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ABSTRACT OF THE DISSERTATION

Essays on Information Economics:

Information Markets, Social Learning, and Information Design

by

Yingju Ma

Doctor of Philosophy in Economics

University of California, Los Angeles, 2019

Professor Ichiro Obara, Chair

This dissertation studies three topics in information economics. In Chapter One, “Monopoly

and Competition in the Markets for Information”, I analyze the generation and provision of

information products, and the implications of competition in these markets. In the model,

buyers face a decision problem with uncertainty about the states of the world. A buyer

can purchase experiments to augment his private information, therefore the value of an

experiment depends on his private information. To generate these experiments, sellers have

to make an investment, which determines the most informative experiment a seller can

provide. Sellers then post menus of experiments and prices. I first characterize the optimal

menu given any investment level and derive the optimal investment. When two sellers

compete with investment, I find an equilibrium in which two sellers split the market: one

seller only serves to high belief buyers and the other serves to low beliefs buyers. Each

seller specializes in generating a more informative signal about one state. Monopoly seller

always provides more informative experiments, and to more buyers, than the case of duopoly

competition.

In Chapter Two, “Preferential Attachment as an Information Cascade in Emerging Net-

works”, I study the preferential attachment observed in real-world social networks as a social

learning problem. Networks grown via preferential attachment exhibit the ”rich-get-richer”

phenomena; nodes with higher connectivity degree are more likely to acquire more con-
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nections. This chapter develops a Bayesian social learning model in which agents arriving

sequentially to a network judge the qualities of predecessor agents based on their own pri-

vate signals, and on public signals inferred from the observed network structure. It shows

that preferential attachment emerges endogenously as a sequentially equilibrium of the social

learning process, where agents may engage in a rational herd behavior. The condensed pref-

erential attachment, in which one agent gets all the future links, emerges with probability

one when the private signals are bounded.

In Chapter Three, “Information Design in Contests”, I consider the information disclosure

problem in contests. The designer of a contest has an informational advantage over agents’

ability. There is a strong agent (res. weak agent) who will has a higher probability of being

a high ability (res. low ability) player. In the optimal information disclosure policy, the

designer discriminates two types of agents. When the weak agent has a disadvantage in

abilities, the designer will partially disclose the state to him privately. Compared with the

no-disclosure benchmark, the optimal policy increases the total effort level. On the other

hand, committing to a public message disclosure can not improve the equilibrium of the

no-disclosure benchmark.
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CHAPTER 1

Monopoly and Competition in the Markets for

Information

1.1 Introduction

The markets for information play an increasing role in the economy with the increasing fre-

quency of online activities1. The value of information can only be exploited when it helps

people making better decisions. Information about borrowers helps banks setting proper

credit limits; information about consumers’ browsing preferences guides online advertisers.

The volume of data generated, however, is so large that the cost of collecting and man-

aging databases, developing and carrying out algorithms, and giving meaningful statistical

results, becomes be very high. When more than one sellers compete in such a market for

information, it is not clear whether competition leads to a better informed outcome or not.

In traditional markets, competition among sellers usually yields higher quality and lower

price, therefore makes buyers better off. However, when it requires non-negligible cost to

generate informative products, competition might weaken sellers’ incentive to invest, due to

the concern of a decrease in market share.

In this paper, we develop a framework to analyze the generation and competition in the

markets of information products. Buyers face a decision problem with uncertainty of two

states. They can purchase additional information (experiments) to augment their private

information. A buyer’s willingness to pay for an experiment depends on his private informa-

tion. If a buyer is very certain about one state, he does not value additional information very

1Bergemann and Bonatti (2018) summarize a number of markets for information products and current
research about these markets. They also provide a framework to categorize different information products.
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much. On the other hand, if a buyer is completely unsure about the states, any information

has some value to him.

To generate these experiments, sellers have to make an investment, which determines the

most informative experiment a seller can provide. Once the investment is made, the seller can

provide the most informative experiment to any number of buyers with zero marginal cost.

And seller can also babbling on this experiment and provide any less informative experiment

with no cost. Since buyers’ value for an information product is private, we assume the seller

post a menu of experiments and prices. Buyers then choose one experiment from the menu.

When there are two sellers, they compete with investment.

The contribution of this paper is that: (i) we characterize the optimal menu given any

investment level and derive the optimal investment; (ii) we find an asymmetric equilibrium

of market segmentation when two sellers compete with investment; (iii) by comparing the

information generated and provided by monopoly and duopoly sellers, we find that monopoly

always provides more informative experiments and serves more buyers than the case of

duopoly competition.

One special feature of information products is that the value of information depends on

both the quality of information and the buyers’ beliefs. Consider an experiment sending

two signals (bad news and good news) about two states (good state and bad state). The

more accurate both signals are, the higher the value is for all buyers. Thus it has a vertical

element (quality). On the other hand, for any two experiments, different buyers may have

opposite preferences. Pessimistic buyers prefers the experiment giving more accurate good

news, since it is more valuable to acquiring knowledge about the state he is less confident at.

While optimistic buyers prefers more accurate bad news. So the value of information also

has a horizontal element (position).

Since the buyers’ beliefs are unobservable, sellers need to screen among buyers buy provid-

ing an incentive compatible menu, which includes some experiments and the corresponding

prices. Our first result (Proposition 1) gives a characterization of the optimal menu. Given

any investment level, the optimal menu includes at most two experiments. It always includes
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the most informative experiment feasible to the seller. When there are more pessimistic buy-

ers, the seller might provide additional experiment targeting to some of the pessimistic buyers

whom otherwise are excluded from the market.

When two sellers compete in the market with investments, out second main result (Propo-

sition 3) is that there exists an equilibrium where one seller specializes in producing good

news, and only serves to the pessimistic buyers. While the other seller serves optimistic

buyers with more accurate bad news. Pessimistic buyers strictly prefer the good news seller

since it gives them higher improvement in decision making problem. Even if two sellers have

the same investment level, we have this market segmentation.

Our answer to the question whether competition lead to better informed outcome is the

third result (Theorem 1). Monopoly make higher investment and provide more informative

experiment than duopoly. First because duopoly both sellers have to invest to generate

informative products and they split the market. So the benefit from investment is less

than the case of monopoly. However, since duopoly seller faces a submarket with more

concentrated beliefs (either pessimistic buyers or optimistic buyers), they can specialize in

providing the signals which favorite by the submarket. We show that the first factor becomes

dominate in equilibrium.

In Section 2 we present the main settings of the model. Then we analyze the optimal

menu and optimal investment of a monopoly seller in Section 3. In Section 4 we consider

case of duopoly competition, and compare the optimal investment between monopoly and

duopoly sellers.

1.1.1 Related Literature

This paper is part of the literature of selling information to imperfectly informed decision

makers. The most related work is Bergemann et al. (2018), which analyzes the problem of

a monopoly seller selling information. In their model, the seller can access the complete

information. They characterize the revenue-maximizing menu of experiments. Their main

results show that the optimal menu includes at most two experiments. The fully informative
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experiment is always provided. The seller might provide a second partial informative exper-

iment by adding noises on one signal. Based on their framework, we examine the design and

pricing problem of a seller whose most informative experiment is limited. Then we consider

the optimal investment which determines the most informative experiment, and study the

case of competing sellers.

A recent paper Bimpikis et al. (2019) studies the information market where the buyers

of the information products competition in a downstream market. They find that seller will

provide accurate information when buyers actions in the downstream are strategic comple-

ments. When the competition in the downstream market is via strategic substitute actions,

the seller will either decrease the supply or the quality of the information products. It differs

from our model that we directly analyze the competition among information sellers. In sem-

inal papers on selling information, Admati and Pfleiderer (1986, 1990) studies the case when

information buyers are ex ante homogenous, and trade an asset after they get supplemental

information. They focus on the interactions among data buyers while the heterogeneous

buyers face their own decision problems. Kown (2018) considers a selling mechanism when

seller first sells an information structure and then sells a product. The information structure

and the product are complementary goods. It is beneficial for both sides if buyers and sellers

have private information about the products.

This paper also contributes to the literature on information disclosure with competition.

Gentzkow and Kamenica (2016) show that when senders sends coordinated signals, additional

senders increase the amount of information. Li and Norman (2018) generalize their setting

by allowing sequential senders, and show that with independent signals the result might fail.

In these settings senders send information to persuade receivers to take an action, while in

our model the sender (seller) is providing information for revenue rather than persuasion.

Board and Lu (2018) considers a model where buyers search a product to fit their needs

best, and sellers of a product use information disclosure policies to manage the buyers’ search

incentives. Buyers need to pay a search cost to acquire more information. They show when

buyers’ beliefs are observable to sellers, sellers provide monopoly level of information. When

buyers’ beliefs are observable, full information is provided as the search cost vanishes. In
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our model information itself is the product the seller sells. Another recent paper Boleslavsky

et al. (2018) studies an oligopoly market where each seller chooses both the price of the

product and how much information he will disclose to buyers. Then find that when more

firms competition in the market, firms reveal more information of their products to buyers.

Compare to these papers, we provide a case where competition leads to a less informative

outcome. In those cases of persuasion and information revelation, the payoff of information

senders are either through their preference over agents’ actions or the sale of a product. Our

model the only payoff to information sellers are the monetary transfers. We also model that

how information senders (sellers) get the informational advantage by making investments.

We use the cost of generating information.Gentzkow and Kamenica (2014) address the

cost of information in a persuasion problem. They consider the cost of signals as a function

of the reduction in the receiver’s entropy. In general, lower cost leads to a Blackwell more

informative experiment. Frankel and Kamenica (2018) provides a framework to link the

measure of information in an experiment with the measure of uncertainty in agents’ beliefs

after receiving signals from the experiment. They propose a class of measures, for example,

entropy or variance function of the posterior beliefs. Our analysis allows a general class of

cost functions. The cost functions considered in both papers, entropy and variance function,

are compatible with our model.

The production technology of information has a feature of large fixed cost and small

marginal cost. In a seminar paper, Spence (1976) analyzes the impact of fixed cost on the

selection of products. Ronnen (1991) considers the influence of a minimum quality standard

on the product qualities. He shows that imposing such a minimum standard will increase the

overall quality level. In our model the seller choose quality of a multidimensional product

and provide it to essentially two subgroups of buyers, who have different preferences over

different dimensions. We show that competition may not lead to an improvement in the

quality in the markets for information.

In our model, the competition among information sellers is through investment level.

It is essentially a directed search model. Like in Kim and Kircher (2015), sellers make no
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commitment when buyers choose which seller to visit. They shows that when sellers use

cheap talk messages to convey their private reservation values, efficiency can be achieved if

sellers run a first price auction after buyers coming. Mirkin and Pycia (2016) explores the

capacity of cheap talk communication in matching settings.

1.2 The Model

Buyers’ Decision Problem

There are data buyers of measure 1 facing a decision problem under uncertainty. The un-

certain state is drawn from set Ω = {ω1, ω2}. A data buyer needs to choose an action a from

action set A = {a1, a2}. Without loss of generality, we can normalize the payoff of action

a2 under both states into zero. Therefore the following matrix can capture the payoffs of

buyers’ decision problem.

a1 a2

ω1

ω2

 u1 0

u2 0


We can think the two actions as “risky” and “safe” actions. The safe action results in

zero payoffs under both states. The risky action yields a payoff u1 > 0 under “good” state

ω1, and u2 < 0 under “bad” state ω2. The buyer will take action a1 if θu1 + (1− θ)u2 ≥ 0,

which implies θ ≥ −u2
u1−u2 . Note θ∗ as the belief type that is indifferent between two actions.

θ∗u1 + (1− θ∗)u2 = 0 ⇔ θ∗ =
−u2

u1 − u2

(1.1)

To simplify the notation, normalize the difference between risky action’s payoffs in two states

into 1. Denote u1 = 1− r and u2 = −r, where r > 0. Then r = θ∗ is the cutoff belief. The
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buyer’s payoff matrix becomes:

a1 a2

ω1

ω2

 (1− r) 0

−r 0


Buyers arrive with a common prior about the state. We assume that each buyer has

access to some private information unknown to other buyers and the sellers. After receiving

private information, buyers update their prior belief to a interim belief θ ∈ [0, 1]. Assume the

interim belief θ satisfies a distribution function G(θ) and associated density function g(θ),

which are common knowledge. We call belief θ as the type of buyer. The expected utility of

the buyer with type θ is,

u (θ) = max {θ − r, 0} . (1.2)

Information Products

Buyers can buy an information product (or an experiment) E from data sellers, to improve

his expected utility from the decision problem. An information product is a likelihood

function π : Ω → ∆S, where S is the signal space. We can restrict our attention to the

signal space consists of only two signals S = {s1, s2}, without loss of generality2. Denote πi

as the conditional probability of signal si in state ωi,

πi
∆
= Pr [si | ωi] , i = 1, 2.

Write an experiment as E = (π1, π2) with the following probabilistic matrix.

E s1 s2

ω1 π1 (1− π1)

ω2 (1− π2) π2

2For any signal sets consisting of more signals than the number of actions, we can construct an experiment
with two signals achieve the same outcome distribution as the initial experiment. This is an implication of
the Prop. 1 in Bergemann et al. (2018).
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Figure 1.1: Value of Information for Different Buyers

Without loss of generality, we can assume π1 + π2 ≥ 1. It means that signal s1 is more

likely to happen under state ω1 than under state ω2, π1 ≥ (1− π2). Some observations are

noteworthy introduced here. (i) The experiment Ē = (1, 1) is the fully informative

experiment. (ii) When the sum of π1 and π2 equals to 1, we have π1 = 1− π2. Thus each

signal is sent with equal probabilities under any state hence is uninformative. Any

experiment E = (π, 1− π) is completely uninformative for any π. (iii) Fixing π1, a higher

π2 implies that the probability of sending s1 in state ω2 is smaller. Therefore the signal s1,

or the good news, is more accurate. Similarly, a higher π1 implies more accurate bad news

in the experiment.

Value of Information

Consider a buyer with type θ buys the above experiment E. The buyer will update his

belief after receiving each signal. Denote θ̃j as the posterior belief after receiving signal si,

i ∈ {1, 2} . We define the value of information product E for buyer θ as the improvement of

expected utility after updating his beliefs.

V (E, θ) = Es
[
u
(
θ̃i

)]
− u (θ) (1.3)
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The expectation is taken over all signals. Since θ̃1 = θπ1
P (s1)

and θ̃2 = θ(1−π1)
P (s2)

, we have

V0(E, θ) = max {(1− r) θπ1 − r (1− θ) (1− π2) , 0}+max {θ (1− r) (1− π1)− r (1− θ) π2, 0}−u(θ)

(1.4)

The value of information V (E, θ) is always nonnegative. Note that an uninformative ex-

periment always gives zero value. Furthermore, for a buyer has an extreme belief, if the

experiment fails to send an accurate engough contrary information, he will ignore the signal

and take his initial action. Therefore he gets zero value from the experiment.

Figure (1.1) gives an illustration about how the value of an experiment is determined. Let

r = 1
2

and consider two experiments E1 = (1, 0.75) and E2 = (0.75, 1). Two buyers θA = 1
3

and θB = 2
3
. Then we have V (E1,

1
3
) = 1

12
and V (E2,

1
3
) = 1

8
. The pessimistic buyer θA prefers

E2 which sends more accurate good news. Since V (E1,
2
3
) = 7

24
and V (E2,

2
3
) = 1

4
. The

optimistic buyer θB prefers E1 which sends more accurate bad news. Therefore buyers prefer

those experiments providing contrary information which disproves their private information.

The Production of Information

To be able to provide information products with certain quality, the data seller needs to make

an investment I. Investment determines the most informative experiment the seller can ever

provide. Specifically, assume a cost function C(π1, π2) that measures the cost incurring

in collecting data, developing technologies, and building statistical models to provide an

experiment E = (π1, π2). The most informative experiment E∗ = (π∗1, π
∗
2) which the seller

can provide to buyers should satisfy C (π∗1, π
∗
2) ≤ I. Once the investment is made, the seller

need to choose the most informative experiment E∗. Despite selling E∗, the seller can add

some noise and produce an experiment less informative than E∗. This is natural given the

nature of information products. Assume downgrading an experiment is free. Furthermore, we

assume the uninformative experiments are also available. Then the feasible set of experiments

of a seller choosing E∗ is

9



Y (π∗1, π
∗
2)

∆
= {(π1, π2) | π1 + π2 > 1, and π1 ≤ π∗1, π2 ≤ π∗2, where C(π∗1, π

∗
2) ≤ I} (1.5)

Figure (1.2) illustrates the feasible set under (π∗1, π
∗
2). In Bergemann et al. (2018), fully

informative experiment is available, (π∗1, π
∗
2) = (1, 1). Therefore the feasible set becomes

the largest upper triangle. Here we endogenize the choice of (π∗1, π
∗
2) and analyze what

experiments will be provided given any feasible set.

Note that the straight line π1+π2 = 1 represents all uninformative experiments. However,

an experiments may not be responsive. For example, consider (π∗1, 1− π∗1) for a buyer with

belief θ > r. The buyer always chooses action a1 and does not follow the recommendation

of signal s2. For technical convenience, we replace (π∗1, 1− π∗1) with (1, 0). The latter one is

responsive since the buyer only receive signal s1. Then for the following analysis we consider

the feasible set Y (π∗1, π
∗
2) ∪ {π1 + π2 = 1, πi ∈ [0, 1]}.

Menu of Experiments

A buyer’s value of an experiment depends on his private belief θ, which is unknown to the

seller. To maximize her profit, the seller will screen buyers by providing a menu of products.

A menu of experiments, M = {(E, tE)}, consists of a collection of experiments E and their

associated prices tE. The seller posts her menu to the buyers. Then buyers can choose

to buy one experiment E from M and pay the price tE, or walk away with no additional

information.

1.3 Monopoly

We now analyze the model with a monopoly seller. The timing is as follows:

(i) The seller chooses an investment I and the most informative experiment E∗;

(ii) The seller posts a menu M;
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Figure 1.2: Feasible Set of Experiments

(iii) The state ω is realized while unobserved. Buyers receive private information and type

θ is realized;

(iv) Every buyer chooses a product E from the menu and pays tE ;

(v) Every buyer observes a signal in experiment E and chooses an action.

The seller’s problem is first to choose an investment level I and the most informative exper-

iment E∗, then to design a incentive compatible menu M. To find the profit maximizing

investment level, we need to characterize the optimal menu under all the possible E∗.

1.3.1 Revenue Maximized Menu

Fixing the most informative experiment E∗ = (π∗1, π
∗
2), in principle, the optimal menu M

should include one experiment for each buyer. In this subsection we follow the section III.C

of Bergemann et al. (2018), where E∗ = (1, 1). We apply their solution method to the

general case of (π∗1, π
∗
2). We simplify the seller’s problem in three steps. First, exclude

those buyers who never buy an informative experiment. Second, restrict our attention on

responsive experiments. Third, argue that the seller will not add noises to both two signals,

therefore reduce the problem into one dimensional.

Since the informativeness of E∗ is limited, a buyer with extreme belief might choose not
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to follow the recommendations for all feasible experiments. Therefore we can restrict our

attention on buyers who have a positive value of the most informative experiment E∗. It is

not difficult to get that buyers with belief θ /∈ [θ1, θ2] gives zero value over all experiments

in the feasible set, where θ1 =
(1−π∗2)r

π∗1(1−r)+(1−π∗2)r
and θ2 =

π∗2r

(1−π∗1)(1−r)+π∗2r
. These buyers have

too strong beliefs and have zero value over all experiments in the feasible set, therefore they

can only get uninformative experiment in the market.

Since π∗1 + π∗2 ≥ 1, we always have θ1 ≤ θ∗ and θ2 ≥ θ∗. If fully informative experiment

is available, then θ1 = 0 and θ2 = 1. Now we can restrict our attention on those potential

buyers with belief θ ∈ [θ1, θ2]. Note the tructated distribution of potential buyers as

f(θ) =
g(θ)

G(θ2)−G(θ1)
, F (θ) =

∫ θ

θ1

f(x)dx, ∀θ ∈ [θ1, θ2] .

Since a buyer will only pay for an experiment if it has positive value. We can show

that the value of an experiment is positive is equivalent with that the buyer will follow

the recommendation of both signals. This fits the Blackwell insight that the information is

valuable only if it changes decision maker’s optimal actions.

We call an experiment E a responsive experiment for buyer θ if the buyer will follow the

recommendations of both signals. Then we can eliminate the first max operator in the value

function for responsive experiments.

V1(E, θ) = (1− r) θπ1 − r (1− θ) (1− π2)−max {θ − r, 0} . (1.6)

Lemma 1.1 The value of an information product E for buyer θ is positive, if and only if

the buyer strictly prefer to following the recommendations, i.e., choosing ai after receiving

si, i = 1, 2. The outcome of every menu can be attained by a responsive menu, in which E(θ)

is a responsive experiment for type θ, for all θ ∈ [θ1, θ2].

Lemma 1.1 implies that an experiment is responsive for a buyer if and only if the value

of information after following both recommendations, V1(E, θ), is nonnegative. Now we can

focus on responsive menus, hence the value of information V0(E, θ) can be replaced by with
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V1(E, θ).

The seller’s problem is on a two dimensional set. we now give the following character-

ization of optimal menu which eliminates buyer’s uncertainty as much as possible at least

along one dimension.

Lemma 1.2 If an experiment E = (π1, π2) is in the optimal menu M, then either one of

the following two conditions holds:

(i) E is uninformative.

(ii) π1 = π∗1 or π2 = π∗2.

Therefore any experiment in the optimal menu either contains no information, or achieves

maximal accuracy on one signal. Now we can replace the experiment (π1, π2) with a one

dimensional measure. Rewrite equation (1.6) as

V (E, θ) = max {θ [π1 (1− r) + (1− π2) r]− (1− π2) r −max {θ − r, 0} , 0} (1.7)

For type θ, define the following one dimensional value

q(θ)
∆
= π1(θ) (1− r) + (1− π2(θ)) r ∈ [0, 1].

Notice that the endpoints of the interval correspond to two uninformative experiments (0, 1)

and (1, 0). The most informative experiment E∗ gives q0 = π∗1 (1− r) + (1− π∗2) r = π∗1 +

r (1− π∗1 − π∗2). Lemma 1.2 implies that if q 6= 0 and q 6= 1, then we have either π1 = π∗1 or

π2 = π∗2. Therefore 0 < q < q0 implies π2 = π∗2, and q0 < q < 1 implies π1 = π∗1. Now we

can rewrite the term − (1− π2) r in equation (1.7) as

− (1− π2) r = 1{q 6=0} · [min {q0 − q, 0} − (1− π∗2) r] .

Therefore the value function can be reduced to a function of q:

V (q, θ) = max
{
θq + 1{q 6=0} · [min {q0 − q, 0} − (1− π∗2) r]−max {θ − r, 0} , 0

}
. (1.8)
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From equation (1.8) we can see the main features of a seller’s screening problem. First,

the most informative experiment q = q0 is the most valuable for all buyers θ. Second, the

indifferent buyer type θ = r has highest value for any experiment q. Third, V (q, θ) has

the single crossing property in (q, θ), which essentially implies that the incentive compatible

menu has an increasing q(θ).

From now on we focus on responsive menus. Lemma 1.1 implies the value of following

both signals, V1(q(θ), θ), should be nonnegative. Then with equation (1.8) we can derive the

necessary and sufficient conditions of a responsive menu.

q(θ) ∈ Q(θ) =


[

(1−π∗2)r
θ

,
π∗1(1−r)

1−θ

]
∪ {0} if θ ∈ [θ1, r][

1− π∗2r

θ
, 1− (1−π∗1)(1−r)

1−θ

]
∪ {1} if θ ∈ [r, θ2]

(1.9)

Now the seller’s problem is choosing q(θ) for θ ∈ [θ1, θ2] to maximize her revenue such

that all buyers are incentive compatible. Then we can apply the method of Bergemann

et al. (2018), where E∗ = (1, 1). We generalize their solution and derive the following

characterizations of the optimal menu. The formal proof is left in the appendix.

Proposition 1.1 Given E∗ = (π∗1, π
∗
2), the optimal menu includes at most two informative

experiments. Let φ1 = θf(θ) +F (θ) and φ2 = (θ − 1) f(θ) +F (θ) be the virtual values when

q ≤ q0 and q > q0 respectively. Let φ̄1, φ̄2 be the ironed virtual values. The necessary and

sufficient conditions of the optimal menu M =
{

(q∗ (θ) , t∗(θ))θ∈[0,1]

}
are:

(i) there exists λ∗ > 0 such that q∗ (θ) maximizes function H(q, θ) for all θ, where

H (q, θ) =


φ̄1 (θ) q (θ)− λ∗q (θ)

φ̄2 (θ) q (θ) + q0f(θ)− λ∗q (θ)

if q ≤ q0

if q > q0

; (1.10)

(ii) q∗(θ) is non-decreasing;

(iii)
∫ θ2
θ1
q∗ (θ) dθ = θ2 − r ;

(iv) q∗(θ) ∈ Q(θ);
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(v) if the ironed virtual value is constant on an interval, q∗ (θ) implies the same experiment

on the interval.

The payment of type θ is

t∗(θ) = θq∗ (θ) + 1{q∗ 6=0} · [min {q0 − q∗, 0} − (1− π∗2) r]−
∫ θ

θ1

q∗ (s) ds. (1.11)

Here we discuss some intuitions of the optimal menu. The cardinality of optimal menu is

from the linear property of value function. The single crossing properties of value function

in q and θ implies that q should increase in θ. For any experiment, the value is continuous

and differentiable in the intervals [θ1, r] and [r, θ2] separately. Then we have condition (iii)

by applying the Maximal Theorem. In Bergemann et al. (2018), condition (iv) is implied by

condition (ii) and (iii), but it is not the case here.

In general, the optimal menu gives q(θ) = 0 for buyers with extreme pessimistic belief and

q(θ) = 1 for those with relatively optimistic beliefs. Since buyers with an extreme prior belief

have low values for any experiment, they are excluded from the market. For buyers with

beliefs around r, q(θ) = q0 and they get the most informative experiment. Depending on

the shape of virtual values, the optimal menu may include a second informative experiment.

Technically, only if the two virtual values need to be ironed, the optimal menu include two

experiments. Since two sides of buyers have different preferences, the second experiment

will target to those buyers with larger size. For example, if the density function has two

peaks, one around a pessimistic belief θA and the other around the cutoff belief r. The

second experiment is (π1, π
∗
2) where π1 < π∗1. The seller downgrade the experiment E∗ to

attract those buyers around θA, who prefer more accurate good news, i.e., a higher π2. In the

following we restrict our attention to the case that optimal menu only includes one product.

The following proposition summarizes the sufficient conditions of a single-item optimal menu.

Corollary 1.1 (BBS, Corollary 1) The optimal menu contains a single item if any of the

following conditions (single-item conditions) holds:

(i) (one-sided distribution) Almost all types have congruent beliefs, F (r) ∈ {0, 1};
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(ii) (regularity) Both virtual values φ1(θ) and φ2(θ) are strictly increasing;

(iii) (symmetricity) The monopoly price for experiment E∗ is equal on [θ1, θ0] and [θ0, θ2].

Condition (i) means that all buyers are optimistic or pessimistic, hence buyers have

similar preferences over the experiment. Then the seller does not need to provide an extra

experiment to satisfy a subgroup of buyers with different preferences. Condition (ii) is a

regularity conditions on the distribution functions. Density functions with one peak satisfy

this condition. Condition (iii) states that if the optimistic and pessimistic buyers with

binding a participation constraint have the same willingness to pay, the seller will not provide

an extra experiment to attract more buyers.

We say the distribution function satisfies single-item conditions, if it satisfies one of the

conditions in Corollary 1.1. In this case we only need to determine the cutoff beliefs of

buyers who are provided with experiment E∗. Notice condition (1.10) implies that if two

ironed values have a nonempty intersection of their image, the two cutoff beliefs will make

two ironed values equal, i.e., φ̄1(θ∗1) = φ̄2(θ∗2). If no such cutoff beliefs can make the two

ironed value equal, all buyers on [θ1, θ2] will be served.

Corollary 1.2 Suppose the distribution function satisfies the single-item conditions (ii) or

(iii), if φ̄1 ([θ1, θ2]) ∩ φ̄2 ([θ1, θ2]) 6= ∅, the seller provides E∗ to buyers on [θ∗1, θ
∗
2]. The

endpoints can be solved with


f(θ∗1)θ∗1 + F (θ∗1) = f(θ∗2)(θ∗2 − 1) + F (θ∗2)

q0(θ∗2 − θ∗1) = θ∗2 − r
(1.12)

The price of E∗ is given by t∗ = θ1π
∗
1(1 − r) − (1 − θ∗1)(1 − π∗2)r. The seller’s revenue is

R(π∗1, π
∗
2) = t∗ · (θ∗2 − θ∗1).

1.3.2 Optimal Investment

Once we have the distribution of buyers belief G(·), we can solve the cutoff beliefs of buyers

served in the market, [θ∗1, θ
∗
2], and the revenue function R(π∗1, π

∗
2) with equations (1.12)..
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Together with the cost function, we can solve for the monopoly seller’s optimal investment

choice and the most informative experiment (π∗1, π
∗
2). In the following we give a closed

solution when the types follow a uniform distribution and discuss the optimal investment.

When G(·) is uniform distribution, on both sides of the cutoff belief r, half of the potential

buyers will be served by the monopoly.

Corollary 1.3 If G(·) is a uniform distribution on [0, 1], then given any E∗ = (π∗1, π
∗
2), the

seller provides E∗ to buyers with belief θ ∈
[
θ1+r

2
, θ2+r

2

]
.

The price of experiment E∗ is given by t∗ = θ∗1q0−(1−π∗2)r = 1
2
r(1−r)(π∗1 +π∗2−1). Note

that the value of E∗ for uniformed buyer θ = r is V (E∗, r) = r(1− r)(π∗1 + π∗2 − 1), which is

the highest valuation among all buyers. The price equal half of this highest valuation, which

is a standard solution when the demand curve is linear. Then we can obtain the seller’s total

revenue

R∗(π∗1, π
∗
2) = t∗ · 1

2
(θ2 − θ1) =

(t∗)2

q0(1− q0)
=

[r(1− r)(π∗1 + π∗2 − 1)]2

4q0(1− q0)
(1.13)

Where q0 = π∗1 + r (1− π∗1 − π∗2). Then for any cost function C(π1, π2), we can find the

optimal investment level and most informative experiment of the seller by maximizing

R∗(π∗1, π
∗
2) − C(π∗1, π

∗
2). Intuitively the more accurate the signals are, the higher cost it

should require. One way is to assume C(π1, π2), is a function of (π1 + π2 − 1). In this cost

cost function two signals are perfect substitutes in production. We can also assume it related

with how far the signals deviate from an uninformative signal,
[(
π∗1 − 1

2

)2
+
(
π∗2 − 1

2

)2
]
· c.

In the following proposition we gives a closed form solution for linear cost function, while

the properties holds for other meaningful cost functions.

Example 1.1 Given a cost function C(π1, π2) = c · (π1 + π2 − 1) with c ∈ (0, 1
16

], then the

optimal investment of seller is: (i) choosing E∗ = (1, 1) when r ∈ [1
2
−
√

1
4
− 4c, 1

2
+
√

1
4
− 4c];

(ii) choosing no investment otherwise .

Proposition 1.2 Given a symmetric cost function such that seller does not provide complete

information at r = 1
2
, then as r increases, π∗2 increases and π∗1 decreases. Then both decreases

after some cutoff r̄ > 1
2
. If ∂2C

∂π2
i
> 0, investment first increases then decreases.
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Figure 1.3: Optimal Experiment for Different Cutoff Belief r

Cost function is C(π1, π2) = 1
5

[(
π1 − 1

2

)3
+
(
π2 − 1

2

)3]
. The solid blue line is π∗1 and the dashed

red line is π∗2. The seller always will specializes in one signal when the two sides of buyers is not
evenly distributed. When r > 1

2 , there are more pessimistic buyers who prefer higher π2. Then
optimal experiment is to invest more in π2 until π∗2 = 1. As r increases from 1

2 , the investment
level first increases since the benefit from specializing is the dominant factor. It then decreases
because of the decrease in the size of potential buyers and the decrease in the value of information
for all buyers.

As r increases, the investment level first increases and then decreases. Two economic

forces at work as r increases. First, the value of E∗ for the least informed buyer θ = r

decreases since the payoff of good states decreases. Also note V (E∗, r) = r(1 − r)(π∗1 +

π∗2 − 1), then the price of E∗ decreases. Second, since the seller specializes in providing

the experiment preferred by the pessimistic buyers, therefore among those served in the

market, the increase in the size of pessimistic buyers is higher than the decrease in the size

of optimistic buyers. Hence the sellers market share increases. When r is not very large,

the benefit from specialization dominates hence investment increases. Seller benefits from

specialization. Then the second effect, the decrease in the value of information for all buyers,

becomes larger and the investment decreases. Figure (1.3) shows the optimal menu when we

have a cubic cost function. The respective investment and profit are shown in Figure (1.5)

of appendix.
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1.4 Duopoly Competition

Now we analyze duopoly competition. A continuum types buyers with measure 1 buys

information products to improve their decision making. Two sellers competing with the

investment level and the highest quality experiments they choose. There are two stages in

this model. In the first stage, each seller k ∈ {1, 2} chooses an investment level Ik and the

most informative experiment Ek. After observing two sellers’ choices, buyers chooses which

firm to go to. In the second stage, each seller choose a menu of experiments the provide and

the prices, after buyers arriving. The buyers then choose to purchase an experiment from

the menu, or exit the market with no additional information.

The timing is as follows:

(i) Each seller chooses an investment Ik and the most informative experiment Ek;

(ii) The state ω is realized while unobserved. Buyers receive private information and type

θ is realized;

(iii) Every buyer chooses which seller to go to;

(iv) The seller posts a menuMk. Each buyer chooses a product E from the menu and pay

tE ;

(v) Every buyer observes a signal in experiment the purchased and chooses an action.

Note that we assume that each buyer can only visit one seller. Once a buyer selects a seller, he

cannot buy product from the other seller. Therefore sellers will post the revenue maximizing

menus and charge monopoly prices in the second stage. The competition between sellers

lies in their choices of investment and the highest quality experiments, which essentially

determine their market share and hence their profits in the second stage.

Formally, Each seller first choose investment Ik and her most informative experiment

Ek. Then design a menu based on her belief about the distribution of buyers who choose

to visit her. Suppose seller k holds a belief Gk about the measure of coming buyers, where
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Gk(θ) ≤ G(θ). The seller’s strategy is σk = (Ik, Ek,Mk(Ik, Ek)). Each buyer first selects

a seller and then chooses a product from the menu. Note the strategy of selecting a seller

as K(θ) ∈ ∆{1, 2} and choosing an experiment E(θ,MK(θ)) from menu MK(θ). Then the

strategy of buyer θ is σθ = (K(θ), E(θ,MK(θ))).

Definition 1.1 We focus on pure strategy Perfect Bayesian Equilibrium Σ∗ = (σ∗k, σ
∗
θ)k,θ,

which satisfies:

(a) Given a seller’s belief G∗k(θ), the investment I∗k and her most informative experiment

E∗k maximize her profit, the menu she provides M∗
k is the revenue-maximizing menu under

G∗k(θ) and E∗k ;

(b) Given sellers’ choices of menus M∗
1 and M∗

2, each buyer’s choice of seller K∗(θ) and

his choice of experiment E∗(θ,MK(θ)) maximize the utility of buyer θ;

(c) Each seller’s belief about the types of buyers visiting to her is consistent with buyers’

choices, G∗k(θ) =
∫ θ

0
1{K(θ)=k}dG(x), ∀θ, k.

1.4.1 Splitting Equilibrium

We focus on a class of equilibrium where buyers splitting their choices about sellers according

to a common threshold. Call this type of equilibrium as splitting equilibrium.

When the distribution of types is symmetric, there is an equilibrium where two sellers

split the market. Those pessimistic buyers all go to one seller, who specializes in generating

more accurate good news, i.e. higher π2. The optimistic buyers select the other seller who

specializes in generating more accurate bad news. We can check this is indeed an equilibrium.

(a) If all pessimistic buyers visit the same seller, say seller 1, she will specialize in providing

experiment with a higher π2. (b) The cutoff buyer θ = r is indifferent with two sellers, while

for any pessimistic buyer θ < r, he strictly prefers the experiment providing by seller 1. (c)

There is market segmentation and both sellers have correct beliefs.

Proposition 1.3 Suppose the cutoff type r = 1
2

, the density function g(·) and the cost

function are symmetric. There exists a Perfect Bayesian Equilibrium where I∗1 = I∗2 , buyers
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with belief θ ≤ 1
2

visit seller 1 and buyers with belief θ > 1
2

visit seller 2. Both sellers

provide only one informative experiments in the menu. The experiments of two sellers,

E∗1 = (π∗11 , π
∗1
2 ) and E∗2 = (π∗21 , π

∗2
2 ), are symmetric. And we have π∗11 ≤ π∗21 .

The formal proof is in Appendix. Note that in this equilibrium each seller only serves

buyers with beliefs at one side of r, i.e., either θ ≤ r or θ ≥ r. There the one-sided condition

in Corollary (1.1) is satisfied. As long as we have function forms of g(·) and C(π1, π2), we

can solve the optimal experiment provided by duopoly by applying Corollary (1.2). When

the cost function is linear, we have the following bang-bang solution, where sellers either

provide the fully informative experiment or uninformed experiments.

Example 1.2 Suppose the cutoff type r = 1
2
, G(·) is uniform distribution and cost function

is C(π1, π2) = c · (π1 + π2 − 1), (i) if c < 1
32

, we have E∗1 = E∗2 = (1, 1); (ii) if c ≥ 1
32

, we

have E∗1 = (0, 1) and E∗2 = (1, 0).

Compare the above equilibrium in duopoly competition with the optimal investment of

monopoly case in Example 1.1. We can see that when the marginal cost is in a moderate

range c ∈ ( 1
32
, 1

16
], monopoly seller will make investment and provide a partial informative

experiment. However, the duopoly sellers make no investment and provide no information.

To see more insights we can work on a quadratic cost function C(π1, π2) = c · (π1 + π2 − 1)2

with c ≤ 27
256

. When the marginal cost c = 1
16

. The monopoly seller provides experiment

(0.38, 1) (or (1, 0.38)), and the duopoly sellers provide (0.25, 1) and (1, 0.25) respectively.

Moreover, the splitting equilibrium exists with more general settings. Since two sides

of the buyers have the opposite preferences over π1 and π2. Once two sellers choose to

differentiate their experiments by specialize in generating different signals, each buyer will

visit the seller specializing in his favorite signal. As long as the difference in profit from two

sides of buyers are not too large, the splitting equilibrium exists.

Uniqueness. Splitting equilibrium may not be unique. Consider two sellers with different

investments. Suppose the high investments specializing in π2 and low belief buyers come

to her. She can attract some high belief buyers with moderate belief, since they value of
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high investment seller’s product is higher although they have opposite preference. Then the

threshold in the splitting equilibrium is no longer the cutoff belief r. The new threshold θ∗

should make the buyer with belief θ = θ∗ indifferent between buying from two sellers. We

will give more detailed illustration in section 4.3.

Although the equilibrium may not be unique, we show that the above equilibrium max-

imizes two sellers’ joint profit.

Proposition 1.4 Suppose the cutoff type r = 1
2

, the density function g(·) and the cost

function are symmetric. If two sellers split the market with a threshold belief θ, then the

joint profit is maximized at θ = 1
2
.

1.4.2 Monopoly versus Duopoly

We are interested in the comparison between monopoly and duopoly. The following theorem

is our main results that duopoly competition leads to a less informative outcome.

Theorem 1.1 If the cutoff belief is 1
2
, the type of buyers follows a symmetric distribu-

tion, the cost function is symmetric, separable and the marginal cost is increasing, then the

monopoly seller provides more informative experiments and serves more buyers than the case

of duopoly.

Proof. Given the most informative experiment (π1, π2), assume the monopoly seller’s max-

imized revenue is RM(π1, π2) and the profit maximizing solution is (m,m). Assume The

duopoly seller who serves low belief buyers has revenue function RD(π1, π2), note as seller 1.

Seller 1’a profit maximizing solution is (d1, d2). Seller 1 specializes in generating higher π2,

therefore d1 < d2. So we only need to show that d2 < m when m < 1.

Now we consider constrained problem for seller 1, such that she has to choose π1 = π2.

Then the pricing strategy of seller 1 is the same as monopoly seller for buyers with low belief

θ < r. Therefore we have RM(π, π) = 2RD(π, π).

Note the separable and symmetric cost function as C(π1)+C(π2). Then we know (m,m)

maximized monopoly seller’s profit RM(π1, π2) − C(π1) − C(π2). Therefore m is also the
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solution of the constraint maximization problem maxπ
[
RM(π, π)− 2C(π)

]
. Thus we have

m ∈ argmaxπR
M(π, π)− 2C(π) = 2RD(π, π)− 2C(π)

Since m < 1, we have that for all π > m, dRD(π,π)
dπ

|π< C ′(π). The monopoly seller does

not choose a higher π because of the marginal revenue is lower than the marginal cost.

On the other hand, seller 1’s optimal choice (d1, d2) maximizedRD(π1, π2)−C(π1)−C(π2).

Then we have

C ′(d2) =
∂RD

∂π2

(d1, d2) <
∂RD

∂π2

(d2, d2) <
∂RD

∂π2

(d2, d2) +
∂RD

∂π1

(d2, d2) =
dRD(π, π)

dπ
|π=d2

The first inequality is because ∂RD

∂π2
(π1, π2) is increasing in π1. The second inequality is due

to the positive marginal revenue of π1. The proof of these two properties is left in appendix.

Then we have m > d2 > d1. The monopoly seller provide more informative experiment than

the duopoly sellers.

Therefore we provide a case where competition leads to a less informative outcome. The

result holds for a broad class of distributions of types and cost functions. It can be interpreted

in three parts. First, the nature of the generation and production of information products has

the feature of almost zero marginal cost. Therefore from the viewpoint of maximizing social

surplus, it is less efficient to have more than one unity to make investment. Second, duopoly

sellers have less incentive to invest since they have less market share than the monopoly.

Although duopoly sellers benefit from specialization when facing buyers with more aligned

preference. We show the benefit is not large enough to out-weight the loss in market share,

compared with monopoly. Third, the distortions in market becomes severe in the case of

duopoly. Not only duopoly sellers provide less informative experiments, they also serves to

less buyers.
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1.4.3 Asymmetric Distributions

Net we check the splitting equilibrium when the distributions on the two sides of cutoff belief

r becomes asymmetric. We carry out the analysis by changing r with a uniform distribution

of buyers’ types.

Suppose the cutoff belief r is larger than 1
2
. Then the seller serves the low belief buyers, say

seller 1, has a higher benefit from specialization. Therefore she will increase the investment.

Then the experiment provided by seller 1 is more attractive even for some buyers with belief

θ > r, while θ is near r. Then seller 1 can steal additional buyers from seller 2’s market

share. We show that there exists a new threshold θ∗ > r. Buyers splitting according to

threshold θ∗ is an equilibrium.

Proposition 1.5 For any r ∈ (0, 1) and r 6= 1
2
, buyers’ types follow a uniform distribution

G(·), cost function is symmetric. If r > 1
2
, there exists a separating equilibrium with threshold

θ∗ > r such that buyers on the two sides of θ∗ go to different sellers. The seller 1 serves

buyers θ < θ∗ chooses π∗11 ≤ π∗12 , and the seller serves buyers θ > θ∗ chooses π∗11 ≤ π∗12 .

Seller 1 has a larger market share.

Figure 1.4 gives an illustration of the equilibrium of duopoly as r increases from 1
2
. Note

that the optimal experiment of monopoly is (1, 1), which is more informative than duopoly

sellers. Each duopoly seller specializes in generating one perfectly informative signal. While

rincreases, seller 1 increases her investment. For buyers with belief θ slightly higher than r,

seller 1’s experiment is more valuable. So the new threshold θ∗ of splitting equilibrium lies

on the right side of r.

1.5 Conclusion

In this paper we provide a framework to analyze the information provision with costly

production. In the market for information, we find that sellers specializes in generating one

signal, and buyers separating according to their private beliefs. In equilibrium there could

be asymmericity in investments and profits, caused by skewed distribution of buyer’s beliefs.
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[Optimal Experiments]

[Informed Buyers]

Figure 1.4: Oligopoly Sellers for Different Cutoff Belief r

Cost function is C(π1, π2) = 1
20

[(
π1 − 1

2

)2
+
(
π2 − 1

2

)2]
. Panel (a) shows that how the optimal

experiments chosen by duopoly sellers change as the cutoff belief r increases from 1
2 . Seller 1 serves

buyers with low belief. Panel (b) shows how the measure of informed buyers changes. For any
given r, seller 1 serves the buyers with belief between the left green line and the purple line. Seller
2 serves the buyers with belief between the purple line and the right green line. There middle dash
line indicates θ = r. The three dash lines are parallel. Seller 1 has a larger market share as r
increases.
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Figure 1.5: Monopoly Seller’s Investment and Profit for Different Cutoff Belief r

Cost function is C(π1, π2) = 1
5

[(
π1 − 1

2

)3
+
(
π2 − 1

2

)3]
. Buyers’ types follow a uniform

distribution. Here shows how the total investment and profit of the monopoly seller change as the
cutoff belief r increases from 1

2 . Investment first increases due to the benefit from specialization
and then decreases as a reason of decrease in the value of information. However, the monopoly
seller’s profit decreases. It shows that the seller can extract the most consumer surplus when the
distribution is symmetric on two sides of the cutoff belief.

The main finding is that when the generation of information is costly, competition leads to

a less informed outcome.

Appendices

Proof of Lemma 1.1:

First we show that an experiment has positive value is equivalent with that it is responsive.

For any experiment E, note U1(θ) = (1− r) θπ1−r (1− θ) (1− π2) and U2(θ) = (1− r) θ (1− π1)−

r (1− θ) π2, notice that U1 + U2 = θ (1− r)− (1− θ) r. Then we can rewrite equation (1.4)

as

V (E, θ) = max {U1, 0}+ max {U2, 0} −max {U1 + U2, 0} . (1.14)

It’s obvious that V (E, θ) ≥ 0. Now consider the case that V (E, θ) > 0.

When θ ≤ r, then U1 + U2 ≤ 0. Therefore V (E, θ) = max {U1, 0} + max {U2, 0} > 0.
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That means there must be one positive value in U1 and U2. Hence the other one must be

negative. Since U2(θ) is increasing in θ, then U2(θ) ≤ U2(r) = r (1− r) (1− π1 − π2) ≤ 0.

Therefore U1 > 0 and U2 < 0.

When θ ≥ θ∗, since U1 + U2 ≥ 0, then V (E, θ) = max {U1, 0} + max {U2, 0} − U1 + U2,

which means there must be one negative value in U1 and U2. Hence the other one must be

positive. Since U1(θ) is increasing in θ, then U1(θ) ≥ U1(r) = r (1− r) (π1 + π2 − 1) ≥ 0.

Therefore U1 > 0 and U2 < 0.

Therefore all buyers will follow the recommendation actions, i.e., chooses action a1 under

signal s1 and chooses action a2 under signal s2.

The necessity is straightforward. If U1 > 0 and U2 < 0, we must have V (E, θ) > 0

whenever θ ≤ ror θ ≥ r.

Next we show that we can focus on the responsive menu.

Without loss of generality, let type θ chooses the same action a1 after each signal in

E(θ) = (π1(θ), π2(θ)). Replace E(θ) with E1 = (1, 0). Basically we increase the probability

of sending signal s1 in both states to one. Therefore E1 gives the same outcome distribution

as E(θ) for θ. Then V (E1, θ) = V (E(θ), θ). Since E1 is a garbling of E(θ). By Blackwell’s

theorem, V (E1, θ
′) ≤ V (E(θ), θ′) for all θ′. Therefore the change will not affect all other

types’ IC constraints.

Proof of Lemma 1.2:

For any experiment E = (π1, π2) in the optimal menu M, if π1 < π∗1 or π2 < π∗2. Let

δ = min {u1 (π∗1 − π1) ,−u2 (π∗2 − π2)}, and ε1 = δ
u1

, ε2 = δ
−u2 . Construct a new experiment

E ′ where π
′
1 = π1 + ε1 and π

′
2 = π2 + ε2. Then π

′
1 ≤ π∗1 and π

′
2 ≤ π∗2, and there must be one

hold with equality by construction. Furthermore V (E
′
, θ) − V (E, θ) = θ(π

′
1 − π1)u1 + (1 −

θ)(π
′
2 − π2)(−u2) = δ is independent of buyer’s type. So the seller can replace (E, tE) with

(E
′
, tE + δ) without change all buyers’ constraints and increase her revenue.
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Proof for Proposition 1.1:

We generalize the approach used in the proof of Proposition 4 and 5 in Bergemann et al.

(2018). Basically one can think BBS as a special case when (π∗1, π
∗
2) = (1, 1) and here we

generalize it for any (π∗1, π
∗
2). This proof works for non-congruent beliefs, where F (r) /∈ {0, 1}.

For congruent belief the solution is easier and we have it as part of the proof for Theorem

1.1.

Step 1. Claim that a menu is implementable and responsive if and only if: (i) q(θ) ∈ Q(θ)

is increasing and (ii)
∫ θ2
θ1
q(θ) = θ2 − r.

Necessity.

Consider a responsive menu M = {q (θ) , t(θ)}θ. For any experiment q (θ), only those

obedient type θ′ of q (θ) have an incentive to mimic type θ. Therefore we can focus on those

experiment q and types θ′ such that V (q, θ′) > 0. For these cases we the write the value of

information in equation (1.8) as

V (q, θ) = θq + 1{q 6=0} · [min {q0 − q, 0} − (1− π∗2) r]−max {θ − r, 0} (1.15)

Consider any two types θ1, θ2 with θ1 < θ2 and any responsive experiments q1 for

type θ1 and q2 for type θ2. Since the menu is implementable, the IC constraints implies

V (q2, θ2)− t2 ≥ V (q1, θ2)− t1 and V (q1, θ1)− t1 ≥ V (q2, θ1)− t2. Therefore we have

V (q2, θ2)− V (q1, θ2) ≥ t2 − t1 ≥ V (q2, θ1)− V (q1, θ1)

The strict single crossing property of V (q, θ) implies that q2 ≥ q1. Thus q(θ) in increasing.

The value of experiment V (q, θ) in differentiable in θ on [θ1, r] and [r, θ2] respectively. For

any q, the value of experiment is also continuous in θ. Therefore the rent function V (θ) of
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the optimal menu is also continuous by the Maximum Theorem. Then we have

V (r) = V (θ1) +

∫ r

θ1

Vθ(q, θ)dθ = V (θ2)−
∫ θ2

r

Vθ(q, θ)dθ.

Because the two types θ1 and θ2 have zero value on all experiments, we have V (θ1) = V (θ2) =

0. Therefore
∫ r
θ1
Vθ(q, θ)dθ +

∫ θ2
r
Vθ(q, θ)dθ = 0. Apply envelope theorem to equation (1.15)

and we have
∫ r
θ1
qdθ +

∫ θ2
r

(q − 1)dθ = 0. Thus we obtain:

∫ θ2

θ1

qdθ = θ2 − r.

Sufficiency.

If q(θ) satisfies the two conditions. Construct the following prices:

t(θ) =


θq(θ) + 1{q 6=0} · [min {q0 − q(θ), 0} − (1− π∗2) r]−

∫ θ
θ1
q(x)dx if θ ≤ r

θq(θ) + 1{q 6=0} · [min {q0 − q(θ), 0} − (1− π∗2) r] +
∫ θ2
θ

(q(x)− 1) dx− (θ − r) if θ > r

(1.16)

With
∫ θ2
θ1
q(θ) = θ2 − r we can simplify the price function as

t(θ) = θq(θ) + 1{q 6=0} · [min {q0 − q(θ), 0} − (1− π∗2) r]−
∫ θ

θ1

q(x)dx ∀θ ∈ [θ1, θ2] . (1.17)

For any type θ, the net value from reporting θ′ is

V (q(θ′), θ)− t(θ′) = q(θ′)(θ − θ′) +

∫ θ′

θ1

q(x)dx−max {θ − r, 0}

Since q(·) is increasing on [θ1, θ2], the net value reaches its maximal at θ′ = θ. Then the

menu including {q(θ), t(θ)}θ is implementable and incentive compatible.

Furthermore, Figure 1.6 gives an illustration about the constraints on q(θ) for responsive

experiments.

Step 2. At most two informative experiment in the optimal menu.
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Figure 1.6: Constraint Set Q(θ) on Responsive Experiments
(r = 0.5, π∗1 = 0.95 π∗2 = 0.75, which gives θ1 = 0.24, θ2 = 0.93, and q0 = 0.625.)

First we write down the seller’s optimization problem formally. With the price function

(1.17) we can derive the seller’s expected revenue

∫ θ2

θ1

t(θ)dF (θ) =

∫ θ2

θ1

{
[θf(θ) + F (θ)] q(θ) + 1{q 6=0} · [min {q0 − q(θ), 0} − (1− π∗2) r] f(θ)

}
dθ

The linearity of value of informations implies that the optimal menu is a step functions.

To apply the Fundamental Theorem of Linear Programming to this maximization problem,

we need first discretize the buyers type into finite grids [θ1, θ+ε], [θ+2ε, θ+3ε], ..., [θ2−ε, θ2].

Then given the fact that the optimal menu must include the most informative experiment

q0, we can construct a linear programing problem similar with the one in the Proposition 4

of BBS. Here we omit the details.

Step 3. Characterize the optimal menu.

The seller’s optimization problem has an objective function concave in q. The constraints

on q(·) is given by the two conditions in Step 1. Lagrangian method is valid. To deal with

the integral constraint, we can use the method in Toikka (2011). Together with BBS, we

can use the ironed virtual value to solve the Lagrangian problem.
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Proof for Proposition 1.2:

We first give the monopoly seller’s revenue function given a uniform distribution.

RM(π1, π2, r) =
r(1− r)(π1 + π2 − 1)

r(1− r) (π1π2 + (1− π1)(1− π2)) + r2π2(1− π2) + (1− r)2π1(1− π1)
·

Suppose monopoly seller provide (π, π) when r = 1
2
. Starting from π1 = π2 = π, we examine

the change of revenue if there is a small change of π1 and π2 when r is increasing from

1
2
. Since the cost function is symmetric, we can let π1 = π − ε and π2 = π + ε without

changing the investment. The term (π1 + π2 − 1) and (π1π2 + (1− π1)(1− π2)) do not have

a first order change. Let K = r2π2(1 − π2) + (1 − r)2π1(1 − π1) and its change determines

whether the revenue is increasing or decreasing. ∆K = r2(1 − 2π)ε − (1 − r)2(1 − 2π)ε =[
r2 − (1− r)2] (1−2π)ε. If ε > 0, we have ∆K < 0. Therefore the revenue RM is decreasing.

Since we fixed the cost, then the profit is increasing. Then the monopoly seller will increases

π2 and decreases π1.

Proof for Proposition 1.3:

Suppose two sellers choose I∗1 = I∗2 and buyers that splitting at threshold r = 1
2
, we show

that it is buyer’s best response to choose a seller according to the splitting technology. Notice

that the value of information for low belief buyers (θ < r) and high belief buyers (θ > r)

are symmetric in π1 and π2. When cost function is symmetric, suppose seller 1 choose the

most informative experiment as (π, π′), we know that π < π′. Since the distribution of

buyers faced by seller 1 is congruent, F1(r) = 1, then the seller 1 only provide one item in its

menu. Suppose the price is t1 and buyer θ1 is the lowest informed buyer from seller 1. Then

t1 = V (θ1, π, π
′). Due to symmetricity, seller 2 will provide a single item menu with price

t2 = t1. Therefore for the cutoff type buyer θ = r, it is indifferent from buying seller 1 and

seller 2. For all other buyers, stick to current choices is strictly better than visiting the other

seller. Intuitively, because of the difference preferences on two sides of the cutoff belief, the
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seller can specialize their investment in the way to better meet their customers’ needs. Then

the buyers will splitting as a result. When investments are not observable, deviation is not

optimal for each seller. Since I∗1 = I∗2 is the optimal investment when both sellers acting as

a monopoly in the second stage, any deviation is not profitable.

Proof for Theorem 1.1:

Consider the duopoly seller 1 who serves buyers with belief θ < r = 1
2
. Given any most

informative experiment (π1, π2), since the value function is strictly increasing in θ for these

buyers, the seller 1 only needs to choose the buyers θ which is the lowest type she serves.

The price of the experiment is then V (θ, π1, π2). Then seller 1’s revenue function is

RD(π1, π2) = max
θ
V (θ) ·

[
1

2
−G(θ)

]
= max

θ

1

2
[θπ1 − (1− θ)(1− π2)] ·

[
1

2
−G(θ)

]
(1.18)

Apply the envelope theorem for the problem we have that ∂RD

∂π2
= 1

2
(1 − θ∗) ·

[
1
2
−G(θ∗)

]
and ∂RD

∂π2
= 1

2
θ∗ ·

[
1
2
−G(θ∗)

]
, where θ∗ is the optimal solution. Then both ∂RD

∂π2
and ∂RD

∂π1
is

positive, the duopoly seller’s revenue is increasing in both π1 and π2. To show ∂RD

∂π2
is strictly

increasing in π1, it is sufficient if θ∗ is decreasing in π1, ∂θ∗

∂π1
< 0.

The first order condition of the maximization problem is

(π1 − π2 + 1)

[
1

2
−G(θ∗)− g(θ∗)θ∗

]
= − (1− π2) g(θ∗) (1.19)

Take derivative w.r.t. π1, we have

∂θ∗

∂π1

·{−g′(θ∗) [θ∗π1 − (1− θ∗)(1− π2)] + 2g(θ∗) (π1 − π2 + 1)} =
1

2
−G(θ∗)−g(θ∗)θ∗ (1.20)

From the FOC we know that
[

1
2
−G(θ∗)− g(θ∗)θ∗

]
< 0. Let the term on the left hand side

be LHS = −g′ · [θ∗π1 − (1− θ∗)(1− π2)]+2g ·(π1 − π2 + 1), we only need to show LHS > 0.
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Case 1, g′(θ∗) ≥ 0. Since V (θ∗) > 0, then θ∗π1 > (1− θ∗)(1− π2). We can rewrite LHS

as

LHS = π1 (2g − θ∗ · g′) + (1− π2) (g′ + θ∗ · g′ − 2g)

> (1− π2)

[
1− θ∗

θ∗
(2g − θ∗ · g′) + (g′ + θ∗ · g′ − 2g)

]
= 2(1− π2)

[(
1

θ∗
− 2

)
g + θ∗ · g′

]
> 0

Case 2, g′(θ∗) < 0. FOC gives that (1−π2) = 1
g
(G+ θg− 1

2
)(π1−π2 + 1). We can rewrite

LHS as

LHS = (π1 − π2 + 1) (2g − θ∗ · g′) + (1− π2)g′

= (π1 − π2 + 1)

[
(2g − θ∗ · g′) +

1

g
(G+ θg − 1

2
) · g′

]
=

1

g
(π1 − π2 + 1)

[
2g2 +

(
G− 1

2

)
g′
]
> 0

Therefore we finish the proof that ∂RD

∂π2
is strictly increasing in π1.

Proof for Proposition 1.5:

When buyers’ types follow a uniform distribution. Sellers always provide single item menu in

any splitting equilibrium. When the cutoff belief r increases from 1
2
, we can use the argument

from the poof for Proposition 1.2 to claim that seller 1 will increase both π∗11 and π∗12 . First

suppose buyers still splitting according to r, then seller 1’s revenue from the market when

providing (π1, π2) is R1 = V ( r+θ1
2
, π1, π2) · ( r−θ1

2
), where θ1 is given by Corollary 1.3. The

function form is similar with the monopoly’s revenue, so apply the same argument we can get

that seller 1 will increase π∗11 and π∗12 . The intuition is that seller 1 has a larger market share

therefore the investment will increase. Due to the monopoly pricing, the increase in price

is less than the increase in the value of the cutoff buyer. As a result, seller 1 will increase

its price. On the other hand, by examining seller 2’s revenue function we can get that seller

2 will decrease both π∗21 and π∗22 and decrease its price. Now the net value for cutoff buyer
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[Optimal Experiments] [Informed

Buyers]

Figure 1.7: Duopoly Sellers for Different Cutoff Belief r

Cost function is C(π1, π2) = 1
5

[(
π1 − 1

2

)3
+
(
π2 − 1

2

)3]
. Buyers’ types follow a uniform distribution.

Panel (a) shows that how the optimal experiments chosen by monopoly and duopoly sellers change
as the cutoff belief r increases from 1

2 . Seller 1 serves buyers with low belief. Note that seller 1
increases investment in both signals, and seller 2 decreases investment in both signals. The optimal
experiment of duopoly sellers are always less informative than that of monopoly. Panel (b) shows
how the informed buyers change as the cutoff belief r increases. For any given r, seller 1 serves
the buyers with belief between the left green line and the purple line. Seller 2 serves the buyers
with belief between the purple line and the right green line. All other buyers get uninformative
experiment.
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from seller 1 is strictly higher than that from seller 2 Consider the buyer with type θ = r+ ε.

Although he has a different preference over two signals from low belief buyers, the net value

from seller 1’s experiment is higher than the value from seller 2’s experiment. However, due

to the effect of specialization, the value function of high belief buyers for seller 1’s experiment

decreases faster than the value function fro seller 2’s experiment. So by moving the threshold

from r to r+ε we can decrease the difference of threshold buyer’s net payoff from two sellers.

Then there exist a θ∗ > r such that he is indifferent again from two sellers.
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CHAPTER 2

Preferential Attachment as an Information Cascade in

Emerging Networks1

2.1 Introduction

Preferential attachment is one of the central concepts in network science2, and is the underly-

ing mechanism that generates most of the commonly observed social network properties, such

as power laws and scale-free degree distributions. The preferential attachment mechanism,

which is the networked version of the ubiquitous Pólya urn process [Barabási and Albert

(1999)], generates random networks by sequentially adding nodes to the network, where

each node is connected to the predecessor nodes with a probability that is proportional to

their current degrees, giving rise to the rich-gets-richer phenomena in terms of the agents’

connectivity degrees. Since its introduction to the network science community by Barabási

and Albert (1999), the preferential attachment mechanism has become a key component in

most current generative network models3. Since evidence for preferential attachment has

been found in empirical data [Perc (2014); Zhou et al. (2007)], and since preferential at-

tachment generates networks with properties that are observed in real-world data (such as

scale-free degree distributions), almost all current generative network models use preferential

attachment as an exogenously imposed probabilistic rule for link formation, without much

1This chapter is a joint work with Professor Mihaela van der Schaar, and Ahmed M. Alaa. (van der
Schaar: mihaela@ee.ucla.edu, UCLA; Alla, ahmedmalaa@ucla.edu, UCLA.)

2See Barabási (2012); Papadopoulos et al. (2012); Perc (2014); Vázquez (2003); D’souza et al. (2007);
Kakade et al. (2005); Freno et al. (2012); Gopalan et al. (2013).

3See Papadopoulos et al. (2012); Jackson and Rogers (2007); Vázquez (2003); Leskovec et al. (2008);
D’souza et al. (2007); Kakade et al. (2005); Freno et al. (2012); Gopalan et al. (2013); Even-Dar and Kearns
(2007); Gabel and Redner (2013); Zhou et al. (2007); Krapivsky and Krioukov (2008).
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attention to the reasons behind its emergence4.

In this paper, we aim at providing an informational interpretation of preferential at-

tachment in networks of rational agents, such as citation networks [Golosovsky and Solomon

(2012)], online social networks [Leskovec et al. (2008)], etc, where human agency and decision-

making drive network evolution. We view preferential attachment as a herd behavior in

which newly arriving nodes are influenced by the actions of their predecessors’, i.e., network

agents, confronted with lack of information, are more likely to form links with the most

connected predecessor agent because they (rationally) believe that those agents are of a

good quality. Our view of preferential attachment is inspired by the Bandwagon cognitive

bias in perceptual decision-making [Bardone (2011)], and by the social learning models in

microeconomics5.

Summary of contributions. In Section 2.2, we develop a social learning model for net-

work evolution, where agents of random qualities join the network in sequence, and each

agent aims at linking with a high quality predecessor agent. Qualities are unknown, but

can be inferred from two sources of information: private signals that an agent has about

the predecessor agents (and are correlated with their true qualities), and public information

represented as the current network structure, which implicitly encodes the actions of pre-

decessor agents. We formulate the social learning problem as a network formation game,

and characterize its Perfect Bayesian Equilibria in Section 2.3. We show that various forms

of preferential attachment can emerge as sequentially rational equilibria of the network for-

mation game. For instance, we show that when the agents’ private beliefs are bounded,

condensed preferential attachment emerges at equilibrium, in which all successor agents af-

ter some point of time will follow the herd and connect to the same predecessor agent. If

the private beliefs are unbounded, then nonlinear preferential attachment emerges at equi-

librium, where the probability of an agent getting a link found to be an exponential function

4See Vázquez (2003); Kakade et al. (2005); Freno et al. (2012); Gopalan et al. (2013); Even-Dar and
Kearns (2007); Gabel and Redner (2013); Zhou et al. (2007); Krapivsky and Krioukov (2008).

5See seminal papers Bikhchandani et al. (1992); Banerjee (1992), and also later papers in Vázquez (2003);
Smith and Sørensen (2000); Acemoglu et al. (2014, 2011).
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of her in-degree.

Related works. Previous generative network models have imposed preferential attach-

ment as an exogenous network formation mechanism, without attempting to understand its

micro-foundations6, whereas other works have focused on empirically validating the preferen-

tial attachment hypothesis in real-world networks [see Perc (2014)]. Heuristic interpretations

for preferential attachment in terms of random walks on graphs can be found in Vázquez

(2003). However, these interpretations ignore the decision-making and informational aspects

of network formation, and the role of human agency, and view network growth as a pure

random process. Other models interpret preferential attachment as a result of optimization

problems that each agent solves in order to decide which link to form; however, these models

assume that popularity (or the in-degree) are part of the optimization objective function

of the agent, and hence preferential attachment straightforwardly emerges in these models

without providing much insight on its micro-foundations.

Social learning has been recently studied by Acemoglu et al. (2011) and Acemoglu et

al. (2014) in the context of social networks. Our work differs fundamentally from those

models, in addition to classical social learning models by Bikhchandani et al. (1992), Banerjee

(1992), and Smith and Sørensen (2000), in that agents in our model are learning about all

predecessors’ types, rather than learning one constant underlying state-of-the-world. Our

focus is not on asymptotic learning as in Acemoglu et al. (2011) and Acemoglu et al. (2014),

but rather on the implications of incomplete information and social learning on the network

structures (i.e. emergence of preferential attachment). To the best of our knowledge, our

model is the first decision-making network formation model for which preferential attachment

emerges endogenously rather than being imposed as an exogenous probabilistic mechanism.

6See Papadopoulos et al. (2012); Jackson and Rogers (2007); Vázquez (2003); Leskovec et al. (2008);
D’souza et al. (2007); Kakade et al. (2005); Freno et al. (2012); Gopalan et al. (2013); Even-Dar and Kearns
(2007); Gabel and Redner (2013); Zhou et al. (2007); Krapivsky and Krioukov (2008).
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2.2 Model

2.2.1 Network Evolution as a Sequential Decision Process

Agents. Consider a countably infinite set of agents N = {0, 1, 2, . . .}, making link forma-

tion decisions sequentially. Each agent n ∈ N is characterized by a type attribute qn ∈ Q,

where Q is the space of all possible types. We assume that agents are of two possible types,

i.e. Q = {L,H}, where L denotes low quality agents, whereas H denotes high quality agents.

We assume that the types of the agents are drawn randomly and independently from a

Bernoulli distribution, with a prior P (qn = H) = p, and P (qn = L) = 1− p,∀n ∈ N .

Agents make link formation decisions in sequence; the order of the agents is exogenous

and is common knowledge. This is a common assumption in classical social learning models;

in the context of social networks, this captures the sequentiality of arrivals and decision-

making in a growing network such as a citation network or Twitter [see Leskovec et al.

(2008); Golosovsky and Solomon (2012)]. The payoff of an agent n forming a link with agent

j depends only on the type of agent j, i.e. agent n benefits from linking to agent j only if

agent j is a high quality agent (e.g. citing a high quality paper).

As agents form links with other agents, a network is formed and agents in such a network

would gain different levels of popularity. We model the network evolution as a discrete-time

graph process {Gn}n∈N, where Gn is a directed graph. In every time period n, agent n is

required to take an irreversible link formation decision, i.e. agent n must select one agent

to link with7. We assume that agent 0, who arrives first, does not make a link. At time n,

agent n can only link to one of the agents in the set {0, 1, 2, . . ., n − 1}. The qualities of

the agents are not publicly known, thus agents are uncertain about the types of each other8.

However, each agent n holds a set of private signals that indicate the qualities of all agents

7Assuming that agents form multiple links would lead to analytical intractability without adding much
to the insights and results.

8Note that unlike classical social learning models, where there is a single binary state-of-the-world variable
[as in Bikhchandani et al. (1992); Banerjee (1992); Smith and Sørensen (2000)], the state-of-the-world in our
model at time n is the set of agent qualities {q0, . . ., qn−1}, which is dynamic and grows more complex as
the network grows.
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in the set {0, 1, 2, . . ., n − 1}. Such signals convey information about the agents’ qualities,

yet they do not perfectly reveal the true qualities of the agents.

Private signal structure. Let sn = (s0
n, . . ., s

n−1
n ) be the set of private signals of agent n,

where sjn represents agent n’s signal on agent j’s quality. The private signal sjn is drawn from a

distribution FH(s) if qj = H, and is drawn from a distribution FL(s) if qj = L. Conditional on

the true quality of all agents {q1, q2, . . .}, all private signals are independently and identically

distributed. We assume that the probability distribution of every private signal sjn satisfies

the following regularity conditions:

• (Common support) FH(s) and FL(s) are mutually absolutely continuous with a common

support supp(F) (That is, a private signal that any agent has for the quality of every

agent j cannot perfectly reveal the true quality of that agent).

• (Monotone likelihood) The conditional pdfs fH(s) = f(s | qj = H) and fL(s) = f(s |

qj = L) satisfy the monotone likelihood ratio property (MLRP) in the sense that fH(s)
fL(s)

is strictly increasing in s. It implies that a high quality agent is more likely to send

large signals than a low quality agent.

Observations. Upon making a decision, agent n does not observe the private information

of other agents, nor does she observe their true types. That is, agent n only observes her

private signal sn and the graph formed in the previous time step Gn−1. Note that the

graph Gn−1 encodes the actions of all the predecessors of n. Let the action of every agent

j be denoted by aj, where aj ∈ {0, 1, 2, . . ., j − 1}. Then we can denote the graph as

Gn−1 = (a1, a2, . . ., an−1) for simplicity. Thus, agent n observes the private signal sn, and

the sequence of actions of her predecessors, Gn−1.

In order to make a rational decision, an agent forms a belief about the types of the

predecessors having observed her private signals (her own assessment of the qualities of the

predecessors), and the actions of the predecessors (the public assessment, or the reputation

of those predecessors). The actual payoff that an agent n realizes after taking her linking
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qo = L q1 = H . .. qn−1 = H qn+2 = Hqn+1 = L

Graph Gn−1

Predecessor agents {0, 1, . . ., n− 1} Successor agents {n+ 1, n+ 2, . . .}

qn = L

Current time step n

Agent n’s

decision an

Agent n’s information

In = {Gn−1, sn}

Figure 2.1: Depiction for the sequential decision-making process.

action is given by

un(an) = 1{qan=H}, (2.1)

where 1 is the indicator function. This means that agent n gets a payoff of 1 if she links

to a high quality agent, whereas she gets a 0 payoff otherwise. Agents gain popularity (in-

degree) by having other agents linking to them. The in-degree of agent j at the beginning of

time step n is given by dj(Gn−1), and reflects the number of agents that formed links with

agent j up to agent n− 1. Figure 1 depicts pictorially the network growth process and the

decision-making sequence via a snapshot captured at time step n.

2.2.2 Solution Concept

Since each agent n observes its private signal sn and the actions of all predecessors Gn−1,

then the information set of agent n is given by In = {sn, Gn−1}. We denote the set of

all possible information sets of agent n as In. A pure strategy for agent n is a mapping

σn : In → {0, 1, 2, . . ., n − 1}, whereas a strategy profile is defined as σ = {σn}n∈N. Since

each agent acts sequentially and aims at maximizing its expected (Bayesian) payoff given

the available information, it becomes natural to formulate the network formation process as

a dynamic game with incomplete information, and adopt the Perfect Bayesian Equilibrium

(PBE) as a solution concept, which is defined as follows.

Definition 2.1 A strategy profile σ∗ is a PBE if for every n ∈ N , σ∗n maximizes the expected

payoff of agent n given the strategies of all other agents σ∗−n = {σ∗j}j∈N/{n}. That is, we have

that

σ∗n (In) = arg max
0≤j<n

E
[

1{qj=H} | In
]

= arg max
0≤j<n

P (qj = H | In ) .
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Thus, in every equilibrium network, each agent links to the predecessor agent that has the

maximum posterior probability of being of a high quality. Note that agent n’s belief about

the qualities of the predecessors depend on two pieces of information: her own private belief

captured by the information in sn, and the public belief that has formed by virtue of the

actions of predecessors, and captured by the graph structure Gn−1. If agents lean towards

following the public belief, then a rational herd behavior would emerge, which would affect

both the network structure and its evolution. Since a herd behavior, or following the crowd

with respect to link formation actions means that each agent will tend to rely on public

beliefs to judge the predecessors’ qualities, we expect that a form of preferential attachment

would emerge in the network formation process as a direct consequence of the herd behavior.

2.2.3 Preferential Attachment and Information Cascades

The notions of preferential attachment and information cascades collapse into a single con-

ceptualization in our model, since information cascades have to do with actions, which are

essentially linking actions in our model, and preferential attachment has to do with the evo-

lution of network structure, which is governed by these actions. In the following, we provide

a unified general definition for preferential attachment and information cascades.

Definition 2.2 We say that preferential attachment (or equivalently, an information cas-

cade) governs the evolution of a network’s sample path under a PBE σ∗ of the network for-

mation game, if there exists an agent N <∞ after which all successors adopt a (behavioral)

strategy that satisfies

Pσ∗ (aj = m |In ) > Pσ∗ (aj = k |In ) ,

if dm(j) > dk(j), ∀j > N . We say that condensed preferential attachment (or a condensed

information cascade) occurs in σ∗ if there exists an agent N <∞ after which aj = ak, ∀k, j >

N .

The definition above represents the central message of this paper: emergence of preferential

attachment in a network with incomplete information is a structural manifestation for the

emergence of an information cascade in the underlying decision-making process. Note that
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in the definition above, we provided a general definition for preferential attachment without

specifying a functional form (e.g. linear [Barabási and Albert (1999); Vázquez (2003)], sub-

linear [Gabel and Redner (2013)], or super-linear preferential attachment [Zhou et al. (2007);

Krapivsky and Krioukov (2008)]). Since preferential attachment is driven by information (i.e.

a probability of forming a link conditional on an information set), we need a characterization

of the network’s informational structure based on which we can study different regimes for

the emergence of different forms of preferential attachment. This is achieved by describing

the behavior of the agents’ private beliefs, i.e. how private signals map to posterior beliefs

on the predecessors’ qualities.

2.2.4 Private Beliefs

An agent’s belief comes from the observed public information, Gn−1, and the private signals

sn. The private belief only depends on the private signals, and is not a function of the

strategy profile. Therefore, we can represent the private belief of agent n on agent j’s qual-

ity as P (qj = H |sjn ) . Given the signal structure (FH , FL), we have that P (qj = H |sjn ) =(
1 + dFL

dFH (sjn)
)−1

, where dFL

dFH (s) is the Radon-Nikodym derivative of FL with respect to FH .

The support of private beliefs is the interval [bl, bh] such that bl = inf {v ∈ [0, 1] : P (ps ≤ v) > 0},

and bh = sup {v ∈ [0, 1] : P (ps ≤ v) < 1}, where ps = P (qj = H |sjn ). We identify two types

of private beliefs that corresponds to two different classes of the network’s informational

structure:

• Bounded private beliefs: if bl > 0 and bh < 1.

• Unbounded private beliefs: bl = 0 and bh = 1.

Bounded private beliefs describe networks in which agents cannot shout out too loud, i.e. the

private signals cannot be arbitrarily large (or small), whereas unbounded beliefs corresponds

to networks where private beliefs can take arbitrary, unbounded values9. The two information

9One can think of citation networks as a network with bounded private beliefs, where papers that are
not cited early on are forgotten, whereas Twitter can represent an unbounded private belief network, where
users have the opportunity to post content and gain an arbitrarily large attention at any point in time.
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structures can lead to different forms of preferential attachments, and different likelihoods

of pathological outcomes.

In the rest of this paper, we will investigate the informational conditions (e.g. structure

of private signals) under which preferential attachment will emerge in an equilibrium path.

2.3 Equilibrium Networks and the Emergence of Preferential At-

tachment

2.3.1 Posterior Beliefs

In this section, we characterize the equilibrium strategies of the agents in the network for-

mation game. We start by formulating the posterior beliefs of the agents about the types of

other agents given their information sets. Let the posterior belief of agent n about agent j’s

type in a strategy profile σ given her information set be denoted by µjn (In). Using Bayes’

rule, we have that

µjn (In) = P (qj = H | In ) =
dP (In | qj = H ) P (qj = H)∑
q∈Q dP (In | qj = q ) P (qj = q)

. (2.2)

We know that conditioned on the true quality, the private signal of n is independent of the

observed decisions of the predecessors, which implies that

dP
(
In
∣∣ωHj ) = dP

(
sn
∣∣ωHj ) · P (Gn−1

∣∣ωHj )
where ωHj represents the event qj = H. Therefore, in order to construct her posterior

belief, agent n needs to evaluate the probabilities that the observed graph and signals were

generated by a high quality agent j. Since the type space Q comprises only two types, we

can write the posterior belief µjn (In) in terms of the likelihood ratios
P(Gn−1|ωL

j )

P(Gn−1|ωH
j )

and
dP(sn|ωL

j )

dP(sn|ωH
j )
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as follows

µjn (In) = µjn (Gn−1, sn) =

[
1 +

1− p
p
·
P(Gn−1 | ωLj )

P(Gn−1 | ωHj )
·
dP(sn | ωLj )

dP(sn | ωHj )

]−1

(2.3)

In a PBE strategy profile, every agent forms a link with the one for whom she has the

highest posterior belief. Therefore, after observing Gn−1, which includes all previous agents’

actions, agent n can infer her predecessors’ qualities by considering all the possible private

signal profiles that they might receive.

2.3.2 Public and Private Likelihood

We define the public likelihood of agent j given a graph Gn−1 as

πjn(Gn−1) =
P(Gn−1 | ωHj )

P(Gn−1 | ωLj )
.

The public likelihood of agent j given the graph Gn−1 measures the likelihood of the graph

Gn−1 being generated under the case that agent j is of a high quality, as compared to the

case that agent j is of a low quality. The evolution of the public likelihood process for the

network agents affect the evolution of the successors’ posterior beliefs (see equation (2.3)).

Since agent j’s quality is the only determinant of the generating process for the signal sjn,

and is independent of s−jn , then we have that
P(sn|ωH

j )

P(sn|ωL
j )

=
P(sjn|ωH

j )

P(sjn|ωL
j )

. We call this ratio a private

likelihood function, and denote as l(sjn) =
P(sjn|ωH

j )

P(sjn|ωL
j )

= dFH(sjn)

dFL(sjn)
. The private likelihood function

l(·) only depends on the private signal structure, and is same for all agent j.

2.3.3 Equilibrium Strategies

Given the constructions for the public and private likelihood functions in Section 3.2, we

conclude that after observing the graph Gn−1 and the signals sn, agent n’s strategy is to

evaluate the public likelihood based on Gn−1, and evaluate the private likelihood based on

sn, and then choose to link to the agent with the highest likelihood of being a high quality
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agent, since then it complies with the PBE equilibrium condition defined in Section 2.2.

More precisely, we have the following proposition which provides the cornerstone for our

analysis.10

Proposition 2.1 (Equilibrium strategies in terms of public and private likeli-

hood). The network formation game admits a generically unique PBE in pure strategies11.

The posterior beliefs of every agent n depend only on the observed graph Gn−1 and private

signals sn, µjn (In, σ) = µjn(Gn−1, sn). Moreover, the posterior beliefs and the public signals

are related in the following way:

(a) µjn(Gn−1, sn) ≥ µj
′
n (Gn−1, sn), if and only if

(b) πjn(Gn−1) · l(sjn) ≥ πj
′
n (Gn−1) · l(sj′n ), for any j, j′ ∈ {0, 1, ..., n− 1}.

Proposition 2.1 provides a decomposition of posteriors and a practical choice rule in

equilibrium. Every agent n adopts the strategy that to link with the predecessor agent

with the highest public-private likelihood product. With this decomposition we can further

study the dynamics of beliefs and how it depends on the public and private information

respectively.

2.3.4 Belief Dynamics

To characterize the posterior belief dynamics we need to track the evolution of the public

likelihood 12. The following Lemma describes the public likelihood dynamics in a recursive

form.

Lemma 2.1 (Public likelihood dynamics). The public likelihood of agent j evolves

10All proofs are provided in the supplementary material.

11In knife-edge situations, there might be multiple PBEs in pure strategies that differ only in the tie-
breaking rule.

12The private likelihood depends on the private signals, which are independent on the network structure.
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according to the following recursive dynamics

πjn+1(Gn) =


πjn(Gn−1) ·Rj

n(Gn−1), if an = j

πjn(Gn−1) ·Dj
n(Gn−1), if an 6= j

(2.4)

with initial conditions πjj+1(Gj) = 1, for any j ≥ 0. The function Rj
n(Gn−1) (or Dj

n(Gn−1))

indicate the change in the public likelihood after j being linked (or not being linked) by agent

n.

The function Rj
n(Gn−1), which we call the reputation growth function, measures the rate

of increase in the public likelihood of agent j when it receives a link from agent n, whereas

the function Dj
n(Gn−1), which we call the reputation decay function, measures the rate of

decrease in the public likelihood of agent j when it misses the link formed by agent n.

When the private beliefs are unbounded, we have that Rj
n(Gn−1) =

E
s
−j
n
{Πj′ 6=j[1−FH(z)]}

E
s
−j
n
{Πj′ 6=j [1−FL(z)]} , and

Rj
n(Gn−1) =

1−E
s
−j
n

Πj′ 6=j(1−FH(z))
1−E

s
−j
n

Πj′ 6=j(1−FL(z))
, where z = l−1(l(sj

′
n )πj

′
n /π

j
n). Since the MLRP property

implies the first-order stochastic dominance, we have that Rj
n(Gn−1) > 1 and Dj

n(Gn−1) < 1.

2.3.5 Emergence of Herd Behavior in Equilibrium Networks

Now that we have constructed the equilibrium strategy and characterized the evolution of

the posterior belief process, can we figure out scenarios in which these strategies would give

rise to a herd behavior in the link formation decisions? Intuitively, one can see that if the

public likelihood of agent j given a graph Gn−1 is high enough so that no private signal

realization can push a higher posterior belief of another agent j′, then agent n may ignore all

her private signals and links to agent j who has the best reputation, even if her own private

signal on agent j’s quality is low.

The occurrence of a herding scenario in an equilibrium network depends on the net-

work’s informational structure (i.e. the private beliefs). For instance, if private beliefs are

unbounded, then one expects that no public reputation can take over all the private signals

forever, and there will always be a chance for a predecessor agent to express herself via a
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high private signal realization and gain a link even if her reputation in terms of the public

belief is low. In the following Corollary, we link the private signal structure to the potential

emergence of a herd behavior on the network evolution path.

Proposition 2.2 (Spotlights and Kick-outs). If the private beliefs are unbounded, then

any agent j has a positive probability to receive a link from agent n, for any n > j.

(The spotlight condition) If the private beliefs are bounded, then an agent j will absorb all

the links formed after time step n− 1 whenever πjn(Gn−1)max{πj′n (Gn−1)}j′ 6=j > β, for some

n ∈ N and Gn−1, where β = bh(1−bl)
bl(1−bh)

> 1. In other words, condensed preferential attachment

will occur in the equilibrium and all successor agents will link to agent j.

(The kick-out condition) If the private belief is bounded, then an agent j will get new links

with probability zero whenever πjn(Gn−1)max{πj′n (Gn−1)}j′ 6=j < 1
β

, for some n and Gn−1.

Proposition 2.2 says that under the condition of unbounded private belief, it is informa-

tionally viable for any agent to gain the attention of successor agents and receive links from

them, since unbounded private belief means that the private likelihood l(·) could be large

enough with positive probability, and every agent (of a high or low quality) may send a high

enough private signal to the agent currently forming the link.

In the second part of Proposition 2.2, we see that informationally limited networks (net-

works with bounded private beliefs) may exhibit serious pathological outcomes: under some

conditions, one agent may absorb all the links and become the only hub in the network, only

because she attained a large enough reputation, i.e. public likelihood, that makes it impos-

sible for other agents to achieve higher posterior beliefs with respects to the successor agents

given their bounded private signal realizations. Hence, condensed preferential attachment

occurs as an extreme case of the rich-get-richer phenomena in Perc (2014), in which only

one agent rich with links is getting all the new links. We call the condition at which such an

equilibrium network emerges as the spotlight condition.

Note that the spotlight agent may not be a high quality agent, hence asymptotic learn-

ing13 may not occur in a network with bounded private beliefs as all agents may end up

13See the definition of asymptotic learning in classical social learning settings in Acemoglu et al. (2011)
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getting linked with a low quality agent, which means that due to the emerging herd be-

havior, the average network payoff will converge to zero as it grows asymptotically large.

Similarly, the kick-out condition represent the case in which a -potentially high quality-

agent gets forgotten because of her low reputation (low public likelihood), which leads her

receiving no links from successor agents.

In the next subsection, we offer a more general characterization for the equilibrium net-

works, showing the emergence of more general forms of preferential attachment.

2.3.6 Emergence of Preferential Attachment in Equilibrium Networks

To derive the properties of our network formation game, we need to look into the dynamics

of public likelihood of agents. Note that the functions R(·) and D(·) are defined on the

set of all possible networks. In the proof of Lemma 2.1 we give a recursive algorithm to

calculate these two functions for any network Gn. For bounded belief structure we can get

the following characterization of the public likelihood dynamics.

Lemma 2.2 When the private signals are discrete, the reputation growth function, the

Rj
n(Gn−1), satisfies the following equation:

Rj
n(Gn−1) = Πj′ 6=j

{∑
sm∈S Pmφ

H(sm, π
j′
n , π

j
n)∑

sm∈S Pmφ
L(sm, π

j′
n , π

j
n)

}
(2.5)

where sm ∈ S represents all the possible signals of agent j′ received by agent n; Pm is the prior

of sending signal sm; φq(sm, π
j′
n , π

j
n) is the probability that the posterior of agent j is no less

than that of agent j′, given that the private signal about agentj′ is sm, and two agents’ public

likelihoods are πjn(Gn−1) and πj
′
n (Gn−1). The reputation decay function Dj

n(Gn−1) satisfies

Dj
n(Gn−1) =

1− Πj′ 6=j
[∑

sm∈S Pmφ
H(sm, π

j′
n , π

j
n)
]

1− Πj′ 6=j

[∑
sm∈S Pmφ

H(sm, π
j′
n , π

j
n)
] (2.6)

Note that the reputation growth function is only well defined when agent j has positive

and Acemoglu et al. (2014).

49



probability of being linked by agent n. Otherwise, if the agent is kicked-out, the denominator

in equation 2.5 is zero. Similarly, the reputation decay function is only well defined when an

agent has not become the spotlight.

The function φq(sm, π
j′
n , π

j
n) characterize the relative difficulty of agent j getting a new

link given the current reputation and private signals about agent j′. The better signal sm is,

the smaller φq is: it’s more difficult to be linked when a competitor is sending a better signal.

The larger πj
′
n π

j
n is, the smaller φq is: it’s more difficult to get a new link when a competitor

has relatively good reputation. Given any (sm, π
j′
n , π

j
n), the value of φH is weakly larger than

φL, a result of the MLRP assumption. When there are discrete signals, the number of values

in the image of function φq are finite.

Moreover, the reputation growth function is decrease in the public likelihood πjn. The

explanation is following: when an agent has a low reputation while being linked by agent n,

getting this new link will significantly increase this agent’s public likelihood. When an agent

already has a good reputation, getting a new link will not impact the reputation that much.

In the extreme case, when an agent becomes the spotlight, Rj
n = 1: no matter how many

new links this agent get, the public likelihood will no longer increase.

Similar properties apply for the reputation decay function. When an agent has a good

reputation, not being linked by agent n will impose a negative shock on its public likelihood,

therefore the reputation decrease largely. On the other hand, having a low reputation and

not getting the new link will not hurt the reputation that much.

It’s worth to point out that the set of public likelihood might be stable as the network

increases. The growth rate of the reputation of getting the new link is decreasing with her

reputation, and will be adjusted by the ratios to all other agents’ reputation. The decreasing

rate of not getting the new link is increasing with her reputation, and will be adjusted by

the ratios to all other agents’ reputation. Furthermore, at each period, there is a new agent

with public likelihood equals to one joining the game. So we conjecture that the set of public

likelihood should be uniformly bounded. However, we have not formally prove this.

With this detailed characterization of the dynamics of public likelihood, we can get the
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following result for the case of bounded private signals.

Theorem 2.1 When the private beliefs of the signal structure are bounded, the condensed

preferential attachment emerges with probability one.

Theorem 2.1 implies that, in any network evolution process, there will almost always be

one agent getting all the future new links. Here we briefly introduce the proof. First, at any

period, if an agent get several links successively in the next several period, his public belief

will be high enough so that this agent will get all the future links. Note that at any time if

an agent get a new link his public belief will increase while all other agents’ public belief will

decrease (weakly). We can show that there is a upper bound of the number of successive

links one agent needs. Second, at any period, the probability of a agent with relatively high

public belief getting a fix number of successive links is bounded below. For example, to let

the agent with highest public belief get all the future links, it is sufficient that new agents

always receive high signal of her successively. The formal proof is in the appendix.

When the private belief is bounded, the preferential attachment always occurs. Theorem

2.1 also means that asymptotic learning may not occur in this social learning game on

networks. As the network structure grows, the information conveyed by the number of

links one agent has, might outweigh the information of private signals. Therefore, as new

agents arrive, they will ignore their private information and believe more in the predecessors’

choices.

When the private belief is unbounded, we conjecture that the probability of an agent of

getting a new links will be proportional to an exponential function of the number of its links.

2.4 Extensions

In this section we extend the basic model into general settings. We will first allow agents to

make more than one links. Then we analyze a special binary private signal structure.
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2.4.1 Making a Fixed Number of Links

Now we relax the assumption that each agent links with one predecessors, and allow each

agent to make more than one link. Denote agent n’s link choice as An, where An =

(a0
n, a

1
n, ..., a

n−1
n ) is a n dimensional vector. Let ajn = 1 if liking with agent j, otherwise

ajn = 0. We first fix
∑

j a
j
n = K ≥ 2 as a constant14 and relax this assumption in next

subsection.

Each agent maximizes his utility from every link, therefore he will link with the K

predecessors with highest posteriors, given the information set In = {sn, Gn−1}, where

Gn−1 = (A1, A2, ...An−1) is the existing network. Note that in this case the networkGn−1 is a

(n− 1) by (n− 1) matrix rather than a vector. In this case, the separation between private

and public likelihood still hold, we have the following lemma as the Lemma (2.1). in the

basic model.

Lemma 2.3 There existing an essentially unique PBE in pure strategies , in which agent

links with the K predecessors with highest value of (πjn(Gn−1) · l(sjn)).

The public likelihood of agent j evolves according to the following equation

πjn+1(Gn) =


πjn(Gn−1) ·RK

n,j(Gn−1) if ajn = 1

πjn(Gn−1) ·DK
n,j(Gn−1) if ajn = 0

(2.7)

with initial conditions πjj+1(Gj) = 1, for any j ≥ 0.

The two functions RK
n,j(·) and DK

n,j(·) in the above equation indicates the change in public

likelihood after j is linked or not linked by agent n, respectively, given that agent n makes K

links. The algorithm of calculating RK and DK , is a generalization of the previous algorithm.

We basically change the use the Kth order distribution of the signal distribution to represent

the agent’s interpretation about a previous link, instead of the 1st order distribution in the

basic model. We leave it in the proof of Lemma (2.3).

14For agent j ≤ K, we assume that he makes j links.
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With the evolution of posteriors, we can get another version of spotlight condition and

kick-out condition.

Proposition 2.3 If the private belief is bounded,

(1) an agent will get all new links if his public likelihood satisfies a weaker spotlight condi-

tion, πjn(Gn−1)π
(K)
n (Gn−1) > β, where π

(K)
n (Gn−1) is the Kth largest value in {πj′n (Gn−1)}j′ 6=j;

(2) an agent j will get new links with zero probability whenever πjn(Gn−1)Kth max{πj′n (Gn−1)}j′ 6=j <
1
β

, for some n and Gn−1;

(3) asymptotic learning will not occur.

Note that the spotlight condition here is weaker than that of the basic model, while

the kick-out condition is stronger. Intuitively, after observing a link with some agent i,

the information one can get from this link is less than the basic model. Therefore the

public likelihood increases slower and decreases slower than the basic model. To get all the

following links, the requirement of public likelihood is weaker. On the other hand, since there

are higher chance to get future links, only when an agent has very low public likelihood, he

could be kicked out from the network for sure.

2.4.2 Arbitrary Number of Links

Now we assume every agent n can make xn links xn ∈ {1, 2, ..., n}. Then we have
∑

j a
j
n = xn.

When agent n arrives, he can observe the existing network Gn. Then he knows the number of

all previous agents’ links x1, x2, ..., xn−1. Thus it doesn’t matter whether xn is predetermined

or generated randomly, as long as we assume agent n knows his own xn and (x1, x2, ..., xn−1).

First note that similar with the basic model, the separation condition of public and

private likelihood still holds.

Lemma 2.4 Agent n links with the xn predecessors with highest value of (πjn(Gn−1) · l(sjn)).
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The public likelihood of agent j evolves according to the following equation

πjn+1(Gn) =


πjn(Gn−1) ·Rxn

n,j(Gn−1) if ajn = 1

πjn(Gn−1) ·Dxn
n,j(Gn−1) if ajn = 0

(2.8)

with initial conditions πjj+1(Gj) = 1, for any j ≥ 0.

The evolution of public likelihood is similar. We leave it in the proof. The idea is that

we use Rxn
n,j and Dxn

n,j instead of RK
n,j and DK

n,j to interpret agent n’s linking choices.

In this case, since the number of future links is unknown, there is no condition for an agent

to be kicked out forever. However, note that xn ≥ 1, the spotlight condition in Proposition

2.2 still holds. Similarly, the asymptotic learning will not occur with bounded private belief.

2.4.3 Bounded Binary Signals

Next we consider a special signal structure. Assume there are only two signals, good signal

and bad signal. High type agent is more likely to send a good signal. Assume a high type

agent could send a good signal with probability a, and a low type agent could send a good

signal with probability b, and a > b. Then we can note the likelihood ratio as l = a
b
> 1.

Note pG = pa+ (1− p)b as the ex-ante probability of a good signal. We also assume xn = 1

here, and a general case is given in the appendix.

To get a closed form expression of the public likelihood, we need to calculate the rate Rj
n

and Di
n for any agent j. This change of agent j’s public likelihood depends on how many

agents have a public likelihood near to this agent. If there are many agents have similar

public likelihoods with agent j, then πjn will increase a lot after being liked with agent n.

And will also decrease a lot after not being link with agent n. More precisely, given any

graph Gn−1 and public likelihood (πjn)j, define the following two numbers:

K1(Gn, π
i
n) = #{j′ | πj′n ∈ (

1

l2
πin, π

i
n]} and K2(Gn, π

i
n) = #{j′ | πj′n ∈ (πin, π

i
nl

2]}
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Figure 2.2: Some Networks
Each agent forms one link (left), 2 links (middle), [log(n) + 1] links (might) .

Lemma 2.5 Given any graph Gn−1 and public likelihood (πjn)j, the change of agent i’s public

likelihood is determined by Lemma (2.1). Where Ri
n and Di

n are given as following.

Ri
n(πn, Gn−1) =

[
pGa+ (1− pG)

pGb+ (1− pG)

]K1 (a
b

)K2

,

.

Di
n(πn, Gn−1) =

1− [pGa+ (1− pG)]K1 [(1− pG) a]K2

1− [pGb+ (1− pG)]K1 [(1− pG) b]K2

Ri
n is increasing in K1, and K2, and Di

n is decreasing in K1, and K2.

We use the binary private signal structure to generate simulations. Figure (2.2) gives

some sample networks in our model.

2.4.4 Who Will Be the Center?

In the case of bounded belief, eventually some agent will become the center. Figure (2.3)

shows that the advantage of arriving earlier. In the left panel first two agents are both high

type, while in more than 80% simulations one of them become the center of the network15.

In the right panel, the first two agents are both low type, but the become the center in more

than 80% simulations. By arriving early an agent can get more links in the initial stages,

therefore accumulate a large public likelihood. Therefore he will have a larger chance to

15Note that since agent 1 will always link with agent 0, the first link contains no information about agent
0’s type. The first two agents have exactly the same role in the model.
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Figure 2.3: The first several agents always become the center
pH = 0.8, a = 0.6, l = 3. In each panel, the first graph the first 3 agents’ types and we fix these
types, the second graph shows the number of simulations in which an agent become the center.

The third graph shows the number of simulations of a maximum degree of the center agent; The
last graph show the number of simulations of a particular average utility.

become the one with highest posterior in the future. The latter one agent arrives, the more

agent he should compete with to get a link. On the other hand, with fewer links, it become

even harder to have a high posterior.

However, the informational effect does exist in extreme case. In Figure (2.4), we let he

agent j ∈ {0, 1, ...10, 12, ...20} always send bad signal. Then agent 11 together with agent

21, 22, 23 become the center of the network. Note that agent 11 is low type and he become

the center only because he is the first agent who can send some good signals. This again

shows that the above analysis that it’s import to generate some good signals earlier than

most of others.

2.5 Concluding Remarks

In this chapter, we present a social learning model where agents arriving sequentially to a

network evaluate the qualities of predecessor agents based on their own private signals and

public signals inferred from the network structure. In the network game, we characterize

agents’ optimal strategies in the Perfect Bayesian Equilibrium. A key feature of our model

is that preferential attachment emerges endogenously as a sequentially rational equilibrium
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Figure 2.4: Signals matters in an extreme case
xn = [log(n)] + 1, pH = 0.8, a = 0.6, l = 3, Q11 = Low. Agent 11 becomes the center when other

agents before agent 21 will always send bad signals.

of the social learning process. If agents’ private beliefs are bounded, condensed preferential

attachment emerges at equilibrium. We give a sufficient condition of the condensed preferen-

tial attachment and a sufficient condition of the case that an agent will be kicked out of the

network. If agents’ private belief are bounded, condensed preferential attachment emerges

at equilibrium with probability one.

The future work lies in three directions. First, we need to generalize the main result of

condensed preferential attachment to the case of multi links and random links. Second, we

can reduce the information observed by a new agent, for example, with limited observations

of the network structure. The assumption of an agents observing the whole network structure

becomes unrealistic when the network grows large. Second, we need to study the relationship

between the model prediction with the observed real life networks. Our conjecture about

exponential preferential attachment is largely motived by these observations and needs to

be verified.
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Supplementary Material

Proof of Proposition 2.1

Agent n solves the problem

max
0≤j<n

E
[
I{j=H} | In

]
= µjn (In) .

It only depends on the strategies of agent j < n. Since the values of posterior beliefs is

bounded and the choice set is finite, the maximization problem must have a solution. If we

apply the following tie-breaking rule σn = min
{

arg max0≤j<n E
[
I{j=H} | In

]}
. When the

signal space is not discrete, since a tie only happens with zero probability, the equilibrium

is still unique without such a tie-breaking rule.

Equation 2.3 gives the expression of posterior µjn (In). Given the equilibrium strategy σ∗,

when agent n forms a belief about agent j’s type, she needs to consider every case of the

private signal profiles of all previous agents. Therefore the exception in equation 2.3 is taken

on Sn−1 = (s1, ..., sn−1). Note that the probabilities P(Gn−1 | ωqj ) is based on the exception

of all sjk, k ≤ n, then we can write the posterior as the following.

µjn (In) =

[
1 +

1− p
p
·
P(Gn−1 | ωLj )

P(Gn−1 | ωHj )
·
dP(sn | ωLj )

dP(sn | ωHj )

]−1

=

1 +
1− p
p
·

(
P(Gn−1 | ωHj )

P(Gn−1 | ωLj )
· l(sjn)

)−1
−1

(2.9)

Note τ =
P(Gn−1|ωH

j )

P(Gn−1|ωL
j )
· l(sjn), and g(τ) =

[
1 + 1−p

p
· (τ)−1

]−1

. The function g(·) is strictly

increasing and concave.

Proof of Lemma 2.1

Given that Gn = (Gn−1, an), we can rewrite the public likelihood πjn+1(Gn) as
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P(Gn | ωHj )

P(Gn | ωLj )
=

P(Gn−1 | ωHj ) · P(an | Gn−1, ω
H
j )

P(Gn−1 | ωLj ) · P(an | Gn−1, ωLj )
= πjn(Gn−1) ·

P(an | Gn−1, ω
H
j )

P(an | Gn−1, ωLj )
. (2.10)

Step 1.

When an = j, we can write the last term in above equation as,

P(an = j | Gn−1, ω
H
j )

P(an = j | Gn−1, ωLj )
=

Es−j
n

[
P(an = j | Gn−1, ω

H
j , s

−j
n )
]

Es−j
n

[
P(an = j | Gn−1, ωLj , s

−j
n )
]

=
Es−j

n

[
P(µjn ≥ µj

′
n ,∀j′ 6= j | Gn−1, ω

H
j , s

−j
n )
]

Es−j
n

[
P(µjn ≥ µj

′
n ,∀j′ 6= j | Gn−1, ωLj , s

−j
n )
]

The probability is of the agent n’s private signals about agent j, sjn. Given Gn−1, by Propo-

sition 2.1 the two probabilities can be expressed by the following, where q ∈ qH , qL.

P(µjn ≥ µj
′

n ,∀j′ 6= j | Gn−1, ω
q
j , s
−j
n ) = P

[
πjn(Gn−1) · l(sjn) ≥ πj

′

n (Gn−1) · l(sj′n ), ∀j′ 6= j | Gn−1, ω
q
j , s
−j
n

]
= P

[
l(sjn) ≥ πj

′
n (Gn−1)

πjn(Gn−1)
l(sj

′

n ),∀j′ 6= j | Gn−1, ω
q
j , s
−j
n

]
= Πj′ 6=jP

[
l(sjn) ≥ πj

′
n (Gn−1)

πjn(Gn−1)
l(sj

′

n ) | Gn−1, ω
q
j , s

j′

n

]

The RHS of the inequality does not depend on sjn, since the probability is for the real-

ization of sjn. Note P
[
l(sjn) ≥ πj′

n (Gn−1)

πj
n(Gn−1)

l(sj
′
n ) | Gn−1, ω

q
j , s

j′
n

]
= φq

(
sj
′
n , π

j′
n , π

j
n

)
, then we have

P(an = j | Gn−1, ω
H
j )

P(an = j | Gn−1, ωLj )
=

Es−j
n

[
Πj′ 6=jφ

H
(
sj
′
n , π

j′
n , π

j
n

)]
Es−j

n

[
Πj′ 6=jφL

(
sj
′
n , π

j′
n , π

j
n

)] (2.11)
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When an 6= j, the probability can be expressed as

P
[
l(sjn) ≤ πj

′
n (Gn−1)

πjn(Gn−1)
l(sj

′

n ), for some j′ 6= j | Gn−1, ω
q
j , s
−j
n

]
= 1− Πj′ 6=jφ

H
(
sjn, π

j′

n , π
j
n

)

then we have

P(an 6= j | Gn−1, ω
H
j )

P(an 6= j | Gn−1, ωLj )
=
Es−j

n

[
1− Πj′ 6=jφ

H
(
sjn, π

j′
n , π

j
n

)]
Es−j

n

[
1− Πj′ 6=jφL

(
sjn, π

j′
n , π

j
n

)] (2.12)

Step 2: Derive φq
(
sj
′
n , π

j′
n , π

j
n

)
.

When the private belief is unbounded, φq
(
sj
′
n , π

j′
n , π

j
n

)
= F q

[
l−1
(
πj′
n

πj
n
l
(
sj
′
n

))]
.

When the private belief is bounded, note that l1 = bl
1−bl

and l2 = bh
1−bh

, then l(·) ∈ [l1, l2].

We also have that 0 < P (l(sjn) ≤ l0) < 1 if and only if l0 ∈ (l1, l2). Then consider the

following three cases:

(a) If
πj′
k

πj
k

l
(
sj
′
n

)
≥ l2, then φq

(
sj
′
n , π

j′
n , π

j
n

)
= P

[
l(sjn) ≥ πj′

n

πj
n
l(sj

′
n ) | Gn−1, ω

q
j , sn

]
= 0.

(b) If l2 >
πj′
k

πj
k

l
(
sj
′
n

)
≥ l1, then φq

(
si
′

k , π
j′

k , π
j
k

)
= 1− F q(z), where z = l−1(l(sj

′

k )πj
′

k /π
j
k);

(c) If l1 >
πj′
k

πj
k

l
(
sj
′
n

)
, then φq

(
si
′

k , π
j′

k , π
j
k

)
= 1.

Step 3.

To show that Rj
n(Gn−1) > 1 and Dj

n(Gn−1) < 1, it is sufficient to show
φH
(
sj
′

n ,π
j′
n ,π

j
n

)
φL
(
sj
′

n ,π
j′
n ,π

j
n

) >

1 and
1−Πj′ 6=jφ

H
(
sj
′

n ,π
j′
n ,π

j
n

)
1−Πj′ 6=jφ

L
(
sj
′

n ,π
j′
n ,π

j
n

) < 1 for any sj
′
n , π

j′
n , π

j
n. When the private belief is unbounded,

φq
(
si
′
n, π

j′
n , π

j
n

)
= 1− F q(z) where z = l−1

(
πj′
n

πj
n
l
(
sj
′
n

))
. By the assumption of strictly MLRP

we have FH is a (strictly) first order stochastic dominance over FL, i.e., FH(z) < FL(z).

Then we immediately have the results.

When the private belief is bounded, for case (a) and (c), φH
(
sj
′
n , π

j′
n , π

j
n

)
= φL

(
sj
′
n , π

j′
n , π

j
n

)
.

For case (b), we have
φH
(
sj
′

n ,π
j′
n ,π

j
n

)
φL
(
sj
′

n ,π
j′
n ,π

j
n

) > 1 and
1−Πj′ 6=jφ

H
(
sj
′

n ,π
j′
n ,π

j
n

)
1−Πj′ 6=jφ

L
(
sj
′

n ,π
j′
n ,π

j
n

) < 1. Since the expectation

is taken over all signals s−jn , case (b) must happen with positive probability, therefore the

results still hold.
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Proof of Proposition 2.2

If the private belief is unbounded, then for any b ∈ (0, 1), 0 < P (ps ≤ b) < 1, where

ps = P (qj = H |sjn ). Then we have that for any l0 ∈ (0,∞), 0 < P (l(sjn) ≤ l0) < 1. This

implies that l(sjn) could be larger than any K with positive probability. From Proposition

2.1 we have that an = j as long as l(sjn) > maxj′ 6=j

{
πj′
n (Gn−1)l(sj

′
n )

πj
n(Gn−1)

}
, which happens with

positive probability.

When the private belief is bounded, if πjn(Gn−1)max{πj′n (Gn−1)}j′ 6=j > bh(1−bl)
bl(1−bh)

, we have

that πjn(Gn−1)· bl
(1−bl)

> max{πj′n (Gn−1)}j′ 6=j · bh
(1−bh)

. Then l1 > max{π
j′
n (Gn−1)·l2
πj
n(Gn−1)·

}j′ 6=j. Therefore

the probability that agent j get a link from agent n is

Es−j
n
P
[
l(sjn) > maxj 6=j

πj
′
n (Gn−1)

πjn(Gn−1)
l(sj

′

n ) | Gn−1, s
−j
n

]
≥ P

[
l1 > maxj 6=j

πj
′
n (Gn−1)

πjn(Gn−1)
l2 | Gn−1

]
= 1

The first inequality follows from that 0 < P (l(sjn) ≤ l0) < 1 iff l0 ∈ (l1, l2).

If πjn(Gn−1)max{πj′n (Gn−1)}j′ 6=j < bl(1−bh)
bh(1−bl)

, we then have that πjn(Gn−1)· bh
(1−bh)

< max{πj′n (Gn−1)}j′ 6=j·
bl

(1−bl)
. Then l2 < max{π

j′
n (Gn−1)·l1
πj
n(Gn−1)·

}j′ 6=j. Therefore the probability that agent j get a link from

agent n is

Es−j
n
P
[
l(sjn) > maxj 6=j

πj
′
n (Gn−1)

πjn(Gn−1)
l(sj

′

n ) | Gn−1, s
−j
n

]
≤ P

[
l2 > maxj 6=j

πj
′
n (Gn−1)

πjn(Gn−1)
l1 | Gn−1

]
= 0.

Proof of Lemma 2.2

When the private signals are discrete, then for each sj
′
n ∈ s−jn , all the possible realization of

sj
′
n is the set S including discrete signals sm ∈ S. Then we have
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P(an = j | Gn−1, ω
H
j ) = Es−j

n

[
Πj′ 6=jφ

H
(
sj
′

n , π
j′

n , π
j
n

)]
= Σs−j

n ∈SN−2

[
P
(
s−jn
)

Πj′ 6=jφ
H
(
sj
′

n , π
j′

n , π
j
n

)]
= Πj′ 6=j

[∑
sm∈S

Pmφ
H(sm, π

j′

n , π
j
n)

]

The third equation is because of the independence of private signals. Then we can get

the ratio of linking with j under two cases of agent j being high quality and low quality,

Rj
n(Gn−1) =

P(an = j | Gn−1, ω
H
j )

P(an = j | Gn−1, ωLj )
= Πj′ 6=j

{∑
sm∈S Pmφ

H(sm, π
j′
n , π

j
n)∑

sm∈S Pmφ
L(sm, π

j′
n , π

j
n)

}
(2.13)

Similarly we have that,

Dj
n(Gn−1) =

1− P(an = j | Gn−1, ω
H
j )

1− P(an = j | Gn−1, ωLj )
=

1− Πj′ 6=j
[∑

sm∈S Pmφ
H(sm, π

j′
n , π

j
n)
]

1− Πj′ 6=j

[∑
sm∈S Pmφ

H(sm, π
j′
n , π

j
n)
] (2.14)

Proof of Theorem 2.1

When the private beliefs of the signal structure are bounded, we show that condensed pref-

erential attachment emerges with probability one.

First we can rank all private signals according to the private likelihood function, l(sm).

Note signal sM has the highest private likelihood function and s1 has the lowest private

likelihood function. Intuitively, sM is the most conclusive signal about a high type and s1 is

the lowest conclusive signal.

If πjn · l(s1) > maxj′
{
πj
′
n

}
· l(sM), then agent j will always get the new links. Since the

public likelihood of agent j will not decrease and all other agents’ public likelihood will not

increase, the condition will continue to hold. Therefore it is a sufficient condition that agent

j will get all the future links.
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We will then provide a lower bound of Rj
n for the agent with the highest public likelihood

with equation 2.13. Then we ask if this agent can be linked successively for several periods,

whether the condition πjn · l(s1) > maxj′
{
πj
′
n

}
· l(sM) could be achieved.

Let zjj′ = πj′
n

πj
n

, define each term in equation 2.13 as

ψj(z)
∆
=

∑
sm∈S Pmφ

H(sm, π
j′
n , π

j
n)∑

sm∈S Pmφ
L(sm, π

j′
n , π

j
n)
.

When z > l(sM )
l(s1)

, j cannot be linked when agent j′ is available. Then ψj(z) is only well

defined for all z ≤ l(sM )
l(s1)

. Note l(sM )
l(s1)

as z0. Also notice that ψj(z) is no less than 1 for any

z ≤ z0.

When zjj′ is small, agent j has a good reputation relatively to agent j′ then ψj(z) is

smaller. If z ≤ 1
z0

, then j′ cannot be linked when agent j is available. Therefore ψj(z) = 1.

For any sm ∈ S, the function φH(sm, π
j′
n , π

j
n) takes value from the set

Φ =
{

0, FH(s1), FH(s2), . . . , FH(sM), 1
}
,

depending on the value of zjj′ = πj′
n

πj
n

. Not matter how the signals structure looks like, the

image of ψj(z) is a finite set. Given the MLRP assumption, ψj(z) > 1 for all z ∈ ( 1
z0
, z0].

Then we can get a minimum value of function ψj(z). Note as

minz∈( 1
z0
,z0]{ψj(z)} = 1 + ψ0, ψ0 > 0

Then if agent j gets a new link, the public likelihood increase at a rate no less than ψ0.

If an agent get a new link for T periods, then the new public likelihood πjn+T > (1 +ψ0)Tπjn.

Therefore we can find a finite T such that (1 + ψ0)T > z0.

Recall that agent j has the highest public likelihood at time n. Then at time n + T we

have the following condition:

πjn+T > (1 + ψ0)Tπjn > z0π
j
n ≥ z0maxj′

{
πj
′

n

}
≥ z0maxj′

{
πj
′

n+T

}
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The last inequality is because all other agents’ public likelihood stop increasing if they don’t

get any link from period n to period n + T . The above condition implies that agent j will

become the spotlight agent after time (n+ T ).

If the private signals about agent j from time n to (n+T ) are all sM , then the aforemen-

tioned event will happen, independent of all other agents’ private signals. There probability

of agent j get T successive links from time n is no less than P (sM)T .

Now we can conclude that the condensed preferential attachment happens with proba-

bility one. Consider the probability of the opposite statement, which requires any T periods

an event (agent j doesn’t send T signals sM) with probability less than
[
1− P (sM)T

]
must

happen.

The case of binary signals are considered in closed form solution in the proof of lemma

2.5. The requirement T in binary case is not very large. For example, when the probability of

high type is pH = 0.7, p(sG) = 0.6, p(sB) = 0.4, we have T = 4. When pH = 0.6, p(sG) = 0.6,

p(sB) = 0.4, then T = 5. For most values of pH , p(sG), p(sB), T is less than 10. We also

observe the condensed preferential attachment happens quickly in the simulations

Proof of Lemma 2.3 (Fixed Number of Links)

When each agent makes K links, we consider the event that agent j is linked by agent n,

{ajn = 1}. The proof of Proposition 1 and the separation in equation (2.10) still hold. Now

we need to consider the following two cases.

When ajn = j, we can write the last term in equation (2.10) as,

ESn

[
P(an = j | Gn−1, ω

H
j )
]

ESn

[
P(an = j | Gn−1, ωLj )

] =
Esn

{
ESn−1P(

∣∣{j′ s.t. µjn ≥ µj
′
n }
∣∣ ≥ n−K, given Gn−1, ω

H
j , s

−j
n )
}

Esn

{
ESn−1P(

∣∣∣{j′ s.t. µjn ≥ µj
′
n }
∣∣∣ ≥ n−K, given Gn−1, ωLj , s

−j
n )
}

Given Gn−1, by Proposition 2.1 the two probabilities can be expressed by the following,

where q ∈ qH , qL. Given Gn−1, ω
H
j , s

−j
n , the conditional probability of that there is

no more than (n − K) agents has posterior beliefs higher than agent j is the
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following:

P(
∣∣∣{j′ s.t. µjn ≥ µj

′

n }
∣∣∣ ≥ n−K) = P

[∣∣l(sjn) ≥ z(s−jn , πn)
∣∣ ≥ n−K,

]

where z(s−jn , πn) = πj′
n (Gn−1)

πj
n(Gn−1)

l(sj
′
n ). Given the distribution of an individual signal sjn, we

can get a Kth order distribution of the Kth largest value in {s0
n, ..., s

n−1
n }. We note as

ψqK (z) = P [|l(sjn) ≥ z| ≥ n−K]. Then we can get a similar expression as

ESnP(an = j | Gn−1, ω
H
j )

ESnP(an = j | Gn−1, ωLj )
=

Es−j
n
ψHK (z(s−jn , πn))

Es−j
n
ψLK
(
z(s−jn , πn)

) (2.15)

When an 6= j, the probability can be expressed as

ESnP(an 6= j | Gn−1, ω
H
j )

ESnP(an 6= j | Gn−1, ωLj )
=

Es−j
n

[
1− ψHK (z(s−jn , πn))

]
Es−j

n

[
1− ψLK

(
z(s−jn , πn)

)] (2.16)

Proof of Proposition 2.3

When the private belief is bounded, if πjn(Gn−1)π
(K)
n (Gn−1) > β = bh(1−bl)

bl(1−bh)
, we have that

πjn(Gn−1) · bl
(1−bl)

> π
(K)
n (Gn−1) · bh

(1−bh)
. Then l1 > Kth max{π

j′
n (Gn−1)·l2
πj
n(Gn−1)·

}j′ 6=j. Therefore the

probability that agent j get a link from agent n is 1.

On the other hand, if πjn(Gn−1)π
(K)
n (Gn−1) < 1

β
= bl(1−bh)

bh(1−bl)
, we then have that πjn(Gn−1) ·

bh
(1−bh)

< π
(K)
n (Gn−1) · bl

(1−bl)
. Then l2 < Kth max{π

j′
n (Gn−1)·l1
πj
n(Gn−1)·

}j′ 6=j. Therefore the probability

that agent j get a link from agent n is 0.

With bounded private belief, the probability the first condition is strictly positive even

when qj = L. Therefore the asymptotic learning will not occur even when T is very large.
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Proof of Lemma 2.4 (Arbitrary Number of Links)

The proof of Lemma 2.3 applies to this case. The only difference is that agent n is making xn

links rather than K links. Therefore we need to substitute ψqK (z) with ψqxn (z) in equation

(2.15) and (2.16).

Proof of Lemma 2.5 (Binary Signals)

We first give the algorithm when xn = 1 and then for the general case with arbitrary xn.

Recall that P (good | H) = a and P (good | L) = a. We note that lG = a
b
, lB = 1−a

1−b , and

pG = pa+ (1− p)b. Then lG > 1 > lB.

Making one link.

When the signals are binary, in equation (2.11) we have that

φH(v) =


0 if v > lG

a, if v ∈ (lB, lG]

1, ifv ≤ lB

and

φL(v) =


0 if v > lG

b, if v ∈ (lB, lG]

1, ifv ≤ lB

where v = πj′
n (Gn−1)

πj
n(Gn−1)

l(sj
′
n ). When sj

′
n = good, v = πj′

n

πj
n
lG. Therefore z ∈ (lB, lG] is equivalent

with πj′
n

πj
n
∈ ( lB

lG
, 1]. When sj

′
n = bad, v = πj′

n

πj
n
lB. Therefore z ∈ (lB, lG] is equivalent with

πj′
n

πj
n
∈ (1, lG

lB
].

If we define zjj′ = πj′
n

πj
n

, and z0 = lG
lB

= a(1−b)
b(1−a)

> 1, then we have the following result:
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ψj(z)
∆
=
pGφ

H(good, z) + pBφ
H(good, z)

pGφH(bad, z) + pBφH(bad, z)
=



−(not defined) if z > z0

a
b
, if z ∈ (1, z0]

pGa+(1−pG)
pGb+(1−pG)

if z ∈ ( 1
z0
, 1]

1, ifz ≤ 1
z0

(2.17)

Note that Rj
n(Gn−1) = Πj′ 6=j

{∑
sm∈S PmφH(sm,π

j′
n ,π

j
n)∑

sm∈S PmφL(sm,π
j′
n ,π

j
n)

}
= Πj′ 6=jψj(zjj′). Then we can

K1(Gn−1, πn) = #{j′ | πj′n ∈ (
1

z0

πjn, π
j
n]} and K2(Gn−1, πn) = #{j′ | πj′n ∈ (πjn, π

j
nz0]}

From equation (2.5) we can get

Rj
n(πn, Gn−1) =

[
pGa+ (1− pG)

pGb+ (1− pG)

]K1 (a
b

)K2

(2.18)

.

Apply the above expression of ψj(z) to equation (2.6) we can get the result for the

reputation decay function. If there exists j′ such that πj
′
n > πjnz0, then Dj

n(πn, Gn−1) = 1. If

for all j′ we have πj
′
n < 1

z0
πjn, then agent j has so good public likelihood that she must be

linked. In this case, Dj
n is not defined. For all other cases where K1 +K2 ≥ 1, we have

Di
n(πn, Gn−1) =

1− [pGa+ (1− pG)]K1 [(1− pG) a]K2

1− [pGb+ (1− pG)]K1 [(1− pG) b]K2
.

Making arbitrary number of links.

Given an existing graph Gn−1 and agent n’s choice An, let’s look at the updating of posterior.

We are interested in the change of reputation Rj
n(πn, Gn−1) and Dj

n(πn, Gn−1).

When agent j is high type,φHxn (z(s−jn , πn)) is the probability of the signals sjn such that
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(πjnl(s
j
n)) larger than the xn-th largest (πj

′
n l
′(sj

′
n )) of all other l′, note as

(
πj
′
n l
′(sj

′
n )
)(xn)

. Then

φHxn (z) = 1 if both good signal and bad signal can make πjnl(s
j
n) ≥

(
πj
′
n l
′(sj

′
n )
)(xn)

. If only

good signal can make πjnl(s
j
n) ≥

(
πj
′
n l
′(sj

′
n )
)(xn)

, φHxn (z) = a. Otherwise if no signal can make

πjnl(s
j
n) be one of the xn largest value, φHxn (z) = 0. Therefore ψHxn (z) has only three values

1, a and 0.

When agent j is high type, ψLxn (z(s−jn , πn)) has three values 1, b and 0, similarly. We

summarize these three cases as following:



(
πj
′
n l
′(sj

′
n )
)(xn)

> πjn · lG no signal s.t. agent n links with j

πjn · lG ≥
(
πj
′
n l
′(sj

′
n )
)(xn)

> πjn · lB only good signal s.t. agent n links with j

πjn · lB ≥
(
πj
′
n l
′(sj

′
n )
)(xn)

both signals s.t. agent n links with j

We note the ex-ante probabilities of signals s−jn such that these three cases happen as

p0, p1 and p2. Then we can have

Rj
n =

p1a+ p0

p1b+ p0

(2.19)

Dj
n =

1− [p1 (1− a)]− p0

1− [p1 (1− b)]− p0

(2.20)

Since xn is arbitrary, to calculate p0 and p1 we need to consider different cases of xn. We

first define

K1 = #{j′ | πj′n ∈ (
1

z0

πjn, π
j
n]}, K2 = #{j′ | πj′n ∈ (πjn, π

j
nz0]} and K3 = #{j′ | πj′n > πjnz0}.

• If xn ≤ K3, no matter what others private signals (sj
′
n )j′ are, no signal sjn can make n

link with j. We have p0 = 1 and p1 = 0.
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• If K3 < xn ≤ K3 + K2, p2 = 0. And p0 = 1 if all the agents j′ in K2 can send

no less than (xn − K3) number of good signals. This event happen with probability∑K2

i=xn−K3
Ci
K2
piG(1− PG)K2−i.

• If K3 + K2 < xn ≤ K3 + K2 + K1, p0 = 0. And p2 = 1 if agents j′ in K1 can send

no more than (xn − K3 − K2 − 1) number of good signals. This event happen with

probability
∑xn−K3−K2−1

i=0 Ci
K1
piG(1− PG)K1−i.

• If K3 + K2 + K1 < xn, no matter what others private signals (sj
′
n )j′ are, both signals

sjn can make n link with j. We have p0 = 0 and p2 = 1.

Given any Gn−1, (πjn)j and xn, it must be one of above four cases. Then we can use p0 and

p1 in equations (2.19) and (2.20) to track the change of public likelihood. Therefore solve

the agent n+ 1’s decision problem.
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CHAPTER 3

Information Design in Contests1

3.1 Introduction

Contests are widely used to motivate economic agents to exert effort. Firms adopt contests to

promote risky innovations,2 the modern patent system is a contest by rewarding the property

right to the first innovator. Many papers in economics focus on the design of reward structure

in contests. However, in some cases, we have little leeway to choose the reward (monetary)

and it is rather given.

Consider the case in school teachers cannot choose reward in terms of exam, students’

ranking might be the only reward. In this case, what the teachers could do is to motivate

through giving information to the students about their own and relative ability to the other

students. The teachers usually may want to motivate the students to make efforts regardless

of their ability. Needless to say, a similar situation happens in workplaces.

In this paper, we consider the setting where motivating takes place only through giving

information. The reward structure of the contest is given. The designer of a contest chooses

an information disclosure policy to maximize the total effort of participants.

We assume an ex-ante asymmericity of agents. There is a strong agent who has a larger

probability to become a high ability agent, therefore can get a better outcome than the low

ability, given the same effort level. The optimal information disclosure policy we characterize

in Proposition 3.2 implies that the principal will discriminate two agents. She will disclose

1This chapter is a joint work with Daehyun Kim. (Kim: daehyunkim@ucla.edu, Department of Eco-
nomics, UCLA.)

2Che and Gale (2003) and Halac et al. (2017) study the use of contests in promoting research and
innovations. They also document many examples from both historical events and current business practice.
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no information to the strong agent. When the weak agent has a disadvantage in abilities,

the principal will partially disclose the state to him privately.

Comparing the no disclosure policy in benchmark case (Proposition 3.1), the optimal

disclosure increase the total effort. We also consider the case when principal can only send

public messages, the result (Proposition 3.4) shows no improvement to the benchmark case.

We also provide a linear programming approach (Proposition 3.3) to solve the optimal

information disclosure policy, which is the straightforward method used in the information

design literature. We expect to extend the approach to a more general setting with a richer

set of actions (or states).

3.1.1 Literature Review

Most works in the literature about the design of contests focus on the design of reward

structure.3 Here we emphasis a few papers which focus on the information revelation in

contests and the asymmericity between contestants.

Aoyagi (2010) studies the information revelation problem in a dynamic contest. The

principal can observe a signal of agents past effort, and then chose a feedback policy to

reveal this private signals to other agents. It discussed when the no-feedback policy and

full-feedback policy are optimal for principal who wants to maximize the total effort. While

our work provide a optimal revelation policy in-between the two extreme policies in a static

environment. Zhang and Zhou (2016) also studies a information design problem in contest.

In their model one agent’s valuation is common knowledge while the other agent’s valuation

is private information. The designer chooses a information disclosure policy about the private

valuation. It is essentially a persuasion problem between the designer and the uninformed

agent. In our model the information disclosure is for all contestants.

3See Che and Gale (2003), Moldovanu and Sela (2006), Siegel (2009), Siegel (2014) and Halac et al. (2017)
for the design of reward structure, i.e. “contest architecture”, and the equilibrium behavior of contestants in
different contests. See Moscarini and Smith (2007) for design of dynamic contests. Judd et al. (2012) studies
the optimal rules of requirement to accomplishing a patent and the allocation of the benefits. Akcigit and
Liu (2015) studies firms’ strategy of whether to exert effort to the dead-end or to abandon risky projects in
early stage in a contest of innovation. Szymanski and Valletti (2005) considers the effect of having a second
prizes in contests.
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Bimpikis et al. (2015) studies the design of the reward structure and the information

disclosure policy in a dynamic contest. It provides a justification of the existence of an in-

termediate reward which can disclosure information about the status of competition, besides

providing a reward. Gill (2008) considers the strategic information disclosure of a leading

innovator in a patent contests. It finds when the development costs are high, the leading

innovator has an incentive to signal its commitment to the ongoing project to deter poten-

tial rivals. In his model the principal (patent office) may not always want to maximize the

total effort considering the wasteful effort of duplication R&D, which may reduce the social

welfare.

Gershkov and Perry (2009) studies the relative importance between a midterm review

and a final review in the design of the evaluation in a contest. Ederer (2010) studies the

effect of a feedback policy in dynamic tournaments. It shows that a interim feedback also

creates signal-jamming incentive prior to the evaluation. Smolin (2015) studies the optimal

feedback policy in a principal-agent setting.

Kubitz (2015) considers a repeated contests with asymmetric players. It concludes that

in general the aggregate output (hence effort) per contest in repeated setting is lower than

that of a single contests. The private information of being a weak or strong players can lead

to productive inefficiencies. Therefore it implies a potential social improvement of reveling

private information in repeated settings. Other papers studies the asymmericity in contests

includes Cornes and Hartley (2005), Parreiras and Rubinchik (2010), Siegel (2010), and

Olszewski and Siegel (2016).

3.2 Model

We study a stylized model of contests: there are a designer and two agents I = {1, 2}. Each

of the agents is endowed with ability θi, where θi ∈ {θH , θL}, θH represents high ability and

θL represents low ability. Assume θH > θL.

Agents can choose effort level ei ∈ {0, 1}, then yields a outcome yi = ei · θi. The agent

with higher outcome will win a reward r > 0, and we normalize r = 1. If both agents make
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effort higher ability agent wins; if their types are the same or no agent exert effort, a winner

is randomly chosen. Exerting effort incurs a cost c > 0, agents want to make effort only

when their is sufficient expected reward which would compensate the cost.

As we have the same payoffs when they are the same type; from now on we denote

the state space by Ω = {ω0, ω1, ω2}, where ω0 represents the case that θ1 = θ2, ω1 and

ω2 represent θ1 > θ2 and θ1 < θ2, respectively. Note that the payoff structure has the

following properties: at ω0, the marginal benefit of playing e = 1 is the same regardless of

the opponent’s play; at ω1, the marginal benefit is larger when the opponent plays e = 1

(strategically complement): at ω1, the marginal benefit is smaller (strategic substitute).

We assume two agents are ex-ante heterogeneous: they are endowed with high ability with

different probabilities. Assume the prior of each agent being high type is given by µi. Without

loss of generality we assume µ1 > µ2, where µ1 = Prob(θ1 = θH), µ2 = Prob(θ2 = θH).

In this case, we call agent 1 a strong agent and agent 2 as weak. From them, we can

induce p0 ≡ Pr(ω = ω0) = µ1µ2 + (1 − µ1)(1 − µ2); p1 ≡ Pr(ω = ω1) = µ1(1 − µ2) and

p2 ≡ Pr(ω = ω2) = (1− µ1)µ2. Notice that p1 > p2.

The principal has an informational advantage in the sense that she can observe the true

state, i.e., the relative value of two agents’ ability.

The principal wants to maximize the total effort of two agents. For example, the employer

want all employees to work hard, the central government prefers every local official to exert

high effort. In this model, we focus on the information disclosure policy of the designer

in contests. The principal first choose a information disclosure policy, which is common

knowledge. Then she commits to this message structure. After receiving the messages,

agents choose the effort level.

3.3 Optimal information disclosure

We explore the case where agents do not know their own type; this might be the case in

the workplace when employees are just hired, they may have not realized their type, e.g.,
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productivity is determined by how they are well matched to a task. On the other hand, it

would be natural that the employer has better information as they saw many workers before.

3.3.1 Benchmark: No Information Disclosure

It is easy to see that our characterization crucially depends on the cost of effort as well as

the prior. When the state is ω1, it is always better for agent 1 to make an effort given the

opponent does so. It is the opposite when the state is ω2. When the state is ω0, it depends

on the cost. With sufficiently low cost, it is better to make an effort when the other agent

does, and vice versa. Thus, whether (1, 1) is a Nash equilibrium depends on the prior and

also the cost. We summarize the outcome of the contest under no information disclosure

case in the following proposition.

Proposition 3.1 When the cost of effort c < 1
2
. If 1

2
p0 + p1 − c > 0, then e = 1 is strictly

dominant for both agents. If 1
2
p0 + pi − c < 0 for each i = 1, 2. Then (0, 0) is the unique

Nash equilibrium with no information. Conversely, suppose (1, 1) is a Nash equilibrium with

no information. Then c < 1/2 regardless of the priors.

When the cost of effort c > 1
2
, there is no Nash equilibrium in which an agent plays e = 1.

Therefore, the unique Nash equilibrium is (0, 0).

Proof. Given c > 1
2
, each agent is better not to exert effort given the opponent does not.

Note that either 1
2
p0 + p1 − c < 0 or 1

2
p0 + p2 − c < 0, otherwise it contradicts to c > 1

2
.

Assume the above is the case. Then, playing e = 0 is strictly dominant for agent 1, so

agent 1 plays e = 0 in any NE. Given this, agent 2’s best response is also to play e = 0. A

symmetric argument applies to the second case.

Therefore, only when c < 1
2
, there is room for manipulating information which incurs

more effort in equilibrium. Also by Proposition 3.1, it should be the case that there is one

and only one of agents satisfies 1
2
p0 + pi − c < 0, otherwise, (1, 1) is a NE and no further

informational manipulation would be necessary. This implies that 1
2
p0 + p1 − c > 0 and
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1
2
p0 + p2 − c < 0 as agent 1 is stronger than agent 2 (i.e., µ1 > µ2). Note that (0, 1) is a

unique Nash equilibrium in this case.

When the two agents are ex-ante symmetric (i.e., µi = 1
2

for each i), a low cost c < 1
2

ensures both agents playing e = 1 constitutes unique Nash equilibrium. In this case, the

principal does not need to give any information to the agents.

3.3.2 Optimal Information Disclosure

Based on the previous discussion, from now on we focus on the case where 1
2
p0 + p1 − c > 0

and 1
2
p0 + p2 − c < 0.

First we argue that it is without loss to assume that agent 1 is given no information from

the principal when it comes to maximizing the expected total effort. Recall that we have

already found a Nash equilibrium where agent 1 makes an effort and agent 2 makes no effort

at each state. Thus, we can see that there is no point of recommending (1, 0) at any state.

In addition, the Nash equilibrium is weakly better to recommend (0, 1) at some state as both

recommends total 1 of effort to the agents. This means we only need to consider either (1, 0)

or (1, 1) at each state and this exactly means that the principal always recommends e = 1

to agent 1 or equivalently gives no information to agent 1.

Thus, we assume without loss of generality that agent 1 is not given any further infor-

mation and we focus on agent 2’s information. As agent 1 plays e = 1, agent 2’s incentive

compatibility with no further information is

1

2
p0 + p2 − c < 0, (3.1)

So agent 2 will make no effort. One way to improve this outcome would be to recommend

agent 2 to play e = 1 only when the state is ω2. Conditional on being recommended to play

e = 1, agent 2’s incentive compatibility constraint 1−c > 0 is clearly satisfied. Also, suppose

that the principal recommends agent 2 only when the state is ω0. Then, the IC constraint

becomes 1
2
− c > 0, which is also satisfied. Together this means that if we recommend when
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the state is either ω0 or ω2, the IC constraint vis satisfied with slack:

1

2

p0

p0 + p2

+
p2

p0 + p2

− c > 0. (3.2)

Thus, we can make agent 2 make more effort by recommending agent 2 to play e = 1

even at ω1 with some probability. For the optimality, we should increase the probability of

recommendation at ω1 until the IC is satisfied with equality:

1

2

p0

p0 + p1α + p2

+ 0 · p1α

p0 + p1α + p2

+
p2

p0 + p1α + p2

− c = 0 (3.3)

where α ∈ (0, 1] represents the conditional probability that the principal recommends e = 1

given ω1. Then, because 1
2
p0 + p2 − c < 0, we have

α =
1

p1

( 1
2
p0 + p2

c
− p0 − p2

)
. (3.4)

We also need to check after this chance agent 1’s IC is still satisfied; comparing to the

initial Nash equilibrium we started, as now agent 2 plays e = 1 with some probability at

some states. However, remember that e = 1 is strictly dominant; therefore, still agent 1’s IC

is satisfied.

With the previous discussion, we have our main result:

Proposition 3.2 [Optimal Disclosure] The optimal disclosure (including private disclosure)

by the principal is characterized as follows:

(i) The principal always recommends e = 1, and gives no further information to agent 1

(stronger agent);

(ii) For agent 2 (weak agent), the principal sends message e = 1 with probability 1 at

state ω0 and ω2. When the state is ω1, she sends message e = 1 with probability α as in

equation 3.4, and sends e = 0 with probability (1− α).

When µ1 = 0.8, µ2 = 0.2, the solid line in Figure 3.1 shows the total effort of two agents

under different cost c. When the cost is between 0.2 and 0.5,the optimal disclosure result in
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Figure 3.1: Total Effort under the Optimal Information Policy
(µ1 = 0.8, µ2 = 0.2 . The solid red line shows the total effort of two agents under the optimal

disclosure policy. The blue dashed line is the total effort under no information disclosure.)

e2 = 1 e2 = 0 e2 = 1 e2 = 0 e2 = 1 e2 = 0
e1 = 1 a0 b0 a1 b1 a2 b2

e1 = 0 c0 d0 c1 d1 c2 d2

ω0 : θ1 = θ2 ω1 : θ1 > θ2 ω2 : θ1 < θ2

Table 3.1: Probability of General Messages

a much higher total effort level than the benchmark case.

3.4 Extensions

Next we take a linear programing approach to solve the optimal information policy directly.

This approach has the potential to work with a larger state space and a richer action set.

3.4.1 A Linear Programing Approach

We allow the designer to send general messages. According to the revelation principle, any

information policy can be considered as a recommendation policy. The following table spec-

ifies the probability of each pair of actions in every state, e.g., a1 represents the probability

of sending message (1, 1) that recommends both agents to make effort 1 when the state is

θ1 > θ2. We then have di = 1− ai − bi − ci for i = 0, 1, 2.
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Denote pi as the posterior of state ωi, i = 0, 1, 2. Then p0 = µ1µ2 + (1− µ1)(1− µ2),

p1 = µ1(1− µ2), p2 = (1− µ1)µ2.

A recommendation policy should satisfy the incentive compatibility condition of two

players. After receiving the recommendation from designer, each player will update his

belief about the state, and then choose an effort.

When the designer recommend e = 1, the conditions such that both players will make

an effort are:

Player 1:

p0

(
1

2
a0 + b0

)
+ p1 (a1 + b1) + p2b2 − P1c ≥ p0

(
1

2
b0

)
+ p1

(
1

2
b1

)
+ p2

(
1

2
b2

)
(1E)

Player 2:

p0

(
1

2
a0 + c0

)
+ p1c1 + p2 (a2 + c2)− P2c ≥ p0

(
1

2
c0

)
+ p1

(
1

2
c1

)
+ p2

(
1

2
c2

)
(2E)

Where P1 = p0(a0 + b0) + p1(a1 + b1) + p2(a2 + b2) is the probability that effort 1 is

recommended to player 1, and P2 = p0(a0 + c0) + p1(a1 + c1) + p2(a2 + c2) is the probability

that effort 1 is recommended to player 2.

When the designer recommends e = 0, the conditions such that both players will make

no effort are:

Player 1:

p0

(
1

2
d0

)
+p1

(
1

2
d1

)
+p2

(
1

2
d2

)
≥ p0

(
1

2
c0 + d0

)
+p1 (c1 + d1)+p2 (d2)−(1− P1) c (1N)

Player 2:
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p0

(
1

2
d0

)
+p1

(
1

2
d1

)
+p2

(
1

2
d2

)
+ ≥ p0

(
1

2
b0 + d0

)
+p1 (d1)+p2 (b2 + d2)−(1− P2) c (2N)

Note that we use total probabilities in these IC constraints. When the designer never

recommend an effort to an agent, the respective IC constraint is not necessary.

The designer want to maximize

max E(e1 + e2) = p0 (2a0 + b0 + c0) + p1 (2a1 + b1 + c1) + p2 (2a2 + b2 + c2) (3.5)

This optimization problem is a linear programming problem. We can obtain the optimal

solution by considering the value of each probabilities in the optimal policy, as the claims of

the four steps in the proof of the following proposition. The result is the same as Proposition

3.2.

Proposition 3.3 (1). If c ≤ 1
2
− 1

2
∆µ, the policy of no information disclosure can make

e = (1, 1) the unique equilibrium.

(2). If c ∈
(

1
2
− 1

2
∆µ, 1

2

)
, there is an unique optimal information disclosure policy, in

which a1 = 1 − (µ1−µ2)−(1−2c)
2µ1(1−µ2)c

, b1 = (µ1−µ2)−(1−2c)
2µ1(1−µ2)c

, a2 = a0 = 1. The two agents will make

effort according to the designer’s recommendation. The expected total effort is E(e1 + e2) =

2− (µ1−µ2)−(1−2c)
2c

.

(3). If c ≥ 1
2
, no message policy could satisfy all the IC conditions. The only equilibrium

is e = (0, 0).

Proof. Part (1). When c ≤ 1
2
− 1

2
∆µ, with no information disclosure, the players use the

priors (p0, p1, p2) to evaluate the payoffs.

Given that player 2 will make effort with probability q2, agent 1 will make effort if and

only if
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p1q2 + (1− q2) +
1

2
p0q2 − c >

1

2
(1− q2). (3.6)

Then we have
(
p1 + 1

2
p0 − 1

2

)
q2 > c− 1

2
. To make e = (1, 1) an pure strategy equilibrium,

we need p1 + 1
2
p0 > c and p2 + 1

2
p0 > c. When c ≤ 1

2
− 1

2
∆µ, both two conditions are satisfied.

Part (3). Given an arbitrary information policy, denote A = p0a0 + p1a1 + p2a2, B =

p0b0 + p1b1 + p2b2, and C = p0c0 + p1c1 + p2c2. Adding the LHS of (1E) and (2E) we have

(A+B + C)− (2A+B + C) c ≥ 1

2
(B + C) (3.7)

It implies c ≤ 1
2
. When c ≥ 1

2
, there does not exist any private message to induce effort

1 with positive probability.

Corollary 3.1 If c ∈
(

1
2
− 1

2
∆µ, 1

2

)
, the probability of agent 2 not making effort under the

optimal recommendation policy, p1b1 is strictly increasing in c. The expected total effort is

strictly decreasing in c. When fixing µ1 or µ2, p1b1 is strictly increasing in ∆µ = µ1 − µ2,

and the expected total effort is strictly decreasing in ∆µ.

3.4.2 Public Message

Now we restrict to the case that the designer can only send public messages to the agents.

Signal spaces can be arbitrary. Then a public message will result in a posterior pn at state

ωn, n ∈ {0, 1, 2}.

So the agent i problem is to maximize the payoff given the other agent’s choice of effort,

Maxei P (θiei > θjej | m) +
1

2
P (θiei = θjej | m)− c · ei (3.8)

Agent i will choose ei = 1 if and only if
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P (θi > θj | m)P (ej = 1) + P (ej = 0) +
1

2
P (θi = θj | m)P (ej = 1)− c > 1

2
P (ej = 0). (3.9)

For agent 1, the condition can be reduced to

(
p1 +

1

2
p0 −

1

2

)
P (e2 = 1) > c− 1

2
(3.10)

To make e = (1, 1) an equilibrium, we need
(
p1 + 1

2
p0 − 1

2

)
> c−1

2
. Therefore

(
p1 + 1

2
p0

)
>

c.

Compare the above condition with the benchmark case in Proposition 3.1, we can see the

similarities between the conditions of these two problems. Furthermore, we can show that

with public message the designer cannot do better than the no disclosure benchmark.

Proposition 3.4 When the designer can only send public messages, she cannot get any

equilibrium better than the no disclosure policy.

Proof. When c ≤ 1
2
, if p1 + 1

2
p0 > c, the policy of no information disclosure can make

e = (1, 1) the unique equilibrium. There are also other policies can achieve this equilibrium.

Otherwise if pi + 1
2
p0 < c for each i, then (0, 0) is the unique equilibrium. The condition of

exerting effort is the same as that of the benchmark case.

When c > 1
2
, e = (0, 0) is always an equilibrium. No policy can make e = (1, 1) or (0, 1)

pure strategy equilibria.

Suppose there exists a mix strategy equilibrium, then we need
(
p1 + 1

2
p0 − 1

2

)
P (e2 =

1) = c − 1
2

and
(
p2 + 1

2
p0 − 1

2

)
P (e1 = 1) = c − 1

2
. Therefore

(
p1 + 1

2
p0 − 1

2

)
> 0 and(

p2 + 1
2
p0 − 1

2

)
> 0. Since these two conditions will not hold at the same time. No policy

can achieve mix strategy equilibrium.

Therefore, with only public messages, the principal can only yield the same payoff with

the no disclosure case. It create an incentive for the designer of a contest to be able to

communicate with individual participants privately.
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3.5 Conclusion

We provide a model studying the optimal information design in contests. When there is

asymmericity between contestants, the designer can increase the total effort by partially

revealing information to the weak player.

We completely solve the simple model with two agents, two types, and two actions.

Comparing with the no information disclosure benchmark, the optimal policy significantly

increase the total effort level. Private information disclosure is important, since the public

message can only yield the effort level as the benchmark case.

3.6 Appendix

Proof to Proposition 3.3

The optimization problem is a linear programming problem. First we can replace the prob-

ability di with (1− ai − bi − di). Then the problem becomes the following.

max E(e1 + e2) = p0 (2a0 + b0 + c0) + p1 (2a1 + b1 + c1) + p2 (2a2 + b2 + c2) s.t.


κp0 κp0 0 p1(1− c) κp1 0 −p2c κp2 0

κp0 0 κp0 −p1c 0 κp1 p2(1− c) 0 κp2

p0 p0 0 p1 p1 − p1
2κ p2 p2

p2
2κ

p0 0 p0 p1
p1
2κ p1 p2 − p2

2κ p2

X1 ≥


0

0

1

1


where X1 = (a0, b0, c0, a1, b1, c1, a2, b2, c2)T , κ = 1

2
− c. Note that there are extra constraints

that ai + bi + ci ≤ 1 and ai, bi, ci ≥ 0 for i = 0, 1, 2.

Claim 1 In the optimal solution, d0 = d1 = d2 = 0.

First observe the coefficients of a0, b1, c2 in all constraints are nonnegative. We underline

an element in the above matrix if it’s negative. Then if d0 > 0, we can decrease d0 and
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increase a0 by the same amount; if d1 > 0, we can decrease d1 and increase b1; if d2 > 0, we

can decrease d2 and increase c2. Each of above adjustment will leave the inequality still hold

and results in a weakly higher object function.

Claim 2 The IC constraint for player 2 to make effort (2E), and that for player 1 to not

make effort (1N), are binding under the optimal solution.

Since di = 0, we can replace ci with (1− ai − bi). The problem then becomes

max E(e1 + e2) = 1 + p0a0 + p1a1 + p2a2 s.t.


κp0 κp0 p1(1− c) κp1 −p2c κp2

0 −κp0 − 1
2p1 −κp1 1

2p2 −κp2
p0 p0 p1(1 + 1

1−2c ) p1(1 + 1
1−2c ) p2(1− 1

1−2c ) p2(1− 1
1−2c )

0 −p0 0 p1( 1
1−2c − 1) 0 p2(− 1

1−2c − 1)

X2 ≥


0

−( 1
2 − c)

1 + p1−p2
1−2c

0



where X2 = (a0, b0, a1, b1, a2, b2)T .

Suppose the second condition (IC of 2E) is not binding. If a1 6= 1, we can increase a1 a

little bit and decrease c1. Otherwise if a1 = 1 and a0 6= 1, we can increase a0 and decrease

b0. Otherwise if a2 6= 1 and a0 = a1 = 1, we can increase a2 and decrease b2 by the same

amount and it will not affect the first condition. All these adjustments will make the IC

constraints still hold and get a higher effort. We argue that a0 = a1 = a2 = 1 cannot be the

optimal solution. Otherwise the second condition becomes 1
2
(p2− p1) > −(1

2
− c). Therefore

c < 1
2
− 1

2
(p1 − p2) = 1

2
− 1

2
∆µ, which violates the assumption of cost.

Suppose the third condition (IC of 1N) is not binding. If a0 6= 1, then we can increase

a0 and decrease b1 or c1. Otherwise if a0 = 1 and a1 6= 1, we can increase a1 a little bit and

decrease b1 and c1, while leaving the second condition unchanged. Otherwise if a2 6= 1 and

a0 = a1 = 1, we can increase a2 and decrease b2 by the same amount, and this will not affect

the first condition. From above argument we know that a0 = a1 = a2 = 1 cannot be the

optimal solution.
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Claim 3 In the optimal solution, b0 = c0 = 0, a0 = 1.

If b0 6= 0, we can increase a0 and decrease b0 by the same amount and all the constraints

still hold. Note the coefficient of a0 are all nonnegative, therefore if c0 6= 0 , we can always

increase a0 and leave the constraint unchanged. Therefore in the optimal solution a0 = 1.

Divide both sides of the first two constraints by (1
2
− c), and note τ = 1

1−2c
= 1

2κ
. The

problem becomes

max E(e1 + e2) = 1 + p0 + p1a1 + p2a2 s.t.


p1(1 + τ) p1 −p22cτ p2

−p1τ −p1 p2τ −p2

p1(1 + τ) p1(1 + τ) p2(1− τ) p2(1− τ)

0 p1(τ − 1) 0 p2(−τ − 1)

X3 ≥


−p0

−1

p1(1 + τ) + p2(1− τ)

0


where X3 = (a1, b1, a2, b2)T .

Claim 4 In the optimal solution, c1 = c2 = 0.

If c1 6= 0, then we can decrease c1 by 2ε, and increase both a1 and b1 by ε. Given that

the third constraint is binding, we have p1(1 + τ)c1 = p2(τ − 1)c2. Therefore we should also

decrease c2 by p1(1+τ)
p2(τ−1)

· 2ε. Then we increase both a2 and b2 by p1(1+τ)
p2(τ−1)

· ε. Now the change in

the LHS of (2E) is ∆ = −p1(1 + τ)ε + p2(τ − 1) · p1(1+τ)
p2(τ−1)

· ε = 0. The other two constraints

still hold. Thus c1 = 0 and from the third constraint, c2 = 0.

Now we can ignore the third constraint and the problem can be reduced into

max E(e1 + e2) = 1 + p0 + p1a1 + p2a2 s.t.
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p1τ −p2τ

−p1(τ − 1) p2(τ + 1)

−p1(τ − 1) p2(τ + 1)


 a1

a2

 ≥


−1

−1 + p1 + p2

p2(τ + 1)− p1(τ − 1)


The third constraint is redundant because −1 + p1 + p2 ≥ p2(τ + 1)− p1(τ − 1) implies

c ≥ 1
2
− 1

2
∆µ. Since the second constraint is binding, then p1(τ − 1)a1 = p2(τ + 1)a2 + p0.

Therefore the optimal solution must be a corner solution.

If a2 = 1, then a1 = p2(τ+1)+p0
p1(τ−1)

. This solution satisfies the other two constraint. (The

first condition implies a1 ≥ p2+2c−1
p1

, then we have p2 + p0 ≥ −p2 − 1 + 1
τ

which is true.

If a1 = 1, then a2 = p1(τ−1)−p0
p2(τ+1)

. But p1(τ−1)−p0
p2(τ+1)

= p1τ+p2−1
p2τ+p2

> 1, since τ > 1
p1−p2 .

The optimal solution is a2 = 1, b2 = 0, a1 = p2(τ+1)+p0
p1(τ−1)

, and b1 = 1−a1.Thisistheoptimaldisclosurepolicy.
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