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Abstract

Monoidal Structure in Mirror Symmetry and
Noncommutative Geometry

by

Hanh Duc Do

Doctor of Philosophy in Mathematics at the

University of California, Berkeley

Professor Alan Weinstein, Chair

In the thesis, we initial first steps in understanding Quantum mirror symmetry
and noncommutative compactification of moduli spaces of tori. To obtain a global
invariant of noncommutative torus bundle, we study the monodromy of Gauss-
Manin connection on periodic cyclic homology groups of Heisenberg group. Then
the global monodromy map is developed, and provides a criterion to detect when
a noncommutative torus bundle is dequantizable. A process to construct the de-
quantizing Poisson manifold is given, when the dequantization criterion is satisfied.
Naively, it seems that the Morita theory for noncommutative torus bundles can
be developed naturally as in Rieffel theory for rotation algebras. However, this
assumption turns out to be wrong; the Morita class of a non-dequantizable non-
commutative torus bundle is not a classical object in the category of C∗−algebras,
and we call them C∗−stacks. Even with the extended notion of C∗−stacks, the
Morita theory is still incompatible with noncommutative torus bundles with the
infinite Poisson limit. There is no rotation algebra that can be used to compact-
ify the moduli space of rotation algebras, even though we know that the “infinite
Poisson rotation algebra” is strongly Morita equivalent to the classical torus. This
subtlety is completely solved by a new mathematical structure hidden behind the
quantization of constant Dirac structures on the tori.

We develop a new theory of quantum spaces called spatial structure to give
a better understanding of quantum spaces and torus fibrations. We clarify some
examples of spatial algebras and construct a monoidal structure from a given
spatial structure. Using Hilsum-Skandalis maps between groupoids, we find that a
groupoid presentation of a C∗- algebra implies a monoidal structure on the category
of representations. We decompose the spatial product of the cyclic modules over
the rotation algebras as an example, and propose a conjecture that a quantum
mirror symmetry lies behind the spatial structure and the Hopfish structure in the
sense of Tang and Weinstein.
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Chapter 1

Introduction

It is widely believed in super-string theory that to a Calabi-Yau manifold
(X, g, J, ω), we can associate two kinds of quantum field theories (QFTs), an
A-model and a B-model. The A-model is based on the symplectic structure
ω and the B-model is based on the complex structure of the same Calabi-Yau
manifold X.

The construction of physical models from Calabi-Yau manifolds is not
1-1, as there are many known examples of different Calabi-Yau manifolds
with isomorphic QFTs. In fact, for a large class of Calabi-Yau manifolds,
there is a relation between them, called mirror symmetry, and those which
are mirror-symmetric to each other are called mirror pairs.

Mathematically, Kontsevich in [43] made a conjecture that mirror sym-
metry for a pair of Calabi-Yau manifolds is an equivalence between the de-
rived category of quasi-coherent sheaves on one Calabi-Yau manifold and the
derived Fukaya category of the other, and he calls it Homological Mirror
Symmetry. Roughly speaking, it is an equivalence between categories of D-
branes of A-models and B-models, and can be viewed as a correspondence
from complex algebraic geometry to symplectic geometry. In [84], any Calabi-
Yau manifold is conjectured to form a Special Lagrangian Torus Fibration
(SLAG), and the Mirror Symmetry in this case turns out to be T-duality
between torus fibrations.

However, Mirror Symmetry is not just an equivalence between the trian-
gulated categories, but is expected to be an equivalence between monoidal
categories, like the way Fourier transform intertwines the normal product and
the convolution product. In [85], the monoidal structure of the Donaldson
category is constructed from the addition along the torus direction. Subotic

1



[85] proved, with direct calculations, that the products of the elements of
the Donaldson categories, that is, in the case of two-dimensional tori with
a complexified symplectic structure, the monoidal Fukaya category with the
addition along the torus direction is equivalent to the monoidal category of
coherent sheaves on elliptic curves with the tensor product. Therefore, Mir-
ror Symmetry is conjectured to intertwine the monoidal Fukaya structure
and tensor product structure of the corresponding torus fibrations.

From a physical point of view, mirror symmetry is an isomorphism be-
tween supersymetric (SUSY) sigma models with the symplectic and complex
manifolds as the targets. However, a symplectic manifold is also a Poisson
manifold, and the quantization of the sigma models with the Poisson target
is known to have interesting relationship with the deformation quantization
of Poisson manifolds as in [13].

Given a Poisson manifold (P, π), the deformation quantization process
associates to it a noncommutative algebra A~ depending on a parameter ~
such that A0 is isomorphic to C∞(P ) and

lim
~ 7→0

f ∗~ g − g ∗~ f
i~

= {f, g}π.

Depending on the topological structure and the nature of the convergence,
there are many kinds of deformation quantization known up to now (among
them are the formal deformation quantization of [27, 44] for formal algebras,
and the strict deformation quantization by Rieffel [74] for C∗−algebras).

The rotation algebra in some sense is viewed as the deformation quanti-
zation of the symplectic torus as in [77, 74], and also viewed as the groupoid
C∗− algebra [70] of the transformation groupoid Z acting on S1 by transla-
tion. In [3], the group structure on S1 is composed with the Morita functor
to obtain a new mathematical monoidal structure on the category of Modules
of noncommutative two-tori, called a Hopfish algebra. The authors of [3] also
compute the monoidal product between cyclic modules as an example.

The same story also appears in Geometric Langlands program, where
Mirror symmetry is realized as the Langlands duality via the work [41] of
Kapustin and Witten. The Langlands duality can be thought of as the com-
position of the Mirror symmetry for Hitchin fibrations and the quantization
of the Hitchin systems by D-modules, as in the lecture by Donagi and Pantev
[22]. Therefore, it should be interesting to study the analog of the Langlands
correspondence from the viewpoint of C∗− algebras.

2



We can summarize these correspondences in the following diagram 1. 1,
on the next page.

Noncommutative Algebra

Symplectic
Geometry

Quantization

99

Mirror Symmetry
//
Complex
Geometryoo

C∗− Langland duality

ee

Table 1.0.1: Triangle of areas

Noncommutative geometry of the quantum tori arises naturally when we
compactify the M-theory over a torus by the work by Connes, Douglas and
Schwarz [15]. The three authors show that deforming a classical torus to a
quantum torus corresponds to turning on a constant 3-form background, and
the SL(2,Z)− symmetry of noncommutative tori predicted in noncommuta-
tive geometry is equivalent to T-duality of the noncommutative Yang-Mills
theory.

Later, in the famous paper [80], Seiberg and Witten use the idea to study
the quantization of open super-string theories in the presence of a B-field,
and show that the noncommutative Yang-Mills theory is low level limit of
super-string theory. Therefore, we hope that studying the Morita equivalence
of the bundle of noncommutative two-tori may help us understand the mirror
symmetry in super-string theory and M-theory.

Content of the thesis
In this thesis, we study the connections between the monoidal structures

on the above mathematical objects, which are the preparatory steps to under-
standing Mirror Symmetry. The remaining steps will appear in forthcoming
papers.

The material is organized as:
In chapter two, we study the Morita equivalence between noncommuta-

tive two-torus fibrations, which can be viewed as the quantization of torus
bundles with respect to Poisson structures, or by turning on magnetic fields
as mentioned in [53]. It is known that Morita equivalent algebras have equiv-
alent categories of representations, so Morita equivalence between noncom-

3



mutative two-torus bundles may be viewed as an isomorphism between their
representation categories. We classify the bundle up to a Morita equiva-
lence and study the bundle of periodic cyclic homology with the tool of the
Gauss-Manin connection. The monodromy of some noncommutative bundles
(including group C∗−algebras of discrete Heisenberg group) is also studied,
and will be a condition for a noncommutative two-torus bundle to be a quan-
tization of a symplectic torus fibration. We develop the notion of bundles
of C∗−algebras with Morita bimodules playing the role of gluing functions,
which is analogous to the notion of the bundles of stacks. And finally, to
understand the Morita equivalence of the bundles, it is necessary to use the
Dirac structure to compactify the moduli space of noncommutative two-tori,
as well as to introduce a new mathematical structure to detect the difference
between various kinds of noncommutative geometries.

In chapter three, we develop a new theory of quantum spaces. In Non-
commutative Geometry, it has been widely believed that a noncommuta-
tive space is determined by its category of representations. Equivalently, a
quantum space (in the sense of Alain Connes [14]) is “defined” as a Morita
equivalence class of C∗−algebras. However, motivated in part from Mirror
Symmetry as well as from classical Harmonic Analysis (different groupoids
with isomorphic C∗−algebras), we propose that more information is needed
to specify the quantum spaces. The information is the rigorous mathematical
formulation of the notion of “points” to remember the base manifold of the
groupoid. The structure is represented in terms of monoidal structures of
representation categories, which we name “spatial structure”. After defining
the structure, we clarify some examples of spatial algebras and develop a
rigorous way to construct a monoidal structure on the category of modules.
Using Hilsum-Skandalis maps between groupoids, we show that groupoid
presentations of C∗−algebras implies monoidal structures on the categories
of representations. For the classical case, i.e. commutative C∗−algebras of
functions on locally compact spaces, the spatial structure reduces to familiar
tensor products of sheaves. Finally, we decompose the spatial product of the
cyclic modules of the rotation algebras like the way Hopfish algebra entering
the picture [3]. The result we obtain, after a twisting with an automorphism,
coincides with the Hopfish monoidal structure obtained from the addition of
the circle, which forms a new motivation for understanding Mirror Symmetry
at the quantum level.

The main results on the thesis are:

4



• 1-Theorem 2.4.5: Classification of homotopically trivial bundles of non-
commutative two-tori up to an isomorphism.

• 2-Theorem 2.4.13: Compute the monodromy of the periodic cyclic ho-
mology of the C∗−algebra of the discrete Heisenberg groups.

• 3-Theorem 2.9.1: Construction of the monodromy map for all noncom-
mutative two-torus bundles.

• 4-Theorem 2.9.3: Giving a condition when the semi-classical bundle
exists. A construction is given when the monodromy map is trivial.

• 5-Theorem 2.9.10: Classification of Morita equivalence of noncommu-
tative two-torus bundle over contractible spaces.

• 6-Theorem 2.9.12: For the noncommutative two-torus bundles with
nontrivial monodromy, the Morita equivalence degenerates to isomor-
phic relation.

• 7-Definition 2.9.13 Introduction of bundles of C∗−stacks, and giving a
complete classification.

• 8-Theorem 2.9.16: Construction of the spatial C∗−stack of deformation
quantization of Dirac structure. A special case is spatial structure of
quantum two-torus.

• 9-Examples 2.9.18: Computation the spatial products for the two tori.

• 10-Theorem 2.9.15: Show that we can not naively compactify the mod-
uli space of noncommutative two-tori by just adding a classical torus
and describe the structure of the moduli space and the infinity spatial
stack singularity.

• 11-Definition 3.3.1: Give definition of spatial structure.

• 12-Theorem 3.3.6: Show that any locally compact groupoids with a
Haar system can be associated with a spatial structure.

• 13-Theorem 3.3.10: Show that the algebras of Morita equivalent groupoids
are spatial Morita equivalent.

5



• 14-Theorem 3.3.14 and example 3.3.15 computation of spatial monoidal
product for the spaces and Abelian groups.

• 15-Theorem 3.3.24: Show that we can use the induction functor and
give a construction of the crossed product of a spatial algebra by a
locally compact group.

• 16-Theorem: 2.9.14 Compute the spatial product for the noncommu-
tative two-torus coming from cross product of Z on S1.

• 17-Theorem 3.5.1: Compute the natural spatial structure arises from
the C∗−algebras of the discrete Heisenberg group.

Relationship with the work of Echterhoff [25], Hannabus andMathai
[34]

The noncommutative two-torus bundle in our sense is the actual torus
bundle, not in the sense of stacks. In fact, a noncommutative two-torus
bundle in the sense of [34, 25] is defined to be any bundle such that the
crossed product with the action of a classical torus is Morita equivalent
to a bundle of algebras of compact operators [34]. On the other hand, the
tensor product of a noncommutative two-torus bundle with a twisted bundle
of algebras of compact operators is still a noncommutative two-torus bundle
in their view. Therefore, their definition requires a Douady-Dixmier class in
H3(X,Z), which controls the twisted bundles of algebras of compact opera-
tors.

For the same reasons, their objects are in fact only defined in terms of
Morita equivalent classes of algebras. Then, modulo twisting by Douady-
Dixmier classes, Theorem 3.2 in [34] gives an equivalent definition to our
work. In fact, most of their work was known earlier by Echterhoff, Nest
and Oyono-Oyono in [25]. Although they share the idea of using the strict
deformation quantization of tori to deal with the bundles, Poisson torus
bundles as well as the dequantization condition has never been constructed
and mentioned. For this reason, we have to go through all of the Gauss-
Manin connections.

Future plan
As mentioned earlier, the thesis is a part of a series of works with many

steps to understand the Mirror Symmetry conjecture, but many of them
have been deferred to future papers due to limitations in the space and time
(not the four dimensional space-time). In fact, we also have dequantized

6



the above ideas to develop monoidal and spatial structures of generalized
complex spaces and studying the mirror symmetry between these structures.
On the other hand, in another work, we also proved that the quantization of
the Subotic monoidal products for the symplectic torus bundles is isomorphic
to the Hopfish structure invented by Tang, Weinstein and Zhu in [90] and
developed in [3]. We also built a mathematical framework for the convergence
of the elliptic curves to the noncommutative two-tori. Very recently, we show
that the isomorphic relation of the moduli spaces of coisotropic sub-groupoids
of the groupoids integrating Dirac tori is in 1 − 1 correspondence with the
Morita equivalent of the quantum tori.

All of the above fit in one picture, where there is a big mathematical
structure lying behind everything and a big symmetry group controls Morita
equivalence of noncommutative algebras, mirror symmetry of Generalized
complex monoidal spaces and they make sense even in the level of stacks. It
corresponds to the stories happening in M-theory, super-string theory, and
noncommutative Yang-Mill theory.

We hope that it is possible to understand these concepts better in the
future.

7



Chapter 2

Fields of noncommutative
two-tori and Dequantization

In general, an open set of a moduli space is determined by the groupoids
of continuous fields of objects with some kinds of the isomorphisms between
them. It is also widely believed among the experts [51, 52] that the moduli
space of noncommutative two-tori will be isomorphic to the noncommutative
boundary of the noncommutative compactification of the moduli space of the
enhanced elliptic curves M1,1.

Therefore, to understand the noncommutative compactification of the
moduli space of elliptic curves, we need to restrict our study to two main
objects: the bundle of noncommutative two-tori and the bundle of elliptic
curves with the J-invariant passing through the real line.

In this chapter, we study the bundles of noncommutative two-tori up to a
Morita equivalence and the relationship with their semi-classical limit. The
main technique that we use is the Gauss-Manin connections on the bundles
of periodic cyclic homologies.

The main theorems in this chapter are Theorem 2.4.5 on the classification
of homotopically trivial bundles of noncommutative two-tori, the monodromy
theorem 2.4.13, the conditions for the existence of the dequantization bundle
2.9.3,and Theorem 2.9.16 on the Dirac structure and spatial singularity.

We expect that our work may help understanding the missing T-duality
in the work of Mathai and Rosenberg [54].

8



2.1. NONCOMMUTATIVE TWO-TORI

Torus bundles
Mathai missing T − duality

��
Noncommutative torus bundles

GM monodromy+ localMorita functor
��

Bundles of C∗−stacks
Global Morita functor

��
Quantization of Dirac bundles to spatial algebras.

Table 2.0.1: Main approach

2.1 Noncommutative two-tori
In this section, we recall noncommutative two-torus algebras. Most of the
material is taken from [17].

2.1.1 Definitions of Noncommutative Two Tori
A noncommutative two torus algebra is defined to be the universal C∗−algebra
generated by two unitary operators U and V satisfying the relationship

UV = e2πiθV U, (2.1.1)

where θ is a real constant. By abuse of language, we simply call it a non-
commutative two-torus. In the thesis, we use the notation Tθ for the non-
commutative two-tori.

There are many equivalent ways to understand noncommutative two-tori.
The most natural way is to use the canonical model where the torus acts on
a Hilbert space. Let H be L2(R/Z, dx) and consider two unitary operators,
the multiplication by e2πix and the rotation by θ. Namely, let f ∈ H, which
is identified with a periodic function on R of period 1, the actions of two
unitary operators U and V are given as

U(f)(x) = e2πix.f(x)

and
V f(x) = f(x− θ)

9



2.1. NONCOMMUTATIVE TWO-TORI

acting on H. A simple calculation shows that Equation 2.1.1 is satisfied.
A noncommutative two-torus can also be thought of as the groupoid

C∗−algebra of a translation groupoid. Namely, let S1 oλ Z be the groupoid
of translation of the circle S1 = R/2πZ by λ. Do notice that the notation
here is quite different, because we want to keep the consistency in Theorem
3.4.2 with [3]. The source and target maps are

β(t, n) = t

α(t, n) = t+ n.λ.

If the two arrows (t1, n1) and (t2, n2) are composable, i.e. β(t1, n1) = α(t2, n2),
that is t1 = t2 + n2λ, then the product of the two arrows is (t2, n1 + n2).

Fixing the Haar measure on S1, and the counting measure on the fibers
of the groupoid, the convolution product on the Cc(S1 o Z) is defined by

a ∗ b(t, n) =
∑
k∈Z

a(t+ kλ, n− k)b(t, k) (2.1.2)

and the involution is defined by a(g) = a(g−1). For the special class of func-
tions am,j ∈ C(S1 × Z) given by

am,j(t, k) = eimtδjk (2.1.3)

the convolution 2.1.2 is equivalent to

am1,j1 ∗ am2,j2 = eim1j2λam1+m2,j1+j2 (2.1.4)

and the involution is equivalent to

a∗mj = eiλmja−m.−j (2.1.5)

If we write U = a10 and V = a01, then U and V are unitary elements and we
have

UV = a10a01 = eiλa11 = a01 ∗ a10 = eiλV U.

With the substitution λ = 2πθ, we obtain Equation 2.1.1. Therefore, the
vector space 〈am,j〉m,j is generated by U and V, and is dense in the C∗−closure
of Cc(S1 oZ). This gives us the second description of noncommutative two-
tori.

Alternatively, from the viewpoint of noncommutative dynamical systems
as in [17], it is equivalent to think of the noncommutative two-tori as the

10



2.1. NONCOMMUTATIVE TWO-TORI

crossed product of Z with C(R/Z). To be precise, let V be the automorphism
of C(R/Z) generated by the translation f(x) 7→ f(x − θ). Then there is an
action of Z on C(S1) given by n 7→ V n. Then the noncommutative two-torus
is isomorphic to the crossed product C(R/Z)oZ corresponding to this action,
which gives us the third definition.

Now let G be a discrete group. By a 2-cocycle on G, we mean a function
σ : G×G→ U(1) = {z ∈ C | |z| = 1} such that

σ(g, h)σ(gh, k) = σ(g, hk)σ(h, k) for all g, h, k ∈ G.

We assume that σ is normalized, i.e.

σ(g, e) = σ(e, g) = 1 for all g ∈ G.

We define the twisted product for Cc(G) as

(
∑
g

agg).(
∑
h

bhh) =
∑
g,h

agbh.σ(g, h)

and the involution as
a∗g = σ(g, g−1)ag−1 .

Then the completion under the enveloping C∗− norm is called the full twisted
group C∗−algebra and denoted by C∗(G, σ). For the case with G = Z2 and
σ((m,n)(p, q)) = e2πi(mq−np)θ, the twisted group C∗−algebra is also isomor-
phic to the noncommutative two-torus, and this constitutes the fourth defini-
tion [92]. Twisted groupoid C∗−algebras can also be developed via cocycles
on groupoids [70].

The fifth way to think of a noncommutative two-torus came from a re-
mark by Weinstein about the relation between operator algebras and Poisson
geometry. The rotation algebras were first recognized in [76] as the defor-
mation quantization of the classical torus under the direction of a constant
Poisson structure θ∂x ∧ ∂y. In fact, in [89], under a suitable change of vari-
able and Fourier transform in the Z direction, the crossed product 2.1.2 is
equivalent to

f∗θg(q1, q2) = 1
(πθ)2

ˆ
R4
e

2π
√
−1
θ

(u2v1−u1v2).f(q1+u1, q2+u2).g(q1+v1, q2+v2)dudv

(2.1.6)
When θ goes to zero, then f ∗θ g goes to f.g, the usual product of functions.
From this observation, Rieffel [76, 74] has developed a theory of strict defor-
mation quantization in 2.3.2, where the commutative algebra is the algebra

11



2.1. NONCOMMUTATIVE TWO-TORI

of functions on a Poisson manifold, and the deformed algebra is some dense
subalgebra of the C∗−algebra. Normally, the subalgebra is the algebra of
smooth elements defined by the action of the classical torus, and in this case
it is the algebra of fast decaying series in U and V given by

T∞θ =
{∑

am,jU
mV j | sup

(m,j)∈Z2
| am,j | (1+ | m | + | j |)p <∞ for all p ∈ Z

}
(2.1.7)

with the same multiplication 2.1.4 and involution 2.1.5. We call the subalge-
bra the smooth noncommutative two-torus. The definition of strict de-
formation quantization can be found in 2.3.2. This approach builds a bridge
between the differential geometry of Poisson manifolds and the noncommu-
tative geometry of C∗−algebras. From the viewpoint of Alain Connes [14], a
noncommutative two-torus algebra is the algebra of continuous functions on
a virtual object called a noncommutative two-torus.

We would like to remark that there are different hidden structures corre-
sponding to the different definitions of a noncommutative two-torus. These
spatial algebra structures will be developed in chapter 3.

2.1.2 Automorphisms of Noncommutative two-torus
It is well known that two noncommutative two tori are isomorphic if θ =
±θ′ + n for some n ∈ Z. The isomorphism between Tθ and T−θ is realized
by the flip U ↔ V, and the isomorphism Tθ ∼= Tθ+1 is built in the definition
2.1.1. However, the full classification of noncommutative 2-tori up to an
isomorphism is highly nontrivial, which is proved by Rieffel [71].

To study the structure of bundles of noncommutative two-tori, it is nec-
essary to understand the automorphism group of a single noncommutative
two-torus. There are some well known classes of automorphisms of a non-
commutative two-torus.

The first class consists of the canonical action of the classical torus on
the quantum torus. For any constants λ, µ on the unit circle (|λ| = |µ| = 1),
the pair (λU, µV ) also satisfies the condition 2.1.1. Therefore, the operators
defined as

Φλ,µ(
∑
m,n

am,n.U
m.V n) =

∑
m,n

am,n.(λU)m.(µV )n (2.1.8)

can be extended from the subalgebra of polynomials in variables (U, V) to a
C∗−automorphisms of Tt. Consequently, Φλ,µ gives an action of the classical

12



2.1. NONCOMMUTATIVE TWO-TORI

torus T2 on the noncommutative two-torus Tt. It is important that this
action induces a smooth structure on the C∗−algebra so that we can do
differential geometry on it. Notice that the automorphisms of this kind are
isotopic to the identity.

The second class of automorphisms is generated by changes of basis.
There is an action of the group SL(2,Z) on Tθ given by

UmV n 7→ Um1V n1 (2.1.9)

where g.( m
n

) = ( m1
n1

), which plays the role of the outer automorphism
groups in the classical level. In the later part of this chapter, we will see that
the automorphism induces an action of SL(2,Z) on the odd Periodic Cyclic
homology group, and induces the trivial action on the even parts.

In [23], Elliot and Rørdam proved that for irrational θ, there is an exact
sequence

1 // Inn(Tθ) // Aut(Tθ) // Aut(K(Tθ)) // 1.

Here Inn(Tθ) is the inner automorphism group, which is generated by the
unitary elements, and Inn(Tθ) is its closure, i.e. the group of approximately
inner automorphisms. An automorphism of K•(Tθ) is required to preserve
the order structure of the K0 group, so it must be the identity on K0(Tθ) ∼=
Z+θZ. It follows that the outer automorphism group of the noncommutative
two-torus is isomorphic to

Aut(K(Tθ)) ∼= Aut(K1(Tθ)) ∼= Aut(Z2) ∼= GL(2,Z).

It is also helpful to see that in this case, the group of translations of the
classical torus is the limit of the inner automorphisms of the noncommutative
two-torus. But we do not know if the exact sequence is split; only a partial
lifting by the action of SL(2,Z) on the lattice Z2 of unitary generators in

Equation 2.1.9 is known [4]. Notice that
(

1 0
0 −1

)
maps Tθ into T−θ, and

is not qualified as an automorphism of Tθ.
For rational rotation algebras, Stacey in [82] showed that

1 // Inn(Tθ) // Aut(Tθ) // Homeo(T2) // 1

13



2.1. NONCOMMUTATIVE TWO-TORI

for θ = 1
2 and

1 // Inn(Tθ) // Aut(Tθ) // Homeo+(T2) // 1

for all rational θ ∈ [0, 1) \ 1
2 . The key difference between the case θ = 1

2
and θ 6= 1

2 is that the noncommutative two-tori Tθ and T1−θ coincide, which
means the flip operator U ←→ V is an automorphism of the torus T 1

2
. We

also notice that the inner automorphism groups of rational rotation algebras
are very small compared to those of the irrational rotation algebras. This is
the reason why the structures of Aut(Tθ) for rational θ by the work of Stacey
[82]are quite different from the work by Elliot and Rørdam[23].

For the smooth noncommutative two-tori, 2.1.7, the automorphism group
must preserve the smooth structure, i.e. must preserve the subalgebra of fast
decaying series in U and V . Thus, Aut(T∞θ ) is smaller, and is proved by
Elliott in[24] to be (PU(T∞θ )0) o (T2 o SL(2,Z)) for the numbers θ which
are not Liouville numbers. Namely, any automorphism of the smooth torus
can be decomposed into a product of a limit of inner automorphisms which
are conjugation by unitary elements, a translation by the classical torus and
a SL(2,Z) base-changing. For the Liouville numbers, there are more auto-
morphisms than those of the Elliott type as showed by Kodaka in [42].

To classify the noncommutative two-tori, it is necessary to understand
integration on them. We define the trace of the noncommutative two-torus
Tt as the integration over the action of the classical torus T2

Definition 2.1.1.
τ(a) =

ˆ
T2

Φg(a)dg (2.1.10)

which can be computed as

τ(
∑
m,n

am,nU
mV n) = a0,0 (2.1.11)

for a ∈ At. Furthermore, if t is irrational, the conditions τ(AB) = τ(BA)
and τ(I) = 1 turn out to determine the trace uniquely, by [17], Proposition
VI. 1. 3.

14
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2.2 Morita Equivalence of Rings and Alge-
bras

To understand a mathematical object, it is very useful to understand how it
acts on others. In a very broad class of categories, a classical mathematical
object can be uniquely determined by the representation theory of suitable
function algebras on it. For example, in algebraic geometry, an affine alge-
braic variety can be viewed as the spectrum of its coordinate ring, which
is of finite type, nonnilpotent algebra. In Gelfand’s theory, a locally com-
pact Hausdorff space can be identified with the spectrum of a commutative
C∗−algebra. In measure theory, a commutative W ∗−algebra is nothing but
the algebra of bounded Borel functions on a measure space. Thus, the theo-
ries of these kinds of algebras are equivalent to the theories of affine algebraic
varieties, locally compact spaces and measure spaces, respectively.

The maximum spectrum of a commutative algebra consists of equivalence
classes of irreducible representations which are one-dimensional. Hence, in
the above categories, two commutative algebras having isomorphic represen-
tation theories are always isomorphic.

For the classes of noncommutative algebras most of whose representations
are not one-dimensional, however, the concept of “isomorphism equivalence”
is too strong. Many noncommutative algebras are obviously non-isomorphic,
but still sharing the same representation theories. For example, the finite
dimensional matrix algebras over a commutative ring R and the ring R itself
have the same representations, but one is commutative while the other is
not. Consequently, it is no use talking about isomorphisms between function
algebras when we only care about their representations.

What we need here is a weaker concept which still respects the represen-
tation theory of algebras. The most natural one is the equivalence between
the categories of modules.
Definition 2.2.1. [87, 57] Two unital rings A and B are called Morita
equivalent if and only if their categories of left modules are isomorphic.

Generally, there is a natural way to establish an additive functor from
the category of A−modules to the category of B−modules. Let BXA be a
(B,A)−bimodule, i.e. an abelian group associated with an action of A on
the right, and an action of B on the left, such that they are commuting with
each other. Then Morita proved in [57] that the (B,A)−bimodule X forms
a functor P 7→ BXA ⊗

A
P from the category of A-modules to the category of
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B-module.
The other way is also true, in [87] it is shown that any right exact additive

functor between categories of modules of algebras is equivalent to the functor
induced by a bimodule. Hence, to define a relation of having the isomorphic
representation theories between two rings, it is possible to use a pair of
bimodules which are inverses to each other.

Theorem 2.2.2. [87] Two rings A and B are Morita equivalent if there exist
bimodules APB and BQA such that APB⊗BQA

∼=A AA and BQA⊗APB ∼=B BB.

Morita equivalence can also be defined in a broader context, such as for
groupoids, C∗−algebras, W ∗− algebras, Poisson manifolds, etc.. For C∗−
algebras we consider the category of Hermitian modules over it, defined as
follows.

Definition 2.2.3. Let A be a C∗−algebra (possibly non-unital). By a left
Hermitian module M over A, we mean a Hilbert space M together with:

1. A left ∗−representation φ of A on M,

φ(a.b) = φ(a).φ(b), (2.2.1)

and
φ(a∗) = φ(a)∗.

The representation φ is non-degenerate, i.e. φ(A)M is dense in M.

The notion of right Hermitian modules is obtained if we replace the left repre-
sentations in Equation 2.2.1 by right ones, i.e. those satisfying the conditions
φ(b.a) = φ(a).φ(b) and φ(a∗) = φ(a)∗.

Naturally, we take the representation theory of a C∗−algebra A as the
theory of the left A-Hermitian modules. The collection of the left Hermitian
A-modules together with the intertwining operators forms a category, which
will be denoted by Mod− A.

In the passage from a C∗−algebra A to the category Mod − A of Her-
mitian modules over A, many properties of the algebra A have been lost.
Generally, it is only possible to recover the C∗− algebra A from Mod − A
with some additional conditions. Rieffel in [72] has proved that the cate-
gories of the Hermitian modules only determine the envelopingW ∗− algebras
of the C∗−algebras. Because there are many non-isomorphic C∗−algebras
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admitting the same W ∗−enveloping one, the equivalence relation of the rep-
resentation categories is much weaker (or somehow more interesting) than
the isomorphic relation.

Given a category Mod− A, how much information can we obtain about
the algebra itself? The answer lies in the theory of Morita equivalence for
C∗−algebras developed by Rieffel in a series of papers (beginning with [72] or
the reference in [93], [69]). In the light of the Theorem 2.2.2, the equivalence
of the categories was also realized by the tensor product with a bimodule but
in this case has been modified to be compatible with the C∗−algebra setting.

The problem is to define an inner product on the tensor productsM⊗AP
of Hermitian modules. The way to define the structure was found by Rieffel
in terms of an A-valued inner product on the bimodule P.
Definition 2.2.4. [74] Let A be a C∗−algebra, possibly without identity. By
a (right) Hilbert C∗−module (or Hilbert A-module) M on A, we mean a
right A−module structure on M , together with

1. An A-valued inner product 〈., .〉A : M ×M → A, such that 〈m,n〉Aa =
〈m,na〉A and linear on second variable.

2. 〈., .〉 is positive, i.e. 〈m,m〉 ≥ 0 in A, and 〈m,m〉 = 0 if and only if
m = 0.

3. 〈m,n〉∗A = 〈n,m〉A.

4. M is complete for the norm from the A−valued inner product ||m||M =
||〈m,m〉A||

1
2
A.

If the image of 〈., .〉A is dense in A under the C∗−norm, we call M a full
C∗−module. The analogous definition is for the left C∗− modules. With
this structure, the inner product on the tensor MA ⊗A P is determined as

〈m1 ⊗ p1,m2 ⊗ p2〉C = 〈p1, 〈m1,m2〉Ap2〉C (2.2.2)

and called it Rieffel tensor product. Therefore, it is possible to put a
Hilbert-module structure on one side of a bimodule to obtain a tensor functor
between the categories of Hermitian modules.
Definition 2.2.5. Let A and B be C∗−algebras. By a B−A correspon-
dence structure, we mean a right C∗−module M over A, which is also a
left non-degenerate B-module by means of a ∗− homomorphism of B into
EndA(M).
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Given a B − A correspondence M, we can define an additive functor
between categories of left Hermitian modules ⊗M : A−Mod→ B−Mod as
AP 7→ BMA⊗

A
P with the inner product 2.2.2. Conversely, the additive functor

M⊗A also determines the bimodule M uniquely, up to an isomorphism, as
proved by Rieffel in [72].

In order to talk about equivalences between the categories of Hermitian
modules, we need to define the “inverted Rieffel tensor product” or “inverted
Rieffel functor”. In terms of bimodules, we have the following definition.

Definition 2.2.6. [72] We say that two C∗−algebras A and B are strongly
C∗−Morita equivalent if there exists a (B,A)−bimoduleM, equipped with
an A−valued and a B-valued inner product structures, with respect to which
M is a B-A correspondence and A-B correspondence at the same time such
that

1. 〈m,n〉Bp = m〈n, p〉A for any m,n, p ∈M ,

2. M is both a full C∗ − A−module and C∗ −B−module.

Sometimes people call M a Morita functor from A to B. If M is a right
A-module, then the conjugate space M is a left A-module with the action

am := m.a∗.

Therefore, given a Morita (B,A)−bimodule M , it is easy to construct a
Morita (A,B)−bimoduleM.We can check without difficulty thatM⊗AM ∼=
B as (B,B)−bimodules and M ⊗B M ∼= A as (A,A)−bimodules.

If A and B are C∗− algebras, then in [72] the Rieffel tensor product of
a (B,A)− correspondence M induces a morphism P 7→ M ⊗A P from the
category A −Mod to the category B −Mod [72]. Rieffel also proved [72]
that C∗−algebras form a category, with the objects being C∗−algebras, the
morphisms being C∗− correspondence, and the composition of morphisms P
from A to B and Q from B to C given by the full tensor product of bimodules
CQ⊗B PA. The new inner products are defined by

C〈q1 ⊗ p1, q2 ⊗ p2〉 =C 〈q1, q2.B〈p1, p2〉〉 (2.2.3)

Then Morita equivalence is exactly an equivalent relation. People call it a
Rieffel category.
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Example 2.2.7. There are many examples of strongly Morita equivalence
in the literature, we refer the reader to [92, 71, 74, 75] for more details. We
only list here some of them for quick reference.

1. Any C∗−algebra A is strongly Morita equivalent to A⊗K, where K is
the C∗−algebra of compact operators [72].

2. Let P be any locally compact space, together with two free and wan-
dering actions of locally compact groups H,K on P . By wandering
actions, we mean that for any compact set Q ⊂ P, the following sets

{h ∈ H | hQ ∩Q 6= ∅}

{k ∈ K | kQ ∩Q 6= ∅}
is precompact in H and K. Then C0(P/H) o K and C0(P/K) o H
are strongly Morita equivalent. The result is known by Rieffel [74] and
Phil Green.

3. Let E be any vector bundle over a compact space X. Then the algebras
C(X) and EndC(X)(Γ(E)) are strongly Morita equivalent. [92]

4. Let L be any constant Dirac structure on a torus. Then for any trans-
verse section M of the foliation generated by L ∩ TTn, there exists a
strict deformation quantization of the Dirac structure L, denoted by
AL,M . Furthermore, any different choices of M lead to strong Morita
equivalent C∗−algebras, by Weinstein and Tang in [91].

2.3 Continuous Fields of C∗−Algebras

2.3.1 Definitions of Continuous Fields
In this section, we define the notion of the continuous fields of C∗−algebras
over a parameter space, with the main references being [28] and [26].

First, we describe the natural bundle structure of any C∗− algebra. Let
A be a C∗−algebra. By a primitive ideal Iπ, we mean the kernel of any
irreducible ∗−representation π of A [14]. Let denote by Prim(A) the space
of all the primitive ideals of A together with the Jacobson topology. It is
known from [18] that Prim(A) is a locally compact space and satisfying the
T0-axiom for separability [14].
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For any P ∈ Prim(A), denote by a(P ) the image of a ∈ A under the
projection from A onto A/P. Then, by the Dauns-Hofmann theorem in [64],
there exists an isomorphism between Cb(Prim(A)) and the center of the
multiplier algebra ZM(A) of A as follows: if f ∈ Cb(Prim(A)), and a ∈ A,
then f.a is the unique element of A satisfying f.a(P ) = f(P ).a(P ) for all
P ∈ Prim(A) and any element of ZM(A) is of this form. In other words,
any C∗− algebra can be viewed as an upper semi-continuous bundle over its
center Prim(A). Therefore, we have the following definition.
Definition 2.3.1. Let X be a locally compact Hausdorff space. By a
C0(X)−C∗−algebra in the sense of [25, 28], we mean a C∗− algebra A
together with an injective ∗− homomorphism ΦA : C0(X)→ ZM(A), which
is non-degenerate in the sense that

ΦA(C0(X)).A := span{ΦA(f)a : f ∈ C0(X) and a ∈ A}

is dense in A. By abuse of language, we say that A is a C∗−bundle over X.
The map from spec(ZM(A)) into X is called the structure map.

Given a C0(X)−algebra, the fiber of A over a point x ∈ X is defined as

Ax = A/Ix

where Ix an ideal of elements generated by the functions vanishing at x

Ix = {Φ(f).a | a ∈ A(X) and f ∈ C0(X) such that f(x) = 0}

In this case, there exists a continuous map σX from Prim(A) into X, or
Prim(A) is fibered over X if and only if σX is onto X. We notice that no
condition on the triviality of the bundle is required.

A routine check shows that for a ∈ A, the map x 7→ ||a(x)||Ax is only
upper semi-continuous. Therefore any C∗−algebra A is naturally an upper
semi-continuous bundle over its primitive spectrum Prim(A) with identity
structure maps.

If the map x 7→ ||a(x)||Ax is continuous, i.e. σX is open, then A is the
section algebra of a continuous field of C∗−algebras over X [65], which is
defined as follows.
Definition 2.3.2. [28, 65, 64] Let X be a locally compact Hausdorff space
and we associate to any x ∈ X a C∗− algebra Ax. By a continuous field
of C∗− algebras Ax, we mean a ∗−subalgebra A of ∐x∈X Ax, containing
sectional elements a(x), i.e. mapping x ∈ X to a(x) ∈ Ax, and satisfying the
following conditions
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1. The subalgebra is closed under point-wise multiplication with elements
of C0(X).

2. For any x ∈ X, the set {a(x)} is dense in At under the C∗− norm of
Ax

3. For any section a(x) of the field, the function x→ ‖a(x)‖Ax is contin-
uous.

4. The algebra A is complete under the C∗− norm ‖a‖ = supx∈X‖a(x)‖Ax .

The space X is called the base space, Ax the fibers, and A the section
algebra of the C∗−bundle {Ax}x .

The existence of such a field is not automatically, since the continuity
between the nearby fiber algebras in terms of the functions x 7→ ‖a(x)‖
is an additional requirement that we put on the bundle and the nature of
the definition 2.3.2 is a way to point out directly the relationship between
near-by fiber algebras. Normally, to guarantee that the fibers does not jump
arbitrarily, people often require these fibers C∗−algebras act continuously on
a fixed Hilbert space H.

Certainly, in Definition 2.3.2 we say “a” subalgebra due to the fact that
in general the relationship between fibers is not automatically satisfied. The
upper semi-continuity is mostly a built-in structure of the fields, but the lower
semi-continuity often comes from fixing a Hilbert space that fiber algebras
acting on. Before dealing with the continuity of the fields, we recall the
definition of reduced groupoid C∗−algebras for the necessity of the lower
semi-continuity.
Definition 2.3.3. [17] A C∗−dynamical system consists of a C∗−algebra
A together with a homomorphism α of a locally compact group G into
Aut(A). By a co-variant representation of (A,G, φ), we mean a pair (π, U)
where π is a ∗−representation of A on a Hilbert space H, and s → Us is a
unitary representation of G on the same space such that

Ugπ(a)U∗g = π(φg(a))
for all a ∈ A and g ∈ G.

The algebraAG is the space of all continuous compactly supportedA−valued
functions on G with the multiplication defined by

a ∗ b(t) =
ˆ
G

a(u)φu(b(u−1t))du.
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and
f ∗(t) = ∆(t)−1φt(f(t−1)∗)

with ∆ the modular function of the Haar measure. Then a co-variant repre-
sentation of (A,G, α) is equivalent to a ∗−representation of AG [17].

Definition 2.3.4. [17] We define the full crossed product of A oα G as
the enveloping C∗−algebra of AG, i.e. the C∗−norm is defined by ||f || =
sup
σ
||σ(f)||, where σ run over all the ∗−representation of AG.
We can construct a smaller class of representations of the dynamical sys-

tem as follows. Let π be a representation of A on a Hilbert space H, and let
L2(G,H) be the square summable functions on G with values over H, such
that

||f || = (
ˆ
G

|f(g)|2dg) 1
2

is bounded. And the co-variant representation of (A,G, φ) on the Hilbert
space L2(G,H) is defined by

(π̃(a)f)(g) = π(φ−1
g (a))f(g),

Λhf(g) = f(h−1g).
Then (π̃,Λ) can be extended to a ∗−representation of AG on L2(G,H). The
norm ||f || = sup

σ
||σ(f)|| where σ runs on the class of representation is called

the reduced crossed product Aoφ,rG [17]. Let notice that if A = C, we
obtain the notion reduced group C∗−algebra.

Summarize, given a C∗−dynamical system (A,G, φ), we can construct
two C∗−algebras, the full and the reduced one. In many cases, the algebras
coincide, for example when G is amenable [18]. Then, we can talk about the
Rieffel theorem on continuity of the bundle.

Theorem 2.3.5. [73] Let X be a locally compact space, and for each x ∈ X,
let φx be an action of the locally compact group G on a fixed C∗−algebra
A such that for each g ∈ G and a ∈ A, the function x 7→ φxg(a) is norm
continuous on X. For each f ∈ Cc(G,A) let ||f ||x and ||f ||rx denote the
norms of f in Aoφx G and Aoφx,r G Then

a) For each f, the function x 7→ ||f ||x is upper semi-continuous.
b) For each f, the function x 7→ ||f ||rx is lower semi-continuous.
c) If AoφxG =Aoφx,rG for all x, for example when G is amenable, then

the function x 7→ ||f ||x = ||f ||rx is continuous. Furthermore, in the case,
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Aoαx G
∼= Aoαx,r G is a continuous field of C∗−algebras and the algebra of

sections is isomorphic to C∞(X,A) oα G.

Normally, we just deal with much less general situations, where α is
assumed to be a real and continuous function with at most finitely many
2.3.5extreme points over the real line or the circle. The fields we are dealing
with now come from the action Φ of Z on C0(R× S1), given by

Φn.f(t, x) = f(t, x+ θ(t)) for θ ∈ Cb(R)

which is a special case for the theorem 2.3.5.
Recently, when trying do deal with strict deformation quantization from

the viewpoints of groupoids, Landsman [45] has generalized the theorem to
the case of continuous fields of groupoids. We will come back to the theorem
in the later part of the thesis.

2.3.2 Strict Deformation Quantization and Continuous
Fields

By a Poisson algebra, we mean a commutative algebra A, together with
a bi-differential operator called Poisson bracket

{., .} : A⊗ A→ A,

satisfying the Leibniz rule. Then a Poisson manifold (M,π) is a manifold M
such that C∞(M) is a Poisson algebra. The bracket of a Poisson structure
is determined by a 2-vector fields π as

{f, g} := π(df, dg).

The bi-vector field must satisfy the condition [π, π] = 0, which is equivalent
to the Jacobi identity.

Definition 2.3.6. A Formal Deformation Quantization [10, 27] of a
commutative Poisson algebra C∞(M) is a ∗−product in

C∞(M)[[~]]⊗ C∞(M)[[~]]→ C∞(M)[[~]]

such that:

1. f ∗0 g = f.g,
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2. f ∗~ g − g ∗~ f = i~{f, g},

3. ∗~ is associative.

By an abuse of language, we say that the Poisson manifold M is quantized
by a ∗−product.

It is important that the ∗−product is not a actual product of functions,
but a product of formal power series. Many functional analysis conditions
need to be satisfied to make sure that the product converges.

In the following, we recall the Rieffel theory of strict deformation quanti-
zation, i.e. the above under the C∗−algebra setting. It is important that in
the deformation quantization process, we cannot deform the whole C∗−algebras
of continuous functions C0(M), but only some subalgebra A of smooth func-
tions C∞0 (M) or Schwartz functions, i.e. like in the classical Moyal-Weyl
theory. [78] Let A be a dense subalgebra of a C∗−algebra A, equipped with
a Poisson bracket. By a strict deformation quantization of A in the
direction of {, }, we will mean an open interval I of real numbers containing
0, together with associative products ∗~ for ~ ∈ I, an involution ∗~ , and a
C∗−norm ||.||~ (for ∗~ and ∗~ on A, which for ~ = 0 are the original point-wise
product, complex conjugation involution, and supremum norm on A, such
that:

1. The corresponding field of C∗−algebras, with continuity structure given
by the elements ofA as constant fields, is a continuous field of C∗−algebras.

2. For every f ∈ A, the function ~ 7→ ||f ||~ is continuous.

3. For every f, g ∈ A

||(f ∗~ g − g ∗~ f)/i~− {f, g} ||~

converge to 0 as ~ goes to 0.

If we let A~ be the C∗−completion of A for ||.||~, then the condition (1) mean
that

{
Ā~
}

forms a continuous field of C∗−algebras. We call A a smooth
structure of the C∗−algebra A. In many case the smooth structure comes
from an action of a local Lie group G.

Definition 2.3.7. Let G be a (local) Lie group, acting on a C∗−algebra A.
An element a ∈ A is a smooth element if the map g 7→ g.a from G to A is
smooth.
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Example 2.3.8. [77] (Noncommutative two-tori) Let Tn be an ordinary n-
torus, and θ be a real skew symmetric n×n matrix. Let A be the C∗−algebra
C(Tn), with an action of Tn on C(Tn) induced by the translation. The
algebra of smooth elements is isomorphic to C∞(Tn).

The Fourier transform carries C∞(Tn) to S(Zn) and takes the Poisson
bracket to another bracket on S(Zn)

{φ, ψ}(p) = −4π2∑
q

φ(q)ψ(p− q)γ(q, p− q),

where γ is the skew bi-linear form on Zn defined by

γ(p, q) =
∑

θjkpjqk.

For any ~ ∈ R we define a skew-symmetric bi-character σ~ on Zn by

σ~ = e−πi~γ(p,q)

and define a product ∗~ on S(Zn) by

φ ∗~ ψ(p) =
∑
q

φ(q)ψ(p− q)σ~(q, p− q). (2.3.1)

The involution is given by φ∗(p) = φ(−p). The norm ||.||~ is the operator
norm on S(Zn) acting on the Hilbert space L2(Zn) by the same formula
∗~. Then the Fourier transform will take these structures back to C∞(Tn),
which we have a strict deformation quantization, and the fiber algebras are
recognized exactly as the noncommutative two-tori [74].

2.4 Moduli Stack
In this section, we study bundles of the rotation algebras {Aθ(t)}, which are
isomorphic to the cross product of Z and C(R × S1), given by an action Φ
of Z on C(R× S1)

(Φ(n).f)(t, x) = f(t, e2πniθ(t)x)

where þ is a continuous real valued function on R. The graph of θ is called
a J-curve.

In this chapter, we use the notation {Aθ(t)} for a bundle of noncommuta-
tive two-tori, Aθ(t) for a fiber of the family, which is a single noncommutative
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two-torus. In the very special case where θ(t) = t for all t, we use the notation
{At}t for the bundle of tori.

Our main task here is to determine when two fields of algebras Aθ(t) and
Aψ(t) are Morita equivalent. In order to do so, we develop an invariant theory
for the fields of noncommutative algebras.

2.4.1 A review of moduli stacks
Recall from algebraic topology that for any group G, any principal G −
bundle E overM can be obtained by pulling back from a special G − bundle,
EG over BG, called the universal bundle. The continuous map f is called
the classifying map, and the space BG is called the classifying space.

M //

π
��

EG

π
��

X
f // BG

However, the space (EG,BG, π) is usually inaccessible. That means the
classifying space can be any contractible space which admits a free and effec-
tive action of G and is only determined up to a homotopy. Furthermore, the
construction of BG uses an action on a contractible space of the universal
free group containing G, which yields a hardly accessible space. Thus, the
classifying spaces do not always exist in the category of finite dimensional
manifolds, algebraic schemes, or separable locally compact spaces.

Under usual circumstances, they are not directly touchable even if we
know that they exist. It is possible to define classifying spaces axiomatically
and theoretically, but that does not shed much light on their structure.

In algebraic geometry, the subtleties concerning nonexistence of classi-
fying spaces in the the category of algebraic schemes are dealt with using
a clever idea of Mumford. In [62], without explicitly mentioning groupoids
or moduli spaces, Mumford develops most of the important machinery for
the area and computes the homology of the moduli stack M1,1 (for a mod-
ern treatment, see[35]). Instead of viewing BG as an algebraic scheme, he
thinks of it as a pseudo-functor BG(∗) = hom(∗, BG) from the category of
topological spaces into the category of groupoids. More precisely, to any
topological space X, we associate BG(X) the category of all G − bundles
over X together with G − isomorphisms between them. Naturally, BG(X)
forms a groupoid.
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BG // {BG(∗) : X 7→ Hom(X,BG)}oo // {G− bundle M over X}oo

Therefore, BG is a “functor” that associates to any topological space X a
groupoid BG(X). Given a map g : Y → X, we can pull the groupoid BG(X)
back to BG(Y ) via a functor g∗ induced by g. Because we are dealing with
functors, it is necessary to lessen the equalities to isomorphisms. For example
we require (g.h)∗ ∼= g∗ ◦ h∗ instead of (g.h)∗ = g∗ ◦ h∗. This is what we mean
by a pseudo functor.

What we obtain from BG is a pseudo−functor X 7→ BG(X) satisfying
some technical properties, and we call it a category fibered in groupoids,
or a moduli stack. The key distinction between a stack and a space is that
a stack remembers the automorphisms of points at the stacky points. We
can cut the bundle of objects at the fibers corresponding to the stacky points
and twisting it with an automorphism of the stacky point to obtain a new
bundle. Thus, through this twisting process, there are more bundles near
the stacky points than the normal points. Depending on the kind of maps
between topological spaces g : Y → X, we obtain different topologies on the
functor BG; and it is the starting point for many kinds of cohomologies. For
more details, see [59].

We approach the problem using the ideas concerning moduli stacks of
curves in algebraic geometry to study the analog between noncommutative
two-tori and elliptic curves. The moduli space of rotation algebras up to
some kind of isomorphisms can be described as a fibered category NCT
in groupoids, i.e. a stack A.1. Over a locally compact space X, we define
NCT (X) to be the groupoid with the continuous bundle of rotation algebras
over X as the objects, and the isomorphisms as arrows. The family of all
groupoids NCT (X) plays the role of open set for the moduli space of non-
commutative two-tori, and the condition on pulling back maps g : Y → X
induces different kinds of topologies on the moduli space. For example, if
g is etale, we call it etale topology, and the associated cohomology is called
etale cohomology.

Regarding “the universal bundle of objects”, Mumford [35] introduced
the theory of moduli spaces to simulate the non-existence of the universal
bundle of elliptic curves.

We recall from [56] that a J-invariant is a function classifying the elliptic
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curves Eτ = C/Z⊕ τZ, such that for the curve y2 = 4x3 − g2x− g3,

g2 = 60
∑

(m,n) 6=(0,0)
(m+ nτ)−4,

g3 = 140
∑

(m,n)6=(0,0)
(m+ nτ)−6

the J-invariant is
J(τ) = 1728g

3
2

∆
where

∆ = g3
2 − 27g2

3.

Thus, J is a function from the upper half plane to C, which is invariant under
the modular group PSL(2,Z). Two elliptic curves Eτ and Eτ ′ are isomorphic
if and only if J(τ) = J(τ ′), therefore the J-invariant completely classifies the
elliptic curves Eτ .

A bundle of elliptic curves E over X always induces a continuous map J
from X into the upper half plane, such that J(x) is the J-invariant of the
elliptic curve fiber Ex over the point x.

However, there are some special points in H = {z ∈ C | Im(z) > 0}
where the modular group action is not free. This happens when the elliptic
curves have nontrivial automorphisms (for example Aut(C/Z⊕ iZ) ∼= Z/4Z
and Aut(C/Z⊕eπ3 iZ) ∼= Z/6Z, with J− invariants equal to 0 or 1024 respec-
tively, see [56]). By twisting the elliptic curve bundles with this extra auto-
morphism, we can construct two different twisted bundles of elliptic curves
over the same non-simply connected base with the same J-images. There-
fore, the twisted one cannot be obtained by pulling back from the canonical
bundle on the upper half plane, or equivalently, the universal family does
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not exist. In another sense, the two special points are more stacky than the
others.

Therefore, the moduli stack of elliptic curves could never be a topological
space/scheme, but it should be an algebraic stack. The open sets for the
topology of the moduli space are given by the families of elliptic curves, and
the morphisms between families are required to be etale. The topology near
the stacky points is described by twisted families of elliptic curves passing
through them.

In most applications, there is a map π from a topological space/ scheme/
algebraic space, etc. X onto the stack M so that we can compare M and
X. Therefore, a groupoid can be constructed X ×M X

t
��

s
��
X

from the stack

M, and called a presentation of stack. Because for different choices of X,
the presentation groupoids are Morita equivalent, people usually say “A
stack is Morita equivalence class of groupoids”. For a more elementary
exposition, we refer to [1] or to [35] for complete treatment.

The analogous question one can ask is whether any fiber bundle of non-
commutative two-tori can be obtained from something like BG or M1,1, with
the push forward operator of C∗-algebras playing the role of pulling back of
spaces.

A(X) EA
f∗oo

C(X)

π

OO

C(BG)
f∗
oo

π

OO

Since a noncommutative two-torus is the limit of a family of elliptic curves
Eτ = C/Z ⊕ τZ (see [51, 52] or our forthcoming paper for a mathematical
framework of the convergence), when the J-invariant τ converges to the real
line, the same story works out. Furthermore, from the viewpoint of moduli
spaces, it is not natural to compactify the bundle over R to get one over S1

by identifying the noncommutative two-tori at the point θ and θ+ 1. This is
because to choose the isomorphisms between the noncommutative two-tori
Aθ and Aθ+1 is not canonical and unique, so this leads to the twisted bundles.

As a first impression, any continuous field of noncommutative two-tori
can be pushed forward from the group C∗−algebra of the discrete Heisen-
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berg group H3(Z,Z,Z). From the dual point of view, the fiber bundle can
be pulled back from a special bundle of noncommutative two-tori over S1

because any fiber of A is isomorphic to only one fiber of C∗(H3(Z,Z,Z)).
However, the construction of the universal bundle fails because of the

nontrivial automorphisms of the noncommutative two-tori, both at the C∗−
algebra level and at the periodic cyclic homology level.

In summary, although the universal bundle of noncommutative two-tori
does not exist as a C∗−algebra, it could exist as a topological stack. The
topology on the stack is induced locally by pulling back the natural topology
on the Heisenberg group of noncommutative two-torus fibration C∗(H3(Z,Z,Z)).
The same story with the elliptic curves also appears here, when we push for-
ward the functor of C∗− algebras instead of pulling back elliptic curves.
Because there are many nontrivial automorphisms of noncommutative two-
tori in 2.1.2, many bundles of noncommutative two-torus bundle exists and
can not be pushed forward from a single universal C∗− algebra. The details
will be discussed in the next subsection.

2.4.2 Homotopically Trivial Family of Noncommuta-
tive two-tori

Before proceeding with the definition of homotopically trivial families, we
clarify a motivating example.

Lemma 2.4.1. Let H3(Z,Z,R) be the Heisenberg group

H3(Z,Z,R) =


 1 a c

0 1 b
0 0 1

 where a and b integers, c ∈ R

 .
Then C∗(H3(Z,Z,R)) is isomorphic to a bundle of noncommutative two-tori
fiber.

Proof. We notice thatH3(Z,Z,Z) ∼= 〈U, V,W | V U = UVW,UW = WU, VW =
WV 〉 is embedded canonically inside the group H3(Z,Z,R). Furthermore,
H3(Z,Z,R) is isomorphic to the semi-direct product (Z× R) o Z, with the
action of Z on Z× R given as

Φ(n).(k, x) = (k, nk + x) (2.4.1)
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for n, k ∈ Z and x ∈ R. Therefore

C∗(H3(Z,Z,R)) ∼= C∗((Z× R) oΦ Z)
∼= C∗(Z× R) oψ Z
∼= C0(S1 × R̂) oφ Z.

where R̂ is the unitary dual of R, ψ is the action of Z on C∗(Z×R) associated
with Φ, and φ is the image of ψ under the Fourier-Gelfand transform of
C∗(Z× R).

To compute the action φ of Z on C0(S1 × R̂), we take a typical element
δk ⊗ f(x) ∈ C∗(Z × R). The action of the element n of Z on the element
yields δk ⊗ f(x+ nk), by Equation 2.4.1. The Fourier-Gelfand transform is

F(δk ⊗ f(x− nk))(u, v) = e2πiku.

ˆ ∞
−∞

e2πivxf(x+ nk)dx

= e2πiku.e−2πinkv
ˆ ∞
−∞

e2πivxf(x)dx

= e2πik(u−nv)F(f)(v)

As a result, φ(n) : e2πiku⊗F(f)(v) = e2πik(u−nv)F(f)(v). Here, δk is the Dirac
delta function, x ∈ R,v ∈ R̂. Then, the action gives

φ(n) : (u, v) 7→ (u+ nv, v).

In summary, the C∗−algebra of the group H3(Z,Z,R) is isomorphic to the
cross product C0(S1×R̂)oZ. Decomposing the system into a bundle over the
dual real line R̂, the fiber algebras are isomorphic to the group C∗−algebras
of the dynamical system e2πiku 7→ e2πik(u+nv), i.e. the rotation of S1 by v,
which are just T2

v.
Why is the field continuous? We need to verify that the condition in

Theorem 2.3.5 is satisfied for G = Z, A = C(S1) and X = S1. It is easy
to verify that the the variation of the group action on a fixed element v 7→
f(x− nv) is continuous, for fixed n ∈ Z and f ∈ C(S1). On the other hand
C(S1) o Z ∼= C(S1) or Z because Z is amenable. Then we apply Theorem
2.3.5 and the rest follows. QED.

Let H3(Z,Z,Z) be the Heisenberg group over Z. Then as proved in [38],
C∗(H3(Z,Z,Z)) is isomorphic to a bundle of noncommutative two-tori over

31



2.4. MODULI STACK

S1. The fiber over any point θ ∈ S1 of C∗(H3(Z,Z,Z)) is isomorphic to Tθ.
Therefore, the set of the fibers of the bundle H3(Z,Z,Z) contains all of the
isomorphism classes of noncommutative two-tori.

Motivated by the lemma 2.4.1 on the Heisenberg group, we obtain the
following definition.

Definition 2.4.2. Let X be a locally compact space. By a homotopically
trivial family of noncommutative two-tori over X, we mean a C∗−algebra
A = C0(X) ⊗C0(R) C0(S1 × R) oφ Z obtained by pushing out [67] by the
following commutative diagram

A C0(S1 × R) oφ Zoo

C0(X)

OO

C0(R)θ∗oo

i∗

OO

Here, θ∗ : C∗(R) ∼= C0(R)→ C0(X) is induced from a continuous and proper
map θ : X → R and i∗ : C0(R) ∼= C∗(R)→ C0(S1×R)oφ Z is the canonical
embedding.

By definition, there is always a built-in action of the classical torus T2

on any homotopically trivial family by acting on the right of the bundle of
noncommutative two tori C0(S1 × R) oφ Z.

Roughly speaking, the homotopically trivial families are those obtained
by pushing forward from the “fake universal bundle” C∗(H3(Z,Z,R)). We
notice that there always exists a map from X to S1, by composing θ with
the projection from R to R/Z, called the classifying map, analogous to the
J-invariant of the elliptic curves. Sometimes, by abuse of language, we call it
J-invariant of noncommutative two-tori, and the image is called the J-curve.
Remark 2.4.3. We notice that, a homotopically trivial noncommutative two
torus bundle always admits a built-in pair of unitary generators. Let {Aθ(t)}t
be a homotopically trivial family of rotation algebras. Then there exist two
unitary sections {Ut} and {Vt} such that UtVt = VtUte

2πiθ(t). As any homo-
topically trivial family of NCTs can be pushed forward from the universal
bundle {Aθ} ∼= C∗(H3(Z,Z,R)), it is enough to make clear the remark for
the bundle C∗(H3(Z,Z,R)).

With the notation as in Lemma 2.4.1, we can choose the unitary sections
canonically from the generators U and V of the discrete Heisenberg group.
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Let Iθ be the ideal of C∗(H3(Z,Z,R)) generated by W − θ, then the sections
are given by

U 7→ Uθ = U + Iθ ⊆ Aθ ∼= C∗(H3(Z,Z,Z)/Iθ

V 7→ Vθ = V + Iθ ⊆ Aθ ∼= C∗(H3(Z,Z,Z)/Iθ.
Clearly, the relation UV = V UW in C∗(H3(Z,Z,R)) implies that UθVθ =

VθUθe
2πiθ.

From this remark, we imply that
Claim 2.4.4. Any homotopically trivial family of noncommutative two-tori
is principal, in the sense that there exists an action of the classical torus on
the noncommutative two-torus fibers. In fact, we can verify easily that, the
fiber over x ∈ X is isomorphic to Aθ(x) ∼= C∗(Uθ, Vθ | UθVθ = VθUθe

2πiθ.) by
Remark 2.4.3. Finally, the action of the classical torus is given by Equation
2.1.8.

Theorem 2.4.5 (Classification of homotopically trivial noncommutative
two-torus bundle). Any isomorphism between two homotopically trivial fami-
lies of noncommutative two-tori ΘT2 : Aθ(t) → Aθ̃(t), and commuting with the
action of the classical torus T2, can be decomposed into a homeomorphism
of the base space X and an isomorphism commuting with C0(X)−actions.
Furthermore, the C0(X)−isomorphism is given by:
−The automorphism of the bundle given by Aθ(x) 7→ Aθ(x)+1, which cor-

responds to the integral translation of the J-curves.
−The automorphism given by Aθ(x) 7→ An−θ(x) which corresponds to the

reflection via the half-integral lattice θ(x) → n− θ(x) for n ∈ Z of the J-
curves.

Proof:

Our approach is to modify Rieffel’s classification of rotation algebras in
[71].

Step 1: Reducing the T2−isomorphism to fiber-wise isomorphisms.
Let a ∈ {Aθ} be an element of the bundle. Let τ : Aθ → C0(R) be the
canonical T2−invariant tracial state in 2.1.2. Then, τ is the expectation of
the fields on the subalgebra C0(X), which projects the fiber-wise noncom-
mutative two-tori to C. Let i be the canonical embedding of C0(X) into Aθ.
Then it is easy to see that τ ◦ i = Id.
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Aθ
Θ // Aψ

C0(X)

iθ

OO

Ψ // C0(X)

iψ

OO

With the same notation, we assume that Θ : Aθ(x) −→ Aψ(x) is an iso-
morphism between two C∗−algebras. Let

Ψ = τψ ◦Θ ◦ iθ.
Although τψ(x) is just an expectation, not a C∗−homomorphism from Aψ(x)
to C0(X), but the restriction of τβ to the image of Θ ◦ i (which is just the
center of Aψ(x) generically) is a C∗− morphism. We can also check that
Ψ−1 = τθ ◦Θ−1 ◦ iψ.

Thus, Ψ is a C∗−algebra automorphism of C0(X), which induces a home-
omorphism Ψ̂ on X = Spec(C0(X)).

Without loss of generality, we assume that Θ preserves the fiber-algebras
by considering Θ◦Ψ−1 instead of Θ. Equivalently, by composing with a home-
omorphism of the base, we rearrange the fibers to the right positions over
the same base. It is obvious that any action of the classical torus commutes
with a homeomorphism of the base.

Tλ,µ(Ψ(amn(t)Um
t V

n
t )) = amn(Ψ−1(t))(λUΨ−1(t))m(µVΨ−1(t))n

= Ψ(Tλ,µ(amn(t)Um
t V

n
t )).

Therefore, the composition of Ψ−1 with Θ commute with the T2-action.
Then we only need to show that any isomorphism between two fiber-wise

isomorphic noncommutative two torus bundles commuting with T2−action
is a composition of translations and reflections of J− curves.

It is easy to see that Θ is an isomorphism between two continuous fields
and that Θ also induces an isomorphism between two ideals Aθmx ⊂ Aθ and
AψmΨ̂−1(x) ⊂ Aψ. where

mx = {f ∈ Cb(X) | f(x) = 0} .
Taking the quotient, we obtain a family of isomorphisms of the fibers Θx :Aθ(x) →
Aψ(x).

In summary of step 1, we reduce the problem to the case of a T2−automorphism
Θ of one noncommutative torus bundle and the rest is to study the structure
of Θ.
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Step 2: Review of Rieffel’s proof. It is also shown in [71] that two
noncommutative two-tori Aθ and Aψ are isomorphic if and only if θ = ±ψ
modulo Z. The main proof consists of four steps:

First: Rieffel projections The main idea for the proof is under-
standing the behavior of the positive cone (K+

0 (Aθ), K0(Aψ)). Therefore, it
is necessary to find generators for the K0−group.

We view Aθ as the cross product C(S1) oθ Z, where U is e2πit and V
is the translation by θ. For any α ∈ (Z + Zθ) ∩ (0, 1), Rieffel constructs a
projection P with the trace τ(P ) = α, now called a Rieffel projection. First,
a projection of trace θ is constructed, then he applies the same procedure for
the sub-algebra Anθ = 〈Un, V 〉 of Aθ to obtain the projection of trace nθ. If
P is a projection of trace α, then I − P is also a projection of trace 1 − α,
then it is safe to construct a projection of trace θ for 0 ≤ θ ≤ 1/2.

Now we recall the Rieffel procedure to construct the projection in the
form Pθ = Mg(t)Vθ +Mf(t) +Mg(t+θ).V

∗
θ for f(t), g(t) ∈ C(S1). Here,¯denotes

complex conjugation and Mf denotes multiplication by f and t take values
in [0, 1]. The condition P 2

θ = Pθ is equivalent to


g(t)g(t− θ) = 0
g(t)(1− f(t)− f(t− θ)) = 0
f(t)− f 2(t) = |g(t)|2 + |g(t− α)|2

(2.4.2)

where f, g ∈ C(S1). Any functions f, g over S1 satisfying 2.4.2 give a Rieffel
projection Pθ = MgVθ +Mf +Mg(t+θ).V

∗
θ with τ(Pθ) = θ.

Equations 2.4.2 can be solved explicitly. Assume that 0 < θ < 1/2. Pick
any positive ε provided that θ + ε < 1/2. The formula he obtains is

f(t) =


ε−1t

1
ε−1(θ + ε− t)

0

for 0 ≤ t ≤ ε

for ε ≤ t ≤ θ

for θ ≤ t ≤ θ + ε

for θ + ε ≤ t ≤ 1

g(t) =

√
f(t)− f(t)2

0
for θ ≤ t ≤ θ + ε

for otherwise.
.
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Figure 2.4.1: The Rieffel Projection

Second: Embedding into AF algebras After constructing the Rief-
fel projection Pθ of trace θ, it is necessary to compute the positive cone of the
K0− group. Because the trace map is positive, the positive cone always has
positive trace. To compute the trace map, it is natural to move to simpler
objects where the K0−groups are fully understood.

By an AF− algebra (also called Effros-Shen algebra), we mean any C∗−
algebra which is isomorphic to the direct limit of finite dimensional matrix
algebras. Normally, the limiting process can be described by a Bratteli dia-
gram. Because finite dimensional matrix algebras are Morita equivalent to C,
the K0− group of the AF−algebras, which are the limit of the K0− groups
of the finite dimensional ones, can be reduced to the limits of the direct sums
of copies of Z.

It is now important to construct an embedding of the irrational rotation
algebra Aθ into an AF−algebra Uθ, so that the K− theory is manageable.
The result can be found in the important and creative paper by Pimsner and
Voiculescu [68]. Assume that

θ = lim
n→∞

[a0, a1, ...an] = lim
n→∞

a0 + 1
a1 + 1

a2+ 1
a

3+ 1
...+ 1

an

and pn
qn

= [a0, ..an]. It is known that pn = anpn−1 + pn−2, qn = anqn−1 + qn−2,
p1 = a0, q1 = 1.

Then we define Uθ = ∪n≥1Un for Un = Mqn⊕Mqn−1 , where the embeddings
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are given by φn =
[
an 1
1 0

]
, i.e. an copies of M qn and one copy of M qn−1 are

embedded into M qn+1 , and one copy of M qn−1 inside Un−1 is embedded into
Un. The following diagram describes the AF−algebra Uθ.

M qn

$$

an //M qn+1

$$

an+1 //M qn+2

%%

an+2 //Matqn+3

M qn−1

::

M qn

::

M qn+1

99

Matqn+2

...

We refer the reader who is not familiar with AF−algebra to [17]. Because
pn
qn

approximates θ, we can approximate U and V by

Une
n
k = enk+1, and Vn=e

2πi pn
qn enk

for {enk} the standard basis in L2(Z/Zqn). The construction of the embedding
is technical and it involves finding a clever way of embedding the unitary
operators Un and Vn in a way that {Un}n and {Vn}n are Cauchy sequences
of unitary operators converging to our desired U and V .

Third: K-theory As the finite dimensional matrix algebra is Morita
equivalent to a direct sum of copies of C, the K0− group of the AF−algebra
is the limit of the K0− group of the finite dimensional ones, which can be
reduced to the limit of the direct sums of Z. Therefore, the K+

0 − cone can
be computed.

Furthermore, the canonical trace of the direct sums of matrix algebras can
be extended uniquely to a trace σ on the AF−algebra. Then, it is possible to
show that in our case, K0(Uθ) ∼=Z2 and the trace of the positive cone K+

0 (Uθ)
of the K0− group is Z + Zθ.

Since we can embed Aθ into Uθ by a ∗−homomorphism ρ, there is an
injection of the order groups

ρ∗ : (K0(Aθ), K+
0 (Aθ))→ (K0(Uθ), K+

0 (Uθ))

which commutes with the canonical traces τ onAθ and σ on Uθ. Consequently,
the canonical trace of ρ∗(K0(Aθ)) is contained inside Z + θZ.

For the rational θ, although we can not embed Aθ into AF−algebras, it is
still possible to show that A p

q
is isomorphic to a twisted matrix algebra over

a classical torus [82, 14, 92]. And with the presentation, we can compute the
trace of the K0−group easily, and obtain the same result.
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By Step 1 2.4.2, the map σ ◦ ρ from K0(Aθ)) to Z + θZ is surjective, so
it is an isomorphism. Hence two isomorphic rotation algebras have the same
τ(K0(Aθ)) = σ ◦ ρ(K0(Aθ))), which means

Z + Zθ = Z + Zψ.

If at least one of θ and ψ is irrational, then this happens if and only if
θ = ±ψ(mod Z). If θ and ψ are rational, then applying the argument in the
paper [96] by Yin, we obtain the same result.

The converse part of Rieffel theorem is trivial.

Step 3: Modifying Rieffel’s proof for the bundles. The same tech-
nique is also applied here, except for some small modifications.

First We modify the construction by Rieffel to continuous fields, by
using the action of the classical torus on every fiber to find the image of
fiber-wise Rieffel projections under the invariant trace. When t varies, the
images form a curve in X × [0, 1] which coincides with the J−curve. We use
that to classify the homotopically trivial bundles of NCTs.

Second
There is no nontrivial projection of Aθ for θ in Z although the K0 groups

of all the Aθ are isomorphic. The reason is that the construction of Rieffel
projections in [71] collapses because of the singularity, the system of equations
above has no solution for θ integers.

In the figure 2.4.1, the piecewise linear function f(t) converges to the
χ([0]), which is clearly discontinuous. It corresponds to the fact that the
classical torus is connected, so all the projections are trivial. The other way
to see this is by solving Equation 2.4.2, which is quite obvious.

In fact, the generators of the K0−group are projections in the algebra
Matn(Aθ). Because there is no projection for n = 1 and α ∈ Z, we need
to find them in Matn(Aθ) for n = 2. In fact, the generators of K0−group
lie inside the bundle of 2 by 2 matrix algebras over the circle, but we do
not know how to extend this projection to a continuous bundle of Rieffel
projections for all nearby non-integers θ.

Third
For α = 1/2, the formula of Rieffel projection does not work. The action

of Z on C(S1) takes f(e2πit) to f(e2πi(t+1/2)) = f(−e2πit), which is isomor-
phic to a twisted matrix algebra over the circle. Therefore, the existence of
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a projection of trace 1
2 is an easy exercise in C∗− algebra, and should be

wellknown in the literature. We could not find any reference, so a simple
proof will be listed here.

Apply the result in page 396 in [82] to the case p = 1, q = 2, we obtain

A 1
2

=
{
f ∈ C(R2,M2) : f(λ+m,µ+ n) = Ad(W n

1 W
m
2 )f(λ, µ)

}
∀ (λ, µ) ∈ R2 and all (m,n) ∈ Z2

where Ad is the adjoin operator Ad(g)H = gHg−1, W1 =
(

1 0
0 −1

)
and

W2 =
(

0 1
1 0

)
= SW1S

−1 for S =
(
−1

2
1
2

1
2

1
2

)
. Therefore, a typical element

of A 1
2
is

f(λ, µ) = Ad(
(
e2πiµ 0

0 e2πiµ2

)
)(Ad(S

(
e2πiλ 0

0 e2πiλ2

)
S−1))g(λ, µ) (2.4.3)

for any periodic function g ∈ C(R2,M2), i.e. g(λ, µ + 1) = g(λ + 1, µ) =

g(λ, µ).At this point, we can take g(λ, µ) as the constant projection
(

1 0
0 0

)
,

which yields a projection in formula 2.4.3. Because the trace is normalized,
τf(λ, µ) = 1

2 .

Fourth The Rieffel projection Pθ(x0) for a single value θ(x0) ∈ (0, 1/2)
can be extended to a projection Pθ of a bundle of noncommutative two-tori
over an open set U ⊂ X containing x0.

From Remark 2.4.3, there exist two unitary sections Uθ and Vθ satisfying
the condition UθVθ = VθUθe

2πiθ.
With the assumption that local extensions of unitary operators exist,

we can easily construct a local extension for the Rieffel projections for all
θ /∈ Z∪Z+ 1

2 from the two unitary sections. We just take ε = (1
2 − θ)/2 and

just let θ vary in the formula of Pθ = MgθVθ +Mfθ +Mgθ(t+θ).V
∗
θ in 2.4.2.

Fifth The construction of the imbedding of noncommutative two-tori
into the AF algebras is not continuous, because the Bratelli diagram tech-
nique was based on continued fractional expansion of θ, which is not contin-
uous when θ varies.
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However, we just use the point-wise imbedding to compute the image of
the K0− group under the canonical trace and it does not depend on the
imbedding into the AF−algebras. By the third step, we can always extend
the Rieffel projections continuously to an open neighborhood, so the J-curves
must be continuous (except for integral points). Even in the case θ ∈ 1

2 + Z
where the Rieffel projection can not be extended, it is still possible to show
that the J-curve is continuous.

Thus, the images of the Rieffel projections (together with the unit forming
the generators for the K0−group) form continuous curves, which vary nicely
and continuously until θ reaches the values in Z.

It is also known that Aθ ∼= A−θ ∼= A1−θ and Aθ ∼= Aθ+1 in Equation 2.1.2.
Define the reflecting function g(t) = 1

2 − |θ(t)− [θ(t)]− 1
2 |.

g(t) =
 {θ(t)} if θ(t) ∈ Z + [0, 1/2]

{1− θ(t)} if θ(t) ∈ Z + [1/2, 1]
(2.4.4)

where {θ} = θ−[θ] denotes the fractional part. The process from the function
θ(t) to g(t) can be viewed as a continuous retraction from R to [0,1/2].

Therefore up to a homeomorphism of the base space, the bundles of non-
commutative two-tori are classified up to a T2−isomorphism and a homeo-
morphism of the base, by the graph of the function g(t) = 1

2−|θ(t)−[θ(t)]− 1
2 |.

Special case for connected open subset of the real line
In this case, we have a better description of the continuous fields in terms

of zigzags.
Let M be the moduli space of the fields whose boundary of the critical

sets and the set with the boundary value 0 or 1/2 are isolated. We want to
find a description of the field which is more intuitive and manageable.

By a zigzag, we mean a piecewise linear curve on the plane, such that the
projection to the real line is injective. Normally, given a graph of a function
defined over a closed interval, it is possible to linearize it to obtain a new
function sharing the same extreme points, but being linear piecewise. The
example will be given in figure 2.4.2.

To obtain the description in terms of zigzags, we fix the extreme points
and boundary points ( with values 0 and 1

2) of the folded J-curves, and
linearize the rest. The extreme points are those points that the folded
J-curves get the maximum and minimum. This case also contains the case
that the folded functions are constant locally. By the boundary points, we
mean the points that the folded functions get the values 0 or 1

2 . If the sets of
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boundary and extreme points have non-empty interiors, the folded functions
will be linearized to constant functions.

Up to a homeomorphism of the base, for the case that the functions have
non-isolated set of end points of the critical and boundary value sets, we can
assume the distance between the end points are constant (normally 1) and
the graph g(t) is path-wise linear. On the open intervals (a,∞) or (−∞, a),
if the folded function g(t) is monotone, we compactify the zigzag to obtain
a finite one, by adding the limiting fibers A lim

t→±∞
g(t) to the bundle. There

may be constant segments corresponding to the non-empty interior sets of
extreme and boundary points, and we will normalize them to be of length
1 (see example 2.4.8). Then up to a C∗− isomorphism,M is isomorphic to
the moduli space of zigzags with values in [0, 1

2 ], and steps 1.
Thus, in the homeomorphic class of graphs, we can choose a representative

in terms of integral zigzags, like in the zigzag picture 2.4.2. We notice that
the zigzag may have the constant segments.

Figure 2.4.2: Moduli space of zigzags

Correspondingly, we can claim that the graphs of g(t) can be classified up
to homeomorphisms of the base space by its extreme values and the points
g(t) reaching the boundary value 0 and 1/2, which correspond 1-1 to an
integral zigzag. The rest follows. QED.

Example 2.4.6. The first example is the constant noncommutative torus
bundle, with all Aθ(t) ∼= Aψ0∀t ∈ R. The zigzag is just a closed line of length
1.

The second example is the Heisenberg bundle.

Example 2.4.7. The zigzag corresponding to the field C∗(H3(Z,Z,R)) is
the following zigzag
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Figure 2.4.3: Constant noncommutative bundle

Figure 2.4.4: Zigzag of the discrete Heisenberg group.

For the bundles with non-isolated extreme points, it is enough to describe
the example.

Example 2.4.8. For the bundle with 0 < θ < ε+ θ < 1
2

α(t) =



ε−1t

1
ε−1(θ + ε− t)

0
0

for 0 ≤ t ≤ ε

for ε ≤ t ≤ θ

for θ ≤ t ≤ θ + ε

for θ + ε ≤ t ≤ 1
other wise.

Then the zigzag can be described by the following diagram, where the linear
part on [0, ε] corresponds to two steps of the zigzag. The infinite parts are
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compactified into two steps of length 1, so the zigzag is finite.

Figure 2.4.5: The zigzag of roof functions

The computation is trivial.
We will extend the result to a more general case, i.e. homotopically non-

trivial families, keeping in mind the example of the noncommutative two-
torus bundle C∗(H3(Z,Z,Z)) over S1. The point is that we can not fold the
whole J-curve of a non-simply connected bundle.

2.4.3 Relationship with Echterhoff approach
In [25], starting with a remark that T2

θ o T2 ∼= K(L2(R2/Z2)) the alge-
bra of compact operators on the Hilbert space L2(R2/T2), Echterhoff, Nest
and Oyono-Oyono defined a noncommutative principal T-bundle over X
to be a separated C∗−bundle A(X) together with an action of the clas-
sical torus T2 such that there exists a Morita equivalence A(X) oθ T2 ∼=
C0(X,K(L2(R2/Z2))).

On the other hand, the noncommutative principal T2−bundle is Morita
equivalent to the crossed product C0(X,K) o Z2 of the Z2 dual-action on
the compact operator algebra over X. This bundle of actions in turn can be
classified by a pair ([q : Y → X], f), consisting the isomorphism class of a
principal T2− bundle over X and a map f ∈ Cb(X,H2(Z2,T)) as in [26]. The
map q classifies classical torus bundles and f stands for the noncommutative
two-torus parameter.

Hence, the work of the authors show that the principal noncommutative
two-torus bundles (which is classified by the pairs (q, f) up to Morita equiv-
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alence), coincide exactly with the fields of noncommutative two-tori in our
sense modulo a Morita equivalence.

T2 // Y

q

��
f

2−cocyle

OO

X

The authors Echterhoff, Nest and Oyono-Oyono [25] also showed that all
the noncommutative two-tori are KK-equivalent and as a result, K0(T2

θ) ∼=
K0(C(T2)) and K1(T2

θ) ∼= K1(C(T2)). The authors also construct a bundle
of K-theories on the continuous fields and showed that the monodromy of

the K-theory bundle of C∗(H3) is of the form
(

1 1
0 1

)
under the action of

π1(S1). In this case, because the K-groups are discrete, it is unnecessary to
introduce any flat connection on the bundle.

However, the K-theory is not compatible with the study of the bundles,
because it is very hard to find a way to extend a projection in a single al-
gebra to its deformed one. When the J-invariant passes on integral points,
a singularity happens, and the phenomenon is known as the quantum Hall
Effect [53]. In addition, we don’t know how to relate the K-theory of quan-
tum algebras to their semi-classical limits, since the K-theory for Poisson
manifolds by Ginzburg [31] is not very well compatible to the K-theory of
their noncommutative deformation.

The key requirement in the setting of Echterhoff is the existence of an
action of the classical tori on the families. Although in our situation of
homotopically trivial families C0(X) ⊗C0(R) C

∗(H3(Z,Z,R)), a torus action
like that always occurs naturally on the fiber algebras of C∗(H3(Z,Z,R)), we
should lessen the requirement to deal with the twisted bundles. If we twist
the classical torus bundle by the action of SL(2,Z), a global T2−symmetry
may not exist. To deal with the local-global issues, the tradition approach is
to glue the local principal bundles together to obtain a new kind of object.

In the rest of the chapter, we will classify these objects and clarify the rela-
tionship with Poisson geometry. Instead of using the definition of Echterhoff
in [25], we proceed with another approach, which may help us to understand
the moduli space.

Definition 2.4.9. Let A be a C∗−algebra fibered over a locally compact
space X. A is called a noncommutative two-torus bundle if there exists
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a cover {Ui}i∈I of X such that A(Ui) = C(Ui) ⊗C(X) A are homotopically
trivial family of noncommutative two-tori in definition 2.4.2, and there exists
a family of gluing isomorphisms

Φij : A(Ui)⊗C(X) C(Uj)→ A(Uj)⊗C(X) C(Ui)

of C∗−algebras over C(Uij) such that the gluing condition

ΦijΦjkΦki = Id

is satisfied for all i, j, k.

In this definition, it is worth remarking that the gluing factor is built in
the structure of the bundle [q : Y → X], and the local classifying maps of
local families A(Ui) are just the local forms of the map f ∈ Cb(X,H2(Z2,T)).
Note that the noncommutative two-torus bundle is different from the one
by Echterhoff, Nest and Oyono-Oyono, meaning that we only require the
existence of a local action of the classical tori.

It also may happen that for any two bundles
{
Aθ1(t)

}
over U1 and

{
Aθ2(t)

}
over U2, such that the restriction to U1

⋂
U2 of two noncommutative fields

are isomorphic, we can glue two bundles into one single field on U1∪U2 with
a jumping and noncontinuous J-invariant. The issue is whether it is possible
to determine a global J−invariant for the whole bundle. For example, we
can glue {A0}t∈[0,1] with {A1}t∈[ 1

2 ,
3
2 ] via the isomorphisms A[0,t] ∼= A[1,1+t] and

A[1−t,1] ∼= A[3/2,1/2−t] for 0 < t < 1/2 to obtain a new continuous bundle A,
but in this case, there is no global choice of the J-invariant.

Example 2.4.10. The group C∗−algebra of the discrete Heisenberg groups
over Z is a noncommutative two-torus bundle over S1, but not a homotopi-
cally trivial family due to Theorem 2.4.13. .

The second example is the mapping class groups.

Example 2.4.11. Let φ ∈ SL(2,Z) be an automorphism of the classical
torus, coming from automorphism of the lattice Z2 ⊂ R2. Then there exists
an action of Z on R×T2 given as φn(t, x) = (t−n, φn(x)). Then the crossed
product C0(R× T2) oφ Z is a noncommutative two-torus bundle.

The next one is isomorphic fiber-wise to the bundle in example 1, but
non-isomorphic globally.
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Example 2.4.12. Let
{
Aθ(t)

}
be bundles of noncommutative two-tori with

α varying in [0, 1
2). We glue a copy of the bundles over [0, 1

2) and another
one on [1

2 , 1] via the isomorphism Aθ ∼= A1−θ (by exchanging two generators)
at the point 0 and 1 to obtain a bundle over the circle S1. This bundle is
obtained by pulling back the map θ(t) from S1 to R, t 7→ 1

2 − |
1
2 − t| for

0 ≤ t ≤ 1. We denote it by Bt.

Figure 2.4.6: Trivial monodromy noncommutative two-tori bundles

After this thesis was completed, we were informed that Hannabus and
Mathai in [34, 33] also constructed (non-principal) noncommutative torus
bundles. Starting from a torus bundle ξ : Tn → E → X, they constructed a
torus bundle over the universal cover η : π1(X)→ X̂ → X by taking the fiber
product Tn → η∗E → X̂. Because π1(X̂) is trivial, then the torus bundle is
a principal (see [39], also in Appendix A.3.2). With the global action of the
classical torus on the fibers, the general machinery of Rieffel quantization
[77, 78] is applied and yields a universal cover quantum algebra AX̂ . Then
noncommutative torus bundle is realized as a fixed-point subalgebra of the
universal one, under the action of the fundamental group π1(X).

In our approach, noncommutative torus bundle is defined abstractly, like
the way a manifold is constructed from the charts. The class of principle torus
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bundles then appear naturally as those ones with the trivial odd Gauss-Manin
connection. Therefore, the two approaches complement each other.

2.4.4 Statement of the monodromy theorem
In the previous section, we have seen that there exists a noncommutative
bundle without any global J-invariant. It is necessary to find an invariant
explaining this phenomena.

It turns out that the existence of a global J−invariant is closely related
to the Poisson structure of the torus bundle.

Fix a standard non-degenerated Poisson structure ω on the two dimen-
sional torus such that the volume of the torus is 1. Then in [74], a comment
made by Weinstein and Rieffel [76] is that rotation algebra A~ is the deforma-
tion quantization of the classical torus with respect to the standard Poisson
structure π = ~∂x ∧ ∂y. Starting from a bundle of non-degenerate Poisson
tori, we can apply the general construction of Kontsevich [44] or the strict
deformation quantization [77] of Rieffel to obtain quantum tori.

Because the Poisson manifold is fibered over some base X, it is very
natural to see that the quantum algebra is fibered over the same base by the
Kontsevich theorem [81, 44] A/[A,A] ∼= A0/ {A0, A0}π.

Therefore, the bundle of rotation algebras over the real lineA = C∗(H3(Z,Z,R))
is isomorphic to the deformation quantization bundle of a single classical sym-
plectic torus (T2, π), i.e. a family of algebras A~ depending on a parameter
~. However, depending on the twisting factor gluing the fibers at the point θ
and θ+1 together, many interesting phenomenons may happen. There exists
noncommutative two-torus bundles not coming from the quantization of any
Poisson manifold, if we twist the quantization of a Poisson torus bundle by
some isomorphism.

But a semi-classical counter-part still exists locally. If we localize the
noncommutative two-torus bundle to an open and contractible set, it is not
difficult to build a Poisson manifold corresponding to it just by pulling back
from the universal Poisson bundle via the classifying map f . Certainly, the
Poisson bundle that we obtain is not unique.

The main event happens when we try globalize the dequantization func-
tor. There exists many Poisson structures on the same manifold with the
isomorphic quantized algebra, and all of the Poisson structures differ an in-
tegral Poisson structure (see [74]). If the extension of the dequantization
functor via two different paths leads to different Poisson fiber F , the de-
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quantization functor may not exist. Therefore, we need to find an invariant
of the quantum bundle that determine the ability to obtain the dequantized
Poisson manifold.

There are some properties the invariant must satisfy. First, the invariant
should be of a global nature because it controls the gluing factor of the
Poisson and noncommutative two-tori. Second, it should be closely related to
the invariants of the Poisson structure on the semi-classical fibers (deRham,
Poisson cohomology,... ) and the invariant of the ∗−product structures on
the quantum bundle. Third, it should be a part of the quantization process
because it relates the Poisson manifolds on the one hand and noncommutative
algebras on the other hand.

The next theorem is the main example for our study and plays the role
of the building block for the construction of the invariant.

Theorem 2.4.13. (Monodromy Theorem) Let {Aθ}θ ∼= C∗(H3) be the
group C∗−algebra of discrete Heisenberg group, represented as a fiber bundle
of rotation algebras over S1. Then, there exists a basis of HP (Aθ) such that
the monodromy of the base under the monodromy of Gauss-Manin connection

on HPeven−bundle is
(

1 1
0 1

)
.

The Gauss-Manin connection is a connection on the bundle of periodic
cyclic homology of a bundle of deformed algebras. For the definition, we refer
to [30, 94]

Our proof is based on the computation of the Gauss-Manin connection
for the periodic cyclic homology of the noncommutative fibers. At the very
beginning, we had computed the monodromy map by direct computation of
the cyclic chains, the calculation is technical and boring. However, we found
that it is possible to overcome the complicated calculation with the star prod-
uct by using the twisted version of the Shoikhet-Dolgushev morphism to map
the HP•−group to the Poisson cohomology groups. More than simply out
of convenience for the calculations, it is possible to generalize the technique
to work with any noncommutative fibers, not just the two-tori. Further-
more, it builds a direct link between quantum invariants of noncommutative
fibrations and Poisson invariants of Poisson manifolds.

In order to do so, in the next section, we recall necessary background of
the proof, i.e. the periodic cyclic homology group, Kontsevich quantization
functor and the character map.
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2.5 DG Algebras
In this section, we review some material [44, 20, 21] about DGLAs.

Definition 2.5.1. [44] A Differential Graded Lie Algebra (DGLA) is
a graded algebra A• = ⊕∞k=0Ak equipped with a differential operator d of
degree 1, a Lie bracket [., .] such that

1. [., .] : Ak ⊗ Al → Ak+l. d : Ak → Ak+1 for k ≥ 0.

2. d2 = 0, d[γ1, γ2] = [dγ1, γ2] + (−1)|γ1|[γ1, dγ2],

3. [γ2, γ1] = −(−1)|γ1|.|γ2|[γ1, γ2]
[γ1, [γ2, γ3]]+(−1)|γ3|.(|γ1|+|γ2|)[γ3, [γ1, γ2]]+(−1)|γ3|.(|γ1|+|γ2|)[γ2, [γ3, γ1]] =
0.

In these formulas, |γ| denotes the degree of the homogeneous element γ.

Definition 2.5.2. [20] A morphism between DGLAs µ : L→ L̃ is a quasi-
isomorphism if µ induces an isomorphism on the corresponding cohomology
groups. We denote this by µ : L→̃L̃. Two DGLAs L and L̃ are quasi-
isomorphic if they can be connected by a sequence of quasi-isomorphisms.
A DGLA is called formal if it is quasi-isomorphic to its cohomology DGLA
H•(L).

Remark 2.5.3. Although the DGLA (L, d) and its cohomology DGLA (H•(L), 0)
have the same cohomology groups, they need not to be quasi-isomorphic. Of
course, we can always map H•(L) into L, i.e. choosing representatives of the
cohomology classes via a map of vector spaces F : H•(L) → L, but F is
not a Lie algebra morphism. However, we can choose F2 : ∧2H•(L) → L of
degree 1 such that

F1([a, b])− [F1(a), F1(b)] = d(F2(a, b)).

But the failure of associativity of F2 leads us to define F3 : ∧3H•(L) → L
and so on. What we obtain after the process is the notion of L∞−algebras.

Definition 2.5.4. [81] An L∞−algebra is a Z− graded vector space L
associated with a collection of linear maps Qn : ∧nL → L[2 − n], satisfying
the relations
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∑
i1<..<ip,j1<..<jq , p+q=k

±Qq+1(Qp(xi1 ∧ xi2 ∧ ...xip) ∧ xj1 ∧ .. ∧ xjp) = 0

for each k = 2 and homogeneous xs. The sign is delicate, and in this thesis
we follow the Koszul rule.

Remark 2.5.5. The first relation, for k = 2, is Q2
1 = 0, i.e. Q1 is a differential

operator on L.
The second relation, for k = 3, is that the product Q2 is compatible with

the differential Q1.
The third relation, is that the skew-symmetric product Q2 obeys the

Jacobi identity modulo Q3.
If Qn = 0 for n ≥ 3, we obtain the notion of 2.5.1 DGLA.
Another equivalent definition of L∞− algebra is in terms of homological

vector fields, as in [20]. Let L = ⊕kLk be a Z−graded vector space. On
L, we define the structure of a coassociative cocommutative algebra without
counit C(L) cofreely cogenerated by L, with shifted parity. The vector space
C(L) is isomorphic to ∧• L, where the sign convention is

γ1 ∧ γ2 = −(−1)|γ1|.|γ2|γ2 ∧ γ1,

and the comultiplication

∆ : C(L) → C(L) ∧ C(L),

is defined by the formulas

∆(γ1) = 0, (2.5.1)

∆(γ1 ∧ ... ∧ γn) =
n−1∑
k=1

∑
ε∈Sh(k,n−k)

±γε(1) ∧ ... ∧ γε(k)
⊗

γε(k+1) ∧ ... ∧ γε(n)

where γ1, ..., γn are homogeneous elements of L.

Definition 2.5.6. [20] A graded vector space L is an L∞−algebra if the
coassociative cocommutative algebra without counit C(L) cofreely cogener-
ated by L, with shifted parity, is equipped with a coderivation Q of degree 1
such that Q2 = 0.

50



2.5. DG ALGEBRAS

Expanding the coderivation Q to a family of maps Qn : ∧nL → L, it is
easy to see that this definition is equivalent to Definition 2.5.4. In the same
light, an L∞−morphism F between L∞−algebras is a homomorphism of the
cocommutative coassociative algebras C(Li) commuting with ∆i and Qi, i.e.
equivalent to a family of maps

Fn : ∧nL→ L[1− n]

satisfying the equations (for n > 0)

F (γ1 ∧ ... ∧ γn) =
∑
p=1

∑
k1+k2+...+kp=n

∑
ε∈Sh(k1,k2,...kp)

±Fk1(γε(1) ∧ ... ∧ γε(k1))
∧
...

...
∧
Fkp(γε(n−kp+1) ∧ ... ∧ γε(n)),

This definition boils down to the usual definition of morphism between DGLAs
if the n−components vanishes for all n > 2.

Definition 2.5.7. [19, 20] Let L be an L∞−algebra. Then a graded vector
space M , is endowed with a structure of an L∞−module over L if the
cofreely cogenerated comodule C(L)⊗M over the coalgebra C(L) is endowed
with a 2-nilpotent coderivation φ of degree 1. We denote the L∞−structures
by L Lmod−→ M .

Unfolding the definition, the comodule structure is equivalent to the coac-
tion

a : C(L)⊗M → C(L)⊗ C(L)⊗M
where

a(γ1 ∧ ...∧ γn⊗ v) =
n−1∑
k=1

∑
ε∈Sh(k,n−k)

±γε(1) ∧ ...∧ γε(k)
⊗

γε(k+1) ∧ ...∧ γε(n)+

+ γ1 ∧ ... ∧ γn ⊗ v

which satisfies the equation (I⊗a)a(X) = (∆⊗I)a(X) for anyX ∈ C(L)⊗M.
Then the coderivation structure φ can be expanded to a map from C(L)⊗M
to itself, satisfying
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φ(γ1 ∧ ... ∧ γn ⊗ v) = φn(γ1, .., γn) +

+
n−1∑
k=1

∑
ε∈Sh(k,n−k)

±γε(1) ∧ ... ∧ γε(k)φn−k(γε(k+1), ..., γε(n), v) +

+(−1)k1+k2+..+knγ1 ∧ ... ∧ γn ⊗ φ0(v) +

+
n∑
k=1

∑
ε∈Sh(k,n−k)

±Qk(γε(1), .., γε(n))⊗ γε(k+1) ∧ .. ∧ γε(n) ⊗ v,

where γi ∈ Lki , v ∈ M, Qk’s are the L∞−algebra structure maps on L, and
φn are arbitrary polylinear antisymmetric graded maps

φn : ∧nL⊗M → M [1− n].

It is easy to check that φ2 = 0 is equivalent to
∑

p+q=k

∑
i1<i2<..<ip, j1<..<i<jq

±φp(xi1 ∧xi2 ∧ ...∧xip ∧φq(xj1 ∧xj2 ∧ ...xjq⊗m))+
∑

p+q=k

∑
i1<i2<..<ip, j1<..<jq

±φq+1(Qp(xi1∧xi2∧...∧xip)∧xj1∧xj2∧...xjq⊗m) = 0.

(2.5.2)

Sometimes, this formula is used to define the L∞−modules directly.
Remark 2.5.8. For k = 0, Equation 2.5.2 gives φ2

0 = 0, i.e. φ0 is a differential
on M . For k = 1, we get that φ1 : L⊗M →M is a map of complexes,

φ0(φ1(x⊗m)) = φ1(dx⊗m)± φ1(x⊗ φom).

Definition 2.5.9. [20] Let L be an L∞−algebra and (M,φM), and (N, φN)
be L∞−modules over L. Then a morphism f from the comodule C(L)⊗M
to the comodule C(L)⊗N compatible with the coderivations φM and φN

f(φM(X)) = φN(f(X)) ∀X ∈ C(L)⊗M

is called an L∞−morphism between the L∞−modules (M,φM) and (N, φN).

Sometimes, we also meet the following definition of L∞−morphisms in
the literature.
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Definition 2.5.10. [20]An L∞− morphism f between two L∞−modules
M and N over L then can be defined as a family of linear maps

fn : ∧nL⊗M → N [−n]

such that

f(γ1 ∧ .. ∧ γn ⊗ v) = fn(γ1 ∧ .. ∧ γn, v) +
n−1∑
k=1

∑
ε∈Sh(k,n−k)

±γε(1) ∧ .. ∧ γε(k) ⊗ fn−k(γε(k+1), .., γε(n), v)

+γ1 ∧ .. ∧ γn ⊗ f0(v) (2.5.3)

which is compatible with the differential, that is

φN0 fn(γ1, .., γn, v)− (−1)nfn(Q1γ1, γ2, ..., γn)− ...
...− (−1)k1+k2+...+kn+nfn(γ1, ..., γn, φ

M
0 v) =

n−1∑
p=0

∑
ε∈Sh(p,n−p)

±fp(γε(1), .., γε(p), φ
M
n−p(γε(p+1), .., γε(n), v)

−
n∑
p=1

∑
ε∈Sh(p,n−p)

±φNp (γε(1), .., γε(p), fn−p(γε(p+1), .., γε(n), v)

+
n∑
p=2

∑
ε∈Sh(p,n−p)

±fn−p+1(Qp(γε(1), .., γε(p)), γε(p+1), .., γε(n), v)

(2.5.4)

for γi ∈ Lki .
Let ~ be a formal parameter. We extend the structure of DGLA from L

to the space of formal power series L[[~]] canonically.

Definition 2.5.11. [20] A Maurer-Cartan (MC) element of a DGLA L is
an element α of L1[[~]] satisfying the equation

∂α + 1
2[α, α] = 0 (2.5.5)

Maurer-Cartan elements generate the infinitesimal deformations of L∞−algebras.
Two deformations of an L∞−algebra are called equivalent if there exists an
isotropy relation between them. On infinitesimal level, because [L0, Ln] ⊂ Ln,
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there exists an action of the group exp(~L0[[~]]) on the space of Maurer-
Cartan elements, which is analog to the action of the group of inner auto-
morphisms

exp(ξ)α = exp(ad(ξ))α + ead(ξ) − 1
ad(ξ) ∂ξ for ξ ∈ L0, α ∈ L

and preserving the Maurer-Cartan equation 2.5.5. The space of all Maurer-
Cartan elements of an L∞−algebra, together with the above action forms
an object called the Goldman-Millson groupoid [32], and denoted by
MC(L). In the literature, it is also called the Deligne groupoid. Any
L∞− morphism between L∞−algebras induces a morphism between their
Goldman-Millson groupoids, i.e. between the moduli spaces of infinitesimal
deformations. Furthermore,
Theorem 2.5.12. [29] Let µ : L→ L̃ be a quasi-morphism of DGLAs, then
µ∗ : MC(L) → MC(L̃) induces an isomorphism between the coarse moduli
spaces π0(MC(L)) and π0(MC(L̃)).

Although from now all the L∞−algebras will be DGLAs, we still consider
the general L∞−morphisms between DGLAs.

2.6 Periodic Cyclic Homology
There are many ways to understand Periodic cyclic homology. The first one
is the concrete approach, suitable for computation and the second is the
abstract one. The main reference is [81]....

Note that on the chain complexes and on the spaces of differential forms,
we use the negative grading.

2.6.1 Concrete Approach
Let A be any algebra, and let C•(A,A)= Ā⊗−• ⊗A be the Hochschild chain
complex with the differential operator b. It is concentrated in non-negative
degree. Here Ā = A/k1. For any element a0 ⊗ a1 ⊗ ... ⊗ an ∈ C−n(A), b is
defined as

b(a0 ⊗ a1 ⊗ ...⊗ an) =a0.a1 ⊗ a2 ⊗ ...⊗ an − a0 ⊗ a1a2 ⊗ ...⊗ an
+ ..+ (−1)n−1a0 ⊗ a1 ⊗ ...⊗ an−1an+
+ (−1)nana0 ⊗ a1 ⊗ a2 ⊗ ...⊗ an−1.
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It is easy to verify that b2 = 0, and we obtain a differential complex

... // Ā⊗ Ā⊗ Ā⊗ A b // Ā⊗ Ā⊗ A b // Ā⊗ A b // A.

The cohomology of the complex (C•(A), b) is called Hochschild homology
of the algebra A, denoted by HH•(A)

On the dual side, let C•(A) = Hom(Ā⊗•, A) be the Hochschild cochain
complex. The differential operator b acting naturally on C•(A) is defined by

bφ(u⊗ a1 ⊗ ...⊗ an) = a0.φ(a1 ⊗ a2 ⊗ ...⊗ an)− φ(a0a1 ⊗ a2 ⊗ ...⊗ an)+
+ φ(a0 ⊗ a1a2 ⊗ ...⊗ an) + ..+ (−1)nφ(a0 ⊗ ...⊗ an−1an)+
+ (−1)n+1φ(a0 ⊗ a1 ⊗ a2 ⊗ ...⊗ an−1).an

for any φ ∈ C•(A), and ai ∈ A. It is also easy to verify that b2 = 0, and the
cohomology of (C•(A), b) is called Hochschild cohomology of A, denoted
by HH•(A). It is helpful to recall that HH• and HH• can be viewed as the
generalization of differential forms and vector fields.

We want to keep the degree of C•(A) concentrated in negative degree
because the degree of b should be the same for both chains and cochains.
The second point is to emphasize the difference between chains (negative)
and cochains (positive).

Theorem 2.6.1. (Hochschild-Kostant-Rosenberg, 1961, [14]) Let X be a
smooth manifold (or a smooth algebraic variety, and A = C∞(X) (or O(X)).
Then we have

HH−i(A) : = H−i(C−i(A,A), b) ∼= Ωi(X).

and

Theorem 2.6.2. (Hochschild-Kostant-Rosenberg, 1961, [14]) Let X be a
smooth manifold (or a smooth algebraic variety, and A = C∞(X) (or O(X)).
Then we have

HH i(A) : = H i(Ci(A,A), b) ∼= Γ(X,∧iTX). (2.6.1)

By the Hochschild-Kostant-Rosenberg theorem, if A is the algebra of
smooth functions on a smooth manifold M, HH•(A) ∼= PolV ect(M) and
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HH•(A) ∼= Ω−•(M). Therefore, it is natural to develop the familiar oper-
ators like Lie derivative, exterior differential, internal multiplication... in
differential geometry into the realm of noncommutative algebras.

There are two levels that the operators can lie in. The first one is the
homology/cohomology level, which is just the direct analog of the commu-
tative case, i.e. these operators acting on the Hochschild cohomology and
homology groups HH•(A) and HH•(A). However, it is very difficult to deal
directly with these operators continuously when the algebra A is deformed.

The second way is to work on the level of differential chain/cochain com-
plexes, i.e. passing through a quasi-isomorphism representative. The rela-
tionship between these familiar operators defined on this level should reduce
to the one on the homology level, after passing to homology.

2.6.2 Abstract approach
It is desirable to use the abstract approach to the situation. First of all, we
develop the terminology that works out for any vector space A, and then
study how the algebraic structure enters the picture.

Let A be any vector space. Denote by C•(A)= Ā⊗−• ⊗ A and C•(A)=
Hom(Ā⊗•, A) the Hochschild chain and cochain spaces. Naturally, there
exists a pairing of degree zero between C•(A) and C•(A) with the values on
A, defined by the evaluation map.

For φ, ψ ∈ C•+1(A) with the degrees shifted by 1, the Gerstenhaber
bracket is defined [30]by

[φ, ψ] = φ • ψ − (−1)pqψ • φ φ ∈ Cp+1(A), ψ ∈ Cq+1(A), (2.6.2)

where the composition product can be defined as

φ • ψ(a1, a2, ..., ap+q+1) =
p+1∑
i=0

(−1)(i−1)qφ(a1, .., ai−1, ψ(ai, ...ai+q), ..., ap+q+1)

As a result, C•+1(A) is a graded Lie algebra. Pictorially, we think of the
product φ • ψ as

On the dual side, CC•(A) is graded module over the Lie algebra CC•+1(A)
where the module structure is the generalization of the Lie derivative of a
vector field on differential forms. More precisely, for any φ ∈ C•+1(A), and
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Figure 2.6.1: The product of Hochschild cochains

a = (a0, a1, ...an) ∈ C−n(A), the Lie action is given [30] by

Lφ(a0, a1, ..., an) = (−1)p
n−p∑
i=0

(−1)ip(a0, a1, ..., ai−1, φ(ai, ..., ai+p), ..., an)+

+
n∑

i=n−p+1
(−1)np(φ(ai, ..., an, a0, ..., ap−n+i−1), ..., ai−1).

(2.6.3)

where we can show that

[Lφ, Lψ] = L[φ,ψ] (2.6.4)

There also exists another differential B : C•(A) → C•−1(A), [30]called the
Rinehart-Connes differential acting on C•(A). This operator on the chain
level plays the role of the exterior differential in differential geometry.

B(a0, a1, .., an) =
n∑
i=0

(−1)in(1, ai, ai+1, ...., an, a0, ...ai−1) (2.6.5)

and B : C•+1(A)→ C•(A)

Bφ(a0, ..., an) =
n∑
i=0

(−1)inφ(1, ai, ai+1, ..., an, a0, ..., ai−1). (2.6.6)

It is an easy exercise to verify that B2 = 0. We notice that the Connes
differential is compatible with the Lie derivative L in the sense that [30]

BLφ − (−1)deg(φ)+1LφB = 0
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Lie derivative and algebraic product µ. It is fruitful to see that [., .],
B and L are natural operators in the category of vector spaces, and they
are independent of the algebraic product of A. If an associative product
µ ∈ C2(A) is given, we can determine many other structures of the chain
and cochain complexes basing on these tautological operators.

For example, it is known that [19] the familiar Hochschild differential b
on C•(A) is just the Lie derivative Lµ, and Hochschild differential b on C•(A)
is nothing but [µ, .]. The vanishing of b2 on these complexes is equivalent to
the associativity of µ, and it allows us to build the homology HH•(A) and
cohomology HH•(A) groups.

Summarize, (C•+1(A), b, [., .]) is a Differential Graded Lie Algebra (DGLA)
in the sense of 2.5.1 and C•(A) is a DG Lie module over C•+1(A).

Just like in the classical case, we can show that

b ◦ Lφ − (−1)pLφ ◦ b = Lbφ = L[µ,φ] for φ ∈ Cp+1(A).

which passes these structures to the cohomology level (cite [30]). Conse-
quently, the Lie derivative operator L induces the action of the graded Lie
algebraHH•+1(A) on the homologyHH•(A) of C•(A) via the generalized Lie
derivative. In the case of algebra of smooth functions on a smooth manifold,
it reduces to the usual Lie derivative via the Hochschild-Kostant-Rosenberg
theorem 2.6.1.

Interior multiplication [30] Motivated in parts by the internal multi-
plication iξω between poly-vector fields and differential forms, it is natural
to introduce the internal multiplication (the contraction) I between a
chain and a cochain

Iφ(a0, a1, ..., an) = (a0φ(a1, a2, ...ap),ap+1, ..., an). (2.6.7)

for φ ∈ Cp(A), a = (a0, a1, ..., an) ∈ Cn(A). See [29]
Naively, we expect that the homotopy formula Lφ = B◦Iφ−(−1)pIφ◦B in

differential geometry also holds, but it turns out that the answer is yes only
in the cohomological level, and “almost yes” in the chain/cochain complex
level. It means that we need to introduce a new term that vanishes when
passing through cohomology group.
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Lemma 2.6.3. [30] Let Hφ : C−n(A)→ C−n+p−2(A) be the map

Hφ(a0, a1, ..., an) =
n−p∑
i=0

n−p−i∑
j=0

(−1)i(n−p+1)+j(p+1).

(1, an+1−i, ..., an, a0, a1, ..., aj, φ(aj+1, ..., aj+p), ..., an−i).
(2.6.8)

Then we can show that Hφ commutes with B, [b, Iφ] = Ibφ and

Lφ = [B, Iφ]−Hbφ + [b,Hφ], (2.6.9)

as elements of Endk(C•(A)). Furthermore,

[b+B, Iφ +Hφ] = Lφ + Ibφ +Hbφ. (2.6.10)

We also can verify that on the chain complex level some important prop-
erties are satisfied

[b, Iφ] = Ibφ (2.6.11)
[B,Hφ] = 0 (2.6.12)

2.6.3 Periodic cyclic homology
Lemma 2.6.4. [14] Given an algebra A. Then the operators B, b fit in a
double complex, and satisfying condition b2 = B2 = Bb+ bB = 0

... ...

A⊗4 b // A⊗3 b // A⊗ A b // A

... A⊗3 b //

B

OO

A⊗ A b //

B

OO

A

B

OO

A⊗ A b //

B

OO

A

B

OO

... A

B

OO

(2.6.13)
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If we extend the double complex on the left and the up-side directions
by repeating the rows and columns, we obtain an infinite double complex.
Taking direct sums along the diagonal direction, we obtain the the complexes

...

b
))

PCodd(A)
b

**

uB

ee PCeven(A)
b

**

uB

jj
PCodd(A)

uB

jj
...

where PCodd(A) = A⊕A⊗3⊕A⊗5⊕... and PCeven = C⊕A⊗2⊕A⊗4⊕A⊗6⊕....
It is easy to verify that b + B is a differential acting on the complex

PC•(A) = PCodd(A)⊕ PCeven(A)

b+B // PCodd(A) b+B // PCeven(A) b+B // PCodd(A) b+B // ...

The cohomology of the complex is called periodic cyclic homology of A,
and denoted by HP•(A).

Theorem 2.6.5. [14] Let M be a compact manifold. Then HP•(C∞(M)) ∼=
Hodd
dR (M)⊕Heven

dR (M).

The meaning of the theorem is that HP• group is a noncommutative
generalization of the deRham cohomology. In fact, as we will see below,
periodic cyclic homology is invariant under infinitesimal noncommutative
deformation.

Example 2.6.6. Recall from [63] that

HPk(C∞(Tθ)) ∼= HPk(C∞(S1 × S1)) ∼= Hk(S1 × S1).

Therefore
HPeven(Tθ) = HPodd(Tθ) = Z2.

By [63], for the smooth tori, HP1(Tθ) is generated by < u−1du > and <
v−1dv > and HP2(Tθ) is generated by < 1 > and < u−1v−1(e2πiθdu.dv −
dv.du) >.

We summarize the above terminologies in the following table.

We believe that the table should be well known in somewhere, and anyone
in the areas knows, but we do not know any reference.
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Classical level Cohomology level Complex level
poly-vector field HH•(A) (C•(A), b)
differential form HH•(A) (C•(A), b)

exterior differential d d D = b+ uB
Lie derivative Lξ Lφ action of HH• on HH• Lφ in Equation 2.6.3

Internal multiplication iξ Iφ Iφ in Equation 2.6.7
Iφ well-defined [b, Iφ] = Ibφ

Homotopy formula Lφ = B ◦ Iφ − (−1)pIφ ◦B Equation 2.6.10
DeRham cohomology HP• BB-complex 2.6.13

∪ and [., .] Leibniz rule unknown

Table 2.6.1: Noncommutative Geometry Correspondence

2.7 Kontsevich formulation and formality
Because our study deals with morphisms between cohomology groups of de-
formed algebras, we review some background on deformation theory in the
sense of Kontsevich. We will try to avoid technical details of the construction
of the quantization map, and refer to the original paper [44].

2.7.1 Semi-classical side
Let M be any smooth manifold, and let Γ(T •+1M) = Γ(M,∧•+1TM) be
the space of poly-vector fields associated with Schouten Bracket [., .] (special
case of equation 2.6.2) and zero differential. It is known that any 2-vector
field π ∈ Γ(T •+1M) is a Poisson structure if it satisfies the Maurer-Cartan
equation [π, π] = 0.

Because the differential is trivial, we can rewrite it under the form

dπ + 1
2[π, π] = 0 (Maurer-Cartan equation) (2.7.1)

We would like to study the moduli space Poiss(M) of Poisson structures on
M, modulo gauge transformations.
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2.7.2 Algebraic side
Let A be the algebra of functions on M with usual product. We would like
to define a new associative product on A[[~]] depending on a parameter ~

f ∗~ g = f.g + ~.γ(f, g).

The associativity is equivalent to the equation

dγ + 1
2[γ, γ] = 0 (Maurer-Cartan equation) (2.7.2)

where [., .] is the Gerstenhaber bracket. It is known that we can γ is equiv-
alent to a skew-symmetric product, modulo a gauge transformation. We
would like to study the moduli space Assoc(M) of associative product on A,
modulo gauge transformation.

Quantization and Formality for Hochschild Chains Starting from a
∗~−product, it is possible to recover the Poisson structure by taking semi
classical limit, also called dequantization

{f, g} = lim~→0
f ∗~ g − g ∗~ f

~
The philosophy of Quantization is that an inversion map should exist, and
in many good enough case, it should be an isomorphism.

Poiss(M) // Assoc(M)oo

MC Eq (2.7.1) for Γ(T •+1M) //MC Eq (2.7.2) for C•+1(A)oo (2.7.3)
By the Hochschild-Kostant-Rosenberg theorem 2.6.1, the cohomology of the
complex (C•+1(A), b) is isomorphic to the cohomology of the complex Γ(T •+1M)
with zero differential as vector spaces. The evident map is quite simple and
canonical

U
(0)
1 : ξ0 ∧ ξ1 ∧ ... ∧ ξn →[

(f0 ⊗ f1..⊗ fn) 7→ 1
(n+ 1)!

∑
σ

sgn(σ)
n∏
i=0

ξσi(fi)).
]
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However, this canonical map is not a DGLAmorphism, so it does not preserve
the Maurer-Cartan equations 2.7.1 and 2.7.2. As a result, it could not provide
a correspondence between the Poisson structures on M and the associative
product structures on C∞(M).

To establish the correspondence, In [44], Kontsevich proved the Formality
Conjecture by constructing a DGLA quasi-morphism U from (Γ(T •+1M), 0, [., .])
to (C•(A), d, [., .]). Being a DGLA morphism, U preserves the Lie brackets
and differentials on both chain complex and poly-vector field sides, there-
fore, it induces a bijection between the solutions of the two Maurer-Cartan
equations 2.7.1 and 2.7.2.

DGLA : (Γ(T •+1M), [., .], 0)
Kontsevich

U // (C•(A), [., .], b)

Therefore, there is a 1-1 correspondence induced from U between:

1. Poisson structures π, i.e. 2-vector fields satisfying the Maurer-Cartan
equation [π, π] = 0

2. Deformation quantization γ = Uπ of the associative product satisfying
the Maurer-Cartan equation on the other side

dγ + 1
2[γ, γ] = 0 (2.7.4)

Equivalently, Poisson structure can be quantized canonically with the
quantization product, f ∗~ g = f.g + Uπ(f ⊗ g).

In other senses, the Kontsevich morphism plays the role of the isomorphism
between two moduli spaces of solutions of Maurer-Cartan equation. The
formula for the Kontsevich morphism can be found in [44].

2.7.3 Formality for the Hochschild cochains

DGLA : (Γ(T •+1M), [., .], 0)
Kontsevich

U //

Lmod
��

(C•+1(A), [., .], b)
Lmod
��

(Ω−•(M)[[u]], ud) (C•(A)[[u]], b+ uB)V−L∞modules
Shoikhet−Dolgushev
oo
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In the diagram, the vertical arrows with Lmod mean that the lower is a
L∞−module structure of the upper, as explain in the definition 2.5.7. It is
important to notice that they are not morphisms.

Equivalently, it means that C•(A) is a DGLA module over C•(A), so it
is a DGLA module over (Γ(T •+1M), [., .], 0) via the composition with the
Kontsevich map U . On the other hand, Ω−•(M) is a DGLA module over
(Γ(T •+1M), [., .], 0) via the classical Lie derivative. The question is, how to
compare these DGLA modules over (Γ(T •+1M), [., .], 0).

Shoikhet in [81] has constructed a map V of L∞−modules over Γ(T •+1M)
from C•(A) to Ω−•(M) for the linear caseM = Rn. Dolgushev [19] later gen-
eralized it to general smooth manifolds using the Gelfand-Fuchs technique.

We notice that the key difference between Kontsevich deformation map
and Shoikhet-Dolgushev maps is that the first one is the quantization from
classical side to the noncommutative side, and the second one is the dequanti-
zation from the noncommutative side back to the classical side. It is not sur-
prising phenomenal because the first component of the Shoikhet-Dolgushev
map is just the familiar morphism in the Hochschild-Kostant-Rosenberg the-
orem 2.6.1.

V0(a0 ⊗ a1 ⊗ ....⊗ an) = 1
n!a0da1da2..dan.

Roughly speaking, the Kontsevich and Shoikhet-Dolgushev maps are im-
proved versions of Hochschild-Kostant-Rosenberg for higher degrees.

2.7.4 Twisting Procedure and tangent cohomology
The twisting procedure is from the paper by Quillen, and then is used by
[95] in the realm of algebraic geometry. The twisting procedure also appears
in the work of Kontsevich [44], section 8, when the author discusses the
compatibility with the cup product of the tangent space of the super moduli
space.

The main idea is that instead of L∞−morphisms between L∞−modules,
it is possible to study their deformation by a Maurer-Cartan element. There-
fore, the twisting procedure can be viewed as the study of objects built out
of the tangent spaces of the deformation functor. We remind the reader the
twisting procedure from [19, 20, 21].

Algebras
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Given a Maurer-Cartan element π ∈ ~L[[~]] of a DGLA algebra L, it
is possible to modify the DGLA structure by adding a twisting compo-
nent [π, .] to the differential d. The new DGLA (L, d + [π, .]) is called the
twisted DGLA by π. The more general twisting process can be done with
L∞−algebras, where the homological vector field is twisted by

Qπ(X) = e−π∧Q(eπ∧X).
Modules
Given M a DGLA module over L. Then, the twisting procedure can be

carried out for modules (see proposition 2, page 38, [20]). For any L∞−
module (M,φ), we define the tangent complex Mπ as the graded space
M• = M ⊗ C(L) together with the new differential φπ = e−π∧.φ.eπ∧ where
φn : C(L) ⊗M → M the module differential structure in 2.5.7. But being
away from the abstract nonsense, we can compute that the formula for the
differential 2.5.7 is deformed to

φπn(γ1 ∧ ... ∧ γn ⊗ v) = φn(γ1 ∧ ... ∧ γn ⊗ v) + φn+1(π, γ1 ∧ ... ∧ γn ⊗ v)

+...+ 1
p!φp(π, π, ..., π, γ1 ∧ ... ∧ γn ⊗ v) + ....

and the morphism f between L∞−modules 2.5.10 is deformed to

fπn (γ1 ∧ ... ∧ γn ⊗ v) = fn(γ1 ∧ ... ∧ γn ⊗ v) + fn+1(π, γ1 ∧ ... ∧ γn ⊗ v)

+...+ 1
p!fn+p(π, π, ..., π, γ1 ∧ ... ∧ γn ⊗ v) + ....

It is very simple to verify that the equation guarantees ∂ + [α, .] is an
actual differential, i.e. (∂ + [π, .])2 = 0 due to the Maurer-Cartan equation
2.5.5. We denote the new DGLA

(L[[~]], dπ, [., .])

by Lα and called it the twisted-DGLA. A module over the twisted DGLA
Mπ is called the twisted L∞−module.

It is obvious that every morphism of DGLA U : L→ L̃ can be extended
uniquely to Uπ : Lπ → L̃U(π). Furthermore, the twisting procedure preserves
the quasi-isomorphisms.
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Proposition 2.7.1. [20] If π a Maurer-Cartan element in L, and U : L→ L̃
is a quasi-isomorphism between DGLA algebras, then so is Uπ : Lπ → L̃U(π)

where Uπ = ∑∞
n=0

Uπn
n! and

Uπ
n (a1, ..., an) =

∞∑
k=0

1
k!Uk+n(a1, a2, .., an, π, π, ..., π)

If V : M → M̃ is a quasi-isomorphism between L∞− modules over L, with
n-Taylor components Vk, then

Lπ

Lmod
��

= // Lπ

Lmod
��

M V π // M̃π

is also a quasi-isomorphism between L∞−modules over Lπ, where V π =∑∞
n=0

V πn
n! , and

V π
n (b1, b2, ....bn,m) =

∞∑
k=0

1
k!Vk+n(π, π, ..., π, b1, b2, ..., bn,m).

We notice that Uπ
0 is just the constant map, with the value equal to the image

of π under the Kontsevich morphism U. Therefore, abusing use of language,
we use Uπ

0 for Uπ.
We are interested in the application of the above proposition to the for-

mality conjecture, i.e. the map U is the Kontsevich morphism. The twisted
Uπ is an ~−linear L∞− quasi-isomorphism from Γ(T •+1M)[[~]] with the
Poisson differential dπ = [π, .] to (C•+1(M)[[~]], b~) with the new Hochschild
differential b∗ = b+ LUπ0 calculated with Kontsevich ∗−product Uπ

0 .
Recall that PC•(A) = PCodd⊕PCeven, the complex for Periodic cyclic ho-

mology. Then, V π is L∞− morphism of modules over DGLA (Γ(T •+1M), dπ)
from (PC•(A)[[~]], b+uB) to (Ω−•(M,R[[~]]), ((u)), Lπ +ud). See[11, 95] for
more details.

DGLA : (Γ(T •+1M), [., .], dπ)Kontsevich
Uπ //

Lmod
��

(C•(A), [., .], b+ LU0(π))
Lmod
��

(Ω−•(M)[[u]], Lπ + ud) (C•(A)[[u]], b+ uB)V π−L∞modules

S-D
oo

(2.7.5)
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where S-D stands for Shoikhet-Dolgushev. We remind that the vertical ar-
rows is the L∞−modules structure in 2.5.7. The parameter u is formal, and
will be put to be 1 for our purposes, although studying the variation of u
leads to interesting problems in mirror symmetry [40].

If u is non-zero, because Lπ = d◦iπ−iπ◦d, the map α 7→ eiπ/u .α induces an
isomorphism between two differential complexes (Ω−•(M,R[[~]]), ((u)), Lπ +
ud) and (Ω−•(M,R[[~]]((u)), ud), since

(Ω−•(M,R[[~]]), ((u)), Lπ + ud)

eiπ/u

��

(PC•(A)[[~]], b∗ + uB)]
V π0oo

Ṽ π0

ss
(Ω−•(M,R[[~]]((u)), ud)

Therefore in the cohomology level, we obtain an isomorphism Ṽ π
0 = eiπ/u .V π

0
from the periodic cyclic homology PH•(A~) [46] of deformed algebras to the
DeRham cohomology H−•(M,R[[~]])((u)), which is a morphisms of modules
over Poisson Cohomology HP •(A~), called the character map [11].

2.8 Character Map and Monodromy Theo-
rem

In this section, we summarize the techniques introduced above to prove the
Main Theorem 2.4.13

2.8.1 Gauss-Manin connection
Classically the Gauss-Manin connection was defined in the algebro-geometric
setting by Manin [50] as a flat connection ∇ on the bundle of cohomology
groups. The cohomology groups are the deRham cohomology H•(Es) of the
fibers of a family of algebraic varieties over some base S and the connection
is determined by a differential equation. The problem of developing the
Gauss-Manin connection to noncommutative geometry setting was solved by
Getzler [30] in the level of periodic cyclic homology.

We recall some necessary backgrounds from [11]. Let {At} be a family of
algebras over the base S. Assume that the algebras {At} can be identified
to A0 as vector spaces. The products in the fiber algebras {At} has the form
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µ+γ(t) where µ is the product in A0 and γ(t) is a curve on the moduli space
of solutions of the Maurer-Cartan equation [12]

bγ(t) + 1
2[γ(t), γ(t)] = 0.

where b is the Hochschild differential 2.7.2.

Theorem 2.8.1. [11] Let γ(t) be the deformation of the deformed product
µ+γ(t) of the fiber algebras At from A0. Then there exists a Gauss-Manin
connection ∇ on the fiber bundle PC•(At) = (⊕A⊗oddt )⊕ (⊗A⊗event ) which
commutes with the b+ uB differential. The connection defines a differential
equation of parallel transportation as follows

d

dt
c(t) + 1

u
Î(γ̇(t))c(t) = 0 (2.8.1)

where c(t) ∈ PC•(At), and c(0) is a cyclic cycle. Here, Îγ̇(t) = Iγ̇ + uHγ̇ is
defined in Equations 2.6.6 and 2.6.7 The ∇−parallel solution c(t) is cyclic
cycle for all t, and its homology class in PH•(At) depends only on the class
of c(0).

Because the differential b + uB on the complex PC• commutes with the
Gauss-Manin connection, the connection on the PC•− complex induces a
connection on the periodic cyclic homology group HP•.

Given a Gauss-Manin connection, it is unknown in general whether or
not it is integrable. Equivalently, we do not know if the differential equation
of parallel transportation has a unique solution.

The key remark about the theorem is that the Gauss-Manin connection
∇ on the level of PC•− complexes in the sense of Getzler is not flat, or
equivalently it depends on the path connecting two points. However, it is
possible to check that [30] its curvature ∇2 is homotopic to zero, and so the
connection induces a flat connection on the level of periodic cyclic homology
PH•(At).

Tsygan in [86] constructed another flat connection ∇GM on the the level
of complexes (PC•(At), b+B). This connection coincides with the one con-
structed by Getzler in the level of periodic cyclic homology, but it is much
more complicated, compared to 2.8.1. Because two connections yield the
same monodromy in the level of homology, it is sufficient to use Getzler’s
connection for computations.
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Recently, Yashinski [94] has developed a functional analytic condition
that the Gauss-Manin connection is integrable. The condition is mostly the
smoothness of the bundle, which is always satisfied in our case. In this
circumstance, the author even showed that the solution converges. We refer
the reader to his work for more details.

We will use smooth tori from now on, with the smooth structure de-
fined by the action of the classical torus. The reason for this is that smooth
tori are compatible with both Rieffel quantization and periodic cyclic ho-
mology, in the sense that HP•(C∞(T2)) ∼= C2 +C2. Meanwhile, the periodic
cyclic homology can detect even the local neighborhoods of any points due to
HP•(C(T2)) ∼= C(T2), which is too much for our purpose. It is also impos-
sible to deform the algebra of all continuous functions, because the Poisson
structure does not make sense in non-smooth context.

In order to compute the monodromy for the periodic cyclic homology
groups HP•(At), we compute the monodromy for its generators PC•(At) by
using equation 2.8.1, and then pass it down to the HP•− groups.

We fix a basis < x, y > for the torus T2 = R2/Z2, then U−1dU = dx
and V −1dV = dy are T2−invariant homology classes of the noncommutative
two-tori. It is known in [63] that they from a basis for the group HP•(Tθ(t)).

We apply equation 2.8.1 to compute the star product and the Gauss-
Manin connection for the case {Tθ(t)} ∼= C∗(H3). To avoid technical ob-
structions, we compute the monodromy of the curve c(t) starting from the
commutative algebra A0.

Instead of using the formulation Tt = C∗(U, V | UU∗ = V V ∗ = Id, UV =
V U.e2πit) with the notation from 2.4.1, we think of the ∗−product as an
element of Hom(A⊗ A,A) ∼= A⊗ A∗ ⊗ A∗.

µ+ γ(t) =
∑
x,y,p,q

e−2πitypUx+pV y+q ⊗ (UxV y)∗ ⊗ (UpV q)∗

=
∑
x,y,p,q

e−2πitypWx,y,p,q.

where Wx,y,p,q stands for

Ux+pV y+q ⊗ (UxV y)∗ ⊗ (UpV q)∗

and ∗ stands for the dual basis. We note that it is equivalent to Equation
2.3.1 of ∗−product on S(Zn).
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Thus, we obtain the variation of the ∗t product structure

γ̇(t) = −
∑
x,y,p,q

2πiyp.e−2πitypWx,y,p,q. (2.8.2)

In order to obtain the monodromy, we plug the variation 2.8.2 into the dif-
ferential equation 2.8.1. The Gauss-Manin connection as in the form of 2.8.1
consists of two parts, Iφ 2.6.7 and uHφ 2.6.8. Notice that Iγ̇(a0, a1, ..., an)
and uHγ̇(a0, a1, ..., an) vanish for n = 0 and n = 1 for the obvious reason, i.e.
checking the degree. For n = 2, we can verify that

Iγ̇(t)(a⊗ b⊗ c) = a ∗t γ̇(b⊗ c),

Hγ̇(a⊗ b⊗ c) = e⊗ γ̇(b⊗ c)⊗ a,
and

Hφ(a0, a1, ..., an) =
0∑
i=0

0∑
j=0

(−1)i+j.

(1, an+1−i, ..., an, a0, a1, ..., aj, φ(aj+1, ..., aj+2)...., a2−i).
(2.8.3)

To summarize, the equation for the Gauss-Manin connection for bundle of
noncommutative two-tori can be described as

Îγ̇[(UxV y ⊗ (UpV q)⊗ (UmV n)] = −2πiqme−2πit(qm+y(p+m))Ux+p+mV y+q+n

− 2πiqme−2πitqm[e]⊗ Up+mV q+n ⊗ UxV y.
(2.8.4)

We come up with an equation for the monodromy of the generators of the
PH• groups in Equation 2.6.6. Because of the vanishing of I and H for n = 0
and n = 1, the monodromy acts trivially for H0(T2), H1(T2).
For n = 2, we obtain

Îγ̇[U−1V −1(e2πitdUdV − dV dU)] = −2πi− 2πie−2πit[e]⊗ dUV ⊗ d(U−1V −1)

To finish Lemma 2.4.13, we only need to show that the monodromy is non-
trivial for H2(T2) ∼= C. The proof is a direct albeit lengthy and technical
calculation of the Hochschild cochains, i.e. by solving the differential equation
of the monodromy.
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2.8.2 Main proof for the Formal Case
However, Cattaneo, Felder and Willwacher provide submitted a preprint [11],
which contains a lemma which help us shorten the calculation. The enlight-
ening key is to use the twisted quasi-morphism map V π that we reviewed in
the previous sections.

Lemma 2.8.2. ([11]) Let π be a Poisson vector field on M, A = C∞(M)
and θ ∈ Γ(M,∧pTM) such that [π, θ] = 0. The twisted Shoikhet-Dolgushev
quasi-morphism V π 2.7.5 induces a map of complex

îθ ◦ V π
0 (.)− V π

0 ◦ ÎUπ1 (θ)(.) + uV π
1 (θ)(.) .

from (PC•(A), b∗+uB) to (Ω−•(M,R)⊗C((u)), Lπ +ud). Furthermore, this
map is trivial homotopically, so it induces a zero map on cohomology.

(Γ(M,∧•+1TM), [π, .])
θ 7→Uπ1 (θ)

Uπ• //

îθ

��

(C•(A), b+ LUπ0 )

ÎUπ1 (θ)

��
(Ω−•(M)((u)), Lπ + ud) (PC•(A), b∗ + uB)V π•

V π1 (θ)
oo

Where the vertical arrows are DGLA modules actions. The formula for
V π

1 (θ; a0, a1, ...an) is

∑
m=0

~m

m!
∑

Γ∈G(m+1,n)
(
ˆ
π−1

1 (U1)⊂Cm+1,n

ωΓ)DΓ(θ, π, π, ...; a0, a1, ..., an)

The sum is taken over all the Shoikhet graphs, and DΓ a differential operator
defined for the graph Γ.

Because we do not need the precise formula for the Shoikhet-Dolgushev
map, we refer the reader to the [81]. We apply the lemma to the case π(t) =
t.π, and θ = π. Notice that it can be proved for any smooth curve on the
moduli space of MC elements π(t) as long as [π(t), θ(t)] = 0, for θ(t) = π̇(t).
Let γ(t) be the quantization of π(t), i.e. γ(t) = U(π(t)).

On the quantum side, there exists the Getzler-Gauss-Manin connection
d+ 1

u
Îγ̇(t) on the (PC•(At), dµ + Lγ(t)) complex.
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On the classical side, there exists another connection d + 1
u
îπ̇(t) on the

twisted complex (Ω−•(M), Lπ(t) + ud). Here the connection on the classical
level is

îπ̇(t) = iπ̇(t) + u

2dLπ̇(t) = iπ̇(t) + u

2diπ̇(t)d.

Lemma 2.8.3. [11]Modulo trivial homology classes, V π(t) intertwines the
Gauss-Manin connection d + 1

u
Î
U
π(t)
1 (π̇(t)) on (PC•(At), b∗ + B) and the con-

nection d + 1
u
îπ̇(t) on the trivial vector bundle on the Maurer-Cartan variety

of Poisson structures with fibers (Ω−•(M,R[[~]])((u)), Lπ(t) + ud). Further-
more, Ṽ π(t) = eîπ(t) ◦V π(t) maps parallel sections on HP•− bundle to constant
section on H•(M)−bundle.

Proof. The proof is from [11]. By the definition of the Shoikhet morphism

d

dt
V
π(t)

0 + 1
u
îπ̇(t) ◦ V π(t)

0 = V
π(t)

1 (π̇(t)) + 1
u
îπ ◦ V π

0 .

By the lemma 2.8.2

d

dt
V
π(t)

0 + 1
u
îπ̇(t) ◦ V π(t)

0 = 1
u

[V π(t)
0 ◦ Îπ(t)

U1(π̇(t))+{
(Lπ(t) + ud) ◦Xπ(t)(π̇(t)) +Xπ(π̇(t)) ◦ (b∗(t) + uB)

}
]

Applying this equation of differential operators on the cyclic cycle c(t) sat-
isfying the Gauss-Manin equation of parallel transportation, we obtain the
equation

d

dt
(eîπ/uV π(t)

0 c(t)) = ( d
dt

+ 1
u
îπ̇(t))(V π(t)

0 c(t))

=
[1
u
Lπ(t) + d

]
Xπ(t)(π̇(t))c(t)

= d
[
eîπ(t)/u.Xπ(t)(π̇(t)c(t))

]
Thus, ( d

dt
+ 1

u
îπ̇(t))(V π(t)

0 c(t)) = d
dt

(eîπ/uV π
0 c(t)) is a boundary, and after

passing to the cohomology level, it induces a zero homology class. To sum-
marize, the quasi-isomorphism V

π(t)
0 intertwines the Gauss-Manin connection

between Periodic cyclic homology bundle and d + 1
u
îπ̇(t) connection on the

(Ω(M), d+ Lπ(t)) bundle.
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The meaning of this lemma is that we can trivialize the bundle to the
commutative case, modulo a twisting isomorphism. For our case, π̇(t) = π,
and then

( d
dt

+ 1
u
îπ̇(t))(V π(t)

0 c(t)) = d

dt
(eîπ/uV π(t)

0 c(t))

The problem boils down to studying the twisting factor d + îπ̇(t) = d +
iπ̇(t) + u

2dLπ̇(t) = d + iπ̇(t) + u
2diπ̇(t)d acting on the differential complexes

(Ω−•(M), d+ Lπ). Because the Gauss-Manin Connection commutes with B
and b, the parallel transportation moves a cycle to a cycle and a boundary
into a boundary.

(C•(At[[~]], ∗t), b+ uB) Module // (PC•(At[[~]]), b∗ + uB,∇GM)
V π0
��

Ṽ π0

��

(Γ(T •+1M), 0)

U

OO 22

//

))

(Ω−•(M,R[[~]])((u)), Lπ(t) + ud,∇ = d+ 1
u
îπ̇(t))

e
îπ/u

��
(Ω−•(M)[[~]]((u)), ud,∇ = d)

Computation of the monodromy of parallel sections
Applying the above commutative diagram to the bundle of noncommu-

tative two-tori A~ = 〈U, V | UV = V Ue2πi~〉, we obtain the following differ-
ential equation for the horizontal sections on (Ω−•(M), d+ Lπ(t))

ċ(t) + 1
u

(iπ + u

2diπd)c(t) = 0. (2.8.5)

which induce constant sections on (Ω−•(M), d), modulo trivial cohomology
classes. However, solving the differential equation on the infinite dimensional
space ⊕A⊗• from 2.8.1 is quite complicated and we choose to pull back the
parallel sections on the deRham cohomology bundle (Ω−•(M), d) back to the
HP• bundle.
Remark 2.8.4. The quasi-isomorphism V π(t)◦(Ṽ π(t))−1=eîπ/u from (Ω−•(M), d)
to (Ω−•(M), d+ Lt.π) can be read

dx ∧ dy 7→ eit∂x∧∂ydx ∧ dy = dx ∧ dy + t1
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dx 7→ eit∂x∧∂ydx = dx

dy 7→ eit∂x∧∂ydy = dy

1 7→ eit∂x∧∂y1 = 1.
which induces an isomorphism between cohomology groups. The differential
equation 2.8.5 is always integrable, since the differential operator ∂x ∧ ∂y is
nilpotent.

It is important to notice that two noncommutative tori At and At+n are
always isomorphic, but the complexes (Ω−•(M), d+ Lt.π) and (Ω−•(M), d+
L(t+n).π) are different. Therefore, to construct a local bundle of semi-classical
complex (Ω−•(M), d + Ltπ), we need to choose a representative among the
family of Poisson structure (t + n)π. If t is shifted by n, we obtain an-
other family of quasi-isomorphisms V π(t+n) from (PC•(At), b∗+B,∇GM) into
(Ω−•(M), d+ L(t+n). ∂

∂x
∧ ∂
∂y
,∇).

At
∼= //

��

At+1

��
(Ω−•(M), d+ Ltπ) //

��

(Ω−•(M), d+ L(t+1)π)

��
Ω−•(M) = // Ω−•(M)

Thus, V(t+1)π ◦ V −1
π induces a map eî(t+1)π/u ◦ [eîtπ/u ]−1 on (Ω−•(M), d).

By Remark 2.8.4, this morphism maps a parallel section to another parallel
section.

The bundle C∗(H3(Z,Z,Z)) is isomorphic to the bundle C∗(H3(Z,Z,R))
by gluing the fibers Aθ and Aθ+1 together. Therefore, the monodromy of the
Gauss-Manin connection on H•(M) ∼= HP •(A0) is equivalent to the operator
eîπ/u . We fix the basis

e1
odd = (V̂ π

0 )−1(dx)
e2
odd = (V̂ π

0 )−1(dy)
e1
even = (V̂ π

0 )−1(1)
e1
even = (V̂ π

0 )−1(dx ∧ dy)
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By Remark 2.8.4 the monodromy acts on HPeven = HC0 ⊕ HC2 ∼= C2 by(
1 1
0 1

)
. Theorem 2.4.13 is proved for formal noncommutative two-torus

bundle.

2.8.3 Proof for the smooth case:
(PC•(At), b∗ + uB),∇GM ,

i
��

(PC•(At[[~]]), b∗ + uB),∇GM

V π

��
Ω−•(M,R[[~]])((u)), Lπ(t)

Recall that the multiplication for the the smooth noncommutative two-torus
2.3.1

φ ∗~ ψ(p) =
∑
q

φ(q)ψ(p− q)e−πi~γ(q,p−q) ∀φ, ψ ∈ S(Z2)

coincides with the one for the formal noncommutative two-torus. Therefore,
we obtain an imbedding of the PC•−complexes of bundles of smooth tori
with Gauss-Manin connection into the ones of formal noncommutative two-
tori.

Because the Shoikhet-Dolgushev morphism intertwines the connections,
the composition V π ◦ i does as well. By [94], the Gauss-Manin connection
is integrable, so the parallel transportation exists as well. Remark that we
can choose the basis for the periodic cyclic homology in both of smooth and
formal cases by the finite cyclic chains{

1, U−1dU, V −1dV, V −1U−1dUdV − U−1V −1dV dU
}
.

On the other hand, the restriction of the Gauss-Manin connection of the
formal tori to the class of fast decaying series coincides with the one in the
sense of [94].

Thus, the monodromy functors for the smooth and formal cases are the
same for the cyclic chains. Together with the proof for the formal case, it
implies that the images of the monodromies for the elements in PC•(At)
coincides with the ones for elements in Ω−•(M)[[~]]. The theorem is proved.
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Remark 2.8.5. We are told via a personal correspondence with a secret ex-
pert that this case is quite simple, in the sense that the flat connection of
the bundle of noncommutative two-tori leads naturally to the deformation
quantization. In fact, in this case, the roles of t and ~ are almost the same.

Example 2.8.6. However, the monodromy of the bundle in Example 2.4.12
is trivial, because the parallel transportation on the intervals [1

2 , 1] and [0, 1/2]
is inverted to each other. The same technique is also applied, except for the
fact that the monodromy map is Vtπ ◦ [V(t+ 1

2 )π]−1 ◦ [V(t+ 1
2 )π] ◦ V −1

π = Id.
Therefore, two noncommutative two-torus bundles in 2.4.12 and 2.4.13 are
non-isomorphic.

Remark 2.8.7. Note that in [25] the same result has been obtained using
KK−theory method, but it is not clear to us how the Rieffel projections
behave when α passes over integer values nor the relationship with the semi-
classical limit.

The critical point left in the understanding of the Shoikhet-Dolgushev
morphism Ṽ π

0 is that we do not know exactly which basis in HP•(At) corre-
sponds to the standard one 〈1, dx, dy, dx ∧ dy〉. It is possible to do calcula-
tion, but the computation is quite complicated. Even in the case of a trivial
Poisson structure π = 0, in [11] the map is quite complicated and can be
computed by

Ṽ π=0
0 (c) = Âu(c).C0(c)

with c ∈ PC•(A), Âu(M) = ∑
n u

nÂ2n(M) the components of the A-roof
genus of M , and C0 the Connes maps

C0(a0, a1, ..., an) = a0da1 ∧ ....dan.

2.9 A global invariant

2.9.1 Monodromy map
We generalize the monodromy theorem 2.4.13 to the general case in order to
obtain a global invariant of the noncommutative two-torus bundles.

Theorem 2.9.1. Let
{
Aθ(m)

}
be a smooth family of noncommutative two-

tori over a connected smooth compact manifold M. We assume that there
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exists at least m0 ∈ M such that Aθ(m0) ∼= C(T2), i.e. θ(m0) ∈ Z. Then,
there exists a homomorphism Mon from the fundamental group π1(M) of M
to GL(2,Z).
Proof. We notice that the noncommutative two-torus bundles having no clas-
sical torus fiber can be classified in the same fashion. However, because they
have no twisting factor, the bundles can be pulled back from the univer-
sal bundle C∗(H3(Z,Z,R)). The classification then can be obtained from
Theorem 2.4.5.

We construct the monodromy maps Mon : π1(M) → GL(2,Z) by using
the monodromy theorem 2.4.13. Let φ(.) : S1 →M be a smooth path on M ,
which represents an element [φ(.)] of π1(M). In the following construction,
we assume that all the curves always start from a classical torus, i.e. Aθ(0) ∼=
Aθ(1) ∼= C(T2).

Pushing forward Aθ(t) through φ, we obtain a noncommutative fiber bun-
dle Aθ(φ(t)) over S1. Because Tθ ∼= Tθ+1, this bundle over S1 can be decom-
posed into the composition of fundamental blocks, each of which is a smaller
sub-bundle over sub-intervals of S1. The principal rule for the decompo-
sition is that all of the fibers of any fundamental block are assumed to be
non-isomorphic to the classical torus, except for the start and the end points.
If they are not, it is possible to decompose the block into smaller ones.

Figure 2.9.1: Decomposition of monodromy

In Theorem 2.4.5, we classified all homotopically trivial noncommutative
two-torus bundles. Because any noncommutative two-torus bundle over S1 is
isomorphic to a bundle over [0, 1] with identified fibers lying over 0 and 1, it
is possible to identify the moduli space of fundamental blocks with classical
end points {[

Aθ((φ(t))
]
S1
| Aθ(1) = C(T2)

}
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and the moduli space of pairs of noncommutative two-torus bundles {Aθ((φ(t))}
over [0, 1] with the classical end points and a monodromy map in GL(2,Z){[

Aθ((φ(t)), g
]
t∈[0,1]

| lim
t→{0,1}

θ((φ(t)) = 0, g ∈ End(HPeven(Tθ)) ∼= GL2(Z)
}
,

where g is the monodromy map along the Gauss-Manin connection. Then,
we normalize the latter among the homotopy class of θ(t) to obtain the linear
ones with the same end points.

Figure 2.9.2: Normalized monodromy

We notice that because the Gauss-Manin connection is flat at the homol-
ogy level, the monodromy map does not depend on the paths among their
homotopy classes. Then the monodromy of the curve φ is obtained by taking
the product of all the monodromies of the fundamental block components.

We want to clarify that the monodromy takes values in GL(2,Z), not
in SL(2,Z). The reason is that the monodromy map for general bundle
{[Aθ(φ(t)), g]} over S1 may be different from the one in Theorem 2.4.13. There
is no twisting element for the noncommutative torus bundle associated with
the group C∗− algebra of the discrete Heisenberg group. But in general, this
case may happen. By the classification in [25], a principal noncommutative
two-torus bundle can be found in terms of a classical torus fibration together
with a strict deformation quantization of every fiber. Therefore, we need
to know the action of the twisting factor of the classical torus fibers on the
monodromy.

Notably, by subsection 2.1.2, the isomorphism between two smooth non-
commutative tori is (PU(T∞θ )0) o (T2 o SL(2,Z)) a product of:
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1. A translation by the classical torus T2.

2. Morphism Φtwist inside SL(2,Z), which is also an automorphism of Aθ.

Φtwist : U 7→ UaV b, V 7→ U cV d

such that ad− bc = 1,

3. Possibly a flip Φflip exchanging U and V, which induces an isomorphism
between Aθ and A−θ.

It is obvious that twisting by modular group Φtwist preserves the second peri-
odic cyclic homology group and the volume form dx∧ dy of the torus. Thus,
Φtwist plays no role in the monodromy map on the HPeven(A) ∼= H2(T2). The
same is for the translation and the inner automorphisms.

But the flip U 7→ V, V 7→ U induces an isomorphism Φflip from Aθ to
A−θ. In the odd homology level, the map induces dx 7→ dy and dy 7→ dx,

which acts on HPodd(Aθ) by
(

0 1
1 0

)
. In the even homology group, the

twisting maps dx ∧ dy into dy ∧ dx = −dx ∧ dy, which acts on HPeven(Aθ)

by ( 1 0
0 −1 ).

In summary, the twisting factor of the fibers by a volume preserving
isomorphism results in twisting of the HPodd−group. The monodromy maps
constructed above and the flip result in twisting of the HPeven−group. Then,
there exists a monodromy map from π1(M) to GL(2,Z). The theorem is
proved.

In short, the problem of classification of noncommutative two-torus bun-
dles boils down to the classification of homotopically trivial bundles (which
has been solved), the classification of T2−torus bundle, which is known, and
the classification of monodromy maps.
Remark 2.9.2. Because the group of all the monodromies is generated by the
one for the fundamental blocks, and the maps T : θ 7→ θ+ 1 and S : θ 7→ −θ
does not commute, the monodromy map may not factor through the first
homology group H1(M).More precisely, we can compute that STS−1 = T−1.

For example, the fundamental group of the plane minus two points is
isomorphic to Z ∗ Z ∼= 〈a, b〉, and the monodromy map is different from its
abelianization Z2. Up to now, we still do not know a natural construction of
such a bundle over CP 1\{there points} with such a monodromy, although it
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Figure 2.9.3: S and T

is possible to build one using the cut, paste and glue operations of bundles.
We describe one construction here, and hope to get a better one in the
future. Given the complex plane C, to every z ∈ C we associate a trivial
noncommutative two-torus T2

arg(z). We deform the bundle a bit, so that the
fibers over a very narrow strip (−iε, iε)× [1,∞) are classical tori. Deleting a
real half line [1,∞) from the complex plane, and then gluing the local open
half disks together by the flip U ↔ V.

Figure 2.9.4: Cut and paste

2.9.2 Dequantization
We shall now see how the monodromy map affects the behavior of the Poisson
bundles.

Theorem 2.9.3. Let
{
Aθ(m)

}
be a smooth noncommutative two-torus bundle

over a smooth manifold M. Then there exists a Poisson manifold P fibered
over M , which corresponds to Aθ(m) only if the monodromy map is trivial.

Proof. The proof is deduced directly from the above. Assume that there
exists a Poisson manifold P dequantizing Aθ(m), with nontrivial monodromy
maps. We choose a curve γ on M such that the monodromy map Mon(γ)
is nontrivial, then {Aθ(γ(t))} is a family of noncommutative two-tori over S1
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which quantize a Poisson bundle over S1. We decompose the path into the
fundamental blocks, and apply Theorem 2.4.13. The contradiction follows
from the fact that there is no Poisson torus bundle quantizing to C∗(H3(Z,Z,Z)).

Construction of the Dequantization bundle
Given a noncommutative torus bundle

{
Aθ(m)

}
over a manifold M , we

will construct the dequantizing Poisson manifold. The process is to build the
torus fibration, then build a family of global Poisson structures from local
ones.

We start with local principal families pulled back from the universal Pois-
son bundle (R×T2, t.∂x∧∂y) via the Gauss-Manin connection. Any noncom-
mutative two-torus bundle in our senses can be decomposed into noncommu-
tative two-torus bundles over homotopically trivial open sets in the sense of
Echterhoff [25]. Namely, there exist open sets {Ui}i covering the spectrum of
the center of the noncommutative two-torus bundles, such that on each Ui,
the bundle can be localized to be isomorphic to C(Ui)⊗C0(R)C

∗(H3(Z,Z,R)).
Although the global torus action is not given in the first place, the tensor
products Ai = C(Ui) ⊗C0(R) C

∗(H3(Z,Z,R) already posses a natural one by
the action on the right hand side.

Applying Echterhoff’s theorem [25] to the principal bundles Ai, we obtain
a family of torus bundles qi : T2

i → Yi → Ui with fibers T2 equipped with 2-
cycles σi. Over a single open set Ui of the open cover {Ui}i, a noncommutative
two-torus bundle defines a family of Poisson structures (θi + ni).∂x ∧ ∂y, up
to a constant ni ∈ Z.

The family of quantum gluing functions

φij : C(Ui)⊗C0(R) C
∗(H3(Z,Z,R))→ C(Uj)⊗C0(R) C

∗(H3(Z,Z,R))

consist of the isomorphism of the bundle of tori. On the subbundle of smooth
noncommutative tori, the automorphism group is given by (PU(T∞θ )0) o
(T2oSL(2,Z)). However, the inner automorphism group leads to isomorphic
noncommutative torus bundles, and it remains to take care of T2 oSL(2,Z).
Therefore, a torus bundle can be obtained by gluing the trivial torus bundles
{C(Ui)× T2, φij} together with the isomorphism given by the translation
of the classical torus and SL(2,Z) automorphisms of the Z2 lattice in R2.
Obviously, both of these transformations preserve Poisson structure.

The only thing left is the construction of the Poisson structure from those
on open sets. The condition to glue the Poisson structure is obtained by
the triviality of the monodromy map. The Poisson torus bundle is then
determined up to an integral Poisson structure. QED.
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Conjecture 2.9.4. We think that if the monodromies of the odd homology
classes are trivial, then the noncommutative torus bundle is principal.

Under the stronger condition that there exist global unitary sections {Ut}
and {Vt} satisfying the condition UtVt = VtUte

2πiθ(t), then clearly a global
action of the classical torus exists by subsection 2.1.2. Furthermore, we can
verify that 〈U−1

t dUt, V
−1
t dVt〉 are generators of the odd HP− group, and

parallel under Gauss-Manin connection.
Remark 2.9.5. Given a bundle of Poisson tori (T2, f(t)∂x∧∂y), fibered over a
manifoldM . Bursztyn proved in [8] that the pairing between the cohomology
classes defined by the corresponding symplectic structure (for f(t) 6= 0) and
the homology group H2(T2,Z) ∼= H2(C(T2),Z) form a lattice inside the line
bundle over M .

〈f(t)−1dx ∧ dy,H2(T2)〉 = f(t)−1.Z

Therefore, we obtain a map fromH2(T2) to C∞(M). Taking the derivative
of this map, we obtain a map from H2(T2) to T ∗M.

If M ∼= R, we obtain a lattice like the one in the picture 2.4.2 and the
graph is −f ′(t)

f(t)2 Z. Obviously, the variation lattice in the sense of Dazord
relates to the derivative of the parallel transportation in the Gauss-Manin
connection. Therefore, we obtain the proof for the proposition.

Proposition 2.9.6. Let P be a Poisson manifold corresponding to a quantum
torus fibration. Then, the integration of the Dazord variation lattice along
any closed curves is trivial.

Example 2.9.7. The Poisson manifold for the group C∗−algebra of the
discrete Heisenberg group does not exist. However, if we remove any single
noncommutative two-torus fiber Aθ, then the Poisson manifold exists, which
is isomorphic to (0, 1)×T 2, (t− θ).∂x ∧ ∂y). The variation lattice is constant
1, which lead to

´
(0,1) 1dt = 1 6= 0.

Remark 2.9.8. For any noncommutative two-torus bundle {Aθ(t)}t, there al-
ways exists a Poisson manifold P quantizing locally to {Aθ(t)}t.

The construction was obtained by folding the noncommutative two-torus
bundle through a process like the one in Theorem 2.4.2 so that all the mon-
odromy maps are trivial. Hence, by Theorem 2.9.3, the dequantized Poisson
bundle exists.
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2.9.3 Morita equivalence
We have known that the monodromy of a noncommutative two-torus bundle

acting on the HP−group is somehow related to the element T =
(

1 1
0 1

)
of the mapping class group GL(2,Z) of the two-torus. One can raise the

following naive question “where does the element S = ( 0 1
−1 0 ) ∈ GL(2,Z)

go?”
The answer lies in the Morita equivalence of the bundles, where the gluing

isomorphisms are replaced by Morita functors. In order to study the Morita
functor between families, we need a relationship between the fiber-wise and
global Morita equivalence.

Lemma 2.9.9. Let M be any Morita bimodule between two continuous fields
of C∗− algebras. Then, if one of these C∗−algebras is continuously fibered
over a locally compact Hausdorff space T , the other one can also be fibered
over the same base. Furthermore, the Morita bimodule can be decomposed
into a bundle of Morita bimodules between the fiber algebras over T .

Proof. If A and B are Morita equivalent via a bimodule X, B ∼= EndA(X),
the center of A and center of EndA(X) are isomorphic. The correspondence
here is the map a 7→ Xa, where Xa is the left multiplication by a. Thus,
the spectrums of their centers are homeomorphic as locally compact spaces.
Denote the spectrum by T , then the following diagram commutes; here all
the arrows are embeddings of C∗−algebras.

C0(T ) � � //
� _

��

A� _

��
EndA(X) � � // End(X)

Let t ∈ T and mt be the ideal generated by functions in C0(T ) vanishing
at t. Then, let At = A/A.mt, Bt = B/B.mt, and denote by Xt the fiber
X/mt.X. Then there exists a structure of At − Bt bimodules over Xt. We
can verify quite easily that Xt are At and Bt−full modules with the norm
induced from X. Then At and Bt are Morita equivalent, via the bimodule
Xt. The lemma is proved.
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Another way to view the lemma is that the center of a C∗− algebra can be
identified with the center of the category of its Hermitian modules (the col-
lection of natural transformations from the identity functor of the category to
itself) by the result of Rieffel [72]. Two Morita equivalent C∗−algebras have
isomorphic categories of Hermitian modules, hence the quotient categories
are isomorphic to each other when we localize at the same point.

Theorem 2.9.10. Let Aθ(t) be a homotopically trivial family of noncom-
mutative two-tori over a contractible locally compact space T . For any
g ∈ GL(2,Z), such that gθ(t) is well-defined, the bundles of noncommutative
two-tori Aθ(t) and Agθ(t) are Morita equivalent.

By contrast, any Morita equivalence between two homotopically trivial
bundles can be determined by an element g of GL(2,Z).

Proof. Part I
Because the elements ofGL(2,Z) are the composition of finite translations

θ 7→ θ + 1 and the inversion θ 7→ 1
θ
, whereas the translation is just the

isomorphism Aθ ∼= Aθ+1, we only need to show that Aθ is Morita equivalent
to A 1

θ
.

We build the bimodule directly with the techniques owed to Rieffel in [72].
ForK andH locally compact groups acting freely and wanderingly on the left
and the right of a locally compact space X, two C∗−algebras C0(K\X)oH
and C0(X/H)oK are strongly Morita equivalent (also see Example 2). Apply
Rieffel’s theorem to X = R × R, K = θ(t).Z and H = 1

θ(t)Z and it follows
that C(S1) oθ(t) Z ∼= Aθ(t) and C(S1) o 1

θ(t)
Z ∼= A 1

θ(t)
are strongly Morita

Equivalence.
Part II
The converse is more complicated. Apply lemma 2.9.9, then the Morita

bimodules between bundles can be decomposed into a bundle of Morita bi-
modules between fiber algebras. By breaking the bundle into pieces fibered
over open subsets of the base, we can assume that any bundle can be ob-
tained by pulling back from the universal bundle C∗(H3(Z,Z,R)). Apply
Rieffel’s theorem [71], for any single value t ∈ R, if Aθ(t) and Aψ(t) are Morita
equivalent, then θ(t) and ψ(t) are GL(2,Z)−related.

Because the Rieffel projections in Aθ(t) and Aψ(t) can be extended con-
tinuously to an open neighborhood I of t as long as θ(I) and ψ(I) do not
contain integral points, the images of the projections under the canonical
trace must coincide for all the values t′ ∈ I. Therefore, due to the continuity
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of the images, a common element g ∈ GL(2,Z) can be chose for the whole
interval I.

The only thing left is to prove the lemma for the small interval containing
integral points. However, we can compose the Morita bimodule with any
other Morita functor in GL(2,Z) to move away from the integer points and
the same process applied. The theorem is proved.

As for the nature of the theorem, the Morita equivalence between con-
tinuous bundles equals the Morita equivalence for every fiber. Another way
to prove the theorem is using the result on the invertible KK−elements by
Dadarlat [16], where the author showed that element σ ∈ KK(A,B) is in-
vertible if and only if for all x ∈ X, σx ∈ KK(Ax, Bx) is also KK−invertible.
Then, Theorem 2.9.10 is obtained for σ a Morita equivalent bimodule.

In the construction of the Morita bimodules between C∗−bundles, we
need to choose an element t ∈ R so that the equivalence can be realized as a
transformation t 7→ at+b

ct+d . Choosing a specific value of t among the different
ones boils down to finding a Poisson torus in the class of tori {T2, (t+n)∂x∧
∂y} admitting the same quantization. Certainly, when we work with a single
noncommutative two-torus, or even a homotopically trivial family of them,
the different choices of t or the different choices of the Poisson structures do
not matter, there are always a lot of Poisson structures around. However,
for the bundles admitting no semi-classical limit, i.e. no Poisson structures
for us to choose, it is predictable that there is a subtlety.

Lemma 2.9.11. The choice of g ∈ GL(2,Z) in Theorem 2.9.10 is unique.
Equivalently, if there exists g′ ∈ GL(2,Z), such that g′ also plays the role
of the Morita bimodule between two local bundles with fixed semi-classical
counter parts, then g = g′.

The proof is easy. The equation aθ+b
cθ+d = Aθ+B

Cθ+D for all θ in an open interval
implies a system of equations, which is equivalent to a = A, b = B, c = C, d =
D. The computation is trivial, and will be omitted.

Theorem 2.9.12. Let A(X) be a continuous field of NCTs, such that the
algebra A(X) admits no semi-classical limit. Then, the Morita equivalent
class of A(X) reduces to isomorphism class.

Proof. Let γ : S1 → X be a curve in X, such that Φ([γ]) ∈ SL(2,Z) is not
the identity. Then, if A(X) and B(X) are strongly Morita equivalent with
the bimoduleM, A(X)⊗C0(X)C(S1) and B(X)⊗C0(X)C(S1) are also strongly
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Morita equivalent with the bimodule M ⊗C0(X) C(S1). The problem reduces
to the case X ∼= S1, where we can apply the computation for the Heisenberg
group.

Because the local Morita equivalence can be realized as the action of an
element of GL(2,Z) by Theorem 2.9.10, we only need to study the ability to
extend the Morita functor to the whole circle.

Assume that the extension is possible. For any θ, the gluing condition
requires that Ag(θ+1) and Ag(θ) for all θ in an open neighborhood. Therefore,

g(θ + 1) = ±g(θ) + n (2.9.1)

Or g(θ+2) = g(θ)+2n, for some n ∈ Z. Equivalently, we obtain the equation

a(θ + 2) + b

c(θ + 2) + d
= aθ + b

cθ + d
+ 2n

which implies
±2 = n(cθ + d)2 + n(cθ + d)c

or

±1 = n[d2]

c = 0
nd2 = ±1

because c = 0, we obtain g(θ) = ±θ + b.
For nd2 = 1, then n = 1 and g(θ) = θ + b, which is just the translation.
For nd2 = −1 then n = −1 and g(θ) = −θ + b, which is just the compo-

sition of a translation and a flip U ←→ V.
The theorem is proved.

The proof can be shortened by noticing that any element of SL(2,Z) can

be decomposed into the product of a series of translations T = ( 1 1
0 1 ) and

at most one inversion S = ( 0 1
−1 0 ). The translation preserves Equation

2.9.1, but the inversion could never. The theorem is then immediate.
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2.9.4 Bundle of C∗−Stacks and compactification of the
moduli spaces

We will now investigate how the inversion S = ( 0 1
−1 0 ) of the Morita

functor behaves in the HP−groups. A quick computation at of the classical
fibers reveals that the map S acts by

1 7→ dx ∧ dy

dx ∧ dy 7→ −1
on the group HPeven(C∞(T2)). This map clearly cannot be induced by any
classical automorphism of the classical torus. In the later part, we will see
that it plays the role of a generator for group SO(n, n,Z) for higher dimen-
sional noncommutative tori.

Note that the class of continuous fields of noncommutative two-tori is not
closed under Morita equivalence. Only a subclass of those fields admitting
semi-classical limit is closed under Morita equivalence.

There are two approaches to the problem: (1) we can choose to work
with only those with semi-classical counters and Morita equivalence, or (2)
we must extend the category of noncommutative two-torus fibrations to new
objects so that the category becomes closed under the Morita functor.

The second approach leads to a new mathematical object obtained by
gluing together bundles of C∗− algebras over open sets {Uα}α by continuous
families of Morita bimodules fibered over Uα ∩Uβ with the usual compatible
conditions. Because Morita equivalence of C∗−algebras is an isomorphism
between the categories of Hermitian modules, the object that we described
may be understood as a continuous bundle of categories of modules.

Definition 2.9.13. Let Ai be families of bundles of C∗−algebras fibered
over open subsets Ui of a topological space X, together with a family iMj of
Morita bimodules between Ai |Uj∩Uj , satisfying the conditions

iMj ⊗Aj j Mi
∼= Ai

as Ai − Ai bimodules and

iMj ⊗Aj j Mk
∼=i Mk
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as Ai −Aj bimodules. We call the family {Ui, Ai,iMj}i,j a presentation of a
bundle of C∗−stacks.

Between two families {Ui, Ai,iMj}i,j and {Ui, Bi,iNj}i,j we can define
a C∗−correspondence from {Ui, Ai,iMj}i,j to {Ui, Bi,iNj}i,j by continuous
families of C∗−correspondences {BiPiAi}i from Ai to Bi, such that the dia-
gram commutes

Ai
iMj //

Pi
��

Aj

Pj
��

Bi
iNj // Bj

If two families are defined with different systems of open sets, obviously
we choose a finer one. It is easy to check that the relation constitutes an
equivalence relation and we call the equivalence class of families (Ai,Mi) a
bundle of C∗−stack.

From the viewpoint of Artin stacks, two Morita equivalent groupoids are
presentations of the same stack. If we think of a C∗−algebra as a C∗−algebra
of groupoid, then the object that we define is a C∗− analog of the bundle of
stacks.

We would like to mention the following theorem.

Theorem 2.9.14. (Classification of C∗−stacks of the noncommutative two-
tori) The category of C∗−stacks of noncommutative two-tori NCT is equiv-
alent to the category of T2−bundles associated with a section si of trivial line
bundle, and GL(2,Z)− morphisms as gluing morphisms.

By GL(2,Z)−morphisms, we mean elements gij ∈ GL(2,Z) such that
gij(si) = sj, and satisfying the conditions gii = Id, gij◦gji =Id, gij◦gjk◦gki =
Id as elements in GL(2,Z).

Proof. The proof is immediate for the values that are well defined under
GL(2,Z) morphisms. Given a presentation {Ui, Ai,iMj}i,j of a C∗−stack, it
is easy to construct a family of T2−bundles over Ui, together with family of
J-curves on Ui. By Theorem 2.9.10, we obtain gij ∈ GL(2,Z) for any Ui∩Uj,
and it is easy to see that the conditions are satisfied.

On the reverse side of the theorem, applying the same technique in The-
orem 2.9.1, we can construct the presentation for the C∗−stack locally. Be-
cause the generators of HPodd can be dealt with by the automorphisms of
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noncommutative two-tori, the only thing left is the HPeven. By Theorem
2.9.10, the rest follow by gluing the continuation of generators of HPeven via
Gauss-Manin connections. QED.

We ask what happens if the GL(2,Z)− action is not defined? Although
one may guess that there is no continuous noncommutative two-torus bundle
associated to the Morita equivalence, it is nice to see how it happens. It is
possible to compactify the real line R to obtain the projective line RP 1 by
adding the point {∞} so that the group GL(2,Z) is well-defined everywhere.
Equivalently, we need to find a fiber corresponding to the infinity point,
which we will denote by A∞.

Because the unknown A∞ should be Morita equivalent to An via the
Morita equivalence θ 7→ 1

θ−n , naively the fiber that we add should be C(T2).
But this is not quite right because of the singularity.
Theorem 2.9.15. Let {Aθ(t)} be a continuous field of noncommutative two-
tori defined over (0, 1], such that θ(t) = 1

t
for t ∈ (0, 1]. Then, there is no

continuous field of NCTs over [0, 1] extending
{
Aθ(t)

}
.

Proof. Assume that there exists
{
Bα(t)

}
[0,1]

such that Bθ(t) = Aθ(t). By Defi-
nition 2.4.2, locally around the zero point, there exist a continuous function
f : [0, 1]→ R such that f(t) = 1

t
. However, it never happens for any contin-

uous function f .

Figure 2.9.5: Compactification of the moduli space of noncommutative two-
tori

We can proceed with another approach as follows. By Definition 2.3.2
and applying the technique exactly like in the lemma 2.4.3, there exists two
unitary sections Uθ(t) and Vθ(t) such that

Uθ(t)Vθ(t)U
−1
θ(t)V

−1
θ(t) = e

2πi
t Id. (2.9.2)
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Choose a sequence tk = 1
k+θ , then equation 2.9.2 implies

Uθ(tk)Vθ(tk)U
−1
θ(tk)V

−1
θ(tk) = e2πi(k+θ)Id.

Therefore, on the fiber B0 contains a copy of noncommutative two-tori Aθ
for any θ. This contradicts with the structure of the subalgebras of noncom-
mutative two-tori as described in [66].

In summary, there is no noncommutative two-tori to compactify the bun-
dle.

On the semi-classical side, when α tents to infinity, the Poisson struc-
tures corresponding to the noncommutative two-tori converge to infinity, or
the symplectic structures reduce to zero. Therefore, in order to work with
continuous families, we need to pass to the class of continuous fields of Dirac
structures.

Recall that a Dirac structure on a manifoldM is a maximal isotropic sub-
bundle L ⊂ TM ⊕ T ∗M , satisfying some conditions (for details see [8]). For
the two tori, the Poisson structures are given by subbundles 〈dx+ θ∂y, dy −
θ∂x〉, and when θ tends to infinity, the subbundles converge to 〈∂x, ∂y〉, which
is a Dirac structure.

In the paper [91]by Weinstein and Tang, the authors show that given a
Dirac structure, it is possible to construct a deformation quantization up to
a choice of a transverse manifold. Firstly, any Dirac structure determines a
foliation F , which is given by the intersection L∩TM. Choosing a transverse
manifold P of the foliation, then on P it induces a Poisson structure πL (by
restricting L to P ) and a groupoid structure G over P by intersecting with
F on P . Finally, we quantize the Poisson manifold P to obtain a quantum
algebra AP, and the cross product G n AP is called the quantization of the
Dirac structure.

Applying the machinery to the case of two tori, then:
1-For the Poisson tori with L = 〈dx+θ∂y, dy−θ∂x〉, the foliation consists

of just points, so P contains all of T2. Therefore, Ap = Tθ and the group
action is trivial. As a result, the quantization is just the noncommutative
two-tori.

2-For the Dirac tori with L = 〈∂y, ∂x〉 = TM the foliation consists whole
T2. Therefore, P is just a point, and there is a trivial action of Z2 on P ,
given by the action of R2 on T2. Therefore, Ap = Z2nC∗ {pt}, which follows
that the quantization algebra is C∗(Z2) ∼= C(T2).
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It is very important to see that although the quantization algebra of the
infinity Poisson tori is Morita equivalent to the classical tori, i.e. the fiber T2

0,
by Theorem 2.9.15 we cannot just add the classical tori to the bundle. The
reason is that there are more structures on the bundles that we can detect
than just C∗−algebras. The new structure is developed in chapter 3, called
spatial structures.

Assuming that the reader has read chapter 3, we claim that:

Theorem 2.9.16. Let L be a Dirac structure on the tori T2. Then on any
quantization of the Dirac structure, there exist a spatial structure.

Proof. We proceed exactly as in the construction by Weinstein and Tang
[91]. Let P be any transverse section of the foliation F , then (P, πL) forms a
Poisson torus. We even prove for tori of any dimension.

T2 × T2

����

(( T2

&&
∆ww

T2

����

ww

T2 × T2 < −−−−− T2

.

Therefore, Tn is embedded into Tn×Tn as diagonal. Then, the bimodule
structure is constructed by quantizing these Poisson tori in Example 3.3.4.

Let ∆ : Aθ⊗Aθ → Aθ be the quantization of the diagonal map, obtained
by restriction of the star product ∗ to the diagonal. Then, the (Aθ, Aθ ⊗Aθ)
bimodule structure is Aθ, and the inner product is given by equation 3.3.1.

By [91], there exists an action of Zk on P , preserving the Poisson struc-
ture, with k the dimension of the leaves. Therefore, it induces an action
of Zk on Aθ. By the construction, it is easy to see that it induces an ac-
tion of Zk on the bimodule Aθ and satisfying the conditions of Theorem
3.3.24. By the theorem, there exists a spatial structure on AθoZk, given by
IndAθoZk

Aθ
Aθ ∼= Aθ o Zk.

For the Poisson two tori

Example 2.9.17. For the Poisson tori with L = 〈dx + θ∂y, dy − θ∂x〉, an
easy computation shows that the bimodule for the transverse quantum tori
are given as ∆ = {Aθ}. Because there is no group action, it is also the final
spatial structure.

For the zero symplectic two torus
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Example 2.9.18. For the Dirac tori with L = 〈∂y, ∂x〉 = TM the foliation
consists of only one leaf T2. The bimodule for the transverse quantum torus
is given by ∆ = C∗({pt)}) ∼= C. Easy computations give us the spatial
structure IndAoGA ∆ ∼= C o Z2 × Z2 ∼= C(T4). This spatial structure is not
isomorphic to the spatial structure of the classical tori, which is isomorphic
to C(T2).

We can also see that two spatial structure is not isomorphic by decom-
posing the spatial product of modules like in Examples 3.3.18 and 3.3.15.
The first one is isomorphic to the intersection of points, and the second one
is isomorphic to the group multiplication.

On the two torus, the moduli space of the constant Dirac structures is
isomorphic to RP 1, which is the real line added with the infinity point of
zero symplectic structure. Because the Morita equivalence does not preserve
spatial structure, so although quantization of SO(n, n,Z)−related Dirac tori
are Morita equivalent, they are not equivalent in the sense of spatial struc-
tures. The very critical example is the infinity Poisson torus and the zero
Poisson torus.

Another viewpoint is that continuous fields of noncommutative two tori
mostly come from a continuous fields of groupoids of translations on the
circle 2.3.5. To compactify the bundle at infinity in a compatible way with
groupoid structure of other fibers, we need to add a groupoid of infinity
translation, which does not exist.

Summarizing the above, it is possible to see that the infinity fiber corre-
sponding to a different spatial stack which is more spatial than the others.

Figure 2.9.6: Moduli space of quantization of the Dirac structures
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Despite the fact that there is no way to add a noncommutative two-tori
to compactify the bundle, it is still possible to add a special point to the
moduli space. Then, the topology of the moduli space of quantization of the
constant Dirac structure on the two torus is defined by:

1-Classes of open sets that are noncommutative two-torus bundles over
any bounded open sets of the real line.

2-Classes of open sets that are noncommutative two-torus bundles over
any open set of the real line [a,±∞), added with a spatial C∗−algebra of
quantization of infinity Poisson structures. The infinity quantum torus cor-
responds to the infinite zigzags.
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Chapter 3

Spatial Structures

In this chapter, we develop a theory of spatial structure to understand the
quantization of Mirror Symmetry. It should be the dual of the Hopfish struc-
ture, like the way A-models and B-models are related, which turns out to
provide a new understanding of the noncommutative torus bundles.

3.1 Noncommutative Algebra Motivation
It is widely believed in noncommutative geometry that a quantum space
can be represented by the category of representations of a noncommutative
algebra. However, we think that additional structure is needed, even when
we study very basic noncommutative objects.

In the previous chapter, we have developed the theory of continuous bun-
dles of C∗−Module categories, which is the C∗−analog of bundles of stacks
presenting noncommutative torus moduli space functor. The main motiva-
tion is that a stack can be represented by Morita equivalent groupoids, and
Groupoid C∗−algebras [45, 70] of Morita equivalent groupoids are Morita
equivalent C∗−algebras. Thus, a stack is associated to an isomorphism class
of categories of representations. See diagram 3.1 on “Stack to Category Cor-
respondence” on the next page.

However, the correspondence is not one to one, i.e. there are many non-
Morita equivalent groupoids with the same groupoid C∗− algebra. For exam-

ple,
Z
�
{pt}

and
S1

�
S1

have isomorphic groupoid C∗−algebras C∗(Z) ∼= C∞(S1)

94



3.1. NONCOMMUTATIVE ALGEBRA MOTIVATION

via the Fourier transform but clearly they are not isomorphic groupoids, even
up to a Morita equivalence. Therefore, there should be another structure
on C∗−algebra level reflecting the information that we lost when passing
through the Groupoid C∗−algebra functor. Because two groupoids have
non-isomorphic bases {pt} and S1, or are even worse not Morita equivalent,
the mathematical structure that we are seeking should reflect this critical
difference.

[Stack]

��
[Equivalent Classes of Groupoids]

C∗−functor
��

[Equivalent Classes of C∗-algebras]
MoritaEquivalent

��
[Category of Hermitian-Modules]

Table 3.1.1: Stack to Category Correspondence

The main motivation of the theory is from algebraic geometry. Recall
that a scheme is separable if and only if its diagonal map ∆ : X → X ×X
is a closed immersion [36]. For example, the double-origin affine line is not
separable because the double point is quite sensitive to the diagonal map.
Equivalently, the diagonal map “doubles” the singularity of the space, hence
the topology is easier to be detected.

However, dealing with the diagonal maps leads us to the question ”Is
groupoid C∗− algebra functor co-variant or contra-variant?”. If the stacks
are classifying spaces, a group homomorphism f : G → H induces f ∗ :
C∗(G) → C∗(H). But the groupoids are just locally compact spaces then
a continuous map f : X → Y will be equivalent to f ∗ : C∗([Y//Y ]) →
C∗([X//X]), which is a wrong-way morphism. The answer to the question
leads to the generalization of the morphisms by bimodules as in [83, 6, 58], or
by correspondences inW ∗− algebra framework as in [14] or in C∗−framework
as in [47].

The second motivation for our study comes from the quantization of
mirror symmetry. Bressler and Soibelman in [5] have conjectured that the
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category of holonomic modules over quantized algebras is “deformed” from
Fukaya category of symplectic manifolds, where the Lagrangian submanifolds
play the role of the characteristic varieties of the holonomic modules. The
authors also conjectured that the morphisms between derived categories of
modules over quantized algebras can be realized as bimodules lying over La-
grangian submanifolds of the product of semi-classical symplectic manifolds.
Therefore, we hope that any monoidal structure in the Fukaya category can
be quantized to a monoidal bimodule of quantized algebras.

On the other hand, Subotic [85] has proved that for the case of torus
fibrations, the monoidal structure of Fukaya category coming from a sym-
plectic groupoid is isomorphic to the tensor structure of the derived category
of quasi-coherent sheaves of the mirror. Therefore, the mirror symmetry of
a monoidal structure in the complex category, (for example tensor product
of coherent sheaves over bundles of Abelian varieties) should be a monoidal
structure in the symplectic category. Even if the monoidal structure in the
complex category is just a spatial structure of a complex space, the monoidal
structure in the symplectic category is still interesting enough. Compos-
ing the quantization process and mirror symmetry together, we obtain the
monoidal product on the category of modules of the quantized algebras.

We should also be aware of the relationship between this direction and
the Geometric Langlands Program (GLP), where the mirror symmetry is
realized as the Langlands duality via the work of Kapustin and Witten [41].
The Langlands duality can be thought of as the composition of the mirror
symmetry for Hitchin fibrations and the quantization of the Hitchin systems
by D-modules, as in the lecture by Donagi and Pantev [22]. Therefore, it
should be interesting to study the analog of the Langlands correspondence
and the monoidal structure from the viewpoint of the theory of C∗− algebras,
which is the analysis analog of theory of D-modules.

In the semi-classical level, our approach is to explain a phenomenon that
there are many complex groups, but there is no complex groupoid with the
totally real base space; there are many symplectic groupoids but there is no
symplectic group. Is it co-incident or there is a reason lying behind.

All of these structures depend on the base spaces of some groupoids,
which correspond to spatial structures in the language of C∗−algebras that
we develop in this chapter.

Recently, in [91] the deformation quantization algebras of O(n, n,Z)−
Dirac structures are proved to be strongly Morita equivalent, although the
geometries of the Dirac structures are quite different. They not only have
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Complex Category MS //

��

Symplectic

��

oo Q // Quantized Algebras

��
Dcohb //

��

Fukaya Category B&S//

��

oo Holonomic Modules

��
Monoidal //Monoidal //oo Spatial structure

Table 3.1.2: Monoidal structures and Quantization

non-isomorphic invariants (e.g. leaf space, Poisson cohomology... ) but also
of different kinds of geometries, among these are foliation, symplectic, Pois-
son, presymplectic... structures. Interestingly, all of them correspond to the
same C∗−stack. Without difficulty, it is possible to guess that there should
be a new mathematical structure to detect the different geometries. Fur-
thermore, choosing different transverse manifolds in a Dirac torus [91] leads
us to different choices of C∗−algebras among a Morita equivalent class, the
mathematical structure should be defined on the level of C∗−stacks. Because
noncommutative geometry of noncommutative tori is the toroidal compacti-
fication of M-theory [80], Mirror Symmetry exchanges different kinds of ge-
ometries. And since Morita equivalence in the sense of Schwarz [79] is related
to duality in M-theory, we hope that this structure should help understanding
the quantization of mirror symmetry.

The key difference between our approach and Hopfish algebra developed
in [3] is that a groupoid ALWAYS gives us a spatial algebra, but [3] only
gives us a Hopfish algebra if it is a 2-groupoid. Therefore, the spatial algebra
can be used in more situations than Hopfish algebras.

In this chapter, all the algebras are assumed to be unital, (if not we
replace them by their multiplier algebras). The rotation algebra is denote by
Aλ for λ = 2πθ for the consistent with [3].
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3.2 Background on C∗− functor

3.2.1 C∗−correspondence
Definition 3.2.1. [47, 48] Let A and B be C∗−algebras. By a C∗− corre-
spondence from A to B, we mean a pair (E, φ) satisfying:

1. E is a left B-C∗−module, i.e. an inner product with values on the
target algebra B.

2. φ is a non-degenerate ∗−homomorphism of A into LB(E).

Notice that [14] Connes also defined the correspondence for Von Neumann
algebras. We can compose a C∗−correspondence from A to B with one from
B to C to obtain another C∗−correspondence from A to C. Therefore, the
set of C∗− algebras associated with C∗−correspondences becomes a category,
denoted by (C∗−Algebra, Corress). Because any C∗−morphism Φ : A→ B
corresponds to a (B,A)− bimodule structure on B, with A-module structure
given by the multiplication by Φ and B-value inner product is B〈b1, b2〉 = b∗2b1,
and any C∗−correspondence is a trivial KK−functor [2] (i.e. the Fredholm
operator F vanishes), this category is a subcategory of the KK−category,
and contains the familiar C∗−category with C∗−morphisms A.2.3.

3.2.2 Groupoid Correspondence
Definition 3.2.2. [48, 37] Let G1 and G2 be second countable locally compact
groupoids and Z a second countable locally compact Hausdorff space. The
space Z is a Groupoid Correspondence (Hilsum-Skandalis map, also
generalized morphism) from G1 to G2 if it satisfies the following conditions:

1. There exists a right proper action of G1 on Z such that the momentum
map ρ1 is an open,

2. There exists a left proper action of G2 on Z.

3. The G1 and G2 actions commute

4. The map ρ2 induces a bijection from Z/G2 onto G0
1 , i.e. a homeomor-

phism on the source side.
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Definition 3.2.3. If the space Z is associated with two-sided correspondence
structure, i.e. both of the two side momentum map ρ1 and ρ2 are open, and
ρ2 induces a bijection of Z/G1 on G0

2, then we call Z a Morita equivalent
bimodule between groupoids G1 and G2. In this case, these groupoids
are called groupoid Morita equivalent.

As mentioned in Appendix A.1, the equivalent class of groupoids is equivalent
to a stack. Because it is possible to compose a Hilsum-Skandalis map with
a Morita bimodule (in fact, an invertible Hilsum-Skandalis map) to obtain
another groupoid correspondence, a Hilsum-Skandalis map can be viewed
as a presentation of morphism between stacks. As a result, the space of
Morita equivalent classes of groupoids together with equivalence classes of
Hilsum-Skandalis maps forms a category, called category of stacks.

It is important to notice that in Definition 3.2.2, the Hilsum-Skandalis
map is also called a generalized morphism. Thus, it is natural to ask, what
is a non-generalized morphism of groupoids?

Definition 3.2.4. [59]A strict homomorphism φ : G→ H of topological
groupoids is just a continuous functor, i.e. it is given by a pair of continuous
maps φ0 : G0 → H0 and φ1 : G1 → H1 commuting with the structure maps
of G and H.

Thus, it is necessary to notice the result in [59], any strict morphism φ :
G→ H between groupoids induces a generalized correspondence H1 ×t,H0,Φ,
G0.

H1
))

t

��
s

��

H1 ×
t,H0,φ0

G0

pr2
%%

s◦pr1

yy

G1
uu

t

��
s

��
H0 < −−−−− G0

.

where the left action of G is given by (h, s(g)).g = (h.φ1(g), t(g)).
Clearly, the class of generalized morphisms contains strict homomor-

phisms. The definition of strict homomorphisms at the very first sight is
the most natural notion of morphisms between groupoids. However, a sub-
stantial weakness of strict homomorphisms is that in many cases, there is
no nontrivial morphism between groupoids although it is still necessary to
study morphisms between their coarse moduli spaces. Therefore, it is nec-
essary to pass through correspondence category, where the composition of a
strict morphism with a Morita bimodule produces again a Hilsum-Skandalis
morphism.
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The similar story also appears in noncommutative geometry [14], where
there is no nontrivial C∗−homomorphism fromMn(A) to A for a C∗− algebra
A. Therefore, it is natural to introduce bimodules to compare these objects.

In the thesis, the groupoid morphisms are from the right to the left and
C∗−algebra correspondences are from the left to the right. We also write
these correspondences in terms of (target, source)−bimodules.

Therefore, locally compact groupoids with Hilsum-Skandalis maps forms
a category (Groupoid, Corress). If the space Z is equipped with a two sided-
correspondence structure, i.e. both of the two side momentum map ρ1 and
ρ2 are open, and ρ2 induces a bijection from Z/G1 to G0

2 , then we call Z a
Morita bimodule between groupoids G1 and G2.

3.2.3 C∗−Functor
Given a groupoid G with a Haar system, there exists a C∗−algebra of func-
tions with convolution over G called groupoid C∗−algebra of G (see [70]) and
denoted by C∗(G). It is wellknown that the C∗−functor is a contra-variant
functor from the groupoid category to the C∗−category with correspondences
or even the KK−category.

Theorem 3.2.5. [48, 47] Let G1 and G2 be locally compact groupoids with
Haar system λi such that G0

1 and G0
2 are Hausdorff and (Z, ρ,σv) is a corre-

spondence from G1 to G2.
Then one can construct a C∗−correspondence (EZ , π) from C∗r (G2) →

C∗r (G1). Moreover, if (Z, ρ, σ) is proper, then π maps C∗r (G2) to K(EZ),
which defines an element of KK(C∗r (G2), C∗r (G1)).

For ξ, η ∈ Cc(Z), a ∈ Cc(G1), Macho also constructs a bimodule structure
on Cc(Z) with the actions of C∗r (Gi)

ξ.a(z) =
ˆ
G2

a(γ).ξ(γ.z)dλ1
ρ(z)(γ),

and the C∗r (G1)− inner product structure is given by

〈ξ, η〉(γ) =
ˆ
G2

ξ(z.γ′−1).η(γ−1zγ′−1)dλ2
σ(z)(γ′), (3.2.1)

for γ ∈ G1, γ′ ∈ G2 and z ∈ E. Please notice that the construction does
not depend on the choice of z because of condition (4) in Definition 3.2.2.

100



3.2. BACKGROUND ON C∗− FUNCTOR

Then the C∗− correspondence bimodule is obtained by completing Cc(Z)
with respect to the inner product in Equation 3.2.1 and C∗(Gi) with the
L2(Gi, λi)−norms.

In summary, the groupoid C∗− algebra functor is a contra-variant functor
from the category of groupoids to KK−category, which factors through the
Rieffel Category in 2.2.3. Some other authors have also proved the same
result for the full groupoid C∗− algebras as in [45, 61] or [55] for a clearer
treatment.
Example 3.2.6. Any continuous map f : X → Y can be viewed as a
Hilsum-Skandalis bimodule between groupoids from X ⇒ X to Y ⇒ Y via
its graphs

Y

����

))
Graph(X,f)

%%
f

yy

X

����

uu

Y X

.

The result of the C∗− algebra functor 3.2.5 on the correspondence is a
diagram of C∗−algebra morphisms from C∗(Y ⇒ Y ) ∼= C0(Y ) to C∗(X ⇒
X) ∼= C0(X),

C0(Y )
**
C0(X) C0(X)

tt

��
C0(Y )

f∗

77
∼=

OO

−−−−− > C0(X)

gg
∼=

OO
.

Therefore, a continuous maps f : X → Y is equivalent to a (C0(X), C0(Y )−
bimodules structure on C0(X) which induces a functor from the C0(Y )−Mod
to C0(X)−Mod.
Example 3.2.7. On the other hand, a group homomorphism f : G →
H induces a C∗-morphism f ∗ : C∗(G) → C∗(H). Thus, there exists a
C∗−correspondence Cc(H) from C∗(H) to C∗(G) (notice the wrong way
morphism!) defined as in the following diagram. The C∗(H) acts on Cc(H)
by left translation, and C∗(G) act on the right of Cc(H) by composing the
right translation with f ∗.

As a result, it induces a functor P 7→C∗(G) C0(H)⊗C∗(H)P from C∗(H)−Mod
to C∗(G)−Mod, which is the wellknown reduction technique in representa-
tion theory.
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C∗(H)
**
C(H) C∗(G)f

tt

C

77OO

−−−−− > C

gg OO

3.3 Spatial Structure

3.3.1 Definition and examples
With the background on C∗− functor in the the previous section, we come
up with the following definition.

Definition 3.3.1. A spatial structure over a C∗−algebra A is a C∗−
correspondence ∆ from A⊗A to A, an unit ε which is a correspondence from
k to A, and satisfying the following properties:

1. (Associativity Condition) The C∗− (A,A⊗A⊗A) bimodules ∆⊗A⊗A
(∆⊗ A) and ∆⊗A⊗A (A⊗∆) are isomorphic.

(A⊗ A)⊗ A∆⊗A //

∆⊗A⊗A(∆⊗A)
''

A⊗ A
∆
��

A⊗ (A⊗ A)∆⊗Aoo

∆⊗A⊗A(A⊗∆)
ww

A

.

1. (Projection) The following C∗ − (A,A) bimodules are isomorphic.

(A∆A⊗A)⊗A⊗A (A⊗ ε)A ∼=A AA,

(A∆A⊗A)⊗A⊗A (ε⊗ A)A ∼=A AA,

i.e. the following diagram is commutative.

A A⊗ A∆oo

A

Πk

OO
�

Id

cc .

Remark 3.3.2. The first condition is the generalization of the well known
identity x 7→ (x, x) 7→ (x, x, x) and the second condition is the generalization
of the equation πk ◦∆ = Id for k = 1, 2 of the diagonal map.
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3.3. SPATIAL STRUCTURE

Definition 3.3.3. An C∗−algebra with a spatial structure is called Spa-
tial C∗−Algebra. If we forget the C∗−condition, we call it simply spatial
algebra.

Example 3.3.4. (Spatial Structure of the topological space) For any
locally compact space, viewed as a trivial compact groupoid X ⇒ X, the
groupoid C∗−algebra is C(X). The spatial structure can be taken as ∆ =
C(X) with the multiplication of C(X) on the left, and C(X) ⊗ C(X)

∼=→
C(X ×X) on the right.

Proof. We can verify that

(A∆A⊗A)⊗A⊗A (A⊗ A)A ∼= C(X) ⊗
C(X)⊗C(X)

C(X ×X)C(X)

is isomorphic to C(X ×
X×X

(X×X)). However the fiber-product is isomorphic
to X, so it is isomorphic to C(X) as (C(X), C(X)) bimodule. The action of
the C(X)⊗C(X) on the bimodule is given by the diagonal map. The second
condition is trivial to verify.

We can show that the inner product from Theorem 3.2.5 with C(X)−valued
is

〈ξ, η〉(x, x) = ξ̄(x).η(x). (3.3.1)
QED.

For X = S1, the above diagonal map

S1 × S1

����

((
S1

&&
∆ww

S1

����

ww

S1 × S1 < −−−−− S1

.

implies a correspondence from C(S1×S1) to C(S1). Therefore, it is a (C(S1),
C(S1)⊗C(S1)) bimodule structure on C(S1). However, it is not the unique
spatial structure on C(S1), because the isomorphism C(S1) ∼= C∗(Z) gives
us a new one.

Example 3.3.5. (Spatial Structure of the Classifying Stack): Let G
be a locally compact group and G be its corresponding groupoid G⇒ {pt}.
Then the spatial bimodule can be given by ∆ = C0(G×G) ∼= C0(G)⊗C0(G).
In fact, applying the classifying functor, the diagonal group homomorphism
δ : G→ G×G yields the stacky diagonal ∆ : BG→ BG×BG.
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3.3. SPATIAL STRUCTURE

Proof. We study the C∗−version of the stacky diagonal map ∆ : BG →
BG × BG. The Hilsum-Skandalis bimodule of the diagonal maps can be
realized as:

G×G

����

**
G×G

&&∆ww

G

����

uu

{pt} < −−−−− {pt}

Applying the C∗− functor to the groupoids, we obtain C0(G) ⊗ C0(G) as
a correspondence from C∗(BG× BG) to C∗(BG) or equivalently a (C∗(G),
C∗(G)⊗ C∗(G)) bimodule. It is easy to verify that

A∆ ⊗
A⊗A

(A⊗ A)π1(A) ∼= C0(G×G) ⊗
C∗(G)⊗C∗(G)

(C∗(G)⊗ C∗(G))C∗(G))

as (C∗(G), C∗(G))−bimodules. The C∗(G)−inner product is given by the
formula:

〈ξ, η〉(g) =
ˆ
G

ξ̄(pk−1, ql−1).η(pgk−1, qgl−1).dλ(k)dλ(l).

Also, because the right action of G is on the first coordinate of C0(G × G),
and the left action is diagonal multiplication, we obtain the above verification
(after taking the completion with the canonical C∗−norm). The full module
condition is trivial. QED.

3.3.2 Spatial structure from groupoids
Given a locally compact groupoid, we can construct a canonical spatial alge-
bra.

Theorem 3.3.6. Let G be a locally compact groupoid together with a Haar
system, such that the diagonal map ∆ : G → G × G is proper. Then the
composition of the diagonal map ∆ and the groupoid C∗−algebra functor 3.2.5
induces a spatial structure on C∗r (G). Furthermore, it induces an element in
KK(C∗r (G)⊗ C∗r (G), C∗r (G)). The same result also hold for the full groupoid
C∗−algebra version.

Proof. Let G be the groupoid. Then canonically, the diagonal map induces a
strict homomorphism of groupoids, ∆ : G → G × G, which maps g 7→ (g, g).
Then s(∆(g)) =s((g), s(g)) and t(∆(g)) = (t(g), t(g)).
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3.3. SPATIAL STRUCTURE

Apply the result in [59], any strict morphism Φ : G → H between groupoids
induces a generalized correspondence H1 ×t,H0,Φ, G0.

H1
))

t

��
s

��

H1 ×
t,H0,Φ

G0

pr2
%%

s◦pr1

yy

G1
uu

t

��
s

��
H0 < −−−−− G0

.

to the case H = G × G, we obtain

G1 ×G1
++

t
��

s

��

G1 ×G1 ×t,G0×G0,∆ G0

((uu

G1
tt

t
��

s

��
G0 ×G0 < −−−−− G0

.

Then ∆ can be computed as H1 ×t,H0,Φ, G0, which means

G1 ×G1 ×t,G0×G0,∆ G0 ∼= {(g1, g2) | t(g1) = t(g2)}.

The groupoid G1 × G1 acts on the left by composing with the arrows on
the left of ∆, and the right action of G1 is by the regular right multiplica-
tion (g1, g2) 7→ (g1g, g2g). The left moment map is the source of G1 × G1
components and the right moment maps is just the regular projection on G0
component.

Applying the C∗−functor in Theorem 3.2.5 to the correspondence ∆ :
G → G × G, we obtain a C∗− correspondence ∆ from C∗(G) × C∗(G) to
C∗(G). The equations πi◦∆ ∼= Id of the canonical projections πi : G × G → G
make the rest follows. The same fashion hold for the reduced C∗− algebra.
QED.

Example 3.3.7. Let S1 oλ Z ⇒ S1 be the groupoid corresponding to the
rotation algebra Aλ. There exists a spatial structure on the rotation algebra.

Proof. We fix the notation for the groupoid
S1 × Z
�
Z

for the rest of the thesis.

The source and target morphisms s and t map the element (θ, k) of S1 × Z
into s(θ, k) = θ and t(θ, k) = θ + kλ. The bimodule Z is given as

S1Z.S1Z×t,S1.S1,∆ S1 ∼= {(x, y, n1, n2, z) | x+ n1λ = y + n2λ = z} ∼= Z.Z.S.
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3.3. SPATIAL STRUCTURE

For the elements (n1, n2, z) with n1, n2 ∈ Z, z ∈ S1, the left moment map
gives

JS1×S1(n1, n2, z) = (x, y) = (z − n1λ, z − n2λ).
The right moment map gives

JS1(n1, n2, z) = z.

The action of the generator of Z is given as

(z, n1, n2).j 7→ (z + jλ, n1 + j, n2 + j), (3.3.2)

and the action of the generators of Z× Z by

(j1, j2).(z,m, n) 7→ (z,m+ j1, n+ j2). (3.3.3)

where the notation is described as

S1 × S1 × Z× Z(x, y, j1, j2)
--

t
��

s

��

S1 × Z× Z(z, n1, n2)

((ss

S1 × Z
rr

t
��

s

��
S1 × S1(z − n1λ, z − n2λ) < −−−−− S1(z)

(z, j)).

We choose the basis of C(S1 × Z) as a collection of vectors

am,j(θ, k) = eimθδjk.

The convolution of the groupoid yields a product on Cc(S1 × Z), which can
be written as

a ∗ b(z, k) =
∑
l

a(z + λl, k − l).b(z, l).

Namely

am1,j1 ∗ am2,j2 = eim1j2λam1+m2,j1+j2 . (3.3.4)
We fix the basis

dl,n1,n2(θ, k1, k2) = eilθδk1n1δk2n2 ,

of the bimodule C(S1×Z×Z). Then the right multiplication can be computed
from Equation 3.3.5

d ∗ a(θ, k1, k2) =
∑
r

d(θ − rλ, k1 − r, k2 − r).a(θ − rλ, r),
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3.3. SPATIAL STRUCTURE

which gives

dl,n1,n2 ∗ am,j = e−iλj(l+m).dl+m,n1+j,n2+j. (3.3.5)
The left multiplication can also be computed from Equation 3.3.3 as

(a1⊗a2)∗d(θ, k1, k2) =
∑
r1,r2

a1(θ−(k1+r1)λ, r1)a2(θ−(k2+r2)λ, r2)d(θ, k1+r1, k2+r2)

which is induced from the groupoid multiplication

(θ, k1, k2) = [(θ − (k1 + r1)λ, r1)(θ − (k2 + r2)λ, r2)].(θ, k1 + r1, k2 + r2).

Simplifying this formula, we obtain the left multiplication

(am1,j1 ⊗ am2,j2) ∗ dl,n1,n2 = e−iλ[m1n1+m2n2]dl+m1+m2,n1+j1,n2+j2 . (3.3.6)

QED.

3.3.3 Spatial structure and Morita equivalence
Theorem 3.3.8. Let A be a C∗− algebra with a spatial structure (∆, ε). Let
B be an C∗− algebra that is Morita equivalent to A. Then B is also a spatial
C∗−algebra.

Proof. We assume that (A∆A⊗A, ε) is a spatial structure for the algebra
A. Let P be the Morita (B,A)− bimodule and Q the inverted Morita
(A,B)−bimodule, then we define

B̂∆B⊗B =B P ⊗A ∆ ⊗
A⊗A

(Q⊗k Q)B⊗B

and B ε̂k =B PA ⊗A εk. Then ∆̂, ε̂ is a (B,B ⊗ B) bimodule, which satisfies
the condition of the spatial structure.

Taking tensor product of the equation

∆⊗A⊗A (∆⊗ A) ∼= ∆⊗A⊗A (A⊗∆)

with P⊗A on the left and ⊗A⊗A(Q⊗Q) on the right, we obtain the balance
condition for ∆̂. The projection condition in the definition 3.3.1 is just a
routine check. The condition for ∆̂ to be a C∗− correspondence is also
deduced from classical Rieffel theory [72]. QED.
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3.3. SPATIAL STRUCTURE

Definition 3.3.9. Let (A,∆A, εA) and (B,∆B, εB) be two spatial C∗− alge-
bras. Then (A,∆A, εA) is spatial-Morita equivalent to (B,∆B, εB) if there
exist a Rieffel (B,A)−bimodule BPA and a (A,B)−bimodule AQB satisfying

1. P ⊗A Q = B and Q⊗B P = A,

2. εB = P ⊗A εA as (B, k)−bimodules,

3. ∆B =B PA ⊗A ∆A ⊗A⊗A (Q⊗Q)B⊗B as (B,B ⊗B)− bimodule,

4. The Rieffel inner product on ∆B and the one on ∆A obtained by com-
posing the series of Morita bimodule in the condition (3) coincide.

The main purpose of the spatial structure is to study the structure of the
stack that we lost under groupoid C∗−functor. It is important to see that
Morita equivalent groupoids yield spatial Morita equivalent C∗−algebras.

Lemma 3.3.10. Let G and H be Morita equivalent groupoids with Haar sys-
tems λG and λH , and (M,σ1, σ2) the corresponding Morita bimodule. Then
the spatial algebras defined by G and H are spatial Morita equivalent.

Proof. The proof is just a routine check.

G1 ×G1

t
��

s

��

G1 ×G1 ×t,G0×G0,∆ G0(∗)

))uu

G1

t
��

s

��
G0 ×G0 G0

M ×M(∗∗∗)

��

77

L99 L99 L99 M(∗∗)

��

bb

H1 ×H1

t
��

s

��

H1 ×H1 ×t,H0×H0,∆ H0

))uu

H1

t
��

s

��
H0 ×H0 H0

By the definition of Morita equivalence of groupoids, M ×H0 M = G×G0 M,
M/H1 ∼= G0, and M/G1 = H0. Therefore, we would like to compute the
product of the groupoid correspondences

G1 ×G1 \ [M ×M ]×G0×G0 × [G1 ×G1]×G0×G0 [G0 ×G0 M ] /G1
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which gives us back [H1 ×H1]×t,H0×H0∆ H0. We apply Theorem 3.2.5 to the
diagram above, and obtain that: A and B can be taken as C∗(G) and C∗(H),
BPA can be taken to be the completion of Cc(M) for the A−norm 2.2.2. The
spatial structures are

∆A = Cc(G1 ×G1 ×t,G0×G0,∆ G0)

∆B = Cc(H1 ×H1 ×t,H0×H0,∆ H0)
and the bimodule P is given by Cc(M). The inner products then can be
written down by Theorem 3.2.5. Taking the completion, we obtain the
lemma.

Morita equivalent groupoids determine spatial-Morita C∗−algebras. On
the other hand, non-Morita equivalent groupoids which correspond to the
same C∗−algebra have different spatial structures.

3.3.4 Monoidal category
Definition 3.3.11. For a spatial C∗− algebra, there exists a monoidal struc-
ture on the category of left modules, given by M ∗AN :=A ∆⊗A⊗A (M ⊗N).
We call it monoidal spatial structure.

Theorem 3.3.12. Let (A,∆A, εA) and (B,∆B, εB) be two spatial-Morita
equivalent C∗− algebras. Then monoidal categories built on the spatial-
Morita structures are equivalent.

Proof. Fixing the notations as in Definition 3.3.9, we need to prove that the
Morita functor f(M) =B PA ⊗AM is an equivalence of categories. Because

BPA ⊗A (M ∗A N) : = BPA ⊗A (A∆A⊗A)⊗A⊗A (M ⊗N)
= B∆B⊗B ⊗B⊗B ⊗(Q⊗Q)⊗A⊗A (M ⊗M)
= ∆B⊗B ⊗B⊗B (Q⊗AM)⊗ (Q⊗A N).

We obtain f(M ∗AN) ∼= f(M)∗B f(N). The compatibility of C∗−norms can
be deduced from the Hilbert module structure of the C∗−correspondence.
The inverse direction is trivial. QED.

Theorem 3.3.13. Let (Ai,∆Ai , εAi) be spatial C∗−algebras. Then their ten-
sor products (A1⊗A2,∆A1⊗∆A2 , εA1⊗εA2) and (A1⊕A2,∆A1⊕∆A2 , εA1⊕εA2)
are also spatial algebras.
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Proof. The proof is just a routine check, with the full C∗−norms defining on
the tensor products.

Theorem 3.3.14. Let X be a locally compact space, viewed as trivial groupoid
X
�
X

. Then the monoidal structure on category of C0(X)−modules is isomor-

phic to the tensor product of sheaves.

Proof. We proceed as in Example 3.3.4. Let E and F be C0(X)−modules
and ∆ be the canonical spatial structure ∆ = C0(X × X) as in Example
3.3.4.

Then E ∗ F is isomorphic to C0(X) ⊗C0(X)⊗C0(X) E ⊗C F as Hermitian
modules over C0(X). Because we can identify X with its diagonal map inside
X ×X, the monoidal product E ∗F is isomorphic to E⊗F as modules over
C0(∆(X)) ∼= C0(X).

Example 3.3.15. Let G be any locally compact group. Then the monoidal
structure induced from the groupoid G ⇒ {pt} is isomorphic to the tensor
product of the category of group representations.

Proof. We proceed like in 3.3.5. The spatial structure is determined by ∆ =
C0(G × G), and εA = C. The action of C∗(G × G) on ∆ given by the
left translation and the right action of C∗(G) is induced from the diagonal
morphism g 7→ (g, g) from G to G×G. The conditions of spatial structure is
followed from Theorem 3.2.5, so we can apply the procedure of the standard
construction. The spatial product is given as

P ∗Q =C∗(G) [C0(G)⊗C C0(G)]⊗C∗(G)⊗C∗(G) P ⊗Q,

it is easy to show that P ∗Q is tensor product of group representations. The
representation εA, i.e. the trivial representation, plays the role of identity
in the monoidal category. Finally, the representation theory of a locally
compact group G and its group C∗ - algebra C∗(G) are equivalent [14].

Corollary 3.3.16. From Examples 3.3.15 and 3.3.14, we conclude that there
exist many non-isomorphic monoidal structures on the category of repre-
sentations of a fixed C∗−algebra A, depending on the groupoids that the
C∗−algebra A represents.
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Remark 3.3.17. If the group G is Abelian, Ĝ is also Abelian group and the
tensor product of irreducible representations is nothing but the group struc-
ture on Ĝ. Then, there exist two different monoidal structures on the cate-
gory of representation of C∗(G).

Example 3.3.18. Assume that G is a locally compact Abelian group. If
C∗(G) is presented as the groupoid C∗−algebra of the space Ĝ, the diag-
onal map induces a correspondence from C0(Ĝ × Ĝ) to C0(Ĝ), which is a
(C0(Ĝ), C0(Ĝ) ⊗ C0(Ĝ)) bimodule. It is known that all the irreducible rep-
resentations of C0(Ĝ) are one dimensional representations, and are identified
with the evaluation maps at one point θ ∈ Ĝ. Then the new tensor product
we want to compute is isomorphic to

Hθ ∗Hφ =C0(Ĝ) C0(Ĝ)⊗C0(Ĝ)⊗C0(Ĝ) (Hθ ⊗Hφ)

which can be reduced to C0(Ĝ×Ĝ×Ĝ {pt})) with the embedding pt ↪→ {θ, φ}.
As a C0(Ĝ)−module, Hθ∗Hφ is isomorphic toHθ if θ = φ and degenerates

to the trivial representation if θ 6= φ.
If C∗(G) ∼= C0(Ĝ) is viewed as a groupoid C∗−algebra of the classify-

ing stack BG, the computation above proves that the monoidal structure is
equivalent to the group multiplication of Ĝ, the unitary dual of G. There-
fore, at least two spatial structures exist on a single C∗− algebra of a locally
compact Abelian group.

Remark 3.3.19. Unlike multiplication of groups, the monoidal spatial struc-
ture does not necessary induces homomorphisms between cohomology groups.
For example, it does not necessary induce an algebra structure on theK−theory.

Corollary 3.3.20. On the classical torus C(T2) = C(S1 × S1), there exist
the following spatial structures, which are products of spatial structures on
C(S1).

We want to compute the product P(x1,y1)∗P(x2,y2) for P(x,y) the line bundle
over the point (x, y). Then, by Examples 3.3.18 and 3.3.15,

Case 1. Two copies of spatial algebras (C(S1),∆ = C(S1), ε = C(S1)).
The monoidal structure is the tensor product of sheaves over T2.
In this case P(x1,y1) ∗ P(x2,y2) = δx1,x2δy1,y2P(x1,y1).

1

1δx1,x2 is equal to zero if x1 6= x2, and equal to 1 if x1 = x2.
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Especially, the operator induced onK0(T2) is just the tensor prod-
uct of vector bundles. In terms of periodic cyclic homology groups,
HP•(C(T2)) ∼= H•(T2), then H2(T2) = 〈dx ∧ dy〉, H1(T2) =
〈u−1du, v−1dv〉 = 〈dx, dy〉, and H0(T2) = 〈1〉 as showed in [63].
The monoidal structure induces an algebra structure onHP•(C(T2)),
which can be computed as k.u−1du ∗ lv−1dv = k.l.dx ∗ dy =
k.l.dx ∧ dy, 1 ∗ dx ∧ dy = dx ∧ dy.

Case 2. Two copies of (C∗(Z),∆ = C∗(Z× Z), ε = C(S1)).
In this case P(x1,y1) ∗ P(x2,y2) = P(x1+x2,y1+y2).
However, the monoidal structure behaves in a very different way,
in the level of K0−groups. The monoidal product of two vector
bundles E and F is isomorphic to

(Γ(E)⊗ Γ(F ))⊗C∗(Z4) C
∗(Z4)C∗(Z2)

∼= Γ(E)⊗ Γ(F )C∗(Z2).

The C∗−morphism C∗(Z2)→ C∗(Z4) is equivalent to the C∗−homomorphism
C(T2) → C(T4), which is induced from the group multiplication
m : T2 × T2 → T2, m(x, y, z, t) = (x + z, y + t). Therefore, the
monoidal product of two vector bundles E ⊗ F on T4 is obtained
by pushing forward the exterior tensor product E × F via the
multiplication m. But the process results in an infinite dimen-
sional vector bundle, i.e. not a projective module over C∗(Z×Z).
Therefore, the monoidal structure does not lie in K−theory in the
classical sense.

Case 3. One copy of the spatial algebra (C(S1),∆ = C(S1), ε = C(S1))
and one copy of (C∗(Z),∆ = C∗(Z×Z), ε = C(S1)). In this case,
the product is P(x1,y1) ∗ P(x2,y2) = δx1,x2P(x1,y1+y2).

We want to emphasize that, the group GL(2,Z) acts on the classical torus
T2 ∼= R2/Z2, so it also acts on the moduli space of spatial structures. The
spatial structures in case 1 and 2 are invariant under the GL(2,Z) actions,
but the case 3 is not. In fact, the group GL(2,Z) transforms the x−direction
(the tensor one) and y− directions (the addition one) of the torus into other
directions.

Example 3.3.21. To get a feeling about different spatial structures on the
same C∗−algebra, letG ∼= Z×Z/n1Z×..×Z/nkZ. First, as an Abelian group,
the C∗(G) has a structure of spatial algebra given in Example 3.3.5. The
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second spatial structure ∆n1,n2,..nk is given by C∗(G) ∼= C(S1)⊗C∗(Z/n1Z)..⊗
C∗(Z/nkZ), which is isomorphic to the product of the spatial structures on
the space S1 (which is the tensor product of sheaves) and the ones of groups
Z/n1Z× ..× Z/nkZ, ( which is the addition along the finite groups).

Figure 3.3.1: Spatial product

Given a simple moduleH over C∗(G), we may see that there exists α ∈ S1

such that H corresponds to a element of the fiber Z/n1Z× ..× Z/nkZ lying
over α. Then by example 3.3.18, their tensor product Hα ∗∆n1,n2,..nk

Kβ
∼= 0

if α and β belong to different fibers of the n1.n2...nk−covering map S1 on
S1. In case they belong to the same fiber, we just add them together to get
another representationMα using the group structure on Z/n1Z× ..×Z/nkZ.

Example 3.3.22. If G = KnH, and H is an Abelian group, then C∗(G) is

Morita equivalent to C∗(H)oK ∼= C0(Ĥ)oK ∼= C∗(
Ĥ oK
�
Ĥ

) and Theorem

3.3.6 can be applied. Thus, we obtain another spatial structure on the same
C∗−algebra C∗(G), besides the ones in 3.3.15.

3.3.5 Crossed Product of Spatial Algebras
Example 3.3.23. We show that the notion of crossed product also exists
for the spatial algebras.

Theorem 3.3.24. Let (A,∆A, εA) be a spatial C∗− algebra and G a locally
compact group acting on A by α.
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We assume that:
1-There also exists a right representation u of G on ∆, satisfying the

condition

ug.π(a).u−1
g = π(αg(a)).

2-There also exists a right representation v of G on εA, which is co-variant
with respect to the representation of A on εA viewed as an A-right module.

vg.πε(a).v−1
g = πε(αg(a)).

Then there exists a co-variant spatial structure on A o G, denoted by
IndAoGA ∆.

Proof. We keep in mind the example of the transformation groupoidGnX ⇒
X, where the spatial bimodule over C0(X) o G is ∆̃ = Ind

C0(X)oG
C0(X) ∆A =

(L2(G × G,C0(X)), εA = C0(X). The group G acts on X component of
X×G×G and acts diagonally on G×G. It is obvious that the left action of
G×G is given as the regular representation on X×G×G. Our construction
is a noncommutative generalization of this example.

Right Module: The bimodule ∆̃ is defined to be L2(G×G,∆), i.e. the
L2−space of functions on G × G with the values on ∆, with respect to the
Haar measure on G. Denote the ∗− representation of A⊗ A on ∆ by π, we
define the right co-variant representation (π̃, U) of (A ⊗ A,G × G,∆) on ∆̃
as:

(π̃(a1 ⊗ a2)f)(x, y) = π(α−1
(g,h)(a1 ⊗ a2)).(f(x, y),

(Ug1,h1f)(x, y) = f(g−1
1 x, h−1

1 y),
for all a1, a2 ∈ A, d in L2(G×G,∆). We can verify that

Ug1,h1 .π̃(a1 ⊗ a2)U∗g1,h1 = π̃(αg1(a1)⊗ αg2(a2)).

It is known that in ([17]) any co-variant representation of noncommutative
dynamical system (A,G, α) is equivalent to a ∗− representation of the crossed
product Ã = AoαG. Thus, there exists a right (AoG)⊗ (AoG)− module
structure on ∆̃.

Left Module: Let d ∈ L2(G × G,∆) and a, b ∈ Cc(G,A). We define
naturally the right representations of A and G on ∆̃
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(Π(a)d)(x, y) = π(a).d(x, y),

(Ugd)(x, y) = ug(d(x, y)).
Then naturally, condition 3.3.24 extends to UgΠ(a).U∗g = Π(αg(a)), which
can be integrated to a right representation of A o G on ∆̃. Thus, the con-
struction gives the (Ã, Ã⊗ Ã)−bimodule structure on ∆̃.

Identity: Without any difficulty, condition 3.3.24 guarantees that in-
tegrating the co-variant representation (πε, vε) of (A,G, εA) yields a right
representation of A o G on εA. The verification that (L2(G × G,∆), εA)
satisfies the axioms of the spatial structure:

∆̃⊗AoG⊗AoG (∆̃⊗ (AoG)) ∼= ∆̃⊗AoG⊗AoG ((AoG)⊗ ∆̃),

as (AoG,AoG⊗ AoG⊗ AoG)−bimodules and

∆̃⊗AoG (εA ⊗ AoG) ∼= AoG,

as (AoG,AoG) modules is then a routine check.

Remark 3.3.25. We would like to mention that the example of spatial struc-
ture of the deformation quantization of the Poisson and Dirac tori is discussed
in 2.9.18.

Example 3.3.26. Let G a locally compact group, with a two-cocycle i.e. a
function such that σ : G×G→ U(1) = {z ∈ C | |z| = 1},

σ(g, h)σ(gh, k) = σ(g, hk)σ(h, k) for all g, h, k ∈ G.

Then we can twist the spatial group C∗−algebra in Example 3.3.5 to obtain
a spatial algebra structure on C∗(G, σ). The bimodule is still Cc(G×G), but
the action is twisted. ∑ a(g1,g2) ∗σ bg = ∑

a(g1g,g2g).σ(g1, g).σ(g2, g). The left
action is given analogously.

A well known example is the construction of the noncommutative two-
torus via the a cocycle over Z2.

Given a group H acting on a groupoid G1 ⇒ G0, we can build up a bigger
groupoid H ×G1 ⇒ H ×G0 to study the stack quotient [G1/G0]//H as well
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as its monoidal category of representations. The group H also preserves the
spatial C∗(G1 ⇒ G0) and Theorem 3.3.24 can be applied.

However, there are many known examples that a group cannot act on
a groupoid, but still acts on the groupoid C∗−algebra. A typical example
brought to us by Echterhoff via private correspondences is the classical torus
T2 can acts ergodically on the noncommutative two-torus Aλ, but AλoT2 ∼=
K(L2(T2)) is Morita equivalent to C or groupoid C∗− algebra of a point!
The monoidal structure of the category of modules over Aλ o T2, therefore,
is trivial. The the reason is that T2 does not preserve the spatial structure
of Aλ.

A more trivial example is that there is no nontrivial action of S1 on the
stack BZ, but there is one on the category of representations of Z. Up to
now, we do not know any example of any group action preserving a spatial
algebra, but not preserving the underlying groupoid.

3.4 Monoidal Structure For Rotation Alge-
bras

We compute the monoidal structure for Example 3.3.7 in the category of
cyclic modules, i.e. the modules generated by one element, analog to the
monoidal structure coming from Hopfish algebras in [3].

Let Tαp,q be A/(u−1)A, which is a left cyclic A-module with u = e−iαap,q.

Lemma 3.4.1. [3] Tαp,q is a simple module if and only if p and q are relatively
prime. Furthermore, the modules Tαp,q and T βr,s are isomorphic iff (p, q) =
±(r, s) and α = ±β + n for some n ∈ Z.

We try to use the same terminology in reference [3] to see the analog
between our spatial structure and the Hopfish structure, which is expected
to be a candidate for the quantum mirror symmetry.

Let T be the inner product space spanned by the orthonormal basis {ξn |
n ∈ Z}. Then for p 6= 0, Tαp,q is isomorphic to the action given by

ξna10 = e
i
p

[α+λn+ 1
2λq(p+1)]ξn+q (3.4.1)

ξna01 = ξn−p.
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Sometimes, for convenience of computation, we switch the roles of a10 and
a01. Then Tαp,q is isomorphic to

ηna10 = ηn+q (3.4.2)
ηna01 = e

i
q

[α+λn+ 1
2λp(q+1)] ηn−p = DDα

p,q,nηn−p.

While for p = 0

ξna10 = ξn+q (3.4.3)
ξna01 = e

i
q

[α+λn]ξn.

Notice that we denote e
i
p

[α+λn+ 1
2λq(p+1)] by CCα

p,q,n for shorter computation.
For q = 0

ξna10 = e
i
p

[α+λn]ξn

ξna01 = ξn−p.

The cyclic modules Tαp,q = A/(e−iαapq − 1)A admit the action (U, V ) 7→
(θqU, θ−pV ) of the one dimensional sub-torus (θq, θ−p) of {(θ1, θ2)}, giving
the spectral decomposition ⊕kTαp,q,k.

Compute T = Tα1
p1,q1 ⊗ T

α2
p2,q2 ⊗A⊗A ∆.

To compute the tensor product, we compute the action of the noncom-
mutative two-tori on the generators of the cyclic modules. As a vector space,
the generators of the spatial tensor product T = Tα1

p1,q1 ⊗ T
α2
p2,q2 ⊗A⊗A ∆ can

be fixed as η1
k1⊗η

2
k2⊗dl,n1,n2 . The main tool for our computation is Example

3.3.7.
From equation 3.3.6, we obtain

(am1,−n1 ⊗ a−l−m1,−n2) ∗ dl,n1,n2 = e−iλ[m1n1−(m1+l)n2]d0,0,0 (3.4.4)

which implies that T is generated by elements tk1,k2 = η1
k1⊗η

2
k2⊗d0,0,0 where

ηiki are basis for the cyclic module Tαipi,qi . However, in order to obtain the
expected modules from the generators tk1,k2 , we still need to mod out the
bimodule by the action of the generator a1,0 ⊗ a−1,0, which corresponds to
the different choices of m1. The equivalence relations can be read

η1
k1 ⊗ η

2
k2 .a1,0 ⊗ d0,0,0 = η1

k1 .a1,0 ⊗ η2
k2 ⊗ d0,0,0. (3.4.5)

To clarify how the relationship behaves, we distinguish three cases, corre-
sponding to the behavior of the cyclic modules.
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3.4.1 Case q1 6= 0 and q2 6= 0:
The right hand side of Equation 3.4.5 is equivalent to

tk1,k2 .(a1,0 ⊗ Id) = η1
k1+q1 ⊗ η

2
k2 ⊗ d000 (3.4.6)

while the left hand side reads

tk1,k2 .(Id⊗ a1,0) = η1
k1 ⊗ η

2
k2+q2 ⊗ d000. (3.4.7)

Equivalently,
tk1+q1,k2 = tk1,k2+q2 . (3.4.8)

Using the formula 3.3.5 for the right action of am,j

dl,n1,n2 ∗ am,j = e−iλj(l+m).dl+m,n1+j,n2+j,

we can rephrase 3.4.6 as

tk1,k2 ∗ a10 = η1
k1 ⊗ η

2
k2 ⊗ d000 ∗ a10

= η1
k1 ⊗ η

2
k2 ⊗ d1,0,0 (3.4.9)

= (η1
k1 ⊗ η

2
k2)(a1,0 ⊗ a00) ∗ d000

= (η1
k1 ⊗ η

2
k2)(a0,0 ⊗ a10) ∗ d000

= tk1+q1,k2 = tk1,k2+q2 (3.4.10)

While Equation 3.4.7 is equivalent to

η1
k1 ⊗ η

2
k2 ⊗ d000 ∗ a0,1 = η1

k1 ⊗ η
2
k2 ⊗ d0,1,1 (3.4.11)

= η1
k1 ⊗ η

2
k2 ⊗ a0,1 ⊗ a0,1 ∗ d000

= DDα1
p1,q1,n1DD

α2
p2,q2,n2η

1
k1−p1 ⊗ η

2
k2−p2 ⊗ d0,0,0.

or
tk1,k2a0,1 = DDα1

p1,q1,n1DD
α2
p2,q2,n2tk1−p1,k2−p2 .

Equation 3.4.10 can be thought of as the equation for sections of a line
bundle on the discrete torus of period (q1, q2). Thus, these vectors can be
parametrized by Z2/(q1,−q2)Z to be compatible with the relation 3.4.8

H[k1,k2] := t(k1,k2), [k1, k2] = (k1, k2) + Z(p1,−p2)

118



3.4. MONOIDAL STRUCTURE FOR ROTATION ALGEBRAS

H[k1,k2].a10 = Hk1+q1,k2 = Hk1,k2+q2 ,

H[k1,k2].a01 = DDα1
p1,q1,n1DD

α2
p2,q2,n2H[k1−p1,k2−p2].

Fixing the bijection

v : Z2/(q1,−q2)Z
∼=−→ (Z/gcd(q1, q2)Z)× Z

[k1, k2] 7→ (p2k1 − p1k2 mod gcd(q1, q2), q2k1 + q1k2

gcd(q1, q2) )

as in [3] but for different parameters, and also relabeling the basis by setting
H(m)
n = Hv−1(m,n). Under this new form,

H(m)
n .a10 = H

(m)
n+q

H(m)
n .a01 = DDα1

p1,q1,n1DD
α2
p2,q2,n2H

(m)
n−p. (3.4.12)

Here q = lcm(q1, q2) and p = q1p2+q2p1
gcd(q1,q2) . It is easy to see that from two

equations,
H(m)
n aq01a

p
10 = eiα.H(m)

n ,

for some constant α. Therefore, the tensor product should be isomorphic to
Tαp,q.

Equivalently, we obtain a new basis for the modules T , for which the
action of the torus is very similar to Equation 3.4.1. Naturally, we would like
to to compare Equation 3.4.12 to the standard cyclic module

ηna10 = ηn+q (3.4.13)
ηna01 = e

i
q

[α+λn+ 1
2λp(q+1)] ηn−p = DDα

p,q,nηn−p,

by finding α, p, q, k satisfying the equation

DDα1
p1,q1,n1DD

α2
p2,q2,n2 = [DDα

p,q,n]
so that the tensor module is isomorphic to a cyclic one Tαp,q. But what value
may α take? Recall that in [3], all the cyclic modules are isomorphic under
the transformation α 7→ ±α + kλ, and it is possible to choose different k
among the generator of the cyclic modules, so equivalently

α + λn+ 1
2λp(q + 1)
q

=
α1 + λn1 + 1

2λp1(q1 + 1)
q1

+
α + λn1 + 1

2λp1(q1 + 1)
q1
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modulo 2πZ. Or equivalently

α

q
= [α1

q1
+ α2

q2
] + 1

2λ
p1

q1
(q1 + 1)] + 1

2λ
p2

q2
(q2 + 1)]− 1

2λ
p

q
(q + 1) modulo 2πZ.

(3.4.14)

or
α

q
= [α1

q1
+ α2

q2
] + λ

2 (p1

q1
+ p2

q2
− p

q
) + 1

2λ(p1 + p2 − p) modulo 2πZ. (3.4.15)

Finally, we obtain

Tα1
p1,q1 ∗∆ Tα2

p2,q2 = gcd(q1, q2)Tαp,q.

3.4.2 Only one of q1 or q2 = 0:
We can verify that this case is totally similar to the above and we obtain the
same result.

3.4.3 Case q1 = q2 = 0:
This case turns out to be totally different, mostly because the relationship
3.4.8 degenerates to

CCα1
p1,0,k1 .tk1,k2 = CCα2

p2,0,k2 .tk1,k2 .

This condition is not always satisfied and constitutes a condition for the
vanishing of the product. From the definition of CCα

p,q,k, the condition can
be rewritten as

1
p1

[α1 + λk1]− 1
p2

[α2 + λk2] ∈ 2πZ,

or
1

2π (α1

p1
− α2

p2
) + λ

2π (k1

p1
− k2

p2
) ∈ Z, (3.4.16)

or

α1p2 − α2p1 + λ(k1q2 − k2q1)
p1p2

= 0 mod 2πZ.
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Assume that 0 ≤ α1, α2 < 2π, then monoidal product of modules always
vanishes unless

r := − α1p2 − α2p1

λ.gcd(p1, p2)
is an integral modulo multiple of lcm(q1, q2)2π

λ
.

How does the action of a10 and a01 behave? Recall that tk1,k2a0,1 =
tk1−p1,k2−p2 , and tk1,k2a10=CCα1

p1,q1,k1tk1,k2 , so we carry out analogously as the
case q1, q2 6= 0 and in the same line with [3]. Let s1, s2 be integers such that

s1p2 − s2p1

gcd(p1, p2) = 1.

In this case, the basis for the tensor modules is given by

B := {tk1,k2 | k1, k2 ∈ Z,
k1p2 − k2p1

gcd(p1, p2) = r}.

We choose a map v to mod out all the elements in the equivalent class
tk1,k2a0,1 = tk1−p1,k2−p2

v : Z→ {(k1, k2) ∈ Z | k1p2 − k2p1

gcd(p1, p2) = r}

n 7→ r(s1, s2) + k

gcd(p1, p2)(p1, p2)

and relabel the basis by tn := tv(n). In this new basis, we choose p :=
gcd(p1, p2), α := s1α2 − s2α1.

tna10 = e
i
p

[α+λn)]tn

tna0,1 = tn−p.

Then, tnap10 = ei(α+pλn). Choose n = 0, we obtain the module Tαp,0. In sum-
mary of all the computation above, we obtain a Decomposition Theorem of
cyclic modules according to the standard tensor product on rotation algebra.

Theorem 3.4.2. (Decomposition Theorem) Let Tα1
p1q1 and Tα2

p2q2 be two
cyclic modules over an rotation algebra, defined by the relation Tαp,q = A/(e−iαapq−
1)A. Their spatial product determined by the spatial structure on noncom-
mutative two-torus via the groupoid presentation S1 oθ Z is:
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• If q1 or q2 is nonzero, then 3.4.2

Tα1
p1,q1 ∗∆ Tα2

p2,q2 = gcd(q1, q2)Tαp,q
with q = lcm(q1, q2) and p = q1p2+q2p1

gcd(q1,q2) and

α

q
= [α1

q1
+α2

q2
]+λ

2 (p1

q1
+ p2

q2
− p
q

)+ 1
2λ(p1+p2−p) modulo 2πZ. (3.4.17)

α can be choose up to a transformation of the forms α 7→ ±α + kλ.
• If q1 = q2 = 0 then

Tα1
p1,0 ∗∆ Tα2

p2,,0 =
T

α
p,0 if φ = 1

2π (α1
p1
− α2

p2
) ∈ Z

0 otherwise
(3.4.18)

with p = gcd(p1, p2),α := s1α2 − s2α1,
s1q2−s2q1
gcd(p1,p2) = 1.

Remark 3.4.3. Most of the notations in this section are similar to those in [3],
since we want to establish mirror symmetry correspondence between Hopfish
algebras and Spatial algebras. The unknown correspondence is analog to the
correspondence between the normal product and the convolution product of
functions over Rn, but the nature of our computation is different. Compare
to the decomposition of cyclic modules with respect to Hopfish structure in
[3], the formula for p and q in our computation can be rephrased as

p1

q1
+ p2

q2
= p

q

but in the Hopfish monoidal structure, the formula is
q1

p1
+ q2

p2
= q

p

(the formula in Remark 2 of [3] contains a typo, the fraction should be written
inversely).

The difference comes from the fact that we use spatial structure to kill the
stackiness in the U direction, and use Hopfish algebra to maintain the group
structure on the U direction and forget the stackiness of the V direction.
But we can switch the role of p and q, with an automorphism of the rotation
algebras U 7→ V, V 7→ U . Therefore, after twisting with an automorphism,
we obtain the categorical equivalent between monoidal categories generated
by cyclic modules with respect to Hopfish and Spatial structures.
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Corollary 3.4.4. In formula 3.4.17, if λ jumps 2πm, then α increases
πm(p1

q1
+ p2

q2
− p

q
)q + πm(q1 + q2 − q)q. Thus, the monoidal structure is stable

under the isomorphism Aλ → Aλ+2π. But clearly, the spatial structure is not
stable under Morita equivalent, especially the inversion θ 7→ 1

θ
.

Figure 3.4.1: Spatial monoidal product

The decomposition of the cyclic modules with respect to the Hopfish
structure of A 1

θ
coincides with the decomposition with respect to the Spatial

Structure of Aθ.
However, from the corollary, we do not know any information about the

full correspondence between two categories, because the categories of repre-
sentations are very huge and cannot be classified. The fact is due to the
liminal property of the noncommutative two-tori. But the result still suggests
that there exists a kind of mirror symmetry for the noncommutative two-tori
that relates two monoidal structures. We will return to the same problem
from another point of view in future work.

3.5 Spatial structures and continuous fields
We return to the section of the continuous fields of noncommutative two-tori
to see how the spatial structure appears in the picture. Given a bundle of
tori A = Aθ(t) with θ(t) a continuous function from a contractible locally
compact space X into S1, there exists a bundle of groupoids with fibers
S1 ×θ(t) Z corresponding to the C∗−algebra A. The bundle can be given
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as G = (S1 × X) oθ(t) Z, which means that C∗(G) can be associated with
a spatial structure ∆. In the form of an (A ⊗ A,A)−bimodule, the spatial
structure ∆ can be decomposed into bundles of bimodules over bundles of
noncommutative two-tori.

In chapter 2, we have used the Morita bimodules to glues continuous
fields to obtain the bundles of stacks. However, as we showed in this chapter,
Morita equivalence does not preserve spatial structure. Therefore, the process
in the chapter 2 is just the gluing of categories of modules, not of monoidal
categories.

Because S1 oθ Z and S1 oθ+1 Z are isomorphic, the classification of the
continuous fields of noncommutative two-tori up to a spatial Morita equiva-
lence reduces to the classification up to an isomorphisms.

Theorem 3.5.1. Let H3(Z) be the Heisenberg group over Z
 1 x z

0 1 y
0 0 1

 | x, y, z ∈ Z


and H3(R) be the same group with z in R.

Proof. We fix the generators of H3(Z)

U =

 1 1 0
0 1 0
0 0 1

 , V =

 1 0 0
0 1 1
0 0 1

 ,W =

 1 0 1
0 1 0
0 0 1


such that any element g ∈ H3(Z) can be written

g =

 1 x z
0 1 y
0 0 1

 = V y.Ux.W z.

We denote the element V y.Ux.W z by (x, y, z). Then the equations determin-
ing the Heisenberg group are

Z = UV U−1V −1, UW = WU,WV = VW (3.5.1)

and the multiplication is given by (a, b, c)∗(x, y, z) = (a+x, b+y, c+z+ay).
The canonical embedding i of N = 〈W 〉 into the center of H3(Z) induces

i∗ : C∗(N)→C∗(H3(Z)). As known in classical harmonic analysis, the Fourier
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transform C∗(N) ∼= C(N̂) ∼= C(S1) decomposes C∗(H3(Z)) into a bundle of
noncommutative two-tori [38].

A typical section of the bundle is of the form

a =
∑

an,m,kV
mUnW k =

∑
an,m,kV

mUneikt.

Let Iθ be the left ideal generated by 〈W = θ〉, then the image of a ∈
C∗(H3) under the projection onto C∗(H3(Z))/C∗(H3(Z))Iθ has the value∑
an,m,kV

mUnθk.
The fiber algebra then is isomorphic to

< U, V,W |UV U−1V −1 = W > / < W − θ = 0 >∼= 〈UV = θV U〉.

Quantization of multiplication of Poisson Tori
We study the spatial structure coming from the group H3(Z,Z,Z). Let

δ : H3(Z)→ H3(Z)×H3(Z) be the diagonal map of the group, which induces
∆ : A→ A⊗ A.

C∗(G) // C∗(G)⊗ C∗(G)

C∗(Z) //

OO

C∗(Z)⊗ C∗(Z)

OO

C(S1) //

OO

C(S1)

OO

It is clear that the map has a restriction to the center,

∆ : C∗(Z)→ C∗(Z)⊗ C∗(Z),

δ(
∑

anδn) =
∑

anδn ⊗ δn.

By the Fourier transform, it induces ∆ : C(S1) → C(S1 × S1), namely
mapping einx 7→ einu.einv = ein(u+v). As a result, ∆ is the group structure of
S1. Therefore, ∆−1 maps ideals of A⊗ A to ideals of A.

∆−1(Iθ1 ⊗ Iθ2) = Iθ1+θ2 E C(S1).
Hence it induces the morphism between fiber algebras

∆θ1,θ2 : A/(Iθ1+θ2A)→ A⊗ A/(Iθ1A⊗ Iθ2A),
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i.e.
∆θ1,θ2 : Aθ1+θ2 −→ Aθ1 ⊗ Aθ2 .

From the viewpoint of Poisson geometry, the family of maps ∆θ1,θ2 is the
quantization of the maps

(T2, θ1∂x ∧ ∂y)× (T2, θ2∂x ∧ ∂y)→ (T2, (θ1 + θ2)∂x ∧ ∂y).

However, we have never tried to compute the monoidal product for this
spatial structure.

The next example has been proved in another form in 3.3.7

Example 3.5.2. On the C(S1×S1)oZ, with the action given as (θ1, θ2).n =
(θ1, θ2 + n.θ1), there exists a spatial structure ∆Z . In fact, the localization
of the spatial structures at the point θ1 gives us back example 3.3.7. There
are many ways to construct this spatial structure, the easiest way is to apply
Theorem 3.3.24 to the groupoid (S1×R)oZ, the second way is to build the
spatial structure directly from Theorem 3.3.6.

On the extreme side of the Space↔ Group correspondence, we can show
that quantization of a Poisson manifold has a natural spatial structure. The
work can be done in the same way with Theorem 2.9.16.

Example 3.5.3. The final example is the quantum Heisenberg manifold
M = H3(R,R,R)/H3(Z,Z,Z). But instead of doing calculation in the lines
of theorem 2.9.16, it is possible to establish a general approach, using the idea
of strict deformation quantization with the torus action by Rieffel [34, 74].
We will publish the result in a forthcoming paper.
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Appendix

A.1 Groupoids and Stacks
In the section, we collect some background on groupoid and stack. None
of them is original and can be found in literature [49] or from the thesis of
Canez [9]

A Groupoid is a category such that all the arrows are invertible.
A topological groupoid is one whose the space of arrows forms a topo-

logical space and the structure maps are continuous.
A Haar system on a locally compact groupoid is a continuous family of

measures on the range fibers of the groupoid, which is invariant under left
translation [70]. In the thesis, all the groupoids are assumed to be locally
compact groupoids with Haar systems.

A Lie groupoid is a groupoid object in the category of smooth manifolds
such that the source and target maps are surjective submersions.

A Lie groupoid G⇒M is etale if l and r are etale maps, is proper if the
maps l × r : G→M ×M is proper.

A Lie Algebroid over a smooth manifold M is a vector bundle E over
M, together with: [., .] : Γ(E) × Γ(E) → Γ(E) an R− linear map, a bundle
map ρ : E → TM called the anchor, such that the Leibniz rule is satisfied:
[a, fb] = f [a, b] + ρ(a)f.b for any a, b ∈ Γ(E), f ∈ C∞(M).

An action of a Lie Groupoid G ⇒ M on a smooth manifold N consists
of a moment map J : N → M and a smooth map Φ : G ×N M → M such
that

• J(Φ(g)m) = l(g) for g ∈ G and n ∈ J−1(r(g))
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• Φ(e(p), n) = n for any p ∈Mand n ∈ J−1(p).

• Φ(g,Φ(h)n) = Φ(gh, n) for any composable g, h ∈ G and n ∈ J−1(r(h)).

Let G ⇒ M and H ⇒ N be two Lie Groupoid. A (G,H)−bibundle is a
smooth manifold B equipped with commuting left and right actions of G and
H.

B is called right principal if the moment maps JB : B →M is surjective
submersion and the H−action is free and transitive on its fibers. The left
principal bibundle is defined similarly. A bibundle is biprincipal if it is both
left and right principal.

Two Lie groupoids G ⇒ M and H ⇒ N are called Morita equivalent
if and only if there exists a biprincipal bimodule between G and H.

A differential (topological, algebraic) Stack is a Morita Equivalence class
of Lie (topological, algebraic) groupoids. A groupoid lying in the equivalent
class is called a presentation of a stack. We denote by M//G the stack
presented by the groupoid G⇒M.

A Symplectic Groupoid is a symplectic manifold M with symplectic
form ω such that the graph of the multiplication is a Lagrangian submanifold
inside M ×M × M̄.

A Poisson Groupoid is a Poisson manifold M with symplectic form ω
such that the graph of the multiplication is a coisotropic submanifold inside
M ×M × M̄.

A.2 KK−category
There are two ways to define a KK−category, the first one is using universal
property and the second one is the concrete way for some specific purpose.

Abstract Approach
Given a category of C∗−algebras with C∗−morphism, there is a natural
question to ask, what is the universal bi-invariant theory satisfying some
good enough properties? Among them there should be C∗-stable property
(invariant under tensor product with algebra of compact operators), and
split-exact.

Definition A.2.1. A functor F from the C∗− category to any additive cat-
egory C is called split exact, if for any split exact sequence of C∗−algebras
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0 // I i // A π // A/I //

s
{{

0 ,

the map i∗ ⊕ s∗ : F (I)⊕ F (A/I)→ F (A) is invertible.

The answer was found by Cuntz and Higson.

Theorem A.2.2. (Joachim Cuntz and Nigel Higson). BivariantKK−theory
is the universal C∗-stable, split-exact bi-functor on the category of sepa-
rable C∗ - algebras. That is, a functor from the category of separable C∗ -
algebras to some additive category factors through KK−theory if and only if
it is C∗-stable and split-exact, and this factorization is unique if it exists.

C∗ − Alg i //

F ′

((

KK − Category
F
��
C

,

Therefore, the KK−category exists naturally as a C∗−stable and split
exact theory with the separable C∗−algebras as objects. The space of the
morphisms between two C∗−algebras A and B in the category is called
KK•(A,B).

The most important feature of theKK−category is that it is triangulated,
so that we can do homological algebra.

Using the abstract approach, it is possible to define that the C∗−correspondence
is a subcategory of the KK−category.

Theorem A.2.3. [60]The C∗−correspondence category is the universal C∗-
stable functor on the category of separable C∗ - algebras. That is, a functor
from the category of separable C∗ - algebras to some additive category factors
through KK−theory if and only if it is C∗-stable, and this factorization is
unique if it exists.

C∗ − Alg i//

F ′

**

C∗ − Correspondence Category
F
��
C
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Concrete Approach
Another approach is the standard way to construct the KK−groups con-
cretely as in [2].

Definition A.2.4. Given two C∗−algebras A and B. By a KK−cycle, we
mean a triple (E, ρ, F ) such that

1. E is a countably graded C∗−graded module over B.

2. ρ is a ∗−representation of A on E as bounded operators, commuting
with B.

3. F is a bounded operator on E of degree 1, commuting with B.

4. For any a ∈ A, the operators [F, ρ(a)], (F 2 − 1)ρ(a) and (F − F ∗)ρ(a)
are all B-compact operators (the norm limit of sums of finite rank
operators x 7→ 〈x, b1〉b2).

A cycle is said to be a degenerate KK−cycle if all three expressions vanish.
In some senses, we think of a KK−cycle as a bivariant spectral triple, in

which the actions of the C∗−algebras on both sides are to count the infinite
dimensional indexes.

Two cycles are called to be homotopic if there exist a cycles from A to
the C∗−algebra IB = C([0, 1], B), such that the 0-end of the cycle is unitary
equivalent to the first cycle, and the 1-end one is unitary equivalent to the
second cycle.

Example A.2.5. A very important example is the correspondence between
C∗−algebras, with trivial operator F .

Definition A.2.6. TheKK−group from A to B, denotedKK0(A,B), is the
set of the KK−cycles modulo homotopy equivalence. The odd KK group is
then defined to be KK1(A,B) := KK(A⊗ C0(R), B).

We can view the graded groupsKK•(A,B) between a pair of C∗−algebras
A and B as the space of generalized morphisms, and the space of C∗−algebras
with KK−groups then forms the so-call KK−category. The composition
of morphism is given by the Kasparov’s technical lemma, where Kasparov
computed the formula of the product Fredholm operator.
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Lemma A.2.7. (Kasparov Technical lemma). Let A,B and C be C∗− alge-
bras. There exists a Kasparov product

⊗B : KK(A,B)×KK(B,C)→ KK(A,C)

satisfying the following properties.

1. Bi-additivity, i.e. (x1 + x2)⊗B y = x1 ⊗B y + x2 ⊗B y.

2. Associativity, i.e. (x⊗B y)⊗C z = x⊗B (y ⊗C z).

3. Unit elements, if we define 1A := [IdA],1B := [IdB] then

∀x ∈ KK(A,B) : 1A ⊗ x = x⊗B 1B = x

4. Functoriality, if f : A→ B and g : B → C are graded ∗−homomorphism,
then ∀x ∈ KK(A,B), x⊗B [g] = g∗(x) and y ∈ KK(B,C), [f ]⊗B y =
f∗(y).

5. (Triviality) if (E1, φ1, 0) ∈ E(A,B), and (E2, φ2, 0) ∈ E(B,C) then
[(E1, φ1, 0)⊗B (E2, φ2, 0)] = (E1 ⊗B E2, φ1, 0).

In fact, a generalized version was found by Kasparov [2]
Lemma A.2.8. Let A,B,C,D,E be C∗−algebras. Then there exists a prod-
uct

∗ : KK(A,B ⊗ E)×KK(B ⊗D,C)→ KK(A⊗D,C ⊗D).

We notice that an invertible Kasparov cycle with trivial Fredholm operator is
a Morita bimodule.

A.3 Torus bundle
In the section, we review some basic definition of the torus bundles from
Kahn [39].

Given a torus bundle ξ : Tn → Y → X over a connected manifold X.
Then there exists a representation of the fundamental group π1(X) on the
automorphism group of Tn as well as automorphism groups of its homol-
ogy/cohomology. Denote the map by

ρ : π1(X)→ Aut(H1(Tn)) ∼= Aut(Zn) ∼= GL(n,Z).

Then we have the following description of the torus fibration.
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Theorem A.3.1. Assume that X is a compact connected manifold, and
choose any representation ρ : π1(X)→ GL(n,Z). Then there exists a natural
bijective correspondence between the equivalence classes of torus bundles over
X with the monodromy representation ρ, and element c(ξ) of H2(X,Znρ) ∼=
H2(X,H1(Tn)). The element c(ξ) is called the characteristic class of the
torus bundle ξ.

Remark A.3.2. If ρ(π1(X)) is trivial, then ξ is a principal torus bundle, and
c(ξ) reduces to the first Chern class. c(ξ) vanishes if and only if ξ admits a
nontrivial section.

If the tori are associated with symplectic structures, then

Theorem A.3.3. Assume that X is a compact connected manifold, and
choose any representation ρ : π1(X)→ SL(n,Z). Then there exists a natural
bijective correspondence between the equivalence classes of symplectic torus
bundles over X with the monodromy representation ρ, and element c(ξ) of
H2(X,Znρ) ∼= H2(X,H1(Tn)). The element c(ξ) is called the characteristic
class of the torus bundle ξ.

Corollary A.3.4. Every principle torus bundle has a canonical structure as
a symplectic torus bundle.
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