query results visualized through the
presentation manager. The system translates a query into a
Java program that manipulates the database to retrieve required
information. Through its deep fetch mechanism, the object ori-
ented database simplifies sensitivity analysis such as analysis
of variance since each computed feature has to be mapped
to its source; e.g., animal or cell culture. An example of
such a high-level operator includes correlation of a particular
computed feature with respect to an independent variable; e.g.,
correlate “organization” of an acinus between samples that
have been treated with 2-Gy levels of radiation and those that
have not been radiated at all.In this case, organization is a
feature that quantifies global layout of a number of epithelial
cells for a cell culture colony.

The query manager also has a unique “query by feature”
search mechanism in which a feature is an attribute computed
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(a)

Fig. 2. Coarse representation of the BioSig data model shows close coupling between lab notebook, experimental variables, images, and feature-based
representation of images. Each image is summarized in terms of tissue, cell, and organelle content.
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Fig. 3. Guided workflow annotation and exploration of the database content.

Fig. 4. Query results for a collage of images and their annotations for
protein colocalization studies. Composite images are automatically generated
and scaled.

from raw image data. A typical experiment can generate
several hundred images that correspond to tissue or cultured
cells and are stained with a particular fluorochrome. It is
often of significant interest to represent a few hundred images
with two or three images that are representative of the image
collection. In our system, this is known as the average behavior
operator, which utilizes indices corresponding to computed
features (e.g., morphology or protein localization) to retrieve
desired samples.

IV. EXTRACTION OF NUCLEI

Quantitative analysis and change detection [7] at the cellular
level is an important step which can lead to a detailed
understanding of protein localization as a function of microen-
vironment or genetic alterations. In our research, the nuclei of
interest reside in a thin layer that surrounds a particular type
of capillary known as a lumen. These nuclei are known as

lumenal epithelial cells. During cell culture studies, a single
lumenal epithelial cell divides to form a hollow sphere known
as an acinus. This process often takes 10 days, when at dif-
ferent time points, the microenvironment is disrupted to study
cell-to-cell communication. Similarly, currentin vivo studies
targets epithelial cells for normal (wild type) versus genetically
altered animals (heterozygote) so that a link between changes
in the microenvironment and intracellular signaling can be
made as a function of genetic alteration. Furthermore, neither
cellular structures nor responses are homogeneous. As a result,
automatic segmentation and labeling of cells are an important
aspect of any large-scale phenotypic analysis.

The current approach to extracting subcellular regions, e.g.,
nuclei, is to introduce a fluorescent dye to enable imaging and
quantitative analysis. Segmentation is a hard problem since
compartments may be overlapping (e.g., touching nuclei),
cells have many internal structures, signal expression for
each cell may not be homogeneous, and images are noisy.
Furthermore, for certain studies, cells have to be classified
with respect to their position and their response cataloged
in time. For example, cells of interest may reside in a thin
layer that surrounds a particular type of capillary. For 2D
data, our previous approach [8] used both step and roof edges
to partition a clump of nuclei in a way that is globally
consistent. Step edges correspond to the boundaries between
nuclei and background, and roof edges correspond to the
boundary between neighboring (touching) nuclei. A unique
feature of this system was its hyperquadric representation of
eachhypothesis and the use of this representation for global
consistency. Global consistency was obtained through a cost
function that was minimized with dynamic programming.

A new approach has been developed that is simpler, more
robust, and is now part of our production system [9]. This
system is also model-based and assumes that the projection
of 3D nuclei onto a 2D image is locally quadratic. Instead of
grouping step and roof edges, we initiate from a representation
that corresponds to the zero crossing of the image in the
local coordinate system. The zero crossing image is then
filtered with geometrical and illumination constraints to reveal
internal structures. These internal structures are then removed
and interpolated with the corresponding boundary conditions.
Each clump is then partitioned into several nuclei through a
process that we call a centroid transform. The steps in the
computational protocol are shown in Figure 5a. The centroid
transform essentially projects each point along the contour into
a localized center of mass, as shown in Figure 5b. The solution
is regularized to eliminate noise and other artifacts along the
contour. This is shown in Figure 6. In the remainder of this
section, each step of the process is described in more detail.

A. Elliptic regions

Let I0(x; y) be the original image. In the linear (Gaus-
sian) scale space, its representation at scale� is given by
I(x; y;�) = G�I, whereG is a 2D Gaussian. The vector field
of gradientrI = (Ix; Iy)

T can be classified by its Jacobian
or the Hessian matrix:

H(x; y) =

�
Ixx Ixy
Ixy Iyy

�
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(a) (b)

Fig. 5. Segmentation process: (a) protocol for extracting delineating touching
nuclei; and (b) evolution of centroid transform between two adjacent nuclei.

Bright elliptic regions can then be defined as the set of points
satisfying the following conditions:8<

:
Ixx < 0

Iyy < 0

IxxIyy � I2xy > 0

(1)

which means that both eigenvalues of the Hessian matrix
are negative, or, in other words,H(x; y) is negative definite.
Similarly, a dark elliptic region can be identified by the
following conditions:8<

:
Ixx > 0

Iyy > 0

IxxIyy � I2xy > 0

(2)

This classification is deduced directly from the classic method
for flow pattern classification [10]. In scale-space theory [11],
IxxIyy � I2xy is referred to as the elliptic feature. Other
properties of this feature will be discussed in Section IV-C.

B. Harmonic cuts

The next step of the computational process is to remove
small elliptic regions from the cell and interpolate their region.
This is essentially a noise removal step; however, our data set
has both random noise (CCD noise) and speckle noise (internal
structures within the cell). Previous efforts in noise removal
have been limited to filtering random noise [12]; however,
structural details behave much like speckle noise and more
advanced techniques need to be developed. To motivate our
solution, let us first consider the one-dimensional interpolation
problem. A one-dimensional functionI(x) with the region
in the interval(a; b) can be interpolated with the average of
the two endpoints,I(a)+I(b)

2
. However, this approach breaks

continuity of interpolation. A better approach is to weight the
interpolation, at each pointx, as a function of its distance to
the boundary condition; i.e., letInew(x) = (b� x)I(a)=(b �

a)+(x�a)I(b)=(b�a). It can be shown that this representation
is equivalent to minimizing

1

2

Z b

a

I2xdx (3)

subject to the boundary conditions�
I(a) = Ia
I(b) = Ib

(4)

The 2D case is more complex because theboundary is often
noisy and irregular, and it is not clear whether propagating
intensity based on distance transform will have desirable
properties. We suggest that one way to ensure continuity is
to regularize the solution by extending the 1D solution to 2D;
i.e., by minimizing the following functional:

1

2

ZZ
D

I2x + I2ydxdy (5)

The Euler solution to this functional is the Laplace equation:

r2I = Ixx + Iyy = 0 (6)

Equation (6) is a two-dimensional harmonic function defined
onD, and thus we call this method “harmonic cut.” Harmonic
functionals satisfy the Laplace equation and have many impor-
tant properties [13]. The Laplace equation is a special case of
the Poisson equation, which has been studied extensively.

C. Regularized Centroid Transform

At this stage of the computational process, each cell is
represented with a smooth surface corresponding toeach of its
subcompartments. The next step of the process is to separate
nuclei that are grouped together into a clump; i.e., touching
one another. This is achieved using theRegularized Centroid
Transform(RCT).

Figure 5b shows the basic idea for the RCT technique. The
intent is to map vectors originating from the boundary of an
ellipse to its centroid. If these vectors can be computed, then
the entire boundary can be grouped together. This is true for
both boundaries and theirinterior points; i.e., grouping utilizes
not only the edges but also the regional information. The main
issue is that centroids are unknown and that there are many
centroids in the image. This is resolved by first computing a
vector field that can then be used to partition touching objects.

Let I(x; y) be the original intensity image. At each point
(x0; y0), its equal-height contour is defined by

I(x; y) = I(x0; y0) (7)

Expanding and truncating the above equation using Taylor’s
series, we have the following estimation:

Ixu+ Iyv +
1

2
[Ixxu

2 + 2Ixyuv + Iyyv
2] = 0 (8)

whereu = x� x0 andv = y � y0, or in the standard form

1

2
wTHw + bTw = 0 (9)

whereH =

�
Ixx Ixy
Ixy Iyy

�
(x0;y0)

is the Hessian matrix,b =
�

Ix
Iy

�
(x0;y0)

is the gradient of intensity,w = (u; v)T is

the centroid in the local coordinate system. Recall that the
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centroid of the quadratic curve defined by Eq. (9) satisfies the
following linear constraint:

Hw + b = 0 (10)

If H is non-singular, then the centroid can be determined
directly; i.e.,

w = �H�1b (11)

However this is not always true, and in general, the zero set
defined by ���� Ixx Ixy

Ixy Iyy

���� = IxxIyy � I2xy = 0 (12)

is non-trivial, and can be further classified into two categories:

1) uniform regions that correspond to zero intensity gra-
dient of the image with the result that there is no
information to estimate the centroid, and

2) elliptic features that occur in non-uniform regions.

The major limitation is that the centroids at singular points
of the Hessian are not well defined. Since the basic formu-
lation of centroid transform is ill-posed [14], a regularized
formulation is implemented. Let the centroid at(x; y) be
denoted by(u(x; y); v(x; y))T , then the regularized model can
be expressed as:

minE(u; v) = 1

2

RR
jjH � (u; v)T + bjj2+

�(jjrujj2+ jjrvjj2)dxdy
(13)

or

minE(u; v) = 1

2

RR
(Ixxu+ Ixyv + Ix)

2+

(Ixyu+ Iyyv + Iy)
2+

�(u2x + u2y + v2x + v2y)dxdy

(14)

where the first and second terms are the error of estimation,
the third term is the smoothness constraint, and�(> 0) is the
weight factor. The discrete Euler-Lagrange equations of the
variational problem of Equation 14 can then be expressed as:8>><
>>:

Ixx(Ixxu+ Ixyv + Ix) + Ixy(Ixyu+ Iyyv + Iy)�

�(uxx + uyy) = 0

Ixy(Ixxu+ Ixyv + Ix) + Iyy(Ixyu+ Iyyv + Iy)�

�(vxx + vyy) = 0
(15)

D. Partitioning Vector Field

The final step of segmentation is to compute the partition
of a vector field corresponding to the RCT. Consider an
autonomous system of differential equations

�
dx
dt

= u(x; y)
dy

dt
= v(x; y)

(16)

The computed vector field can be partitioned simply be mi-
grating each point to its local centroid, as shown in Figure 5b.
In this context, the RCT is a model-based watershed method.
An example of segmentation results for two overlapping nuclei
is shown in Figure 6.

(a) (b)

Fig. 6. Segmentation of two touching nuclei.

E. Representation and classification

Phenotyping is often multispectral for separating structural
and functional information. In this context, a sample is tagged
with fluorescent dye and imaged at 360 nm to reveal nuclear
formation (shape and organization). Phenomics is imaged at
other excitation frequencies; e.g., 490 nm and 570 nm. In
our system, the structure of each nucleus is represented by
an ellipse as well as hyperquadrics, and its protein expression
is read and processed from other channels in the region of
interest. The ellipse fit is based on estimating the parameters
of polynomialF (a; x) = ax2+bxy+cy2+dx+ey+f subject
to the constraint that4ac � b2 = 1 [15]. A 2D hyperquadric
[16], [17] is a closed curve defined by

NX
i=1

jAix+ Biy + Cij
i = 1 (17)

Sincei > 0, (17) implies that

jAix+ Biy +Cij � 1 8i = 1; 2; :::;N (18)

which corresponds to a pair of parallel line segments foreach
i. These line segments define a convex polytope (for large
) within which the hyperquadric is constrained to lie. This
representation is valid across a broad range of shapes which
need not be symmetric. The parametersAi andBi determine
the slopes of the bounding lines and, along withCi, the
distance between them.i determines the “squareness” of the
shape.

The fitting problem is as follows. Assume thatm data
pointspj = (xj; yj); j = 1; 2; :::;m from n segments (m =Pn

i=1mi) are given. The cost function is defined as:

�2 =

mX
j=1

1

jjrFj(pj)jj2
(1� Fj(pj))

2 + �

NX
i=1

Qi (19)

where Fj(pj) =
PN

i=1 jAixj + Biyj + Cij
i , r is the

gradient operator,� is the regularization parameter andQi

is the constraint term [17]. The parametersAi; Bi; Ci; i are
calculated by minimizing� using the Levenberg-Marquart
nonlinear optimization method [18] from a suitable initial
guess [17]. Each nucleus in the image is further classified
with respect to the position in the lumen. Figure 7a shows an
example of ellipse fitting and classification of nuclei in the
image. Figure 7b shows that p53 expression is (1) punctate
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in the second channel, (2) heterogeneous for cells with same
classification, and (3) higher in the lumenal than stromal cells
(cells in the periphery of the image).

Classification of each cell in tissue is performed by repre-
senting cellular organization with an attributed graph, as shown
in Figure 8. The nodes and edges in this graph correspond to
cells and their relationship, respectively. The attributed graph
provides the macro information about the micro anatomy
where lumen can be localized and cell lines can be labeled
with respect to their positions with the lumen.

V. A PPLICATIONS

Examples of two applications are included here to show how
BioSig can be used. The first one corresponds to cell culture
studies involving cell-cell communication and adhesion for
low radiation exposures. The second one provides the basis
for establishing a link between extra-cellular manipulation
and intra-cellular signaling for normal (wild type) versus
genetically altered animals (heterozygote).

A. Cell culture studies

To determine whether low-dose radiation promotes aberrant
extracellular matrix (ECM) interactions, we have utilized
BioSig to examine integrin and E-cadherin localization in
preneoplastic human cells surviving radiation. Integrins are a
family of epithelial receptors for the ECM, while E-cadherin
maintains normal cell-cell interactions and architecture. We
used the HMT-3522 (S1) human breast cell line cultured within
a reconstituted ECM [19]. These cells are genomicaly unstable
but phenotypically normal in that they recapitulate normal
mammary architecture in the form of a multicellular, three-
dimensional acinus [20]. These clusters express integrins in
a polarized fashion and develop an organized ECM over the
course of 7 to 10 days in culture. The intent is to examine
the consequences of exposing these cells to ionizing radiation
and a particular protein modifier, as shown in Figure 9.
Antibodies to E-cadherin, beta 1 integrin or alpha 6 integrin
were detected using a green fluorescent label while nuclei
were counterstained with a red fluorescent DNA dye. These
were imaged using confocal fluorescence microscopy and were
recorded using a 12-bit CCD camera. Cells that survived either
2 Gy or EGF showed decreased beta 1 or alpha 6 integrin
localization, respectively. However, when cells were exposed
to both radiation and EGF-, additional perturbations were
noted. The clusters were disorganized, did not polarize the
integrins at the cell surface, and failed to express E-cadherin,
indicative of a lack of structural organization. An example of
the untreated cells is shown in Figure 10a, which is stained for
beta 1 integrin (green) with red nuclei. Comparing this sample
to Figure 10b, which is a colony of cells that were irradiated
and treated with EGF-, shows that the localization of beta 1
integrin is perturbed, as is the organization of the colony.

The above characteristics along with the organization of
each colony were computed and stored in the database using
the techniques described in section IV. A pair of segmented
images from untreated and treated samples, their segmentation,
and organization are shown in Figure 11. These images

(a)

(b)

Fig. 7. Segmentation and response: (a) segmentation and classification of
nuclei in mammary gland shows epithelial cells in yellow and stromal cells
in red; (b) P53 expression in the second channel indicates that it is expressed
less in stromal cells.
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Fig. 8. Segmentation is followed by the graph representation of the tissue
where protein colocalization, in specific cell lines, can be registered in the
spectral stack.

Fig. 9. Experimental protocol forin vitro treatment of a colony.

correspond to a feature-based representation of the “organized”
and “disorganized” state of the colony in the database.

B. Tissue studies

One of the most rapid cellular responses to low-dose
radiation is the activation of the transcription factor p53 (a
DNA repair molecule), whose abundance and action dictates
individual cellular consequences regarding proliferation, dif-
ferentiation, and apoptosis. Described as the guardian of the
genome by Science in 1995, p53 is one of the most rapid
cellular responses to radiation. Activation of p53 allows it to
bind to DNA and to transactivate target genes. A major cellular
function of the p53 tumor suppressor protein is its role in
promoting genome integrity. Whereasintracellular radiation-
induced mediators of p53 stability have been the subject of
intense study, little is known about theextracellular factors
that affect the p53 response to ionizing radiation. A number
of striking similarities exist between p53 and TGF�: both
regulate complex cellular decisions regarding cell fate [21],

(a) (b)

Fig. 10. Organization of a colony as a result of radiation and TGF� treatment:
(a) an untreated sample maintained its symmetry along the lumen; (b) a treated
sample lost its symmetric organization.

(a) (b)

Fig. 11. Organization of a colony as a result of low-dose radiation and
EGF- treatment indicates lack of symmetry around the lumen. Nuclei are
segmented, represented with hyperquadrics, and symmetry is measured by
fitting an ellipse; (a) an untreated sample maintains symmetry along the lumen;
and (b) a treated sample loses its symmetric organization.

both are induced by a variety of damage and specifically
ionizing radiation, and both are rapidly activated and exist in
latent forms. In the present study, we used p53 antibodies that
bind to a phosphorylated form of the protein that is induced
upon radiation exposure. The significance of this study is that
TGF� is extracellular while p53 is intracellular.

Confocal microscopy is used to collect the distribution
of p53 immunoreactivity. Segmentation technique of section
IV, based on DAPI immunofluorescence, provides a discrete
region of interest for p53 localization. Nuclear features such
as shape, size, volume, relative location and intensity along
with organization of the tissue are computed and stored in
the database. These features are then used to track the level
and distribution of p53 within specific tissue compartments.
Perhaps as important as immunoreactive positive cells are
negative cells, especially if they are restricted to certain
cellular phenotypes indicating a failure to respond to radiation
damage. The first result is shown in Figure 12, where BioSig
provides a visual representation of p53 expression in three
categories of nuclei (red for lumenal epithelial, cyan for myo-
epithelial, and blue for stromal cells) for a population of 54
images corresponding to wild type tissue sections. The plot
provides simple visualization of a population of cells and how
p53 is expressed in each cell type for all images.
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Next an experiment was designed to study the impact of
TGF� on the p53 as a result of an external exposure and
different strands of mice (genetically altered). Normal mice
(control animals) were exposed to low-dose radiation, tissues
were collected, samples were treated with appropriate antibod-
ies, and a large number of images were produced. Genetically
altered mice, with only one copy of TGF� (as opposed to
two), were also externally exposed, etc. The protocol was
repeated without any external exposure on both strands of
mice. The experiment produced several thousand images that
were archived in the database along with their annotations.
Algorithms described in section IV were applied to these
images, cells were detected and classified, and their expression
was computed. The results indicate that p53, in the range
where signal is being observed, is expressed less in genetically
altered mice, thus, a link between extracellular condition and
intracellular event is made. BioSig maps image contents to
specific population response from unstructured data, allows
operators to manipulate the database to retrieve a particular
view of the data, and enables simple visualization of these
data for population studies.

VI. CONCLUSION

In the post-genome-sequencing era, quantitative imaging of
complex biological materials is a critical problem. Currently,
sequential measurements obtained with different microscopy
techniques preclude detailed analysis of multidimensional re-
sponses (e.g., time and space). Quantification of spatial and
temporal concurrent behavior of multiple markers in large
populations of multicellular aggregates is hampered by labor-
intensive methods, a lack of quantitative tools, and the inability
to index information. Ideally one would track the kinetics and
quantities of multiple target proteins, their cellular context,
and morphological features in three dimensions using large
populations. The BioSig informatics approach to microscopy
and quantitative image analysis has been used to build a more
detailed picture of the signaling that occurs between cells, as
a result of an exogenous stimulus such as radiation, or as
a consequence of endogenous programs leading to biological
functions.
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