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ABSTRACT OF THE DISSERTATION

Essays on Monetary Linkage

by

Zhi Zhao

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, December 2018

Dr. Marcelle Chauvet, Chairperson

This dissertation attempts to explore the monetary transmission mechanism with an in-

novating empirical framework: mixed-frequency factor-augumented vector autoregressive

model, which allows to include a large number of economic variable with different frequen-

cies. Extensions of the model are also provided: a stacked-vector system equips the model

with classic impulse response function analysis; Markov-switching feature is added to the

model to study the dynamics of unobservable states. The first chapter proposes a mixed-

frequency version of the factor-augmented vector autoregressive regression (FAVAR) model,

which is used to construct a coincident index to measure the monetary transmission mech-

anism. The model divides the transmission of changes in monetary policy to the economy

into three stages according to the timing and order of the impact. Indicators of each stage

are measured and identified using different data frequencies: fast-moving variables (stage 1,

asset returns at the weekly frequency), intermediate moving variables (stage 2, credit mar-

ket data at the monthly frequency), and slow-moving variables (stage 3, macroeconomic

variables at the quarterly frequency). The resulting coincident index exhibits leading signal
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for all recessions in the sample period and provides implications on the dynamics of the mon-

etary transmission mechanism. The second chapter extend the analysis to unconventional

monetary policy. The FAVAR with mixed frequency model is used to account for monetary

transmission mechanism when not only the federal fund rate is used as a monetary tool but

also the Large-Scale Asset Purchase program. The impact of unconventional monetary pol-

icy is captured by ”shadow rate” constructed using one-month forward rates. This allows

a more complete analysis of the impact of monetary policy on the economy also during the

more recent years since the 2008 financial crisis. The third chapter aims to examine the

lead-lag relationship between channels in monetary transmission mechanism. A two-state

Markov-switching mixed-frequency factor-augumented vector autoregressive model that al-

lows each channel to switch states individually is estimated to analyze lead-lag relationship

between different channels over time. This will shed light on how to track the impact of

monetary policy shocks in real time.
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Chapter 1

Introduction

Monetary linkage is the relationship between macro economic variables and mea-

sures of monetary policy instruments, also known as monetary transmission mechanism.

There is a growing literature of both theoretical and empirical work seeking to reveal the

underlying channels of monetary transmission mechanism. Theoretically, traditional views

of monetary tranmission mechnism mostly focus on the interactions between investors and

borrowers in the credit market. After 2008 financial crisis, financial frictions has drawn a

lot of attention as researchers came to realize that the state of banking system is playing

a more important role in the monetary transsmission mechanism than people think. Tak-

ing the financial intermediates as the "missing link" in monetary transmission mechanism

provided a new perspective for researchers to explore the potential channals of monetary

transmission mechanism.

The traditional view of monetary transmission mechnism focused on the interest

rate channel, which is described as the inverstors adjust their asset according to the changes
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in interest rate as discussed in Tobin (1969). In this paper, the user cost of capital is the

key factor that determines the demand for capital. The user cost of capital (uc) can be

written as

uc = pc{[(1− τ)i− πe]− (πec − πe)}

where pc is the relative price of new capital, τ is the marginal tax rate, i is the norminal

interest rate, πe is the expected inflation and πec is the expected price appreciation of the

capital asset. Therefore, the formula can be interpreted as the user cost of capital equals the

difference between the after-tax real term interest rate and the expected real appreciation

rate adjusted by the relative price. With a rise in short-term interest rate, the user cost

of capital also rises. Naturally, investotrs adjust their demand for these capital assets and

consequently decease the consumption.

Another view of monetary transmission mechnism is known as credit channel,

which take the amplification effect of loan supply in credit market due to a change in interest

rate as studied by Bernanke and Gertler (1989). The rich literature on credit channel is

biult on the assumption that the credit market is imperfect as a result of government

intervention, asymmetric information and agency problems. The credit channel can be

further divided into two mechanisms, bank lending channel and firm balance sheet channel.

In bank lending channel, banks are playing an important and unique role as they are the only

source of finance for certain borrowers who has no access to the credit market, such as small

firms. Therefore, under expansionary monetary policy, bank reserve and deposits increase,

resulting the quantity of loan available for those certain borrowers increases, followed by

increase in investment and consumption in real economy. The balance sheet channel, on the
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other hand, refers to the effect that change in interest rate directly change the borrower’s

ability of borrowing due to change in asset value and profitability. Lower net worth, on

the one hand, means less collateral for loans and more loss from adverse selection. On

the other hand, it also means less equity stake which increases the incentive for risk-taking

behaviors. As a result, lenders will be more conservative making loans, leading to a decrease

in investment and consumption in real economy. The condition for the credit channel to

work is that: reservable and non-reservable liabilities are not perfect substitutes for banks;

bank and non-bank funding are not perfect substitutes to firms and consumers.

More recently, aside from the supply side of credit, Nicolo et al. (2010) discussed

about the three different risk-taking channel through which expansionary monetary policy

could lead to risk-taking behavior. The first channel is that banks have incentive to sub-

stitute low yield safe asset with high yield riskier asset. The second channel is through a

"search for yield." Low interest rate give financial instititutes with long-term commitment

incentive to switch to risky asset in order to have a higher probability to match the yield

they promised. The last channel is based on banks always tend to maintain a constant

leverage ratio. The leverage ratio will drop under monetary policy easing as risky asset

weight falls. This could again lead banks to a switch towards risky assets.

Empirically, one stream of the literture focuses on providing evidence for the theo-

retical model. The rest employs various econometric models to identify the monetary policy

effect on real economy variables. However, very few attempts have been made to measure

monetary transmission mechanism itself. It is well-accepted that aggragate economy could

be measured by business cycles indicators, for instance, Real GDP. There also exists some
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other popular coincident indices considered as alternatives, such as Stock-Watson Experi-

mental Coincident Index. Therefore, it is also possible to measure monetary transmission

mechnism by constructing coincident index.

The methodology of empirical studies is developing over recent years. Vector

Antoregressive regression (VAR) has been the standard approach to measure monetary

policy shocks in the literature. A standard VAR model of a k-dimensional vector Zt can be

represented by

Zt =

l∑
j=1

BjZt−j + ut (1.1)

where

E(utu
′
t) = V

In most context, Zt =

St
Xt

 where St stands for the Federal Reserve’s instrument
of monetary policy, i.e. federal fund rate in most cases, and Xt is other informational

economic variables. To proceed the model with monetary policy shocks, we need to further

assume the relationship between the VAR innovation ut and monetary policy shock εtis

given by A0ut = εt, where A0 is invertible and E(εtε
′
t) = D and D is positively definite.

Premultiplying (1.1) by A0 yields

A0Zt =
l∑

j=1

AjZt−j + εt (1.2)

where Bi = A−10 Ai and V = A−10 D(A−10 )′ . To estimate the model, several assumptions and

restrictions should be imposed and this may lead to identification issues.

Although VAR has significant contribution to the analysis of monetary policy

shocks, there are still some identification issues that researchers disagree about. The identi-
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fication problem comes from the fact that we can not use the observations of policy maker’s

action because it could be a reaction to "nonmonetray developments" in the economy while

our primary focus is the effect of monetary policy shock. Therefore in literature, there

are three approaches for isolating the monetary policy shocks. The first approach is to

assume the functional form and relevant variables in the Federal Reserve’s Feedback rule.

Additional assumptions include these variables are orthogonal to the policy shocks and the

recursiveness assumption which justifies the two-step estimating procedure of VAR. The

economic interpretation of recursiveness assumption is that at time t the variables in the

Federal Reserve’s information set doesn’t respond to the realizations of monetary shock at

time t. Under the recursiveness assumption, the two-step estimation can be implement as

follows: first, run least squares regression and get the fitted residual as the estimated mon-

etary shocks; second, run estimate the parameters base on the current and lagged values

of monetary policy shocks calculated in step 1. The second approach of identification is

implemented by making assumptions about the relationship between observable signals and

actual exogenous monetary policy shock. A simple example will be King (1991) assum-

ing the all movements in money reflect shocks in monetary policy. The third approach is

assuming the monetary shocks do not have effect on economy in the long run.

Dynamic Factor Model is developed to construct and make use of diffusion in-

dexes which are consist of contemporaneous values of a large number of time series data as

mentioned in Stock and Watson (1998). Since the indexes are weighted average of a large

set of economic variables, they summarize the information of many aspects of economic

activities. Classic use of diffusion indexes includes recession indicator and coincident eco-
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nomic indicators. Let yt be the economic variable of interest and Xt be the N-dimensional

vector of informational economic variables. Then a dynamic factor model of (Xt, yt+1) with

r̄-dimensional common factor ft is given by

Xit = λ̄i(L)ft + eit (1.3)

yt+1 = β̄(L)ft + εt+1 (1.4)

where et = (e1t, ...eNt) is the corresponding N-dimensional innovation and λ̄i(L) and β̄(L)

are polynomials of lag operator L with nonnegative power. It’s standard to assume both

λ̄i(L) and β̄(L) are polynomials with finite order at most q. Suppose λ̄i(L) =
∑q

j=1 λ̄ijL
j

and β̄(L) =
∑q

j=1 β̄jL
j , then we can rewrite the model in static form

Xt = ΛF 0t + et (1.5)

yt+1 = β′F 0t + εt+1 (1.6)

where F 0t = (ft, ..., ft−q) is r× 1 and r = (q+ 1)r̄. In addition, the i-th row of Λ is given by

(λ̄i0, ..., λ̄iq) and β = (β̄0, ..., β̄q)
′.

The standard estimation of dynamic factor model is a two-step procedure. How-

ever, since N is large in most cases, it’s better to estimate it nonparamatrically. Consider

the nonlinear least squares objective function

V (F,Λ) = (NT )−1
N∑
i=1

T∑
t=1

(Xitλ
′
iFt)

2 (1.7)

where Xit is the i-th observation at time t and λi is the i-th row of Λ. Concentrating out F

make the minimizing problem equivalent to

min tr[Λ′(X ′X)Λ] (1.8)
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subject to

Λ′Λ/N = Ir (1.9)

where the t-th row of X is X ′t. Then the principle components estimator of F is given by

F̂ = XΛ̂/N

where Λ̂ is set to N1/2 times the eigenvectors of X ′X’s first r largest eigenvalues.

Alternatively, when N > T , a computational simpler approach could be concen-

trating Λ out such that the minimizing problem is equivalent to

min tr[F ′(X ′X)F ] (1.10)

subject to

F ′F/T = I (1.11)

then the estimator F̃ can be expressed as T 1/2 time the the eigenvectors of XX ′’s first r

largest eigenvalues.

There are a few methods to determine (or estimate) the number of static factors

r and dynamic factors q. For static factors, Bai and Ng (2002) developed an information

criteria motivated by that in model selection. They proposed the following penalized sum

of lost function

IC(r) = lnVr(Λ̂, F̂ ) + rg(N,T )

where Vr(Λ̂, F̂ ) is the least squares objective function of the principal component estimation

evalutated at the principal component estimator (Λ̂, F̂ ) and g(N,T ) is an penalty function

such that g(N,T )→ 0 as N,T →∞. The information criteria makes a trade offbetween the

benefit of increasing another factor and the cost of estimating another parameter which is
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realized by the penalty function rg(N,T ). As mentioned in Bai and Ng (2002), by choosing

g(N,T ) = (N + T ) ln(min(N,T ))/(NT ), in the special case when N = T , the penalty term

of the information criteria will just collapse to 2 times BIC penalty factor.

As for dynamic factors, Bai and Ng (2007) propsoed an estimation based on the

innovation variance matrix. The estimatino has two steps. The first step is to run VAR

regression of the lags of principal components on the principal components estimator itself.

In the following step, we can compare the eigenvalues of the residual variance matrix to a

shrinking bound depending on (N,T ). Stock and Watson’s simulation shows that Bai-Ng

(2007) procedure shows a better performance in finite sample than others’.

Factor-augment vector autoregresssive regression (FAVAR) was introduced by Bernanke,

Boivin and Eliasz (2005) to solve the dimensionality problem. There are two distinct ad-

vantages of using FAVAR instead of VAR. First, in most VAR, researchers only include

handful number of variables in the regression while in reality the monetary policy makers

in central bank making their decisions base on the observation of a large number of eco-

nomic variables. Therefore, it’s natural to expect mismeasurement problem in VAR. By

contrast, FAVAR summarize the information of this large number of economic variables in

the set of factors (indices). Second, when we analyze the impulse response of the model,

by the same reason, VAR has a limitation on the number of variables while we’re inter-

ested in "a list of variables". In addition, it’s hard to find some existing economic variables

which can represent a general economic concept (economic activity, monetary transmission

mechanism).

Let Yt denotes a M × 1 vector of observable economic variables of interest. In the
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baseline model, they only include the federal fund rate in Yt (,hence M = 1). A K × 1

unobservable factor vector Ft is summarize the additional information other N economic

variables, where K is assumed to be small. Then the joint dynamics of the common com-

ponents Ct = (F ′t , Y
′
t )′ will be given byFt

Yt

 = Φ(L)

Ft−1
Yt−1

+ vt (1.12)

where Φ(L) is a lag polynomial of order d and the vt˜NID(0, Q).

Note that the federal fund rate in the last row of the vector, which is standard in

literature. The underlying assumption is the monetary shocks do not have instant effect

on the latent factors. They further assume that the terms of Φ(L) is restricted such that

Yt and Ft−1 are related. Otherwise this model will reduce to simple VAR. Due to the fact

that the factor vector Ft is not observable, (1.12) can not be directly estimated. Let Xt be

a N × 1 vector which contains other informative economic variables as we mentioned. Here

we assume N is large such that K + M << N . The dynamic of the informational vector

Xt is given by

Xt = ΛfFt + ΛyYt + et (1.13)

where Λf and Λy are N × K and N ×M matrix of factor loading for unobservable fac-

tors and observable economics variables respectively. The error term et is N × 1 vector

which is assumed to be either weakly correlated or uncorrelected. (1.13) has a underlying

assumption: the informational economic variables only depend on the current values of fac-

tors but not any lag terms. However, this assumption can be relaxed later. In Bernanke,

Boivin and Eliasz (2005), they classified the variables in Xt into "slow-moving variables"
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and "fast-moving variables". In their definition, "A slow-moving variable is one that is

largely predetermined as of the current period, while a fast moving variable —think of an

asset-price —is highly sensitive to contemporaneous economic news and shocks".

There are two ways to estimate the model. The first approach is a two-step

approach. The two step approach has the advantage of computational simplicity and it is

implemented in the following way:

Step 1: Estimate slow-moving factors F st are estimated using the principle com-

ponent of "slow-moving variables". Then estimate the regression

Ĉt = bF sF̂
s
t + bY Yt + et

and construct F̂t from Ĉt − b̂Y Yt.

Step 2: Estimate the VAR model of F̂t and Yt in (1.12) recursively

Despite the clear advantage of this two-step approach, it suffers from the "gen-

erated regressor" problem in the second step, therefore the confidence interval must be

calculated based on a bootstrap procedure by Kilian (1998).

The alternative approach is a single-step Bayesian likelihood approach imple-

mented by Gibbs Sampling.

In real-time, researchers often deal with unbalanced dataset. The most common

problem is "ragged-data" problem which refers to the missing values at the end of the sample

caused by publication delays. Mixed-frequency datasets have indicators sampled in different

frequency, could be considered as a special case of missing values where the missing values

appear regularly. Baffi gi, Golinelli and Parigi (2004) first proposed the bridge equations

that create a linkage between low-frequency data with time-aggregated data. The bridge
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equation model could be written as follows

ytq = α+

j∑
i=1

βi(L)xitq + utq (1.14)

where ytq denotes the low-frequency data, βi(L) is a lag polynomial of length k, xitq is

the selected high-frequency data aggregated into low frequency. The process is of two

steps. Firstly, use VAR to obtain forcast of high-frequency data and aggregate the selected

indicators (usually based on information criteria or RMSE performance) into low frequency.

Secondly, use the aggregated low-frequency value as regressor in the brige equation to forcast

the low-frequency indicator.

Another approach to deal with mixed-frequency data is Mixed-Data Sampling

(MIDAS) approach first introduced by Ghysels et al. (2004). Consider a time series {ytq},

tq = 1, ..., Tq being the low-frequency indicator. Let m be the number of higher frequency

series {xtm}, tm = 1, ...Tm that are observed in one period of tq. For example, m = 3 if

{ytq} is quarterly and {xtm}. Naturally we can fit the low-frequency indicator {ytq} in to

high frequency by setting ytm = ytq ,∀tm = mtq. Therefore, a basic linear MIDAS model is

given by

ytq = β0 +B(L1/m)xmtq + ε
(m)
t (1.15)

where B(L1/m) =
∑K

k=0 c(k; θ)Lj/m is a polynomial with length K and c(k; θ) is the coeffi -

cient of the lag operator. Lj/mxtq = xmtq−j since xtq is updated in a higher frequency.

One of the key features of MIDAS model is that the parameterization of the coeffi -

cient of c(k; θ) could be quite flexible. A linear scheme could just set c(k; θ) = 1/K, leaving

no parameter of θ needs to be estimated. A Geomtric scheme with c(k; θ) = θk/
∑K

k=1 θ
k,

where |θ| < 1 so that the sum of the coeffi cients is normalized to equal to one.
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A exponential scheme expressed as

c(k; θ) = exp(

Q∑
q=1

θqk
q)/

K∑
k=1

exp(

Q∑
q=1

θqk
q)

A "Beta lag" scheme with

c(k; θ1.θ2) = f(
k

K
; θ1, θ2)/

K∑
k=1

f(
k

K
; θ1, θ2)

where f( kK ; θ1, θ2) = [( kK )θ1−1(1− k
K )θ2−1Γ(θ1+θ2)]/[Γ(θ1)Γ(θ2)] and Γ(θ) =

∫∞
0 e−xxθ−1dx.

A hyperbolic scheme with

c(k; θ) = g(
k

K
, θ)/

K∑
k=1

g(
k

K
, θ)

where g(k, θ) = Γ(k + θ)/[Γ(k + 1)Γ(θ)].

The above two approaches are mainly used for univariable case. The mixed-

frequency autoregressive regression method introduced by Mariano and Murasawa (2010)

could be used to analyse a system of variables with different frequencies.

Consider a example of GDP growth x1,tm that could only be observed every three

months and N other indicators x2,tm that are observed monthly. The mixed-frequency VAR

model is based on the key assumption that the quarterly observed GDP x1,tm is equal to the

geometric mean of monthly latent variable of the GDP x∗1,tm of this month and the previous

two months. That is

lnx1,tm =
1

3
(lnx∗1,tm + lnx∗1,tm−1 + lnx∗1,tm−2) (1.16)

Define the growth rate of quarterly GDP to be y1,tm = ∆3 lnx1,tm , growth rate of

monthly latent variable to be y∗1,tm = ∆ lnx∗1,tm and growth rate of other monthly indicator

12



to be y2,tm = ∆ lnx2,tm . Then

lnx1,tm − lnx1,tm−3 =
1

3
[(lnx∗1,tm − lnx∗1,tm−3) + (lnx∗1,tm−1 − lnx∗1,tm−4)

+(lnx∗1,tm−2 − lnx∗1,tm−5)]

y1,tm =
1

3
[(y∗1,tm + y∗1,tm−1 + y∗1,tm−2) + (y∗1,tm−1 + y∗1,tm−2 + y∗1,tm−3)

+(y∗1,tm−2 + y∗1,tm−3 + y∗1,tm−3)]

=
1

3
y∗1,tm +

2

3
y∗1,tm−1 + y∗1,tm−2 +

2

3
y∗1,tm−3 +

1

3
y∗1,tm−4 (1.17)

Let the mixed-frequency vectors be

ytm =

y1,tm
y2,tm



y∗tm =

y∗1,tm
y∗2,tm


and define µ = E(ytm) and µ∗ = E(y∗tm). Then the relationship between de-

meaned ytm and y
∗
tm could be written as

ytm − µ = H(L)(y∗tm − µ
∗) (1.18)

where

H(L) =

13I1 O

O IN

+

23I1 O

O O

L+

I1 O

O O

L2

+

23I1 O

O O

L3 +

13I1 O

O O

L4
Further assume {y∗tm} follows VAR(p) model:

Φ(L)(y∗tm − µ
∗) = ωt (1.19)
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where ωt˜IN(0,Σ).

There are two cases for the state-space representation of the mixed-frequency VAR

model. If p ≤ 5, then the state variable is defined as

st =


y∗tm − µ∗

...

y∗tm−4 − µ
∗



Then the state-space representation could be written as follows:

stm+1 = Astm + Bztm (1.20)

ytm = µ+ Cstm (1.21)

{ztm}˜IN(0, IN+1)

where

A =

Φ1 · · · Φp O(N+1)×(5−p)(N+1)

I4(N+1) O4(N+1)×N



B =

 Σ1/2

O4(N+1)×(N+1)


C =

[
H0 · · · H4

]

When p ≥ 5, the state variable is instead defined as

st =


y∗tm − µ∗

...

y∗tm−p+1 − µ
∗


14



and A, B, C matrix are adjusted accordingly:

A =

Φ1 · · · Φp−1 Φp

I(p−1)(N+1) O(p−1)(N+1)×N



B =

 Σ1/2

O(p−1)(N+1)×(N+1)


C =

[
H0 · · · H4 0(N+1)×(p−5)(N+1)

]
The mixed-frequency VAR model is estimated by quasi-Newton method, which

requires good starting value when the model has so many parameters to estimate. So

it is suggested to use EM algorithm first to find a good starting value before implement

quasi-Newton method.

Mixed-frequency factor model is proposed by Mariano and Murasawa (2003) to

construct a new coincident index of business cycle as an extension of S-W coincident index.

Follow the same set up and notation as above, a dynamic one-factor is given byy1,tm

y2,tm

 =

µ1
µ2

+

β1(13ftm + 2
3ftm−1 + ftm−2 + 2

3ftm−3 + 1
3ftm−4)

β2ft



+

1
3u1,tm + 2

3u1,tm−1 + u1,tm−2 + 2
3u1,tm−3 + 1

3u1,tm−4

u2,tm

 (1.22)

And again we need to assume AR process for ftm and utm :

φf (L)ftm = v1,tm (1.23)

Φu(L)utm = v2,tm (1.24)

where

v1,tm
v2,tm

 ˜NID(0,

σ21 0

0 Σ22

), φf (L) and Φu(L) are of pth-order and qth-order poly-
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nomial respectively.

When p, q ≤ 4, define the state variable as

stm =



ftm

...

ftm−4

utm

...

utm−4


The state-space representation of the model could be given by

stm = Fstm−1 + Gvtm (1.25)

ytm = µ+ Hstm (1.26)
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where

F =



φf,1 · · · φf,p o′5−p

1 0 0 O5×5(N+1)

. . .
...

0 1 0

Φu,1 · · · Φu,q O(N+1)×(5−q)

IN 0 O(N+1)×(N+1)

O5(N+1)×5
. . .

...

0 IN O(N+1)×(N+1)



G =



1 o′N+1

0 o′N+1

...
...

oN+1 IN+1

oN+1 O(N+1)×(N+1)

...
...



H =

1
3β1

2
3β2 β3

2
3β4

1
3β5

1
3 O1×N

2
3 O1×N · · ·

β2 ON×4 ON×1 IN ON×(N+1) · · ·


where on is n× 1 zero vector and Om×n is the m× n zero matrix.

The estimation of mixed-frequency factor model is very similar to that of mixed-

frequency VAR except that the EM algorithm doesn’t apply in this case. The reason is

that there is no error term in the measurement equation so that the unknown parameters

in measurement could never get into the likelihood function.
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In this dissertation, I attempt to explore the monetary transmission mechanism

with an innovating empirical framework: mixed-frequency factor-augumented vector autore-

gressive model, which allows to include a large number of economic variable with different

frequencies. Extensions of the model are also provided: a stacked-vector system equips the

model with classic impulse response function analysis; Markov-switching feature is added

to the model to study the dynamics of unobservable states. The first chapter studies the

monetary transmission mechanism in the U.S. It proposes a mixed-frequency version of the

factor-augmented vector autoregressive regression (FAVAR) model, which is used to con-

struct a coincident index to measure the monetary transmission mechanism. The model

divides the transmission of changes in monetary policy to the economy into three stages

according to the timing and order of the impact. Indicators of each stage are measured

and identified using different data frequencies: fast-moving variables (stage 1, asset re-

turns at the weekly frequency), intermediate moving variables (stage 2, credit market data

at the monthly frequency), and slow-moving variables (stage 3, macroeconomic variables

at the quarterly frequency). The resulting coincident index exhibits leading signal for all

recessions in the sample period and provides implications on the dynamics of the mone-

tary transmission mechanism. The proposed coincident index also indicates that monetary

transmission mechanism is changing over time. The second chapter extends the analysis

to overall monetary policy that includes unconventional monetary policy. When the U.S.

federal fund rate hit the Zero Lower Bound in 2008, conventional monetary policy became

ineffective. Unconventional policies such as the Large-Scale Asset Purchase were then im-

plemented in order to conduct monetary policy. In this chapter I extend the FAVAR with

18



mixed frequency model to account for monetary transmission mechanism when not only

the federal fund rate is used as a monetary tool but also the Large-Scale Asset Purchase

program. The impact of unconventional monetary policy is captured by "shadow rate"

constructed using one month forward rates. This allows a more complete analysis of the

impact of monetary policy on the economy also during the more recent years since the 2008

financial crisis. The third chapter focus more on examing the lead-lag relationship between

channels in monetary transmission mechanism. As well studied in the literature, monetary

transmission mechanism has a number of channels through which the monetary policy can

affect the real economy. However, the speed of the transmission of the channel draws little

attention from researchers. This chapter proposes to disentangle the monetary transmission

mechanism into three channels according to transmission speed of the impact: fast-moving

channel that links the policy rates to asset returns in the financial market measured in high

frequency; medium-moving channel that links the policy rates to loan and credit data in

credit market measured in medium frequency; slow-moving channel that links the policy

rates to real macro economic variables measured in low frequency. A two-state markov-

switching mixed-frequency factor-augumented vector autoregressive model that allows each

channel to switch states individually is estimated to analyze lead-lag relationship between

different channels over time. This will shed light on how to track the impact of monetary

policy shocks in real time.
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Chapter 2

Quantifying the Monetary

Transmission Mechanism: A

Mixed-Frequency

Factor-Augmented VAR Approach

2.1 Introduction

Monetary transmission mechanism describes how monetary policy shock affects

real variables in the economy such as aggregate output and employment rate. As monetary

policy impacts many real variables in the economy in the short run, it is important for

policy makers to have an assessment of the timing and scale of such effects. This requires

understanding of the underlying connections between monetary policy and real variables.
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However, there exist many channels through which the monetary transmission mechanism

takes place, which makes it a more complex and yet enticing research question.

There is a growing literature, both theoretical and empirical, which aims to unveil

the underlying channels of the monetary transmission mechanism. Theoretically, the tra-

ditional view of monetary transmission mechanism is known as the interest rate channel,

in which investors adjust their assets according to changes in interest rate (Tobin 1969).

Another view of the monetary transmission mechanism is through the credit channel, re-

lated to the amplification effect of changes in interest rate on loan supply in credit markets

(Bernanke and Gertler 1989). The credit view is built on the assumption that the credit mar-

ket is imperfect because of government intervention, asymmetric information, and agency

problems. The credit channel can be further divided into two mechanisms: bank lending

channel and firm balance sheet channel. In the bank lending channel, banks play an impor-

tant and unique role as they are the only source of finance for certain borrowers who have

no access to the credit market, such as small firms. The balance sheet channel, on the other

hand, refers to the direct effect of interest rate changes on agents’ability to borrow due to

changes in asset value and profitability.

While the credit channels focus on the supply side of the credit market, there

are also the risk-taking channel, which is related to the demand side of the credit market.

Nicolo et al. (2010) discuss three different risk-taking channels through which expansionary

monetary policy could lead to risk-taking behavior. The first channel is that banks have

incentive to substitute low yield safe asset with high yield riskier asset. The second channel

is through a "search for yield," that is, low interest rate gives financial institutions with
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long-term commitment an incentive to switch to risky asset in order to attain a higher

probability of matching their promised yield. The last channel refers to the fact that banks

always tend to maintain a constant leverage ratio. The leverage ratio tends to drop with

monetary policy easing as risky asset weight falls, and this could lead banks to switch

towards risky assets.

Empirically, one stream of the literature focuses on providing evidence and testing

the theoretical models. A main identification obstacle these empirical studies face is the

diffi culty of distinguishing the impact of changes in monetary policy on the loan supply

from the impact on loan demand since both will be affected. The other stream employs

econometric models to measure the effects of monetary policy shocks on real economy

variables. For example, structural vector autoregressive models (SVAR) with a few plausible

identification restrictions could provide impulse response functions that describe the impact

of monetary policy shocks on specific variables. Most SVAR models include interest rate

and real macroeconomic variables only, which may be suffi cient to measure the impact

of monetary policy shocks, but provide little information on the monetary transmission

mechanism.

While there is a huge literature on the effects of monetary policy shocks, very

few attempts have been made to measure monetary transmission mechanism itself. One

strategy may be to consider the weighted measures of the several individual channels. This

could be diffi cult to implement empirically, though, since different channels arise from dif-

ferent economic models and assumptions, which makes it hard to determine the weight for

each measure in aggregate. Another strategy could be to include in one model intermediate
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variables through which the mechanism is transmitted. This is also challenging since the

monetary transmission mechanism has many channels, and there is an array of intermediate

variables to be included at different frequencies in the model. However, this can be accom-

plished with innovating empirical models, as implemented in this paper. We extend the

factor-augmented vector autoregressive regression (FAVAR) to a mixed-frequency version

to construct a high-frequency coincident index of monetary transmission mechanism in U.S.

We divide the monetary transmission mechanism in three stages according to the timing

and order of the effect. The first stage has the fast-moving variables such as asset return

measured with high frequency data. The second stage has medium-moving intermediate

variables that measure the credit market changes in medium-run frequency. The last stage

is the slow-moving real macro variables in low frequency. We propose a baseline model and

an alternative model that include many variables and yet reduce the number of parameters

to be estimated. The mixed-frequency FAVAR model is estimated with a two-stage maxi-

mum likelihood estimation process and yields as output a coincident index that measures

the monetary transmission mechanism in U.S.

There are three papers that are closely related to this paper. One is Bernanke,

Boivin and Eliasz (2005), who introduce the Factor-Augmented Vector Autoregressive Re-

gression (FAVAR) model. The main advantage of the FAVAR model is that it does not

require restrictions on the number of informational variables as the traditional VAR, and

still maintains the general framework of VAR analysis. Including large number of infor-

mational variables in the model minimizes the mismeasurement problem. Additionally, it

makes it closer to the situation faced by central bank or policy makers. Bernanke, Boivin
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and Eliasz (2005) apply the FAVAR model to 120 monthly U.S. macroeconomic and finan-

cial series. The effect of monetary policy shocks is measured by impulse response functions

of these variables. A second closely related paper is Mariano and Murasawa (2003), who

extent Stock and Watson monthly coincident index by including a variable at the quar-

terly frequency, real GDP. They proposed a mixed-frequency one-factor model by filling

the missing observations in quarterly data with random draws from standard normal dis-

tribution with zero mean. The resulting coincident index is an estimated latent monthly

real GDP. Mariano and Murasawa (2010) introduced a mixed-frequency VAR model and

a mixed-frequency dynamic K-factor model to estimate a new coincident index of monthly

real GDP. While maintaining the same mixed frequency methods in their 2003 paper, they

select the number of lags in the VAR model and the number of factors for the dynamic fac-

tor model according to model selection criteria, and the resulting coincident indices differ

substantially from their previous version.

This paper has three main contributions. First, as most literature on mixed-

frequency data have focused on data with two frequencies, we propose a mixed-frequency

version of FAVAR model that combines three different frequencies in the same model. Sec-

ond, the estimation of the proposed model is very time-consuming even with limited number

of variables and sample period. Therefore, we developed an alternative approach to largely

reduce the number of parameters and simplify the estimation of the original version of MF-

FAVAR model. Finally, we construct a high-frequency coincident index from the model,

which measures monetary transmission mechanism in U.S. and provides leading signal for

recessions.
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The mixed-frequency FAVAR model proposed in this paper is a combination of

the original FAVAR model and the mixed-frequency factor model. The proposed model not

only allows for a large number of indicators as in the standard FAVAR model, it is also

compatible with data from several different frequencies.

The model estimation is implemented using a similar two-step procedure as in stan-

dard FAVAR. For the baseline model, in the first step stage factors of different frequencies

are estimated individually using the mixed-frequency factor model. The second step uses

the estimated factors from step one on standard recursive VAR. However, the fact that the

baseline model has too many parameters makes the estimation very time-consuming. We,

therefore, propose an alternative method, which replaces some high-frequency data with

skip-sampled lower-frequency data in the first step. The second step is adjusted accord-

ingly to be the mixed-frequency VAR model. The resulting coincident index is the estimated

latent high-frequency common factor of federal fund rate and real macro variables.

The proposed coincident index of U.S. monetary transmission mechanism measures

the effectiveness of the impact of monetary policy on the economy. The dynamics of the

index depict the evolution of the U.S. monetary transmission mechanism over the last two

decades. There are two major peaks, in 2000 and 2007, indicating the large impact of

monetary transmission mechanism driven by rapid expansion of credit market as well as

financial innovations. The index also exhibits a clear pattern, in which it reaches local

peaks right before the recessions, and it declines during the recessions. This implies that

the effectiveness of monetary transmission mechanism could be lessen during recessions.

As far as we know, this is the first paper quantifying the monetary transmission
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mechanism, thus there are no other comparable indices available. We, thereby, use for

comparison, a simple time-varying parameter model to estimate the coeffi cient of the the

first difference of federal fund rate to growth rate of real GDP. The result is consistent with

the proposed coincident index.

The rest of the paper is structured as follows. Section two presents the proposed

mixed-frequency version of factor-augmented vector autoregressive regression model, the

alternative model and their corresponding two-stage ML estimation processes. Section three

applies the model to U.S. macroeconomic and financial data to construct the coincident

index of monetary transmission mechanism, and discuss the empirical results. Section four

concludes.

2.2 The model

2.2.1 The Baseline Model

Consider Yt to be a M × 1 vector of observable economic variables of interest that

is driving the economy. In our application, it has federal fund rate in weekly frequency only.

After a policy change, due to the nature of the existing economic structure, the impact will

go through the variables in a certain order. In the context of monetary policy change, we

consider two possible scenarios to track the shockwaves. The first scenario simply follows the

classic interest rate channel and bank-lending channel of monetary transmission mechanism

in the literature. An increase in interest rate leads to a drop in the amount of credit

available to firms and consumers (loan supply), leading to a decrease in investment by firms

and consumption by consumers. In the second scenario, we consider balance sheet channel
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and risk-taking channel in a expectation perspective, as interest rate rises, the amount

of credit available to firms and consumers are expected to drop, causing a drop in firms’

profitability which is shown in the balance sheet. The asset price and value in financial

markets will drop resulting firms and consumers adjust the investment and consumption

accordingly. The main difference between the scenarios described above, is the timing (or

spreading speed) of the real effect of one monetary policy change. This is not a problem

in the standard VAR or FAVAR model since the variables are of the same frequency and

the time length for one period is implicitly determined by the frequency of the data. The

common assumption in the literature that the variables are not contemporaneously affected

by monetary policy shock also implies that the spreading speed is the same for all variables,

which may not be a plausible assumption when the frequency of the data is too low.

The solution we propose in this paper is that we measure different variables in

different frequency. More specifically, in the context of monetary transmission mechanism,

the transmission mechanism is divided into three stages: stage 1 of fast-moving variables

such as asset returns are measured in high frequency; stage 2 of medium-moving variables

in credit market are measured in medium frequency; stage 3 of real macro variables are

considered slow-moving variables measured in low frequency. We extend the standard factor-

augmented vector autoregressive regression (FAVAR) model to a mixed-frequency version

by assuming three unobservable factors f1,t, f2,t and f3,t of low, medium and high frequency

respectively that summarize the information of different stages in monetary transmission
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mechanism. Formally, a three-stage mixed-frequency FAVAR model is given by

f1,t

f2,t

f3,t

yt


= φ(L)



f1,t−1

f2,t−1

f3,t−1

yt


+ vt (2.1)

where φ(L) is a lag polynomial of order d and vt˜NID(0, Q). Note that the factors are

ordered from low to high frequency and federal fund rate is placed at the bottom as in

standard literature.

The unobservable factors are interpreted as the indicators of different stages in

monetary transmission mechanism, which are extracted from various related informational

economic variables. Let X1,t, X2,t, X3,t be N1 × T1, N2 × T2, N3 × T3 informational data

we observe at low, medium and high frequency respectively with Ni being the number of

variables and Ti the number of observations i = 1, 2, 3. The time length of one period in

the model is set to be consistent with that of the highest frequency data, namely X3,t.

Therefore, X3,t is observed every period, while X2,t and X1,t is observed every n and m

period where m > n > 1. In the case of X3,t being weekly data, X2,t being monthly data

and X1,t being quarterly data, we can set m = 12 and n = 4.

Following Mariano and Murasawa (2003), let X∗1,t and X∗2,t be the underlying

latent variable in highest frequency such that the observed variable is equal to the geometric

average of the last three periods’latent variable. Formally,

lnx1,t =
1

3
(lnx∗1,t + lnx∗1,t−1 + lnx∗1,t−2)

lnx2,t =
1

3
(lnx∗2,t + lnx∗2,t−1 + lnx∗2,t−2)
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Let y1,t = ∆12 lnx1,t, y∗1,t = ∆ lnx∗1,t, y2,t = ∆4 lnx2,t, y∗2,t = ∆ lnx∗2,t and y3,t =

∆ lnx3,t. We have

y1,t =
1

3
y∗1,t +

2

3
y∗1,t−1 + y∗1,t−2 + ...+ y∗1,t−11 +

2

3
y∗1,t−12 +

1

3
y∗1,t−13 (2.2)

y2,t =
1

3
y∗2,t +

2

3
y∗2,t−1 + y∗2,t−2 + y∗2,t−3 +

2

3
y∗2,t−4 +

1

3
y∗2,t−5 (2.3)

Let

y1,t =

y1,t
yt



y∗1,t =

y∗1,t
yt


Define µi = E(yi,t), i = 1, 2, µy = E(yt) and

µi =

µi
µy



µ∗i =

µ∗i
µy


Then relationship between y1,t and y∗1,t could be written as

y1,t − µ1 = J1(L)(y∗1,t − µ∗1) (2.4)

where

J1(L) =

1
3IN1 O

O 1

+

2
3IN1 O

O O

L+

IN1 O

O O

L2 + ...

+

IN1 O

O O

L11 +

2
3IN1 O

O O

L12 +

1
3IN1 O

O O

L13
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Similarly, for y2,t and y∗2,t

y2,t − µ2 = J2(L)(y∗2,t − µ∗2) (2.5)

where

J2(L) =

1
3IN1 O

O 1

+

2
3IN1 O

O O

L+

IN1 O

O O

L2 +

+

IN1 O

O O

L3 +

2
3IN1 O

O O

L4 +

1
3IN1 O

O O

L5

For each stage, we extract the common factor between monetary policy and in-

formational variables in the stage, which is interpreted as linkage between monetary policy

and economic variables of corresponding stage. For stage 2 and stage 3, the factor is related

to informational data using a mixed-frequency dynamic factor model because of frequency

difference. In stage 1, we maintain the factor model as in standard FAVAR:y1,t
yt

 =

µ1
µy

+

β11(13f1,t + 2
3f1,t−1 +

∑11
j=2 f1,t−j + 2

3f1,t−12 + 1
3f1,t−13)

β12f1,t



+

1
3e1,t + 2

3e1,t−1 +
∑11

j=2 e1,t−j + 2
3e1,t−12 + 1

3e1,t−13

et

 (2.6)

y2,t
yt

 =

µ2
µy

+

β21(13f2,t + 2
3f2,t−1 + f2,t−2 + f2,t−3 + 2

3f2,t−4 + 1
3f2,t−5)

β22f2,t



+

1
3e2,t + 2

3e2,t−1 + e2,t−2 + e2,t−3 + 2
3e2,t−4 + 1

3e2,t−5)

et

 (2.7)

y3,t = Λ3f3,t + Λyi yt + e3,t (2.8)
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where βij are corresponding factor loading vectors, βi = (β′i1, β
′
i2)
′, i = 1, 2; Λ3 is N3 ×K

factor loading matrix; e3,t is N3 × 1 error term vectors.

2.2.2 Estimation

The model could be estimated using a similar two-step procedure as in standard

FAVAR literature. The first step is to estimate factors f̂i, i = 1, 2, 3 individually. To

estimate (2.6), first we need to assume AR process for f1,t and e1,t:

φf1(L)f1,t = v1,t (2.9)

Φe
1(L)e1,t = v2,t (2.10)v1,t

v2,t

 ˜NID(0,

σ21 0

0 Σ22

)

where φf1(L) is a lag operation polynomial of p1th-order and Φe
1(L) is a lag operation

polynomial of q1th order. The variance-covariance matrix is assumed to be diagonal with the

first element equals 1, which is a standard identification strategy in factor model literature.

Define the state vector to be

s1,t =



f1,t

...

f1,t−13

u1,t

...

u1,t−13


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where u1,t = (e′1,t, e
′
t)
′. The state-space representation when p1, q1 ≤ 14 could be written as

s1,t = F1s1,t−1 + G1z1,t (2.11)

y1,t = µ1 + H1st (2.12)

{z1,t}˜IN(0, IN1+1)

where

F1 =



φf1(1) · · ·φf1(p1) o′14−p1 O14×14(N1+1)

I13 o13

Φe
1(1) · · ·Φe

1(q1) O(N1+1)×(14−q1)(N1+1)

O14(N1+1)×14 I13(N1+1) O13(N1+1)×(N1+1)



G1 =



σ1 o(N1+1)

o13 O13×(N1+1)

o(N1+1) Σ
1/2
22

o13(N1+1) O13(N1+1)×(N1+1)


H1 =

[
J1(0)β1 · · · J1(13)β1 J1(0) · · · J1(13)

]

Similarly, we can write the state-space representation of (2.7) when p2, q2 ≤ 6 as

s2,t = F2s2,t−1 + G2z2,t (2.13)

y2,t = µ2 + H2st (2.14)

{z2,t}˜IN(0, IN2+1)
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where

s2,t =



f2,t

...

f2,t−5

u2,t

...

u2,t−5



F2 =



φf2(1) · · ·φf2(p2) o′6−p2 O6×6(N2+1)

I5 o5

Φe
2(1) · · ·Φe

2(q2) O(N2+1)×(6−q2)(N2+1)

O6(N1+1)×6 I5(N2+1) O5(N2+1)×(N2+1)



G2 =



σ2 o(N2+1)

o5 O5×(N2+1)

o(N2+1) Σ
1/2
22

o5(N2+1) O5(N2+1)×(N2+1)


H2 =

[
J2(0)β2 · · · J2(5)β2 J2(0) · · · J2(5)

]

The above two models could be estimated using the standard method to get the

estimated factors f̂1,t and f̂2,t. For (2.8), f̂3,t could be estimated using principal component

method as in standard FAVAR model.

Note that the estimates of the factors are all of the highest frequency, the second

step could just follow the standard FAVAR model to estimate (2.1) under the recursive VAR

environment.
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2.2.3 The Alternative Model

One disadvantage of the baseline model is that the time of estimation is too long

as we can observe the number of parameters in (2.6) is too large. In our application, we

used an alternative model that could greatly reduce the number of lags and coeffi cients to

simplify the estimation.

The alternative model replace the high-frequency series yt in (2.6) with medium-

frequency series ymt which is skip-sampled from yt. Accordingly, we have to make following

adjustments.

Let ym1,t = ∆3 lnx1,t, we have

ym1,t =
1

3
y∗1,t +

2

3
y∗1,t−1 + y∗1,t−2 +

2

3
y∗1,t−3 +

1

3
y∗1,t−4 (2.15)

Define µm1 = E(ym1,t), µ
m
y = E(ymt ) and

µm1 =

µm1
µmy


Thus the relationship between ym1,t and y

∗
1,t is given by

ym1,t − µm1 = J1(L)(y∗1,t − µ∗1)
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where

ym1,t =

ym1,t
ymt



Jm1 (L) =

13I1 O

O 1

+

23I1 O

O O

L+

I1 O

O O

L2

+

23I1 O

O O

L3 +

13I1 O

O O

L4
The alternative model is given byym1,t
ymt

 =

µm1
µmy

+

β11(13f1,t + 2
3f1,t−1 + f1,t−2 + 2

3f1,t−3 + 1
3f1,t−4)

β12f1,t



+

1
3e1,t + 2

3e1,t−1 + e1,t−2 + 2
3e1,t−3 + 1

3e1,t−4

emt

 (2.16)

The state-space representation when p1, q1 ≤ 5 is given by

sm1,t = Fm
1 sm1,t−1 + Gm

1 z1,t (2.17)

ym1,t = µm1 + Hm
1 smt (2.18)

{z1,t}˜IN(0, IN1+1)
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where

sm1,t =



f1,t

...

f1,t−4

u1,t

...

u1,t−4



Fm
1 =



φf1(1) · · ·φf1(p1) o′5−p1 O5×5(N1+1)

I4 o4

Φe
1(1) · · ·Φe

1(q1) O(N1+1)×(5−q1)(N1+1)

O5(N1+1)×5 I4(N1+1) O4(N1+1)×(N1+1)



Gm
1 =



σ1 o(N1+1)

o4 O4×(N1+1)

o(N1+1) Σ
1/2
22

o4(N1+1) O4(N1+1)×(N1+1)


Hm
1 =

[
Jm1 (0)β1 · · · Jm1 (4)β1 Jm1 (0) · · · Jm1 (4)

]

Note that in the alternative model, the estimated factor f̂1,t is in medium frequency,

which make the standard VAR in second step no longer applicable. Instead, we adopt

mixed-frequency VAR in the second step. Recall (2.1) with the estimated factors plugged
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in: 

f̂1,t

f̂2,t

f̂3,t

yt


= φ(L)



f̂1,t−1

f̂2,t−1

f̂3,t−1

yt


+ vt (2.19)

Let yf1,t = ∆4 ln f̂1,t and y
f∗
1,t = ∆ ln f̂∗1,t, where f̂

∗
1,t is the weekly latent variable of

f̂1,t and y
f
2,t = ∆ ln


f̂2,t

f̂3,t

yt

. Then we have

yf1,t =
1

3
yf∗1,t +

2

3
yf∗1,t−1 + yf∗1,t−2 + yf∗1,t−3 +

2

3
yf∗1,t−4 +

1

3
yf∗1,t−5 (2.20)

Let

yt =

y
f
1,t

yf2,t



y∗t =

y
f∗
1,t

yf2,t


Define µ = E(yt), µ∗ = E(y∗t )the relationship between yt and y∗t is given by

yt − µ = J(L)(y∗t − µ∗) (2.21)

where

J(L) =

1
3IN1 O

O 1

+

2
3IN1 O

O O

L+

IN1 O

O O

L2 +

+

IN1 O

O O

L3 +

2
3IN1 O

O O

L4 +

1
3IN1 O

O O

L5
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Assume y∗t follows Gaussian VAR(p)

φ(L)(y∗t − µ∗) = wt,wt˜IN(0,Σ) (2.22)

Let the state variable be

st =


y∗t − µ∗

...

y∗t−5 − µ∗


The state-space representation when p ≤ 6 is given by

st+1 = Ast + Bzt (2.23)

yt = µ+ Cst (2.24)

{zt}˜IN(0, IK+3)

where

A =

φ1 · · · φp O(K+3)×(6−p)(K+3)

I5(K+3) O5(K+3)×(K+2)



B =

 Σ1/2

O5(K+3)×(K+3)


C =

[
J(0) · · · J(5)

]
For all the mixed-frequency models above, the lower frequency series are not always

observable. Follow Mariano and Murasawa (2003), we replace the missing observations

with random variable εt˜N(0, 1) which has a realization of 0 and adjust the rest of the

measurement equation accordingly. For example, the measurement equation (2.24) can be

written as
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y
f
1,t

yf2,t

 =

µ(1)

µ(2)

+

C(1)

C(2)

 st (2.25)

With the missing values replaced, the measurement equation becomes

y+t = µt + Ctst + Dtεt (2.26)

where

y+t =

y
f+
1,t

yf2,t

 ,µt =

µt(1)

µt(2)



Ct =

Ct(1)

Ct(2)

 ,Dt =

Dt(1)

O



yf+1,t = {
yf1,t if yt observed

εt if yt not observed

,µt(1) = {
µ(1) if yt observed

0 if yt not observed

Ct(1) = {
C(1) if observed

O if not observed

,Dt(1) = {
D(1) if observed

1 if not observed

The state-space representation with missing values replaced is given by

st+1 = Ast + Bzt (2.27)

y+t = µt + Ctst + Dtεt (2.28)


zt

εt


 ˜IN(0, IK+4)

Now that
{
y+t
}
has no missing values, the Kalman filter can apply directly.
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2.3 Application

2.3.1 Data

We apply the mixed-frequency FAVAR model to US economy data to construct a

measurement of monetary transmission mechanism. The series we use are of three frequen-

cies sampled from July 1987 to December 2015. Quarterly indicators are "slow-moving"

variables that measure the real economy activities. Monthly indicators are chosen to be

variables that reflects the loan and credit change in financial intermediates. Weekly indi-

cators are mostly "fast-moving" return rates that reflects the financial market movement.

Note that for each month we may have either four or five weekly observations, we made

the following adjustment for months of the latter case. Let {xt, ...xt+4} be the five weekly

observations in a month. The adjusted observations are given by

{1

2
(xt + xt+1),

1

2
(xt+1 + xt+2),

1

2
(xt+2 + xt+3),

1

2
(xt+3 + xt+4)}

Since weekly indicators are return rates in level, the average of adjacent observations could

be considered as pseudo observation over the this time period. This will guarantee us four

weekly observations every month.

All the series are selected based on three criterion: whether the movement speed

of variable matches its frequency of being observed; whether the variable fits in the poten-

tial process of monetary transmission mechanism; whether the variable is available within

the sample period. Since the estimation is very time-consuming, we carefully restrict our

number of variables and time window within an acceptable range. Table 1 summarizes the

detailed descriptions of the series. "SA" stands for "seasonally adjusted", "NSA" stands
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for "not seasonally adjusted" and "AR" stands for "annual rate". All data are directly

downloaded from FRED, except Divisia M4 is provided by Center for Financial Stability.

Table 2 summarizes the descriptive statistics of the standardize indicators. The

transformation codes are: 1 — no transformation; 2 —first difference; 5 —first difference

of logarithm. Since some of the series experienced structural break for regulation reasons,

we adopted 1% winsorization to maintain stationarity. As mentioned above, we use the

alternative model in our application. The monthly federal fund rate are skip-sampled from

original weekly series.

2.3.2 Estimated Results

The number of lags for AR process are determined using information criterion AIC

and SBIC same in Mariano and Murasawa (2003):

AIC = − 1

T
{lnL(θ̂)− [(N − 1) + p+ 1 +N(q + 1)]} (2.29)

SBIA = − 1

T
{lnL(θ̂)− lnT

2
[(N − 1) + p+ 1 +N(q + 1)]} (2.30)

The selected model are (p1, q1) = (2, 1), (p2, q2) = (1, 1) and p = 1. The number

of factors are in the principal component is chosen to be K = 2.

We followed the standard literature to have the series demeaned so all the constant

terms in the models are deleted. Using Ox 7.10 and code modified from Mariano and

Murasawa (2003, 2010), the approximate ML estimator could be estimated using quasi-

Newton method. Table 3 and 4 summarized the estimated result of the mixed-frequency

factor model in the first step.

41



The estimated factors from quarterly indicators and monthly indicators are shown

in Figure 1 and 4 respectively. We can observe that factor estimated from quarterly indi-

cators is more active during the recession while factor estimated from monthly indicator

is more active prior to the recession. This is consistent with our assumption that credit

market variables in stage 2 react faster to monetary policy change than real macro variables

in stage 3. We can construct the coincident index at this stage by taking the partial sum for

each series, shown in Figure 2 and 5. With the shaded area being NBER recession dates,

we can see the quarterly index has significant leading signal on the recessions in 2001 and

2007. Monthly index, on the other hand has a spike during the 2009 recession. Figure 3

and 6 are smoothed coincident indices from Figure 2 and 5. Figure 7 and 8 show the first

two principal components of weekly indicators. Both principal components have greater

deviation from average during the recession periods.

The having all the estimated factors plugged in, the monetary linkage factor is

estimated in the second stage, which is the weekly latent factor estimated from quarterly

indicators, shown in figure 9. Again by taking the partial sum, the constructed coincident

index is shown in figure 10. The coincident index is meant to capture the common factor

component of real economy variables and federal fund rate in weekly frequency. The index

exhibits clear leading signal for all the recessions in our sample period. Note that at the

end of 2007 recession, the index is almost flat by the fact that the effective federal fund rate

was approaching the Zero Lower Bound. Figure 11 is the smoothed verion of Figure 10 to

show the trend in a neat way.

To our best knowledge, there is no other coincident index that we know of that
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we can compare our coincident index with. Therefore, we run a simple exercise following

time-varing-parameter model by Kim and Nelson (1989). Consider the following model

d log(GDPt) = β0,t + β1,tdffr + β2,td log(GDPt−1) + et (2.31)

βi,t = βi,t−1 + vi,t, i = 0, 1, 2 (2.32)
et
vt


 ˜IN(0,Σ)

where d log(GDPt) denotes the growth rate of real GDP and dffr is the first difference of

effective federal fund rate. All the data are of quarterly frequency. The estimated time-

varying parameter of our interest β1,t is shown in figure 12. The coeffi cient of federal

fund rate appear to deviate more from period average during the recessions. Although this

model is simple and far from being complete and correct, it shows some strange behavior of

monetary transmission mechanism during the recessions which is consistent with our result

to some degree.

2.3.3 Policy Implications

There are two implications from our coincident index that we could think of.

Firstly, our index supports the view that the monetary transmission mechanism has been

changing over time. Over the last two decades, the way in which financial market operates,

monetary policy implements and information being processed has experienced significant

revolutions. The two major peaks in our index around 1999 and 2007 could be explained

by the rapid expansion of financial markets as the fluctuations before 1995 are too small

to be comparable. The index stays low after 2008, implying that some major traditional
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channels of monetary transmission mechanism have been shutting down when the effective

federal fund rate stays around Zero Lower Bound. Secondly, the clear pattern that the

index reaches local peaks before the recessions and declines during the recessions shows

that during the recession the monetary transmission mechanism may not function well as

they do in normal times. Various reasons could provide intuition for that: the spread of

panic sentiment; overconservative behavior of financial intermediates for example.

In conclusion, the coincident index we construct measures the linkage between

federal fund rate and real economy variables in weekly frequency. The most significant

feature is that our coincident index provides some leading signal for the recessions in our

sample period. Such index could be considered as a measure of monetary transmission

mechanism for policy makers.

2.4 Conclusion

This paper studies the monetary transmission mechanism in the U.S. It proposes a

mixed-frequency version of the factor-augmented vector autoregressive regression (FAVAR)

model, which is used to construct a coincident index to measure the monetary transmission

mechanism. The model divides the transmission of changes in monetary policy to the

economy into three stages according to the timing and order of the impact. Indicators

of each stage are measured and identified using different data frequencies: fast-moving

variables (stage 1, asset returns at the weekly frequency), intermediate moving variables

(stage 2, credit market data at the monthly frequency), and slow-moving variables (stage

3, macroeconomic variables at the quarterly frequency). The resulting coincident index
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exhibits leading signal for all recessions in the sample period and provides implications on

the dynamics of the monetary transmission mechanism. The proposed coincident index also

indicates that monetary transmission mechanism is changing over time.
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2.5 Tables and Figures

Table 2.1: US MonetaryTtransmission Mechanism Indicators

Indicator Description
Quarterly

outbs Business Sector: Real Output (2009=100,SA)
outmdgs Manufacturing Durable Goods Sector: Real Output (2009=100,SA)
outms Manufacturing Sector: Real Output (2009=100,SA)
outnfb Nonfarm Business Sector: Real Output (2009=100,SA)
pcec Personal Consumption Expenditures (SAAR)
pcdg Personal Consumption Expenditures: Durable Goods (SAAR)
pcend Personal Consumption Expenditures: Nondurable Goods (SAAR)
pcesv Personal Consumption Expenditures: Services ( BIL 09$, SAAR)
gdpc Real Gross Domestic Product (BIL 09$, SAAR)

Monthly
busloans Commercial and Industrial Loans, All Commercial Banks (BIL$, SA)
consumer Consumer Loans at All Commercial Banks (BIL$, SA)

iblacbm027sbog Interbank Loans, All Commercial Banks (BIL$, SA)
invest Securities in Bank Credit at All Commercial Banks (BIL$, SA)

lcbacbm027sbog Loans to Commercial Banks , All Commercial Banks (BIL$, SA)
loaninv Bank Credit at All Commercial Banks (BIL$, SA)
loans Loans and Leases in Bank Credit, All Commercial Banks (BIL$, SA)
dm4 CFS Divisia M4 (PERCENTAGE GROWTH RATE)

ollacbm027sbog Other Loans and Leases, All Commercial Banks (BIL$, SA)
olracbm027sbog Other Loans and Leases: Fed Funds and Reverse RPs with Nonbanks

All Commercial Banks (BIL$, SA)
realln Real Estate Loans, All Commercial Banks (BIL$, SA)

Weekly
wgs10yr 10-Year Treasury Constant Maturity Rate (PERCENT, NSA)
wgs5yr 5-Year Treasury Constant Maturity Rate (PERCENT, NSA)
wgs1yr 1-Year Treasury Constant Maturity Rate (PERCENT, NSA)
wgs6mo 6-Month Treasury Constant Maturity Rate (PERCENT, NSA)
wgs3mo 3-Month Treasury Constant Maturity Rate (PERCENT, NSA)
waaa Moody’s Seasoned Aaa Corporate Bond Yield (PERCENT, NSA)
wbaa Moody’s Seasoned Baa Corporate Bond Yield (PERCENT, NSA)
ff Effective Federal Funds Rate (PERCENT, NSA)
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Table 2.2: Descriptive Statistics for Standarized Indicators

Indicator Transformation Code Mean Std. Dev. Max. Min.
Quarterly

outbs 5 0.006945 0.007965 0.021729 -0.029583
outmdgs 5 l 0.006356 0.023152 l 0.048905 -0.121451
outms 5 0.005168 0.018717 0.044756 -0.101291
outnfb 5 0.006943 0.008171 0.022858 -0.031514
pcec 5 0.012201 0.006499 0.025373 -0.026552
pcdg 5 0.009660 0.021472 0.075043 -0.082049
pcend 5 0.010427 0.013082 0.032440 -0.077902
pcesv 5 0.013379 0.005305 0.027369 -0.005832
gdpc 5 0.006228 0.006114 0.018709 -0.021352

Monthly
busloans 5 0.003694 0.008671 0.035458 -0.029041
consumer 5 0.004061 0.016825 0.270704 -0.028779

iblacbm027sbog 5 -0.002961 0.049922 0.233067 -0.286793
invest 5 0.005275 0.008864 0.053845 -0.027328

lcbacbm027sbog 5 -0.004149 0.107698 0.327584 -1.204621
loaninv 5 0.004946 0.005151 0.037096 -0.011758
loans 5 0.004835 0.006042 0.046561 -0.016713
dm4 1 0.003669 0.004590 0.022875 -0.017254

ollacbm027sbog 5 0.005503 0.017676 0.065324 -0.075375
olracbm027sbog 5 0.007354 0.054965 0.242955 -0.169333

realln 5 0.005720 0.006732 0.046481 -0.015771
Weekly

wgs10yr 2 5.190195 2.079093 10.11000 1.470000
wgs5yr 2 4.638075 2.369535 9.730000 0.590000
wgs1yr 2 3.675740 2.643454 9.780000 0.090000
wgs6mo 2 3.530155 2.631128 9.620000 0.030000
wgs3mo 2 3.380424 2.585795 9.370000 0.000000
waaa 2 6.544966 1.754359 10.73000 3.260000
wbaa 2 7.513075 1.727848 11.78000 4.360000
ff 1 3.580639 2.737047 9.950000 0.050000

50



Table 2.3: Estimation Result of Quarterly Indicators

Indicators β1 φf1(1) φf1(2) σ21 Φe
1 Σ22

∆ ln pcdg 0.29229 -0.83038 1.117
∆ ln pcend 0.54445 -0.75218 0.70763
∆ ln pcesv 0.31338 -0.59187 0.81089
∆ ln gdpc 0.88695 -0.54397 0.011948
∆ ln outbs 0.87986 -0.53364 0.23524 1 -0.60101 0*
∆ ln outms 0.28227 0.7742 0.040229
∆ ln outnfb 0.87501 -0.74225 0.016328

∆ ln pcec 0.59798 -0.72114 0.67104
∆ ln outmdgs 0.314 0.65882 0.061898

∆ ln ffm 0.0013241 0.99704 0.010551

Table 2.4: Estimation Result of Monthly Indicators

Indicators β2 φf2 σ21 Φe
2 Σ22

∆ ln busloans 0.41631 0.80942 0.018899
∆ ln cons 0.48247 0.58234 0.061351
∆ ln iblac 0.14838 -0.64904 0.79852

∆ ln invest 0.07205 -0.69312 0.83323
∆ ln lcbac -0.017592 -0.44282 0.63923

∆ ln loaninv 0.93497 -0.99857 1 -0.99859 0*
∆ ln loans 1.0237 -0.99915 0.021859
∆ ln ollac 0.62066 -0.17756 0.28383
∆ ln olrac 0.39323 -0.70792 0.766
∆ ln real 0.75587 0.6312 0.036107
∆ lnm4 -0.017237 -0.54596 0.63936
∆ ln ff 0.00033159 0.99906 0.0028935
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Figure 2.1: Estimated factor from quarterly indicators.

Figure 2.2: Coincident index constructed using quarterly indicator factor.
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Figure 2.3: Smoothed coincident index constructed using quarterly indicator factor.

Figure 2.4: Estimated factor from monthly indicators.
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Figure 2.5: Coincident index constructed using the monthly indicator factor.

Figure 2.6: Smoothed coincident index constructed using the monthly indicator factor.
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Figure 2.7: First principal component of weekly indicators.

Figure 2.8: Second principal component of weekly indicators.
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Figure 2.9: Estimated factor of monetary linkage.

Figure 2.10: Coincident index constructed using estimated monetary linkage factor.
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Figure 2.11: Smoothed coincident index constructed using estimated monetary linkage
factor.

Figure 2.12: Estimated time-varing coeffi cient of monetary policy tool.
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Chapter 3

Disentangling Monetary

Transmission Mechanism at Zero

Lower Bound

3.1 Introduction

Federal fund rate has been considered as the primary monetary policy instrument

until December 2008 when it became close to zero. Unconventional monetary policy such

as large-scale asset purchases was then introduced to serve as an alternative of conventional

monetary policy. Therefore, understanding the transmission mechanism of unconventional

monetary policy becomes crucial to the policy makers. As there exist many channels in the

transmission mechanism of conventional monetary policy, the transmission mechanism of

unconventional monetary policy is also not simple.
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Unconventional monetary policy takes a variety of forms in reality. One of the

most common form of it is central bank purchasing massive government bond, resulting an

expansion of central bank’s balance sheet. The central bank holding more assets means the

economy getting more liquidity. One typical example is quantitative easing program (QE)

implemented by Federal Reserve since 2008 financial crisis. Another form of unconventional

monetary policy is referred as "Operation Twist", which is implemented by central bank

selling short-term government bond and purchasing long-term government bond at equal

amount. In this case the balance sheet of central bank remains unchanged, while this will

lead to a compression in the difference between short-term and long-term interest rates.

There are two major channels of the transmission mechanism of unconventional

monetary policy summarized in the literature. How these two channels work in the context

of Bank of England purchasing gilts is well explained by Miles (2011, 2012). The first

channel is portfolio substitution channel. It starts with central banking purchasing long-

term assets from the market. The investors who sell long-term assets to the central bank

get a relatively short-term asset, bank deposits, in return, which will largely reduce the

duration of their original portfolio. Therefore, most investors would like to purchase some

other relatively long-term assets, such as corporate bond, to rebalance the duration of assets

in their portfolio. An increase in supply side of corporate bond market leads to a rise in

the asset prices and a decline in bond yield. This will create a rather friendly environment

for the firms to get financed in the credit market, leading to an increase in investment of

firms, consumption of consumers.

The second channel is bank funding channel. When central bank purchase long-
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term asset from the market, for a typical individual band its bank deposits and reserve

balance are likely to rise. This will lead to an expand in the bank loan to firms and

therefore increase investment in of firms and consumption of consumers.

In the literature, numbers of studies have been focusing on how unconventional

monetary policy affects the yield curve or yields on assets of different maturities. For

instance, Hamilton and Wu (2012) adopted a model of risk-averse arbitrageurs to describe

the relationship between debt hold by public and level, slope and curvature of yield curve;

Wright (2012) used a structural VAR model and found stimulative monetary shocks lower

bond yields, but such impacts are not very persistent. The introduction of shadow interest

rate model allow the researchers to analyze the overall impact of unconventional monetary

policy on the economy. Wu and Xia (2015) proposed a analytical representation of bond

price in the original shadow rate term structure model (SRTSM) and use it in a factor-

augumented vector autoregressive (FAVAR) model to extend the previous literature to the

period during Zero Lower Bound period. Lomvardi and Zhu (2015) included a large number

of monetary policy indicators in a dynamic factor model and constructed a more data-driven

version of shadow rate.

While there are a lot of studies focusing on the measuring the impact of unconven-

tional monetary policy on the macro economic variables, very few attempts have been made

to the measure the transmission mechanism itself. Plugging shadow interest rate in into

standard structure VAR or FAVAR model may be suffi cient to measure the impact of mon-

etary policy shocks. However, as these model generally only include real macro economic

variables and policy rate only, information on the underlying transmission mechanism is
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very limited. In contrast, analysis of the transmission mechanism of unconventional mon-

etary policy generally requires to include a large array of intermediate variables measured

in different frequency in one model.

In this paper, I incorporate the mixed-frequency factor-augumented vector au-

toregressive model with shadow rate term structure model and construct a set of coincident

indices that measures the overall monetary transmission mechanism as well as individual

channels in the mechanism. I propose to disentangle the monetary transmission mechanism

into three channels according to transmission speed of the impact: fast-moving channel

that links the policy rates to asset returns in the financial market measured in high fre-

quency; medium-moving channel that links the policy rates to loan and credit data in credit

market measured in medium frequency; slow-moving channel that links the policy rates to

real macro economic variables measured in low frequency. In the model I reestimate the

shadow rate term structure model in a higher frequency and plug the result into a extended

version of fixed-frequency factor-augument vector autoregressive model that yields as result

not only a coincident index that measures the overall monetary transmission mechanism

but also a map of impulse response functions that depicts the transmission process through

different channels.

The proposed empirical model is a combination of several models in the existing

literature. Factor-augumented vector autoregressive model by Bernanke, Boivin and Eliasz

(2005) allows the model for large number of variables while maintain the general framework

of VAR analysis. Mixed-frequency dynamic factor model and mixed-frequency VAR model

by Mariano and Murasawa(2003, 2010) are featured with a assumption on the dynamic
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of the latent variable of low-frequency indicator and result in a high-frequency estimate

of low-frequency indicator. Mixed-frequency (stacked) VAR by Ghysels (2016) adopts a

stacked vector system and incorporates the standard impulse response function analysis

into a mixed-frequency context.

The mixed-frequency factor autoregressive regression model is estimated in similar

two-step procedure as in standard FAVAR model. In the first step, coincident indices of

each channel are estimated using mixed-frequency dynamic factor model individually. The

estimation in second step takes two forms, both include the policy rate as well as the coindent

indices from the first stage. The first form is mixed-frequency vector autoregressive model

that results in a high-frequency estimate of the low-frequency index that measures the

overall monetary transmission mechanism in U.S. The second form takes a stacked vector

autoregressive model that produce a map of impulse response functions of the indices of

different channels to shocks in policy rates.

The rest of the paper is structured as follows. Section two presents the empirical

model we use: shadow rate term structure model used to construct the high-frequency

shadow rates, mixed-frequency factor-augmented vector autoregressive regression model and

the corresponding two-stage ML estimation processes. Section three applies the model to

U.S. macroeconomic and financial data to construct the coincident index of overall monetary

transmission mechanism and obtain the impulse response functions of the indices of different

channels to shocks in policy rates. Section four concludes.
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3.2 The Model

3.2.1 The Shadow Rate Term Structure Model

In order to consider unconventional monetary policy during the Zero Lowere Bound

period, I need to construct shadow interest rate as policy rate that measures the overall

monetary policy. I choose to follow Wu and Xia (2015) shadow rate term structure model

for the reason that the model could be reestimated so that resulting shadow rate can have

higher frequency.

Following the standard Shadow Rate Term Structure Model, assume nominal

short-run interest rate rt is equal to shadow rate st when shadow rate is above the lower

bound r
¯
and nominal short-run interest rate is set to stay at its lower bound when shadow

rate is below the lower bound. Formally,

rt = max(r
¯
, st)

The shadow rate st is assumed to be a function of some state variable Xt, which

follows a AR(1) process:

st = δ0 + δ′1Xt

where

Xt+1 = µ+ ρXt + Σεt+1

εt+1˜N(0, I)

At time t, the forward rate of a loan starting at t+n and maturing at t+n+1 is
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defined as

fn,n+1,t = (n+ 1)yn+1,t − nyn,t

where yn+1,t and yn,t are yields on risk-free pure discount bonds at n + 1 and n period

respectively.

Wu and Xia (2015) proposed the following analytical approximation for the forward

rate in the shadow rate term structure model:

fSRTSMn,n+1,1 = r
¯

+ σQn g(
an + b′nXt − r¯

σQn
)

where

(σQn )2 = varQt (st+n)

ān = δ0 + δ′1(
n−1∑
j=0

(ρQ)j)µQ

an = ān −
1

2
δ′1(

n−1∑
j=0

(ρQ)j)ΣΣ′(
n−1∑
j=0

(ρQ)j)′δ1

b′n = δ′1(ρ
Q)n

The state space representation of forward rate in shadow rate term structure model

is straight forward. The measurement equation is

fon,n+1,1 = r
¯

+ σQn g(
an + b′nXt − r¯

σQn
) + ηn,t

ηn,t˜N(0, ω)

where fon,n+1,1 denotes the observed forward rate and ηn,t is measurement error. The tran-

sition equation of the state variable is
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Xt+1 = µ+ ρXt + Σεt+1

εt+1˜N(0, I)

The model could be estimated using extended Kalman Filter after linearizing func-

tion g(.) around its current estimates.

3.2.2 The Mixed-Frequency Factor-augumented Vector Autoregressive

Model

The General Set-up

The mixed-frequency factor-augumented vector autoregressive model allows a large

number of variables with different frequencies in the same model. In our context of monetary

transmission mechanism, consider Yt to be a M × 1 vector of observable economic variables

of interest that is driving the economy. In our application, it is the weekly frequency

shadow rate constructed from shadow rate term structure model that measures the overall

monetary policy. The monetary transmission mechanism is disentangled into three channels

according to the transmission speed of the impact: fast-moving channel that links the policy

rates to asset returns in the financial market measured in high frequency; medium-moving

channel that links the policy rates to loan and credit data in credit market measured in

medium frequency; slow-moving channel that links the policy rates to real macro economic

variables measured in low frequency. Each of the channel is summarized by unobservable

factors of its own frequency. Let fs,t, fm,t and ff,t denote the unobservable factors for

slow-moving, medium-moving and fast-moving channel respectively, a three-stage mixed-
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frequency FAVAR model is given by

fs,t

fm,t

ff,t

yt


= φ(L)



fs,t−1

fm,t−1

ff,t−1

yt


+ vt (3.1)

where φ(L) is a lag polynomial of order d and vt˜NID(0, Q).

Let Xs,t, Xm,t, Xf,t be Ns× Ts, Nm× Tm, Nf × Tf informational data we observe

in slow-moving, medium-moving and fast-moving channel respectively with Ni being the

number of variables and Ti the number of observations i = s,m, f. The time length of one

period in the model is set to be consistent with that of the highest frequency data, namely

Xf,t. Therefore, Xf,t is observed every period, while Xm,t and Xs,t is observed every n and

m period where m > n > 1. In the case of Xf,t being weekly data, Xm,t being monthly

data and Xs,t being quarterly data, we can set m = 12 and n = 4.

To deal with data of different frequencies, we follow the method proposed by

Mariano and Murasawa (2003). Let X∗s,t be the latent variable of monthly frequency and

X∗m,t be the latent variable in weekly frequency respectively such that the observed variable

is equal to the geometric average of the last three periods’latent variables. Formally,

lnxs,t =
1

3
(lnx∗s,t + lnx∗s,t−4 + lnx∗s,t−8) (3.2)

lnxm,t =
1

3
(lnx∗m,t + lnx∗m,t−1 + lnx∗m,t−2) (3.3)

Let ys,t = ∆12 lnxs,t, y∗s,t = ∆4 lnx∗s,t, ym,t = ∆4 lnxm,t, y∗m,t = ∆ lnx∗m,t and
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yf,t = ∆ lnxf,t. We have

ys,t =
1

3
y∗s,t +

2

3
y∗s,t−4 + y∗s,t−8 + +

2

3
y∗s,t−12 +

1

3
y∗s,t−16 (3.4)

yf,t =
1

3
y∗m,t +

2

3
y∗m,t−1 + y∗m,t−2 + y∗m,t−3 +

2

3
y∗m,t−4 +

1

3
y∗m,t−5 (3.5)

Let

ys,t =

ys,t
yt

 ym,t =

ym,t
yt


y∗s,t =

y∗s,t
yt

 y∗m,t =

y∗m,t
yt


Define µi = E(yi,t), i = s,m, µy = E(yt) and

µi =

µi
µy



µ∗i =

µ∗i
µy


Then relationship between yi,t and y∗i,t, i = s,m could be written as

yi,t − µi = Ji(L)(y∗i,t − µ∗i ) (3.6)

where

Js(L) =

1
3INs O

O 1

+

2
3INs O

O O

L4 +

INs O

O O

L8 + ...

2
3INs O

O O

L12 +

1
3INs O

O O

L16 (3.7)
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Jm(L) =

1
3INm O

O 1

+

2
3INm O

O O

L+

INm O

O O

L2 +

+

INm O

O O

L3 +

2
3INm O

O O

L4 +

1
3INm O

O O

L5 (3.8)

For each channel, we extract the common factor between monetary policy and in-

formational variables individually, which is interpreted as linkage between monetary policy

and economic variables of corresponding channel. For slow-moving channel and medium-

moving channel, the factors are related to informational data using a mixed-frequency dy-

namic factor model because of frequency difference. In fast-moving channel, we maintain

the principal component model as in standard FAVAR:ys,t
yt

 =

µs
µy

+

βs1(13fs,t + 2
3fs,t−4 + fs,t−8 + 2

3fs,t−12 + 1
3fs,t−16)

βs2fs,t



+

1
3es,t + 2

3es,t−4 + es,t−8 + 2
3es,t−12 + 1

3es,t−16

et

 (3.9)

ym,t
yt

 =

µm
µy

+

βm1(13fm,t + 2
3fm,t−1 + fm,t−2 + fm,t−3 + 2

3fm,t−4 + 1
3fm,t−5)

βm2fm,t



+

1
3em,t + 2

3em,t−1 + em,t−2 + em,t−3 + 2
3em,t−4 + 1

3em,t−5)

et

 (3.10)

yf,t = Λfff,t + Λyyt + ef,t (3.11)

where βij , i = s,m, j = 1, 2 are corresponding factor loading vectors; Λf is Nf×K

factor loading matrix; et is error term for constructed shadow rate; ef,t is Nf ×1 error term
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vectors.

Estimation

The model could be estimated using a similar two-step procedure as in standard

FAVAR literature. The first step is to estimate factors f̂i, i = s,m, f individually. For

computational simplicity, the weekly constructed shadow rate yt in (3.9) is replaced with

skipped sampled monthly constructed shadow rate ymt so it matches the frequency of the

latent variable of slow-moving channel. Therefore, equation (3.9) degenerates into the

following monthly frequency model:ys,t
ymt

 =

µs

µmy

+

βs1(13fs,t + 2
3fs,t−1 + fs,t−2 + 2

3fs,t−3 + 1
3fs,t−4)

βs2fs,t



+

1
3es,t + 2

3es,t−1 + es,t−2 + 2
3es,t−3 + 1

3es,t−4

emt

 (3.12)

where emt is error term for monthly constructed shadow rate.

Accordingly, (3.6) and (3.7) are adjusted as follows:

ys,t − µms = Jms (L)(y∗s,t − µ∗s) (3.13)

Jms (L) =

13INs O

O 1

+

23INs O

O O

L+

INs O

O O

L2

+

23INs O

O O

L3 +

13INs O

O O

L4 (3.14)
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To estimate (3.12) we need to assume AR process for fs,t and es,t:

φfs (L)fs,t = vs,t (3.15)

Φe
s(L)es,t = ve,t (3.16)vsf,t

ve,t

 ˜NID(0,

σ2s 0

0 Σe

)

where φfs (L) is a lag operation polynomial of psth-order and Φe
s(L) is a lag operation poly-

nomial of qsth order. The variance-covariance matrix is assumed to be diagonal with the

first element equals 1, which is a standard identification strategy in factor model literature.

A state space representation of (3.12) when ps, qs ≤ 5 is given by

ss,t = Fsss,t−1 + Gszs,t (3.17)

yms,t = µms + Hsss (3.18)

{z1,t}˜IN(0, IN1+1)

where

ss,t =



fs,t

...

fs,t−4

es,t

...

es,t−4


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Fs =



φfs (1) · · ·φfs (ps) o′5−ps O5×5(Ns+1)

I4 o4

Φe
s(1) · · ·Φe

s(qs) O(Ns+1)×(5−qs)(Ns+1)

O5(Ns+1)×5 I4(Ns+1) O4(Ns+1)×(Ns+1)



Gs =



σs o(Ns+1)

o4 O4×(Ns+1)

o(Ns+1) Σ
1/2
e

o4(Ns+1) O4(Ns+1)×(Ns+1)


Hs =

[
Jms (0)βs · · · Jms (4)βs Jms (0) · · · Jms (4)

]
βs = (β′s1, β

′
s2)
′

The mixed-frequency dynamic factor model can then be estimated using Kalman

Filter. Note that (3.12) is a monthly frequency model, therefore, the estimated unobservable

factor {f̂s,t} is of monthly frequency also.

Similarly, a state space representation of (3.10) when pm, qm ≤ 6 can be written

as

sm,t = Fmsm,t−1 + Gmzm,t (3.19)

ym,t = µm + Hmst (3.20)

{zm,t}˜IN(0, INm+1)
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where

sm,t =



fm,t

...

fm,t−5

em,t

...

em,t−5



Fm =



φfm(1) · · ·φfm(pm) o′6−pm O6×6(Nm+1)

I5 o5

Φe
m(1) · · ·Φe

m(qm) O(Nm+1)×(6−qm)(Nm+1)

O6(Nm+1)×6 I5(Nm+1) O5(Nm+1)×(Nm+1)



Gm =



σm o(Nm+1)

o5 O5×(Nm+1)

o(Nm+1) Σ
1/2
e

o5(Nm+1) O5(N2m+1)×(Nm+1)


Hm =

[
Jm(0)βm · · · Jm(5)βm J2(0) · · · Jm(5)

]
βm = (β′m1, β

′
m2)
′

The mixed-frequency dynamic factor model can then be estimated using Kalman

Filter and the estimated unobservable factor {f̂m,t} is of weekly frequency.

Equation (3.11) could be estimated using principal component method as in stan-

dard FAVAR model. The estimated unobservable factor {f̂f,t} is of weekly frequency.

Following standard FAVAR literature, The second step is to plug all the estimated
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unobservable factors into (3.1):

f̂s,t

f̂m,t

f̂f,t

yt


= φ(L)



f̂s,t−1

f̂m,t−1

f̂f,t−1

yt


+ vt (3.21)

Note that {f̂s,t} is of monthly frequency while {f̂m,t}, {f̂f,t} and {yt} are of weekly

frequency, (3.1) is a mixed-frequency VAR model. The estimation takes two possible forms

depending on the expected outcome.

The first form is to follow the estimation of Mariano and Murasawa (2010) and

yield estimated weekly frequency latent variable of {f̂m,t}, which could be used to construct

a coincident index of the linkage between overall monetary policy and macro economy.

Let yf1,t = ∆4 ln f̂s,t and y
f∗
s,t = ∆ ln f̂∗s,t, where f̂

∗
s,t is the weekly latent variable of

f̂s,t and y
f
2,t = ∆ ln


f̂m,t

f̂f,t

yt

. Then we have

yf1,t =
1

3
yf∗s,t +

2

3
yf∗s,t−1 + yf∗s,t−2 + yf∗s,t−3 +

2

3
yf∗s,t−4 +

1

3
yf∗s,t−5 (3.22)

Let

yt =

y
f
1,t

yf2,t



y∗t =

y
f∗
1,t

yf2,t


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Define µ = E(yt), µ∗ = E(y∗t )the relationship between yt and y∗t is given by

yt − µ = J(L)(y∗t − µ∗) (3.23)

where

J(L) =

1
3IN1 O

O 1

+

2
3IN1 O

O O

L+

IN1 O

O O

L2 +

+

IN1 O

O O

L3 +

2
3IN1 O

O O

L4 +

1
3IN1 O

O O

L5

Assume y∗t follows Gaussian VAR(p)

φ(L)(y∗t − µ∗) = wt,wt˜IN(0,Σ) (3.24)

Let the state variable be

st =


y∗t − µ∗

...

y∗t−5 − µ∗


The state-space representation of (3.21) when p ≤ 6 is given by

st+1 = Ast + Bzt (3.25)

yt = µ+ Cst (3.26)

{zt}˜IN(0, IK+3)
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where

A =

φ1 · · · φp O(K+3)×(6−p)(K+3)

I5(K+3) O5(K+3)×(K+2)



B =

 Σ1/2

O5(K+3)×(K+3)


C =

[
J(0) · · · J(5)

]

The mixed-frequency VAR then could be estimated using Kalman Smoother.

The second form is to apply a stacked vector system following Ghysels (2016) and

obtain the impulse response functions of indices of different channels to shocks in constructed

shadow rate.

Consider a structural VAR(p) of monthly frequency tm = 1, ..., Tm as follows:



y(tm, 1)

f̂f (tm, 1)

f̂m(tm, 1)

...

yt(t
m, 4)

f̂f (tm, 4)

f̂m(tm, 4)

f̂s,t(t
m)



= A0 +

p∑
j=1

Aj



y(tm − 1, 1)

f̂f (tm − 1, 1)

f̂m(tm − 1, 1)

...

yt(t
m − 1, 4)

f̂f (tm − 1, 4)

f̂m(tm − 1, 4)

f̂s,t(t
m − 1)



+ ε(tm) (3.27)

where the intra-month indicators are stacked in the order of being observed (or released).
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Let Lm is the monthly lag-operator, rewrite (3.27) into the following form:

A(Lm)(y
¯
(tm)− µy

¯
) = ε(tm) (3.28)

where

y
¯
(tm) =



y(tm, 1)

f̂f (tm, 1)

f̂m(tm, 1)

...

yt(t
m, 4)

f̂f (tm, 4)

f̂m(tm, 4)

f̂s,t(t
m)


A(Lm) = I −

p∑
j=1

AjL
j
m

µy
¯

= (I −
p∑
j=1

Aj)
−1A0

Therefore, the impulse response function for the stacked system is given by

(y
¯
(tm)− µy

¯
) = (I −

p∑
j=1

AjL
j
m)−1ε(tm) (3.29)

and it can be estimated in standard structure VAR estimation procedures.

Missing Values

For all the mixed-frequency models above, the lower frequency series are not always

observable. Follow Mariano and Murasawa (2003), we replace the missing observations
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with random variable εt˜N(0, 1) which has a realization of 0 and adjust the rest of the

measurement equation accordingly. For example, the measurement equation (3.26) can be

written as

y
f
1,t

yf2,t

 =

µ(1)

µ(2)

+

C(1)

C(2)

 st (3.30)

With the missing values replaced, the measurement equation becomes

y+t = µt + Ctst + Dtεt (3.31)

where

y+t =

y
f+
1,t

yf2,t

 ,µt =

µt(1)

µt(2)



Ct =

Ct(1)

Ct(2)

 ,Dt =

Dt(1)

O



yf+1,t = {
yf1,t if yt observed

εt if yt not observed

,µt(1) = {
µ(1) if yt observed

0 if yt not observed

Ct(1) = {
C(1) if observed

O if not observed

,Dt(1) = {
D(1) if observed

1 if not observed

The state-space representation with missing values replaced is given by

st+1 = Ast + Bzt (3.32)

y+t = µt + Ctst + Dtεt (3.33)
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
zt

εt


 ˜IN(0, IK+4)

Now that
{
y+t
}
has no missing values, the Kalman filter can apply directly.

3.3 Application

3.3.1 Data

The data I use sampled from July 1987 to December 2013. For shadow rate term

structure model, forward rates for different maturities are constructed using the end-of-

week observations from Gurkaynak, Sack and Wright (2007) data, following Wu and Xia

(2015). For mixed-frequency factor-augumented vector autoregressive model, I selected

series of weekly, monthly and quarterly frequencies. Weekly indicators are mostly "fast-

moving" return rates that reflects the financial market movement. Monthly indicators are

chosen to be variables that reflects the loan and credit change in financial intermediates.

Quarterly indicators are "slow-moving" variables that measure the real economy activities.

All the series are selected based on three criterion: whether the movement speed of variable

matches its frequency of being observed; whether the variable fits in the potential process

of monetary transmission mechanism; whether the variable is available within the sample

period. Since the estimation is very time-consuming, we carefully restrict our number of

variables and time window within an acceptable range. Table 1 summarizes the detailed

descriptions of the series. "SA" stands for "seasonally adjusted", "NSA" stands for "not

seasonally adjusted" and "AR" stands for "annual rate". All data are directly downloaded
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from FRED, except Divisia M4 is provided by Center for Financial Stability.

Note that for each month we may have either four or five weekly observations, we

made the following adjustment for months of the latter case. Let {xt, ...xt+4} be the five

weekly observations in a month. The adjusted observations are given by

{1

2
(xt + xt+1),

1

2
(xt+1 + xt+2),

1

2
(xt+2 + xt+3),

1

2
(xt+3 + xt+4)}

Since weekly indicators are return rates in level, the average of adjacent observations could

be considered as pseudo observation over the this time period. This will guarantee us four

weekly observations every month.

3.3.2 Estimated Results and Discussions

The shadow rate term structure model is estimated using code modified from Wu

and Xia (2015). The estimated shadow rate along with effective federal fund rate in weekly

frequency are shown in figure 1. The shadow rate and effective federal fund rate move

together until end of 2008. When federal fund rate hit the Zero lower Bound, effective

federal fund rate stay constant while the estimated shadow rate continue to drop below

zero. We can also observe declines in the shadow rate during the periods of Quantitative

Easing program (QE). It is also worth mentioning that estimated shadow rate is more

volatile than federal fund rate even before the Zero Lower Bound period.

The mixed-frequency factor-augumented vector autoregressive model is estimated

Using Ox 7.10 and code modified from Mariano and Murasawa (2003, 2010).The number

of lags for AR process are determined using information criterion AIC and SBIC same in
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Mariano and Murasawa (2003):

AIC = − 1

T
{lnL(θ̂)− [(N − 1) + p+ 1 +N(q + 1)]} (3.34)

SBIA = − 1

T
{lnL(θ̂)− lnT

2
[(N − 1) + p+ 1 +N(q + 1)]} (3.35)

The selected model are (p1, q1) = (2, 1), (p2, q2) = (1, 1) and p = 1. The number

of factors are in the principal component is chosen to be K = 2.

Figure 2 illustrates the estimated common factor of quarterly indicators and es-

timated shadow rate that measures the direct linkage between monetary policy and real

economic activities. Some activities could be observed even after Dec. 2008. Figure 3 is

the coincident index constructed using the common factors estimated from quarterly indi-

cators by taking the partial sum. The coincident index essentially measures how effective

monetary policy is over the time. It has a nice property that it reaches local peaks right

before the recession and declines rapidly during the recessions, suggesting that the impact

of monetary policy lessens during the periods of recessions. We can also observe three small

peak after Dec 2008 which coincident with quantitative easing program (QE) conducted by

the Federal Reserve which means the unconventional monetary policy is effective affecting

the economy. Figure 4 shows the estimated common factor of monthly indicators and esti-

mated shadow rate which measure the linkage between monetary policy and credit market

activities. Figure 5 is the coincident index constructed using the common factor of monthly

indicators by taking the partial sum. The coincident index shares the same properties as

that in figure 3. However, we can see credit market is more reactive to monetary policy

that the macro economy.

Figure 6 is the estimated factor of the second step mixed-frequency VAR model.
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The estimated high-frequency factor measures the linkage between overall monetary policy

and real economic activities taking all three channels into consideration. Figure 7 and 8 are

the corresponding coincident index constructed using the same method and its smoothed

version. The coincident index rises during the recession of 1990 and 2001 while declines

during the 2008 crisis. One interesting observation people may ignore is that there is

a sharp drop in the index followed by a bounce back right before each recession in our

sample. This indicates that the resulting coincident index is actually leading the recessions

substantially. One observation that supports this view is the to look at the duration of the

recessions. During the recession of 1990 and 2001, the coincident index start to rise at the

beginning of the recession, and as a result these two recessions last shorter. In contrast,

after a small bounce, the index continue to drop during the 2008 recession, and the recession

last longer. This could be a result of estimating shadow rate using one month forward rate

of bond of different maturity. Therefore, the shadow rate is leading the effective federal

fund rate by construction. This effect is somehow amplified by our second step estimation

of mixed-frequency VAR model.

I also report the impulse response analysis from the stacked system of mixed-

frequency VARmodel. Figure 9 shows the impulse response functions of fast-moving channel

index to a standard shock in shadow rate. We can observe that monetary policy shocks

have a short-run effect on the financial market that decays within four periods. Figure 11

shows the impulse response function of medium-moving channel index. In contrast with

fast-moving channel index, monetary policy shocks have more persistent impact that lasts

for more than 12 periods. Figure 12 is the impulse response function of slow-moving channel
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index. Recall that within one month shadow rate is observed four times while the index is

observed once at the end of the month, monetary policy shocks at the beginning and end of

the month have relatively larger impact than intra-month shocks. It is also worth noticing

the index cross 0 several times, indicating the impact of monetary policy shock on the real

economy is not monotonic.

3.4 Conclusion

This paper studies the monetary transmission taking unconventional monetary

policy in consideration. The impact of unconventional monetary policy is reflected on the

dynamics of constructed shadow rate which is estimated using one month forward rate of

bond of different maturities. The monetary transmission mechanism is disentangled into

three channels according to transmission speed of the impact: fast-moving channel that

links the policy rates to asset returns in the financial market measured in high frequency;

medium-moving channel that links the policy rates to loan and credit data in credit mar-

ket measured in medium frequency; slow-moving channel that links the policy rates to

real macro economic variables measured in low frequency. A set of coincident indices are

constructed using the mixed-frequency factor-augumented autoregressive model. Impulse

response analysis are also applied by imposing the stacked vector system in the second

step of the estimation. The resulting coincident index of overall monetary transmission

mechanism captures major unconventional monetary policy during the Zero Lower Bound

and exhibits a substaintial lead on the recessions in the sample period, which is due to the

construction process of shadow rate. The impulse response functions show that monetary
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policy shocks have relatively persistent impact on medium-moving channel (or credit mar-

ket). Also, we find the slow-moving channel is more responsive to monetary policy shocks

in the beginning and end of a month compared to those in the middle.
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3.5 Tables and Figures

Figure 3.1: The estimated shadow rate and effective federal fund rate.

Figure 3.2: Estimated factor from quarterly indicators.
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Figure 3.3: Coincident index constructed using quarterly indicator factor.

Figure 3.4: Estimated factor from monthly indicators.
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Figure 3.5: Coincident index constructed using the monthly indicator factor.

Figure 3.6: Estimated factor of monetary linkage.
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Figure 3.7: Coincident index constructed using estimated monetary linkage factor.

Figure 3.8: Smoothed coincident index constructed using estimated monetary linkage factor.
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Figure 3.9: Impulse response functions of shadow rate to a standard shock in shadow rate.
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Figure 3.10: Impulse response functions of fast-moving channel index to a standard shock
in shadow rate.
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Figure 3.11: Impulse response functions of medium-moving channel index to a standard
shock in shadow rate.
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Figure 3.12: Impulse response functions of slow-moving channel index to a standard shock
in shadow rate.
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Chapter 4

Examining the Lead-Lag

Relationship of Channels in

Monetary Transmission Mechanism

4.1 Introduction

Monetary transmission mechanism describes how monetary policy shock affects

real variables in the economy such as aggregate output, employment rate and inflation.

There is a large literature that focus on unveil different channels through which the monetary

policy shock can affect the real economy. Since monetary policy shock could affect many

economic variables in the economy, it is hard to track the impact transits from time to time.

Theoretical models about monetary transmission mechanism started from Tobin

(1969). The interest rate channel says investors would adjust their asset portfolio according
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to changes in interest rate, consumption will also change as a result. The credit channel is a

more recent view proposed by Bernanke and Gertler (1989). The credit view is built on the

assumption that the credit market is imperfect due to government intervention, asymmetric

information, and agency problems. The bank lending channel refers to the situation where

some small firms that have no direct access to credit market consider bank loan is their only

source of finance. As a result of monetary policy shock, the credit available in bank will be

adjusted accordingly, which most likely will have impact on investment of such small firms.

The balance sheet channel considers the direct effect of monetary policy shock on agents’

ability to borrow due to changes in asset value and profitability. The latest risk-taking view

suggests that expansionary monetary policy could lead to risk-taking behavior. Nicolo et

al. (2010) discuss three different channels of it. The first channel is that banks always

have incentive to substitute low yield safe asset with high yield riskier asset. The second

channel is through a "search for yield," that is, low interest rate gives financial institutions

with long-term commitment an incentive to switch to risky asset in order to attain a higher

probability of matching their promised yield. The last channel refers to the fact that banks

always tend to maintain a constant leverage ratio. The leverage ratio tends to drop with

monetary policy easing as risky asset weight falls, and this could lead banks to switch

towards risky assets.

Despite all the channels studied in the literature, transition speed of different

channels is often ignore by researchers. It is intuitive to see that the impact transits through

interest rate channel should take place slower than one that goes by balance sheet channel

as the later basicly only include changes in information and expectation which merely takes
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any time. The difference in the speed of transition of different channels also increases the

complexity of the impact on the economy from a monetary policy shock.

In contrast with most of the literature that focusing on the "real" impact of mon-

etary policy, I need to include not only policy rate and real macroeconomic variables, but

also variables from financial and credit market in the model to investigate the transmission

mechanism. In this paper, I propose to disentangle the monetary transmission mechanism

into three channels according to transmission speed of the impact: fast-moving channel

that links the policy rates to asset returns in the financial market measured in high fre-

quency; medium-moving channel that links the policy rates to loan and credit data in credit

market measured in medium frequency; slow-moving channel that links the policy rates to

real macro economic variables measured in low frequency. A coincident index of each of

the channel could be constructed using a mixed-frequency dynamic factor model, as the

indicators are sampled in different frequencies. Intuitively, if there is difference in speed

of transition between channels in the monetary transmission mechanism, there should be a

clear lead-lag relationship between the coincident index of each of the channel.

One potential problem is that as the coincident indices are estimated individually,

there exist a scale difference between the indices of each channel. Although a classic turning-

point analysis could still be applied, this will cause problems in potential further extensions.

The problem is resolved by introducing a Markov-switching feature to the model. In this

paper, I adopt a extended Markov-switching mixed-frequency vector autoregressive model to

the coincident indices of all three channels. Each channel is assumed to switch independently

between two states: "good state" during expansions and "bad state" for recessions. As a
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result, instead of looking for lead-lag relationship between the coincident indices, we can

expect the lead-lag relationship in the probability of "bad state".

This is not the first paper that studies Markov-switching mixed-frequency VAR

models. Camacho (2012) extended Markov-switching mixed- frequency VAR model to a

mixed-frequency version following Mariano and Murasawa (2003) method and successfully

captured NBER business cycle. Foroni, Guerin and Marcellino (2015) summarized general

estimation and inference of a family of Markov-switching mixed-frequency VAR models and

found the model is extremely useful to estimate and predict status of economic activities.

However, to my best knowledge, this is the first paper to allow variables to switching

individually and study the relationship of the indicators within the model.

The rest of the paper is structured as follows. Section two presents the mixed-

frequency dynamic factor model used to construct the coincident indices and the extended

Markov-switching mixed- frequency VAR model used to estimate the probability of "bad

state". Section three applies the model to U.S. macroeconomic and financial data to the

model and discuss the empirical results. Section four concludes.

4.2 The Model

4.2.1 Mixed-Frequency Dynamic Factor Model

Consider Yt to be a M × 1 vector of observable economic variables of interest that

is driving the economy. In our application, it has federal fund rate in weekly frequency

only. The monetary transmission mechanism is disentangled into three channels according

to the transmission speed of the impact: fast-moving channel that links the policy rates to
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asset returns in the financial market measured in high frequency; medium-moving channel

that links the policy rates to loan and credit data in credit market measured in medium

frequency; slow-moving channel that links the policy rates to real macro economic variables

measured in low frequency. A coincident index of each of the channel could be constructed

using the a mixed-frequency dynamic factor model following Mariano and Murasawa (2003).

Let Xs,t, Xm,t, Xf,t be Ns× Ts, Nm× Tm, Nf × Tf informational data we observe

in slow-moving, medium-moving and fast-moving channel respectively with Ni being the

number of variables and Ti the number of observations i = s,m, f. The time length of

one period in the model is set to be consistent with that of the highest frequency data.

For instance, in a model that has Xm,t and Yt, Yt is observed every period, while Xm,t is

observed every n where n > 1. In the case of Yt being weekly data, Xm,t being monthly

data, n = 4.

Take the slow-moving channel as an example, I illustrate the construction of the

corresponding coincident index. For computational simplicity, I include indicators in Xs,t

in quarterly frequency and skip-sampled federal fund rate ymt in monthly frequency instead

of original yt in weekly frequency to reduce number of lags in the model. Following Mari-

ano and Murasawa (2003), assume the observed lower frequency indicator Xs,t is equal to

the geometric average of the last three periods’ latent variables X∗s,t in higher frequency.

Formally,

lnxs,t =
1

3
(lnx∗s,t + lnx∗s,t−1 + lnx∗s,t−2)

Let ys,t = ∆3 lnxs,t and y∗s,t = ∆ lnx∗s,t, we have

ys,t =
1

3
y∗s,t +

2

3
y∗s,t−1 + y∗s,t−2 + +

2

3
y∗s,t−3 +

1

3
y∗s,t−4
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Define

ys,t =

ys,t
ymt

 µs =

 µs

µym


y∗s,t =

y∗s,t
ymt

 µ∗s =

 µ∗s

µym


where µs = E(ys,t), µym = E(ymt ).

Then relationship between ys,t and y∗s,t is given by

ys,t − µs = Js(L)(y∗s,t − µ∗s)

where

Js(L) =

13Is O

O 1

+

23Is O

O O

L+

Is O

O O

L2

+

23Is O

O O

L3 +

13Is O

O O

L4
Let fs,t denotes the common factor that links the policy rates to low frequency

indicators in the slow-moving channel. The mixed-frequency dynamic factor model of ys,t

and ymt is could be written asys,t
ymt

 =

 µs

µym

+

βs1(13fs,t + 2
3fs,t−1 + fs,t−2 + 2

3fs,t−3 + 1
3fs,t−4)

βs2fs,t



+

1
3es,t + 2

3es,t−1 + es,t−2 + 2
3es,t−3 + 1

3es,t−4

emt


where emt is error term for monthly constructed shadow rate.

The model is estimated with Kalman filter.
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Assume AR process for fs,t and es,t:

φfs (L)fs,t = vs,t (4.1)

Φe
s(L)es,t = ve,t (4.2)vsf,t

ve,t

 ˜NID(0,

σ2s 0

0 Σe

)

where φfs (L) is a lag operation polynomial of psth-order and Φe
s(L) is a lag operation poly-

nomial of qsth order. The variance-covariance matrix is assumed to be diagonal with the

first element equals 1, which is a standard identification strategy in factor model literature.

Define the state vector as

ss,t =



fs,t

...

fs,t−4

es,t

...

es,t−4


The state space representation ps, qs ≤ 5 follows by

ss,t = Fsss,t−1 + Gszs,t

ys,t = µs + Hsss
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where

Fs =



φfs (1) · · ·φfs (ps) o′5−ps O5×5(Ns+1)

I4 o4

Φe
s(1) · · ·Φe

s(qs) O(Ns+1)×(5−qs)(Ns+1)

O5(Ns+1)×5 I4(Ns+1) O4(Ns+1)×(Ns+1)



Gs =



σs o(Ns+1)

o4 O4×(Ns+1)

o(Ns+1) Σ
1/2
e

o4(Ns+1) O4(Ns+1)×(Ns+1)


Hs =

[
Jms (0)βs · · · Jms (4)βs Jms (0) · · · Jms (4)

]
βs = (β′s1, β

′
s2)
′

Recall that the higher frequency variable in the model is yms,t, which is of monthly

frequency. Therefore, the estimated common factor f̂s,t will also be of monthly frequency.

Extended Markov-Switching Mixed-Frequency Vector Autoregressive Model

A extended Markov-switching mixed-frequency VAR model includes

Yt =



f̂s,t

f̂m,t

f̂f,t

yt


where f̂s,t is the estimated common factor in monthly frequency from slow-moving channel;

f̂m,t is the estimated common factor in weekly frequency from medium-moving channel; f̂f,t
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is the principal component in weekly frequency estimated from medium-moving channel.

Follow the same process of mixed-frequency method, let yfs,t = ∆4 ln f̂s,t, y
f∗
s,t =

∆ ln f̂∗s,t and y
f
2,t = ∆ ln


f̂m,t

f̂f,t

yt

, where f̂
∗
s,t is the weekly latent variable of f̂s,twe have

yfs,t =
1

3
yf∗s,t +

2

3
yf∗s,t−1 + yf∗s,t−2 + yf∗s,t−3 +

2

3
yf∗s,t−4 +

1

3
yf∗s,t−5

and accordingly

yft − µf = Js(L)(yf∗t − µf∗)

where

yft =

y
f
s,t

yf2,t

 µf =

 µfs

µ
yf2


yf∗t =

y
f∗
s,t

yf2,t

 µf∗ =

µ
f∗
s

µ
yf2


µfs = E(yfs,t) µ

yf2
= E(yf2,t)

J(L) =

 1
3 O

O I3

+

 2
3 O

O O

L+

 1 O

O O

L2
 1 O

O O

L3 +

 2
3 O

O O

L4 +

 1
3 O

O O

L5
I assume independent two-state Markov-switching process in mean, autoregressive
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coeffi cient matrix and covariance matrix for each of the channel:

yf∗s,t = µss,t + φss,t(L)yf∗s,t + εs,t

f̂m,t = µsm,t + φsm,t(L)f̂m,t + εm,tf̂f,t
yt

 =

µsf,t
µsf,t

+ φsf,t(L)

f̂f,t
yt

+

εf,t
εy,t


where εi,t˜N(0,Σsi,t), i = s,m, f, y are the corresponding error term and φsi,t(L), i = s,m, f

are lag polynomial of pith order.

The transition probabilities follow a hidden Markov chain given by

pijs = ps(ss,t = j|ss,t−1 = i, ϕt−1)

= ps(ss,t = j|ss,t−1 = i)

pijm = pm(sm,t = j|sm,t−1 = i, ϕt−1)

= pm(sm,t = j|sm,t−1 = i)

pijf = pf (sf,t = j|sf,t−1 = i, ϕt−1)

= pf (sf,t = j|sf,t−1 = i)

where i, j are either 0 or 1 and ϕt−1 denotes all the information available until t− 1 period.
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Define the state vector to be

βt =



yf∗t

yf∗t−1

yf∗t−2

yf∗t−3

yf∗t−4

yf∗t−5


A state space representation of a extended Markov-switching mixed-frequency

VAR model when p ≤ 6 is given by

βt = µst + Fstβt +Qstzt

yft = µfst +Hβt

{zt}˜IN(0, I)
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where

µst =



µfst

O

O

O

O

O



Fst =



φss,t(1) · · · φss,t(ps)

φsm,t(1) · · · φsm,t(pm) O

φsf,t(1) · · · φsf,t(pf )

φsf,t(1) · · · φsf,t(pf )

I4

I4

I4

I4 O



Qst =



Σ
1/2
ss,t

Σ
1/2
sm,t

Σ
1/2
sf,t

Σ
1/2
sf,t

O O


H =

[
J(0) · · · J(5)

]
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The model is estimated using Kalman filter as in standard Markov-switching mod-

els.

4.3 Application

4.3.1 Data

We use US economy data to construct the coincident indices for each channel. The

series we use are of three frequencies sampled from July 1987 to December 2015. Quarterly

indicators are "slow-moving" variables that measure the real economy activities. Monthly

indicators are chosen to be variables that reflects the loan and credit change in financial

intermediates. Weekly indicators are mostly "fast-moving" return rates that reflects the

financial market movement. Note that for each month we may have either four or five

weekly observations, we made the following adjustment for months of the latter case. Let

{xt, ...xt+4} be the five weekly observations in a month. The adjusted observations are given

by

{1

2
(xt + xt+1),

1

2
(xt+1 + xt+2),

1

2
(xt+2 + xt+3),

1

2
(xt+3 + xt+4)}

Since weekly indicators are return rates in level, the average of adjacent observations could

be considered as pseudo observation over the this time period. This will guarantee us four

weekly observations every month.

Table 1 summarizes the detailed descriptions of the series. "SA" stands for "sea-

sonally adjusted", "NSA" stands for "not seasonally adjusted" and "AR" stands for "annual

rate". All data are directly downloaded from FRED, except Divisia M4 is provided by Cen-

ter for Financial Stability. Table 2 summarizes the descriptive statistics of the standardize
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indicators. The transformation codes are: 1 — no transformation; 2 — first difference; 5

—first difference of logarithm. Since some of the series experienced structural break for

regulation reasons, we adopted 1% winsorization to maintain stationarity.

4.3.2 Estimated Results and Discussions

When estimating the coincident indices using mixed-frequency dynamic factor

model, we followed the standard literature to have the series demeaned so all the con-

stant terms in the models are deleted. Using Ox 7.10 and code modified from Mariano and

Murasawa (2003, 2010), the approximate ML estimator could be estimated using quasi-

Newton method. Table 3 and 4 summarized the estimated result of the mixed-frequency

factor model in the first step. The number of lags for AR process are determined using

information criterion AIC and SBIC same in Mariano and Murasawa (2003):

AIC = − 1

T
{lnL(θ̂)− [(N − 1) + p+ 1 +N(q + 1)]} (4.3)

SBIA = − 1

T
{lnL(θ̂)− lnT

2
[(N − 1) + p+ 1 +N(q + 1)]} (4.4)

The selected model are (ps, qs) = (2, 1), (pm, qm) = (1, 1) and p = 1.

Figure 1 illustrates the estimated common factor of quarterly indicators and es-

timated shadow rate that measures the direct linkage between monetary policy and real

economic activities. Figure 2 is the coincident index constructed using the common factors

estimated from quarterly indicators by taking the partial sum. The coincident index essen-

tially measures how effective monetary policy is over the time. It has a nice property that

it reaches local peaks right before the recession and declines rapidly during the recessions,

suggesting that the impact of monetary policy lessens during the periods of recessions. Fig-
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ure 4 shows the estimated common factor of monthly indicators and estimated shadow rate

which measure the linkage between monetary policy and credit market activities. Figure

5 is the coincident index constructed using the common factor of monthly indicators by

taking the partial sum. The coincident index shares the same properties as that in figure

2. However, we can see credit market is more reactive to monetary policy that the macro

economy. Since the estimated coincident indices for slow-moving and medium-moving chan-

nel are too noisy, we apply HP filter to extract the trend and smooth the indices. Figure 3

and 6 are the smoothed smoothed coincident indices for slow-moving and medium-moving

channels. Figure 7 shows the principal component extracted from indicators in fast-moving

channel.

The Markov-switching mixed-frequency VAR is estimated with number of lag cho-

sen to equal to 1. The first 300 observations are used to calibrate the model. Figure 8

illustrates the smoothed probability of "bad state" in slow-moving, medium-moving and

fast-moving channels respectively. Notice that the probability for bad state is most volatile

for fast-moving channel and least volatile for slow-moving channel, which is not surprising as

it is guarantee by construction when we select the data. Although we can observe some sy-

chronicity between probabilities of "bad state" in slow-moving channel and medium-moving

channel, their relationship with probability of fast-moving channel is unclear. Figure 9, 10

and 11 show the probabilities of "bad state" in three channels during the periods of reces-

sions in our sample period. Although probability of "bad state" in slow-moving channel is

relatively flat, the fact that probability of "bad state" in fast-moving channel is leading that

in medium-moving channel become much more clear. In addition, the fact that probability
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of "bad state" in medium-moving channel stay close to 1 most of the time during the periods

recessions indicates the monetary policy is most likely to lose its influence in credit market

within the transmission mechanism.

Table 3 shows the pairwise Granger causality tests of the fitted probabilities of "bad

state" in three channels with lag horizon equal to 1. The statistics supports the probability

of "bad state" in fast-moving channel is causing that in medium-moving channel and slow-

moving channel. However, the causality between medium-moving channel and slow-moving

channel is still unclear.

4.4 Conclusion

This paper aims to examine the lead-lag relationship of different channels in mon-

etary transmission mechanism. I propose to disentangle the monetary transmission mecha-

nism into three channels according to transmission speed of the impact: fast-moving channel

that links the policy rates to asset returns in the financial market measured in high fre-

quency; medium-moving channel that links the policy rates to loan and credit data in credit

market measured in medium frequency; slow-moving channel that links the policy rates to

real macro economic variables measured in low frequency. I employed a mixed-frequency

dynamic factor model to construct coincident indices for each of the channel from US econ-

omy data sampled from July 1987 to December 2015. The constructed coincident indices

of three channels are estimated in a extended Markov-switching mixed-frequency vector

autoregressive model that allows the indices of each channel to switch independently be-

tween two channels. The result provide empirical evidence for fast-moving channel lead-
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ing medium-moving and slow-moving channel. However, the lead-lag relationship between

medium-moving channel and slow-moving channel is still unclear.
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4.5 Tables and Figures

Table 4.1: Pairwise Granger Causality Tests

Null Hypothesis: Obs F-Statistic Prob.
Medium-moving not Cause slow-moving 1357 17.2588 3.E-05
Slow-moving not Cause medium-moving 12.6851 0.0004

Fast-moving not Cause slow-moving 1357 74.0735 2.E-17
Slow-moving not Cause fast-moving 0.34663 0.5561

Fast-moving not Cause medium-moving 1357 94.8806 1.E-21
Medium-moving not Cause fast-moving 0.88612 0.3467

Figure 4.1: Estimated factor from quarterly indicators.
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Figure 4.2: Coincident index constructed using quarterly indicator factor.

Figure 4.3: Smoothed coincident index constructed using quarterly indicator factor.
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Figure 4.4: Estimated factor from monthly indicators.

Figure 4.5: Coincident index constructed using the monthly indicator factor.
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Figure 4.6: Smoothed coincident index constructed using the monthly indicator factor.

Figure 4.7: First principal component of weekly indicators.
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Figure 4.8: Smoothed probability of "bad state" in slow-moving, medium-moving and fast-
moving channels.

Figure 4.9: Smoothed probability of "bad state" in slow-moving, medium-moving and fast-
moving channels during 1990 recession.
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Figure 4.10: Smoothed probability of "bad state" in slow-moving, medium-moving and
fast-moving channels during 2001 recession.

Figure 4.11: Smoothed probability of "bad state" in slow-moving, medium-moving and
fast-moving channels during 2008 recession.
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Chapter 5

Conclusion

This dissertation attempts to explore the monetary transmission mechanism with

an innovating empirical framework: mixed-frequency factor-augumented vector autoregres-

sive model, which allows to include a large number of economic variable with different

frequencies. Extensions of the model are also provided: a stacked-vector system equips the

model with classic impulse response function analysis; Markov-switching feature is added

to the model to study the dynamics of unobservable states.

The first chapter studies the monetary transmission mechanism in the U.S. It

proposes a mixed-frequency version of the factor-augmented vector autoregressive regression

(FAVAR) model, which is used to construct a coincident index to measure the monetary

transmission mechanism. The model divides the transmission of changes in monetary policy

to the economy into three stages according to the timing and order of the impact. Indicators

of each stage are measured and identified using different data frequencies: fast-moving

variables (stage 1, asset returns at the weekly frequency), intermediate moving variables
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(stage 2, credit market data at the monthly frequency), and slow-moving variables (stage

3, macroeconomic variables at the quarterly frequency). The resulting coincident index

exhibits leading signal for all recessions in the sample period and provides implications on

the dynamics of the monetary transmission mechanism. The proposed coincident index also

indicates that monetary transmission mechanism is changing over time.

The second studies the monetary transmission taking unconventional monetary

policy in consideration. The impact of unconventional monetary policy is reflected on the

dynamics of constructed shadow rate which is estimated using one-month forward rate of

bond of different maturities. The monetary transmission mechanism is disentangled into

three channels according to transmission speed of the impact: fast-moving channel that

links the policy rates to asset returns in the financial market measured in high frequency;

medium-moving channel that links the policy rates to loan and credit data in credit mar-

ket measured in medium frequency; slow-moving channel that links the policy rates to

real macro economic variables measured in low frequency. A set of coincident indices are

constructed using the mixed-frequency factor-augumented autoregressive model. Impulse

response analysis are also applied by imposing the stacked vector system in the second

step of the estimation. The resulting coincident index of overall monetary transmission

mechanism captures major unconventional monetary policy during the Zero Lower Bound

and exhibits a substaintial lead on the recessions in the sample period, which is due to the

construction process of shadow rate. The impulse response functions show that monetary

policy shocks have relatively persistent impact on medium-moving channel (or credit mar-

ket). Also, we find the slow-moving channel is more responsive to monetary policy shocks
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in the beginning and end of a month compared to those in the middle.

The third chapter aims to examine the lead-lag relationship of different channels

in monetary transmission mechanism. I propose to disentangle the monetary transmission

mechanism into three channels according to transmission speed of the impact: fast-moving

channel that links the policy rates to asset returns in the financial market measured in high

frequency; medium-moving channel that links the policy rates to loan and credit data in

credit market measured in medium frequency; slow-moving channel that links the policy

rates to real macro-economic variables measured in low frequency. I employed a mixed-

frequency dynamic factor model to construct coincident indices for each of the channel from

US economy data sampled from July 1987 to December 2015. The constructed coincident

indices of three channels are estimated in a extended Markov-switching mixed-frequency

vector autoregressive model that allows the indices of each channel to switch independently

between two channels. The result provide empirical evidence for fast-moving channel lead-

ing medium-moving and slow-moving channel. However, the lead-lag relationship between

medium-moving channel and slow-moving channel is still unclear.
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